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CIRCULAR PRESTRESSED CONCRETE COLUMNS SUBJECT TO 

CONCENTRIC FORCES, BENDING MOMENT AND TORSION

CHAPTER I 

INTRODUCTION

Columns are basically compression members. A column that is 

compressed by its own prestress is not considered a compression mem

ber, rather the "column action" which it undergoes is the result of 

external compressive loads.

Axially loaded prestressed columns are not very common in 

practice since concrete, under many situations, can carry compressive 
loads better without being precompressed by prestressed strands. It 

has been difficult for the average engineer to conceive of the idea 

that the prestressing strands will help in carrying any compressive 

load. It is obvious that there truly is little justification for pre

stressing a short concentrically loaded column. On the other hand, in 

many compression members there is bending due either to load eccentri

city, asymmetry in the section, or due to transverse loads, each tends 

to produce tension in the concrete or to make the column less stable. 

Prestressing in the foregoing becomes a practical solution. It might 

also be justifiable on the basis of economy, construction advantages, 

transportation and erection stresses.

-1-
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4 11*Some research * has been reported in the area of concentri

cally prestressed columns, both theoretical and experimental. It was 

concluded that prestressing a slender column does not decrease the 

concentric load that will cause the column to buckle and that the column 
will fail in compression if the prestressing stresses exceed the differ

ence between the buckling stress and the ultimate strength of the con

crete.
Most columns in practice are eccentrically loaded. Failure may

be controlled by the material strength, buckling of the column, or the

interaction of applied concentric load with bending. Prestressing may

prove to be of considerable value in providing greater strength and

stiffness to the column.

Prestressed columns under eccentric loads have been the subject

of research for the past thirty years. Little progress, if any, has

been made on circular sections. Most of the effort has been directed

toward the study of rectangular columns. One exception is that of pile 
59studies. The research work on rectangular sections includes experi-

4 39mental work on the stability of slender prestressed columns ; the
effect of partial prestressing on long c o l u m n s a n d  the effect of

67eccentrically loaded prestressed columns with hinged ends. A thorough 

discussion of the literature is included in the next chapter.

The general conclusion is that cracking can be fairly well pre

dicted by the elastic theory and that it occurs when the fiber stress 

reaches the modulus of rupture. Beyond cracking, the elastic theory 

is no longer applicable.

The ultimate strength of eccentrically prestressed slender

*
Superscript numbers refer to entries in the Bibliography.
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colimns was calculated on the conditions of static equilibrium and com

patibility of s t r a i n . U l t i m a t e  strength relationships were based 

on Hognestad's stress-straln curve. It seems that some concern or 

caution Is warranted here. Prestressing steel lacks a sharp and distinct 

yield point and since the prestress may modify the neutral axis location 

at failurea It Is fairly clear that theoretical considerations based on 

a relationship developed for conventional reinforced concrete sections 

need further consideration.
In framed structures, columns undergo stresses due to bending 

moments, axial forces, and shear as well as torsional forces. Bending 

can be caused by eccentric loads, wind and earthquake forces or frame 

action. Columns may sustain severe torsional stresses due to earthquake 

loads or as a secondary effect of bending. Torsional stresses may not 

affect the design of columns but the combined effect of these forces 

and torsion Is the least understood.
A considerable amount of research effort has been directed toward

68 72study of the behavior of prestressed concrete beams under torsion. *

It Is generally agreed that because of the high shear strength of con

crete coupled with its low tensile strength, the failure of prestressed 

concrete beams In torsion seldom results from shearing stresses, but 

rather from principal tensile stresses produced by the shearing stresses 

and the compressive prestressing force. The general trend among re
searchers today Is to represent the torsional strength of prestressed 

beams In a unitless Interaction diagram or a surface In the case of com

bined torsion, bending, and shear and to derive an equation based on 

statistical Inference. Even though test results are fairly well correlated
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by statistical equations, a well-defined failure theory for concrete 

under biaxial stresses is long overdue.

One failure criteria commonly used, governed by the maximum-stress 
12theory, compares quite favorably with test results for establishing the 

ultimate cracking moment for prestressed concrete sections. Equations 

derived for torsional failure of uniformly prestressed rectangular beams 

based on the bending mechanism are identical to equations derived by the 

writer based on Coulomb's stress distribution and maximum-stress theory 

for circular cross sections.

It was the objective of this study to investigate the relationship 

of circular slender prestressed concrete columns between the acting load 

and the bending moment for a given eccentricity when the load is increased 

from zero to collapse. This relationship will be represented graphically 

in interaction diagrams for both cracking and collapse failures.

The second objective is the study of the effect of torsion, the

combined effect of torsion and concentric load, torsion and bending

moment, and the interaction of torsion with concentric load and bending.

In order to fully understand the combined effect of concentric 

loads, torsion and bending moment, the height, cross section area, the 

amount of prestressing, the percentage of steel, and the eccentricity of 

the axial load will not be considered as variables, while the strength 

of concrete was an unintentional variable in this study.
A thorough review of the literature shows that the research here

reported on circular prestressed concrete columns is unique and without 

precedent in the literature.



-5-
This research was motivated by the recommendations of the 

Conference on the Behavior of Structural Concrete Subject to Combined 

Loadings, West Virginia University, Morgantown, West Virginia, June 

10-13, 1969.



CHAPTER II 

HISTORICAL DEVELOPMENT

Research work on circular prestress concrete columns is non

existent. Some work has been reported on other shapes, mostly involv
ing specimens of rectangular sections. Most of these tests involved the 

application of one type of load or another; however, research data is 

unavailable dealing with combined loads on prestressed concrete columns 

of any type of crossection. The review of historical development must 

of necessity be restricted to one type of loading condition at a time, 

while the study herein will give some insight into the interaction of 

the applied forces.

Torsion

Circular members are commonly used as compression members.

Under earthquake loadings, columns may undergo severe torsional stresses. 

There are no published data on the strength of reinforced or prestressed 

concrete columns undergoing torsion or the interaction effect of torsion 

with axial force or the combined interaction with bending or concentric 

forces. The writer is aware of only one exception and that is the study 

by Bishara^^ on reinforced concrete rectangular columns in torsion.

Pure Torsion

Plain concrete members subjected to pure torsion will fail along

—6—
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the plane of principal tension, at a spiral line 45 degrees to the axis. 

Spiral and longitudinal reinforcement will improve the column capability 

to withstand torsional stresses, but \ô.ll not act until the concrete has 

c r a c k e d , i n d i c a t i n g  that torsional reinforcement in ordinary rein

forced concrete does not contribute to the elastic torsional strength 

of the concrete member. On the other hand prestressing delays the for

mation of tension cracks until the compression due to initial prestress

has been offset, and, therefore, there is a great improvement in the tor-
12sional strength of concrete.

72Zia states:

Before cracking, the behavior of a concrete member in pure 
torsion can be closely predicted by the elastic theory, 
idiether the member is of plain reinforced or prestressed 
concrete. Addition of reinforcement or prestressing into 
a plane concrete member, or both, has no appreciable effect 
on the member stiffness before cracking.

12Cowan's tests on prestress concrete members in pure torsion led 

him to believe that a state of pure shearing stress transforms into ten

sile and compressive principle stresses which combine with compressive 

prestress. The equations he derived showed good agreement with experi

mental data. Cowan noticed that failure of prestressed concrete in 

torsion follows immediately on the formation of the first crack. The

prestress force is released by the spiral fracture, often in an explosive

manner, accompanied by considerable noise and flying debris.

It is generally agreed that failure of prestressed concrete mem

bers in pure torsion occurs at Initial c r a c k i n g . ^ T h e  mechanism 

of failure can be described in two different folds. First, the elastic

theory applying Coulomb Theory for circular columns or Saint-Venant
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Theory to rectangular cross sections, adding the conqiression effect of 
the prestressing, and second, the plastic theory exists in two differ

ent forms: One theory is based on Nadai's sand heap analogy assuming

concrete to have infinite plasticity while the other theory considers a 

limited redistribution of stress according to the observed plastic be

havior of concrete in compression. Since concrete does not possess the 

material properties as required by the three theories, and since concrete 
is no more elastic than it is plastic, all the above theories 

could be incorrect. The elastic theory will tend to underestimate the 

torsional strength while the plastic theory will overestimate the capa

city of concrete in torsion.

Hsu^^ reported that all three theories may be incorrect based 

on his tests on rectangular sections. He also concluded that torsional 

failure of uniformly prestressed concrete members is due to a skewed 

bending concept. It should be kept in mind that all his tests were con

ducted on rectangular beams; he modified his equations to accommodate 
circular cross sections without obtaining test data.

It has been the trend of most researchers to account for the 

additional strength due to the presence of the prestressing force by 

modifying the equation for plain concrete in torsion by an appropriate 

factor to account for the apparent increase in strength.

In work done by Hsu,^^ he stated:
The bending mechanism for torsional failure observed previously 
for plain concrete rectangular members was extended to uniformly 
prestressed rectangular members and was found to be applicable.
The stress factor Y=(l+10o/f') established by the bending mechanism, 
is identical to that derived from the classical maximum tensile 
stress criterion of failure...The torsional strength of a prestressed 
concrete member is shown to be equal to that of a non-prestressed 
multiplied by a factor accounting for the effect of prestress.
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68Zia also concluded:
An accurate determination of the torsional strength of prestressed 
concrete is difficult because it requires not only a clear under
standing of the torsional stress distribution, but also a well- 
defined failure theory for concrete under biaxial stresses.

Torsion Combined with Bending 

Most columns in practice are eccentrically loaded and failure 

may be controlled by the material strength, buckling of the column, its 

torsional stiffness, or the interaction of torsion with bending and axial 

force as well as shear. Prestressing can prove to be of considerable 

value in providing greater strength and stiffness to the column.

Columns in practice are rarely loaded in torsion alone. If tor

sional moments exist they are generally accompanied by bending and axial 

forces. Columns with very large eccentricity can be considered as having 

no axial force effect.

Test programs on prestressed concrete columns subject to the com

bined bending and torsion are virtually non-existent. However, tests on 

prestressed beams subject to combined bending and torsion have been re

ported by Cowan^ in 1953, Gardner^^ in 1960, Swamy,^^ Reeves^^ and Gersch^^ 

in 1962, Evsoy^^ and Swamy^^ in 1965, and Priya^^ in 1971. These tests 

involved specimens other than circular cross sections, both with and with

out reinforcement.

