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CHAPTER I 

INTRODUCTION 

. 
The volume of a tree usually is estimated by measuring 

its cross-section area at intervals along the stem, then 

estimating in these intervals by making parametric assump-

tions about their shapes. Assumed shapes include cones, 

cylinders, paraboloids, and neiloids. The disadvantage of 

measuring volume in this way is that the accuracy of volume 

estimation depends on· the appropriateness of the assumed 

shapes and the interval lenqth that is chosen. Among many 

formulae that have been used, Smalian's formula is the most 

popular one due to its simplicity in application. However, 

tree volume estimated by this method always is biased 

positively unless the interval length chosen is very short 

<Husch et al, 1982, and Brickell, 1984). 

Another way of measuring volumes of trees involves 

development of taper equations and/or volume equations 

through regression analysis, with a few easily measured 

parameters such as tree height and diameters as unknowns. 

The problems associated with this method are: some trees 

usually must be felled in order to obtain accurate measur­

ments of parameters to develop taper equations, different 

tree species require different equations, and equations 

l 
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constructed from data in one area may not be applicable in 

other areas. 

With all these difficulties involved in tree volume 

estimation, it is natural to look for methods that are easy 

to use, general for a wide variety of tree species, and 

unbiased. With the aid of computer, Monte Carlo methods 

provide this alternative. 

The Monte Carlo method can be defined as representing 

the solution of a problem as a paramter of a hypothetical 

population, and using a random sequence of numbers to 

construct a sample of this hypothetical population, from 

which statistical estimates of the parameter can be obtained 

(Halton, 1970). 

An estimator t of a parameter T is an unbiased 

estimator of T if 

E[tJ = T. 

That is, t is an unbiased estimator of T if "on the 

average" its value is e~al to T <Hines and Montgomery, 

1980). Not all Monte Carlo methods are unbiased, for 

example, weighted Monte Carlo integration results in a 

biased estimator of the parameter <Rubinstein, 1981>. Many 

Monte Carlo ·methods, however, are unbiased. It is those 

unbiased Monte Carlo methods that are to be considered as 

alternatives to conventional tree volume estimation methods 

<Gregoire et al., 1985). 

The Monte Carlo method comes in various forms, 

depending on the problems to be solved. Although similar 
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estimates may be reached by different Monte Carlo methods, 

the variance associated with the estimator obtained from 

different Monte Carlo methods may vary greatly. Usually 

one would like to obtain an estimate of the parameter with 

variance as small as possible so that the estimation is as 

as close to the real solution as one can qet. 

The purpose of this project is to investigate different 

Monte Carlo methods for tree volume estimation in forest 

inventory. Specifically, this project intends to: 

1. illustrate the unbiasedness of var·ious Monte Carlo 

methods in volume estimation; 

2. find some variance reduction techniques that result 

in small variances for volume estimation; 

3. fi~d estimation methods that have absolute errors 

comparable to or less than that from use of Smalian's 

formula ~th the same number of measurements. 



CHAPTER II 

MONTE CARLO METHODS 

The Monte Carlo method is a group of methods that 

approximately solve mathematical or physical problems by 

simulation using random quantities. Every Monte Carlo 

computation that leads to quantitative results may be 

regarded as estimating the value of a multiple integral. To 

simplify the matter, only a one-dimensional integral is used 

in the following discussions. It also is assumed that the 

bound of thel~<x>dx always follows the relation 
a, 

0 <= a <= b. 

Given a function f<x>, one may find the value of the 

definite integral I = JJ<x>dx in different ways. If J:f<x>dx 

has an analytic solution, then one can find the solution by 

direct substitution. If it is very difficult to find the 

analytic solution of J:f(x)dx or J~f(x)dx has no analytic 

solution, one can use numerical methods to find the value. 

However, if one can obtain only empirical values about 

f(x) at different x without kno~ng f<x>, or if x is a 

vector, then to find ~f(x)dx by conventional methods is 

very difficult, if not impossible. Monte Carlo methods can 

make these integration problems easier by converting the 

problem of integration to the problem of estimation of an 

4 
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unknown parameter. In the following discussion, the unknown. 

parameter is denoted as I. The various estimators of the 

unknown parameter are denoted as Il, I2, ..• 

The Hit-or-Miss Monte Carlo Method 

The simplest Monte Carlo method is so called the hit­

or-miss Monte Carlo method <Rubinstein, 1981). The value 

of the one dimensional integral I = l~<x>dx, assuming f<x> 
a. 

is bounded by 0 <= f(x) <= c, equals to the expected value 

of the estimator Il 
(\, 

ECilJ = c < b - a)< l/n) L g( rC2i-lJ, rC2iJ > 
t: I 

where rC2i-lJ and rC2iJ are random numbers distributed 

uniformly between (a, b) and (0, c), respectively, and 

g(r[2i-lJ, rC2iJ) is one if f(r[2i-lJ) >= rE2iJ, or zero if 

f(r[2i-lJ) < rC2iJ. The graphical representation of the 

hit-or-miss Monte Carlo is shown in Figure l. 

In other words, one takes n points at random in the 

area (a, b)(O, c), and counts the proportion of those points 

which lie below the curve y = f(x). This is sampling from 

the binomial distribution with the probability of success 

p = I/[c(b - a)J. The variance of the estimator Il is 

VAR<Il> = CI/n)(c(b- a) -I>. 

The hit-or-miss Monte Carlo method is easy to under-

stand and easy to apply. However, it has the disadvantage 

that its estimation has the largest variance among all Monte 

Carlo methods. 
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Figure 1. Graphical Representation of the 
Hit-or-miss Monte Carlo Method. 
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The Sample-Mean Monte Carlo Method 

Another way of computing the integral I = ~~<x>dx is 

to represent it as an expected value of some random variable 

<Hammersley and Handscomb, 1964, and Rubinstein, 1981). 

This Monte Carlo method is called the sample-mean or crude 

Monte Carlo method. By the mean-value theorem of calculus, 

computing the integral 

I = I:f(X)dx 

is equivalent to calculating 

I= f(c)(b- a), for some c, a <= c <= b. 

·The-·value of· f <c)· is · 
tl.. 

f(c) = E [(lln>?:f<ci )J 
c.•l 

where c is distributed uniformly bet~een (a, b). 

Therefore, the integral can be estimated as 
n.. 

I2 = (b- a)[(l/n)~f<c· )J. 
L'= I I. 

Then, 
tl.. 

I = ECI2J = ( b - a)E[ ( ~ f ( Ct, ) )lnJ 
n. 

= ( b - a ) ( l/ n ) E[ ~ f ( c ·L > J , a < = c : < = b • 
L"' I " 

The variance of I2 is 

VARCI2J ~ (1/n)[(b - a) J:~<xlzdx - I•J. 

This quantity is less than VARCilJ since 

VAR[IlJ - VAR[I2J = 
lb 2 

(I/n)[c(b - a) - IJ - (l/n)[(b - a> f(x) dx 
9 t.\, 

= (I/n)c(b - a) - ( (b - a)/n) ( f<x> 2 dx 
(b )a., 

= ((.b- a)/n){ci -)tl.f(x)z.dx}. 

Since c >= f(x) for all x between (a, b), therefore 

z 
- I J 



ci- j"f<x> 2 dx >= o. 
a. 
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The comparison between the hit-or-miss and the sample-

mean methods illustrates a general principle of Monte Carlo 

work: if one can replace an estimate by an exact value at 

any point of a Monte Carlo evaluation, the sampling error in 

the final result will be reduced. 

Variance Reduction 

In the application of Monte Carlo methods to many 

problems, it has been found that the sample size required to 

attain the desired level of accuracy is so large that if 

purely random sampling is used the cost of computation will 

be prohibitive. Fortunately, a few techniques for variance 

reduction are available. When those variance reduction 

techniques are applied properly the sample s"ize :t;"equirement 

can be reduced without sacrificing the accuracy. 

Variance reduction can be seen as a means to use known 

information about a problem. In fact, if nothing is known 

about the problem in hand, variance reduction cannot be 

achieved. Variance reduction cannot be obtained from 

nothing; it is merely a way of using all of the available 

information. The more that is known about the problem, the 

more effective are the variance reduction techniques that 

can be employed. The following discussion will concentrate 

in three variance reduction techniques, namely, correlated 

sampling or use of control variates, importance sampling, 

and use of antithetic variates. 
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Control Variates 

In estimating the parameter I = {bf<x>dx, sometimes one 

can find a function g(X) which approximates f(x) and has an 

has an analytic solution. Then, since 

I = J:f<x>dx 

= J: [f(X) - g(X)Jdx + tg(X)dx 

one can estimate I by 

"" I = EC I 3 J = EC ( 1 In ) ( b - a ) f;, { f ( xi ) - g ( x ~ ) } . ,_._. + G J , 

where G = J:g(x)dx, and a <= x£ <= b. 

