
SEARCH TREE DATA STRUCTURES AND

THEIR APPLICATIONS

By

YICK-KWAN CHEN
I I

Bachelor of Science

National Tsing Hua University

Taiwan, Republic of China

1976

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree .of

MASTER OF SCIENCE
May, 1987

~s\s
\q'O~

C,SISs
C'f.;;l..

SEARCH TREE DATA STRUCTURES

THEIR APPLICATIONS

Thesis Approved:

~~ Thesls Adviser

~~

Dean of the Graduate College

ii

PREFACE

This study concerns the discussion of search tree data

structures and their applications~ The thesis presents

three new top-down updating algorithms for the concurrent

data processing environment.

I owe much appreciation and gratitude to my major advi

sor Dr. Donald D. Fisher for his continuous guidance, moti

vation, and valuable instructions~especially during the

final phase of the thesis writing:

I would extend my appreciation to Dr. Donald W. Grace,

and Dr. John P. Chandler for their suggestions and advise

ments while serving on my committee.

This thesis is dedicated to my mother, Mrs. Lee-In

Chen, and to my wife, Sue-Cheng for their sacrifice, sup

port, encouragement, and love.

111

TABLE OF CONTENTS

Chapter ,

I • INTRODUCTION

1.1
1.2
1.3

Basic Terminology
Rationale ...•
Objectives ..•.

II. LITERATURE SURVEY

2.1 AVL and HB(k) Trees
2.2 Red-Black Trees
2.3 Weight-Balanced Trees
2.4 Brother Trees . . .

.

.
.

2.5 Self-Adjusting Binary Trees
2.6 B-Trees

.
2.7 Multidimensional Binary Search Trees

I I I . TOP-DOWN UPDATING AND CONCURRENT OPERATIONS .
3.1 Top-Down Updating for HB(k) Trees .

.

3.2 Top-Down Updating for Red-Black Trees
3.3 Top-Down Updating for WE-Trees . . .
3.4 Top-Down Updating for Splay Trees .

IV. AMORTIZED ANALYSIS AND PERFORMANCE EVALUATIONS

v. COMPARISONS AND DISCUSSIONS
VI. APPLICATIONS AND CONCLUSIONS

6.1 Applications
6.2 Conclusions
6.3 Suggestions 0 0 .

VI I. A SELECTED BIBLIOGRAPHY
APPENDIX A: DEFINITIONS OF TREE VARIANTS . .
APPENDIX B: EXAMPLES OF TREE OPERATIONS

iv

. . .

. .

. .

. .

. .

Page

.

1

2
4
5

7

9
19
26
31
39
43
45

49

50
62
66
71

76

80

83

83
84
85

87

96

98

Table

I.

LIST OF TABLES

Potentials for Updating Red-Black Trees

v

Page

79

LIST OF FIGURES

Figure Page

1. The Notations of A Binary Tree 8

2 . Bottom-Up Insertion Algorithm for HB(k) Trees 11

3. Swapping Process in the Deletion of HB(k) Trees 14

4. Bottom-Up Deletion Algorithm for HB(k) Trees

5. Modified Bottom-Up Deletion Algorithm for
HB(k) Trees • • • • • • • . • . . ••

6. A Red-Black Tree

15

18

20

7. The Equivalent of A 2-4 Tree and A Red-Black Tree . 20

8. Bottom-Up Insertion Algorithm for Red-Black Trees . 22

9. Swapping Process in the Deletion of
Red-Black Trees . • • . • 24

10. Bottom-Up Deletion Algorithm for Red-Black Trees 25

11. Examples of A WB(l/3) Tree and A WB(l/4) Tree • • . 28

12. Rotation Types in Weight-Balanced Trees 30

13. A 1-2 Brother Tree 32

14. The Equivalent of A 1-2 Brother Tree and
An AVL Tree . • . . • . . . • . 32

15. Bottom-Up Insertion Algorithm for 1-2 Brother
Trees • • • . 34

16. Bottom-Up Deletion Algorithm for 1-2 Brother
Trees • • • • • 37

17. The Halving Effect of Splaying A Node in
Binary Trees . . . • • • 41

18. Bottom-Up Splaying Algorithm 42

Vl

Figure Page

19. Examples of A 2-3 Tree and A B-Tree of Order 5 44

20. An Example of A B+-Tree ... 46

21. An Example of A K-d Tree with K=3 48

22. Updating A Nonhomogeneous Tree Structure of
HB(k) Trees . • • . • • . •.••.• 51

23. Current Node Selection in the Top-Down Insertion
of HB(k) Trees • 52

24. Prebalancing in the Top-Down Insertion of
HB(k) Trees • • • • . • . ••.•. 54

25. Current Node Selection in the Top-Down Deletion
of HB(k) Trees . . • • . . . • . • • . • 59

26.

27.

28.

29.

30.

31.

32.

Prebalancing in the Top-Down Deletion of
HB(k) Trees•.•.•..•.•

Updating A Nonhomogeneous Tree Structure of
Red-Black Trees . . • • •

Current Node Selection in the Top-Down
Insertion of Red-Black Trees •.••

Current Node Selection in the Top-Down
Deletion of Red-Black Trees•

Modified Top-Down Update Algorithm for
Weight-Balanced Trees • • • . •

Top-Down Splaying Algorithm ...•

An Example of Bottom-Up Insertion into An
AVL Tree•....

33. An Example of Bottom-Up Deletion from An

. . . . 60

63

65

67

69

74

99

AVL Tree . • . . • . . . • 100

34. An Example of Bottom-Up Insertion into A
Red-Black Tree 101

35. An Example of Bottom-Up Deletion from A
Red-Black Tree 102

36. An Example of Top-Down Insertion into A
Weight-Balanced Tree • • . . . • ..•. 103

37. An Example of Bottom-Up Insertion into A
1-2 Brother Tree •.•..•.•...... 104

vii

Figure

38.

39.

40.

41.

An Example of Bottom-Up Deletion from A
1-2 Brother Tree

An Example of Bottom-Up Splaying A Node in
Binary Tree

An Example of Insertion into A K-d Tree .
An Example of Top-Down Insertion into An

AVL Tree . • • . . . • • • • . . • • •

Page

. 105

. 106

. . . 10 7

. 108

42. Examples of Top-Down Insertion into An HB(3) Tree . 109

43. An Example of Top-Down Deletion from An
AVL Tree • • . • • . . • . . 111

44. Examples of Top-Down Deletion from An HB(3) Tree . 112

45. An Example of Top-Down Insertion into A
Red-Black Tree . . • • . . • . . • • . • 114

46. An Example of Top-Down Deletion from A
Red-Black Tree • . . . • •• 115

47. An Example of Index-Position Search . . . • 116

48. An Example of Top-Down Splaying Operations .• 117

49. A Classifications of Search Tree Data Structures . 118

50. An Example of An HB(3)-Tree . 119

viii

CHAPTER I

INTRODUCTION

In data processing applications, large files of infor

mation must be searched to retrieve the requested data, and

data may be added to or deleted from files. There are many

ways to organize large files in order to perform these oper

atons such as sequential, linked list, hashed, and search

tree structures (2,45). However, the sequential file organ

ization suffers the drawback of lengthy updating, the linked

list structure has a disadvantage of long random access, and

the hashed file has problems in that (1) it can not access

the file in record-key sequence and (2) it can not grow sub

stantially in size without redesigning of the hashing rou

tine. Search tree structures, on the other hand, provide a

compromise between sequential and random access, and yet

have fast access and easy update operations.

Search tree structures have been studied extensively

for the past two decades. Figure 49 in Appendix B shows the

classifications of search tree data structures and the ref

erences of the previous work. The best known is the class

of balanced binary search trees which include the AVL trees

of Adelson-Velskii and Landis (1), the generalized height

balanced trees of Foster (30), the weight-balanced trees of

1

Nievergelt and Reingold (68), the red-black trees of Guibas

and Sedgewick (36), the brother trees of Ottmann and Six

(71), and the self-organizing binary trees of Allen and

Munro (4). Another class is the class of multiway search

trees such as the B-trees of Bayer and McCreight (10), the

K-dimensiona1· (K-d) trees of Bentley (13), and the quad

trees of Finkel and Bentley (29).

1.1 Basic Terminology

2

Generally, a tree imposes a hierarchical structure on a

collection of elements called nodes, one of which is the

root and the rest of which are partitioned into trees,

called the subtrees of the root. A tree T of N nodes can be

defined recursively in the following manner. T is

1. a null tree (denoted by~) if N = 0;

2. a unary tree if N = 1, and the node also is the

root of the tree;

3. an (m+l)-tuple (R, Tl, ... , Tm) tree, where R is the

root node with m-ary subtrees Tl, •.• ,Tm of Nl, ... ,Nm nodes

respectively.

Thus, a binary tree T is either a null tree or a three

tuple (R, Tl, Tr) tree with the root node R, left binary

tree Tl, and right binary tree Tr. If Nl,N2, •.. ,Nk is a

sequence of nodes in a tree such that Ni ~is the parent of

Ni+l for 1 <= i < k, then this sequence is called a "path"

from node Nl to Nk. The height of a node in a tree is the

length of the longest path from the node to a leaf.

Before going on, we need to define some file organiza-

3

tion terminology (43). "Data" is a collection of facts,

concerning people, place, events, or other objects or con

cepts. A "data item" (also known as element, field, or

attribute) is the smallest named unit of data in a data

base, such as a student name. A "record" is a collection of

data items that is named and referenced as a whole,· such as

a student record which may include student ID, student name,

and other fields. A "file" such as a student file is a col

lection of all occurrences of a given record type. A "pri

mary key" is a data item that uniquely identifies a record.

A "secondary key" is a data item that normally does not uni

quely identify a record, but identifies a number of records

in a set that share the same property. Terms such as key

and primary key are used interchangeably in this paper.

The concept of a search tree is well described by Knuth

(45). The basic idea is that an m-ary node is associated

with m-1 keys from a totally ordered universe of keys.

There are two distinct ways of associating sets of keys with

a tree to give a search tree. The most popular one is to

associate keys with internal nodes giving the internal

search tree (also known as a homogeneous tree structure).

