THE USE OF MULTIPLE REGRESSION ANALYSIS AND RESPONSE SURFACE TECHNIQUES IN THE DESIGN OF OPTIONAL NON-DEMAND ELECTRIC UTILITY RATES

DONALD WAYNE FRY Bachelor of Science University of Tulsa Tulsa, Oklahoma 1979

Bу

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1987

THE USE OF MULTIPLE REGRESSION ANALYSIS AND RESPONSE SURFACE TECHNIQUES IN THE DESIGN OF OPTIONAL NON-DEMAND ELECTRIC UTILITY RATES

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ii 1282694

PREFACE

This study develops a systematic procedure whereby multiple regression analysis and response surface techniques can be used in the design of electric utility rates to determine revenue recovery involving migration for large non-demand rate classes. A Plackett-Burman design and a Central Composite design are used in the development of the three models included in this study. Correlation coefficients and residuals are calculated in the evaluation of these models.

The author wishes to express appreciation for the assistance provided by the committee chairman, Dr. Bennett Basore, and members, Dr. Daniel Lingelbach and Dr. Wayne Turner. In addition, special thanks is given to the Public Service Company of Oklahoma. Without their cooperation, this study would not have been possible.

For her continual support and encouragement, I dedicate this study to my wife, Pamela.

iii

TABLE OF CONTENTS

,

Chapter	Pa	ige
Ι.	THE RESEARCH PROBLEM	1
	The Ratemaking Process The Rate Design Process The Problem of Predicting Migration For Large Non-Demand Rate Classes	1 3 4
II.	METHOD AND PROCEDURE	10
	Sample Selection and Validation Definition of Independent Variables Experiment Design Data Collection Development of the Models	11 13 15 21 22
III.	ANALYSIS OF THE MODELS	23
	Linear: Two Rates, Two Seasons, Three Blocks Per Season Linear: Three Rates, Two Seasons, Three Blocks Per Season Quadratic: Two Rates, Two Seasons, Three Blocks Per Season	23 26 30
IV.	CONCLUSIONS AND RECOMMENDATIONS	38
	Conclusions Recommendations	
SELECTE	D BIBLIOGRAPHY	41
APPENDI	XES	43
	APPENDIX A - DESIGN ARRAY PROGRAM LISTINGS	44
	APPENDIX B - DESIGN ARRAYS AND DEPENDENT VARIABLE VALUES	47
	APPENDIX C - DATA COLLECTION PROGRAM LISTING	58
	APPENDIX D - RESIDUALS	63

.

LIST OF TABLES

age	P	Table
24	R ² for Linear 7 Variable Model With 8 Design Points	I.
25	R ² for Linear 7 Variable Model With 8 Design Points	11.
27	R ² for Linear 14 Variable Model With 16 Design Points	III.
29	R ² for Linear 14 Variable Model With 32 Design Points	IV.
31	R^2 for Quadratic 7 Variable Model With 143 Design Points	ν.
34	Residuals for Quadratic 7 Variable Model With 143 Design Points	VI.
34	R^2 for Quadratic 7 Variable With 286 Design Points	VII.
37	Residuals for Quadratic 7 Variable Model With 286 Design Points	VIII.

v

CHAPTER I

THE RESEARCH PROBLEM

The Ratemaking Process

The fundamental steps in the ratemaking process are load research, a cost of service study, and rate design. In the load research process, data are collected which indicate the electrical characteristics of sampled customers and groups of customers. In the cost of service study, data are collected from the load research process and from company books and records. Costs are then classified as demand, energy, or customer related, and allocated to the various rate classes. The cost of service study provides some essential information needed in the rate design process, primarily, the revenue requirement for each rate class and the overall revenue requirement for the utility as well as the costs associated with the different components of service for each of the rate classes. This work will address a specific problem which is encountered in the design of electric utility rates. In the design of electric utility rates, the analyst typically formulates a proposed rate based on load research and cost of service data. The rate is then tested using computer programs which run against a large data base of customer data to determine other factors instrumental in the evaluation of a rate, e.g., revenue recovery, revenue stability, customer impact, weather sensitivity, and accurate cost recovery. The objectives most often

suggested for rates were stated by Bonbright (1961) as :

- 1. The related, practical attributes of simplicity, understandability, public acceptability, and feasibility of application.
- Freedom from controversies as to proper interpretation.
- 3. Effectiveness in yielding total revenue requirements under the fair-return standard.
- 4. Revenue stability from year to year.
- 5. Stability of the rates themselves, with a minimum of unexpected changes seriously adverse to existing customers.
- Fairness of the specific rates in the apportionment of total costs of service among the different consumers.
- Avoidance of undue discrimination in rate relationships.
- Efficiency of the rate classes and rate blocks in discouraging wasteful use of service while promoting all justified types and amounts of use:
 - a. In the control of the total amounts of service supplied by the company, and
 - b. In the control of the relative uses of alternative types of service (p. 291).

Many proposed rates must be analyzed to determine the most appropriate rate. An example of a commonly used rate type, frequently referred to as a blocked rate is as follows:

Customer Charge = \$5.00

June-September	July-October		
0 - 500 kWh @ 5.25 ¢/kWh	0 - 500 kWh @ 5.00 ¢/kWh		
501 - 100 kWh @ 6.40 ¢/kWh	501 - 1000 kWh @ 4.45 ¢/kWh		
over 1000 kWh @ 7.35 ¢/kWh	over 1000 kWh @ 4.10 ¢/kWh		

Data, exhibits, and prefiled testimony concerning load research, cost of service, and rate design are then compiled and filed with the appropriate regulatory agency, e.g., the state corporation commission. Hearings are then held and the order regarding the filing is rendered. Frequently, rates must be redesigned pursuant to the findings of the proceedings. New rates become effective when ordered by the presiding regulatory body.

The Rate Design Process

In the design of rates a predominant limitation lies in the type of metering equipment which is installed for different types of customers, i.e., the metered data available for those customers. This study will be concerned with the design of rates for non-demand customers for which a single monthly kWh usage is available. This is typically the case for small commercial and residential customers due to the expense associated with more sophisticated metering. Given the load research and cost of service data, the objective of the rate design process is to design rates which most closely adhere to the previously stated criteria, i.e., Bonbright's principles. Prices are developed from cost of service and load research data for each rate class. This is typically done by the use of one of two computer programs. The first program uses a data base which includes twelve months of metered data for each individual customer in the rate class or a sample of customers in the rate class. For the purposes of this study, this method will be referred to as a customer-by-customer method. The program uses as input the present rate and the proposed rate and simulates the billing that would occur under each rate for

each customer, determines the revenue difference between present and proposed rates for each customer, and determines the total revenue which would be collected under the proposed rate. The second program uses a data base which is essentially a grouped frequency distribution of kWh usages for customers in the rate class. This frequency distribution data base is built from a customer-by-customer data base, but only includes such information as the number of customers which used a specified number of kWh or less and the total number of kWh used by these customers. For the purposes of this study, this will be referred to as a bill frequency method. It is this reduced data file that the program uses. By using this method, any customerspecified information is lost, however, the total revenue difference between the present and proposed rates, and the total revenue which would be recovered under the new rate can still be determined. The bill frequency method is often used when designing rates for non-demand rate classes with large numbers of customers, for example, in the design of residential rates this may be hundreds of thousands of customers. Since many computer runs are required in the rate design process, computer cost savings is the primary benefit of using the bill frequency method. The cost of using the customer-by-customer method is a serious drawback to its use in the case of such a large rate class.

The Problem of Predicting Migration For Large Non-Demand Rate Classes

This study is concerned with the determination of revenue recovered under proposed rates. In some cases, the analyst must

determine the change in revenue resulting from a group of customers which are currently being billed under the existing rate x_e being billed under proposed rate x_p (or the revenue recovered by each of the rates). This is the typical case where there is only one proposed rate and all customers will be billed according to that rate. In this case, the revenue that would be recovered can be determined by use of the bill frequency method. In many cases, however, each of the customers in the group may be offered optional proposed rates, i.e., each customer may have the option of being billed under proposed rate x_p or proposed rate y_p . For example:

> Rate x_e Customer Charge = \$5.00 0 - 500 kWh @ 5.50 c/kWh 501 - 1000 kWh @ 5.00 c/kWh over 1000 kWh @ 4.50 c/kWh

> <u>Rate x</u> p Customer Charge = \$5.00 0 - 500 kWh @ 6.00 ¢/kWh 501 - 1000 kWh @ 5.00 ¢/kWh over 1000 kWh @ 4.00 ¢/kWh

Rate y_p

Customer Charge = \$4.00 0 - 400 kWh @ 7.00 c/kWh 401 - 800 kWh @ 5.00 c/kWh over 800 kWh @ 4.00 c/kWh

In this case, the computer model used in the determination of revenue recovery must analyze each customer's usage pattern and

determine the rate which would result in the lowest annual billing for the customer. If the revenue recovered under rate x_p , $R(x_p)$, is lower that the revenue recovered under rate $\textbf{y}_p,\; \textbf{R}(\textbf{y}_p)$, then $\textbf{R}(\textbf{x}_p)$ is the revenue that the model will use in calculating the revenue recovery. Likewise, if $R(y_p)$ is lower than $R(x_p)$, then $R(y_p)$ will be used in the calculation of revenue recovery. In this case, the total revenue recovery calculated would be that which would occur if each customer actually chose to be billed on the rate which the model determined would result in the lowest annual billing. At this point, other assumptions may be made in the determination of revenue recovery, e.g., that only those customers who would save a specified amount or a specified percent would actually change rates. Whether rate x_{p} or rate y_{p} results in the lowest annual billing will be dependent upon each particular customer's usage pattern. Consider rate x_{p} to be a revision of rate x_{p} and consider rate y_{p} to be an optional alternative rate. For the purposes of this study, the selection of an optional alternative proposed rate (y_{p}) by a customer or group of customers will be called migration. In the case whereby a group of customers have a choice of multiple proposed rates, the bill frequency method cannot determine the revenue which would be recovered. The bill frequency method could only determine the revenue which would be recovered if all customers in the group were billed on proposed rate $\underset{p}{x}$ and then the revenue which would be recovered if all customers in the group were billed on proposed rate y_p . This is due to the fact that the individual customer data needed to determine which rate is lower for a particular customer is not available in the frequency distribution used by the bill frequency method. To determine

the revenue recovery for a group of customers with multiple proposed rates, the analyst must use the customer-by-customer method. As mentioned previously, the customer-by-customer method of determining revenue can have some serious shortcomings. One primary objective of any rate is that it recover the revenue requirement for that rate class. It is apparent from the discussion above that in the development process of proposed rates, a change in prices does not directly translate into a change in revenue recovered when dealing with optional rates due to the effects of migration. The revenue recovered from a particular proposed rate is dependent upon the other proposed rates. Therefore, the rate design process becomes an iterative process of changing prices in consideration of other prices. The analyst then must develop proposed rates which recover the revenue requirement without the knowledge of the effect of a price change on revenue recovery. This requires many computer runs, some of which will not fulfill a primary requirement of the rate design, i.e., recovering the revenue requirement. The iterative process of making many computer runs, some of which will yield unusable results is time consuming and impedes the regulatory process (for example, in the redesign of rates pursuant to the findings of the presiding regulatory agency, etc.). As mentioned previously, the shortcomings of this process are especially apparent in the design of rates for large classes of nondemand customers. In this case, the customer-by-customer method requires calculation of twelve months of bills of each of several rates for what may be hundreds of thousands of customers. One such computer run may take an excessive amount of processing time in a large mainframe computer. The computer costs associated with one

such computer run may be thousands of dollars. Given the iterative nature of the process, computer costs can be extremely prohibitive. As stated in the direct testimony of James B. Long (1985), Manager of Rates for Public Service Company of Oklahoma, before the Oklahoma Corporation Commission in recent rate case hearings:

8

The RS rate class is a very large class comprised of over 300,000 customers. The use of a customer-by customer data base is the best means of assessing the revenue impact of customer migration since the customer can be offered several alternative pricing schedules from which to select (p. 24).

Increasing demands in the area of rate design to meet the needs of society, e.g., economic development rates, distressed industry rates, energy efficiency rates, more precise definition of customer groups, and end use rates, further compound the problem. The expense associated with this process inhibits experimentation. The analyst may be limited to performing only essential analysis. This expense may prohibit the analyst from considering alternative rates. The objective of this study is to develop and evaluate a mathematical model for predicting the revenue recovered from multiple proposed rates for large non-demand customer groups. A model of this type would reduce the time and the expense associated with the rate design process by allowing the analyst to perform the iterative process with the model and to use the customer-by-customer computer run for verification in the final stages of the rate design. The number of customer-by-customer computer runs would be reduced, whereby time required and expense would be reduced. As a result, the model would allow further research of alternative rates and

better meet the increasing demands in the field of rate design. Such a model would expedite the rate design and the regulatory process, reduce associated expenses, and improve the quality of rate design.

CHAPTER II

METHOD AND PROCEDURE

The objective of this study is to develop a systematic procedure whereby multiple regression techniques can be used in the design of electric utility rates to determine revenue recovery involving migration for large non-demand rate classes. This objective was met in the following manner.

This study consists of the development and evaluation of three models. The first model consists of the development of a first degree prediction equation with k = 7 independent variables. It allows the prediction of revenue deviation due to migration for cases involving two proposed rates with a maximum of three rate blocks for each of two seasons for each rate. A response surface technique known as a Plackett-Burman design was used to reduce the number of required design points, i.e., computer runs to n = k + 1 = 8.

The second model consists of the development of a first degree prediction equation with k = 15 independent variables. This model allows for the prediction of revenue deviation due to migration for cases involving three proposed rates with a maximum of three rate blocks for each of two seasons for each rate. The Plackett-Burman design was again used to reduce the number of required design points to n = k + 1 = 16.

The third model consists of the development of a second degree prediction equation with k = 7 independent variables. This, like

the first model allows for the prediction of revenue deviation due to migration for cases involving two proposed rates with a maximum of three rate blocks for each of two seasons for each rate. A response surface technique known as a Central Composite design was used to reduce the required number of design points to $n = 2^k + 2k + 1 = 143$.

Sample Selection and Validation

A sample of 2,000 customers was selected from a database of 59,797 Public Service Company of Oklahoma residential customers. A systematic sample, with a random start, in which every twenty-ninth customer is chosen from the list of customer accounts, was employed. The data collected for this sample consisted of monthly kWh usages for each customer for a one-year period ending December 1984.

A t-test was performed to test the hypothesis that the sample mean monthly usage equals the population mean at a .05 level of significance for sample validation purposes. An F-test was also performed to test the hypothesis that the sample variance in mean monthly usage equals the population variance in mean monthly usage at a .05 level of significance for sample validation purposes.

To test the hypothesis $\mu = \overline{x}$

where μ = population mean = 875.18

- \overline{x} = sample mean = 875.46
- σ = population standard deviation = 616.66
- n = sample size = 2,000

the normal distribution test can be applied (Walpole & Myers, 1978).

$$Z = \frac{x - \mu}{\sigma / n}$$
$$Z = \frac{875.46 - 875.18}{616.66 / 2000} = 0.203$$

Critical region: Z < $-z_{\alpha/2}$ and Z > $z_{\alpha/2}$

for
$$\alpha$$
 = .05, $z_{\alpha/2}$ = 1.96

Since -1.96 < .0203 < 1.96, the hypothesis that the population mean equals the sample mean is accepted.

To test the hypothesis $s_1 = s_2$ where s_1 = population standard deviation = 616.66 s_2 = sample standard deviation = 605.55 v_1 = degrees of freedom = 59,797 - 1 = 59,796 v_2 = degrees of freedom = 2,000 - 1 = 1,999

the F-test can be applied (Walpole & Myers, 1978).

$$F = \frac{s_1^2}{s_1^2} = \frac{616.66^2}{605.55^2} = 1.037$$

Critical region: $F < f_1 - a/2 \quad (v_1, v_2)$ and

$$F > f_{\alpha/2} (v_1, v_2)$$

for $\alpha = .05$, $f_{\alpha/2}(120, 120) = 1.53$

$$f_{\alpha_{/2}(\infty,\infty)} = 1.00$$

This was accepted as sufficient evidence to accept the hypothesis, $s_1 = s_2$.

After the sample had been selected and validated, the data was downloaded from the mainframe to a microcomputer with mass storage capabilities using one of the many commercially available mainframe/PC interface software packages. In recognition of the expense of making computer runs on the mainframe, this procedure allowed the data collection for the study to be conducted at negligible cost.

Defintion of Independent Variables

In the determination of revenue recovery for a blocked kWh rate, the variables are customer charge, the kWh prices, and the breakpoints for the rate. For the purposes of this study, breakpoints are considered to be known beforehand and are not considered variables. If in the rate design process the breakpoints were changed, the data collection process described later in this chapter would need to be repeated using the new breakpoints. For example, in the case of two optional seasonal rates as shown below, there are fourteen variables.

Customer Charge = \$6.00

On-Peak Rate x	On-Peak Rate y
0 - 400 kWh @ 5.00 ¢/kWh	0 - 400 kWh @ 4.50 ¢/kWh
401 - 800 kWh @ 6.00 c/kWh	401 - 800 kWh @ 6.00 c/kWh
over 800 kWh @ 7.00 ¢/kWh	over 800 kWh @ 6.50 ¢/kWh
Off-Peak Rate x	Off-Peak Rate y
Off-Peak Rate x O - 400 kWh @ 5.00 ¢/kWh	0ff-Peak Rate y _p 0 - 400 kWh @ 5.50 ¢/kWh
	p

Customer Charge = \$5.00

The fourteen variables are as follows: variable 1 = on-peak rate x_p first kWh price (5.00 c/kWh) variable 2 = on-peak rate x_p second kWh price (6.00 c/kWh) variable 3 = on-peak rate x_p third kWh price (7.00 c/kWh) variable 4 = off-peak rate x_p first kWh price (5.00 c/kWh)

variable 5 = off-peak rate x_{p} second kWh price (4.50 c/kWh) variable 6 = off-peak rate x_p third kWh price (4.00 c/kWh) variable 7 = rate x_{p} customer charge (\$5.00) variable 8 = on-peak rate y_p first kWh price (4.50 c/kWh) variable 9 = on-peak rate y_p second kWh price (6.00 c/kWh) variable 10 = on-peak rate y_p third kWh price (6.50 c/kWh) variable 11 = off-peak rate y_p first kWh price (5.50 c/kWh) variable 12 = off-peak rate y_p second kWh price (5.00 c/kWh) variable 13 = off-peak rate y_p third kWh price (4.00 c/kWh) variable 14 = rate y_p customer charge (\$6.00)

Notice, however, that the revenue which would be recovered if all customers were billed on rate x_{p} can be determined from a bill frequency. Any deviation from this revenue due to the existence of an additional optional rate, i.e., rate y_n is a result of differences between the values of the independent variables defining rate x_n and the values of the independent variables defining rate $y_{\rm p}$. Therefore, by initially assuming the revenue recovery to be that which would occur if all customers were billed on rate x, the independent variables can be defined as the difference in an independent variable in rate x_{p} and the corresponding variable in rate y_{p} . The dependent variable in this case would represent the deviation in revenue due to the difference in the two rates, i.e., due to migration.