The value of the first term on the right-hand side of the 

equation can be obtained by the sample-mean Monte Carlo, and 

that of the second term by direct computation. This 

technique is known as correlated sampling or sampling with 

control variates <Hammersley and Handscomb, 1964, Kahn and 

Marshall, 1953)~ 

The sample variance associated with I3 is 

VARCI3J = VAR[f(x) - g(x)J - VARCGJ 

= VAR[f(X) - g(x)J 

since G has variance of 0. If g(x) approximates f<x> such a 

way that lf<x>- g<x>l varies less than lf<x>l, then the 

variance of I3 also will be much smaller than the variance 

of the estimator calculated without the control function 

g(--x). For example, 

F = ~1exp ( -2x) d.x 

calculated with the sample-mean Monte Carlo with ten random 

numbers has mean of 0.4323 and of variance 0.0601, as shown 
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in Table I. The result from use of control variates with 

g(X) = 1 - X 

as control function has mean of 0.4226 and variance of 

0.0055. The variance is reduced about 11 fold. Graphically 

<Fiqure 2), the variance from the sample-mean Monte Carlo 

estimation of F arises from the variation of f<x> as x runs 

over 0 <= x <= 1. When the control function is introduced, 

the resulting function Cf<x> - g(x)J varies much less when x 

is in the range (0, 1), consequently, the smaller variance 

for Cf<x> - g<x>J. 

In selecting the control function, one must be sure 

that the control function chosen is simple enough to be 

integrated analytically. On the other hand, the control 

function must mimic f(x) and absorb most of its variation. 

In this example, g(x) absorbed much of the variation of 

f(x), and g(x) itself is a simple function to be integrated 

analytically. 

There are various ways of looking at this method. For 

example, when estimating an unknown parameter s by means of 

an estimat·or sl, one may look for another estimator s2 which 

has a strong positive correlation with sl and whose 

expectation is a numerically known quantity e. One then 

samples sl and s2 simultaneously, using the same random 

variables, and use 

sl - s2 +·e 

as the estimator of s. Thus 
1'1.. 

s 1 = ( b - a) ( 1 In)( :2: f ( x L' ) >, 
L-:1 



TABLE I 

EVALUATION OF THE FUNCTION f = exp<-2xl BY 
THE SAMPLE-MEAN MONTE CARLO METHOD AND 

BY THE CONTROL VARIATES METHOD WITH 
q<x> = (1 - X) AS CONTROL FUNCTION 

X f(X) q<x> f(X) - q(X) 

0.073 0.8642 0.9270 -0.0628 
0.411 0.4396 0.5890 -0.1492 
0.826 0.1916 0.1740 0.0176 
0.669 0.2624 0.3310 -0.0686 
0.438 0.4164 0.5620 -0.1456 
0.212 0.6544 0.7880 -0.1336 
0.357 0.4897 0.6430 -0.1533 
0.892 0.1680 0.1080 0.0600 
0.734 0.2304 0.2660 -0.0356 
0.138 0.7588 0.8620 -0.1032 

True value of J.1f<x>dx = 0.4323 
0 

Estimation of J'f Cx>dx by the sample-mean 
Monte Carlo m~thod: 

Mean = 0.4476 
Variance = 0.0601 

Estimation of l'f <x>dx with use of control 
·· variates:· D 

Mean = 0.4246 
Variance = 0.0055 

11 
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g(x) • l - x 

0 

Figure 2. Graphical Representation of Monte 
Carlo Method with Control Variates. 

12 



and 

Then 

"' s2 = (b - a)( 1/nHL: g(x.)), 
i,; I L 

s = E[sl - s2 + eJ 
~ 

a <= x. <= b, 
l 

= ( b - a } ( 1 In } ~ E[ f ( Xi ) - q ( X l ) ] + e • 

VAR[sJ = VAR[sl - s2 + eJ 

= VAR[slJ + VAR[s2J - 2COV[sl, s2J. 

13 

If the positive correlation between f(x:). and g<x> is strong 

enough to make 2COV[sl, s2J term greater than VAR[s2J, then 

variance reduction is achieved. 

Importance Sampling 

then 

Alternatively, if one chooses 

G = s:g(x:)dx = l, 

I = J:f(x)dx = J:[f(x)/g(x)J(g(x)dx) 

. = J:[f (X) /g(X) JdG. 

If g(x) is positive and does not change sign in (a, b), then 

G is a cumulative distribution function (cdf) between a and 

b, and g<x> is a probability density function (pdf). By the 

weighted-mean value theorem 

I = [f ( c ) I q ( c ) J fdG, 

for some c in (a, b). 

In order to estimate the integral, a sample of c1 , ••• , 

c~ is taken from the pdf g(x). 

The estimate of I, I4, then can be obtained by 



I4 = ( 1 In)~ [f ("c; ) I q ( cL· ) JG 
t=l .. 

.... 
= (lin)~ [f(ci. )lq(ci )] 

t=-1 
a <= c· <= b I. 

since G = 1. This variance reduction technique is 

importance sampling. 

The sample variance of I4 can be found as 

VARCI4J ~ (lin) J:[f(x)~/g(X)]dx - I~ • 

14 

called 

The main idea of importance sampling is to concentrate 

the distribution of the sample points in the parts of the 

interval that are of most importance instead of spreading 

the sample uniformly. As far as the result is not biased, 

one compensates for distorting the distribution by taking 

f<x>lg(x) in place of f as estimator. 

As an example, suppose one wishes to approximately 

compute the intoqral 

F = .f/2 sin.(x)dx, 
r) 

The exact value of this integral is l. The value of f (X) 

varies from 0 to 1 when x run from 0 to ~12. Hhen estimated 

with the sample-mean Monte Carlo method, the estimate has 

mean of 1.0102 and variance of 0.2633 <Table II>. 

If q( X) = BX/1('1. is used as·importance function, the 

cumulative probability function G<x> is 

G<x> = u = .[~<x,._= [.~ax/rf)Jx= 4xt./lfz.. 

By using inverse transform on a random number u to find the 

value of xi, one can calculate f<xt>lq<xz>· Estimate from 

~th importance sampling has mean of 1.0045 and variance of 

0.0227 <Table II>. The resulting function f(x)/q(x) has 

very small variation for x running between 0 and 1. Much of 



TABLE II 

EVALUATION OF THE FUNCTION f(X) = sin(x) BY THE 
SAMPLE-MEAN MONTE CARLO METHOD AND BY 

IMPORTANCE SAMPLING WITH g<x> = 8xl~t 
AS IMPORTANCE FUNCTION 

Random 1/ Random 2/ 
Varib1e u f(un/2) Variate i' 

0.791 0.9466 1.3970 
0.338 0.5063 0.9132 
0.402 0.5903 0.9959 
0.211 0.3402 0.7215 
0.596 0.9362 1.2127 
0.643 0.8468 1.2596 
0.093 0.1456 0.4790 
0.137 0.2135 0.5814 
0.960 0.9980 .l. 5391 
0.724 0.9075 1.3366 

True value of 
i~lt 
(If (:X:)dx = l 

Estimation of f<x>dx by the 
Monte Carlo method: 

Mean = 1.0102 
Variance = 0.2633 

f(X) g(:x:) 

0.9849 1.1324 
0.7915 0.7402 
0.8393 0.8072 
0.6605 0.5848 
0.9366 0.9828 
0.9520 1.0210 
0.4609 0.3883 
0.5492 0.4713 
0.9995 1.2475 
0.9727 1.0834 

sample-mean 

(YT/-z. . 
Estimation of )0 f<x>d.x by importance sampling: 

Mean· = 1.0045 
Variance = 0.0227 

f(:X:}/g(X) 

0.8697 
1.0693 
1.0398 
1.1294 
0.9530 
0.9324 
1.1870 
1.1653 
0.8012 
0.8978 

l/ Random variable u distributes uniformly between 
(0, l). 

2/ x is obtained by inverse transform from 

u = jx8t/1fz. dt. 
0 

15 
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the varation in f(x) is absorbed by the importance function 

q<x> <Figure 3 >. 

Suppose that one can find a function q<x> such that 

f(x)/q(x) = c, where c is a constant. Then c equals 1/I. 

Applyinq this to the variance equation yields VAR<I4> = 0. 