Another one is to associate keys with external nodes giving

the external-search tree (also known as a nonhomogeneous

tree structure). In the internal-search scheme, a node con

sists of a "key" field (which holds the single key defining

the record), left pointer, right pointer, and additional

fields which hold the rest of the data associated with that

record. With this approach, an internal node itself not

4

only contains a record but also serves as a road map for a

search operation. On the other hand, the external-search

scheme has two kind of nodes; internal nodes and external

nodes. An internal node contains a key field and left and

right pointers, but no data; all data are stored in external

nodes. In this external-search structure, a key is neces

sary to provide routing or separating in the internal nodes

so that searching can be carried out correctly. Kwong and

Wood (50) studied a number of routing scheme, among them the

left-maximum is the most popular one. In this scheme, the

separating key of a binary tree node N is the maximum key in

N's left subtree. By the same token, the i-th separating

key in a multiway tree is the maximum key in that i-th sub

tree.

It is important to make the convention that if a search

key is equal to the value of an internal node, then the

search continues in the left subtree until an external node

is reached. The merit of a nonhomogeneous tree structure is

that we may store all internal nodes in primary memory, and

store lengthy data in secondary memory. With this arrange

ment only one secondary memory access is required to

retrieve any record so that the search is much faster.

1.2 Rationale

It is not surprising that search tree data structures

receive widespread attention because they are fast to

search, easy to update, convenient to process both randomly

and sequentially, and most of all they have been applied

5

successfully in different areas of applications such as:

1. the use of balanced binary search trees to maintain

tables in the primary memory (45,67,96), and to organize

files in magnetic bubble memory, a new secondary storage

device (15,21,91,106,107);

2. the use of B-trees to manage files in secondary

memory (10,24), to solve geographic range queries (54), and

to support dedicated database applications (22,43);

3. the use of quad trees as a structure to perform

image processing (70,88), object representation (5,89), and

computer graphics (17,105);

4. the use of red-black trees as a persistent data

structure to solve the geometric retrieval problems (90);

5. the use of K-d trees to handle multikey records in

database applications (14,19).

With so many authors dedicating themselves to the study

of search tree data structures, however, we have few survey

papers such as the B-tree and its variants by Comer (22),

and the quad tree by Samet (87). Thus, this paper concen

trates on the study of search tree structures such as the

AVL and generalized height-balanced trees, red-black trees,

weight-balanced trees, brother trees, self-adjusting binary

trees, B-trees, and K-d trees.

1.3 Objectives

The objectives of this paper are the survey of search

tree data structures, from which the following studies can

be conducted:

6

1. to state the definitions and to show examples for a

variety of search tree structures;

2. to present updating algorithms, and to show exam

ples of operations for a variety of search tree structures;

3. to develop new top-down updating algorithms for the

generalized height-balanced trees, weight-balanced trees,

and self-adjusting binary trees that make concurrent opera

tions become possible;

5. to present the concept of amortized analysis and

its applications;

6. to compare the differences among these search tree

structures, and to draw conclusions for their applications.

Chapter II reviews the definitions and updating algor

ithms of these search tree data structures. Chapter III

presents three new top-down updating algorithms for the gen

eralized height-balanced trees, the weight-balanced trees,

and the self-adjusting binary trees. Chapter IV illustrates

the concept of amortized analysis. Chapter V discusses the

differences among these search tree data structures. The

applications and conclusions are included in Chapter VI.

CHAPTER II

LITERATURE SURVEY

Tree data structures are very efficient for performing

a sequence of access operations on a set of items selected

from a totally ordered universe where each item may contain

some associated information such as key and data. The input

to each operation is a key; the output of the operation is

an indication of whether the key is in the set, along with

the associated information if the key is in the set. A

binary search tree is a tree which contains the items of the

set, one item per node, with the items arranged in symmetric

order: if P is a node containing an item (which has a key

i), the left substree of P contains only items with keys

less than i and the right subtree of P contains only items

with keys greater than i. The "search" operation in a

binary search tree refers to the ability of accessing any

item in the tree by- going down from the root, branching left
\

if the accessed key is less than the key in the current

node, branching right if the accessed key is greater than

the key in the current node, or terminating the operation

when a null node or a node containing the key is reached.

This search operation takes O(d) time, where d is the depth

of the node finally reached (internal-search scheme is

7

assumed). Figure 1 shows some notation for a binary tree

where X denotes the current node, L(X) denotes the left

child of X, R(X) denotes the right child of X, P(X) denotes

the parent of X, S(X) denotes the sibling of X, S(P(X))

denotes the sibling of P(X), and P(P(X)) denotes the grand

parent of X.

P(P(X))

S(P(X))

L(X)

Figure 1

The Notations of A Binary Tree

8

9

2.1 AVL and HB(k) Trees

AVL-trees were first introduced 1n 1962 by Adel'son

Vel'skii and Landis (1). The tree structure and updating

algorithms are well described in Knuth (45). The height of

node T in a tree is defined to be the length of the longest

path from node T to a null (external) node. The height of a

null node is zero. If T.! is the left subtree of T and Tr is

the right subtree of T, then h(T.£) denotes the height of TJl

and h(Tr) denotes the height of Tr. An AVL-tree satisfies

1. ih(T.£) - h(Tr) I <= 1.

2. T£. and Tr are AVL-trees.

Foster (30) introduced the generalized height-balanced

trees (HB(k) trees), which have the properties that, for

every node, the heights of the right and left subtrees dif

fer at most an integer k (Figure 50 in Appendix B shows an

HB(3) tree). In other words, HB(l)-trees are AVL-trees.

There are variants of AVL-trees such as height-ratio bal

anced trees of Gonnet et al. (33) and one-sided height bal

anced trees of Kosaraju (46) and Raiha (82). The defini

tions of these variants are listed in Appendix A. Tarjan

(98) proposed update algorithms with 0(1) rotations in the

worst case for red-black trees. We can apply his method to

construct an insertion algorithm with 0(1) rotations in the

worst case for a generalized height balanced tree.

2.1.1 Bottom-up Insertion Algorithm

The algorithm of rebalancing an HB(k)-tree after an

10

insertion proceeds as follows. To insert a new item, say X,

first we perform a binary search for its proper place (a

null node) and attach a new node in which the new item is

stored (see Figure 2a). We then set the balance-tag of node

X to zero (tag(X) = 0) and mark this node "long". A "long"

node is one ·for which the balance-tag has been modified due

to insertion. To eliminate the "long", we let the "long" be

the current node X and proceed with the following steps

(algorithm HBI).

1. Test whether node X is a critical node; a critical

node is a node which has a balance-tag of !tag(X) I = k+l.

If the test is true, go to step (3). If the test is false,

go to step (2).

2. Test whether P(X) has a balance-tag satisfying k >=

tag(P(X)) > 0 and X is the left child of P(X) (or symmetric

variant). If the test is true, update the balance-tag of

P(X) and stop (Figure 2b). If the test is false; update the

balance-tag of P(X), let P(X) be the new current node X and

go to step (1) (Figure 2c) .

3. Test whether X has a balance-tag satisfying k+l and

R(X) (see Figure 1) has a balance-tag of k >= tag(R(X)) > 0

(or symmetric variant). If the test is true; perform a sin

gle rotation, update balance-tags, and stop (Figure 2d). If

the test is false; perform a double rotation, update balance

tags, and stop (Figure 2e).

Cases (d) and (e) in Figure 2 take 0(1) rotations and

terminate the insertion. We then conclude that the bottom

up insertion takes 0(1) rotations in th~ worst case. An

(a)

(b)

(c)

11

Figure 2

Bottom-Up Insertion Alqorithm for HB(k) Trees

-t.

insert B

O>m~-k m+l

~m>O m-1

>

k'!:m~O m+l

!b
O~m:t;-k m-1

cfb !6 ;c.
)

m,k denote balance-tags.
() denotes a subtree or a nulL
+ denotes a "long" (the current node).
1 denotes a null node.
case (a) has symmetric variant.

move-up

stop

move-up
or

stop, if B is
the root and
k~ ltag(B)\

(d)

Figure 2 (Continued)

Single right
rotation

S~e left
rotation

lhtble right
rotaticn

"*~~"1)0

"*~ .(~ ~-t
)

Double left
rotation

'ln.- I

i. ~ 0 & ""1!BX(-.l, 1-k)
i -<.o & ImX(1'411,.t)

1

12

stop

stop

example of bottom-up insertion for an AVL-tree is shown in

Figure 32 (in Appendix B).

2.1.2 Bottom-up Deletion Algorithm

13

The deletion process is more complex than insertion

because it may not be sufficient to apply a restructuring

only at the lowest level of imbalance; restructuring may

need to be applied at many levels between the site of dele

tion and the root. To delete an item, say X, from a

height-balanced tree first we perform a binary search for X

and test whether X has two internal children. If the test

is true, we swap X with its inorder predecessor (see Figure

3) found by taking left branch of X and then right branches

until reaching a node, say Y, with a null right child. We

also exchange balance-tags between X and Y. Now X has at

most one child. If X has one child, replace it by its child

and produce a "short" (see Figure 4a). A "short" node is

one for which the balance-tag has been modified due to dele

tion. If X has no child, simply delete X and produce a

"short" at the null node. To eliminate a "short", we let the

"short" be the current node X and proceed with the following

steps (algorithm HBD).

1. Test whether X is the tree root. If it is true, we

stop. If it is not true, go to step (2).

2. Test whether X is a critical node (ltag(X) I = k+l).

If the test is true, go to step (4). If the test is false,

go to step (3).

3. Test whether P(X) has a balance-tag satisfying k >

_,

(Ct) tlo)

cs
(a) Swap X with Y and exchange balance -tags between X and Y.
(b) Replace X with its child Z and produce a "short" at node Z.

