SURFACE TECHNIQUES IN THE DESIGN OF OPTIONAL NON-DEMAND ELECTRIC UTILITY RATES

By
DONALD WAYNE FRY
1
Bachelor of Science
University of Tulsa

Tulsa, Oklahoma
1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
July, 1987

THE USE OF MULTIPLE REGRESSION ANALYSIS AND RESPONSE SURFACE TECHNIQUES IN THE DESIGN OF OPTIONAL

NON-DEMAND ELECTRIC UTILITY RATES

Thesis Approved:

PREFACE

This study develops a systematic procedure whereby multiple regression analysis and response surface techniques can be used in the design of electric utility rates to determine revenue recovery involving migration for large non-demand rate classes. A Plackett-Burman design and a Central Composite design are used in the development of the three models included in this study. Correlation coefficients and residuals are calculated in the evaluation of these models.

The author wishes to express appreciation for the assistance provided by the committee chairman, Dr. Bennett Basore, and members, Dr. Daniel Lingelbach and Dr. Wayne Turner. In addition, special thanks is given to the Public Service Company of Oklahoma. Without their cooperation, this study would not have been possible.

For her continual support and encouragement, I dedicate this study to my wife, Pamela.

TABLE OF CONTENTS
Chapter Page
I. THE RESEARCH PROBLEM 1
The Ratemaking Process 1
The Rate Design Process 3
The Problem of Predicting Migration For Large Non-Demand Rate Classes 4
II. METHOD AND PROCEDURE 10
Sample Selection and Validation 11
Definition of Independent Variables 13
Experiment Design 15
Data Collection 21
Development of the Models 22
III. ANALYSIS OF THE MODELS 23
Linear: Two Rates, Two Seasons, Three Blocks Per Season 23
Linear: Three Rates, Two Seasons, Three Blocks Per Season 26
Quadratic: Two Rates, Two Seasons, Three Blocks
Per Season 30
IV. CONCLUSIONS AND RECOMMENDATIONS 38
Conclusions 38
Recoumendations 40
SELECTED BIBLIOGRAPHY 41
APPENDIXES 43
APPENDIX A - DESIGN ARRAY PROGRAM LISTINGS 44
APPENDIX B - DESIGN ARRAYS AND DEPENDENT VARIABLE VALUES 47
APPENDIX C - DATA COLLECTION PROGRAM LISTING 58
APPENDIX D - RESIDUALS 63

LIST OF TABLES

Table Page
I. R^{2} for Linear 7 Variable Model With 8 Design Points. 24
II. R^{2} for Linear 7 Variable Model With 8 Design Points. 25
III. R^{2} for Linear 14 Variable Model With 16 Design Points. 27
IV. R^{2} for Linear 14 Variable Model With 32 Design Points. 29
V. R^{2} for Quadratic 7 Variable Model With 143 Design Points.. 31
VI. Residuals for Quadratic 7 Variable Model With 143 Design Points. 34
VII. R^{2} for Quadratic 7 Variable With 286 Design Points 34
VIII. Residuals for Quadratic 7 Variable Model With 286 Design Points 37

CHAPTER I

THE RESEARCH PROBLEM

The Ratemaking Process

The fundamental steps in the ratemaking process are load research, a cost of service study, and rate design. In the load research process, data are collected which indicate the electrical characteristics of sampled customers and groups of customers. In the cost of service study, data are collected from the load research process and from company books and records. Costs are then classified as demand, energy, or customer related, and allocated to the various rate classes. The cost of service study provides some essential information needed in the rate design process, primarily, the revenue requirement for each rate class and the overall revenue requirement for the utility as well as the costs associated with the different components of service for each of the rate classes. This work will address a specific problem which is encountered in the design of electric utility rates. In the design of electric utility rates, the analyst typically formulates a proposed rate based on load research and cost of service data. The rate is then tested using computer programs which run against a large data base of customer data to determine other factors instrumental in the evaluation of a rate, e.g., revenue recovery, revenue stability, customer impact, weather sensitivity, and accurate cost recovery. The objectives most often
suggested for rates were stated by Bonbright (1961) as :

1. The related, practical attributes of simplicity, understandability, public acceptability, and feasibility of application.
2. Freedom from controversies as to proper interpretation.
3. Effectiveness in yielding total revenue requirements under the fair-return standard.
4. Revenue stability from year to year.
5. Stability of the rates themselves, with a minimum of unexpected changes seriously adverse to existing customers.
6. Fairness of the specific rates in the apportionment of total costs of service among the different consumers.
7. Avoidance of undue discrimination in rate relationships.
8. Efficiency of the rate classes and rate blocks in discouraging wasteful use of service while promoting all justified types and amounts of use:
a. In the control of the total amounts of service supplied by the company, and
b. In the control of the relative uses of alternative types of service (p. 291).

Many proposed rates must be analyzed to determine the most
appropriate rate. An example of a commonly used rate type,
frequently referred to as a blocked rate is as follows:
Customer Charge $=\$ 5.00$

June-September
$0-500 \mathrm{kWh} @ 5.25 \mathrm{c} / \mathrm{kWh}$
501 - 100 kWh @ $6.40 \mathrm{c} / \mathrm{kWh}$
over $1000 \mathrm{kWh} @ 7.35 \mathrm{c} / \mathrm{kWh}$

July-October
$0-500 \mathrm{kWh} @ 5.00 \mathrm{c} / \mathrm{kWh}$
501-1000 kWh @ $4.45 \mathrm{c} / \mathrm{kWh}$
over $1000 \mathrm{kWh} @ 4.10 \mathrm{c} / \mathrm{kWh}$

Data, exhibits, and prefiled testimony concerning load research, cost of service, and rate design are then compiled and filed with the appropriate regulatory agency, e.g., the state corporation commission. Hearings are then held and the order regarding the filing is rendered. Frequently, rates must be redesigned pursuant to the findings of the proceedings. New rates become effective when ordered by the presiding regulatory body.

The Rate Design Process

In the design of rates a predominant limitation lies in the type of metering equipment which is installed for different types of customers, i.e., the metered data available for those customers. This study will be concerned with the design of rates for non-demand customers for which a single monthly kWh usage is available. This is typically the case for small commercial and residential customers due to the expense associated with more sophisticated metering. Given the load research and cost of service data, the objective of the rate design process is to design rates which most closely adhere to the previously stated criteria, i.e., Bonbright's principles. Prices are developed from cost of service and load research data for each rate class. This is typically done by the use of one of two computer programs. The first program uses a data base which includes twelve months of metered data for each individual customer in the rate class or a sample of customers in the rate class. For the purposes of this study, this method will be referred to as a customer-by-customer method. The program uses as input the present rate and the proposed rate and simulates the billing that would occur under each rate for
each customer, determines the revenue difference between present and proposed rates for each customer, and determines the total revenue which would be collected under the proposed rate. The second program uses a data base which is essentially a grouped frequency distribution of kWh usages for customers in the rate class. This frequency distribution data base is built from a customer-by-customer data base, but only includes such information as the number of customers which used a specified number of $k W h$ or less and the total number of kWh used by these customers. For the purposes of this study, this will be referred to as a bill frequency method. It is this reduced data file that the program uses. By using this method, any customerspecified information is lost, however, the total revenue difference between the present and proposed rates, and the total revenue which would be recovered under the new rate can still be determined. The bill frequency method is often used when designing rates for non-demand rate classes with large numbers of customers, for example, in the design of residential rates this may be hundreds of thousands of customers. Since many computer runs are required in the rate design process, computer cost savings is the primary benefit of using the bill frequency method. The cost of using the customer-by-customer method is a serious drawback to its use in the case of such a large rate class.

The Problem of Predicting Migration
For Large Non-Demand Rate Classes

This study is concerned with the determination of revenue recovered under proposed rates. In some cases, the analyst must
determine the change in revenue resulting from a group of customers which are currently being billed under the existing rate x_{e} being billed under proposed rate x_{p} (or the revenue recovered by each of the rates). This is the typical case where there is only one proposed rate and all customers will be billed according to that rate. In this case, the revenue that would be recovered can be determined by use of the bill frequency method. In many cases, however, each of the customers in the group may be offered optional proposed rates, i.e., each customer may have the option of being billed under proposed rate x_{p} or proposed rate y_{p}. For example:

Rate x_{e}
Customer Charge = \$5.00
$0-500 \mathrm{kWh} @ 5.50 \mathrm{c} / \mathrm{kWh}$
501 - $1000 \mathrm{kWh} @ 5.00 \mathrm{c} / \mathrm{kWh}$
over $1000 \mathrm{kWh} @ 4.50 \mathrm{c} / \mathrm{kWh}$
Rate x_{p}
Customer Charge $=\$ 5.00$
$0-500 \mathrm{kWh} @ 6.00 \mathrm{c} / \mathrm{kWh}$
501 - $1000 \mathrm{kWh} @ 5.00 \mathrm{c} / \mathrm{kWh}$
over $1000 \mathrm{kWh} @ 4.00 \mathrm{c} / \mathrm{kWh}$
$\underline{\text { Rate } y_{p}}$
Customer Charge $=\$ 4.00$
$0-400 \mathrm{kWh}$ @ $7.00 \mathrm{c} / \mathrm{kWh}$
401 - $800 \mathrm{kWh} @ 5.00 \mathrm{c} / \mathrm{kWh}$
over $800 \mathrm{kWh} @ 4.00 \mathrm{c} / \mathrm{kWh}$
In this case, the computer model used in the determination of revenue recovery must analyze each customer's usage pattern and
determine the rate which would result in the lowest annual billing for the customer. If the revenue recovered under rate $x_{p}, R\left(x_{p}\right)$, is lower that the revenue recovered under rate $y_{p}, R\left(y_{p}\right)$, then $R\left(x_{p}\right)$ is the revenue that the model will use in calculating the revenue recovery. Likewise, if $R\left(y_{p}\right)$ is lower than $R\left(x_{p}\right)$, then $R\left(y_{p}\right)$ will be used in the calculation of revenue recovery. In this case, the total revenue recovery calculated would be that which would occur if each customer actually chose to be billed on the rate which the model determined would result in the lowest annual billing. At this point, other assumptions may be made in the determination of revenue recovery, e.g., that only those customers who would save a specified amount or a specified percent would actually change rates. Whether rate x_{p} or rate y_{p} results in the lowest annual billing will be dependent upon each particular customer's usage pattern. Consider rate x_{p} to be a revision of rate x_{e} and consider rate y_{p} to be an optional alternative rate. For the purposes of this study, the selection of an optional alternative proposed rate (y_{p}) by a customer or group of customers will be called migration. In the case whereby a group of customers have a choice of multiple proposed rates, the bill frequency method cannot determine the revenue which would be recovered. The bill frequency method could only determine the revenue which would be recovered if all customers in the group were billed on proposed rate x_{p} and then the revenue which would be recovered if all customers in the group were billed on proposed rate y_{p}. This is due to the fact that the individual customer data needed to determine which rate is lower for a particular customer is not available in the frequency distribution used by the bill frequency method. To determine
the revenue recovery for a group of customers with multiple proposed rates, the analyst must use the customer-by-customer method. As mentioned previously, the customer-by-customer method of determining revenue can have some serious shortcomings. One primary objective of any rate is that it recover the revenue requirement for that rate class. It is apparent from the discussion above that in the development process of proposed rates, a change in prices does not directly translate into a change in revenue recovered when dealing with optional rates due to the effects of migration. The revenue recovered from a particular: proposed rate is dependent upon the other proposed rates. Therefore, the rate design process becomes an iterative process of changing prices in consideration of other prices. The analyst then must develop proposed rates which recover the revenue requirement without the knowledge of the effect of a price change on revenue recovery. This requires many computer runs, some of which will not fulfill a primary requirement of the rate design, i.e., recovering the revenue requirement. The iterative process of making many computer runs, some of which will yield unusable results is time consuming and impedes the regulatory process (for example, in the redesign of rates pursuant to the findings of the presiding regulatory agency, etc.). As mentioned previously, the shortcomings of this process are especially apparent in the design of rates for large classes of nondemand customers. In this case, the customer-by-customer method requires calculation of twelve months of bills of each of several rates for what may be hundreds of thousands of customers. One such computer run may take an excessive amount of processing time in a large mainframe computer. The computer costs associated with one
such computer run may be thousands of dollars. Given the iterative nature of the process, computer costs can be extremely prohibitive. As stated in the direct testimony of James B. Long (1985), Manager of Rates for Public Service Company of Oklahoma, before the Oklahoma Corporation Commission in recent rate case hearings:

The RS rate class is a very large class comprised of over 300,000 customers. The use of a customer-by customer data base is the best means of assessing the revenue impact of customer migration since the customer can be offered several alternative pricing schedules from which to select (p. 24).

Increasing demands in the area of rate design to meet the needs of society, e.g., economic development rates, distressed industry rates, energy efficiency rates, more precise defintion of customer groups, and end use rates, further compound the problem. The expense associated with this process inhibits experimentation. The analyst may be limited to performing only essential analysis. This expense may prohibit the analyst from considering alternative rates. The objective of this study is to develop and evaluate a mathematical model for predicting the revenue recovered from multiple proposed rates for large non-demand customer groups. A model of this type would reduce the time and the expense associated with the rate design process by allowing the analyst to perform the iterative process with the model and to use the customer-by-customer computer run for verification in the final stages of the rate design. The number of customer-by-customer computer runs would be reduced, whereby time required and expense would be reduced. As a result, the model would allow further research of alternative rates and
better meet the increasing demands in the field of rate design.
Such a model would expedite the rate design and the regulatory process, reduce associated expenses, and improve the quality of rate design.

METHOD AND PROCEDURE

The objective of this study is to develop a systematic procedure whereby multiple regression techniques can be used in the design of electric utility rates to determine revenue recovery involving migration for large non-demand rate classes. This objective was met in the following manner.

This study consists of the development and evaluation of three models. The first model consists of the development of a first degree prediction equation with $k=7$ independent variables. It allows the prediction of revenue deviation due to migration for cases involving two proposed rates with a maximum of three rate blocks for each of two seasons for each rate. A response surface technique known as a Plackett-Burman design was used to reduce the number of required design points, i.e., computer runs to $n=k+1=8$.

The second model consists of the development of a first degree prediction equation with $k=15$ independent variables. This model allows for the prediction of revenue deviation due to migration for cases involving three proposed rates with a maximum of three rate blocks for each of two seasons for each rate. The Plackett-Burman design was again used to reduce the number of required design points to $\mathrm{n}=\mathrm{k}+1=16$.

The third model consists of the development of a second degree prediction equation with $k=7$ independent variables. This, like
the first model allows for the prediction of revenue deviation due to migration for cases involving two proposed rates with a maximum of three rate blocks for each of two seasons for each rate. A response surface technique known as a Central Composite design was used to reduce the required number of design points to $n=2^{k}+2 k+1=$ 143.

Sample Selection and Validation

A sample of 2,000 customers was selected from a database of 59,797 Public Service Company of Oklahoma residential customers. A systematic sample, with a random start, in which every twenty-ninth customer is chosen from the list of customer accounts, was employed. The data collected for this sample consisted of monthly kWh usages for each customer for a one-year period ending December 1984.

A t-test was performed to test the hypothesis that the sample mean monthly usage equals the population mean at a . 05 level of significance for sample validation purposes. An F-test was also performed to test the hypothesis that the sample variance in mean monthly usage equals the population variance in mean monthly usage at a .05 level of significance for sample validation purposes.

