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Abstract

Tornadoes are capable of lofting large pieces of debris that present irregular shapes,

near-random orientations, and a wide range of dielectric constants to polarimetric radars.

While ties between tornadic debris signature (TDS) characteristics and tornado- and

storm-scale kinematic processes have been speculated upon or investigated using pho-

togrammetry and single-Doppler analyses, little work has been done to relate the three-

dimensional wind field to TDS characteristics and behavior. Additionally a knowledge

gap in larger-scale transport and sedimentation of debris exists within the literature.

This study utilizes data collected by the University of Oklahoma’s Advanced Radar Re-

search Center’s OU-PRIME C-band radar as well as KTLX and KOUN WSR-88D S-band

radars to study three tornadoes that occurred in Central Oklahoma on 10 May 2010. The

relationship between polarimetric and kinematic variables are interrogated revealing an

instance where large tornado subvortices were associated with comparatively high reflec-

tivity, low correlation coefficient, and were surrounded by negative differential reflectivity.

Comparisons of the polarimetric characteristics of two tornadoes interacting with similar

land cover but with different intensities are documented. Also, the storm-scale sedimen-

tation of debris within the supercell is investigated revealing a novel observation of TDS

rotation and elongation with height. Additionally, a novel dual-wavelength comparison

of debris within the tornado to debris in the near-tornado environment is presented re-

vealing larger dual-wavelength differences in polarimetric variables for debris within the

tornado and increasingly similar inner and out debris characteristics as height increases.

While new insight into the behavior of tornadic debris is elucidated in this study,

tornadoes themselves evolve on much shorter timescales than what can be resolved by

traditional, mechanically steered radars. In order to illustrate the benefit of rapid-scan
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radars for the study of tornado evolution and to motivate future rapid-scan polarimet-

ric radar observations of tornadoes and debris, high-temporal resolution observations

of the 27 May 2015 Canadian, Texas, tornado collected by the Atmospheric Imaging

Radar (AIR) are presented. A 10-s resolution time-height investigation of vortex tilt

and differential velocity (∆V) is presented and illustrates an instance of upward vortex

intensification as well as downward tornado decay. Changes in tornado intensity over

periods of less than 30 s coincided with rapid changes in tornado diameter. At least two

small-scale vortices were observed being shed from the tornado during a brief weakening

period. A persistent layer of vortex tilt was observed near the level of free convection,

which separated two layers with contrasting modes of tornado decay. Finally, the vertical

cross-correlation of vortex intensity reveals that apart from the brief instances of up-

ward vortex intensification and downward decay, tornado intensity was highly correlated

throughout the observation period.
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Chapter 1

Introduction

Tornadoes are capable of causing considerable loss of life and destruction of prop-

erty on timescales much shorter than most natural disasters. For example, three recent

events, the 22 May 2011 Joplin tornado, the 27 April 2011 Dixie outbreak, and the 2013

Newcastle-Moore tornado resulted in a combined 500 fatalities and between $14–16 billion

in direct losses (NCDC 2015). While the number of significant tornadoes has remained

relatively constant over the past 50 years (Coleman and Dixon 2014), the risk for ma-

jor tornado disasters has increased due to growing population and urban development in

tornado-prone regions (Ashley and Stradler 2016). These urban areas provide a source for

considerable amounts of lofted tornadic debris, which are the primary cause of fatalities

within tornadoes (Bohonos and Hogan 1999). Additionally, airborne debris can increase

the damage potential of a tornado by increasing its near-surface total momentum (e.g.,

Lewellen et al. 2008).

The advent and operational implementation of dual-polarization radar has led to

vast improvements in hydrometeor classification (e.g., Vivekanandan et al. 1999; Bringi

and Chandrasekar 2001; Ryzhkov et al. 2005a; Park et al. 2009; Kumjian 2013a,b) as

well as improvements in the ability to differentiate between meteorological and non-

meteorological scatterers (e.g., Zrnić and Ryzhkov 1999), which facilitates the identifica-

tion of tornadic debris (Ryzhkov et al. 2002, 2005b). The tornadic debris signature (TDS)

is characterized by low values of co-polar cross-correlation coefficient at lag 0 ρhv, and is

often accompanied by a local maximum in reflectivity factor at horizontal polarization

ZH
1 and near-zero values in differential reflectivity ZDR (Ryzhkov et al. 2002, 2005b).

1TDSs have been noted to exhibit a wide range of ZHH values (∼20-70 dBZ) by the Warning Decision

Training Division (WDTB 2013).
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The polarimetric signature is often, but not always, collocated with a tornadic vortex

signature (e.g., Van Den Broeke and Jauernic 2014; Skow and Cogil 2017).

Attempts to algorithmically detect tornadic debris have been made, with future work

expected to optimize and improve the application to operations (Snyder and Ryzhkov

2015; Wang and Yu 2015). However, there are many caveats to polarimetric tornadic

debris detection (Schultz et al. 2012b). Most notably, attenuation and differential at-

tenuation may lead to erroneous values of ZH and ZDR. However, ρhv is still a reliable

indicator of tornadic debris provided that there is uniform beam filling up-radial and in

the target volume and noise correction is applied in regions of low signal-to-noise ratio

(Bluestein et al. 2007a). Additionally, tornadoes must be strong enough to loft debris to a

height where it can be sampled by a radar, and the debris field must be large enough to be

spatially resolved (Kumjian and Ryzhkov 2008). Both of these conditions are modulated

by the range that a tornado is from the radar and the scanning strategy chosen. Fi-

nally, the presence of a TDS does not necessarily mean that a tornado is ongoing. TDSs

sometimes precede tornadogenesis (e.g., Saari et al. 2014; Van Den Broeke 2015) and

persist after tornado demise (e.g., Van Den Broeke 2015; Houser et al. 2016). However,

accounting for these considerations, the TDS can be used, with caution, to operationally

confirm the presence of ongoing tornadoes (Schultz et al. 2012a,b).

An understanding of how the TDS relates to tornado characteristics can expand the

utility of polarimetric radars, and recently, the focus of TDS research has broadened from

tornado detection to include the relationship between the behavior or tornadic debris and

tornado- and storm-scale kinematic processes. If relationships between the distribution

of polarimetric radar variables and tornado structure can be documented, more accurate

inferences can be made about tornadoes in real time. This would be particularly useful for

processes that are not resolved in the Doppler velocity field. For example, tornado- and

sub-tornado-scale processes would need to be several beamwidths in diameter in order to

be properly sampled in Doppler velocity; however, only a few resolution volumes would

be needed to capture debris processes associated with these under-resolved features.
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Recently, it has been determined that longer-lived and more-intense tornadoes have

been observed to have TDSs with larger volumes and TDSs that extend to higher altitudes

than comparatively weaker tornadoes (Bodine et al. 2013; Van Den Broeke and Jauernic

2014; Van Den Broeke 2015), while many tornadoes with EF-scale ratings of EF-2 or less

may not exhibit any TDS (Kumjian and Ryzhkov 2008; Van Den Broeke and Jauernic

2014). Additionally, studies have shown that seasonal and regional differences in land

type and usage modify some of the characteristics of a TDS, including the height to which

debris are lofted and likelihood that a tornado of a given intensity will exhibit a TDS

(Van Den Broeke and Jauernic 2014; Van Den Broeke 2015). The life-cycle stage of a

tornado may also influence whether a tornado exhibits a TDS, with the probability of

a TDS increasing during the first five minutes following tornadogenesis and decreasing

between the five minutes preceding and five minutes following the dissipation of a tornado

(Van Den Broeke 2015). Bodine et al. (2013) found that large areas of debris fallout

occurs as tornadoes weaken and updrafts can no longer suspend as much debris. Houser

et al. (2016) found that the area of the low levels of the TDS associated with the 2011

El Reno, Oklahoma, tornado increased while the upper levels of the TDS narrowed as

tornado intensity decreased. The El Reno TDS also exhibited vertically propagating

wave-like bulges along its periphery, which may be indicative of centrifugal waves within

the tornado (Houser et al. 2016).

Stronger tornadoes often exhibit TDSs with higher values of ZH , lower values of ZDR,

and lower values of ρhv (Bodine et al. 2013; Van Den Broeke 2015). Bodine et al. (2014)

found that values of ZH and ρhv were larger at S band within the TDS compared to at

C band due to non-Rayleigh scattering effects and that the dual-wavelength differences

were larger when the tornado was producing more damage. Within the TDS, ZH was

found to decrease with height and ρhv was found in increase with height, presumably

because large, heavy debris falls out at lower altitudes than light debris (Bodine et al.

2014).
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Recently, TDS research has expanded to include observations of debris immediately

adjacent to the tornado. For example, Wakimoto et al. (2015) used rapid-scan polari-

metric radar data in conjunction with photogrammetric data to document the evolution

of the spatial distribution of debris in the 31 May 2013, El Reno, Oklahoma (OK) tor-

nado, noting many features, such as the weak echo hole (WEH), “debris overhang”, and

“pockets” of low-level debris associated with the rear-flank gust front (RFGF). Similarly,

Kurdzo et al. (2015) note instances during the 20 May 2013, Moore, OK tornado where

debris are ejected from the tornado preferentially in one direction coinciding with internal

momentum surge in the rear flank downdraft (RFD) or occlusions. Appendages to the

TDS could also be the result of light debris being lofted by convergent inflow into the

tornado (Houser et al. 2016). Similarly, an extension to the TDS aloft, called a ‘debris

overhang,’ could indicate a near-tornado updraft is suspending light debris that are falling

out of the tornado (Wakimoto et al. 2015).

It is hypothesized that negative ZDR observed within tornadoes might be attributed

to a certain degree of common debris alignment (Ryzhkov et al. 2005b; Bluestein et al.

2007a). Recently, coherent regions of negative ZDR have been observed at the periphery

and in the wake of large tornado subvortices (Griffin et al. 2017) and near the radius

of maximum winds (RMW) of tornado vortices (Wakimoto et al. 2018). Modeling work

using SimRadar (Cheong et al. 2017), a physically based radar simulator that combines

large-eddy simulation, air drag models, and radar cross-section measurements of debris,

has determined that common debris alignment within tornadoes can theoretically occur

(Umeyama et al. 2018). Umeyama et al. (2018) found that debris tended to be aligned

such that the major axis was perpendicular to the local wind vector. Therefore, in the

observations where negative ZDR occurred near the periphery of tornado vortices, it can

be inferred that the local winds were largely horizontal in direction.

While many studies have focused on the near-tornado debris field, comparatively little

research has explored the larger-scale transport and sedimentation of debris. Damage and

debris surveys suggest that light debris are transported farther than heavy debris, while
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the majority of debris fall out to the left of the tornado track due to storm-relative

wind shear (Snow et al. 1995). Trajectory calculations using a near-storm sounding

confirm these previous observations (Magsig and Snow 1998) and provide insight into how

debris can sediment in the rear-flank, left-flank, and forward-flank of storms. Knox et al.

(2013) confirmed that the majority of debris sediment to the left of the tornado track

using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model

and a large dataset of debris items obtained from social media postings in the aftermath

of the 27 April 2011 tornado outbreak. However, Knox et al. (2013) also found that

the debris that were transported the farthest actually travelled to the right of tornado

motion, perhaps due to being lofted to higher altitudes and experiencing more westerly

winds. Van Den Broeke (2015) provided polarimetric radar observations of debris fallout

both downstream of the storm-relative flow and on the northwest periphery of supercells.

Fallout of debris has also been documented by polarimetric radar within the RFD in the

wake of the tornado (Ryzhkov et al. 2005b; Bodine et al. 2013). Additionally, lofted light

debris is often observed within storm inflow and along the rear-flank gust front (RFGF,

e.g., Ryzhkov et al. 2005b; Wakimoto et al. 2015). Much of this light debris may not have

been lofted by the tornado, but rather by strong winds in the near-tornado environment.

However, this debris may also be entrained into the TDS (Houser et al. 2016).

As the previous discussion illustrates, pencil-beam radars have facilitated consider-

able progress toward a better understanding of tornadoes, especially radars with dual-

polarimetric capabilities for the study of tornadic debris. However, the need for me-

chanical steering confines these radars to a series of designated beam sweeps in space,

called volume coverage patterns (VCPs), in order to obtain a three-dimensional dataset.

As a result, volumetric updates of traditional, scanning radars are limited to around 4

min (Zrnić et al. 2007). However, tornadoes intensify and weaken on timescales much

shorter than 4 min, and many weak tornadoes have entire lifecycles that are much shorter

than the volumetric update time of traditional, mechanically-steered radars. Volumetric

update times much less than one minute are required to properly sample the evolution
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of tornadoes, with temporal resolution of 10 s or less necessary to capture some of the

more rapidly evolving features (Bluestein et al. 2010). Mobile radars currently capable of

volumetric updates of ∼30 s or less include the Rapid-scan Doppler on Wheels (Wurman

and Randall 2001), the Mobile Weather Radar 2005 X-band Phased Array (MWR-05XP,

Bluestein et al. 2010), the Rapid X-band polarimetric radar (RaXPol, Pazmany et al.

2013), and the Atmospheric Imaging Radar (AIR, Isom et al. 2013; Kurdzo et al. 2017).

In addition to high-temporal resolution, these radars have the advantage of close-range

deployments (Wurman et al. 1996), which allow for much better spatial and low-level

sampling of tornadoes and mesocyclones compared to stationary radars (e.g., Wurman

and Gill 2000; Bluestein and Pazmany 2000; Bluestein et al. 2007a; Kosiba and Wur-

man 2013; Wurman and Kosiba 2013; Weiss et al. 2014). The finescale spatial resolution

provided by mobile radars maximizes the benefits of high-temporal updates for tornado

applications by allowing radars to observe rapidly evolving small-scale phenomena.

Recent tornado studies using rapid-update radars have illustrated the importance of

short-lived tornadic subvortices on a tornado’s intensity and damage potential (Snyder

and Bluestein 2014; Wakimoto et al. 2016). Rapid-scan radars are also uniquely capable

of providing observations to interrogate the vertical evolution of rotation during tornado-

genesis (Houser et al. 2015; French et al. 2013) and tornado decay (French et al. 2014).

Houser et al. (2015) found that subtornadic rotation in the 24 May 2011 El Reno, Ok-

lahoma, EF-5 tornado first developed below 1 km and then intensification of rotation

to tornadic intensity occurred simultaneously throughout the column when rotation in-

creased aloft (e.g., above 3 km). During decay, French et al. (2014) found that the 5

June 2009 Goshen County, Wyoming, tornado first dissipated near a height of 1.5 km

and then proceeded to decay in an “inside out” manner at progressively higher and lower

elevations. The level where dissipation first occurred was found to be just above where

the tornado motion was most influenced by strong rear-flank gust front outflow. Houser

et al. (2015) also noted a similar decay mechanism in the El Reno tornado with tornado

dissipation first occurring in a stable layer between 1.5 and 3 km above the ground.
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Rapid-update radars have observed that tornado intensity can be highly variable, and

sometimes periodic, over short timescales (e.g., Wurman and Kosiba 2013) and that tor-

nado intensity in the low levels (e.g., below 1 km) may be uncorrelated from tornado

intensity aloft (French et al. 2014; Mahre et al. 2018). Additional topics of recent investi-

gation using high-temporal resolution radar data include the impact that rapidly evolving

storm-scale processes, such as rear-flank gust front surges, have on the tornado lifecycle

(Houser et al. 2015) and the rapid evolution of the distribution of tornadic debris (Kurdzo

et al. 2015; Houser et al. 2016; Mahre et al. 2018). However, the number of high-temporal

resolution tornado cases is still extremely limited, and thus it remains unclear whether or

not these past findings can be generalized. A range of tornado cases of varying tornado

size and intensity are needed to better understand the diversity of tornado behavior and

document whether similarities exist in tornadogenesis and tornado dissipation modes.

In addition to aiding in the understanding of the physical processes that occur during

tornadogenesis and tornado decay, documenting the rapid evolution of tornadoes may

also inform future weather warning decisions. Forecasters will soon have the ability to

better resolve the tornado lifecycle once the current weather surveillance radar network is

upgraded to polarimetric phased array radars. If reliable indicators of tornado formation,

intensification, and decay can be documented, then it is expected that the quality and

lead time of tornado warnings will significantly improve.

The ideal radar for they study of tornadoes would provide the high-temporal resolu-

tion volumetric observations necessary to document rapid changes in tornado behavior

while also providing the polarimetric diversity needed to identify tornadic debris. The

AIR is the only mobile radar currently capable of resolving changes in tornado behavior

on timescales less than 10 s, but it is not dual polarimetric. However, in the near fu-

ture the Advanced Radar Research Center (ARRC) will complete the construction of a

Polarimetric Atmospheric Imaging Radar (PAIR, Yu et al. 2015; Salazar-Cerreño et al.

2017). The PAIR will be a mobile, C-band Imaging Radar (Fig. 1.1) that will provide

similar volumetric update times to the AIR and will improve upon the sensitivity of
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the AIR by using higher-gain solid-state power amplifiers (Yu et al. 2015). The C-band

transmit frequency of the PAIR will experience less attenuation than the AIR as well

and will therefore be better suited to observe tornadoes wrapped in rain and observe

forward-flank downdraft precipitation often missed by attenuated observations at shorter

wavelengths. Toward the goal of motivating future research using the PAIR, this study

utilizes data from OU-PRIME, a C-band polarimetric radar, to relate the behavior and

polarimetric characteristics of tornadic debris to tornado- and storm-scale kinematics and

utilizes high-temporal resolution mobile radar observations from the AIR to interrogate

rapidly-evolving tornado behavior.

Figure 1.1: The PAIR concept courtesy of J. Salazar (personal communication).

In Chapter 2, an overview of tornado dynamics is presented, including a discussion of

the tornado lifecycle, tornado structure, and swirl ratio. The tornado dynamics discussion

is followed by an overview of selected polarimetric signatures in supercells with a focus on

the relationship between the polarimetric signatures and storm-scale kinematic processes.

In Chapter 3, tornado-scale kinematic processes are related to TDS structure for the 10
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May 2010 Moore-Choctaw EF-4 tornado. Chapter 4 contains observations of debris sedi-

mentation within the 10 May 2010 Norman-Little Axe EF-4 tornado. A dual-wavelength

comparison of debris within the tornado to debris in the near-tornado environment is

presented and a comparison of the polarimetric characteristics of the Norman-Little Axe

tornado to a nearby landspout tornado is performed. In Chapter 5, high-temporal reso-

lution observations of the late-mature and decay periods of the 27 May 2015 Canadian,

Texas, tornado using the AIR are presented. An analysis of tornado tilt with fine-scale

vertical resolution is performed, observations of small-scale vortices being shed by the

tornado are presented, and the vertical evolution of tornado decay is interrogated. An

overview of the findings of this study and recommendations for future work that are

motivated by these conclusions are presented in Chapter 6.
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Chapter 2

Background

In this chapter, an overview of the tornado lifecycle is presented and tornado

dynamics is discussed. The regions of the tornado are discussed as well as how the swirl

ratio of a tornado governs tornado structure. Finally, a brief overview of polarimetric

radar signatures in supercells is discussed with special attention given to the kinematic

processes that can be inferred from their presence.

2.1 Tornado Lifecycle

2.1.1 Tornadogenesis

At the most basic level, tornadogenesis is a process that generates and intensifies

vertical vorticity near the ground. In a Lagrangian reference frame (air parcel relative)

and ignoring friction, the time rate of change of vertical vorticity is given as:

Dζ

Dt
= −ζ

(
~∇ · ~V

)
+ k̂ ·

(
∂ ~Vh
∂z
× ~∇hw

)
+ k̂ ·

[
~∇p′ × ~∇1

ρ̄

]
. (2.1)

The first term on the right-hand side is the vorticity stretching term. It is simply velocity

divergence acting on existing vertical vorticity ζ. The negative sign implies that velocity

convergence acts to intensify vertical vorticity. The second term is known as vorticity

tilting. This is simply the cross product of horizontal vorticity (∂
~Vh

∂z
) and the horizontal

gradient in vertical velocity (w). It can be thought of as horizontal gradients in vertical

velocity tilting horizontal vorticity into a vertical axis of rotation. In a ‘barotropic’ at-

mosphere (ignoring density gradients), this horizontal vorticity is generated mechanically

by vertical gradients in horizontal velocity (i.e., vertical wind shear). The last term on

the right-hand side is known as the solenoidal term. It can be thought of as the vorticity

generated by gradients in atmospheric pressure and density. In supercell thunderstorms,

the solenoidal term may not directly generate a large proportion of the vertical vorticity,
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but rather horizontal vorticity is ‘baroclinically’ generated at the edge of the cold pool

(e.g., along the forward- and rear-flank gust fronts), a region of large horizontal pressure

and density gradients, and this vorticity can then be tilted by the second term into the

vertical plane.

Mass continuity dictates that supercell updrafts, enhanced by a dynamically induced

vertical perturbation pressure gradient force by the mesocyclone, are a region of strong

horizontal convergence, which acts to intensify vertical vorticity (Rotunno 1986; Ras-

mussen et al. 1994). Moreover, the edge of the supercell updraft is a region of strong

horizontal gradients in vertical velocity, which convert horizontal vorticity into vertical

vorticity. However, vertical vorticity generated from tilting and stretching of vorticity

solely by an updraft quickly advects vorticity upward, away from the ground, violating a

necessary requirement for a tornado.

One possible mechanism for bringing vertical vorticity near the ground is the dynamic

pipe effect (DPE, Leslie 1971; Smith and Leslie 1978). The DPE centers on the fact that

a rotating fluid is associated with a perturbation pressure deficit (p
′ ∝ −ζ2). This

perturbation pressure deficit drives an upward directed pressure gradient force beneath

the rotating fluid (Fig. 2.1). Mass continuity dictates that air must replace the vertically

displaced air, leading to convergence beneath the level of rotation. This convergence

acts to intensify vorticity via stretching at the level beneath the original level of strong

rotation creating a feedback that gradually lowers strong vorticity over time. However,

Trapp and Davies-Jones (1997) found that the DPE would take approximately 15–20

min to form a tornado from a mesocyclone, and rapid-scan observations (e.g., French

et al. 2013; Houser et al. 2015) have only shown simultaneous or slightly upward modes

of tornadogenesis that occurs on timescales of seconds to 1 min. French et al. (2013)

illustrated how transient strong vorticity within a broader and weaker mesocyclone may

appear to descend when under sampled in time by a WSR-88D (Fig. 2.2). This potential

sampling artifact may have led to erroneous observational evidence of the DPE mode of

tornadogenesis in the past. In real thunderstorms, it may be that the DPE is responsible
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for bringing mesocyclone-scale vorticity near the surface, as illustrated in Fig. 2.2; but,

the strengthening of that vorticity to tornadic intensity is done by a different process that

occurs much more rapidly than can be explained solely by the DPE.

Figure 2.1: Illustration of the dynamic pipe effect. The “L” represents the perturbation

pressure deficit associated with a vortex. The vertical lines represent the air response to

the vertical pressure gradient force associated with the low pressure. The horizontal lines

represent convergence to replace the vertically displaced air. Figure courtesy of Bluestein

(2013).

Downdrafts likely play an important role in transporting vorticity near the surface

(Markowski 2002). However, in isolation downdrafts tilt streamwise vorticity (vorticity

with the axis of rotation parallel to the local motion vector) downward and create anti-

cyclonic (clockwise) vertical vorticity, whereas the majority of tornadoes are cyclonic

(counter-clockwise rotating) in the northern hemisphere. But, near the interface that

occurs near the intersection of the rear-flank downdraft and the updraft beneath the

mesocyclone, cyclonic vertical vorticity can be generated (Fig. 2.3). In region of wind
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Figure 2.2: An illustration of how transient enhanced vertical vorticity within a mid-

and low-level mesocyclone might appear as a descending incipient tornado in WSR-88D

data. The black bar indicates a tornado and the dotted horizontal line marks the level

of free convection. Gray (dark green) shading represents mesocyclone-scale (tornadic)

vertical vorticity. Light green shading highlights areas (top) of locally enhanced vertical

vorticity and (bottom) where TVS criteria are met based on the given vertical vorticity

distribution. The black dots indicate the approximate center beam locations from a

WSR-88D scanning a storm 60 km away using VCP 212. Figure courtesy of French et al.

(2013).
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shear, vorticity vectors can be tilted away from the streamlines they are following. This

means that if horizontal velocity decreases with height, as if often observed near the

top of a density current like the rear-flank downdraft, the anticyclonic vertical vorticity

generated by the downdraft can be tilted to become cyclonic vertical vorticity prior to

entering the updraft beneath the mesocyclone (Fig. 2.3). This cyclonic vorticity can be

immediately stretched by the the updraft beneath the mesocyclone near the surface. One

consideration for this processes is the temperature of the cold pool and its impact on the

buoyancy of parcels entering the updraft. Markowski et al. (2002) found that there was

an ideal range of potential temperature deficits in tornadic supercells. If the RFD is too

warm, then it is not a significant source of baroclinic vorticity generation; however, if the

RFD is too cold, then parcels entering the updraft are too negatively buoyant and hinder

the ability of the updraft to stretch and intensify vertical vorticity. The temperature of

the downdraft is further discussed in the next subsection.

Recently, the source of the horizontal vorticity within the forward flank of supercells

as in (Fig. 2.3) has been a topic of particular interest. High-resolution simulations (e.g.,

Dahl et al. 2014; Coffer and Parker 2017) indicate that concentrated streams of vorticity,

called ‘vorticity rivers’, feed the low-level mesocyclone preceding tornadogenesis and help

maintain ongoing simulated tornadoes (Fig. 2.4). This vorticity forms along a density

gradient, which baroclinically generates streamwise horizontal vorticity. Recent observa-

tional field campaigns, RiVorS and TORUS, have targeted the forward flank of supercells

in order to verify this source of vorticity. Preliminary observations (e.g., Schueth and

Weiss 2018) indicate that vorticity rivers may indeed be present in real-world supercells

and play a vital role in tornadogenesis. This is one significant illustration of the recent

progress made, not only in the understanding of tornadoes, but also in the ability to

numerically simulate supercells and tornadoes.
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Figure 2.3: Schematic showing how cyclonic vorticity may be generated near the updraft-

downdraft interface. (Top) Top-down schematic of steamlines representing streamwise

vorticity approaching the mesocyclone from the forward flank. (Bottom) Vorticity vec-

tors, which are tilted downward by the downdraft (anticyclonic vorticity) becomes tilted

upward (becoming cyclonic vorticity) as it is advected faster below than it is aloft, as

happens at the “foot” of a density current. This cyclonic vertical vorticity enters the base

of the updraft where it is stretched. Figure courtesy of Bluestein (2013).
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Figure 2.4: Horizontal cross section of (a) model-simulated reflectivity at 500 m (dBZ;

shaded) and manually annotated boundaries. (d) The 10-m vertical vorticity (s−1;

shaded), 10-dBZ reflectivity at 500m AGL (black contour), and 10-m storm-relative,

horizontal vorticity vectors. Figure adapted from Coffer and Parker (2017).