- denotes the "short"

Figure 3

Swapping Process in the Deletion of HB(k) Trees
~

15

Figure 4

Bottom-Up Deletion Algorithm for HB(k) Trees

delete c ;;.. 1~ c has two sons

(a) ~ delete C :£®- move-up
c has one son

.©.
delete c -c has no son " I

o') ~ ~-~ or .,,...,{ ""+I

cfb ~
m:we-up

to) or stop j£ B is the

~:-~
.,._,

root and

era k ~ !tag(B)j

.ll_ >'ln ~0 ,..+,

c1b db stop
(c)

·~-1'>1)-i ,_,

cf1y Jb
Case (a) has symmetric variant.
- denotes a "short". m, k denote balance-tags.
1 denote a null node. 0 denotes a subtree or null node.

(d)

-<.-A·tl)

(-ft.-tt)

-<.~tl)

Figure 4 (Continued)

{~I)\~ 0
)'

Single right
rotaticn

~)"' ~0
)'

Single ieft
rotaticn

i~'IV'I >o
~ ~J. ~--ft

'>
Ih..Jble right
rotaticn

--" ~"' >o
~ ~..t ~--It ..,.

Dcuble left
rotaticn

~~~ 

~ 
roove-up 

or stop if m=O 

[ ho & -maxE-.t,l-m) J 
.t.o & nmc(t,l-k) 

s--
~ 

ii' ,..._ 
-r-
40 

.) ~ 

) .l~o & -maxE-1,1-k)J 
l ...t<~ & nmc(l-m,.t) 

Cases (d) and (e) are tenn:inals if B is the root. 

16 



17 

tag(P(X)) >= 0 and X is the left child of P(X) (or symmetric 

variant). If the test is true, update the balance-tag of 

P(X) and stop (Figure 4c). If the test is false; update the 

balance-tag of P(X), let P(X) be the new current node X and 

go to step (1) (Figure 4b). 

4. Test whether X has a balance-tag satisfying k+l and 

R(X) has a balance-tag of k >= tag(R(X)) >= 0 (or symmetric 

variant). If the test is true~ perform a single rotation, 

update balance-tags, select a new current node, and go to 

step (1) (Figure 4d). If the test is false: perform a 

double rotation, update balance-tags, select a new current 

node, and go to step (1) (Figure 4e). 

Cases (b), (d), and (e) are terminals only when the new 

current node is the root node. That is, the restructuring 

operation may be needed for many levels before the termina

tion of a deletion. We then conclude that deletion from a 

generalized height-balanced tree takes O(log n) rotations in 

the worst case. An example of bottom up deletion from an 

AVL-tree is shown in Figure 33 (in Appendix B). 

To reduce the chance of requiring O(log n) rotations in 

the worst case, we can modify the cases in Figure 4e to per

form a single rotation instead of a double rotation that 

will eliminate the "short" and stop the deletion (see Figure 

5). The steps (1) and (2) in the above algorithm remain 

unchanged and step (3) is modified as follows (algorithm 

HBMD). 

3. Test whether X has a balance-tag satisfying k+l and 

R(X) has a balance-tag of -k (or symmetric variant). If the 



Figure 5 

Modified Bottom-Up Deletion Algorithm for HB(k) Trees 

(a) 

(b) 

(c) 

-R.. >1n ~ ... i, 
Single right !) 

rotation 

Single left > 
rotation 

..( t..e ~ --/,. > 
D:Juble right 
rotation 

D:Juble left 
rotation 

> 

'II\- I 

~,or 

stop if -/(>)'II.~~:~ 

~,or 

stop if o ~m. > -~ 

~ ..t. ~o ~ -~x C-1. 1 1-t) ( 
l .t. <.o k · .,..._)c (.!., 1-~) J 

s-

) t.~o4 -~x~l, 1-~) 
{ .t <..o 4 /t'IA..,t ( .e, -i) 

move-up 

...,... denotes the direction of the "short" m:JVarEnt. 

- denotes the "short". 
Cases (a), (b), and (c) are tecminals if B is the root. 

18 



test is true; perform a double rotation, update balance 

tags, select a new current node, and go to step (1) (see 

Figure 5c). If the test is false, go to step (4). 

19 

4. Now X has a balance-tag satisfying k+l, and R(X) 

has a balance-tag satisfying k >= tag((R(X)) > -k (or symme

tric variant). We perform a single rotation and update bal

ance tags (Figure Sb), and then test whether 0 >= tag(R(X)) 

> -k holds. If the test is true, we stop. If the test is 

false; we select a new current node, and go to step (1). 

2.2 Red-Black Trees 

A red-black tree is a balanced binary search tree (see 

Figure 6) in which each node has a color, either red or 

black, subject to the following constraints. 

1. An external node is marked as a black node. 

2. All paths from the root to an external (null) node 

contain the same number of black nodes (black constraint). 

3. Any red node, if it is not a root node, has a black 

parent (red constraint). 

Bayer (9) first introduced these trees, calling them 

"symmetric binary B-trees." Guibas and Sedgewick (36) stud

ied the properties of these and related trees, calling them 

"red-black trees." Olivie (69) used an equivalent defini

tion, calling them "half-balanced trees". We can convert a 

red-black tree into a 2-4 tree, by condensing every red node 

into its parent, in which every internal node has either 

two, three, or four children and all external nodes have the 

same depth (see Figure 7). 



20 

Figure 6 A Red-Black Tree 

Figure 7 

The Equivalent of A 2-4 Tree and A Red-Black Tree 



21 

2.2.1 Bottom-Up Insertion Algorithm 

Tarjan (98) proposed a bottom-up update method which 

requires 0(1) rotations in the worst case and 0(1) color 

updates in the amortized case (defined in Chapter IV). Tar

jan's bottom-up insertion algorithm proceeds as follows: (A 

homogeneous tree structure is assumed.) To insert an item, 

first we perform binary search for the appropriate null node 

(the bottom of the tree) and attach a new node containing 

the new item (see Figure Sa). We color this node red. This 

preserves the black constraint but may violate the red con

straint if the parent of the new node is a red node. To 

eliminate the violation, we let the new node be the current 

node X and proceed with the following steps (algorithm RBI). 

1. If P(X) is a black node, we stop. If P(X) is a red 

node, go to step (2). 

2. If P(X) is a root node, color P(X) black-and stop. 

(Figure Be). If P(X) is not a root node, go to step (3). 

3. If P(X) has a red sibling, perform color changes 

(Figure 8b) and let P(P(X)) be the new current node X and go 

to step (1). If P(X) has a black sibling, go to step (4). 

4. If node X is the left child of P(X) and P(X) has a 

right black sibling (or symmetric variant), perform a single 

right rotation and stop. (Figure 8d). If node X is the 

right child of P(X) and P(X) has a right black sibling (or 

symmetric variant), perform a double right rotation and stop 

(Figure Be). 



Figure 8 

Bottom-Up Insertion Algorithm for Red-Black Trees 

~ 
{a) 

~ 

(b) 

¥~ 
tfEJ=< . 

(c) 

(e) 

insert B 
~ 

insert B 
-:> 

> 

) 

~ 

- > 
Single right 
rotation 

- ,... 
Double right 
rotation 

~ move-up 

~ stop 

move-up 

~ a; 
~root stop 

stop 

stop 

Syrmetric variants are not shclwn. Case (b) is a ternrlnal if A is the root. 
X denotes the current no:le. 0 denotes the red ncdes. 
f:j. denotes a subtree ar null no:le. O denotes the black ncde. 

22 



23 

Figures Bd and Be take 0(1) rotations and terminate the 

insertion. We then conclude that the bottom-up insertion 

for red-black trees takes 0(1) rotations and 0(1) color 

changes in the amortized case (98). An example of bottom-up 

insertion for an red-black is shown in Figure 34 (in Appen

dix B). 

2.2.2 Bottom-Up Deletion Algorithm 

To delete an item, say X, first we perform binary 

search for X and test whether X has two nonnil children. If 

the test is true, swap X with its symmetric-order predeces

sor, say Y, and also exchange colors between X andY. Now X 

has at most one child. If X has one child (see Figure 9a), 

say Z, then X must be a black node and Z must be a red node. 

We swap X with Z and exchange color between X and Z. We 

then delete X and stop. On the other hand, if X has no 

child (see Figure 9b), we test whether X is a red node. If 

the test is true, we simply delete X and stop. If the test 

is false, we delete X and mark this null node "short". A 

"short" node is one from which paths down from it contain 

one fewer black node than paths down from its sibling. We 

~liminate the "short" (assume node X has a "short") by pro

ceeding with the followihg steps (algorithm RBD). 

1. Test whether X has a black parent and a black 

sibling with two black children. If the test is true~ we 

bubble the "short" up by one level, update colors, and 

repeat step (1) until it no longer applies. (see Figure 

lOb). If the test is false, go to step (2). 



(a) 

(b) 

Swap ard exchange color 
between X ard Y 

Swap ard exchange color 
between X and Y 

7" 

Swap ard exchange color 
between X and Y 

....._ 
,..-

Swap ard exchange color 
between X arrl Z 

~ 

Delete X 

Figure 9 Swapping Process in the Deletion of Red-Black Trees 

(stop) 

r-J ..,.. 



Bottom-Up Deletion 

(a) 
~ 
,>&. 

(b) 

(c) i.. 

(d) ~~f® 
~ E 

(e) 

(f) 

Figure 10 

Algorithm for Red-Black Trees 

delete A \- (move-up) 
X 

delete A > \ (stop) 

update colors (move-up) 

Single left (move-up) 
rotation t 

update colors > ~ (stop) 

@® 

Single left 
rotation 

Double left " 
rotation 

(stop) 

25 

Symmetric cases are not shown, case (b) is a terminal if B is the root, 

~ denotes the color can be either red or black. 
X denotes the current node, - denotes the "short". 



26 

2. Test whether the sibling of X is a red node. If the 

test 1s true, perform a single rotation and update colors 

(see Figure lOc). Go to step (3) regardless of the test 

result. 

3. Test whether the right child of X's right sibling 

(or symmetric variant) is a red node. If the test is true; 

perform a single rotation, update colors (see Figure lOe), 

and stop. If the test is false, go to step (4). 

4. Test whether the left child of X's right sibling 

(or symmetric variant) is a red node. If the test 1s true; 

perform a double rotation, update colors (see Figure lOf), 

and stop. If the test is false, perform color changes (see 

Figure lOd) and stop. 

In the deletion process the maximum number of rotations 

is two, that is, the worst case is a single rotation (Figure 

