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CHAPTER I 

INTRODUCTION 

A generalized inverse static equilibrium analysis 

procedure has been developed in this study. The concept of 

virtual work principle has been conveniently utilized to 

analyze the equilibrium conditions of planar mechanisms. 

The use of virtual work principle permits a generalized 

approach to static equilibrium analysis, which otherwise 

would be extremely cumbersome. 

This study has been conducted to supplement the existing 

dynamic analysis of planar mechanisms program, Dado (1985) 

and to present a complete kinematic, dynamic and static 

analysis package for planar mechanisms. In due course the 

status of the dynamic analysis program has also been updated 

as prerequisite to accomodate interactive graphics, user 

friendliness and the change of the computer system from 

HP9000 workstation to the Silicon Graphics Iris 3030 

workstation. 

Thus the package can now perform kinematic, dynamic and 

static analysis of planar mechanisms, with complete graphics 

capability and interactiveness. Inverse static equilibrium 

analysis being the theme of this work, a survey of the past 

work in this area has been accomplished. The earliest work 
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in this £ield had been carried out by Livermore <1965>. It 

dealt with the analysis o£ equilibrium con£igurations o£ 

mechanisms. IMP developed by Sheth and Uicker <1972> deals 

with the computer aided design o£ mechanical systems and has 

the capability o£ conducting static equilibrium analysis of 

planar mechanisms. Both the above discussed techniques have 

been based on the minimum potential energy principle. 

Besides these projects, other researchers have worked on 

similar problems. ADAMS created by Orlandea, Chase and 

Calahan and the package for kinematic, dynamic and static 

analysis developed by Amin (1979) deal in detail with the 

static equilibrium analysis using the vector mechanics 

approach, which turns out to be very cumbersome to use as 

far as the convergence of the numerical solution of the 

problem goes. Study of static force analysis carried out by 

Razi (1963) using the virtual work principle, as employed 

here, in this study, is not capable of conducting inverse 

static equilibrium analysis, but performs the forward static 

force analysis. In this manuscript, the effort has been made 

to emphasize the use of virtual work principle in 

equilibrium analysis. 

The chapter that follows discusses the existing features 

of the the dynamic analysis o£ planar mechanisms as review 

and to illustrate the improvements carried out on it. The 

chapter III deals with the inverse static equilibrium 

analysis in detail, including the method of generalization. 

The chapter VI deals with the modeling method used in the 
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program and the input data structure. The chapter V 

illustrates the applications o£ the analysis, with examples 

solved using the same. The chapter VI is the summary and 

conclusion o£ this study. 



CHAPTER II 

A REVIEW OF THE DYNAMIC ANALYSIS OF 

PLANAR MECHANISMS 

This chapter briefly reviews the techniques used by the 

dynamic analysis of planar mechanisms program and elaborates 

the new improved structure of the program. The new structure 

of the program was given shape to accommodate graphics and 

the inverse static equilibrium analysis. An example in 

chapter V illustrates the new structure of the program, the 

complete details of the new structure are available in the 

Appendix A. 

Kinematic Analysis 

Kinematic analysis as the title implies emphasizes on 

position, velocity, and acceleration analysis of the 

mechanism, it is important because of its application in 

other sections of the program, besides the vitality of the 

analysis itself. In this particular analysis the value of 

the generalized coordinates are determined at an instant of 

time, with its first and second derivatives, thus arriving 

at the required value. The position, velocity and 

acceleration of specified points are also determined using 

the above generated data. The procedure used for analysis 

4 



in brief is that the number of constraint equations and the 

varying coordinates are equal, so the relation between the 

varying coordinates and the constraints are partially 

differentiated with respect to the varying coordinates and 

time, to provide the solution and complete the kinematic 

5 

analysis. The complex number approach has been used £or the 

kinematic analysis.· 

Dynamic Analysis 

In dynamic analysis the aim is to solve £or the 

kinematic parameters along with the inertial loads, and 

compute the joint's relations, elemental internal loads and 

element deflections. 

forward and inverse. 

The dynamic analysis is o£ two types 

By forward, it means that the 

mechanism is driven by known motion generators and in case 

o£ the inverse dynamics the motion generators are known 

£unctions o£ time or other parameters. In forward dynamic 

analysis the £inite line element technique is used. The 

mechanism is converted to a line element model and the 

principles o£ £inite element are used to compute the 

required results. In case o£ the inverse dynamics the 

procedure used here is that o£ numerical integration o£ the 

equations o£ motion. 

Static Analysis 

The goal o£ the static analysis is to determine the 
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final equilibr-ium position of the mechanism. If the 

configuration of the mechanism is known and the required 

parameters are the equilibrium forces the analysis is termed 

as forward or forward static force analysis and in case of 

unknown configuration and known forces, it is called inverse 

analysis or inverse static equilibrium analysis. In this 

analysis, the forward analysis has been derived from the 

forward dynamic analysis and employes the same, finite line 

element technique. The inverse static equilibrium analysis 

has been incorporated by this study, it employes the virtual 

work principle and has been discussed in detail in the later 

chapters of this manuscript. As a final comment on dynamic 

analysis, it could be said that the new version has not 

changed the mathematical approach of the original method, 

but the presentation to the user has been improved and 

graphics capability has been added. 