Torsion Combined with Concentric Force 

Because of an assumed lack of practical significance, research 

in this area is untouched. Torsion has been considered a secondary type 

of failure and hence torsional stresses were not considered to affect the
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design of the column. On the other hand, prestressed columns may undergo 

severe torsional stresses due to earthquake loads and their combined 

effect with applied concentric force is not clear.

Bending Combined with Axial Load

The idea of prestressing a compression member might seem at first

an anomaly. It might seem obvious that prestressing a concentrically

loaded column would decrease the capacity of the member in spite of the
12advantages gained in economy and handling stresses. However, for eccen

trically loaded columns prestressing can be of great advantage, providing 

greater strength and stiffness in the column.

Columns can be fully prestressed, partially prestressed, or tri- 

axially prestressed. The following discussion will pertain to the first 

two types of prestressed concrete columns.

Prestress concrete columns can fail by either material failure or 

by b u c k l i n g , d e p e n d i n g  upon the slenderness of the column. The ulti

mate load capacity of eccentrically prestressed concrete columns is affected 

by the following factors.

Effect of Prestress

One of the problems encountered in design, is to determine the

required prestressing force to apply to a particular column in order to

get its maximum load-carrying capacity.
67Aroni reports :

1- For columns of smallest eccentricity (e/d=l/8), low prestress 
is beneficial, up to a ratio of about fj.p/f^"0.1, where f is 
the concrete tensile strength. Beyond this ratio, increase of 
prestress results in a significant drop in the value of the maximum
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critlcal buckling load. 2- For columns of medium eccentricity 
(e/d=3/4) acting as beam-column, the maximum critical buckling 
load F , increases with prestress, with an apparent maximum 
value in the region of f /f'=0.3 to 0.35. 3- For the largest
eccentricity (e/d=2) presEress have no effect on columns of slender
ness ratio of 20, whereas for the longer columns, shows some 
small increase with prestress.

59Tests have been conducted by Zia and Moreadith for columns with 

different prestressing levels and the same concrete strength. They con

cluded that for columns with e=0 heavy prestressing is detrimental to 

the load carrying capacity of the column especially for short columns. 

Prestressed columns of low strength concrete and subject to eccentric 

loads (e=0.5d) showed considerable advantage when compared with conven

tional reinforced concrete columns ranging from short columns (L/d=10) 

to slender columns (L/d=70). The effect was most pronounced in the short 

columns.

Effect of Eccentricity

Eccentricity in prestressed concrete columns plays an important

role in determining the ultimate load capacity of the column. Zia and 
59Moreadith investigated this effect and found out, that under concentric 

loads (e=0) the column was controlled by material failure. With increase 

in the slenderness ratio, failure was due to instability. For eccentri

cally loaded columns, buckling failure was the primary factor even for 

short columns. For columns with large eccentricity, the column showed 

more beam action than column action even with a large slenderness ratio.
In tests conducted by A r o n i h e  concluded that for a parti

cular value of prestress, the maximum critical load decreases sharply 

with increase in eccentricity. Aroni found the effect to be more
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pronounced for the shorter columns. Higher prestress values showed a 

similar relationship.

Effect of Slenderness 

The reduction in strength of prestressed columns loaded eccentri

cally was observed by Zia and Mbreadity^* and by Aroni tests results 

have shown that the column strength was reduced considerably due to in

crease in the slenderness ratio.

Aroni concluded from his test that:

As expected, the critical load decreases with increase in slender
ness. As the eccentricity becomes smaller, the member tends to 
behave more like an axially loaded column, and the effect of the 
slenderness is more pronounced. On the other hand, for large eccen
tricity, the behavior resembles more that of a beam and the influ
ence of slenderness is much smaller. The same general relations 
are exhibited at higher prestress ratio.

Effect of Concrete Compressive Strength 

Prestressed concrete columns with low compressive strength exhibited
59material failure even at high slenderness ratios. Tests have shown that 

increase in concrete strength has increased the strength of shorter columns 

with small eccentricity and high prestress force.



CHAPTER III 

TEST SPECIMENS AND INSTRUMENTATION 

Materials and Fabrication 

Concrete

Type III Portland Cement was used in all specimens. Aggregates 

were river sand and crushed gravel. The coarse aggregate had a maxi

mum size of 0.275 inches. The sand was well graded having a sieve analy

sis shown in Appendix (C). Table 1 contains the compressive strength 

and modulus of elasticity for concrete in each column. Compressive 

strengths are based on 3.2 x 6.0 inch control cylinders. A 1:1.5:1.7, 
cement:sand:gravel mix by weight, with a water cement ratio of 0.5, was 

used for all concrete.

Concrete was mixed for i minutes in a drum-type mixer of 3 cu-ft 

capacity and was placed in the forms with the aid of a high frequency 

vibrator.

Prestressing Strand 

A 3/8" diameter 7-wire prestress cable was used. The ultimate 

strength of the steel, as determined by the manufacturer was 270,000 

lb per sq in. Appendix (C).

Casting and Curing 

The columns were cast horizontally in order to avoid differentials

- 13-
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TABLE 1

PHYSICAL PROPERTIES OF COLUMN CONCRETE

Column (psl) (psi) E x 10^ (psl)

A-3 4000 4400 4.044

B-2 3800 4000 3.834

B-3 3800 4080 3.872
C-2 3800 4660 4.139

C-3 3800 4320 3.985

D-1 4200 5600 4.537

D-2 4200 5500 4.496

D-3 4200 5600 4.537

E-1 4210 5362 4.439

E-2 4210 5362 4.439

E-3 4210 5560 4.520

F-1 5950 6200 4.774

F-2 5950 6625 4.935

F-3 5950 6600 4.925

G-1 5900 6425 4.859

G-2 5900 6425 4.859

G-3 5900 6900 5.036
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in concrete quality along the column length as will typically exist in
2 71 2a vertically cast column. * Horizontal casting, on the other hand,

will cause a strength differential across the cross section of the column.

Therefore, the upper side of the column during casting was oriented to

the compression zone under the applied load.

The columns were cast in plastic forms with the exception of the

loading head which was made of wood (Figs. 1 and 2). The prestressing bed

had an overall usable dimension of 28 ft. x 4 ft. This facilitated the

casting of six columns in two rows with three columns sharing the same

prestressing cable (Fig. 3). Each cable was stressed individually with an 
75hydraulic jack and the required prestressing force was read using a 50 

kips calibrated load cell and also checked by measuring the total elonga

tion of the cable. The cables were stressed at the time of casting.

To facilitate the load testing of the columns, a rectangular 

head having an overall dimension of 12 in. by 8 in. by 6 in. was cast
integrally at each end of the column. The heads were reinforced in

order to avoid local failure at the time of testing (Fig. 2).

The wooden forms for the heads were placed with their reinforce

ment positioned first, then the plastic pipe was inserted and taped se

curely to prevent leakage. The cables were then threaded through the

forms, anchored at the east end of the bed while the west end of the

cable was threaded through a special loading system that allowed the 

cable to twist freely during loading and facilitate the transfer of 

the load from the loading chair to the prestressing bed.^^

Three batches of concrete were needed for the casting of the six 

columns and twenty-four cylinders. Out of each batch two columns and 

six test cylinders were cast. The concrete was poured through a one
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Figure 1. Formtfork
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Figure 2. Fonnwork



f

Figure 3. Casting and Prestressing System
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inch opening in the plastic pipe, then it was thoroughly compacted in 

the forms using a pencil vibrator, and finished smoothly to the geometry 

of the form.

The specimens and the cylinders were cured in their forms for 

three days, then the forms were removed and were cured in open air.

When the desired strength (f^^ = 4000 psi) was attained, the prestress

ing force was transferred from the bed to the columns. The prestress 

cable was then cut at both sides of the middle column.

Concrete Control Specimen 

Nine 3.2 inches by 6 inches cylinders were cast with each column. 

Three cylinders were tested initially to determine the concrete strength 

at transfer. The concrete strength at time of testing was obtained as 
an average of three cylinder strengths tested at the same time the corre

sponding column was loaded.

Column Configuration

Test specimens had a 3.75 inch diameter and a length of 75 inches,

which models a prototype column of 15 inch diameter and 25 foot length
73with a scale factor of 1/4.

The loading head on each end of the column was 12 in. by 8 in. 

by 6 in. and reinforced with six No. 3 bars to insure against failure of 

the head due to the externally applied loads. Four No. 6 bars were ex

tended from the head and into the column as shown in Fig. 2 to insure 
against local end failure. This type of failure can result from the 

lack of prestress along the end development lengths in pretensioned 
members. In actual structures the end moment will come from the beams
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and since the beams can be monollthically prestressed with the column, end 

troubles can be minimized. In laboratory testing it was necessary to 

reinforce the loading head and ends of the column to prevent its end failure.

Test Procedure

Table 2 lists the type of tests for each of the seventeen columns. 

The following are several load arrangements to which test columns were 

subjected:

1. Pure bending moment.

2. Pure torsion.
3. Pure concentric load.

4. Bending moment and concentric load.

5. Concentric load and torsion.

6 . Concentric load, bending moment and torsion.

A special testing frame was used for the column specimens. It 

was necessary to test the specimens horizontally, due to the lack of 

vertical clearance. The testing frame (Fig. 5) consisted of two beams 

15 ft long separated at'the ends by two columns 5 ft high. The different 
types of tests necessitated setting up two different sets of testing 

apparatus. One net up was for columns undergoing bending moment only, 

while the other testing apparatus sufficed for the other combination of 

loadings.

