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CHAPTER I
INTRODUCTION

A generalized inverse static equilibrium analysis
procedure has been developed in this study. The concept of
virtual work principle has been conveniently utilized to
analyze the equilibrium conditions of planar mechanisms.

The use of virtual work principle permits a generalized
approach to static equilibrium analysis, which otherwise
would be extremely cumbersome.

This study has been conducted to supplement the existing
dynamic analysis of planar mechanisms program, Dado (1986)
and to present a complete kinematic, dynamic and static
analysis package for planar mechanisms. In due course the
status of the dynamic analysis program has also been updated
as prerequisite_to accomodate interactive graphics, user
friendliness and the change of the computer system from
HP9000 workstation to the Silicon Graphics Iris 3030
wvorkstation.

Thus the package can now perform kinematic, dynamic and
static analysi=s of planar mechanisms, with complete graphics
capability and interactiveness. Inverse static equilibrium
analysis being the theme of this work, a survey of the past

work in this area has been accomplished. The earliest work



in this field had been carried out by Livermore (1963). It
dealt with the analysis of equilibrium configurations of
mechanisms. IMP developed by Sheth and Uicker (1972) deals
with the computer aided design of mechanical systems and has
the capability of conducting static equilibrium analysis of
planar mechanisms. Both the above discussed technigques have
been based on the minimum potential energy principle.

Besides these projects, other researchers have worked on
similar problems. ADAMS created by Orlandea, Chase and
Calahan and the package for kinematic, dynamic and static
analysis developed by Amin (1979) deal in detail with the
static equilibrium analysis using the vector mechanics
approach, which turns out to be very cumbersome to use as
far as the convergence of the numerical solution of the
problem goes. Study of static force analysis carried out by
Razi (1963) using the virtual work principle, as employed
here, in this study, is not capable of conducting inverse
static equilibrium analysis, but performs the forward static
force analysis. In this manuscript, the effort has been made
to emphasize the use of virtual work principle in
equilibrium analysis.

The chapter that follows discusses the existing features
of the the dynamic analysis of planar mechanisms as review
and to illustrate the improvements carried out on it. The
chapter III deals with the inverse static equilibrium
analysis in detail, including the method of generalization.

The chapter VI deals with the modeling method used in the



program and the input data structure. The chapter V
illustrates the applications of the analysis, with examples
solved using the same. The chapter VI is the summary and

conclusion of this study.



CHAPTER II

A REVIEW OF THE DYNAMIC ANALYSIS OF

PLANAR MECHANISMS

This chapter briefly reviews the techniques used by the
dynamic analysis of planar mechanisms program and elaborates
the new improved structure of the program. The new structure
of the program was given shape to accommodate graphics and
the inverse static equilibrium analysis. An example in
chapter V illustrates the new structure of the program, the
complete details of the new structure are available in the

Appendix A.

Kinematic Analysis

Kinematic analysis as the title implies emphasizes on
position, velocity, and acceleration analysis of the
mechanism, it is important because of its application in
other sections of the program, besides the vitality of the
analysis itself. In this particular analysis the value of
the generalized coordinates are determined at an instant of
time, with its first and second derivatives, thus arriving
at the required value. The position, velocity and
acceleration of specified points are also determined using

the above generated data. The procedure used for analysis



in brief is that the number of constraint equations and the
varying coordinates are equal, so the relation between the
varying coordinates and the constraints are partially
differentiated with respect to the varying coordinates and
time, to provide the solution and complete the kinematic
analysis. The complex number approach has been used for the

kinematic analysis.:

Dynamic Analysis

In dynamic analysis the aim is to solve for the
kinematic parameters along with the inertial loads, and
compute the joint’s relations, elemental internal loads and
element deflections. The dynamic analysis is of two types
forward and inverse. By forward, it means that the
mechanism is driven by known motion generators and in case
of the inverse dynamics the motion generators are known
functions of time or other parameters. In forward dynamic
analysisgs the finite line element technique is used. The
mechanism is converted to a line element model and the
principles of finite element are used to compute the
required results. In case of the inverse dynamics the
procedure used here is that of numerical integration of the

equations of motion.

Static Analysis

The goal of the static analysis is to determine the



final equilibrium position of the mechanism. If the
configuration of the mechanism is known and the required
parameters are the equilibrium forces the analysis is termed
as forward or forward static force analysis and in case of
unknown configuration and known forces, it is called inverse
analysis or inverse static equilibrium analysis. In this
analysis, the forward analysis has been derived from the
forward dynamic analysis and employes the same, finite line
element technique. The inverse static equilibrium analysis
has been incorporated by this study, it employes the virtual
work principle and has been discussed in detail in the later
chapters of this manuscript. As a final comment on dynamic
analysis, it could be said that the new version has not
changed the mathematical approach of the original method,
but the presentation to the user has been improved and

graphics capability has been added.