2.1.2 Tornado Maintenance and Tornado Decay

Tornado maintenance requires the continued collection and intensification of ver-

tical vorticity near the tornado through tilting and stretching. As reviewed by Marquis

et al. (2012), there are approximately five known storm-scale processes that help maintain

a tornado, each of which has an inherent failure mechanism which can lead to tornado

decay. The first requirement for tornado longevity is that it maintains its position at

the intersection of the rear and forward-flank gust fronts (Fig. 2.5a). The forward and

rear-flank gust fronts are regions with large density gradients where horizontal vorticity is

generated. This horizontal vorticity often converges at the intersection of these boundary

beneath the mesocyclone where it can be tilted and stretched by gradients in vertical

velocity (e.g., Lemon and Doswell 1979; Brandes 1978, 1984; Wicker and Wilhelmson

1995; Alderman et al. 1999; Marquis et al. 2016). If a tornado becomes displaced from

this favorable location through a process known as occlusion (Fig. 2.5a), it may gradually

lose its source of low-level vorticity and the warm, buoyant inflow necessary to sustain
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its updraft. However, there are exceptions to this decay mode where convergence and

baroclinic generation of vorticity along a secondary, internal momentum surge within

the rear-flank downdraft (RFD) allowed the tornado to collect and stretch vorticity and

persist for a prolonged period of time (Marquis et al. 2008, 2012).

In addition to a tornado maintaining its position relative to the forward and rear-flank

gust fronts, high angular momentum air must also converge into the tornado from the

far field (Fig. 2.5b). While mesocyclone intensity is not necessarily directly correlated

with tornado intensity (e.g., Atkins et al. 2012), a persistent mesocyclone is required

in order to maintain convergence of a pool of high angular momentum air. Due to the

conserved nature of angular momentum and the inverse relationship between the radius

of the rotation and the rotational velocity, the convergence of high angular momentum air

helps maintain the strongly rotating flow within tornadoes. Rasmussen and Straka (2007)

found that low-level divergence reduced the angular momentum near the axis of rotation

in the 2 June 1995 Dimmit, Texas, tornado, which led to the weakening and eventual

dissipation of that tornado. Angular momentum and it role in tornado maintenance is

further discussed in Chapter 4.

The third requirement for long-lived tornadoes is that their updraft-relative motion

remains near zero (Fig. 2.5c). Dowell and Bluestein (2002) found in a cyclic tornadoge-

nesis case that tornado maintenance was interrupted when the balance between storm

inflow and outflow became imbalanced, separating the tornadoes from regions of strong

vorticity tilting and stretching. Along with the previously discussed occlusion process,

which occurs when storm inflow exceeds storm outflow, tornado decay via the displace-

ment of the low-level vortex ahead of the mesocyclone by strong outflow has also been

observed using mobile radars (e.g., French et al. 2014).

The fourth requirement for tornado maintenance is that the thermodynamic char-

acteristics of the rear-flank downdraft must continue to be favorable for strong vertical

velocities within the tornado (Fig. 2.5d). Markowski et al. (2002) found that the likeli-

hood of a supercell producing a tornado and the longevity of a tornado increased both
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Figure 2.5: Schematic representations of five tornado maintenance mechanisms: (a) the

observed relationship between the rear-flank downdraft and gust fronts, mesocyclone;

(b) the relationship between tornado strength and changes in the strength of the low-

level mesocyclone and convergence; (c) the relationship between tornado strength and its

position relative to the primary updraft; (d) the relationship between tornado longevity

and temperature deficit of the outflow; and (e) the relationship between tornadogenesis

and the tilting of an initially sinking baroclinically generated vortex ring. Figure courtesy

of Marquis et al. (2012).
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increased as the relative buoyancy of the RFD increased. While RFD air is always nega-

tively buoyant, downdraft air ingested into the mesocyclone that is only weakly negatively

buoyant can by lifted by the nonlinear vertical perturbation pressure gradient force and

will not significantly inhibit strong vertical accelerations necessary for tornado mainte-

nance. While the perturbation pressure deficit in ongoing tornadoes is capable of lifting

progressively colder air (Marquis et al. 2012), there may be a point where the buoyancy

deficit within the RFD is a greater detriment to tornado maintenance than its counter-

acting contribution to the baroclinic generation or vorticity also necessary to maintain a

strong vortex (e.g., Marquis et al. 2016).

Finally, baroclinically-generated vortex rings within the RFD, which are tilted by

an elongated updraft to form vortex line arches that may play a role in tornadogenesis

(Straka et al. 2007), may periodically generate and supply vertical vorticity in the vicinity

of the tornado (Fig. 2.5e). It is uncertain whether this mechanism plays a significant role

in generating the vorticity necessary to maintain a tornado; however, Marquis et al.

(2012) found that in two of the four cases they investigated that secondary gust fronts

generated vertical vorticity within the tornado via vortex line arches in conjunction with

the primary rear-flank gust front. It was also speculated that divergence in the wake of

the secondary gust front led to tornado decay in these tornadoes.

2.2 Tornado Dynamics

2.2.1 Tornado Structure

Tornadoes are typically broken up into four regions (Fig. 2.6), each with their own

flow structure. The first region is called the outer flow region and is characterized by cy-

clostrophic balance where a radially inward directed pressure gradient force is balanced

by a radially outward centrifugal force. Angular momentum is assumed to be constant

within the outer flow region and is provided by the parent mesocyclone. This flow struc-

ture of constant angular momentum is known as a ‘potential vortex.’ The perturbation
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pressure gradient force associated with this potential vortex is what drives low-level inflow

into the tornado.

Figure 2.6: An axisymmetric vertical cross section schematic of the four regions of a

tornado. Orange contours indicate lines of constant angular momentum. Figure adapted

from Bluestein (2013).

The region of the tornado close to the surface is known as the ‘tornado boundary layer.’

In this layer, surface drag slows the tangential wind speeds resulting in a vertical gradient

in angular momentum (Fig. 2.7). The largest vertical gradients in angular momentum

occur in the layer nearest the surface where air is in direct contact with the ground. This
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layer is known as the ‘friction layer’ and is only on the order of 10 m in depth (Kosiba and

Wurman 2013), but decreases in depth toward the center of the tornado (Fig. 2.6). The

friction layer is characterized by downward transport of angular momentum by turbulence

and radial inflow into the tornado. Above the friction layer, the vortex deviates from

cyclostropic balance due to the decrease in the centrifugal force owing to surface drag. As

a result, air parcels are accelerated inward by the pressure gradient force. This region of

inflow into the tornado is called the ‘inertial layer.’ The strongest winds within tornadoes

occur within the inertial layer (Lewellen et al. 2000; Kosiba and Wurman 2013), likely near

the top of the friction layer where angular momentum in the far field is still appreciable

and strong, frictionally induced inflow occurs allowing for the convergence of angular

momentum and subsequent increase in tangential flow.

Near the center of the tornado, the inward accelerating air within the tornado bound-

ary layer converges, decelerates, and turns upward owing to continuity considerations.

The place where air turns upward is called the ‘corner region.’ In the corner region,

friction is negligible compared to other forces and flow is essentially laminar. Angu-

lar momentum impinges farther toward the axis of rotation in the corner region than

above the tornado boundary layer. This ‘inertial overshoot’ of relatively high angular

momentum at small radii (Fig. 2.7) is why the greatest tangential velocities occur within

this region. Tornado structure and intensity are very sensitive to the the magnitude of

tangential velocities within the corner region and their subsequent impact on swirl ratio

(Lewellen et al. 2000). Swirl ratio will be further discussed in the next subsection.

Above the corner region is the ‘tornado core.’ The tornado core is characterized by

solid body rotation where tangential velocity is a linear function of the radius from the

axis of rotation and the angular momentum is a function of r2. Therefore, the tornado

core is characterized by radial gradients in tangential velocity and angular momentum

(Fig. 2.7). Additionally, the core often has strong vertical velocities from the end-wall

updraft generated in the corner region. In and ideal sense, the tornado core for low-

swirl tornadoes is largely laminar, with the exception of a very narrow, conically-shaped
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Figure 2.7: Lines of constant angular momentum in a vertical cross section of an idealized

tornado. Figure adapted from Lewellen et al. (2000) by Bluestein (2013).
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viscous layer immediately near the axis of rotation (Fig. 2.6). High-swirl tornadoes,

however, can be highly turbulent. The horizontal extent of the core or ‘core radius’ is

defined by the radius where angular momentum becomes approximately constant (i.e.,

where the tornado becomes a potential vortex in the outer flow region). This core radius

is approximately the same as the depth of the tornado boundary layer. At the interface

between the core and outer flow region, tangential velocity is maximized; thus, the the

core radius is also known as the radius of maximum winds (RMW).

As the previous discussion infers, the radial profile of tangential velocity in a tornado

is comprised of two main regimes. Near the center of the tornado, radial velocity in-

creases linearly to the core radius, where tangential velocity is maximized, as prescribed

by solid body rotation; then, tangential velocity decreases as a function of 1
r

to satisfy

the criteria for potential vortex flow. This simple model of a tornado is known as the

‘Rankine combined’ model (Rankine 1882), which satisfies the equations of motion for a

steady-state vortex with no vertical motion (Fig. 2.8a). Observations of tornadoes (e.g.,

Tanamachi et al. 2007), indicate that the transition from solid body rotation to poten-

tial vortex flow is much smoother than the Rankine vortex indicates owing to diffusion

(Fig. 2.8b). This tornado model, which allows for the radial diffusion of azimuthal mo-

mentum, is known as a ‘Burgers–Rott’ vortex (Burgers 1948). This steady-state vortex

model allows for upward vertical motion, but vertical motion varies only as a function of

height and radial velocity only varies as a function of radius. A vortex model that does

satisfy the Navier-Stokes equations for an axisymmetric vortex while allowing for both

upward and downward motion is the ‘Sullivan’ vortex (Sullivan 1959). The Sullivan vor-

tex also allows for radial variations in vertical velocity, and apart from very small radii,

is extremely similar to the Burgers-Rott vortex (Fig. 2.8c). However, it must be remem-

bered that real-world tornadoes are neither axisymmetric nor steady state, so deviations

from this vortex model are expected to occur.
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Figure 2.8: Radial profile of tangential velocity in the (a) Rankine combined, (b) Burgers–

Rott, and (c) Sullivan vortex models. Rcore is the core radius and Vmax is the maximum

in tangential velocity. Figure adapted from Brown and Wood (2012).

2.2.2 Swirl Ratio

The most important parameter defining the behavior and structure of tornadoes is

the ‘swirl ratio.’ Swirl ratio is defined as:

S =
RΓ

2M
, (2.2)

where R is the radius of the updraft, Γ is the the circulation at the edge of the updraft

(2π multiplied by the angular momentum), and M is the volume flow rate of the updraft

(wπR2). Physically, swirl ratio can be thought of as the relationship between the rota-

tional velocity within the tornado to the vertical mass flux. If the rotational velocity of

a tornado is high, the perturbation pressure deficit will also be large, which can can slow

or even reverse the direction of the vertical perturbation pressure gradient force if the

circulation of the tornado exceeds the circulation of the mesocyclone. If the swirl ratio

is large, this means that the resultant downward directed perturbation pressure gradient

force is large relative to the strength of the updraft, which results in an axial downdraft

in the center of the tornado.

When discussing tornado structure, it is useful to consider the ‘secondary circulation’

within the tornado (i.e., the radial and vertical velocity profiles). To interrogate this, it

is necessary to define the equation of motion for radial velocity u. For an axisymmetric
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vortex in an inviscid, constant density, incompressible fluid, the time rate of change of u

is defined as:

Du

Dt
=
v2

r
− 1

ρ

∂p′

∂r
. (2.3)

where the first term on the right hand side is the centripetal acceleration and the second

term is the pressure gradient force. For low swirl tornadoes, the pressure gradient force is

directed outward at extremely small radii (Fig. 2.9a), but the radius where the pressure

gradient force switches from radially outward to radially inward is relatively small result-

ing in air being allowed to converge into the core of the tornado before decelerating and

turning upward. This configuration of inflow impinging to the core of the tornado with an

axial updraft is known as a ‘single-cell’ vortex (Fig. 2.10a). As swirl ratio increases, the

radius where the pressure gradient forces changes sign decreases until it is always directed

inward. However, for high swirl tornadoes the centrifugal acceleration term dominates

at small radii resulting in the outward acceleration of air (Fig. 2.9b). The pressure gra-

dient force only begins to dominate at large radii leading to convergence and upward

motion displaced from the center of the vortex. The axial downdraft, divergence at small

radii, and displaced updraft structure is known as ‘two-cell’ vortex flow (Fig. 2.10c). For

medium swirl ratios, the downdraft may only impinge part way to the surface, leading to

a vortex flow structure called a ‘drowned vortex jump’ (Fig. 2.10b). This flow structure

is a special case of vortex breakdown, where the breakdown occurs displaced from the

surface.

Because the net radial force is outward at small radii for high swirl tornadoes, high

angular momentum air is not allowed to converge toward the center of the vortex. This

leads to a relatively stagnant core with weak tangential velocities. Near the radius where

high angular momentum can no longer converge, a circular vortex sheet arises from the

strong radial gradient in tangential velocity (Fig. 2.11). Because this radius is also a region

of strong convergence and vertical motion capable of stretching vorticity, this vortex sheet

is unstable and breaks down into multiple intense smaller vortices, or ‘suction vortices’

(Fig. 2.12).
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Figure 2.9: Idealized force diagrams for (a) low and (b) high swirl ratio tornadoes. Radius

from the center of the tornado increases from left to right. Figure adapted from Bluestein

(2013).
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Figure 2.10: Vertical cross-sections through idealized tornadoes with (a) low, (b) medium,

and (c) high swirl ratio. Arrows indicate the associated secondary circulations. Figure

adapted from Bluestein (2013).
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Figure 2.11: Idealized depiction of a vortex sheet (dashed line) that arises from the radial

gradient in tangential velocities in a high-swirl tornado. Figure courtesy of Bluestein

(2013).
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Figure 2.12: Photograph of the 11 May 1982 Friendship, Oklahoma, multiple-vortex

tornado. Photo courtesy of Bluestein (2013).

2.2.3 Debris Loading and Centrifuging

Radar measurements of the wind field within tornadoes are inherently biased be-

cause radars measure a power-weighted average velocity of scatterers within the a reso-

lution volume and not the air velocity itself. As a result, measured velocities above the

surface layer1 within a tornado are likely an underestimation of the actual wind speeds,

with the largest differences between air and scatterer velocities occurring within the cor-

ner flow and near-surface inflow regions (Lewellen et al. 2008). Larger differences occurs

when scatterers, such as tornadic debris, are larger and more dense (Dowell et al. 2005).

The lofting of large quantities of debris, known as debris loading, results in the transfer

of momentum from the air to the debris, which may directly reduce the wind velocities

by up to 50% (Lewellen et al. 2008; Bodine et al. 2016a). A slowing of the wind speeds in

the corner flow region of tornadoes due to debris loading can alter a tornado’s corner flow

swirl ratio (Lewellen et al. 2008), which in turn can significantly alter the flow structure of

the tornado (Lewellen et al. 2000; Lewellen and Lewellen 2007a,b). The reduction of the

1In the surface layer, stationary clutter may lead to an underestimate of Doppler velocity.

29



rotational velocity within a tornado can also increase the pressure within a tornado, which

reduces the radial and vertical pressure gradient forces. This reduction of the pressure

gradient force can decrease air velocities even where debris are not present (Lewellen et al.

2008; Bodine et al. 2016a). However, the introduction of debris may also significantly

increase the total combined momentum of air and debris despite reducing the momentum

of the air itself, which can increase the damage potential of the tornado (Lewellen et al.

2008). It is noteworthy that observational evidence of debris loading effects has yet to

be noted. In a tornado crossing dirt fields with a large visible debris cloud, tornado ve-

locities increased as debris loading increased, suggesting that storm-scale driven changes

dominated debris-loading induced changes (Wakimoto et al. 2018).

Because debris have large radial outward momentum and the inward pressure gradient

force is not strong enough to overcome this, debris move radially outward relative to the

air within a tornado (Dowell et al. 2005). This behavior is known as debris centrifug-

ing. Debris centrifuging results in the maximum tangential object motion being displaced

outward from the maximum tangential air motion (Dowell et al. 2005) and an outward

bias in Doppler velocity measured by a radar (Wakimoto et al. 2012; Nolan 2013; Bodine

et al. 2016b). The centrifuging of debris and hydrometeors leaves a column void of many

scatterers surrounded by an annulus of high power returns and high particle concentra-

tions that usually expands with height (Dowell et al. 2005). This feature is known as a

weak-echo column (WEC) when observing a vertical cross section or a weak-echo hole

(WEH) when viewing a horizontal cross section or plan position indicator (PPI). Debris

centrifuging also acts to transport angular momentum away from the tornado, and may

either act to weaken a tornado by inhibiting the inward transport of angular momentum,

or increase tornado intensity by recirculating debris (Fig. 2.13) with high momentum

into the near-surface inflow (Lewellen et al. 2008). Low-level inflow and recirculation

of debris may also explain the tapering and cutoff of the WEC (Fig. 2.14), since debris

concentrations near the tornado core in the low levels can be orders of magnitude greater

than elsewhere within the tornado (Dowell et al. 2005).
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Figure 2.13: Photograph (copyright D. Dowell) of a tornado near Fulton, SD on 31 May

1998. The arrow marks a curl in the debris cloud that may indicate debris fallout and

recirculation. Figure courtesy of Dowell et al. (2005).

2.3 Polarimetric Signatures in Supercells

This section overviews the polarimetric variable used in this study as well as sum-

marizing a subset of polarimetric signatures commonly observed in supercells. While

other polarimetric signatures exist, this section focuses on ones with well-established re-

lationships with supercell kinematics. The reader is referred to Kumjian and Ryzhkov

(2008) for more details on supercell polarimetric radar signatures that are beyond the

scope presented here.
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Figure 2.14: Vertical cross-section of Doppler-on-Wheels reflectivity (dBZ) in the 3 June

1995 Dimmitt, Texas, tornado illustrating a WEC. Figure adapted from Wurman et al.

(1996).
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2.3.1 Polarimetric Variable Overview

2.3.1.1 Radar Reflectivity Factor

For Rayleigh scatterers, whose diameters are smaller than λ/16, where λ is the

transmit wavelength of the radar, radar reflectivity factor at horizontal polarization Zhh

is given by:

Zhh =
4λ4

π4|Km|2
〈N |Shh|2〉, (2.4)

where Km is the dielectric constant of the scatterers, N is the number of scatterers, and

Shh is the scattering amplitude given by:

Shh =

(
2π

λ

)2

cmD
3, (2.5)

where cm is a constant and D is the diameter of the scatterer. It can be seen that reflec-

tivity is a function of D6 and is sensitive to particle size. However, particle concentrations

within a radar resolution volume can vary by many orders of magnitude and the dielectric

constant can range from ∼0.2 for ice to ∼0.9 for liquid water and potentially even larger

for non-meteorological scatterers.

The reflectivity factor can be related to the reflectivity η measured by the radar

through the equation:

η =
π5

λ4
|Km|2Zhh, (2.6)

and η can be related to the power received by the radar through the weather radar

equation:

E
[
P (r0)

]
=

Ptg
2λ2ηcτπθ21

(4π)3r20l
216 ln(2)

, (2.7)

where P (r0) is the power received as a function of range r0, Pt is the transmit power, g

is the system gain, c is the speed of light, τ is the pulse length, θ1 is the beamwidth, and

l are the one-way losses due to attenuation.
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2.3.1.2 Differential Reflectivity

The ratio of radar reflectivity factors at horizontal and vertical polarization is called

differential reflectivity or ZDR and is defined as:

ZDR = 10 log10

(
〈|Shh|2〉
〈|Svv|2〉

)
. (2.8)

Differential reflectivity is a measure of the aspect ratio of the scatterers within a res-

olution volume. For oblate (prolate) particles, where the horizontal (vertical) axis is

greater than the vertical (horizontal) axis, ZDR will be positive (negative). Differential

reflectivity is particularly useful for determining the median drop size of rain within a

resolution volume since rain becomes increasingly oblate as its diameter increases (e.g.,

Seliga and Bringi 1976). Examples of prolate hydrometeors include conical graupel and

ice needles. Therefore, outside the presence of strong vertical motion, the sign of ZDR

can sometimes be used to discriminate between liquid and ice phase hydrometeors2. For

spherical particles, or for a volume of scatterers with near-random orientations, ZDR will

be near zero. For example, a volume of large hail, which tends to tumble as it falls, would

present a near-random average orientation to the radar resulting in ZDR near zero. A

selection of typical ranges of ZDR and other polarimetric variables for hydrometeors can

be found in Table 2.1. One advantage of differential reflectivity is that it is independent

of the concentration of scatterers and is therefore not affected by partial beam blockage

or non-uniform beam filling.

2.3.1.3 Co-polar Cross-correlation Coefficient

Co-polar cross-correlation coefficient or ρhv is the measure of the correlation be-

tween the vertically and horizontally polarized received signals Shh and Svv and is defined

as:

ρhv(0) =
〈SvvS

∗
hh〉

〈|Shh|2〉0.5〈|Svv|2〉0.5
. (2.9)

2The exception to this being hexagonal plates, which are roughly oblate
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Table 2.1: Typical values of polarimetric variables for a selection of precipitation types

at S band adapted from Doviak and Zrnić (1993).

Precipitation type Zhh (dBZ) ZDR (dB) ρhv KDP (◦ km−1)

Drizzle <25 0 >0.99 0

Rain 25 – 60 0.5 – 4 >0.97 0 – 10

Dry snow <35 0 – 0.5 >0.99 0 – 0.5

Melting snow <45 0 – 3 0.8 – 0.95 0 – 2

Graupel 40 – 55 -0.5 – 3 >0.99 -0.5 – 2

Small, wet hail 50 – 60 -0.5 – 0.5 >0.95 -0.5 – 0.5

Large, wet hail 55 – 70 <-0.5 >0.96 -1 – 1

Rain and hail 50 – 70 -1 – 1 >0.9 0 – 10

The numerator of the equation is the covariance of the returned horizontally and ver-

tically polarized signals and the denominator is the product of the respective variances

of the two signals. Typically, ρhv is estimated at zero lag and only the magnitude is

considered. For a distribution of scatterers, ρhv is dependent upon the diversity of parti-

cle sizes, orientations, shapes, irregularities, and phase compositions within the sampling

volumes (e.g., Ryzhkov et al. 2005b; Kumjian and Ryzhkov 2010). Correlation coefficient

is particularly useful in discriminating between meteorological and non-meteorological

scatterers. Hydrometeors are relatively uniform in their shape and orientation, and thus

usually exhibit ρhv >0.9. Non-meteorological scatters such as biological scatterers or de-

bris tend to be more randomly shaped and oriented and thus have lower values of ρhv,

often below 0.5 (e.g., Ryzhkov et al. 2002). However, mixed-phase precipitation such

as rain mixed with hail can also have low ρhv, but values approaching those produced

by non-meteorological scatterers are rare. The effects of resonance scattering can also

significantly reduce correlation coefficient for large particle and is highly sensitive to the
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the wavelength of the radiated signal and the dielectric constant of the scatterer (e.g.,

Kumjian et al. 2010a; Ryzhkov et al. 2013; Bodine et al. 2016b).

2.3.1.4 Differential Phase and Specific Differential Phase

Differential propagation phase ΦDP is a measure of the phase lag between horizon-

tally and vertically polarized signals and varies based on waves encountering non-spherical

scatterers. Differential phase is calculated using:

ΦDP = ΦH − ΦV , (2.10)

where ΦH and ΦV are the respective phases of the signals at horizontal and vertical polar-

izations. As an example, a radar beam traveling through heavy rain will encounter more

oblate hydrometeors than prolate hydrometeors and thus the phase of the horizontally

polarized wave will begin to lag increasingly behind the phase of the vertically polarized

wave. This lag results in the received phase from horizontal polarization being greater

than the phase of the vertically polarized wave for the same volume of targets and the

differential phase becoming increasingly positive with range from the radar.

The phase shift measured by ΦDP is cumulative along the two-way path of the radar

beam. The local phase shift owing to a single volume of scatterers is called specific

differential phase or KDP and is calculated using the range derivative of ΦDP :

KDP = 0.5
∂
(
ΦDP

)
∂r

. (2.11)

For practical purposes, KDP is calculated using a linear regression of range-filtered ΦDP .

Specific differential phase is a useful tool for quantitatively estimating precipitation rates

and correctiung for attenuation and differential attenuation due to its immunity to errors

in radar calibration, attenuation, beam blockage, and noise (e.g., Kumjian and Ryzhkov

2010).
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2.3.2 ZDR Column

Differential reflectivity is a useful tool for identifying the location of thunderstorm

updrafts aloft. Relatively narrow (4–8 km wide) columns of positive ZDR, known as

ZDR columns (Fig. 2.15) are the result of positive temperature perturbations associated

with warm, buoyant air within thunderstorm updrafts. As a result of the positive tem-

perature perturbation, liquid rain that exhibits positive ZDR can reside well above the

freezing level (e.g., Caylor and Illingworth 1987; Conway and Zrnić 1993). ZDR columns

are located on the inflow side of the storms and are slightly displaced from the largest

magnitudes of vertical velocity because the largest raindrops fall out at the periphery of

the updraft (Kumjian and Ryzhkov 2008). Similar to ZDR columns, KDP columns are

often displaced slightly to the west of ZDR columns where greater liquid water content

exists. Documenting the temporal evolution of ZDR columns may be useful as changes

in column height may indicate strengthening updrafts and subsequent storm intensifica-

tion (Hubbert et al. 1998; Kumjian et al. 2014; Snyder et al. 2017). For example, the

maximum altitude of the ZDR column above the freezing level may be able to distinguish

strongly tornado storms, from weakly tornadic or non-tornadic storms (Van Den Broeke

2017).

2.3.3 ZDR Arc

The ‘ZDR arc’ is a region of enhanced ZDR along the forward flank reflectivity

gradient of supercells (Fig. 2.16) that is formed by hydrometeor size sorting (Kumjian and

Ryzhkov 2008). Small raindrops with slow terminal fall velocities have large residence

times in vertical layers with strong storm-relative winds. These small raindrops are

transported farther from the supercell updraft compared to large raindrops (Dawson II,

D. T. et al. 2014). This process leaves a shield of raindrops with large median drop

sizes and inherently large ZDR on the inflow side of the supercell forward flank due to

strong southerly storm-relative winds that are usually found in in the lowest 1-2 km of

supercell environments. The magnitude of ZDR within the arc may be modified by the
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Figure 2.15: A vertical cross section of ZDR (dB) through a supercell updraft illustrating

a prominent ZDR column. Black contours represent values of reflectivity (dBZ). Figure

courtesy of Kumjian and Ryzhkov (2008).
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amount of low-level storm-relative helicity (SRH) (Kumjian and Ryzhkov 2009) or simply

the magnitude of the storms relative winds within the layer of size sorting (Dawson II,

D. T. et al. 2014). Additionally, the storm-relative winds dictate the sedimentation and

size sorting of hail within a supercell, which in turn impacts the representation of the

ZDR arc since the presence of large, dry hail can significantly lower the ZDR within a

resolution volume (Dawson II, D. T. et al. 2014). Because of its relationship with low-

level wind shear and inflow strength, the ZDR arc could potentially be used to discriminate

between tornadic and non-tornadic storms. Van Den Broeke (2017) found that ZDR arcs

in tornadic storms had higher mean ZDR and larger areal extent than arcs in non-tornadic

storms, partly due to tornadic storms having smaller, more concentrated hail cores.

Disruptions in the ZDR arc near the storm updraft may indicate that large hail is

falling out near the updraft (e.g., Kumjian and Ryzhkov 2009; Tanamachi and Heinselman

2016) or that mesocyclone occlusion is occurring (Kumjian et al. 2010b; Palmer et al. 2011;

Kurdzo et al. 2015). In the case of mesocyclone occlusion, the ZDR arc shrinks as a result

of decreased storm-relative inflow in the low levels from a weakening updraft, decreasing

size sorting of hydrometeors (Kumjian et al. 2010b). Additionally, an influx of small

drops from the rear-flank downdraft into the supercell forward flank occurs (Kumjian

2011). If another mesocyclone forms, a new ZDR arc redevelops along the forward flank

(e.g., Kumjian et al. 2010b; Palmer et al. 2011; Kurdzo et al. 2015).