Bending Moment Apparatus
The specimens were simply supported on the bottom beam of the 

frame (Fig. 4) and were loaded on the third points through a steel sec

tion resting in half circular plates twenty-five inches apart. The load 

was applied in the middle of the steel section and the load was measured
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TABLE 2 

TEST ARRANGEMENTS

COLUMN NO. TEST

B-2 Pure Concentric Force
B-3

F-2

G-1 Pure Moment
G-2

E-3 Eccentric Force
F-1

C-2 Pure Torsion
C-3

E-1 Concentric Force and
E-2 Torsion

A-3 Bending Moment and
F-3 Torsion

D-1 Torsion, Bending Moment
D-2 and Concentric Force
D-3 
G-3



Figure 4. Pure Bending Apparatus
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Figure 5. Torsion Rig and Eccentric Load Apparatus
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Figure 6. Torsion Rig and Bending Movement Apparatus
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Figure 7. Prestressed Concrete Columns under Torsion and Bending
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by a 50,000 lb. capacity load cell. The load was applied by a 50 ton 

jack mounted to the top beam.

The Torsion Apparatus

The simultaneous combination of three types of loading, at one 

time, bending moment, concentric load and torsion, necessitates the con

struction of a rig that will perform the application of these loads in

dividually or collectively.

The torsion rig (Fig. 5 and 6 ) consisted of a rectangular frame 

that fitted around the head of the column. The frame itself was con
nected to two bearings allowing the head of the column to rotate freely. 

The other side of the bearings was welded to another frame through tdiich 

the torsion moment was applied. The concentric load was applied through 

a hydraulic jack mounted on a movable plate in order to facilitate the 

change of eccentricity of the load. The movable plate in turn was 

mounted on a column on the west side of the specimen.
The outside frame of the torsion rig was designed in such a 

way that the torsion moment was applied through one hydraulic jack on 

the south side of the specimen (Fig. 6 ).

Instrumentation

The prestressing force in each cable was determined by a load 

cell and checked by measuring the total elongation of the cable. Four 

load cells were used to measure the different applied loads, they have 

50,000, 20,000, 18,000, and 3000 lb. capacity. All the load cells were 

connected to a Budd portable digital strain Indicator model p-350. They 
were calibrated before testing and their calibration was checked
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during the entire testing period.

For testing, a column was inserted in the proper position and 

fixed by its head in the west side of the frame. The torsion rig then 

was inserted in the other head of the specimen in the east side of the 

frame. A very small load, 20 to 30 lb., was applied and all initial 
readings taken. An axial shortening was applied to the column and the 

load read on the strain indicator. There was an initial increase in 

the load which followed by a relaxation and load drop. Equilibrium was 

assumed to exist when the load drop was less than 50 lb. per 30 sec.

At that state of equilibrium all readings were taken and the column 

was examined for cracks. Another increment of load was applied and 

the process was repeated until material failure occurred. The increments 

were decreased at the final stages, and a total of 15 to 20 increments 

were obtained and tests on the average lasted 2 hr. 30 min.

The deflected shape during loading was measured by four dial 

gages, and the initial deflected shape of the column was determined by 

measuring, to an accuracy of 1/64 inches, from a thin string stretched 

between the column ends.



CHAPTER IV

PRESENTATION AND DISCUSSION OF TEST RESULTS 

Introduction

A column is a structural member under compression parallel to 

its longitudinal axis. Host frequently bending moment is induced 

either through compression load eccentricity or laterally applied forces. 

In addition, transverse shear as well as torsion may be present. Columns 

will bend in a uniaxial or biaxial manner, depending on the location of 

the eccentric load. Biaxial bending is a complex problem, and it will 

not be dealt with in this research program.

Concrete columns prestressed or conventionally reinforced are in 

general eccentrically loaded. When the eccentricity is extremely large 

the column reduces to a "beam like" column and the case approaches that 
of a pure flexure. Columns concentrically loaded are rare and such speci

fying groups as ACI require designs for at least a minimum eccentricity. 

Concentric loads were considered in this study because they constitute 

the limiting case at one extreme of the interaction diagram for axial 

load and the bending moment.

Columns in general, prestressed or not, are affected by other 

factors beside external loads. Slenderness ratio and end conditions will 
control the column's ultimate capacity and its collapse mechanism. A

-28-
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prestressed column that is very slender will collapse through instability 

which is caused by out of plane motion rather than material failure. All 

columns tested in this study had the same slenderness ratio (h/4 = 80), 

that ensured material failure. It was not intended to study the collapse 

of long prestressed columns through instability, although this problem 

should be considered in further research. Also, in the case of bending 

moment combined with concentric load, the moment will be magnified due 

to the deflected shape of the column. Although the deflection will be 

less in the case of a prestressed column compared to a conventionally re

inforced one, having the same end restraints, nevertheless, this magnifi

cation is very sensitive to the slenderness of the column. Hence an estimate 

of the slenderness effect on the ultimate capacity of the column should be 

studied throughout the entire range of h/r.

The effective length is not the same as the unbraced length of the 

column. Its value should depend on the nature and the degree of the re

straint present at both ends of the columns. Rational methods give provi

sions for calculating the effective length for reinforced concrete 

c o l u m n s . S u c h  provisions for prestressed concrete columns are yet to 

come and need further research.

Columns tested in this study were fixed at one end and restrained 

from translation at the other end, where the loads were applied. This 

choice in end conditions facilitates testing the specimens separately or 

under combined loads with minimum amount of change in the testing appara

tus.
It was not intended in this study to vary the strength of con

crete; nonetheless the cylinder strength of concrete ranged from 4000 to
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6900 psl with an average of 5500 psi. In combine loading it was neces

sary to account for this change by multiplying torsion and axial load by 

/5500/f^ and bending moment by (5500/f^). Although this was practiced by 

many previous researchers^^and could be debatable, nevertheless, this 

was necessary as an attempt to eliminate f^ as a variable in this investigation.

Stress losses due to transfer of prestressing force, shrinkage, 

elastic cotq>ression, relaxation in the steel tendons and creep were con
sidered and were estimated at 2 0% of the prestressing force.

Concentric Load
Test data for the tao columns tested under concentric loads are 

given in Table 3. Most of the columns developed a small initial curva

ture before testing and hence no specimen was tested with truly axial 

load. Figure 8 shows conditions at ultimate for a realistic and idealized 

prestressed concrete column under axial load.

A circular section with prestressing steel in the center, loaded

as shown in Figure 8 a must satisfy the conditions of force equilibrium

and strain compatibility:

Equilibrium of forces : C = + T

^uo =

-  V s  (s. -

Equilibrium of moments; M^ = K^f^K^^A (R - K^c) (2)

Compatibility equation: Ae^ = —  (e^) (3)
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Cross Section

Elevation

Puo

Strains
Ac u

Stresses

C
(a)

Long Column - failure 
due to flexure

uo

(b)
Short Column - failure 

due to crushing

Figure 8 . Conditions at Ultimate in Concentrically 
Loaded Prestressed Concrete Columns
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Total strain in the

prestressing strand: e « e - Ae„ and” s so s

S  - Â E -  - c8 8

where

C = total internal compressive force in concrete

= ultimate load of concentrically loaded column

Ki* K2 = coefficients related to magnitude and position of 
internal conçressive force in concrete

= 0.85

T = internal force in prestressed cable
R - radius of circular cross section

A = area of concrete in compression

My = maximum bending moment

ACg = change in the strain of prestress cable

e = strain in prestressed strand due to prestressing 
forces after losses

= ultimate compressive strain

= prestressing force after losses.
2Results of previous tests indicated that the values of and 

Kg decrease as f^ increases. The value 0.85 for was used, adopting 

Hognestad idealized stress-strain diagram for concrete. Although these 

constants were obtained considering rectangular cross sections, they 

were used here as a suitable approximation.

The area of the cross section in compression. A, can be readily 

evaluated from the following expression and Figure 9.

C—RCos 0 = ̂

A = R^ (n - 0 ) + R (c-R) Sin 0 (5)



TABLE 3

COLUMN TEST RESULTS FOR CONCENTRIC LOADING

Column (psi)

Ultimate Axial Force 
(lb)

Theory* Exp.
Puo <EXP-) 

(Theory)

Ultimate 
Strain 

in Concrete 
in/in

Initial
Deflection
(inches)

Failure
Distance

From
Loaded

End
(inches)

B-2 4000 29,600 29,500 0.996 0.00516 0.156 65

B-3 4080 30,200 29,400 0.974 0.00448 0.235 65 & 24

Y

Equations 1-8.
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Flgure 9. Properties of a circle segment

The moment in Equation (2) is related to short columns with 

initial curvature or to long columns with substantional lateral deflec

tions at ultimate axial load, with or without initial curvature. It 

was observed that even the slightest preloading deflection magnified 

the moment considerably in long prestressed columns and hence reduced 

the ultimate load capacity.

Conventional reinforcing steel used in the heads extended ten 

inches into the column to insure against local failure between the head 

and the end of the column. It is clear that the maximum moment will be 

at the fixed end of the column, but the presence of the reinforcing 

steel forces collapse of the column to some other high moment zone but 

with a lesser column moment of inertia. This was evident in both col

umns tested where the failure plane was at the cut off points of the rein

forcing steel. Figures B~1 and B-2 show the variation of lateral deflec

tions at various points along the column with the applied load. Measured 

deflections were used in evaluating the moments at points of collapse.

Column B-2, shown in Figure 10, collapsed in compression in two 

different places simultaneously. The ultimate axial loads were the same.
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msmm

Figure 10. Crack Pattern for Axially Loaded*Column
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but the moments were opposite in direction causing one plane of failure 
to look as an inverse of the other.

A prestressed concrete short column, loaded axially and exhibiting 

no pre-loading curvature, will have conditions at ultimate as shown in 

Figure 8b. Such a column must satisfy two conditions ; (1) the prestress

ing stresses are low and uniform, (2 ) the column has a small h/r ratio 

to be efficient as a compression member. With reference to Figure 11, 

the following equations are available.

Po

f P f = o Pe T~

Figure 11. Prestress loss due to concentric load

f = (P+T)/A

where

Then

T =

Ae

^  - ''^Vs

-  C

V s
- Ë - T  ^c c
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^  ï - ' o - k T T * ‘ -

In the above K = _ . , (6)
c c

and f|ÎEe <  ̂ . (7)

Note that T « 0 when 77 ̂  -r P - P (8)Jv “T X O

where

= area of prestressed strand

= gross cross section area of prestressed column 

= prestressing force after losses 

P - axial load

= modulus of elasticity of concrete

Eg = modulus of elasticity of prestressed strand

f = cong*ressive stress in concrete due to prestressing 
force after losses

fg = coaq>ressive stress in concrete.