CHAPTER III

THE INVERSE STATIC EQUILIBRIUM ANALYSIS

The static equilibrium analysis is required in many
places as part of the design process of mechanisms. Relevant
examples would be a car hood mechanism, which operates in
two static equilibrium modes and any mechanical toggle
switch mechanism.

To further emphasize the importance of the inverse
static equilibrium analysis, consider a robot in any
arbitrary position, the action of the gravitational force on
the robot’s links would tend to collapse the robot. The
driving and locking capability provided by the motors at the
joints of the mechanism have to counter act the gravity pull
to keep the robot in its position, in equilibrium. The
inverse static analysis has the capability to analyze such
systems to determine the equilibrium position to be reached
by the mechanizsm. The aim of this chapter is to discuss the
different techniques available for inverse static
equilibrium analysis for planar mechanisms and their
applications.

The inverse static equilibrium problems can be attacked
in two ways. The first is the vector statics approach and

the second method is the analytical statics theory, using



the wvirtual work principle.

Vector Statics

If the resultant force vector and the resultant moment
vector about any point applied to a rigid body wvanish then
the body is in a state of equilibrium. By the elementary
laws of mechanics, if a body is initially at rest under the
action of a null force gystem, then it will remain to be in
the same state of equilibrium.

In the vector statics approach it is required to
consider each rigid body of the system in question
separately as a free body and generate the equations of
equilibrium for each body. In case of complex systems
consisting of many bodies the process turns out to be
cumbersome. fo exemplify the method consider a four bar
linkage as shown in fig. (1), where the horizontal and
vertical forces are V and H, acting at the midpoint of links
AB and BC. Thus the aim’is to find the equilibrium
configuration of the mechanism under the influence of the
given forces. Mathematically the need is to develop a
relationship -

F(H,V,38,,28:,83) = 0 (1)
and this being supplemented by loop closure equations -

L 2)

a, sin8, + ap, sinB, + ai; =inb;

0 (3)

a, cosf, + a. cosb: + as cosb;
The set of equations are in order to solve for the

values of H and V.
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This approach leads to the creation of three
equations for each of the free bodies in question. In
case of the four bar mechanism this totals up to nine
equations, in addition the two loop closure equations,
forming a set of eleven equations to be solved.

For the above stated example, the first three of the
nine equations can be stated as ( the others are
identical ) -

2 X = Xa + H+ Xo =0
2 Y = Ya + ¥ =0

ZMa = H a1/2 sinB: + X» a1 8inb: + ¥» a1 cosB: = O

Thus the eleven equations lead to eleven unknowns
namely Xa, Ya, Xo, Yo, X0, Yo, Xa, Ya, 61, 62, and 6s.
These unknowns have to be determined for the values of H
and V effective on the system.

This approach, thus seems to be a longer procedure
to be used for analysis, though the main advantage of
this technique is in the fact that it is easy to

"generalize, however difficulty arises in the solution

of the large set of nonlinear equations it creates.

Analytical Statics

The analytical statics rests on the principle of virtual
work. In this study the inverse static equilibrium analysis
is based on this technique. This theory has therefore been
discussed in great detail to illustrate its use.

If a mechanical system, with lagrangian coordinates
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2, is subjected to a set of kinematic constraints of the

form -
£, = ( 8,,%,83,84,. . - .24y ) =0 (4)
where
i=1,2 3 .. ., number of members
M = degrees of freedom .

Then the lagrangian velocities &; must satisfy -

M L]
fg = a.fl/a §J §J = 0 (3)

Any of the £; set, which will satisfy the above
equation are termed as virtual velocities and the

infinitesimal displacements created by the velocities

&2y = =; &t (6)
in infinitesimal time increment &t are called virtual
displacements, which satisfy the equation below.

M

éf, = L 9£,/9%8, é62; = 0O (7)
j=1

In a gystem of M degrees of freedom, the numerical value
of M is the number of generalized coordinates and the
remaining N lagrangian coordinates are called the secondary
coordinates.

no. of lagrangian coordinates = M + N

Thus considering the gqu generalized coordinates and the

2y secondary coordinates, the eqgs. (4), (3), and (6)

transform to -

£f,.(8,q) = 0 (8)
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N . M .
E3f1 /a§_‘ §J = - L afl /aq_, qj (9)
j=1 j=1
N M
r af; /a§_, 6§J = - 5 aft /an 6qJ (10)
j=1 j=1

The last equation of the above set implies that the
secondary virtual displacements 6%; may be calculated using
the primary or generalized coordinate’s virtual
displacements, Paul (1979).