CHAPTER III 

THE INVERSE STATIC EQUILIBRIUM ANALYSIS 

The static equilibrium analysis is required in many 

places as part of the design process of mechanisms. Relevant 

examples would be a car hood mechanism, which operates in 

two static equilibrium modes and any mechanical toggle 

switch mechanism. 

To further emphasize the importance of the inverse 

static equilibrium analysis, consider a robot in any 

arbitrary position, the action of the gravitational force on 

the robot's links would tend to collapse the robot. The 

driving and locking capability provided by the motors at the 

joints of the mechanism have to counter act the gravity pull 

to keep the robot in its position, in equilibrium. The 

inverse static analysis has the capability to analyze such 

systems to determine the equilibrium position to be reached 

by the mechanism. The aim of this chapter is to discuss the 

dif£erent techniques available for inverse static 

equilibrium analysis for planar mechanisms and their 

applications. 

The inverse static equilibrium problems can be attacked 

in two ways. The first is the vector statics approach and 

the second method is the analytical statics theory, using 

7 



the virtual work principle. 

Vector Statics 

If the resultant force vector and the resultant moment 

vector about any point applied to a rigid body vanish then 

the body is in a state of equilibrium. By the elementary 

laws of mechanics, if a body is initially at rest under the 

action of a null force system, then it will remain to be in 

the same state of equilibrium. 

In the vector statics approach it is required to 

consider each rigid body of the system in question 

separately as a free body and generate the equations of 

equilibrium for each body. In case of complex systems 

8 

consisting of many bodies the process turns out to be 

cumbersome. To exemplify the method consider a four bar 

linkage as shown in fig. (1), where the horizontal and 

vertical forces are V and H, acting at the midpoint of links 

AB and BC. Thus the aim is to find the equilibrium 

configuration of the mechanism under the influence of the 

given forces. Mathematically the need is to develop a 

relationship -

F < H, V, ~t , ~~~, ~3 > = 0 

and this being supplemented by loop closure equations -

a1 sine 1 + ae sinee + a3 sine3 = L 

a1 cose1 + ae cosee + a3 cose3 = 0 

The set of equations are in order to solve for the 

values of H and V. 

( 1) 

( 2) 

( 3) 
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This approach leads to the creation of three 

equations for each of the free bodies in question. In 

case of the four bar mechanism this totals up to nine 

equations, in addition the two loop closure equations, 

forming a set of eleven equations to be solved. 

For the above stated example, the first three of the 

nine equations can be stated as ( the others are 

identical ) 

~ X = X. + H + Xb = 0 

~ Y = Y. + Yb = 0 

~M. = H a1 /2 sin81 + Xb a1 sin81 + Yb a1 cos81 = 0 

Thus the eleven equations lead to eleven unknowns 

namely x. I Y. I Xb I Yb I Xo I Yo I xd I yd I 81 , 9a I and 83 • 

These unknowns have to be determined for the values of H 

and V effective on the system. 

This approach, thus seems to be a longer procedure 

to be used for analysis, though the main advantage of 

this technique is in the fact that it is easy to 

generalize, however difficulty arises in the solution 

of the large set of nonlinear equations it creates. 

Analytical Statics 

10 

The analytical statics rests on the principle of virtual 

work. In this study the inverse static equilibrium analysis 

is based on this technique. This theory has therefore been 

discussed in great detail to illustrate its use. 

If a mechanical system, with lagrangian coordinates 



2t is subjected to a set of kinematic constraints of the 

form -

• S!.,. = 0 

where 

i = 1, 2, 3, number of members 

M = degrees of freedom 

Then the lagrangian velocities S!J must satisfy -

M 
f 1 = r: a f i 1 a 2J 2J = o 

j=1 

Any of the S!J set, which will satisfy the above 

equation are termed as virtual velocities and the 

infinitesimal displacements created by the velocities 

. . 
in infinitesimal time increment ot are called virtual 

displacements, which satisfy the equation below. 

M 
of1 = r: a.£1 1aS!J o2J = o 

j=1 

11 

( 4) 

( 5) 

( 6) 

( 7) 

In a system o.f M degrees of freedom, the numerical value 

of M is the number of generalized coordinates and the 

remaining N lagrangian coordinates are called the secondary 

coordinates. 

no. of lagrangian coordinates = M + N 

Thus considering the q.,. generalized coordinates and the 

2" secondary coordinates, the eqs. ( 4), ( 5), and ( 6) 

transform to -

fl (S!,ql = 0 ( 8) 
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N M 
r: df, 1a2J 2J = r: a£, taqJ qJ ( 9) 

j=1 j=l 

N M 
E a£, 1a2J b§.J = - I: a£, taqJ oqJ ( 10) 

j=l j=l 

The last equation of the above set implies that the 

secondary virtual displacements b§.J may be calculated using 

the primary or generalized coordinate's virtual 

displacements, Paul <1979>. 

The term virtual in virtual displacement or velocities 

does not necessarily coincide with the actual displacements 

or velocities, which the coordinate o£ the system 

experiences, but are test quantities used to probe the 

system for results. The £allowing equations expresses the 

velocity components <~,,y, > of a typical particle P, as a 

linear combination of the generalized velocities o£ the form 

[ ~: l M 
= I: 

j=l [ ~:: 1 
( 11> 

where u,J and v,J depend on the mechanisms instant 

configuration. 

