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CHAPTER I
INTRODUCTION

The volume of a tree usually is estimated 5} measuring
its cross-section area at intervals along the stem, then
estimating in these intervals by making parametric assump-
tions about their shapes. Assumed shapes include cones,
cylinders, paraboloids, and neiloids. The disadvantage of
measuring volume in this way is that the accuracy of volume
estimation depends on the appropriateness of the assumed
shapes and the interval length that is chosen. Among many
formulae that have been used, Smalian’s formula is the most
popular one due to its simplicity in application. However,
tree volume estimated by this method always is biased
positively unless the interval length chosen is very short
(Husch et al, 1982, and Brickell, 1984).

Another way of measuring volumes of trees involves
development of taper equations and/or volume equations
through regression analysis, with a few easily measured
parameters such as tree height and diameters as unknowns.
The problems associated with this method are: some trees
usually must be felled in order to obtain accurate measur-
ments of parameters to develop taper equations, different

tree species require different equations, and equations



constructed .from data in one area may not be applicable in
other areas.

With all these difficulties involved in tree volume
estimation, it is natural to look for methods that are easy
to use, general for a wide variety of tree species, and
unbiased. With the aid of computer, Monte Carlo methods
provide this alternative.

The Monte Carlo method can be defined as representing
the solution of a éroblem as a paramter of a hypothetical
population, and using a random sequence of numbers to
construct a sample of this hypothetical population, from
which statistical estimates of the parameter can be obtained
(Halton, 1970).

An estimator t of a parameter T is an uﬁbiased
estimator of T if

. ECt] = T.
That is, t 1is an wunbiased estimator of T if "on the
average" its value is equal to T (Hines and Montgomery,
1980). Not all Monte Carlo methods are unbiased, for
example, weighted Monte Carlo integration results in a
biased estimator of the parameter (Rubinstein, 198l1). Many
Monte Carlo methods, however, are unbiased. It is those
unbiased Monte Carlo methods that are to be considered as
alternatives to conventional tree volume estimation méthods
(Gregoire et al., 1985).
The Monte Carlo method comes in various forms,

depending on the problems to be solved. Although similar



estimates may be reached by different Monte Carlo methods,
the variance associated with the estimator obtained from
different Monte Carlo methods may vary greatly. Usually
one would like to obtain an estimate of the parameter with
variance as small as possible so that the estimation is as
as close to the real solution as one can get.

The purpose of this project is to investigate.different
Monte Carlo methods for tree volume estimation in forest
inventory. Specifically, this project intends to:

1. illustrate the unbiasedness of various Monte Carlo
methods in volume estimatién;

2. find some variance reduction techniques that result
in small variances for volume estimation;

3. find estimation methods that have absolute errors
comparable to or less than that from use of Smalian’s

formula with the same number of measurements.



CHAPTER 1II
MONTE CARLO METHODS

The Monte Carlo method 1is a group of methods that
approximately solve mathematical or physical problems by
simulation using random quantities. Every Monte Carlo
computation that 1leads to quantitative results may be
regarded as estimating the value of a multiple integral. To
simplify the matter, only a one-dimensional integral is used
in the following discussions. It also is assumed that the
bound of the‘L?(x)dx always follows the relation

0 (= a <= Db.

Given a function f(x), one may find the value of the
definite integral I =‘L;(x)dx in different ways. If‘L?(x)dx
has an analytic solution, then one can find the solution by
direct substitution. If it is very difficult to find the
analytic solution of lff(x)dx or JZf(x)dx has no analytic
solution, one can use numerical methods to find the value.

However, if one can obtain only empirical wvalues about
f(x) at different x without knowing f(x), or if x is a
vector, then to find jﬁ%(x)dx by conventional methods is
very difficult, if not impossible. Monte Carlo methods can
make these integration problems easier by iconverting the

problem of integration to the problem of estimation of an



unknown parameter. In the following discussion, the unknown
parameter is denoted as I. The various estimators of the

unknown parameter are denoted as I1, I2,...
The Hit-or-Miss Monte Carlo Method

The simplest Monte Carlo method is so called the hit-
or-miss Monte Carlo method (Rubinstein, 1981). The value
of the one dimensional integral I =1jf(x)dx, assuming f(x)
is bounded by 0 (= £(x) <= ¢, equals to the expected value
of the estimator Il

ELI1] = c(b - a)(1l/n) ig(rEZi-lJ, rL2i])
where rC2i-13 and rLC2il ta.re random numbers distributed
uniformly between (a, b) and (0, ¢), respectively, and
g(rL2i-11, rC2il) is one if f(rL2i-1]) >= rC2ild, or zero if
f(rL2i-1]) < rLC2i]. The graphical representation of the
hit-or-miss Monte Carlo is shown in Figure 1.

In other words, one takes n points at random in the
area (a, b)(0, ¢c), and counts the proportion of those points
which lie below the curve y = f(x). This is sampling from
the binomial distribution with the probability of success
p = I/Cc(b - a)l. The variance of the estimator Il is

VAR(I1) = (I/n)(c(b - a) - I).

The hit-or-miss Monte Carlo method is easy to under-
stand and easy to apply. However, it has the disadvantage
that its estimation has the largest variance among all Monte

Carlo methods.



Figure 1. Graphical Representation of the
Hit-or-miss Monte Carlo Method.



The Sample-Mean Monte Carlo Method

Another way of computing the integral I = jf%(x)dx is
to represent it as an expected value of some random variable
(Hammersley and Handscomb, 1964, and Rubinstein, 1981).
This Monte Carlo method is called the sample-mean or crude
Monte Carlo method. By the mean-value theorem of calculus,
computing the integral

I =‘ﬁ%(x)dx
is equivalent to calculating

I =1£f(c)(b - a), for some c, a (= ¢c <= b.
"The value of f(c) is~

f(c) = E E(l/n)éif(c;)]
where ¢ is distributed uniformly between (a, b).

Therefore, the integral can be estimated as
I2 = (b - a)[(l/n)é;f(ci)l.
Then,

(]
"

n
ELI2] = (b - a)EL(Z f(c;))/n]
n
(b - a)(1/n)ECZf(c{)1, a (= cy <= b.

The variance of I2 is .

VARCI2] = (1/n)C(b - a)ff(x)zdx - 1°3.

A

This quantity is less than VARLI1l] since
VARLCI1] - VARLCI2] = :
2
(I/n)Ce(db - a) - I1 - (1/n)C(b - a@Lﬁ(x)zdx - I3

b
f(x)zdx

(I’/n)c(b - a) - ((b - a)/n)L

b
((b - a)/n)fel -f&f(x)z'dx}.

Since ¢ >= f(x) for all x between (a, b), therefore



LA
cI -‘rf(x) dx >= 0.
[

The comparison between the hit-or-miss and the sample-
mean methods illustrates a general principle of Monte Carlo
work: if one can replace an estimate by an exact value at
any point of a Monte Carlo evaluation, the sampling error in

the final result will be reduced.
Variance Reduction

In the application of Monte Carlo methods to many
problems, it has been found that the sample size required to
attain the desired 1level of accuracy is so large that if
purely random sampling is wused the cost of computation will
be prohibitive. Fortunately, a few techniques for variance
reduction are available. When those variance reduction
techniques are applied properly the sample size requirement
can be reduced w;thout sacrificing the accuracy.

Variance reduction can be seen as a means to use known
information about a problem. In fact, 4if nothing is known
about the problem in hand, variance reduction cannot be
achieved. Variance reduction cannot be obtained from
nothing; it is merely a way of using all of the available
information. The more that is known about the problem, the
more effective are the variance reduction techniques that
can be employed. The following discussion will concentrate
in three variance reduction technigues, namely, correlated
sampling or use of control variates, importance sampling,

and use of antithetic variates.