The term virtual in virtual displacement or velocities
does not necessarily coincide with the actual displacements
or velocities, which the coordinate of the system
experiences, but are test quantities used to probe the
system for results. The following equations expresses the
velocity components (§1,§‘) of a typical particle P, as a

linear combination of the generalized velocities of the form.

M
. = I a, (11)

vhere U,; and V,; depend on the mechanisms instant
configuration.
Redefining the above equation the following conclusion

can be arrived at -

6}(1 M UtJ
= T 5q, (12)

6}’1 J 1 V;J

Therefore any virtual velocity (;l,§,) satisfying the
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eq. (11) and the virtual displacements (&x,, 6y, ) satisfying
the eq. (12) may deemed to be called virtual velocity or
displacement respectively.

With the concept of virtual velocity and virtual
displacement, consider a particle with a vector displacement
of ér, while a force acts on it, the work done would be -

.6W = F+ér (13)
vhere F is the force on the particle during the
displacement.

The instantaneous power of the force is given by -

P = F.r (14)
wvhere

r = ér/ét.

If there are N particles in a system and the particle,
say j*" 1is located in the base coordinate system (x,y) by
the vector ry;=(x,,y:? and is acted on by F,; (x;,y;?, then the
power would be stated as -

P =
J

(Xy %, +Y, %, ) (15)

M=

FJ.rJ =
1 J

nmMa

1

For a continuous system of particles comprising of rigid
bodies, has to be transformed into an easier form.

Consider a rigid lamina as in fig. (2), where coplanar
forces X; and Y; act on a typical particle P, situated at a
point (x,,y;). The degrees of freedom of this lamina may be
described by coordinates x, and y. the cartesian coordinates
of a point A, fixed on the lamina and its angle of

orientation, 8.
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With any arbitrary motion of the lamina the work done by

the forces is at the rate given by -
. N L] »
P =X« XJXJ + YJ}'J )

where
N is the number of rigid bodies in the system.
but from kinematics it follows that -~

Xy = Xa ~- (y; - yva) 8

1
~
L]
+
%
(5%
)
X
L]
@

Ys

which gives the result as -

where

X and Y are

N
M = £ (Y, ( Xy - Xa ) - Xy, €Y, - Y. ) )

and

N is the number of rigid bodies in the system.

(16)

(17)

(18)

(19)

(20)

(21)

(22)

The equations stand for the resultant forces and moments

of the applied forces about point A. Generalizing the above

result of a system of M laminae.
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The power will be given by -

( Xyxy + Yoy, + M0, )

0
n
M

i=1

kFor a constrained system with F degrees of freedom, the
set of virtual velocities may be expressed in terms of the
generalized velocities as in eq. (11), but with the addition

of an element for angular virtual velocity 6, on the left

hand side of the equation and Q,; on the right side of the

equation.
Xy l Uiy
. F .
Y = r Vi Qi
. j=1
9‘ Q‘J

On substituting the virtual velocities into the eq.

(23), a new form of power equation is derived, stated as -
M F .
P = r b ( XiU‘J + Y1V‘J + MiQiJ ) qy (24)
i=1 j=1

rearranging it as -

Q, qq (25)

O
]
LI e I |

where

Q,
i

r ( X‘Ul_’ + YLVgJ + M§Q‘J ) (26)
1

T 4

are called the components of generalized force associated
with the generalized coordinate q;.

If in eq. (25) both sides are multiplied by a small time
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increment, 6&t. The the virtual work may be expressed as -
F
&W = P&t = L Q;éq, (27)
j=1

It is very evident that virtual work is a scalar product
of the vector @ and the incremental vector &q, for the
generalized coordinates.

In the practical analysis eq. (26) is utilized, this
would be evident by the sample problem solved in this
chapter and the others by the computer program in chapter
Iv.

Thus briefly describing the principle of virtual work.
As applied to a constrained system of particles in static
equilibrium, then the resultant forces R; acting on any
particle must be zero and their work done must be zero, with

a virtual displacement of ér;.
M :
6W = L Ry - éry; =0 (28)

This is because the work of the constraint forces
through virtual displacement compatible with the system
constraints is zero.

Considering the applied forces of the system and the
work done due to virtual displacement by them would be as

follows -~
M
W = ¥ F, « &r;, =0 (29)

which forms the basic principle of virtual work.

To illustrate the principle of virtual work the
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followihg solved example is cited, Paul (1979). Consider a
multiple pendulum, it is an open kinematic chain, with three
links, fig. (3). Each of the links are of length a, and
weight Z;, and the center of gravity for each link is located
at the center of the link.

A horizontal force X, acts at the end of the chain, the
outer most point of the chain. 6; i1s the angle between the
link and the vertical axis. The vertical distance between
the reference frame and the center of any link is z,. When
the coordinates undergo a displacement of &8,, the center of
gravity point moves vertically by &z, and the force X, by
horizontally.