For this example, the variables would be redefined as follows: variable 1 = difference in on-peak first kWh price for rate x_{n} and rate y_{p} (5.00 - 4.50 = 0.50 c/kWh) variable 2 = difference in on-peak second kWh price for rate x_n

and rate y_p (6.00 - 6.00 = 0.00 c/kWh) variable 3 = difference in on-peak third kWh price for rate x_p and rate y_p (7.00 - 6.50 = 0.50 c/kWh) variable 4 = difference in off-peak first kWh price for rate x_p and rate y_p (4.50 - 5.00 = -0.50 c/kWh) variable 5 = difference in off-peak second kWh price for rate x_p and y_p (4.50 - 5.00 = -0.50 c/kWh) variable 6 = difference in off-peak third kWh price for rate x_p and y_p (4.00 - 4.00 = 0.00 c/kWh) variable 7 = difference in rate x_p customer charge and y_p customer charge (\$5.00 - \$6.00 = -\$1.00)

Experiment Design

For each model with k independent variables, n distinct design points will be selected. The coordinates of the design may be written as follows:

design point

#4

1	*11	^x 12	^x 13	•	•	•	^x lk
2	^x 21	^x 22	^x 23	•	•	•	^x 2k
3	^x 31	^x 32	^x 33	•	•	•	^x 3k
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
n	x ⁱ n1	^x n2	x ⁿ n3	•	•	•	^x nk
in the uth	row the w	alues of	Fr v	v		3	r

Where in the uth row, the values of x_{u1} , x_{u2} , x_{u3} , . . ., x_{uk} represent the coordinate settings of x_1 , x_2 , x_3 , . . ., x_k at the

uth design point. The above array will be referred to as the design array (Cornell, 1984).

In a 2^k factorial experiment, where k equals the number of variables, each variable is measured at only two values, v_{high} and v_{low} . To aid in the estimation of the coefficients of the models, if the same number of observations is collected at each level then the variables may be represented as coded variables in the form:

$$v_{c} = \frac{v - ((v_{h} + v_{1})/2)}{((v_{h} - v_{1})/2)}$$

Using this coding scheme, v_h will always be recoded to a value of +1 and v_1 will always be recoded to a value of -1 (Cornell, 1984). For example, if there is a 1.5 c/kWh price difference for one level of measurement of variable 1, and a -.05 c/kWh price for the other level of measurement of variable 1 then the coded values for variable 1 would be as follows:

Price Coded
Difference
$$Value$$

1.5(v_h) $v_c = \frac{1.5 - ((1.5 + 0.5)/2)}{(1.5 - .05)/2} = +1$

$$v_{c} = \frac{-0.5 - ((1.5 + (-.05))/2)}{(1.5 - (-.05))/2} = -1$$

For the purposes of this study, however, the price differences will be defined such that they are to equal the coded value, i.e., the levels of measurement for variables 1 - 6 will be conducted at +1 c/kWh and -1 c/kWh and variable 7 will be conducted at +\$1 and -\$1. By considering all possible combinations of the coded values for the 7 variables, an experiment design consisting of $2^{k} = 2^{7} = 128$ design points is obtained. Likewise, when considering three levels of

measurement, as is required in the non-linear case, considering all possible combinations yields a 3^k factorial design consisting of 3^k design points. One problem associated with factorial designs is that as k, the number of variables, increases, the number of required design points becomes large rapidly.

At this point, a few comments regarding the nature of this model are in order. The first point is that this model is free of the multicollinearly problems, i.e., none of the predictor variables have any correlations with any of the other predictor variables. Therefore, this will not be a concern in this model. A second point is that each of the independent variables is measurable without error and each of the independent variables is directly controllable. Therefore, the study lends itself to a designed experiment. This study incorporates the use of a designed experiment in an effort to increase the effectiveness of the resulting prediction equations. The third point is that the problem at hand, in general, involves a large number of variables. Response Surface methodology is a set of techniques which is helpful in solving problems such as selecting a proper experimental design in cases involving a large number of variables. Two such Response Surface techniques have been used in this study.

The first of these Response Surface techniques, known **as** a Plackett-Burman design was used in determining the first-degree models of the form:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_7 x_7$$

This technique reduces the number of required design points to n = k + l where n is a multiple of four. The Plackett-Burman design array

is constructed by selecting, from the 2^k factorial design array, one row which contains (k + 1)/2 +1's and (k-1)/2 -1's. This is defined to be the first row of the Plackett-Burman design array. Each successive row up to row k of the new array is created by rotating the previous row one place to the right with the last element of the previous row becoming the first element of the current row. The last row of the Plackett-Burman design array is defined to be a row of -1's. The resulting array is of dimension $(k + 1) \ge k$ (Cornell, 1984). For use in this study, a computer program was written which constructs a Plackett-Burman design array for a given number of variables. This program is listed in Appendix A.

The second of these Response Surface techniques, known as a Central Composite design, was used in determining the second degree model of the form:

$$y = b_0 + \sum_{i=1}^{k} + b_i x_i + \sum_{i=1}^{k} b_{ii} x_i^2 + \sum_{i < j}^{k} b_{ij} x_i x_j$$

This technique reduces the number of required design points to $n = 2^k + 2k + 1$. The Central Composite design array is defined to be 1) the 2^k rows defined by $(\pm 1, \pm 1, \ldots, \pm 1)$ 2) the 2k rows defined by $(\pm a, 0, 0, \ldots, 0)$, $(0, \pm a, 0, \ldots, 0)$, \ldots , $(0, 0, 0, \ldots, \pm a)$ where

$$a = \frac{4\sqrt{2^k}}{2^k}$$

3) the last row consisting of $(0, 0, \ldots, 0)$. The resulting array is of dimension $(2^k + 2k + 1) \ X \ k \ (Cornell, 1984)$. A computer program was written which constructs a Central Composite design array for a

given number of variables. This program is listed in Appendix A.

The design arrays for the three models in this study are therefore defined as follows:

- 1. first degree model for:
 - 2 optional rates
 - 2 seasons per rate

3 blocks per season

- variable 2 = difference in on-peak second kWh price for rate one and rate two

variable 7 = difference in rate one customer charge and rate two customer charge

The Plackett-Burman design array is of dimension (k + 1) X k =

8 X 7.

- 2. first degree model for:
 - 3 optional rates
 - 2 seasons per rate
 - 3 blocks per season

- variable 2 = difference in on-peak second kWh price for rate one and rate two

- variable 7 = difference in rate one customer charge and rate two customer charge
- variable 8 = difference in on-peak first kWh price for rate one and rate three
- variable 10 = difference in on-peak third kWh price for rate one and rate three
- variable 11 = difference in off-peak first kWh price for rate one and rate three

- variable 14 = difference in rate one customer charge and rate three customer charge

The Plackett-Burman design array is of dimension $(k + 1) \times k = 16 \times 15$.

3. the second degree model for:

2 optional rates

2 seasons per rate

3 blocks per season

The variables are defined the same as in number one. The Central Composite design array is of dimension $(2^k + 2k + 1)$ X k = 143 X 7.

These arrays are contained in Appendix B.

Data Collection

Two special purpose computer programs were written for the data collection process. These special purpose programs were customer-bycustomer billing programs, one for using two optional rates and the other for using three optional rates, with the enhancements needed for this particular data collection process, i.e., they used as input, the redefined independent variables (differences in customer charges, and differences in prices) and were capable of making several rate design runs in succession for efficiency purposes. Data for the models was collected by running this program against the database for various values of the independent variables defined by the design array and measuring the response in the dependent variable, i.e., revenue deviation due to migration. Listings of these programs are contained in Appendix C. The revenue change due to migration associated with each design point is shown in Appendix B along with the design point which generated this revenue difference. These programs use constant breakpoints (set at 400 kWh and 800 kWh for this study) for both of two seasons. If these criteria were to change in the rate design process, these programs would be changed to incorporate the new criteria and the data collection process would be repeated.

Development of the Models

The regression equation for each model was determined by the use of a commercially available statistical analysis software package. The multiple correlation coefficient was also calculated for each model as a test for lack of fit. These models will constitute a basis for the prediction of revenue deviation due to migration. The data collection program was then used to determine the observed response to an equal number of additional data points (i.e., the same number of design points as in the original design array) for each model. This was done by taking the original design array and changing all +1 values to +1.1 and all -1 values to -0.8. With the addition of these data points, a new regression equation and a new multiple correlation coefficient were determined. The combined observed responses were compared to the predicted responses for the same design points. The results are contained in the next chapter.

CHAPTER III

ANALYSIS OF THE MODELS

Linear: Two Rates, Two Seasons, Three Blocks Per Season

The data collection program was run for seven independent variables and eight design points as dictated by the Plackett-Burman design. The Plackett-Burman design matrix and the calculated value of the dependent variable, i.e., revenue decrease due to migration, for each of the design points are shown in Appendix B. The approximate run time for the data collection program for these design points was 17 minutes on a microcomputer with mass storage capabilities. In order to determine the contribution of each variable to the resulting prediction equation, regressions were performed for all possible subsets of the seven independent variables. The maximum obtainable multiple correlation coefficient for each number of independent variables is shown in Table I.

For seven independent variables, the resulting prediction equation was:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \cdots + b_7 x_7$$

where

$$b_0 = -39,661.39$$

 $b_1 = 32,477.93$
 $b_2 = 27,905.85$
 $b_3 = 30,570.63$

 $b_4 = 27,248.07$ $b_5 = 20,346.92$ $b_6 = 26,292.58$ $b_7 = 29,473.18$

TABLE I

R² FOR LINEAR & VARIABLE MODEL WITH 8 DESIGN POINTS

Number in Model	R ²
1	0.1909
2	0.6249
3	0.8148
4	0.8838
5	0.9484
6	0.9746
7	1.0000

In order to determine the accuracy of the regression equation and to evaluate the change in coefficients of the equation with the addition of more design points, the data collection program was run with an alternate design matrix. This alternate design matrix consisted of the original Plackett-Burman design matrix except that -1 was replaced with -.8 and +1 was replaced with +1.1. This alternate design matrix and the resulting value of the dependent variable for each design point are also shown in Appendix B. The regression analysis for seven independent variables was then performed using the combination of both matrices as data points. The results are shown in Table II.

TABLE II

Number in	2
Model	R ²
1	.1825
2	.6109
3	.8058
4	.8678
5	.9324
6	.9570
7	.9828

R² FOR LINEAR 7 VARIABLE MODEL WITH 16 DESIGN POINTS

For seven independent variables, the resulting prediction equation was:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_7 x_7$$

where

$$b_0 = -46,812.44$$

 $b_1 = 29,062.68$
 $b_2 = 25,803.60$

 $b_3 = 27,387.66$ $b_4 = 24,217.28$ $b_5 = 19,306.08$ $b_6 = 24,994.10$ $b_7 = 27,276.02$

For each design point, the actual value of the dependent variable was compared to the value predicted by using the equation above and the residual computed. The results are shown in Appendix D.

For the design points, the mean actual value of the dependent variable was -33,458.88. The mean of the absolute value of the residuals was 8,549.28. This equates to a mean error of 25.55%. Note that in some cases, the model predicts a positive value for the dependent value. When this occurs, this should be interpreted as a prediction of zero revenue deviation. Using this interpretation of the prediction, the mean of the absolute value of the residuals was 6,417.27. This equates to a mean error of 19.18%.

Linear: Three Rates, Two Seasons, Three Blocks Per Season

The data collection program was run for fourteen independent variables and sixteen design points as dictated by the Plackett-Burman design. The design matrix and calculated responses are shown in Appendix B. The approximate run time of the data collection program for these design points was 34 minutes. Again, regressions were performed for all possible subsets of the 14 independent variables to observe the effect on the correlation coefficients of the resulting prediction equations. The maximum obtainable multiple correlation coefficient for each number of independent variables is shown in Table III.

	ΤA	BI	E	Ι	Ι	Ι
--	----	----	---	---	---	---

Number in	
Model	R ²
1	.2552
2	.6237
3	.7662
4	.8410
5	.8880
6	.9317
7	.9496
8	.9634
9	.9724
10	.9862
11	.9890
12	.9937
13	.9984
14	.9988

R² FOR LINEAR 14 VARIABLE MODEL WITH 16 DESIGN POINTS

For the fourteen independent variables, the resulting prediction equation was:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_{14} x_{14}$$

where

$$b_0 = -46,014.16$$

 $b_1 = 13,588.00$

 $b_2 = 9,465.33$ $b_3 = 12,130.11$ $b_4 = 9,497.42$ $b_5 = 2,612.72$ $b_6 = 10,672.10$ $b_7 = 17,836.07$ $b_8 = 21,763.02$ $b_9 = 19,780.80$ $b_{10} = 19,755.02$ $b_{11} = 12,896.01$ $b_{12} = 11,120.66$ $b_{13} = 13,465.68$ $b_{14} = 14,063.05$

An alternate design matrix was constructed as described previously. This alternate design matrix and the resulting value of the dependent variable for each design point of the alternate design matrix are shown in Appendix B. The regression analysis for 14 independent variables was then performed using the combination of both matrices as data points. The results are shown in Table IV.

For fourteen independent variables, the resulting prediction equation was:

 $y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_{14} x_{14}$

where

$$b_0 = -48,178.66$$

 $b_1 = 11,300.40$
 $b_2 = 10,016.31$
 $b_3 = 11,600.37$

Ъ ₄	=	8,761.35
^Ъ 5	-	3,858.80
^Ъ б	=	10,681.55
^b 7	=	15,825.31
^b 8	=	19,388.15
^b 9	=	18,068.65
^b 10	=	18,052.57
^b 11	=	12,281.90
^b 12	=	11,036.04
^b 13	=	14,205.99
Ъ ₁₄	=	12,858.69

TABLE IV

R^2	FOR	LIN	IEAR	. 14	VAI	RIABLE	MODEL
	W	ΓTΗ	32	DESI	EGN	POINTS	5

Number in Model	
1	.2070
2	.6142
3	.7686
4	.8434
5	.8833
6	.9156
7	.9386
8	.9525
9	.9625

•

10	.9732
11	.9766
12	.9821
13	.9857
14	.9866

TABLE IV (Continued)

As before, for each design point, the actual value of the dependent variable was compared to the value predicted by using the above equation and the residual computed. The results are shown in Appendix D.

For the design points, the mean actual value of the dependent variable was -34.836.82. The mean of the absolute value of the residuals was 4,559.32. This equates to a mean error of 13.09%. Interpreting positive predictions as zero predictions, the mean of the absolute value of the residuals was 3,895.65. This equates to a mean error of 11.18%.

> Quadratic: Two Rates, Two Seasons, Three Blocks Per Season

The data collection program was run for seven independent variables and the 143 design points dictated by the Central Composite design. The Central Composite design matrix and the calculated value of the dependent variable, i.e., revenue decrease due to migration for each of the design points is shown in Appendix B. The approximate run time of the data collection program for these design points was five hours. A complete quadratic multiple regression for seven independent variables was performed for these design points. The contribution to the R^2 value for the linear, quadratic, adn crossproduct terms of the prediction equation is shown in Table V.

TABLE V

R² FOR QUADRATIC 7 VARIABLE MODEL WITH 143 DESIGN POINTS

Terms	R ²
Linear	0.8280
Quadratic	0.0163
Crossproduct	0.1486
Total Regression	0.9930

For the seven independent variables, the resulting prediction equation was:

$$y = b_0 + b_1 x_1 + \dots + b_7 x_7 + b_8 x_1 x_1 + b_9 x_2 x_1 + b_{10} x_2 x_2 + b_{11} x_3 x_1 + b_{12} x_3 x_2 + b_{13} x_3 x_3 + \dots + b_{33} x_7 x_5 + b_{34} x_7 x_6 + b_{35} x_7 x_7$$

where

$$b_0 = -21,819.87$$

 $b_1 = 17,823.91$
 $b_2 = 13,287.25$
 $b_3 = 23,041.53$

 $b_4 = 23,402.62$ $b_5 = 13,261.91$ $b_6 = 14, 171.07$ $b_7 = 12,000.00$ $b_8 = -3,593.63$ $b_9 = -3,821.64$ $b_{10} = -2,245.04$ $b_{11} = -5,645.73$ $b_{12} = -4,988.43$ $b_{12} = -5,144.64$ $b_{13} = -5,144.64$ $b_{14} = -8,431.74$ $b_{15} = -5,292.50$ $b_{16} = -8,010.96$ $b_{17} = -5,251.98$ $b_{18} = -3,270.36$ $b_{19} = -2,634.30$ $b_{20} = -5,398.23$ $b_{21} = -4,791.62$ $b_{22} = -2,237.50$ $b_{23} = -2,273.16$ $b_{24} = -2,007.63$ $b_{25} = -6,720.23$ $b_{26} = -3,218.84$ $b_{27} = -2,859.47$ $b_{28} = -2,507.76$ $b_{29} = -3,578.45$

$$b_{30} = -2,568.52$$

 $b_{31} = -3,406.40$
 $b_{32} = -5,220.23$
 $b_{33} = -2,161.42$
 $b_{34} = -1,443.46$
 $b_{35} = -1,862.38$

For each design point of the Central Composite design array, the actual value of the dependent variable, i.e., revenue deviation due to migration, was compared to the value predicted by using the equation above and the residual computed. The results are shown in Appendix D.