To test the hypothesis $\mu=\bar{x}$
where $\mu=$ population mean $=875.18$
$\bar{x}=$ sample mean $=875.46$
$\sigma=$ population standard deviation $=616.66$
$\mathrm{n}=$ sample size $=2,000$
the normal distribution test can be applied (Walpole \& Myers, 1978).

$$
\begin{gathered}
z=-\frac{\bar{x}-\mu}{\sigma / n} \\
z=\frac{875.46-875.18}{616.66 / 2000}=0.203
\end{gathered}
$$

Critical region: $Z<-z_{\alpha / 2}$ and $Z>z_{\alpha / 2}$

$$
\text { for } \alpha=.05, z_{\alpha / 2}=1.96
$$

Since $-1.96<.0203<1.96$, the hypothesis that the population mean equals the sample mean is accepted.

To test the hypothesis $s_{1}=s_{2}$
where $s_{1}=$ population standard deviation $=616.66$
$s_{2}=$ sample standard deviation $=605.55$
$\nu_{1}=$ degrees of freedom $=59,797-1=59,796$
$v_{2}=$ degrees of freedom $=2,000-1=1,999$
the F-test can be applied (Walpole \& Myers, 1978).

$$
F=\frac{s_{1}^{2}}{s_{1}^{2}}=\frac{616.66^{2}}{605.55^{2}}=1.037
$$

Critical region: $F<\mathrm{f}_{1}-\alpha / 2\left(\nu_{1}, \nu_{2}\right)$ and

$$
\begin{gathered}
F>\mathrm{f}_{\alpha / 2}\left(\nu_{1}, \nu_{2}\right) \\
\text { for } \alpha=.05, \mathrm{f}_{\alpha / 2}(120,120)=1.53 \\
\mathrm{f}_{\alpha / 2}(\infty, \infty)=1.00
\end{gathered}
$$

This was accepted as sufficient evidence to accept the hypothesis, $s_{1}=s_{2}$.

After the sample had been selected and validated, the data was downloaded from the mainframe to a microcomputer with mass storage capabilities using one of the many commercially available mainframe/PC
interface software packages. In recognition of the expense of making computer runs on the mainframe, this procedure allowed the data collection for the study to be conducted at negligible cost.

Defintion of Independent Variables

In the determination of revenue recovery for a blocked kWh rate, the variables are customer charge, the $k W h$ prices, and the breakpoints for the rate. For the purposes of this study, breakpoints are considered to be known beforehand and are not considered variables. If in the rate design process the breakpoints were changed, the data collection process described later in this chapter would need to be repeated using the new breakpoints. For example, in the case of two optional seasonal rates as shown below, there are fourteen variables. Customer Charge $=\$ 5.00$
$\frac{\text { On-Peak Rate } x_{p}}{0-400 \mathrm{kWh} @ 5.00 \mathrm{c} / \mathrm{kWh}}$

Customer Charge $=\$ 6.00$

401 - $800 \mathrm{kWh} @ 6.00 \mathrm{c} / \mathrm{kWh}$
over $800 \mathrm{kWh} @ 7.00 \mathrm{c} / \mathrm{kWh}$
$\underline{\text { Off-Peak Rate } X_{p}}$
$0-400 \mathrm{kWh} @ 5.00 \mathrm{c} / \mathrm{kWh}$
401 - 800 kWh @ $4.50 \mathrm{c} / \mathrm{kWh}$
over $800 \mathrm{kWh} @ 4.00 \mathrm{c} / \mathrm{kWh}$
$\frac{\text { On-Peak Rate } y_{p}}{0-400 \mathrm{kWh} @ 4.50 \mathrm{c} / \mathrm{kWh}}$
401 - 800 kWh @ $6.00 \mathrm{c} / \mathrm{kWh}$
over $800 \mathrm{kWh} @ 6.50 \mathrm{c} / \mathrm{kWh}$
$\underline{\text { Off-Peak Rate } y_{p}}$
$0-400 \mathrm{kWh} @ 5.50 \mathrm{c} / \mathrm{kWh}$
401 - $800 \mathrm{kWh} @ 5.00 \mathrm{c} / \mathrm{kWh}$
over 800 kWh @ $4.00 \mathrm{c} / \mathrm{kWh}$ The fourteen variables are as follows:
variable $1=$ on-peak rate x_{p} first $k W h$ price ($5.00 \mathrm{c} / \mathrm{kWh}$) variable $2=$ on-peak rate x_{p} second $k W h$ price ($6.00 \mathrm{c} / \mathrm{kWh}$)
variable $3=$ on-peak rate x_{p} third $k W h$ price ($7.00 \mathrm{c} / \mathrm{kWh}$)
variable $4=$ off-peak rate x_{p} first $k W h$ price (5.00 $\mathrm{c} / \mathrm{kWh}$)

```
variable \(5=\) off-peak rate \(x_{p}\) second \(k W h\) price ( \(4.50 \mathrm{c} / \mathrm{kWh}\) )
variable \(6=\) off-peak rate \(x_{p}\) third \(k W h\) price ( \(4.00 \mathrm{c} / \mathrm{kWh}\) )
variable \(7=\) rate \(x_{p}\) customer charge (\$5.00)
variable \(8=\) on-peak rate \(y_{p}\) first kWh price ( \(4.50 \mathrm{c} / \mathrm{kWh}\) )
variable \(9=\) on-peak rate \(y_{p}\) second \(k W h\) price ( \(6.00 \mathrm{c} / \mathrm{kWh}\) )
variable \(10=\) on-peak rate \(y_{p}\) third \(k W h\) price ( \(6.50 \mathrm{c} / \mathrm{kWh}\) )
variable \(11=\) off-peak rate \(y_{p}\) first \(k W h\) price ( \(5.50 \mathrm{c} / \mathrm{kWh}\) )
variable \(12=\) off-peak rate \(y_{p}\) second \(k W h\) price (5.00 c/kWh)
variable 13 = off-peak rate \(y_{p}\) third \(k W h\) price ( \(4.00 \mathrm{c} / \mathrm{kWh}\) )
variable \(14=\) rate \(y_{p}\) customer charge (\$6.00)
Notice, however, that the revenue which would be recovered if all
``` customers were billed on rate \(x_{p}\) can be determined from a bill frequency. Any deviation from this revenue due to the existence of an additional optional rate, i.e., rate \(y_{p}\) is a result of differences between the values of the independent variables defining rate \(x_{p}\) and the values of the independent variables defining rate \(y_{p}\). Therefore, by initially assuming the revenue recovery to be that which would occur if all customers were billed on rate \(x_{p}\), the independent variables can be defined as the difference in an independent variable in rate \(x_{p}\) and the corresponding variable in rate \(y_{p}\). The dependent variable in this case would represent the deviation in revenue due to the difference in the two rates, i.e., due to migration.

For this example, the variables would be redefined as follows: variable \(1=\) difference \(i n\) on-peak first \(k W h\) price for rate \(x_{p}\) and rate \(y_{p}(5.00-4.50=0.50 \mathrm{c} / \mathrm{kWh})\) variable 2 = difference in on-peak second \(k W h\) price for rate \(x_{p}\)
and rate \(y_{p}(6.00-6.00=0.00 \mathrm{c} / \mathrm{kWh})\)
variable \(3=\) difference in on-peak third \(k W h\) price for rate \(x_{p}\)
and rate \(y_{p}(7.00-6.50=0.50 \mathrm{c} / \mathrm{kWh})\)
variable 4 = difference in off-peak first \(k W h\) price for rate \(x_{p}\)
and rate \(y_{p}(4.50-5.00=-0.50 \mathrm{c} / \mathrm{kWh})\)
variable \(5=\) difference in off-peak second \(k W h\) price for rate \(x_{p}\) and \(y_{p}(4.50-5.00=-0.50 \mathrm{c} / \mathrm{kWh})\)
variable 6 = difference in off-peak third \(k W h\) price for rate \(x_{p}\)
and \(y_{p}(4.00-4.00=0.00 \mathrm{c} / \mathrm{kWh})\)
variable \(7=\) difference in rate \(x_{p}\) customer charge and \(y_{p}\) customer charge (\(\$ 5.00-\$ 6.00=-\$ 1.00\))

\section*{Experiment Design}

For each model with \(k\) independent variables, \(n\) distinct design points will be selected. The coordinates of the design may be written as follows:
design point

Where in the \(u^{\text {th }}\) row, the values of \(x_{u 1}, x_{u 2}, x_{u 3}\), . . ., \(x_{u k}\) represent the coordinate settings of \(x_{1}, x_{2}, x_{3}, ., ., x_{k}\) at the
\(u^{\text {th }}\) design point. The above array will be referred to as the design array (Corne11, 1984).

In a \(2^{k}\) factorial experiment, where \(k\) equals the number of variables, each variable is measured at only two values, \(\mathrm{v}_{\text {high }}\) and \(\mathrm{v}_{\text {low }}\). To aid in the estimation of the coefficients of the models, if the same number of observations is collected at each level then the variables may be represented as coded variables in the form:
\[
v_{c}=\frac{v-\left(\left(v_{h}+v_{1}\right) / 2\right)}{\left(\left(v_{h}-v_{1}\right) / 2\right)}
\]

Using this coding scheme, \(\mathrm{v}_{\mathrm{h}}\) will always be recoded to a value of +1 and \(\mathrm{v}_{1}\) will always be recoded to a value of -1 (Cornell, 1984). For example, if there is a \(1.5 \mathrm{c} / \mathrm{kWh}\) price difference for one level of measurement of variable 1 , and \(a-.05 \mathrm{c} / \mathrm{kWh}\) price for the other level of measurement of variable 1 then the coded values for variable 1 would be as follows:

Price
Difference
\(1.5\left(\mathrm{v}_{\mathrm{h}}\right)\)
\(-0.5\left(v_{1}\right)\)

Coded
Value
\[
\begin{aligned}
& v_{c}=\frac{1.5-((1.5+0.5) / 2)}{(1.5-.05) / 2}=+1 \\
& v_{c}=\frac{-0.5-((1.5+(-.05)) / 2)}{(1.5-(-.05)) / 2}=-1
\end{aligned}
\]

For the purposes of this study, however, the price differences will be defined such that they are to equal the coded value, i.e., the levels of measurement for variables \(1-6\) will be conducted at \(+1 \mathrm{c} / \mathrm{kWh}\) and \(-1 ¢ / \mathrm{kWh}\) and variable 7 will be conducted at \(+\$ 1\) and \(-\$ 1\). By considering all possible combinations of the coded values for the 7 variables, an experiment design consisting of \(2^{k}=2^{7}=128\) design points is obtained. Likewise, when considering three levels of
measurement, as is required in the non-linear case, considering all possible combinations yields a \(3^{k}\) factorial design consisting of \(3^{k}\) design points. One problem associated with factorial designs is that as \(k\), the number of variables, increases, the number of required design points becomes large rapidly.

At this point, a few comments regarding the nature of this model are in order. The first point is that this model is free of the multicollinearly problems, i.e., none of the predictor variables have any correlations with any of the other predictor variables. Therefore, this will not be a concern in this model. A second point is that each of the independent variables is measurable without error and each of the independent variables is directly controllable. Therefore, the study lends itself to a designed experiment. This study incorporates the use of a designed experiment in an effort to increase the effectiveness of the resulting prediction equations. The third point is that the problem at hand, in general, involves a large number of variables. Response Surface methodology is a set of techniques which is helpful in solving problems such as selecting a proper experimental design in cases involving a large number of variables. Two such Response Surface techniques have been used in this study.

The first of these Response Surface techniques, known as a Plackett-Burman design was used in determining the first-degree models of the form:
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\cdot . \cdot b_{7} x_{7}
\]

This technique reduces the number of required design points to \(n=\) \(k+1\) where \(n\) is a multiple of four. The Plackett-Burman design array
is constructed by selecting, from the \(2^{k}\) factorial design array, one row which contains \((k+1) / 2+1\) 's and \((k-1) / 2-1\) 's. This is defined to be the first row of the Plackett-Burman design array. Each successive row up to row \(k\) of the new array is created by rotating the previous row one place to the right with the last element of the previous row becoming the first element of the current row. The last row of the Plackett-Burman design array is defined to be a row of -1's. The resulting array is of dimension (\(k+1\)) \(\mathrm{X} k\) (Cornell, 1984). For use in this study, a computer program was written which constructs a Plackett-Burman design array for a given number of variables. This program is listed in Appendix A.

The second of these Response Surface techniques, known as a Central Composite design, was used in determining the second degree model of the form:
\[
y=b_{0}+\sum_{i=1}^{k}+b_{i} x_{i}+\sum_{i=1}^{k} b_{i i} x_{i}^{2}+\sum_{i<j}^{k} b_{i j} x_{i} x_{j}
\]

This technique reduces the number of required design points to \(n=\) \(2^{k}+2 k+1\). The Central Composite design array is defined to be 1) the \(2^{k}\) rows defined by \((\pm 1, \pm 1\), . . ., \(\pm 1)\) 2) the \(2 k\) rows defined by (\(\pm \mathrm{a}, 0,0, . . ., 0),(0, \pm \mathrm{a}, 0, . . ., 0)\), . ., (\(0,0,0, . . ., \pm a)\)
where
\[
a=\sqrt[4]{2^{k}}
\]
3) the last row consisting of (0,0 , . . ., 0). The resulting array is of dimension \(\left(2^{k}+2 k+1\right) X k\) (Corne11, 1984). A computer program was written which constructs a Central Composite design array for a
given number of variables. This program is listed in Appendix A.
The design arrays for the three models in this study are there-
fore defined as follows:
1. first degree model for:

2 optional rates
2 seasons per rate
3 blocks per season
variable \(1=\) difference \(i n\) on-peak first \(k W h\) price for rate one and rate two
variable 2 = difference in on-peak second \(k W h\) price for rate one and rate two
variable 3 = difference in on-peak third \(k W h\) price for rate one and rate two
variable 4 = difference in off-peak first kWh price for rate one and rate two
variable 5 = difference in off-peak second kWh price for rate one and rate two
variable \(6=\) difference in off-peak third \(k W h\) price for rate one and rate two
variable \(7=\) difference in rate one customer charge and rate two customer charge

The Plackett-Burman design array is of dimension \((k+1) \mathrm{X} k=\)
\(8 \times 7\).
2. first degree model for:

3 optional rates

2 seasons per rate
3 blocks per season
variable 1 = difference in on-peak first \(k W h\) price for rate one and rate two
variable 2 = difference in on-peak second \(k W h\) price for rate one and rate two
variable 3 = difference in on-peak third kWh price for rate one and rate two
variable 4 = difference in off-peak first kWh price for rate one and rate two
variable 5 = difference in off-peak second \(k W h\) price for rate one and rate two
variable \(6=\) difference in off-peak third \(k W h\) price for rate one and rate two
variable 7 = difference in rate one customer charge and rate two customer charge
variable 8 = difference in on-peak first kWh price for rate one and rate three
variable \(9=\) difference in on-peak second \(k W h\) price for rate one and rate three
variable \(10=\) difference in on-peak third \(k W h\) price for rate one and rate three
variable \(11=\) difference in off-peak first \(k W h\) price for rate one and rate three
variable 12 = difference in off-peak second \(k W h\) price for rate one and rate three
variable 13 = difference in off-peak third kWh price for rate one and rate three
variable \(14=\) difference in rate one customer charge and rate three customer charge

The Plackett-Burman design array is of dimension \((k+1) \mathrm{X} k=\) \(16 \times 15\).
3. the second degree model for:

2 optional rates
2 seasons per rate

3 blocks per season
The variables are defined the same as in number one. The Central Composite design array is of dimension \(\left(2^{k}+2 k+1\right)\) \(\mathrm{Xk}=143 \mathrm{X} 7\).