Redefining the above equation the £allowing conclusion 

can be arrived at -

[ bx, l M [ u, J l = E bqJ ( 12) 
by, j=l v' J 

. • Therefore any virtual velocity <x,, y, > satis£ying the 
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eq. < 11 > and the virtual displacements ( o:x:1, oy1 > satis£ying 

the eq. <12> may deemed to be called virtual velocity or 

displacement respectively. 

With the concept o£ virtual velocity and virtual 

displacement, consider a particle with a vector displacement 

o£ or, while a £orce acts on it, the work done would be -

.ow = F·or ( 13) 

where F is the £orce on the particle during the 

displacement. 

The instantaneous power o£ the £orce is given by -

. 
P = F.r ( 14) 

where 

r = or/ot. 

I£ there are N particles in a system and the particle, 

say jth is located in the base coordinate system <x,y> by 

the vector rJ =<x1, Yt) and is acted on by FJ (:x:J, YJ >, then the 

power would be stated as -

N 
= I: 
j=l 

<15) 

For a continuous system o£ particles comprising o£ rigid 

bodies, has to be trans£ormed into an easier £orm. 

Consider a rigid lamina as in £ig. < 2), where coplanar 

£orces XJ and YJ act on a typical particle PJ situated at a 

The degrees o£ £reedom o£ this lamina may be 

described by coordinates x. and y. the cartesian coordinates 

o£ a point A, £ixed on the lamina and its angle o£ 

orientation, 8. 
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With any arbitrary motion of the lamina the work done by 

the forces is at the rate given by -

where 

N 
p = I: ( XJ XJ + y J y J 

j=1 

N is the number of rigid bodies in the system. 

but from kinematics it follows that -

XJ = X a - ( y J - y • ) 8 

YJ =y. + <xJ -x.> 8 

which gives the result as -

P = Xx. + Yy • + M. 8 

where 

X and Y are 

N 
1'1.. = I: C Y J < XJ - X.. > - XJ C Y J - Y. 

j=l 

and 

N is the number of rigid bodies in the system. 

( 16) 

(17) 

<18) 

( 19) 

(20) 

(21> 

<22) 

The equations stand for the resultant forces and moments 

of the applied forces about point A. Generalizing the above 

result of a system of l'l laminae. 



The power will be given by 

M 
p = r: 

i=l 

16 

For a constrained system with F degrees of freedom, the 

set o£ virtual velocities may be expressed in terms of the 

generalized velocities as in eq. <11>, but with the addition 

o£ an element £or angular virtual velocity 6, on the le£t 

hand side o£ the equation and n1 J on the right side of the 

equation. 

X1 u, J 

1 
F 

Y1 = r: v t J q l J 

j=1 I el n~ J J 

On substituting the virtual velocities into the eq. 

(23>, a new £arm o£ power equation is derived, stated as -

M F 
p = r: r: ( x, u, J + y I y I J + M1 n. J qJ <24) 

i=l j=l 

rearranging it as 

F 
p = r: QJ qJ <25) 

j=l 

where 

M 
QJ = r: ( XI ul J + y IV I J + M. n, J (26) 

i=l 

are called the components o£ generalized £orce associated 

with the generalized coordinate q 1 • 

I£ in eq. <25> both sides are multiplied by a small time 
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increment, 6t. The the virtual work may -be expressed as -

F 
6W = Pt!it = E QJ6qJ 

j=l 
<27> 

It is very evident that virtual work is a scalar product 

o£ the vector Q and the incremental vector oq, £or the 

generalized coordinates. 

In the practical analysis eq. ( 26) is utilized, this 

would be evident by the sample problem solved in this 

chapter and the others by the computer program in chapter 

IV. 

Thus brie£ly describing the principle o£ virtual work. 

As applied to a constrained system o£ particles in static 

equilibrium, then the resultant £orces RJ acting on any 

particle must be zero and their work done must be zero, with 

a virtual displacement o£ orJ. 

M 
6 W = E RJ • 6 r J = 0 <28) 

j=l 

This is because the work o£ the constraint £orces 

through virtual displacement compatible with the system 

constraints is zero. 

Considering the applied £orces o£ the system and the 

work done due to virtual displacement by them would be as 

£allows -

M 
6W = E Ft • 6rt = 0 

j=l 

which £orms the basic principle o£ virtual work. 

To illustrate the principle o£ virtual work the 

<29) 
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following solved example is cited, Paul <1979>. Consider a 

multiple pendulum, it is an open kinematic chain, with three 

links, fig. <3>. Each of the links are of length at and 

weight Zt and the center of gravity for each link is located 

at the center of the link. 

A horizontal force XP acts at the end of the chain, the 

outer most point of the chain. et is the angle between the 

link and the vertical axis. The vertical distance between 

the reference frame and the center of any link is z 1 • When 

the coordinates undergo a displacement of &8,, the center of 

gravity point moves vertically by &z 1 and the force XP by 

horizontally. 