Control Variates

b

In estimating the parameter I = L:f(x)dx, sometimes one
can find a function g(x) which approximates f(x) and has an
has an analytic solution. Then, since

b
I= j'f(x)dx
a
b b
= [t - g(xlax + [gixax

° (.8

one can estimate I by
. n
I = ELI3] = EL(1/n)(b - a) Z {f(x;) - g(x;)}. + GJ,
b
where G = j,g(x)dx, and a (= x; (= Db.
a

The value of the first term on the right-hand side of the
equation can be obtained by the sample-mean Monte Carlo, and
that of the second term by direct computation. This
technique is known as correlated sampling or sampling with
control variates (Hammersley and Handscomb, 1964, Kahn and
Marshall, 1953).

The sample variance associated with I3 is

VARLCI3]

VARLf (%) - g(x)] - VARLGI]

VARLf (x) - g(x)1]

since G has variance of 0. If g(x) approximates f(x) such a
way that |[f(x) - g(x)]| varies less than |f(x)|, then the
variance of I3 also will be much smaller than the variance
of the estimator calculated without the control function
g(x). For example, -

F = falexp(-Zx)dx
calculated with the sample-mean Monte Carlo with ten random

numbers has mean of 0.4323 and of wvariance 0.0601, as shown
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in Table I. The result from use of control variates with

g(x) =1 ~-x
as control funcfion has mean of 0.4226 and variance of
0.0055. The variance is reduced about 11 fold. Graphically
(Figure 2), the variance from the sample-mean Monte Carlo
estimation of F arises from the variation of f(x) as x runs
over 0 (= x (= 1. When the control function is introduced,
the resulting function Lf(x) - g(x)] varies much less when x
is in the range (0, 1), consequently, the smaller variance
for Cf(x) - g(x)1.

In selecting the control function, one must be sure
that the control function chosen is simple enough to be
integrated analytically. On ;he other hand, the control
function must mimic f(x) and absorb most of its wvariation.
In this example, g(x) absorbed much of the variation of
f(x), and g(x) itself is a simple function to be integrated
analytically.

There are various ways of looking at this method. For
example, when estimating an unknown parameter s by means of
an estimator sl, one may look for another estimator s2 which
has a strong pqsitive correlation with sl and whose
expectation is a numerically known quantity e. One then
samples sl and s2 simultaneously, using the same random
variables, and use

sl - s2 +.e
as the estimator of s. Thus

n
sl = (b - a)(l/nm)(Z£f(x,)),
=\ L



TABLE I

EVALUATION OF THE FUNCTION f = exp(-2x) BY
THE SAMPLE-MEAN MONTE CARLO METHOD AND
BY THE CONTROL VARIATES METHOD WITH
g(x) = (1 - x) AS CONTROL FUNCTION

x f(x) g(x) f(x) - g(x)
0.073 0.8642 0.9270 -0.0628
0.411 0.4396 0.5890 -0.1492
0.826 0.1916 0.1740 0.0176
0.669 0.2624 0.3310 -0.0686
0.438 0.4164 0.5620 -0.1456
0.212 0.6544 0.7880 -0.1336
0.357 0.4897 0.6430 -0.1533
0.892 0.1680 0.1080 0.0600
0.734 0.2304 0.2660 -0.0356
0.138 0.7588 0.8620 -0.1032

True value of j’f(x)dx = 00,4323

Estimation of Jff(x)dx by the sample—mean
Monte Carlo method:

0.4476
0.0601

Mean
Variance

Estimation of‘ff(x)dx with use of control
- variates:

0.4246
0.0055

Mean
Variance




Figure 2.

£f(x) - g(x)

Graphical Representation of Monte
Carlo Method with Control Variates.

12
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s2 = (b - a)(l/n)(fg(xi)), a (=%, <= Db,
=

and
s = ELsl - s2 + el
n
= (b - a)(1/m) Z ELf(x;) - g(x)] + e.
L=
Then
VARLs] = VARLsl - s2 + el

VARCsll + VARLs2] - ZCOVESI, s21.

If the positive correlation between f(x) and g(x) is strong

enough to make 2COVLsl, s2] term greater than VARLs21, then

variance reduction is achieved.

Importance Sampling

Alternatively, if one chooses

G Jbg(x)dx =1,
QA

then

H
]

j:%(x)dx =JEEf(x)/g(x)J(g(x)dx)

. =£|:f(x)/g(x>:|dG.
If g(x) is positive and does not change sign in (a, b), then
G is a cumulative distribution function (cdf) between a and
b, and g(x) is a probability density function (pdf). By the
weighted-mean value theorem

I = Ef(c)/g(c)]ijﬂ;,
for some c in (a, b).

In order to estimate the integral, a sample of ¢, ,...,

c, is taken from the pdf g(x).

The estimate of I, I4, then can be obtained by
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I4

(lln)i:lif(’ci)/g(ci)JG
l:
(1/n)2 Cf(c; ) /g(c; )] a<=c; ¢=D

=l
since G = 1. This variance reduction technique is called

importance sampling.
The sample variance of I4 can be found as
VARLI4] = (1/n)J:hf(x)z/g(x)de -1 .

The main idea of imporﬁance sampling is to concentrate
the distribution of the sample points in the parts of the
interval ﬁhat are of most importance instead of spreading
the sample uniformly. As far as the result is not biased,
one compensates for distorting the distribution by taking
f(x)/g(x) in place of f as estimator.

As an example, suppose one wishes to approximately
compute the intcgral

F = _Lwiin(x)dx,

The exact value of this integral is 1. The value of f(x)
varies from 0 to 1 when x run from 0 to 7/2. When estimated
with the sample-mean Monte Carlo method, the estimate has
mean of 1.0102 and variance of 0.2633 (Table II).

If g(x) = 8x/it* is Qsed as importance function, the
cumulative probability function G(x) is

G(x) =u = J;;(x)dx=/o?8x/rﬁdx= ax /iyt .

By using inverse transform on a random number u to find the
value of x;, one can calculate f(ki)/g(xi). Estimate from
with importance sampling has mean of 1.0045 and variance of
0.0227 (Table II). The resulting function f(x)/g(x) has

very small variation for x running between 0 and 1. Much of



TABLE II

EVALUATION OF THE FUNCTION f(x) =

SAMPLE-MEAN MONTE CARLO METHOD AND BY
IMPORTANCE SAMPLING WITH g(x) = 8x/m*
AS IMPORTANCE FUNCTION

sin(x)

BY THE

15

Random 1/ Random 2/

Varible u £f(un/2) Variate x f(x) g(x) f(x)/g(x)
0.791 0.9466 1.3970 0.9849 1.1324 0.8697
0.338 0.5063 0.9132 0.7915 0.7402 1.0693
0.402 0.5903 0.9959 0.8393 0.8072 1.0398
0.211 0.3402 0.7215 0.6605 0.5848 1.1294
0.596 0.9362 1.2127 0.9366 0.9828 0.9530
0.643 0.8468 1.2596 0.9520 1.0210 0.9324
0.093 0.1456 0.4790 0.4609 0.3883 1.1870
0.137 0.2135 0.5814 0.5492 0.4713 1.1653
0.960 0.9980 1.5391 0.9995 1.2475 0.8012
0.724 0.9075 1.3366 1.0834 0.8978

0.9727

/2

True wvalue of f'f(x)dx = 1

Estimation of

Monte

o

Carlo method:
Mean = 1.0102
Variance = 0.2633

W2

f(x)dx by the sample-mean

Estimation of . f(x)dx by importance sampling:

Mean’
Variance

1.0045
0.0227

1/

2/

(

0' 1).

X is obtained by inverse transform from

X
u = j'Bt/H‘dt.
4

Random variable u distributes uniformly between
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the varation in f(x) is absorbed by the importance function
g(x) (Figure 3).

Suppose that one can find a function g(x) such that
f(x)/g(x) = ¢, where c is a constant. Then ¢ equals 1/I.
Applying this to the variance equation yields VAR(I4) = 0.
It appears that one has a perfect Monte Carlo method, giving
the exact answer every time. This is unfortunately useless,
since to sample f(x)/g(x) one must know g, and to determine
g(x) (= £f(x)/I) one must know'I, and if one knows I there is
- no need for Monte Carlo methods to estimate it.