These arrays are contained in Appendix B.

\section*{Data Collection}

Two special purpose computer programs were written for the data collection process. These special purpose programs were customer-bycustomer billing programs, one for using two optional rates and the other for using three optional rates, with the enhancements needed for this particular data collection process, i.e., they used as input, the redefined independent variables (differences in customer charges, and differences in prices) and were capable of making several rate design runs in succession for efficiency purposes. Data for the models was collected by running this program against the database for various values of the independent variables defined by the design array and measuring the response in the dependent variable, i.e., revenue deviation due to migration. Listings of these programs are contained in Appendix C. The revenue change due to migration associated with each design point is shown in Appendix \(B\) along with the design point which generated this revenue difference. These
programs use constant breakpoints (set at 400 kWh and 800 kWh for this study) for both of two seasons. If these criteria were to change in the rate design process, these programs would be changed to incorporate the new criteria and the data collection process would be repeated.

Development of the Models

The regression equation for each model was determined by the use of a commercially available statistical analysis software package. The multiple correlation coefficient was also calculated for each model as a test for lack of fit. These models will constitute a basis for the prediction of revenue deviation due to migration. The data collection program was then used to determine the observed response to an equal number of additional data points (i.e., the same number of design points as in the original design array) for each model. This was done by taking the original design array and changing all +1 values to +1.1 and all -1 values to -0.8 . With the addition of these data points, a new regression equation and a new multiple correlation coefficient were determined. The combined observed responses were compared to the predicted responses for the same design points. The results are contained in the next chapter.

\section*{ANALYSIS OF THE MODELS}

\section*{Linear: Two Rates, Two Seasons, Three Blocks Per Season}

The data collection program was run for seven independent variables and eight design points as dictated by the Plackett-Burman design. The Plackett-Burman design matrix and the calculated value of the dependent variable, i.e., revenue decrease due to migration, for each of the design points are shown in Appendix B. The approximate run time for the data collection program for these design points was 17 minutes on a microcomputer with mass storage capabilities. In order to determine the contribution of each variable to the resulting prediction equation, regressions were performed for all possible subsets of the seven independent variables. The maximum obtainable multiple correlation coefficient for each number of independent variables is shown in Table I.

For seven independent variables, the resulting prediction equation was:
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots \cdot b_{7} x_{7}
\]
where
\[
\begin{aligned}
& b_{0}=-39,661.39 \\
& b_{1}=32,477.93 \\
& b_{2}=27,905.85 \\
& b_{3}=30,570.63
\end{aligned}
\]
\(b_{4}=27,248.07\)
\(b_{5}=20,346.92\)
\(b_{6}=26,292.58\)
\(b_{7}=29,473.18\)

TABLE I
\(R^{2}\) FOR LINEAR \& VARIABLE MODEL
WITH 8 DESIGN POINTS
\begin{tabular}{cc}
\hline \begin{tabular}{c}
Number in \\
Mode1
\end{tabular} & \(\mathrm{R}^{2}\) \\
\hline 1 & 0.1909 \\
2 & 0.6249 \\
3 & 0.8148 \\
4 & 0.8838 \\
5 & 0.9484 \\
6 & 0.9746 \\
7 & 1.0000 \\
\hline
\end{tabular}

In order to determine the accuracy of the regression equation and to evaluate the change in coefficients of the equation with the addition of more design points, the data collection program was run with an alternate design matrix. This alternate design matrix consisted of the original Plackett-Burman design matrix except that -1 was replaced with -.8 and +1 was replaced with +1.1 . This alternate design matrix and the
resulting value of the dependent variable for each design point are also shown in Appendix B. The regression analysis for seven independent variables was then performed using the combination of both matrices as data points. The results are shown in Table II.

TABLE II
\(R^{2}\) FOR LINEAR 7 VARIABLE MODEL
WITH 16 DESIGN POINTS
\begin{tabular}{cc}
\hline \begin{tabular}{c}
Number in \\
Mode1
\end{tabular} & \(\mathrm{R}^{2}\) \\
\hline 1 & .1825 \\
2 & .6109 \\
3 & .8058 \\
4 & .8678 \\
5 & .9324 \\
6 & .9570 \\
7 & .9828 \\
\hline
\end{tabular}

For seven independent variables, the resulting prediction equation was:
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots \cdot b_{7} x_{7}
\]
where
\[
\begin{aligned}
& b_{0}=-46,812.44 \\
& b_{1}=29,062.68 \\
& b_{2}=25,803.60
\end{aligned}
\]
\[
\begin{aligned}
& b_{3}=27,387.66 \\
& b_{4}=24,217.28 \\
& b_{5}=19,306.08 \\
& b_{6}=24,994.10 \\
& b_{7}=27,276.02
\end{aligned}
\]

For each design point, the actual value of the dependent variable was compared to the value predicted by using the equation above and the residual computed. The results are shown in Appendix D.

For the design points, the mean actual value of the dependent variable was \(-33,458.88\). The mean of the absolute value of the residuals was \(8,549.28\). This equates to a mean error of \(25.55 \%\). Note that in some cases, the model predicts a positive value for the dependent value. When this occurs, this should be interpreted as a prediction of zero revenue deviation. Using this interpretation of the prediction, the mean of the absolute value of the residuals was \(6,417.27\). This equates to a mean error of \(19.18 \%\).

Linear: Three Rates, Two Seasons, Three Blocks Per Season

The data collection program was run for fourteen independent variables and sixteen design points as dictated by the PlackettBurman design. The design matrix and calculated responses are shown in Appendix B. The approximate run time of the data collection program for these design points was 34 minutes. Again, regressions were performed for all possible subsets of the 14 independent variables to observe the effect on the correlation coefficients of the resulting prediction equations. The maximum obtainable multiple correlation coefficient for each number of independent variables is shown in Table III.

TABLE III

\section*{\(\mathrm{R}^{2}\) FOR LINEAR 14 VARIABLE MODEL WITH 16 DESIGN POINTS}
\begin{tabular}{cc}
\hline \begin{tabular}{c}
Number in \\
Mode1
\end{tabular} & \(\mathrm{R}^{2}\) \\
\hline 1 & .2552 \\
2 & .6237 \\
3 & .7662 \\
4 & .8410 \\
5 & .8880 \\
6 & .9317 \\
7 & .9496 \\
8 & .9634 \\
9 & .9724 \\
10 & .9862 \\
11 & .9890 \\
12 & .9937 \\
13 & .9984 \\
14 & .9988 \\
\hline
\end{tabular}

For the fourteen independent variables, the resulting prediction equation was:
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots \cdot b_{14} x_{14}
\]
where
\[
\begin{aligned}
& b_{0}=-46,014.16 \\
& b_{1}=13,588.00
\end{aligned}
\]
\[
\begin{aligned}
& b_{2}=9,465.33 \\
& b_{3}=12,130.11 \\
& b_{4}=9,497.42 \\
& b_{5}=2,612.72 \\
& b_{6}=10,672.10 \\
& b_{7}=17,836.07 \\
& b_{8}=21,763.02 \\
& b_{9}=19,780.80 \\
& b_{10}=19,755.02 \\
& b_{11}=12,896.01 \\
& b_{12}=11,120.66 \\
& b_{13}=13,465.68 \\
& b_{14}=14,063.05
\end{aligned}
\]

An alternate design matrix was constructed as described previously. This alternate design matrix and the resulting value of the dependent variable for each design point of the alternate design matrix are shown in Appendix B. The regression analysis for 14 independent variables was then performed using the combination of both matrices as data points. The results are shown in Table IV.

For fourteen independent variables, the resulting prediction equation was:
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{14} x_{14}
\]
where
\[
\begin{aligned}
& b_{0}=-48,178.66 \\
& b_{1}=11,300.40 \\
& b_{2}=10,016.31 \\
& b_{3}=11,600.37
\end{aligned}
\]
\[
\begin{aligned}
b_{4} & =8,761.35 \\
b_{5} & =3,858.80 \\
b_{6} & =10,681.55 \\
b_{7} & =15,825.31 \\
b_{8} & =19,388.15 \\
b_{9} & =18,068.65 \\
b_{10} & =18,052.57 \\
b_{11} & =12,281.90 \\
b_{12} & =11,036.04 \\
b_{13} & =14,205.99 \\
b_{14} & =12,858.69
\end{aligned}
\]

\section*{TABLE IV}
\(R^{2}\) FOR LINEAR 14 VARIABLE MODEL WITH 32 DESIGN POINTS
\begin{tabular}{cc}
\hline \begin{tabular}{c}
Number in \\
Model
\end{tabular} & \(\mathrm{R}^{2}\) \\
\hline 1 & .2070 \\
2 & .6142 \\
3 & .7686 \\
4 & .8434 \\
5 & .8833 \\
6 & .9156 \\
7 & .9386 \\
8 & .9525 \\
9 & .9625
\end{tabular}

TABLE IV (Continued)

10

11

12

13
14
.9732
.9766
.9821
. 9857
.9866

As before, for each design point, the actual value of the dependent variable was compared to the value predicted by using the above equation and the residual computed. The results are shown in Appendix D.

For the design points, the mean actual value of the dependent variable was -34.836.82. The mean of the absolute value of the residuals was 4,559.32. This equates to a mean error of \(13.09 \%\). Interpreting positive predictions as zero predictions, the mean of the absolute value of the residuals was \(3,895.65\). This equates to a mean error of \(11.18 \%\).

\section*{Quadratic: Two Rates, Two Seasons, \\ Three Blocks Per Season}

The data collection program was run for seven independent variables and the 143 design points dictated by the Central Composite design. The Central Composite design matrix and the calculated value of the dependent variable, i.e., revenue decrease due to migration for each of the design points is shown in Appendix B. The approximate run time of the data collection program for these design points was five hours.

A complete quadratic multiple regression for seven independent variables was performed for these design points. The contribution to the \(R^{2}\) value for the linear, quadratic, adn crossproduct terms of the prediction equation is shown in Table \(V\).

TABLE V
\(R^{2}\) FOR QUADRATIC 7 VARIABLE MODEL WITH 143 DESIGN POINTS
\begin{tabular}{cc}
\hline Terms & \(\mathrm{R}^{2}\) \\
\hline Linear & 0.8280 \\
Quadratic & 0.0163 \\
Crossproduct & 0.1486 \\
Total Regression & 0.9930 \\
\hline
\end{tabular}

For the seven independent variables, the resulting prediction equation was:
\[
\begin{gathered}
y=b_{0}+b_{1} x_{1}+\ldots+b_{7} x_{7}+b_{8} x_{1} x_{1}+b_{9} x_{2} x_{1}+b_{10} x_{2} x_{2}+b_{11} x_{3} x_{1}+ \\
b_{12} x_{3} x_{2}+b_{13} x_{3} x_{3}+\ldots+b_{33} x_{7} x_{5}+b_{34} x_{7} x_{6}+b_{35} x_{7} x_{7}
\end{gathered}
\]
where
\[
\begin{aligned}
& b_{0}=-21,819.87 \\
& b_{1}=17,823.91 \\
& b_{2}=13,287.25 \\
& b_{3}=23,041.53
\end{aligned}
\]
\[
\begin{aligned}
& b_{4}=23,402.62 \\
& b_{5}=13,261.91 \\
& b_{6}=14,171.07 \\
& b_{7}=12,000.00 \\
& b_{8}=-3,593.63 \\
& b_{9}=-3,821.64 \\
& b_{10}=-2,245.04 \\
& b_{11}=-5,645.73 \\
& b_{12}=-4,988.43 \\
& b_{12}=-5,144.64 \\
& b_{13}=-5,144.64 \\
& b_{14}=-8,431.74 \\
& b_{15}=-5,292.50 \\
& b_{16}=-8,010.96 \\
& b_{17}=-5,251.98 \\
& b_{18}=-3,270.36 \\
& b_{19}=-2,634.30 \\
& b_{20}=-5,398.23 \\
& b_{21}=-4,791.62 \\
& b_{22}=-2,237.50 \\
& b_{23}=-2,273.16 \\
& b_{24}=-2,007.63 \\
& b_{25}=-6,720.23 \\
& b_{26}=-3,218.84 \\
& b_{27}=-2,859.47 \\
& b_{28}=-2,507.76 \\
&
\end{aligned}
\]
\[
\begin{aligned}
& b_{30}=-2,568.52 \\
& b_{31}=-3,406.40 \\
& b_{32}=-5,220.23 \\
& b_{33}=-2,161.42 \\
& b_{34}=-1,443.46 \\
& b_{35}=-1,862.38
\end{aligned}
\]

For each design point of the Central Composite design array, the actual value of the dependent variable, i.e., revenue deviation due to migration, was compared to the value predicted by using the equation above and the residual computed. The results are shown in Appendix D.

For the design points, the mean actual value of the dependent variable was \(-45,882.10\). The mean of the absolute value of the residuals was \(3,289.68\). This equates to a mean error of \(7.17 \%\). Interpreting positive predictions as zero predictions, the mean of the absolute value of the residuals was \(2,803.10\). This equates to a mean error of 6.11\%

For the latter interpretation of the model, a summary of the residuals is shown in Table VI.

An alternate design matrix was constructed as described previously. This alternate design matrix and the resulting value of the dependent variable for each design point of the alternate design matrix is shown in Appendix B. The regression analysis for seven independent variables was then performed using the combination of both matrices as design points. The resulting contribution to the \(R^{2}\) value for the linear, quadratic, and crossproduct terms of the prediction equation is shown in Table VII.

TABLE VI
RESIDUALS FOR QUADRATIC 7 VARIABLE MODEL WITH 143 DESIGN POINTS
\begin{tabular}{rc}
\hline Residual & \begin{tabular}{c}
Cumulative Percent \\
of Design Points
\end{tabular} \\
\hline \(0-1000\) & 25.2 \\
\(1001-2000\) & 37.1 \\
\(2001-3000\) & 63.6 \\
\(3001-4000\) & 78.3 \\
\(4001-5000\) & 90.2 \\
over 5000 & 100.0 \\
\hline
\end{tabular}

TABLE VII
\(R^{2}\) FOR QUADRATIC 7 VARIABLE MODEL WITH 286 DESIGN POINTS
\begin{tabular}{cc}
\hline Terms & \(\mathrm{R}^{2}\) \\
\hline Linear & 0.7810 \\
Quadratic & 0.0289 \\
Crossproduct & 0.1795 \\
Total Regression & 0.9930 \\
\hline
\end{tabular}

For the seven independent variables, the resulting prediction equation was:
\[
\begin{gathered}
y=b_{0}+b_{1} x_{1}+\ldots++b_{7} x_{7}+b_{8} x_{1} x_{1}+b_{9} x_{2} x_{1}+b_{10} x_{2} x_{2}+b_{11} x_{3} x_{1}+ \\
b_{12} x_{3} x_{2}+b_{13} x_{3} x_{3}+\ldots .+b_{33} x_{7} x_{5}+b_{34} x_{7} x_{6}+b_{35} x_{7} x_{7}
\end{gathered}
\]
where
\[
\begin{aligned}
b_{0} & =-18,994.75 \\
b_{1} & =18,084.68 \\
b_{2} & =13,504.25 \\
b_{3} & =23,051.38 \\
b_{4} & =23,611.70 \\
b_{5} & =13,459.54 \\
b_{6} & =14,076.37 \\
b_{7} & =12,104.80 \\
b_{8} & =-3,987.09 \\
b_{9} & =-3,794.01 \\
b_{10} & =-2,566.72 \\
b_{11} & =-5,587.70 \\
b_{12} & =-4,927.90 \\
b_{13} & =-5,672.58 \\
b_{14} & =-8,324.42 \\
b_{15} & =-5,261.57 \\
b_{16} & =-7,869.89 \\
b_{17} & =-5,751.91 \\
b_{18} & =-3,237.11 \\
b_{19} & =-2,610.20 \\
b_{20} & =-5,327.29 \\
b_{21} & =-4,771.72
\end{aligned}
\]
\[
\begin{aligned}
& b_{22}=-2,562.08 \\
& b_{23}=-2,265.03 \\
& b_{24}=-2,005.70 \\
& b_{25}=-6,656.32 \\
& b_{26}=-3,215.85 \\
& b_{27}=-2,863.86 \\
& b_{28}=-2,898.60 \\
& b_{29}=-3,583.45 \\
& b_{30}=-2,466.17 \\
& b_{31}=-3,384.54 \\
& b_{32}=-5,187.30 \\
& b_{33}=-2,097.32 \\
& b_{34}=-1,448.53 \\
& b_{35}=-2,180.89
\end{aligned}
\]

For each design point of the alternate design array, the actual value of the dependent variable was compared to the value predicted by using the equation above and the residual computed. The results are shown in Appendix D.