It appears that one has a perfect Monte Carlo method, qivinq 

the exact answer every time. This is unfortunately useless, 

since to sample f(x)/q(x) one must know q, and to determine 

q<x> <= f<x>II) one must know I, and if one knows I there is 

no need for Monte Carlo methods to estimate it. 

Althouqh one cannot find a function to make f<x>lq<x> 

be a constant, one miqht be able to find some function q<x> 

such that [f(x)/q(x)J is as close to a constant as one can 

make it, then the variance can be drastically reduced. 

One may ask that, qiven a function q(x) approximating 

the function f(x), which method one should use to estimate 

J:f(x)dx. It has been shown (Halton, 1965). that 

VAR[I3J - VAR[I4J 
2 = n COV[(f(x) - q<x>> /q(x), q(x)J. 

If the approximation of f(x) by q<x> is absolutely uniform, 

i.e. lf<x> - q(x) I 'is approximately constant, correlated 

samplinq (samplinq with control variates> is more efficient; 

while if the approximation is relatively uniform, i.e. 

lf<x> - q<x>l is approximately proportional to lq<x>l, then 

importance samplinq is preferable. 

Monte Carlo computation with importance samplinq is 

especially relevant for inteqrands that "peak", so that f(x) 



1 
f(x)/g(x) 

f(x) • sin(x) 

0 '71'/2 

Figure 3. Graphical Representation of Monte Carlo 
Method with Importance Sampling. 
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has extreme high values at certain x's (Figure 4). For such 

a function, one sample in a peak swamps several samples 

elsewhere. If one can find a g<x> that approximates the 

shape of f<x> and makes f<x>lg<x> unpeaked, then importance 

sampling can reduce variance and improve accuracy. On the 

other hand, if f<x> ·,.dips .. , importance sampling would not 

help much in variance reduction <Figure 5). Similarly, if a 

function g<x> is chosen as importance function such that 

f<x>lg<x> is a peaked function, one should consider either 

looking for another importance function, or combining this 

importance sampling with some other variance reduction 

techniques. If the resulting f(x)/qCx> is a function that 

dips., this importance function should be considered as 

acceptable. 

One may argue that it is possible to pick. up two 

functions that have the same variance but one dips and 

another one peaks. While this is true, it is not .. fair .. to 

compare their variance only, since their means may differ 

considerably. Therefore, one should compare variation in 

relative terms, and coefficient of variation is a good 

meas~re of relative variation. Then, the function that dips 

usually would have smaller coefficient of variation than the 

function that peaks if indeed their means are statistically 

different. 

Antithetic Variates 

The principle of using antithetic variates in Monte 
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peak 

Figure 4. A Function That Peaks. 
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Fiqure 5. A Function That Dips. 
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Carlo methods is that one seeks two unbiased estimators tl 

and t2 with strong negative correlation, for some unknown 

parameter I. Then 

IS = Ctl + t2)/2 

also is an unbiased estimator of I. The sampling variance 

of IS then is 

VARCISJ = VAR[(tl + t2)/2J 

= <VAR[tlJ + VAR[t2J)/4 + COV[tl, t2J/2. 

If the covariance is strongly negative, the method of 

antithetic variates can be very effective in variance 

reduction <Hammersley and Morton, 1955). In fact, if f<x> 

is a continuous monotonic function with continuous first 

derivative, the variance of the estimator from use of 

antithetic variates is guaranteed to be less than half of 

the magnitude of that of est'imator from the sample-mean 

Monte Carlo method <Rubinstein, 1981). 

Considering the integral 

I = J:f(X)dx, 
which equals to 

I = (112>/:cf<x> + f(a+b-x)Jdx. 

To estimate I, one can taken a sample of size n from the 

uniform distribution between (a, b) and find 

"' IS= (b-a)(l/2)(1/n)~1 [f(XL) + f(a+b-Xt)J, 

where a <= xi. <= b. 

The reasoning for using antithetic variates is similar 

to that for using control variates and importance sampling: 

achieving variance reduction by combination of functions. 
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In using antithetic variates one derives another function 

g(x) such that g(x) is symmetric to f(x) along the line 

x =a+ <b - a)/2. If f(x) is monotonic or tends to be 

monotonic, then [f(x)+g(x)J/2 usually will have smaller 

variation then f(x) due to compensation. For example, 

f(x) = <x3 + x 2 + l)/(x1 + l> 

is almost monotonically increasing between (0, 5) except 

in the range (0, 1> <Figure 6). By generating 

g(x) = f(5 - X) 

= (101- 65x + 14x 2 - x~)/(x~- lOx+ 26) 

and then combining f(x) and g(x), the resulting function 

[f(x)+g(x)J/2, has much smaller variation in CO, 5) than 

does <Figure 6). 

on [f(x)+g(x)J/2, 

Using the sample-mean Monte Carlo method 

the variance will be drastically reduced 

comparing to that of the sample-mean Monte Carlo method on 

f<x> alone. 

Correlated sampling and importance sampling depend on 

knowing an "easy" function g<x> which approximates the 

"difficult" function f(x). However, this easy function 

usually is difficult to find, and one must be content with 

some compromise. When the conditions are fairly loose it 

is easier to reach a good compromise. This is the case with 

antithetic variates. In practice, it is relatively easy to 

find negatively correlated unbiased estimator of a parameter 

usually easier than it is to find an equally satisfactory 

control function or importance function. The antithetic 

variates method therefore tends to be more efficient in 
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Figure 6. Graphical Representation of Monte 
Carlo Method with Antithetic 
Variates. 
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practice, or, at least easier to apply. 



CHAPTER III 

TREE VOLUME ESTIMATION 

Assume that the relationship between tree heiqht and 

diameter can be expressed as some function 

y=f(x), 

where x is height along the tree, 

y is the diameter at height x. 

Then the volume of a tree can be found by integrating the 

square of the function f(x): 

V<H> = nkl~f<x>Jzdx, 
where V<H> is total volume of the tree, 

H is the height of the tree, and 

k is the scale factor. 

( 1) 

This method of tree volume calculation is called the cross-

section method (Fiqure 7). 

Alternatively, tree heiqht x can be expressed as a 

dependent variable of the diameter y 

X = g(y)' 

and tree volume can be calculated by the shell method 

V<B> = 2 tr k _i8 yq(y)dy, 

where B is the diameter at the base of a tree <Fiqure 8). 

Unfortunately, the function f(X) or q(y) usually is-not 

known. Therefore, the volume of the tree cannot be obtained 
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Fiqure 7. The Cross-section of a Solid. 
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Figure 8. The Shell of a Solid. 
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from direct integration. 

Methods that are used most often to obtain an estimate 

of tree volume are the integration method based on the 

trapezoidal rule <Smalian's formula) and construction of 

taper and/or volume equations based on a few easily measured 

parameters. 

Smalian's formula essentially is a numerical method of 

integrating a function with the trapezoidal rule. In 

estimating the volume of a tree, Smalian's formula works as 

follows. Starting from the base of the tree, the stem is 

divided into intervals of equal length. The cross-section 

areas of both ends of each interval is estimated by takl.ng 

measurements of the diameters, assuming the stem cross-

section is always a circle. These cross-section areas are 

used to estimate the volume of the stem in this interval. 

Accumulation of the volume of all intervals results in total 

tree volume. 

A.l ternati vely, one can estimate the volume V of a tree 

by the Monte Carlo method since the numerical value of the 

height x, or g(y), and the diameter f(x), or y, can be 

obtained by direct measurement. The volume V then can be 

estimated without bias by 
~ '2. 

V<H>=lik(H/n)~f(xt·), 
t.= I 

with the cross-section method, or by 
/1. 

V<B>=znk<Bin>~ Yt g<yi), 
t ='I 

with the shell method. 

0 <= xi <= H, 

0 < = Yt. < = B, 



Advantages of Monte Carlo Methods 

in Volume Estimation 
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The Monte Carlo method should be a good choice for tree 

volume estimation for several reasons. Although there is 

some definite relationship between diameter and height of a 

tree, it is very difficult to express this relation in an 

exact mathematical formula. Without an exact formula, it is 

impossible, or at least very difficult, to calculate the 

volume analytically. Even if a formula is established, it 

tends to be complex if it models the tree taper closely, and 

this can make computation difficult. With the Monte Carlo 

metho~, one always can estimate the tree volume without an 

exact mathematical formula. 

Unbiased Monte Carlo methods such as use of antithetic 

variates, use of control variates, importance sampling, 

etc .•. , can be applied easily. Conventional methods of tree 

volume measurement are biased. The widely used Smalian's 

formula is known to be positively biased. The only way to 

reduce this bias is by increasing the sample size <Brickell, 

1984). 