Although one cannot find a function'to make f(x)/g(x)
be a constant, one might be able to find some function g(x)
such that Cf(x)/g(x)] is as close to a constant as one can
make it, then the variance can be drastically reduced.

One may ask that, given a function é(x) approximating
the function f(x), which method one should use to estimate
l:f(x)dx. It has been shown (Halton, 1965) that

VARLCI3] - VARLCI4]
= n COVL(£(x) - g(x))?/g(x), g(x)I.
If the approximation of f(x) by g(x) is absolutely uniform,
i.e. |f(x) - g(x)] 'is approximately constant, correlated
sampling (sampling with control variates) is more efficient;
while if the approximation is relatively wuniform, i.e.
[f(x) - g(k)l is approximately proportional to |g(x)|, then
importance sampling i§ preferable.
Monte Carlo computation with importance sampling 1is

especially relevant for integrands that "peak", so that f(x)



g(x) = 8X/1r2
1 £(x)/g(x)
f(x) = sin(x)
0 w/2
Figure 3. Graphical Representation of Monte Carlo

Method with Importance Sampling.

17
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has extreme high values at certain x's (Figure 4). For such
a function, one sample in a peak swamps several samples
elsewhere. If one can find a .g(x) that approximates the
shape of f(x) and makes f(x)/g(x) unpeaked, then importance
sampling can reduce variance and improve accuracy.. On the
other hand, if f(x) "dips", importance sampling would not
help much in variance reduction (Figure 5). Similarly, if a
function g(x) is chosen as importance function such that
f(x)/g(x) is a peaked function, one should consider either
looking for another importance function, or combining this
importance sampling with some other variance reduction
techniques. If the resulting f(x)/g(x) is a function that
dips, this importance function should be considered as
acceptable.

One may ~argue that it is possible to pick wup two
functions that have the same variance but one dips and
another one peaks. While this is true, it is not "fair" to
compare their variance only, since their means may differ
considerably. Therefore, one should compare variation .in
relative terms, and coefficient of variation 1is a good
measure of relative variation. Then, the function that dips
usdally would have smaller coefficient of vafiation than the
function that peaks if indeed their means are statistically

different.

Antithetic Variates

The principle of using antithetic variates in Monte



peak

Figure 4. A Function That Peaks.

19



Figure 5.

A Function That Dips.

20
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Carlo methods is that one seeks two unbiased estimators tl
and t2 with strong negative correlation, for some unknown
parameter I. Then
IS = (tl + t2)/2
aléo is an unbiased estimator of I. The sampling variance
of IS then is
VARLCIS5]

VARL(tl + t2)/23

(VARCt1] + VARLt2])/4 + COVLCtl, t21/2.

If the covariance is strongly negative, the method of
antithetic variates can be very effective in wvariance
reduction (Hammersley and Morton, 1955). In fact, if f(x)
is a continuous monotonic function with continuous first
derivative, the variance of the estimator from use of
antithetic variates is guaranteed to be less than half of
the magnitude of that of estimator from the sample-mean
Monte Carlo method (Rubinstein, 1981).

Considering the integral

I =f]:‘.'(x)dx,
_ a
which equals to

I

(1/2)xftf(x) + f(a+b-x)l1dzx.
To estimate I, one can taken a sample of size n from the
uniform distribution b?fween (a, b) and find
IS = (b-a)(1/2)(1/n)Z Lf(x;) + fla+b-x;)3,
where a (= x; <= Db.
The reasoning for using antithetic variates is similar

to that for using control variates and importance sampling:

achieving variance reduction by combination of functions.
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In'using antithetic variates one derives another function
g(x) sﬁch that g(x) is symmetric to f(x) along the line
Xx =a+ (b-a)/2. If f(x) is monotonic or tends to be
monotonic, then L[f(x)+g(x)1/2 wusually will have smaller
variation then f(x) due to compensation. For example,

£(x) = (x3 + x% + 1)/(x% + 1)
is almost monot;nically increasing between (0, 5) except
in the range (0, 1) (Figure 6). By generating

g(x) = £(5 - x)

= (101 - 65% + 14x? - x°)/(x* - 10x + 26)

and then combining f(x) and g(x), the resulting function
Cf(x)+g(x)1/2, has much smaller variation in (0, 5) than
does (Figure 6). Using the sample-mean Monte Carlo method
on Lf(x)+g(x)1/2, the variance will be drastically reduced
comparing to that of the sample-mean Monte Carlo method on
f(x) alone.

Correlated sampling and importance sampling depend on
knowing an ‘"easy" function g(x) which approximates the
"difficult" function f(x). However, this easy function
usually is difficult to find, and one must be content with
some compromise. When the conditions are fairly loose it
~ is easier to reach a good compromise. This is the case with
antithetic variates. In practice, it is relatively easy to
find negatively correlated unbiased estimator of a parameter
usually easier than it is to find an equally satisfactory
control function or importance function. The antithetic

variates method therefore tends to Dbe more efficient in
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Figure 6. Graphical Representation of Monte
Carlo Method with Antithetic
Variates.

£fi(x) + g(x)
( )
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practice, or, at least easier to apply.
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CHAPTER III
TREE VOLUME ESTIMATION

Assume that the relationship between tree height and
diameter can be expressed as some function
y = f(x),
where x is height along the tree,
y is the diameter at height =x.
Then the volume of a tree can be found by integrating the
squﬁre of the function f(x):
V(H) = vkjgéf(x)]zdx, (1)
where V(H) is total volume of the tree,
H is the height of the tree, and
k is the scale factor.
This method of tree volume calculation is called the cross-
section methdd (Figure 7).
Alternatively, tree height x can be expressed as a
dependent variable of the diameter y |
x = gly),
and tree volume can be calculated by the shell method
V(B) = 21rk‘[byg(y)dy,
where B is the diam;ter at the base of a tree (Figure 8).
Unfortunately, the function f(x) or g(y) usually is. not

known. Therefore, the volume of the tree cannot be obtained
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Figure 7.
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The Cross-section of a Solid.



Figure 8.

The Shell of a Solid.
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from direct integration.

Methods that are used most often to obtain an estimate
of tree volume are the integration method based on the
trapezoidal rule (Smalian’'s formula) and construction of
taper and/or volume equations based on a few easily measured
parameters.

Smaliaﬁ's formula essentially is a numerical method of
integrating a function with the trapezoidal rule. In
estimating the volume of a tree, Smalian’s formula works as
follows. Starting from the base of the tree, the stem is
divided into intervals of equal 1length. The cross-section
areas of both ends of each interval is estimated by taking
measurements of the diameters, assuming the stem cross-.
section is always a circle. These cross-section areas are
used to estimate the volume of the stem in this interval.
Accumulation of the volume of all intervals results in total
tree volume.

Alternatively, one can estimate the volume V of a tree
by the Monte Carlo method since the numerical value of the
height x, or g(y), and the diameter f(x), or y, can be
obtained by direct measurement. The volume V then can be
estimated without bias by '

V(H)=1rk(H/n)_Lz_y_-L:'f(x,:)2, 0 <= x; <= H,
with the cross-section method, or by
V(B)=2nk(B/n)lz'§lyt giy;), 0 <=y, <= B,

with the shell method.
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Advantages of Monte Carlo Methods

in Volume Estimation

The Monte Carlo method should be a good choice for tree
volume estimation for several reasons. Although there is
some definite relatioﬁship between diameter and height of a
tree, it is very difficult to express this relation in an
exact mathematical formula. Without an exact formula, it is
impossible, or at least very difficult, to calculate the
volume analytically. Even if a formula is established, it
tends to be complex if it models the tree taper closely, and
this can make computation difficult. With the Monte Carlo
method, one always can estimate the tree volume without an
exact mathematical formula.