2.3.4 KDP Foot

Within the precipitation core of supercells, a downshear-elongated region of en-

hanced KDP is sometimes referred to as the ‘KDP foot’ (Romine et al. 2008). The KDP

foot is located to the left of the storm updraft and adjacent to or slightly overlapping

with the ZDR arc (Fig. 2.17). The high values of KDP indicates that the KDP foot has a

high liquid water content, but its displacement from the largest values of ZDR along the

forward flank reflectivity gradient suggest it is composed of large concentrations of small

raindrops. An increase in the separation between the maxima in ZDR and KDP would
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Figure 2.16: PPI plots of OU-PRIME (a) reflectivity (dBZ) and (c) differential reflectivity

(dB) illustrating a prominent ZDR arc in the 10 May 2010 Norman-Little Axe supercell.

Figure adapted from Palmer et al. (2011).
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indicate that greater size sorting of small and large raindrops is occurring, which may be

the result of increased SRH (e.g., Kumjian and Ryzhkov 2009) or storm-relative inflow

(e.g., Dawson II, D. T. et al. 2014). Observational studies have documented increasing

separation between the KDP foot and the ZDR arc near the time of tornadogenesis in su-

percell cases (Romine et al. 2008; Crowe et al. 2012) and in non-supercell cases (Loeffler

and Kumjian 2018), suggesting that the KDP foot and the ZDR arc may have operational

utility in aiding forecasters’ warning decisions.

Figure 2.17: A conceptual model illustrating the relative position of the KDP foot to

other features within the supercell. Figure courtesy of Romine et al. (2008).
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Chapter 3

Kinematic and Polarimetric Radar Observations of the 10 May

2010, Moore-Choctaw, Oklahoma, Tornadic Debris Signature

In this chapter, data collected by the University of Oklahoma’s Polarimetric Radar

for Innovations in Meteorology and Engineering (OU-PRIME) C-band radar as well as

KTLX and KOUN WSR-88D S-band radars are used to construct single- and dual-

Doppler analyses of a tornadic supercell that produced an EF-4 tornado near Moore

and Choctaw, Oklahoma, on 10 May 2010. The spatial distribution of polarimetric radar

variables and how each variable relates to kinematic fields such as vertical velocity and

vertical vorticity are documented. Special consideration is given to polarimetric signa-

tures associated with subvortices within the tornado. An observation of negative ZDR at

the periphery of tornado subvortices is presented and discussed. Finally, dual-Doppler

wind retrievals are compared to single-Doppler axisymmetric wind fields to illustrate the

merits of each method.

3.1 Introduction

The 10 May 2010, OK tornado outbreak produced 55 tornadoes, including 36 in

the Norman Weather Forecast Office’s county warning area and two tornadoes rated 4

on the Enhanced Fujita (EF) scale. This case provides a rare opportunity to perform

dual-Doppler polarimetric radar analyses on large, debris-lofting tornadoes and compare

the results of dual-Doppler analyses to those performed by single-Doppler methods. The

serendipitous collection of data at relatively close range by KTLX and KOUN WSR-88D

S-band radars, and OU-PRIME C-band radar operated by the Advanced Radar Research

Center (ARRC), briefly provide a favorable dual-Doppler lobe for the interrogation of the

Moore-Choctaw, OK tornado, which will be the focus of this study.
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While previous studies have focused primarily on single radar representations of the

TDS, little work has been done to document the two- and three-dimensional wind field

associated with a large, heterogeneous TDS using two radars. The use of dual-Doppler

derived data may provide insight to some of the kinematic processes that have been

hypothesized in prior literature that utilized single-Doppler radar data. Further details

regarding the 10 May 2010 outbreak can be found in Palmer et al. (2011).

3.2 Methods

3.2.1 Radar Data

The polarimetric radar data used in this project were collected by OU-PRIME, located

near the National Weather Center, and by KOUN, which is located at Westheimer airport

in Norman, OK. Supplementary velocity data for dual-Doppler analyses were provided by

KTLX, a WSR-88D radar. Selected specifications for each radar appear in Table 3.1. For

a full system overview of OU-PRIME and details regarding system performance during

the event, please refer to Palmer et al. (2011). At its closest range, the Moore-Choctaw

tornado was sampled as low as ∼100 m above radar level (ARL) by OU-PRIME. Late

in the period, the lowest OU-PRIME scan available (1.0◦) sampled the Moore-Choctaw

tornado at an altitude of ∼400 m. KTLX sampled the Moore-Choctaw tornado as close

as ∼5 km, with a beam height as low as ∼75 m at the range of the center of the tornado.

Radar data editing for this project was completed using the National Center for Atmo-

spheric Research Earth Observing Lab’s Solo3 editing software (Oye et al. 1995) available

online at https://www.eol.ucar.edu/software/solo3. Clutter, identified by regions of sta-

tionary high power returns with near-zero radial velocity, and erroneous data, most often

in the form of azimuths affected by partial beam blockage or multiple-trip contamination,

were subjectively removed. Low values of signal-to-noise ratio (SNR) were objectively

thresholded below 0.3. No ρhv thresholding was performed, which potentially introduces

error to the analyses due to variance in radar measurements increasing as ρhv decreases
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Table 3.1: A selection of radar characteristics for OU-PRIME, KTLX, and KOUN.

Radar Characteristic OU-PRIME KOUN KTLX

Operating Frequency 5510 MHz 2705 MHz 2700-3000 MHz

Peak Power 1000 kW 760 kW 750 kW

Beam Width 0.45◦ 0.93◦ 0.93◦

Gate Length 125 m 250 m 250 m

Nyquist Velocity 16.06 m s−1 26.92 m s−1 26.92 m s−1

Volumetric update time 2 min 50 s 4 min 18 s 4 min 18 s

Polarization STSR STSR N/A

Scanning Strategy
1.0◦, 2.0◦, 3.0◦, 4.0◦,

5.0◦, 6.5◦, and 9.0◦
VCP 12 VCP 12

(Bringi and Chandrasekar 2001). However, a ρhv threshold would eliminate many de-

sirable volumes containing debris and bias the distribution of polarimetric variables in

the TDS. Solo3 was also used to subjectively dealias radial velocity prior to performing

the dual-Doppler and axisymmetric analyses. Values of differential phase in the vicinity

of the TDS ranged between -20◦ and 0◦ and a simple differential attenuation correction

calculation (not shown) created no appreciable changes in the polarimetric fields near the

tornado. Thus, no differential attenuation correction was applied to the data presented.

3.2.2 TDS Criteria

The original criteria for a TDS at S band proposed by Ryzhkov et al. (2005b) were

values of ρhv < 0.8, ZDR < 0.5 dB, and ZH > 45 dBZ collocated with a vortex signature

in radial velocity (Vr). The criteria for ZH were relaxed by Schultz et al. (2012a) to

30 dBZ and were further relaxed by Van Den Broeke and Jauernic (2014) to 20 dBZ

given the Warning Decision Training Branch (WDTB 2013) recommendation based on

numerous tornadic events exhibiting ZH < 30 dBZ. In order to include the WEH, the ZH
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threshold for tornadic debris is 10 dBZ. Radar volumes with ZH in the 10-20 dBZ range

were screened to ensure that they were representative of tornadic debris. This project

uses the original ρhv < 0.8 and ZDR < 0.5 dB thresholds as additional constraints.

Finally, pixels also had to be within 5 km of the tornado center to be included. These

constraints perform well in spatially identifying tornadic debris in the Moore-Choctaw

tornado (not shown); however, for many TDSs, an upper ρhv threshold of 0.8 may be too

restrictive. Additionally, a ZDR threshold may perform poorly if too much precipitation is

present from entrainment Bodine et al. (2014). Therefore, the authors do not recommend

these thresholds for TDS identification in all circumstances. Other TDS identification

methods have been implemented with success in the past, including using percentile-based

polarimetric thresholds as opposed to specific value thresholds (Bodine et al. 2014) and

using an adaptive fuzzy logic system (Wang and Yu 2015).

3.2.3 Dual-Doppler Analysis

Dual-Doppler and objective analyses are performed using the Observation Process-

ing and Wind Synthesis (OPAWS) code developed by David Dowell (NOAA/Earth Sys-

tem Research Laboratory) and Lou Wicker (National Severe Storms Laboratory). Doc-

umentation and source code can be found at http://code.google.com/p/opaws/. Radar

data are first objectively analyzed on a 30 km x 30 km domain using a two-pass Barnes

method (Barnes 1964) with a second pass convergence parameter γ of 0.3 used to further

recover the amplitudes of smaller-scale spatial structures (Barnes 1973; Majcen et al.

2008). The limiting spatial resolution (δ) in the vicinity of the tornado was ∼350 m. A

smoothing parameter [κ = (1.33δ)2] of 0.216 km−2 (Pauly and Wu 1990) was chosen. A

horizontal and vertical grid spacing of 250 m was chosen to accommodate coarser limiting

spatial resolution in other parts of the analysis domain1. Motion of the supercell between

each radar sweep in a volume is linearly corrected within the objective analyses prior

1We used the formula for grid spacing (∆ = δ/2.5) based on Koch et al. (1983) where values of δ

exceeded 600 m in parts of the analysis domain.
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to performing the dual-Doppler synthesis using a translation velocity determined by a

comparison between the mesocyclone location at the previous time to its location at the

analysis time. While correcting for advection partially mitigates errors in the analyses

caused by propagation between elevation scans and mismatched temporal sampling by

the two radars, the mesocyclone motion may not be representative of tornado motion

at all heights and can introduce errors in the analyzed location of the tornado at some

levels.

Dual-Doppler wind syntheses are performed in regions where the look angle differ-

ence between OU-PRIME and KTLX is between 20 and 160 degrees. Vertical velocities

are calculated using upward integration of the mass continuity equation with the imple-

mentation of a w = 0 at z = 0 boundary condition. Density is assumed to decrease

exponentially with height. Hydrometeor fall speeds are corrected using the terminal fall

velocity-reflectivity relationships2 obtained from Joss and Waldvogel (1970) and imple-

mented by OPAWS (Potvin et al. 2012). It is noted that OU-PRIME did not sample

the mass field below 400 m in the vicinity of the tornado, which may lead to large errors

in the vertical velocity estimates, however, KTLX sampled the wind field below 75 m,

which may partially mitigate this issue.

A major crux in the dual-Doppler assumption is that the two radars are observing

the same volume of space at nearly the same time. Because this study does not use

coordinated radar scans, and OU-PRIME was running a different scanning strategy than

the WSR-88D radars, only two analysis times approached synchronization. The first

analysis time began at approximately 2223 UTC approximately 3 min after tornadogen-

esis when scan times between OU-PRIME and KTLX varied between 3-10 s. The 2223

dual-Doppler analysis (Fig. 3.1) illustrates some interesting features, including a cyclonic-

anticyclonic vortex pair and small raindrops in the rear-flank downdraft. However, these

topics are beyond the scope of this paper, and the lack of a TDS in the early lifecycle of

2These relationships were derived for precipitation, and are likely to be underestimates of the fall

speeds for debris. However, no alternative methods for debris exists.
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the Moore-Choctaw tornado dictates that this time serve only as comparison to a later

time with a TDS. Nonetheless, the 2223 UTC time serves as a quality control check of

the methodology, confirming the locations of supercell structures, like the rear-flank gust

front and a strong cyclonic vortex, consistent with theoretical models (e.g., Lemon and

Doswell 1979; Bluestein 2013).

Figure 3.1: Dual-Doppler winds (arrows) overlaid on 2223 UTC 1◦ elevation PPIs of OU-

PRIME (a) reflectivity (dBZ), (b) correlation coefficient, and (c) differential reflectivity

(dB), and (d) a CAPPI of dual-Doppler derived vertical vorticity (s−1) valid at 250 m

ARL. The solid black contours represent the 15 dBZ isodop.

The other time that approximately fulfills the simultaneous observation requirement

is the volume beginning at approximately 2231 UTC, when the difference between scan
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times3 is on the order of ∼30 s. The Moore-Choctaw tornado exhibits a large, inhomo-

geneous TDS at 2231 UTC (Fig. 3.2), which will be the main focus of this study. Due

to the main circulation being near the edge of the dual-Doppler lobe, kinematic analyses

only cover the lowest ∼1 km of the tornado. The lowest scans of KTLX and OU-PRIME

are also the most synchronized.

Figure 3.2: PPIs of 1◦ elevation OU-PRIME (a) reflectivity (dBZ), (b) radial velocity

(m s−1), (c) correlation coefficient, and (d) differential reflectivity (dB) valid at 2231

UTC. Arrows highlight the pockets of low ρhv and ZDR in (c) and (d). The plus sign in

(c) represents the subjectively determined TDS center.

3For other potential dual-Doppler analyses, the scan times between KOUN and KTLX are on the

order of ∼2 min, which is well beyond the length of time where we can assume steady-state for processes

within supercells (Taylor 1938)
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3.2.4 Axisymmetric Wind Retrieval

Using the assumption of axis symmetry, Lee et al. (1999) developed a method to

diagnose mean three-dimensional motion within tropical cyclones. This technique was

called the ground-based velocity track display (GBVTD) method and has later been

successfully applied to tornado vortices (e.g., Bluestein et al. 2003; Lee and Wurman

2005; Tanamachi et al. 2007; Kosiba and Wurman 2010; Wakimoto et al. 2012). This

paper uses the simplified single-Doppler wind retrieval similar to the GBVTD defined

by Dowell et al. (2005) eqs. (25-27) that recovers only the azimuthally averaged (zero

wavenumber) radial and tangential velocities, u and v. This method has previously been

used by Kosiba et al. (2008) to derive axisymmetric wind fields for a tornado near Harper,

Kansas and by Bodine et al. (2014) to interrogate the Moore-Choctaw, OK tornado of

interest to this study. For KOUN and OU-PRIME, u and v are calculated for 250-m-

wide annuli, at 125-m intervals. Vertical velocities are computed by vertically integrating

radial mass flux using eq. (2.2) from Nolan (2013). KOUN did not sample the lowest

150 m of the tornado, which as noted in Nolan (2013) could result in significant errors

in the retrieved vertical velocities due to insufficient observations of the low-level mass

flux. However, circumstantial evidence supporting the derived vertical velocities will be

discussed in conjunction with the results in future sections.

Radar-derived wind fields are known to have a radially outward bias owing to objects

within tornado vortices undergoing centrifugal accelerations (Dowell et al. 2005; Bodine

et al. 2016b). In the absence of debris, centrifuging can be corrected using the terminal

fall velocities of radar-derived drop size distributions (Wakimoto et al. 2012). However,

since the radar volumes in this study are filled with debris, we use the method described

by Nolan (2013) eq. (3.1) that accounts for the velocity owing to the centrifugal force at

each location as a component of the biased radial wind field Umod:

Umod = U + Ubias = U + Cmax
v2/r

max(v2/r)
, (3.1)
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where Cmax is a specified maximum flow-relative radially outward velocity estimate, v

is the tangential velocity, and r is the radius from the center of the vortex. For the

purposes of this study, a conservative value of Cmax = 8.0 m s−1 was chosen, similar

to the maximum positive bias in radial velocity found by Wakimoto et al. (2012) (see

their Fig. 9) and similar to values for centrifuging tested by Kosiba and Wurman (2013).

The correction for centrifuging recovered low-level inflow without dramatically changing

the rest of the analysis. The analyses were not qualitatively sensitive to values of Cmax

between 4 and 12 m s−1.

3.3 Results

3.3.1 Spatial distribution of polarimetric variables

At 2231 UTC, areas of high ZH surround a region of strong azimuthal shear in Vr

associated with the Moore-Choctaw, OK tornado (Fig. 3.2a,b). Large rain drops, with

ρhv values of ∼0.95 and ZDR values in excess of 4 dB, enshroud the tornado (Fig. 3.2c,d).

Small rain drops exhibiting ρhv > 0.98 and ZDR of approximately 0.5 dB are located

farther to the south in the rear flank downdraft, as noted by Kumjian (2011) and French

et al. (2015). The tornado exhibits a TDS in excess of 2 km in diameter. While this

TDS has been examined statistically by Bodine et al. (2014), the spatial distribution of

polarimetric variables was not the focus. Thus, of particular interest to this study are the

local minima in ZDR and ρhv, which are not located in the center of the TDS, but rather

are concentrated in pockets near the periphery of the TDS (Fig. 3.2c-d). In contrast,

values of ZDR and ρhv are locally maximized near the center of the TDS.

Plots of both raw and two-pass Barnes analyzed ZDR and ρhv vs. distance from the

subjectively defined center of the TDS (Fig. 3.3) indicate that the lowest values of both

polarimetric variables occur 500-1000 m from the center of the TDS. Data points flagged
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as part of the TDS are plotted in red.4 Within volumes containing considerable amounts

of debris (red lines5), there is a weak tendency for ZDR and ρhv to decrease with distance

from the center of the tornado. Some of the points in the outer half of the TDS exhibit

values of ρhv below 0.3 and values of ZDR less than -2 dB. As expected, the trend lines

have a better fit to the objectively analyzed data (Fig. 3.3a-b) than the noisier raw data

(Fig. 3.3c-d).

Figure 3.3: Scatter plots of objectively analyzed (a) correlation coefficient, and (b) differ-

ential reflectivity (dB), and raw (c) correlation coefficient, and (d) differential reflectivity

(dB) vs. radial distance (km) valid at 2231 UTC. Blue dots indicate non-TDS flagged

points and red dots indicate TDS flagged points. The black line is the second order

polynomial fit for all points and the red line is the second-order polynomial fit for TDS

flagged points.

4It is possible that some of the bins exhibiting low values of ρhv at small radii in Fig. 3.3c also contain

small concentrations of debris but did not meet the 15 dBZ reflectivity threshold.
5All scatter plots in this study are fitted to second-order polynomials.
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Axisymmetric cross sections are used to gain a better perspective on how mean radial

profiles of polarimetric variables change with height (Fig. 3.4). The cross section of

reflectivity (Fig. 3.4a) illustrates that the radius of the maximum in reflectivity within

the TDS increases with height associated with the centrifuging of debris, similar to what

has been noted previously within tornadoes (e.g., Wurman and Gill 2000; Dowell et al.

2005; Bodine et al. 2014). As seen in Fig. 3.3, the minimum in ρhv occurs at approximately

750 m from the center of the TDS. The local minimum extends up from the lowest analysis

level and is largely confined to below 1.0 km ARL (Fig. 3.4b), similar to what was seen in

the photogrammetric analyses performed by Wakimoto et al. (2015) (e.g. their Fig. 5d).

Unlike the cross sections presented by Wakimoto et al. (2015), a secondary minimum in

ρhv is absent from the center of the TDS aloft. This may be due to greater precipitation

entrainment in the Moore-Choctaw tornado (Schwarz and Burgess 2011; Bodine et al.

2014), as suggested by the large raindrops surrounding the tornado in Fig. 3.2 or simply

due to a higher SNR in the Moore-Choctaw tornado.

The minimum in ZDR below 0.8 km ARL occurs approximately 800 m from the center

of the TDS. Above 0.8 km ARL, the minimum in ZDR is located closer to the center of

the TDS (Fig. 3.4c). Axisymmetric v is plotted in Fig. 3.4d and illustrates that the

TDS, as approximately defined by the dashed 0.8 ρhv contour, is largely constrained

within the radius of maximum winds (RMW) similar to what was found in Houser et al.

(2016). Heights where the TDS extends beyond the RMW exhibit v in excess of 40

m s−1. Strong v are likely necessary in order for debris to be centrifuged to such a

large radius. The radius of the TDS increases with height, which is likely the result of

continued debris centrifuging in combination with a vertically increasing core diameter

of the tornado and low-level mesocyclone (Fig. 3.4d). Because of the lack of low-level

coverage provided by OU-PRIME, supplemental axisymmetric analyses from KOUN are

used. These are interrogated in the next subsection. Included in these analyses is the

secondary circulation, which is omitted from Fig. 3.4.
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Figure 3.4: OU-PRIME axisymmetric (a) reflectivity (dBZ), (b) correlation coefficient,

(c) differential reflectivity (dB), and (d) tangential velocity (m s−1) valid at 2231 UTC.

Dashed lines represent isopleths of axisymmetric correlation coefficient.
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3.3.2 Tornado subvortices

The PPI of Vr at 2231 UTC (Fig. 3.5a) indicates at least two regions of locally

enhanced radial shear, likely associated with tornado subvortices (e.g., Wurman 2002;

Wurman and Kosiba 2013). Dual-Doppler analysis with KTLX at this time (Fig. 3.5b)

indicate two regions of locally enhanced vertical vorticity oriented in the same manner as

the regions of enhanced shear in Fig. 3.5a. It is possible that the dual-Doppler analysis

is only resolving the two largest subvortices, and that more are present at the sub-grid

scale.

Figure 3.5: (a) A PPI of OU-PRIME radial velocity (m s−1) and (b) a CAPPI of dual-

Doppler vertical vorticity (s−1) valid at 2231 UTC. The hatched blue contour in (b)

represents areas where reflectivity exceeds 40 dBZ.

Axisymmetric wind fields were retrieved from the Moore-Choctaw tornado using

KOUN data beginning at 2229 UTC (Fig. 3.6). The secondary circulation (arrows),

comprised of radial and vertical velocities, provides evidence of a central downdraft, with

upward vertical velocities displaced to ∼1 km in radius from the center of the tornado.

This observed secondary circulation closely resembles the model for moderate to high

swirl, two-celled vortices seen in previous studies (e.g., Church et al. 1979; Davies-Jones

1986; Wakimoto and Liu 1998; Lewellen et al. 2004, 2008) and conceptually summarized

by Bluestein (2013). It is possible that the low-level divergence field, which is poorly
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sampled at ∼17 km in range, offsets or supersedes the divergence and convergence of u

at higher altitudes rendering the secondary circulation erroneous. However, the Moore-

Choctaw tornado exhibited tornado subvortices and a RMW of∼1 km, which is consistent

with a moderate-to-high swirl ratio vortex that should likely contain a central downdraft.

Regardless, the authors caution that magnitude of the downdraft may be exaggerated by

the absence of boundary layer inflow, similar to what was noted by Kosiba and Wurman

(2010) and shown by Nolan (2013).

Figure 3.6: KOUN axisymmetric (a) tangential velocity (shaded, m s−1), (b) angular mo-

mentum (shaded, m2 s−1), (c) correlation coefficient (shaded), and (d) differential reflec-

tivity (shaded, dB) valid at 2230 UTC. Dashed lines represent isopleths of axisymmetric

correlation coefficient. Arrows represent secondary circulation wind vectors comprised of

radial and vertical velocities from the axisymmetric wind retrieval.

The axisymmetric analyses capture the top of an inflow layer, which extends to at

least 300 m in height. The low levels are characterized by radial inflow and a strong

55



vertical gradient in angular momentum (Fig. 3.6b). Radial inflow also extends into the

radius of maximum v at higher altitudes (Fig. 3.6a), similar to what was noted by Nolan

(2013). The maximum in v is observed at approximately 1100 m in radius at 500 m ARL,

with values exceeding 45 m s−1. A secondary maximum in v exists at 250 m ARL at

800 m in radius. At this height, radial inflow extends in to the radius of maximum v,

impinging farther than inflow aloft. The 0.8 ρhv contour, which serves as a proxy for the

TDS, is confined within the radius of maximum v at a given level for analyses above ∼

400 m ARL, but the 0.8 ρhv contour extends beyond the radius of maximum v at lower

altitudes. This may be the result of enhanced debris lofting and loading at lower levels

due to strong inflow (e.g., Lewellen et al. 2008; Bodine et al. 2016a), lofting of light debris

from high near-surface inflow winds, or fallout of debris from aloft (e.g., Bodine et al.

2013; Kurdzo et al. 2015; Van Den Broeke 2015; Houser et al. 2016). However, the lowest

values of ρhv are confined within the RMW throughout the column.

As noted in the previous subsection, the lowest values of ρhv in the TDS are displaced

∼ 600 m from the center of the tornado (Fig. 3.6c). The 0.8 ρhv contour exists near

the radius where vertical motion becomes directed upward due to radial convergence.

This pocket of low ρhv does not extend as high as in Fig. 3.4, however this may be due

to the difference in transmit frequency6 between the radars or the difference in analysis

times, which is approximately one minute. The lowest values of ZDR are located at 500

m in altitude and 600 m in radius in a region of downward vertical velocity (Fig. 3.6d).

At this same altitude, there is a strong gradient in ZDR between 700-1100 m in radius

corresponding with a strong gradient in vertical velocity. This region has low values of

ρhv throughout, which may mean that the gradient in ZDR is due to differences in debris

type/orientation between the updraft and downdraft. Locally reduced values of ZDR also

extend vertically above and below 500 m ARL and between 600 and 1000 m in radius.

6PPIs of KOUN data are not shown, but ZH is ∼10 dBZ higher at S-band than at C-band within the

TDS at this time.

56



3.3.3 Polarimetric vs. kinematic variables

In order to gain a better understanding of what underlying processes may be re-

sponsible for the aforementioned distribution of polarimetric variables, scatter plots of

ZH , ρhv, and ZDR vs. dual-Doppler kinematic variables are presented in this section.

Spatial correlation between vertical vorticity (ζ) and each of the polarimetric fields in-

terrogated is observed. Additionally, there is an observed relationship between vertical

velocity and ρhv.

Prior to the Moore-Choctaw tornado exhibiting a TDS, there is no relationship be-

tween the radar variables and ζ in the vicinity of the tornado (Fig. 3.7). At 2223 UTC,

all values of ZH , ρhv, and ZDR (not shown) are almost equally likely to be collocated

with positive and negative values of ζ. By 2231 UTC, the Moore-Choctaw tornado has

strengthened to the point where debris is lofted to altitudes where it can be sampled

by the radars, and the distribution of ζ vs. ZH has been significantly modified from the

earlier analysis (Fig. 3.8). At 250 m ARL, ζ increases with increasing values of ZH for

all points within 5 km of the TDS center (Fig. 3.8a). There is also a tendency within

the TDS for higher ZH to be associated with greater cyclonic ζ. Recall that the greatest

cyclonic ζ at 250 m ARL is found within the tornado subvortices (Fig. 3.5b). Thus, this

result can be interpreted as the tornado subvortices exhibiting the highest ZH , likely due

to locally enhanced debris lofting. It is possible that the subvortices exhibit a minimum

in ZH at their center due to centrifuging on a smaller scale (e.g., Wurman 2002; Waki-

moto et al. 2016), but the range to the tornado prevents this from being resolved by

OU-PRIME.

Among all data points at 1000 m ARL, there is perhaps a weak maxima in ζ around

40 dBZ (Fig. 3.8b), but the overall relationship between ZH and ζ is much weaker than

at lower levels. However, within the TDS, there is a clear inverse relationship between

ZH and ζ. The distribution of ζ is opposite of what was observed at lower levels, and is a

representation of a WEH (Fig. 3.8d) (e.g., Wurman and Gill 2000). The transition from

a relatively uniform region of high ZH (Fig. 3.8c) into a WEH is the result of centrifuging
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Figure 3.7: Scatter plots of vertical vorticity (s−1) vs. OU-PRIME (a) reflectivity (dBZ)

and (b) correlation coefficient valid at 2223 UTC. No significant relationship is observed

between either radar variable and vertical vorticity.

(Dowell et al. 2005), which causes the manifestation of the weak echo column (WEC)

observed in this study and others (e.g., Tanamachi et al. 2012; Bodine et al. 2014).