Using taper or volume equations to measure the volume 

of trees also has difficulties. Taper and volume equations 

developed through regression are often biased when applied 

to local subpopulations or to populations other than the one 

on which the sample is based. Worse yet, this bias cannot 

be reduced by increasing the sample size. 
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Volume estimated with the unbiased Monte Carlo method 

on a single ·tree is not biased. When volume estimation by 

Monte Carlo methods applies to a large population, the 

unbiased estimation from the Monte Carlo method leads to 

cancellation of errors incurred on each tree and gives a 

total error of estimation close to zero. 

In using the Monte Carlo method, if somehow one can 

reduce the variance of estimation on each tree, then in a 

large forest the estimation of the total volume should be 

the true total volume with very small variation. With 

improved sampling techniques, one should be able to achieve 

high accuracy in volume estimation with a reduced number of 

samples, thus saving labor cost in measuring tree volume in 

a forest. 

The Power Function Model of 

Solids of Revolution 

If the formula 

0 <= Xi <= H, 

or 
n. 

V (B) = 211' k (BIn) ~ y.L g ( Yt ) , 0 < = y < = B, 
L:l ~ 

is used to estimate the volume of a tree, the variance 

associated with the estimator will be quite large. To 

reduce the variance, one needs some information about the 

tree to be estimated. Usually, trees with excurrent form 

(single stem) can be approximated by a power function model 

of solids of revolution. The power function model of solids 



of revolution has the form 

s(x) = D<l - x/H)P 

where s(x) is the diameter at height x, 

H is height of a tree, 

X <= H, 

Dis diameter at breast height (dbh). 
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( 2) 

The power p in <2> determines the form (or shape> of a 

tree. It represents a cylinder if p = 0, a paraboloid if 

p = 0.5, a cone if p = 1, and a neiloid if p = 1.5. 

Real trees do not assume any of these simple forms, but 

instead, a combination of them. Generally it is assumed 

that the bottom part is approximately a neiloid, the middle 

section approximately a paraboloid, and the top part 

approximately a cone. 

For trees of excurrent form, they can be approximated 

quite well by power function model of solids of revolution. 

There are taper equations established through regression 

bearing similarity to the power function model. For example 

equations by Ormerod (1963), and volume ratio models by 

Burkhart (1975> and by Cao <1977). 

The close approximation of the power function model of 

solids of revolution to trees with excurrent form suggests 

ways to estimate true tree volume with Monte Carlo methods 

along with variance reduction techniques. 

Assuming the true taper equation of a tree is f(x), 

then V(H) in (l) is the volume of the tree. To achieve 

variance reduction, one can use the power function model of 
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solids of revolution either as control variates or as 

importance functions for importance sampling, depending on 

degree of accuracy required. Since most excurrent trees 

have forms between paraboloid and cone, one can approximate 

the real tree taper with power function model by properly 

choosing the value of pin formula (2). 

The Cross-section Method 

Using importance sampling in tree volume estimation is 

first proposed by Gregoire et al (1985). In their original 

work a taper equation similar to that given by Ormerod is 

used as the importance function. Van Deusen and Lynch 

(1986) show that using power function model of solids of 

revolution as an importance function with p fixed to 0.5, 

trees with various shapes all can be estimated without bias, 

although to obtain the same degree of accuracy requires more 

· samples for those trees with shapes quite different from the 

shape of the importance function. 

Apparently, S<x>IS(H) from the power function model is 

a pdf, where 

s<x> = 1f k f'co< 1 - tJHrJzdt. 
0 

From ( 1), 

iw z. 
V(H) = lrk o f(X) d.x 

(.. 2. 
= _11'k)D [f(X) /g(X)JdG(X), 

where 

· G ( X ) = S ( X ) I S ( H ) , and 

g ( X ) dx = dG ( X ) • 
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One can estimate the true volume V<H> by v 
if-

v = (1fk/n)?. f <xL) /g(xi.), 
t=l 

where x is a random variable sampled from pdf g(X). Each 

X can be generated as follows: 

l. generate a random variable ur , distributed in 

(0, l> uniformly. 

2. use the inverse transform to find xi from 

u t = l xq ( t ) d t . 

To estimate the volume of a real tree, f(xi> is taken 

directly from the tree. 

It will now be proved that any function with the form 
b 

y = KCH - x) (3) 

chosen as importance function shall be the same as choosing 

the solids of revolution (2) with b = p. 

It is obvious that the pdf from (2) for the cdf 

G(x) = S(x}/S(H) 

is dG(x)/dx = d[S(x)/S(H)J/dx 

= [dS(x)/dxJ/CS<H>J 

= [ OrD7H1p> <H - xfP dxJ/[ ("JJ"D7H2f>l~H 
H " 

= [ <H - xl'P dxJ/[ L CH - x>2.P dxJ. 

The pdf q<x> from (3) for the cdf 

Q<x> = Y<x>JY(H) 

is dQ(x)/dx = d[Y(x)/Y(H)J/dx, 

where 

Y<x> =TTi~K<H 1.~ 
- t) ] dt, 

and 
=r{~K<H - t )2b] Y<H> dt. 

2P 
-x> dxJ 

( 4) 
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Therefore, 

q(X) = d[Y(X)/Y{H)J/dx 

= CdY(x)/dxJ/[Y(H)J 

= [ (1J'K2. H H - x )2!, dxJ I [ (lJ'K.2) f:< H 
2.b ( Jf zl, = [(H - X) dxJ/[Jb (H - X) dxJ, 

'2b 
- x> dxJ 

which is the same as (4) derived from solids of revolution 

if b = p. 

The equivalence of (2) and (3) means that if a taper 

equation can be converted to the solids of revolution (2) 

with a difference only in the constant term, then using this 

taper equation as an importance function is the same as 

using the solids of revolution (2). It also means that 

unless trees to be measured have shapes quite different from 

power function model of solids of revolution, using <2> as 

importance function can improve the accuracy of tree volume 

estimation considerably without knowing "too much" about the 

tree, i.e. the taper function of the tree. Thus in their 

work, Gregoire et al (1984> can just choose (2) as their 

importance function. Using Monte Carlo method with the 

power function model (2) as an importance function one can 

do without taper equation completely for any tree species in 

the case of tree volume estimation. 

Since solids of revolution generally approximate true 

tree taper of excurrent trees quite closely, it also should 

be able to be used as control function in estimating tree 

volume. To estimate tree volume with solids of revolution 

as control function, one calculate f<x;) and s<xi) at the 
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.same time by generating a random variable X in ( 0, H). The 

volume V<H> then can by estimated without bias by 
1\. 

+ J:s(x)dx. v = (H/n)~ [f(xi > - S(XL)J 
L: I 

Since most trees of economic importance already have 

taper equations close to true tree shape developed, one may, 

instead of usinq hypothetic taper equations such as power 

function model of solids of revolution, use those eqations 

as control functions to qet a better estimate of tree 

volume. 

The Shell Method 

The relationship between diameter and heiqht also can 

be expressed as x = q<y>, where y is diameter, and q<y> is· 

heiqht for the point with diameter y. The volume of a tree 

can then be calculated by shell method as 

V(B) = 2 n kl8yq<y>dy. 

Since q(y) usually is not known, one cannot calculate 

volume of a tree by direct integration. By usinq 

sample-mean Monte Carlo, the volume can be estimated as 
I'{. 

V = ( 27fBk/n)L. y. g(~- >, O<= YL· <= B. 
i,: I L I. 

the 

the 

As stated before, this estimator has a larqe variance 

associated with. By usinq antithetic variates, one can 

reduce the variance. But one can do more by findinq an 

"easy function" and usinq it either as importance function 

or as control function in variance reduction. The natural 

choice aqain is the power function model of solids of 

revolution. 
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An equation that expresses the height as dependent 

variable of diameter for the power function model of solids 

of revolution is 

h(y) = HC 1 -CyiBl- >, q = lip, 

which is just the inverse of (1). The volume of a tree up 

to diameter y is 

VCy> = 21Tk1~<1 - ( t I B) 'l ) td t 
0 

= 21fkH[1<1- <tiE)! > tdt 
0 

= 2 Tr kHy2 [ 1 I 2 - ( y2 I ( ( q+ 2 ) Bt ) J • 

And the volume of the tree is 
z 

V ( B ) = 2 1f kHB [ 1 I 2 - 1 I ( q+ 2 ) J • 

The ratio 

V<y>l VCB> = (yiB>2 [((q+2>Bt - 2y2 )/CqB'l. >J 

is a cdf. And 
t 4 r ( y) = ( 2 7f KH ( 1 - ( y I B ) > y ) I ( 2 11' kHB ( 1 I 2 - 1 I ( q+ 2 ) ) ) 

2 . 
=··(1·- CyiB> >yi(B-(112-- ll(q+2-))} (4) 

is the pdf associated with V<y>IV<B>. 