lOc) followed by another single rotation (Figure lOe) or 

double rotation (Figure lOf). We then conclude that the 

deletion can be done in 0(1) rotations and 0(1) color 

changes in the amortized case (98). An example of bottom-up 

deletion for a red-black tree is shown in Figure 35 (in 

Appendix B). 

2.3 Weight-Balanced Trees 

The concept of weight-balanced trees (also known as 

bounded-balance trees) was first introduced by Nievergelt 

and Reingold (68), instead of using the height of a tree 

node as a balance constraint in the AVL-tree. A weight bal

anced tree is restricted by the relative number of nodes in 



27 

left and right subtrees. Reingold and Hansen (83, pp. 311) 

gave the definition of weight-balanced trees (WB-trees) as 

follows. 

Let T be an extended binary tree such that T consists 

of either a single external node or a root node with two 

subtrees T! and Tr. The "balance factor", B(T) of a tree is 

then defined as 

B(T) = 
r 1/2, 

t ITli/ITI, 

if T is an external node, 

otherwise. 

Where !Tll denodes the total number of external nodes in T's 

left subtree and ITI denotes the total number of external 

nodes of T. A tree T is said to be of "weight-balance" of 

,~, or in the set of WB(~) for 0 <= ~ <= 1/2, if 

1. ~ <= B(T) <= 1-a. 

2. Both Tl and Tr are also in the set of WB(~). 

Figure 11 shows the examples of a WB(l/3) tree and a 

WB(l/4) tree. In order to compute the weight-balance factor 

«, we maintain in every node a SIZE and SUBT fields. The 

SIZE(T) is the total number of internal nodes in T (includes 

T itself), and the SUBT(T) is the total number of internal 

nodes in T's left subtree. The weight-balance factor of T 

is then computed by (SUBT(T)+1)/(SIZE(T)+1). 

2.3.1 Update Algorithms for Weight-Balanced Trees 

In most cases, the insertion and deletion of nodes in 

WB-trees are accomplished by a single top-down pass over the 

search path. However, in the case of redundant insertion or 



2S 

Figure ll 

Examples of A WB(l/3) Tree and A WB{l/4) Tree 

(a) WB(l/3)-tree 

(b) WB(l/4)-tree 



29 

deletion, a second top-down pass is required for correcting 

the SIZE and SUBT fields in every node along the access 

path. The update algorithm for weight-balanced trees pro

ceeds as follows. To update an item, either insertion or 

deletion, first we perform binary search for that item along 

the access path. As each node is visited, we update the 

SIZE and SUBT fields of that node and compute its weight

balance factor. If an imbalance occurs, we perform rota

tions to rebalance the tree. Figure 12 shows the type of 

rotations used to rebalance WB-trees, and the derivation of 

those formulas is shown in Reingold and Hansen (83, pp. 317) 

and Fisher (OSU notes). 

Let T be the current node, T, and Tr be the left and 

right subtrees of T. The type of rotation is determined 

according to the following cases (algorithm WBT). 

1. If IT~I/ITI <~and B(Tr) <= 1/(2-~), we perform a 

single left rotation as shown in Figure 12a. 

2. If ITii/ITI <~and B(Tr) > 1/(2-~), we perform a 

double left rotation as shown in Figure 12b. 

3. If IT:.I/ITI > (1-•. ./.) and B(T.~) >= (1-,· )/(2-,-~), we 

perform a single right rotation as shown in Figure 12c. 

4. If IT;: 1/ITI > (1-r--..) and B(T~) < (l-<)/(2- -'), we 

perform a double right rotation as shown in Figure 12d. 

The update algorithm takes O(log n) rebalances in the 

worst case. A second pass is needed for correcting the SIZE 

and SUBT fields of each node along the access path for a 

redundant update. 



(a) 

(b) 

(c) 

(d) 

30 

Figure 12 

Rotation Types in Weight-Balanced Trees 

Single left 
rotation 

Double left 
rotation 

Single right 
rotation 

Double right 
rotation 

( r..:'"' (lA/[(3,.+ {1-/l~ )prJ 
cas ,. {!JA + ( l-(JJ. )(3e 

[ 
!3-t 1 ""' f2A AfStd f1a(2c.0-(l.A)) 

(3 13 1 = ~A -t f3a fc ( l- (JA ) 

(!/ : (3e ('-(ls) /r -Pefe 

{
t3A: =- r>tt;{pA +Pe(I-(JA )) 

fSB :. ( f3A -t flc (1-(J,.)) ~c 

p./ ~ ( 1-f6) (1-(lp, )(!>c 

(!-~ • .)+(I-~) (I-(3A)fc 



31 

2.4 Brother Trees 

Brother trees and their variants have been studied for 

the past decade. For example~ the brother trees (also known 

as leaf-search trees) of Ottmann and Six (71), right brother 

trees of Ottmann, Six, and Wood (72), 1-2 brother trees of 

Ottmann and Wood (76), and 2-3 brother trees of Kriegel, 

Vaishnavi, and Wood (47). In this section, we choose the 

1-2 brother tree as a representative of brother trees not 

only because 1-2 brother trees are closely related to AVL

trees but also because the cost analysis of random 1-2 

brother trees is available in the literature. 

The properties of 1-2 brother trees are clearly defined 

by Ottmann and Stucky (75). A 1~2 brother tree is a tree in 

which every node has either one or two children and satis

fies 

1. All external nodes have the same depth. 

2. Every node with only one child has a brother with 

two children. 

3. The root always has two children. 

4. An internal node with two children has one key, and 

an internal node with only one child has no key. 

5. 1-2 brother trees are binary search trees. 

Figure 13 shows an example of a 1-2 brother tree. We 

can convert a 1-2 brother tree into an AVL tree by replacing 

each unary node (one which has only one child) with it's 

only child (see Figure 14). Conversely, we can also trans

form an AVL tree into a 1-2 brother tree by adding a new 



32 

Figure 13 A 1-2 Brother Tree 

Figure 14 

The Equivalent of A 1-2 Brother Tree and An AVL Tree 

-\ 



33 

node into nodes which have non-zero balance-tag. For exam-

ple~ if node X has a balance-tag of +1 , we then insert a 

unary node as X's left child. 

2.4.1 Bottom-Up Insertion Algorithm 

O~tmann and Wood (76) proposed bottom-up updating 

algorithms for 1-2 brother trees that work as follows. To 

insert a new item, first we perform a binary search for its 

proper site (an external node). If the parent of this 

external node is a unary node (which contains no key)~ we 

simply store the new item into the unary node, attach it 

with another external node to become a binary node (see Fig

ure 15a), and terminate the insertion. If the parent of 

this external node is a binary node (which contains one 

key), we create a node (say X) containing the new item (see 

Figure 15b) and then perform rotations or increase the tree 

height according to the following steps (algorithm Bl2I). 

1. Test whether the sibling of P(X) is a unary node. 

If the test is true~ we perform a single rotation if X and 

P(X) are both right or left children (Figure 15e) , or per

form a double rotation (Figure 15f) if X is a left child and 

P(X) is a right child (or vice versa), we then terminaie the 
-

insertion. If the test is false, go to step (2). 

2. Test whether P(X) is a binary node and P(P(X)) is a 

unary node or P(X) is a binary tree root. If the test is 

true; we perform a single rotation, increase the tree height 

by one if P(X) is the tree root, and terminate the insertion 

(Figure lSg). If the test is false, go to step (3). 



Figure 15 

Bottom-Up Insertion Algorithm for 1-2 Brother Trees 

(a) 

(b) 

(c) ® 
il 

(d) 

Insert A 

Insert A 

Single left 
rotation 

> 

Double left'> 
rotation 

SyniTetric variants are not shown. :(. denotes the current n<Xie. 

(stop) 

(IJX)ve-up) 

34 



(e) 

(f) 

(g) 

Figure 15 (Continued) 

Single left 
rotation 

Double left 
rotation 

Single left 
rotation 

35 

(stop) 



3. Now both P(X) and P(P(X)) are binary nodes. We 

then test whether X and P(X) are both right or left chil-

dren. If the test is true, we perform a single rotation 

36 

(see Figure 15c) and go to step (1). If the test is false, 

we perform a double rotation and go to step (1). 

The insertion algorithm Bl2I take O(log n) rebalances 

in the worst case. An example of bottom-up insertion into a 

1-2 brother tree is shown in Figure 37 (in Appendix B). 

2.4.2 Bottom-Up Deletion Algorithm 

To delete an item (say X), first we perform a binary 

search for X and test whether X has two binary children. If 

the test is true, we swap X with its symmetric-order pred

ecessor. Now X has at most one binary child. If X has one 

binary child (see Figure 16b), we delete X and produce a 

"short". A "short" node is a unary node which is produced 

due to deletion. If X has no binary child, then X must have 

two external node (see Figure 16a). We delete X and produce 

a "short". To eliminate the "short", we let the "short" be 

the current node X and proceed with the following steps 

(algorithm Bl2D). 

1. Test whether X has a binary brother. If the test 

is true, we terminate the deletion (see Figure 16c)." If the 

test is false, go to step (2). 

2. Test whether X has a unary brother. If the test is 

true, we move the shortness up by one level {see Figure 16d) 

and go to step {1). If the test is false, go to step (3). 



37 

Figure 16 

Bottom-Up Deletion Algorithm for 1-2 Brother Trees 

(a) 
Delete A 

-
(b) Delete A > 

(roove-up) 

(c) 
(stop) 

(d) (oove-up) 

Synm!tric variants are not shown. - denote the "short". 

Cases (b), (d), (f), and (g) are terminals if B is the new tree root. 



(e) 

(f) 

(g) 

Figure 16 (Continued) 

Single left 
rotation 

Ib.tble left 
rotation 

Single left 
rotation 

> 

38 

(nnve-up) 

(nnve-up) 



39 

3. Now P(X) is a unary node, we then test whether P(X) 

has a binary brother with two binary children. If the test 

is true, we perform a single rotation (see Figure 16g) and 

terminate the deletion. If the test is false, go to step 

( 4 ) . 

4. Test whether P(X) is a left child of P(P(X)) and 

S(X) has a unary left child. If the test is true; we per