Thus by virtual work -

&w = Zt OZt + Ze oze + Z;~ OZ3 + Xp OXp = 0 

is effective, but 

Zt = at /2 cos81 

Ze = a1 cos61 + ae /2 cos8 2 

Z:~ = a1 easel + a a co see + aa /2 cos8 3 

Xp = a1 sin61 + ae sine~~ + a;~ sinea 

(30) 

( 31) 

(32) 

(33) 

(34) 

differentiating the above eq. < 31 > to < 34 >, the result is as 

OZt = -a~ /2 sine1 o e 1 (35) 

OZe = - a1 sin61 & e 1 - aa /2 sin8a b Sa (36) 

oz3 = - a1 sinet &e 1 - a a sine a b8e - al /2 sin63 663 

(37) 

OXp = a1 easel oe1 + a a cos Sa o6a + a3 cos83 &93 

(38) 



19 

s:: 
0. -X ro 

.s:: 
u 
0 -.+J 
ro e 
v 
s:: -::.:: 
s:: 
v 
c. 
0 

s:: 
~ 

N ('I") 

v 
NM ~ 

==' 0' -r:r. 



Figure 4. A Kinematic Network 
Representation 

20 



21 

substituting into eq. <30) and simpli£ying -

( :39' 

is the result, where 

- 23 a1 sin81 (40) 

Qe = Xp ae cos Be - 1/2 2e ae sin8e - 23 ae sin8e 

( 41) 

(42) 

The system will be in equilibrium i£ 

<43) 

Eqs. (40) to (43) constitute the solution o£ the 

problem. It can be explicitly solved for the coordinates 

81, Be and 83, in terms o£ the applied forces, as follows 

tan83 (44) 

(45) 

tan81 = 2Xp I< 21 +22e +223 > <46) 

The point to note is that the closed loop problems would 

have equations transcendental in the displacement variables, 

thus have to be solved numerically as explained in the 

£allowing generalization procedure. 

Generalization Technique 

Consider a mechanism with N degrees o£ Freedom and M 

number o£ rigid links. Then the virtual work principle can 

be applied as -

(47) 
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where 

or, the virtual displacement 

F, the applied force 

The path to the solution would start with the 

computation of or,, the virtual displacements. The 

procedure for that would be to calculate the jacobian matrix 

[JJ, which represents the X and Y coordinate component's 

summation for each point of action of a force on the rigid 

member of the system concerned, based on the base reference 

frame. In mathematical form this may be represented as -

M N 
[J] = I: (48) 

i=l j=l 

j = 1, . . , N do£ 

where 

L, cos2, is the X component of the lagrangian 

coordinate associated with the link i 

L, sin2 1 is the Y component of the lagrangian 

coordinate associated with the link i and 

L, is the length of the link i. 

Thus mathematically to derive the value of virtual 

displacement, differential of each element's coordinate 

location with respect to every lagrangian coordinate of the 

system, that is -

M N 
I: I: ( cos§, J Li + sin2i J Li > > 

i=l j=l 
(49) 

k = 1, . , N do£ 

Therefore the derivative jacobian is a set of 



equations representing the virtual displacement £or each 

lagrangian coordinate and can be expressed as £allows -

23 

= [dJJ (50) 

where 

[dJJ is a matrix representing the virtual 

displacement of the system as a set o£ 

equations. 

{ort} is virtual displacement of the system. 

and as stated in eq. (50) it leads to -

<f,}. for1}=0 (51) 

The ordinary coordinates, 2o, which are unknown are to 

be expressed in terms of the primary coordinates, 2p. 

Thus based on the virtual work principle the eq. <SOl 

may be turned into -

[dJJ {d§i} = 0 (52) 

The matrix [dJJ now represents the scalar product o£ the 

previous [dJJ, which represented the virtual displacement 

and the force vector {ft }. 

However, at this point it is important to note that the 

dif£erentiated jacobian matrix or [dJJ formed, contains the 

number of links as the number of rows and the number o£ 

columns are the lagrangian coordinates. The sub-matrices, 

the ordinary coordinate and primary coordinate matrixes, 

when separated from this differentiated jacobian matrix, the 

ordinary coordinate matrix yields a non-square matrix, 

redundant for the numerical procedures applied later. 

to rectify this mathematical flaw, the differentiated 

Thus 
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jacobian matrix is modi£ied to essentially keep the 

mathematics the same as be£ore, but to reduce its subset, 

the ordinary coordinate matrix to a square matrix. 

Thus rows representing the £ixed links and the columns 

representing the coordinate associated with the those £ixed 

links are eliminated, being £ixed they do not have the 

virtual work principle applicable to them. The mechanism 

representation process, explained in chapter VI, numbers the 

£ixed links last and same is done with the coordinates 

associated with it, helping the elimination process. Upon 

elimination o£ these rows and columns, the ordinary 

coordinate matrix formed is a square matrix. Thus enabling 

the numerical techniques to be applied to it. 

Furthermore with the above approach, the eq. <52> may be 

algebraically simpli£ied to yield -

[dJo] {d~o} + [dJp] {d~p} = 0 (53) 

£uture leading to -

{ d~o } = - [ dJ o ] - 1 [ dJ p ] . { d~p } (54) 

which expresses the ordinary coordinates virtual 

displacements. 