One can generate random variates yL from V<Yt >IV<B> 

by generating a random variable uL uniformly distributed in 

(0, B>, then using the inverse transform to find Yi. This 

~ is used to obtain values g(yi > and r<yz ). One then takes 

their ratio. Therefore, the estimate of a tree's volume by 

the shell method Monte Carlo calculation with importance 

sampling is 
1\.-

v = ( 2 1f kIn ) ~~ g ( Yi ) Y( I r ( Yi. ) , 

when formula (4) is used as importance function. 

One can choose the best form as importance function 
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by properly choosing the value of q. This however may not 

be economical, since to do so complicates the process of 

the inverse transform due to the difficulty of finding the 

value y • If the shape of the power function model of 

solids of revolution is set to be a parabola, which is a 

good enough choice for practical purposes, <Gregoire et al, 

1986),- the entire process can be simplified. 

When r<y> is set to be a parabola, q has the value of 

two. Substitute it into V<y>IVCB>, one gets 

V(y) IV<B> = -<y4 /B4 - 2yz !B). 

The diameter y theri can be easily found as 

y = B)l - j ( 1 - Ui, ) , 

where Ut is a random variable uniformly distributed between 

0 and 1. 

The pdf then can be expressed as 

2 ~ r(y) = 4y(l - y /B )/B , 

which is also a simple function once y is generated from 

the cdf by inverse transform. 

Critical Height Sampling 

Another tree volume estimation method is called 

critical height sampling, it. was first proposed by 

Kitamura (1964). The principle of critical height sampling 

is as follows. 

Each tree has an associated distribution with cdf 

yziB". Here y is the diameter at some height on the tree. 

B is the diamter at the base of the tree. One can generate 
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a diameter yL randomly by YL = B Jui, and using this Yi 

to find the corresponding height g(~ ); here u~ is a random 

number with a uniform distribution between 0 and 1. The 

expected value of g(y) is 

re z. 
E[g(y)J =~g<y><2y/B >dy. 

T.he volume of a tree calculated by the shell method is 

v = 2"11"' kl& yg( y) dy. 

Taking the ratio of the previous formula and this one yields 

E[xJ /V = l I ('IT kB z. > • 

Rearranging this equation, one gets 
z 

V = 1TkB E[g(y) J, 
2. n.. 

= < 11' kB In> ~ g<yi>. 
~~· 

Therefore, one can estimate the volume of a tree by 

generating a number of critical heights and multiplying 

their average by the basal area of that tree. 

The sample variance of V tends to be large since this 

is the sample-mean Monte Carlo of critical height sampling, 

therefore the less accurate of the estimator. Unlike the 

cross-section method and the shell method, there is no known 

"easy function" that can be applied to variance reduction. 

Therefore, use of antithetic variates is the only variance 

reduction technique applicable to critical height sampling. 

There is an intimate relation between critical height 

method and the shell method. In fact, one can derive 

the formula for critical height sampling from the shell 

method. The volume of a tree calculated by the shell method 

is 
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8 . 
V = 2TTki yg<y>dy • 

By the weighted mean-value theorem of integration, this 

equation can be written as 
.& 

v = 2 7f k g ( c ) 1 ydy, 
0 

0 <= c <= B. 

The integral on the riqht-hand side of the above equation is 

.. B2 /2. Therefore, the above equation can be wriiten as 

V = (1f'kBz) q( c} • 

In terms of expectation, q(c) is E[q(y)l, where Y is in 

(0, B). Then the above equation can be written as 

V = (1fkB2 >E[q(y)l, 

which is the same as the critical height equation derived 

in the beqinninq of this section. 



CHAPTER IV 

DESCRIPTION OF THE SIMULATION 

PROGRAM -

The main purpose of this project is to find a better 

Monte Carlo method to replace the widely used, but biased, 

Smalian's formula for tree volume estimation. The selection 

criteria are that the method(s) chosen should perform better 

than Smalian's formula in terms of absolute error when 

volume is estimated with the same number of samples _taken 

from each tree, and the sample size should be small. This 

is because increasinq sample points increases the accuracy 

of result from Smalian's formula faster than that of Monte 

Carlo methods. If a larqe number of samples are taken, then 

the result from Smalian's formula will be better. Therefore 

if the Monte Carlo method evaluated are to be considered as 

possible alternatives of Smalian's formula, they should 

produce smaller absolute errors than that from Smalian's 

formula for smaller number of samples per tree. 

In this study, tree volume estimation of loblolly pine 

is simulated. The .. true .. tree is represented by the taper 

equation developed by Max and Burkhart (1976) for natural 

stand-outside bark. The equation has the form 
z z ~ ~ 

d /D = bl(h/H - 1) + b2(h /H -1) + 

40 
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b3(al - h/H >2 Il + b4(a2 - h/H)2 I2 

where Il = 1 if h/H <= al, 

I2 = 1 if h/H <= a2, 

bl = -2.4602, b2 = 0.9751, 

b3 = -0.7044, b4 = 131.4842, 

al = 0.8026, a2 = 0.0867. 

The "true" volume of a tree is obtained by integrating this 

equation through the entire height of the tree. 

All Monte Carlo computations in this study can be 

classified into three categories: 1} computations based on 

the cross-section method, 2> computations based on the shell 

method, and 3) critical height sampling. 

The simulation study is conducted on trees of 

hypothetical sizes. Diameters at bre~st height ranged from 

0.1524 m (6 in> to 0.4826 m (19 in). Tree heights range 

fr.om 12.192 m < 40 ft) to 30.480 m < 100 ft >. Input tree 

sizes are given in Table III. 

Smalian's Formula 

Tree volume estimated with Smalian's formula is used 

in comparison with results from Monte Carlo computations. 

The algorithm for estimating volume with Smalian's formula 

is as follows. 

a. for n sample points on the stem, divide the stem 

height by n+l, the result is the interval length; 

b. for each section of the stem, calculate its volume 

by finding the cross-section area of the section 
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TABLE III 

SIZES OF TREES USED IN SIMULATION STUDY 

DEH I HEIGHT <METERS ) 
<METERS> I 12.192 15.240 18.288 21.336 24.384 27.432 30.480 

I 
0.1524 I 1 1 1 1 
0.1778 I 1 1 1 1 
0.2032 I 1 1 1 1 1 
0.2286 I 1 1 1 1 1 
0.2540 I 1 1 1 1 
0.2794 I 1 1 1 1 1 
0.3048 I 1 1 1 1 
0.3302 I 1 1 1 1 
0.3556 I 1 1 1 1 
0.3810 I 1 1 1 1 
0.4064 I 1 1 1 1 
0.4318 I 1 1 1 1 1 
0.4572 I 1 1 1 1 1 
0.4826 I 1 1 1 1 1 
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top and the section bottom, add them together, 

dividing the result by 2, then multplied with the 

section length. 

c. sum up volume of all sections to get volume 

estimation. 

Monte Carlo Computation of 

the Cross-section Method 

Under this category, importance sampling, importance 

sampling with antithetic variates, and use of control 

variates are evaluated. Crude Monte Carlo method and crude 

Monte Carlo with antithetic variates are include for 

comparison purpose. Solids of revolution of <2> are used 

either as importance function or as control function. 

Another calculation with taper equation from Kozak et al 

(1969) as control function is also programmed to compare if 

using established taper equations as control function can 

improve the estimation. This taper equation has the form 

yz!Dz = bl{x/H- l) + b2(x~/H2 - l), 

y : diameter at height x; 

bl regression coefficient, -2.6447 is used here; 

b2 : regression coefficient, 1.2453 is used here. 

The regression coefficients bl and b2 are from Cao et al 

(1980) for loblolly pine. 



The Crude Monte Carlo ~ ~ 

Crude Monte Carlo ~ 

Antithetic Variates 
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The algorithm for the crude Monte Carlo method is as 

follows. 

a. Generate a sequence of n random numbers ui, each 

one is distributed uniformly in <O, 1>. 

b. use X· = H*u· as a hei~ht to find out the cross-L L ~ 

~ 
section area Ai = 1T [f <Xi > J at this height. 

n. 
compute V = H*<lln>:L A~. 

L"'l 
c. 