Eccentric Load

These tests consisted of three columns. Two of the columns 

had an initial curvature before testing, hence all three columns had 

different eccentricity at time of testing. All three test specimens, 

shown in Figure 12, collapsed due to crushing of the concrete along nearly 

identical planes of failure. The strain in the prestressed steel had 

an average of 40% of its ultimate. The ultimate loads and moment are 

shown in Table 4. Eccentricity values included measurements of the 

initial deflections.



TABLE A

COLUMN TEST RESULTS FOR ECCENTRIC LOADING

(1)

Column

(2) (3)
First Crack

Axial Load Moment 
(lbs) (in-lb)

(4)
Eccentricity

e
(in)

(5)
Ultimate Moment 

(in-lb)
Theory* Exp

(6)
Ultimate Axial 

Load Exp. 
(lbs)

E-3 5,560

F-1 6,200

F-2 6,625

6000 10,600

6000 11,600

7000 11,110

2.075

2.156
2.0

21,200 19,400

22,400 23,400

25,000 28,350

11,000
11,700
15,400 f

■ - (7)... . ■ '
Ultimate Axial 

Strain 
(in/in) 

Concrete Steel

(8)
Initial

Deflection
(in)

(9)
Failure Distance 

From Loaded 
End 
(in)

0.0074 0.00301 0.075 12

0.0073 0.00331 0.156 11

0.0083 0.00293 0 12
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Figure 12. Crack Pattern for Eccentrically Loaded Columns
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Cross Section
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Figure 13. Conditions at Ultimate in an Eccentrically Loaded 
Prestressed Concrete Column
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Conditions at ultimate are shown in Figure 13 and the equations 

of equilibrium and compatibility are as follows:

Equilibrium of forces: C = + T

r» . +  A y

Equilibrium of moments: = K^K^f^A (R - KgC)

R cCompatibility equation: Ae^ = — -—  (e^)

(9)

(10)

(11)

Total strain in the prestressed strand, c^, is

= S o  + '‘S

s s
(12)

The area of the section in compression. A, can be readily 

evaluated from the following expression and Figure 14.

Figure 14. Properties of a circle segment
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Cos 0 =

0and A = -  A - f  Sin 20 (13)ir c  z

The moment in equation (10) is the maximum moment developed 

in the column due to the eccentric load at collapse. Appendix figures 

B-3, B-4, and B-5 show the variation of column deflections taken at 

several points along the column as load was applied. These measured 

deflections together with applied loading were used to arrive at the 
maximum moment developed in the column. It is obvious that the moment 

should be the largest at the loaded end, but these columns were designed 

and reinforced in both heads up to a distance of eleven inches inside the 

column to insure that no "end" failures would occur. Therefore, the 
column would collapse in the next weakest section undergoing the maxi- 

mun moment in the area where the prestressed cable is the sole reinforce

ment. This was evident from the test results in that all columns 

collapsed at essentially the same point and under the maximum stress, 

where change in moment of inertia. I, is considered.

Pure Moment

The tests consisted of two columns. Figure 15 represents condi

tions at ultimate and the equations of equilibrium and compatibility 

are as follows :

Equilibrium of forces: C = T

K^Kjf^A = + A:,) (U)
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Cross Section

Strain
Ac

Stress

C

Figure 15. Conditions at Ultimate in a Prestressed Concrete Column 
Subject to Pure Bending Moment



TABLE 5

COLUMN TEST RESULTS FOR PURE BENDING

n Cracking Moment 
(In-lb)

Ultimate Moment 
*u M. Theory

Ultimate Strain 
(In/ln)

Failure 
Distance 
From Left 

End
Initial

Midheight
Deflection

Column (psi) Theory* Exp. (In-lb) M. Test Concrete Steel (In) (in)

G-1 6,425 6,100 6,520 17,600 .87 0.0097 0.00814 29 0.375

G-2 6,425 6,100 7,500 17,600 1.08 0.0097 0.00814 37.5 0

I

r

Equation 15.
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Equilibrium of moments: = K^K^f^A (R - K^c) (15)

R — CCompatibility equation: Ae^ = — -—  (e^) (16)

GA 2
From Equation (13) : A = —^ y  Sin 20 (17)

In a prestressed concrete column, undergoing pure bending moment, 

collapse can occur when either the prestressing steel or the concrete 

fails. In practice, however, the presence of large amounts of prestress

ing steel will prevent the failure of steel before the crushing of con- 
73Crete. Hence, practically speaking, collapse in a prestressed concrete 

column will be the result of the crushing of the concrete in the compress
ive zone.

The strain in the prestressed steel will be

where

c = ultimate strain in prestressed strand su

Hence T = e f (Tension failure)su sy

where f = nominal yield strength of prestressing strand,sy

From Equation (14)

w ; *  ■

and A = (19)
1 3 c
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then c can be found from Equation (13) and

° ®su ■ S o  (20)

* S  ' E «su ■ (21)

Substituting in Equation (16)

S  * * S  (22)

Cracking moments based on elastic theory and ultimate moment 

are shown in Table 5. Figures B-6 and B-7 show the variation of mid

height deflections with applied moment. The columns collapsed by failure 

of the concrete in the compressive zone. The calculated strains for the 

prestressed steel indicated that the prestressed strand was close to 
its ultimate strain value.

Interaction Diagram of Concentric Load and Moment

Prestressed concrete columns can be concentrically or eccentri

cally loaded. Concentrically loaded columns are more likely to collapse 

by crushing of the concrete, or by instability if the column is a slender 

member. On the other hand, eccentrically loaded columns will collapse 

due to the crushing of the concrete in the compressive zone or the 
strain in the prestressing steel reaches its ultimate strain value.

The relationship between the ultimate moment and the ultimate 

load, called the interaction diagram, gives a graphical representation 

of the entire range of load moment relationship. This relationship will 

hold for any given eccentricity and a certain level of prestressing 
if the following assumptions are made:
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Figure 16. Interaction Diagram of a Prestressed 
Concrete Column



— 48—

1. The stress-strain relationship for both concrete and 

prestressed steel are known.

2. Concrete will exhibit a linear strain distribution with 

depth in the compression zone.

3. The section will collapse when the strain in the concrete

in its extreme fiber reaches or the prestressing steel

reaches e .su
The solid curve in Figure 16 represents the ultimate interaction 

diagram at collapse while the broken line represents the conditions at 

cracking. The points plotted are those previously discussed in the pre

ceding three sections of this chapter. For this diagram to have any 

reasonable accuracy more tests are necessary.

The interaction diagram presented lacks the sharp curvature at 

the balance point that is characteristic of the interaction diagram of 

reinforced concrete sections. Prestressed steels are high-strength and 

lack a definite yield point which accounts for the absence of a definite bal

ance point and results instead in a less shapr curvature of the diagram.

Pure Torsion

Diagonal tension cracks occur when the principal stress, o^, 

exceeds the tensile strength of plain concrete. The principal tensile 

stress can be equated as:

where

T^ - torsional strength of plain concrete section 

K = constant, a function of the cross section
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= tensile strength of concrete.

In a uniformly prestressed section, the minor principal stress 

due to the combined action of the prestressing and the torsional shear, 

Tp, is given by

= 1  ' +  *Tp'- ** *pe

where

f = effective compressive stress due to uniform 
prestressing

T = KT , the maximum shearing stress due to torsionp p
T - torsional strength of uniformly prestressed 
^ section.

Hence,

pad = ïpe +

and T* = +  ̂ ^ 2p O K.

o
and since KT = f.o t

then T = T /l + . (23)p o fj.

The initial cracking moment for columns subject to torsion is 

shown in Table 6 . The cracks, as soon as they were formed, propagated 

on both sides of the column in a spiral manner with an angle smaller than 

45°, which is a function of the prestress compressive stress (Figure 17). 

As the torsional moment increased, it was followed immediately by a
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Figure 17. Crack Pattern in a Prestressed Concrete Column Subject 
to Pure Torsion



TABLE 6

COLUMN TEST RESULTS FOR PURE TORSION

Cracking Moment 
(Tp) 

(in-lb)
Ratio 

Tp (Exp.)

Ultimate Torsional
Moment (T ) pu

(in-lb)
Ratio 

Tpu (Exp.) Angle of Twist 
(Degree)

Column (psi) Theory* Exp. Tp (Theo.) Plastic Theo.** Exp. Tpu (Iheo.) Theo. Exp.

C-2 4,660 4,180 4,275 1 . 0 2 5,700 5,344 .94 .546 0.60

C-3 4,320 4,000 4,061 1 . 0 1 5,340 5,130 .96 .568 0.55

’̂Equation 23. 
**Equation 27.
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complete collapse. The mode of failure was characterized by a clean, 

granular appearing crack, the result of diagonal tension and collapse 

was not accompanied by any noise.

Torsion Combined with Concentric Load 

The initial cracking moment for the two columns subject to con

centric load and torsion is shown in Table 7. The cracking torsional

moment can again be computed from Equation (23) where f can be re-pe
placed by f^, the compressive stress in the concrete due to the axial 

load and the effective stress induced by prestressing.

In reality, the compressive stress f^ can be the result of pre

stressing or the combined effect of prestressing and axial load so long 

as the strain in compression does not exceed the ultimate compressive 

strain of the concrete.

Previous test results^* on rectnagular sections indicated that 

fp^ can be as large as 0.60 f^ (see Fig. 19). Any further increase in 
the prestressing level will decrease the strength of the section to re

sist torsion. A straight line was drawn between the cut-off point and 

P/Pu = 1 (broken line in Fig. 19) in order to close the interaction 

diagram. This is an approximation and should be verified by further 

research in that region of the diagram.

When an axial force P is added, the compressive stress becomes

Substituting in Equation (6 ) and simplifying . .

= r  +  r f j )  <“ >c



TABLE 7

TEST RESULTS, COMBINED AXIAL LOAD AND TORSION

Cracking Moment Ultimate Moment R^tio Angle of Twist
-, p T (Exp) pu T (Exp) at Failure
c in-lb T (in-lb) t fThoo't (Degree) i

Column (psi) Theo.* Exp. p^ Theo.** Exp. pu ' Theo. Exp. w

E-1 5,362 6,000 5,980 0.996 7,960 6,626 .834 0.716 0.56

E-2 5,362 6,900 7,050 1.020 9,200 8,764 .954 0.840 1.10

AEquation (26).
ititEquation (27).