Thus by virtual work -

W = Z, 6z, + Zpéze + Z3dza + Xpéx, =0 (30)

is effective, but

Zy = a,/2 cose,; (31)

Z: = a, cosb, + az/2 cosb: (32)

Z3 = a; cos6; + az cosbB, + ai/2 cosb; (33)
X, = a, sin6, + ég 8inbe, + a; sinbd,; (34)

differentiating the above eq. (31) to (34), the result is as

ézy = -a, /2 sinB, &8, (35)
&z, = - a, sinB, 66, - a./2 sinB. &6, (36)
6z = - a, =sinb, &6, - ax sinb, &8, - a3;/2 sinB; &8,
(37)
édxp, = a, cosB; &8, + a cosB: &8, + ai; cosbB; &0,

(38)
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substituting into eq. (30) and simplifying -
éW = @, 80, + Q860 + (55808, (39)

is the result, where

Q, = X, a, cos®, - 1/2 2, a, sin6, - 2. a, siné6,
- 23 a, siné, (40)
Qs = X, @ag cosB, - 1/2 2. a. sinb. - Z; a: sinb.
(41)
Qs = X, az cosB; - 1/2 Z2; a; sinb; (42)
The system will be in equilibrium if
Qi =0 @ =0 @ =20 (43)
Egs. (40) to (43) constitute the solution of the
problem. It can be explicitly solved for the coordinates

6, 62 and 6;, in terms of the applied forces, as follows -

tanes = 2Xp /23 (44)
tanb, = 22X, /(22 +22;) (43)
tan®, = 22X, /(2 +22, +223) (46)

The point to note is that the closed loop problems would
have equations transcendental in the displacement variables,
thus have to be solved numerically as explained in the

following generalization procedure.

Generalization Technique

Consider a mechanism with N degrees of Freedom and M
number of rigid links. Then the virtual work principle can

be applied as -

M
r F], . 61‘1 = 0 (47)
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wvhere

éry the virtual displacement

Fy the applied force

The path to the solutioﬁbwould start with the
computation of ér;,, the virtual displacements. The
procedure for that would be to calculate the jacobian matrix
{J1, which represents the X and Y coordinate component’s
summation for each point of action of a force on the rigid

member of the system concerned, based on the base reference

frame. In mathematical form this may be represented as -
M N
[(J1 = & £ ( cosZE L, + sin® L, ) (48)
i=1 j=1
j=13. . . . .,N dof
where

Ly cos&, is the X component of the lagrangian
coordinate associated with the link i

L, sin®, is the Y component of the lagrangian
coordinate associated with the link i and

Ly is the length of the link i.

Thus mathematically to derive the value of virtual
displacement, differential of each element’s coordinate
location with respect to every lagrangian coordinate of the
system, that is -

M N
dlJ1l/ds, = d/d3. (  ( cos®;; L + sin2, L; ))
i=1 j=1
(49)
k=1, . . . ., N dof

Therefore the derivative jacobian is a set of
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equations representing the virtual displacement for each
lagrangian coordinate and can be expressed as follows -

{6ry} = [dJ] {d=&,1} (50)
wvhere

{dJ] is a matrix representing the virtual

displacement of the system as a set of
equations.

{6r;} is virtual displacement of the systewm.
and as stated in eq. (30) it leads to -

{£:} . {ér;} = O (51)

The ordinary coordinates, 2,, which are‘unknown are to
be expressed in terms of the primary coordinates, Z,.

Thus based on the virtual work principle the eq. (30)
may be turned into -

[dJ]l {d=2,} = 0O (52)

The matrix [dJ] now represents the scalar product of the
previous [dJ], which represented the virtual displacement
and the force vector {f;}.

However, at this point it is important to note that the
differentiated jacobian matrix or [dJ] formed, contains the
number of links as the number of rows and the number of
columns are the lagrangian coordinates. The sub-matrices,
the ordinary coordinate and primary coordinate matrixes,
wvhen separated from this differentiated jacobian matrix, the
ordinary coordinate matrix yields a non—s&uare matrix,
redundant for the numerical procedures applied later. Thus

to rectify this mathematical flaw, the differentiated
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jacobian matrix is modified to essentially keep the
mathematics the same as before, but to reduce its subset,
the ordinary coordinate matrix to a square matrix.

Thus.rows representing the fixed links and the columns
representing the coordinate associated with the those fixed
links are eliminated, being fixed they do not have the
virtual work principle applicable to them. The mechanism
representation process, explained in chapter VI, numbers the
fixed links last and same is done with the coordinates
associated with it, helping the elimination process. Upon
elimination of these rows and columns, the ordinary
coordinate matrix formed is a square matrix. Thus enabling
the numerical techniques to be applied to it.