Unbiased Monte Carlo methods such as use of antithetic
variates, use of control variates, importance sampling,
etc..., can be applied easily. Conventional methods of tree
volume measurement are biased. The widely used Sﬁalian's
formula is known to be positively biased. The only way to
reduce this bias is by increasing the sample size (Brickell,
1984).

Using taper or volume equations to measure the volume
of trees also has difficulties. Taper and volume equations
developed through regression are often biased when applied
to local subpopulations or to populations other than the one
on which the sample is based. Worse yet, this bias cannot

be reduced by increasing the sample size.
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Volume estimated with the unbiased Monte Carlo method
on a single 'tree is not biased. When volume estimation by
Monte Carlo methods applies to a large population, the
unbiased estimation from the Monte Carlo method leads to
cancellation of errors incurred on each tree and gives a
total error of estimation close to zero.

In using the Monte Carloc method, if somehow one can
reduce the variance of estimation on each tree, then in a
large forest the estimation of the total volume should be
the true total volume with very small variation. With
improved sampling techniques, one should be able to achieve
high accuracy in volume estimation with a reduced number of
samples, thus saviﬁg labor cost in measuring‘tree volume in

a forest.

The Power Function Model of

Solids of Revolution

If the formula

V(H) =7rK(H/n)?§f(x1 >, 0 <= x; <= H,
or

V(B) =2ﬂK(B/n)LZi_:yi gly;), 0<=y (=B,
is used to estimate the volume of a tree, the variance
associated with the estimator will be quite large. To
reduce the variance, one needs some information about the
tree to be estimated. Usually, ¢trees with excurrent form
(single stem) can be approximated by a power function model

of solids of revolution. The power function model of solids
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of revolution has the form
s(x) = D(1 - x/H) (2) .
where s(x) is the diameter at heighf x,
H is height of a tree,
x (= H,
' D is diameter at breast height (dbh).

The power p in (2) determines the form (or shape) of a
tree. It represents a cylinder ;f p = 0, a paraboloid if
p = 0.5, a cone if p = 1, and a neiloid if p = 1.5.

Real trees do not assume any of these simple forms, but
instead, a combination of them. Generally it is assumed
that the bottom part is approximately a neiloid, the middle
section approximately a paraboloid, ahd the top pért
approximately a cone.

For trees of excurrent form, they can be approximated
qguite well by power function model of solids of revolution.
There are taper equations established through regression
bear&ng similarity to the power function model. For example
equations by Orﬁerod (1963), and volume ratio models by
Burkhart (1975) and by Cao (1977).

The close approximation of the power function model of

solids of revolution to trees with excurrent form suggests

ways to estimate true tree volume with Monte Carlo methods
along with variance reduction techniques.

Assuming the true taper equation of'a tree is f(x),
then V(H) in (1) 1is the volume of the tree. To achieve

variance reduction, one can use the power function model of
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solids of revolution either as control variates or as
importance functions for importance sampling, depending on
degree of accuracy required. Since most excurrent trees
have forms between paraboloid and cone, one can approximate
the real tree taper with power function model by properly

choosing the value of p in formula (2).
The Cross-section Method

Using importance sampling in tree volume estimation is
first proposed by Gregoire et al (1985). 1In their original
work a tapeé equation similar to that given by Ormerod is
used as the importance function. Van Deusen and Lynch
(1986) show that using power function model of solids of
revolution as an importance function with p fixed to 0.5,
trees with various shapes all can be estimated without bias,
although to obtain the séme degree of accuracy requires more
- samples for those trees with shapes quite different from the
shape of the importance function.

Apparently, S(x)/S(H) from the power function model is
a pdf, where .

S(x) =1rkf:|:D(1 - t/uf1%at.

From (1),
A "
V(H) =wkf £(x) dx
# 2
=1rk[ Cf(x) /g(x)1dG(x),
N (-
where
G(x) = S(x)/S(H), and

g(x)dx = dG(x).
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One can estimate the true volume V(H) by V
v o= (Wk/n)i}i £(x;)/g(x;),
where x 1is a random variable sampled from pdf g(x). Each
X can be generated as follows:
l. generate a random variable u;, distributed in
(0, 1) uniformly.
2.v use the inverse transform to find x; from
u; =‘Lﬁg(t)dt.
To estimate the volume of a real tree, f(x;) is taken
directly from the tree.
It will now be proved that ahy function with the form
y = KH - x) ' . (3)
chosen as importance function shall be the. same as choosing
the solids of revolution (2) with b = p.
It is obvious that the pdf from (2) for the cdf
G(x) = S(x)/S(H)
is dG(x)/dx = dLS(x)/S(H)1/dx

CdS(x)/dx1/CS(H) ]

H
2 (H - zfPax1/c orDyHY) fb (H -x)dx3

C(rDYH

H 2/
C(H - x)z"de/tf(H - ) ax. (4)
0
The pdf gq(x) from (3) for the cdf
Q(x) = ¥Y(x)/Y(H)
is dO(x)/dx = 4dC¥(x)/Y(H)1/dx,
where |
X 2b
Y(x) =n/cK(H - t) 1 dt,
0

and b

H 2
Y(H) = fl:K(H - t)7 1 dt.
4
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Therefore,

dCLY(x)/Y(H)1/dx

g(x)

C4dY(x)/dx3/CY(H) ]

H 2b
CTK*y(H - x)“’dxj/c(rrxz)fo(ﬂ - x)7dx3

C(H - x)zsdx:l/l:/bu(l-l - x)zbdx.’l,
which is the same as (4) derived from solids of revolution
if b = p.

The equivalence of (2) and (3) means that if a taper
equation can be converted to the solids of revolution (2)
with a difference only in the constant term, then using this
taper equation as an importance function is the same as
using the solids of revolution (2). It also means that
unless trees to be measured have shapes quite different from
power function model of solids of revolution, wusing (2) as
importance function can improve the accuracy of tree volume
estimation considerably without knowing "too much” about the
tree, i.e. the taper function of the tree. Thus in their
work, Gregoire et al (1984) can just choose (2) as their
importance function. Using Monte Carlo method with the
power function model (2) as an importance function one can
do without taper equation completely for any tree species in
the case of tree volume estimation.

Since solids of revolution generally approximate true
tree taper of excurrent trees gquite closely, it also should
be able to be used as control function in estimating tree
volume. To estimate tree volume with solids of revolution

as control function, one calculate f(x;) and s(x;) at the
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same time by generating a random variable x in (0, H). The
volume V(H) then can by estimated without bias by
v = (H‘/n)LZ:Ef(xi) - s(x)1 +Lns(x)dx. |

Since most trees of economic importance already have
taper equations close to true tree shape developed, one may,
instead of using hypothetic taper equations such as power
function model of solids of revolution, use those egations
as control functions to get a better estimate of tree

volume.

The Shell Method

The relationship between diameter and height also can
be expressed as x = g(y), where y is diameter, and g(y) is
height for the point with diameter y. The volume of a tree
can then be calculated by shell method as

V(B) = 21rkxf§g(y)dy.
Since g(y) usually is not known, one cannot calculate the
volume of a tree by direct integration. By wusing the
sample-mean Monte Carlo, the volume can be estim;ted as

vV = (ZNBk/n)éyig(yi ), 0<= y. <= B.

As stated before, this estimator has a large variance
associated with. By using antithetic variates, one can
reduce the variance. But one can do more by finding an
"easy function" and using it either as importance function
or as control function in variance reduction. The natural

choice again is the power function model of solids of

revolution.
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An equation that expresses the height as dependent
variable of diameter for the power function model of solids
of revolution is

h(y) = H(1l -(y/B)z ), g = 1/p,

which is just the inverse of (1l). The volume of a tree up

to diameter y is

y 9 '
Viy) Zﬂk/H(l - (£/B) )tdt

= 2wkl [ (1 - (£/B)?)tat

= 2T kHY*C1/2 - (yl/((g+2)B

) 3.
And the volume of the tree is
V(B) = 2 TkHB°L1/2 - 1/(g+2)3.
The ratio
V(y)/ V(B = (3/BY CC(a+)B - 2971/ (aBt)3
is a cdf. And
r(y) = (2w KH(1 -(y/B)z )y)/(Z‘NkHBz(IIZ - 1/(g+2)))
= (1= (y/B )Y/ (B(LI2 - 1/(qe2))) (4)
is the pdf associated with V(y)/V(B).