For the design points, the mean actual value of the dependent variable was \(-36,562.07\). The mean of the absolute value of the residuals was 3,658 . This equates to a mean error of \(10.01 \%\). Interpreting positive predictions as zero predictions, the mean of the absolute value of the residuals was \(2,934.66\). This equates to a mean errow of \(8.03 \%\).

For the latter interpretation of the model, a summary of the residuals is shown in Table VIII.

TABLE VIII

RESIDUALS FOR QUADRATIC 7 VARIABLE
MODEL WITH 286 DESIGN POINTS
\begin{tabular}{cc}
\hline Residual & \begin{tabular}{c}
Cumulative Percent \\
of Design Points
\end{tabular} \\
\hline \(0-1000\) & 28.3 \\
\(1001-2000\) & 43.0 \\
\(2001-3000\) & 57.0 \\
\(3001-4000\) & 73.8 \\
\(4001-5000\) & 100.0 \\
\hline
\end{tabular}

\section*{CHAPTER IV}

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Multiple regression analysis and Response Surface techniques can be used to predict revenue recovery involving migration in the design of optional non-demand electric utility rates. The accuracy of the prediction equation will be dependent upon the validity of the sample of customers, if a sample is used, and the number and appropriateness of the design points used in the regression. This study employed multiple linear regressions with a Plackett-Burman design and quadratic multiple regressions with a Central Composite design. By transferring a customer-by-customer data file to a microcomputer with mass storage capability, using a designed experiment to collect revenue deviation data, and performing a multiple regression on the experiment results, a model can be developed which will predict revenue deviation due to migration for rate design purposes.

The use of such a procedure provides the following benefits to the rate analyst:
1. reduced expense - Fewer rate design computer runs on the mainframe computer (costly for large rate classes) and fewer runs on the entire population would be necessary since an immediate prediction of the results of such a computer run would be available.
2. reduced time requirements - By reducing the number of computer runs for the entire population, and by having access to immediate predictions of such runs, the time requirements associated with the rate design process are reduced.
3. allows further analysis - Since expense and time requirements are factors in the amount of analysis which can be performed in rate design, the reduction of these factors allows more in-depth and cost effective analysis; analysis which might otherwise be infeasible.
4. feasibility of the model - The model can be developed at virtually no cost by using a microcomputer for data collection. To the analyst, the model represents valuable additional information which is available at virtually no cost. The model can be developed within hours or days depending on the user's requirements and can be developed well in advance of the need for it.

By performing the data transfer and data collection processes during those hours or days in which microcomputer equipment normally stands idle (e.g., overnight, weekends), and by using this procedure on several microcomputers simultaneously, greater efficiency can be made of existing computer resources. Such a model can be constructed for any type of non-demand rate structure. The specification of each model developed will depend upon the requirements defined by the analyst and the resources available, e.g., accuracy required, number of rates, number of variables, number of required design points, population or sample size, and available computer resources.

These models provide the analyst with a means of predicting
revenue deviation due to migration for large non-demand rate classes. The use of such models would expedite the rate design process, allow more extensive analysis on large non-demand rate classes, and reduce the costs associated with rate design for those rate classes.

Recommendations

This study presents a systematic procedure whereby a model can be developed for the prediction of revenue deviation due to migration in the design of optional non-demand utility rates. For use in . future research in this area, the following recommendations are provided:
1. Investigate the use of other types of equations in the regression, e.g., negative exponential.
2. Investigate the use of combinations of variables, e.g., weighted average price.
3. Investigate the extension of this procedure to optional demand rates.
4. Investigate the use of alternative experiment designs, particularly the use of a fractional replicate of the Central Composite design for use with models involving large numbers of variables, e.g., models for three optional rates.
5. Examine the effects on \(R^{2}\) as the number of design points continues to increase.

Allen, David M. and Foster B. Cady. Analyzing Experimental Data By Regression. London: Lifetime Learning Publications, 1982.

Bonbright, James C. Principles of Public Utility Rates. New York: Columbia University, 1961.

Box, George E. P. and Norman R. Draper. Empirical Model-Building and Response Surfaces. New York: John Wiley \& Sons, 1987.

Brook, Richard J. and Gregory C. Arnold. Applied Regression Analysis and Experimental Design. New York: Marcel Dekker, 1985.

Choei, Sung C. Introductory Applied Statistics in Science. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978.

Cornell, John A. How to Apply Response Surface Methodology. Milwaukee: American Society for Quality Control, 1984.

Dey, Aloke. Orthogonal Fractional Factorial Designs. New York: John Wiley \& Sons, 1985.

Draper, N. R. and H. Smith. Applied Regression Analysis. New York: John Wiley \& Sons, 1966.

Gunst, Richard F. and Robert L. Mason. Regression Analysis and Its Application: A Data-Oriented Approach. New York: Marcel Dekker, 1980 .

Gupta, R. P. Multivariate Statistical Analysis. Amsterdam: North Holland, 1980.

Johnson, Norman L. and Fred C. Leone. Statistics and Experimental Design in Engineering and the Physical Sciences. New York: John Wiley \& Sons, 1964.

Kachigam, Sam Kash. Multivariate Statistical Analysis: A Conceptual Introduction. New York: Radius Press, 1982.

Kennedy, John B. and Adam M. Neville. Basic Statistical Methods for Engineers and Scientists. 2nd Ed. New York: Dun-Donnelley, 1976.

Long, James B. Filing Before the Oklahoma Corporation Commission. Cause No. 28331. Tulsa, Oklahoma: Public Service Company of Oklahoma, 1985.

McLean, Robert A. and Virgil L. Anderson. Applied Factorial and Fractional Designs. New York: Marcel Dekker, 1984.

Mosteller, Frederick and John W. Tukey. Data Analysis and Regression. Reading, Massachusetts: Addison-Wesley, 1977.

Petersen, Roger G. Design and Analysis of Experiments. New York: Marcel Dekker, 1985.

Ratkowsky, David A. Nonlinear Regression Modeling: A Unified Practical Approach. New York: Marcel Dekker, 1983.

Walpole, Ronald E. and Raymond H. Myers. Probability and Statistics for Engineers and Scientists. 2nd Ed. New York: Macmillan, 1978.

Wetherill, G. Barrie, P. L. Duncombe, M. Kenward, J. Kollerstrom, S. R. Paul, and B. J. Vowden. Regression Analysis with Applications. London: Chapman and Hall, 1986.

APPENDIXES

APPENDIX A

DESIGN ARRAY PROGRAM LISTINGS
```

10 REM PLANKETT-BURMAN DESIGN PROGRAM
DIM VALUE(100,27)
CLS
OPEN "F:PBDOO1" FOR OUTPUT AS \#1
LPRINT
INPUT "HOW MANY VARIABLES ";K
LPRINT "REQUESTED VARIABLES = K = ";K
FINDN=FIX ((K+1)/4+.9999)
N=FINDN*4
K=N-1
LPRINT "ADJUSTED VARIABLES = K = ";K
LPRINT "NUMBER OF DATA POINTS = N = ";N
130 LPRINT "PBD MATRIX IS ";N;" X ";K
140 VALUE (1,1)=-1
150 VALUE (1,2)=1
160 VALUE (1,3)=1
170 VALUE (1,4)=-1
180 VALUE (1,5)=1
190 VALUE (1,6)=-1
200 VALUE (1,7)=1
210 VALUE (1,8)=-1
220 VALUE (1,9)=1
230 VALUE (1,10)=-1
240 VALUE (1,11)=1
250 VALUE (1,12)=-1
260 VALUE (1,13)=1
270 VALUE (1,14)=-1
280 VALUE (1,15)=1
290 VALUE (1,16)=-1
300 VALUE (1,17)=1
310 VALUE (1,18)=-1
320 VALUE (1,19)=1
330 VALUE (1,20)=-1
340 VALUE (1,21)=1
350 VALUE (1,22)=-1
360 VALUE (1,23)=1
370 VALUE (1,24)=-1
380 VALUE (1, 25)=1
390 VALUE (1,26)=-1
400 VALUE (1,27)=1
410 FOR I = 2 TO K
420 FOR J = 1 TO K-1
430 VALUE (I,J+1)=VALUE (I-1,J)
440 NEXT J
450 VALUE (I, 1) =VALUE (I-I,K)
460 NEXT I
4 7 0 ~ F O R ~ J ~ = ~ 1 ~ T O ~ K
480 VALUE (K+1,J)=-1

```

```

500 LPRINT "THE PLANKETT-BURMAN DESIGN MATRIX IS "
510 FOR I = 1 TO K+1
520 FOR J = 1 TO K
530 PRINT \#1, USING "\#\#.\#\#\# "; VALUE(I,J);
540 IPRINT USING "\#\#.\#\#\#\#"; VALUE(I,J);
5 5 0 ~ N E X T ~ J ~ J
560 PRINT \#1, " "
560 PRINT \#
580 NEXT I
590 LPRINT
600 END

```
```

10 REM CENTRAL COMPOSITE DESIGN PROGRAM
20 CLS
30 DIM VALUE (200,27)
40 OPEN "F:CCDOO1" FOR OUTPUT AS \#1
50 LPRINT
60 INPUT "HOW MANY VARIABLES ";K
70 LPRINT "VARIABLES = K = "; K
80 N=(2^K)+(2*K)+1
90 LPRINT "NUMBER OF DATA POINTS = N =";N
100 LPRINT "THE CCD MATRIX IS ";N;" X ";K
110 FOR J = 1 TO K
120 COUNTER=0
130 SEQ=(2^J)/2
140 NUMBER=1
150 NUMBER=NUMBER/-1
160 FOR I = 1 TO SEQ
170 COUNTER= COUNTER+1
180 VALUE (COUNTER,J)=NUMBER
190 NEXT I
IF COUNTER <> 2^K THEN GOTO 150
200 IF N
220 M=2^K
230 ALPHA=M^. }2
235 ALPHA=(CINT(ALPHA*1000))/1000
240 FOR I = (2^K)+1 TO N-1 STEP 2
250 FOR J = 1 TO K
260 VALUE (I,J)=0
270 VALUE (I+1,J)=0
280 NEXT J
290 NEXT I
300 JCOUNT=0
310 FOR I = (2^K)+1 TO N-1 STEP 2
320 JCOUNT=JCOUNT+1
330 VALUE (I,JCOUNT)=-ALPHA
340 VALUE (I+1,JCOUNT) =ALPHA
350 NEXT I
360 FOR J = 1 TO K
370 VALUE (N,J)=0
380 NEXT J
390 LPRINT "THE CENTRAL COMPOSITE DESIGN MATRIX IS "
400 FOR I = 1 TO N
410 FOR J = 1 TO K
420 PRINT \#1, USING "\#\#.\#\#\# "; VALUE(I,J);
430 LPRINT USING "\#\#.\#\#\# "; VALUE(I,J);
440 NEXT J
450 PRINT \#1, " "
4 6 0 ~ L P R I N T
470 NEXT I
480 END

```

APPENDIX B

DESIGN ARRAYS AND DEPENDENT VARIABLE VALUES

\author{
Design Array and Dependent Variable \\ Values for Plackett-Burman Design With 7 Variables
}
\[
\begin{array}{rrrrrrrr}
-1 & 1 & 1 & -1 & 1 & -1 & 1 & -17383.38 \\
1 & -1 & 1 & 1 & -1 & 1 & -1 & -798.13 \\
-1 & 1 & -1 & 1 & 1 & -1 & 1 & -24028.51 \\
1 & -1 & 1 & -1 & 1 & 1 & -1 & -14600.43 \\
-1 & 1 & -1 & 1 & -1 & 1 & 1 & -12137.19 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -8239.22 \\
1 & 1 & -1 & 1 & -1 & 1 & -1 & -6127.69 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -233976.56
\end{array}
\]

\author{
Design Array and Dependent Variable Values for Plackett-Burman Design With 14 Variables
}
\begin{tabular}{rrrrrrrrrrrrrrr}
-1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1
\end{tabular}
-57603.07
-8797.94
-62868.45
-22567.34
-46749.87
-8239.22
-38895.98
-12203.65
-38947.54
-25921.67
-42498.25
-21231.63
-46771.85
-54826.07
-14127.50
-233976.56

\author{
Design Array and Dependent Variable \\ Values for Central Composite Design \\ With 7 Variables
}

Design Array and Dependent Variable Values for Central Composite Design With 7 Variables
(Continued)
\begin{tabular}{rrrrrrrr}
-1 & -1 & 1 & 1 & 1 & 1 & -1 & -7953.72 \\
1 & -1 & 1 & 1 & 1 & 1 & -1 & -517.56 \\
-1 & 1 & 1 & 1 & 1 & 1 & -1 & -1926.68 \\
1 & 1 & 1 & 1 & 1 & 1 & -1 & -482.38 \\
-1 & -1 & -1 & -1 & -1 & -1 & 1 & -186458.94 \\
1 & -1 & -1 & -1 & -1 & -1 & 1 & -116607.62 \\
-1 & 1 & -1 & -1 & -1 & -1 & 1 & -133345.12 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & -69485.66 \\
-1 & -1 & 1 & -1 & -1 & -1 & 1 & -94971.53 \\
1 & -1 & 1 & -1 & -1 & -1 & 1 & -30824.82 \\
-1 & 1 & 1 & -1 & -1 & -1 & 1 & -45636.56 \\
1 & 1 & 1 & -1 & -1 & -1 & 1 & -11950.44 \\
-1 & -1 & -1 & 1 & -1 & -1 & 1 & -96134.54 \\
1 & -1 & -1 & 1 & -1 & -1 & 1 & -50697.90 \\
-1 & 1 & -1 & 1 & -1 & -1 & 1 & -53817.51 \\
1 & 1 & -1 & 1 & -1 & -1 & 1 & -28396.71 \\
-1 & -1 & 1 & 1 & -1 & -1 & 1 & -18445.78 \\
1 & -1 & 1 & 1 & -1 & -1 & 1 & -7598.25 \\
-1 & 1 & 1 & 1 & -1 & -1 & 1 & -8386.14 \\
1 & 1 & 1 & 1 & -1 & -1 & 1 & -3998.97 \\
-1 & -1 & -1 & -1 & 1 & -1 & 1 & -133602.85 \\
1 & -1 & -1 & -1 & 1 & -1 & 1 & -65295.26 \\
-1 & 1 & -1 & -1 & 1 & -1 & 1 & -80578.05 \\
1 & 1 & -1 & -1 & 1 & -1 & 1 & -30366.43 \\
-1 & -1 & 1 & -1 & 1 & -1 & 1 & -46890.49 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -8239.22 \\
-1 & 1 & 1 & -1 & 1 & -1 & 1 & -17383.38 \\
-1 & 1 & 1 & -1 & 1 & -1 & 1 & -4180.28 \\
-1 & -1 & -1 & 1 & 1 & -1 & 1 & -48947.58 \\
-1 & -1 & 1 & -1 & 1 & 1 & 1 & -26539.88 \\
-1 & 1 & 1 & -1 & 1 & 1 & 1 & -181.39 \\
1 & 1 & 1 & -1 & 1 & 1 & 1 & -1631.35 \\
1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 & 1 & -1 & 1 & -23466.72 \\
-1 & 1 & 1 & 1 & 1 & -23549.00 \\
-1 & 1 & -1 & 1 & 1 & -1 & 1 & -24028.51 \\
-1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}
```

Design Array and Dependent Variable
Values for Central Composite Design
With 7 Variables
(Continued)