In the computation of crude Monte Carlo method with 

antithetic variates, one takes n/2 random samples instead 

of n random samples. For each random number uL generated, 

one calculates another random number~ by vL = 1- uL. 

Th~·algorithm for this estimation is as follows. 

a. Generate n/2 random numbers Ut , each one is 

distributed uniformly in (0, 1). 

b. Derive another n/2 random numbers vi from u, . 

c. Calculate the cross-section area Au. and Av. from 
' L 

from H*ul and H*vi , respectively. 

d. Calculate the estimate by 

Importance Sampling Without 

and With Antithetic 

Variates 

rt./z. 
(Hin>*<'L [AI.(. •. + AI/. J >. 

i,=-1 L l 

Equation (2) for solids of revolution is used as an 
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importance function. The power in the equation changes 

automatically in the program so that one can select the 

appropriate · form as importance function by studying the 

simulation results. 

The algorithm for importance sampling is as follows. 

a. Generate a sequence of n random numbers u . 

b. Obtain the random variate x by taking inverse 

transform on 

ui. = V<x>IV(H) 
tP+l 

= 1 - ( 1 - xt/H) • 
"' 0 '2. 

c. Compute 01'/n) ~f<xt > lg<xt >. 
l:l 

In the computation of importance sampling with 

antithetic variates, instead of taking n random samples, 

one takes n/2 random samples. For each random number ut, 

one generates another random number vt by~ = 1- ui. The 

estimate is calculated as 
n/7.. 

(TT In) [ ~~ f (X i. ) I g (Xi ) + f ( Yi. ) I g ( y ;_ ) ] • 
(.-

Here xi and yL are generated by inverse transform from 

and ~ , respectively. The algorithm is as follows. 

a. Generate n/2 random numbers u;_. 

b. Derive n/2 random numbers vi from ui. 

u· , 

c. Derive X;_ from ui and ~ from v£ by inverse 

transform the same as that in importance sampling 

calculation. 

d. Calculate the estimate by 
~7.. ~ ! 

<rrln>CL.f<x· > lg<xr > + f<Y: > lg<y(.· )J. 
. I L • 
l"' 
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~ of Control Variates 

The algorithm for control variates sampling is as 

follows. 

a. Generate n random numbers U· t between (0, H>. 

b. Calculate the estimate by 
n.. 

< 1 In>?::. Cf < u L > - g(ut>J + G 
L "-I 

where G is the integral of either solids of revolution of 

equation <2> or the taper function by Kozak et al (1969> 

with coefficient from Cao et al (1980). 

Monte Carlo Computation of 

the Shell Method 

Under this category, only importance sampling and 

importance sampling with antithetic variate5 are programmed 

In these calculations, one estimates a tree's'volume in the 

5ame way as volume est.imation in the cross-section method 

except that the pdf now is 
t 

<1 -(y/B) }y/CB (0.5- l/(q+2))J, 

and the cdf is 

< y I B > 2 C < < q+ 2 > B ~ 2J't ) I < qB'l. > J • 

The procedure of finding estimate is the same as that under 

the cross-section category. 

In the simulation study, only the importance function 

that assumes the shape of paraboloid is tested because 

assuming tree taper other than paraboloid add5 a tremendous 

computation burden due to the difficulty of finding random 
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variates from the inverse transform. 

Critical Height Sampling 

Under this category two methods are studied: critical 

height sampling and critical height sampling with antithetic 

variates. 

The algorithm for critical height sampling is as 

follows. 

1. Generate n random variables u that are uniformly 

distributed in (0, 1). 
II. 

2. Calculate V = CB/n)~H*u. 
i"'l 

The algorithm for critical height sampling with 

antithetic.variates is as follows. 

l. Generate n/2 random numbers u that are uniformly 

2. 

3. 

distributed in CO, 1> 

Derive another n/2 random numbers 

rt/z, n./z. 

v· in 
L 

by vi = l - ui. 

Calculate V = CBin>[?='H*uc: +[H*v· J. 
t~ I L ~I I. 

( 0, l) 



CHAPTER V 

RESULTS AND DISCUSSION 

The error from Smalian's method, as shown in Table IV, 

is positively biased. The error however decreases from 

above 14 % for 4 sampling points per tree to about 1.3 % for 

16 samples per tree. On the other hand, the simulation 

study shows that Monte Carlo methods tested are all very 

close to the "true mean", their siqned errors are very close 

to zero and have siqns on both sides of zero <Table V -

Table XIV>. Apprarently, this is due to the fact that they 

all estimate the true mean without bias. Increasing sample 

size however does not reduce absolute error _or coefficient 

of.variation so fast. 

Critical height sampling, with or without the use of 

antithetic variates, exhibits a very large coefficient of 

variation and large absolute error (Table V and Table VI>. 

This indicates that volume estimates scatter widely around 

· the true mean. Critical height with antithetic variates 

reduces variance considerably, but the result is not as good 

as expected by VanDeusen and Lynch <1986). Since a method 

that results in smaller variance is desirable, critical 

height sampling apparently s~ould not be the choice. 

The sample-mean Monte Carlo of the cross-section method 
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TABLE IV 

ERRORS FROM SMALIAN'S METHOD 
WITH DIFFERENT SAMPLES 

NUMBER OF TREEs ESTIMATED : 6 2 
TOTAL VOLUME : 61.48715 

SAMPLE SMALIAN I s 
NO. VOLUME 

4 70.1088 
6 66.6867 
8 64.7598 

10 63.5182 
12 62.7802 
14 62.4688 
16 62.2979 

% SIGN 
ERROR 

+14.0219 
+ 8.4563 
+ 5.3225 
+ 3.3032 
+ 2.1030 
+ 1.5965 
+ 1.3185 

% ABSOLUTE 
ERROR 

14.0219 
8.4563 
5.3225 
3.3032 
2.1030 
1.5965 
1.3185 
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TABLE V 

RESULTS OF CRITICAL HEIGHT SAMPLING 

NUMBER OF TREES ESTIMATED : 62 
TOTAL VOLUME 61.48715 

SAMPLE % SIGN %·ABSOLUTE MAXIMUM MINIMUM AVERAGE 
NO. ERROR ERROR c.v. c.v. c.v. 

4 - 0.3306 54.3363 183.0602 15.9252 100.5098 
6 -11.1243 42.3366 204.0801 30.4307 122.9002 
8 - 2.8266 33.6566 246.7488 47.8993 118.1132 

10 5.9634 36.7064 202.8155 47.2608 123.0994 
12 - 1.6100 31.0280 209.2961 75.0054 124.0201 
14 0.3606 27.4318 175.2700 80.1576 118.5715 
16 - 8.9875 20.8463 185.4969 74.8796 126.4535 

TABLE VI 

RESULTS OF CRITICAL HEIGHT SAMPLING 
WITH ANTITHETIC VARIATES 

NUMBER OF TREES ESTIMATED : 62 
TOTAL VOLUME : 61.48715 

SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE 
NO. ERROR ERROR c.v. c.v. c.v. 

4 -0.1662 33.0617 107.4214 0.9388 44.7579 
6 0.6980 21.1585 110.2519 14.4007 53.5561 
8 6.2068 21.4950 110.5417 7.6648 50.9656 

10 1.2610 19.6775 95.4558 24.0288 53.2715 
12 -1.6980 18.7067 78.5120 20.6668 52.2430 
14 -4.1458 19.2832 91.3613 22.3987 54.7235 
16 -1.0309 11.9846 79.2977 24.0127 52.4792 
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is poor as expected. The absolute error is almost 25 %, and 

the coeffici-ent of variation is almost 70 % for 4 samples 

per tree (Table VII>. The use of antithetic variates along 

with the sample-mean method reduces the absolute error to 

13 % and coefficient of variation to 12 % for 4 samples per 

tree (Table VIII>. This improvement is not enouqh, however. 

The absolute error is in the same order as the absolute 

error from Smalian 1 S formula for small number of samples. 

Monte Carlo computation of the cross-section method 

with a power function model of solids of revolution as 

control function is intermediate in performance when judqed 

from the size of absolute error and/or that of coefficient 

of variation (Table IX>. The best form of solids of 

revolution used as control function appears to be a neiloid, 

when the power of control function is 1.5. 

Usinq the equation from Kozak et al as control 

function does not improve ~he accuracy of estimation. This 

indicates that taper equations developed through reqression 

do not approximate tree better than the power function model 

of solids of revolution <Table X). 