A scatter plot of all points within 5 km of the TDS center indicates that the largest

values of ζ are associated with the lowest values of ρhv at 250 m ARL, with a tendency

for increasing ζ to be associated with decreasing ρhv within the bins flagged as tornadic

debris (Fig. 3.9a). Similar to the pattern observed within the ZH data, this result can

be interpreted as the lowest ρhv being associated with the tornado subvortices similar

to what was observed by Wakimoto et al. (2016). Overlays of ζ onto constant altitude

PPIs (CAPPIs) of ρhv support the collocation of locally reduced pockets of ρhv with the

tornado subvortices (Fig. 3.9c).

At 1000 m ARL, there is still an inverse relationship between ρhv and ζ among all

points within 5 km of the TDS (Fig. 3.9b). However, there is no longer a relationship

between ρhv and ζ among TDS flagged points. This is likely because tornado subvortices

are confined to a relatively shallow layer near the surface (Wurman 2002), and thus the

debris associated with the lowest values of ρhv are no longer tied to its lofting mechanism.

A CAPPI of ρhv overlaid with ζ indicates the presence of a dominant, central vortex,

associated with the parent circulation (Fig. 3.9d).
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Figure 3.8: Scatter plots of vertical vorticity (s−1) vs. OU-PRIME reflectivity (dBZ) at

(a) 250 m ARL and (b) 1000 m ARL, and CAPPIs of OU-PRIME reflectivity (shaded,

dBZ) overlaid with dual-Doppler winds (arrows) at (c) 250 m ARL, and (d) 1000 m ARL

valid at 2231 UTC. Blue dots in (a) and (b) represent non-TDS flagged points and red

dots indicate TDS flagged points. The black lines in (a) and (b) represent the second

order polynomial fit for all points and the red lines are the second-order polynomial fits

for TDS flagged points.
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Figure 3.9: As in Fig. 3.8 except for OU-PRIME correlation coefficient at (a,c) 250 m

ARL and (b,d) 1000 m ARL valid at 2231 UTC.
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Within the TDS, a direct relationship exists between ρhv and vertical velocity at 1000

m ARL (Fig. 3.10a). The lowest values of ρhv are associated with downward vertical

velocity with magnitudes7 from 0-40 m s−1. Higher values of ρhv, but still sufficiently

low to be classified as debris, are associated with upward motion in excess of 40 m s−1.

A downdraft is located in the southwest half of the TDS (Fig. 3.10b) collocated with

a half annulus of low ρhv. It is possible that these bins of low ρhv represent a separate

regime of debris falling out from aloft (e.g., Houser et al. 2016) compared to the relatively

higher ρhv bins that are collocated with the updraft in the northeast half of the TDS.

For example, the downdraft may aid the fallout of larger debris whereas smaller debris

can be lofted into the storm-scale updraft on the northeast side. However, differential

sedimentation of debris cannot be confirmed. The northeast to southwest decrease in ρhv

is also seen above 1000 m (not shown), but the lack of a sufficient look angle difference

for analysis aloft prevents the confirmation of a similar bifurcation in vertical velocity.

Figure 3.10: As in Fig. 3.9 except for vertical velocity (m s−1) instead of vertical vorticity.

In general, the lowest values of ZDR are associated with the largest values of ζ at 250

m ARL (Fig. 3.11a). As previously noted, precipitation exhibiting high values of ZDR

7A bias in the divergence field due to debris centrifuging may impact the magnitudes of vertical

velocity in the dual-Doppler analyses. Additionally, poor sampling of the lowest 100 m of the storm may

also affect the magnitude of retrieved vertical velocity. Finally, the analyses do not capture sub-grid

scale features, like suction vortices, which may exhibit larger vertical velocity magnitudes.
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surrounds the TDS at 2231 UTC (Fig. 3.11c). Thus, it is unsurprising that ZDR decreases

when approaching the tornado. Many of the largest values of ζ in the tornado correspond

to near-zero values of ZDR. Figure 3.11c illustrates ZDR values near zero in the center

of the tornado subvortices, with lower, negative values of ZDR located at the periphery

of the vortices. The near-zero values of ZDR in the center of the subvortices are possibly

due to nearly random particle orientation. At 1000 m ARL, the relationship between

ζ and ZDR is similar to what was observed at low levels (Fig. 3.11b). Unlike at 250 m

ARL, however, the near-zero values of ZDR and surrounding annulus of negative ZDR are

associated with the parent vortex at the center of the TDS (Fig. 3.11d) as opposed to

with the tornado subvortices. The observation of negative values of ZDR at the periphery

of the vortices will be a subject of discussion in the next section.

Figure 3.11: As in Fig. 3.9 except with differential reflectivity (dB) instead of correlation

coefficient. Polynomial fits for TDS flagged points were not included due to poor fit.
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3.4 Discussion

3.4.1 Polarimetric observations

The previous section illustrates that the subvortices in the Moore-Choctaw tornado

at 2231 UTC are associated with locally enhanced ZH , locally reduced ρhv, and near-zero

ZDR. The enhanced ZH is likely due to locally enhanced concentrations of debris. It is

speculated that subvortices are capable of lofting the largest debris, which could lead to

lower ρhv (e.g., through resonance scattering effects). If the large debris were effectively

random in orientation, ρhv would be further reduced and backscattered power would be

nearly equal in the horizontal and vertical polarizations, resulting in the near 0 dB ZDR

that was observed.

Regions of negative ZDR within the TDS exist near the periphery of the tornado

subvortices (Fig. 3.12). A region of negative ZDR, with values below -0.6 dB, is located

just to the east of the largest vortex (#1), with another, larger area of negative ZDR with

values below -0.9 dB located to the northwest of vortex #1. The third region of negative

ZDR is located just to the east of the smaller subvortex (#2) with values also below -0.9

dB. Since the subvortices rotate cyclonically around a common center, the second and

third areas of negative ZDR are located in regions just vacated by the subvortices (vortex

‘wakes’). It is possible that the regions outside of the subvortices are associated with

less turbulence and allow for recently ejected, trailing debris to become oriented in a less

random manner. Alternatively, the vortex wakes could contain a different concentration

of debris compared to the subvortices leading to differences in the relative contribution of

debris to the returned signal, or vortex wakes could contain a different debris regime than

the subvortices due to size sorting. We speculate that the region of negative ZDR to the

east of vortex #1 may be associated with an unresolved subvortex, debris fallout from

aloft, or perhaps is associated with an eastward debris ejection from vortex #1, similar

to what was observed by Kurdzo et al. (2015).
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Figure 3.12: Dual-Doppler derived vertical vorticity (shaded, s−1) and OU-PRIME objec-

tively analyzed differential reflectivity (black contours, dB) contoured every 0.3 dB from

-0.9 dB valid at 2231 UTC. The hatched blue contour represents the 40 dBZ reflectivity

isopleth.
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The final topic of discussion regarding polarimetric variables is the WEC illustrated

in Fig. 3.4 and Fig. 3.6. Similar to what was observed by Wakimoto et al. (2015) in the

2013 El Reno, OK tornado, the region of low ZH and ρhv at the center of the 2010 Moore-

Choctaw tornado is also characterized by ZDR < 0 dB. As discussed by Wakimoto et al.

(2015), this region is likely composed of low concentrations of small, randomly oriented

debris. However, unlike what was observed in the El Reno tornado (which contained ρhv

as low as 0.1 in the WEC), values of ρhv were greater than 0.5 in both the KOUN and

OU-PRIME analyses. Part of the differences in ρhv values may be due to differences in

particle scattering between the X-band radar used by Wakimoto et al. (2015) and the S-

and C- band radars used in this study. However, as noted by Bodine et al. (2014), the

Moore-Choctaw tornado likely entrained considerable amounts of precipitation, whereas

it was hypothesized by Wakimoto et al. (2015) that few hydrometeors were present in

the El Reno WEC. It is possible that precipitation found in the Moore-Choctaw WEC

was transported from aloft by the central downdraft illustrated in Fig. 3.6.

3.4.2 Comparison of single- and dual- Doppler analyses

It is important to recognize the tradeoffs and differing utility of the single- and dual-

Doppler techniques used in this study. In order to better understand some of the strengths

of each method, a brief direct comparison of the analyses created by each technique was

performed. By radially averaging the dual-Doppler analyses and vertically interpolating

the data, a mean, axisymmetric wind profile is created that is similar to the one made

by the single-Doppler technique8 (Fig. 3.13a,b). The magnitude of tangential velocities is

greater in the single-Doppler analysis than the dual-Doppler analysis at almost every point

with the greatest velocity difference (Vsingle − Vdual) occurring at the RMW (Fig. 3.13c).

However, the two analyses are qualitatively similar with a radius of maximum wind at

approximately 1 km and the strongest winds occurring between 200-500 m ARL. It is

8No correction for centrifuging was applied to either the single- or dual- Doppler analyses for the

comparison in Fig. 3.13a,b.
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likely that the difference in tangential velocity magnitude between the analyses is the

result of the single-Doppler analysis having finer grid spacing (∼100 m) compared to the

dual-Doppler analysis (250-m grid spacing), which allows the single-Doppler method to

better sample the peak velocities.

In most places, the difference in radial velocity between the single- and dual- Doppler

analyses is < 10 m s−1 (Fig. 3.13d). The largest difference is between 1-2 km in radius at

the lowest two analysis levels where the single-Doppler method exhibits stronger negative

radial velocity, which represents stronger low-level inflow into the tornado. It is likely that

these differences are due to the better native resolution of the single-Doppler analysis in

addition to the dual-Doppler analysis being constrained by the data horizon of two radars,

which may limit the sampling of the inflow layer. The other region of large radial velocity

difference is between 150-1000 m in radius and 300-800 m ARL where the single-Doppler

analysis has much higher outward radial velocities than the dual-Doppler analysis. The

single-Doppler technique better samples the peak radial velocities, which may be most

biased by the effects of debris centrifuging. The region of maximum velocity difference

is similar to the region found to contain the largest difference in radial velocity between

air and debris by Dowell et al. (2005), which supports the hypothesis that centrifuging

may account for some of the observed differences. However, it is also possible that the

observed differences are the result of the single-Doppler technique better sampling the

radial divergence associated with a stronger two-celled vortex.

Both Fig. 3.13a and Fig. 3.13b capture a downdraft near the center of the tornado

with vertical velocity becoming directed upward near the RMW. Recall that both the

dual-Doppler and axisymmetric analyses may have significant errors in vertical veloc-

ity due to poor sampling of the low-level wind field. Thus, while they are qualitatively

similar, it must be cautioned that their agreement cannot be used as validation for the

derived secondary circulation. Similar to tangential and radial velocities, the single-

Doppler technique exhibits larger magnitude vertical velocity than the dual-Doppler
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Figure 3.13: Axisymmetric tangential velocity (shaded, m s−1) from (a) KOUN and (b)

a dual-Doppler analysis between OU-PRIME and KTLX valid at 2230 and 2231 UTC,

respectively. Difference plots between the KOUN and dual-Doppler (c) tangential velocity

(shaded, m s−1), (d) radial velocity (shaded, m s−1), and (e) vertical velocity (shaded,

m s−1), and (f) a CAPPI of dual-Doppler perturbation vertical velocity (shaded, m s−1)

based on the axisymmetric mean.
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method (Fig. 3.13e). The underestimate of vertical velocity in the dual-Doppler anal-

ysis is likely due to poor sampling of the low-level flow, as can be seen in Fig. 3.13d,

where stronger radial inflow exists beneath the updraft and stronger radial outflow exists

beneath the axial downdraft in the single-Doppler analysis. One more takeaway from the

vertical velocity comparison is that the dual-Doppler solution is much more stable near

the center of the vortex. This is likely due to errors in the single-Doppler technique that

arise from using a small number of datapoints near the center of the vortex, which is

less of an issue when subsetting and radially averaging dual-Doppler data from a larger

domain.

While the single-Doppler technique has the advantage of better capturing the mass

flux, the dual-Doppler technique is not constrained by an axisymmetric assumption and

clearly illustrates an asymmetric vortex (e.g., Fig. 3.5b). Thus, the assumption of ax-

isymmetry is violated in this case. However, the axisymmetric mean is still useful and

can be used as a base state to linearize the dual-Doppler wind field in the vicinity of the

tornado and provide a meaningful visualization of the asymmetries in the Moore-Choctaw

tornado (Fig. 3.13e). The CAPPI of perturbation vertical velocity (Fig. 3.13f) illustrates

that the Moore-Choctaw tornado may not be characterized simply by a downdraft at

its center and updraft at approximately 1 km in radius. Rather, the Moore-Choctaw

tornado may be comprised of at least two concentrated downdrafts, one near the center

of the vortex, and one in the southern portion of the tornado. Likewise, there may be

at least two concentrated updrafts, with the strongest one in the northeast quadrant of

the vortex. Thus, even though the dual-Doppler axisymmetric analysis undersamples

the largest magnitude vertical velocities, the dual-Doppler technique still captures one

updraft and two downdrafts within the tornado.

3.5 Conclusions

The 10 May 2010 Moore-Choctaw tornado produced a large, heterogeneous TDS.

Within the TDS, values of ZH , ZDR, and ρhv varied considerably. The highest values
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of ZH , and lowest values of ZDR and ρhv, were displaced 500-1000 m from the center of

the TDS. Both axisymmetric and dual-Doppler analyses suggest the presence of an axial

downdraft within the center of the TDS, characteristic of a two-celled vortex. Single-

Doppler Vr and dual-Doppler ζ provide evidence for the presence of two large tornado

subvortices that were located at approximately the radius of maximum ZH and minimum

ZDR and ρhv.

The maxima in dual-Doppler ζ associated with the two large subvortices are collocated

with two polarimetric variable extrema within the TDS (Fig. 3.14a). At low levels, the

tornado subvortices are associated with the highest values of ZH and the lowest values

of ρhv, likely due to locally enhanced debris concentrations. The subvortices are also

associated with near-zero values of ZDR, likely due to near-random particle orientation.

Negative regions of ZDR were constrained to the periphery and trailing regions of the

subvortices. At 1000 m, a bifurcated distribution of ρhv was observed, with higher values

of ρhv collocated with a strong updraft in the northeast part of the TDS and lower values

of ρhv collocated with a downdraft in the southwest portion of the TDS.

Axisymmetric cross-sections of the Moore-Choctaw tornado (Fig. 3.14b) illustrate

an annulus of ZH caused by centrifuging and results in the WEC. Axisymmetric cross-

sections also capture the reduced ZDR and ρhv in the tornado subvortices, which manifest

as annuli near the RMW. A direct comparison of the single- and dual- Doppler axisymmet-

ric cross-sections was made. When the additional axisymmetric constraint was applied to

the dual-Doppler data, the two analyses were qualitatively similar. Both methods agreed

on the placement of updrafts and downdrafts and had similar RMWs. The single-Doppler

method better sampled the high-magnitude velocities and low-level mass flux than the

dual-Doppler method, and thus exhibited stronger radial and vertical velocities. But, the

dual-Doppler method is not constrained by the axisymmetric assumption and was used

to provide insight into asymmetries in the tornado by utilizing the axisymmetric mean

to linearize the wind field in the vicinity of the tornado.
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Figure 3.14: Conceptual diagrams of polarimetric signatures associated with large tornado

subvortices displayed as (a) a PPI and (b) an axisymmetrically averaged vertical cross-

section along line c-d in panel (a). Panel (a) illustrates the high ZH , low ρhv, and near

zero ZDR observed within the high ζ regions associated with the largest two subvortices

in the 10 May 2010 Moore-Choctaw tornado. Also illustrated is the trailing region of

negative ZDR. Panel (b) illustrates the annulus of ZH associated with debris centrifuging

and the annuli of low ρhv and ZDR associated with the tornado subvortices and bound

by the radius of maximum winds (RMW, white dashed line).
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Additional dual-Doppler datasets of TDSs are needed, especially ones with the high

spatial- and temporal-resolution that are provided by mobile radars. Expansion on the

findings of this paper will further the understanding of how debris is distributed by the

three-dimensional winds in the vicinity of tornadoes, which, in turn, will facilitate more

accurate inference of tornado structure using polarimetric radars.
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Chapter 4

Polarimetric Radar Observations of Simultaneous Tornadoes on

10 May 2010 near Norman, Oklahoma

This chapter utilizes data collected by the OU-PRIME C-band radar as well as

KTLX and KOUN WSR-88D S-band radars to study a tornadic supercell that simul-

taneously produced a long-track EF-4 and an EF-2 landspout tornado near Norman,

Oklahoma, on 10 May 2010. The dataset contains two TDSs in close proximity to one

another that merge into the same parent updraft aloft, and eventually merge into one

large TDS. Contrasting polarimetric characteristics of two tornadoes over similar land

cover but with different intensities are documented. Also, the storm-scale sedimentation

of debris within the supercell is investigated, which includes observations of rotation and

elongation of a TDS with height. Additionally, a novel dual-wavelength comparison of

debris within the tornado to debris in the near tornado environment is presented. Finally,

the temporal evolution of the vertical structure of polarimetric variables within the TDS

is discussed.

4.1 Introduction

This study documents debris sedimentation within the 10 May 2010 Norman–Little

Axe EF-4 tornado using data collected by the OU-PRIME C-band radar (Palmer et al.

2011). OU-PRIME’s 0.45◦ beamwidth provides finescale observations of tornadic debris

and enables a novel statistical comparison of debris characteristics within the tornado and

debris in the near-tornado environment, which includes debris fallout from the tornado

and debris lofted along the RFGF. Additionally, this study documents novel observations

of TDS rotation with height and the elongation of the TDS as debris are ingested into

the storm-scale updraft. Finally, this case provides a unique opportunity to compare
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TDS characteristics of two tornadoes in close proximity to one another. In addition

to the Norman–Little Axe tornado, an EF-2-rated landspout tornado formed along the

RFGF of the parent supercell to the Norman–Little Axe tornado and eventually passed

within a few km of the Norman tornado. As discussed in Chapter 1, tornadoes with

different intensities broadly exhibit differences in TDS characteristics and behavior. In

this instance, the two tornadoes are encountering similar landcover, which modifies TDS

properties through the scattering characteristics of debris available to be lofted (Van

Den Broeke and Jauernic 2014; Van Den Broeke 2015); therefore any differences in the

two TDSs are likely due to tornado- and storm-scale processes.

4.2 Methods

4.2.1 Case Overview

This study investigates two tornadoes in Cleveland County that occurred just after

5:30 pm local time on 10 May 2010 (Fig. 4.1). The Norman-Little Axe tornado (red star)

occurred from 2232–2259 UTC and was rated EF-4. It had a 35-km path length, ∼2000-

m maximum damage width, and caused 2 of the 3 fatalities that occurred for the event

and injured 22 additional people. The landspout tornado (blue star) associated with the

Norman-Little Axe supercell formed at 1639 UTC and dissipated at 1659 UTC. It was

rated EF-2 and caused 3 additional injuries. The landspout tornado had a path length

of 17 miles and a maximum damage width of 440 yd. More details on the event can be

found online at https://www.weather.gov/oun/events-20100510 and in Palmer et al.

(2011).

4.2.2 Radar Data and Dual-Doppler Synthesis

Polarimetric radar data used for this project were collected by OU-PRIME. Supple-

mentary velocity data for dual-Doppler synthesis was collected by the KTLX WSR-88D

radar located just east of Oklahoma City. At its closest range of 15 km, the Norman-Little
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Figure 4.1: Tornado damage paths in Cleveland County, Oklahoma, on 10 May 2010.

Figure courtesy of the National Weather Service Office in Norman. Available online at

https://www.weather.gov/oun/events-20100510-maps. The red star indicates the track

of the Norman–Little Axe tornado and the blue star indicates the track of the landspout

tornado.
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Axe tornado was sampled as low as ∼300 m above radar level (ARL) by OU-PRIME and

as low as ∼230 m by KOUN. Additional details for the radar data used in this case can

be found in Table 1 of Griffin et al. (2017) and further details regarding OU-PRIME and

its observations during the event can be found in Palmer et al. (2011).

Radar data editing for this project was completed using the National Center for Atmo-

spheric Research Earth Observing Laboratory’s Solo3 editing software (Oye et al. 1995).

Dual-Doppler and objective analyses were performed using the Observation Processing

and Wind Synthesis (OPAWS) code developed by D. Dowell (NOAA/Earth System Re-

search Laboratory) and L. Wicker (National Severe Storms Laboratory). Source code

can be found online at http://code.google.com/p/opaws/. Detailed explanation of

the dual-Doppler syntheses and data quality control are provided in Griffin et al. (2017).

Values of differential phase in the vicinity of the tornado ranged between -20◦ and 0◦

with initial differential phase near 0◦ and a simple differential attenuation correction cal-

culation (not shown) created no appreciable changes in the polarimetric fields. Thus, no

differential attenuation correction was applied to the data. The limiting spatial resolution

was similar in both cases so none of the objective analysis parameters in this study differs

from what is discussed in Griffin et al. (2017). In this study, dual-Doppler analyses are

conducted at 2242 and 2247 UTC. For both of these analyses, the difference in low-level

scan times between KTLX and OU-PRIME was ∼20–40 s. Additional analyses are avail-

able at 2255 and 2259 UTC and may be used in future studies. Note that OU-PRIME

did not sample the low-level mass flux below 300 m in the vicinity of the tornado, which

may lead to large errors in the vertical velocity estimates. However, vertical velocity is

only used qualitatively in this study.

4.2.3 Debris Classification

Originally, the criteria for a TDS at S band were values of ZH > 45 dBZ, ZDR <

0.5 dB, and ρhv < 0.8 collocated with a vortex signature in radial velocity Vr (Ryzhkov

et al. 2005b). The criteria for ZH has since been relaxed (e.g., Schultz et al. 2012a;

75



WDTB 2013; Van Den Broeke and Jauernic 2014) based on numerous observations of

tornadoes exhibiting lower values of ZH . For this case, in order to capture lower debris

concentrations within the WEH and elsewhere outside of the tornado a C band, a 10 dBZ

threshold for tornadic debris was implemented, similar to what was used in Griffin et al.

(2017) for this same day. An upper ρhv threshold of 0.82 was used based on the Bodine

et al. (2013) finding of increasing contribution of precipitation above this threshold. No

ZDR threshold was imposed in order to include resolution volumes where debris and

precipitation are both present. These criteria performed well compared to subjective

debris identification (not shown).

Debris in and near the Norman-Little Axe tornado are separated into ‘inner’ and

‘outer’ debris based on whether resolution volumes are within 1 km of the subjectively

identified tornado center or between 1 and 3 km from the tornado center. The inner debris

classification can be thought of as a traditional TDS since the debris are collocated with

the tornado vortex. The 1-km threshold was chosen because it approximately represents

the radius of the maximum damage swath in the tornado. Outer debris is a combination of

debris falling out of the tornado, debris lofted by inflow into the tornado, and debris lofted

along the gust front near the tornado. The 3-km maximum radius for outer debris was

chosen to prevent debris associated with the landspout tornado from being erroneously

identified as debris falling out of the Norman-Little Axe tornado. In a few instances,

debris are separated into ‘light’ vs. ‘heavy’ debris classifications based on a subjective

threshold of 30 dBZ. Examples of the debris classification can be seen in Fig. 4.2j-l.

These classifications can be thought of as a combination of debris size and concentration

contributing to the magnitude of ZH .
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4.3 Results

4.3.1 Polarimetric and Dual-Doppler Observations of Tornadic Debris

At 2242 UTC, the first observation time, the Norman-Little Axe tornado had al-

ready been in progress1 for 10 min. At this time, the tornado exhibited a TDS with a

1.5-km diameter and a large appendage of debris extending to the east and south from

the northeast side of the TDS (Fig. 4.2). This ‘tail’ of debris became shorter with height

(Fig. 4.2j-l), suggesting that either debris were not being lofted as high in the southern

part of the debris tail, or that debris were being transported toward the tornado with

height. Additionally, the location where the debris connected with the TDS rotated

counter clockwise with height, connecting on the northeast side of the TDS at 1◦ eleva-

tion (Fig. 4.2a,d,g,l) and connecting with the north side at 3◦ elevation (Fig. 4.2c,f,i,l).

Dual-Doppler winds in the northern portion of (Fig. 4.3a,c) did show westward storm-

relative winds in the northern portion of the debris tail, supporting the hypothesis that

debris in the northern part of the tail were being ingested into the ‘inner’ debris region in

Fig. 4.2j-l. However, the shortening of the debris tail could also have been an artifact of

the temporal differences between the scans. While much of the debris tail exhibited ZH

> 30 dBZ, a large shield of debris with lower ZH values surrounded it on the east side of

the tornado (Fig. 4.2j).

The debris tail appeared to be part of a larger linear region of low ρhv extending to

the south of the tornado. Another similar line of low ρhv was present to the east of the

tornado. This region of low ρhv to the east was collocated with the RFGF in the dual-

Doppler analyses (Fig. 4.3a). While the dual-Doppler analyses did not show a secondary

gust front associated with the debris tail, there may have been a shallow or under-resolved

feature, such as a rear-flank gust front surge, that was responsible for ejecting the debris

to the east similar to what was seen in Kurdzo et al. (2015). Interestingly, ZDR along

1OU-PRIME was operating in a sector scanning mode. Prior to 2242 UTC it was collecting data on

the Moore-Choctaw tornado (Griffin et al. 2017) and not scanning the Norman-Little Axe tornado.

77



Figure 4.2: OU-PRIME PPI plots of (a–c) reflectivity (dBZ), (d–f) correlation coefficient,

(g–i) differential reflectivity (dB), and (j–l) debris classification at 1.0◦, 2.0◦, and 3.0◦

elevation (from left to right) for the Norman-Little Axe tornado (western TDS only)

valid at 2242 UTC.
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Figure 4.3: OU-PRIME PPI plots at 1.0◦ elevation of (a-b) ZH (dBZ) and (c-d) ρhv

overlaid with dual-Doppler derived (a,c) storm-relative horizontal winds (arrows) and

(b,d) vertical velocity at 250 m ARL valid at 2242 UTC.
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the RFGF was positive, whereas ZDR within and extending southward from the debris

tail was negative (Fig. 4.2g) suggesting different types or orientations of scatterers along

each of the linear features. Likely, light debris and insects were concentrated along the

RFGF and tornadic debris mostly made up the debris tail.

At 1◦ elevation, the highest ZH within the TDS was on the west side of the tornado

(Fig. 4.2a). The most negative values of ZDR were also located on the west side of the

TDS (Fig. 4.2g). Dual-Doppler derived vertical velocities (Fig. 4.3b) were most positive

on the west side of the tornado, which may indicate that enhanced debris lofting occurred

in this region. A small WEH was present throughout the entire observed depth of the

storm and becomes more prominent with height, suggesting debris and hydrometeors were

being centrifuged from the tornado (Dowell et al. 2005). Also of interest for operational

purposes was that due to the presence of the debris tail and inflow, the area of low

ρhv was large at low levels and therefore ZH must be used in order to distinguish high

concentrations of debris from areas of smaller SNR and light debris concentrations. This

was unlike the Moore-Choctaw TDS on the same day where the area of low ρhv associated

with debris was entirely surrounded by precipitation making the TDS easy to identify

(Griffin et al. 2017).

Farther aloft, precipitation wrapped around the TDS, making it much more distinct

(Fig. 4.4). A large band of mostly small drops with low, yet positive ZDR and high

ρhv was present to the south and southeast of the TDS and began to fill in the area of

inflow to the northeast of the tornado at 5.0◦ and 6.5◦ (Fig. 4.4e-f). A very narrow band

of large raindrops nearly encompassed the TDS. These large drops were an extension

of a thin hook echo, which was almost entirely comprised of large drops on the inner

side. Interestingly, the hook echo had a much larger width in ZDR than it had in ZH

suggesting that there were smaller concentrations of large drops along the inside of the

hook echo, similar to what was observed in Kumjian (2011) and French et al. (2015).

