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PREFACE 

This study describes the parallel implementation of a new computer vision 

technique, superquadric description. The use of superquadric primitives to extend the 

power of Constructive Solid Geometry for Computer Aided Design purposes was first 

proposed in [BARR 84]. The application of this technique for machine vision purposes 

was first published by Alex Pentland in [PENTL 86b]. 

This study developed a parallel least-squares solution technique to solve a slightly 

modified form of the regression equations originally derived in [PENTL 86b]. This 

technique is intended for execution on large arrays of bit-serial processors. Several ways 

have been suggested to interconnect the processing elements in such arrays, therefore the 

performance of this technique was estimated for three interconnection networks. 
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for their help with particular portions of this study. 

The members of my advisory committee, Dr. Charles M. Bacon, Dr. Richard L. 

Cummins, and Dr. Keith A. Teague deserve special mention for their guidance, 

enthusiasm, and friendship during this project as well as during previous semesters. The . 
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constant employment which made this study possible. 
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CHAPTER I 

INfRODUCTION 

Purpose and Motivation 

This study has two purposes. The first is to investigate the parallel implementation 

of a new computer vision technique, superquadric description [PENTL 86b]. This 

technique is described more fully in Chapter Two, but the basic idea is to model imaged 

objects in terms of Boolean combinations of easily recognized solid primitives. This CSG 

(Constructive Solid Geometry) approach to object modeling is a standard CAD/CAM 

(Computer Aided Design I Computer Aided Manufacturing) technique. The use of CSG in 

machine vision was first investigated by Marr and Nishihara in [MARR 78]. Introductory 

information about this problem may be found in [BALLA 82]. Superquadrics are a 

recently suggested enhancement for CSG based systems. They provide a very general 

three dimensional modeling primitive which includes the sphere, cube, and cylinder as 

special cases. Figure 1, reproduced from [PENTL 86b], illustrates some of the possible 

superquadric forms. Almost any physical object can be represented as a CSG form, but the 

representation may become arbitrarily large. This problem can be reduced if we allow the 

superquadrics to be deformed as in Figure lb [PENTL 86b, BARR 84]. 

Image processing is computationally intensive. Many specialized architectures have 

been suggested to handle this burden at higl">er .speed than a serial processor is capable of. 

Since parallel implementations of a particular procedure will be highly dependent upon the 

architecture they are designed for, the second purpose of this study is to examine how the 

choice of architecture affects the execution speed of this task. Three specialized image 

1 



processing architectures are compared for speed of executing the superquadric recovery 

algorithm. Some aspects of their physical construction are also examined. Image 

processing architectures can be divided into several major classes. Some of the metrics 

2 

used to divide the machines into classes are the granularity of the processing elements, the 

interconnection network used, and the type of parallelism, i.e. STh1D or MIMD (Single 

Instruction stream Multiple Data streams or Multiple Instruction streams Multiple Data 

streams). All of the architectures considered in this study are members of what I will call 

the highly parallel class. This term will be used to identify machines that have at least one 

bit-serial processing element (PE) for each pixel in the image. A standard image resolution 

is 512 pixels by 512 pixels. Machines for this size image would have more than a quarter 

of a million PEs! The massive parallelism of these designs allows very high performance 

on a broad range of image processing algorithms. These are very fine-grained SIMD 

machines. Three interconnection networks are studied. 

8 
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Figure 1: Unit and Deformed Superquadrics 
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. This study is motivated by the limitations of current computer vision systems. A 

typical task for a current industrial vision system is to detennine the exact location and 

orientation of parts whose location is limited to the width of a conveyor belt. Contrast this 

with the general purpose vision needed by a household robot! Bridging this huge gap is 

several years away. Both hardware and software are responsible for the limitations in 

current vision systems. Computer vision algorithms have not been developed that 

approach the generality of human vision. Even the limited routines that have been 

developed are computationally intensive, requiring many operations to be performed for 

each pixel in the image. The sheer amount of data compounds this problem. For example, 

a common resolution is an image of 512 x 512 pixels. The typical refresh rate is 30 frames 

per second. If we assume that the processing for each pixel will be the equivalent of 1000 

floating point multiplies [REDDY 78], our machine must execute the equivalent of 7.8 

billion multiplies per second! There is a great deal of continuity in visual input, the later 

stages of a vision system could take advantage of this continuity to reduce the workload. 

However, these later stages will be dependent upon a great deal of preprocessing of the 

image. This preprocessing stage cannot be skipped and will have the majority of the 

arithmetic operations. 

Computers capable of one billion multiplies per second have only recently become 

available, at a cost of millions of dollars. In order for affordable hardware to complete a 

vision task in an acceptable time, the software to perform the task must be made very 

simple. Typically, the environment and/or the task are restricted in order to simplify the 

problem. The vision software is then optimized for these restrictions. Unfortunately, the 

very restrictions which make the problem solvable in an acceptable time make the solution 

technique inapplicable for tasks with slightly different requirements. The non-portability of 

vision software is considered a major problem [REDDY 78]. 
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The ultimate in portable software would be a system with the capabilities of human 

vision. While this goal is still far in the future, progress is being made. As can be 

expected, the powerful systems being researched impose a tremendous computational 

burden. A great deal of work has gone into the development of architectures which are 

capable of shouldering this burden. A wide variety of architectures have been proposed, 

with different trade-offs between the factors of price, performance, and programming ease. 

Chapter Two provides a brief review of some of the major architectures proposed. This 

study compares three similar architectures, the main difference between them being their 

interconnection networks. In addition to estimating execution times, we will also examine 

some of the characteristics of their VLSI and system-level fabrication. 

The next section of this chapter sketches the outline of the procedure used to 

accomplish these purposes, while the subsequent section notes the limitations of this study. 

Chapter Two reviews the literature, while details of the procedure are in Chapter Three. 

Results are given in Chapter Four, and conclusions are offered in Chapter Five. The 

algorithms used for the superquadric estimation are presented in Appendix B. These 

~gorithms are composed of call to microcoded subroutines which perform arithmetic and 

data transfer operations. The algorithms for these fundamental operations are given in 

Appendix A, along with the format of the pseudocode used to specify all the algorithms. 

Overview of Procedure 

Selection of Architectures 

As noted above, many parallel architectures have been suggested for use in image 

processing. Some of these arch1tectures are surveyed in Chapter Two. For reasons 

described more fully there, three architectures were chosen for comparison. The first 

architecture is the Content Addressable Array Parallel Processor (CAAPP), designed at the 
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University of Massachusetts at Amherst [LEVIT 84, LA WTO 84, WEEMS 85]. This 

machine has recently undergone some major design changes [WEEMS 87]. We will 

examine the older version, circa 1984. The second is the pyramid machine [TANIM 84, 

DYER 81]. These two machines were chosen because of the differing approaches they 

take in trading off speed for VLSI area. The other architecture examined provides an 

intermediate position in terms of complexity and expected performance. This final machine 

is the simple Four Nearest Neighbor ( 4NN) mesh. All of these are massively parallel 

machines with at least one PE for each pixel. In order to keep the comparisons of the 

architectures fair, all machines are assumed to have equivalent PEs, the only difference 

being in the connections with neighboring PEs. The PE used is described in detail in the 

third section of Chapter Two. The interconnection networks are described in Chapter Two, 

Section 4, while their implementation is considered in Chapter Two, Section 5. 

Design of the Superg,uadric Recovery Software 

Once the architectures were selected, the system to recover the superquadric 

parameters was designed. Pentland, in [PENTL 86b], derives linear regressions to solve 

for estimates of the superquadric parameters given estimates of the surface normals of the 

imaged objects as well as their derivatives along the x and y image axes. This study 

presents a parallel least-squares solution technique, and estimates its execution time. 

Procedures to obtain the estimates of the surface normals have been described in the 

literature [LEE 85, PENTL 84, 86a]. A technique to calculate the derivatives without 

excessive noise amplification is described in [HARAL 81,82]. 

Performance Estimation 

Execution speed was estimated by breaking the least-squares procedure into major 

stages, such as matrix inversions and multiplies. The major stages were then decomposed 
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into fundamental operations, such as data movements and arithmetic operations. Formulas 

for the execution time of the major stages of the least-squares procedure were then derived 

as functions of the execution time for the fundamental operations. The formulas for the 

execution time of the least-squares solution are given in Appendix B, along with the parallel 

algorithms. The times for the fundamental operations were also estimated. These formulas 

and algorithms are given in Appendix A. 

Limitations 

Superquadrics are not a cure-all for computer vision. They cannot explain many 

important perceptual phenomena, such as character recognition or the fractal branching 

structures of trees. However, they are a much more general modeling primitive than those 

currently used by CSG based vision systems. As will be seen in Chapter Two, they do 

appear to satisfy some of the needs of the higher levels of vision processing. 

By allowing deformations such as shearing and twisting (Figure lb), superquadrics 

become a much more powerful modeling primitive. The principal limitation of 

superquadric description is that currently, only undeformed superquadrics can be 

recovered. To my knowledge, the regression equations to recover deformed superquadrics 

have not been derived. Another problem is that obtaining a CSG representation of imaged 

objects using superquadric primitives has not been investigated. Previous work 

[MARR 78] has been done in obtaining CSG descriptions using cylindrical primitives. The 

use of superquadrics should be a straightforward extension. 

A limitation of this study is that the algorithms were not implemented, so no 

characterization of the errors of the recovery procedure is available. Anothc•r limitation is 

that only one class of parallel architectures was examined. Within this class, the machines 

studied span a broad range of the speed vs. area trade-off space, but this work could be 



extended to examine other types of parallel architectures. I hope to address all these 

limitations in future studies. 

7 

No claims are made for optimality of the least-squares algorithms used. They are 

simple, straightforward implementations. Some possible ways to improve the performance 

of the algorithms are suggested in Chapter Five. While not optimal, neither are these 

procedures grossly inefficient. The matrix operations are quite conservative in the number 

of multiply and divide instructions issued. A special version of the least-squares algorithm 

was used for the Pyramid machine, which resulted in a marked improvement in speed, at 

the cost of a loss in the resolution of the solution. If the loss of resolution is unacceptable, 

the Pyramid can implement the same algorithms as the other two machines, with 

comparable performance. 



CHAPTER II 

REVIEW OF LITERATURE 

The application of superquadrics to machine vision is quite new, very little has been 

published at this time. Much more has been published on specialized architectures for 

image processing. The purpose of this study is not to survey the literature in either area, 

however, some background material is appropriate in order to gain perspective on the role 

of superquadrics in machine vision. This chapter is quite brief, hitting only the major 

highlights. The interested reader is referred to the references for more complete 

information. The first section of this chapter provides a brief overview of computer vision. 

This is followed by sections on superquadrics and surface normals estimation. Subsequent 

sections deal with the hardware side of the study. The PE used by all the machines is 

described in section three. Section four discusses the interconnection networks examined in 

this study, while section five deals with some of the considerations of the actual physical 

implementation of these networks. 

Computer Vision 

Computer vision is a fast growing area of research and development. The end goal 

of this research is to create a machine vision system embodying the power and generality of 

human vision. Since much of the power of human vision is intimately tied to our learning, 

planning, and reasoning abilities, computer vision is considered to be a subset of Artificial 

Intelligence (AI). The high level reasoning capabilities provided by AI routines must have 

an input, they do not pull solutions from thin air! What is the form of this input, and how 

is it obtained from an array of intensity values? This is the fundamental question of 

8 
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computer vision. The first part of the question is easy to answer in general terms; the input 

to high level cognitive processes should be a concise description of the scene in a form 

suited to the cognition mechanism(s). The second part of the question, obtaining the 

description, is much more difficult to answer. One thing is certain, the recovery of the 

description is a computationally intensive task. In Chapter One we estimated the 

processing power needed for real-time computer vision to be on the order of 10 Gigaflops. 

Given this estimate, the need for a highly specialized machine is clear. 

This processing burden is typically described as having three levels: characterized 

as low, intermediate, and high level. High level vision refers to the AI capabilities 

mentioned above. It is concerned with the manipulation of abstract units such as 'tree' or 

'cloud'. Low level vision is also known as image processing. This stage of vision 

computation operates on the image, and on image-like data structures. The intermediate 

level of vision is concerned with providing the interface between the two other stages. 

Superquadric description is on the border between the low and intermediate levels. The 

estimation of the parameters is low level, obtaining the CSG grouping is intermediate. 

Hi~h Level Vision 

The purpose of this study is not to compare the merits of various AI techniques for 

high level vision processing. However, before we can draw any conclusions about the 

suitability of superquadrics for a task we must know what the task is. Our task is to derive 

a description of the imaged scene in a format convenient for a high level reasoning 

mechanism. This format will be constrained by the needs of the high level mechanisms. 

The next few paragraphs attempt to show some of these needs. The format will also be 

constrained by what is possible to compute from the image. The characteristics of low 

level image processing algorithms will be examined in a subsequent sub-section. 
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The first restriction on the format is that it be amenable to processing by a variety of 

cognitive mechanisms. Learning, planning, belief maintenance, as well as formal and 

common sense reasoning will all be needed in a sophisticated vision application. Many of 

the mechanisms that have been developed so far are based on a linguistic analogy [SOWA 

84]. The goal is to obtain and manipulate the semantic content of syntactic structures. 

For the case of vision, the imaged objects and their visual attributes can be viewed as 

forming the nouns and adjectives of a visual language. The role of verbs and adverbs is 

filled by relations, both spatial and temporal, between the objects. The structure of the 

grammar is imposed by the laws of physics. Seen in this light, the desired 'chunks' input 

to the cognition mechanisms would need to be at the complexity of words and phrases, or 

simple parsed structures. 

While the main idea of this visual language would seem very attractive, we must be 

careful about carrying this analogy too far. Most linguistic structures cannot compactly 

describe natural objects, their attributes, and their physical relations. An additional problem 

with most linguistic structures is that they are not isomorphic to the physical world, that is, 

they do not unambiguously describe real scenes. It has been shown that many of the 

reasoning capabilities of humans cannot be explained unless we use an isomorphic 

representation [FISCH 78]. CAD/CAM data structures are an example of an isomorphic 

representation. They unambiguously describe a physical object. 

Once we have the input data, how do we process it in order to extract it's meaning? 

The reasoning mechanisms would certainly find it much easier to work with more abstract 

entities, such as 'human' or 'tree', rather than a raw description of the parts in an image 

and their spatio-temporal relations. This leads u~ to the requirement that the format of the 

description be easy to match with known objects. This is where the need for a concise 

description comes into play. It would also be nice if the format of the raw description 

matched the format of the more abstract description. Having the representation be able to 
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span a range of abstractions would allow the high level mechanisms to operate directly on 

the unmatched description if it became desirable to do so. 

Conceptual structures [SOWA 84], also known as relational structures or semantic 

nets, are one representation that has been suggested for the high levels of vision processing 

[BALLA 82, CHARN 86]. This representation offers many advantages for AI and vision. 

Reasoning can be done at varying levels of abstraction, matching is relatively easy, the 

structures map easily into linguistic forms, and they offer powerful abilities to model 

physical objects. CSG data structures are a natural extension of relational structures, so we 

can have an isomorphic representation. Therefore they meet the requirements set forth by 

the previous paragraphs. An introduction to the use of relational structures for vision is 

given in [BALLA 82] and [CHARN 86], where additional references may be found. 

We will assume that the inputs to the high level section of the vision system should 

be at least a partial CSG description of the objects in the scene. The primitive solids used 

in this CSG model must now be selected. The basic requirement for these solids is that 

they be computable from the outputs of the image processing stage. An additional 

constraint is that the number of different primitives used be small and that their expression 

be compact. 

Superquadrics 

Superquadrics [BARR 81, PENTL 86b] appear to meet both these requirements. 

Unit superquadrics are a two parameter family of solids which include spheres, cylinders, 

and cubes as special cases (Figure la). The surface position vector X and surface normal 

vector N, as functions of latitude 11 and longitude ro are given by 

(
1ja1 C 2-el C 2-e2) 

N(n,ro) = 1/az C~2-el S :2-e2 

l/a3 Sll 2-el 
(1,2) 
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where~= cos (Tt), Sro =sin (co) ; a1, az, a3 are scaling factors for x,y, and z; and 

the exponents e1 and e2 control the roundness or squareness in the latitudinal and 

longitudinal directions. By allowing deformations such as scaling, shearing, tapering and 

twisting, a very large set of shapes can be obtained (Figure 1 b). The constants a 1, az, and 

a3 implement scaling, which is a simple example of a deformation. Even with the more 

complex deformations, only a few parameters are needed to describe any of the possible 

shapes [BARR 84, PENTL 86b], therefore the requirements of a small number of 

primitives which have a compact representation is easily met. The parameters controlling 

the superquadric shapes are computable from a map of the surface normals of the imaged 

objects. The techniques to do so are still quite new, and further work is needed. 

However, the technique appeared promising enough that an investigation of its parallel 

execution seemed in order. 

Comments on the Estimation of Surface Normals 

Before the superquadric parameters can be estimated, knowledge of the surface. 

normals in the image, as well as their derivatives along the x and y axes, is required. 

Several techniques to recover this information have been proposed in the literature. The 

output of these procedures is an estimate of the x, y, and z components of the surface 

normal of an imaged object in the area covered by a pixel. These components are aligned 

with the x, y, and z axes of the image plane. This is illustrated below in Figure 2. 

Frequently these estimates are expressed as the tilt and the slant. The tilt is the image plane 

component of the normal vector. In other terms, it is the polar combination of the x and y 

compouents. The slant is the perpendicular, or z, component. Both tilt and slant are 

usually expressed as angles. 
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Figure 2: Projection of Normal Vector onto Image Coordinates 
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Early work in the area concentrated on obtaining shape information from a single 

type of information, such as shading [HORN 75] or texture [WITKI 81]. More recently, 

Pentland developed a method that uses both texture and shading information [PENTL 84, 

86a]. Extending his technique to include motion was covered in [FERRI 85]. A more 

accurate estimator is described in [LEE 85]. This estimator uses a coordinate system that 

has the slant oriented with the direction of the main illuminant, rather than being 

perpendicular to the image plane. 

All of these estimates are subject to error. Quantitative description of the error is 

difficult, but it can be qualitatively described as a bias which is a function of the actual 

values of the surface normals, with an additive noise component. The shape of the imaged 

object strongly influences the results. The error is quite small for a spherical object, but 

becomes greater as the object shape becomes more ellipsoidal. Tables I and II are 

reproduced from [LEE 85]. Table I gives the absolute value of the error in estimates of tilt 

and slant for Lee's estimator applied to an artificially generated sphere. Table II gives the 
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absolute value of the error of Lee's technique on an artificially generated ellipsoid with a 

3:1 ratio of major axis length to minor axis length. The top row of each of the tables gives 

the eight tilts being tested. The first column gives the nine slants tested. Each element of 

the table has two entries, the first is the error in slant and the second is the error in tilt. As 

can be seen, the performance degrades as the assumption of equal curvatures is violated. 