Figure 18. Crack Pattern in Prestressed Concrete Columns Subject 
to Combined Torsion and Concentric Load
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Figure 19. Interaction Diagram for a Prestressed Concrete 
Column under Combined Concentric Load and Tor
sion
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where

V c

and Equation (23) will change to

Tp = + -f- . (26)

The maximum shearing stress, in a prestressed column can 
be evaluated as follows:

2T

and the plastic theory gives the ultimate torsional moment as 

hence

V  = i Tp - (27)
The mode of failure of prestressed columns under the combined 

action of torsion and concentric load was the same as in the case under 

pure torsion. The cracks developed in a spiral manner but with a 

sharper angle of inclination with the longitudinal axis of the column 

depending on the compressive force applied. Collapse was sudden and 

accompanied with noise and debris (Fig. 18).

Torsion Combined with Bending 

In a prestressed concrete column cracks develop due to torsion 

when the ultimate tensile stress is reached. The angle at which they



TABLE 8
COLUMN TEST RESULTS FOR TORSION COMBINED WITH BENDING

Torsion
(in-lb)

Bending Moment 
(in-lb)

Ratio 
My (Exp.)
My(Theo.)

Mode of 
Failure

Torsion
(in-lb)

Bending Moment 
(in-lb)

Ratio 
My (Exp.)
My(Theo.)

Mode of 
CollapseColumn Theo.* Exp. Theo.** Exp.

A-3 4,400 2,138 3,310 3,700 1 . 1 2 Diagonal
Cracks

2,138 11,400 10,950 0.96 Crushing 
of Con
crete

F-3 6,600 2,993 3,190 3,000 0.94 Diagonal
Cracks

5,130 5,440 5,000 0.92 Diagonal
Cracks

^Equation 28.
icifEquation 29.



—58“
propagate will be less than 45 degrees, depending upon the prestressing 
level. The angle at which flexuial cracks devebp in bending are approximately 

90 degrees. Therefore, one can expect cracks to form in combined bend

ing and torsion some place between 45 and 90 degrees. The Maximum Stress 

Theory of failure seems most logical for this situation.

The principal tensile stress is

a = 3sf + Af^ +1 P

where f - K*M^ - fD pe

The value of f is positive when in tension; is the bending 

moment; K* is a constant and a function of the cross section in flexure. 

Previously o^ was equated as

*1 = ft = K?o '

therefore, KT = hf + Af^ + k V  o p

hence (KT - ^f)^ = + k Vo p

or KT^ + T f = KT^p o o
t 2

and so = 1 (28)
T oo

The maximum shearing stress due to torsion occurs at points most 

remote from the center of the cross section. Therefore, points that lie 
on the periphery of the cross section have the same stress intensity. 

Bending will cause compressive stress at the top and tensile stress on 

the bottom for the load configuration used here. The presence of the 

compressive stress on the top will help in resisting the torque applied.
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Figure 21. Crack Pattern in a Prestressed Concrete Column under 
Combined Bending Moment and Torsion
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up to a certain point, while the tension in the bottom will reduce the 

section capability to resist the torsional moment. Hence, the torsional 

capacity of the section is a function of the bending moment and the pre

stressing level. Therefore, it is not surprising to see that Reeves'*^ 

test results showed a substantial increase in torque capacity due to an 

addition of bending. Reeves' test specimens were prestressed eccentri

cally and therefore delayed the formation of tensile stress, until addi

tional moment was applied. Therefore, the apparent increase in torque 

capacity was due mainly to eccentricity of the prestressed steel.

Test results in Table 8 were found to give good agreement between
12measured and computed quantities. Cowan's equation showed good agree

ment with test results for both cracking and ultimate moments as follows :

( ^ )  1 . (29)
pu u

where is the ultimate bending moment in flexure.

Test results showed that failure was characterized by the forma

tion of diagonal cracks (Figure 21) in apparent disregard of the torque 

moment ratio. On the other hand, the collapse criteria ware characterized 

by crushing of the concrete at low ratios of torque/moment, and by dia

gonal cracking for high ratios of torque/moment. Between these two ratios

there is obviously a point where one failure mode succumbs to the other. 

This point must be determined by further research.

Torsion Combined with Eccentric Load 

Three columns were tested in combined torsion and eccentric load. 

In the first column, (D-2), the eccentric load was first applied then 

the torque was added until collapse. The second column (F-3) was loaded
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similarly except that the eccentric load was increased substantially 

before the torsional moment was applied. The loading was reversed in 

the third test (G-3) where the torsion was applied first and held con

stant; then the eccentric load was imposed until collapse. Test results 

are shown in Table 9.

The mode of failure was the same up to the cracking point, 

regardless of the ratio of torque to bending moment. Failure was indi

cated by the presence of diagonal cracks differing from cracks observed 
in torsion tests in that they did not propagate in a spiral form. It 

appeared reasonable to assume that failure occurred when the principal 

tensile stress exceeded the ultimate tensile strength of concrete.

In prestressed concrete columns under low ratio of torsional 

moment to bending moment, collapse was gradual and the column retained 

much reserve strength and ductility. Collapse was the eventual result 

of crushing of the concrete. When the ratio of torque to bending moment 
was high the column collapsed due to a significant increase in the width 

of diagonal cracks and it was very similar to the case of prestressed 

concrete columns under pure torsion (see section under Pure Torsion).

A theoretical determination for the cracking or the cracking 

capacity of the section requires a well defined theory of failure. A 

biaxial state of stress exists due to the combined axial load, effective 

prestressing stress, bending and torsion. The appearance of a diagonal 

crack at failure might indicate that failure could be explained by the 

max-tmiim stress theory. An equation was derived on the basis of the maxi- 

m m  stress theory which predicted the test results with fair accuracy.



TABLE 9

COLUMN TEST RESULTS FOR TORSION COMBINED WITH ECCENTRIC LOAD

Column
Load
(lbs)

Eccentric Load 
e ■ 2 in 
Moment 
(in-lb)

Cracking Torque 
Theo,* Exp. 
(in-lb) (in-lb)

Ratio
(exp)

Tpu(theo)
Ultimate Torque 
Theo.** Exp. 
(in-lb) (in-lb)

Ratio
T^u (exp)
Tpu(theo)

D-2 5,600 3,000 6 , 0 0 0 3,300 3,206 0.97 5,700 5,130 0.90

D-3 5,500 5,000 1 0 , 0 0 0 1,420 1,500 1.05 5,100 5,000 0.98

I?

G-3 6,900 10,600 21,000 1,980 2,138 1.08

Equation 30.
**Equation 31.
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ssn

a. Eccentrically Loaded then 
Torque Superimposed

b. Torque Applied then Eccen
tric Load Superimposed

Figure 22. Crack Pattern in Eccentrically Loaded Prestressed Con
crete Columns Combined with Torsion
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at low ratios of bending moment to torque. At high ratios of bending 

moment to torque the experimental results did not correlate whatsoever 

with the theoretical results based on the maximum stress theory.

A statistical approach was considered as an alternative to the 

lack of an accurate theory of failure encompassing the entire range of 
torque to bending mcxaent ratios. In a prestressed concrete column under 

combined torsion and eccentric load the load and the moment are related 

to each other by the eccentricity of the applied load:

Ip = I <“b« w  >

«h = .where

and, therefore, = F(P)

A polynomial regression analysis using a least-squares criteria was

performed using the test data. The method consisted of generating powers
^  Pof an independent variable (—  + — ) to calculate polynomials of success-
u u

ively higher degree. When there is no reduction in the residual sum of

squares between two successive degrees of polynomial, the polynomial with
T

degree (n-1) is used as a function of the dependent variable, . Here
pu

n is the degree of the highest polynomial and is limited to that value 

where there is no improvement in the sum of the squares term if it increases 

by one.

The following equation was obtained at cracking of the column:

T
= 0.977 - 0.074 - 0.174 • (30)

pu u u u u
Multiple correlation coefficient between Equation (30) and test data herein
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Figure 23. Torsion, Concentric Load and Bending Moment
Interaction Diagrams for Prestressed Con
crete Columns at Cracking
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Figure 24. Torsion, Concentric Load and Bending Moment
Interaction Diagrams for Prestressed Con
crete Columns at Collapse
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is 0,997 with a standard error of the estimate equal to 0.039, A graph 

representation of test data and Equation (30) are shown in Figure 23,

For failure by collapse the following equation was obtained:

^  = 0,997 + 0,20268 (|“ + ̂ )  - 0,4223 (|- + , (31)
pu u u u u

Multiple correlation coefficient between Equation (31) and test

data is 0,998 and standard error of estimate is 0,037, Figure 24 shows

the test data and Equation (31),



CHAPTER V

INTERACTION SURFACE FOR PRESTRESSED CONCRETE COLUMNS 

SUBJECT TO COMBINED TORSION, CONCENTRIC 

LOAD AND BENDING MOMENT

The objective of this study was to investigate the effect of 

torsion combined with bending and axial force. Three orthogonal axes 

were chosen to represent the three loading conditions. The x-axis 

represents bending moment, the y-axis the concentric force and the 

z-axis represents the torsional moment. The interaction between tor

sion, bending and the concentric force is a surface, being the locus 

of all individual points that represent the possible combinations of the 

three applied loads. This surface will describe the relationship be

tween torsion, bending and concentric force for a certain prestressing 

level, cross section area, percentage of steel, and strength of con

crete. A family of surfaces can be drawn to consider other values of 

these variables.
Two surfaces are considered here; one surface will represent 

conditions at cracking, while the other surface will describe conditions 

at collapse. Both surfaces are plotted to unitless axes by dividing the 

torsion, concentric load or moment value by its ultimate value. Table 10 

gives these values for both cracking and collapse.
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TABLE 10
TORSION, CONCENTRIC FORCE, AND MO>IENT CAPACITIES

Failure
^pu 

(Kip - in)
»u

(Kip - in)
Pu
(Kip)

Cracking 4.625 6 . 0 34.4

Collapse 5.8 15.0 34.4



Pu

7i>

PiSU^Q

Torsion, Concentric Load 
Unitless Surface for 
Columns at Cracking
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The surface equations were established statistically with the 

aid of an IBM 360-50 computer at the University of Oklahoma using the 

program ''BHD02R Stepwise Regression," a sub-program of the University of 

California Biomedical Computer Package.*

This program computes a sequence of multiple linear regression 
in a stepwise manner. At each step one variable is added to 
the regression equation. The variable added is the one which 
makes the greatest reduction in the error sum of squares. Equi
valently, it is the variable which has highest partial correla
tion with the dependent variable partialed on the variables 
iAich have already been added; and equivalently it is the vari
able which, if it were added, would have the highest F value.