For the design points, the mean actual value of the dependent variable was -45,882.10. The mean of the absolute value of the residuals was 3,289.68. This equates to a mean error of 7.17%. Interpreting positive predictions as zero predictions, the mean of the absolute value of the residuals was 2, 803.10. This equates to a mean error of 6.11%

For the latter interpretation of the model, a summary of the residuals is shown in Table VI.

An alternate design matrix was constructed as described previously. This alternate design matrix and the resulting value of the dependent variable for each design point of the alternate design matrix is shown in Appendix B. The regression analysis for seven independent variables was then performed using the combination of both matrices as design points. The resulting contribution to the R^2 value for the linear, quadratic, and crossproduct terms of the prediction equation is shown in Table VII.

TABLE	VI
-------	----

Residual	Cumulative Percent of Design Points
0 - 1000	25.2
1001 - 2000	37.1
2001 - 3000	63.6
3001 - 4000	78.3
4001 - 5000	90.2
over 5000	100.0

.

RESIDUALS FOR QUADRATIC 7 VARIABLE MODEL WITH 143 DESIGN POINTS

TABLE VII

R² FOR QUADRATIC 7 VARIABLE MODEL WITH 286 DESIGN POINTS

Terms	R ²
Linear	0.7810
Quadratic	0.0289
Crossproduct	0.1795
Total Regression	0.9930

For the seven independent variables, the resulting prediction equation was:

$$y = b_0 + b_1 x_1 + \dots + b_7 x_7 + b_8 x_1 x_1 + b_9 x_2 x_1 + b_{10} x_2 x_2 + b_{11} x_3 x_1 + b_{12} x_3 x_2 + b_{13} x_3 x_3 + \dots + b_{33} x_7 x_5 + b_{34} x_7 x_6 + b_{35} x_7 x_7$$

where

•

$$b_0 = -18,994.75$$

 $b_1 = 18,084.68$
 $b_2 = 13,504.25$
 $b_3 = 23,051.38$
 $b_4 = 23,611.70$
 $b_5 = 13,459.54$
 $b_6 = 14,076.37$
 $b_7 = 12,104.80$
 $b_8 = -3,987.09$
 $b_9 = -3,794.01$
 $b_{10} = -2,566.72$
 $b_{11} = -5,587.70$
 $b_{12} = -4,927.90$
 $b_{13} = -5,672.58$
 $b_{14} = -8,324.42$
 $b_{15} = -5,261.57$
 $b_{16} = -7,869.89$
 $b_{17} = -5,751.91$
 $b_{18} = -3,237.11$
 $b_{19} = -2,610.20$
 $b_{20} = -5,327.29$
 $b_{21} = -4,771.72$

$$b_{22} = -2,562.08$$

$$b_{23} = -2,265.03$$

$$b_{24} = -2,005.70$$

$$b_{25} = -6,656.32$$

$$b_{26} = -3,215.85$$

$$b_{27} = -2,863.86$$

$$b_{28} = -2,898.60$$

$$b_{29} = -3,583.45$$

$$b_{30} = -2,466.17$$

$$b_{31} = -3,384.54$$

$$b_{32} = -5,187.30$$

$$b_{33} = -2,097.32$$

$$b_{34} = -1,448.53$$

$$b_{35} = -2,180.89$$

For each design point of the alternate design array, the actual value of the dependent variable was compared to the value predicted by using the equation above and the residual computed. The results are shown in Appendix D.

For the design points, the mean actual value of the dependent variable was -36,562.07. The mean of the absolute value of the residuals was 3,658. This equates to a mean error of 10.01%. Interpreting positive predictions as zero predictions, the mean of the absolute value of the residuals was 2,934.66. This equates to a mean error of 8.03%.

For the latter interpretation of the model, a summary of the residuals is shown in Table VIII.

36

TABLE V	Ι	Ι	Ι	
---------	---	---	---	--

RESIDUALS FOR QUADRATIC 7 VARIABLE MODEL WITH 286 DESIGN POINTS

Cumulative Percent of Design Points
28.3
43.0
57.0
73.8
100.0

CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Multiple regression analysis and Response Surface techniques can be used to predict revenue recovery involving migration in the design of optional non-demand electric utility rates. The accuracy of the prediction equation will be dependent upon the validity of the sample of customers, if a sample is used, and the number and appropriateness of the design points used in the regression. This study employed multiple linear regressions with a Plackett-Burman design and quadratic multiple regressions with a Central Composite design. By transferring a customer-by-customer data file to a microcomputer with mass storage capability, using a designed experiment to collect revenue deviation data, and performing a multiple regression on the experiment results, a model can be developed which will predict revenue deviation due to migration for rate design purposes.

The use of such a procedure provides the following benefits to the rate analyst:

 reduced expense - Fewer rate design computer runs on the mainframe computer (costly for large rate classes) and fewer runs on the entire population would be necessary since an immediate prediction of the results of such a computer run would be available.

38

- 2. reduced time requirements By reducing the number of computer runs for the entire population, and by having access to immediate predictions of such runs, the time requirements associated with the rate design process are reduced.
- 3. allows further analysis Since expense and time requirements are factors in the amount of analysis which can be performed in rate design, the reduction of these factors allows more in-depth and cost effective analysis; analysis which might otherwise be infeasible.
- 4. feasibility of the model The model can be developed at virtually no cost by using a microcomputer for data collection. To the analyst, the model represents valuable additional information which is available at virtually no cost. The model can be developed within hours or days depending on the user's requirements and can be developed well in advance of the need for it.

By performing the data transfer and data collection processes during those hours or days in which microcomputer equipment normally stands idle (e.g., overnight, weekends), and by using this procedure on several microcomputers simultaneously, greater efficiency can be made of existing computer resources. Such a model can be constructed for any type of non-demand rate structure. The specification of each model developed will depend upon the requirements defined by the analyst and the resources available, e.g., accuracy required, number of rates, number of variables, number of required design points, population or sample size, and available computer resources.

These models provide the analyst with a means of predicting

revenue deviation due to migration for large non-demand rate classes. The use of such models would expedite the rate design process, allow more extensive analysis on large non-demand rate classes, and reduce the costs associated with rate design for those rate classes.

Recommendations

This study presents a systematic procedure whereby a model can be developed for the prediction of revenue deviation due to migration in the design of optional non-demand utility rates. For use in future research in this area, the following recommendations are provided:

- Investigate the use of other types of equations in the regression, e.g., negative exponential.
- Investigate the use of combinations of variables, e.g., weighted average price.
- Investigate the extension of this procedure to optional demand rates.
- 4. Investigate the use of alternative experiment designs, particularly the use of a fractional replicate of the Central Composite design for use with models involving large numbers of variables, e.g., models for three optional rates.
- Examine the effects on R² as the number of design points continues to increase.

40

SELECTED BIBLIOGRAPHY

- Allen, David M. and Foster B. Cady. <u>Analyzing Experimental Data By</u> Regression. London: Lifetime Learning Publications, 1982.
- Bonbright, James C. <u>Principles</u> of <u>Public</u> <u>Utility</u> <u>Rates</u>. New York: Columbia University, 1961.
- Box, George E. P. and Norman R. Draper. <u>Empirical Model-Building and</u> Response Surfaces. New York: John Wiley & Sons, 1987.
- Brook, Richard J. and Gregory C. Arnold. <u>Applied Regression Analysis</u> and Experimental Design. New York: <u>Marcel Dekker</u>, 1985.
- Choei, Sung C. Introductory Applied Statistics in Science. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978.
- Cornell, John A. <u>How to Apply Response Surface Methodology</u>. Milwaukee: American Society for Quality Control, 1984.
- Dey, Aloke. <u>Orthogonal</u> <u>Fractional</u> <u>Factorial</u> <u>Designs</u>. New York: John Wiley & Sons, 1985.
- Draper, N. R. and H. Smith. <u>Applied Regression Analysis</u>. New York: John Wiley & Sons, 1966.
- Gunst, Richard F. and Robert L. Mason. <u>Regression Analysis and Its</u> <u>Application: A Data-Oriented Approach</u>. New York: Marcel Dekker, 1980.
- Gupta, R. P. <u>Multivariate</u> <u>Statistical</u> <u>Analysis</u>. Amsterdam: North Holland, 1980.
- Johnson, Norman L. and Fred C. Leone. <u>Statistics and Experimental</u> <u>Design in Engineering and the Physical Sciences</u>. New York: John Wiley & Sons, 1964.
- Kachigam, Sam Kash. <u>Multivariate</u> <u>Statistical</u> <u>Analysis</u>: <u>A</u> <u>Conceptual</u> Introduction. New York: Radius Press, 1982.
- Kennedy, John B. and Adam M. Neville. <u>Basic Statistical Methods for</u> <u>Engineers and Scientists</u>. 2nd Ed. New York: Dun-Donnelley, 1976.
- Long, James B. <u>Filing</u> <u>Before</u> <u>the</u> <u>Oklahoma</u> <u>Corporation</u> <u>Commission</u>. Cause No. 28331. <u>Tulsa</u>, <u>Oklahoma</u>: <u>Public</u> Service Company of Oklahoma, 1985.

McLean, Robert A. and Virgil L. Anderson. <u>Applied</u> <u>Factorial</u> <u>and</u> Fractional Designs. New York: Marcel Dekker, 1984.

- Mosteller, Frederick and John W. Tukey. <u>Data Analysis</u> and <u>Regression</u>. Reading, Massachusetts: Addison-Wesley, 1977.
- Petersen, Roger G. <u>Design</u> and <u>Analysis</u> of <u>Experiments</u>. New York: Marcel Dekker, 1985.
- Ratkowsky, David A. <u>Nonlinear Regression</u> <u>Modeling</u>: <u>A</u> <u>Unified</u> <u>Practical Approach</u>. New York: Marcel Dekker, 1983.
- Walpole, Ronald E. and Raymond H. Myers. <u>Probability</u> and <u>Statistics</u> for <u>Engineers</u> and <u>Scientists</u>. 2nd Ed. New York: Macmillan, 1978.
- Wetherill, G. Barrie, P. L. Duncombe, M. Kenward, J. Kollerstrom, S. R. Paul, and B. J. Vowden. <u>Regression Analysis with Appli-</u> cations. London: Chapman and Hall, 1986.

APPENDIXES

APPENDIX A

DESIGN ARRAY PROGRAM LISTINGS

```
10 REM PLANKETT-BURMAN DESIGN PROGRAM
20 DIM VALUE(100,27)
30 CLS
40 OPEN "F:PBD001" FOR OUTPUT AS #1
50 LPRINT
60 INPUT "HOW MANY VARIABLES ";K
70 LPRINT "REQUESTED VARIABLES = K = ";K
80 FINDN=FIX((K+1)/4+.9999)
90 N=FINDN*4
100 K=N-1
110 LPRINT "ADJUSTED VARIABLES = K = ";K
120 LPRINT "NUMBER OF DATA POINTS = N = ";N
130 LPRINT "PBD MATRIX IS ";N;" X ";K
140 VALUE(1,1) = -1
150 VALUE(1,2)=1
160 VALUE(1,3)=1
170 VALUE(1,4)=-1
180 VALUE(1,5)=1
190 VALUE(1,6)=-1
200 VALUE(1,7)=1
210 VALUE(1,8)=-1
220 VALUE(1,9)=1
230 VALUE(1,10)=-1
240 VALUE(1,11)=1
250 VALUE(1,12)=-1
260 VALUE(1,13)=1
270 VALUE(1,14)=-1
280 VALUE(1,15)=1
290 VALUE(1,16)=-1
300 VALUE(1,17)=1
310 VALUE(1,18)=-1
320 VALUE(1,19)=1
330 VALUE(1,20)=-1
340 VALUE(1,21)=1
350 VALUE(1,22) =-1
360 VALUE(1,23)=1
370 VALUE(1,24)=-1
380 VALUE(1,25)=1
390 VALUE(1,26)=-1
400 VALUE(1,27)=1
410 FOR I = 2 TO K
420
       FOR J = 1 TO K-1
430
       VALUE(I,J+1)=VALUE(I-1,J)
       NEXT J
440
450
       VALUE(I,1) = VALUE(I-1,K)
460 NEXT I
470 FOR J = 1 TO K
480
       VALUE(K+1,J) = -1
490 NEXT J
500 LPRINT "THE PLANKETT-BURMAN DESIGN MATRIX IS "
510 FOR I = 1 TO K+1
520
     FOR J = 1 TO K
       PRINT #1, USING "##.### "; VALUE(I,J);
530
       LPRINT USING "##.### "; VALUE(I,J);
540
550
     NEXT J
560 PRINT #1, " "
570 LPRINT
580 NEXT I
590 LPRINT
600 END
```

Central Composite Design Program

.

```
10 REM CENTRAL COMPOSITE DESIGN PROGRAM
20 CLS
30 DIM VALUE(200,27)
40 OPEN "F:CCD001" FOR OUTPUT AS #1
50 LPRINT
60 INPUT "HOW MANY VARIABLES ";K
70 LPRINT "VARIABLES = K = ";K
80 N=(2^K)+(2*K)+1
90 LPRINT "NUMBER OF DATA POINTS = N =";N
100 LPRINT "THE CCD MATRIX IS ";N;" X ";K
110 FOR J = 1 TO K
120 COUNTER=0
130 SEQ=(2^J)/2
140 NUMBER=1
150 NUMBER=NUMBER/-1
       FOR I = 1 TO SEQ
COUNTER= COUNTER+1
160
170
       VALUE (COUNTER, J) = NUMBER
180
190
       NEXT I
       IF COUNTER <> 2^K THEN GOTO 150
200
210 NEXT J
220 M=2^K
230 ALPHA=M^.25
235 ALPHA=(CINT(ALPHA*1000))/1000
240 FOR I = (2^{k})+1 TO N-1 STEP 2
250 FOR J = 1 TO K
260
       VALUE(I,J)=0
270
       VALUE(I+1,J)=0
280
       NEXT J
290 NEXT I
300 JCOUNT=0
310 FOR I = (2^K)+1 TO N-1 STEP 2
       JCOUNT=JCOUNT+1
320
       VALUE(I, JCOUNT) =-ALPHA
330
       VALUE(I+1, JCOUNT) = ALPHA
340
350 NEXT I
360 \text{ FOR } J = 1 \text{ TO } K
370 VALUE(N,J)=0
380 NEXT J
390 LPRINT "THE CENTRAL COMPOSITE DESIGN MATRIX IS "
400 FOR I = 1 TO N
410
       FOR J = 1 TO K
       PRINT #1, USING "##.### "; VALUE(I,J);
420
       LPRINT USING "##.### "; VALUE(I,J);
430
440
       NEXT J
450 PRINT #1, " "
460 LPRINT
470 NEXT I
480 END
```

APPENDIX B

٠

DESIGN ARRAYS AND DEPENDENT VARIABLE VALUES

Design Array and Dependent Variable Values for Plackett-Burman Design With 7 Variables

.

•

. . .

.

Design Array and Dependent Variable Values for Plackett-Burman Design With 14 Variables

.

Design Array and Dependent Variable Values for Central Composite Design With 7 Variables

-1 -1 1 -1	-1 -1	-1	-1	-1	-233976.56
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1	-1 -1	-1 -1	-1 -1	-162680.94 -180827.56
1 1	-1 -1	-1	-1	-1	-109637.69
-1 -1	1 -1	-1	-1	-1	-142025.00
1 -1	1 -1	-1	-1	-1	-71797.75
-1 1	1 -1	-1	-1	-1	-89847.77
i i	1 -1	-1	-1	-1	-28969.86
-1 -1	-1 1	-1	-1	-1	-140366.08
1 -1	-1 1	-1	-1	-1	-76701.81
-1 1	-1 1	-1	-1	-1	-87398.47
1 1	-1 1	-1	-1	-1	-42461.34
-1 -1	1 1	-1	-1	-1	-50572.83
1 -1	1 1	-1	-1	-1	-13441.17
-1 1	1 1	-1	-1	-1	-18102.95
1 1	1 1	-1	-1	-1	-7304.99
-1 -1	-1 -1	1	-1	-1	-180928.92
1 -1	-1 -1	1	-1	-1	-109633.30
-1 1	-1 -1	1	-1	-1	-127779.92
1 1	-1 -1	1	-1	-1	-57594.55
-1 -1 1 -1	1 -1 1 -1	1	-1 -1	-1 -1	-90296.44 -29604.37
-1 1	1 -1 1 -1	1	-1	-1	-46347.49
1 1	1 -1	ī	-1	-1	-11106.86
-1 -1	-1 1	ī	-1	-1	-87594.20
1 -1	-1 1	ī	-1	-1	-36120.47
-1 1	-1 1	ĩ	-1	-1	-40780.43
īī	-1 1	ī	-1	-1	-19796.28
-1 -1	1 1	1	-1	-1	-18591.33
1 -1	1 1	1	-1	-1	-5071.13
-1 1	1 1	1	-1	-1	-6960.12
1 1	1 1	1	-1	-1	-2857.24
-1 -1	-1 -1	-1	1	-1	-178699.29
1 -1	-1 -1	-1	1	-1	-108957.68
-1 1	-1 -1	-1	1	-1	-126873.91
1 1	-1 -1	-1	1	-1	-58954.51
-1 -1	1 -1	-1	1	-1	-98979.58
1 -1	1 -1 1 -1	-1	1	-1	-37859.07
-1 1 1 1	1 -1 1 -1	-1 -1	1 1	-1 -1	-55443.90 -9629.14
-1 -1	-1 1	-1	i	-1	-87862.10
1 -1	-1 1	-1	ī	-1	-29769.58
-1 1	-1 1	-1	ī	-1	-38772.04
1 1	-1 1	-1	ī	-1	-6127.69
-1 -1	1 1	-1	1	-1	-21882.13
1 -1	1 1	-1	1	-1	-798.13
-1 1	1 1	-1	1	-1	-3661.96
1 1	1 1	-1	1	-1	-673.93
-1 -1	-1 -1	1	1	-1	-128243.63
1 -1	-1 -1	1	1	-1	-61335.18
-1 1		_	1	-1	-78693.91
1 1	-1 -1	1	1	-1	-18245.82
-1 -1 1 -1	1 -1	1	1	-1	-60475.25
1 -1 -1 1	1 -1	1	1	-1	-14600.43
1 1	1 -1 1 -1	1 1	1 1	-1 -1	-29627.44
-1 -1	-1 1	1	1	-1	-3768.46 -42584.62
1 -1	-1 1	1	ī	-1	-42584.62
-1 1	-1 1	ī		-1	-8310.00
i i	-1 1	ī	ī	-1	-1161.09
		-	-	-	