Furthermore with the above approach, the eq. (52) may be
algebraically simplified to yield -

[dJol {d=.} + [dJIpl {dE,} = O (53)
future leading to -

{d=,} = - [dJ., 1"t [dJ, 1. {ds,} (54)
wvhich expresses the ordinary coordinates virtual
displacements.

To express the N number of lagrangian coordinates

virtual displacements, the above equation is modified to -

ds, - [dJ,1 [dJ,]
e o o & o = {d§p )
ds, [I] J

This gives the final result as far as the virtual

displacement vector is concerned.
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The prime assumption of the virtual work principle is
that the scalar product of the vector of forces and the
virtual displacement vector results in a null vector. Using
this as the ultimate requirement the complete procedure
explained is engulfed in a Newton Raphson numerical
technique shell, Paul (1979). To iteratively proceed

towards the required solution.



CHAPTER IV
MODELING TECHNIQUES AND INPUT DATA STYLE

It is essential for any generalized mechanism program to
establish a consistent modeling technique, which should deal
with the topological characteristics of the mechanism. The
modeling techniques used in the this analysis conforms to
the pattern employed in the dynamic analysis of planar
mechanisms. The modeling methods are almost the same as in
dynamic analysis to adhere to a consistent method of

representation.

Mechanism Representation

The following section details the mechanism
representation methods used. It discusses the
identification of certain parameters and their use in
representing other parameters. Before the identification of
these physical or virtual parameters, the definitions of the

certain terms is essential.

Definitions

The definitions given below may hold pertinence to

inverse static equilibrium analysis and mechanisms only.

26
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Closed loop. In a kinematic chain when a path is
traced from one link to another, and it ends at the same
starting link. The path traced forms a closed loop.

Element. In inverse static equilibrium analysis,
elements are introduced for connectives between joints and
are basically subsets of links, they do not perform any
functions as they would do in the dynamic analysis.

Joints. The starting or terminal point of a link,

element or/and any location on link, where a force/mass acts

is termed as a joint. Joints are represented by a circled
number.
Lagrangian Coordinates. The lagrangian coordinates are

the parameters, which describe the configuration of any
mechanism. For any link it is the angular orientation with
respect to the frame of reference. For any slider it is the
linear component. The coordinates are of two types primary

and secondary, and are represented by %, or %,.

Identification of Laqgqrangian

Coordinates

As explained in the definition, the Lagrangian
coordinates can be identified. The most important rule to
be followed here is that the primary coordinates should be
numbered after the ordinary coordinates and the fixed link’s
coordinates, whether primary or secondary coordinate,
should be numbered last. The fig. 21 illustrates the

example for inverse static equilibrium analysis’s input data
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style. The coordinates are always represented as &,, where

i is the coordinate number.

Identification of Elements

The element is always introduced between two joints, as
a subset of a link. It may be introduced for convenience,
that is as a virtual element, when a force or a mass acts on
a link. The point of action is termed as a joint. The link
now would have two parts. It would consist of its initial
and terminal joints and the joint signifying the action of a
force. These two parts on a link are called elements. In
fig. 5, the elements 9, 10, and 11 are introduced to

‘describe the Mechanism’s closed loops easily.

Identification of Closed Loops

Mechanisms have to be represented in closed loops due to
the technique used for analysis - the complex number
approach. If the mechanism is not of a closed loop type,
then it has to be filled in by virtual elements to be made a
closed loop type of mechanism. The classic example for this

case is in fig. 7, the 3-R Robot.

Identification of Joints

The links or elements of the mechanism are initiated or
terminated by joints. They are identified by numbers, in a

maintained pattern. Joints or virtual ones can be created



Figure 5.

A Description of a Six Bar
Mechanism’s Model

62
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as in case of the joint 2 in fig. 7 to represent a
particular point of interest for analysis, such as where

there may be a mass or a force acting.

Modeling of the Slider Path

In mechanisms with slider the path may have to be
represented as a moving link. The following procedure is
employed to model the same as a line element, consider the
straight portions of the moving link between the slider
location and any other kinematic pairs on the path as
separate links, variable both in length and orientation.

The masses should be lumped at the proper locations on these
links of variable lengths. Also, consider the length of each
element on these links as variable coordinates. The fig. 6,
shows moving slider pair modeled by four elements, each
being represented by a varying coordinate, they may be

related by -

By + B, + By + Fz = Le
23 = 2,
and
By = B

The slider modeling technique used above is the same as

described by Dado (1986).

Input Data Style

Once the user has developed a complete model of the
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analyszed, this includes a complete drawing

all respects. The program’s interactive

used to enter the data of the mechanism in the

form used by the program’s number crunching

routines. The following menus are presented to the user for

the inverse
explain the
(1)
(2)
(3)
(4)
(3)
(6)
(7)
to the fig.

sample data

static equilibrium analysis. They briefly

input data style.