TABLE I 

ACCURACY OF LEE'S ESTIMATOR FOR SPHERE 

Tilt 
Slant 0 22 44 66 88 110 132 154 

0 6 0 6 * 6 * 6 * 6 * 6 * 6 * 6 * 
11 1 0 3 0 3 0 3 0 1 0 3 1 3 1 3 1 
22 2 0 2 1 2 0 2 1 2 0 2 2 2 1 2 0 
33 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 
44 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2 1 
56 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 
67 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 
78 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 
89 7 0 7 0 7 0 7 0 7 0 7 1 7 1 7 1 

TABLE IT 

ACCURACY OF LEE'S ESTIMATOR FOR ELLIPSOID 

Tilt -----------------------
Slant 0 22 44 66 88 110 132 154 

0 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 
11 11 0 11 16 11 18 11 10 11 0 11 9 11 16 11 15 
22 22 0 22 16 22 17 22 11 22 0 22 9 22 16 22 15 
33 1 0 3 16 11 18 ~9 10 25 0 19 9 11 16 3 15 
44 8 0 6 16 2 18 10 10 14 0 10 9 2 16 6 15 
56 16 0 12 16 2 18 8 10 11 0 8 9 2 16 12 15 
67 15 0 15 16 5 17 5 10 9 0 5 9 5 16 15 15 
78 4 0 4 15 4 17 4 10 8 0 4 9 4 16 4 15 
89 7 0 7 15 7 17 7 10 7 0 7 9 7 16 7 14 
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In addition to the normals information, we must know the derivatives of the 

normals along the x andy axes. Since the normals information is subject to noise, the 

calculation of the derivatives must be done with care. The facet model, [HARAL 81 ,82] 

seems to offer an approach that will allow the derivatives to be calculated without excessive 

problems due to the noise in the normals data. This technique assumes that in each 

K by K neighborhood of the image, the pixel values can be expressed as a polynomial 

function f of the row and column coordinates. The coefficients of the polynomial are 

obtained from linear combinations of the values in the KxK neighborhood. Knowing the 

coefficients of this polynomial, we can easily calculate the derivatives of interest. The 

convolution masks used to estimate the polynomial coefficients and the derivatives will 

depend on the size of the neighborhood, the order of the fit, and the basis functions of the 

polynomial. For the normals information the calculation would be performed three times, 

once for each of the components of the normal. Convolution on the architectures 

considered is quite fast, the execution time being proportional to the area of the mask 

rather than the image size. The convolution procedure is described later in this chapter. 

Description of the Processing Element 

The PE used in this study is essentially the one proposed for use in the CAAPP 

[LEVIT 84, LAWTO 85, WEEMS 85], circa 1984, with the number of inter-PE 

communication links being modified for whichever interconnection network is being 

studied. The memory was also extended from the original 128 to reflect the advances in 

fabrication technology. The PE is equipped with five register bits, 512 bits of local 

memory, a simple bit-serial ALU, and communication links with its neighboring PEs. A 

content addressable broadcast and response mechanism is also provided. These 

components of the PE, as well as the array controller and microcode format, are described 

below. Figure 3 gives the functional layout of a PE. 
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Figure 3: Functional Block Diagram of a Single PE 

Registers and Memory 

Each PE has five one-bit registers, denoted A through E. Registers A, C, and E 

have special purposes, while registers B and Dare general purpose. Register A is also 
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known as the activity bit. When this register is cleared, no results can be stored in registers 

or memory of the PE, effectively disabling the PE. The activity bit can be overridden by 

setting the Ignore Activity (IA) bit in a micro-instruction. The C register is used as the 

carry register in the addition instruction. The PEcan perform a one-bit add with carry in 

one clock cycle. The E register is the response register of the content addressable 

mechanism. The use of these three registers is dealt with below in greater detail. 

Each PE has 512 bits of local memory, denoted by the block labeled Min figure 3. 

Content Addressable Memory (CAM) cells are usually used in a machine which has a 
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content addressable broadcast and response mechanism. For static memory, such cells 

involve three extra gates per bit of memory [WESTE 85]. However, the bit serial nature of 

the content addressable search mechanism for this PE, which performs the comparisons in 

the ALU instead of memory, allows us to use standard RAM cells instead of the larger 

CAM cells. Additional VLSI area could be saved by the use of dynamic memory cells, but 

the refresh cycle would hurt the speed of operation due to the width of the local memories. 

The timing estimates presented in the results section do not include the time needed for 

DRAM refresh. 

ALU Operations and Control 

The control inputs to the ALU select two sources, a function, and a destination. 

Sources may be registers, memory, or a value broadcast from the controller. The two 

sources are denoted as SRC i and SRC j. Destinations are either the registers or memory of 

the PE. Instructions that access memory can specify only one memory address per 

instruction. The functions that can be selected are listed in figure 4. They include logical 

operations, communication with neighboring PEs, and one bit addition with carry. The 

addition operation automatically uses and updates the carry bit, register C. All functions 

are computed in parallel and their results sent to the function select multiplexer. The func­

tion select field of the micro-instruction determines which of the results is placed on the 

result line for storage. Control lines are provided to allow the negation of any combination 

of the source and result bits. 

Communication with neighboring PEs is accomplished with the E register and the 

function select block. Each PE continuously broadcasts the value in its E register to all PEs 

it can communicate with. When communication with neighboring PEs is desired, the 

function select lines of the destination PE choose which of the broadcast values will be 

placed on the result line. This value is then routed to its destination within the PE, either 



register or memory. The slow-down of the communication operations due to the high 

fanout of theE register is ignored in this study, under the assumption that it will not be a 

critical limitation on the clock frequency. The number of control lines needed for the 

function select multiplexer will depend on which interconnection network is being used. 

The pincounts for the various architectures are given in the last section of this chapter. 

Content Addressable Broadcast and Response Mechanism 
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A notable feature of the PE is the content addressable broadcast and response 

mechanism. This mechanism allows the host or the controller to interrogate the PE array 

about characteristics of the image, avoiding the need for the image data to be dumped to the 

host for sequential evaluation. The controller broadcasts a one bit value to each PE on the 

Broadcast Comparand (BC) line. The source selected by the SELECT i multiplexer is 

compared with this broadcast value. If they are the same, a one is placed on the result line. 

This value will usually be stored in either the PE's response bit, register E, or the activity 

bit, register A The response bits of all the cells are OR'ed together and made available to 

the controller as the SOME/NONE flag. At any time, the number of responding cells can 

be obtained by use of the COUNT RESPONDERS function .. An adder tree is used to 

obtain the count. A description and timing analysis of the adder tree is given in [LEVIT 

84]. The time to obtain the response count for a 512 x 512 image is 2.5 microseconds. 

Due to the organization of the adder tree, response count requests can be issued every 1.6 

microseconds [LEVIT 84]. The algorithms developed in this study do not make use of 

either the SOME/NONE or COUNT RESPONDERS functions, therefore we will not 

consider them further. 

It will frequently be useful to restrict processing to only those PEs with a particular 

bit pattern in some field of memory. The activity bit, register A, allows subsets of the PEs 

to be disabled. By storing the result of a comparison in the activity bit, all PEs that failed 



the comparison can be disabled. The simple algorithm below will leave enabled all cells 

that exactly meet some search criterion, leaving all others disabled. 

ALGORITHM 1: SELECTIVE PROCESSING 

SELECT all cells 
for each bit in the pattern 

BROADCAST bit value. 
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IF ACTIVE, COMPARE with memory location, store result inactivity bit 
next bit and memory location 

Note that this algorithm's execution time is proportional to the length of the pattern, 

not to the size of the image. This is a frequent occurrence in these architectures. If an exact 

match is not desired, Foster [FOSTE 76] gives algorithms for several other matching 

criteria such as minimum, maximum, greater than, less than, closest to, etc. The 

algorithms developed in this study frequently select PEs based on their position in the 

array. These comparisons require that the coordinates of the PE be stored in its local 

memory. 

Microcoded Array Controller 

The array controller is a microcoded sequencer which receives assembly language 

level instructions from the host and interprets them as a call to a microcode subroutine that 

the PEs can execute. The same micro-instruction is broadcast to all PEs at the same time, 

thus the architectures are of the Single Instruction stream I Multiple Data stream (SllviD) 

variety. As mentioned earlier, the PE will execute the instruction only if its activity bit is 

set, or if the micro-instructi_on's IA, Ignore Activity, bit is set. 

The format for the portion of a micro-instruction broadcast to the PEs is given in 

Figure 4, along with the basic micro-operations that can be performed by the PE. Micro-

instructions are of the form: select two sources, perform some operation on them, then 

store the result in some destination. The local memory is fast enough that a read-modify-



20 

write takes a single clock cycle. Instructions which access the local memory must use the 

same address for all memory operands. In other words, local memory to memory transfers 

take two instruction cycles per bit and must proceed through an intervening register. 

Transferring a data value in the memory of one PE to the memory of another PE also takes 

two instructions, since the data must be moved from the memory of the first PE to its E 

register. This takes one instruction cycle. During the second instruction cycle the value of 

theE register is automatically broadcast to all neighboring PEs. The function select of the 

destination PE puts this value onto its result line and enables writing to the memory location 

whose address is specified in the second micro-instruction. 

The rnicroword will also have additional fields for use within the array controller to 

support looping, microcode subroutines, etc. The form of these additional fields will 

depend on the design of the array controller and will not be considered in this study. 



I IAI s;Rc> I s;RS i I F~n~ti+ I ~ef I ~+ I : : ~d~~s: : : I 
IA 

0 Use Activity Bit 
Ignore Activity Bit 

SRC i,j 

0 None 
1 M 
2 A 
3 B 
4 c 
5 D 
6 E 
7 Comparand 

i j r 

Neg i,j,r 

0 True 
1 Complement 

Dest 

0 None 
1 A,C (ADD,SUB) 
2 A 
3 B 
4 c 
5 D 
6 E 
7 M 

* Only for Pyramid 

Function 

0 
1 j 
2 CMP i,j (XNOR) 
3 ADD i,j,C 
4 NAND i,j 
5 NOR i,j 
6 Read N 
7 ReadS 
8 ReadE 
9 Read W 
10 Read NE* 
11 Read NW* 
12 Read SE* 
13 Read SW* 
14 Read Parent* 
15 Read NE Child* 
16 Read SE Child* 
17 Read NW Child* 
18 Read SW Child* 

Figure 4: Microinstruction Format 
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Parallel Image Processing Architectures 

As noted above, many parallel architectures have been suggested for use in image 

processing. The majority of image processing algorithms apply the same operations to all 

pixels in an image, or a subset of the image. This makes them suitable for implementation 

on Single Instruction stream, Multiple Data stream (SIMD) machines. This is the simplest 

type of multiprocessor, where all PEs execute the same instruction at the same time. This 

greatly simplifies the programming task, especially for system software. Another 

important characteristic of image processing algorithms is that most calculations depend 

upon the values of a few neighboring pixels. This has important implications for the 

network interconnecting the processing elements. 

Too many architectures have been suggested to give a complete survey here. 

However, the architectures proposed can be divided into several classes. SIMD vs. MIMD 

is a major distinction, as is the granularity of the processing ensemble. The interconnection 

network used to connect the PEs is important. Also important is the communication 

between the host and the parallel architecture. The majority of specialized image processing 

architectures that have been proposed are coarse-grained SIMD machines. A linear or mesh 

interconnection is frequently used, although hypercube and tree topologies are also used on 

occasion. Few have used content-addressable memory, due to its high cost compared to 

standard DRAM. The coarse grained approach is used to take advantage of the widely 

available microprocessors and specialized DSP chips. Many fine-grained. architectures 

have been proposed on paper but few have been fabricated. 

Of all the SIMD architectures which have been suggested for image processing, the 

class of highly parallel architectures offers perhaps the greatest potenti"l for performance. 

These architectures have at least one PE for each pixel in the image. These PEs are usually 

bit serial ALUs with a small amount of local memory, typically less than 1024 bits, and 

connections to a small number of neighboring PEs. The massive parallelism of these fine-
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grained designs more than compensates for the slow speed of bit serial operation. By 

having one PE for each pixel in the image, the dependance on the size of the image in many 

image processing algorithms is removed. As an illustration, consider the problem of 

adding a constant to every pixel in an image. On a standard serial machine, ignoring the 

overhead of instruction fetches, the time to perform this function can be calculated from 

N(tread + tadd + tstore), 

where N is the number of pixels in the image. For a large array of bit -serial 

processors the time can be calculated from 

B(tread + tadd + tstore), 

where B is the number of bits to be added in each PE. If we assume that the 

standard processor can read a word, add the constant, and store the resulting word in the 

same time that the bit-serial processor can perform the same operations on a bit, then the 

array will work faster anytime there are more pixels in the image than bits in a word. If we 

use 16-bit words and the image size is 512 x 512, the array will be 16,384 times faster. 

To provide another illustration of these machines, let us compute an approximate 

figure for floating point arithmetic speed. Assume that a 32-bit floating point multiply takes 

2000 clock cycles. If the clock frequency is 10 MHz., each PE has a speed of 5 KFlops. 

This is quite slow compared to the performance of dedicated arithmetic coprocessors such 

as the Intel 80387, which can perform approximately 300 KFlops. However, the 5 KFlop 

figure was for one PE. There are 64 PEs on a chip, giving 320 KFlops per chip. For a 

512x512 image, there are more than a quater million PEs. The floating point performance 

for the entire array is 1.25 GFlops! 

Several factors go into determining the speed with which a parallel processor can 

execute a particular algorithm. Obviously, the speed of the PE is an important factor. 
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However, the fit between the interconnection network and the communication needs of the 

task to be performed is at least equally important. This latter factor is what we will be 

comparing in this study. In order to keep the speed and area comparisons of the 

interconnection networks meaningful, the three machines are considered to have equivalent 

PEs. The difference between the architectures in this study is the type of interconnection 

network used to communicate with neighboring PEs. The interconnection networks 

studied are described in the next section. 

The interaction between the host and the processing array is handled by the array 

controller. The content addressable mechanism described earlier provides a powerful way 

to control the operations of the array, as well as obtain results without dumping the entire 

image for slow sequential evaluation by the host. 

Interconnection Networks Studied 

Three interconnection networks were chosen for comparison in this study. All use 

essentially the same processing element, the only differences being in the number of 

communication lines and their corresponding control lines. Each of these interconnection 

networks will be described below. In addition to the interconnections between the PEs, 

each interconnection network has communication links with the array controller. As 

mentioned earlier, each of these architectures is of the SIMD type. All the instructions are 

broadcast from a microcoded central controller. The central controller can also broadcast 

data to all the PEs. This data broadcast is done bit-serially. As well as being able to send 

data to the array of PEs, the controller can receive data from the array by means of a content 

addressable response mechanism. The content addressable mechanism was discussed in a 

previous section. 



Four Nearest-Neighbor Mesh 

The first interconnection network is the standard four nearest neighbor (4NN) 

mesh. In this interconnection network the PEs are arranged in a two dimensional mesh, 

one PE for each pixel in the image. Each PE that is not on an edge of the mesh has 

communication links with its four nearest neighboring PEs, as illustrated below in 
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Figure 5. Communication for those PEs that are on the edge of the mesh can be handled in 

several fashions, as shown in Figure 6. 

Figure 5: Four Nearest Neighbor Interconnection Network 

Torus Spiral 

Figure 6: Sample Edge Treatments 
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This interconnection network has recieved a great deal of attention for image 

processing purposes, due to direct mapping of pixels onto PEs. The 4NN mesh can 

execute many of the algorithms used in the lower levels of vision. As an illustration, 

consider the task of convolving the image with a three by three mask. We will denote the 

coefficients of this mask as a 11, a 12· ... , a33, and will ignore edge effects. The first step 

is to broadcast a11 to all the PEs. They will multiply a11 by the image value they contain, 

then move the product to their southern neighbor. The value of a21 will then be broadcast 

and multiplied by the image value, then added to the product from the previous step. We 

will continue the broadcast and accumulate process in a spiral fashion. At the last step, the 

value of a22 is broadcast, multiplied by the image value, then added to the accumulated 

value read from the PE's northern neighbor. The data movements of this algorithm are 

shown in Figure 7. The important thing to note about this algorithm is that the execution 

time will be proportional to the area of the mask and the numeric precision of the operands, 

not the area of the image. [LEVIT 84] gives sample times for convolution with varying 

size masks. Assuming 8-bit pixels, the time for the 3x3 mask was 0.7 msec., the time for 

the 7x7 mask was 4.0 msec. These times are independent of the size of the image. 

Multiplies are quite slow on this machine, since their execution time is proportional to the 

square of the number of bits multiplied. If the convolution mask is symmetric, the time for 

the convolution can be reduced. Keep in mind that these times are for the CAAPP. As will 

be seen in the next section, the CAAPP is not as fast as the 4NN. The times for the 4NN 

would be roughly half those for the CAAPP. 
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Figure 7: Data Movements for Convolution 

Content Addressable Array Parallel Processor 

The second interconnection network is the one proposed for use in the Content 

Addressable Array Parallel Processor (CAAPP), circa 1984. This architecture has recently 

undergone major design changes, one of which was to use a full 4NN mesh. The original 

version uses an interconnection network which is organized as a mesh of submeshes. 

Referring to Figure 8, we see that each four by four submesh has the standard mesh 

connection, with the edges being treated as a double spiral. However, communication 

between the submeshes is restricted to one bidirectional link between neighboring 

submeshes. When data must cross a submesh boundary this will increase communication 

time by a factor of four, plus overhead, compared to the 4NN mesh. The advantage of this 

submesh organization is that the pincount of the VLSI devices is reduced considerably. 

For example, assume each package has 64 PEs organized as an eight by eight portion of the 

array, only needing communication links to neighboring packages. For the case of the 

4NN mesh, each PEon the perimeter needs a communication link off-chip, and the corner 

PEs need two. This gives a count of 32 pins needed simply for inter-c~ip communication. 

For the CAAPP, this is reduced to eight. The savings in pin count is very important when 

the board level pin count is calculated. Assuming each board has 64 chips arranged in an 

eight by eight array, the number of pins needed to communicate with other boards in the 
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system is reduced from 256 to 64. Since connections are a major reliability problem, this 

savings is quite important. 

N N 

E 

E 

s s 

Figure 8: Interconnection Network for One Chip of the CAAPP 

The Pyramid 

The final architecture studied is the pyramid [TANIM 84, DYER 81]. This 

architecture uses more PEs than the others, as well as a more complex interconnection 

network. The interconnection network used is illustrated below in Figures 9a and 9b. In 

this scheme, the processing array is organized into L layers of 8NN meshes. Each mesh 

has four times as many PEs as the mesh above it. The top layer has a single PE, while the 

bottom layer has as one PE for each pixel in the image. The number of layers, L, can be 
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found from the relation L = log2(r)+ 1, where r is the number of pixels per row or column 

in the base layer. Each PE not on the edge of a layer or in the top or bottom layers 

communicates with 13 neighboring PEs, one on the layer above, four on the layer below, 

and eight on the same layer. These 13 PEs are referred to as the pyramidal neighborhood. 

The pyramidal neighborhood is shown in Figure 9b. The eight nearest neighbors on the 

same layer are referred to as the lateral neighborhood. The connections at the root, base, 

and edge cells can be handled in fashions similar to those for the 4NN. Additionally, a 

border register is provided for high speed I/0 between the array and either the image 

digitizer, image display unit, or mass storage. The border register has 2L-l one-bit registers 

which connect to the PEs on one edge of the base level of the pyramid. The overall 

organization of the pyramid machine is shown in Figure 9a. 