At 5.0◦ and 6.5◦ elevation, a band of precipitation wrapped into the TDS. The narrow

band of precipitation exhibited moderately high values of ZDR (Fig. 4.4h-i) suggesting
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that perhaps it was comprised of a mixture of large drops and debris. The entrainment of

large drops could potentially raise the values of ZDR and ρhv throughout the entire TDS

even when they are not the dominant scatterers (Bodine et al. 2014). Bulk TDS statistical

properties will be a subject of discussion in the next two subsections. Unlike at lower

levels, nearly all of resolution volumes containing debris at upper levels exhibited ZH <

30 dBZ (Fig. 4.4j-l), perhaps because debris were not lofted as high at distances from the

tornado where ‘light’ debris concentrations were observed at lower scans (Fig. 4.2j-l).

4.3.2 Comparison of Simultaneous TDSs

At 2244 UTC, a landspout tornado located along the RFGF to the east of the

Norman-Little Axe tornado entered OU-PRIME’s observation domain (Fig. 4.5). Prior

to entering the domain, this tornado had already been in progress for approximately 5

min (not shown) and had already begun lofting large quantities of debris (TDS #2 in

Fig. 4.5a). This eastern TDS was elongated such that the major axis was along the gust

front with a north-south orientation. The landspout tornado did not exhibit a WEH,

although this could be because the diameter was too small to be resolved so far from

the radar. An annulus of low ρhv (Fig. 4.5d) was present in the eastern TDS, similar to

what was observed in the Moore tornado on this same day (Griffin et al. 2017); however,

it is unlikely this is associated with large tornado subvortices like were observed in the

Moore tornado near its RMW. Meanwhile, the western TDS associated with the Norman-

Little Axe tornado still exhibited a well-defined WEH and, at 2◦ elevation, still had much

higher ZH on its western side (Fig. 4.5b). The TDS was elongated such that the major

axis was oriented east-west, which paralleled the local RFGF orientation in the dual-

Doppler analyses performed before (Fig. 4.3) and after this time (Fig. 4.7). No small-

scale coherent features were observed at low levels in ρhv or in ZDR for the Norman-Little

Axe tornado. Similar to at the previous time, a region of ‘light’ debris concentrations

extended to the east of the Norman-Little Axe tornado, but at higher elevations nearly

all of the resolution volumes containing debris exhibited ZH > 30 dBZ (Fig. 4.5j-l).
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Figure 4.4: Same as Fig. 2 except at 4.0◦, 5.0◦, and 6.5◦ elevation (from left to right)

valid at 2242 UTC.
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Figure 4.5: Same as Fig. 2 except at 1.0◦, 2.0◦, and 4.0◦ elevation (from left to right)

valid at 2244 UTC.
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Aloft at 4◦, the eastern TDS exhibited slightly lower ZH compared to at low levels

and had a much larger area than in the low levels (Fig. 4.5c,f,i,l). The TDS extended well

to the north of the location of the tornado, with the northern portion of the TDS having

relatively lower ZH while maintaining similar values of ZDR and ρhv as the rest of the

TDS. Perhaps this was the result of smaller concentrations of debris being advected to

the north and ingested by the storm-scale updraft. A similar elongation of the Norman-

Little Axe TDS to the northeast was also observed at this time (Fig. 4.5f). The storm-

scale sedimentation of debris is discussed in the next two subsections. In addition to

the northeast extension of the Norman-Little Axe TDS, a northwest-southeast oriented

appendage to the TDS was also present at 4◦ elevation on its northeast side (Fig. 4.5f).

Immediately to the north of this appendage was an ‘umbilical cord’ comprised of rain that

connected the Norman-Little Axe TDS to the TDS associated with the landspout tornado.

Unfortunately, there were no dual-Doppler analyses available at this time to definitively

investigate kinematic relationships of these features to the TDS; however, the umbilical

cord did approximately parallel the RFGF in the dual-Doppler analyses performed at the

previous and subsequent analysis times (-2 min and +2 min, respectively).

At 2247 UTC, the landspout tornado had moved north and west in a storm-relative

sense and was less than 5 km from the Norman-Little Axe tornado (Fig. 4.6). The very

close proximity of the two tornadoes can also be seen in their respective damage surveys

(Fig. 4.2). At this time, the two TDSs still exhibited contrasting ZH structures. The

Norman-Little Axe tornado still had a WEH, whereas the landspout tornado had the

highest ZH at its center and decreasing ZH with radius from the center of the tornado

(Fig. 4.6a). An area of ‘light’ debris extended to the east of the Norman-Little Axe tor-

nado Fig. 4.6j). This region of debris increased in ZH with height while maintaining a

similar shape and area (Fig. 4.6l), perhaps due to large amounts of debris that was pre-

viously within the tornado being redistributed eastward. The landspout TDS exhibited

two appendages, one on its northwest side and one on its southeast side. Dual-Doppler

analyses (Fig. 4.7) suggest that the southeastern appendage was associated with inflow
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into the tornado along the RFGF similar to the sawtooth features observed by Houser

et al. (2016). It is likely that this appendage was made up of lighter debris lofted along

the gust front and ingested into the TDS by strong inflow. Conversely, the appendage

on the northwest side of the TDS was associated with outflow from the tornado and was

likely comprised of debris lofted by the tornado. This is similar to the debris ejections

documented by Kurdzo et al. (2015), except they noted predominantly southward and

eastward ejections.

Figure 4.6: Same as Fig. 2 except valid at 2247 UTC.

Differential reflectivity less than -2 dB was observed in the northwest portion of

the landspout TDS, which is associated with the debris tail made up of ejected debris
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Figure 4.7: OU-PRIME PPI plots at 1.0◦ elevation of (a) reflectivity (dBZ), (b) correla-

tion coefficient, and (c) differential reflectivity (dB) overlaid with dual-Doppler derived

storm-relative horizontal winds (arrows) at 250 m ARL valid at 2247 UTC.
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(Fig. 4.6g and Fig. 4.7c). Recent studies (e.g., Ryzhkov et al. 2005b; Bluestein et al.

2007a; Griffin et al. 2017; Umeyama et al. 2018; Wakimoto et al. 2018) have hypothe-

sized that this negative ZDR is the result common debris alignment. Consistent with the

observations of Griffin et al. (2017) and Wakimoto et al. (2018), the negative ZDR was

observed at the periphery of the tornado, perhaps where tangential velocities were much

larger than vertical velocities (Umeyama et al. 2018). While dual-Doppler analyses were

performed for this case, they do not have the necessary resolution to interrogate this

hypothesis. Similar to what was observed in Wakimoto et al. (2018), the extremely low

ZDR was only present in the low levels with most resolution volumes exhibiting ZDR <

-2 dB confined to the lowest elevation scan (Fig. 4.6g–i).

By 2249 UTC, the two TDSs began to merge at low levels (Fig. 4.8). For this reason,

this time is excluded from the subsequent statistical comparison of the two TDSs at the

end of this subsection. At 2◦ elevation, the TDS associated with the landspout tornado

had a maximum width of ∼5 km (Fig. 4.8c,d) compared to ∼3 km at the previous times

(e.g., Fig. 4.6b) and was more diffuse. It is possible that this was due to a weakening of the

updraft associated with the tornado at this time (Bodine et al. 2013; Houser et al. 2016).

Conversely, the Norman-Little Axe TDS maintained a similar size at low levels compared

to previous times. In addition to debris concentrated near the tornadoes, a large area of

lighter concentrations of debris could be seen in the wake of the two tornadoes. Debris

filled the RFD (Fig. 4.8c) with its outer bounds to the east and north presumably being

constrained by the RFGF similar to what was observed at the previous time (Fig. 4.7b).

Statistical analyses were conducted to compare the polarimetric characteristics of the

two TDSs at 2244 and 2247 UTC using the criteria in Section 4.2.3. Median OU-PRIME

ZH of resolution volumes identified as debris within 1 km of the Norman-Little Axe

tornado was 5–9 dBZ higher than in the landspout tornado (Fig. 4.9a). In the landspout

tornado, median ZH decreased slightly with height, whereas median ZH was relatively

constant with height in the Norman-Little Axe tornado. However, these observations were

all above 300 m ARL, below which is where we typically expect the largest decrease in ZH
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Figure 4.8: OU-PRIME PPI plots of (a–b) reflectivity (dBZ) and (c–d) correlation coef-

ficient at (a,c) 1.0◦ and (b,d) 2.0◦ elevation valid at 2249 UTC.

88



to have occurred (e.g., Wurman et al. 1996; Dowell et al. 2005; Wakimoto et al. 2018). 90th

percentile ZH was approximately 7 dBZ higher in the Norman-Little Axe tornado than

the landspout tornado, and in both tornadoes 90th percentile ZH decreased with height.

This suggests that the fallout rate of the largest debris was greater than for smaller debris,

which is consistent with previous observations by Bodine et al. (2014). Both tornadoes

were interacting with similar landcover, so therefore the differences in median and 90th

percentile ZH between tornadoes are more likely attributed to differences in tornado

intensity rather than landcover (Bodine et al. 2013; Van Den Broeke and Jauernic 2014;

Van Den Broeke 2015). The Norman-Little Axe tornado produced EF-4 damage and

likely lofted larger and greater quantities of debris than the landspout tornado, which

produced EF-2 damage.

Figure 4.9: Composite profiles of OU-PRIME (a) reflectivity (dBZ), (b) differential re-

flectivity (dB), and (c) correlation coefficient vs. height (km) valid from 2244–2247 UTC.

Red lines indicate the profiles of the western tornado and blue lines indicate the profiles

of the eastern tornado. Light colors represent median values and dark colors represent

90th percentile values.

Median and 90th percentile OU-PRIME ZDR for tornadic debris was approximately

0.5–1.0 dB higher in the Norman-Little Axe tornado than the landspout tornado (Fig. 4.9b).

For both tornadoes, median ZDR increased slightly with height and 90th percentile ZDR

exhibited no appreciable trend. Median and 10th percentile ρhv was approximately 0.05

higher in the Norman-Little Axe tornado and for both tornadoes median and 10th per-

centile ρhv increased with height (Fig. 4.9c). The increase in ρhv coupled with the decrease

89



in ZH with height is likely due to the fallout and centrifuging of the largest scatterers

as altitude increases (Bodine et al. 2014). It is also likely that the previously discussed

precipitation entrainment was responsible for the higher ZDR as well as the higher ρhv

in the Norman-Little Axe tornado, similar to what was observed in Bodine et al. (2014).

While differences in the magnitudes of polarimetric variables exist due to differences in

tornado intensity and precipitation entrainment, the behavior of the vertical profiles of

polarimetric variables within the two tornadoes were similar.

4.3.3 Debris Sedimentation

In an effort to understand how tornado debris are dispersed into adjacent updraft

and downdraft regions, the areal extent of debris was calculated in each quadrant relative

to the tornado’s position in order to quantify the distribution of debris with height.

In the low levels, the majority of the near-tornado debris field for the Norman-Little

Axe tornado was located to the east of the tornado center (Fig. 4.10a). Comparatively

little debris were located to the north and south of the tornado, with nearly no debris

located to the west of the tornado other than debris within the annulus of high reflectivity

that surrounded the WEH. The area of debris located to the east of the tornado center

decreased significantly with height from an average of 3.5 km2 at 1.0◦ to less than 1 km2

at 6.5◦. The area of debris to the south of the tornado remained relatively constant up

to 4.0◦ (∼1.5 km ARL) before it decreased slightly at 5.0◦ (∼ 2 km ARL) and 6.5◦ (∼

2.75 km ARL) elevation. In contrast, the areal extent of debris to the north and west of

the tornado increased with height up to 5.0◦ before decreasing slightly at 6.5◦, likely due

to an overall decrease in total debris area at higher elevations.

Apart from the first observation time, the total area of ‘heavy’ debris concentrations

lofted near the Norman-Little Axe tornado increased with height (Fig. 4.10b). Addition-

ally, the volume of lofted debris increased with time. It is likely that the change in the

vertical distribution of debris after 2242 UTC was due to the increased centrifuging of
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Figure 4.10: (a) OU-PRIME areal extent (km2) of debris at 1.0◦, 2.0◦, 3.0◦, 4.0◦, 5.0◦,

and 6.5◦ in the northern (green), eastern (red), southern (blue), and western (black)

quadrants. Quadrants are defined relative to the center of the tornado. Dark colors

represent area with reflectivity >30 dBZ and light colors represent area with <30 dBZ

reflectivity. (b) Area (km2) of debris exhibiting ZH > 30 dBZ vs. height (km) valid at

2242 UTC (blue line), 2244 UTC (orange line), 2247 UTC (green line), and 2249 UTC

(red line).
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debris associated with an increase in the rotational velocity of the tornado late in the ob-

servation period (not shown). Debris would have been more likely to detrain farther from

the tornado when tornado intensity was greater. In addition greater debris centrifuging,

the increase in the intensity of the Norman-Little Axe tornado likely caused an increase

in vertical debris flux, which would have resulted in the observed increase in the total

volume of lofted debris. The temporal evolution of tornado intensity and its impact on

the vertical profiles of polarimetric variables will be discussed in the next section.

The large area of debris to the east of the tornado in the low levels was largely due

to the aforementioned debris ‘tail’ to the east of the Norman-Little Axe tornado, which

was largest at 2242 UTC (Fig. 4.2a,d,g,j), but could also be seen to a lesser extent at

2244 UTC (Fig. 4.5a,d,g,j) and 2247 UTC (Fig. 4.6a,d,g,j). As previously discussed, the

debris tail decreased in length and areal extent with height, which is one reason why the

area of debris to the east of the tornado decreased with height. However, another factor

in the upward decrease in area of debris to the east of the Norman-Little Axe tornado

was the rotation of the TDS with height and redistribution of debris to the north, and to

a lesser extent, to the west of the tornado (Fig. 4.11). At 2247 UTC, the major axis of

the TDS was oriented nearly east-west (Fig. 4.11a,d,g). Going up in elevation, the major

axis of the TDS rotated to the east-northeast (Fig. 4.11b,e,h) and then to the northeast

(Fig. 4.11c,f,i). The TDS also became elongated as debris were transported to the north

by storm relative winds (Fig. 4.13). From these observations it can be concluded that

the areal extent of debris to the north of the tornado grew at the expense of the area

of debris to the east of the tornado. This redistribution of debris to the north of the

tornado is a near-real-time polarimetric radar verification of the observations from Snow

et al. (1995) and (Magsig and Snow 1998) that the majority of debris is redistributed to

the left of the tornado track.

The landspout tornado, while not lofting as much debris to higher altitudes as the

Norman-Little Axe tornado, also exhibited an elongated TDS with tails of debris stretch-

ing to the south along the RFGF and to the north-northwest (Fig. 4.11c,f). Only a small
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Figure 4.11: OU-PRIME PPI plots of (a–c) reflectivity (dBZ), (d–f) correlation coeffi-

cient, and (g–i) Norman-Little Axe tornado debris classification at (a,d,g) 2.0◦, (b,e,h)

3.0◦, and (c,f,i) 4.0◦ elevation valid at 2247 UTC.
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arching band of precipitation separated the two TDSs as they converged toward a com-

mon point to the northeast of the Norman-Little Axe tornado. It is possible that debris

were being drawn north and ingested into the storm-scale updraft that was located to

the north of the two tornadoes (not shown).

At 2249 UTC, the Norman-Little Axe TDS maintained a northeastward orientation

above the 4.0◦ elevation scan (Fig. 4.12). The Norman-Little Axe TDS became increas-

ingly elongated with height, extending approximately 4 km along its major axis at 6.5◦

elevation (Fig. 4.12c,f,i,l). As noted at previous times, virtually all resolution volumes

containing debris within the Norman-Little Axe tornado aloft exhibited ZH > 30 dBZ

(Fig. 4.12j-l). In contrast to the Norman-Little Axe tornado, the landspout TDS was

much shallower than at previous times and did not loft debris above the 4.0◦ scan. As

previously discussed, this may indicate that the landspout tornado had weakened by this

time.

Dual-Doppler derived, mean storm-relative wind within 3 km of the Norman-Little

Axe tornado at 2247 UTC veered with height (Fig. 4.13). In the low levels, mean storm

relative flow was to the south, largely influenced by northerly winds within the RFD and

east-northeasterly inflow into the tornado (Fig. 4.7). However, the mean storm relative

winds shift to the northeast with height (Fig. 4.13) with mean winds of ∼20 m s−1 to the

northeast at 3.75 km ARL, approximately the altitude of the TDS at 6.5◦ elevation in

Fig. 4.14c,f,i,l two minutes later at 2249 UTC. It is likely that the veering storm-relative

wind profile was responsible for the rotation and elongation of the TDS to the northeast

with height.

4.3.4 Dual-Wavelength Observations of Inner vs. Outer Debris

For the Norman-Little Axe tornado, the profiles of ‘inner’ debris within 1 km of the

tornado, and ‘outer’ debris between a 1 and 3 km radius from the tornado were compared

at C and S band (Fig. 4.14). At low levels, ZH was higher for inner debris than for outer

debris (Fig. 4.14a,d). As previously discussed, ZH decreased slightly with height for
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Figure 4.12: Same as Fig. 2 except at 4.0◦, 5.0◦, and 6.5◦ elevation (from left to right)

valid at 2249 UTC.
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Figure 4.13: Dual-Doppler-derived mean storm relative horizontal wind profile, computed

within a 3-km radius of the Norman-Little Axe tornado valid at 2247 UTC.
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inner debris. However, for outer debris, ZH increased with height with median and 90th

percentile values at S and C band becoming similar to their respective values for inner

debris at 6.5◦ elevation. This occurred because larger debris were redistributed outward

with height due to centrifuging and the northward transport of debris advecting debris

away from the center (e.g., Fig. 4.11). Histograms of ZH (not shown) confirm that the

distribution of ZH for outer debris at 6.5◦ was very similar to the distribution for inner

debris at 1.0◦. Additionally, the size distribution of debris likely narrowed with height

due to the fallout of large debris causing more similar values of ZH between inner and

outer debris at higher elevations. Median and 90th percentile ZH was approximately 7

dBZ higher at S band than at C band for inner debris. This was likely because volumes of

inner debris were more likely to contain larger scatterers, which remain Rayleigh scatterers

for larger sizes at S band than C band resulting in higher ZH (c.f., Figure 3 in Bodine

et al. (2016b)). The dual-wavelength difference in ZH at low levels for outer debris was

comparatively small with 1–2 dBZ differences in median and 90th percentile ZH below

1000 m ARL, likely because the debris sizes were much smaller for outer debris. The

dual-wavelength difference in ZH for outer debris became greater above 1 km and more

similar to the dual-wavelength difference for inner debris, going from a ∼ 3 dBZ mean

difference below 1 km to a ∼ 9 dBZ mean difference between 1 and 2 km as larger debris

particles were redistributed away from the tornado.

For both inner and outer debris, ZDR was larger at C band than S band (Fig. 4.14b,e).

It is likely that C band was more sensitive to rain because many of the debris particles

were non-Rayleigh scatterers allowing large raindrops to make up a larger proportion of

the total Rayleigh scatterers. The dual-wavelength difference in median ZDR was greater

for outer debris likely because more large raindrops were present at this range from the

tornado (e.g., Fig. 4.4). Similarly, the 90th percentile values of ZDR were higher at both

wavelengths for outer debris than inner debris because of greater concentrations of large

raindrops at outer radii.
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Figure 4.14: Composite profiles of (a,d) reflectivity (dBZ), (b,e) differential reflectivity

(dB), and (c,f) correlation coefficient vs. height (km) for the western tornado valid

from 2242–2249 UTC. Profiles in (a–c) are for inner debris (debris within a 1-km radius

of the tornado center) and profiles in (d–f) are for debris farther than 1 km from the

tornado center. Red lines indicate profiles from KOUN (S band) and blue lines are from

OU-PRIME (C band). Light colors represent median values and dark colors represent

median values.
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Median and 10th percentile ρhv was larger at S band than at C band (Fig. 4.14c)

for inner debris. This is consistent with the findings of Bodine et al. (2014) and is due

to a greater impact of resonance effects at C band due to a larger proportion of non-

Rayleigh scatterers in a given volume containing debris. Additionally, C band is more

sensitive to non-spherical shapes (Balakrishnan and Zrnić 1990), which would result in

lower ρhv. At both S and C band, ρhv increased with height for inner debris, likely due to

the fallout of larger debris and consistent with the observations in Bodine et al. (2014).

Conversely, differences in S- and C-band ρhv were minimal for outer debris while median

and 10th percentile values of ρhv remained relatively constant with height in the lowest

2.5 km ARL (Fig. 4.14f). The smaller dual-wavelength differences in both ρhv and ZH

support the hypothesis that, in general, outer debris were comparatively smaller than

inner debris. Additionally, both median and 10th percentile ρhv were 0.1 higher for outer

debris than inner debris suggesting proportionally fewer non-Rayleigh scatterers in the

outer region. Unlike ZH , however, the difference in ρhv between S and C band did not

increase with height for outer debris as inner debris were redistributed outward. Perhaps

an increasing influence of precipitation hinted at by a slight positive trend in median ZDR

with height (Fig. 4.14e) could explain the relatively constant ρhv despite higher ZH from

the introduction of larger debris particles from within the tornado. Regardless, it can be

concluded that outer debris are likely to be smaller than inner debris on the whole at

low levels with the debris characteristics becoming more similar between inner and outer

debris at higher elevations due to the fallout and transport of inner debris away from the

tornado.
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4.4 Discussion

4.4.1 TDS Rotation

While the rotation of the TDS with height was something that was consistently

observed in the Norman-Little Axe tornado, it is uncertain whether this TDS character-

istic is commonplace among other tornadoes. For example, the Moore-Choctaw tornado,

which was observed by OU-PRIME on the same day as the Norman-Little Axe tornado,

was nearly circular in the low levels (c.f., Figure 2 in Griffin et al. (2017)) and remained

relatively symmetric throughout the lowest 1.5 km ARL, only becoming slightly elongated

to the northeast at higher elevation scans up to 2.5 km ARL which was approximately

the top of the observed TDS (not shown). A small survey of recent tornadoes in the

Oklahoma City metro2 observed by KTLX also did not provide many observations of

TDS rotation with height. However, in many instances it was difficult to determine the

the shape and behavior of the TDS due to the range of the storms and relatively broad

azimuthal sampling of the WSR-88Ds above 1.3◦.

However, in our brief survey of central Oklahoma cases, there has been at least one

instance of TDS rotation with height captured by KTLX. The 19 May 2013 Shawnee,

Oklahoma, tornado passed very close to KTLX and at 2336 UTC, when the tornado was

approximately 12 km in range, a north-south-oriented, elongated TDS was observed at 5◦

elevation (∼ 1 km ARL, Fig. 4.15a,d). The TDS rotated counter-clockwise with height

such that it was northwest-southeast oriented at 8◦ (∼1.75 km ARL, Fig. 4.15c,f). The

counter-clockwise rotation of an elongated TDS was very similar to the Norman-Little

Axe tornado and demonstrates that the behavior of the Norman-Little Axe tornado was

not a singular occurrence.

It may not be a coincidence that that the Shawnee tornado was the only KTLX

case that unambiguously exhibited TDS rotation with height since it was one of the

2The survey included the 19 May 2013 Shawnee tornado, 20 May 2013 Moore tornado, and 31 May

2013 El Reno tornado, which all produced large, deep TDSs near KTLX.
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Figure 4.15: PPI plots of KTLX (a–c) reflectivity (dBZ) and (d–f) correlation coefficient

at (a,d) 5◦, (b,e) 6.5◦, and (c,f) 8◦ elevation valid at 2336 UTC for the 19 May 2013

Shawnee, Oklahoma, tornado. Figures generated by the NOAA Weather and Climate

Toolkit, available online at https://www.ncdc.noaa.gov/wct/. Rings represent range

to radar (km).

best resolved tornadoes spatially due to its close range. However, the fact that the

Moore-Choctaw tornado did not exhibit TDS rotation with height despite its relatively

close range (∼20 km) and the 0.5◦ beamwidth of OU-PRIME means that in some cases

the absence of TDS rotation is not simply a sampling issue. It is possible that not all

TDSs experience such strongly veering storm-relative wind profiles in the near-tornado

environment as was observed in the Norman-Little Axe tornado. Additionally, it may be

that not all updraft structures support similar debris trajectories or that near-tornado

downdrafts do not allow for debris to stay suspended long enough for the TDS to become

elongated 3. Or, it could be that there is some other control on TDS behavior that is

only present in certain cases.

3The dual-Doppler volume was too shallow in the Moore-Choctaw case to compare the near-tornado

wind profile with the Norman-Little Axe tornado.
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4.4.2 Temporal Evolution of Polarimetric Profiles

Vertical profiles of polarimetric variables presented in the results section were tem-

porally averaged and represented the the bulk characteristics of the TDS over a period

of just under 10 min. However, some profiles changed drastically over the observa-

tion period. For example, within the Norman-Little Axe tornado, 90th percentile ZH

for inner debris (Fig. 4.16a) decreased with height at a rate of 7.5 dBZ km−1 at 2242

UTC (blue line). However, by 2249 UTC (red line), 90th percentile ZH only decreased

in by ∼2 dBZ over the entire 2.5 km observed depth (∼1 dBZ km−1). Additionally,

90th percentile ZH was at least 5 dBZ greater at 2249 UTC compared to 2242 UTC

for all observed heights. Similarly, median ρhv (Fig. 4.16b) increased with height at

2242 UTC (blue line), but the slope of ρhv decreased with time and at 2249 UTC (red

line) there was no consistent vertical trend. Additionally, median ρhv decreased at all

altitudes with time, which, along with the observed increase in 90th percentile ZH is

likely due to the tornado producing greater damage at 2247 and 2249 UTC than at

2242 UTC, consistent with what was observed in Bodine et al. (2013) for other TDS

cases. Descriptions of the damage survey from the event (available online at https:

//www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=231948) indicate that the

Norman-Little Axe tornado produced increasing damage intensity throughout its lifecy-

cle with the the most damage occurring approximately at the end of observation period.

Moreover, observed OU-PRIME differential velocity (∆V) at 1◦ elevation increased from

∼69 m s−1 at 2242 UTC to a maximum of ∼83 m s−1 at 2247 UTC (not shown) despite

the beam height increasing from 280 m to 415 m ARL, respectively.

In general, the profiles in polarimetric variables became more homogeneous with

height over time. It is possible that this means that the properties of debris in this

column became more homogeneous during this time as well. This could be caused by one

or a combination of multiple factors. First, the types of debris within the tornado itself

could have become less variable over time. Additionally, large debris particles, which take

longer to ascend, may not have had time to reach the upper portions of the TDS at 2242
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Figure 4.16: OU-PRIME (a) 90th percentile reflectivity (dBZ) and (b) median correlation

coefficient vs. height (km) valid at 2242 UTC (blue line), 2244 UTC (orange line), 2247

UTC (green line), and 2249 UTC (red line) for debris within 1 km of the Norman-Little

Axe tornado.

UTC, but by 2249 UTC they may have ascended to higher altitudes. Similarly, as the

tornado increased in intensity, it is likely that it was more capable of lofting larger debris

to higher altitudes. Finally, the fallout of previously lofted debris from aloft may have

acted to homogenize the TDS by counteracting vertical size sorting that occurs when

debris are initially lofted (i.e., smaller debris get lofted faster to higher altitudes). But,

regardless of the responsible mechanism, it does appear that in this particular case the

TDS became much more vertically homogeneous as it became longer lived. Whether this

can be generalized among other TDSs remains a topic of future research.