form a single rotation (see Figure 16e), move the shortness 

up by one level, and go to step (1). If the test is false; 

we perform a double rotation (see Figure 16f), move the 

shortness up by one level, and go to step (1). 

The deletion algorithm Bl2D takes O(log n) rebalances 

in the worst case. An example of bottom-up deletion from a 

1-2 brother tree is shown in Figure 38 (in Appendix B). The 

insertion and deletion algorithms for 1-2 brother trees were 

implemented with PASCAL (73). 

2.5 Self-Adjusting Binary Trees 

The idea behind "self-adjusting" tree structure is: 

whenever an item has been successfully located, it is moved 

to the tree root. In ~his way we assume that frequently 

requested items remain fairly near the root, so that their 

access is relatively less expensive. 

Knuth (45) analyzed the related problems of.self organ

izing sequential searching, and Allen and Munro (4) studied 

the similarities and differences between the sequential 

search and binary search tree models. They proposed a "sim

ple exchange" method to move the requested item to the 



tree root. This method suffers long access sequence such 

that the time per access is O(n) for a tree with n nodes. 

40 

Recently, Sleator and Tarjan (92) proposed a new res

tructuring algorithm, called "splaying", which does rota

tions along the search path and moves the requested item 

bottom-up to the tree root. The beauty of this "splaying" 

is that it does the rotation in pairs and roughly halves the 

depth of every node along the access path (whenever a double 

rotation occurs, the height is reduced by one). Figure 17 

shows the examples of this halving effect. To splay a tree 

at node X, first we search for X and then trace back from X 

to the tree root along the access path and proceed with the 

following steps (algorithm SPLAY). 

1. Test whether X is the tree root. If the test is 

true, terminate the splay operation. If the test is false, 

go to step (2). 

2. Test whether P(X) is the tree root. If the test is 

true, perform a single rotation (see Figure 18a) and termi

nate the operation. If the test is false, go to step (3). 

3. Test whether P(X) and X are both left or both right 

children. If the test is true, perform two single rotations 

at the same time (see Figure 18b) and go to step (1). If the 

test is false (in this case X is a left child of P(X) and 

P(X) is a right child of P(P(X)), or vice versa), perform a 

double r6tation (see Figure 18c) and go to step (1). 

Splaying at node X of depth (d) takes O(d) time, that 

is, time is proportional to the time to access at X. In the 

case of insertion and deletion (successful updating is 



41 

Figure 17 

The Halving Effect of Splaying A Node in Binary Trees 

Splaying at node H 

(a) All Zig-Zig splaying steps 

(b) All Zag-Zag Splaying steps 

~ denotes a subtree or a null node 



Figure 18 

Bottom-Up Splaying Algorithm 

root 

Splaying at node X 

single right ., 

(a) Zig 

~ single right 

(b) Zig-Zig 

double right 

> 

(c) Zig-Zag 

Cases (b) and (c) are terminals when X is the root 

~ denotes a subtree or a null node 

42 

(stop) 



43 

assumed), Sleator and Tarjan (92) proposed: for insertion, 

simply splay at the inserted item~ for deletion, we splay 

the parent of the deleted node. On the other hand, if the 

operation is unsuccessful (redundant), we splay at the last 

nonnull node reached during the search and return a null 

pointer. An example of splaying operation is shown in Fig

ure 39 (in Appendix I). 

2.6 B-Trees 

Bayer and McCreight (10) first introduced the B-tree 

data structure to organize and maintain large ordered 

indexes. Corner (22) gave extensive studies on the updating 

algorithm, cost of operations, multiuser environment, and 

applications for B-trees and their variants. 

A B-tree of order rn has the following properties: 

1. All external nodes have the same depth. 

2. Every internal node has at most rn children. 

3. Every internal node, except for the root, has at 

least frn/21 children. 

4. An internal node with k children contains k-1 keys. 

5. The root, except for a unary tree, has at least two 

children. 

Figure 19 shows the examples of a 2-3 tree and a B-tree 

of order 5. The updating algorithms were well described in 

the survey paper of Corner and are not discussed here. This 

section concentrates on the B+-tree data structure, one of 

the B-tree's variant, because B+-trees are suitable to con

current data processing. Corner summarized the properties 



A 

0 

5 :8 

rna ~ ? C) 

K.l& 

(a) A 2-3 Trees 

13 17 

IO II )2 

'* 
JS I ( 37 Jg ~I l/2 '1'1 '15 

(b) A B-Trees of Order 5 

Figure 19 Examples of A 2-3 Tree and A B-Tree of Order 5 

41 .)0 ;' 
5) !ill 55 

.c:

.c:-



of B+-trees as follows. 

1. All items (which contain key and data) are stored 

in the external nodes. 

2. The internal nodes consist only of the index (no 

data), a road map to enable correct and fast access. 

3. All external nodes are linked together, left to 

right, to provide easy sequential access. 

4. During the deletion of a B+-tree, the internal 

index need not be changed as long as the external node 

remains at least half full. 

45 

Figure 20 shows an example of a B+-tree. The B+-tree 

data structure has advantages of supporting the same low 

operation cost, O(log~n), as in the ordinary B-tree, and yet 

providing fast and easy sequential access, O(n) for a B+ 

tree and O(nlog~n) for a B-tree. 

2.7 Multidimensional Binary Search Trees 

The search tree structures we have been discussing were 

limited to items which have only one key to identify them

selves during the search operation. However in the large 

database environment, items are most likely associated with 

multiple keys. The multidimensional binary search tree (so 

called the K-d tree, where K is the dimension of associated 

keys) was first introduced by Bentley (13) as a data struc

ture for storing multikey items. 

The definitions and notations of a K-d tree are 

described as follows (homogeneous data structure is 

assumed). 



Sequential access 

Figure 20 An Example of A B+-Tree 

Index level 

""' ~ 



47 

1. Every internal node contains k keys, and a discrim

inator, which is an integer between 0 and k-1. 

2. All internal nodes on any given level have the same 

discriminator. 

3. The root has discriminator 0, its two children have 

discriminator 1, and so on to the k-th level in which the 

discriminator is k-1: the (k+l)-th level has discriminator 

0, and the cycle repeats. Generally, an ith level has a 

discriminator of (i-1) mod k. 

Before discussing the binary search in a K-d tree, we 

need to define some notations. The K(P), •.. ,K (P) denote 

the k keys in node P, L(P) denotes the left child of P, R(P) 

denotes the right child of P, and DISC(P) denotes the dis

criminator of P. The symmetric order imposed by a K-d tree 

is: if P is an internal node and DISC(P) is j: then for any 

node Q in the left subtree of P, it is true that K(Q) <= 

K(P); likewise, for any node R in the right subtree of P, it 

is also true that K(R) > K(P). (The equality of keys is 

possible in a K-d tree.) The "search" operation in a K-d 

tree refers to the ability to access any item in the tree by 

traversing down from the root, branching left if the j-th 

key of the accessed item is less than or equal to the j-th 

key of the current node, branching right if the j-th key of 

the accessed item is greater than the j-th key of the cur

rent node, or terminating the operation when every key in 

the accessed item is equal to the corresponding key in the 

current node. 

Figure 21 shows an example of a K-d tree with K=3. 



Insertion sequence: (F,SO,g), (D,20,e), (C,30,d), (G,90,d), (J,80,k), (A,lO,a), 
(K,20,b), (M,lO,h), (B,20,b), (E,30,d), (I,99,i). 

A ~ (2of ~ 
> 

Bl2olh E f3o I a K l2ol.b 

I fti91 _{ 

~igure 21 An Example of A K-d Tree with K=3 

Discriminator 

J 
Upper case 

~ral 

Inwer case 

Upper case 

Nuneral 

~ 
m 



CHAPTER III 

TOP-DOWN UPDATING AND CONCURRENT OPERATIONS 

Recent advances in computer technology make the concur

rent data processing in large database systems become prac

tical (11,23,25,26,51,58,59,65). The idea of concurrent 

operation is that of allowing a maximum number of processes 

to operate on the tree without interfering with each other 

since it is unnatural and inefficient to restrict large 

database systems to sequential operation. 

Guibas and Sedgewick (36) pointed out that the exis

tence of purely top-down updating algorithms for balanced 

search trees is very important because a simple locking pro

tocol can be used to enhance the concurrency. However, most 

updating algorithms for balanced search trees are bottom-up. 

Recently, Ottmann and et al. (74) proposed a purely top-down 

updating algorithm for stratified search trees and Tarjan 

(100) proposed updating algorithms for red black trees. 

The advantages of a top-down update method are (1) it 

eliminates parent· pointers (or a stack to hold the entire 

search path), and (2) it makes concurrent tree operation 

more efficient since one update operation need only lock a 

fixed number of tree nodes rather than lock the entire 

access path as in the bottom-up method. 

49 



50 

In the bottom-up updating, the arrangement of data is 

to store items (including key and data) in internal nodes, 

and external nodes are, essentially, null nodes (so called 

the homogeneous tree structure). With this arrangement, 

top-down insertion is not affected. However, top-down dele

tion becomes more difficult because we have to swap the 

internal node which is to be deleted and has two internal 