This organization is an implementation of the resolution pyramid data structure, 

which has been shown to have several advantages for vision processing [BALLA 82, 

HANSO 78]. For serial machines, the upper levels of the Pyramid can be processed, and 

the results of that processing used to guide the processing of the lower levels. Thfs has the 

advantage of reducing the computations expended on the lower layers, as well as providing 

some measure of noise immunity. Region growing algorithms based on a split and merge 

technique also use the Pyramid data structure for efficiency gains. More information on the 

use of pyramids can be found in [TANIM 80]. 
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Figure 9a: The Pyramid Interconnection Network 
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Figure 9b: The Pyramidal Neighborhood 
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Edge Treatments 

The subsection on the 4NN briefly discussed possible methods of handling 

communication for those PEs on the edges of the processing arrays. These edge treatments 

are also applicable to the CAAPP and Pyramid machines. Various algorithms make up the 

image processing stage of computer vision, not all of which will necessarily use the same 

edge treatment. Edge treatments can be handled by the use of programmable switches. 

The communication lines at the edge of the processing array would be routed to these 

switches, which could then provide spiral, torus, wired-1, or wired-0 connection schemes. 

These switches might be located on the controller board, or on a seperate board. 

Another common factor in all the interconnection networks is the need for I/0 with 

the image acquisition, image display, and mass storage hardware. All the interconnection 

networks will be augmented with.a border register to provide this functionality. The border 

register was briefly described in the Pyramid subsection. 

VLSI Fabrication Considerations 

At this point, it seems appropriate to consider some of the details of the VLSI 

implementation of the interconnection networks studied. The following sub-sections 

discuss the package and board level implementation of these networks for a 512 x 512 

image. Several simplifying assumptions were used. The first was that the area required 

for the memory and ALU of the PEs would dominate the size of the die, therefore no 

comparisons of the differences in area of the interconnection networks were made. No gate 

counts were computed, however, current limits on gate count suggest that there be no more 

than 64 PEs, each with approximately 512 bits of memory, integrated into one package. 

Despite the ever-increasing numbers of devices that can be fabricated onto a chip, 

pin counts are expected to remain limited to around one or two hundred pins per package 

until the advent of wafer-scale integration. Therefore, the number of PEs that can be 
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fabricated onto a chip will be limited by practical pin count as well as by the total gate 

count. The CAAPP is the only interconnection network that directly addresses this limi­

tation. However, by arranging the 64 PEs on each chip into an eight by eight array, the 

number of communication lines needed for each chip is not a major problem. The 4NN 

would require 32 pins for communication, the CAAPP would need eight. Even with the 

additional pins for instructions, power, ground, and clock, the pincounts are within current 

limits. 

While the 4NN and CAAPP are within the capabilities of current fabrication 

technology, the limits on pin and gate count make the implementation of the pyramid 

impractical today. Therefore, the limits on the number of PEs were relaxed somewhat for 

the pyramid. Device sizes should soon be at a level that will allow more gates per device, 

without much help in the way of pincount limits.Pin counts do become restrictive for the 

Pyramid, as will be discussed later. By allowing 85 PEs per die, a practical configuration 

for the Pyramid was achieved which met the limits on pincount. 

4NN and CAAPP Pincounts 

The 4NN and CAAPP, using 64 PEs per package, will require a total of 4096 

packages for a 512x512 image. If 64 packages are mounted on each printed circuit board, 

64 such boards would be needed. Obviously, such a system would be expensive to 

construct. The submesh organization of the CAAPP would make it a cheaper and more 

reliable system. This is due to the reduced number of pins needed on the packages and 

boards. For the 4NN, each PEon the perimeter of the package will need a communication 

pin, corner PEs will need two. This gives a total of 32 communication pins for each 

package. For the CAAPP, only eight communication lines will be needed per package. An 

additional 25 pins will be needed for instructions, two for power and ground, one for the 
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clock, and four for the content addressable broadcast and response mechanism. Thus, the 

number of pins for each package is 40 for the CAAPP and 64 for the 4NN. 

Additional pins might be used for chip or quadrant enables. This would speed 

selections based on row-column coordinates by having all but a few of the least significant 

bits handled by chip and board enables instead of the ALU of the PEs. However, the 

benefit of the enable pins is unclear. For a 512x512 image there are only 18 bits in the 

row-column address. While such selection is a frequently used operation, its execution 

time by either method is quite small compared to a multiply or divide. For this study, the 

algorithms for superquadric estimation all execute on small portions of the array, allowing 

many estimations to be accomplished in parallel. Selections in these algorithms only 

depend on a few of the least significant bits in the row-column address, therefore the enable 

pins would not appreciably impact their execution. For this reason, no enable pins will be 

considered, and all row-column selections will be accomplished by a bit-serial associative 

search into memory. 

Pincount savings at the package level will be especially important when the 

pincount of the printed circuit boards is considered. Assuming 64 packages per board, 

arranged in an eight by eight mesh, each board of the 4NN will require 256 connections to 

the backplane for communication lines while the CAAPP boards will only require 64. We 

again will need 32 additional lines for instructions, power, etc. Board level response 

counts must be provided, at the expense of an additional 17 lines. The total board level 

pincount is thus 113 for the CAAPP and 305 for the 4NN. The package and board level 

counts for the 4NN and CAAPP are presented with those for the Pyramid in Table V at the 

end of this section. 
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Pvramid Pincounts 

The twin limitations of gate and pin counts are especially acute for the Pyramid. 

Given that we cannot integrate the Pyramid into a single package, we must decide on an 

appropriate way to distribute the PEs. This will require that the machine be composed of 

two type of chips; those which contain leaf, or base, cells and those that do not 

[DYER 81]. The first type is called a leaf chip, the other is a non-leaf chip. Several levels 

of the machine would be provided in each type of chip. 

The number of levels that can be integrated onto a non-leaf chip will be limited by 

the pincount necessary for the lowest level of the non-leaf chip to communicate with its 

children. For example, consider the top of the pyramid. One line will be needed for 

communication above the root cell. If three levels of the pyramid are to be integrated into a 

single package, there will be 16 PEs on the bottom level. Each of these PEs must be 

provided with links to its four child nodes. This brings the pincount to 65 for 

communication with parent and children alone. To this must be added 33 more lines for 

instruction lines, power, ground, clock, and associative response. If we consider the chips 

which will make up the interior of the Pyramid, we see that we must also provide lines for 

communication within the lateral neighborhood. For the chips on the edges of the array, 

these lines will be wrapped around to the opposite side of the array to handle edge 

treatments as described earlier in this chapter. Since the lateral neighborhood is an 8NN 

mesh, the pincounts here will be greater than those for the 4NN or CAAPP. There are 

several ways to handle this 8NN connection, two are diagramed below in Figure 10. The 

first is the simple-minded solution. This requires three communication pins for each PE on 

the edge of a chip, while comer PEs require five pins. This is shown in the figure by 

highlighting a comer and edge PE, and showing their off-chip communication links with 

bold lines. The pincount can be reduced by adding two-bit buffers to each end of the 
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communication lines. One of the buffer bits would be dedicated to broadcasting the value 

from theE register of the closest PEon the same chip. This is denoted as the S, or Send, 

bit in Figure 10. The second bit would hold the E register value from the PE on the other 

chip. This value would then be routed to the necessary PEs on the first chip. This bit is 

denoted by R, or Receive, in the figure. Using this scheme, the pincount can be reduced to 

one pin for each edge PE, with corners needing three pins. This is a penalty of only four 

pins, one at each corner, compared to the 4NN and CAAPP interconnection networks. 

Other PEs involved in 
communication are 

shown with light lines. 

Heighborhood routing done l 
on-chip reduces inter-chip 

Chip Boundry 

connections to one for each --.......J>--l 

pair of edge PEs. 

Two bit buffer. S is Sent, 
R is Received. Switching 
hardware not shown. 

Figure 10: Inter-Chip Communication for 8NN Meshes 
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For the three-level non-leaf package discussed above, this will add another 40 pins, 

bringing our total to 138. If only two levels of the pyramid are fabricated onto a non-leaf 

chip, the total pin count is reduced to 70. Four levels gets quite expensive with 365 pins 

per chip. The pin counts as a function of the number of levels per package are tabulated 

below in Table TIL This table also gives information about how many chips and boards 

would be required for a complete 512 x 512 system. This will depend upon how many 

levels are integrated into the leaf chips. The numbers in Table ill are based on the 

assumption of four levels in the leaf chips. They also assume a single PE at the top of each 

non-leaf chip. 

Levels 
per chip 

2 
3 
4 

TABLE Ill 

NON-LEAF CHIP PARAMETERS AS A FUNCTION OF THE 
NUMBER OF LEVELS PER PACKAGE 

Number Comm. Pins Total Pins Number of Chips 
of PEs per chip per chip for 512x512 Image 

5 37 70 273 
21 105 138 65 
85 332 365 17 

The pin limit is not so severe for the leaf chips, since they do not need four lines for 

each terminal cell. Assuming a single PEat the top, a three-level leaf chip will have 21 PEs 

per package. Such a chip will implement an 4 x 4 section of the base level. There will be 

40 lines for communication within the lateral neighborhoods, one for communicating with 

the parent PE, as well as 33 pins for instructions, etc. Such a device would have 71 pins. 
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There is no need for the top level of the leaf cell to have a single PE. If we do away with 

this restriction we can put more PEs on each leaf cell, reducing the number of packages 

needed. Table IV summarizes the pin, package and board counts versus the number of 

levels and the number of PEs that occupy the top level. 

TABLE IV 

LEAF CHIP P ARAME1ERS AS A FUNCTION OF THE NUMBER OF LEVELS 
PER PACKAGE AND THE NUMBER OF PES ON THE TOP LEVEL 

Levels Number of PEs Number of Communication Total Pins Number of Chips 
per Chip on Top Level PEs per Chip Pins per Chip per Chip for 512x512 Image 

2 1 5 21 54 65,536 
2 4 20 36 69 16,384 
2 16 80 72 105 4,096 
3 1 21 41 74 16,384 
3 4 84 72 105 4,096 
4 1 85 77 110 4,096 
5 1 341 145 178 1,024 

System Level Assembly 

Assembling the 4NN and CAAPP into a system would be relatively 

straightforward. The designer of a Pyramid has several decisions to make which the other 

two machines do not present. The decision about how many levels per chip is one 

instance. In a similar fashion, we may wish to put both types of chip onto a single board to 

reduce pin count. Another minor problem to address concerns the root cell. The number of 

levels used for the leaf and non-leaf chips may not allow the root cell to appear at the top of 

the topmost package. In other words, the root PE will have parents! This is not as serious 

as it sounds, but a slight amount of special handling would be necessary when dealing with 



38 

the top of the pyramid. For Table V, the pyramid was assembled from 4levelleaf cells and 

three-level non-leaf cells. This gives a balanced pyramid, i.e., the root PE has no parents. 

The decision was also made to put 64leaf chips and one non-leaf chip onto the low level 

boards. The single remaining non-leaf chip could then be easily placed on the controller 

board. This reduces the number of board-level connections, while also reducing the board 

count by one. The board eliminated would have held 64 non-leaf cells, each with 16 PEs 

on the bottom layer. Since each PEon the bottom layer of the non-leaf cell needs four 

communication lines to its children, eliminating this board reduces the complexity of the 

backplane considerably. The counts for such a system are presented below in Table V, 

along with those for the 4NN and CAAPP. 

The final column gives an estimated MTBF (Mean Time Between Failures) for each 

machine. Typical failure times for backplane connections are on the order of 1E8 to 1E9 

hours. For complex VLSI chips, the failure time is approximately 1E7 to 1E8 hours. The 

failure rates of validated printed circuit boards and solder joints are so low that they can be 

neglected!. For the table below, the failure times were taken to be 5E8 hours for the 

connections and 5E7 hours for the chips. It should be noted that the failures may not be 

fatal, or even seriously degrade results. The massive parallelism of the interconnection 

networks considered provides a degree of fault-tolerance. Since most image processing 

algorithms are local, the effects of a hardware failure may remain confmed to a small area 

of the image. Detecting such areas and deciding on an appropriate error-recovery technique 

is another question, and beyond the scope of this study. 

1 Reliability estimates courtesy Dr. Dave Ballew, AT&T Technologies 
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TABLE V 

SYSTEM LEVEL COMPARISON 

PEs per Chips per Boards per Backplane lines Backplane lines MTBF 
5122 image image system per board per system (weeks) 

349,525 
262,144 
262,144 

4,161 
4,096 
4,096 

65 
65 
65 

570 
286 
94 

36,480 
18,304 
6,016 

38 
50 
63 



CHAPTER III 

PROCEDURE 

If we agree that CSG combinations of superquadrics seem to form a desirable data 

structure to bridge the gap between low and high level vision, the next question we are 

faced with is how to recover the superquadric parameters from the image. Fortunately, 

there exists a dual relation between the surface position and normal vectors of a 

superquadric that allows this information to be recovered if we have knowledge of the 

surface normals throughout the image. The first section of this chapter presents the deriva­

tion of regression equations that will allow the recovery of the superquadric parameters 

given knowledge of the surface normals. The second section of the chapter discusses the 

solution of the regression equations and presents algorithms suited for the parallel machines 

studied. Equations for the execution time and memory requirements of each stage of the 

solution process are presented with the algorithms. The fmal section discusses the perfor­

mance estimation techniques used and limitations of the regression equations derived. 

Derivation of the Regression Equations 

Pentland, in [PENTL 86] presents a derivation showing how knowledge of the 

image plane component of the surface normal, as well as its derivatives, may be used to 

estimate the center of the superquadric form and the shape parameter e2. In the interests of 

completeness this dP,rivation is presented below, terminating with equation (23a). 

Equations (24) to (26) modify equations (23 a,b) for a least-squares solution. 
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The surface position vector X and surface normal vector N, as functions of 

longitude co and latitude 11 are given by 

(
l/a1 C 2-el C 2-e2) 

N(ll,CO) = l/a2 C~2-el S :2-e2 

1/a3 s, 2-el 
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(1,2) 

where C11 =cos (11), Sco =sin (co) and a1, a2, a3 are scaling factors for x,y, and z. The 

surface normal vector N = (xn, Yn, Zn) can be written as a function of the surface position 

vector X= (x, y, z), 

From equations (1) and (3) we have 

so 

1 
X = - c 2C 2 

n xll co 

Yn x 2 -=-tan co 
Xn y ' 

and 
1 

Y =- C 2S 2 
n y 11 co ' 

or (yy )l _.1l 2 =tan co. 
XXn 

Alternative expressions for tan co may be derived as follows: 

X= a1 C el C e2 , co ' 

so 

or 

Combining, we obtain 

or 

Y = a2 C el S e2 , co ' 

lx a1)l 
-- e2 = tan co . 

a2 

(3) 

(4,5) 

(6,7) 

(8) 

(9, 10) 

(11,12) 



Yn Letting 1: - -- xn' (a1) 2 2 k = a2 e2, and s = e2_1 , we find 

d't = k~ ("l~-1 and 
dy X X) ' 

d't = -k~y(;:_)~-1 
dx ~X • 
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(13,14,15) 

These equations can be combined to give two equations which relate the unknown shape 

parameters to image measurable quantities: 

and 
't -X -=- (16,17) 

The two equations above are rather limited, since they assume the superquadric is centered 

at the origin, and has no rotation. For the case of rotation and translation in the image 

plane, the equations relating the coordinate systems become: 

y* = -S9 (x- xo) + C9 (y- YO) (18) 

where 9 is the rotation, xo, YO the translation, and (x*, y*) the new rotated and translated 

coordinate system. The tilt 1: then becomes 

and the derivative of (19) is 

Yn* 
't = --=1< 

Xn 
(19) 

(20) 



Noting that 

dxn dxn dx dxn dy 
dy* = dx dy* + dy dy* 

dye = dyn ~ + dyn ~ 
dy dx dy dy dy 

we now rewrite ( 16) as 
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(21 a,b) 

(22) 

Finally, collecting the image measurable quantities in square brackets, and the unknown 

compound parameters in parenthesis, we obtain: 

(23a) 
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Using a similar development, (17) becomes: 

(23b) 

As presented above, the two equations are not well suited to constructing a linear 

regression, since they would give rise to a system of the form AA = 0. For this system the 

A matrix must be singular if we are to have anything but the trivial solution. However, 

note that there are a number of common terms in the two equations. If we rewrite 23a and 

23b as: 

a 1 x 1 + a2x2 + ... + agxg = 0 

b1Y1 + b2Y2 + ··· + bgyg = 0 

we may take the sum and difference of these two equations, use the fact that 

sin2e + cos2e = 1, and obtain a different set of equations which are suited to a least-

squares solution. The first equation, from the sum of 24a and 24b, reduces to: 

while the second , from the difference of 24a and 24b, becomes: 

- (a4- as)= 2[arxl + a2x2 + a3x3 + a6x6] + 2[as- a4] x5 

+ a7(x7 + yg) + as(xg + yg) 

(24a) 

(24b) 

(25a) 

(25b) 
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In terms of the image measurable quantities, these are: 

(26a) 

and 

(26b) 

The two equations above may be used to construct a linear regression to solve for 

the unknown parameters in parenthesis. Since we have seven unknowns, we will need at 

least seven equations. Each pixel gives rise to two equations, thus we can solve for 

estimates of the superquadric parameters over regions as small as two by two pixels. For 

better noise immunity it may be that we will want to use larger regions. A technique to 

solve the regression matrix will be discussed in the next section. 
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Parallel Regression Algorithms 

Now that the regression equations have been derived, we must have a technique to 

solve them. This section discusses an implementation of the standard least squares 

technique suited for the parallel architectures studied. The actual algorithms used are 

collected in Appendix B; this section describes the behavior of the solution technique. We 

first discuss the notation and terminology used in the algorithms. We also discuss how 

they map onto bit-serial arrays. We then give the main procedures that will be used for the 

flat and Pyramid machines. The differences between the flat and Pyramid algorithms are 

then discussed. Each stage of the procedures is described in separate sub-sections. 

Formulas used to calculate the execution time of the algorithms are given in Appendix B, 

along with the algorithms. The data movements and operations of each stage are described 

in the appropriate sub-section of this chapter. For those stages that dominate memory 

consumption, the contents of memory are diagrammed. The execution times as functions 

of the numeric precision, size of the estimation region, and architecture are presented in the 

next chapter. 

The notation we will use for the least-squares solution is: 

A=(ATA)"1 ATh (27) 

where~ is the vector of parameters to be estimated, A is the matrix formed from the coeffi­

cients on the right side of equations (26), and his the vector of coefficients from the left 

side of (26). T and -1 indicate the matrix transpose and inverse, respectively. Recall that 

we can estimate the parameters from a region as small as two pixels by two pixels. Such a 

region will be called the estimation region. The dimension of the estimation region is the 

square root of the number of PEs it contains. This study only considers square estimation 

regions. Times will be provided for regions of dimension two, four, and eight. 