Design Array and Dependent Variable Values for Central Composite Design With 7 Variables (Continued)

-1 -1 1 1 1 1	-1	-7953.72
1 -1 1 1 1 1	-1	-517.56
-1 1 1 1 1 1	-1	-1926.68
1 1 1 1 1 1	-1	-482.38
-1 -1 -1 -1 -1 -1	1	-186458.94
1 -1 -1 -1 -1 -1	1	-116607.62
-1 1 -1 -1 -1 -1	1	-133345.12
1 1 -1 -1 -1 -1	1	-69485.66
-1 -1 1 -1 -1 -1	1	-94971.53
1 -1 1 -1 -1 -1	1	-30824.82
-1 1 1 -1 -1 -1	1	-4563 6. 56
1 1 1 -1 -1 -1	1	-11950.44
-1 -1 -1 1 -1 -1	1	-96134.54
1 -1 -1 1 -1 -1	1	-50697.90
-1 1 -1 1 -1 -1	1	-53817.51
1 1 -1 1 -1 -1	1	-28396.71
-1 -1 1 1 -1 -1	1	-18445.78
1 -1 1 1 -1 -1	1	-7598.25
-1 1 1 1 -1 -1	1	-8386.14
1 1 1 1 -1 -1	1	-3998.97
-1 -1 -1 -1 1 -1	1	-133602.85
1 -1 -1 -1 1 -1	1	-65295.26
-1 1 -1 -1 1 -1	1	-80578.05
1 1 -1 -1 1 -1	1	-30366.43
-1 -1 1 -1 1 -1	1	-46890.49
1 -1 1 -1 1 -1	1	-8239.22
-1 1 1 -1 1 -1	1	-17383.38
1 1 1 -1 1 -1	1	-4180.28
-1 -1 -1 1 1 -1	1	-48947.58
1 -1 -1 1 1 -1	1	-23466.72
-1 1 -1 1 1 -1	1	-24028.51
1 1 -1 1 1 -1	1	-13853.40
-1 -1 1 1 1 -1	1	-6106.83
1 -1 1 1 1 -1	1	-2730.61
-1 1 1 1 1 -1	1	-2961.00
1 1 1 1 1 -1	1	-1406.99
-1 -1 -1 -1 1	1	-132149.54
1 -1 -1 -1 -1 1	1	-64956.80
-1 1 -1 -1 -1 1	1	-81214.43
1 1 -1 -1 -1 1	1	-23439.01
-1 -1 1 -1 -1 1	1	-56922.46
1 -1 1 -1 -1 1	1	-6610.99
-1 1 1 -1 -1 1	1	-20097.65
1 1 1 -1 -1 1	1	-275.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-46788.68
1 -1 -1 1 -1 1	1	-10733.69
-1 1 -1 1 -1 1	1	-12137.19
1 1 -1 1 -1 1	1	-1533.64
-1 -1 1 1 -1 1	1	-1110.25
1 -1 1 1 -1 1	1	0.00
-1 1 1 1 -1 1	1	0.00
1 1 1 1 -1 1	1	0.00
-1 -1 -1 -1 1 1	1	-83549.65
1 -1 -1 -1 1 1	1	-23051.99
-1 1 -1 -1 1 1	1	-36536.83
1 1 -1 -1 1 1	1	-2372.87
-1 -1 1 -1 1 1	1	-26539.88
1 -1 1 -1 1 1	1	-181.39
-1 1 1 -1 1 1	1	-7631.35
1 1 1 -1 1 1	1	0.00

N

Design Array and Dependent Variable Values for Central Composite Design With 7 Variables (Continued)

.

• ·

			0	1 1 1 1 1 1 1 0 0 0 0	1 1 1 1 1 1 0 0 0 0	1 1 1 1 1 1 1 0 0 0 0	0000	-11604.04 -1186.33 -1282.93 -214.56 -105.75 0.00 0.00 0.00 -119919.23 0.00 -89396.62 0.00
0	0	3.	364 364	0 0	0	0	0	-155023.42
0	0	0	-3.3		0	0	0	-157452.83
0	0 0	0 0	3.3	-3.3	0	0	0	0.00
ŏ	ŏ	ŏ	0	3.3		0	0	-89226.13 0.00
ŏ	ŏ	ŏ	ŏ		-3.3	-	ŏ	-95342.93
ŏ	ŏ	ŏ	õ	ŏ	3.3		ŏ	0.00
ō	ō	ō	ō	ō		-3.3	-	-80735.99
Ó	Ó	0	Ō	Ō	Ō	3.3		0.00
0	0	0	0	0	0	0		0.00

.

.

52

Alternate Design Array and Dependent Variable Values for Plackett-Burman Design With 7 Variables

1.1 8 1.1	8 1.1 8	1.1 1.1 8 1.1 8	1.1 1.1 8	8 1.1 1.1	1.1 8 1.1	8 1.1 8	-6522.63 -396.36 -12225.96 -5538.26 -1961.10
1.1 1.1	8 1.1	1.1 8 8	8 1.1	1.1 8	8 1.1	1.1 8	-3094.59 -1130.87 -187181.25

.

Alternate Design Array and Dependent Variables Values for Plackett-Burman Design With 14 Variables

•

,

.

8	1.1	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	-23479.65
1.1	8	1.1	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	-3472.55
8	1.1	8	1.1	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	-29308.18
1.1	8	1.1	8	1.1	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	-8614.46
8	1.1	8	1.1	8	1.1	1.1	8	1.1	8	1.1	8	1.1	8	1.1	-18948.17
1.1	8	1.1	8	1.1	8	1.1	1.1	8	1.1	8	1.1	8	1.1	8	-3094.59
8	1.1	8	1.1	8	1.1	8	1.1	1.1	8	1.1	8	1.1	8	1.1	-12945.33
1.1	8	1.1	8	1.1	8	1.1	8	1.1	1.1	8	1.1	8	1.1	8	-4206.44
8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	1.1	8	1.1	8	1.1	-12955.44
1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	1.1	8	1.1	8	-12879.49
8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	1.1	8	1.1	-14207.85
1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	1.1	8	-5119.90
8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	1.1	-15888.57
1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	-22042.76
1.1	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	1.1	8	-4207.07
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	-187181.25

54

Alternate Design Array and Dependent Variable Values for Central Composite Design With 7 Variables

8	8	8	8	8	8	8	-187181.25
1.1	8	8	8	8	8	8	-119455.41
8	1.1	8	8	8	8	8	-136689.70
1.1	1.1	8	8	8	8	8	-69889.30
8	8	1.1	8	8	8	8	-100803.13
		1.1					
1.1	8		8	8	8	8	-37668.99
8	1.1	1.1	8	8	8	8	-54128.63
1.1	1.1	1.1	8	8	8	8	-13060.30
8	8	8	1.1	8	8	8	-98287.13
1.1	8	8	1.1	8	8	8	-46164.87
8	1.1	8	1.1	8	8	8	-51349.00
1.1	1.1	8	1.1	8	8	8	-23216.49
8	8	1.1	1.1	8	8	8	-22358.17
1.1	8	1.1	1.1	8	8	8	-5903.05
8							-5903.05
	1.1	1.1	1.1	8	8	8	-7710.84
1.1	1.1	1.1	1.1	8	8	8	-2946.38
8	8	8	8	1.1	8	8	-136785.99
1.1	8	8	8	1.1	8	8	-69107.16
8	1.1	8	8	1.1	8	8	-86294.44
1.1	1.1	8	8	1.1	8	8	-27213.98
8	8	1.1	8	1.1	8	8	-56111.60
1.1	8	1.1	8	1.1	8	8	-12012.03
8	1.1	1.1	8	1.1	8	8	-25396.54
1.1	1.1	1.1	8	1.1	8	8	-4275.60
8	8	8	1.1	1.1	8	8	-49931.71
1.1	8	8	1.1	1.1	8	8	-18623.26
8	1.1	8	1.1	1.1			
					8	8 8	-19904.83
1.1	1.1	8	1.1	1.1	8		-10130.64
8	8	1.1	1.1	1.1	8	8	-6999.69
1.1	8	1.1	1.1	1.1	8	8	-1829.37
8	1.1	1.1	1.1	1.1	8	8	-2529.69
1.1	1.1	1.1	1.1	1.1	8	8	-939.28
8	8	8	8	8	1.1	8	-136781.06
1.1	8	8	8	8	1.1	8	-72085.83
8	1.1	8	8	8	1.1	8	-88943.14
1.1	1.1	8	8	8	1.1	8	-27470.07
8	8	1.1	8	8	1.1	8	-68065.29
1.1	8	1.1	8	8	1.1	8	-16871.63
8	1.1	1.1	8	8	1.1	8	-32410.40
1.1	1.1	1.1	8	8	1.1	8	-3369.90
8							
	8	8	1.1	8	1.1	8	-52870.06
1.1	8	8	1.1	8	1.1	8	-9665.87
8	1.1	8	1.1	8	1.1	8	-12812.38
1.1	1.1	8	1.1	8	1.1	8	-1130.87
8	8	1.1	1.1	8	1.1	8	-7078.48
1.1	8	1.1	1.1	8	1.1	8	-396.36
8	1.1	1.1	1.1	8	1.1	8	-1093.61
1.1	1.1	1.1	1.1	8	1.1	8	-392.14
8	8	8	8	1.1	1.1	8	-90980.54
1.1	8	8	8	1.1	1.1	8	-30333.13
8	1.1	8	8	1.1	1.1	8	-46186.42
1.1	1.1	8	8	1.1	1.1	8	-3621.40
8	8	1.1	8	1.1	1.1	8	-38602.19
1.1	8	1.1	8	1.1	1.1	8	-5538.26
8	1.1	1.1	8	1.1	1.1	8	-17291.67
1.1	1.1	1.1	8		1.1	8	
				1.1			-1460.58
8	8	8	1.1	1.1	1.1	8	-16361.09
1.1	8	8	1.1	1.1	1.1	8	-1024.04
8	1.1	8	1.1	1.1	1.1	8	-1792.51
1.1	1.1	8	1.1	1.1	1.1	8	-340.81

Alternate Design Array and Dependent Variable Values for Central Composite Design With 7 Variables (continued)

8	8	1.1	1.1	1.1	1.1	8	-2872.92
1.1	8	1.1	1.1	1.1	1.1	8	-310.97
8 1.1	$1.1 \\ 1.1$	$1.1 \\ 1.1$	$1.1 \\ 1.1$	$1.1 \\ 1.1$	$1.1 \\ 1.1$	8 8	-798.27 -306.75
8	8	8	8	8	8	1.1	-142237.11
1.1	8	8	8	8	8	1.1	-78273.38
8	1.1	8	8	8	8	1.1	-91892.72
$\frac{1.1}{8}$	1.1 8	8 1.1	8 8	8 8	8 8	1.1 1.1	-40050.24 -57530.70
1.1	8	1.1	8	8	8	1.1	-12382.57
8	1.1	1.1	8	8	8	1.1	-20837.46
1.1 8	1.1 8	1.1	8	8 8	8	1.1	-5172.23
1.1	8	8 8	$1.1 \\ 1.1$	8	8 8	$1.1 \\ 1.1$	-61091.45 -28727.81
8	1.1	8	1.1	8	8	1.1	-29842.14
1.1	1.1	8	1.1	8	8	1.1	-15077.87
8 1.1	8 8	$1.1 \\ 1.1$	$1.1 \\ 1.1$	8 8	8 8	$1.1 \\ 1.1$	-7872.97 -2931.24
8	1.1	1.1	1.1	8	8	1.1	-3344.32
1.1	1.1	1.1	1.1	8	8	1.1	-1305.30
8	8	8	8	1.1	8	1.1	- 92181.38
1.1 8	8 1.1	8 8	8 8	$1.1 \\ 1.1$	8 8	$1.1 \\ 1.1$	-34032.00 -43129.51
1.1	1.1	8	8	1.1	8	1.1	-15495.88
8	8	1.1	8	1.1	8	1.1	-22608.56
1.1	8	1.1	8	1.1	8	1.1	-3094.59
8 1.1	$1.1 \\ 1.1$	$1.1 \\ 1.1$	8 8	$1.1 \\ 1.1$	8 8	$1.1 \\ 1.1$	-6522.63 -1392.53
8	8	8	1.1	1.1	8	1.1	-24741.74
1.1	8	8	1.1	1.1	8	1.1	-12104.64
8	1.1	8	1.1	1.1	8	1.1	-12225.96
1.1 8	1.1 8	8 1.1	$1.1 \\ 1.1$	$1.1 \\ 1.1$	8 8	$1.1 \\ 1.1$	-6860.84 -2059.63
1.1	8	1.1	1.1	1.1	8	1.1	-800.38
8	1.1	1.1	1.1	1.1	8	1.1	-847.10
1.1	1.1	1.1	1.1	1.1	8	1.1	-316.79
8 1.1	8 8	8 8	8 8	8 8	$1.1 \\ 1.1$	$1.1 \\ 1.1$	-93670.86 -34494.33
8	1.1	8	8	8	1.1	1.1	-47102.81
1.1	1.1	8	8	8	1.1	1.1	-5748.65
8	8	1.1	8	8	1.1	1.1	-31704.08
1.1 8	8 1.1	$1.1 \\ 1.1$	8 8	8 8	$1.1 \\ 1.1$	$1.1 \\ 1.1$	-723.19 -7463.02
1.1	1.1	1.1	8	8	1.1	1.1	-21.94
8	8	8	1.1	8	1.1	1.1	-20516.74
1.1 8	8	8	1.1	8	1.1	1.1	-1791.28
1.1	$1.1 \\ 1.1$	8 8	$1.1 \\ 1.1$	8 8	$1.1 \\ 1.1$	$1.1 \\ 1.1$	-1961.10 -153.56
8	8	1.1	1.1	8	1.1	1.1	-47.36
1.1	8	1.1	1.1	8	1.1	1.1	0.00
8 1.1	1.1	1.1	1.1	8	1.1	1.1	0.00
8	1.1 8	1.1 8	1.1 8	8 1.1	1.1 1.1	$1.1 \\ 1.1$	0.00 -50239.11
1.1	8	8	8	1.1	1.1	1.1	-5064.77
8	1.1	8	8	1.1	1.1	1.1	-12218.79
1.1 8	1.1 8	8 1.1	8 8	$1.1 \\ 1.1$	$1.1 \\ 1.1$	$1.1 \\ 1.1$	-209.72 -12832.77
1.1	8	1.1	8	1.1	1.1	1.1	0.00
8	1.1	1.1	8	1.1	1.1	1.1	-2640.94
1.1	1.1	1.1	8	1.1	1.1	1.1	0.00

Alternate Design Array and Dependent Variable Values for Central Composite Design With 7 Variables (continued)

APPENDIX C

.

.

.

DATA COLLECTION PROGRAM LISTING

```
20 REM DATA COLLECTION PROGRAM
40 OPEN "B:PBD007" FOR INPUT AS #1
50 OPEN "B:SAMPLE" FOR INPUT AS #2
60 OPEN "B:REVPBD07" FOR OUTPUT AS #3
70 SUMGTREV#=0
80 DIM CHARGE (14)
90 DIM KWH (12), AMONREVT (12), CCREV (12), ENGREV (12)
100
      REM
      REM DETERMINE TYPE OF RUN
110
120
      REM
130 INPUT "NUMBER OF INDEPENDENT VARIABLES ";NFIELDS
140 REM
150 REM READ RATEFILE
160 REM
170 FOR I = 1 TO NFIELDS
180 IF EOF(1) GOTO 680
190 INPUT #1, CHARGE(I)
200 NEXT I
210 SUMGTREV#=0
220 REM
230 REM READ A CUSTOMER RECORD
240 REM
250 FOR I = 1 TO 12
260 IF EOF(2) THEN GOTO 610
270 INPUT #2, KWH(I)
280 NEXT I
290 REM*****
300 REM CALCULATE KWH REVENUE
320 FOR I = 1 TO 12
330 IF (SEASONS = 2) AND ((I < 5) OR (I > 9)) THEN GOTO 380
340 IF KWH(I) <= 400 THEN ENGREV(I) = KWH(I) * CHARGE(1)
350 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400* CHARGE(1)) + ((KWH(
1) - 400) * CHARGE(2))
360 IF KWH(I) > 800 THEN ENGREV(I) = (400 * CHARGE(1)) + (400 * CHARGE(2)) + ((KWH(
I) - 800) * CHARGE(3))
370 GOTO 450
380 IF KWH(I) <= 400 THEN ENGREV(I) = KWH(I) * CHARGE(4)
390 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400 * CHARGE(4)) + ((KWH
(I) - 400) * CHARGE(5))</pre>
400 IF KWH(I) > 800 THEN ENGREV(I) = (400 * CHARGE(4)) + (400* CHARGE(5)) + ((KWH(I
) - 800) * CHARGE(6))
410 GOTO 450
430 REM CALCULATE CUSTOMER CHARGE
440 REM*********************
                                 ******
450 CCREV(I) = CHARGE(7) \pm100
460 REM**********
470 REM CALCULATE TOTAL MONTHLY BILL
************************************
490 AMONREVT(I) = (CCREV(I) + ENGREV(I))/100
500 NEXT I
510 REM****
             520 REM CALCULATE ANNUAL TOTALS
530 REM*********
                                 540 ENGREVTOT = 0
550 GTREV = 0
560 FOR I = 1 TO 12
```

Data Collection Program for Two Optional Rates (continued)