One can generate random variates y; from V(y; )/V(B)
by generating a random variable u; uniformly distributed in
(0, B), then using the inverse transform to find y,; . This
y; is used to obtain values g(y;) and r(y;). One then takes
their ratio. Therefore, the estimate of a tree’'s volume by
the shell method Monte Carlo calculation with importancé
sampling is

V = (ZTrk/n).lZ:g‘(yz )y, /ety ),

when formula (4) is used as importance function.

One can choose the best form as importance function
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by properly choosing the value of g. This however may not
be economical, since to do so complicates the process of
the inverse transform due to the difficulty of finding the
value y . If the shape of the power function model of
solids of revolution is set to be a parabola, which is a
good enough choice for practical purposes, (Gregoire et al,
.1986),'the entire process can be simplified.
When r(y) is set to be a parabola, g has the value of

two. Substitute it into V(y)/V(B), one gets

V(y)/V(B) = -(y*/B*- 2y°/B).
The diameter y then can be easily found as

y =81 -/TT - 4,) .,

where u; is a random variable uniformly distributed Dbetween

0 and 1.
The pdf then can be expressed as
r(y) = 4y(1 - y2/8°)/B ,
which is also a simple function once y is generated from

the cdf by inverse transform.
Critical Height Sampling

Another tree volume estimation method is called
critical height sampling, it was first proposed by
Kitamura (1964). The principle of critical height sampling
is as follows.

Each tree has an associated distribution with cdf
yz/BZ. Here y is the diameter at some height on the tree.

B is the diamter at the base of the tree. One can generate
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a diameter y; randomly by y; =B Ju;, and using this y,
to find the corresponding height g(y; ); here u; is a random
number with a uniform distribution between 0 and 1. The
expected value of g(y) is
ECg(y)] =j°sg(y)(2y/Bz')dy.
The volume of a tree calculated by the shell method is
vV = 2'1rkf°5yg(y)dy.
Taking the ratio of the previous formula and this one yields
ECx] /V = 1/(TkB").
Rearranging this equation, one gets

V = wkB ELg(y)],

2 n
(TkB /n) :L:‘g(yl-) .

Therefore, one can estimate the volume of a tree by
geherating a number of critical heights and multiplying
their average by the basal area of that tree.

The sample variance of V tends to be large since this
is the sample-mean Monte Carlo of critical height sampling,
therefore the less accurate of the estimator. Unlike the
cross-section method and the shell method, there is no known
"easy function" that can be applied to variance reduction.
Therefore, use of antithetic variates is the only variance
reduction technique applicable to critical height sampling.

There is an intimate relation between critical height
method and the shell method. In fact, one can derive
the formula for critical height sampling from the shell
method. The volume of a tree calculated by the shell method

is
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v = 2mkf ya(pray.
By the weighted mean-value theorem of integration, this
equation can be written as
V = Zﬂkg(c)ffydy, 0 <= ¢ <= B.
The integral on the right-hand side of the above equation is
B%/2. Therefore, the above equation can be wriiten as
V = (wkB®)g(c).
In terms of expectation, g(c) is ECg(y)l, where y is in
(0, B). Then the aboﬁe eqﬁation can be written as B
V = (TkB*)ELg(y)1,
which is the same as the critical height equation derived

in the beginning of this section.



CHAPTER IV

DESCRIPTION OF THE SIMULATION
PROGRAM -

The main purpose of this project is to find a better
Monte Carlo method to replace the widely used, but biased,
Smalian’s formula for tree volume estimation. The selection
criteria are that the method(s) chosen should perform better
than Smalian’s formula in terms of absoclute error when
volume is estimated with the same number of samples taken
from each tree, and the sample size should be small. This
is because increasing sample points increases the accuracy
of result from Smalian’s formula faster than that of Monte
Carlo methods. If a large number of samples are taken, then
the result from Smalian‘s formula will be better. Therefore
if the Monte Carlo method evaluated are to be considered as
possible alternatives of Smalian‘s formula, they shouid
produce smaller absolute errors than that from Smalian’s
formula for smaller number of samples per.tree.

In this study, tree volume estimation of loblolly pine
is simulated. The "true" tree is represented by the taper
equation developed by Max and Burkhart (1976) for natural
stand;outside bark. The equation has tﬁe form

d®/p%* = bl(h/H - 1) + b2(K /H -1) +
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b3(al - h/H)2I1 + b4(a2 - h/H)?I2

where I1 = 1 if h/H <= al,
I2 = 1 if h/H <= a2,
bl = -2.4602, b2 = 0.9751,
b3 = -0.7044, b4 = 131.4842,
al = 0.8026, a2 = 0.0867.

The "true" volume of a tree is obtained by integrating this
equation through the entire height of the tree.

All Monte Carlo computations in this study can be
classified into three categories: 1) computations based on
the cross-section method, 2) computations baséd‘on the shell
method, and 3) critical height sampling.

The simulation study is conducted on trees of
hypothetical sizes. Diameters at breast height ranged from
0.1524 m (6 in) to 0.4826 m (19 in). Tree heights range
from 12.192 m (40 ft) to 30.480 m (100 ft). 1Input tree

sizes are given in Table III.
Smalian’s Formula

Tree volume estimated with Smalian’s formula is wused
in comparison with results from MontelCarlo computations.
The algorithm for estimating volume with Smalian’s formula
is as follows.

a. for n sample points on the stem, divide the stem

height by n+l, the result is the interval length;

b. for each section of the stem, calculate its volume

by finding the cross-section area of the section
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TABLE III
SIZES OF TREES USED IN SIMULATION STUDY

DBH
(METERS)

HEIGHT (METERS)
12.192 15.240 18.288 21.336 24.384 27.432 30.480

l

|

|
0.1524 |
0.1778 |
0.2032 |
0.2286 |
0.2540 |
0.2794 |
|

|

|

|

|

I

I

|

el
e

0.3048
0.3302
0.3556
0.3810
0.4064
0.4318
0.4572
0.4826
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top and the section bottom, add them together,
dividing the result by 2, then multplied with the
section length. .

c. sum up volume of all sections to get volume

estimation.

Monte Carlo Cémputation of

the Cross-section Method

Under this category, importance sampling, importance
sampling with antithetic variates, and use of control
variates are evaluated. Crude Monte Carlo method and crude
Monﬁe Carlo with antithetic variates are include for
comparison purpose. Solids of revolution of (2) are used
either as importance function or as control function.
Another calculation with taper equation from Kozak et al
(1969) as control function is also programmed to compare if
using established taper equations as control function can
improve the estimation. This taper equation has the form

y?/D% = bl(x/H - 1) + b2(x%*/H°- 1),

y : diameter at height x;

bl : regression coefficient, -2.6447 is used here;

b2 : regression coefficient, 1.2453 is used here.

The regression coefficients bl and b2 are from Cao et al

(1980) for loblolly pine.
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The Crude Monte Carlo and the

Crude Monte Carlo With

Antithetic Variates

The algorithm for the crude Monte Carlo method is as
follows.

a. Generate a sequence of n random numbers u;, each
one is distributed uniformly in (0, 1).

b. wuse x; = H*u; as a height to find out the cross-
section area A; = 'n’Ef(x,;)Zlz at this height.

c. compute V = H*(l/n)iz:A,;.

In the computation of crude Monte Carlo method with
antithetic variates, oné takes n/2 fandom samples instead
of n random samples. For each random number u; generated,
one calculates another random number v; by v; =1 - u;.