To express the N number o£ lagrangian coordinates 

virtual displacements, the above equation is modified to -

= [ 
- [dJ. l [dJ, l 1 

[I J J 

This gives the final result as far as the virtual 

displacement vector is concerned. 



The prime assumption o£ the virtual work principle is 

that the scalar product o£. the vector o£ £orces and the 

25 

virtual displacement vector results in a null vector. Using 

this as the ultimate requirement the complete procedure 

explained is engul£ed in a Newton Raphson numerical 

technique shell, Paul (1979). 

towards the required solution. 

To iteratively proceed 



CHAPTER IV 

MODELING TECHNIQUES AND INPUT DATA STYLE 

It is essential £or any generalized mechanism program to 

establish a consistent modeling technique, which should deal 

with the topological characteristics o£ the mechanism. The 

modeling techniques used in the this analysis con£orms to 

the pattern employed in the dynamic analysis o£ planar 

mechanisms. The modeling methods are almost the same as in 

dynamic analysis to adhere to a consistent method o£ 

representation. 

Mechanism Representation 

The £allowing section details the mechanism 

representation methods used. It discusses the 

identi£ication o£ certain parameters and their use in 

representing other parameters. Be£ore the identi£ication o£ 

these physical or virtual parameters, the de£initions o£ the 

certain terms is essential. 

De£initions 

The de£initions given below may hold pertinence to 

inverse static equilibrium analysis and mechanisms only. 

26 



Closed loop. In a kinematic chain when a path is 

traced £rom one link to another, and it ends at the same 

starting link. The path traced £orms a closed loop. 

Element. In inverse static equilibrium analysis, 

elements are introduced £or connectives between joints and 

are basically subsets o£ links, they do not per£orm any 

£unctions as they would do in the dynamic analysis. 

Joints. The starting or terminal point o£ a link, 
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element or/and any location on link, where a £orce/mass acts 

is termed as a joint. 

number. 

Joints are represented by a circled 

Lagrangian Coordinates. The lagrangian coordinates are 

the parameters, which describe the con£iguration of any 

mechanism. For any link it is the angular orientation with 

respect to the £rame o£ re£erence. For any slider it is the 

linear component. The coordinates are of two types primary 

and secondary, and are represented by 2p or 2o. 

Identi£ication of Lagrangian 

Coordinates 

As explained in the de£inition, the Lagrangian 

coordinates can be identi£ied. The most important rule to 

be £allowed here is that the primary coordinates should be 

numbered after the ordinary coordinates and the £ixed link's 

coordinates, whether primary or secondary coordinate, 

should be numbered last. The £ig. 21 illustrates the 

example £or inverse static equilibrium analysis's input data 
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style. The coordinates are always represented as 2,, where 

i is the coordinate number. 

Identi£ication o£ Elements 

The element is always introduced between two joints, as 

a subset o£ a link. It may be introduced £or convenience, 

that is as a virtual element, when a £orce or a mass acts on 

a link. The point o£ action is termed as a joint. The link 

now would have two parts. It would consist of its initial 

and terminal joints and the joint signi£ying the action of a 

£orce. These two parts on a link are called elements. 

£ig. 5, the elements 9, 10, and 11 are introduced to 

describe the Mechanism's closed loops easily. 

Identi£ication o£ Closed Loops 

In 

Mechanisms have to be represented in closed loops due to 

the technique used £or analysis - the complex number 

approach. I£ the mechanism is not o£ a closed loop type, 

then it has to be £illed in by virtual elements to be made a 

closed loop type o£ mechanism. The classic example £or this 

case is in £ig. 7, the 3-R Robot. 

Identi£ication o£ Joints 

The links or elements o£ the mechanism are initiated or 

terminated by joints. They are identi£ied by numbers, in a 

maintained pattern. Joints or virtual ones can be created 
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Figure 5. A Description of a Six Bar 
Mechanism's Model 
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as in case o£ the joint 2 in £ig. 7 to represent a 

particular point o£ interest £or analysis, such as where 

there may be a mass or a £orce acting. 

Modeling o£ the Slider Path 

In mechanisms with slider the path may have to be 

represented as a moving link. The £allowing procedure is 

employed to model the same as a line element, consider the 

straight portions o£ the moving link between the slider 

location and any other kinematic pairs on the path as 

separate links, variable both in length and orientation. 

30 

The masses should be lumped at the proper locations on these 

links o£ variable lengths. Also, consider the length o£ each 

element on these links as variable coordinates. The £ig. 6, 

shows moving slider pair modeled by £our elements, each 

being represented by a varying coordinate, they may be 

related by -

and 

2:s = 2& 

The slider modeling technique used above is the same as 

described by Dado (1986). 

Input Data Style 

Once the user has developed a complete model o£ the 
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mechanism to be analyszed, this includes a complete drawing 

o£ the same, in all respects. The program's interactive 

input can be used to enter the data o£ the mechanism in the 

standardized £orm used by the program's number crunching 

routines. The £allowing menus are presented to the user £or 

the inverse static equilibrium analysis. 

explain the input data style. 

<1> Toe characteristic data menu. 

<2> The link data menu. 

<3> The element data menu. 

(4) The loop data menu. 

<5> The joint data menu. 

They brie£1y 

(6) The coordinates relation data menu. 