The algorithms are capable of solving for the estimated parameters of hundreds or 

thousands of these estimation regions at the same time. For the case of the 2x2 estimation 
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region and a 512x512 image, 4096 of these systems can be solved in parallel! The matrix 

manipulations used do not execute within one PE. Instead the elements of a matrix are dis­

tributed, one per PE, among a group of neighboring PEs. For the case of the 2x2 estima­

tion region, there will be eight rows and seven columns in the A matrix. This will be 

mapped onto an eight by eight submesh of the architectures. Such a submesh will be 

referred to as the solution submesh. Note that the solution submesh is larger than the A 

matrix. The solution submeshes are square matrices of size n by n, where n is four times 

the dimension of the estimation region. In other words, there are 16 estimation regions in 

each solution submesh. This was done to ease the selection of elements within the solution 

submesh. For example, with an eight by eight submesh, the top left PE in all submeshes 

can be enabled by performing a content-addressable search to determine if the three least­

significant bits of the row and column coordinates in each PE are all zero. This is a total of 

six comparisons. If the submeshes were seven by seven and packed tightly together, we 

would have to search on many different keys and the length of the keys would be the full 

size of the row and column coordinates. This submesh technique is why only 4096 sys­

tems can be solved in parallel when there are 65,536 two by two estimation regions in a 

512 by 512 image. The solution algorithm must be repeated 16 times to obtain the total 

solution. This factor of 16 holds true for estimation region dimensions that are a power of 

two, on a flat architecture. Depending on the needs of the high level vision component, 

this factor of 16 may not be the case for the Pyramid. Differences in programming the 

Pyramid are discussed below, after an overview of the procedure. 

Main PrOcedure 

The calculation of K =(AT A)"1 A Th will be broken into stages and algorithms pre­

sented for each stage. Separate sections of this chapter will discuss the operation of each 
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stage. This section discusses the main procedure, and presents two algorithms. The first 

is for the flat machines, the second is for the Pyramid. 

The first step is to calculate the coefficients a1, a2, ... ,a7, b1, and b2 of the regres­

sion equations. Once this is complete, we must move the coefficients to form the A and .Q 

matrices within the solution submesh. The products ATA and AT.Q are then calculated, 

and AT A is inverted. Next, (AT At 1 and A T_Q are multiplied to give the vector of the 

parameter estimates, x. The elements of the x vector are then moved back to the estimation 

region that gave rise to them, where they will be stored in an unused field of the local 

memory until all16 iterations have completed. Formulas to estimate the execution time 

were derived for each stage. These formulas are presented along with the corresponding 

algorithm in Appendix B. Variables in these formulas are the size of the estimation region 

and the execution time of fundamental arithmetic and data transfer operations. The time for 

the fundamental operations will be a function of the format and precision of the numeric 

operands. This study assumes a two's-complement, fixed-point format and considers 

precisions of 16, 32, 48, and 64 bits. Algorithms and execution times for the fundamental 

operations are presented in Appendix A. 

The estimation procedure does not use inordinate amounts of memory, all calcula­

tions can be accomplished within the nine words needed to store the regression coefficients 

at each pixel. Additional memory must be allocated to hold the row and column addresses 

of the PEs within the array. Space must also be provided for storing the estimated param­

eters from an estimation region while the other 15 estimation regions are being processed. 

Since we have seven parameter estimates to store, the four by four and eight by eight 

estimation regions will need one extra word in each PE. For the two by two estimation 

region we must have two words per PE of temporary storage. These memory needs are 

shown below in Figure 11. Figure 11a shows the input data for the superquadric estima­

tion procedure. All PEs are assumed to have this information in their local memory at the 
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begining of the superquadric recovery procedure. Figure 11 b shows the maximum amount 

of memory needed by the procedure, which occurs when we must store the regression 

coefficients at each pixel. The space for storing results while other estimation regions are 

being processed is also shown. The field marked with an asterisk is only needed for the 

two by two estimation region. Figure 11c shows the contents of memory once the 

estimation procedure has finished. 

I Row,Col Xn Unused 

A: Initial contents of all PE's local memory 

B: Space needed to store all regression coefficients in PE 

(-T) (-Yo) (-Xo) 

I Row,Col xl x2 x3 x4 x5 x6 I x7 Unused 

C: Final contents of all PE's local memory 

Figure 11: PE Memory Contents on the CAAPP and 4NN Machines 

Despite being reasonably memory-efficient, the small size of the local memories 

presents a problem when the precision of the operands is greater than 32 bits. For the case 

of 64 bit operands and a two by two estimation region, the total memory required is 722 

bits. To simplify the algorithms, we will assume that the PEs have enough local memory 

to avoid disk swaps while processing a single estimation region. The memory contents are 
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undefined in all PEs that do not hold one of the results, so we will account for the time to 

restore the regression coefficients from disk as they are needed at the beginning of each of 

the 16 iterations. The algorithm below is the main procedure for the two flat interconnec­

tion networks. It shows that we must perform 16 iterations of the solution procedure, as 

well as showing the restoration of the regression coefficients from disk at the start of each 

iteration. 

ALGORITHM 3 MAIN PROGRAM FOR FLAT NETWORKS 

calculate regression coefficients 
save regression coefficients to disk 
for i = 0 to 3 ; For each estimation region in the 

for j = 0 to 3 ; solution submesh 
move elements of estimation region to their 

position in the solution (sub)submesh 
fill the submesh 
Calculate A TJ2 
Calculate AT A 
Invert ATA 
Calculate x 
Move parameter estim1tes back to estimation region and save 
if i;e3 and j;e3, restore regression coefficients from disk 

nextj 
nexti 
distribute parameters to fields of all PEs in estimation region 
done 

A final topic that needs consideration is how to program the Pyramid. It can, of 

course, be programmed the same as the flat architectures. Such a technique offers no speed 

gain compared to a flat solution, but we will have calculated on all the layers large enough 

to hold the solution submesh for the dimension of the estimation region. The extra infor­

mation provided by a wide range of scales could be quite useful to a sophisticated vision 

system which employed scale-space fiLering. 

Another way exists. If we are willing to give up the solutions for the two lowest 

levels, we can avoid the 16 iterations needed by the flat machines and obtain a solution for 

all layers large enough to hold one or more estimation regions in a single iteration. This 
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approach moves the coefficients of the regression equation down two levels, to where there 

are 16 times as many PEs. The A matrix is formed, the matrix operations carried out, and 

the x vector calculated, giving the superquadric parameters. The parameters are then 

moved up two levels to all the PEs of the estimation region. 

Another benefit of this technique is that it provides a mechanism for reducing the 

noise in the surface normals information. Since the pixel values two levels up are the mean 

of 16 pixels on the lowest layer, much of the noise in the image will have been averaged 

out. Most of the information that would be lost in the Pyramid algorithm would be texture 

information. To illustrate this, imagine that the camera is photographing a close-up of a 

basketball. If we use a two by two estimation region, the superquadric parameters on the 

lowest level will give the center and shape of the small lumps that provide texture to the 

ball. If we want to know the center and shape of the ball itself, we must move up a few 

layers into the machine. The times for the Pyramid in the charts in Chapter Four are for 

this approach. The times for the flat machines reflect their factor of 16 penalty. Times for 

the flat algorithm running on the Pyramid do not differ significantly from those of the 

4NN, despite the 8NN lateral neighborhood of the Pyramid. This is because very little 

communication takes place between diagonal PEs. In fact, this study was originally going 

to consider four interconnection networks. The fourth would have been the 8NN mesh, 

but it was dropped when it became apparent that it offered no appreciable advantage over 

the 4NN. 

The algorithm below is the main routine for the Pyramid. All of the stages in this 

algorithm are the same as for the flat machines except for the formation of the A matrix and 

.b vector, the movement of the results to the original estimation region, and the lack of a 

loop to do the 16 iterations. Since all the work can be accomplished in a single pass, there 

is no need to swap data to and from disk. 



ALGORITHM 4 MAIN PROGRAM FOR PYRAMID NETWORKS 

calculate regression coefficients 
move elements of estimation region down two levels 

to their position in the solution (sub)submesh 
flll the submesh 
Calculate A T_Q 
Calculate AT A 
InvertATA 
Calculate~ 
Move parameter estimates back up two levels to estimation region 
Distribute coefficients to all PEs in estimation region 

Calculation of the Regression Coefficients 

52 

The first step in both main routines is to calculate the regression coefficients from 

the values of the surface normals and their derivatives. Algorithm B 1 in Appendix B 

performs this task. There is no difference in the algorithm or execution time for the three 

architectures. All PEs will calculate their coefficients at the same time, and these values do 

not depend on their neighbors. We will assume that the values of the surface normals and 

their derivatives are stored asp-bit, fixed-point numbers, as shown below in Figure 12. 

We will also require the coordinates of each pixel in the image. These will be represented 

by two 9-bit integers, spanning 0 to 511 for both x andy. Also shown on this figure is the 

space needed to store the results of estimation regions that have been processed while the 

other estimation regions are being used. 

The Pyramid will calculate coefficients for all levels, but will not use those on the 

lowest two levels. There is no performance penalty for the unnecessary calculations, but 

the algorithms could be easily modified to eliminate their calculation for hygienic purposes. 

The Pyramid could benefit from having a special version of this procedure. The algorithm 

in Appendix B requires 11 multiply instructions to be issued. By moving the data down 

one level, the Pyramid can get by with four multiply instructions. However, this technique 

was not pursued. The data movements needed to move the data down one level, without 
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destroying information that will be needed at a later stage, are rather intricate. The benefit 

of the reduction in multiplies would be swamped by the factor of 16 the Pyramid already 

enjoys over the flat machines. For these reasons the flat algorithm was used for all 

machines. Figure 12 gives the contents of the local memory of all PEs both before and 

after the regression coefficients have been calculated. The differences between this figure 

and Figure 11 are that the Pyramid needs to store its level as well as its row and column 

coordinates, but does not need the temporary storage to hold results while other estimation 

regions are being processed. 

Row ,Col,Level Unused 

Row,Col,Level 

~ 22-1-P ~ 
M 

Figure 12: Memory Contents on the Pyramid Machine 

Forming the A Matrix and b Vector 

Once the coefficients have been calculated, we must move them to form the solution 

submesh for the A matrix and .b vector. The solution submesh will always be a square 

matrix 16 times the size of the estimation region, so this routine must be repeated 16 times 

on the flat machines. Moving the coefficients will destroy the contents of memory fields, 

so we must save the coefficients to disk, then restore them on later iterations of this routine. 
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The Pyramid has a different algorithm for this process than the flat machines and will not 

need the disk swaps or 16 iterations. 

The work of this stage is broken into two parts. The first part moves two by two 

blocks of the estimation region to the upper-left corner of each sub-submesh within the 

solution submesh. These blocks are nine words deep, to hold a1 through a7 along with b1 

and b2. For the two by two estimation region there is only one sub-submesh in the 

solution submesh. The eight by eight estimation region will have 16 such sub-submeshes. 

The second part of this procedure fills the sub-submeshes once the estimation region has 

been broken into two by two sections and moved to the sub-submeshes. The reason for 

this solution technique will be given shortly, after a discussion of the form of the A matrix 

and .b. vector. The first part, moving the estimation region to its position within the sub­

submesh, differs for the two types of machine. The second part, filling the sub-submeshes, 

is identical for all machines. Algorithms B2 and B3 in Appendix B present the first part of 

this stage for the flat and Pyramid machines, respectively. Algorithm B4 gives the second 

part. 

Note that the regression equations are sparse. On a serial processor, we could take 

advantage of this to reduce the work of the matrix inversion procedure. Each pixel i gives 

rise to the two equations: 

bil = ail x 1 + ai2X2 + ... + aisxs + Ox6 + Ox7 

and bi2 = Ox 1 + Ox2 + ... + Oxs + ai6X6 + ai7x7 

(28a) 

(28b) 

If we collect the versions of 28a at the top of the A matrix, and the versions of 28b at the 

bottom, the matrix will have groups of zeros as illustrated below in Figure 13. The main 

advantage of this organization of the matrix would occur when AT A is inverted. The form 

of AT A is also shown in Figure 13. Notice that this matrix is partitioned into 5x5 and 2x2 

submatrices. The inverse of the AT A matrix may be found by inverting the two non-zero 
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submatrices in place. This will be faster to invert than the original 7x7 would have been. 

However, for the parallel machines studied, the percentage gains of this stage are small 

compared to those that would be achieved on a serial processor. This is due to the 

disproportionate share of time it takes to execute multiplies and divides on the bit-serial 

arrays. Inverting the 2x2 requires that we scale the elements by the norm of the 2x2 

matrix. The division it takes to accomplish this considerably reduces the utility of the 

sparseness of the equations. For the serial processor we want to minimize the number of 

multiplies that must be accomplished. For the bit-serial arrays, we want to minimize the 

number of multiply instructions that must be issued. On a parallel machine, this is not the 

same thing as the number of multiplies that are accomplished. On the bit-serial arrays we 

can do one or a quarter of a million multiplies in the same time, the only restriction on 

doing a quarter of a million is that the data all be arranged properly. The ATA matrix is 

sparse, symmetric, and positive-definite. Serial processors can take advantage of these 

properties to reduce the total number of multiply and divide instructions executed. 

Unfortunately, the complex data movements and lack of parallelism of such procedures 

make them poorly suited to implementation on the architectures considered in this study. 

The inversions will be performed by Gaussian elimination, which is well suited to the 

machines considered due to the regularity of the data movements. Referring to Chapter 

Four, Figure 26, we see that inverting the 7x7 matrix will take approximately 6.6E4 clock 

cycles for 32-bit operands on the Pyramid. The 5x5 will take 4.6E4 clocks, the 2x2 

requires 1.8E4. The savings by breaking the calculation into two inversions is less than 

5%. If the 2x2 submatrix w~s inverted directly, its execution time could be halved. 

However, the savings compared to the 7x7 inversion are still less than 10%. 
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all ... al5 0 0 
a21 ... a25 0 0 T T 

r 

all ... al5 0 0 
a21 ... a25 0 0 

arl ... ar5 0 0 

0 ... 0 a16 a17 
0 ... 0 a26 a27 t 

5 

a51 ... a55 0 0 j_ 
r 

0 ... 0 ar6 ar7 
0 ... 0 a16 a17 
0 ... 0 a26 a27 j_ 2 

Figure 13: Form of the Sparse A and AT A Matrices 

We now can discuss why the algorithms use a square solution submesh which has 

been divided into eight by eight sub-submeshes. Consider the 8x8 estimation region. This 

should have an A matrix with 128 rows and 7 columns. Such a long matrix will make 

moving data up and down the columns quite slow. It is also unsuited to implementation on 

the Pyramid. The organization of the Pyramid begs that the solution submesh be square in 

order to avoid wasting resources or incurring prohibitive communication costs. The search 

for a better routine for the Pyramid paid the unexpected benefit of showing a better way to 

program the flat machines. Consider how we can calculate the vector A T_Q, where A is 128 

by 7 and his 128 by 1. A simple approach is to form the A matrix, one element per PE, in 

a 128 by 7 submesh. The h vector would be placed in another memory field in the first 

column of A. The h vector would then be copied to all the columns of the A matrix. The 

values of aij and bi in each PE would be multiplied together, then sums taken up each 

column. At the ~nd of this process the product A T_Q will be in the top row of the 128 by 7 

submesh. Actually, since AT.Q should be a column vector, we have computed (AT_Q)T. 

However, this transpose will turn out to be a benefit rather than a problem. 
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A T_Q can also be solved on a 32 x 32 solution submesh by having four groups of 

size 32 x 8. The large A and h matrices are simply broken into four, each resulting matrix 

having 32 rows and 7 columns. The extra columns of PEs are unused. The h vector is 

copied to all the columns within the group, the multiply and column sum are as described 

before. The fmal step needed for this arrangement is to collect the column sums from the 

top row of each 32 by 7 group into a total sum. Figure 14, below, shows the two solution 

techniques. 



T Rows 
1,32 

32 of 

l 
A..Q 

Copy 
Q. 

to another 
field in all 
columns, 

multiply by 
value in 

A 

AT.b. 

is the sum 
of the 

columns of 
products. 

Shaded areas in the figure above indicate the A matrix, 

which remains unchanged throughout this process. 

Rows Rows 
33,64 65,96 

of of 
A..Q A..Q 

Rows 
96,128 

of 
A..Q 

Individual column sums 
must be combined to obtain 
the total AT l! 

Light grey indicates unused PEs. 

Medium grey indicates the individual 
column sums, dark grey is the total A TQ . 

Figure 14: Submesh Organization 

Arranging the solution submesh in this fashion reduces the length the data must 

travel to compute the column sums. The price that must be paid is some additional 
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complexity in the routine to break the estimation region into two by two portions and move 

those portions to the upper-left corner of the sub-submeshes. Consider the eight by eight 

estimation region. This will have a solution submesh that is 32 by 32. There will be 16 

estimation regions as well as 16 sub-submeshes. Figure 15 shows how the two pixel by 
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two pixel elements of the estimation region (2,2) are moved to the sub-submeshes. Figure 

15a shows the solution submesh, with the estimation region at location (2,2) highlighted. 

The squares within the estimation region are two by two blocks of PEs, not single PEs. 

Figure 15b shows which blocks must be moved to the left or the right. In Figure 15c, the 

blocks have been moved to the correct column, we just need to move them to the correct 

row. The dividing line for those blocks that will move up vs. those that will move down is 

also shown in this figure. Finally, Figure 15d shows the solution submesh with all two by 

two blocks of the estimation region moved to the upper-left corner of the sub-submeshes. 

Each of these blocks is nine words deep, to hold the coefficients a1, a2, ... , a7, b1, and b2. 

After the blocks have been moved to the upper-left corner of the sub-submeshes, the a1 

through b2 fields of all the other PEs have been destroyed. The second stage of the 

algorithm will create the A matrix and .Q vector by filling the sub-submeshes. 

As mentioned above, the Pyramid has a different way of moving portions of the 

estimation region to the upper-left corner of the sub-submesh. The Pyramid achieves a 

somewhat cleaner implementation of this procedure than the flat architectures. The algo­

rithm the Pyramid uses is presented in Appendix Bas Algorithm BlO. Figure 16, below, 

illustrates the steps of this algorithm. 
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Figure 15 a,b,c,d: Partitioning the Estimation Region on 
the Flat Interconnection Networks 

All cells with row and column LSBs = 0 read 
al..b2 from parent. 

If column LSBs = 01, read al..b2 from East. 

If Row LSBs = 01, read al..b2 from South. 

Repeat the procedure above, with the comparisons of the LSBs using an additional zero 
bit at the MS end of the LSBs. 

Figure 16: Partitioning the Estimation Region on 
the Pyramid Interconnection Network 
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Now we must fill the sub-submeshes. Figure 17 illustrates this process. The initial 

contents of the memory fields are shown in figures 11 band 17a. Depth in Figure 17 

indicates the space available in the local memory of the PEs. 

The first step is to move the second column of the two by two portion of the 

estimation region down two PEs and left one PE. We then move the coefficients a6, a7, 

and b2 down four PEs, and copy b2 into the same field used by b1 in the four top PEs. 