The algorithm for this estimation is as follows.

a. Generate n/2 random numbers u; each one is

i
distributed uniformly in (0, 1).

b. Derive another n/2 random numbers v; from u,;.

c. Calculate the cross-section area A, and Ay from
from H*u; and H*xv; , respectively.

n/z
d. Calculate the estimate by (H/n)*(Z%EAu£.+ A% 1.
L=

Importance Sampling Without

and With Antithetic

Variates

Equation (2) for solids of revolution is wused as an
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importance function. The power in the equation changes
automatically in the program so that one can select the
appropriate ' form as importance function by studying the
simulation results.
The algorithm for importance sampling is as follows.
a. Generate a sequence of n random numbers u .
b. Obtain the random variate x by taking inverse

transform on

u; V(x)/V(H)

L
i

2P+
1 - (1 - =/H).

no 2
c. Compute OT/n)Z%f(xi)/g(x()..
‘.=

In the computation of importance sampling with
antithetic variates, instead of taking n random samples,
one takes n/2 random samples. For each random number u.,
one generates another random number v; by v, =1 - u;. The
estimate is calculated as

GT/n)E%?f(xi)/g(x;) + £(y; )/g(y;) 1.
Here x; and y; are generated by inverse transform from u;
and v; , respectively. The algorithm is as follows.
a. Generate n/2 random numbers u;.
b. Derive n/2 random numbers v; from u;.
c. Derive x; from u; and y; from v; by inverse
transform the same as that in importance sampling
calculation. |

d. Calculate the estimate by
nfe 2 2
(T/m)L3_£(x; )/g(x;) + £(y. )/g(y; ) 3.

i=l
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Use of Control Variates

The algorithm for control variates sampling is as
follows.
a. Generate n random numbers u; between (0, H).
b. Calculate the estimate by
(l/n)éﬁ[f(ui)"- g(u)l + G

L=
where G is the integral of either solids of revolution of

equation (2) or the taper function by Kozak et al (1969)

with coefficient from Cao et al (1980).

Monte Carlo Computation of

the Shell Method

Under this category, only importance sampling and
importance sampling with antithetic variates are programmed
In these calculations, one estimates a treeDS“ﬁolume in the
same way as volume estimation in the cross-;eééion method
except that the pdf now is

(1 -(y/B)z)y/EB (0.5 - 1/(g+2))1,
and the cdf is

(3/B°C((q+2)B° - 2y5)/(q8h) 1.
The procedure of finding estimate is the same as that under
the cross-section category.

In the simulation study, only the importance function
that assumes the shape of paraboloid is tested because

assuming tree taper other than paraboloid adds a tremendous

computation burden due to the difficulty of finding random
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variates from the inverse transform.
Critical Height Sampling

Under this category two methods are studied: critical
height sampling and critical height sampling with antithetic
variates.

The algorithm for critical height sampling is as
follows.

l. Generate n random variables u that are uniformly
distributed in (0, 1).

N
2. Calculate V = (B/n)2 H#xu .
L=t

The algorithm for critical height sampling with

antithetic. variates is as follows.

1. Generate n/2 random numbers u that are uniformly
distributed in (0, 1)

2. Derive another n/2 random numbers v; in (0, 1)

by v =1 - u..
¥ H nfe /2
3. Calculate V = (B/n)C2 Hiu; +2 Hkv; 1.

=1 L=l



CHAPTER V
RESULTS AND DISCUSSION

The error from Smalian’s method, as shown in Table IV,
is positively biased. The error however decreases from
above 14 % for 4 sampling points per tree to about 1.3 % for
l6 samples per tree. On the other hand, the simulation
sﬁudy shows that Monte Carlo methods tested are all very
close to the "“true mean“; their signed errors are very close
to 2zero and have signs on both sides of zero (Table V -
Table XIV). Apprarently, this is due to the fact that they
all estimate the true mean without bias. Increasing sample
size however does not reduce absolute error or coefficient
of.vériation so fast.

Critical height sampling, with or without the use of
antithetic variates, exhibits a very large coefficient of
variation and large absolute error (Table V and Table VI).
This indicates that volume estimates scatter widely around
"the true mean. Critical height with antithetic variates
reduces variance considerably, but the result is not as good
as expected by Van Deusen and Lynch (1986). Since a method
that results in smaller variance is desirable, critical
height sampling apparently should not be the choice.

The sample-mean Monte Carlo of the cross-section method

48



TABLE IV

ERRORS FROM SMALIAN’'S METHOD
WITH DIFFERENT SAMPLES

NUMBER OF TREES ESTIMATED : 62
TOTAL VOLUME : 61.48715
SAMPLE  SMALIAN‘S % SIGN % ABSOLUTE
NO. VOLUME 'ERROR ERROR
4 70.1088 +14.0219 14.0219
6 66.6867 + 8.4563 8.4563
8 64.7598 + 5.3225 5.3225
10 63.5182 + 3.3032 3.3032
12 62.7802 + 2.1030 2.1030
14 62.4688 + 1.5965 1.5965
16 62.2979 + 1.3185 1.3185




TABLE V

RESULTS OF CRITICAL HEIGHT SAMPLING

NUMBER OF TREES ESTIMATED

TOTAL VOLUME

62

61.48715

SAMPLE % SIGN % ABSOLUTE MAXIMUM

MINIMUM AVERAGE

NO. ERROR ERROR C.V. C.vV. cC.V.
4 - 0.3306 54.3363 183.0602 15.9252 100.5098
6 -11.1243 42.3366 204.0801 30.4307 122.9002
8 - 2.8266 33.6566 246.7488 47.8993 118.1132
10 5.9634 36.7064 202.8155 47.2608 123.0994
12 - 1.6100 31.0280 209.2961 75.0054 124.0201
14 0.3606 27.4318 175.2700 80.1576 118.5715
le - 8.9875 20.8463 185.4969 74.8796 126.4535
TABLE VI
RESULTS OF CRITICAL HEIGHT SAMPLING
WITH ANTITHETIC VARIATES
NUMBER OF TREES ESTIMATED : 62
TOTAL VOLUME : 61.48715
SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE
NO. ERROR ERROR C.V. C.v. C.V.
4 -0.1662 33.0617 107.4214 0.9388 44.7579
6 0.6980 21.1585 110.2519 14.4007 53.5561
8 6.2068 21.4950 110.5417 7.6648 50.9656
10 1.2610 19.6775 95.4558 24.0288 53.2715
12 -1.6980 18.7067 78.5120 20.6668 52.2430
14 -4.1458 19.2832 91.3613 22.3987 54.7235
16 -1.0309 11.9846 79.2977 24.0127 52.4792
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is poor as expected. The absolute error is almost 25 %, and
the coefficient of variation is almost 70 % for 4 samples
per tree (Table VII). The use of antithetic variates along
with the sample-mean method reduces the absolute error to
13 % and coefficient of variation to 12 ¥ for 4 samples per
tree (Table VIII). This improvement is not enough, however.
The absolute error is in the same order as the absolute
error from Smalian’s formula for small number of samples.

Monte Carlo computation of the cross-section method
with a power function model of solids of revolution as
control function is intermediate in performance when judged
from the size of absolute error and/or that of coefficient
of variation (Table IX). The best form of solids of
revolution used as control function appears to be a neiloid,
when the power of control function is 1.5.

Using the equation from Kozak et al as control
function does not improve the accuracy of estimation. This
indicates that taper equations developed through regression
do not approximate tree better than the power function model
of solids of revolution (Table X).