Data Collection Program for Three Optional Rates

```
20 REM DATA COLLECTION PROGRAM
*********************
40 OPEN "B:PBD014" FOR INPUT AS #1
50 OPEN "B:SAMPLE" FOR INPUT AS #2
60 OPEN "B:REVPBD14" FOR OUTPUT AS #3
70 SUMGTREV#=0
80 DIM CHARGE (14)
90 DIM KWH (12), AMONREVT (12), CCREV (12), ENGREV (12)
100
     REM
     REM DETERMINE TYPE OF RUN
110
     REM
120
130 INPUT "NUMBER OF INDEPENDENT VARIABLES ";NFIELDS
140 REM
150 REM READ RATEFILE
160 REM
170 FOR I = 1 TO NFIELDS
180 IF EOF(1) GOTO 990
190 INPUT #1, CHARGE(I)
200 NEXT I
210 SUMGTREV#=0
220 REM
230 REM READ A CUSTOMER RECORD
240 REM
250 FOR I = 1 TO 12
260 IF EOF(2) THEN GOTO 920
270 INPUT #2, KWH(I)
280 NEXT I
300 REM CALCULATE KWH REVENUE
320 FOR I = 1 TO 12
330 IF (SEASONS = 2) AND ((I < 5) OR (I > 9)) THEN GOTO 380
340 IF KWH(I) <= 400 THEN ENGREV(I) = KWH(I) * CHARGE(1)
350 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400* CHARGE(1)) + ((KWH(
I) - 400) * CHARGE(2))
360 IF KWH(I) > 800 THEN ENGREV(I) =(400 * CHARGE(1)) +(400 * CHARGE(2)) +((KWH(
I) - 800) * CHARGE(3))
370 GOTO 450
380 IF KWH(I) <= 400 THEN ENGREV(I) = KWH(I) * CHARGE(4)
390 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400 * CHARGE(4)) + ((KWH
(I) - 400) * CHARGE(5))
400 IF KWH(I) > 800 THEN ENGREV(I) =(400 * CHARGE(4)) +(400* CHARGE(5)) +((KWH(I
) - 800) * CHARGE(6))
410 GOTO 450
430 REM CALCULATE CUSTOMER CHARGE
450 CCREV(I) = CHARGE(7) \pm 100
470 REM CALCULATE TOTAL MONTHLY BILL
490 AMONREVT(I) = (CCREV(I) + ENGREV(I))/100
500 NEXT I
520 REM CALCULATE ANNUAL TOTALS
540 ENGREVTOT = 0
550 \text{ GTREV} = 0
560 FOR I = 1 TO 12
```

Data Collection Program for Three Optional Rates (continued)

```
570 GTREV = GTREV + AMONREVT(I)
580 NEXT I
600 REM CALCULATE KWH REVENUE
620 FOR I = 1 TO 12
630 IF (SEASONS = 2) AND ((I < 5) OR (I > 9)) THEN GOTO 680
640 IF KWH(I) <= 400 THEN ENGREV(I) = KWH(I) * CHARGE(8)
650 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400* CHARGE(8)) + ((KWH(
I) - 400) * CHARGE(9))
1) - 400) * CHARGE(9))
660 IF KWH(I) > 800 THEN ENGREV(I) =(400 * CHARGE(8)) +(400 * CHARGE(9)) +((KWH(
I) - 800) * CHARGE(10))
670 GOTO 750
680 IF KWH(I) <= 400 THEN ENGREV(I) = KWH(X) * CHARGE(11)
690 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400 * CHARGE(11)) + ((KW
H(I) - 400) * CHARGE(12))
700 IF KWH(I) > 900 THEN ENGREV(I) = (400 * CHARGE(11)) + ((KW
H(I) - 400) * CHARGE(12))

700 IF KWH(I) > 800 THEN ENGREV(I) =(400 * CHARGE(11)) +(400* CHARGE(12)) +((KWH
(I) - 800) * CHARGE(13))
710 GOTO 750
730 REM CALCULATE CUSTOMER CHARGE
750 CCREV(I) = CHARGE(14) \pm100
770 REM CALCULATE TOTAL MONTHLY BILL
790 AMONREVT(I) = (CCREV(I) + ENGREV(I))/100
800 NEXT I
820 REM CALCULATE ANNUAL TOTALS
******
840 ENGREVTOT = 0
850 \text{ GTREVA} = 0
860 FOR I = 1 TO 12
870 GTREVA = GTREVA + AMONREVT(I)
880 NEXT I
890 IF GTREVA < GTREV THEN GTREV = GTREVA
900 IF GTREV < 0 THEN SUMGTREV# = SUMGTREV#+GTREV
910 GOTO 250
920 FOR I = 1 TO NFIELDS
930 PRINT #3, CHARGE(I);
940 NEXT I
950 PRINT #3,USING"#####################
960 CLOSE #2
970 OPEN "B:SAMPLE" FOR INPUT AS #2
980 GOTO 170
```

990 END

62

APPENDIX D

RESIDUALS

Residuals for Linear 7 Variable Model

		PREDICT	
85	ACTUAL	VALUE	RESIDUAL
1	- 17383.4	-25313.1	7929.8
2	-798.1	-13536.4	12738.3
3	-24028.5	-31653.9	7625.4
4	-14600.4	-23358.8	8758.4
5	- 12137.2	-20277.9	8140.7
6	-8239.2	- 18795.0	10555.8
7	-6127.7	-16704.5	10576.9
8	-233977	-224860	-9116.7
9	-6522.6	319.0	-6841.6
10	- 396 . 4	11506.9	-11903.2
11	- 12226 . 0	-5704.7	-6521.2
12	-5538.3	2175.6	-7713.9
13	- 1961.1	5102.5	-7063.6
14	-3094.6	6511.3	-9605.8
15	-1130.9	8497.2	-9628.0
16	- 187 18 1	- 189250	2069.1

•

•

Residuals for Linear 14 Variable Model

		PREDICT		
OBS	ACTUAL	VALUE	RESIDUAL	
1	-23479.6	-27402.0	3922.3	
2	-3472.5	6459.4	-9932.0	
3	-29308.2	-32796.1	3487.9	
4	-8614.5	-2855.4	-5759.0	
5	- 18948 . 2	- 19832.9	884.7	
6	- 3094 . 6	6917.7	- 10012.3	
7	- 12945.3	- 13063.5	118.1	
	-4206.4	4410.7	-8617.1	
9	- 12955 . 4	-13094.0	138.6	
10	- 12879.5	-6553.6	-6325.9	
	-14207.8	-15461.2	1253.3	
12	-5119.9	-530.7	-4589.2	
13	- 15888.6	-18021.0	2132.4	
14	-22042.8	-24962.2	2919.5	
15	-4207.1	3449.7	-7656.8	
16	-187181	- 190531	3349.6	
17	-57603.1	-54403.4	-3199.6	
18	-8797.9	- 18759.9	9961.9	
19	-62868.4	-60081.5	-2787.0	
20	-22567.3	-28565.0	5997.6	
21	-46749.9	-46436.0	-313.9	
22	-8239.2	- 18277 . 5	10038.2	
23	-38896.0	- 39310.3	414.3	
24	-12203.6	-20916.5	8712.8	
25	-38947.5	-39342.4	394.9	
26	-25921.7	-32457.8	6536.1	
27	-42498.3	-41834.2	-664.1	
28	-21231.6	-26117.9	4886.3	
29	-46771.8	-44528.8	-2243.1	
30	-54826.1	-51835.3	-2990.8	
31	- 14127.5	-21928.0	7800.5	
32	-233977	-226118	-7858.5	

.

,

.

1 -0.8 -0.8 -0.8 -0.8 FESTDUAL -1867.4 -1877.8 3 -0.8 -1.1 -0.8 -0.8 -0.8 -0.8 FESTDUAL -6953.2 -119455 6953.21 4 1.1 -0.8 -0.8 -0.8 -0.8 FESTDUAL -947.7 -6698.9 94.68 5 -0.8 -0.8 -0.8 -0.8 FESTDUAL 94.7 -6698.9 94.68 6 1.1 -0.8 -0.8 -0.8 FESTDUAL 94.7 -6698.9 91.08 -3755.0.4 6 1.1 -0.8 -0.8 -0.8 FESTDUAL 2015.2 -13060 2015.22 -90.5 2015.22 -91.1 -0.8 -0.8 FESTDUAL 218.1 -5139.9 218.1 -5139.9 219.1 11.2 -0.8 -0.8 FESTDUAL 218.1 -5139.7 223.16 5270.78 223.16 5270.78 223.16 5270.78 223.16 5270.78 223.16 5270.78 </th <th>OBS</th> <th>CHG 1</th> <th>CHG2</th> <th>CHG3</th> <th>CHG4</th> <th>CHG5</th> <th>CHG6</th> <th>CHG7</th> <th>_TYPE_</th> <th>REV</th> <th>ACT</th> <th>RESID</th>	OBS	CHG 1	CHG2	CHG3	CHG4	CHG5	CHG6	CHG7	_TYPE_	REV	ACT	RESID
2 1.1 -0.8 -0.8 -0.8 PC.8 PC.8 PCSIDUAL -7593.2 -119455 6953.21 4 1.1 1.1 -0.8 -0.8 PCSIDUAL -7595.04 -13650 7550.43 5 -0.8 1.1 -0.8 -0.8 PCSIDUAL -7535.04 -16580 7535.04 6 1.1 -0.8 -0.8 -0.8 PCSIDUAL 7355.01 -106803 7355.04 7 -0.4 1.1 1.1 -0.8 -0.8 PCSIDUAL 2105.2 -13650 7355.04 8 1.1 -0.8 -0.8 PCSIDUAL 2105.2 -13657 2135.03 9 -0.8 -0.8 PCSIDUAL 2105.2 -13657 2135.23 1157.47 10 1.1 -0.8 -0.8 PCSIDUAL 2517.67 22358 2570.78 14 1.1 -0.8 -0.8 PCSIDUAL 2520.78 253.02 157.47 13 -0.8 -0.8 PCSIDUAL 25104.4 457.5 -77114 457.5	1	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	PESTOUAL	- 1867 4	- 187 181	1867 38
3 -0.8 1.1 -0.8 -0.8 -0.8 PESIDUAL -7590.4 -126690 7590.46 5 -0.8 -0.8 -0.8 PESIDUAL 94.68 7355.04 6 1.1 -0.8 -0.8 -0.8 RESIDUAL 3135.03 7 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 3135.03 7 -0.8 1.1 1.1 -0.8 -0.8 -0.8 RESIDUAL 3015.2 -100603 7355.04 8 1.1 1.1 -0.8 -0.8 RESIDUAL 2015.2 -100603 2015.2 -100603 2015.2 -100603 2015.2 -100603 2015.2 -100603 2015.2 -10063 -0.8 -0.8 -0.8 RESIDUAL 2163.01 111 -10.8 -0.8 -0.8 RESIDUAL 2163.01 111 -10.8 -0.8 RESIDUAL 2163.01 111 111 -10.8 -0.8 RESIDUAL 2163.01 111												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
5 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 FESIDUAL 313.0 -37669 336.0 37669 336.0 37669 336.0 37669 336.0 37669 336.2 386.0 3870.0 3870.0 3												
6 1.1 -0.8 -0.8 -0.8 -0.8 FESIDUAL 3125.02 -37665 3125.02 8 1.1 1.1 1.1 -0.8 -0.8 -0.8 RESIDUAL 300.6 -54129 800.58 9 -0.8 -0.8 1.1 -0.8 -0.8 -0.8 RESIDUAL 2105.2 -13060 3015.23 10 1.1 -0.8 -0.8 -0.8 -0.8 RESIDUAL 2163.0 -46165 2163.05 11 -0.8 -0.8 -0.8 -0.8 RESIDUAL 2163.0 -5003 863.02 12 1.1 1.1 -0.8 -0.8 -0.8 RESIDUAL 863.0 -3503 863.02 14 0.1 1.1 -0.8 -0.8 -0.8 RESIDUAL -863.0 -3503 863.02 15 -0.8 -0.8 -0.8 -0.8 RESIDUAL -864.5 -56112 -5716 457.57 16 -1.1												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
B 1.1 1.1 -0.8 -0.8 RESIDUAL 3015.2 -13060 3015.23 9 0.8 -0.8 0.8 0.8 0.8 -11 -0.8 -11 -0.8 -11 -0.8 -11 -0.8 -11 -0.8 -11 -0.8 -11 -0.8 -21 -11 -11 -11 -11 -0.8 -0.8 -0.8 RESIDUAL 2519.1 -51349 2519.1 -11 -11 -0.8 -0.8 -0.8 RESIDUAL 2510.8 -22358 5270.78 -22358 5270.78 -22358 5270.78 -23561 -0.8 -0.8 RESIDUAL -60.8 -0.8 RESIDUAL -60.8 -0.8 -7364.3												
9 -0.8 -0.8 -0.8 -0.8 PESIDUAL -7198.7 -9237 7198.68 10 1.1 -0.8 -0.8 -0.8 RESIDUAL 2519.1 -51349 2519.11 12 1.1 -0.8 1.1 -0.8 -0.8 RESIDUAL 2519.1 -51349 2519.11 13 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2510.8 -22358 5270.78 14 1.1 -0.8 -0.8 -0.8 RESIDUAL -663.0 -7198.75 -77111 467.50 15 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL -640.6 -2946 3640.57 16 1.1 1.1 -0.8 -0.8 RESIDUAL -690.7 811.1 -60.8 -7244.3 -136786 7264.28 18 1.0 -0.8 -0.8 RESIDUAL -69107 811.16 -69107 811.16 -69107 811.16 -69107 811.16												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
14 1.1 -0.8 1.1 1.1 -0.8 -0.8 -0.8 -0.8 -851DUAL -863.0 -5903 663.02 16 1.1 1.1 1.1 -0.8 -0.8 -0.8 PESIDUAL -7364.6 -13676 7364.28 18 1.1 -0.8 -0.8 1.1 -0.8 -0.8 FESIDUAL -7364.3 -13676 7364.28 18 1.1 -0.8 -0.8 1.1 -0.8 -0.8 FESIDUAL -8610.4 -8624 3664.50 20 1.1 1.1 -0.8 0.8 1.1 -0.8 -211.4 -8610.4 3817.3 -12012 3817.32 21 -0.8 1.1 -0.8 1.1 -0.8 -0.8 RESIDUAL 2384.9 -2537 2384.86 22 1.1 -0.8 1.1 -0.8 -0.8 RESIDUAL 2384.9 -2537 2384.86 24 1.1 1.1 -0.8 -0.8 RESIDUAL 2784.9 -1842 25 -0.8 0.1 1.1												
15 -0.8 1.1 1.1 1.1 -0.8 -0.8 -0.8 PESIDUAL -364.0 -7711 487.50 17 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -7364.2 -136786 7764.28 18 1.1 -0.8 -0.8 -0.8 PESIDUAL -864.5 -86294 3664.50 20 1.1 -0.8 -0.8 1.1 -0.8 -0.8 RESIDUAL -8664.5 -86294 3664.50 20 1.1 -0.8 -0.8 -0.8 RESIDUAL -866.5 -27214 786.64 21 -0.8 1.1 -0.8 -0.8 RESIDUAL 28104.2 3817.3 -12012 3817.32 22 1.1 1.1 -0.8 1.1 -0.8 -0.8 RESIDUAL 2731.9 -4276 3751.91 23 -0.8 -0.1 -0.8 RESIDUAL 2731.9 -4276 3751.91 24 1.1 1.1												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
17 -0.8 -0.8 -0.8 1.1 -0.8 -0.8 RESIDUAL -7264.3 -136786 7364.28 19 -0.8 1.1 -0.8 -0.8 RESIDUAL -3664.5 -66907 811.16 20 1.1 1.1 -0.8 -0.8 RESIDUAL -3664.5 -66907 811.16 20 1.1 1.1 -0.8 -0.8 RESIDUAL -3664.5 -66907 811.16 20 1.1 1.1 -0.8 -0.8 RESIDUAL 3817.3 -12012 3817.32 21 -0.8 1.1 -0.8 -0.8 RESIDUAL 2381.9 -23997 2384.86 22 1.1 1.1 -0.8 -0.8 RESIDUAL -374.9 -4276 375.1.91 25 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 2724.4 -18932 2724.38 27 -0.8 1.1 1.1 1.1 -0.8 RESIDUAL -2284.1												
18 1.1 -0.8 -0.8 1.1 -0.8 -6.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
19 -0.8 1.1 -0.8 -0.8 RESIDUAL -3664.5 -86294 3664.50 20 1.1 1.1 -0.8 -0.8 RESIDUAL 7986.6 -27214 7986.64 21 -0.8 1.1 -0.8 -0.8 RESIDUAL 671.8 -56112 671.84 22 1.1 -0.8 1.1 -0.8 -0.8 RESIDUAL 3817.3 -12012 3817.32 23 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2384.9 -2337 2384.86 24 1.1 1.1 -0.8 -0.8 RESIDUAL -3751.9 -4276 3751.91 25 -0.8 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 274.4 -18623 2724.38 26 1.1 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2724.4 -18623 2724.38 27 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -284.1 -10131 2844.12 30 </td <td></td>												
20 1.1 1.1 -0.8 -0.8 RESIDUAL 7986.6 -27214 7986.64 21 -0.8 -0.8 1.1 -0.8 -0.8 RESIDUAL 671.8 -56112 671.84 22 1.1 -0.8 1.1 -0.8 -0.8 RESIDUAL 284.9 -25397 2384.86 24 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL 274.4 -25397 2384.86 24 1.1 1.1 -0.8 -0.8 RESIDUAL 274.4 -18623 274.38 25 -0.8 -0.6 1.1 1.1 -0.8 -0.8 RESIDUAL 2784.4 -19031 284.12 26 1.1 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2784.4 -19031 284.12 29 -0.8 -0.8 1.1 1.1 1.1 -0.8 RESIDUAL -284.1 -10131 284.12 29 -0.8 -0												
21 -0.8 -0.8 1.1 -0.8 -0.8 RESIDUAL 671.8 -65112 671.84 22 1.1 -0.8 1.1 -0.8 1.1 -0.8 -0.8 RESIDUAL 2817.3 -12012 3817.32 23 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2817.3 -125377 2384.86 24 1.1 1.1 -0.8 1.1 -0.8 -0.8 RESIDUAL -2751.9 -4276 3751.91 25 -0.8 -0.8 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 274.4 -18623 2724.38 26 1.1 -0.8 -0.8 RESIDUAL 2724.4 -18623 2724.38 27 -0.8 -0.8 1.1 -1.1 -0.8 -0.8 RESIDUAL -2884.1 -10131 2884.12 -2050 4343.24 28 -1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4538.1 -1829 4538.10 30 1.1 -0.8 -0.8 RESIDU												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
24 1,1 1,1 -0.8 1,1 -0.8 PESIDUAL -3751.9 -4276 3751.91 25 -0.8 -0.8 -0.8 1,1 1,1 -0.8 -0.8 RESIDUAL 2490.5 -49932 2490.50 26 1.1 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2724.4 -18623 2724.38 27 -0.8 1.1 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2724.4 -18623 2724.38 28 1.1 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL -284.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -10131 2884.1 -288.1 -288.1 -288.1 -288.1 -288.1 -288.1 -288.1 -288.1 -288.1 -288.1 -288.1 -288.1 -288.1 -288.1 <												
25 -0.8 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2490.5 -49932 2490.50 26 1.1 -0.8 -0.8 RESIDUAL 2724.4 -18623 2724.38 27 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2724.4 -18623 2724.38 28 1.1 1.1 -0.8 -0.8 RESIDUAL -2884.1 -10131 2884.12 29 -0.8 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4538.1 -10131 2884.12 30 1.1 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL -4538.1 -80.6 31 -0.8 1.1 -0.8 -0.8 RESIDUAL -433.2 -2530 4343.24 32 -1.1 -0.8 -0.8 RESIDUAL -4358.1 -70.64 -60.6 33 -0.8 -0.8 -0.8 1.1 -0.8												
26 1.1 -0.8 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL 2724.4 -18623 2724.38 27 -0.8 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL 4719.9 -19905 4719.87 28 1.1 1.1 -0.8 -0.8 RESIDUAL -2884.1 -10131 2884.12 29 -0.8 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4538.1 -1829 4538.10 30 1.1 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -44343.2 -2530 4343.24 31 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4615.2 -1367814 4615.17 34 1.1 -0.8 -0.8 -0.8 1.1 -0.8 RESIDUAL -4515.2 -1367814 4615.17 34 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL -4515.2 -1367814 4615.17 35 -0.8 1.1<												
27 -0.8 1.1 -0.8 -0.8 RESIDUAL 4719.9 -19905 4719.81 28 1.1 1.1 -0.8 1.1 1.1 -0.8 -0.8 RESIDUAL -2884.1 -10131 2884.12 29 -0.8 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -2884.1 -10131 2884.12 30 1.1 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4538.1 -1829 4538.10 31 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4343.2 -2530 4343.24 32 -1.1 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4615.2 -136781 4615.17 34 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL -4554.9 -72066 4554.87 35 -0.8 1.1 -0.8 RESIDUAL -3739.9 968065 373.9 95 36 1.1 1.1 -0.8 -0.8												
28 1.1 1.1 -0.8 -0.8 RESIDUAL -2884.1 -10131 2884.12 29 -0.8 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -194.54 30 1.1 -0.8 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4333.2 -2530 433.24 31 -0.8 1.1 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4343.2 -2530 4343.24 32 1.1 1.1 1.1 1.1 -0.8 -0.8 RESIDUAL -4615.2 -136781 4615.17 34 1.1 -0.8 -0.8 -0.8 1.1 -0.8 RESIDUAL -4554.9 -72086 4554.87 35 -0.8 -0.8 0.8 1.1 -0.8 RESIDUAL -4554.9 -72086 4554.87 36 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL -3739.9 -68065 3739.86 38 1.1 -0.8 -0.8 1.1 -0.8 <												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
32 1.1 1.1 1.1 1.1 1.1 0.8 -0.8 RESIDUAL 40.6 -939 40.60 33 -0.8 -0.8 -0.8 -0.8 1.1 -0.8 RESIDUAL -4615.2 -136781 4615.17 34 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL -4554.9 -72086 4554.87 35 -0.8 1.1 -0.8 -0.8 RESIDUAL -5751.3 -88943 5751.28 36 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL -3739 -66055 373.9.86 38 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL 2990.5 -16872 2990.49 39 -0.8 1.1 -0.8 RESIDUAL -995.7 -32410 730.7 42 230.7.26 4313.1 -52870 3313.15 42 -1.1 -0.8 1.1 -0.8 RESIDUAL -995.7 -3270 995.69 31												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
38 1.1 -0.8 1.1 -0.8 1.1 -0.8 RESIDUAL 2990.5 -16872 2990.49 39 -0.8 1.1 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL 2990.5 -16872 2990.49 40 1.1 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL -995.7 -32410 730.74 41 -0.8 -0.8 -0.8 1.1 -0.8 RESIDUAL -995.7 -3370 996.66 5307.25 42 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL 5307.3 -9666 5307.26 43 -0.8 1.1 -0.8 1.1 -0.8 RESIDUAL 5307.3 -9666 5307.26 44 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL 2741.1 -1311 2441.7 45 -0.8 1.1 -0.8 1.1 -0.8 RESIDUAL 2441.1 -1311 2441.1 45 -0.8 1.1 1.1 -0.8 RESIDUAL												
39 -0.8 1.1 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL 730.7 -32410 730.74 40 1.1 1.1 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL -995.7 -3370 995.69 41 -0.8 -0.8 1.1 -0.8 RESIDUAL -995.7 -3370 995.69 41 -0.8 -0.8 1.1 -0.8 RESIDUAL -3313.1 -52870 3307.26 42 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL 5307.3 -9666 5307.26 43 -0.8 1.1 -0.8 RESIDUAL 5307.3 -9666 5307.26 44 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL 5307.3 -9666 5307.26 45 -0.8 1.1 -0.8 1.1 -0.8 RESIDUAL -2441.1 -1131 244.77 46 1.1 0.1 1.1 -0.8 RESIDUAL -3048.3 -7078 3048.27 46												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
41 -0.8 -0.8 -0.8 1.1 -0.8 1.1 -0.8 RESIDUAL -3313.1 -52870 3313.15 42 1.1 -0.8 -0.8 1.1 -0.8 1.1 -0.8 RESIDUAL -3313.1 -52870 3313.15 42 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL 5307.3 -9666 5307.26 43 -0.8 1.1 -0.8 RESIDUAL 6764.8 -12812 6764.77 44 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -2441.1 -1131 2441.11 45 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -3048.3 -7078 3048.27 46 1.1 0.8 1.1 -0.8 RESIDUAL -3048.3 -7078 3048.27 47 -0.8 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -3156.9 -1094 3156.89 48 1.1 1.1 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20												
42 1.1 -0.8 -0.8 1.1 -0.8 RESIDUAL 5307.3 -9666 5307.26 43 -0.8 1.1 -0.8 1.1 -0.8 RESIDUAL 5707.3 -9666 5307.26 44 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL 6764.8 -12812 6764.77 44 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL 2441.1 -1131 2441.11 45 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 3048.3 -7078 3048.27 46 1.1 -0.8 1.1 -0.8 RESIDUAL -3048.3 -396 4681.78 47 -0.8 1.1 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20 48 1.1 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20 49 -0.8 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -30333 3330.16 51												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
44 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -2441.1 -1131 2441.11 45 -0.8 -0.8 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -2441.1 -1131 2441.11 45 -0.8 -0.8 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL 3048.3 -7078 3048.27 46 1.1 0.8 1.1 -0.8 RESIDUAL -4681.8 -396 4681.78 47 -0.8 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -3156.9 -1094 3156.89 48 1.1 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20 49 -0.8 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -3303.2 -3033 330.16 51 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 874.6 -46												
45 -0.8 -0.8 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL 3048.3 -7078 3048.27 46 1.1 -0.8 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL 3048.3 -7078 3048.27 46 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL -4681.8 -396 4681.78 47 -0.8 1.1 1.1 1.1 -0.8 RESIDUAL -3155.9 -1094 3171.20 48 1.1 1.1 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20 49 -0.8 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20 50 1.1 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -3033 330.16 51 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 874.64 52 1.1 1.1 -0.8 RESIDUAL 4187.1 -362.1 4												
46 1.1 -0.8 1.1 -0.8 1.1 -0.8 RESIDUAL -4681.8 -396 4681.78 47 -0.8 1.1 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -3156.9 -1094 3156.89 48 1.1 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -3171.2 -392 3151.20 49 -0.8 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -4368.3 -9058.1 4368.29 50 1.1 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -4368.3 -9058.1 4368.29 50 1.1 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 330.2 -30333 330.16 51 -0.8 0.8 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 3874.64 52 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 317.09 53 -0.8 1.1 1.1 -0.8 RESIDUAL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
47 -0.8 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -3156.9 -1094 3156.89 48 1.1 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20 49 -0.8 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20 50 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -330.2 -3023 3330.16 51 -0.8 1.1 0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 3330.2 -3033 330.16 51 -0.8 1.1 0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 874.64 52 1.1 1.1 -0.8 RESIDUAL 4187.1 -362.1 4187.09 53 -0.8 1.1 1.1 -0.8 RESIDUAL 4187.1 -362.1 4187.09												
48 1.1 1.1 1.1 -0.8 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20 49 -0.8 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -3171.2 -392 3171.20 50 1.1 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -3068.3 -90981 4368.29 50 1.1 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 3330.2 -3033 3330.16 51 -0.8 1.1 -0.8 RESIDUAL 874.6 -46186 874.64 52 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 874.64 52 1.1 1.1 -0.8 RESIDUAL 4187.1 -362.1 4187.09 53 -0.8 1.1 1.1 -0.8 RESIDUAL -598.9 -38602 598.88 54 1.1 -0.8 1.1 1.1 -0.8 RESI												
49 -0.8 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -4368.3 -90981 4368.29 50 1.1 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 330.2 -30333 330.16 51 -0.8 1.1 1.1 -0.8 RESIDUAL 330.2 -30333 330.16 52 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 874.64 52 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 874.64 52 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 874.64 53 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -38602 598.88 54 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL -312.3 -5538.91 312.29												
50 1.1 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 3330.2 -30333 3330.16 51 -0.8 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL 3330.2 -30333 3330.16 51 -0.8 1.1 0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 874.64 52 1.1 1.1 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 4187.1 -3621 4187.09 53 -0.8 1.1 1.1 -0.8 RESIDUAL -598.9 -38602 598.88 54 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL -312.3 -5538 312.29												
51 -0.8 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL 874.6 -46186 874.64 52 1.1 1.1 -0.8 0.8 1.1 1.1 -0.8 RESIDUAL 4187.1 -3621 4187.09 53 -0.8 0.8 1.1 1.1 -0.8 RESIDUAL -598.9 -38602 598.88 54 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL -312.3 -5538 312.29												
52 1.1 1.1 -0.8 RESIDUAL 4187.1 -3621 4187.09 53 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL 4187.1 -3621 4187.09 53 -0.8 -0.8 1.1 1.1 -0.8 RESIDUAL -598.9 -38602 598.88 54 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL -312.3 -5538 312.29												
53 -0.8 -0.8 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL -598.9 -38602 598.88 54 1.1 -0.8 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL -312.3 -5538 312.29												
54 1.1 -0.8 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL -312.3 -5538 312.29												
		0.0			0.0					1040.0		