The following equation was obtained for cracking failure of 

the concrete:

T M. M.
^  = 1.06 - 0.83 (^) + 2.697 (|-) + 0.92746 (^) (|-) - 3.728 (|-)^. (32) 
pu u u u u u

Multiple correlation coefficient between Equation (32) and test data is

0.964 and the standard error of estimate is 0.158. A surface repre
sentation of test data and Equation (32) is shown in Figure 25.

For collapse failure the following equation was obtained:

^  = 0.9077 - 0.254 (^) + 2.783 (|-) - 0.497 (^)^ - 3.644 (|-)^. (33)
pu u u u u

The multiple correlation coefficient between Equation (33) and 

the test data is 0.968 and standard error of estimate is 0.152. A 

surface plot of test data and Equation (33) is shown in Figure 26.

Dixon, W. J., University of California Publications in Automatic 
Computation Number 2, Biomedical Computer Programs, University of California 
Press, Berkeley, Los Angeles, London 1970.
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The surface will intersect the X-Y plane, representing the inter

action diagram for the concentric load and the bending moment. The 

interaction diagram for torsion combined with concentric force will re

sult from the intersection of the surface with the Y-Z plane. A third 

interaction diagram for torsion combined with bending moment will result 

from the intersection of the surface with the X-Z plane. All three 

interaction diagrams were previously established in Chapter IV. Figures 

27 and 28 can be shown to represent these interaction diagrams for both 

cracking and collapse conditions respectively. One can rotate the X-axis 

90 degrees counter clockwise until it coincides with the Z-axis. Then, 

the X-axis will be rotated upward until it is perpendicular to the plane 

of the paper. The comparison of these plots, based on test data, with 

the intersections of the two surfaces shown in Figures 25 and 26 will 

lead to the conclusion that the surface equations not only predicted the - 

test data with reasonable accuracy, but they also gave a fair description 

of the interaction diagrams for the three different combinations of 

loading.



CHAPTER VI

SUMMARY

Seventeen circular prestressed concrete columns with an h/r = 80 

were tested under pure torsion, concentric load, bending moment and all 

combinations of such. The cross section, the level of prestress, the 
percentage of steel, and the eccentricity of the applied force were all 

constants throughout the entire study. All columns were concentrically 

prestressed. Therefore, conclusions drawn here will pertain to the above 

constants only.

Conclusions

1. Prestressing a slender concrete column does not affect its 

ultimate concentric load capacity, and will reduce its deflection as 

compared with a conventionally reinforced column up to the cracking point.

This reduces the magnification in the moment caused by the interaction

of the applied load and the deflected shape of the column.

2. The cracking load of a prestressed concrete column under an 

eccentric load can be predicted closely by the usual elastic theory. The ulti

mate collapse load can be predicted closely by ultimate theory, taking into 
consideration the effect of cracking of concrete on the column deflections.

3. The non-dimensional interaction curve of prestressed concrete 

columns under combined bending and concentric force resembles the interaction
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curve for the conventionally reinforced column, except that the prestressed 

diagram lacks a definite yield point which accounts for the absence of a 

definite balance point.

4. The cracking torsion can be satisfactorily predicted by the 

principal stress theory. Equation (23), while the ultimate torsion at 

collapse can be easily predicted by the plastic theory.

5. The torsional capacity of a concentrically prestressed column 

is greater than that of a conventionally reinforced column. Its torsional 

capacity will increase with increase in the prestressing level up to a 

certain limit which must yet be established by further research.

6. The application of a concentric force will increase the torque 

capacity of the prestressed concrete column and can be predicted up to 

cracking by Equation (26) and at collapse by Equation (27).

7. Bending moment will decrease the capacity of a prestressed 

column to resist torsion, while the bending moment capacity will simul

taneously be impaired by the presence of torque. This is true for all 

ratios of torque to moment. The relationship between torque and bending 

moment can be predicted by Equations (28) and (29).

8. The addition of torque to moment, and concentric force will 

reduce the ultimate bending moment capacity of the column below its corre

sponding capacity, when the column is under the action of concentric load 

and bending moment only. Hence, the presence of torsion is detrimental to 

eccentrically loaded prestressed concrete columns, as shown by Equations 

(32) and (33).
9. (a) Eccentrically loaded prestressed concrete columns, will

exhibit earlier cracking failure upon the application of torque. Cracking
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fallure is caused by diagonal cracks for all ratios of torque to moment.

(b) In prestressed concrete columns under low ratio of torque 

to moment, collapse will result In crushing of the concrete while for 

high ratio of torque to moment, collapse will occur only after significant 

Increase In the width of the diagonal cracks.

Recommendations

1. The slenderness effect on the ultimate capacity of the pre

stressed concrete column should be studied throughout the entire range 

of h/r.
2. The effective change of the prestressing level on the slender

ness ratio and their combined effect with the change of the eccentricity 

of the applied load should be established before prestressed columns can 

be used safely.
3. The effect of Initial curvature, since this will be a problem 

In long prestressed columns, should be Investigated.

4. The combined effect of transverse shear with concentric load, 

bending and torsion should also be thoroughly Investigated.

5. Future experimental work Is required to determine the stress- 

straln relationship of prestressed concrete and particularly accounting 

for the history of creep from time of release of the prestressing force 

to time of testing. This work Is most needed for high strength con

crete.
6. The percentage of steel and at what prestressing level to 

apply to a column to get the maximum load carrying capacity are questions 

that research must answer soon If prestressed columns are to be designed 

effectively.
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Axial Load

Column B-2

Column B-2 was tested under pure compression. The load was applied 

axially on one end of the column, while the other end was fixed. The col

umn had an initial deflection of 0.156 inches at 0.25 L and 0.75 L while 

the middle deflection was 0.203 inches.

The axial load was applied at an increment of 1,000 pounds and the 

column was checked for cracks. The increment of loading was decreased to 

500 pounds when 20,000 pounds was reached.

Due to the initial curvature of the column, the column deflected 

downward. No cracks were observed until the column collapsed. The collapse 

was sudden and violent accompanied by spelling of the concrete. Failure 

started at the bottom and moved upward in a plane 90 degrees to the longi

tudinal axis of the column. The plan of failure was 65 inches from the 

loaded end and the collapse load was 29,500 pounds.

Column B-3

Column B-3 was tested in pure compression. The load was applied 

axially on one end of the column, while the other end was fixed. The col

umn had an initial deflection of 0.1875 inches at 0.25 L from the loaded 

end and a deflection of 0.312 inches at 0.75 L. The center line deflection 

was 0.375 inches.

The axial load was applied at an increment of 2,000 pounds up to

10,000 pounds. The load then incremented at a 1,000 pounds up to 20,000 

pounds. The increment of loading then decreased gradually until collapse.

Due to the initial curvature of the column, the column deflected 

downward. No cracks were observed until the column collapsed. The collapse
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Figure A-1. Column B-2
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Flgure A-2. Column B-3
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was sudden, violent and accompanied by spelling of the concrete. Failure 

occurred at two places in the same time. One was at 24 inches and the 

other at 65 inches from the loaded end of the column. Failure started 

at the top side of the column 24 inches from the loaded end while the 

other started at the bottom. Both planes of failure were identical, but 

inverse to each other and both made an angle of 90 degrees with the longi

tudinal axis of the column. The collapse load was 29,400 pounds.

Eccentrically Loaded 

Column E-3

Column E-3 was tested under eccentric load. The load was applied 

with an eccentricity of two inches at one end of the column, while the 

other end was fixed. The column had an initial deflection of 0.156 inches 

at 0.25 L from the loaded end and a deflection of 0.282 inches at 0.75 L. 

The center line deflection was 0.282 inches.

The load was applied at a 1,000 pound increment up to 10,000 

pounds then it was decreased gradually until collapse.

Two cracks developed 7.5 and 2.5 inches from the loaded end in 

the bottom part of the cross section. The load then was 6,000 pounds.

At 7,000 pounds the two cracks increased in width and no new cracks were 

observed. TWo more cracks developed at 8,000 pounds, one at 5.5 inches 

and the other at 9.75 inches from the loaded end all on the bottom side 

of the cross section. The initial two cracks developed further up on 

both sides. At 20,000 pounds, four new cracks developed on the bottom; 

they were at distances of 12.0, 13.75, 16.00 and 18.5 inches from the 

loaded end. When the load was 11,000 the crack at twelve inches increased
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slgnificanCly in width and developed upward perpendicular to the longi

tudinal axis of the column up to about the bottom third of the cross 

section, then the crack changed direction and developed with an angle 

of 30 degrees with the longitudinal axis of the column up to the pre

stressing strand. Then, it split into two cracks, one developed upward 

while the other propagated toward the loaded end in a plane parallel to 

the prestressing steel. Collapse occurred at an ultimate load of 11,000 

with spalling of the concrete on the top side of the cross section.

Column F-1

Column F-1 was tested with eccentricity of two inches. The col

umn had an initial deflection of 0.1875 inches at the middle of the col

umn. One end of the column was fixed while the simply supported end was 

under the eccentric load.

The load was applied at a 1,000 pound increment up to 8,000 pounds. 

The increments were decreased to 500 pounds then after until 10,000 pounds 
were reached. The load then was incremented at 100 pounds at a time.