This is shown in Figure 17b. The coefficients a2 through a7 are then marched across the 

sub-submesh. As they are moved across the sub-submesh, they are also moved forward 

one field in the local memory, and the value that has been placed into the a1 field is not 

moved to the next column of PEs. At the end of this process, the coefficients of A are in 

the a1 field of all PEs in the first seven columns of the sub-submesh. The coefficients of b. 

are in the b1 field of the first column of each sub-submesh. After a final chore of clearing 

those elements of the a1 field that should be zero, we are ready to compute ATA and A Tb.. 

al..a5 a6,a7 

Figure 17: Filling the sub-submeshes 
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Calculating AT A and A T.h 

The calculations of this step are simple matrix-vector and matrix-matrix 

multiplications. For estimation regions other than the two by two, they are complicated 

only slightly by the need to sum the top rows of each group of sub-submeshes once sums 

have been taken up the columns (see Figure 14). The matrix-vector multiply was described 

earlier in this chapter, when we discussed the use of a square solution submesh which was 

divided into sub-submeshes, and will not be repeated. The routine to multiply AT A is 

described below. The algorithms are given in Appendix Bas Algorithms B5 and B6. It is 

not necessary for these algorithms to explicitly transpose the A matrix. Note that all the 

architectures use the same algorithms for these two operations. 

Calculating AT A is essentially seven iterations of the A T.Q algorithm, one for each 

column of the A matrix. For each column i of the A matrix, we copy that column to 

another field, c, of the local memory of the PEs. These values are then moved to the c field 

of all the other columns of the A matrix. Each PE then calculates c = al * c. The columns 

are then summed, but instead of the sum going all the way to the top of the solution sub­

mesh, we stop at row i. Any values above row i are summed downward so that the sum 

will be complete. At the end of this step, the ith row of A TA has been calculated. We will 

move this value into another field, d, of the local memory to keep it out of harm's way 

while the other columns are being processed. After all columns have been processed, if the 

dimension of the estimation region is two by two, the AT A matrix is in the first seven by 

seven submesh of the solution submesh. If the dimension of the estimation region is not 

two by two, we must sum the matrices at the top of each column of the sub-submeshes. 
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Inverting AT A 

We now must invert ATA. To accomplish this we will use the Faddeeva tech-

nique[NASH 81, FADDE 63]. This technique uses Gaussian elimination to solve matrix 

equations. For a uniprocessor there are more efficient schemes to minimize the number of 

multiplies and divides. However, our primary emphasis is not to minimize the number of 

multiplies that are done, but rather to minimize the number of multiply and divide instruc-

tions that must be issued. Since we have an 8x8 solution submesh, we can do 64 of the 

multiplies at one time if the data can be put in place. The very regular data movements that 

come from Gaussian elimination make this technique well suited to the architectures 

studied. 

The Faddeeva technique can be used to invert an n x n matrix M by forming the 

augmented matrix: 

ili 
To (29) 

where the entries I and -I are the identity matrix with the appropriate sign. Gaussian elimi-

nation is used to reduce the order of M by one. The resulting matrix is then shifted up and 

to the left one PE. The identity matrices are then restored and the process repeated a total of 

n times. Since each step of the Gaussian elimination only uses one row or column of the 

identity matrices, we can invert an nxn matrix on an n+ 1 x n+ 1 submesh. Since our AT A 

matrix is seven by seven and the solution submesh is at least eight by eight, this presents 

no problem. The Faddeeva algorithm can be found in Appendix Bas Algorithm B7. 

The Faddeeva technique can be used for other matrix manipulations besides inver-

s1on. These other operations are described in [NASH 81] and [FADDE 63]. The Gaussian 

elimination procedure in Algorithm B7 does no pivoting. Since the AT A matrix is positive 



definite, this should not be a major problem in areas of the image that have valid 

superquadric parameters. 

Calculating x 
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To obtain our vector of superquadric parameters, we must now multiply (AT At 1 

and (A T.b.). The vector A T.b. is the row vector in the first seven elements of the top row of 

the solution submesh. The matrix (A TAf1 is in the first seven by seven PEs of the sub­

mesh. This algorithm is presented in Appendix Bas Algorithm B8. It is very similar to 

Algorithm B4, which was the A T.b. algorithm. However, this routine is simpler since it is 

not dependant upon the size of the estimation region. The top row is moved down to the 

other seven rows which contain (AT At 1. A single multiply instruction is issued, then the 

products are summed along the rows. When complete, the vector x of superquadric 

parameter estimates is in the first column of the top seven rows of the solution submesh. 

Distributing the Results 

The seven elements of the x vector have now been calculated. We now move these 

parameters back to the estimation region which gave rise to them. Once there, they will be 

stored in unused memory fields while the other estimation regions are being calculated. 

Since there are seven parameters, and a two by two region has four PEs, we must have two 

temporary fields to store the results in the two by two estimation region. For the larger 

estimation regions we will only need one temporary field. 

The routines to accomplish this movement will depend on both the dimension of the 

estimation region and the type of interconnection network being used. The first step is to 

change the organization of the parameters from a seven by one vector to either a 2x2x2 

matrix, for the two by two estimation region, or a 4x2 matrix, for the other estimation 

regions. These organizations of the parameters are shown below in Figure 18. The 



algorithm for this re-organization is presented in Appendix B as Algorithm B9. This 

algorithm is used for all the machines. 

x5 x6 ///// 

~x7 
xl x5 / 
x2 x6 / 
x3 x7 / 
x4 / 

2x2 4x4 

8x8 

Figure 18: Organization of Parameters for Distribution to 
the Originating Estimation Region 

The second stage of the process is to move the newly re-organized block of 

65 

parameters to the estimation region from which they sprang. This process will depend 

upon the machine used. For the two flat machines, once the parameters have been moved 

back to the estimation region they must be stored in a memory location that will not be 

destroyed by later iterations of the superquadric recovery procedure. For the Pyramid, all 

estimation regions are processed at the same time, so this storage is not needed. The 

algorithms used are presented in Appendix Bas Algorithms B 10 and B 11 for the flat and 

Pyramid machines, respectively. 

The fmal step is to move each coefficient to a particular memory field in al~ the PEs 

of the estimation region. This algorithm is presented as Algorithm B 12 in Appendix B. 

This routine is used by all the architectures. For the flat machines, it will not be executed 

until all 16 iterations are complete. The final organization of the memory of the PEs is 
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shown below in Figure 19. 

(-T) (-Yo) (-Xo) 

I Row,Col I xl x2 x3 x4 x5 x6 I x7 Unused 

Figure 19: Final Contents of Local Memories 



CHAPTER IV 

RESULTS 

This chapter presents the performance estimates of the three interconnection 

networks studied. The first section presents the estimated execution times for each major 

stage of the least-squares procedure. The second section briefly reviews the memory 

requirements of the algorithms. 

Execution Timings 

This section presents the estimated execution time for each major stage of the least­

squares procedure. In general, the times for a particular stage will be a function of the 

numeric precision, the dimension of the estimation region, and the particular interconnec­

tion network used. This information is presented as a series of charts. The dependant and 

independant axes of the charts show time vs. numeric precision. Estimation region dimen­

sion is shown with families of curves on a single chart. Three such charts, one for each 

interconnection network, will be presented on a page. Each stage of the procedure is 

shown on a seperate page. Any special assumptions used in obtaining the execution times 

are described in Appendix B. Some of the algorithms' timings do not depend upon all of 

the variables. The format of these charts is modified accordingly, adhering to the rules 

regarding time vs. precision and one stage per page. Short notes are included with some of 

the charts to explain their format, or make particular comments about the algorithm. The 

final charts in this section show the total time consumed, as well as the percentage of the 

total execution time consumed by each stage of the procedure. These charts are also func­

tions of the numeric precision, estimation region dimension, and interconnection network. 
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Figure 20: Calculation of Regression Coefficients 
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Figure 21: Calculation of Regression Coefficients (Log Scale) 

This chart is one of the noted exceptions to the rules. The calculation 
of the regression coefficients is performed entirely within the PEs, so the 
interconnection network and estimation region dimension do not enter into 
the problem. To give a clearer indication of the time consumed by the lowest 
numeric precision, the data was replotted onto a logrithmic scale. This is 
shown above as Figure 21. 
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Figure 22: Distribute Estimation Region among Sub-Submeshes 

Note that the Pyramid algorithm does not depend upon the 
dimension of the estimation region. This holds true for all estimation region 
dimensions that are a power of two. 
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Figure 23: Filling the Sub-Submeshes 

The same algorithm is used for all machines. The times for the 4NN and 
CAAPP interconnection networks reflect the need for 16 iterations. 
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Figure 24: Calculating A T.Q 
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Figure 25: Calculating AT A 
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Figure 27: Calculating the Vector of Superquadric Parameters 

This calculation is not dependant upon the estimation region's 
dimension. The first chart shows how the computation time grows with 
increasing precision. This figure does not show any detail of the Pyramid's 
execution time. The second chart shows the data replotted on a logrithmic scale 
to give a more accurate indication of the time for the Pyramid. 
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The performance differences on these charts between the 2x2 and the other 
estimation region dimensions occur because of the extra copies and reads needed to 
form the 7x 1 vector x into a 2x2x2 block as opposed to a 4x2x 1. 
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Figure 29: Moving Parameters to Originating Estimation Region 
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Figure 30: Filling Estimation Region with Parameters 
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Memory Requirements 

The superquadric procedure developed is fairly conservative in its memory use. By 

writing over data fields when they are no longer needed, all the calculations can be 

accomplished within the nine fields originally needed to hold the regression coefficients in 

each PE. We also need to allocate space to store the PE's location within the array. 

Temporary storage will be required on the flat machines to hold the parameters while the 

other estimation regions are being processed. The memory needs of each interconnection 

network are shown below, under differing conditions of precision, architecture, and 

estimation region dimension. Note that the Pyramid's memory needs are not functions of 

the estimation region dimension. 
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CHAPTERV 

CONCLUSIONS 

Summary 

This study investigated the parallel execution of a new computer vision technique, 

superquadric description. This technique attempts to model imaged scenes as CSG collec­

tions of superquadric primitives. Algorithms were obtained to estimate the parameters of 

the primitives, given a map of the surface normals throughout the image. These algorithms 

are intended to execute on large arrays of bit-serial processors, which are interconnected in 

one of three fashions. The execution times were estimated for each of the three 

interconnection networks, and presented in graphical form in the preceding chapter. These 

times are functions of the interconnection network as well as the numeric precision and the 

dimension of the estimation region. The memory requirements of the algorithms, as well 

as some aspects of the actual implementation of the interconnection networks were also 

estimated. 

Conclusions 

Suitability of the Interconnection Networks 

All of the interconnection networks studied seem well-suited to the execution of the 

superquadric e'itimation algorithm. Assuming a 10 Mhz. clock frequency, even the slowest 

machine, using the most precise numeric representation considered, achieves processing 

times on the order of a few seconds. The Pyramid, using the procedure described in 

Chapter Three and a reasonable precision ( 32 bits), achieves speeds on the order of one 
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frame time. The 4NN is roughly twice as fast as the CAAPP. The Pyramid is 

approximately 16 times faster than the 4NN interconnection network, while only requiring 

4/3 as many PEs. However, it should be noted that the calculations are not identical. The 

Pyramid algorithm does not obtain the superquadric parameters for the lowest two levels. 

Therefore, the resolution ofits solution is only 1/16 that of the other two machines. Most 

of the information that would be lost in the Pyramid algorithm would be texture 

information. This may not be a great handicap, since we usually will want to describe the 

position, orientation, and shape of physical objects that are large enough to remain visible 

at the third and higher levels. However, Pentland [PENTL 86b] has suggested that the 

fractal dimension of superquadric descriptions of textures may be a powerful technique for 

classifying natural objects with similar shapes. This loss of information may make the 

Pyramid algorithm unacceptable. 

While the execution speed of the procedures is quite an improvement over a uni­

processor, the cost of the architectures must also be considered. These systems will be 

quite large, expensive, and will consume a great deal of power. The complexity which 

allows such high processing rates is also an Achille's heel in terms of reliability. 

Architecture Enhancements 

Several enhancements are possible. One of the most obvious improvements to the 

PEs would be to have the communication lines selected with the source select multiplexers, 

rather than the function select. This would cut the time for many of the fundamental opera­

tions in half. In fact, the current version of the CAAPP [WEEMS 87] implements this 

enhancement. 

Another enhancement concerns the limited size of the local memories. Recall that the 

worst case memory requirements of the superquadric procedure is 722 bits. Adding this 

much local memory to each PE would result in excessively large die sizes and correspond-
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ingly low fabrication yields. Segmentation needs will also extend the size of the local 

memories. The procedures discussed in the literature for recovery of the surface normals 

information require the computation of several quantities that have widespread use in seg­

mentation. The Laplacian, gradient, difference-of-Gaussians, and directional derivative are 

examples. Pentland's estimator also requires the computation of a measure of texture 

energy. To aid in segmenting the image, we might want to keep the most significant bits of 

each of these computations stored somewhere in the local memory. A co-operative seg­

mentation procedure might then be used to combine the evidence from all the sources in 

order to achieve a more robust segmentation [DANIE 86]. In the most recent version of the 

CAAPP, each PE has a double-buffered interface to a 32k-bit external memory. This 

would be a great benefit to execution speed. The slow disk I/0 operations currently needed 

on the flat machines could be replaced with an essentially transparent read from memory. 

However, the effect on the pincount is staggering. The submesh interconnection network 

used in the CAAPP is not well-suited to the needs of communicating with such a backing 

store. The current implementation of the CAAPP uses a 4NN interconnection network, 

and provides a byte-wide path to the backing store. Approximately 180 pins are used in the 

current implementation of each CAAPP package[Weems 87]. Contrast this with the origi­

nal pincount of 45. The implications of this for the Pyramid are frightening! 

A third improvement would be to have two activity bits. A PE would be enabled if 

both bits were set. This would allow us to easily disable calculations in regions were 

errors, such as division by zero, have occurred. 
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Directions for Future Research 

Enhancing the Regression Eg,uations 

The superquadric estimation technique is quite new and a great deal more work 

must be done before the technique can achieve widespread use. The regression equations 

used in this study have several problems. One major problem is that these equations 

assume we are viewing the superquadric form from some position on its z-axis. This is a 

violation of the principle of general position, making the procedures developed suitable for 

few applications. Other limitations of the equations are that they do not allow recovery of 

the e1 shape parameter and they will not give a meaningful result in areas of the image cor­

responding to flat object faces. The spatial derivatives of the surface normals will be zero 

in such areas, making the coefficients all zero. The equations to correct the problems of 

general position and e1 can be derived by following a procedure similar to the one used to 

derive (23), but the algebra becomes quite tedious. Pentland mentions that these equations 

will have 15 coefficients instead of 7, but does not present the equations themselves 

[PENTL 86b]. Obtaining equations that are less sensitive to areas of low curvature is a 

more difficult problem, in fact, it may not be possible. Another limitation of the equations 

is that they do not allow recovery of deformed superquadrics. The power added to a CSG 

modeling system that uses deformed primitives is so great that we cannot ignore the need to 

recover the deformation information. 

Optimizing the Solution Technig,ue 

The algorithms for the least-squares solution technique are not optimized. Refer­

ring to Figure 32, we see that the matrix inversion is a bottleneck for all the machines. As 

presented in this paper, the Gaussian elimination technique requires n multiply and n divide 
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instructions to be issued, where n is the order of the matrix to be inverted. Use of the 

single-division scheme [F ADDE 63] for elimination could yield significant reductions in 

execution time. The use of an inversion procedure other than the Faddeeva technique also 

bears investigation. 

It is possible to reduce the time for the inversion stage for the 4x4 and 8x8 

estimation regions. Consider the 8x8 region. There are 16 estimation regions in each 

solution submesh. Since AT A is 7x7, all the estimation regions can invert their own AT A 

matrix. This would eliminate the need for 16 iterations of this procedure. The 4x4 

estimation region would require four iterations instead of 16. This optimization is possible 

for both flat machines. 

The Pyramid could benefit from a modified routine to calculate the regression coef­

ficients. The number of multiplies needed for this stage could be cut in half by moving the 

coefficients down one level and arranging them to calculate several products with a single 

multiply being issued. This would result in 5% to 10% faster execution, depending upon 

the estimation region dimension and the numeric precision used. 

Error Characterization 

The algorithms presented in this study have not been implemented. This will be 

necessary to investigate several of the errors possible in this computation. The sensitivity 

of the superquadric estimation procedure to noise must be investigated. Image noise will 

corrupt the surface normals data. Since we must take derivatives of this information, the 

problem of noise will be compounded. As mentioned above, areas with small derivatives 

of the surface normals data will not give reliable estimates of the superquadric par~ meters. 

Detecting and handling such areas must be investigated. Also needing study is the numeric 

precision necessary. Since the time for multiply and divide instructions is proportional to 
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the square of the precision, we must take pains to ensure that unwarrented precision is not 

used. 

Interfacing With High Level Vision 

The use of superquadric information by high level stages of the vision process has 

been discussed in general terms, but has not been addressed in depth. Combining related 

primitives into a CSG object description is the most obvious area which must be addressed. 

Such combination will require a technique to determine which primitives are "related". A 

co-operative segmentation procedure was mentioned above when we discussed the memory 

enhancements. Such a procedure should not be driven solely by the data from the 

superquadric and other low-level procedures. The ability to suggest possible interpreta­

tions for the imaged data, then use the success or failure of matching these possible 

descriptions with stored object models will be vital to the success of a sophisticated vision 

system. This work must wait upon improved methods of obtaining the superquadric 

parameters. 

Other Architectures 

This study only considered machines within one class of parallel architectures. 

Other machines within this class, such as the Connection Machine, should be considered in 

future work. Other classes of architectures should also be considered. The slow speed of 

multiplication and division on bit-serial processors suggests that a machine composed of a 

large number of DSP chips, such as the TMS 320 series, could achieve equal or greater 

processing rates without the need for full-custom VLSI fabrication. Such a system might 

offer a significant reduction in the number of chips per system. Hypercube architectures 

should also be considered, due to their commercial availability at "reasonable" prices. 



BIBLIOGRAPHY 

[BALLA 82] Dana H. Ballard and Christopher M. Brown; Computer Vision; Prentice­
Hall; Englewood Cliffs, N.J.; 1982. 

[BARR 81] Alan H. Barr; "Superquadrics and Angle Preserving Transformations"; 
IEEE Computer Graphics and Applications; Vol1, No. 1, Jan. 1981; 
pp. 11-23. 

[BARR 84] Alan H. Barr; "Global and Local Deformations of Solid Primitives"; 
Computer Graphics; Vol. 18, No.3; July 1984; pp. 21-30. 

[CHARN 86] Eugene Charniak and Drew McDermott; Introduction to Artificial 
Intelligence; Addison-Wesley; Reading, Mass.; 1986. 

[DANIE 86] Ron Daniel Jr.; "Early Vision Processing on the Content Addressable Array 
Parallel Processor"; Unpublished Class Report; 1986. 

[DYER 81] Charles R. Dyer; "A VLSI Pyramid Machine for Hierarchical Parallel Image 
Processing"; Procedings of PRIP '81: The IEEE Conference on Pattern 
RecognitioP. and Image Processing; Dallas, Texas; August 1981; pp. 381-
386. 

[FADDE 63] D.K. Faddeev and V.N. Faddeeva; Computational Methods of Linear 
Algebra; R.C. Williams,trans.; W.H. Freeman and Company; San 
Francisco and London; 1963. 

[FERRI 85] F.P. Ferrie and M.D. Levine; "Piecing Together the 3-D Shape of Moving 
Objects: an Overview"; Proceedings IEEE Conference on Computer Vision 
and Pattern Recognition; San Francisco; 1985. 