<7> The coordinates estimation menu. With re£erence 

to the £ig. 22, the above menus are explained below, via a 

sample data input. In the characteristic data menu the data 

input required are -

<1> Number o£ moving links = 3 

<2> Number o£ £ixed links = 1 

(3) Number o£ kinematic pairs - moving = 2 

(4) Number o£ kinematic pairs - £ixed = 2 

<5> Number o£ ordinary coordinates = 3 

(6) Number o£ primary coordinates = 1 

<7> Number o£ loops = 1 

(8) Number o£ elements = 7 

(9) Number o£ joints = 7 

<10> Gravity= 381.0 
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The link data menu requires for each link prompted in 

sequence in the program, but here only link 2 associated 

with the ordinary coordinate 1 is cited ) -

<1> Number of elements on the link = 2 

(2) Element numbers on the link = 3 and 4 

The element data menu requires for each element 

prompted in sequence in the program, but here only element 4 

is cited > -

(1) Element number = 4 

<2> Associated langrangian coordinate = 1 

(3) Initial joint = 4 

(4) Terminal joint = 5 

<5> Element's constant length = 3 

(6) Element's constant orientation = 0 

<7> Coordinate variation data = 2 

The loop data menu requires, for each loop -

(1) Loop number = 1 

<2> Number of elements in the loop = 7 

<3> Element numbers in the loop = 1, 2, 3, 4, 5, 6 

and 7 

The joint data menu requires for each joint, < here only 

joint 4 is cited ) -

(1) The joint number = 4 

<2> Number of elements in the joint's path = 3 

(3) Element number in the path of the joint = 1, 

2, and 3 

<4> Force magnitude at the joint = 10 



(5) Force orientation at the joint = 0 

The important point to note here, is that the term £orce, 

includes body £orce also. 

The coordinates relation data menu requires, £or each 

link, here only link 2 is cited > -

<1> Number o£ links preceeding the link = 1 

<2> Link numbers preceeding the link = 1 
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The coordinate estimation menu requires, £or each 

lagrangian coordinate, ( here only coordinate 2 is cited ) -

<1> Its estimated value = 0 

(2) Fixed or moving link = 1 

The above menus take in data £rom the user and represent 

it in the data structure used by the computer code. The 

input data style being interactive is easier to use than 

creating a data set a £ile editing procedure. 



CHAPTER V 

ILLUSTRATIVE APPLICATIONS 

Various applications have been solved to test and verify 

the accuracy of this program. The examples envelope a range 

of mechanism possibilities. The problems solved are easy in 

terms of verification. 

Illustrative Example - Dynamics 

Analysis 

Since the dynamic analysis of planar machinery has been 

modified and improved on a different computer system and its 

structure has been changed to great extend from its earlier 

appearance. The following example has been cited from Dado 

<1986> and reworked on the improved version of the dynamic 

analysis program. 

The example analyzes a 3-R planar mixed loop robot, 

shown in the fig. 7. This example has been solved by the 

forward dynamic analysis. The end effector at the joint 7 

must trace the circular path shown in the figure, with the 

defined displacement function S. The orientation of the 

element 6 must remain constant at an angle equal to zero. 

There are three input actuators, one at joint 1, which 

defines the orientation of element 1 and the other two are 
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at the double joint 3 and they define the orientations of 

the elements 3 and 7. The inertias of the elements 1 and 2 

are lumped at joint 2 and those for elements 5 and 6 are 

lumped at joint 6. The inertias of the rest of the elements 

are neglected. A load of 40 lb-m is lumped at the joint 7 

for the end effector assembly. The combined mass and mass 

moment of inertia of the two actuators at joint 3 are 60 lb-

m and 2.8 lb,-in-sec2 • For the dimensions and the inertias 

shown in fig. 7, it is necessary to compute the positions, 

velocities, accelerations, and input torques for the three 

acuators. The input data for this example has been derived 

directly from fig. 7. 

There are no applied loads or known driving forces or 

torques. There are two constraints equations and one time-

dependent equation for defining the orientation of element 9 

using the function S. 

follows -

This constraint equation is as 

tc<1> = g<2&,t> = s(t)/r - 2& = 0 

The other equation is path constraint and it defines the 

orientation of the end effector. It is given by -

ts ( 1) = s ( 2. ) = 2s o - 2s = 0 

Finally, the derivative of these two constraints 

equations are 

pte< 1, 6> = ~ gla2& = -1 

pttc<l> = aglat = 1/r ds<t>lat 

dptc<1,6) = d/dt ag/gt = 0 

dpttc(l) = d/dt aglat = 1/r d/dt C)s(t>lat 
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pts< 1, 5> = C>s/'d2. = -1 

dpts < 1, 5 > = d/dt ~ s/32~ =0 
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The results o£ the dynamic analysis are shown on £igures 

9- 20. The position v/s time plots £or 21, 22 and 2& are 

£igures 9 - 11. The velocity v/s time plots are shown on 

figures 12 - 14. 

figures 15- 17. 

Acceleration v/s time for the same are 

The Driving torques v/s time for the three 

actuators are shown on figures 18 -20. 