children, with its predecessor as we did previously in the 

bottom-up deletion. Thus, we need either extra pointers or 

a stack for a second pass along the access path. This pro

duces problems when concurrent operations are allowed. For

tunately we can make another arrangement; that is to store 

items in external nodes and keys in internal nodes (the so 

called nonhomogeneous tree structure). An internal- node 

acts as an index. Whenever a deletion is required, only the 

external node which contains that data item is deleted and 

the key in the internal node remains unchanged. This elimi

nates the swapping process and makes concurrent tree opera

tion easier. 

3.1 Top-Down Updating for HB(k)-Trees 

In this section, we propose new top-down updating 

algorithms for HB(k) trees that make the concurrent opera

tions become possible. Figure 22 shows the updating of a 

nonhomogeneous tree structure for HB(k) trees. The rule for 

top-down insertion into HB(k) trees is to maintain a current 

node which can absorb the "long" without increasing its 

height. For example, if node Y has a balance-tag satisfying 



51 

Figure 22 

Updating A Nonhomogeneous Tree Structure of HB(k) Trees 

insert A or C 

(a) Insertion 

0 

IA{1il delete A or B ) 

delete C > 

delete B 

delete C 

(b) Deletion 

+ denotes the "long" 
- denotes the "short" 

(rrove-up) 

- -~ or [A] (rrove-up) 

0 

lA~ (rrove-up) 

(rrove-up) 

(rrove-up) 



52 

k >= tag(Y) > 0 and L(Y) is the next node to be visited (see 

Figure 23b), then Y can be selected as a current node 

because Y is right taller; an increase of the height of Y's 

left subtree does not increase the height of Y (only the 

balance-tag is changed). Initially, we let the root node be 

the current node X. We then traverse down along the search 

path and take actions with respect to the following cases 

(algorithm HBTI). 

1. When an external node is reached, proceed with the 

same steps as in the bottom-up insertion (algorithm HBI). 

(The rebalancing terminates when the current node X is 

reached bottom-up.} 

0 > 'd ~-~-

(a) (b) 

~ denotes the balance-tag of Y. 
~ denotes the access path. 

Figure 23 

(c) 

Current Node Selection in the Top-Down 
Insertion of HB(k) Trees 



53 

2. When a node, say Y, which has a balance-tag satis

fying 0 > tag(Y) >= -k and R(Y) is the next node to be vis

ited (see Figure 23a) is encountered, we let Y be the new 

current node X and continue traversing down along the access 

path. (Symmetric variant is shown in Figure 23b.) 

3. When a node, say Y, which has a balance-tag of 

ltag(Y)I = k (see Figure 23c) is encountered, we let Y be 

the new current node X and continue traversing down along 

the access path. 

4. When several successive nodes which cannot be 

selected as a current node and the balance-tags of those 

nodes satisfy one of the cases in Figure 24 are encountered, 

we prebalance the tree, update balance-tags, select a new 

current node, and continue traversing down along the access 

path. 

Case 4 takes two rotations for prebalancing a tree, 

however, it unlocks many nodes which can be updated by other 

users in the concurrent environment. We then conclude that 

the top-down insertion takes 0(1) rotations in the amortized 

case. An example of top-down insertion for an AVL,-tree is 

shown in Figure 41 and other examples of top-down insertion 

for an HB(k) tree are shown in Figure 42 (in Appendix B). 



54 

Figure 24 

Prebalancing in the Top-Down Insertion of HB(k) Trees 

(a) Single right rotation 

one 

----4~~ denotes the access path1 " denotes the current node, 
k,m,s,t denote balance-tags. 

Balance-tags satisfy: 

1. 0 > tag(S) > -k. 

2. 0 > tag(M) > -k. 

3. 0 ~ tag(T) > -k & L(T) is the next 
ncxie to be visited. · 

or 
k '> tag(T) 2: 0 & R(T) is the next 

ncxie to be visited. 

4. tag(Q) = 2-k & tag(R) = O, 
or 

tag(Q) = k-2 & tag(P) = 0. 

Balance-tags update: 

1. tag(S), -s 4- m+-1-s. 

2. tag(M), ~~max(~, 1-s). 

3. tag(T), t ~ t+1, if R(T) is the next 
node to be visited. 

or 
tag(T), t ~ t-1, if L(T) is the next 

node to be visited. 

4. tag(Q), 2-k~ 1-k, 
tag(R), 0 --+ -k & R is the new 

current node. 
or 

tag(Q), k-2 ~ k-1, 
tag(P), 0 ~k & Pis the new 

current ncxie. 



55 

Figure 24 (Continued) 

0 
t 

Single right 
rotation 

l 

(b) Single right rotation 

t 
level increased 
by one 

• • denotes the access path, X denotes the current node, 
k,m,s,t denote balance-tags. 

Balance-tags satisfy: 

1. k ) tag(S) > 0. 

2. k > tag(M) > 0. 

3. 0 ~ tag(T) > -k & L(T) is the 
next node to be visited. 

or . 
k > tag(T) ~ 0 & R(T) is the 

next node to be visited. 

4. tag(Q) = 2-k & tag(R) = O, 
or 

tag(Q) = k-2 & tag(P) = 0. 

Balance-tags update: 

1. tag(S), 

2. tag(M), 

3. tag(T), 

or 

s~s-m-1. 

m ~ -rnax(-m,l-s). 

t ~ t+l, if R(T) is the next 
node to be visited. 

tag(T), t~ t-1, if L(T) is the next 
node to be visited. 

4. tag(Q), 2-k -7' 1-k, 
tag(R), 0 -to -k, & R is the new 

current node. 
or 

tag(Q), k-2~k-l, 
tag(P), 0 -t k, & P is the new 

current node. 



Figure 24 (Continued) 

xQ 
'-s r 

I«thle right 
rotation 

t 

0 

(c) Double right rotation 

f 
Level 

increased 
by one 

} 

• at denotes the access path, X dencxies the current ncx:Ie, 
g,s,m,t,k denote balance-tags. 

Balance-tags satisfy: 

1. 0 > tag(S) > -k. 

2. k )tag(M) > 0. 

3. k > tag(G) > -k. 

4. 0 ~ tag(T) > -k & L(T) is the 

neld: node to be visited. 
or 

k > tag(T) ~ 0 & R(T) is the 
neld: ncx:le to be visited. 

5. tag(Q) = 2-k & tag(R) = O, 

tag(Q) = k-2 & tag(P) = 0. 

Balance-tags update: 

1. tag(S), 
2. tag(M), 
3. tag(G), 

4. tag(T), 

or 

s ~ 1-g-s-max(g,-1). 
m ~ IlH!laX(O, g+1). 

{ g-1-max(l-m,-g) if g ~ o, l 
g --1-max(g,2-s) if g < 0.) 
t~ t+l, if R(T) is the next 

node to be visited. 

tag(T), t -"" t-1, if L(T) is the next 
node to be visited. 

5. tag(Q)' 2-k--"' 1-k, 
tag(R), Q_.;. -k, & R is the new 

current node. 
or 

tag(Q), k-2-'Tk-1, 
tag(P), 0 ~k, & P is the new 

current node. 

56 



57 

Figure 24 (Continued) 

0 
• 

t 
fu.tble left 
rotation 

,• (d) Ibuble left rotatioo 

t 
Level 

increased 
by one 

* 
--..... denotes the access path, :(denotes the current ncde, 
g,s,m,t,k denote balance-tags. 

Balance-tags satisfy: 

1. k > tag(S) > O. 

2. 0 > tag(M) > -k. 

3. k > tag(G) :> -k. 

4. 0 ~ tag(T) > -k & L(T) is the 
next node to be visited. 

or 
k > tag(T) ~ 0 & R(T) is the 

next node to be visited. 

5. tag(Q) = 2-k & tag(R) = O, 
or 

tag(Q) = k-2 & tag(P) = 0. 

Balance-tags update: 

1. tag(S), 
2. tag(M), 
3. tag(G), 

4. tag(T), 

or 

s -?s-1-mx:(O,gtl). 
-m ~g-m-max(g,-1). 

g ~ l-mx:(-g,2-s) if g ~ 0, 
g -7 -1-mx:(g,l-m) if g < o. 
t -i' t+l, if R(T) is the next 

node to be visited. 

tag(T), t '""7 t-1, if L(T) is the next 
node to be visited. 

5. tag(Q)' 2-k ....:0,1-k, 
tag(R), 0 _,. -k, & R is the new 

current node. 
or 

tag(Q), k-2 ~ k-1, 
tag(P), 0 _, k, & P is the neH 

current node. 



58 

The rule for top-down deletion from HB(k)-trees is to 

maintain a current node which can absorb the "short" without 

decreasing its height. For example, if node Y has a bal

ance-tag satisfying k > tag(Y) >= 0 and L(Y) is the next 

node to be visited (see Figure 25b), then Y can be selected 

as a current node ·because Y is right heavier; a decrease of 

the height of Y's left subtree does not decrease the height 

of Y (only the balance-tag is changed). Initially, we let 

the root be the current node X. We then traverse down along 

the search path and take actions with respect to the follow

ing cases (algorithm HBTD). 

1. When an external node is reached, proceed with the 

same steps as in the modified bottom-up insertion (algorithm 

HBMD). (The rebalancing terminates when the current node X 

is reached bottom-up.) 

2. When a node, say Y, which has a balance-tag satis

fying 0 >= tag(Y) > -k and R(Y) is the next node to be vis

ited (see Figure 25a) is encountered, we let Y be the new 

current node X and continue traversing down along the access 

path. (Symmetric variant is shown in Figure 25b.) 

3. When a node, say Y, which has a balance-tag satis

fying tag(Y) = k and R(Y) has a balance-tag of 0 >= 

tag(R(Y)) > -k and L(Y) is the next node to be visited (see 

Figure 25c) is encountered, we let Y be the new current 

node X and continue traversing down along the access path. 

(Symmetric variant is shown in Figure 25d.) 

4. When several successive nodes are encountered which 

cannot be selected as a current node and the balance-tags of 



59 

those nodes satisfy one of the cases in Figures 26. we pre-

balance the tree, update balance-tags, select a new current 

node, and continue traversing down along the access path. 

(a) (b) 

(c) (d) 

~, ~ denote the balance-tag of Y, T. 

--)~ denotes the access path 

Figure 25 

Current Node Selection in the Top-Down 
Deletion of HB(k) Trees 



60 

Figure 26 

Prebalanc ing in· the Top-Down De let ion of HB ( k) Trees 

~Q 
• s 

(a) S:ingl.e right rotation 

deootes the access path, 
p,q,r,s,m,t denote balance-tags. 

Balance-tags satisfy: 

1. k > tag(S) > 0. 
2. k > tag(M) ::> 0. & 

k > (tag(S)+tag(M)) > 0. 
3. 0 ~ tag(T) > -k & L(T) is the 

next node to be visited. 
or 

k > tag(T) ~ 0 & R(T) is the 
next ncxie to be visited. 

4. -2 ~ tag(Q) ;> -k & 
-1 ~tag(P) > -k & either tag(Q) = -2 

or tag(P) = -1. 
or 

k>tag(Q) ~ 2 & k > tag(R);:;:. 1 & 
either tag(Q) = 2 or tag(R) =.1. 

fZ -1-lll ... x(I-L-r)f 

12vel 
decreased 

eyone 
v 

denotes the current node, 

Balance-tags update: 

1. tag(S), 
2. tag(M), 
3. tag(T), 

or 

+s-t +s. 
-tm~ +l+s-tm. 

t __,. t-1, i£ R(T) is the next 
node to be visited. 

tag(T), t~ t+l, i£ L(T) is the next 

ncxie to be visited. 