[FISCH 78] Martin A. Fischler; "On the Representation of Natural Scenes"; In A. 
Hanson and R. Riseman (Eds.), Computer Vision Systems; Academic 
Press; New York; 1978. 

[FOSTE 76] Caxton C. Foster; Content Addressable Parallel Processors; Van Nostrand 
Reinhold; New York; 1976. 

[HANSO 78] Allen R. Hanson and Edward M. Riseman;"VISIONS: A Computer System 
for Interpreting Scenes"; In A. Hanson and R. Riseman (Eds.), Computer 
Vision Systems; Academic Press; New York; 1978. 

[HARAL 81] R.M. Haralick and L. Watson; "A Facet Model for Image Data"; Computer 
Graphics and Image Processing; Vol. 15; 1981; pp.113-129. 

87 



[HARAL 82] R.M. Haralick; "Zero Crossing of Second Directional Derivative Edge 
Operator"; SPIE vol. 336; Robot Vision; 1982; pp. 91-99. 

88 

[HORN75] B.K.P. Horn; "Obtaining Shape From Shading Information" in P.H. 
Winston (Ed.) Psycholo~y of Computer Vision; McGraw-Hill; New York; 
1975. 

[LEVIT 84] Steven P. Levitan, et al; "Signals to Symbols: Unblocking the Vision 
Communications/ Control Bottleneck"; in VLSI Signal Processin~; Peter 
Cappello, ed.; IEEE Press; 1984. 

[LA WTO 84] Daryl Lawton, et al; "Iconic to Symbolic Processing Using a Content 
Addressable Array Parallel Processor"; SPIE Vol. 504; Applications of 
Digital Ima~ Processin~ VII; pp. 92- 111; 1984. 

[LEE 85] Chia-Hoang Lee and Azriel Rosenfeld; "Improved Methods of Estimating 
Shape From Shading Using the Light Source Coordinate System"; Artificial 
Intelligence; Vol. 26; Elsevier Science Publishers (North-Holland); 1985; 
pp. 125-143. 

[MARR 78] D. Marr and H.K. Nishihara; "Representation and Recognition of the 
Spatial Organization of Three Dimensional Shapes"; Proc. Royal Soc. 
London B 200; pp. 269-294; 1978 

[NASH 81] J.G. Nash, et al; "VLSI Processor Arrays for Matrix Manipulation"; In 
H.T. Kung, B. Sproull, G. Steele (Eds.), VLSI Systems and 
Computations; Computer Science Press; Rockville, Md.; 1981. 

[PENTL 84] Alex P. Pentland; "Local Shading Analysis"; IEEE Trans. Pattern Analysis 
and Machine Intelligence; vol. PAMI-6; pp. 170-187; 1984 

[PENTL 86a] Alex P. Pentland; "Shading Into Texture"; In A.P. Pentland (Ed.), Pixels to 
Predicates: Recent Advances in Computational and Robotic Vision; Ablex; 
Norwood N.J.; 1986. 

[PENTL 86b] Alex P. Pentland; "Perceptual Organization and the Representation of 
Natural Form"; Artificial Intelligence; Vol. 28; pp. 293-331; 1986. 

[REDDY 78] Raj Reddy; "Pragmatic Aspects of Machine Vision"; In A. Hanson and R. 
Riseman (Eds.), Computer Vision Systems; Academic Press; New York; 
1978. 

[SOWA 84] J.F.Sowa; Conceptual Structures: Information Processin~ in Mind and 
Machine; Addison-Wesley; Reading, Mass.; 1984. 

[T ANIM 80] S. Tanimoto and A. Klinger, eds.; Structured Computer Vision: Machine 
Perception Through Hierarchical Computation Structures; Academic Press; 
l~ew York; 1980. 

[TANIM 84] Steven L. Tanimoto; "A Pyramidal Approach to Parallel Processing"; 
Proceedings of the 11th International Symposium on Computer 
Architecture; IEEE Computer Society Press; pp. 372-378; 1984. 



[YANG 83] Yee-Hong Yang and Tsung-Wei Sze; "An Evaluation Study of Six 
Topologies of Parallel Computer Architectures for Scene Matching"; 
Proceedings of the 1983 International Conf. on Parallel Processing; 
pp. 258-260; 1983. 

89 

[WEEMS 85] Chip Weems, et al; "Iconic and Symbolic Processing Using a Content 
Addressable Array Parallel Processor", Proc. IEEE Conf. Computer Vision 
and Pattern Recognition; San Francisco; 1985. 

[WEEMS 87] Charles C. Weems; personal communication. 

[WESTE 85] Neil H. E. Weste and Kamran Eshraghian; Principles of CMOS VLSI 
Design; Addison-Wesley; Reading, Mass.; 1985. 

[WITKIN 81] A.P. Witkin; "Recovering Surface Shape and Orientation From Texture"; 
Artificial Intelligence; vol. 17; pp.17-45; 1981. 



APPENDIX A 

FUNDAMENTAL OPERATIONS ALGORITHMS 

The performance estimates presented in Chapter Four were obtained by breaking 

the least-squares procedure into major stages. Formulas for the execution time of the major 

stages were written as functions of the time for fundamental arithmetic and data-transfer 

operations. The formulas for the fundamental operations will be functions of the 

architecture and the numeric precision of the operands. This appendix presents the 

algorithms and formulas for the fundamental operations. The algorithms and formulas for 

the major stages are presented in Appendix B. All the algorithms in both appendices are 

written in a pseudocode that most closely resembles an assembly language with high-level 

looping and branching capabilities. The format of this pseudocode is explained below, 

followed by a brief description of all the low-level algorithms called by the high level 

routines. Algorithms are presented for a representative subset of the fundamental 

operations, and their execution time characterized. The assumptions used in estimating the 

execution times are then described, and formulas for the execution time of the other 

operations are given. 

Pseudocode Format 

This section discusses the format of the pseudocode used to present the algorithms 

in this study. The presentation is rather informal. Most of the algorithms are composed of 

calls to microcoded subroutines that are at the level of assembly language instructions. 

Higher level constructs such as indexed loops and If I Then I Else statements are also used. 
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This mimics the organization of the machines studied, which are divided into the array and 

controller sections. All the microcoded subroutines used by the algorithms in Appendix B 

are documented in the next section of this appendix. The remainder of this section 

discusses the format of the algorithms and the higher level controller operations. 

The format of the pseudocode reflects the division of the machines into array and 

controller sections. Array operations are written in upper-case, controller functions are 

written in lower-case. When memory operands are used, they are referred to by their least­

significant bit (LSB). Most array intructions will have an argument, p, which indicates the 

numeric precision of the memory operands. Thus, a p-bit number referred to by 'label' 

occupies addresses label to label+p-1. More signicant bits are stored at higher addresses. 

Comments are denoted by either pairs of braces, { comment } , or from a semicolon to the 

end of the line. Statements can be labeled to support control transfers. Labels are the first 

field in an instruction, are written in lower case, and are terminated with a colon. 

The microinstruction word of the PE has four fields to change certain aspects of its 

behavior. These are the IA (Ignore Activity), NI (Negate source I), NJ (Negate source J), 

and NR (Negate function Result) fields. These options can be enabled for the duration of 

one microcode call by the use of the prefixes IA:, NI:, NJ:, and NR:. The restriction that 

code labels be lowercase is to avoid ambiguity in the interpretation of the labels and 

prefixes. Any number of prefixes may be used for a single statement, however, it does not 

make sense to use the negate prefixes with most high level statements. The algorithms 

presented in this appendix will occasionally make use of these prefixes. 

A notational convienience used with many SELECT statements is the use of 

'intelligent' selections. Since the algorithms for the major stages will be functions of the 

estimation region dimension, the arguments "collsbs" and "rowlsbs" will automatically 

have their precision adjusted to the size necessary for whichever estimation region 
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dimension is being used. For example, suppose we wish to enable the PE at location 0,0 

within each solution submesh. The statement: 

SELECT (collsbs=O and rowlsbs=O) 

would compare the p least significant bits of the row and column addresses to 0. For the 

8x8 solution submesh, p would be three. Four and five bits would be examined for the 

16x16 and 32x32 submeshes, respectivly. The select statement supports tests other than 

strict equality. An example of this capability is provided by the statement: 

SELECT (ptr ;;:: collsbs ;;:: ptr-6) . 

The capabilities of the SELECT statement are discussed more fully in the description of this 

statement. 

The PE's registers can also be used as arguments. REGA, ... REGE are used to 

access the PE's registers A ... E. When a register is used in an instruction in place of a 

memory location, it is not necessary to provide the number of bits that will be moved, since 

a register holds only one bit. 

A simple 'for, next' construct is used for looping. This is a controller function, 

therefore written in lower case. The loop statements also allow the use of more than one 

index variable. An example of a statement using two index variables is: 

for (i=srcindx,j=dstindx) to (i=srcindx+n,j=dstindx+n). 

'If statements are also provided. These are also controller functions, which compare 

variables the controller has access to without involving the array. This differs from the 

SELECT statement, which uses values in the PE's local memory. Thus the SELECT is an 

array function, the 'if is a controller function. 

Description of the Low Level Procedures 

All the low level routines that are called by the algorithms for the major stages of the 

least-squares procedure are described in this section. The name of each procedure is given, 
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as well as a list of its arguments. This is followed by a description of the procedure and its 

arguments. Some procedures are minor variations of others. Such routines are grouped 

together to avoid needless repitition of the argument descriptions. Examples of this are the 

addition and subtraction procedures. Since the numbers are stored in a two's complement 

format, the subtraction routines bear a strong resemblence to the additon instructions. 

Three varieties of the add and subtract instructions are provided. The first is to add the 

values from a particular memory field of neighboring PEs. The other two implement two 

and three address addition within the local memory of a PE. All six procedures are 

described in the same section. 

SELECT(p,field-indx,test,comparand,dir) 

DESCRIPTION 

Compares the p bit comparand with the memory locations field through field+p-1. By 
default the comparision procedes from the least significant to the most significant bits, but 
the dir operand allows this to be reversed. Tests supported are=, ::1=, >, <, ~. :S;. More 
complex testing opertions such as between, not between, etc. can be implemented. See 
[FOSTE 7 6] for further information in this area. 

OPERANDS 

p Number of bits to be compared. 

field-indx LSB of the memory field that is compared to the broadcast pattern. 

test Type of comparison function. The algorithm presented later in this appendix 
is for strict equality. Other tests are also possible, see [FOSTE 76]. 

comparand Bit pattern known by controller. This is broadcast to all PEs, which 
compare their values with the pattern and store the result of the comparisons 
in the A register. 

dir By default, the comparison procedes from the LSB to the MSB. This can be 
changed by specifing 'M' as the dir argument. 



COPY(p,srcindx,dstindx) 
READ(p,srcindx,dstindx,dir) 

DESCRIPTION 
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Copy is used to move data from one memory field to another within the same PE. The 
memory fields should not overlap. This restriction would be quite easy to overcome, but 
the superquadric algorithms do not need to copy to overlapping fields. READ is used to 
transfer information from one PE to another. Memory fields for the READ may overlap. If 
a register is used as the source or destination operand, p is not specified since it must be 
equal to one. 

OPERANDS 

p 

srcindx 
dstindx 

dir 

The number of bits to be copied or read. 

The LSB of the source and destination fields, respectively. Can also be a 
register. 

Tells the read instruction which neighbor to read the data from. No dir is 
needed if srcindx is BC (the Broadcast Comparand line). 

SHIFT(p, n, dir, sign, srdndx, reg) 

DESCRIPTION 

Shifts the p bits specified by srcindx n places. The direction of the shift is specified by dir. 
Valid arguments for sign are 'Y' and 'N'. These do and do not perform sign extension on 
the bit field, respectively. 

OPERANDS 
p Width of the field to be shifted. 

n Number of bit positions the field is shifted by. 

dir Direction of the shift, L (left) orR (right). 

sign Indicates if sign bit should be preserved. Y (preserve sign) or N ( don't 
preserve sign). 

srcindx LSB of the p-bit field to be shifted. 

reg Register to use for temporary storage. REGE is default. 



ADD2(p,srcindx,dstindx) 
SUB 2(p,srcindx,dstindx) 
ADD 3 (p ,srclindx,src2in dx,dstin dx) 
S UB3 (p ,s rc lin dx,src2in dx,dstin dx) 
ADDN2(p,srclindx,dstindx,dir) 
SUB N2 (p,srclindx,dstindx,dir) 
ADDN3(p,srclindx,src2indx,dstindx,dir) 
S UBN3 ( p ,src lin dx,src2i ndx,dstindx,di r) 
NEG(p, indx) 

DESCRIPTION 
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These instructions perform bit-serial addition and subtraction. The procedures 
assume that the operands are p-bit, fixed-point, two's complement numbers. NEG changes 
the sign of its argument, the operation is performed in place. The difference between the 
ADD and SUB procedures is that the ADDs initially set the carry to zero, the SUBs set the 
carry to one. The SUB also negates the source operand before the addition is performed. 
The combination of these two operations negates the source operand on the fly. 

The numbers in the procedure name indicate how many seperate addresses are 
used. For example, ADD2 has two memory operands, src and dst. The operation 
performed is dst = dst + src. ADD3 has three operands, srcl, src2, and dst. The operation 
performed is dst=srcl +src2. For subtraction, the operations are dst=dst-src or 
dst=src 1-src2. If the procedure name has an N in it, the operation involves neighboring 
PEs. The particular neighbor that will provide the source operand is specified by using 'N', 
for North, 'E", for East, etc. TheE register is used for communication in the neighbor 
algorithms. The other procedures use the E register for temporary storage. All procedures 
use the C register for the carry bit. 

OPERANDS 

p 

srcindx 
(srclindx) 
(src2indx) 

dstindx 

dir 

Numeric precision in bits. 

LSB of the source operand(s) 

LSB of the destination operand 

For operations involving neighboring PEs, dir specifies from which 
neighboring PE to obtain the source operand. For the flat machines, valid 
arguments are 'N', 'E', 'S', 'W'. The Pyramid uses these, as well as 'NE', 
'SE', 'NW', 'SW', 'NEC', 'SEC', 'NWC', 'SWC', and 'P' to provide 
communication with the lateral and pyramidal neighborhoods. 



MUL(p,srclindx,src2indx,prodindx,scratch) 
DIV(p,dvdindx,dvrindx,qindx,rindx, scratch) 
AFMUL(p, ip,srclindx,src2indx,dstindx,scratch) 

DESCRIPTION 
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These routines provide fixed point multiplication and division. MUL performs 
signed multiplication of two p-bit, fixed-point numbers. The product is alsop-bit, scratch 
storage is used to build the product which is then reduced to p bits. AFMUL multiplies an 
integer by a fixed-point number and returns a fixed-point product. This routine is included 
for multiplying row, column coordinates by fixed-point numbers. 

OPERANDS 

p 

ip 
src2indx 

prodindx 
dvdindx 
dvrindx 
qindx 
rindx 
scratch 

Precision of the fixed-point numbers, in bits 

Precision of the integer number. Only used in AFMUL. 
Address of the LSB of the two source operands. 

Address of the LSB of the product. 
Address of the LSB of the dividend 
Address of the LSB of the dividend 
Address of the LSB of the quotient. 
Address of the LSB of the remainder. 
Address of the LSB of a 2p block of memory used for working space. 



An additional function used by the main procedure for the flat machines is image 

I/0. The two routines below provide the capability for image I/0 through the border 
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register. This is used by the main algorithm for the flat architectures to save the regression 

coefficients before processing the first estimation region, and to restore the regression 

coefficients at the begining of each of the remaining 15 iterations. 

IMAGEIN(p, dstindx) 
IMAGEOUT(p, srcindx) 

DESCRIPTION 

Uses the border register for high speed image I/0. The elements of the image are saved or 
restored one bit-plane at a time. The routines assumes that the device(s) connected to the 
border register can fill the border register on every clock cycle of the array. For the 4NN 
and Pyramid machines, this is a data rate of five megabits per second. The CAAPP has one 
fourth as many elements in the border register, thus its data rate is one fourth that of the 
other machines. 

OPERANDS 

p 

srcindx 
dstindx 

The number of bitplanes that must be input or output. 

The address of the LSB to be output or input. 
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Representative Algorithms 

This subsection presents algorithms for a representative sampling of the low level 

procedures. The next subsection presents the execution time formulas for all the 

algorithms. 

Algorithm A 1: SELECT(p.fieldindx.test.comparand.dir) 

Compares the p bits, fieldindx to fieldindx +p-1, to the pattern which is broadcast by 
the controller over the BC line. If the test is passed, the A register will be set, 
otherwise it is cleared. If IA is specified when the select instruction is issued, it will 
only be used for the first bit comparison. By default, the comparison procedes from 
the LSB to the MSB. This can be reversed by specifing 'M' for the dir operand. The 
algorithm below tests for strict equality, other tests are possible. See [FOSTE 76] for 
other algorithms. Since the purpose of this algorithm is more to show the flavor of the 
SELECT statement than to provide pseudocode ready to microcode, no use will be 
made of the 'test' operand. Since this procedure does no communication, it is the same 
for the CAAPP as for the other machines. } 

ifdir:;eM 
(IA: ?) CMP fieldindx[O] with comparand[O] 

for (i=1,j=1) to (i=p-1,j=p-1) 

else 

(IA: ?) 

endif 

CMP fieldindx[i] with comparand[j] 
next (i,j) 

i=p-1, j=p-1 
CMP fieldindx[i] with comparand[j] 
for (i=p-2,j=p-2) downto (i=O,j=O) 

CMP fieldindx[i] with comparand[j] 
next (i,j) 

Algorithm A2: READCp.srcindx.dstindx.dir) 

; The (IA: ?) is for conditional use of 
; the IA: option. 

Reads p bits from dir neighbor's srcindx field to dstindx field of the issuing PE. If the 
IA option is given, all PEs perform the operation. If it is not specified, only those PEs 
who's A register is set will perform the operation. All E registers are changed, even if 
the IA option is specified. This routine will need to be changed for the CAAPP to 
handle the reduced connections between PEs. The time for the CAAPP will be four 
times as long as for the other two machines. } 

for (i=srcindx,j=dstindx) to (i=srcindx+p-l,j=dstindx+p-1) 
IA: move memory[i] to register E 

READ from dir-neighbor into memory[j] 
next (i,j) 
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Algorithm A3: ADD2Cp.srcindx.dstindx) 

Adds two p-bit, two's-complement, fixed-point numbers. Two address addition is 
performed, i.e. dstindx = dstindx+srcindx. Since this procedure does no 
communication, it is the same for the CAAPP as for the other machines. } 

READ(l ,REGC,BC) 
for (i=O,j=O) to (i=p-1,j=p-1) 

IA: move srcindx[i] to register E 
ADD REGE, dstindx[j] 

next (i,j) 

; Broadcast a zero to clear the carry, 
; then add the bits. 