Example 1 

Illustrative Examples - Inverse Static 

Equilibrium Analysis 

This example demonstrates the static equilibrium inverse 

analysis, in its simplest form. It illustrates the use of 

the program to solve problems with one degree of freedom and 

one closed loop. The £ig. 21 illustrates the four bar 

linkage and the fig. 22, the linkage in input data form or 

in a kinematic network form. The following are the 

specifications supplied to the program -

force # 1 = 50 lbs. 

£orce # 2 = -13.29 lbs. 

force # 3 = 10 lbs. 

primary coordinate# 1 (value> = 0.261799 rads. 

link # 1 length = 4 in. 

link # 2 length = 6 in. 

link # 3 length = 7 in. 



H, 

Figure 21. 

v 

a2 

.~~t ..-Ha. 

a4 

A Four Bar Mechanism with 
External Forces 

Ul 
1\) 



111 

'H 
0 . 

~ ~ 
J.. ·ri 
0 c:: 
): 111 
-+J.C 
Q.l u 

:z: Q.l 

UE: 
·f"i J.. 
-+J 111 
111Cll 
s 
Q.l J.. 
c:: =' 

...-1 0 
~tz. 

< 

53 



No. 

1 

2 

3 

4 

TABLE 1 

COORDINATE VALUES FOR THE FOUR BAR 
LINKAGE EXAMPLE 

Coordinate No. Coordinate Values 

1 0.261799 

2 5.410521 

3 1.260848 

4 0.000000 

54 



55 

link# 4 length= 11.723 in. 

The table 1 shows the result o£ the computation o£ this 

example. Note, with re£erence to £ig. 22 that £orce # 1 

corresponds to the vertical £orce at joint # 4, the £orce # 

2 to the horizontal £orce at joint # 2 and £orce # 3 to the 

horizontal £orce at joint # 6. The primary coordinate is ~ 

1· The links 1, 2, 3 and 4 are a1, ae, aa and~

respectively. 

Example 2 

The above example is a single degree o£ £reedom problem 

and quite trivial solve £or, using the program. This example 

solves a problem with two degrees o£ £reedom as shown in the 

£ig. 23, which illustrates the closed loop kinematic chain 

and the £ig. 24 gives the kinematic network for the same. 

The problem may be briefly described as a kinematic closed 

loop chain, with £orces 1, 2, and 3 acting at joints A, B, 

and C respectively. 

21 , 2e, 2.1 and 2 ... 

The required results are the values o£ 

The input data are -

£orce #1 = 5 lbs. 

£orce #2 = 10 lbs. 

£orce #3 = 5 lbs. 

primary coordinate #1 <value> = 5.375614 rads. 

primary coordinate #2 <value) = 4.318119 rads. 

link #1 (length> = 20 in. 

link #2 <length> = 20 in. 
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No. 

1 

2 

3 

4 

5 

TABLE 2 

COORDINATE VALUES FOR THE CLOSED LOOP 
KINEMATIC CHAIN EXAMPLE 

Coordinate No. Coordinate Values 

1 1.965066 

2 0.907571 

3 5.375614 

4 4.318119 

5 0.000000 
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link #3 <length) = 20 in. 

link #4 <length) = 20 in. 

link #5 <length> = 40 in. 
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The table 2 shows the result of the example. Note unlike 

the problem #1 this cannot be solved explicitly. In fig. 24 

the forces 1, 2, and 3 act at joint #'s 2, 3 and 4 

respectively. 

respectively. 

The primary coordinates are ~1 and 2a 

Example 3 

Both the above examples do not illustrate any sliders. 

This example shows the solution of the vertical slider crank 

mechanism shown in fig. 25 and its kinematic network in fig. 

26. The number of degrees of freedom are two. The links 

are equal in length. The slider is weightless and the 

forces are acting at B and C and are equal. 

is as follows -

force #1 = 4.4 lbs. 

force #2 = 0.9 lbs 

The input data 

primary coordinate #1 = 1.0253809 rads. 

primary coordinate #2 = 2.0391691 rads. 

link #1 <length> = 4 in. 

link #2 <length> = 4 in. 

link #3 (length> = 4 in. 

The Table 3 shows the computed result for this problem. 

With reference to fig. 26 the forces 1 and 2 act at joints 2 

and 3 and the two primary coordinates are lagrangian 
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Figure 26. A Kinematic Network of the 
Vertical Slider Crank Mechanism 
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No. 

1 

2 

3 

4 

TABLE 3 

COORDINATE VALUES FOR THE VERTICAL SLIDER 
CRANK MECHANISM EXAMPLE 

Coordinate No. Coordinate Values 

1 2. 1057379 

2 2.1162117 

3 1.0253809 

4 2.0391691 
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coordinates 3 and 4. The above example is veri£ied and 

compared with the solution arrived at using the vector 

mechanics approach, Amin (1979), in £ig. 27. 

Example 4 

The £allowing example illustrates the use o£ this 

program to solve a multiloop mechanism. The £ig. 27 shows 

the mechanism and the £ig. 28 gives the kinematic network 

£or the same. The mechanism data supplied is -

£orce #1 = 100 lbs. 

£orce #2 = 79.29 lbs 

primary coordinate #1 = 5.497787 rads. 

primary coordinate #2 = 1.047197 rads. 

link #1 <length> = 2 in. 

link #2 <length> = 4 in. 

link #3 <length> = 3 in. 

link #4 <length> = 2 in. 

link #5 <length> = 0 in. initial estimate > 

link #6 (length> = 5.6 in. 

link #7 <length> = 6.4 in. 