4.5 Conclusions

The 10 May 2010 tornado outbreak provided a unique opportunity to compare

two debris-lofting tornadoes of different intensities that were encountering similar land-

cover due to their very close proximity to one another. The Norman-Little Axe tornado

produced EF-4 damage and was associated with the parent mesocyclone of a long-lived

supercell. A second tornado located along the gust front of the same supercell produced
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EF-2 damage. Both TDSs associated with the two tornadoes exhibited appendages at

some point during their respective lifecycles. The Norman-Little Axe TDS had a large tail

of debris on its eastern side that shortened with height, but it could not be determined

exactly what caused this appendage. The landspout tornado exhibited two small debris

appendages, one on the northwest side of its TDS and one on the southeast side. While

both appendages were along the RFGF, it can be inferred from dual-Doppler analyses

that the southeastern appendage was associated with debris lofted by inflow into the tor-

nado and the northwest appendage was likely associated with debris being ejected by the

tornado. These are similar to the mechanisms for TDS appendages described in Houser

et al. (2016) and Kurdzo et al. (2015), respectively, except happening simultaneously for

the same TDS and in different directions of the ejected debris compared to Kurdzo et al.

(2015).

The two tornadoes exhibited contrasting TDS characteristics. The landspout tornado

had high ZH at its center surrounded by relatively lower ZH and at one point exhibited

an annulus of low ρhv at the periphery of its TDS, similar to Griffin et al. (2017); how-

ever, it unlikely that large tornado subvortices were present in this tornado like in the

10 May 2010 Moore-Choctaw case. Meanwhile, the Norman-Little Axe tornado had a

WEH at its center and did not show any coherent features in ρhv. It was determined

from a comparison of bulk polarimetric characteristics that median and 90th percentile

ZH was larger in the Norman-Little Axe tornado, consistent with its greater damage in-

tensity. Median and 90th percentile ρhv and ZDR were also higher in the Norman-Little

Axe tornado, likely due to precipitation entrainment. Despite differences in the overall

magnitude and horizontal distribution of polarimetric variables, in both tornadoes ZH

decreased with height, ρhv increased with height, and ZDR was relatively constant with

height.

The shape of the TDS and spatial distribution of debris within the Norman-Little Axe

tornado did change significantly with height. At low levels, the TDS was elongated with

an east-west orientation and the majority of the debris located to the east of the tornado.

104



As elevation increased, much of the debris to the east of the tornado was redistributed to

the north and to a lesser extent, west, of the tornado. This was a byproduct of the TDS

rotating and elongating with height such that the major axis of the TDS pointed toward

the northeast at higher elevation angles. The rotation of the TDS with height was most

prominent at the end of the observation period, when the tornado was producing the most

intense damage. It is likely that a strongly veering storm-relative wind profile near the

tornado was responsible for the redistribution of debris and TDS rotation with height by

detraining and transporting debris in a preferential direction. Additionally, northeastward

storm-relative winds above 2 km ARL were likely responsible for the elongation of the

TDS in that direction. To the authors’ knowledge, this is the first documentation of TDS

rotation with height and the influence of the near-tornado mean wind profile on the TDS

structure and serves as a polarimetric radar verification of previous observations from

Snow et al. (1995) and Magsig and Snow (1998) that the majority of debris falls out to

the left of the tornado track.

A novel dual-wavelength comparison of debris characteristics within the tornado (‘in-

ner’) to debris between 1 and 3 km from the tornado (‘outer’) was performed. This

provides a comparison of debris residing within the tornado to debris ejected into the

nearby storm-scale flow (e.g., storm-scale updraft, RFD). S-band ZH was found to be

larger than C-band ZH for both inner and outer debris with the greatest dual-wavelength

differences occurring for debris within the tornado. This is likely due to larger debris

being present within the tornado and is consistent with previous observations (Bodine

et al. 2014) and simulations of debris radar signatures (Bodine et al. 2016b) that showed

such differences result from resonance effects of large particles. In general, ZH was lower

and ρhv was higher for outer debris, which coupled with smaller dual-wavelength differ-

ences suggests that outer debris were smaller than inner debris. The dual-wavelength

difference in ZH increased with height for outer debris and inner and outer ZH values

at both wavelengths became much more similar at upper levels. This is likely due to

debris within the tornado being redistributed outward with height from the effects of
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centrifuging and advection away from the center of the tornado by the mean wind. The

decreasing dual-wavelength differences with height, resulting from smaller dominant scat-

terer sizes and more similar dual-wavelength differences between inner and outer debris

due to centrifuging, is consistent with simulations in Bodine et al. (2016b). Except, the

observations in this study are at S and C band, and Bodine et al. (2016b) used simu-

lated S- and X-band observations. The only appreciable dual-wavelength differences in

ρhv occurred for inner debris with lower ρhv observed at C band than at S band due to

increased resonance effects at C band for large scatterers.

As can be seen in this and other recent studies, it may be possible to infer many

characteristics of the near-tornado wind field based solely on observations of debris using

polarimetric radars (e.g., veering storm-relative wind profiles inferred from the elongation

and rotation of the TDS). While many of the findings in this study are intuitive, more

cases are needed in order to know whether observations like the differences in the debris

characteristics of inner and outer debris can be generalized. Moreover, it appears that

only a subset of TDSs rotate with height and additional dual-Doppler and high-resolution

model datasets are needed to investigate the kinematic controls on this particular debris

behavior. Finally, observations and polarimetric radar simulations with much finer-scale

spatial and temporal resolution are needed in order to interrogate the the relationships

between tornado intensity and structure and the manifestation of TDS appendages, po-

larimetric inhomogeneities, and the vertical distribution of debris.
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Chapter 5

High-Temporal Resolution Observations of the 27 May 2015

Canadian, Texas, Tornado Using the Atmospheric Imaging

Radar

In this chapter, observations collected by the Atmospheric Imaging Radar (AIR;

Isom et al. 2013; Kurdzo et al. 2017) of the 27 May 2015, Canadian, Texas, tornado

are presented. During this deployment, 20◦-by-80◦ (elevation x azimuth) sector volumes

were collected every 5.5 s at ranges as close as 6 km. The AIR captured the late-

mature and decaying stages of the tornado. Early in the deployment, the tornado had a

radius of maximum winds (RMW) of 500 m and exhibited maximum Doppler velocities

near 65 m s−1. Rapid changes associated with the dissipation stages of the tornado are

documented. A 10-s resolution time-height investigation of vortex tilt and differential

velocity (∆V) is presented and illustrates an instance of upward vortex intensification as

well as downward tornado decay. Changes in tornado intensity over periods of less than

30 s coincided with rapid changes in tornado diameter. At least two small-scale vortices

were observed being shed from the tornado during a brief weakening period. A persistent

layer of vortex tilt was observed near the level of free convection, which separated two

layers with contrasting modes of tornado decay. Finally, the vertical cross-correlation of

vortex intensity reveals that apart from the brief instances of upward vortex intensification

and downward decay, tornado intensity was highly correlated throughout the observation

period.

5.1 Introduction

Toward the goal of a broader view of rapid tornado evolution, the present study

interrogates close-range tornado observations collected by the AIR. The AIR is a mobile,
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X-band phased-array radar that collects high-temporal resolution, vertically continuous

volumetric observations of tornadoes. On 27 May 2015, the AIR collected 5.5-s temporal

resolution observations of an EF-2 rated tornado near Canadian, Texas, with maximum

Doppler velocities of 65 m s−1 during the the scanning period and at its widest, had a

radius of maximum winds (RMW) of 500 m. The nearly simultaneous volumetric data

collection within the Canadian tornado provides a unique opportunity to interrogate the

vertical structure of a tornado during decay without having to account for translation or

evolution of the vortex between elevation scans.

This study documents the vertical evolution of tornado intensity during tornado de-

cay with the goal of identifying if specific layers within the tornado are important for

triggering tornado dissipation. Studies by French et al. (2014) and Houser et al. (2015)

have previously documented tornado decay with high-temporal resolution and have pro-

vided early insight into the vertical behavior of tornadoes during dissipation. However,

the data in this case have better spatial resolution compared to French et al. (2014) and

better low-level coverage than Houser et al. (2015). Understanding where tornadoes first

weaken and how decay evolves in time and space could inform future investigations into

the vorticity budget of the tornado using models, multiple-Doppler analyses, or a combi-

nation of both (e.g., Marquis et al. 2012, 2016). In addition to contributing to a better

understanding of why tornadoes dissipate, rapid observations that determine how late-

lifecycle tornadoes behave have the potential to inform forecasters when to let warnings

expire if phased-array radars are implemented operationally in the future.

In addition to investigating tornado decay, this study also documents two instances of

small-scale vortices being shed from the parent tornado, which occur during a brief tor-

nado weakening period and may have contributed to the transport of angular momentum

away from the tornado. A detailed evolution of tornado tilt through multiple layers of

the tornado is presented. French et al. (2014) previously found no relationship between

tornado tilt and vortex intensity; however, this study calculates tornado tilt with much

finer vertical resolution in order to investigate much smaller layers within the tornado
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rather than just the overall tornado inclination. Finally, tornado intensity is compared to

vortex diameter to interrogate the role of conservation of angular momentum on tornado

intensity and the vertical cross-correlation of tornado intensity is analyzed.

5.2 Methods

5.2.1 Atmospheric Imaging Radar and Case Overview

The AIR is a mobile, rapid-scan, X-band, phased-array imaging radar designed and

constructed by the ARRC (Isom et al. 2013). The AIR transmits a 20◦ in elevation by

1◦ in azimuth horizontally polarized fan beam and receives data using a 36-element array

with a vertically oriented baseline. The 36 channels of received data are combined using

digital beamforming (Mead et al. 1998) to reconstruct 20 1◦-x-1◦ beams resulting in a

simultaneous RHI with each pulse, which is mechanically steered in azimuth to collect

volumetric data. In the present study, Fourier (non-adaptive) digital beamforming is

used.

The 27 May 2015 Canadian, Texas, EF-2 tornado had a lifespan of approximately 10

min, forming around 2157 UTC and visually dissipating at 2207 UTC. Beginning at 2203

UTC, the AIR collected approximately 4.5 min of data in 20◦-by-80◦ volumetric sectors

with 5.5-s temporal resolution. The range to the tornado was between 5 and 6 km for the

deployment with the closest distance occurring at the beginning of the sampling period.

Corresponding beam heights range from 50 m to 2000 m above radar level (ARL) for the

center of the beams between 0◦ and 20◦ elevation. The presented data are oversampled

to 0.5◦ in both azimuth and elevation and have a 37.5-m gate spacing in range that is

oversampled to 30 m (Kurdzo et al. 2014). For this case, the Nyquist velocity was 25

m s−1 and the radar truck was level during data collection. Velocity aliasing was manually

corrected during post processing. High spectrum width, low reflectivity data points were

subjectively removed if their Doppler velocity looked suspect for all permutations of

dealiasing. Spectrum width was used to identify large gradients in Doppler velocity and
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aid in the identification of the zero isodop. However, in some instances ambiguities in

the placement of zero isodop exist, especially regarding the distinction between folded

outbound velocities and weak inbound velocities in the core of the tornado. For times

with particularly high uncertainty, the position of the zero isodop was selected to best

preserve temporal and vertical continuity. Nevertheless, changing the location of the zero

isodop a few radials in either direction would have little or no impact on the presented

results due to the displacement of the strongest Doppler velocities from the center of the

tornado.

5.2.2 Time-Height Plots

The 5.5-s volumetric updates of the AIR can be leveraged to interrogate the vertical

evolution of tornado characteristics. Time-height plots of differential velocity (∆V) and

tornado vortex tilt are calculated for the entire 4.5-min deployment for the Canadian,

Texas, tornado. For the time-height plots, a three-time (20-s) moving average is applied.

An additional three-height (100-m) moving average is applied to the vortex tilt plots to

filter out noise. The data are vertically interpolated to the beam heights of the first volume

scan. Because the tornado was nearly stationary during the deployment, the maximum

vertical interpolation is ∼20 m and the resulting changes in the data are negligible.

Values of ∆V are calculated by subjectively selecting the tornado center using radial

velocity and the weak echo hole (WEH) as a first guess and searching for the maximum

and minimum velocities within 1000 m. The locations of the maximum inbound and

outbound velocities were manually checked to mitigate possible errors. Vortex tilt is

calculated by determining the angle between the subjectively identified vortex center at

the height above and height below a given analysis level (roughly 50 m above and below).

The analyses were run multiple times with different subjectively chosen centers of the

vortex and it was determined that the analyses were not qualitatively sensitive to small

changes (on the order of tens of meters) in the choice of vortex center. Additionally, the
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analyses were also not qualitatively sensitive to tilt being calculated over a 0.5◦, 1.0◦, or

2◦ angular depth.

5.2.3 Axisymmetric Wind Retrieval

Lee et al. (1999) used the assumption of axisymmetry to develop a method called

the ground-based velocity track display (GBVTD) that retrieves the three-dimensional

windfield within tropical cyclones. This technique has been subsequently applied to

tornado vortices (e.g., Bluestein et al. 2003; Lee and Wurman 2005; Tanamachi et al.

2007; Kosiba and Wurman 2010; Wakimoto et al. 2012). This study uses a simplified

GBVTD defined by Dowell et al. (2005) that only recovers the azimuthally averaged

(zero wavenumber) radial and tangential velocities, u and v. Previous studies to use this

simplified GBVTD include Kosiba et al. (2008), Bodine et al. (2014), Griffin et al. (2017),

and Mahre et al. (2018). For this case, u and v are calculated using 100-m-wide annuli at

50-m intervals. Vertical velocities are calculated by vertically integrating the radial mass

flux using equation (2.2) in Nolan (2013). The center of the lowest beam included in the

analyses was 50 m ARL, meaning that some of the low-level winds were not fully sampled,

which could result in errors in the retrieved vertical velocities (Nolan 2013), especially

for the first few analysis times when tornado inflow appears to be shallow. However, this

dataset is much closer to the ‘most probable’ case in Nolan (2013) where mass flux in the

lowest 40 m were neglected and errors were less extreme, compared to the case where the

mass flux was neglected in the lowest 80 m.

Debris and hydrometeor centrifuging is known to bias radar-derived wind fields of tor-

nadoes (Dowell et al. 2005; Wakimoto et al. 2012; Bodine et al. 2016b), and is difficult to

account for since the dominant scatterer types are uncertain. Centrifuging in the axisym-

metric wind retrieval is corrected for using equation (3.1) in Nolan (2013) that accounts

for the outward bias in the tornado relative radial wind velocity owing to centrifugal

accelerations. For this case, large debris were not visually observed within the tornado

and therefore a relatively small specified maximum flow-relative radially outward velocity
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estimate (Cmax) of 4 m s−1 is chosen. The centrifuging correction did not dramatically

change the analyses, which were not qualitatively sensitive to Cmax values ranging from

4 to 12 m s−1, similar to the maximum positive bias in radial velocity for hydrometeors

found in Wakimoto et al. (2012) (cf., their Figure 9) and similar to the values tested by

Kosiba and Wurman (2013).

5.2.4 Angular Momentum Budget

Axisymmetrtic angular momentum (Γ = vr) is calculated for the first seven volume

scans when the tornado undergoes rapid transitions in structure and is well-sampled

spatially. The time rate of change of angular momentum is given by the following equation

adapted from Rasmussen and Straka (2007):

δΓ

δt
= −δuΓ

δr
− δwΓ

δz
+R (5.1)

where R is a residual term that is largely made up of the divergence of eddy angular

momentum flux, which is indirectly calculated using the other three terms. The time

rate of change of angular momentum is calculated by taking the difference in the angular

momentum field between the first and last time in the analysis window (either 60 s or 20

s). The first two terms on the right hand side are the divergence of angular momentum

flux, which is simply the advection of angular momentum assuming incompressibility, as

is done in Rasmussen and Straka (2007). The advection terms are calculated by taking an

average of the angular momentum advection terms over the entire analysis window. The

angular momentum budgets use either three or seven volumes to compute the analyses

for 20-s and 60-s windows, respectively.
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5.3 Results

5.3.1 High-Temporal Resolution Observations

The maximum sampled intensity of the Canadian, Texas, tornado occurred at

22:03:52 UTC, in the first volume of data collected by the AIR (Fig. 5.1a-b). At this

time, the tornado had maximum ∆V of 110 m s−1, a RMW ranging from 200 m at 100 m

ARL (Fig. 5.2b) to 500 m at 500 m ARL (Fig. 5.2d), and a broad, 500-m wide region with

Doppler velocities exceeding 40 m s−1 in magnitude. Additionally, the tornado exhibited

concentric WEHs similar to what has previously been observed by Wurman and Gill

(2000), Wurman et al. (2007), Bluestein et al. (2007a), and Wakimoto et al. (2016). It is

possible that the concentric WEHs represent different scatterer types (e.g., raindrops and

small debris) similar to what was noted by Wakimoto et al. (2016). However, the AIR does

not have dual-polarimetric capabilities to confirm the presence of debris. Additionally,

the nearest WSR-88D is approximately 140 km away preventing adequate supplemen-

tal low-level polarimetric observations. RaXPol observations (Z. Wienhoff 2018, personal

communication) from ∼2 min later did not show a polarimetric tornadic debris signature,

but the lowest RaXPol scan was above where the AIR observed the inner WEH, which is

hypothesized to be debris. The tornado rapidly weakened during the first minute of data

collection (Fig. 5.1d,f). By 22:04:56 UTC, the maximum ∆V decreased to ∼80 m s−1 and

only a ∼100-m wide region of Doppler velocities exceeding 40 m s−1 in magnitude was

present (Fig. 5.1f). The WEH rapidly filled in and became less symmetric during this

weakening phase (Fig. 5.1c,e), becoming poorly defined at low levels by 22:04:56 UTC

(Fig. 5.1e). By 22:05:18 UTC, the tornado diameter and intensity (Fig. 5.1h) was similar

to what it was at 22:04:56 UTC, but a diffuse WEH became reestablished (Fig. 5.1g).

The tornado persisted with similar intensity for approximately another minute before it

completed its decay. The vertical and temporal evolution of tornado intensity will be

discussed in further detail later in this section.
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Figure 5.1: PPI plots of (a,c,e,g) reflectivity (dBZ) and (b,d,f,h) radial velocity (m s−1)

at 1◦ elevation at (a-b) 22:03:52, (c-d) 22:04:13, (e-f) 22:04:56, and (g-h) 22:05:18 UTC.

White pixels here and elsewhere represent censored data.
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Figure 5.2: PPI plots of (a,c,e,g) reflectivity (dBZ) and (b,d,f,h) radial velocity (m s−1) at

(a-b) 1◦, (c-d) 4◦, (e-f) 7◦, and (g-h) 10◦ elevation valid at 22:03:52 UTC. The elevations

roughly correspond with 100 m, 400 m, 750 m, 1000 m ARL.
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As noted by Kurdzo et al. (2017), an interesting feature of the Canadian tornado is

the weak radial velocities in the core of the tornado (Fig. 5.2d,f) and large separation

of the maximum inbound and maximum outbound radial velocities at early times, espe-

cially between 3–10◦ in elevation (400–1000 m ARL). A similar pattern of large separation

between maximum inbound and outbound radial velocities with weak core Doppler veloc-

ities was observed by RaXPol in Wakimoto et al. (2016) when the 2013 El Reno tornado

was exhibiting multiple vortex structure (cf., Figure 15, Wakimoto et al. (2016)). How-

ever, in the Canadian case these observations were seen at a beam height of ∼400–600

m compared to observations in Wakimoto et al. (2016), which were at 0.5◦ (below 100

m). At 1◦ elevation, the Canadian tornado instead exhibited a narrower core diameter1

of ∼150 m (Fig. 5.2b). It must be noted that the AIR and RaXPol are both low-power

radars, which may have less-sensitivity in areas of lower power, like the WEH. While the

power returns in the WEH of the Canadian tornado were well above the noise floor of the

AIR, the weak Doppler velocity structure in the core of tornadoes has not been observed

by a higher-power radar; therefore, it is possible that the these observations are a radar

artifact unique to low-power radars and not representative of the actual wind field.

Up to approximately 900 m ARL, the tornado widened to 600 m in diameter and

weakened in intensity (Fig. 5.2d,f). Similar vertical structure to what is seen in the

Canadian tornado can also be seen in model simulations of medium-swirl tornadoes with

a narrow diameter near the surface and a larger diameter aloft (e.g., cf., Figure 5, Lewellen

et al. (2000)). In the Lewellen et al. (2000) simulations, this widening of the vortex is

associated with a transition from single-cell to two-cell vortex flow. Above ∼900 m, the

tornado narrowed again (Fig. 5.2h) and maintained a similar 350-m diameter through

the highest observed elevations (not shown). The WEH narrowed in response to the

tightening of the vortex aloft (Fig. 5.2g) and is similar in structure to the bulging WEC

1Here and elsewhere in the paper, the tornado diameter is defined as the distance between the maxi-

mum outbound and maximum inbound Doppler velocities within the tornado.
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structure noted in Bluestein et al. (2007b). The bulging structure of the vortex and WEH

continued for approximately 30 s and is further discussed in Section 5.3.3.

A broken ring of high (>10 m s−1) spectrum width was also observed at early times

near the radius where the largest radial velocities were located (Fig. 5.3a). Similar spec-

trum width ring structure has also been observed by Wurman (2002) and Snyder and

Bluestein (2014) in multiple-vortex tornadoes. Locally enhanced spectrum width near

tornadic subvortices was likely due to high wind shear and turbulence. Additionally,

strong radial gradients in tangential velocity are one requirement for subvortices to form

(e.g., Rotunno 1978; Gall 1983; Lewellen et al. 2000), which would result in high spectrum

width rings in an axisymmetric framework. Video of the Canadian tornado (Fig. S1 in the

online supplemental material available at https://drive.google.com/drive/folders/

1sG9PEEBk9obq7

cGv6vqlqffyj5yb4d1S?usp=sharing) and enhanced shear regions along the zero isodop

in Fig. 5.2b also indicate that multiple vortices were present near this time.

The AIR captured at least two instances of cyclonic vortices being shed by the main

circulation in rapid succession over a period of one minute (Fig. 5.4). The vortices first

appeared on the eastern side of the tornado near the RMW and translated eastward, well

beyond the RMW of the tornado where tornado subvortices are normally located (e.g.,

Wurman 2002). After being shed, the vortices went through a brief intensification period

and reached maximum ∆V of 34 and 36 m s−1, respectively. The maxima in intensity

were reached at radii of approximately 500 m and 1000 m from the primary tornado,

respectively. Maximum intensity for both vortices occurred at 22:04:56 UTC (Fig. 5.4f),

approximately 30 s after they exited the parent cyclone. The shed vortices were largely

confined to above 400–500 m ARL and only briefly appeared at lower elevation angles

(not shown) at 22:04:56 and 22:05:07 UTC when the vortices were at maximum intensity.

It is possible that the vertical elongation of the vortices combined with their brief inten-

sification signifies that vortex stretching was occurring. The vortices translated slightly

eastward while the main circulation moved to the west. There did not appear to be any
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Figure 5.3: PPI plots of (a,c) spectrum width (m s−1) and (b,d) radial velocity (m s−1),

at (a-b) 1.5◦ and (c-d) 5◦ elevation valid at 22:04:13 UTC.
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clear evidence of a boundary that the shed vortices were traversing, nor was there any

evidence of the vortices entering the tornado prior to being shed. As a result, the shed

vortices may have acted to transport angular momentum away from the main circulation,

which may have contributed to the weakening of the tornado.

The maximum ∆V during the deployment was ∼110 m s−1 and occurred during the

first two analysis times (Fig. 5.5). The strongest ∆V occurred in the lowest 700 m

ARL. By 22:04:13 UTC, ∆V decreased to ∼70 m s−1 in the low levels. The tornado

briefly intensified at 22:04:56 UTC, following a ∼1-min, relatively weak period. The

restrengthening occurred first in the low analysis levels and then simultaneously up to

500 m. Brief weakening followed by restrengthening of the low-level vortex could also be

seen in visual observations of the tornado at this time (Fig. S1 0:45–1:15). This bottom-

up strengthening is similar to what was observed in Mahre et al. (2018) in the mature

stage and similar to the vertical evolution of tornadogenesis noted in French et al. (2013),

except observed during the dissipation stage of the tornado in this case.

Following the brief restrengthening of the tornado at low levels, the Canadian tornado

began a final weakening phase that culminated in tornado dissipation (Fig. 5.5). At all

observed levels above 1.25 km ARL, ∆V decreased nearly simultaneously to ∼40 m s−1

at 22:05:28 UTC. Over the next 2 min, the tornado decayed to a similar intensity in a

downward direction in the layer between 400 and 1250 m ARL. Simultaneous weakening

of the tornado occurred at 22:06:33 UTC between 150 and 400 m, approximately 1 min

before similar tornado intensity was reached in the layer between 400 and 1000 m ARL. In

the lowest 150 m, weakening of the tornado slightly preceded the simultaneous weakening

over the 150–400 m layer by approximately 20 s. The downward decay region is similar to

the inside out tornado decay noted by French et al. (2014) and Houser et al. (2015) except

we do not have the observations above 2.5 km to compare the upper levels. Additionally,

the decay in the Canadian case occurred in approximately 1–2 min, whereas in the 5

June 2009 Goshen tornado, decay took ∼3 min (French et al. 2014). The dense low-level

observations provide insight into a non-descending tornado decay mode in the lowest
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Figure 5.4: PPI plots of radial velocity (m s−1) at (a) 22:04:02, (b), 22:04:13, (c) 22:04:24,

(d) 22:04:35, (e) 22:04:45, (f) 22:04:56, (g) 22:05:07, and (h) 22:05:18 UTC at 3.5◦ eleva-

tion. Arrows indicate the location of the shed vortices. Maximum ∆V of each vortex is

shown after it has been shed.
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Figure 5.5: Time-height plot of maximum ∆V (m s−1) within the tornado. Overlaid are

the 55 m s−1, 30 m s−1, and 20 m s−1 ∆V contours. Note that sampling of tornado

intensity was not continuous, but rather there is approximately 10.5 s between each

estimate of ∆V.
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400 m. The AIR sampled tornado decay with much better spatial resolution than what

was sampled by the MWR-05XP during the Goshen tornado (1◦ beamwidth vs. 1.8◦

beamwidth for similar ranges to the tornado and 30 m vs. 150 m range resolution (French

et al. 2014)). Also, the AIR sampled the lowest 1 km ARL of the Canadian tornado

whereas RaXPol had poor low-level coverage of the 24 May 2011 El Reno tornado during

decay (Houser et al. 2015). Differential velocity decreased within the analyzed column

below the 55 m s−1 threshold for tornado intensity noted by Houser et al. (2015) during

the initial decay (Fig. 5.5). However, a funnel cloud was still present for approximately 1

min after this initial weakening (Fig. S1 3:00–4:00). The persistent funnel cloud coupled

with ∆V > 40 m s−1 lead us to believe that this initial weakening was not the dissipation

of the tornado. However, previous studies (e.g., Tanamachi et al. 2013; Wurman and

Kosiba 2013) have examined tornadoes with similar intensity to the Canadian tornado

at this stage of its lifecycle that did not exhibit funnel clouds; therefore, a funnel cloud is

not a necessary condition for a tornado owing to its dependency on both vortex intensity

and water vapor pressure.