57 -0.8 -0.8 1.1 1.1 1.1 -0.8 RESIDUAL 4668.1 -16361 4668.1 59 -0.8 1.1 -0.8 1.1 1.1 -0.8 RESIDUAL -2692.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 -2873 1820 -341 8870.0 -341 8870.0 -341 8870.0 -341 8870.0 -341 8870.0 -341 8870.0 -341 8870.0 -341 8870.0 -341 8870.0 -341 8870.0 -341 8870.0 -341 8870.0 -361 <th>OBS</th> <th>CHG 1</th> <th>CHG2</th> <th>CHG3</th> <th>CHG4</th> <th>CHG5</th> <th>CHG6</th> <th>CHG7</th> <th>_TYPE_</th> <th>REV</th> <th>ACT</th> <th>RESID</th>	OBS	CHG 1	CHG2	CHG3	CHG4	CHG5	CHG6	CHG7	_TYPE_	REV	ACT	RESID
57 -O.8 -O.8 1.1 1.1 1.1 -O.8 RESIDUAL 4668.1 -16361 4668.1 58 1.1 -O.8 1.1 1.1 1.1 -O.8 RESIDUAL -2692.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 2592.7 -1024 -2873 1820 -0.8 1.1 251.0 -251.0 -208 -208 -208 -208 -208 -208 -208 -208 -208 -208 -208 -208	56	1.1	1.1	1.1	-0.8	1.1	1.1	-0.8	RESIDUAL	-4299 7	- 146 1	4299.7
58 1.1 -0.8 1.1 1.1 1.1 -0.8 RESIDUAL -2692.7 -1024 2692.7 60 -0.8 1.1 -0.8 1.1 1.1 1.1 -0.8 RESIDUAL -180.7 -1793 1120.7 61 -0.8 -0.8 1.1 1.1 1.1 1.1 -0.8 RESIDUAL -182.4 -2873 1842.4 62 -0.8 1.1 1.1 1.1 1.1 -0.8 RESIDUAL -2824.5 -798 2336.5 63 -0.8 -1.1 1.1 1.1 1.1 -0.8 RESIDUAL -2524.5 -798 2366.5 64 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 -0.8 RESIDUAL -2254.5 -798 2366.5 65 -0.8 -0.8 -0.8 1.1 RESIDUAL -2205.2 -78273 2205.5 -78273 2205.5 -78273 2205.7 -78273 2205.7 -78273 2205.7 -78273 2205.7 -78273 2205.7 -78273												4868.1
59 -O.8 1.1 -O.8 1.1 1.1 -I.0 RESIDUAL -RISOLAL -R												2692.7
60 1.1 1.1 1.1 1.1 1.1 -0.8 RÉSIDUAL -8870.0 -341 B870.0 61 -0.8 1.1												1120.2
61 -0.8 -0.1 1.1 1.1 1.1 -0.8 RESIDUAL -1842.4 -2873 1842 62 1.1 0.8 1.1 1.1 1.1 1.1 1.1 -0.8 RESIDUAL -2334.9 -798 2534 64 1.1 1.1 1.1 1.1 1.1 1.1 -0.8 RESIDUAL -2334.9 -798 2534 65 -0.8 -0.8 -0.8 -0.8 RESIDUAL -2361.9 -142237 6293 66 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -2261.0 -91833 2205 67 -0.8 -0.8 -0.8 -0.8 1.1 RESIDUAL -2261.0 -91833 2205 68 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -2281.7 -575311 1238 70 1.1 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL -22837 5392 72 1.1 1.1 1.1 -0.8 -0.8 1.1												8870.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
63 -0.8 1.1 1.1 1.1 1.1 1.1 1.1 -798 2534.9 -798 2534.6 64 1.1 1.1 1.1 1.1 1.1 1.1 -0.8 RESIDUAL 8926.8 -307 8926.6 65 -0.8 -0.8 -0.8 -0.8 1.1 RESIDUAL -2205.2 -78273 2205.2 66 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -2205.2 -78273 2205.2 67 -0.8 -0.8 -0.8 -0.8 1.1 RESIDUAL -2205.2 -785731 1228.7 68 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL 2402.4 -40050 2402.5 70 1.1 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 4202.6 -1283 4205.7 71 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 4205.6 -1283 4205.7 73 -0.8 0.8 1.1 RESIDUAL 4205.6 <td></td>												
64 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 RESIDUAL 6523.5 -14237 6293.5 65 -0.8 -0.8 -0.8 -0.8 1.1 RESIDUAL -2205.2 -78273 2205.2 67 -0.8 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -2261.0 -91893 2261. 69 -0.8 -0.8 -0.8 -0.8 1.1 RESIDUAL -2402.4 -40050 2402.4 70 1.1 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 4205.6 -1238.7 57531 1238.7 71 -0.8 1.1 -1.1 -0.8 -0.8 1.1 RESIDUAL -4007.8 -5172 4409.8 73 -0.8 -0.8 1.1 RESIDUAL -647.1 -61091 647.1 74 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284 -22842 2284.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2524 9</td></td<>												2524 9
65 -0.8 -0.8 -0.8 -0.8 1.1 RESIDUAL -6293.5 -142237 6293 66 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -2261.0 -91893 2261.0 68 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -2261.0 -91893 2261.0 68 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -2261.0 -91893 2261.0 69 -0.8 -0.8 -0.8 1.1 RESIDUAL -2281.7 -57531 1238.7 70 1.1 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 4205.6 -12383 4205.7 71 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4409.8 -5172 4409.7 73 -0.8 -0.8 1.1 RESIDUAL 1820.4 -6407.1 -61091 647.1 -61091 647.1 <td></td>												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
67 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL -3261.0 -91893 3261 68 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL 2402.4 -40050 2402. 69 -0.8 -0.8 -0.8 1.1 RESIDUAL 2128.7 -57531 1238.7 70 1.1 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 4205.6 -1238.3 4205.7 71 -0.8 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL 4205.6 -1238.3 4205.7 72 1.1 1.1 -1.0 -8 -0.8 1.1 RESIDUAL 4409.8 -5172 4409.8 73 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL 2284.6 -29842 2284 76 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -3380.9 -29313 3380 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
68 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 2402.4 -40050 2402 69 -0.8 -0.8 1.1 RESIDUAL -1238.7 -57531 1238 70 1.1 -0.8 1.1 RESIDUAL 4205.6 -1238.7 -57531 1238 71 -0.8 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL 4205.6 -1238.3 4205.7 72 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL 5932.4 -20837 5932 73 -0.8 -0.8 1.1 PO.8 -0.8 1.1 RESIDUAL -647.1 -61091 647 74 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284 76 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -3380.9 -2931 3380 78 0.8 1.1 RESIDUAL												
69 -0.8 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL -1238.7 -57531 1238 70 1.1 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 4205.6 -12383 4205. 71 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 4205.6 -12383 4205. 72 1.1 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -647.1 -61091 647. 73 -0.8 -0.8 1.1 RESIDUAL -647.1 -61091 647. 74 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284. 75 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284. 76 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 1330.1 -7873 1330. 78 1.1 -0.8 1.1 RESIDUAL -3380.9 -2931 3380. 79 <td></td>												
70 1.1 -0.8 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL 5932.4 -20837 5932 72 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL 5932.4 -20837 5932 73 -0.8 -0.8 -0.8 1.1 RESIDUAL -4409.8 -5172 4409 74 1.1 -0.8 -0.8 1.1 RESIDUAL -647.1 -61091 647.1 74 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284 76 1.1 1.1 -0.8 1.1 -0.8 1.1 RESIDUAL 330.1 -7873 1300 78 1.1 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 330.1 -7873 1300 79 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 4669.2 -3344 4669 80 1.1 1.1 1.1 -0.8 1.1 RESIDUAL 4133.5 -1305 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>402.4</td></td<>												402.4
71 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 5932.4 -20837 5932 72 1.1 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -647.1 -61091 647.1 74 1.1 -0.8 -0.8 1.1 RESIDUAL -647.1 -61091 647.1 74 1.1 -0.8 -0.8 1.1 RESIDUAL -28728 1892 75 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284 76 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 920.9 -15078 920.9 77 -0.8 -0.8 1.1 RESIDUAL -330.9 -2931 3380 78 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669 80 1.1 1.1 1.1 -0.8 1.												1238.7
72 1.1 1.1 1.1 -0.8 -0.8 -0.8 1.1 RESIDUAL -4409.8 -5172 4409 73 -0.8 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL -647.1 -61091 647 74 1.1 -0.8 -0.8 1.1 RESIDUAL 1892.3 -28728 1892.3 75 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284 76 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 130.1 -7873 1330 78 1.1 -0.8 -0.8 1.1 RESIDUAL -3380.9 -2931 3380 79 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669 80 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -44032 5401.4 81 -0.8 0.8 1.1 RESIDUAL -4409.4 -34032 5401 80												
73 -0.8 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL -647.1 -61091 647 74 1.1 -0.8 -0.8 1.1 RESIDUAL 1892.3 -28728 1892 75 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284 76 1.1 1.1 -0.8 1.1 RESIDUAL 920.9 -15078 920 77 -0.8 -0.8 1.1 RESIDUAL 1330.1 -7873 1330 78 1.1 -0.8 -0.8 1.1 RESIDUAL -3360.9 -2931 380 79 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669 80 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4558.6 -92181 4558 82 1.1 -0.8 0.8 1.1 RESIDUAL -4558.6 -92181 4558 82 1.1 -0.8 1.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
74 1.1 -0.8 -0.8 1.1 RESIDUAL 1892.3 -28728 1892. 75 -0.8 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284.7 76 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 2284.6 -29842 2284.7 76 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 920.9 -15078 920.9 77 -0.8 -0.8 1.1 RESIDUAL -3380.9 -29311 3380.9 78 1.1 -0.8 -0.8 1.1 RESIDUAL -3380.9 -29313 3380.9 79 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4659.2 -3344 4669.2 80 1.1 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4558.6 -92181 4558.8 81 -0.8 0.8 1.1 RESIDUAL -4558.6 -92181 4558.8 82 1.1 -0.8 <												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
76 1.1 1.1 -0.8 1.1 RESIDUAL 920.9 -15078 920 77 -0.8 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 1330.1 -7873 1330 78 1.1 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -3380.9 -2931 3380 79 -0.8 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669 80 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4659.2 -3344 4669 81 -0.8 -0.8 1.1 RESIDUAL -4659.2 -3344 4669 82 1.1 -0.8 0.8 1.1 RESIDUAL -4558.6 -92181 458 82 1.1 -0.8 0.8 1.1 RESIDUAL -3602.2 5401 83 -0.8 1.1 -0.8 1.1 RESIDUAL -355.2 -15496 255 55 55 50.7<												1892.3
77 -0.8 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 1330.1 -7873 1330 78 1.1 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -3380.9 -2931 3380 79 -0.8 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669.2 80 1.1 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4659.2 -3344 4669.2 80 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4558.6 -92181 4558.8 81 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL 5401.4 -34032 5401.4 82 1.1 -0.8 -0.8 1.1 RESIDUAL 5604.2 -43130 6604 83 -0.8 1.1 -0.8 1.1 RESIDUAL 4594.2 -22609 4594 84 1.1 1.1 -0.8 1.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
78 1.1 -0.8 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -3380.9 -2931 3380 79 -0.8 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669 80 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669 80 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669 81 -0.8 -0.8 -0.8 1.1 RESIDUAL -4558.6 -92181 4558 82 1.1 -0.8 -0.8 1.1 RESIDUAL -4558.6 -92181 4558 83 -0.8 1.1 -0.8 1.1 RESIDUAL -3602.2 -43130 6604 84 1.1 1.1 -0.8 1.1 RESIDUAL -3909.7 -3095 3909 85 -0.8 1.1 -0.8 1.1 RESIDUAL 4594.2 -22609 4594 4594.2										920.9		920.9
79 -0.8 1.1 1.1 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669 80 1.1 1.1 1.1 1.1 0.8 -0.8 1.1 RESIDUAL -4669.2 -3344 4669 80 1.1 1.1 1.1 1.1 0.8 0.8 1.1 RESIDUAL -4558.6 -92181 4558 82 1.1 -0.8 -0.8 1.1 RESIDUAL -4558.6 -92181 4558 83 -0.8 1.1 -0.8 1.1 RESIDUAL -5401.4 -34032 5401 84 1.1 1.1 -0.8 1.1 RESIDUAL -552.2 -15496 255 85 -0.8 1.1 -0.8 1.1 RESIDUAL -3909.7 -3095 3909 87 -0.8 1.1 -0.8 1.1 RESIDUAL 580.7 -6523 580 90 1.1												
B0 1.1 1.1 1.1 1.1 -0.8 -0.8 1.1 RESIDUAL 1413.5 -1305 1413 B1 -0.8 -0.8 -0.8 1.1 RESIDUAL -4558.6 -92181 4558 B2 1.1 -0.8 -0.8 1.1 RESIDUAL 5401.4 -34032 5401.4 B3 -0.8 1.1 -0.8 1.1 RESIDUAL 5604.2 -43130 6604 84 1.1 1.1 -0.8 1.1 RESIDUAL 6504.2 -43130 6604 84 1.1 1.1 -0.8 1.1 RESIDUAL 4594.2 -22609 4594 85 -0.8 1.1 -0.8 1.1 RESIDUAL 4594.2 -22609 4594 86 1.1 -0.8 1.1 RESIDUAL 4594.2 -22609 4594 87 -0.8 1.1 -0.8 1.1 RESIDUAL 580.7 -6523 580 88 1.1 1.1 -0.8 1.1 RESIDUAL 580.7 -224742										-3380.9		
81 -0.8 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL -4558.6 -92181 4558. 82 1.1 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL -4558.6 -92181 4558. 83 -0.8 1.1 -0.8 1.1 RESIDUAL 5401.4 -34032 5401. 83 -0.8 1.1 -0.8 1.1 RESIDUAL 6604.2 -43130 6604 84 1.1 1.1 -0.8 1.1 RESIDUAL -255.2 -15496 255 85 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL -3909.7 -3095 3909 86 1.1 -0.8 1.1 -0.8 1.1 RESIDUAL -3909.7 -3095 3909 87 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 88 1.1 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 90 1.1 -0.8												
82 1.1 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL 5401.4 -34032 5401 83 -0.8 1.1 -0.8 1.1 -0.8 1.1 RESIDUAL 5401.4 -34032 5401 84 1.1 1.1 -0.8 1.1 RESIDUAL -255.2 -43130 6604 84 1.1 1.1 -0.8 1.1 RESIDUAL -255.2 -15496 255 85 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL -255.2 -22609 4594 86 1.1 -0.8 1.1 -0.8 1.1 RESIDUAL -3909.7 -3095 3909 87 -0.8 1.1 -0.8 1.1 RESIDUAL -3909.7 -3095 3909 88 1.1 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 89 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -893.5 -1205 893 90 1.1 -												1413.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									RESIDUAL			4558.6
84 1.1 1.1 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL -255.2 -15496 255 85 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL -225.2 -15496 255 86 1.1 -0.8 1.1 -0.8 1.1 RESIDUAL 4594.2 -22609 4594 86 1.1 -0.8 1.1 RESIDUAL -3999.7 -3095 3909 87 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -580.7 -6523 580 88 1.1 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 90 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 90 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 90 1.1 -0.8 1.1 RESIDUAL -893.5 -12105 893												
B5 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL 4594.2 -22609 4594 86 1.1 -0.8 1.1 -0.8 1.1 RESIDUAL 4594.2 -22609 4594 86 1.1 -0.8 1.1 -0.8 1.1 RESIDUAL -3909.7 -3095 3909 87 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -380.7 -6523 580 88 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 89 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL 4607.7 -24742 4607 90 1.1 -0.8 1.1 RESIDUAL 4893.5 -1205 893 91 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDU												6604.2
86 1.1 -0.8 1.1 -0.8 1.1 RESIDUAL -3909.7 -3095 3909 87 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -3909.7 -3095 3909 87 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL 580.7 -6523 580 88 1.1 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 89 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL 4607.7 -24742 4607 90 1.1 -0.8 0.8 1.1 1.1 -0.8 1.1 RESIDUAL -893.5 -12105 893 91 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDUAL -4720.0 -2060 4720 93 -0.8 0.1 1.1 1.1 <td></td> <td>255.2</td>												255.2
87 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL 580.7 -6523 580 88 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 89 -0.8 -0.8 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 90 1.1 -0.8 1.1 1.1 RESIDUAL 4607.7 -24742 4607 90 1.1 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -893.5 -12105 893 91 -0.8 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDUAL -848.1 -6026 4720 93 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUA										4594.2		4594.2
88 1.1 1.1 -0.8 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 89 -0.8 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -8610.6 -1393 8610 90 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL 4607.7 -24742 4607 90 1.1 -0.8 0.8 1.1 1.1 -0.8 1.1 RESIDUAL 4893.5 -12105 893 91 -0.8 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDUAL -848.1 -6861 848 93 -0.8 -0.8 1.1 RESIDUAL -4720.0 -2060 4720 94 1.1 -0.8 1.1 RESIDUAL -427.4 -800 1427 95 -0.8 1.1 1.1 -0.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-3909.7</td> <td></td> <td>3909.7</td>										-3909.7		3909.7
89 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL 4607.7 -24742 4607 90 1.1 -0.8 0.8 1.1 1.1 -0.8 1.1 RESIDUAL -893.5 -12105 893 91 -0.8 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12266 1771 93 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -4720.0 -2060 4720 94 1.1 -0.8 1.1 RESIDUAL -1427.4 -800 1427 95 -0.8 1.1 1.1 -0.8 1.1 RE												580.7
90 1.1 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -893.5 -12105 893 91 -0.8 1.1 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 93 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -1771.3 -12266 1771 93 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -4720.0 -2060 4720 94 1.1 -0.8 1.1 RESIDUAL -1427.4 -800 1427 95 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -4612.5 -847 4612 96 1.1 1.												8610.6
91 -0.8 1.1 -0.8 1.1 RESIDUAL -1771.3 -12226 1771 92 1.1 1.1 -0.8 1.1 1.1 RESIDUAL -848.1 -6861 848 93 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -848.1 -6861 848 93 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -4720.0 -2060 4720 94 1.1 -0.8 1.1 RESIDUAL -4727.4 -800 1427 95 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -4612.5 -847 4612 96 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -162.5 -317 11647		-0.8			1.1				RESIDUAL			4607.7
92 1.1 1.1 -0.8 1.1 RESIDUAL -848.1 -6861 848 93 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -4720.0 -2060 4720 94 1.1 -0.8 1.1 RESIDUAL -1427.4 -800 1427 95 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -1427.4 -800 1427 95 -0.8 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -1427.4 -800 1427 95 -0.8 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -1427.4 -800 1427 96 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -1427.5 -317 11647			-0.8									893.5
93 -0.8 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -4720.0 -2060 4720 94 1.1 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -4720.0 -2060 4720 94 1.1 -0.8 1.1 RESIDUAL -1427.4 -800 1427 95 -0.8 1.1 1.1 -0.8 1.1 RESIDUAL -4612.5 -847 4612 96 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -1467.5 -317 11647	91	-0.8	1.1	-0.8	1.1	1.1		1.1	RESIDUAL	-1771.3	- 12226	1771.3
94 1.1 -0.8 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -1427.4 -800 1427 95 -0.8 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -4612.5 -847 4612 96 1.1 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -1647.5 -317 1647	92		1.1	-0.8	1.1	1.1	-0.8	1.1	RESIDUAL	-848.1	-6861	848.1
95 -0.8 1.1 1.1 1.1 1.1 -0.8 1.1 RESIDUAL -4612.5 -847 4612 96 1.1 1.1 1.1 1.1 1.1 -0.8 1.1 RESIDUAL 11647.5 -317 11647	93	-0.8	-0.8	1.1	1.1	1.1	-0.8			-4720.0	-2060	4720.0
96 1.1 1.1 1.1 1.1 1.1 -O.B 1.1 RESIDUAL 11647.5 -317 11647		1.1	-0.8	1.1	1.1	1.1	-0.8	1.1	RESIDUAL	-1427.4	- 800	1427.4
96 1.1 1.1 1.1 1.1 1.1 -O.8 1.1 RESIDUAL 11647.5 -317 11647	95	-0.8	1.1	1.1	1.1	1.1	-0.8	1.1	RESIDUAL	-4612.5	-847	4612.5
97 -0.8 -0.8 -0.8 -0.8 1.1 1.1 PESIDUAL +5646.0 -93671 5646	96		1.1	1.1	1.1	1.1	-0.8	1.1	RESIDUAL	11647.5	-317	11647.5
	97	-0.8	-0.8	-0.8	-0.8	-0.8	1.1	1.1	RESIDUAL	-5646.0	-93671	5646.0
98 1.1 -0.8 -0.8 -0.8 -0.8 1.1 1.1 RESIDUAL 1831.8 -34494 1831	98	1.1	-0.8	-0.8	-0.8	-0.8	1.1	1.1	RESIDUAL	1831.8	- 34494	1831.8
	99					-0.8	1.1	1.1	RESIDUAL		-47103	850.7
							1.1				-5749	4202.6
		-0.8									-31704	698.5
												152.3
								1.1				2657.9
												7731.7
105 -0.8 -0.8 -0.8 1.1 -0.8 1.1 1.1 RESIDUAL 3625.3 -20517 3625												3625.3
	106											703.2
												1103.8
108 1.1 1.1 -0.8 1.1 -0.8 1.1 1.1 RESIDUAL -5039.7 -154 5039	108								RESIDUAL			5039.7
109 -0.8 -0.8 1.1 1.1 -0.8 1.1 1.1 RESIDUAL -3117.3 -47 3117												3117.3
110 1.1 -0.8 1.1 1.1 -0.8 1.1 1.1 RESIDUAL -4545.9 0 4545						-0.8						4545.9
			0.0			0.5					Ū	