Comparing the result from using equation by Kozak et al 

and that from using equation of solids of revolution shows 

that choosinq a cone as control function is comparable to 

using equation by Kozak et al. In both cases, the absolute 

errors are below 10 % with only 4 sample points for each 

tree. This is much better than the estimate from Smalian's 

formula with the same sample points, which is 14 % for 4 
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TABLE VII 

THE SAMPLE-MEAN MONTE CARLO INTEGRATION 
OF THE CROSS-SECTION METHOD 

NUMBER OF TREES ESTIMATED : 62 
TOTAL VOLUME 61.48715 

SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE 
NO. ERROR ERROR c.v. c.v c.v. 

4 0.0234 25.4886· 154.0277 28.8274 75.8004 
6 6.6026 25.0540 144.1209 28.2300 75.1239 
8 0.9913 22.9408 123.5812 30.3454 71.2806 

10 -5.1870 19.7725 126.8572 41.8779 74.5864 
12 1. 4208 19.9306 112.4694 44.9995 76.2166 
14 5.0915 17.5392 106.3077 51.0371 75.5293 
16 2.1676 16.5638 117.2920 43.7578 75.4770 

TABLE VIII 

THE SAMPLE-MEAN MONTE CARLO INTEGRATION OF 
THE CROSS-SECTION METHOD WITH 

ANTITHETIC VARIATES 

NUMBER OF TREES ESTIMATED : 62 
TOTAL VOLUME 61.48715 

SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE 
NO. ·ERROR ERROR c.v. c.v. c.v. 

4 3.6052 12.7692 53.7102 0.0662 11.9070 
6 -1.5775 9.0129 48.7669 0.3503 8.7695 
8 2.2367 9.3529 45.7606 1.2311 11.7828 

10 0.9626 7.7534 42.3030 1.5596 15.1243 
12 -0.7140 6.8227 43.2093 0.7453 14.0822 
14 0.1396 8.3192 43.2541 1. 9731 15.2742 
16 -0.0673 4.6711 37.3379 1. 2015 17.4252 



TABLE IX 

MONTE CARLO.INTEGRATION OF THE CROSS-SECTION METHOD 
WITH THE POWER FUNCTION MODEL OF SOLIDS OF 

REVOLUTION AS CONTROL VARIATES 

NUMBER OF TREES ESTIMATED : 62 
TOTAL VOLUME 61.48715 

SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE 
NO. ERROR ERROR c.v. c.v. c. v. 

POWER OF CONTROL FUNCTION: 0.50 
-4 0.0510 12.9101 86.9156 3.1899 27.6776 
6 1. 9026 14.2923 82.7106 7.5094 27.0647 
8 4.7948 13.8640 80.2082 7.2651 32.1145 

10 0.7463 10.9052 62.8898 8.8415 28.0142 
12 -0.2095 8.8652 66.0231 11.0528 33.8105 
14 -1.1355 7.9342 65.5141 14.0954 34.0433 
16 1.0131 9.6288 59.5235 12.9284 32.1395 

POWER OF CONTROL FUNCTION: 1. 00 
4 -2.5154 9.1138 59.1412 1.0492 9.2465 
6 1.1493 9.5893 •70. 979"9 1.0087 17.7769 
8 -2.0285 7.2777 64.5510 1.9211 13.7950 

10 -1.1058 7.3887 58.4549 2.7504 17.1443 
12 1.0962 7.7291 59.2532 3.2262 19.3620 
14 -1.2035 5.9181 52.4751 3.4989 20.3671 
16 1.1430 6.3165 60.3064 3.3403 23.2527 

POWER OF CONTROL FUNCTION: 1.50 
4 -1.1881 6.7679 68.0724 0.6346 12.2316 
6 -1.6221 5.4457 52.5173 0.9210 9.6192 
8 -0.1552 6.5231 58.2526 0.7783 17.2974 

10 -2.5444 5.5578 54.6269 2.0791 14.9870 
12 1. 2104 6.7368 53.7797 2.2826 17.6643 
14 1. 9555 6.0064 46.1821 2.7623 18.8679 
16 -0.7081 4.4110 48.8928 2.0710 17.0177 
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TABLE X 

MONTE CARLO INTEGRATION OF THE CROSS-SECTION 
METHOD WITH KOZAK'S TAPER EQUATION 

AS CONTROL VARIATES 

NUMBER OF TREES ESTIMATED : 62 
TOTAL VOLUME 61.48715 

SAMPLE %'SIGN % ABSOLUTE MAXIMUM MINIMUM A~GE 
NO. ERROR ERROR c.v. c. v .. c.v. 

4 -0.3832 9.5803 58.8018 1.2695 20.4936 
6 0.6424 8.9704 51.4510 2.4010 22.2000 
8 -1.4345 7.1755 53.2778 4.0905 22.2166 

10 -0.3647 6.3586 44.1845 6.4869 23.9959 
12 1.8815 5.7552 41.9341 5.8769 22.5226 
14 1.0891 5.0571 39.2983 6.6373 22.7172 
16 -0.8969 4.3373 40.1608 8.4911 22.9995 
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sample points per tree. 

In the cross-section method category, the results from 

computation with importance sampling again show that neiloid 

approximates the "true" taper better. But more importantly, 

the absolute error is reduce to around 7 % with only 4 

samples per tree (Table XI>. The better performance of 

importance sampling over use of control variates agrees to 

the common observations (Chandler, personal communication>. 

Importance sampling with antithetic variates pushes the 

accuracy of estimation a little further. With only 4 

sampling points per tree, the absolute error is less than 

5 % when the importance function is taken as a paraboloid 

and/or as a cone <Table XII>. The averaqe coefficient of 

variat·ion · also reduces drastically to about 5 % for 4 

samples per tree. 

Under the shell method cateqory, importance sampling 

with parabola as importance function produces some results 

that even are worse than that from using control variates 

in the cross~section method category. The absolute error 

for 4 sampling points per tree almost reaches 27 % and the 

coefficient of variation in averaqe is more than 60 % 

<Table XIII>. 

However, when antithetic variates are used along with 

importance sampling for the shell method, the absolute error 

with only 4 sampling points per tree reduces to less than 

3% <Table XIV>. The averaqe coefficient of variation is 

also the lowest among the methods tested. 



TABLE XI 

MONTE CARLO INTEGRATION OF THE CROSS-SECTION 
METHOD WITH THE POWER FUNCTION MODEL OF 

SOLIDS OF REVOLUTION AS 
IMPORTANCE FUNCTION 

NUMBER OF TREES ESTIMATED : 62 
TOTAL VOLUME . 61.48715 . 
SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE 

NO. ERROR ERROR c.v. c.v. c.v. 
POWER OF IMPORTANCE FUNCTION . 0.50 . 

4 -0.6144 19.5816 89.1140 6.4361 37.9588 
6 2.3159 15.0946 99.3568 11.1219 44.7046 
8 0.1160 15.3664 78.4560 14.1368 40.3010 

10 -3.8599 11.7319 71.5367 15.1853 38.1370 
12 -1.3573 10.3638 72.9158 19.3912 43.9520 
14 1. 2066 9.4311 69.4515 21.6013 42.8508 
16 0.9140 8.6344 70.6537 24.1000 43.7809 

. POWER OF IMPORTANCE FUNCTION 1.00 
4 3.3191 11.5582 44.5834 2.7306 20.0826 
6 -0.2532 7.8672 43.1789 2.3648 18.5178 
8 -0.4305 5.8194 40.6707 3.0328 19.0031 

10 0.4569 6.5420 41.7937 4.6276 19.7033 
12 0.8698 6.4426 39.5331 7.0296 21.4502 
14 0.1656 5.2021 34.9420 6.2122 20.9824 
16 -1.2374 4.1886 39.1443 7.5008 19.8556 

POWER OF IMPORTANCE FUNCTION 1.50 
4 . -0.0877 7.0261 31.0907 0.6331 12.7184 
6 -1.1952 4~4989 42.1810 1.0032 13.5584 
8 0.8322 4.4245 27.9177 4.0627 15.2728 

10 -0.3281 3.8094 29.3392 4.1930 15.6856 
12 -0.6910 3.7543 29.3065 5.2342 14.6767 
14 -0.2736 3.9924 24.9385 3.6149 14.5018 
16 -0.1845 3.7784 24.8913 4.3547 15.3071 
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TABLE XII 

MONTE CARLO INTEGRATION OF THE CROSS-SECTION METHOD 
WITH ANTITHETIC VARIATES WITH THE POWER FUNCTION 

MODEL OF SOLIDS OF REVOLUTION AS 
IMPORTANCE FUNCTION 

NUMBER OF TREES ESTIMATED : 62 
TOTAL VOLUME : 61.48715 

SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE 
NO :e:RROR ERROR C. V. C. V. C. V. 