```
\begin{tabular}{rrrrrrrr}
-1 & -1 & -1 & 1 & 1 & 1 & 1 & -11604.04 \\
1 & -1 & -1 & 1 & 1 & 1 & 1 & -1186.33 \\
-1 & 1 & -1 & 1 & 1 & 1 & 1 & -1282.93 \\
1 & 1 & -1 & 1 & 1 & 1 & 1 & -214.56 \\
-1 & -1 & 1 & 1 & 1 & 1 & 1 & -105.75 \\
1 & -1 & 1 & 1 & 1 & 1 & 1 & 0.00 \\
-1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
-3.364 & 0 & 0 & 0 & 0 & 0 & 0 & -119919.23 \\
3.364 & 0 & 0 & 0 & 0 & 0 & 0 & 0.00 \\
0 & -3.364 & 0 & 0 & 0 & 0 & 0 & -89396.62 \\
0 & 3.364 & 0 & 0 & 0 & 0 & 0 & 0.00 \\
0 & 0 & -3.364 & 0 & 0 & 0 & 0 & -155023.42 \\
0 & 0 & 3.364 & 0 & 0 & 0 & 0 & 0.00 \\
0 & 0 & 0 & -3.364 & 0 & 0 & 0 & -157452.83 \\
0 & 0 & 0 & 3.364 & 0 & 0 & 0 & 0.00 \\
0 & 0 & 0 & 0 & -3.364 & 0 & 0 & -89226.13 \\
0 & 0 & 0 & 0 & 3.364 & 0 & 0 & 0.00 \\
0 & 0 & 0 & 0 & 0 & -3.364 & 0 & -95342.93 \\
0 & 0 & 0 & 0 & 0 & 3.364 & 0 & 0.00 \\
0 & 0 & 0 & 0 & 0 & 0 & -3.364 & -80735.99 \\
0 & 0 & 0 & 0 & 0 & 0 & 3.364 & 0.00 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 &
\end{tabular}

\title{
Alternate Design Array and Dependent Variable Values for Plackett-Burman Design With 7 Variables
}
\begin{tabular}{lllllllr}
-.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -6522.63 \\
1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & -396.36 \\
-.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -12225.96 \\
1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & -5538.26 \\
-.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -1961.10 \\
1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -3094.59 \\
1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & -1130.87 \\
-.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -187181.25
\end{tabular}

\author{
Alternate Design Array and Dependent Variables Values for Plackett-Burman Design With 14 Variables
}
\begin{tabular}{llllllllllllllll}
-.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -23479.65 \\
1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & -3472.55 \\
-.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -29308.18 \\
1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & -8614.46 \\
-.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -18948.17 \\
1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & -3094.59 \\
-.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -12945.33 \\
1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & -4206.44 \\
-.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -12955.44 \\
1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -.8 & -12879.49 \\
-.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & 1.1 & -14207.85 \\
1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -.8 & -5119.90 \\
-.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & 1.1 & -15888.57 \\
1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -22042.76 \\
1.1 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 & -.8 & 1.1 .1 .1 & -.8 & 1.1 & -.8 & -4207.07 \\
-.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -.8 & -187181.25
\end{tabular}

\section*{Alternate Design Array and Dependent Variable Values for Central Composite Design \\ With 7 Variables}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & -187181.25 \\
\hline 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & -119455.41 \\
\hline -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & -136689.70 \\
\hline 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & -69889.30 \\
\hline -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & -100803.13 \\
\hline 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & -37668.99 \\
\hline -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & -54128.63 \\
\hline 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & -13060.30 \\
\hline -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & -98287.13 \\
\hline 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & -46164.87 \\
\hline -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & -51349.00 \\
\hline 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & -23216.49 \\
\hline -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & -22358.17 \\
\hline 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & -5903.05 \\
\hline -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & -7710.84 \\
\hline 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & -2946.38 \\
\hline -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & -136785.99 \\
\hline 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & -69107.16 \\
\hline -. 8 & 1.1 & . 8 & -. 8 & 1.1 & -. 8 & -. 8 & -86294.44 \\
\hline 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & -27213.98 \\
\hline -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & -56111.60 \\
\hline 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & -12012.03 \\
\hline -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & -25396.54 \\
\hline 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & -4275.60 \\
\hline -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & -49931.71 \\
\hline 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & -18623.26 \\
\hline -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & -19904.83 \\
\hline 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & -10130.64 \\
\hline -. 8 & -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & -6999.69 \\
\hline 1.1 & -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & -1829.37 \\
\hline -. 8 & 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & -2529.69 \\
\hline 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & -939.28 \\
\hline -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & -136781.06 \\
\hline 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & -72085.83 \\
\hline -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & -88943.14 \\
\hline 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & -27470.07 \\
\hline -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & -68065.29 \\
\hline 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & -16871.63 \\
\hline -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & -32410.40 \\
\hline 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & -3369.90 \\
\hline -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & -52870.06 \\
\hline 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & -9665.87 \\
\hline -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & -12812.38 \\
\hline 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & -1130.87 \\
\hline -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & -7078.48 \\
\hline 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & -396.36 \\
\hline -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & -1093.61 \\
\hline 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & -392.14 \\
\hline -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & -90980.54 \\
\hline 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & -30333.13 \\
\hline -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & -46186.42 \\
\hline 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & -3621.40 \\
\hline -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & -38602.19 \\
\hline 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & -5538.26 \\
\hline -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & -17291.67 \\
\hline 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & -1460.58 \\
\hline -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & -16361.09 \\
\hline 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & -1024.04 \\
\hline -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & -1792.51 \\
\hline 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & -340.81 \\
\hline
\end{tabular}

Alternate Design Array and Dependent Variable
Values for Central Composite Design
With 7 Variables
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline -. 8 & -. 8 & 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & -2872.92 \\
\hline 1.1 & -. 8 & 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & -310.97 \\
\hline -. 8 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & -798.27 \\
\hline 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & -306.75 \\
\hline -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & -142237.11 \\
\hline 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & -78273.38 \\
\hline -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & -91892.72 \\
\hline 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & -40050.24 \\
\hline . 8 & -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & -57530.70 \\
\hline 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & -12382.57 \\
\hline -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & -20837.46 \\
\hline 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & -5172.23 \\
\hline -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & -61091.45 \\
\hline 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & -28727.81 \\
\hline -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & -29842.14 \\
\hline 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & -15077.87 \\
\hline -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & -7872.97 \\
\hline 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & -2931.24 \\
\hline -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & -3344.32 \\
\hline 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & -1305.30 \\
\hline -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & -92181.38 \\
\hline 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & -34032.00 \\
\hline -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & -43129.51 \\
\hline 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & -15495.88 \\
\hline -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & -22608.56 \\
\hline 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & -3094.59 \\
\hline -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & -6522.63 \\
\hline 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & -1392.53 \\
\hline -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & -24741.74 \\
\hline 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & -12104.64 \\
\hline -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & -12225.96 \\
\hline 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & -6860.84 \\
\hline -. 8 & -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & -2059.63 \\
\hline 1.1 & -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & -800.38 \\
\hline -. 8 & 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & -847.10 \\
\hline 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & -316.79 \\
\hline -. 8 & -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & -93670.86 \\
\hline 1.1 & -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & -34494.33 \\
\hline -. 8 & 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & -47102.81 \\
\hline 1.1 & 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & -5748.65 \\
\hline -. 8 & -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & -31704.08 \\
\hline 1.1 & -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & -723.19 \\
\hline -. 8 & 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & -7463.02 \\
\hline 1.1 & 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & -21.94 \\
\hline -. 8 & -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & -20516.74 \\
\hline 1.1 & -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & -1791.28 \\
\hline -. 8 & 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & -1961.10 \\
\hline 1.1 & 1.1 & -. 8 & 1.1 & . 8 & 1.1 & 1.1 & -153.56 \\
\hline -. 8 & -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & -47.36 \\
\hline 1.1 & -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & 0.00 \\
\hline -. 8 & 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & 0.00 \\
\hline 1.1 & 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & 0.00 \\
\hline -. 8 & -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & 1.1 & -50239.11 \\
\hline 1.1 & -. 8 & -. 8 & -. 8 & 1.1 & 1.1 & 1.1 & -5064.77 \\
\hline -. 8 & 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & 1.1 & -12218.79 \\
\hline 1.1 & 1.1 & -. 8 & -. 8 & 1.1 & 1.1 & 1.1 & -209.72 \\
\hline -. 8 & -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & 1.1 & -12832.77 \\
\hline 1.1 & -. 8 & 1.1 & -. 8 & 1.1 & 1.1 & 1.1 & 0.00 \\
\hline -. 8 & 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & 1.1 & -2640.94 \\
\hline 1.1 & 1.1 & 1.1 & -. 8 & 1.1 & 1.1 & 1.1 & 0.00 \\
\hline
\end{tabular}
```

Alternate Design Array and Dependent Variable
Values for Central Composite Design
With 7 Variables
(continued)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & . 8 & -. 8 & & -. 8 & & 1.1 & & 1.1 & 1.1 & 1.1 & 2057.63 \\
\hline & . 1 & -. 8 & & -. 8 & & 1.1 & & 1.1 & 1.1 & 1.1 & -114.92 \\
\hline & 8 & 1.1 & & . 8 & & 1.1 & & 1.1 & 1.1 & 1.1 & -126.10 \\
\hline & . 1 & 1.1 & & -. 8 & & 1.1 & & 1.1 & 1.1 & 1.1 & -2.83 \\
\hline & . 8 & -. 8 & & 1.1 & & 1.1 & & 1.1 & 1.1 & 1.1 & -15.48 \\
\hline & . 1 & -. 8 & & 1.1 & & 1.1 & & 1.1 & 1.1 & 1.1 & 0.00 \\
\hline -. & . 8 & 1.1 & & 1.1 & & 1.1 & & 1.1 & 1.1 & 1.1 & 0.00 \\
\hline 1. & . 1 & 1.1 & & 1.1 & & 1.1 & & 1.1 & 1.1 & 1.1 & 0.00 \\
\hline & . 682 & 20 & 0 & 0 & 0 & 0 & 0 & 0 & & 59959 & \\
\hline & . 682 & 20 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline 0 & -1. & . 682 & 0 & 0 & 0 & 0 & 0 & 0 & & 44698 & \\
\hline 0 & & . 682 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline 0 & 0 & -1. & 682 & & 0 & 0 & 0 & 0 & & 77511 & \\
\hline 0 & 0 & & 682 & & 0 & 0 & 0 & 0 & & & \\
\hline 0 & 0 & 0 & -1.6 & 682 & 2 & 0 & 0 & 0 & & 78726 & \\
\hline 0 & 0 & 0 & & 682 & & 0 & 0 & 0 & & & \\
\hline 0 & 0 & 0 & 0 & -1. & . 682 & 82 & 0 & 0 & & 44613 & \\
\hline 0 & 0 & 0 & 0 & & . 682 & 82 & 0 & 0 & & & \\
\hline 0 & 0 & 0 & 0 & 0 & & 1.68 & 882 & 0 & & 47671 & \\
\hline 0 & 0 & 0 & 0 & 0 & & 1.68 & 682 & 0 & & & \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 -1 & 1.6 & 682 & & 40368 & \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 01 & 1.6 & 682 & & & \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 0 & 0 & & & 0.00 & \\
\hline
\end{tabular}

APPENDIX C

DATA COLLECTION PROGRAM LISTING

\author{
Data Collection Program for Two Optional Rates
}
```

10 REM **********************************************************************
REM DATA COLIECTION PROGRAM
REM **********************************************************************
OPEN "B:PBD007" FOR INPUT AS \#I
OPEN "B:SAMPLE" FOR INPUT AS \#2
OPEN "B:REVPBD07" FOR OUTPUT AS \#3
SUMGTREV\#\#\#\#
DIM CHARGE (14)
DIM KWH (12), AMONREVT (12), CCREV (12), ENGREV (12)
00 REM
110 REM DETERMINE TYPE OF RUN
120 REM
30 INPUT "NUMBER OF INDEPENDENT VARIABLES ";NFIELDS
140 REM
150 REM READ RATEFILE
160 REM
170 FOR I = 1 TO NFIELDS
180 IF EOF(1) GOTO 680
190 INPUT \#1, CHARGE(I)
200 NEXT I
210 SUMGTREV\# =0
220 REM
O30 REM READ A CUSTOMER RECORD
240 REM
250 FOR I = 1 TO 12
260 IF EOF(2) THEN GOTO 610
270 INPUT \#2, KWH(I)
280 NEXT I
290 REM***********************************************************************
300 REM CALCULATE KWH REVENUE
310 REM***********************************************************************
320 FOR I = 1 TO 12
3 3 0 ~ I F ~ ( S E A S O N S ~ = ~ 2 ) ~ A N D ~ ( ( I ~ < ~ 5 ) ~ O R ~ ( I ~ > ~ 9 ) ) ~ T H E N ~ G O T O ~ 3 8 0
340 IF KWH(I) <= 400 THEN ENGREV (I) = KWH(I) * CHARGE (1)
350 IF KWH(I) > 400 AND KWH (I) <= 800 THEN ENGREV(I) m (400* CHARGE (1)) + ((KWH(
I) - 400) * CHARGE(2))
360 IF KWH(I) > 800 THEN ENGREV (I) = (400 * CHARGE (1)) + (400 * CHARGE(2)) +((KWH(
I) - 800) * CHARGE(3))
370 GOTO 450
3 8 0 ~ I F ~ K W H ~ ( I ) ~ < = ~ 4 0 0 ~ T H E N ~ E N G R E V ~ ( I ) ~ = ~ K W H ( I ) ~ * ~ C H A R G E ~ ( 4 ) ~
390 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400 * CHARGE(4)) + ((KWH
(I) - 400) * CHARGE(5))
400 IF KWH(I) > 800 THEN ENGREV(I) = (400 * CHARGE(4)) + (400* CHARGE(5)) +((KWH(I
) - 800) * CHARGE (6))
410 GOTO 450
420 REM***********************************************************************
430 REM CALCULATE CUSTOMER CHARGE
440 REM***********************************************************************
450 CCREV (I) = CHARGE (7)*100
460 REM***********************************************************************
460 REM*****************************
480 REM***********************************************************************
4 9 0 ~ A M O N R E V T ( I ) ~ = ~ ( C C R E V ( I ) ~ + ~ E N G R E V ( I ) ) / 1 0 0 ~
500 NEXT I
510 REM*************************************************************************
520 REM CALCULATE ANNUAL TOTALS
530 REM**********************************************************************
540 ENGREVTOT = 0
550 GTREV = 0
560 FOR I = 1 TO 12

```

\title{
Data Collection Program for Two Optional Rates
}
(continued)
```