,

08 S	CHG 1	CHG2	CHG3	CHG4	CHG5	CHG6	CHG7	_TYPE_	REV	ACT	RESID
111	-0.800	1.100	1.100	1.100	-0.800	1.100	1.100	RESIDUAL	-6357.3	0	6357.3
112	1.100	1.100	1.100	1.100	-0.800	1.100	1.100	RESIDUAL	5863.2	0	5863.2
113	-0.800	-0.800	-0.800	-0.800	1.100	1.100	1.100	RESIDUAL	- 196 . 6	- 502 39	196.6
114	1.100	-0.800	-0.800	-0.800	1.100	1.100	1.100	RESIDUAL	4965.1	-5065	4965.1
115	-0.800	1.100	-0.800	-0.800	1.100	1.100	1.100	RESIDUAL	7175.2	-12219	7175.2
116	1.100	1.100	-0.800	-0.800	1.100	1.100	1.100	RESIDUAL	-7132.0	-210	7132.0
117	-0.800	-0.800	1.100	-0.800	1.100	1.100	1.100	RESIDUAL	819.0	- 12833	819.0
118	1.100	-0.800	1.100	-0.800	1.100	1.100	1.100	RESIDUAL	-6189.3	<u> </u>	6189.3
120	1,100	1,100	1.100	-0.800	1.100	1.100	1.100	RESIDUAL	- 1847.9	-2641	1847.9
121	-0.800	-0.800	-0.800	1,100	1.100	1.100	1.100	RESIDUAL	-5351.7 1328.0	- 2058	5351.7 1328.0
122	1.100	-0.800	-0.800	1.100	1.100	1.100	1.100	RESIDUAL	-6690.8	- 115	6690.8
123	-0.800	1.100	-0.800	1.100	1.100	1.100	1.100	RESIDUAL	-8394.7	- 126	8394.7
124	1.100	1.100	-0.800	1.100	1.100	1.100	1.100	RESIDUAL	-4536.6	-3	4536.6
125	-0.800	-0.800	1.100	1.100	1.100	1.100	1.100	RESIDUAL	-4610.3	- 15	4610.3
126	1.100	-0.800	1.100	1.100	1.100	1.100	1.100	RESIDUAL	5615.2	ŏ	5615.2
127	-0.800	1.100	1.100	1.100	1.100	1.100	1.100	RESIDUAL	1540.7	0	1540.7
128	1.100	1,100	1.100	1.100	1.100	1.100	1.100	RESIDUAL	25447.1	õ	25447.1
129	-1.682	0.000	0.000	0.000	0.000	0.000	0.000	RESIDUAL	733.6	- 59960	733.6
130	1.682	0.000	0.000	0.000	0.000	0.000	0.000	RESIDUAL	-143.7	0	143.7
131	0.000	-1.682	0.000	0.000	0.000	0.000	0.000	RESIDUAL	4272.2	-44698	4272.2
132	0.000	1.682	0.000	0.000	0.000	0.000	0.000	RESIDUAL	3542.2	0	3542.2
133	0.000	0.000	-1.682	0.000	0.000	0.000	0.000	RESIDUAL	•3696.1	-77512	3696.1
134	0.000	0.000	1.682	0.000	0.000	0.000	0.000	RESIDUAL	-3729.2	0	3729 2
135	0.000	0.000	0.000	-1.682	0.000	0.000	0.000	RESIDUAL	-3743.9	-78726	3743.9
136	0.000	0.000	0.000	1.682	0.000	0.000	0.000	RESIDUAL	-4447.3	0	4447.3
137 138	0.000	0.000	0.000	0.000	-1.682	0.000	0.000	RESIDUAL	4269.1	-44613	4269.1
139	0.000	0.000	0.000	0.000	0.000	0.000	0.000	RESIDUAL	3604.2	-47671	3604.2
140	0.000	0.000	0.000	0.000	0.000	1.682	0.000	RESIDUAL	3518.8	-4/6/1	3518.8
141	0.000	0.000	0.000	0.000	0.000	0.000	-1.682	RESIDUAL	5157.0	-40368	5157.0
142	0.000	0.000	0.000	0.000	0.000	0.000	1.682	RESIDUAL	4804.5	0	4804.5
143	0.000	0.000	0.000	0.000	0.000	0.000	0.000	RESIDUAL	18994.8	ő	18994.8
144	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	RESIDUAL	15418.6	-233977	15418.6
145	1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	RESIDUAL	-3038.6	- 16268 1	3038.6
146	-1.000	1.000	-1.000	-1.000	-1.000	-1.000	-1.000	RESIDUAL	-571.9	-180828	571.9
147	1.000	1.000	-1.000	-1.000	-1.000	-1.000	-1.000	RESIDUAL	-3958.8	- 109638	3958.8
148	-1.000	-1.000	1.000	-1.000	-1.000	-1.000	-1.000	RESIDUAL	-6239.8	-142025	6239.8
149	1.000	-1.000	1.000	-1.000	-1.000	-1.000	-1.000	RESIDUAL	-3414.6	-71798	3414.6
150	-1.000	1.000	1.000	-1.000	-1.000	-1.000	-1.000	RESIDUAL	-3490.5	-89848	3490.5
151	1.000	1.000	1.000	-1.000	-1.000	-1.000	-1.000	RESIDUAL	5161.4	-28970	5161.4
152	-1.000	-1.000	-1.000	1.000	-1.000	-1.000	-1.000	RESIDUAL	-7459.8	-140366	7459.8
153	1.000	-1.000	-1.000	1.000	-1.000	-1.000	-1.000	RESIDUAL	-250.7	-76702	250.7
154	-1.000	1.000	-1.000	1.000	-1.000	-1.000	-1.000	RESIDUAL	-2585 4	-87398	2585.4
	-1.000	1.000	-1.000	1.000	-1.000	-1.000	-1.000	RESIDUAL	1072.6	-42461	1072.6
156 157	1.000	-1.000	1.000	1.000	-1.000 -1.000	-1.000	-1.000	RESIDUAL	203.0	- 50573	203.0
158	-1.000	1.000	1.000	1.000	-1.000	-1.000 -1.000	-1.000 -1.000	RESIDUAL	3230.3 4291.2	- 13441 - 18 103	3230.3 4291.2
159	1.000	1.000	1.000	1.000	-1.000	-1.000	-1.000	RESIDUAL	-3839.1	- 18 103	3839.1
160	-1.000	-1.000	-1.000	-1.000	1.000	-1.000	-1.000	RESIDUAL	-267.8	- 180929	267.8
161	1.000	-1.000	-1.000	- 1.000	1.000	-1.000	-1.000	RESIDUAL	-5776.6	- 109633	5776.6
162	-1.000	1.000	-1.000	-1.000	1.000	-1.000	-1.000	RESIDUAL	-5817.5	- 127780	5817.5
163	1.000	1.000	-1.000	-1.000	1.000	-1.000	-1.000	RESIDUAL	2739.5	-57595	2739.5
164	-1.000	-1.000	1.000	-1.000	1.000	-1.000	-1.000	RESIDUAL	- 1936.2	-90296	1936.2
165	1.000	-1.000	1.000	-1.000	1.000	-1.000	-1.000	RESIDUAL	4302.3	-29604	4302.3