4. {tag(Q), -q~ JJBX(l-q,-p)+l. 

tag(P), -p~p+l-q. 
P is the new current node. 

or ltag(Q), q ~q-r-1. 
· tag(R), r__,..-1-max(l-q,-r). 
.R is the new current node. 



Figure 26 (Continued) 

(b) single left -rotation 

level 
decreased 

by ate 

} 

0 

---~ .. ~ derotes the access path, X denotes the current node, 

p,q,r,m,s,t, denote balance-tags. 

Balance-tags satisfy: II Balance-tags update: 

!I 
2. 0 > tag(M) > -k & i 2. tag(M), -m ~ -1-m-s. 

61 

1. 0 > tag(S) > -k. :I 1. tag(S), -s _., -s. 

0 :> (tag(S)+tag(M)) > -k. ii 3. tag(T), · t -+ t-1, if R(T) is the nelCt 
:j 

3. 0 ~ tag(T) > -k & L(T) is the , node to be visited. 
i 

next node to be visited. 1 

or ! 
k > tag(T) ~ 0 & R(T) is the ! 

next node to be visited. IJ: 

4. -2 ~ tag(Q) > -k & i i 
-1~tag(P)> -k & either tag(Q) = -2 ij' 

or tag(P) = -1. 1 

or li 
k > tag(Q) >- 2 & k > tag(R) ~. 1 & I 
either tag(Q) = 2 or tag(R) = 1. I 

or 
tag(T), t ~ t+l, if L(T) is the next 

node to be visited. 
4. tag(Q), -q ~rnax(1-q,-p)+1, 

tag(P), -p ~ p+1-q, 
P is the new current node. 

or 
tag(Q), q ~ q-r-1, 
tag(R), r~-1-max(1-q,-r), 

R is the new current node. 



62 

Case 4 takes two rotations for prebalancing a tree; 

however, it unlocks many nodes which can be updated by other 

users in the concurrent environment. We then conclude that 

the top-down deletion takes 0(1) rotations in the amortized 

case. An example of top-down deletion for an AVL-tree is 

shown in Figure 43 and other examples of top-down deletion 

for an HB(k)-tree are shown in Figure 44 (in Appendix B). 

3.2. Top-Down Updating for Red-Black Trees 

Guibas and Sedgewick (36) have proposed O(log n) rota

tions of top-down update algorithm for red-black trees. 

Tarjan (100) modified his own bottom-up update algorithms 

into virtual top-down update algorithms that require only 

0(1) rotations and 0(1) color changes in the amortized case. 

Figure 27 shows the updating of nonhomogeneous tree 

structure for red-black trees. The rule of top-down inser

tion for red-black trees is to maintain a black current 

node, say X, which can remove the red constraint violation. 

For example, a node has at least one black child can be 

selected as a current node (review Figure 8). Initially, we 

let the root node be the current node X and color it black 

if it is red and color both its children black if both are 

red. This step does not violate any constraint. We then 

traverse from the current node X down along the sea~ch path 

and take actions with respect to the following cases (algor

ithm RBTI). 

1. When an external node is reached, proceed with the 

same steps as in the bottom-up ~tion (algorithm RBI). 

l~>ex11~ 



63 

Figure 27 

Updating a Nonhomogeneous Tree Structure of 
Red-Black Trees 

insert A or C 

(a) Insertion 

delete A or B 

delete C 

delete B 

delete A 

(b) Deletion 

0 denotes a black node 

0 denotes a red node - denotes a "short) 

-lit or 
-

~(move-up) 

(stop) 

Ira (stop) 

(stop) 



(The rebalancing terminates when current node X is reached 

bottom-up.) 

64 

2. When a black node, say Y, with at least one black 

child is encountered, we let node Y be the new current node 

X and continue traversing down along the access path. 

When a black node, say Y, with two red children and 

arent is encountered, we let node Y be the new cur

rent node and continue traversing down along the access 

path. 

3. When four successive black nodes, each of which has 

two red children, are encountered along the access path, we 

perform color changes (see Figure 28). If this violates the 

red constraint (see Figure 28a), proceed with the same steps 

as in the bottom-up insertion (algorithm RBI) until node X 

is reached. We then let the child (along access path) of Z 

be the new current node X and continue traversing down along 

the access path. 

A disadvantage of this top-down insertion (algorithm 

RBTI) is that it may require several rotations rather than 

one rotation as in the bottom-up insertion (algorithm RBI); 

however, it still takes 0(1) rotations and color changes in 

the amortized case (100). An example of top-down insertion 

for a red-black tree is shown in Figure 45 (in Appendix B). 

The rule of top-down deletion for red-black trees is to 

maintain a current node which can absorb the "short" without 

violating the black constraint. Initially, we let the root 

node be the current node X and color X red if X has two 

black children. This· step does not violate any constraint. 



X is the current 0 
node - .-' 

update colors 

(a) Bottan-up rebalancing above Y is ·required 

· Y is a black node 

update colors 

(b) bottan-up rebalancing is not needed 

--7 

7 

~" 

select either L(Z) or R(Z) as 
a new current node 

0 

select either L(Z) or R(Z) as 
a new current node 

Figure 28 Current Node Selection in the Top-Down Insertion of Red-Black ~rees 0\ 
01 



We then traverse from the current node X down along the 

access path and take actions with respect to the following 

cases (algorithm RBTD). 

66 

1. When an external node is encountered, proceed with 

the same steps as in the bottom-up deletion (algorithm RBD). 

(The rebalancing terminates when current node X is reached 

bottom-up.) 

2.~ When a node, say Y, that.is red or has a red child 

or grandchild is encountered, we let node Y be the new cur

rent node X and continue traversing down along the access 

path. 

3. When three successive black nodes, each having all 

black children and grandchildren are encountered along the 

access path, we perform color changes (see Figure 29) and 

produce a "short" at node Y. We then follow the same method 

as in bottom-up deletion (algorithm RBD) to eliminate the 

"short". ( The rebalancing terminates when node X is reached 

bottom-up.) We then let node Z be the new current node X 

and continue traversing down along the access path. 

An example of top-down deletion for a red-black tree is 

shown in Figure 46 (in Appendix B). 

3.3 Top-Down Updating for WB-Trees 

In this section we propose a new top-down updating 

algorithm which is conceptually easy and has little computa

tion overhead. The method is described as follows. In 

order to compute the weight-balance factor, we assign a RANK 

field to each internal node. The RANK(T) of node T is the 



At least ooe red node cuoong these four 

nodes because X is the current node. Perform bottamrup deletion 

,~..... J 
I ' \ (x} ', 

' ·' \ 
\ 

\ 

/"" ) ,"" ' 
/ ' / X ' 

/- \ 
I \ 

\ ~ \ 
\ \ 

l 
\\...,.../ '-./ J 

' .. --- update colors 

\ ,, 
...-::--- -~ ---

Z is the new current node 

Figure 29 

Current Node Selection in the Top-Down 
Deletion of Red-Black Trees 

(/ 
: 

_/-, 

0\ ..... 



68 

total number of external nodes in T's left subtree. A tree 

header H which regards tree T as its left subtree also has a 

RANK field and points to the tree root. To update an item 

(either insertion or deletion), initially we update (add one 

to the RANK field if it is an insertion, subtract one from 

the RANK field if it is a deletion) the RANK(H) of tree 

header, and let the tree root be the current node T and Nt 

be the RANK(H). We then traverse down along the access path 

and proceed with the following steps (algorithm WBMT). 

1. Test whether T is an external node. If the test is 

true; we replace T with a new node X containing the new 

item, set RANK{X) to 1, and stop. If the test is false; we 

compute the weight-balance factor at T, (where B(T) = 

RANK(T)/Nt) and go to step (2). 

2. Test whether (1-~) >= B(T) >= ~holds. If it is 

true we update the RANK field, select the child of T along 

the access path as a new current node, and go to step (1). 

If the test is false (violation occurs), go to step (3). 

3. Test whether B(T) > (1-~) holds. If the test is 

true; we perform a single right rotation (see Figure 30a) if 

B(Tt) >= (1-~)/(2-~) or a double right rotation (see Figure 

30b) if B(T!) < (1-ct)/(2-~), update RANK fields, select a 

new current node, and go to step (1). If the test is false, 

go to step (4). 

4. Now B(T) < ~ holds. We perform a single left rota

tion (see Figure 30c) if B(Tr) <= 1/(2-~) or a double left 

rotation (see Figure 30d) if B(Tr) > 1/(2-·-'), update RANK 

fields, select a new current node, and go to step (1). 



Figure 30 

Modified Top-Down Update Algorithm for 

(a) 

(b) 

Single right rotation 

d/Nd > (1-40(.) 

b/d ~ (1-~)/(2-~) 

Path (1): .1. update d and b, 2. compute b/d, 
3.A is the new current node, 
~ Na=b. 

Path (2): 1.update d, 2.compute b/d, 
3.C is tne new current node, 
4. Nc=d-b. 

Double right rotation 

d/Nd > (1-.c) 

b/d < (1-111.)/(2-P<) 

Path (1): 1. update d and b, 2 •. compute b/d, 
3.A is the current node, 
4o Na=b. 

Path (2): 1. updated and c, 2.compute b/d, 
~X is the current node, 
4. Nx=c. 

Path (3): 1. updated, 2.compute b/d, 
~ Y is the current node, 
4. Ny=d-b-c. 

69 



(c) 

(d) 

Path (1): 

Path (2): 

Figure 30 (Continued) 

Single left rotation 

b/Nb < "' 
d/(Nb-b) ~ 1/(2-d.) 

1.compute d/(Nb-b), 
t.E is the new current node, 
3. Ne=Nb-(b+d). 

1.update d, ~compute d/(Nb-b), 
~ C is the new current node, 
lN.Nc=d. 

Double left rotation 

b/Nb < J.. 

d/(Nb-b) > 1/(2-«.) 

~+c. 

Path (1): 1.compute d/(Nb-b), 
·2 E is the new current node, 
3: Nb=Nb-(b+d). 

Path (2): ~updated, 2.compute d/(Nb-b), 
3. Y is the new current node, 
4. Ny=d-c. 

Path (3): l.update d and c, 2.compute d/(Nb-b), 
).X is the new current node, 
4.Nx=c. 

a,b,c,d,e,x,y. denote the RANK of node A,B,C,D,E,X,Y. 
Na,Nb,Nc,Nd,Ne,Nx,Ny, denote the total external node 

of node A,B,C,D,E,X,Y. 
A,C,E,X,Y can be null nodes. 

70 



71 

This updating algorithm of WB-trees takes O(log n) 