After a minute of marginal tornado intensity, the vortex decayed beginning around

22:07:27 UTC in the lowest 1.25 km ARL while it maintained ∆V of ∼40 m s−1 above

this altitude. Below 750 m ARL, the tornado weakened in an upward direction. Video of

tornado decay (Fig. S1 3:15–4:00) also illustrated upward dissipation of the funnel cloud

at this time. However, the upward dissipation of the funnel cloud may also have been the

result of upward advection of drier air. Above 750 m ARL, the tornado dissipated nearly

simultaneously (Fig. 5.5) , similar to what was observed in the 24 May 2011 El Reno,

Oklahoma, tornado at altitudes above 1 km ARL (Houser et al. 2015). The ∆V threshold

of 30 m s−1 best captures the tornado decay based on the dissipation of the funnel cloud;

however, the rapid decrease in ∆V from in excess of 40 m s−1 to less than 20 m s−1 in

less than 30 s means that any threshold between 20 and 40 m s−1 (not shown) would also

approximately discriminate between tornadic and nontornadic intensity. These lower ∆V
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thresholds for tornado criteria agree well with other previous work (e.g., Alexander and

Wurman 2008; Marquis et al. 2012; Kosiba and Wurman 2013; French et al. 2013).

5.3.2 Rapid Tornado Evolution

During the initial weakening phase, the Canadian tornado undergoes rapid changes

in axisymmetric vortex flow with substantial changes in three-dimensional winds seen

between the 10–20 s intervals shown (Fig. 5.6). Initially, maximum tangential velocity

is ∼50 m s−1 and an axial downdraft is observed above 500 m ARL with weak vertical

motion below it (arrows, Fig. 5.6a). The radius of maximum winds (RMW) is ∼150 m.

Inflow into the tornado at this time was likely shallow and is largely below the lowest

analysis level (50 m). While this can lead to significant errors in the derived vertical

velocities (Nolan 2013), locally strong divergent flow in the radial component of motion

near the axis of rotation (not shown) suggest that a downdraft is present. We expect

that insufficient sampling of low-level inflow prevents an updraft from being resolved at

larger radii aloft (i.e., a two-cell vortex flow). Evidence of tornado subvortices discussed

in the previous section would support this hypothesized two-cell vortex flow. Moreover,

low-level tangential velocities exceed tangential velocities aloft, which would suggest a

downward-directed, dynamic perturbation pressure gradient force (e.g., Church et al.

1979; Davies-Jones 1986; Wakimoto and Liu 1998; Lewellen et al. 2004, 2008; Bluestein

2013) and further support the validity of the derived axial downdraft.

Over the next minute, axisymmetric tangential velocity decreases, especially in the

lowest 400 m. Initially, the stronger tangential velocities are observed near the surface

(lowest 400 m ARL) and the RMW expands with height (Fig. 5.6a). Twenty seconds later,

the depth of tangential velocities exceeding 35 m s−1 shrinks to the lowest 200 m ARL

(Fig. 5.6b), with some residual tangential velocities exceeding 30 m s−1 between 200–600

m ARL at 400 m in radius. At this time (22:04:13 UTC), radial outflow becomes appar-

ent near and outside of the RMW, which may be contributing to the weakening of the

tornado during this period. By 22:04:24 UTC (Fig. 5.6c), the tangential wind structure
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Figure 5.6: Axisymmetric tangential velocity (shaded, m s−1) at (a) 22:03:52, (b) 22:04:13,

(c) 22:04:24, and (d) 22:04:45 UTC. Arrows represent secondary circulation wind vectors

(m s−1) comprised of radial and vertical velocities from the axisymmetric wind retrieval.
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is disorganized with very weak velocities near the surface, consistent with the weakening

evident in ∆V (Fig. 5.5). Stronger tangential motions become better established in a

column by 22:04:45 UTC (Fig. 5.6d), preceding the period of restrengthening evident in

Fig. 5.5. Additionally, comparatively strong inflow has become reestablished within the

RMW, which has moved slightly outward to ∼300 m.

Between 22:03:52–22:04:24 UTC, vertical motion near the center of the tornado rapidly

reverses direction and an axial updraft becomes established in place of the initial axial

downdraft (Fig. 5.6a,c). The weakening of the low-level tangential winds would reduce

any downward-directed, dynamic perturbation pressure gradient force and could allow for

vertical motion to change direction. It is also possible that a strengthening and deepening

inflow layer contributes to a larger region of observed updraft. Shortly after the period

shown in Fig. 5.6, the Canadian tornado narrowed such that it could no longer be well

sampled in an axisymmetric sense and thus analysis of times beyond 22:05:18 UTC are

not conducted.

Axisymmetric reflectivity (Fig. 5.7) is observed to change rapidly during the initial

weakening of the Canadian tornado, with the evolution of the weak echo column (WEC)

appearing to occur in direct response to changes in vortex flow. The observed evolution of

the WEC can be feasibly explained by the radial and vertical advection of hydrometeors

by the secondary circulations, which adds confidence to the qualitative characteristics

of the derived wind field. Initially, the WEC bulges out from a 300-m radius to 500-

m radius between 500 and 800 m ARL where strong divergence is present (Fig. 5.7a).

One explanation could be a vortex breakdown flow type where an abrupt increase in

divergence and core radius is observed above the vortex breakdown altitude. At 22:04:13

UTC, there is no longer a downdraft with associated divergent flow near the axis of the

tornado and single-cell vortex flow develops (Fig. 5.7b). The WEC bulge is still present

but descends about 200 m compared to Fig. 5.7a. Downward vertical motion has become

established between 200 m and 500 m in radius, bringing a region of higher reflectivity

toward the surface at the periphery of the tornado. By 22:04:24 UTC, the transition

125



region between the narrow and wide WEC has descended another 100 m within the

peripheral downdraft regime and the single-cell vortex flow has strengthened with inflow

toward the center of the tornado beginning to develop between 200 m and 600 m ARL

(Fig. 5.7c). By 22:04:45 UTC, the WEC has a radius of 300 m throughout the analyzed

depth (Fig. 5.7d). The abrupt narrowing of the WEC may be aided by the robust inflow

into the center of the tornado that has become established in the lowest 600 m, which

could transport descending hydrometeors or other scatterers inward toward the axis of

the tornado. The drastic change in vortex flow and response of the WEC column occurs

at 10–20 s intervals and highlights the rapid changes that can occur within tornadoes.

Figure 5.7: The same as Fig. 5.6 except for axisymmetric reflectivity (shaded, dBZ).

In addition to illustrating the rapid evolution of the WEC, Fig. 5.7a also provides

an axisymmetric view of the concentric WEHs first noted in Fig. 5.1a. The inner band

of enhanced reflectivity is disconnected from any regions of higher reflectivity aloft and

extends below the analysis domain, whereas the outer WEH is part of the continuous
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region of high reflectivity that extends through the top of the analysis domain. The

contrasting vertical structure of the two WEHs supports the hypothesis that they repre-

sent different regimes of scatterers. It is speculated that the inner WEH is comprised of

light debris that are lofted from the surface and the outer WEH represents descending

rainbands at the periphery of the tornado. However, in the absence of polarimetric data,

this hypothesis cannot be confirmed.

5.3.3 Angular Momentum Budget

During the initial weakening of the tornado, maximum axisymmetric angular mo-

mentum (Γ) decreases from in excess of 19000 m2 s−1 (Fig. 5.8a) to less than 15000 m2 s−1

(Fig. 5.8d) in approximately one minute. The most significant decrease in Γ occurs below

600 m ARL. Throughout this period, the location of the maximum Γ remains constant

at approximately 600 m in height and 900 m in radius and is in a region characterized

by downward and outward velocities. The time rate of change of Γ (Fig. 5.9a) is ∼-

100 m2 s−2 between 400 and 1100 m in radius and below 600 m ARL and is near zero

elsewhere.

Lower angular momentum air is advected into the region of maximum Γ between 400

and 1200 m in radius and just above 600 m ARL (Fig. 5.9b). The low angular momentum

air originates aloft and is advected into the region of maximum Γ by a downdraft as can

be seen in Fig. 5.8. This downdraft also transports high angular momentum downward

toward the surface and outward to larger radii as illustrated by the positive angular

momentum advection regions in the lower right hand corner of Fig. 5.9b. This pattern of

downward and outward angular momentum advection is consistent with the findings of

Rasmussen and Straka (2007) during tornado decay. The downdraft between 600–1000

m in radius, which is acting to transport angular momentum away from the tornado

at larger radii, also acts to increase convergence into the axis of the tornado within

the RMW. Increased flow into the center of the tornado results in a positive angular

momentum advection term at small radii (Fig. 5.9b) meaning that inward transport
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Figure 5.8: Axisymmetric angular momentum (shaded, m2 s−1) at (a) 22:04:02, (b)

22:04:13, (c) 22:04:35, and (d) 22:04:56 UTC. Arrows represent secondary circulation

wind vectors (m2 s−1) comprised of radial and vertical velocities from the axisymmetric

wind retrieval.
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Figure 5.9: Axisymmetric (a,d,g,j) time rate of change (shaded, m2 s−2), (b,e,h,k) ad-

vection (shaded, m2 s−2), and (c,f,i,l) eddy flux convergence (shaded, m2 s−2) of angular

momentum valid for the (a-c) 22:03:52–22:04:56 UTC timeframe, (d-f) 22:03:52–22:04:13

UTC timeframe, (g-i) 22:04:13–22:04:35 UTC timeframe, and (j-l) 22:04:35–22:04:56 UTC

timeframe. The left column represents the time rate of change of angular momentum cal-

culated by taking difference in the angular momentum field between the first and last time

in the analysis window. The middle column represents the average advection of angular

momentum by the secondary circulation during the analysis window. The right column

is largely representative of the turbulent creation and dissipation of angular momentum.
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of angular momentum is still occurring, a requirement for tornado maintenance (e.g.,

Marquis et al. 2012). Eddy angular momentum flux (Fig. 5.9c), acts as a low-level sink

of angular momentum, especially in the region where large values of angular momentum

are advected downward. The loss of angular momentum near the ground agrees with the

findings of Rasmussen and Straka (2007) and is likely due to surface friction. Overall,

the high-temporal observations are consistent with the lower-resolution observations in

Rasmussen and Straka (2007) that downward and outward advection and subsequent

dissipation of angular momentum by surface friction occurs during tornado decay.

The high-temporal updates of the AIR can also be leveraged to test the sensitivity of

the angular momentum budget to the length of the analyzed window. The budget was

calculated over the same 60-s period using three 20-s windows of data (Fig. 5.9d). It can

be seen that the values of the time rate of change of Γ are larger and more variable on

the shorter time scales (Fig. 5.9 d,g,j). Except near the core of the tornado, total angular

momentum advection is largely insensitive to the length of the analyzed window (Fig. 5.9

e,h,k). Near the core, inward angular momentum advection strengthens at the end of

the analyzed window (Fig. 5.9k) as single-cell vortex flow becomes established and the

previously discussed axial updraft forms and strengthens (Fig. 5.8c). It is possible that

the increase in inward advection of angular momentum during this period contributes

to the brief strengthening of the tornado noted in Fig. 5.5 and further evidenced by the

positive time rate of change regions in Fig. 5.9j. Similar to the time rate of change term,

the eddy angular momentum flux term is larger and more variable at shorter timescales

(Fig. 5.9 f,i,l). The magnitude of the eddy angular momentum flux term is particularly

large late in the analyzed period (Fig. 5.9l), and is responsible for the positive time rate

of change of angular momentum in the bottom region of the tornado core. Because the

advection term remains relatively constant throughout much of the domain, this means

that the eddy angular momentum flux term is contributing more to the time rate of

change of Γ when calculating the budget over a shorter analysis window. It is likely that
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the eddy flux term becomes more important on shorter timescales due to the short-lived

nature of turbulent eddies.

5.3.4 Tornado Tilt

The Canadian, Texas, tornado became increasingly tilted through all depths begin-

ning at 22:05:39 UTC and lasting through tornado dissipation (Fig. 5.10a). The increase

in tornado tilt corresponded with the initial stage of tornado decay in Fig. 5.5. Increase in

tornado tilt was maximized in the 0.1–0.5 km and 0.1–1.0 km layers, where tilt increased

from approximately 25◦ to 55◦ and from 35◦ to 55◦, respectively. The increase in tilt was

the result of the low-level vortex becoming increasingly displaced to the west of the the

mid-level vortex (Fig. 5.10b). While the Canadian tornado at the lowest elevation angle

(black) moved steadily westward, higher up, between 1 and 2 km ARL (red), the Cana-

dian tornado looped cyclonically and moved only slightly westward during dissipation.

This tornado motion likely resulted in the tornado becoming occluded as the low-levels

became displaced to the west of the mesocyclone above 1 km as well as to the west of

the position of the rear-flank gust front (not shown).

Figure 5.10: (a) Tornado tilt (◦) between the lowest elevation angle (∼ 0.1 km) and 0.5

km (blue), 1.0 km (orange), 1.5 km (green), and 2.0 km (red). (b) Tornado center at the

lowest elevation angle (black) and mean tornado center in the 0.1–1.0 km layer (blue)

and 1.0–2.0 km layer (red). Storm motion is from right to left at all levels.

131



The direction of tilt in the 0.1–2.0 km ARL (0.5–20◦) layer was to the northeast for

the entirety of the deployment (Fig. 5.11), which is similar to the 0-3 km environmental

wind shear vector (not shown). Similar northeastward tilt has been noted previously (e.g.,

Tanamachi et al. 2012, 2013; French et al. 2014) and appears to be a common orientation

for supercellular tornadoes in the northern hemisphere. The tilt direction changed from

toward the NNE to toward the ENE during the tornado decay period. This clockwise shift

in tilt direction corresponded with the westward motion of the low-level vortex relative

to the upper levels of the vortex (Fig. 5.10b). The largest change in tilt direction started

at 22:05:39 UTC (Fig. 5.11), when the first tornado decay period began (Fig. 5.5) and

the aforementioned increase in tilt occurred.

Figure 5.11: Direction of vortex tilt between 0.1 and 2.0 km ARL in clockwise degrees

from north. Radial axis is time in UTC.
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The simultaneous RHIs collected by the AIR also allows for the interrogation of the

vertical shape of the tornado in greater detail (Fig. 5.12). Early on in the deployment

when the tornado was at its observed maximum diameter and intensity, the tornado was

nearly upright with minimal vortex tilt below the cloud base (Fig. 5.12a,d). As previously

mentioned, the tornado became increasingly tilted late in its lifecycle (Fig. 5.12b,d). A

rapid increase in tilt was observed between 400 and 700 m ARL during the 22:06:01–

22:06:44 UTC period (Fig. 5.12c-d). The formation of the region of vortex tilt in excess

of 70◦ corresponded temporally with the downward tornado decay observed in Fig. 5.5

and was located at the bottom of the of the vertical layer where downward decay occurred.

Interestingly, the layer with the largest tilt, between 400 and 700 m ARL, exhibited the

slowest decrease in ∆V (Fig. 5.5)2 and has relatively high ∆V compared to the layer

below with less tilt, opposite of the inverse relationship between vortex intensity and

tornado tilt observed by French et al. (2014). Another feature of interest was a layer of

persistent tilt (40-50◦) above the cloud base between 1.25 and 1.5 km ARL. This region

of persistent tilt also divided the aforementioned temporally separate mid-and low-level

decay in Fig. 5.5. Speculation regarding the significance of this layer is reserved for

Section 4a. An additional layer of persistent tilt was located between 750 and 1000 m

ARL, near the cloud base. At the beginning of the decay phase corresponding to the

photograph in Fig. 5.12b, the region of tilt near the cloud base either disappeared or

descended and merged with the aforementioned high-tilt region between 400 and 700 m

ARL.

5.3.5 Vertical Cross-Sections

A simultaneously collected RHI through the concentric WEHs (Fig. 5.13a) reveals

that the inner bands of enhanced reflectivity were disconnected from any regions of higher

2Note that the slowest decay occurring in the most tilted layer means that the downward decay may

have been slower than what is presented due to biases owing to tornado geometry.
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Figure 5.12: Photographs at (a) 2204, (b) 2206, and (c) 2207 UTC and (d) a time-

height plot of filtered vortex tilt (◦). Vertical lines i, ii, iii in (d) correspond with (a-c)

respectively. Photographs adapted from Kurdzo et al. (2017).
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reflectivity aloft and extended below the lowest observed elevation (Fig. 5.13b). Con-

versely, the outer bounds of the larger WEH were part of a continuous region of high

reflectivity that extended through 20◦ in elevation. While the outer WEC extended

higher than the 750 m illustrated in Fig. 5.13b, the tornado tilts out of the RHI plane,

precluding observation of the feature through a deeper layer. Regardless, the contrasting

vertical structure of the WECs in the low levels supports the hypothesis that the two

WECs represented different types of scatterers. It is speculated that the inner WEH was

comprised of light debris that were lofted from the surface and the outer WEH repre-

sented descending rainbands at the periphery of the tornado. However, in the absence of

polarimetric data, this hypothesis cannot be confirmed.

Figure 5.13: (a) PPI plot of reflectivity (dBZ) at 1◦ elevation and (b) RHI of reflectivity

(dBZ) valid at 22:03:52 UTC. Black line in (a) represents the location of the RHI in (b).

To better observe the vertical structure of the WEH, azimuth height indicators (AHIs)

consisting of a vertical cross-section along a constant range are constructed (Fig. 5.14a).

While these AHIs are not simultaneous, they only represent a span of ∼5 s of data, and

therefore are comparable to traditional RHIs collected by mechanically steered radars.

Because the Canadian tornado was tilted to the northeast (Fig. 5.11), this geometry

better captures a deeper layer of the WEC along the direction of tornado tilt. However,

the tapered nature of the WEC above 1.25 km ARL and the disappearance of the WEC

above 1.5 km (Fig. 5.14b) are artifacts of the tornado tilting out of the AHI plane within
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the persistent tilt layer between 1.25 and 1.5 km ARL. In contrast, the abrupt narrowing

of the WEC at 1 km ARL is not an artifact of tornado tilt since the AHI bisects the

WEH at its widest point beneath 1 km (Fig. 5.14c) and just above 1 km (Fig. 5.14d).

While there was no observed vertical gradient in ∆V in this layer (Fig. 5.5), there was

an appreciable narrowing of the RMW (Fig. 5.2f,h). Beneath the height of the abrupt

narrowing, the WEC slightly broadened with height resulting a bulging structure similar

to what was observed by Bluestein et al. (2007b) (cf., Figure 13, Bluestein et al. (2007b)).

Figure 5.14: (a,c,d) PPI plots of reflectivity (dBZ) at 1◦, 8◦, and 10◦ respectively and (b)

AHI of reflectivity (dBZ) valid at 22:03:52 UTC. Horizontal lines i, ii, iii in (b) correspond

with (a,b,d) respectively. Black lines in (a,c,d) represent the location of the AHI in (b).

As previously mentioned, the Canadian tornado became increasingly tilted late in its

lifecycle (Fig. 5.12). A simultaneous RHI was taken through the tornado (Fig. 5.15) near

time ii in Fig. 5.12b,d. The tilt of the tornado at this time was 45-50◦ from vertical in the

layer between 400 and 750 m ARL. Differential velocity was computed in both the vertical
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(Fig. 5.15b) and horizontal (Fig. 5.15c-d) planes. As expected from a tornado that was

tilted approximately 45◦ from vertical, the magnitude of vertical shear was similar to the

magnitude of horizontal shear with ∆V between 50 and 60 m s−1 depending on the choice

of elevation angle for PPIs and radial for RHIs. The vertical shear in Fig. 5.15b is due

to the tornado being partially tilted into the horizontal plane, which results in the RHI

bisecting outbound velocities on the north side of the tornado in the low levels (Fig. 5.15c)

and inbound velocities on the south side of the tornado aloft (Fig. 5.15d). The largest

vertical gradient in Doppler velocity at 6 km in range was largely contained within the

the 400–700 m layer ARL where the tornado was also the most tilted (Fig. 5.12d). The

horizontal vorticity associated with the tilted vortex was strong enough to centrifuge

hydrometeors and cause a WEH to appear (Dowell et al. 2005) in the horizontal plane

(Fig. 5.15a). The center of this WEH bisected the layer where the strongest vertical

gradient in Doppler velocity was observed.

5.4 Discussion

5.4.1 Persistent Vortex Tilt Layer and Tornado Decay

The persistent region of enhanced vortex tilt between 1.25 and 1.5 km ARL (Fig. 5.12d)

coincided with the level that separated the temporally displaced mid- and low-level vortex

decay near the end of the Canadian tornado lifecycle (Fig. 5.5). Additionally, the maxi-

mum tornado intensity observed at the beginning of the deployment as well as the brief

restrengthening of the tornado that occurred shortly thereafter was confined to within

the lowest 1 km (Fig. 5.5). It is hypothesized from this body of circumstantial evidence

that the vertical layer around ∼1.25 km ARL was particularly relevant to the Canadian

tornado.

The Dodge City, Kansas, 00Z sounding was launched approximately one hour after

the Canadian tornado occurred, and despite the approximately 200 km that separate the

locations, the surface conditions at Dodge City (DDC) were nearly identical to those in
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Figure 5.15: RHI plots of (a) radial velocity (m s−1) and (b) reflectivity (dBZ) and PPI

plots of radial velocity (m s−1) at (c) 2◦ and (d) 6.5◦ elevation valid at 22:06:44 UTC.

The tornado is very tilted through the 400–700 m layer (see Fig. 5.12d) as evidenced by

the shift in vortex position between (c) and (d). Strong horizontal vorticity is evident

through this layer with slightly larger ∆V in the RHI scan compared to the PPI scans.

Black lines i and ii in (b) correspond with the elevation angles in (c-d) respectively. Black

lines in (c-d) correspond with the location of the RHIs in (a-b).
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Canadian, Texas at the time of the tornado (Fig. 5.16a). Additionally, environmental

temperatures at 700 mb (Fig. 5.16b) and 500 mb (Fig. 5.16c) were also similar at DDC

and Canadian, Texas, and the regional environment was relatively uniform. Thus, it is

assumed that the DDC sounding (Fig. 5.16b) was at least somewhat representative of the

environmental thermodynamic profile in Canadian, Texas. The level of free convection

(LFC) at DDC was at approximately 760 mb, corresponding to ∼1500 m above ground

level (AGL) at the sounding site. Replacing the surface conditions of the DDC sounding

with the ASOS observations in Canadian, Texas, at the time of the tornado (not shown)

lowers the LFC to 800 mb or 1250 m ARL, which is within the layer of enhanced vortex

tilt.

The transition from forced to free ascent by parcels within the tornado may have

caused a change in parcel trajectory and might explain the tilted nature of the vortex

in this layer, especially given that the layer between 1 and 2 km exhibited considerable

environmental wind shear (Fig. 5.16d). In this scenario, ascent, which was forced beneath

the LFC, would have been slower than above the LFC where parcels were positively

buoyant. As a result, more horizontal advection would have occurred beneath the LFC

than above it. The vertical gradient in vertical velocity necessary for increased tilt in

this layer is similar to what was inferred by French et al. (2014) when discussing the

increased vertical vorticity stretching that may occur near the LFC. Differential horizontal

advection in this layer would be enhanced if the near-storm environment beneath the

LFC were particularly stable. A stable layer would also have contributed to the observed

vertical discontinuity in tornado decay similar to what was observed by Houser et al.

(2015). Within the stable layer, parcels would not be accelerated upward by the buoyancy

force, which in turn weakens vertical gradients in vertical velocity and subsequently limits

the stretching of vertical vorticity. If negatively buoyant air were to be ingested into the

updraft, within and above a stable layer the vertical gradient in vertical velocity could

even become negative, rapidly reducing vortex strength through horizontal divergence.
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Figure 5.16: Storm Prediction Center mesoanalysis of (a) surface temperature (red lines,

◦F), mean sea level pressure (black lines, mb), and dewpoint temperature (shaded, ◦F),

(b) 700 mb height (black lines, m), temperature (red lines, ◦C), and 700-500 mb mean

RH (shaded, %), and (c) 500 mb height (black lines, m) and temperature (red lines, ◦C)

valid at 2200 UTC on 27 May 2015. The star indicates the location of Canadian, Texas,

and the circle indicates the location of Dodge City, Kansas. Archived mesoananalyses

are available online at http://www.spc.noaa.gov/exper/ma_archive/. (d) Skew-T di-

agram of the vertical sounding launched at Dodge City, Kansas, valid at 00 UTC on

28 May 2015. Archived soundings are available online at http://weather.uwyo.edu/

upperair/sounding.html.
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However, a near-storm sounding would be necessary to assess whether a small stable layer

was present.

Changes in inflow characteristics associated with tornado occlusion may impact vortex

strength above the LFC on a different timescale than below the LFC. The gradual,

downward vortex weakening in Fig. 5.5 might first occur just above the LFC where the

buoyancy force plays an important role in accelerating parcels and stretching vorticity.

Vortex decay below the LFC may lag mid-level decay because ascent is forced by a

dynamic pressure gradient force that is modulated by mid-level vortex strength. This

possible explanation would be in agreement with the tornado occlusion mechanism for

tornado decay hypothesized in French et al. (2014), where tornadoes first weaken just

above the level of occlusion and then dissipate in an “inside out” fashion. Additionally,

the 5 June 2009 Goshen County, Wyoming, tornado was observed to intensify much more

rapidly above the LFC than below the LFC (French et al. 2013), which further supports

the theory that the LFC demarks a boundary in tornado structure and evolution.

While the LFC appears to separate two dissipation modes, there are many additional

factors that may contribute to tornado intensity. A comparison of tornado diameter to

tornado intensity (Fig. 5.17) reveals that tornado intensity was anti-correlated with the

distance between the location of maximum and minimum Doppler velocity within the

tornado. During the brief restrengthening period between 22:04:13 and 22:05:18 UTC,

tornado diameter decreased from approximately 700 m to between 100 and 200 m. The

tightening of the vortex was confined to the lowest 750 m ARL, the same depth over

which tornado intensity increased. Conversely, the near simultaneous weakening of the

tornado above 1250 m ARL at 22:05:28 UTC occurred at the same time vortex diameter

doubled from ∼300–400 m to ∼700–800 m within the same vertical layer. Tornado

intensity at this time approximately halved from ∆V of near 90 m s−1 to ∆V less than 50

m s−1, which implies that angular momentum remained relatively constant during this

weakening period. Finally, between 500 and 1000 m ARL, downward broadening of the

tornado coincided with downward decay. The tornado widened nearly simultaneously
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in the lowest 500 m at 22:06:22 UTC, approximately at the same time the tornado

weakened within the same layer. While it is expected that a decrease in overall angular

momentum occurred during tornado decay (Rasmussen and Straka 2007; Atkins et al.

2012), it appears that over short time periods the conservation of angular momentum at

least partially contributes to changes in the magnitude of ∆V as the Canadian tornado

underwent changes in diameter. The inverse relationship between the magnitude of ∆V

and the radius of maximum winds is consistent with the behavior of of the 5 June 1999

Bassett, Nebraska, tornado (Bluestein et al. 2003) except in this case the relationship

was investigated at each elevation angle through a 2 km depth and not just a single

level. However, the behavior of the Canadian tornado is dissimilar to the 15 May 1999

Stockton, Kansas, tornado where both tangential velocity and tornado diameter decreased

simultaneously during decay (Tanamachi et al. 2007), illustrating a range of late lifecycle

tornado behaviors.

5.4.2 Vertical Correlation in Vortex Intensity

Differential Velocity (∆V) at all heights was highly correlated with ∆V at the lowest

analysis level at zero lag for the deployment period (Fig. 5.18). High correlation at lag 0

suggests that changes in vortex intensity occurred largely simultaneously in the vertical.