The Table 4 shows the output generated by the program 

£or the above problem. In the £ig. 28 the £orce 1 acts at 

the joint 6 and the £orce 2 at the joint 3. The primary 

coordinates 1 and 2 are lagrangian coordinates 1 and 2. 
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No. 

1 

2 

3 

4 

5 

6 

7 

TABLE 4 

COORDINATE VALUES FOR THE MULTI-LOOP 
MECHANISM EXAMPLE 

Coordinate No. Coordinate Values 

1 5.497787 

2 1. 047197 

3 5.759586 

4 2.094395 

5 0.250000 

6 0.000000 

7 0.610865 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The main objective o£ this work was to examine the avenues 

£or a generalized approach £or inverse static equilibrium 

analysis, using the virtual work principle. Enhancing the 

status o£ the existing dynamic anal~sis of mechanisms 

package was essential to incorporate the inverse static 

equilibrium analysis and assimilate the different techniques 

that have been used therein £or mechanism analysis. 

In applying the virtual work principle, it is assumed 

that the planar mechanisms are in static equilibrium and 

successive iterations solve £or the equilibrium position, if 

the mechanism does not comply to the assumption made. The 

procedure used expresses the mechanisms's virtual 

displacement £or all langrangian coordinates in terms o£ the 

primary and the secondary coordinates and computes the 

virtual work done by these virtual displacements. The 

Newton-Raphson technique is used to numerically iterate 

towards the final result. The problem mathematically gives 

rise to a highly nonlinear set o£ equations, which exhibits 

great resistance to convergence. 

Vector mechanics approach is the usual method employed 

£or inverse static equilibrium analysis and as with the 
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virtual work principle, the vector mechanics approach also 

gives rise to a set of highly nonlinear equations. The 

advantage of virtual work principle is in the fact that it 

creates a smaller set of equations as compared to the vector 

mechanics approach, thus leading to a faster convergence. 

This analysis has been developed for planar mechanisms. 

It may be extended to spatial mechanisms, however in case of 

spatial mechanisms, for the ease of computation it would be 

better to use the matrix approach rather than the complex 

number approach. Also the use of links that are not ideal 

and conditions that express friction and other external 

parameters are desirable. Viewing the program from a 

programmer's outlook, such large computation intensive 

programs require a fast computer, and a system capable of 

the essential interactive computer graphics facilities. 
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APPENDIX A 

PROGRAM LAYOUT AND STRUCTURE 

The program has the following new features -

It has been installed on the Silicon Graphics Iris 3030, 

a graphics workstation, thus it has an excellent graphics 

capability. The optimum use of the Iris's graphics ability 

has been made in this project. The program is completely 

Interactive. The use of C programming language's vast 

capability has allowed the programmer to give complete 

interactive benefits with least programming effort. At the 

same time the number crunching part of the program is 

executed in Fortran and C, the reason being, to use the rich 

math and built-in functions in Fortran and the compact 

structure available in C. This use of C and Fortran in a 

single program is possible by the "Fortran to C and C to 

Fortran" interface provided by the Iris's compiler. 

The other feature is the division of the program into 

files. None of the files are over a thousand lines of code, 

for a programmer this is a boon especially when the code is 

very large and the programmer wishes to access complete 

control over it. The splitting up of the code, to be stored 

in different files is possible due to the fact that the 

operating system of the workstation, Unix, has the 
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"make£ile" £unction. 

The program £iles are as described below -

£ile 1 -Main £ile- mal.£. 

This £ile contains the main program £or 

dynamic analysis. 

£ile 2 - Preprocessorl £ile - prl.c. 

74 

This £ile contains the interactive input code 

£or dynamic analysis. 

£ile 3 - Postprocessorl £ile- pol.£. 

This £il~ contains the output £unctions to 

display the completed analysis o£ the program. 

£ile 4 -Graphical & Mathl £ile - gm_£un.c. 

This £ile contains the all the graphic and 

math £unctions available £or dynamic analysis. 

£ile 5 - Functional £ile - sull.£. 

This £ile has all the subroutines and 

£unctions necessary £or the number crunching 

sections o£ the dynamic analysis. 

£ile 6 - Main2 £ile- ma2.c. 

This £ile contains the main program £or 

inverse static equilibrium analysis, it has 

been con£igured as a C language £unction to be 

accessible by the dynamic analysis's main 

program and to be accessible as one package. 

£ile 7 - Math2 £ile- m£un.c. 

This £ile contains the all the math £unctions 

available £or inverse static equilibrium 
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analysis. 

£ile 8 - Preprocessor2 & Postprocessor2 £ile - su21.c. 

This £ile contains the preprocessor and the 

postprocessor £or inverse static equilibrium 

analysis. These £unctions are used £or 

interactive input and output o£ completed 

analysis and data. 

£ile 9 - Functions £ilea - su22.c. 

This £ile and the £allowing one contain the 

number crunching £unctions £or inverse static 

equilibrium analysis. 

£ile 10- Functions £ile b- su23.c. 

The £ig. 27, gives the program's flowchart this may be 

vital £or any further improvements to be done on this 

program. 
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