The first crack occurred at a distance of 3.5 inches from the 

loaded end and under a failure load of 6,000 pounds. As the load in
creased to 7,000 pounds, 8 cracks appeared at distances of 6.5, 20.5,

23, 31, 35, 37.5, 45, 47.5 inches from the loaded end. All were tension- 

type cracks and were located on the bottom. Similar cracks at 8,000 

pounds developed at distances of 3.3, 11, 15.5, 27, 32.5 inches. At 

8,500 pounds, two new tension cracks also appeared in the bottom side of 

the column. They were at 13 and 17.5 inches. While new cracks were 

developing, the first cracks were increasing in width and propagating 

upward in a plane 90 degrees to the longitudinal axis of the column.
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The crack at 11 inches, from the loaded end, was Increasing in width the 

most as the load was increased to 10,000 pounds. At 11,500 pounds, this 

crack suddenly propagated upward; at the upper two thirds of the cross 

section, it split into two cracks, one continued upward and the other 

propagated horizontally in a plane parallel to the prestressing steel. 

Collapse was sudden, at 11 inches from the loaded end. The eccentric 

load, then, was 11,700 causing spalling of the concrete on the top face 

of the column.

Column F-2

Column F-2 was tested with an eccentricity of two inches. The 

column had no initial curvature. One end of the column was fixed while 

the loaded side was free to rotate and translate longitudinally. The 

load was applied at an increment of 1,000 pounds, then it decreased to 

500 pounds after cracking. Near the collapse load, the load increments 

were 100 pounds.

The first crack developed at 12 inches from the loaded end and 

the cracking load was 7,000 pounds, as the load increased to 10,000 

pounds the first crack on the bottom side of the column increased in 
width and two new cracks at 2.75 and 5.25 inches were formed. The new 

cracks were similar to the first crack and all were tension-type cracks. 

The load increased to 11,000 pounds and three new cracks developed at 

2.75, 5.50, and 13 inches from loaded end. As the load increased from

7,000 to 11,000, the initial crack propagated upward, then changed dir

ection on plane inclined to the longitudinal axis of the column of about 

30 degrees. At 12,000 pounds, a new tension crack developed at a distance
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Figure A-5. Column F-2
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of 14.5 inches. Two more cracks at a distance of 17 and 19.25 inches 
developed as the load reached 13,000 pounds. The load, then, was in

creased to 13,500 and a new crack was observed at a distance of 8 inches. 

The initial crack at 12 inches was significantly increasing in width on 

the tension side of the column. At a distance of 21 inches, a new tension 

crack developed as the load reached 15,200 pounds.

When the collapse load of 15,400 pounds was reached, the initial 

crack at 12 inches from the loaded end propagated past the prestressing 

steel into two directions making what looks like a V shape. The column 
collapsed with spalling the concrete on the top side of the column 

above the V shape.

Pure Moment 

Column G-1

Column G-1 was tested with a two-point system symmetrical about 

the middle of the column. Both ends of the column were free to rotate.

The column had an initial mid-deflection of 0.375 inches.

The initial crack was observed on the bottom side and at a distance 

of 29.2 inches from the left end of the column. The cracking moment was 

6,250 inches-pounds and the crack was of a flexural tension type. At a 

moment of 6,880 inches-pound two cracks at a distance of 41.0 and 45.8 

inches developed similar to the initial crack. When the moment increased 

to 7,500 inches-pound, two new cracks developed outside the constant 

moment area at a distance of 22.5 and 51.5 inches from the left end.
Another crack at a distance of 36.0 inches developed. When the applied 

moment reached 9,375, the first crack propagated vertically until it
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Figure A-6. Column G-1
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reached the prestressing steel, then horizontally parallel to the longi

tudinal axis of the column. At the same moment, a new tension crack 

developed at a distance of 56.25 inches. When the moment reached 10,000 

inches-pounds a new crack was observed at 18.5 inches while the cracks 

on both sides of the loading points were propagating in a 45 degree angle 

toward the loading point. At the same time, the middle two cracks were 

heading toward each other at 40 degree angles.
The moment was increased to 11,250 inches-pound, and one can 

observe significant width of about one millimeter in all the cracks. Con

crete was spalling from all cracks. Apalling of concrete became more 

obvious as the moment increased and the middle cracks had a width of 

about two millimeters at a moment of 13,750 inches-pound.

At a moment of 15,300 inches-pound the column collapsed at the 

first crack with a center deflection of about 2.25 inches.

Column G-2

Column G-2 was tested with a two-point system symmetrical about 

the middle of the column. Both ends of the column were free to rotate. 

The column had no apparent initial curvature.

The first crack was observed at the middle of the column and 

of the flexural tension type at a moment of 7,500 inches-pound.
At a moment of 8,750 inches-pound five cracks were observed at 

a distance of 25, 28.75, 37.5, 43.5 and 50.5 inches from left end of 

column. All were tension cracks and extended vertically toward the pre

stressing steel.
The cracks were about one-half millimeter wide when the moment 

applied was 9,375 inches-pound. A new crack developed at 48.0 inches
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and a moment of 10,000 inches-pound. As the moment reached 10,625 inches- 

pound, two new cracks were formed at 4 inches from the two loading points 

and outside the constant moment area.

As the moment reached 11,875 inches-pound, all cracks propagated 

vertically upward to the prestressing steel. Two more cracks developed 

as the moment became 13,125 inches-pound and were at a distance of 17.5 

and 58.5 inches.

The first crack was about one millimeter wide at a moment of 14,375 

inches while the two cracks at 29.0 and 41.0 inches were developing upward 

at an angle of 45 degrees. At a moment of 15,600 inches-pound, the first 

crack propagated over the prestressing steel in a horizontal manner. An

other new crack was formed at 11 inches from left end while all other 

cracks increased in width and spalling of concrete was obvious. The moment 

then was 17,500 inches-pound. At a moment of 18,100 inches-pound the last 

crack was developed at a distance of 64.5 inches from left end.

The collumn collapsed at an ultimate moment of 19,000 inches-pound 

at the first crack.

Pure Torsion 

Column G-2

Column C-2 was tested in pure torsion; one end of the column was 

fixed and the torsional moment was applied to the free end.

The torsional moment was applied gradually and the first crack 

appeared at a moment of 4,275 inches-pound and an angle of twist of 0.60 

degrees. The initial crack developed at two inches from the loaded end
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Figure A-8. Column C-2



-103-

in the bottom of the member and spread upward on both sides In a spiral 

way up to the upper third of the cross section. The crack made an angle 

of 39 degrees with the longitudinal axis of the column. As the crack 

developed further upward, with increase in the torsional moment, it split 

into two cracks. One continued upward in the same angle, while the other 

crack changed its angle of inclination and developed in the longitudinal 

direction.
Another crack developed as the torsional moment increased in the 

same fashion at about three inches from the first crack, while the first 

crack increased in width until the column collapsed at the first crack.

The width of the crack at collapse was one-eighth inches wide and the 

torsional moment at collapse was 5,344 inches-pound and an angle of 

twist of 1.03 degrees. No cracks were observed at the fixed end of the 

column.

Column C-3

Column C-3 was tested in pure torsion. One end of the column was 

fixed and the torsional moment was applied to the free end.

- The torsional moment was applied at an increment of 427.50 inches- 

pound until collapse. At every increment of load the angle of twist is 

recorded and the column is checked for cracks. The first crack in the 

specimen occurred at a torsional moment of 4,275 inches-pound and an 

angle of twist of 0.55 degrees.
The first crack was observed in the bottom side of the member and 

propagated upward on both sides in a spiral way at an angle of 39 degrees 

at a distance of two inches from the loaded end. When the torsional
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Figure A-9. Column C-3
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moment was Increased to 4,700 inches-pound, two more cracks were developed, 

one of them at three inches from the fixed end and the other at a distance 

of two and one-half inches from the initial crack. Both cracks were 

similar to the initial crack and have the same angle of inclination with 

the longitudinal axis of the column. As the torsional moment increased 

the crack at three inches from the fixed end increased in width to about 

one-eighth of an inch and the column collapsed there. The torsional 

moment at collapse was 5,130 inches-pound and the angle of twist was 0.85 

degrees.

Concentric Load and Torsion 

Column E-1

Column E-1 was tested in combined axial load and torsion. One 

end of the column was fixed while the other end was insetted in the tor

sional rig.
The axial load was applied first at increments of 1,000 pounds 

and the specimen was checked for cracks. A final axial load of 12,000 

pounds was reached and no cracks were observed.

The torsional moment was applied gradually while the axial load 

was maintained at 12,000 pounds to collapse. The initial crack developed 

at four inches from the fixed end and spread upward on both sides in a 

spiral way up to the upper third of the cross section. The torsional 

moment was 6,000 inches-pound and the angle of twist was 0.58 degrees 

with the longitudinal axis of the column.

As the torsional moment increased to 6,412 inches-pound, and an 

angle of twist of 0.689 degrees, a second crack similar to the first
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crack developed at ten Inches from the fixed end and had the same angle 

of inclination with the longitudinal axis of the column. The first crack 

split into two cracks, one continued upward in the same angle, while the 

other changed direction and developed horizontally toward the free end 

support.

An increase of the torsional moment to 6,626 inches-pound caused 

the column to collapse at the first crack with an angle of twist of 1.074 

degrees. The width of the crack at collapse was 0.5 of an inch. Collapse 

was sudden and noisy.

Column E-2

Column E-2 was tested in combined axial load and torsion. One 

end of the column was fixed while the other end was attached to the tor

sional rig.

The axial load was applied first as increments of 2,000 pounds 

and the specimen was checked for cracks. A final axial load of 20,000 

pounds was reached and no cracks were observed.

The torsional moment was applied gradually while the axial load 

was maintained at 20,000 pounds up to collapse. The initial crack 

developed at two inches from the fixed end, spread upward on both sides 

in a spiral way up to the middle of the cross section. The torsional 

moment was 6,900 inches-pound and the angle of twist was 1.12 degrees.

The crack made an angle of 18 degrees with the longitudinal axis of the 

column.

As the torsional moment increased to 7,500 inches-pound, a second 

crack developed very similar to the first crack and at 12 Inches from the
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Figure A-11. Column E-2
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fixed end with the same angle of inclination and an angle of twist of 

1.159 degrees. The torsional moment then increased to 7,900 inches- 

pound and an angle of twist of 1.255 degrees, causing the second crack 

to split into two cracks; one continued in its spiral manner while the 

other developed horizontally under the prestressing cable toward the 

first crack.
As the torsional moment increased, the cracks got larger in 

width and the column collapsed at the second crack in a very violent 

manner and accompanied with debris. The torsional moment at collapse 

was 8,764 inches-pound with an angle of twist of 2.021 degrees.