The
The
The
The
The
The
The

22,

characteristic data menu.

link data menu.

element data menu.

loop data menu.

joint data menu.

coordinates relation data menu.

coordinates estimation menu. With reference

the above menus are explained below, via a

input. In the characteristic data menu the data

input required are -

1)

(2)

(3)

(4)

(3)

(6)

(7)

(8)

(9)

(10)

Number of moving links = 3

Number of fixed links = 1

Number of kinematic pairs - moving = 2
Number of kinematic pairs - fixed = 2
Number of ordinary coordinates = 3
Number of primary coordinates = 1
Number of loops = 1

Number of elements = 7

Number of joints = 7

Gravity = 381.0
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The link data menu requires ( for each link prompted in
sequence in the program, but here only link 2 associated

with the ordinary coordinate 1 is cited ) -

(1) Number of elements on the link = 2
(2) Element numbers on the link = 3 and 4
The element data menu requires ( for each element

prompted in sequence in the program, but here only element 4
is cited ) -
(1) Element number = 4
(2) Associated langrangian coordinate = 1
(3) Initial joint = 4 |
(4) Terminal joint =5
(3) Element’s constant length = 3
(6) Element’s constant orientation = O
(7) Coordinate variation data = 2
The loop data menu requires, for each loop -
(1) Loop number = 1
(2) Number of elements in the loop = 7
(3) Element numbers in the loop =1, 2, 3, 4, 5, 6
and 7
The joint data menu requires for each joint, ( here only
joint 4 is cited ) -
(1) The joint number = 4
(2) Number of elements in the joint’s path = 3
(3) Element number in the path of the joint = 1,
2, and 3

(4) Force magnitude at the joint = 10



34

(5) Force orientation at the joint = O
The important point to note here, is that the term force,
includes body force also.
The coordinates relation data menu requires, for each
link, ( here only link 2 is cited ) -
(1) Number of links preceeding the link = 1
(2) Link numbers preceeding the link = 1
The coordinate estimation menu requires, for each
lagrangian coordinate, ( here only coordinate 2 is cited ) -
(1) Its estimated value = O
(2) Fixed or moving link = 1
The above menus take in data from the user and represent
it in the data structure used by the computer code. The
input data style being interactive is easier to use than

creating a data set a file editing procedure.



CHAPTER V
ILLUSTRATIVE APPLICATIONS

Various applications have been solved to test and verify
the accuracy of this program. The examples envelope a range
of mechanism possibilities. The problems solved are easy in

terms of verification.

Illustrative Example - Dynamics

Analysis

Since the dynamic analysis of planar machinery has been
modified and improved on a different computer system and its
structure has been cﬁanged to great extend from its earlier
appearance. The following example has been cited from Dado
(1986) and reworked on the improved version of the dynamic
analysis program.

The example analyzes a 3-R planar mixed loop robot,
shown in the fig. 7. This example has been solved by the
forward dynamic analysis. The end effector at the joint 7
must trace the circular path shown in the figure, with the
defined displacement function S. The orientation of the
element 6 must remain consfant at an angle equal to zero.
There are three input actuators, one at joint 1, which

defines the orientation of element 1 and the other two are

35
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at the double joint 3 and they define the orientations of
the elements 3 and 7. The inertias of the elements 1 and 2
are lumped at joint 2 and those for elements 5 and 6 are
lumped at join£ 6. The inertias of the rest of the elements
are neglected. A load of 40 lb-m is lumped at the joint 7
for the end effector assewmbly. The combined mass and mass
moment of inertia of the two actuators at joint 3 are 60 1lb-
m and 2.8 lb¢-in-sec?®. For the dimensions and the inertias
shown in fig. 7, it is necessary to compute the positions,
velocities, accelerations, and input torques for the three
acuators. Thé iﬁput data for this example has been derived
directly from fig. 7.

There are no applied loads or known driving forces or
torgques. There are two constraints equations and one time-
dependent equation for defining the orientation of element S
using the function S. This constraint equation is as
follows -

tc(l) = g(2,t) = s(t)/r - 8 = 0O

The other equation is path constraint and it defines the
orientation of the end effector. It is given by -

ts(l) = s(8,) = B3, - B =0

Finally, the derivative of these two constraints
equations are

ptc(1,6) =5 g/3%, = -1
pttc(l) = a2g/at = 1/r 9s(t)/dt
dptc(1,6) = d/dt 9g/st = 0O

dpttc(l) = d/dt g/t = 1/r d/dt 9s(t) /9t
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pt=(1,3) =2a8/9%8, = -1
dpt=s(1l,3) = d/dt 92s/3%s =0
The results of the dynamic analysis are shown on figures

9 - 20. The position v/s time plots for %,, $. and ¥ are

figures 9 - 11. The velocity v/s time plots are shown on
figures 12 - 14. Acceleration v/s time for the same are
figures 15 - 17. The Driving torques v/s time for the three

actuators are shown on figures 18 -20.