570 GTREV = GTREV + AMONREVT(I)
580 NEXT I
590 IF GTREV < 0 THEN SUMGTREV\# = SUMGTREV\#+GTREV
600 GOTO 250
610 FOR I = 1 TO NFIELDS
620 PRINT \#3,CHARGE(I);
6 3 0 ~ N E X T ~ I ~
640 PRINT \#3,USING"\#\#\#\#\#\#\#\#\#.\#\#";SUMGTREV\#
650 CLOSE \#2
660 OPEN "B:SAMPLE" FOR INPUT AS \#2
670 GOTO 170
6 8 0 END

```

Data Collection Program for Three Optional Rates
```

10 REM **********************************************************************
20 REM DATA COLLECTION PROGRAM
30 REM ***********************************************************************
40 OPEN "B:PBDO14" FOR INPUT AS \#1
50 OPEN "B:SAMPLE" FOR INPUT AS \#2
60 OPEN "B:REVPBD14" FOR OUTPUT AS \#3
70 SUMGTREV\#=0
80 DIM CHARGE (14)
90 DIM KWH (12), AMONREVT (12), CCREV (12), ENGREV (12)
100 REM
110 REM DETERMINE TYPE OF RUN
120 REM
130 INPUT "NUMBER OF INDEPENDENT VARIABLES ";NFIELDS
140 REM
150 REM READ RATEFILE
160 REM
170 FOR I = 1 TO NFIELDS
180 IF EOF(1) GOTO 990
190 INPUT \#1, CHARGE(I)
200 NEXT I
210 SUMGTREV\#=0
220 REM
230 REM READ A CUSTOMER RECORD
240 REM
250 FOR I = 1 TO 12
260 IF EOF(2) THEN GOTO 920
270 INPUT \#2, KWH(I)
280 NEXT I
290 REM*****************************************************************************
300 REM CALCULATE KWH REVENUE
310 REM*************************************************************************
320 FOR I = 1 TO 12
330 IF (SEASONS = 2) AND ( (I < 5) OR (I > 9)) THEN GOTO 380
340 IF KWH(I) <=400 THEN ENGREV (I) = KWH(I) * CHARGE(1)
350 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) x (400* CHARGE(1)) + ((KWH(
I) - 400) * CHARGE(2))
360 IF KWH(I) > 800 THEN ENGREV (I) =(400 * CHARGE(1)) + (400 * CHARGE(2)) +((KWH(
I) - 800) * CHARGE(3))
370 GOTO 450
380 IF KWH(I) <= 400 THEN ENGREV(I) = KWH(I) * CHARGE(4)
390 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400 * CHARGE(4)) + ((KWH
(I) - 400) * CHARGE (5))
400 IF KWH(I) > 800 THEN ENGREV(I) = (400 * CHARGE(4)) +(400* CHARGE(5)) +((KWH(I
) - 800) * CHARGE(6))
410 GOTO 450
420 REM***************************************************************************
430 REM CALCULATE CUSTOMER CHARGE
440 REM****************************************************************************
450 CCREV (I) = CHARGE (7)*100
460 REM**************************************************************************
470 REM CALCULATE TOTAL MONTHLY BILL
480 REM***************************************************************************
490 AMONREVT(I) = (CCREV(I) + ENGREV(I))/100
500 NEXT I
510 REM**********************************************************************
520 REM CALCULATE ANNUAL TOTALS
530 REM***************************************************************************
540 ENGREVTOT =0
550 GTREV = 0
560 FOR I = 1 TO 12

```

\section*{Data Collection Program for Three Optional Rates (continued)}
```