POWER OF IMPORTANCE FUNCTION : 0.50 
4 0.6216 4.9214 27.3534 0.0000 3.6565 
6 -0.4670 4.0706 22.1692 0.3890 6.4980 
8 0.3385 4.2360 19.7239 0.3077 6.9861 

10 -0.1372 2.7676 17.5637 0.3847 6.6655 
12 0.2177 3.7323 17.8787 0.9195 7.6327 
14 0.8079 3.6680 19.6268 0.8194 9.2423 
16 1.1712 3.5670 18.2547 1.0220 9.0073 

POWER OF IMPORTANCE FUNCTION : 1.00 
4 -0.6771 4.6289 21.0848 0.0000 4.0805 
6 0.0552 4.6134 17.0013 0.0641 5.4656 
8 0.4491 4.3512 17.1598 0.1675 6.3829 

10 -0.7855 3.0961 16.4919 0.0738 6.9532 
12 0.1005 2.9057 14.7674 0.4980 7.5944 
14 -0.2065" 2.2341 13.2704 0.2572 7.5892 
16 -0.9380 2.4440 14.9195 0.2805 7.3238 

POWER OF IMPORTANCE FUNCTION : 1.50 
4 -0.8151 8.6854 37.2952 0.0000 8.7511 
6 1.2986 6.7652 31.8811 0.0821 12.5717 
8 -0.2861 6.6258 39.8862 0.3993 12.8469 

10 -0.7454 6.5528 31.2080 0.7236 11.9297 
12 -0.4254 5.7949 36.8361 0.5390 13.1096 
14 -0.1996 5.2241 33.3232 1.1818 13.0455 
16 0.8360 5.8027 26.9155 0.8659 14.1200 
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TABLE XIII 

MONTE CARLO INTEGERATION OF THE SHELL METHOD 
WITH THE POWER FUNCTION MODEL OF SOLIDS OF 

REVOLUTION AS IMPORTANCE FUNCTION 

NUMBER OF TREES EST!MATED . 62 . 
TOTAL VOLUME . 61.48715 . 
POWER OF IMPORTANCE FUNCTION . 0.5 . 
SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE 

NO. ERROR ERROR c.v. c.v. c.v. 
4 0.6342 26.7090 134.4440 8.0078 63.5565 
6 -4.8886 23.0473 109.1666 17.3826 66.1813 
8 3.3089 20.9219 102.9185 34.1760 66.1697 

10 -3.3124 17.6479 91.1343 24.5546 65.3309 
12 4.3761 14.0668 109.4598 33.9363 64.9713 
14 -1.1415 13.6759 96.8338 41.7433 66.4002 
16 -1.6863 12.7039 105.1240 41.7700 65.4794 

TABLE XIV 

MONTE CARLO INTEGRATION OF THE SHELL METHOD WITH 
ANTITHETIC VARIATES WITH THE POWER FUNCTION 

MODEL OF SOLIDS OF REVOLUTION AS 
IMPORTANCE FUNCTION 

NUMBER OF TREE ESTIMATED : 62 
TOTAL VOLUME OF TREES .. 61.48715 . 
POWER OF IMPORTANCE FUNCTION : 0.5 

SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE 
NO. ERROR ERROR c. v. c.v. c.v. 

4 -0.4689 2.7888 12.6008 0.0263 4.4062 
6 0.6970 2.3182 9.8979 0.8079 4.9568 
8 0.6053 2.3167 9.3685 0.6523 5.1810 

10 -0.0156 1. 9411 9.7623 1.6845 5.4183 
12 0.1751 1. 9290 9.2602 2.0066 5.4213 
14 0.6010 1. 7371 7.5846 3.0704 5.0439 
16 0.4005 1. 4576 8.1090 2.1863 5.3644 
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To understand why importance sampling does not reduce 

variance under the shell method so significantly as the same 

technique under the cross-section method, the functions 

f(x)/r(x) for both methods are sketched, where xis the 

random variate, f(x) the original integrand, and r<x> the 

probability density function. The importance function has 

the shape of a neiloid for the cross-section method, and 

the shape of a paraboloid for the shell method. 

The graph of the f<x>lr<x> from the cross-section 

method exhibits very little variation 

graph also explains why importance sampling 

<Figure 9>. This 

with antithetic 

variates for the cross-section method does not improve the 

accuracy greatly. The accuracy cannot be improved further 

because, first, there is not much variation in the function 

f(x)/r(x); and second, f(x)/r(x) is neither a monotonic nor 

nearly a monotonic function. The graph of the f(x)/r(x) 

from the shell method, on the other hand, shows great 

variation <Figure 10). However, it is a strictly monotonic 

decreasing function. This explains why use of antithetic 

variates alopg with importance sampling in the shell method 

is very effective in variance reduction. 

Concern about the infinite variance of the function 

f(x)/r(x) from the shell method may arise. Figure 9 seems 

to indicate that when the random variate 

function f(x)/r(x) approaches infinity. 

aproaches 0 the 

If this is true 

then one has an unbounded integrand, or the worst "peak" 

one can expect from importance sampling. Fortunately, this 
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Figure 9. Graph of the Function f<x>lr<x> Resulted 
from Importance Sampling of the Cross­
section Method with the Power Function 
Model of Solids of Revolution as 
Importance Function. 
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Figure 10. Graph of· the Function f<xllr(:x) resulted 
from Importance Sampling of the Shell 
Method with the Power Function Model 
of Solids of Revolution as Importance 
Function. 
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is not the case. One can prove that the integrand is 

bounded when the random variate approaches 0. 

Since the power function model of the solids of 

revolution is used as the importance function and the shape 

of the importance function is set to be a parabola, the pdf 

r<y> is 

r(y) = (4y/B2 ><1- yz./B2 ). 

The random variate x is 
2 2 r.~--~ 

X = y /B = 1 - j( 1 - U) , 

where u is distributed uniformly in (0, 1). 

The pdf r now can be expressed in terms of the random 

variate x as 

r<x> = 4[i(l - x>IB. 

The function f<y> is 

f < y > = 2 rr kyh < y > , 

h is the height of a point with diameter y. In terms of the 

random variate x, f can be expressed as 

f(X) = 27TkB.}Xh(X). 

The ratio of the two functions is 

f (X) /g(x) = 2 1T kBfih(x) /[4fi( 1 - X) /BJ 

= CkBTT/2)h(x)/(l- X). 

When the random variate x approaches 0 the function 

f(x)/g(x) approaches ~kBH/2, since the value of h<O> isH, 

the height of the tree. 

The simulation results indicate that the best Monte 

Carlo method is importance sampling with antithetic variates 

under the shell method category. Importance sampling with 
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antithetic variates under the cross-section category is the 

second best method. Using control variates under the cross­

section category is acceptable if high accuracy is not 

required. 

In this simulation study, most of the Monte Carlo 

methods investigated show be.tter 

estimation than Smalian's formula 

here all are unbiased. By choosing 

reduction techniques, the accuracy 

improved greatly. 

performance in volume 

does. Methods studied 

appropriate variance 

of estimation can be 

It is also demonstrated in this study 

geometrical model, the power function model 

that the simple 

of solids of 

revolution, when used as importance function or as control 

function, provides as much information for excurrent trees 

as some taper equatons developed through regression. 



CHAPTER VI 

SUMMARY AND CONCLUSION 

1. The objective of this study is to find some Monte Carlo 

methods that estimate the volume of trees without bias, 

and that out-perform Smalian's method when the number 

of samples taken from each tree is small. · 

2. All Monte Carlo simulations result in unbiased 

estimations of true tree volume. In contrast, Smalian's 

formula is known to be positively biased, and this is 

illustrated in this study. 

3. Critical height sampling, with or without the use of 

antithetic variates, results in large absolute error and 

large average size of coefficient of variation, and is 

inferior to Smalian's formula. 

4. The best Monte Carlo method simulated is importance 

sampling with antithetic variates under the shell 

method with the power function model of solids of 

revolution equivalent to a paraboloid as importance 

function. 

5. Simu-lation r-e-sul-ts -also conclude that -the power function -

model of solids of revolution provides enough 

information about excurrent trees to be used as an 

auxillary function in volume estimation. Equation (2) 
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for solids of revolution can be used either as an 

importance function or as a control function. 

6. Simulation results indicate that one should use 

importance samplinq with antithetic variates under the 

shell method when very hiqh accuracy is desirable. 

Importance samplinq with antithetic variates under the 

cross-section method provides slightly ·less accurate 

estimation but it is easy to apply in real situation. 

Volume estimation with control variates can be used if 

accuracy is not critical. 
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