Pure Bending and Torsion 

Column A-3
Column A-3 was tested in combined bending and torsion. The 

torsional moment was applied through the torsion rig and the moment was 

implemented with a two point system symmetrical about the middle of the 

column.
The torsional moment was applied first until a moment of 2138 

inches-pounds was reached (45% of ultimate). The flexural moment was 

applied next and torsional moment of 2138 inches-pounds was maintained 

until collapse.
The first crack was observed at a moment of 3,700 inches-pound 

and a distance of 28 inches from the left end of the column. The crack 

had a spiral pattern similar to the one developed in pure tension. The 

ratio of moment/torque was 1.73. The second crack developed similarly 

at a distance of 53 Inches from left end. In the same time, the initial
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crack propagated toward the left point of loading. At a moment of 5945 

inches-pounds another crack developed at a distance of 43 inches from 

left end, it was also a spiral type crack. A new crack that looks more 

like a flexure type crack developed at a distance of 33 inches from the 

left end and a moment of 6560 inches-pound. At a moment of 7500 inches- 

pounds and at a distance of 24 inches from the left end a new crack 

developed. All other cracks propagated in a spiral fashion on both 

sides of the column up to the plane of the prestressed steel.

At a moment of 8,750 inches-pound, the crack at 33 inches propa

gated horizontally toward the loading point at 50 inches from the left 
end. In the meantime, all other cracks were getting larger in width.

At 10,000 inches-pound another crack developed at 19 inches from the 

left end, while the crack at 33 inches reached the loading point at 50 

inches and joined another crack that started at 53 inches. The column 

collapsed at an ultimate moment 10,950 inches-pound in crushing of the 

concrete under the loading point 50 inches from the left end.

Column F-3

Column F-3 was tested in combined bending and torsion. The 

bending moment was applied through a two point system symmetrical about 

the middle of the column. The torsional rig was used to implement the 

torque.

The bending moment was applied first until a moment of 5000 

inches-pound was reached (28% of ultimate). The torsional moment was 

applied next and the bending moment was maintained constant until collapse.

The first crack was observed at a torsional moment 2993 inches-pound
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Flgure A-12. Column F-3
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at a ratio of torque/moment of 0.60. It developed at a distance of 15 

inches from the left end. When the torque reached 4275 another crack 

developed in the bottom at a distance of 7.5 inches and propagated in 

a spiral fashion in the direction of the torsion rig. The end of the 

crack at the top was 4.5 inches from the left end. When the torque 

was 4,489 the second crack propagated on top side horizontally all the 

way to the left end. At a moment of 4,703 inches-pound the two cracks 

increased in width. Another crack at 4.5 inches from the left end, 

propagated from the middle back and moved away from the left end at al

most 45 degrees angle with the longitudinal axis of the column. The 

torque then was 4917 inches-pound.

The column collapsed at torque of 5130 inches-pound and at the 
location of the second crack.

Torsion Combined with Eccentric Load 

Column D-2

Column D-2 was tested in combined torsion and eccentric load.

One end of the column was fixed while the other end was inserted in the 

torsion rig. The eccentric load was applied first and then the torsional 

moment.

The load was applied with an eccentricity of two inches. An 

increment of 3000 pounds was reached. Then this load was maintained 

constant throughout the application of the torque until collapse. The 

column was checked for cracks and found none.
The torsional moment was applied at an increment of 428 inches- 

pound, then decreased gradually as collapse was approached. A spiral
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type crack developed on the bottom and at a distance of 6.25 inches 

from the loaded end. The torque was 3206 inches-pound and the angle 

of twist was 0.397 degrees. As the torque reached 3420 Inches-pound 

another crack developed at 2.25 Inches from the loaded end. The first 

crack started to change angles frcmi 30 degrees to about 40 degrees as 

It propagated upward; the torque then was 3850 Inches-pound. The 

second crack was propagating upward toward the loaded head In about a 

30 degree angle. At torques of 4,500 and 4,700, the first crack and 

the second crack widened considerably. As the torque approached 4,900 

Inches-pound, the first crack developed Into a new crack about 2/3 up 

and propagated horizontally away from the loaded end.

The column collapsed at a torque of 5130 Inches-pound and an 

angle of twist of 1.18 degrees; failure was gradual and accompanied by 

spelling of the concrete.

Column D-3
Column 0-3 was tested In combined torsion and eccentric load.

One end of the column was fixed while the other end was Inerted In the 

torsional rig. The eccentric load was applied first and then the torque.

The eccentric load was applied first at Increments of 500 pounds 

up to 5000. The load had an eccentricity of two Inches. This load was 

maintained constant throughout the torque phase of loading until collapse 

occurred.
The torque was applied at an Increment of 428 Inches-pound, then 

decreased gradually as collapse was approached. The first crack developed 

at a distance of 6.25 Inches from the loaded end and a torque of 1500 

Inches-pound and an angle of twist of 0.60 degrees. The crack was a
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Flgure A-14. Column D-3
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spiral type and extended up on both sides with an angle of 30 degrees 

to about 1/4 of the cross section area.

At a torque 3420 inches-pound two new cracks were observed at 

distances of 1.75 inches and 4.0 inches from the loaded end. Both 

' cracks were spiral type developed on the bottom and propagated upward 

to about 2/3 the area.
When the torque applied increased to 4702 inches-pound the cracks 

at 1.75 and 6.25 shifted direction and propagated toward the loaded head 

at an angle of 45 degrees and 30 degrees respectively. A new crack 

developed at a torque 4900 inches-pound at a distance 13 inches from 

the loaded end. The crack propagated spirally on one side with an angle 

of 30 degrees to 1/3 of area, while on the other side, it propagated to 
about 2/3 of area. At the same torque, another crack developed at 20 

inches on the bottom, propagated on both sides with an angle of 35 degrees. 

When the torsional moment reached 5000 a new crack was observed on the 

bottom at a distance of 27,5 inches from the loaded end. All cracks were 
forming at a 7-inch pitch.

Collapse was gradual and accompanied by spelling of concrete at 

13 inches from the loaded end. The collapse torque was 5000 inches- 

pound and the angle of twist was 0.912 degrees.

Column G-3

Column G-3 was tested in combined torsion and eccentric load.

One end of the column was fixed while the other end was inserted in the 

torsion rig. The torque was applied first then the eccentric load was 
implemented with an eccentricity of two inches.
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Figure A-15. Column G-3
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The torque was applied at an increment of 214 inches-pound up to 

2138 inches-pound and then maintained at that moment throughout the second 

phase of loading. The eccentric load was incremented at 500 pounds and 

decreased gradually when reached collapse.

The first crack developed at a load of 2000 pounds and a distance 

of 21.5 inches from loaded end. The crack was diagonal in shape and on 

the bottom side of the column. At a load of 3000 pounds three new cracks 

were observed, at distances of 14 inches, 21.5 inches, and 24 inches from 
the loaded end. All were developed on bottom and propagated diagonally 

\dien the load was 3100 Wien another similar crack was observed at 10 

inches from the loaded end. Two similar cracks were observed at 27.5 
inches and 32.5 inches from the loaded end at a load of 3200 pounds. When 

the load was 3500 the cracks at 17.5 inches and 21.5 inches propagated 

diagonally toward the loaded head. At a load of 4000 pounds, a similar 

crack developed 42 inches from the loaded end. All other cracks were 

propagating diagonally at an angle of 40 degrees.
When the eccentric load was 4500, diagonal cracks developed near 

the fixed end on the bottom part. These cracks were 3.5 inches apart and 

extended a distance of 42 inches from the fixed end. At a load of 5000 

pounds, two new cracks developed at distances of 27 inches and 37.5 inches. 

At 6000 pounds, another crack at 19 inches from the loaded end. Then, at 

6500 pounds, cracks at 13.5 inches and 22.75 inches from the loaded end 

developed on the bottom and were flexure type cracks. It was also observed 

that the cracks between the loaded end and around the center of the column 

were increasing in width.
As the load increased to 7000 pounds, the cracks at 18.5, 27.0
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and 42.0 were developing upward at an angle o£ 40 degrees.

At 8000 pounds, the crack at 17 inches was increasing in width, 

while the cracks near the fixed end were completely closed. At 9000 

pounds, all cracks between loaded end and a distance of 27 inches had 

propagated up 90% of the area at an angle of about 40 degrees. While at 

10,000 pounds all cracks from the fixed end and up to 14 inches from 

there have closed completely. Some of these cracks that closed had a 

width of about one millimeter. ' At 10,500 all cracks up to 23 inches 
from the loaded end closed.

The column collapsed by crushing of concrete at 17 inches from 

the loaded end and at a load of 10,600 pounds.



APPENDIX B 

LOAD-DEFORMATION CURVES

Figure

B-1 Concentric Load vs. Deflection, Column B-2

B-2 Concentric Load vs. Deflection, Column B-3

B-3 Eccentric Load vs. Deflection, Column E-3

B-4 Eccentric Load vs. Deflections, Column F-1

B-5 Eccentric Load vs. Deflections, Column F-2

B-6 Bending Moments vs. Deflections, Column G-1

B-7 Bending Moment vs. Deflections, Column G-2

B-8 Torque vs. Angle of Twist, Columns C-2 and C-3
B-9 Torque vs. Angle of Twist, Column E-1 and E-2 in Combined

Concentric Load and Torsion

B-10 Bending Moment vs. Deflections, Column A-3 in Combined Bending 
and Torsion

B-11 Torque vs. Angle of Twist, Column F-3 in Combined Bending and 
Torsion

B-12 Torque vs. Angle of Twist, Columns D-2 and D-3 in Combined 
Concentric Load, Bending Moment and Torsion

B-13 Eccentric Load vs. Deflections, Column G-3 in Combined Con
centric Load, Bending Moment and Torsion
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APPENDIX C

MATERIAL PROPERTIES

Figure C-1, Sieve Analysis for Sand

Figure C-2, Load-Strain Diagram for Prestressing Cable
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Figure C-2. Load-Strain Diagram for Prestressing Cable