50 GTREV = GTREV + AMONREVT (I)
580 NEXT I
590 REM**************************************************************************
600 REM CALCUIATE KWH REVENUE
610 REM***********************************************************************
6 2 0 ~ F O R ~ I ~ = ~ 1 ~ T O ~ 1 2 ~
6 3 0 ~ I F ~ ( S E A S O N S ~ = ~ 2 ) ~ A N D ~ ( ( I ~ < ~ 5 ) ~ O R ~ ( I ~ > ~ 9 ) ) ~ T H E N ~ G O T O ~ 6 8 0 ~
640 IF KWH(I) <= 400 THEN ENGREV (I) = KWH(I) * CHARGE (8)
650 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400* CHARGE(8)) + ((KWH(
I) - 400) * CHARGE (9))
660 IF KWH(I) > 800 THEN ENGREV (I) = (400* CHARGE (8)) + (400 * CHARGE(9)) +((KWH (
I) - 800)* CHARGE(10))
670 GOTO 750
6 8 0 ~ I F ~ K W H ( I ) ~ < = ~ 4 0 0 ~ T H E N ~ E N G R E V ( I ) ~ = ~ K W H ( X ) ~ * ~ C H A R G E ( 1 1 ) ~
690 IF KWH(I) > 400 AND KWH(I) <= 800 THEN ENGREV(I) = (400 * CHARGE(11)) + ((KW
H(I) - 400)* CHARGE(12))
700 IF KWH(I) > 800 THEN ENGREV (I) =(400* CHARGE(11)) +(400* CHARGE (12)) +((KWH
(I) - 800) * CHARGE(13))
710 GOTO 750
720 REM***********************************************************************
730 REM CALCULATE CUSTOMER CHARGE
740 REM***********************************************************************
750 CCREV(I) = CHARGE(14)*100
760 REM***********************************************************************
770 REM CALCULATE TOTAL MONTHLY BILL
780 REM***********************************************************************
790 AMONREVT(I) = (CCREV (I) + ENGREV (I))/100
8 0 0 ~ N E X T ~ I ~
10 REM**********************************************************************
820 REM CALCULATE ANNUAL TOTALS
830 REM**********************************************************************
840 ENGREVTOT = 0
850 GTREVA = 0
860 FOR I = 1 TO 12
30 GTREVA = GTREVA + AMONREVT(I)
880 NEXT I
890 IF GTREVA < GTREV THEN GTREV = GTREVA
900 IF GTREV < 0 THEN SUMGTREV\# = SUMGTREV\#+GTREV
910 GOTO 250
920 FOR I = 1 TO NFIELDS
930 PRINT \#3,CHARGE(I);
90 NEXT I
950 PRINT \#3,USING"\#\#\#\#\#\#\#\#\#.\#\#";SUMGTREV\#
50 PRINT \#3
970 OPEN "B:SAMPLE" FOR INPUT AS \#2
980 GOTO 170
990 END

```

APPENDIX D

RESIDUALS

Residuals for Linear 7 Variable Model
\begin{tabular}{|c|c|c|c|}
\hline O8S & ACTUAL & \[
\begin{aligned}
& \text { PREDICT } \\
& \text { VALUE }
\end{aligned}
\] & RESIDUAL \\
\hline 1 & -17383.4 & -25313.1 & 7929.8 \\
\hline 2 & -798. 1 & -13536. 4 & 12738.3 \\
\hline 3 & -24028. 5 & - 31653.9 & 7625.4 \\
\hline 4 & -14600.4 & -23358.8 & 8758.4 \\
\hline 5 & -12137.2 & -20277.9 & 8140.7 \\
\hline 6 & -8239.2 & -18795.0 & 10555.8 \\
\hline 7 & -6127.7 & -16704.5 & 10576.9 \\
\hline 8 & -233977 & -224860 & -9116.7 \\
\hline 9 & -6522.6 & 319.0 & -6841.6 \\
\hline 10 & -396.4 & 11506.9 & - 11903.2 \\
\hline 11 & -12226.0 & -5704.7 & -6521.2 \\
\hline 12 & -5538.3 & 2975.6 & . 7713.9 \\
\hline 13 & -1961.1 & 5102.5 & -7063.6 \\
\hline 14 & -3094.6 & 6511.3 & -9605. 8 \\
\hline 15 & - 1130.9 & 8497.2 & -9628.0 \\
\hline 16 & -187181 & -189250 & 2069.1 \\
\hline
\end{tabular}

Residuals for Linear 14 Variable Model

\author{
Residuals for Quadratic 7 Variable Model
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 085 & CHG 1 & CHG2 & CHG3 & CHG4 & CHG5 & CHG6 & CHG7 & _TYPE_ & REV & \(A C T\) & RESID \\
\hline 1 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & RESIDUAL & -1867.4 & -187181 & 1867.38 \\
\hline 2 & 1.1 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & RESIDUAL & -6953.2 & -119455 & 6953.21 \\
\hline 3 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & RESIDUAL & -7590.4 & - 136690 & 7590.43 \\
\hline 4 & 1.1 & 1.1 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & RESIDUAL & 94.7 & -69889 & 94.68 \\
\hline 5 & -0.8 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & -0.8 & restioual & -7359.0 & -100803 & 7359.04 \\
\hline 6 & 1.1 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & -0.8 & RESIDUAL & 3135.0 & -37669 & 3135.03 \\
\hline 7 & -0.8 & 1.1 & 1.1 & -0.8 & -0.8 & -0. 8 & -0.8 & RESIDUAL & 890.6 & -54129 & 890.58 \\
\hline 8 & 1.1 & 1.1 & 1.1 & -0.8 & -0.8 & -0.8 & -0.8 & RESIDUAL & 3015.2 & -13060 & 3015.23 \\
\hline 9 & -0.8 & -0.8 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & restiouna & -7198.7 & -98287 & 7198.68 \\
\hline 10 & 1.1 & -0.8 & -0.8 & 1.1 & -0. 8 & -0. 8 & -0.8 & RESIDUAL & 2163.0 & -46165 & 2163.05 \\
\hline 11 & -0.8 & 1.1 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & RESIDUAL & 2519.1 & -51349 & 2519.11 \\
\hline 12 & 1.1 & 1.1 & -0.8 & 1.1 & -0.8 & -0.8 & -0. 8 & RESIDUAL & 1587.5 & -23216 & 1587.47 \\
\hline 13 & -0.8 & -0.8 & 1.1 & 1.1 & -0.8 & -0.8 & -0.8 & resiounal & \(5 \overline{7} 0.8\) & -22358 & 5270.78 \\
\hline 14 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & -0. 8 & -0. 8 & RESIDUAL & -863.0 & -5903 & 863.02 \\
\hline 15 & -0.8 & 1.1 & 1.1 & 1.1 & -0.8 & -0. 8 & -0.8 & RESIDUAL & 487.5 & -7711 & 487.50 \\
\hline 16 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & -0.8 & -0.8 & RESIDUAL & -3640.6 & -2946 & 3640.57 \\
\hline 17 & -0.8 & -0.8 & -0.8 & -0.8 & 1.1 & -0.8 & -0.8 & RESIUUAL & -7364.3 & -136786 & 7364.28 \\
\hline 18 & 1.1 & -0.8 & -0. 8 & -0.8 & 1.1 & -0.8 & -0.8 & RESIDUAL & -811.2 & -69107 & 811.16 \\
\hline 19 & -0.8 & 1.1 & -0. 8 & -0. 8 & 1.1 & -0.8 & -0.8 & RESIDUAL & -3664.5 & -86294 & 3664.50 \\
\hline 20 & 1.1 & 1.1 & -0.8 & -0.8 & 1.1 & -0.8 & -0.8 & RESIDUAL & 7986.6 & -27214 & 7986.64 \\
\hline 21 & -0.8 & -0.8 & 1.1 & -0.8 & 1.1 & -0.8 & -0.8 & RESİDUAL & 671.8 & -56112 & 671.84 \\
\hline 22 & 1.1 & -0.8 & 1.1 & -0.8 & 1.1 & -0.8 & -0.8 & RESIDUAL & 3817.3 & - 12012 & 3817.32 \\
\hline 23 & -0.8 & 1.1 & 1.1 & -0.8 & 1.1 & -0.8 & -0.8 & RESIDUAL & 2384.9 & -25397 & 2384.86 \\
\hline 24 & 1.1 & 1.1 & 1.1 & -0.8 & 1.1 & -0.8 & -0.8 & RESIOUAL & -3751.9 & -4276 & 3751.91 \\
\hline 25 & -0.8 & -0.8 & -0.8 & 1.1 & 1.1 & -0.8 & -0.8 & RESIDUAL & 2490.5 & -49932 & 2490.50 \\
\hline 26 & 1.1 & -0.8 & -0.8 & 1.1 & 1.1 & -0.8 & -0.8 & RESIDUAL & 2724.4 & -18623 & 2724.38 \\
\hline 27 & -0.8 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & -0.8 & RESIDUAL & 4719.9 & - 19905 & 4719.87 \\
\hline 28 & 1.1 & 1.1 & -0.8 & 1. 1 & 1.1 & -0.8 & -0.8 & RESIDUAL & \(-2884.1\) & -10131 & 2884. 12 \\
\hline 29 & -0.8 & -0.8 & 1.1 & 1.1 & 1.1 & -0.8 & -0.8 & RESİDUAL & 1194.5 & -7000 & 1194.54 \\
\hline 30 & 1.1 & -0.8 & 1.1 & 1.1 & 1.1 & -0.8 & -0.8 & RESIDUAL & -4538.1 & -1829 & 4538.10 \\
\hline 31 & -0.8 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & -0. 8 & RESIDUAL & -4343.2 & -2530 & 4343.24 \\
\hline 32 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & -0.8 & RESIDUAL & 40.6 & -939 & 40.60 \\
\hline 33 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & 1.1 & -0.8 & RESİOUAL & -4615.2 & -136781 & 4615.17 \\
\hline 34 & 1.1 & -0.8 & -0.8 & -0. 8 & -0.8 & 1.1 & -0. 8 & RESIOUAL & -4554.9 & -72086 & 4554.87 \\
\hline 35 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & 1.1 & -0.8 & RESIDUAL & -5751.3 & -88943 & 5751.28 \\
\hline 36 & 1.1 & 1.1 & -0.8 & -0.8 & -0.8 & 1.1 & -0.8 & RESIDUAL & 4783.3 & . 27470 & 4783.25 \\
\hline 37 & -0.8 & -0.8 & 1.1 & -0.8 & -0.8 & 1.1 & -0.8 & RESIDUAL & -3739.9 & - 68065 & 3739.86 \\
\hline 38 & 1.1 & -0. 8 & 1.1 & -0.8 & -0.8 & 1.1 & -0.8 & RESIDUAL & 2990.5 & - 16872 & 2990.49 \\
\hline 39 & -0.8 & 1.1 & 1. 1 & -0.8 & -0.8 & 1.1 & -0.8 & RESIDUAL & 730.7 & -32410 & 730.74 \\
\hline 40 & 1.1 & 1.1 & 1.1 & -0.8 & -0.8 & 1. 1 & -0. 8 & RESIDUAL & -995.7 & -3370 & 995.69 \\
\hline 41 & -0.8 & -0.8 & -0.8 & 1.1 & -0.8 & 1.1 & -0.8 & REESIDUAL & -3313.1 & -52870 & 3313.15 \\
\hline 42 & 1.1 & -0.8 & -0.8 & 1.1 & -0.8 & 1.1 & -0.8 & RESIDUAL & 5307.3 & -9666 & 5307.26 \\
\hline 43 & -0.8 & 1.1 & -0. 8 & 1.1 & -0.8 & 1.1 & -0. 8 & RESIDUAL & 6764.8 & - 12812 & 6764.77 \\
\hline 44 & 1.1 & 1.1 & -0.8 & 1.1 & -0.8 & 1.1 & -0.8 & RESIDUAL & -2441.1 & -1131 & 2449.11 \\
\hline 45 & -0.8 & -0.8 & 1.1 & 1.1 & -0.8 & 1.1 & -0.8 & RESİOUAL & 3048.3 & -7078 & 3048.27 \\
\hline 46 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & 1.1 & -0.8 & RESIDUAL & -4681.8 & -396 & 4681.78 \\
\hline 47 & -0.8 & 1.1 & 1.1 & 1.1 & -0. 8 & 1.1 & -0.8 & RESIDUAL & -3156.9 & - 1094 & 3156.89 \\
\hline 48 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & 1.1 & -0.8 & RESIDUAL & -3171.2 & -392 & 3171.20 \\
\hline 49 & -0.8 & -0.8 & -0.8 & -0.8 & 1.1 & 1.1 & -0.8 & RESIDUAL & -4368.3 & -90981 & \(4 \overline{368.29}\) \\
\hline 50 & 1.1 & -0.8 & -0.8 & -0. 8 & 1.1 & 1.1 & -0. 8 & RESIDUAL & 3330.2 & - 30333 & 3330.16 \\
\hline 51 & -0.8 & 1.1 & -0.8 & -0.8 & 1.1 & 1.1 & -0. 8 & RESIDUAL & 874.6 & -46186 & 874.64 \\
\hline 52 & 1.1 & 1.1 & -0. 8 & -0.8 & 1.1 & 1.1 & -0. 8 & RESIOUAL & 4187.1 & -3621 & 4187.09 \\
\hline 53 & -0.8 & -0.6 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & RESIDUAL & -598.9 & -38602 & 598.88 \\
\hline 54 & 1.1 & -0.8 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & RESIDUAL & -312.3 & -5538 & 312.29 \\
\hline 55 & -0.8 & 1.1 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & RESIDUAL & -1049.8 & - 17292 & 1049.82 \\
\hline
\end{tabular}

Residuals for Quadratic 7 Variable Model (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OBS & CHG 1 & CHG2 & CHG3 & CHG4 & CHG5 & CHG6 & CHG7 & _TYPE_ & REV & ACT & RESID \\
\hline 56 & 1.1 & 1.1 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & RESIOUAL & . 4299.7 & -1461 & 4299.7 \\
\hline 57 & -0.8 & -0.8 & -0.8 & 1.1 & 1.1 & 1.1 & -0.8 & RESIDUAL & 4868.1 & - 16361 & 4868.1 \\
\hline 58 & 1.1 & -0.8 & -0.8 & 1.1 & 1.1 & 1.1 & -0.8 & RESIDUAL & -2692.7 & - 1024 & 2692.7 \\
\hline 59 & -0.8 & 1.1 & -0.8 & 1.1 & 1.1 & 1.1 & -0. 8 & RESIDUAL & -1.120.2 & -1793 & 1120.2 \\
\hline 60 & 1.1 & 1.1 & -0.8 & 1.1 & 1.1 & 1.1 & -0.8 & RESSİUAL & -8870.0 & -341 & 8870.0 \\
\hline 61 & -0. 8 & -0.8 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & RESIDUAL & -1842.4 & -2873 & 1842.4 \\
\hline 62 & 1.1 & -0. 8 & 1.1 & 1.1 & 1.1 & 1.1 & -0. 8 & RESIDUAL & -2006. 6 & -311 & 2006.6 \\
\hline 63 & -0. 8 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & RESIDUAL & -2534.9 & -798 & 2534.9 \\
\hline 64 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & RESİDUAL & 8956 & -307 & 8926.8 \\
\hline 65 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & -0.8 & 1.1 & RESIDUAL & -6293.5 & - 142237 & 6293.5 \\
\hline 66 & 1.1 & -0.8 & -0.8 & -0.8 & -0. 8 & -0.8 & 1.1 & RESIDUAL & -2205. 2 & -78273 & 2205.2 \\
\hline 67 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & -0.8 & 1.1 & RESIDUAL & -3261.0 & -91893 & 3261.0 \\
\hline 68 & 1.1 & 1.1 & -0.8 & -0.8 & -0.8 & -0.8 & 1.1 & RESIDUAL & 2402.4 & -40050 & 2402.4 \\
\hline 69 & -0.8 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & 1.1 & RESIDUAL & -1238.7 & -57531 & 1238.7 \\
\hline 70 & 1.1 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & 1.1 & RESIDUAL & 4205.6 & - 12383 & 4205.6 \\
\hline 71 & -0.8 & 1.1 & 1.1 & -0.8 & -0.8 & -0.8 & 1.1 & RESIDUAL & 5932.4 & -20837 & 5932.4 \\
\hline 72 & 1.1 & 1.1 & 1.1 & -0.8 & -0.8 & -0.8 & 1.1 & REड̇İUAL & -4409.8 & -5172 & 4409.8 \\
\hline 73 & -0.8 & -0.8 & -0.8 & 1.1 & -0.8 & -0.8 & 1.1 & RESIDUAL & -647.1 & -61091 & 647.1 \\
\hline 74 & 1.1 & -0.8 & -0.8 & 1.1 & -0.8 & -0.8 & 1.1 & RESIDUAL & 1892.3 & -28728 & 1892.3 \\
\hline 75 & -0.8 & 1. 1 & -0.8 & 1.1 & -0.8 & -0.8 & 1.1 & RESIDUAL & 2284.6 & -29842 & 2284.6 \\
\hline 76 & 1.1 & 1.1 & -0.8 & 1.1 & -0.8 & -0.8 & 1.1 & RESTOUAL & 920.9 & -15078 & 920.9 \\
\hline 77 & -0.8 & -0.8 & 1.1 & 1.1 & -0.8 & -0.8 & 1.1 & RESIDUAL & 1330.1 & -7873 & 1330.1 \\
\hline 78 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & -0.8 & 1.1 & RESIDUAL & - 3380.9 & -2931 & 3380.9 \\
\hline 79 & -0.8 & 1.1 & 1.1 & 1.1 & -0.0 & -0.8 & 1.1 & RESIDUAL & -4669.2 & -3344 & 4669.2 \\
\hline 80 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & -0.8 & 1.1 & RESTİUAL & 1413.5 & -1305 & 1413.5 \\
\hline 81 & -0.8 & -0.8 & -0.8 & -0. 8 & 1.1 & -0.8 & 1.1 & RESIDUAL & -4558.6 & -92181 & 4558.6 \\
\hline 82 & 1.1 & -0.8 & -0.8 & -0.8 & 1.1 & -0.8 & 1.1 & RESIDUAL & 5401.4 & -34032 & 5401.4 \\
\hline 83 & -0.8 & 1.1 & -0.8 & -0.8 & 1.1 & -0.8 & 1.1 & RESIDUAL & 6604.2 & -43130 & 6604.2 \\
\hline 84 & 1.1 & 1.1 & -0.8 & -0.8 & 1.1 & -0.8 & 1.1 & - \(\overline{\text { E SI }}\) SUAL & -255.2 & -15496 & 255.2 \\
\hline 85 & -0.8 & -0.8 & 1.1 & -0.8 & 1.1 & -0.8 & 1.1 & RESIDUAL & 4594.2 & -22609 & 4594.2 \\
\hline 86 & 1.1 & -0.8 & 1.1 & -0.8 & 1.1 & -0.8 & 1.1 & RESIDUAL & -3909.7 & -3095 & 3909.7 \\
\hline 87 & -0.8 & 1.1 & 1.1 & -0. 8 & 1.1 & -0.8 & 1.1 & RESIDUAL & 580.7 & -6523 & 580.7 \\
\hline 88 & 1.1 & 1.1 & 1.1 & -0.8 & 1.1 & -0.8 & 1.1 & RESIDUAL & -8610.6 & -1393 & 8610.6 \\
\hline 89 & -0.8 & -0.8 & -0.8 & 1.1 & 1.1 & -0.8 & 1.1 & RESIDUAL & 4607.7 & -24742 & 4607.7 \\
\hline 90 & 1.1 & -0. 8 & -0.8 & 1.1 & 1.1 & -0. 8 & 1.1 & RESIDUAL & -893.5 & -12105 & 893.5 \\
\hline 91 & -0. 8 & 1.1 & -0.8 & 1.1 & 1.1 & -0. 8 & 1.1 & RESIDUAL & -1771.3 & - 12226 & 1771.3 \\
\hline 92 & 1.1 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & 1.1 & RESIOUAL & -848.1 & -6861 & 848.1 \\
\hline 93 & -0.8 & -0.8 & 1.1 & 1.1 & 1.1 & -0.8 & 1.1 & RESIOUAL & -4720.0 & -2060 & 4720.0 \\
\hline 94 & 1.1 & -0.8 & 1.1 & 1.1 & 1.1 & -0.8 & 1.1 & RESIDUAL & -1427.4 & -800 & 1427.4 \\
\hline 95 & -0.8 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & 1.1 & RESIDUAL & -4612.5 & . 847 & 4612.5 \\
\hline 96 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & -0.8 & 1.1 & REESİDUAL & 11647.5 & -317 & 11647.5 \\
\hline 97 & -0.8 & -0. 8 & -0.8 & -0. 8 & -0.8 & 1.1 & 1.1 & RESIDUAL & -5646.0 & -93671 & 5646.0 \\
\hline 98 & 1.1 & -0.8 & -0.8 & -0.8 & -0.8 & 1.1 & 1.1 & RESIDUAL & 1831.8 & - 34494 & 1831.8 \\
\hline 99 & -0.8 & 1.1 & -0.8 & -0.8 & -0.8 & 1.1 & 1.1 & RESIDUAL & 850.7 & -47103 & 850.7 \\
\hline 100 & 1.1 & 1.1 & -0.8 & -0.8 & -0.8 & 1.1 & 1.1 & RESTDUAL & 4202.6 & -5749 & 4202.6 \\
\hline 101 & -0.8 & -0.8 & 1.1 & -0.8 & -0.8 & 1.1 & 1.1 & RESIDUAL & 698.5 & -31704 & 698.5 \\
\hline 102 & 1.1 & -0.8 & 1.1 & -0.8 & -0. 8 & 1.1 & 1.1 & RESIDUAL & 152.3 & -723 & 152.3 \\
\hline 103 & -0.8 & 1.1 & 1.1 & -0.8 & -0.8 & 1.1 & 1.1 & RESIOUAL & 2657.9 & -7463 & 2657.9 \\
\hline 104 & 1.1 & 1.1 & 1.1 & -0.8 & -0.8 & 1.1 & 1.1 & RESIDUAL & -7731.7 & -22 & 7731.7 \\
\hline 105 & -0. 8 & -0.8 & -0.0 & 1.1 & -0. 8 & 1.1 & 1.1 & RESIDUAL & 3625.3 & -20517 & 3625.3 \\