Illustrative Examples - Inverse Static

Equilibrium Analysis

Example 1

This example demonstrates the static equilibrium inverse
analysis, in its simplest form. It illustrates the use of
the program to solve problems with one degree of freedom and
one closed loop. The fig. 21 illustrates the four bar
linkage and the fig. 22, the linkage in input data forwm or
in a kinematic network form. The following are the

specifications supplied to the program -

force # 1 = 50 lbs.
force # 2 = -13.29 lbs.
force # 3 = 10 1lbs.

primary coordinate # 1 (value) = 0.261799 rads.

link # 1 length = 4 in.
link # 2 length = 6 in.
link # 3 length = 7 in.



Figure 21.

A Four Bar Mechanism with
External Forces

Zs
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TABLE 1

COORDINATE VALUES FOR THE FOUR BAR

LINKAGE EXAMPLE

54

No. Coordinate No. Coordinate Values
1 1 0.261799

2 2 5.410521

3 3 1.260848

4 4 0. 000000
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link # 4 length = 11.723 in.
The table 1 shows the result of the computation of this
example. Note, with reference to fig. 22 that force # 1
corresponds to the vertical force at joint # 4, the force #

2 to the horizontal force at joint # 2 and force # 3 to the

horizontal force at joint # 6. The primary coordinate is =
‘e The links 1, 2, 3 and 4 are a,, as., as and a.
respectively.

Example 2

The above example is a single degree of freedom problem
and quite trivial solve for, using the program. This example
solves a problem with two degrees of freedom as shown in the
fig. 23, which illustrates the closed loop kinematic chain
and the fig. 24 gives the kinematic network for the same.
The problem may be briefly described as a kinematic closed
loop chain, with forces 1, 2, and 3 acting at joints A, B,
and C respectively. The required results are the values of
., Be, =3 and IH,.

The input data are -

force #1 = S 1lbs.

force #2 10 lbs.

force #3 S lbs.

5.375614 rads.

primary coordinate #1 (value)

4,318119 rads.

primary coordinate #2 (value)

20 in.

link #1 (length)

link #2 (length) 20 in.
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Figure 24.

A Kinewmatic Network of the
Closed Loop Chain

LS



TABLE 2

COORDINATE VALUES FOR THE CLOSED LOOP
KINEMATIC CHAIN EXAMPLE

58

No. Coordinate No. Coordinate Values
1 1 1.965066

2 2 0.907571

3 3 5.375614

4 4 4.318119

S ) 0. 000000
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link #3 (length) = 20 in.
link #4 (length) = 20 in.
link #5 (length) = 40 in.

The table 2 shows the result of the example. Note unlike
the problem #1 this cannot be solved explicitly. In fig. 24
the forces 1, 2, and 3 act at joint #'s 2, 3 and 4
respectively. The primary coordinates are &, and 2,

respectively.

Example 3

Both the above examples do not illustrate any sliders.
This example shows the solution of the vertical slider crank
mechanism shown in fig. 23 and its kinematic network in fig.
26. The number of degrees of freedom are twvo. The links
are equal in length. The slidef is weightless and the
forces are acting at B and C and are equal. The input data

is as follows -~

force #1 4.4 lbs.
force #2 = 0.9 lbs

1.0253809 rads.

primary coordinate #1

primary coordinate #2 2.03916°1 rads.

link #1 (length) = 4 in.
link #2 (length) = 4 in.
link #3 (length) = 4 in.

The Table 3 shows the computed result for this problem.
With reference to fig. 26 the forces 1 and 2 act at joints 2

and 3 and the two primary coordinates are lagrangian
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Figure 26. A Kinematic Network of the
Vertical Slider Crank Mechanism
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TABLE 3

COORDINATE VALUES FOR THE VERTICAL SLIDER
CRANK MECHANISM EXAMPLE

63

No. Coordinate No. Coordinate Values
1 1 2.1057379

2 2 2.1162117

3 3 1.0253809

4 4 2.0391691
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coordinates 3 and 4. The above example is verified and
compared with the solution arrived at using the vector

mechanics approach, Amin (1979), in fig. 27.