Comparing the result from using equation by Kozak et al
and that from using equation of solids of revolution shows
that choosing a cone as control function is comparable to
using equation by Kozak et al. In both cases, the absolute
errors are below 10 % with only 4 sample points for each
tree. This is much better than the estimate from Smalian's

formula with the same sample points, which is 14 % for 4



TABLE VII

THE SAMPLE-MEAN MONTE CARLO INTEGRATION

OF THE CROSS-SECTION METHOD

NUMBER OF TREES ESTIMATED : 62
TOTAL VOLUME 61.48715
SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE
NO. ERROR ERROR C.vV. c.v C.V.
4 0.0234 25.4886° 154.0277 28.8274 75.8004
e 6.6026 25.0540 144.1209 28.2300 75.1239
8 0.9913 22.9408 123.5812 30.3454 71.2806
10 -5.1870 19.7725 126.8572 41.8779 74.5864
12 1.4208 19.9306 112.4694 44.9995 76.2166
14 5.0915 17.5392 106.3077 51.0371 75.5293
16 2.1676 16.5638 117.2920 43.7578 75.4770
TABLE VIII
THE SAMPLE-MEAN MONTE CARLO INTEGRATION OF -
THE CROSS-SECTION METHOD WITH
ANTITHETIC VARIATES
NUMBER OF TREES ESTIMATED : 62
TOTAL VOLUME 3 61.48715
SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE
NO. -ERROR ERROR C.V. C.V. C.V.
4 3.6052 12.7692 53.7102 0.0662 11.9070
6 -1.5775 9.0129 48.7669 0.3503 8.76895
8 2.2367 9.3529 45,7606 1.2311 11.7828
10 0.9626 7.7534 42.3030 1.5596 15.1243
12 -0.7140 6.8227 43.2093 0.7453 14.0822
14 0.1396 8.3192 43.2541 1.9731 15.2742
16 -0.0673 4.6711 37.3379 1.2015 17.4252




TABLE IX

MONTE CARLO .INTEGRATION OF THE CROSS-SECTION METHOD
WITH THE POWER FUNCTION MODEL OF SOLIDS OF
REVOLUTION AS CONTROL VARIATES

NUMBER OF TREES ESTIMATED : 62
TOTAL VOLUME : 61.48715
SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE
NO. ERROR ERROR c.v. C.V. C.V.
POWER OF CONTROL FUNCTION: 0.50
-4  0.0510 12.%9101 86.9156 3.1899 27.6776
6 1.9026 14.2923 82.7106 7.5094 27.0647
8 4.7948 13.8640 80.2082 7.2651 32.1145
10 0.7463 10.9052 62.8898 8.8415 28.0142
12 -0.2095 8.8652 66.0231 11.0528 33.8105
14 -1.1355 7.9342 65.5141 14.0954 34.0433
16 1.0131 9.6288 59.5235 12.9284 32.1395
PORER OF CONTROL FUNCTION: 1.00
4 -2.5154 9.1138 59.1412 1.0492 9.2465
6 1.1493 9.5893 *70.9799 1.0087 17.7769
8 -2.0285 7.2777 64.5510 1.9211 13.7950
10 -1.1058 7.3887 58.4549 2.7504 17.1443
12 1.0962 7.7291 59.2532 3.2262 19.3620
14 -1.2035 5.9181 52.4751 3.4989 20.3671
16 1.1430 6.3165 60.3064 3.3403 23.2527
POWER OF CONTROL FUNCTION: 1.50 :
4 -1.1881 6.7679 68.0724 0.6346 12.2316
6 -1.6221 5.4457 52.5173 0.9210 9.6192
8 -0.1552 6.5231 58.2526 0.7783 17.2974
10 -2.5444 5.5578 54.6269 2.0791 14.9870
12 1.2104 6.7368 53.7797 2.2826 17.6643
14 1.8555 6.0064 46.1821 2.7623 18.8679
16 -0.7081 4.4110 48.8928 2.0710 17.0177
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TABLE X

MONTE CARLO INTEGRATION OF THE CROSS-SECTION

METHOD WITH KOZAK'S TAPER EQUATION

AS CONTROL VARIATES
NUMBER OF TREES ESTIMATED : 62
TOTAL VOLUME : 61.48715
SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE
NO. ERROR ERROR C.v. c.v. - C.V.
4 -0.3832 9.5803 58.8018 1.2695 20.4936
) 0.6424 8.9704 51.4510 2.4010 22.2000
8 -1.4345 7.1755 53.2778 4.0905 22.2166
10 -0.3647 6.3586 44.1845 6.4869 23.9959
12 1.8815 5.7552 41.9341 5.8769 22.5226
14 1.0891 5.0571 39.2983 6.6373 22.7172
16 -0.8969 4.3373 40.1608 8.4911 22.9995
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sample points per tree.

In the cross-section method category, the results from
computation with importance sampling again show that neiloid
approximates the "true" taper better. But more importantly,
the absolute error is reduce to around 7 % with only 4
samples per tree (Table XI). The better performance of
importance sampling over use of control variates agrees to
the common observations (Chandler, personal communication).

Importance Samplihg with antithetic variates pushes the
accuracy of estimation a 1little further. With only ¢4
sampling points per tree, the absolute error is less than
S % when the importance function is taken as a paraboloid
and/or as a cone (Table XII). The average coefficient of
variation: also reduces drastically to about 5 % for 4
samples per tree.

Under the shell method category, importance sampling
with parabola as importance function produces some results
that even are worse than that from using control variates
in the cross-section method category. »The absolute error
for 4 sampling points per tree almost reaches 27 % and the
coefficient of variation in average is more than 60 %
(Table XIII).

However, when antithetic variates are used along with
importance sampling for the shell method, the absolute error
with onlj 4 sampling points per tree reduces to less than
3 % (Table XIV). The average coefficient of variation 1is

also the lowest among the methods tested.



TABLE XI

MONTE CARLO INTEGRATION OF THE CROSS-SECTION

METHOD WITH THE POWER FUNCTION MODEL OF

SOLIDS OF REVOLUTION AS
IMPORTANCE FUNCTION
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NUMBER OF TREES ESTIMATED : 62
TOTAL VOLUME : 61.48715
SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE
NO. ERROR ERROR C.V. C.v. C.V.
POWER OF IMPORTANCE FUNCTION : 0.50
4 -0.6144 19.5816 89.1140 6.4361 37.9588
6 2.3159 15.0946 99.3568 11.1219 44.7046
8 0.1160 15.3664 78.4560 14.1368 40.3010
10 -3.8599 11.7319 71.5367 15.1853 38.1370
12 -1.3573 10.3638 72.9158 19.3912 43.9520
14 1.2066 9.4311 69.4515 21.6013 42.8508
16 0.9140 B8.6344 70.6537 24.1000 43.7809
"POWER OF IMPORTANCE FUNCTION : 1.00
4 3.3191 11.5582 44.5834 2.7306 20.0826
6 -0.2532 7.8672 43.1789 2.3648 18.5178
8 -0.4305 5.8194 40.6707 3.0328 19.0031
10 0.4569 6.5420 41.7937 4.6276 19.7033
12 0.8698 6.4426 39.5331 7.0296 21.4502
14 0.1656 5.2021 34.9420 6.2122 20.9824
16 -1.2374 4.1886 39.1443 7.5008 19.8556
POWER OF IMPORTANCE FUNCTION : 1.50
4 ~ -0.0877 7.0261 31.0907 0.6331 12.7184
6 -1.1952 4.4989 42.1810 1.0032 13.5584
8 0.8322 4.4245 27.9177 4.0627 15.2728
10 -0.3281 3.8094 29.3392 4.1930 15.6856
12 -0.6910 3.7543 29.3065 5.2342 14.6767
14 ~-0.2736 3.9924 24.9385 3.6149 14.5018
16 -0.1845 3.7784 24.8913 4.3547 15.3071




TABLE XII

MONTE CARLO INTEGRATION OF THE CROSS-SECTION METHOD
WITH ANTITHETIC VARIATES WITH THE POWER FUNCTION
MODEL OF SOLIDS OF REVOLUTION AS
IMPORTANCE FUNCTION
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NUMBER OF TREES ESTIMATED : 62
TOTAL VOLUME : 61.48715

SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE
NO ERROR - ERROR C.V. C.V. C.V.