Values of correlation were greater than 0.97 for all heights in the analysis. The linear

decrease in correlation throughout most of the analysis signifies that correlation with

near-surface intensity was inversely related to the vertical displacement from the surface,

likely as intensity changes aloft became slightly less in phase with changes near the surface.

However, correlation at non-zero lags (not shown) was approximately 0.05 lower with each

increasing lag3. This further suggests that simultaneous changes in intensity were more

prevalent than directional changes in intensity (i.e. upward or downward strengthening

3In this case, a negative lag would mean that changes near the surface preceded changes aloft (i.e.,

upward strengthening/weakening) and a positive lag means that changes aloft preceded changes near the

surface (downward strengthening/weakening).
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Figure 5.17: Time-height plots of (a) maximum ∆V (m s−1) as in Fig. 5.5 and (b) the

distance (km) separating maximum inbound and maximum outbound velocities used to

calculate ∆V in (a). Vortex diameter is thresholded on ∆V beneath 40 m s−1 where

diameter calculations became much noisier.
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or weakening of the vortex) in the Canadian tornado similar to what was observed during

the majority of the 24 May 2011 El Reno case (Houser et al. 2015). Recall that there was

one noted instance of upward tornado strengthening in the Canadian tornado (Fig. 5.5),

but the restrengthening was brief and occurred above the lowest few analysis levels the

intensification occurred simultaneously rather than upward in direction. As a result, no

signal was found at negative lags and therefore it is not shown. Additionally, the Canadian

tornado was observed to decay in a downward direction between 400 and 1250 m ARL

(Fig. 5.5); however, analysis of correlation at positive lags was inconclusive and are not

included. It is likely that the relatively small number of data points that encompassed

the observed upward and downward changes in vortex intensity caused their signal to

be washed out by the highly correlated nature of the vortex over the length of the full

deployment. The directional changes in vortex intensity are important to understanding

the behavior of the Canadian tornado during decay, but they do not characterize tornado

behavior for the majority of observed period.

The high correlation of vortex intensity at all heights with the low-level vortex in the

Canadian tornado contrasts with other recent high-temporal observations of tornadoes.

French et al. (2014) noted that low-level vortex intensity in the 5 June 2009 Goshen

County, Wyoming, EF2 tornado was often anti-correlated with mid-level intensity. This

was largely due to the oscillatory nature of low-level vortex strength. However, French

et al. (2014) were comparing average tornado intensity below 2 km with average intensity

above 2 km, which sometimes extended above 5 km ARL, whereas all of the observations

in the Canadian case were below 2 km. Similar to the Goshen County tornado, the 16

May 2015 Tipton, Oklahoma, tornado also exhibited periodic changes in low-level vortex

intensity, which often decorrelated vortex intensity in the lowest 500–700 m from vortex

intensity above 700 m (Mahre et al. 2018). Periodic changes in low-level tornado intensity

have also been observed by Wurman et al. (2013) using high-temporal resolution mobile

radar data. Additionally, the Tipton tornado experienced one instance of pronounced

upward tornado intensification, although this may be due to debris-induced biases (Mahre
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Figure 5.18: Cross-correlation at lag 0 of ∆V at each height (km) with the 0.5◦ scan.

The calculation was performed over the 22:03:52–22:07:37 UTC time period when ∆V

exceeded 40 m s−1 throughout the majority of the observed depth. High correlation at lag

0 suggests that changes in vortex intensity occur largely simultaneously in the vertical.
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et al. 2018). The Canadian tornado did not exhibit strong periodicity in low-level vortex

intensity during the observed period; however, these observations were during the late-

mature to dissipation stages whereas the Tipton observations were during the mature

stage, so caution is required when comparing the two cases. Perhaps there is some

mechanism for periodic oscillations in tornado intensity that is less likely to occur late

in the tornado lifecycle, e.g., because the tornado and mesocyclone are less vertically

stacked. However, it can be concluded that during the late mature and decay phases

of the Canadian tornado, changes in vortex intensity in the lowest 2 km were largely

non-periodic and were highly correlated with tornado intensity at the lowest analysis

level.

5.5 Conclusions

On 27 May 2015, the AIR collected 4.5 min of sector volumes with 5.5-s temporal

resolution during the late-mature and decay stages of the Canadian, Texas, tornado. At

the beginning of the deployment, maximum ∆V within the tornado was observed to be

110 m s−1. At this time, the tornado vortex widened from a small diameter vortex near

the surface to a wide vortex with weak Doppler velocities in its core aloft and then back

to a small diameter vortex above the cloud base. Broken rings of enhanced spectrum

width at the radius of maximum winds, and regions of enhanced shear along the zero

isodop were also observed, suggesting that the Canadian tornado initially had multiple-

vortex structure. Additionally, small-scale vortices were observed to exit the tornado

and translate eastward beyond the RMW, each of which went through brief periods of

intensification after being shed.

A weakening of the vortex occurred soon after the beginning of the dataset with

∆V decreasing from 110 to 80 m s−1 in less than 30 s. The weakening from peak vor-

tex strength was accompanied by a change from an axial downdraft to an axial updraft

in the axisymmetric framework. A reversal in the direction of the dynamic perturba-

tion pressure gradient force associated with the decrease in low-level tangential velocities
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may have contributed to the change in axial flow. Additionally, the weak echo column

narrowed in response to the change in vortex flow characteristics, narrowing as inflow

intensified and hydrometeors or other scatterers from an intensifying downdraft outside

the RMW became entrained. Finally, axisymmetric angular momentum decreased sig-

nificantly during the initial weakening period. At large radii, angular momentum was

advected downward and away from the center of the tornado and into regions near the

surface where turbulence acted as an angular momentum sink. Advection of angular

momentum away from the tornado may have been aided by the rapid shedding of subvor-

tices that was observed during this timeframe. Overall, the angular momentum budget

findings agree with observations by Rasmussen and Straka (2007) of vortex decay, but

the current study illustrates these changes with much higher temporal resolution data.

At small radii, angular momentum was advected inward, which allowed for the continued

maintenance of the tornado. Additionally, a novel time-sensitivity analysis was performed

and it was determined that the time rate of change of angular momentum was larger and

more variable at shorter timescales and that this was largely due to a greater contribution

from the eddy angular momentum flux term. Meanwhile, the advection term was largely

insensitive to the length of the analysis window.

A brief, bottom-up intensification of the Canadian tornado occurred following the

weak period, coinciding with a narrowing of the tornado. The bottom-up intensification is

similar to what has been previously noted by French et al. (2014) and Mahre et al. (2018),

except observed here near the decay of the tornado. After the brief reintensification, the

largest weakening of the tornado occurred. During this period, ∆V decreased to 40 m s−1.

The decay of the vortex first occurred simultaneously in the column above 1.25 km

ARL and dissipation progressed in a downward direction over the next minute. An

increase in tornado diameter occurred simultaneously with the observed decreases in

∆V. The downward dissipation is similar to the “inside out” decay that was noted in

French et al. (2014) and Houser et al. (2015) with the exception that the top half of the

hypothesized “inside out” decay occurred above what the AIR observed in the Canadian
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case and this study includes observations in the lowest 1000 m unlike Houser et al. (2015).

Additionally, tornado decay occurred much more rapidly than was noted in French et al.

(2014) and occurred in multiple modes, i.e., downward decay between 400 and 1250 m,

simultaneous decay between 150 and 400 m, and decay in the lowest 150 m slightly

preceding decay between 150 and 400 m.

Apart from the brief upward intensification and downward decay periods, vortex in-

tensity throughout the analyzed depth was highly correlated with intensity at the lowest

analysis level and changes in intensity occurred nearly simultaneously in the vertical.

The largely simultaneous vertical changes in vortex intensity were similar to what was

observed in the 24 May 2011 El Reno, Oklahoma, tornado (Houser et al. 2015), but dis-

similar to the anti-correlated low-level and mid-level tornado strength exhibited by the 5

June 2009 Goshen County, Wyoming, tornado (French et al. 2014) and the 16 May 2015

Tipton, Oklahoma, tornado (Mahre et al. 2018).

During decay, the Canadian tornado also became increasingly tilted in the low levels.

The increase in tilt is the result of the low levels of the tornado becoming increasingly

displaced to the west of the vortex above 1 km, which potentially resulted in the tornado

becoming occluded. Additionally, a persistent region of enhanced tilt was noted between

1.25 and 1.5 km ARL throughout the entire deployment. This height was the same that

separated the mid-level and low-level decay at the end of the Canadian tornado lifecycle,

and roughly corresponds with the level of free convection, which may help explain both

the enhanced tilt and early vortex decay in this region.

While the Canadian tornado is only one case in a growing list of high-temporal res-

olution tornado observations, it illustrates how rapidly tornado structure can change.

Additionally, when considered alongside other recent high-temporal tornado datasets,

the Canadian case also exemplifies the diversity of tornado behavior that exists within

even a small sample of cases. While similarities are noted between the behavior of the

Canadian tornado and tornadoes in other high-temporal datasets, many differences be-

tween the tornadoes were highlighted in this case. More high-temporal observations are
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needed in order to properly document the range of tornado behavior at short time scales

and begin to understand the mechanisms that drive different rapid tornado evolutionary

modes. It is our hope that a C-band, dual-polarimetric version of the AIR currently un-

der development (PAIR; Salazar-Cerreño et al. 2017) will facilitate future high-temporal

resolution observations of tornadoes in addition to providing information on the evolution

of tornadic debris and hydrometeor distributions in supercells.
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Chapter 6

Conclusions and Recommendations for Future Work

In this chapter, conclusions from the dual-Doppler and polarimetric radar observa-

tions of tornadic debris as well as high-temporal resolution mobile radar observations of

tornado decay are presented. Then, recommendations for future working using the PAIR

and polarimetric radar simulations are discussed.

6.1 Conclusions

The objectives of this study were to relate tornado- and storm-scale kinematic pro-

cesses to the distribution, behavior, and polarimetric characteristics of tornadic debris as

well as motivate future rapid-scan polarimetric radar studies of tornadoes through high-

temporal resolution observations of tornado features that evolve on very short timescales.

Background on tornado lifecycle and structure in addition to background on selected po-

larimetric signatures in supercells were provided in Chapter 2. In Chapter 3, polarimetric

radar and dual-Doppler observations were utilized to relate the near-tornado wind field

to heterogeneities within the TDS. A broader look at storm-scale debris sedimentation

and a dual-wavelength comparison of debris within a tornado to debris outside the tor-

nado was provided in Chapter 4. Finally, high-temporal resolution radar observations of

tornado decay were interrogated in Chapter 5.

Polarimetric radar observations of the 10 May 2010 Moore-Choctaw tornado collected

by OU-PRIME revealed a large, heterogeneous TDS with pockets of locally enhanced ZH

and locally reduced ZDR and ρhv located near the RMW. Dual-Doppler analyses indicated

that at low levels two large tornado subvortices were collocated with the extrema in ZH

and ρhv and the minima in ZDR was located at the periphery and in the wake of the

subvortices. Farther aloft, a bifurcated distribution in ρhv was observed with higher

values of ρhv collocated with an updraft in the dual-Doppler analyses and lower values
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of ρhv collocated with a downdraft. In axisymmetric vertical cross-sections through the

tornado, the polarimetric heterogeneities manifested as ZH , ZDR, and ρhv annuli located

near the RMW that all widened with height, likely due to the effects of debris centrifuging.

Comparisons of OU-PRIME radar observations of the 10 May 2010 Norman-Little

Axe tornado to a nearby landspout tornado revealed contrasting TDS characteristics.

The Norman-Choctaw tornado exhibited a WEH, whereas the landspout tornado had a

local maxima in ZH at its center in addition to exhibiting an annulus of ρhv at the pe-

riphery of its TDS. Median and 90th percentile ZH were larger in the Norman-Little Axe

tornado consistent with its greater damage intensity. Additionally, median and 90th per-

centile ρhv were also larger in the Norman-Little Axe tornado, likely due to precipitation

entrainment. Both TDSs had appendages at different points in their respective lifecy-

cles, with the landspout tornado exhibiting two appendages at one point. One of these

appendages was collocated with inflow into the tornado, as indicated by dual-Doppler

analyses, and one was collocated with outflow from the tornado. These two relationship

are similar to the mechanisms for TDS appendage formation described in Houser et al.

(2016) and Kurdzo et al. (2015), respectively, except happening simultaneously for the

same TDS. The Norman-Little Axe tornado rotated and elongated to the northeast with

height and a vertical profile of dual-Doppler winds revealed that this may have been

due to strongly veering and increasingly northeastward storm-relative winds with height.

This serves as the first polarimetric radar verification of previous observations by Snow

et al. (1995) and Magsig and Snow (1998) that the majority of debris falls out to the left

of the tornado track.

Dual-wavelength comparisons of debris within the Norman-Little Axe tornado (‘in-

ner’) to debris near or falling out of the tornado (‘outer’) revealed that S-band ZH was

larger than C-band ZH for both inner and outer debris. The greatest dual-wavelength

differences in ZH and lowest values of ρhv were observed for inner debris, likely due to

increased particle sizes and associated resonance effects. Dual-wavelength differences in

ZH decreased with height for inner debris and increased with height for outer debris. As
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a result, inner and outer ZH values at both wavelengths became more similar at upper

levels. This was likely due to debris within the tornado being redistributed outward with

height from the effects of centrifuging and advection away from the center of the tor-

nado by the mean wind. These observations are consistent with simulations in Bodine

et al. (2016b) except for S and C band instead of S and X band. The decreasing dual-

wavelength differences with height for inner debris are likely due to smaller dominant

scatterer sizes due to the fallout of the largest debris particles. The only appreciable

dual-wavelength differences in ρhv occurred for inner debris with lower ρhv observed at C

band than at S band due to increased resonance effects a C band for large scatterers.

High-temporal resolution radar observations collected by the AIR reveal that the 27

May 2015 Canadian, Texas, tornado exhibited multiple modes of tornado decay. The

decay of the vortex first occurred simultaneously in the column above 1.25 km ARL and

dissipation progressed downward over the next minute. An increase in tornado diameter

occurred simultaneously with the observed decrease in ∆V above 1.25 km. Between 400

and 1250 m ARL, downward dissipation was observed, similar to the “inside out” decay

that was noted in French et al. (2014) and Houser et al. (2015) with the exception that the

top half of the hypothesized “inside out” decay occurred above what the AIR observed

in the Canadian case. This study also includes observations in the lowest 1000 m unlike

Houser et al. (2015). Simultaneous decay was observed between 150 and 400 m, and

decay in the lowest 150 m slightly preceded decay between 150 and 400 m.

During decay, the Canadian tornado became increasingly tilted in the low levels. The

increase in tilt was the result of the low levels of the tornado becoming increasingly dis-

placed to the west of the vortex above 1 km, which potentially resulted in the tornado

becoming occluded. Additionally, a persistent region of enhanced tilt was noted between

1.25 and 1.5 km ARL throughout the entire deployment and corresponded to the height

that separated the mid-level and low-level decay at the end of the Canadian tornado life-

cycle. Just prior to tornado decay, a brief weakening of the tornado was observed. This

weakening coincided with small-scale vortices being shed from the tornado. Following
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the brief weakening, a brief, bottom-up intensification, coinciding with a narrowing of

the tornado, was observed. The bottom-up intensification is similar to what has been

previously noted by French et al. (2014) and Mahre et al. (2018), except observed during

the decay of the tornado. Apart from the brief upward intensification and downward de-

cay periods, vortex intensity throughout the analyzed depth was highly correlated with

intensity at the lowest analysis level and changes in intensity occurred nearly simultane-

ously in the vertical. The largely simultaneous vertical changes in vortex intensity were

similar to what was observed in the 24 May 2011 El Reno, Oklahoma, tornado (Houser

et al. 2015), but dissimilar to the anti-correlated low-level and mid-level tornado strength

exhibited by the 5 June 2009 Goshen County, Wyoming, tornado (French et al. 2014)

and the 16 May 2015 Tipton, Oklahoma, tornado (Mahre et al. 2018).

6.2 Recommendations for Future Work

6.2.1 Polarimetric Atmospheric Imaging Radar

While the 2-min temporal resolution data provided by OU-PRIME for this study

were sufficient to infer many tornado- and storm-scale processes, radar data with tem-

poral resolution sufficient to resolve tornado evolution (∼10 s) are necessary to fully

interrogate the relationship of the debris field to near-tornado kinematic processes and

to investigate the response of the debris field to rapid changes in vortex structure. As

discussed in Chapter 1, the Polarimetric Atmospheric Imaging Radar (PAIR, Yu et al.

2015; Salazar-Cerreño et al. 2017) will soon be capable of volumetrically resolving rapid

tornado evolution while providing the polarimetric data necessary to identify tornadic de-

bris. The near-simultaneous vertical cross-sections collected by the system will mean that

a steady-state assumption when investigating the vertical structure of tornadoes and su-

percells will be much more appropriate than what is implied when using volumetric data

collected over a 2-min period. Additionally, the mobile nature of the PAIR will provide

superior spatial resolution to the OU-PRIME data used in this study since the PAIR will
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usually be less than 10 km from the tornado. This would allow for the interrogation of

debris processes on the tornado-scale for smaller tornadoes and on the sub-tornado-scale

for large tornadoes.

By performing similar analyses to the ones presented in this study, the PAIR will

provide greater certainty in the relationships between polarimetric and kinematic rela-

tionships. Dual-Doppler analyses using data from two rapid-scan radars would provide

the ability to check whether all of the inferred relationships in this study are consistent

in time. This is especially important for investigating short-lived phenomena such as

tornado subvortices. Additionally, rapid-scan dual-Doppler would provide the context

necessary investigate the formation mechanisms for TDS asymmetries such as debris ap-

pendages. Moreover, the response of the debris field to rapid changes in tornado structure

and behavior could be investigated. For example, the PAIR could document the response

of the debris field to something similar to the rapid change from a medium-swirl drowned

vortex jump tornado structure to a low-swirl single-cell vortex like what was seen in the

Canadian, Texas tornado in Chapter 5. Similarly, the response to a rapidly evolving

debris field from changing surface conditions could be examined.

One particularly useful analysis tool that could be utilized with PAIR data would

be to run high-temporal resolution debris trajectories using dual-Doppler syntheses with

another rapid-scan radar. The rapid-scan data would minimize the the temporal inter-

polation of the wind field and improve the accuracy of the trajectories. Trajectories for

different debris species with a range of aerodynamic properties could be computed to in-

vestigate the differential sedimentation of debris (Fig. 6.1a). Calculating and binning the

number of debris trajectories in tornado-relative reference frame (Fig. 6.1b) will provide

insight into polarimetric asymmetries within a TDS. For example, it may be possible to

determine whether larger debris with lower ρhv collect within downdrafts near the tor-

nado while smaller debris remain within localized updrafts as hypothesized in Chapter
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3 (Fig. 3.10). Simulations of debris trajectories using high-resolution simulations of su-

percells resolving tornadoes would also be beneficial for comparisons to radar-computed

debris trajectories.

Figure 6.1: PPI plot of (a) OU-PRIME reflectivity overlaid with forward trajectories for

leaves color coded by height above ground level and (b) binned log10(debris count) for

leaves in a tornado relative reference frame.

In addition to debris studies, the PAIR can continue the tornado research of the

AIR. Of particular interest should be studying the vertical evolution of vortex intensity

during tornadogenesis and tornado decay. Recent rapid-scan radar observations have

shown that tornadogenesis occurs nearly exclusively in a simultaneous or slightly upward

fashion (e.g., French et al. 2013; Houser et al. 2015). However, more cases are needed in

order to generalize that all tornadoes develop in this fashion. Moreover, more research is

needed to investigate why tornadoes develop nearly simultaneously. As an example, the

AIR captured tornadogenesis in the 23 May 2016 Woodward, Oklahoma, tornado, and in

this case vertically simultaneous tornadogenesis occurred when a low-level vortex became

spatially phased with the low-level and mid-level mesocyclone (Fig. 6.2). However, this

vertical stacking of the vortices was short lived and the tornado quickly dissipated. More

cases are required to determine whether this is a common tornadogenesis mechanism

and assess if a more prolonged vertical stacking would have been more conductive to a

longer-lived tornado.
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Figure 6.2: (a) Time-height plot of maximum ∆V (m s−1) and (b) the distance between

the mean position of the Woodward tornado in the lowest 1 km and the mean position

of the vortex between 1-2 km (blue), 2-3 km (orange), and 3-4 km (green).
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Mature tornadoes have shown a diversity in behavior when observed at high-temporal

resolution. The 5 June 2009 Goshen County, Wyoming, tornado exhibited periodic tor-

nado intensity that was sometimes correlated and sometimes anti-correlated with meso-

cyclone intensity (French et al. 2014). Meanwhile, the 24 May 2011 El Reno, Oklahoma,

tornado exhibited periodic tornado intensity that was correlated with mesocyclone in-

tensity (Houser et al. 2015) and the 16 May 2015 Tipton, Oklahoma, tornado exhibited

low-level vortex periodicity that was anti-correlated with vortex intensity aloft (Mahre

et al. 2018). The Canadian, Texas, tornado in this study exhibited vertically correlated

vortex strength and did not exhibit periodic changes in intensity. A large number of cases

needs to be collected to determine the relative frequency of these tornado behaviors and

to begin to investigate the mechanisms that control periodic changes in tornado intensity

and why only some tornadoes are correlated with mesocyclone intensity.

Additional research is also needed on tornado dissipation mechanisms. While inside

out tornado decay appears to be commonly observed during decay, near-storm thermody-

namic observations and modeling research is needed to verify the dynamic and thermody-

namic processes that lead to this dissipation mode. Mobile mesonet or unmanned aircraft

systems (UAS) observations of the position and thermodynamic characteristics of the cold

pool could provide insight on the occlusion process and the vertical layering of processes

that occur. Near storm-soundings could provide information on potential mesoscale con-

trols on where tornado dissipation may initiate by identifying the near-storm LFC or

measuring any stable inversions. It is possible that the recent Targeted Observation

by Radars and UAS of Supercells (TORUS) field campaign may have serendipitously

collected the necessary observations to investigate these processes already.

6.2.2 SimRadar

In addition to observational studies, future modeling studies are required to sys-

tematically and experimentally isolate the behavior of debris in tornadoes. Currently,
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the most well equipped tool to model TDSs is SimRadar (Cheong et al. 2017), a physi-

cally based radar simulator that combines large-eddy simulation (LES), air drag models,

and radar cross-section (RCS) measurements of debris. SimRadar allows researchers to

investigate how different debris species behave in different realistic tornado flow types

(Fig. 6.3) based on air drag models and then provides simulated dual-polarization time

series and radar moments for a range of radar setups for mixed debris volumes based on

RCS measurements.

Figure 6.3: Graphical output from SimRadar showing the vertical plane of an LES tor-

nado simulation with lofted raindrops (purple) and leaves (green).

There are a number of model experiments that are motivated by this study. In

Chapter 3, observations of locally enhanced ZH and locally reduced ρhv were observed in

large tornado subvortices, hypothesized to be due to greater debris concentrations and

perhaps larger mean debris size. Additionally, negative ZDR was observed at the periphery

and in the wake of these subvortices. Preliminary analyses of a high-swirl tornado indicate

that the tornado subvortex ZH signature can be replicated using SimRadar (Fig. 6.4).

Orientation analyses, similar to those in Umeyama et al. (2018), should be performed

in the future to investigate whether common debris alignment occurs at the periphery
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or in the wake of these subvortices. Additionally, lower ρhv was observed in downdrafts

compared to updrafts in the Moore-Choctaw tornado. SimRadar should be used to

investigate the differential sedimentation of debris species within tornado updrafts and

downdrafts.

Figure 6.4: Simulated ZH for a high-swirl LES. Arrows indicate the position of large

tornado subvortices.

It was observed in Chapter 4 that the vertical profiles of polarimetric variables became

more homogeneous with time and were most vertically homogeneous when the tornado

was at maximum intensity. SimRadar should be used to investigate the tornado lifecycle

controls on the vertical distribution of debris and whether vertical size sorting of de-

bris becomes less prominent over time in strong tornadoes (e.g., perhaps large debris are

lofted to higher altitudes given enough residence time within the tornado updraft). Addi-

tionally, the vertical profiles of polarimetric variables should be investigated for different

tornado intensities. Perhaps only strong tornadoes are capable of producing vertically

homogeneous polarimetric profiles because weaker tornadoes cannot loft large debris to

higher elevations.
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In Chapter 5, the AIR observed a rapid change from a medium-swirl drowned vortex

jump to a low-swirl single-cell vortex. In addition to investigating how swirl ratio controls

the distribution of tornadic debris, SimRadar could be used to interrogate the behavior

of debris during the transition from one tornado structure to another. Of interest could

be the latency between the transition of the vortex from one flow structure to another

and the transition of the debris from one distribution to another. It is also possible that

the transition from one flow structure to another creates a hybrid debris distribution

that is unlike the TDS structure of a steady-state low-, medium-, or -high swirl tornado.

These simulations can also be compared to new rapid-scan observations of tornadic debris

collected by the PAIR.
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Appendix A

List of Acronyms

AIR Atmospheric Imaging Radar

AHI Azimuth Height Indicator

AGL Above Ground Level

ARL Above Radar Level

ARRC Advanced Radar Research Center

CAPPI Constant-Altitude Plan Position Indicator

DDC Dodge City, Kansas

DPE Dynamic Pipe Effect

EF Enhanced Fujita

GBVTD Ground-Based Velocity Track Display

HYSPLIT Hybrid Single-Particle Lagrangian Integrated Trajectory

LES Large-Eddy Simulation

LFC Level of Free Convection

MWR-05XP Meteorological Weather Radar 2005 X-band Phased Ar-

ray

OPAWS Observation Processing and Wind Synthesis

OU-PRIME University of Oklahoma’s Polarimetric Radar for Innova-

tions in Meteorology and Engineering

PAIR Polarimetric Atmospheric Imaging Radar

PPI Plan Position Indicator

RaXPol Rapid-Scanning, X-band, Polarimetric Doppler Radar

RCS Radar Cross-Section

RHI Range Height Indicator

RFD Rear-Flank Downdraft

RFGF Rear-Flank Gust Front
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RFGFS Rear-Flank Gust Front Surge

RMW Radius of Maximum Winds

SNR Signal-to-Noise Ratio

SRH Storm-Relative Helicity

STSR Simultaneous Transmit Simultaneous Receive

TDS Tornadic Debris Signature

UTC Coordinated Universal Time

VCP Volume Coverage Pattern

WEC Weak Echo Column

WEH Weak Echo Hole

WSR-88D Weather Surveillance Radar 1988 Doppler
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Appendix B

List of Symbols

Cmax Specified maximum flow-relative radially outward veloc-

ity estimate (m s−1)

KDP Specific Differential Phase (◦ km−1)

r Radius from tornado center (m)

u Radial velocity (m s−1)

U True radial wind velocity (m s−1)

Ubias Radial velocity bias introduced by debris centrifuging

(m s−1)

Umod Biased radial wind velocity (m s−1)

v Tangential velocity (m s−1)

Vr Radial velocity (m s−1)

Vdual Dual-Doppler derived tangential velocity (m s−1)

Vsingle Single-Doppler derived tangential velocity (m s−1)

ZDR Differential reflectivity (dB)

ZH Radar reflectivity factor at horizontal polarization (dBZ)

δ Limiting spatial resolution (m)

∆V Differential velocity (m s−1)

γ Second-pass convergence parameter

κ Smoothing Parameter (km2)

ΦDP Differential Phase (◦)

ρhv Co-polar cross-correlation coefficient

ζ Vertical vorticity (s−1)

174