Example 4

The following example illustrates the use of this
program-to solve a multiloop mechanism. The fig. 27 shows
the mechanism and the fig. 28 gives the kinematic network
for the same. The mechanism data supplied is -

force #1 = 100 1lbs.

force #2 79.29 lbs

5.497787 rads.

primary coordinate #1

primary coordinate #2 1.047197 rads.

link #1 (length) = 2 in.
link #2 (length) = 4 in.
link #3 (length) = 3 in.
link #4 (length) = 2 in.
link #5 (length) = 0 in. ( initial estimate )

link #6 (length) = 5.6 in.
link #7 (length) = 6.4 in.
The Table 4 shows the output generated by the program
for the above problem. In the fig. 28 the force 1 acts at
the joint 6 and the force 2 at the joint 3. The primary

coordinates 1 and 2 are lagrangian coordinates 1 and 2.
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TABLE 4

COORDINATE VALUES FOR THE MULTI-LOOP

MECHANISM EXAMPLE

67

No. Coordinate No. Coordinate Values
1 1 5.497787

2 2 1.047197

3 3 5.759586

4 4 2.094395

S S 0. 250000

6 6 0. 000000

7 7 0.610865
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CHAPTER VI
SUMMARY AND CONCLUSIONS

The main objective of this work was to examine the avenues
for a generalized approach for inverse static equilibrium
analysis, using the virtual work principle. Enhancing the
status of the existing dynamic analxsis of mechanisms
package was essential to incorporate the inverse static
equilibrium analysis and assimilate the different techniques
that have been used therein for mechanism analysis.

In applying the virtual work principle, it is assumed
that the planar mechanisms are in static equilibrium and
successive iterations solve for the equilibrium position, if
the mechanism does not comply to the assumption made. The
procedure used expresses the mechanisms’s virtual
displacement for all langrangian coordinates in terms of the
primary and the secondary coordinates and computes the
virtual work done by these virtual displacements. The
Newton-Raphson technique is used to numerically iterate
towards the final result. The problem mathematically gives
rise to a highly nonlinear set of equations, which exhibits
great resistance to convergence.

Vector mechanics approach is the usual method employed

for inverse static equilibrium analysis and as with the
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virtual work principle, the vector mechanics approach also
gives rise to a set of highly nonlinear equations. The
advantage of virtual work principle is in the fact that it
creates a smaller set of equations as compared to the vector
mechanics approach, thus leading to a faster convergence.
This analysis has been developed for planar mechanisms.
It may be extended to spatial mechanisms, however in case of
spatial mechaniswms, for the ease of computation it would be
better to use‘the matrix approach rather than the complex
number approach. Also the use of links that are not ideal
and conditions that express friction and other external
parameters are desirable. Viewing the program from a
programmer’s outlook, such large computation intensive
programs require a fast computer, and a system capable of

the essential interactive computer graphics facilities.
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APPENDIX A
PROGRAM LAYOUT AND STRUCTURE

The program has the following new features -

It has been installed on the Silicon Graphics Iris 3030,
a graphics workstation, thus it has an excellent graphics
capability. The optimum use of the Iris’s graphics ability
has been made in this project. The program is completely
Interactive. The use of C programming language’s vast
capability has allowed the programmer to give complete
interactive benefits with least programming effort. At the
same time the number crunching part of the program is
executed in Fortran and C, the reason being, to use>the rich
math and built-in functions in Fortran and the compact
structure available in C. This use of C and Fortran in a
single program is possible by the "Fortran to C and C to
Fortran" interface provided by the Iri=s’s compiler.

The other feature is the division of the program into
files. None of the files are over a thousand lines of code,
for a programmer this is a boon especially when the code is
very large and the programmer wishes to access complete
control over it. The splitting up of the code, to be stored
in different files is possible due to the fact that the

operating system of the workstation, Unix, has the

73
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"makefile™ function.

The program files are as described below -

file 1

file 2

file 3

file 4

file S

file 6

file 7

Main file - mal. f.

This file contains the main program for
dynamic analysis.

Preprocessorl file - prl.c.

This file contains the interactive input code
for dynamic analysis.

Postprocessorl file - pol. f.

This file contains the output functions to
display the completed analysis of the program.
Graphicsl & Mathl file - gm_fun.c.

This file contains the all the graphic and
math functions available for dynamic analysis.
Functionsl file - sull. f.

This file has all the subroutines and
functions necessary for the number crunching
sections of the dynamic analysis.

Main2 file - ma2.c.

This file contains the main program for
inverse static equilibrium analysis, it has
been configured as a C language function to be
accessible by the dynamic analysis’s main
program and to be accessible as one package;
Math2 file - mfun. c.

This file contains the all the math functions

available for inverse static eqﬁilibrium
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analysis.

file 8 - Preprocessor2 & Postprocessor2 file - su2l.c.
This file contains the preprocessor and the
postprocessor for inverse static equilibrium
analysis. These functions are used for
interactive input and output of completed
analysis and data.

file 9 - Functions file a - su22.c.
This file and the following one contain the
number crunching functions for inverse static
equilibrium analysis.

file 10 - Functions file b - su23.c.

The fig. 27, gives the program’s flowchart this may be

vital for any further improvements to be done on this

program.
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