POWER OF IMPORTANCE FUNCTION : 0.50
4 0.6216 4.9214 27.3534 0.0000 3.6565
6 -0.4670 4.07086 22.1692 0.3890 6.4980
8 0.3385 4.2360 19.7239 0.3077 6.9861

10 -0.1372 2.7676 17.5637 0.3847 6.6655"

12 0.2177 3.7323 17.8787 0.9195 7.6327
14 0.8079 3.6680 19.6268 0.8194 9.2423
16 1.1712 3.5670 18.2547 1.0220 9.0073
PORER OF IMPORTANCE FUNCTION : 1.00
4 -0.6771 4.6289 21.0848 0.0000 4.0805
6 0.0552 4.6134 17.0013 0.0641 5.4656
8 0.4491 4.3512 17.1598 0.1675 6.3829
10 -0.7855 3.0961 16.4919 0.0738 6.9532
12 0.1005 2.9057 14.7674 0.4980 7.5944
14 -0.2065 2.2341 13.2704 0.2572 7.5892
16 -0.9380 2.4440 14.9195 0.2805 7.3238
POWER OF IMPORTANCE FUNCTION : 1.50
4 -0.8151 8.6854 37.2952 0.0000 8.7511
6 1.2986 6.7652 31.8811 0.0821 12.5717
8 -0.2861 6.6258 39.8862 0.3993 12.8469
10 -0.7454 6.5528 31.2080 0.7236 11.9297
12 -0.4254 5.7949 36.8361 0.5390 13.1096
14 -0.1996 5.2241 33.3232 1.1818 13.0455
16 0.8360 5.8027 26.9155 0.8659 14.1200




TABLE XIII

REVOLUTION AS IMPORTANCE FUNCTION

MONTE CARLO INTEGERATION OF THE SHELL METHOD
WITH THE POWER FUNCTION MODEL OF SOLIDS OF

NUMBER OF TREES ESTIMATED :

TOTAL VOLUME

SAMPLE % SIGN % ABSOLUTE MAXIMUM

62

0.5

: 61.48715
POWER OF IMPORTANCE FUNCTION :

MINIMUM AVERAGE
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NO. ERROR ERROR c.V. C.v. C.V.
4 0.6342 26.7090 134.4440 8.0078 63.5565
6 -4.8886 23.0473 109.le66 17.3826 66.1813
8 3.3089 20.9219 102.9185 34.1760 66.1697

10 -3.3124 17.6479 91.1343 24.5546 65.3309

12 4.3761 14.0668 109.4598 33.9363 64.9713

14 -1.1415 13.6759 96.8338 41.7433 66.4002

16 -1.6863 12.7039 105.1240 41.7700 65.4794

TABLE XIV

MONTE CARLO INTEGRATION OF THE SHELL METHOD WITH
ANTITHETIC VARIATES WITH THE POWER FUNCTION *
MODEL OF SOLIDS OF REVOLUTION AS
IMPORTANCE FUNCTION

NUMBER OF TREE ESTIMATED : 62
TOTAL VOLUME OF TREES + 61.48715
POWER OF IMPORTANCE FUNCTION

: 0.5
SAMPLE % SIGN % ABSOLUTE MAXIMUM MINIMUM AVERAGE
NO. ERROR ERROR C.V. C.V. C.V.
4 ~-0.4689 2.7888 12.6008 0.0263 4.,4062
6 0.6970 2.3182 9.8979 0.8079 4.9568
8 0.6053 2.3167 9.3685 0.6523 5.1810
10 -0.015e 1.9411 9.7623 1.6845 5.4183
12 0.1751 1.9290 9.2602 2.0066 5.4213
14 1 0.6010 1.7371 7.5846 3.0704 5.0439
16 0.4005 1.4576 8.1090 2.1863 5.3644
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To understand why importance sampling does not reduce
variance under the shell method so significantly as the same
technique under the cross-section method, the functions
f(x)/r(x) for Dboth methods are sketched, where x is the
random variate, f(x) the original integrand, and r(x) the
probability density function. The importance function has
the shape of a neiloid for the cross-section method, and
the shape of a paraboloid for the shell method.

The graph of the f(x)/r(x) from the cross-section
method exhibits very 1little variation (Figure 9). This
graph also explains why importance sampling with antithetic
variates for the cross-section method does not improve the
accuracy greatly. The accuracy cannot be improved further
because, first, -there is not much variation in the function
f(x)/r(x); and second, f(x)/r(x) is neither a monotonic nor
nearly a monotonic function. The graph of the f(x)/r(x)
from the shell method, on the other hand, shows great
variation (Figure 10). However, it is a strictly monotonic
decreasing function. This explains why use of antithetic
variates along with importance sampling in the shell method
is very effective in variance reduction.

Concern about the infinite variance of the function
f(x)/r(x) from the shell method may arise. Figure 9 seems
to indicate that when the random variate aproaches 0 the
function f(x)/r(x) approaches infinity. If this is true
then one has an unbounded integrand, or the worst "peak"

one can expect from importance sampling. Fortunately, this
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Figure 9. Graph of the Function f(x)/r(x) Resulted
from Importance Sampling of the Cross-
section Method with the Power Function

Model of Solids of Revolution as
Importance Function.
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Figure 10. Graph of the Function f(x)/r(x) resulted
from Importance Sampling of the Shell
Method with the Power Function Model
of Solids of Revolution as Importance
Function.
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is not the case. One can prove that the integrand 1is
bounded when the random variate approaches 0.

Since the power function model of the solids of
revolution is used as the importance function and the shape
of the iﬁportance function is set to be a parabola, the pdf
r(y) is

r(y) = (4y/B)(1 - y2/8).

The random variate x is

x =y /B* = 1 -[1T -,
where u is distributed uniformly in (0, 1).

The pdf r now can be expressed in terms of the. random
variate x as

r(x) = 4Jx(1 - x)/B.
The function f(y) is |
f(y) = 2 Tkyh(y),
h is the height of a point with diameter y. In terms of the
random variate x, f can be expressed as
f(x) = 2 TkBJXh(x).

The ratio of the two functions is

£(x)/g(x) = 2 wkB{Eh(x)/C4JF(1 - x)/B]

(kBT/2)h(x)/(1 - x).
When the random variate =x approaches 0 the function
f(x)/g(x) approaches MkBH/2, since the value of h(0) is H,
the height of the tree. '

The simulation results indicate that the best Monte
Carlo method is importance sampling with antithetic variates

under the shell method category. Importance sampling with
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antithetic variates under the cross-section category is the
second best method. Using control variates under the cross-
section category is acceptable if high accuracy is not
required.

In this simulation study, most of the Monte Carlo
methods investigated show better performance in volume
estimétion than Smalian‘s formula does. Methods studied
here all are unbiased. By choosing appropriate variance
reduction techniques, the accuracy of estimation can be
improved greatly.

It is also demonstrated in this study that the simple
geometrical model, the power function model of solids of
revolution, when used as importance function or as control
function, provides as much information for excurrent trees

as some taper equatons developed through regression.



CHAPTER VI
SUMMARY AND CONCLUSION

The objective of this study is to find some Monte Carlo
methods that estimate the volume of trees without bias,
and that out-perfofm Smalian’s method when the number
of samples taken from each tree is small. -

All Monte Carlo simulations tesult- in wunbiased
estimations of true tree volume. In contrast, Smalian’s
formula is known to be positively biased, and this is
illustrated in this study.

Critical height sampling, with or without the use of
antithetic variates, results in large absolute error and
large average size of coefficient of va;iation, and is
inferior to Smalian’'s formula.

The best Monte Carlo method simulated is importance
sampling with antithetic wvariates under the shell
method with the power function model of solids of
revolution equivalent to a paraboloid as importance

function.

Simulation results also conclude that the powér function

model of solids of revolution provides enough
information about excurrent trees to Dbe used as an

auxillary function in volume estimation. Equation (2)

64
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for solids of revolution can be used either as an
importance function or as a control function.

Simulation results indicate that one should use
importance sampling with antithetic variates under the
shell method when very high accuracy 1is desirable.
Importance sampling with antithetic variates under the
cross-section method provides slightly ‘less accurate
estimation but it is easy to apply in real situation.
Volume estimation with control variates can be used if

accuracy is not critical.
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