Algorithm A4: MUL(p.src 1 indx.src2indx.dstindx.scratch) 

Multiplies the two p-bit, fixed-point, two's-complement numbers. The multiplicand is 
src1, src2 is the multiplier. The product is stored into the p-bit field with 
LSB=dstindx. Since the product of two p-bit binary numbers is a 2p-bit number, the 
scratch field is provided to accumulate the product. Once the calculation is complete, 
the middle p bits of the product are copied to the destination field. Since this procedure 
does no communication, it is the same for the CAAPP as for the other machines. } 

COPY mem[src2indx+p-1] to REGB 
COPY mem[src1indx+p-1] to REGD 
for i= scratch to scratch + 2p -1 

COPY '0' to mem[i] 
nexti 
for i = 0 to p-1 

nexti 

SELECT (1, mem[src2indx+i], =, 1) 
ADD2(p, src1indx, scratch+i) 
SELECT( REGB=1) 
ADD2(p-i, scratch+2p~1-i, 1) 

SELECT( 1, REGD, =, 1) 
SUB2(p, src1, scratch+p) 
COPY(p, dst, scratch+p/2) 

; Keep the sign bits handy for 
; corrections. 

; Zero the scratch area. 

; For each multiplier bit, 
; if it is a '1', add the 
; multiplicand to the partial product. 
; If the multiplier is negative, 
; do the correction. 

; If multiplicand is negative, 
; correct for that. 
; Copy p-bit product to destination. 
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Algorithm AS: IMAGEIN (p.src1indx or dstindx) 

Uses the border register to move large amounts of data into the arrray. One bit plane is 
moved at a time. Assumes the border register can be filled or emptied as fast as the 
array can accept or provide the data. Also assumes we have configured the edge­
treatment switches so that the border register is the southern neighbor of the PEs on the 
bottom of the array. The algorithm below does image input, output is a simple 
modification of this procedure. For the CAAPP, the inner loop must execute four times 
for each row of the array. The PEs will read data from their eastern neighbor instead of 
their souther neighbor. } 

IA: READ( REGA, BC) 
for i = 0 to p-1 

nexti 

for j = 1 to 512 
READ ( S, REGE) 

nextj 
COPY (REGE, mem[dstindx+i]) 

Execution Times 

; BC broadcasts '1', enables all PEs. 
; for each bit plane 
; for each row of bits to be read 

; Register E of each PE holds the bit 
; to be moved into memory. 

This section presents the formulas used to estimate the execution times of the low 

level procedures. The salient features of the algorithms are described, any special 

assumptions used are noted, then the formula is given. 

SELECT( p,field-indx,test,com parand,dir) 

If the test is for strict equality, the SELECT statement will take p clock periods, 

where p is the number of bits in the comparand. Logical NOT (all bits differ) also takes p 

clocks. If the test is for>, <, or ::;e, the time can be less than p for a particular PE. 

However, so many PEs will be involved that the time will almost always be p clocks. Other 

tests, such as 'between', 'min', 'max', or 'closest to' may take additional time. 

=, ~, ~, !=(logical NOT): 
>,<,::;C 

p clock cycles 
~ p clocks 



COPY(p,srcindx,dstindx) 

The copy takes two clocks for each bit to be moved. This is because only one 

memory location can be addressed per clock cycle. The formula is thus: 

2p clock cycles. 

READ(p,srcindx,dstindx,dir) 
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The READ takes two clocks for each bit to be moved. If the PE is redesigned so 

that communication is selected with the source select multiplexers instead of the function 

select multiplexer this could be reduced to one clock per bit, provided that srcindx and 

dstindx were the same. The formula for the execution time is thus: 

2p clock cycles. 

For the CAAPP, this must be multiplied by four to account for the reduced communication 

capabilities of that machine. 

SHIFT(p, n, dir, sign, srcindx, reg) 

The shift runs one loop p-n times to shift the data bits. Another loop runs n times to 

set the bits that have been shifted in. Each iteration of the loops takes two clock cycles, thus 

the total time is: 

2p clock cycles. 

ADD2(p,srcindx,dstindx) 
SUB2(p,srcindx,dstindx) 

There is no difference in the execution time between ADD2 and SUB2. It takes one 

clock cycle to initialize the carry. Another 2p clocks are reqired to perform the p 1-bit 

additions. The total time is thus: 

2p + 1 clock cycles. 



ADD3(p,srclindx,src2indx,dstindx) 
S UB3 (p,srclin dx,src2in dx, dstin dx) 

102 

There is no performance difference between these two procedures. The inner loop 

requires three clock cycles per bit. Another one clock cycle is required to initialize the carry 

bit. The total time is thus: 

3p + 1 clock cycles. 

ADDN2(p, srcindx, dstindx, dir) 
SUBN2(p, srcindx, dstindx, dir) 

There is no performance difference between these two procedures. The inner loop 

requires two clock cycles per bit. Another clock cycle is required to initialize the carry bit. 

The total time is thus: 

3p + 1 clock cycles. 

For the CAAPP, the formula is 12p + 1 clock cycles. 

ADD N3 ( p,srclin dx,src2indx,dstindx,dir) 
SUB N 3 ( p ,s rc lindx,s rc2i n dx,dsti n dx, di r) 

There is no performance difference between these two procedures. The inner loop 

requires three clock cycles per bit. Another one clock cycle is required to initialize the carry 

bit. The total time is: 

3p + 1 clock cycles. 

For the CAAPP the formula is 12p + 1 clock cycles. 

NEG(p, indx) 

One clock cycle is required to initialize the carry register to a '1'. Each bit in the 

operand requires on clock cycle to be negated. The total time is thus 

p + 1 clock cycles. 

MUL (p,s rc lin dx,src2indx, prodindx,scra tch) 

Setting up the scratch area and the sign bits takes 2(p+ 1) clock cycles. The loop to 

perform the multiplication will execute p times. The worst-case time for the interior of the 
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loop is 2.5p + 1 clocks. If all the multipliers are positive, the time would be 2p + 1 clocks, 

but this will be rare. The factor of .5 is used to model the behavior of the loop that adds 

ones to the most significant bits in the scratch field. If the multiplier were all ones, this loop 

would run p, (p-1), ... , 0 times. The .5p thus represents an average time for the negative 

multiplier correction loop. 

One clock is required to determine if the multiplicand is negative. If so, an 

additional2p+ 1 clocks are needed to correct for that. Finally, 2p clocks are needed to move 

the middle p bits of the product to the destination field. It will be quite rare that the average 

time is less than the worst-case time. This is because the MUL instruction will be executed 

on many PEs at the same time. It must be general enough to handle all the possible cases. It 

would be possible to check the sign bits of the multiplier using the SOME/NONE flag, thus 

allowing the correction steps to be skipped if all the multipliers and multiplicands were 

positive. For a 512x512 image this will be so rare that this possibility was not 

implemented. The total worst-case time is thus: 

2.5 p2 + 7p + 4 clock cycles. 

AFMUL(p, ip,srclindx,src2indx,dstindx,scratch) 

The AFMUL is similar to the MUL, however, one of its operands is an unsigned 

integer, typically representing a row or column address. For a 512x512 image, this would 

be an unsigned nine-bit integer. Using this as the multiplier lets us achieve considerably 

·better performance than the MUL instruction. Not only will we execute the main loop fewer 

times, we will not have to correct for a negative multipler. We will still need the correction 

for a negative multiplicand, but this is much less expensive than multiplier correction. The 

formula for the execution time is: 

ip*(2p + 1) + 4p + 2. 

For p = 32, MUL takes 2788 clocks, compared to 713 for AFMUL. 
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DIV (p,dvdindx,dvrindx,qindx,rindx, scratch) 

Since the purpose of this study was to estimate the execution time of the 

superquadric algorithms on bit-serial arrays, not to develop a full set of bit-serial microcode 

subroutines, a simplifing assumption was used to estimate the division time. We will model 

the time for division as being twice that for multiplication. This is quite conservative, actual 

performance should be almost equal to the MUL. The formula used is: 

2*[ 2.5 p2 + 7p + 4] clock cycles. 

IMAGEIN(n, dstindx) 
IMAGEOUT(np, srcindx) 

These procedures have two loops. The outer loop executes once for each bitplane 

that must be input or output. The inner loop executes as many times as there are rows in 

the array of PEs. The formula below assumes 512 rows in the array. The body of the 

inner loop requires one clock cycle. Once the inner loop is completed, an extra clock cycle 

is required to place the data into the correct memory location. The execution time of this 

routine is 513 * n, where n is the number of bits to be retrieved from each PE. For the 

superquadric algorithms, n = 9p. The form of this equation used in obtai.1ing the total time 

spent in disk swaps is: 

16 * 9 * p. 

The CAAPP will take four times as long to execute this routine as the 4NN and 

Pyramid machines. 



APPENDIX B 

SUPERQUADRIC ESTIMATION ALGORITHMS 

This appendix presents the algorithms used to obtain the superquadric parameters. 

The algorithms are written in terms of fundamental operations such as addition, 

multiplication, and data transfers. The algorithms for the fundamental operations were 

presented in Appendix A. Each algorithm is presented and a table or formula is provided to 

determine the number of fundamental operations that are used. Any special assumptions 

are noted before the table or formula is given. All of these algorithms, along with the ones 

in the previous appendix, assume that the controller overhead is small enough to be 

neglected. In other words, we will assume that anyone building a system as expensive as 

these would design the controller to keep the array working at all times. 

Many of the algorithms move the activity bit to a neighboring PE in order to enable 

a neighboring PE. Another simplifying assumption we will use is to neglect the time to to 

perform these one-bit transfers. Since normal precisions will be on the order of 32 bits, the 

error introduced by this assumption will be small. 

A notational convienece used in several of the algoritms in this appendix that was 

not used in Appendix A is to identify memory fields by a letter. Referring to Figure 11 in 

Chapter Three, we see that we will need 11 p-bit memory fields. The fields that hold a 1, 

a2, ... , b2 will be referred to, in this appendix, as A, B, ... I. The two temporary fields 

will be referred to as T1 and T2. Some algorithms may use the names of particular 

coefficents, such as a1 for clarity. 

A final caveat, these algorithms have not been implemented. 
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Algorithm B 1 Calculate Two Dimensional Regression Coefficients 

{Assumes the memory contents diagrammed in Chapter 3. } 

MUL (p, A, E, E, scratch) 
MUL (p, A, F, F, scratch) 
MUL (p, B, C, C, scratch) 
MUL (p, B, D, D, scratch) 
MUL (p, A, B, G, scratch) 
MUL( p, A, A, A, scratch) 
MUL (p, B, B, B, scratch) 

SUB2(p, B, A, EREG) 
SillFT(p, 1, L, Y, A, REGE) 
COPY(p, G, B, E) 
SillFT(p, 1, L, Y, B, REGE) 
SUB2(p, F, D, E) 
SUB2(p, E, C, E) 

; Calculate common terms 
; scratch uses fields H and I. 

; Calculate a1 

; Calculate a2 

; Calculate a6 
; and a5. 
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AFMUL(p, COL, F, C, SCRATCH) 
AFMUL(p, ROW, E, D, SCRATCH) 
ADD2(p, D, C, E) 

; Now do a3, AFMUL multiplies an 
; unsigned integer (the row,column 
; coordinates) by a fixed point value. 

SillFT(p, 1, L, Y, C, REGE) 

AFMUL(p, COL, E, D, SCRATCH) 
AFMUL(p, ROW, F, G, SCRATCH) 
SUB3(p, D, G, H, E) 
ADD3(p, D, G, I, E) 
NEG(p, I) 

COPY(p, F, D, E) 
COPY(p, E, G, E) 

; Now do bland b2. 

; b1 is in field H 

; b2 is in field I 

; Copy a6 and a5 to a4 and a7 

done ; All pixels have al..a7, bl, b2 in their local memory. 

Obtaining the number of fundamental operations needed for this stage of the 

computation is straightforward. We have seven fixed-point multiplies, four multiplies that 

compute the product of an address field and a fixed-point number, four two-address adds 

or subtracts, two three-address adds or subtracts, three copies, and one negate. We also 

have three left-shifts which move a p-bit operand one bit to the left and should preserve the 

sign bit. Using the notation described in Appendix A, the execution time can be written as: 

7[M] + 4[AFM] + 4[A2] + 2[A3] + 3[C] + 3[ASL] + l[N]. 
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Algorithm B2 Distributing the Estimation Regions on the Flat Machines 

{ This routine moves the elements of estimation region (i,j) to the upper left comer of all 
solution submeshes or sub-submeshes. Once this has been accomplished, Algorithm BS 
is used to fill the submeshes and complete the formation of A and .b.. These steps, as well 
as the matrix solutions, must be repeated for each estimation region within the solution 
submesh. This will mean 16 iterations of these procedures. This routine only works for 
estimation region dimensions strictly equal to 2, 4, or 8. } 

left: if j=O, goto right 
ptr = j*dim(er) ; Select all columns that must be 
if dim(er) '# 2, ptr=ptr+ 1!2 * dim(er) ; moved to the left, 

nextl: SELECT collsbs ~ ptr ; and start moving them. 
READ(9p,right,b2,b2,E) 
ptr = ptr-1 
if ptr=O, goto right ; If ptr is in the first column, this part 
if ptrlsbs = 000, ptr=ptr-2, ; is done. If we are at a sub-

goto nextl ; submesh's first column, leave 2 
; columns there, move 
; the rest further left. 

right: if (j=3 or dim(er)=2 or (j ~ 1/2*dim(er)), goto up 
ptr=((j+1)*dim(er))- 1 
if dim(er)=8, ptr=ptr-(2*(2-j)) ; Set the pointer 

nextr: SELECT collsbs ~ ptr ; and move the data 
READ (9p,left, b2, b2,E) 
ptr=ptr+1 
if ((ptrlsbs=lOOl and dim(er)=4) ; until all the data has been moved, 

or (ptrlsbs=11001 and dim(er)=8)), goto up 
if ptrlsbs = 001, ptr=ptr+ 2 ; or until we need to drop off 2 
goto nextr ; columns before moving the rest. 

up: if j=O, goto down ; This case is almost identical to 
ptr = j*dim(er) ; moving the data to the left. The 
if dim(er) '# 2, ptr=ptr+ 1/2 * dim(er) ; down case is also essentially the 

nextu: SELECT rowlsbs ~ ptr ; same as moving the data to the right. 
READ(9p, north,b2,b2,E) 
ptr = ptr-1 
if ptr=O, goto down 
if ptrlsbs = 000, ptr=ptr-2 
goto nextu 

down: if ((j=3) or (dim(er)=2) or (j~ 1/2*dim(er)) 
goto quit 

ptr=((j+l)*dim(er))- 1 
if dim(er)=8, ptr=ptr-(2*(2-j)) 

nextd: SELECT rowlsbs ~ ptr 
READ(9p,sou th, b2, b2,E) 
ptr=ptr+l 
if ((ptrlsbs=lOOl and dim(er)=4) or (ptrlsbs=11001 and dim(er)=8)), 

goto quit 
ifptrlsbs = 001, ptr=ptr+2 
goto nextd 

quit: done 
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Quantifying the execution time for this routine is awkward, due to the special 

actions that must be taken for the different sizes of estimation regions. Another 

complicating factor is that the time is not the same for each of the 16 estimation regions. 

The differences arising from which estimation region is being moved will become less 

significant as the dimension of the estimation region increases, but this is little help for the 

two by two case. 

Several simplifying assumptions were used in obtaining the timing estimates below. 

As mentioned at the begining of the appendix, we will neglect the time needed to select 

subsets of the PEs. Since the selections are based on only a few bits, while the data we will 

be moving is nine words deep, this should not cause a significant error. Another 

simplification is the use of an average time. The number of data movements needed for the 

estimation region at location 1,2 within the four rows and four columns of estimation 

regions were calculated for each dimension. This is shown below in Figure 34. The value 

obtained was multiplied by 16 to give the total time used by this stage in all16 iterations. 

The average and total number of data transfers needed for each estimation region dimension 

are given below in Table VI. Each of these transfers involves nine words of whatever 

precision is being used, so the last column gives the number of p-bit READ instructions 

that must be issued. 
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The estimation region at row 1, colunm 2 was used since 
it more accurately represents the average data movements 
than the estimation regions at 1,1 or 2,2. 

Figure 34: Estimation Region Used for Average Performance 

TABLE VI 

NUMBER OF DATA TRANSFERS NEEDED TO DISTRIBUTE THE 
ESTIMATION REGION AMONG THE SUB-SUBMESHES 

ON THE FLAT MACHINES 

Dimension Average Total Total 
of the number of number of number of 

estimation region block transfers block transfers READs issued 

2 6 96 864 
4 14 224 2016 
8 36 576 5184 

TABLE VII 

NUMBER OF DATA TRANSFERS NEEDED TO DISTRIBUTE THE 
ESTIMATION REGION AMONG THE SUB-SUBMESHES 

ON THE PYRAMID MACHINE 

Dimension Total Total 
of the number of number of 

estimation region block transfers READs issued 

2 6 54 
4 6 54 
8 6 54 
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Algorithm B3 Distributing the Estimation Regions on the Pyramid Machine 

{ This routine also places 2 x 2 portions of the estimation region at the upper_left comer of 
the 8 x 8 sub-submeshes. However, only one iteration of this routine will be needed 
using the Pyramid algorithm described in Chapter 3. } 

lA: SELECT((rowlsbs = 0) and (collsbs = 0)) ;move down one level 
READ( 9p, parent, b2, b2) 
lA: SELECT(collsbs = 01) 
READ( 9p, east, b2, b2) 
lA: SELECT(rowlsbs = 01) 
READ( 9p, south, b2, b2) 

; and collect it in the 2x2 block 
; at the upper-left comer. 

move down another level, the x in the least significant bits indicate "don't cares". 

done 

lA: SELECT((rowlsbs = OxO) and (collsbs = OxO)) 
READ( 9p, parent, b2, b2) 
lA: SELECT(collsbs = 001) 
READ( 9p, east, b2, b2) 
IA: SELECT(rowlsbs = 001) 
READ( 9p, south, b2, b2) 

; collect it in the 2x2 block 
; at the upper-left comer. 

This routine is much easier to characterize than the equivalent routine for the flat 

machines. It does not depend on the size of the estimation region or the position of the 

estimation region within the solution submesh. It also does not require 16 iterations. The 

number of data transfers needed are presented above in Table VII. This table ignores the 

time to select subsets of the PEs, for the same reason as was given above. 
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Algorithm B4 Filling the Sub-submeshes 

{ Once the portions of the estimation region have been distributed to the upper-left corner 
of all the sub-submeshes of the solution submesh, this routine fills them, completing the 
formation of the A matrix and !2 vector. } 

IA:SELECf(collsbs = 001) 
READ(9p, north, b2, b2) 
READ(9p, north, b2, b2) 
IA:SELECf(collsbs=OOO and rowlsbs=01x) 
READ(9p, east, b2, b2) 

IA: SELECf(collsbs=OOO and rowlsbs:;eOOO) 
forn=1 to 4 

nextn 

READ(2p, north, a7, a7) 
READ(p, north, b2, b2) 

SELECf(rowlsbs = 1xx) 
COPY(p, b2, b1, Ereg) 

SELECT( collsbs=OOO) 
for col = 1 to 6 

; get all coefficents into the first 
; column of the submesh. 

; move a6, a7, and b2 down four 
; PEs to form the bottom half of the 
; sub-submesh. 

; the bottom 4 PEs in sub-submesh 
; put the b2 coefficients into the 
; same field used to hold a1 in the 
;top 4 PEs. 
; Now do the A matrix into a1. 