OBS	CHG 1	CHG2	CHG3	CHG4	CHG5	CHG6	CHG7	TYPE_	REV	ACT	RESID
166	- 1	1	1	- 1	1	- 1	- 1	RESIDUAL	3025.6	-46347	3025.64
167	1	1	1	- 1	1	- 1	- 1	RESIDUAL	-1011.2	- 11107	1011.24
168	- 1	- 1	- 1	1	1	- 1	- 1	RESIDUAL	-4335.1	-87594	4335.12
169	11	- 1	- 1	1	11	- 1	- 1	RESIDUAL	3631.9	- 36 120	3631.90
170	- 1	1	-1	1	1	- 1	- 1	RESIDUAL	4826.2	-40780	4826.24
171	1	1	- 1	1	1	- 1	- 1	RESIDUAL	-2520.3	- 19796	2520.27
172	- 1	- 1	1	1	1	- 1	- 1	RESIDUAL	3846.4	- 18591	3846.41
173	1	- 1	1	1	11	- 1	- 1	RESIDUAL	- 3789.3	-5071	3789.28
174	- 1	1	1	1	1	- 1	- 1	RESIDUAL	-2463.2	-6960	2463.18
175	1	1	1	1	1	- 1	- 1	RESIDUAL	-4340.1	-2857	4340.14
176	- 1	- 1	- 1	- 1	- 1	1	- 1	RESIDUAL	5628.6	- 178699	5628.58
177	1	- 1	- 1	- 1	- 1	1	- 1	RESIDUAL	-5322.5	- 108958	5322.51
178	- 1	1	- 1	- 1	- 1	1	- 1	RESIDUAL	-3662.7	- 126874	3662.74
179	1	1	- 1	- 1	- 1	1	- 1	RESIDUAL	-1260.0	-58955	1259.99
180	- 1	- 1	1	- 1	- 1	1	- 1	RESIDUAL	- 1636.5	-98980	1636.46
181	1	- 1	11	- 1	- 1	1	- 1	RESIDUAL	1142.2	-37859	1142.16
182	- 1	1	1	- 1	- 1	1	- 1	RESIDUAL	494.1	-55444	494.13
183	1	1	1	- 1	- 1	1	- 1	RESIDUAL	3143.1	-9629	3143.05
184	- 1	- 1	- 1	1	- 1	1	- 1	RESIDUAL	-7151.7	-87862	7151.72
185	1	-1	- 1	1	- 1	1	- 1	RESIDUAL	3545.8	- 29770	3545.76
186	- 1	1	- 1	1	- 1	1	- 1	RESIDUAL	1867.9	-38772	1867.92
187	1	1	- 1	1	- 1	1	- 1	RESIDUAL	2293.3	-6128	2293.28
188	- 1	- 1	1	1	- 1	1	- 1	RESIDUAL	3323.0	-21882	3323.04
189	1	- 1	1	1	- 1	1	- 1	RESIDUAL	-637.2	- 798	637.18
190	- 1	1	1	1	- 1	1	- 1	RESIDUAL	1184.4	-3662	1184.41
191	1	1	1	1	- 1	1	- 1	RESIDUAL	-5695.7	-674	5695.73
192	- 1	- 1	- 1	- 1	1	1	- 1	RESIDUAL	-1194.4	- 128244	1194.44
193	1	- 1	- 1	- 1	1	1	- 1	RESIDUAL	- 2030 . 2	-61335	2030.25
194	- 1	1	- 1	- 1	1	1	- 1	RESIDUAL	-2320.6	-78694	2320.61
195	1	1	- 1	- 1	1	1	- 1	RESIDUAL	5559.3	- 18246	5559.27
196	- 1	- 1	1	- 1	1	1	- 1	RESIDUAL	898.4	-60475	898.35
197	1	- 1	1	- 1	1	1	- 1	RESIDUAL	1379.7	- 14600	1379.73
198	- 1	1	1	- 1	1	1	- 1	RESIDUAL	781.9	-29627	781.89
199	1	1	1	- 1	1	1	- 1	RESIDUAL	-3576.5	-3768	3576.53
200	- 1	- 1	- 1	1	1	1	- 1	RESIDUAL	-66.0	-42585	66.03
201	· 1	- 1	- 1	1	1	1	- 1	RESIDUAL	3096.9	-4975	3096.88
202	- 1	1	- 1	1	1	1	- 1	RESIDUAL	4579.0	-8310	4578.98
203	1	1	- 1	1	1	1	- 1	RESIDUAL	-7542.6	- 1 16 1	7542.65
204	- 1	- 1	1	1	1	1	- 1	RESIDUAL	368.8	-7954	368.83
205	1	- 1	1	1	1	1	- 1	RESIDUAL	-4290.8	-518	4290.79
206	-1	1	1	1	1	1	- 1	RESIDUAL	-3522.1	- 1927	3522.13
207	1	1	1	1	1	1	- 1	RESIDUAL	1002.4	-482	1002.44
208	- 1	- 1	- 1	- 1	- 1	- 1	1	RESIDUAL	2392.1	- 186459	2392.13
209	1	- 1	- 1	- 1	- 1	- 1	1	RESIDUAL	-3175.6	-116608	3175.56
210	- 1	1	- 1	- 1	- 1	- 1	1	RESIDUAL	-3769.1	-133345	3769.09
211	1	1	- 1	- 1	- 1	- 1	1	RESIDUAL	- 152 . 6	-69486	152.59
212	- 1	- 1	1	- 1	- 1	- 1	1	RESIDUAL	-6192.4	-94972	6192.36
213	1	- 1	1	- 1	- 1	· - 1	1	RESIDUAL	4856.2	-30825	4886.16
214	- 1	1	1	- 1	- 1	- 1	1	RESIDUAL	3579.2	-45637	3579.19
215	1	1	1	- 1	- 1	- 1	1	RESIDUAL	-626.8	-11950	626.83
216	- 1	- 1	- 1	1	- 1	- 1	1	RESIDUAL	- 3023.2	-96135	3023.17
217	1	- 1	- 1	1	- 1	- 1	1	RESIDUAL	292.1	-50698	292.14
218	- 1	1	-1	1	- 1	- 1	1	RESIDUAL	1065.1	-53818	1065.11
219	1	1	-1	1	- 1	- 1	1	RESIDUAL	-459.4	-28397	459.38
220	- 1	- 1	i	i	- 1	-1	i	RESIDUAL	6073.2	- 18446	6073.25

,

·

RSREG - COMPLETE QUADRATIC MODEL 7 INDEPENDENT VARIABLES

085	CHG 1	CHG2	CHG3	CHG4	CHG5	CHG6	CHG7	_TYPE_	REV	ACT	RESID
221	1.000	-1.000	1	1	• 1	•1	1	RESIDUAL	-2849.7	-7598	2849.7
222	-1.000	1.000	1	1	- 1	- 1	1	RESIDUAL	-2384.3	-8386	2384.3
223	1.000	1.000	1	1	- 1	- 1	1	RESIDUAL	-2591.6	- 3999	2591.6
224	-1.000	-1.000	-1	- 1	1	- 1	1	RESIDUAL	-5096.6	- 133603	5096.6
225	1.000	-1.000	- 1	- 1	1	-1	1	RESIDUAL	740.4	-65295	740.4
226	-1.000	1.000	- 1	- 1	1	- 1	1	RESIDUAL	- 906 . 0	-80578	906.0
227	1.000	1.000	- 1	- 1	1	- 1	1	RESIDUAL	2011.1	- 30366	2011.1
228	-1.000	-1.000	1	- 1	1	-1	1	RESIDUAL	2853.0	-46890	2853.0
229	1.000	-1.000	1	- 1	1	-1	1	RESIDUAL	1384.6	-8239	1384.6
230	-1.000	1.000	1	- 1	1	- 1	1	RESIDUAL	3237.5	- 17383	3237.5
231	1.000	1.000	1	- 1	1	- 1	1	RESIDUAL	-8503.1	-4180	8503.1
232	-1.000	-1.000	-1	1	1	- 1	1	RESIDUAL	2905.9	-48948	2905.9
233	1.000	•1.000	-1	1	1	-1	1	RESIDUAL	-786.2	-23467	786.2
234	-1.000	1.000	- 1	1	1	- 1	1	RESIDUAL	37.0	-24029	37.0
235	1.000	1.000	- 1	1	1	- 1	1 .	RESIDUAL	-3784.7	- 13853	3784.7
236	-1.000	-1.000	1	1	1	-1	1	RESIDUAL	- 1536 . 6	-6107	1536 6
237	1.000	-1.000	1	1	1	-1	1	RESIDUAL	-4982.4	-2731	4982 4
238	-1.000	1.000	1 1	1	1	- 1	1	RESIDUAL	-6467.1	- 296 1	6467.1
239	1.000	1.000	1	1	1	- 1	1	RESIDUAL	3440.9	- 1407	3440.9
240	-1.000	-1.000	-1	- 1	- 1	1	1	RESIDUAL	-2571.7	- 132 150	2571.7
241	1.000	-1.000	- 1	-1	-1	1	1	RESIDUAL	- 1737.8	-64957	1737.8
242	-1.000	1.000	- 1	- 1	- 1	1	1	RESIDUAL	-2888.8	-81214	2888.8
243	1.000	1.000	-1	- 1	- 1	1	1	RESIDUAL	3703.8	-23439	3703.8
244	-1.000	-1.000	1	-1	- 1	1	1	RESIDUAL	-791.2	-56922	791.2
245	1.000	-1.000	1	- 1	- 1	1	1	RESIDUAL	5512.2	-6611	5512.2
246	-1.000	1.000	1	- 1	- 1	1	1	RESIDUAL	4493.0	-20098	4493.0
247	1.000	1.000	1	- 1	- 1	1	1	RESIDUAL	-4517.1	-276	4517.1
248	-1.000	-1.000	-1	1	- 1	1	1	RESIDUAL	-79.1	-46789	79.1
249	1.000	-1.000	- 1	1	-1	1	1	RESIDUAL	2914.7	- 10734	2914.7
250	-1.000	1.000	-1	1	- 1	1	1	RESIDUAL	4366.4	- 12 137	4366.4
251	1.000	1.000	- 1	1	- 1	1	1	RESIDUAL	-2915.2	- 1534	2915.2
252	-1.000	-1.000	11	11	-1	1	1	RESIDUAL	3632.3	- 1110	3632.3
253	1.000	-1.000	1	1	-1	1	1	RESIDUAL	-5967.9	0	5967.9
254	-1.000	1.000	1	1	- 1	1	1	RESIDUAL	-5751.8	0	5751.8
255	1.000	1.000	1	1	- 1	1	1	RESIDUAL	-1286.2	0	1286.2
256	-1.000	-1.000	- 1	•1	11	1	1	RESIDUAL	-2861.2	-83550	2861.2
257	1.000	-1.000	-1	-1	1	1	1	RESIDUAL	4226.0	-23052	4226.0
258	-1.000	1.000	-1	-1	1	1	1	RESIDUAL	3340.2	- 36537	3340.2
259	1.000	1.000	-1	-1	1	1	1	RESIDUAL	-730.2	- 2373	730.2
260	-1.000	-1.000	1	-1	1	1	1	RESIDUAL	2011.2	-26540	2011.2
261	1.000	-1.000	1	-1	1	1	1	RESIDUAL	-2690.0	- 18 1	2690.0
262	-1.000	1.000	1	-1	1	1	1	RESIDUAL	-180.1	-7631	180.1
263	1.000	1.000	1	-1	1	1	1	RESIDUAL	-8432.3	0	8432.3
264	-1.000	-1.000	-1	1	1	1	1	RESIDUAL	5303.1	- 1 1604	5303.1
265	1.000	-1.000	-1	. 1	1	1	1	RESIDUAL	-4392.0	- 1186	4392.0
266	-1.000	1.000	•1	1		1	!	RESIDUAL	-4141.0	- 1283	4141.0
267	1.000	1.000	-1	1		1	1	RESIDUAL	-8009.3	-215	8009.3
268	-1.000	-1.000	1	1	1	1	1	RESIDUAL	- 3856.5	- 106	3856.5
269	1.000	-1.000	1	!		!	!	RESIDUAL	-1512.8	0	1512.8
270	-1.000	1.000	!	!	!	1	!	RESIDUAL	- 3804 . 3	0	3804.3
271	1.000	1.000	1	1	1	1	1	RESIDUAL	13609.8	0	13609.8
272	-3.364	0.000	0	<u> </u>	0	<u> </u>	<u> </u>	RESIDUAL	5032.3	- 1 199 19	5032.3
273	3.364	0.000	0	0	0		0	RESIDUAL	3277.8	-89397	4072.7
274	0.000	-3.364	0	0	0	0	0	RESIDUAL	4072.7		4072.7
275	0.000	3.364	0	0	U	0	U	RESIDUAL	2612.7	0	4014.1

.

RSREG - COMPLETE QUADRATIC MODEL 7 INDEPENDENT VARIABLES

Residuals	for	Quadratic	7	Variable	Model
		(continue	ed))	

.

OBS	CHG 1	CHG2	CHG3	CHG4	CHG5	CHG6	CHG7	_TYPE_	REV	ACT	RESID
276	0	0	-3.364	0.000	0.000	0.000	0.000	RESIDUAL	5709.9	- 155023	5709.9
277	ō	0	3.364	0.000	0.000	0.000	0.000	RESIDUAL	5643.7	0	5643.7
278	0	0	0.000	-3.364	0.000	0.000	0.000	RESIDUAL	6063.1	- 157453	6063.1
279	0	0	0.000	3.364	0.000	0.000	0.000	RESIDUAL	4656.5	0	4656.5
280	0	0	0.000	0.000	-3.364	0.000	0.000	RESIDUAL	4040.3	-89226	4040.3
281	ō	ō	0.000	0.000	3.364	0.000	0.000	RESIDUAL	2710.6	0	2710.6
282	0	0	0.000	0.000	0.000	-3.364	0.000	RESIDUAL	3806.8	-95343	3806.8
283	ō	0	0.000	0.000	0.000	3.364	0.000	RESIDUAL	4443.9	0	4443.9
284	0	0	0.000	0.000	0.000	0.000	-3.364	RESIDUAL	3659.3	-80736	3659.3
285	ō	õ	0.000	0.000	0.000	0.000	3.364	RESIDUAL	2954.2	0	2954.2
286	õ	õ	0.000	0.000	0.000	0.000	0.000	RESIDUAL	18994.8	0	18994.8
200	Ŭ	•	0.000	0.000	0.000	0.000	0.000			•	

.

VITA

Donald Wayne Fry

Candidate for the Degree of

Master of Science

Thesis: THE USE OF MULTIPLE REGRESSION ANALYSIS AND RESPONSE SURFACE TECHNIQUES IN THE DESIGN OF OPTIONAL NON-DEMAND ELECTRIC UTILITY RATES

Major Field: General Engineering

Biographical:

- Personal Data: Born in Nowata, Oklahoma, April 4, 1955, the son of Mr. and Mrs. B.G. Fry.
- Education: Graduated from Memorial High School, Tulsa, Oklahoma, in May, 1973; received Bachelor of Science degree in Mathematics from University of Tulsa in 1979; received Bachelor of Science degree in Systems Engineering from University of Tulsa in 1979; completed requirements for the Master of Science degree at Oklahoma State University in July, 1987.
- Professional Experience: Rate Analyst, Public Service Company of Oklahoma, 1980-1982; Pricing Systems Specialist, Rate Engineer, Load Research and Information Systems Specialist, Public Service Company of Oklahoma, 1984-1987.