\hline 106 & 1.1 & -0.8 & -0. 0 & 1.1 & -0.8 & 1.1 & 1.1 & RESIDUAL & 703.2 & -1791 & 703.2 \\
\hline 107 & -0. 8 & 1.1 & -0.8 & 1.1 & -0. 8 & 1.1 & 1.1 & RESIDUAL & 1103.8 & -1961 & 1103.8 \\
\hline 108 & 9.1 & 1.1 & -0.8 & 1.1 & -0.8 & 1.1 & 1.1 & RESIDUAL & -5039.7 & -154 & 5039.7 \\
\hline 109 & -0. 8 & -0.8 & 1.1 & 1.1 & -0.8 & 1.9 & 1.1 & RESIDUAL & -3117.3 & -47 & 3117.3 \\
\hline 110 & 1.1 & -0.8 & 1.1 & 1.1 & -0.8 & 1.1 & 1.1 & RESIDUAL & -4545.9 & 0 & 4545.9 \\
\hline
\end{tabular}

Residuals for Quadratic 7 Variable Model
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OBS & CHG 1 & CHG2 & CHG3 & CHG4 & Chas & CHG6 & CHG7 & _TYPE_ & REV & \(A C T\) & RES 10 \\
\hline 111 & -0.800 & 1.100 & 1.100 & 1. 100 & -0.800 & 1.100 & 1.100 & RESIDUAL & -6357.3 & 0 & 6357.3 \\
\hline 112 & 1.100 & 1.100 & 1.100 & 1. 100 & -0. 000 & 1.100 & 1. 100 & RESIDUAL & 5863.2 & 0 & 5863.2 \\
\hline 113 & -0.800 & -0.800 & -0.800 & -0.800 & 1. 100 & 1. 100 & 1. 100 & RESIDUAL & - 196.6 & -50239 & 196.6 \\
\hline 114 & 1.100 & -0.800 & -0.800 & -0.800 & 1. 100 & 1. 100 & 1.100 & RESIDUAL & 4965.1 & -5065 & 4965.1 \\
\hline 115 & -0.800 & 1.100 & -0.800 & -0.800 & 1.100 & 1.100 & 1.100 & RESIDUAL & 7175.2 & -12219 & 7175. 2 \\
\hline 116 & 1.100 & 1. 100 & -0.800 & -0.800 & 1. 100 & 1. 100 & 1.100 & RESIDUAL & -7132.0 & -210 & 7132.0 \\
\hline 117 & -0.800 & -0.800 & 1.100 & -0.800 & 1. 100 & 1.100 & 1. 100 & RESIDUAL & 819.0 & -12833 & 819.0 \\
\hline 118 & 1.100 & -0.800 & 1. 100 & -0.800 & 1.100 & 1. 100 & 1.100 & RESIDUAL & -6189.3 & 0 & 6189.3 \\
\hline 119 & -0.800 & 1.100 & 1.100 & -0.800 & 1.100 & 1.100 & 1.100 & RESTİUAL & -1847.9 & -264 9 & 1847.9 \\
\hline 120 & 1. 100 & 1.100 & 1. 100 & -0.100 & 1. 100 & 1. 100 & 1. 100 & RESIDUAL & -5351.7 & 0 & 5351.7 \\
\hline 121 & -0.800 & -0. 800 & -0.800 & 1. 100 & 1. 100 & 1. 100 & 1.100 & RESIDUAL & 1328.0 & -2058 & 1328.0 \\
\hline 122 & 1. 100 & -0.800 & -0.800 & 1. 100 & 1.100 & 1. 100 & 1. 100 & RESIOUAL & -6690.8 & -115 & 6690.8 \\
\hline 123 & -0.800 & 1.100 & -0.800 & 1.100 & 1. 100 & 1.100 & 1.100 & RESIOUAL & -0394.7 & -126 & 8394.7 \\
\hline 124 & 1.100 & 1.100 & -0.800 & 1. 100 & 1. 100 & 1. 100 & 1.100 & RESIDUAL & -4536.6 & -3 & 4536.6 \\
\hline 125 & -0.800 & -0. 200 & 1.100 & 1. 100 & 1. 100 & 1. 100 & 1.100 & RESIDUAL & -4610.3 & -15 & 4610.3 \\
\hline 126 & 1. 100 & -0.800 & 1. 100 & 1.100 & 1. 100 & 1. 100 & 1.100 & RESIDUAL & 5615.2 & 0 & 5615.2 \\
\hline 127 & -0.800 & 1.100 & 1.100 & 1.100 & 1.100 & 1.100 & 1.100 & RESIDUAL & 1540.7 & 0 & 1540.7 \\
\hline 128 & 1.100 & 1.100 & 1. 100 & 1. 100 & 1.100 & 1. 100 & 1.100 & RESIDUAL & 25447.1 & 0 & 25447.1 \\
\hline 129 & -1.682 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & RESIDUAL & 733.6 & -59960 & 733.6 \\
\hline 130 & 1.682 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & RESIDUAL & -143.7 & 0 & 143.7 \\
\hline 131 & 0.000 & -1.682 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & CESIDUAL & 4272.2 & -44698 & 4272.2 \\
\hline 132 & 0.000 & 1.682 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & RESIDUAL & 3542.2 & 0 & 3542.2 \\
\hline 133 & 0.000 & 0.000 & -1.682 & 0.000 & 0.000 & 0.000 & 0.000 & RESIDUAL & -3696.1 & -77512 & 3696.1 \\
\hline 134 & 0.000 & 0.000 & 1.682 & 0.000 & 0.000 & 0.000 & 0.000 & RESIDUAL & -3729.2 & 0 & 37292 \\
\hline 135 & 0.000 & 0.000 & 0.000 & -1.682 & 0.000 & 0.000 & 0.000 & RESTOUAL & -3743.9 & .78726 & 3743.9 \\
\hline 136 & 0.000 & 0.000 & 0.000 & 1.682 & 0.000 & 0.000 & 0.000 & RESIDUAL & -4447.3 & 0 & 4447.3 \\
\hline 137 & 0.000 & 0.000 & 0.000 & 0.000 & -1.682 & 0.000 & 0.000 & RESIDUAL & 4269.1 & . 44613 & 4269.1 \\
\hline 138 & 0.000 & 0.000 & 0.000 & 0.000 & 1.682 & 0.000 & 0.000 & RESIDUAL & 3604.2 & 0 & 3604. 2 \\
\hline 139 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & -1.682 & 0.000 & RESIDUAL & 3200.3 & -47671 & 3200.3 \\
\hline 140 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.682 & 0.000 & RESIDUAL & 3518.8 & 0 & 3518.8 \\
\hline 141 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & -1.682 & RESIDUAL & 5157.0 & -40368 & 5157.0 \\
\hline 142 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.682 & RESIDUAL & 4804. 5 & 0 & 4804.5 \\
\hline 143 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & RESIDUAL & 18994.8 & 0 & 18994.8 \\
\hline 144 & -1.000 & -1.000 & -1.000 & -1.000 & -1.000 & -1.000 & - 1.000 & RESIDUAL & 15418.6 & -233977 & 15418.6 \\
\hline 145 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & -3038.6 & -162681 & 3038.6 \\
\hline 146 & -1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & -571.9 & -180828 & 571.9 \\
\hline 147 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & -3958.8 & -109638 & 3958.8 \\
\hline 148 & -1.000 & -1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & -6239.8 & - 142025 & 6239.8 \\
\hline 149 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & -3414.6 & -71798 & 3414.6 \\
\hline 150 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & -3490.5 & -89848 & 3490.5 \\
\hline 151 & 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & -1.000 & REESİDUAL & 5161.4 & -28970 & 5161.4 \\
\hline 152 & -1.000 & -1.000 & -1.000 & 1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & -7459.8 & -140366 & 7459.8 \\
\hline 153 & 1.000 & -1.000 & -1.000 & 1.000 & -1.000 & -1.000 & -1.000 & RESidual & -250.7 & -76702 & 250.7 \\
\hline 154 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & -2585 4 & -87398 & 2585.4 \\
\hline 155 & 1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & -1.000 & REESIOUAL & 1072.6 & -42461 & 1072.6 \\
\hline 156 & -1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & 203.0 & -50573 & 203.0 \\
\hline 157 & 1.000 & -1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & 3230.3 & -13441 & 3230.3 \\
\hline 158 & -1.000 & 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & 4291.2 & -18103 & 4291.2 \\
\hline 159 & 1.000 & 1.000 & 1.000 & 1.000 & -1.000 & -1.000 & -1.000 & RESIDUAL & -3839.1 & -7305 & 3839.1 \\
\hline 160 & -1.000 & -1.000 & -1.000 & - 1.000 & 1.000 & -1.000 & - 1.000 & RESIDUAL & -267. 8 & - 180929 & 267.8 \\
\hline 161 & 1.000 & -1.000 & -1.000 & - 1.000 & 1.000 & -1.000 & - 1.000 & RESIDUAL & -5776.6 & - 109633 & 5776.6 \\
\hline 162 & -1.000 & 1.000 & -1.000 & -1.000 & 1.000 & -1.000 & -1.000 & RESIDUAL & -5817.5 & - 127780 & 5817.5 \\
\hline 163 & 1.000 & 1.000 & -1.000 & \(\div 1.000\) & 1.000 & -1.000 & -1.000 & besioual & 2739.5 & -57595 & 2739.5 \\
\hline 164 & -1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & RESIDUAL & -1936.2 & -90296 & 1936.2 \\
\hline 185 & 1.000 & -1.000 & 1.000 & -1.000 & 1.000 & -1.000 & -1.000 & RESIDUAL & 4302.3 & -29604 & 4302.3 \\
\hline
\end{tabular}

Residuals for Quadratic 7 Variable Model
(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OBS & CHG 1 & CHG2 & CHG3 & CHG4 & CHG5 & CHG6 & CHG7 & _TYPE_ & REV & ACT & RESID \\
\hline 166 & -1 & 1 & 1 & -1 & 1 & -1 & - 1 & RESIDUAL & 3025.6 & -46347 & 3025.64 \\
\hline 167 & 1 & 1 & 1 & - 1 & 1 & - 1 & - 1 & RESIDUAL & -1011.2 & - 11107 & 1011.24 \\
\hline 168 & -1 & -1 & -1 & 1 & 1 & -1 & - 1 & RESIDUAL & -4335. 1 & -87594 & 4335.12 \\
\hline 169 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & RES! DUAL & 3631.9 & -36120 & 3631.90 \\
\hline 170 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & Residual & 4826.2 & -40780 & 4826.24 \\
\hline 171 & 1 & 1 & - 1 & 1 & 1 & - 1 & - 1 & RESIDUAL & -2520.3 & -19796 & 2520.27 \\
\hline 172 & -1 & -1 & 1 & 1 & 1 & - 1 & -1 & RESIDUAL & 3846.4 & -18591 & 3846.41 \\
\hline 173 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & RESIDUAL & -3789.3 & -5071 & 3789.28 \\
\hline 174 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & RESIOUAL & -2463.2 & -6960 & 2463.18 \\
\hline 175 & 1 & 1 & 1 & 1 & 1 & - 1 & - 1 & RESIDUAL & -4340.1 & -2857 & 4310.14 \\
\hline 176 & -1 & - 1 & - 1 & -1 & -1 & 1 & - 1 & RESIDUAL & 5628.6 & -178699 & 5628.58 \\
\hline 177 & 1 & -1 & -1 & -1 & -1 & 1 & -1 & RESIDUAL & -5322.5 & -108958 & 5322.51 \\
\hline 178 & -1 & 1 & -1 & -1 & -1 & 1 & -1 & REESIDUAL & - \(366 \overline{2.7}\) & - 126874 & 3662.74 \\
\hline 179 & 1 & 1 & - 1 & -1 & - 1 & 1 & -1 & RESIDUAL & - 1260.0 & -58955 & 1259.99 \\
\hline 180 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & RESIDUAL & - 1636.5 & -98980 & 1636.46 \\
\hline 181 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & RESIDUAL & 1142.2 & -37859 & 1142.16 \\
\hline 182 & -1 & 1 & 9 & - 1 & -1 & 1 & -1 & RESİDUAL & 494.1 & -55444 & 494.13 \\
\hline 183 & 1 & 1 & 1 & - 1 & - 1 & 1 & -1 & Resioual & 3143.1 & -9629 & 3143.05 \\
\hline 184 & -1 & -1 & -1 & 1 & - 1 & 1 & -1 & RESIDUAL & -7151.7 & -87862 & 7151.72 \\
\hline 185 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & RESIDUAL & 3545.8 & -29770 & 3545.76 \\
\hline 186 & -1 & 1 & -1 & 1 & -1 & 1 & - 1 & RESIDUAL & 7867.9 & -38772 & 1867.92 \\
\hline 187 & 1 & 1 & - 1 & 1 & -1 & 1 & -1 & RESIDUAL & 2293.3 & -6128 & 2293.28 \\
\hline 188 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & RESIDUAL & 3323.0 & -21882 & 3323.04 \\
\hline 189 & 1 & -1 & 1 & 1 & \(-1\) & 1 & -1 & RESIDUAL & -637.2 & -798 & 637.18 \\
\hline 190 & -1 & 1 & 1 & 1 & -1 & 1 & -1 & RESİDUAL & 1184.4 & -3662 & 1184.41 \\
\hline 191 & 1 & 1 & 1 & 1 & - 1 & 1 & -1 & RESIDUAL & -5655.7 & -674 & 5695.73 \\
\hline 192 & - 1 & -1 & -1 & -1 & 1 & 1 & -1 & RESIDUAL & -1194.4 & -128244 & 1194.44 \\
\hline 193 & 1 & -1 & -1 & -1 & 1 & 1 & -1 & RESIDUAL & -2030. 2 & -61335 & 2030.25 \\
\hline 194 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & RESİUAL & -2320.6 & -78694 & 2320.61 \\
\hline 195 & 1 & 1 & -1 & - 1 & 1 & 1 & -1 & RESIDUAL & 5559.3 & - 18246 & 5559.27 \\
\hline 496 - & -1 & -1 & 1 & -1 & 1 & 1 & -1 & RESIDUAL & 898.4 & . 60475 & 898.35 \\
\hline 197 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & RESIDUAL & 1379.7 & -14600 & 1379.73 \\
\hline 198 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & RESIDUAL & 781.9 & -29627 & 781.89 \\
\hline 199 & 1 & 1 & 1 & - 1 & 1 & 1 & -1 & RESIDUAL & -3575.5 & -3768 & 3576.53 \\
\hline 200 & -1 & -1 & -1 & 1 & 1 & 1 & - 1 & RESIDUAL & -66.0 & -42585 & 68.03 \\
\hline 201 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & RESIDUAL & 3096.9 & -4975 & 3096.88 \\
\hline 202 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & RESIDUAL & 4579.0 & -8310 & 4578.98 \\
\hline 203 & 1 & 1 & - 1 & 1 & 1 & 1 & - 1 & RESIDUAL & -7542.6 & - 1161 & 7542.65 \\
\hline 204 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & RESIDUAL & 368.8 & . 7954 & 368.83 \\
\hline 205 & 1 & -1 & 1 & 1 & 1 & 1 & -1 & RESIDUAL & -4290.8 & -518 & 4290.79 \\
\hline 206 & -1 & 1 & 1 & 1 & 1 & 1 & -1 & RESIDUAL & -3522.1 & -1927 & 3522.13 \\
\hline 207 & 1 & 1 & 1 & 1 & 1 & 1 & - 1 & RESIDUAL & 1002.4 & -482 & 1002.44 \\
\hline 208 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & Residual & 2392.1 & -186459 & 2392.13 \\
\hline 209 & 1 & -1 & -1 & \(-1\) & -1 & -1 & 1 & RESIDUAL & -3175.6 & -116608 & 3175.56 \\
\hline 210 & -1 & 1 & -1 & - 1 & -1 & -1 & 1 & RESIOUAL & -3769.1 & -133345 & 3769.09 \\
\hline 211 & 1 & 1 & -1 & -1 & - 1 & -1 & 1 & RESIDUAL & -152.6 & -69486 & 152.59 \\
\hline 212 & -1 & -1 & 1 & - 1 & -1 & -1 & 1 & RESIDUAL & -6192.4 & -94972 & 6192.36 \\
\hline 213 & 1 & -1 & 1 & -1 & - 1 & -1 & 1 & RESIDUAL & 4886.2 & -30825 & 4886.16 \\
\hline 214 & -1 & 1 & 1 & -1 & -1 & - 1 & 1 & KESIOUAL & 3579.2 & -45637 & 3579.19 \\
\hline 215 & 1 & 1 & 1 & - 1 & -1 & - 1 & 1 & RESIDUAL & -626.8 & - 11950 & 626.83 \\
\hline 216 & -1 & - 1 & -1 & 1 & - 1 & -1 & 1 & RESIDUAL & -3023. 2 & -96135 & 3023.17 \\
\hline 217 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & RESIDUAL & 292.1 & -50698 & 292.14 \\
\hline 278 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & CESİDUAL & 1065.1 & -53818 & 1065.11 \\
\hline 219 & 1 & 1 & - 1 & 1 & - 1 & -1 & 1 & RESIDUAL & -459.4 & -28397 & 459.38 \\
\hline 220 & -1 & -1 & 1 & 1 & - 1 & -1 & 1 & RESIDUAL & 6073.2 & -18446 & 6073.25 \\
\hline
\end{tabular}

Residuals for Quadratic 7 Variable Model
(continued)

\section*{Residuals for Quadratic 7 Variable Model (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OBS & CHG 1 & CHG2 & CHG3 & CHG4 & CHG5 & CHG6 & CHG7 & _TYPE_ & REV & \(A C T\) & RESID \\
\hline 276 & 0 & 0 & -3.364 & 0.000 & 0.000 & 0.000 & 0.000 & RESIDUAL & 5709.9 & -155023 & 5709.9 \\
\hline 277 & 0 & 0 & 3.364 & 0.000 & 0.000 & 0.000 & 0.000 & RESIDUAL & 5643.7 & 0 & 5643.7 \\
\hline 278 & 0 & 0 & 0.000 & -3.364 & 0.000 & 0.000 & 0.000 & RESIDUAL & 6063.1 & - 157453 & 6063.1 \\
\hline 279 & 0 & 0 & 0.000 & 3.364 & 0.000 & 0.000 & 0.000 & RESIDUAL & 4656.5 & 0 & 4656.5 \\
\hline 280 & 0 & 0 & 0.000 & 0.000 & -3.364 & 0.000 & 0.000 & RESIDUAL & 4040.3 & -89226 & 4040.3 \\
\hline 281 & 0 & 0 & 0.000 & 0.000 & 3.364 & 0.000 & 0.000 & RESIDUAL & 2710.6 & 0 & 2710.6 \\
\hline 282 & 0 & 0 & 0.000 & 0.000 & 0.000 & -3.364 & 0.000 & RESIDUAL & 3806.8 & -95343 & 3806.8 \\
\hline 283 & 0 & 0 & 0.000 & 0.000 & 0.000 & 3.364 & 0.000 & RESIDUAL & 4443.9 & 0 & 4443.9 \\
\hline 284 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 & -3.364 & RESIDUAL & 3659.3 & -80736 & 3659.3 \\
\hline 285 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 & 3.364 & RESIDUAL & 2954.2 & 0 & 2954.2 \\
\hline 286 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & RESIDUAL & 18994.8 & 0 & 18994.8 \\
\hline
\end{tabular}

\title{
2 \\ VITA \\ Donald Wayne Fry \\ Candidate for the Degree of \\ Master of Science
}

Thesis: THE USE OF MULTIPLE REGRESSION ANALYSIS AND RESPONSE SURFACE TECHNIQUES IN THE DESIGN OF OPTIONAL NON-DEMAND ELECTRIC UTILITY RATES

Major Field: General Engineering
Biographical:
Personal Data: Born in Nowata, Oklahoma, April 4, 1955, the son of Mr. and Mrs. B.G. Fry.

Education: Graduated from Memorial High School, Tulsa, Oklahoma, in May, 1973; received Bachelor of Science degree in Mathematics from University of Tulsa in 1979; received Bachelor of Science degree in Systems Engineering from University of Tulsa in 1979; completed requirements for the Master of Science degree at Oklahoma State University in July, 1987.

Professional Experience: Rate Analyst, Public Service Company of Oklahoma, 1980-1982; Pricing Systems Specialist, Rate Engineer, Load Research and Information Systems Specialist, Public Service Company of Oklahoma, 1984-1987.```