IA:READ(1, west, Areg, Are g) ;make next column active 
READ(p*(7-col), west, a(8-col), a(7-col)) ; read the values, leave one in 

next col ; the a1 field. 

IA:SELECf((collsbs<101 and rowlsbs=101 or 110) ; Clear the elements in a1 that 
or (rowlsbs<101 and collsbs=101 or 110)) ; should be zero 

READ(p, BC, a1) 

done 

This routine is common to all the architectures and estimation region dimensions. 

Once again, we will ignore the clock cycles required by the SELECT statements. The 

equation used to estimate the execution time for this routine is: 

61[R] + 1[C] . 
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Algorithm A5 Calculating A Tb: 

{ Assumes the solution submesh is square, with the elements of A and h arranged as 
described in Chapter 3. The LSB of the memory field containing the element of ai,j of A 
is pointed to by a_indx. The elements of h are pointed to by b_indx. } 

for col = 1 to 6 
IA:SELECT (collsbs =col) 
READ (p,b_indx,b_indx,west) 

next col 

IA:MULT(p,a-indx,b_indx,t1) 

for row= [(4*dim(er))-2] downto 0 
IA:SELECT (rowaddr =row) 
RADD2(p,t1 ,t1 ,S) 

next row 

;Copy .Q to all other columns 

;Do all the multiplies at once 

; Collect sums at top for result 

{ If dim(er) =4 or 8, sub-submeshes were used and we must collect the column sums 
together to get the solution.} 

ptr=[(4*dim(er))-2] 
if ptr S 8, goto quit 

again: IA:SELECT(ptr ::?: collsbs ::?: ptr-6) 
COPY(p,bsum,bsum2,E) 
for ctr=1 to 8 

ptr=ptr-1 
IA:READ(l ,east,REGA,REGA) 
READ(p,east,bsum2,bsum2) 

next ctr 
ADD2(p,bsum,bsum2,EREG) 
ifptrS13, goto quit 
goto again 

quit: done 

; Result vector is in bsum2 field of the top row of solution submesh. 

This routine is used by all the machines in this study, although the flat machines 

must repeat it 16 times. The execution time will depend on the dimension of the estimation 

region. The equation used to estimate the execution time of this routine is: 

6[R] + 1[M] + (4*dim(er)-2)[RA2] + (dim(er)/2)*(8[R] + [A2]). 

For the flat machines, this equation must be multiplied by 16. This equation ignores the 

time for the SELECT instructions. It also ignores the READ instructions that only move the 

activity bit to the next row or column. Since numeric precisions will be on the order of 32 
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activity bit to the next row or column. Since numeric precisions will be on the order of 32 

bits, this is an error of less than ten percent. 

Algorithm A6 Calculating AT A 

again: 

for k=O to 6 
!A: SELECT( collsbs=k) 
COPY (p,afield,a2field,E) 
for col= k-1 downto 0 

; for all columns of A 
; copy A value to another field 
;in the same column. 

IA:SELECT (coladdr =col) ; Read it to previous columns, 
READ (p,west,b_indx,b_indx,E) 

next col 
for col = k+ 1 to 6 
IA:SELECT (coladdr =col) 

READ (p,east,b_indx,b_indx,) 
next col 

IA:MUL T(p,a_indx,b_indx,t1) 

for row = 1 to k 
!A: SELECT (rowaddr =row) 
RADD2(p,t1,t1,S) 

next row 

; then to later columns 

;Do the multiplies for column k 

; Collect sums at row k for result 
; First do sums that must move · 
; down to reach row k, 

for row=[(4*dim(er)) -2] downto k ; then the ones that must move 
IA:SELECT(rowlsbs=row) ; up to reach row k. 
RADD(p,south,ata_prod,ata_prod,E) 

next row 

; If dim(er) =4 or 8, sub-submeshes were used and we must collect the sums 
; that are at row k of each group of eight columns to get the solution. This 
; solution will be placed in the first seven by seven sub-submesh of the 
; solution submesh. 

ptr=[(4*dim(er))-2] 
ifptr~13, goto quit 
IA:SELECT(ptr~ collsbs ~ ptr-6) 
COPY(p,ata_prod,E) . 
for ctr=1 to 8 ; Move the sum to the next group by 

ptr=ptr-1 
IA:READ(l,east,REGA,REGA) ; enabling the new column 
READ(p,east,ata2_prod,ata2_prod) ; and reading the data (8 times). 

next ctr 
ADD2(p,ata_prod,ata2_prod,EREG) ; Data h1S now been moved to the 
ifptr~13, goto new_col ; next column of sub-submeshes, so 

new_col: 
goto again ; add the values and repeat the process 
next k ; until done. 
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by all the machines, and exhibits the same dependance on the size of the estimation region 

that Algorithm A5 does. The formula for its execution time is: 

7 { [C]+6[R]+[M]+(4*dim(er) -2)[RA2]+(dim(er)/2)*(8[R]+[a2])}. 

As in Algorithm B5, we neglect SELECTs and one-bit READs. 

Algorithm B7 Inverting AT A: The Faddeeva Technique 

{ Assumes the input matrix is nxn and the solution submesh is n+ 1 x n+ 1. For the 
regression equations, n = 7. The matrix is stored in the field m_field of the PE's local 
memory. Two temporary fields, rtmp and ctmp, are needed, as well as scratch storage for 
the multiply. } 

for count = 1 to n ; repeat elimination procedure n times 
IA:SELECT(rowlsbs=n or collsbs=n) ; augment the matrix with the + 
READ(p,BC, m_field) ; and - identity matrices 
IA:SELECT((row=O and col=n) or (row=O and col=n)) 
READ(1,BC,m_field+fractional precision) 
SELECT(row=O and col=n) 
NEG(p,m_index,Ereg) 

SELECT(collsbs=O) 
COPY(p, m_index,ctmp,Ereg) 
for col=1 to n-1 

SELECT(collsbs=col) 
READ(p, west,ctmp,ctmp) 

next col 

; copy column 1 to all columns 
; ctmp is the temporary field to 
; hold column copies 

SELECT(rowlsbs=O) ; normalize the top row 
D IV (p,m_index,ctmp,m_index,scratch) 

COPY(p,m_index,rtmp,Ereg) 
for row= 1 to n-1 

SELECT(row lsbs=row) 
READ(p,north,tmp,tmp) 

next row 

SELECT(rowlsbs -:t:- 0) 
MUL(p,rtmp,ctmp,ctmp,scratch) 
SUB2(p,ctmp,m_indx,Ereg) 
IA:READ(p,south,m_index,m_indeY) 
IA:READ(p,east,m_index,m_index) 

next count 
done 

; move the normalized top row to 
; the rtmp field of all other rows. 
; rtrnp is the row temporary field 

;eliminate row 1 and column 1 

;shift up and left 
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The formula for the execution time is: 

n{ 2n[R] + [Rbc] + 2[C] + [M] + [D] + [A2] + [N]} , 

where [Rbc] is the time to read p bits from the Broadcast Comparand line and store them 

into the local memory. This operation will take one clock per bit, as opposed to the two 

clocks per bit needed to transfer a value from the memory of one PE to the memory of a 

neighbor. It is interesting to note that each elimination takes a single multiply and a single 

divide instruction. Since these are so computationally expensive on our machines, this is 

quite a benefit. 

The algorithm above is not optomized. The columns of zeros which are shifted in 

from the east will remain zero [NASH 81]. The loop which copies the first column to all 

other columns could have a termination condition which decremented each time through the 

outermost loop. This would only be a minor improvement. It also might be possible to 

implement the single-division scheme for Gaussian elimination [FADDE 59]. This would 

be a more significant gain than eliminating the unnecessary copyin_g of columns, sice we 

would not need to issue the multiply instructions. Another problem with this routine is that 

it makes no provision for matrices which are not well-behaved. Since the AT A matrix is 

positive-defmite, this should not be a great problem in areas of the image that can give a 

meaningful solution. Areas that contain edges will proabably cause an. 
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Algorithm B8 Calculating x 

{ Assumes the inverted matrix is in the seven by seven submesh at the upper left comer of 
the estimation region, and the vector A.QT is in the first seven elements of the top row. } 

for row = 1 to 6 ;Copy A.Q T to all other rows 
!A: SELECT (rowaddr =row) 
READ (p,north, bt_indx, bt_indx) 

next row 

IA:MUL (p,ATA-1_indx,bt_indx,t1) ;Do all the multiplies 

for col = 5 downto 0 ; Collect sums at left for result 
IA:SELECT (coladdr =col) 
ADDN2(p,tl,t1,E) 

next col 

done 

When this routine terminates, the result vector is in the t2 field of the first seven 

PEs in the first column of the solution submesh. This routine does not depend on either the 

architecture or the dimension of the estimation region. The equation used to estimate the 

execution time is: 

6[R] + [M] + 6[RA2] . 

Again, this must be multiplied by 16 for the flat interconnection networks. 
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Al&orithm B9 Reor&anizin& the Coefficients 

{ This routine moves the superquadric parameters from the first seven PEs of the first 
column of each solution submesh to the upper-left corner of the solution submesh. It also 
changes the data from a 7xl column vector to the form that will be used when the data is 
moved to the estimation region which gave rise to it. } 

if (dim(er) = 2) ; For the 2x2 estimation region, the 
IA:SELECT( (4 ~ rowlsbs ~ 6) and (collsbs = 000)) 
COPY(p, x_indx, xtmp, E) · ; data must be two fields deep, so 
for k= 1 to 4 ; copy those elements that will be in 

IA: READ(1,south, Areg, Areg) ; the second field and move them into 
READ(p, south, xtmp, xtmp) ; the PEs that hold the first field. 

nextk 
IA:SELECT((2 ~ rowlsbs ~3) and (collsbs=OOO)) 
IA: READ(l,west,Areg,Areg) ; Now make the 4x1 'complex' vector 
READ(2p, west, tmp, tmp) ; into a 2x2 by moving the bottom 2 
IA: READ(l,south,Areg,Areg) ; entries right one PE and up two 
READ(2p, south, tmp, tmp) ; PEs. 
IA: READ( 1 ,south,Areg,Areg) 
READ(2p, south, tmp, tmp) 

else ; If the dimension = 4 or 8, the data 
IA:SELECT(collsbs = 1 and 4 ~ rowsbs ~ 6) 
READ(p,west,tmp,tmp) ; only needs to be one field deep, so 
fork= 1 to 4 ; just make the 7x1 vector into a 4x2. 

IA: READ(1,south, Areg, Areg) ; (moves the activity bit) 
READ(p, south, tmp, tmp) ; (then the parameters) 

nextk 
endif 
done 

Upon completion of this routine, the data will have been reorganized into a block 

whose upper-left corner is positioned at the upper-left corner of the solution submesh. The 

execution time is dependent upon the size of the estimation region, but in a manner quite 

different than the other routines. The times for the four by four and eight by eight 

estimation regions will be the same, since both have enough PEs to hold the data as 

organized for the four by four region. The two by two region's routine will take longer to 

execute, since the data must be formed two memory fields deep. The number of READ 

instructions that must be issued are given below in Table VIII. This shows how many 

READS are necessary for one iteration and for 16 iterations. For the two by two estimation 
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region, we must also issue a COPY instruction. This will be modeled as a READ, since it 

takes the same number of clock cycles as a READ, except on the CAAPP. FOr the 

CAAPP, the time for a read is approximately four times as long as for a copy, but since 

only one COPY must be issued, we will neglect this difference. 

TABLE VIII 

NUMBER OF DATA TRANSFERS NEEDED TO REORGANIZE THE CALCULATED 
PARAMETER ESTIMATES PRIOR TO THEIR BEING MOVED TO THE 

ORIGINATING ESTIMATION REGION ON THE FLAT MACIITNES 

Dimension Number of Total 
of the READs issued number of 

estimation region per iteration READs issued 

2 11 176 
4 5 80 
8 5 80 
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Al&orithm B 10 Movin& Parameters to Estimation Re&ion: Flat Machines 

{ The estimated parameters have already been moved to form the shape that will be stored 
(see Figure 18). We now move them from the upper-left comer of the solution submesh 
to the upper-left comer of the originating estimation region; i,j. I and J are the variables 
used in the main routine to identify estimation regions within the solution submesh. } 

start 
if (dim(er) = 2), ; Select the coefficients 

lA: SELECT (rowlsbs ~ 1 and collsbs ~ 1) 
for row=1 to i*dim(er) ; Move the results down, 

lA: READ (l,north, Areg, Areg) ; first the activity bit, then the values, 
READ (2p, north, x_indx, x _indx) ; until data is in correct rows 

next row 
for col=1 to j*dim(er) ; Move the results to the right, 

·lA: READ (l,west, Areg, Areg) ; first the activity bit, then the values 
READ (2p, west, x _indx, x_indx) ; until data is in right column 

next col 
COPY(2p,x_indx, tmp,Ereg) ; Now store the results in the 

; temporary fields. 

else ; dim(er) = 4 or 8 

lA: SELECT ( rowlsbs ~ 1 and collsbs ~ 3) 
for row=1 to i*dim(er) ; Move the results down, 

lA: READ (1,north, Areg, Areg) ; first the activity bit, then the values, 
READ (p, north, x _indx, x _indx) ; until data is in correct rows 

next row 
for col=1 to j*dim(er) ; Move the results to the right, 

lA: READ (l,west, Areg, Areg) ; first the activity bit, then the values 
READ (p, west, x_indx, x_indx) ; until data is in right column 

next col 
COPY(p,x_indx, tmp,Ereg) ; Now store the results in the 

; temporary fields. 
endif 
done 

The time for this routine will depend upon the dimension of the estimation region 

and the values of i,j. Once again, to estimate the execution time we will use the estimation 

region 1 ,2 as an indication of the average time consumed by this routine, then multiply by 

16 to get the total time. The resulting number of READ instructions that must be issued are 

shown below in Table IX. 



TABLE IX 

NUMBER OF DATA TRANSFERS NEEDED TO MOVE THE REORGANIZED BLOCK 
OF PARAMETER ESTIMATES BACK TO THE ORIGINATING 

ESTIMATION REGION ON THE FLAT MACHINES 

Dimension Average number of Total 
of the READs issued number of 

estimation region per iteration READs issued 

2 14 224 
4 13 208 
8 25 400 

Algorithm B11 Moving Coefficients to Estimation Region: Pyramid Machine 
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{ This routine moves the results up two levels from the solution submesh to the originating 
estimation region. It assumes that the parameters have been formed into the different 
shapes required for the various estimation region sizes and moves them so that each 
element resides in the north-west comer of a 2x2 submesh. The parents of these 
submeshes then read the data, and the original shape of the data is restored, but one level 
up. The 2x2 estimation region must be handled slightly differently than the others, and is 
considered first. } 

start 
for depth = 1 to 2 ;Each iteration moves the data up one 

; level 
if (dim(er) = 2), 

lA: SELECT(rowlsbs::;;1 and collsbs::;;1) ; Select the coefficients, 
lA: READ (l,north, Areg, Areg) ; copy them to the next row down and 
READ (2p, north, x_indx, x_indx) ; the next column to the right. This 
lA: READ (l,west, Areg, Areg) ; makes all the data have different 
READ (2p, west, x_indx, x_indx) ; parents, and these parents form 
lA: SELECT(rowlsbs::;;1 and collsbs::;;1) ; another 2x2 block, on the next 
READ(2p,NEchild, x_indx, x_indx) ; level up. Now select the parents and 

; readthe data into them. 

else ; dim(er) = 4 or 8 
for row=1 to 3 ; Move the results down 

IA:SELECT(rowlsbs;::: 2*row) ; until data are in correct rows. 
READ (p, north, x_indx, x_indx) 

next row 
IA:SELECT(collsbs = 001) 
READ (p, west, x_indx, x_indx) 

endif 

; Now select the second column and 
; move it over so that a different 
; parent will be used. 



endif 
next depth 
done 
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; parent will be used. 

Since the Pyramid algorithm computes all estimation regions at the same time, this 

routine's execution time is mush easier to characterize than the corresponding routine for 

the flat machines, which would have a time dependent upon the position of the estimation 

region within the solution submesh. The execution time for this routine will depend upon 

the dimension of the estimation region, since the data for the two by two estimation region 

will be two fields deep, as opposed to the data for the larger estimation regions. The 

number of READ instructions that must be issued are given below in Table XL 

TABLE XI 

NUMBER OF DATA TRANSFERS NEEDED TO MOVE THE REORGANIZED BLOCK 
OF PARAMETER ESTIMATES BACK TO THE ORIGINATING 

ESTIMATION REGION ON THE PYRAMID MACHINE 

Dimension 
of the 

estimation region 

2 
4 
8 

Total 
number of 

READs issued 

12 
8 
8 
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Al~orithm B 12 Fill Estimation Re&ion with Parameter Estimates 

{This routine is divided into two parts. The first part moves each coefficient to its unique 
field in the local memory of its current PE, then collects the coefficients into the PE at 
position 0,0 within each estimation region. The second part copies the seven coefficents 
in PE 0,0 to all the other PEs in the estimation region. All the machines use this 
algorithm. } 

start 
fori =1 to 7 
lA: SELECT(xxx) 

COPY (p,tmp,coeff[i]) 
nexti 

if(dim(er) = 2) 
IA:SELECT(rowlsbs = 0) 
READ(2p, south, coeff[4], coeff[4]) 
READ(p,south,coeff[7] ,coeff[7]) 
IA:SELECT(collsbs = 0) 
READ(p,east,coeff[2], coeff[2]) 
READ(p,east,coeff[ 4] ,coeff[ 4]) 
READ(2p,east,coeff[7] ,coeff[7]) 

else 
for row = 2 down to 0 

IA:SELECT(rowlsbs = row) 

; For each coefficient 
; select the cell that holds it and copy 
; the coefficient to the ith field of the 
; PE's local memory. 

; For the 2x2 estimation region, 
; move the coefficients from the 
; second row to the top row. 

; Now select the top-left PE and read 
; the 4 coefficients into it 

;dim(er) = 4 or 8. 
; collect the values in the top row 

READ( (3-row )p, south, coeff[3-row] ,coeff[ 4-row]) 
next row 
SELECT(collsbs = 0) 
READ(4p,east,coeff[4], coeff[8]) 

endif 

for col= 1 to dim(er)-1 
SELECT(collsbs =col) 
READ(7p,west, coeff[7], coeff[7]) 

next col 
for row= 1 to dim(er)-1 

SELECT(rowlsbs =row) 
READ(7p,north, coeff[7], coeff[7]) 

next row 
done 

; Now select the top-left PE and read 
; the 4 coefficients into it 

; Now copy from the PEat 0,0 to all 
; the other PEs in the estimation 
; region. First fill the top row, 

; then copy that row to all other rows 
; in the estimation region. 



TABLE XII 

NUMBER OF DATA TRANSFERS NEEDED TO MOVE THE CALCULATED 
PARAMETER ESTIMATES TO ALL PES IN THE 

ORIGINATING ESTIMATION REGION 

Dimension Number of Number of Total Total 
of the READs issued COPYs issued number of number of 

estimation region per iteration per iteration COPY s issued READs issued* 

2 22 7 112 352 
4 52 7 112 832 
8 108 7 112 1728 

*For flat machines only, Pyramid uses values in "iteration" columns 
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