rotations and RANK field updates 1n the worst case. In the 

event of redundant insertion, a second top-down pass lS 

required to correct the RANK field in every node along the 

access path: again, an O(log n) time is needed. However, 

this method has the advantages of (1) reducing the burden of 

computation overhead, (2) saving space by using only one 

field instead of two fields (one for jT;j and another for 

jTj), and (3) providing efficient "index position search." 

The index position search is described as follows: If the 

m-th element of a tree (which has n nodes and n >= m) is to 

be retrieved, first we let the COUNT be 0 and let the root 

be the current node T. We then traverse down along the 

access path, branching left if (RANK{T) + COUNT) > m, 

branching to right and updating (by adding RANK(T) to COUNT) 

if m > (RANK(T) +COUNT), or terminating if m = (RANK(T) + 

COUNT). An Example of index position search is shown in 

Figure 47 (in Appendix B). 

3.4 Top-Down Updating for Splay Trees 

Sleator and Tarjan (92) proposed a top-down version of 

splaying which works as follows. During the splaying, the 

tree is broken into three parts: a left tree, a middle tree, 

and a right tree. The middle tree contains the subtrees of 

the current node which is on the access path. The left and 

right trees consist of all the items in the original tree so 

far known to be less than the access item (say X) and 

greater than X, respectively. Initially, the current node 



72 

is the tree root and the left and right trees are empty. We 

then search for X from the root down along the access path, 

two nodes at a time, breaking links and adding subtrees 

either to the left tree or to the right tree until X is 

reached. Finally we assemble the left tree, middle tree, 

and right tree into one tree and terminate t_he splaying 

operation. This algorithm has a disadvantage of requiring 

lots of split and join operations which may produce problems 

when concurrent operation is allowed. 

On the other hand, Stephenson (95) proposed a similar 

top-down insertion algorithm which does not require any 

split or join operation. This algorifbm also suffers poor 

updating efficiency because it visits one node at a time and 

does not perform rotations while traversing down along the 

access path. 

To retain the merits of the above two algorithms, we 

proposed a new top-down splaying algorithm which has advan

tages such as (1) it visits two nodes at a time, (2) it per

forms rotations to reduce the height of each node along the 

access path, and {3) it eliminates the split and join opera

tions to allow easy concurrent operations. The algorithm 

proceeds as follows. To splay an item (say X), first we let 

X be the "left current node, LC", "rig'ht current node, RC", 

and the new tree root. We then traverse down along the 

access path, visit two nodes at a time, and perform restruc

turing according to the following cases {algorithm SPLAYMT). 

l. If the first node (visit two nodes at a time) is 

the access item X; we store the associated data of X in the 



73 

tree root, delete X, update LC and RC, and stop (see Figure 

3la). 

2. If the second node is the access item X; we store 

the associated data of X in the tree root, delete X, update 

LC and RC, and stop (see Figure 3lb). 

3. If there is a "right-right" access path (see Figure 

3lc); we perform a single rotation, update LC and RC, and 

continue traversing down along the access path. 

4. If there is a "right-left" access path (see Figure 

3ld), we update LC and RC and continue traversing down along 

the access path. 

5. If'there is a "left-right" access path (see Figure 

3le), we update LC and RC and continue traversing down along 

the access path. 

6. If there is a "left-left" access path (see Figure 

3lf); we perform a single rotation, update LC and RC, and 

continue traversing down along the access path. 

An example of this new top-down splaying operations is 

shown in Figure 48 (in Appendix B). 



(a) 

(b) 

Figure 31 Top-Down Splaying Algorithm 

® ,.··ti·. B c. @c &. L.~ ~ 3 

Remove B > 

Left 

Right-right 

® , ' . \ 0 b, (stop) 

£.1 

.® 

1£ 
. 
• 
' Rstop) 

_..,. denotes the access path. Symnetric variants are not sham. 

1- C denotes the left current node, jllC. denotes the right current n<Xle. 

74 



(d) 

(e) 

(f) 

Figure 31 (Continued) 

® 
; 
, ', 

Right-left 

.®. , ' 

Left-left 
>~··' ', 

1.'-

1 

@ , . 
I • ,. ' 

Left-right)>-

75 



CHAPTER IV 

AMORTIZED ANALYSIS AND PERFORMANCE 

EVALUATIONS 

Common methods for the evaluation of the performance of 

search tree data structures include the worst-case analysis 

{45,52) and the average-case analysis {108,109). In the 

worst-case analysis, we sum the worst-case times of the 

individual operations which gives rise to a pessimistic 

evaluation for the structure. In typical search tree data 

structure applications, a sequence of operations is per

formed rather than a single operation; consequently, we are 

concerned with the total running time for that sequence of 

operations, not the individual running time of a single 

operation. The average-case analysis for a sequence of 

operations may be inaccurate because ihe probabilistic 

assumptions used to carry out the analysis may be incorrect. 

Amortized analysis, a newly developed technique, has 

proven to be a realistic and robust method in complexity 
-

analysis of a variety of data structures. Tarjan (101) 

defined "amortization" as the average of total running times 

of operations in a sequence over the total number of opera

tions. Tarjan also used two physical views to explain the 

concept of amortization. The first is the "bank's view" of 

76 



77 

amortization: assume that we have an account in a bank. 

Each time we perform rotations after an update operation, we 

deposit some credits (the amount depends on the type of 

rotation performed) into the account; each time we complete 

an update operation without rebalancing, we withdraw some 

credits from the account. After a sequence of update opera

tions is completed, an account balance is available from 

which the upper and lower bounds of performance of that data 

structure can be obtained. The second view is the "physi

cist view" of amortization: assume that we have a pump which 

can pump water from a lower level water tank into a higher 

level water tank (i.e., transform electrical energy into 

potential energy), and we also have a generator which can 

produce electricity by allowing water to flow from a higher 

level water tank to a lower level water tank (i.e., trans

form potential energy into electrical energy). Here the 

potential energy may be increased or decreased after an 

operation. 

Tarjan defined a potential function ~ that maps any 

configuration D of the data structure onto a real number 

I<D) called the potential of D. "Ti" is defined as the 

actual time of the i-th operation, ~i and ~i·! are the 

potentials of the data structure after and before the i-th 

operation, respectively, and the amortized time Ai of the 

i-th operation is defined to be Ai = Ti-f;-tz., • For any 

sequence of m operations, the total running time is 



78 

where f 0 is the potential before the first operation, and fm 

is the potential after the m-th operation. 

Tarjan applied this technique to evaluate three com

plexity problems such as the "move-to-front" linked list 

updating, the red-black tree updating, and the path compres

sion for disjoint set problem. Mehlhorn and Tsakalidis (62) 

studied the amortized analysis of insertions into AVL-trees. 

The study of amortized analysis of a red-black tree by 

using the banker's view is described as follows. Before 

computing the account balance, we need to assign credit to 

each type of structure. We assign one credit to a black 

node with two black children, zero credit to a black node 

with one red child, and two credits to a black node with two 

red children (only black nodes have credits). Table I shows 

the insertion and deletion pote~tials of a red-black tree. 

For insertion: if we attach a node to a black node and ter-

minate the insertion (see Figure Ba), we withdraw one credit 

from the account; if we update colors and move-up (Figure 

Bb), we withdraw one credit from the account; if we perform 

a single rotation or a double rotation and terminate the 

insertion (Figures Bd and Be), we deposit two credits. For 



79 

deletion: if we delete a black node and move-up (see Figure 

lOa), we withdraw one credit; if we update colors and 

move-up (Figure lOb), we withdraw two credits; if we update 

colors and terminate the deletion (Figure lOd), we withdraw 

one credit; if we perform a single rotation and terminate 

the deletion (Figure lOe), we may withdraw one credit or 

deposit two credits; if we perform a double rotation and 

terminate the deletion (Figure lOf), we deposit two credits. 

By using the above strategy, Tarjan (101) proved that the 

total time for m consecutive insertions in a tree of n nodes 

is O(n+m) which is 0(1) in the amortized case. The O(n+m) 

bound does not include the search time which is O(log n). 

------· ··--·-··--·--·--· --·····---·--·· ·-···· -- ----· ···-··· -- ··-·-·. - ···-. ·- -· ··rl - .... -· ... . -- ··-··· ... ·-····· ... 
Insertion Potentials (Figure 8) i\ Deletion Potentials (Figure 10) ---------··t··--------- ---------·--·--··r···------------------ -----··;··r·· . ---·-·· ·t··· . -----·· ..... - . .,. 
cases. before 1 after ! cases! before l 
----· ····-··-------- ·-·-····. ______ )_ __ ····-- --------------~-----·--·---~ ... - .............. . 

I ·I 
' +; i 

(a) +1 i.J ! 0 ' i (a) 

after 

+1 0 

(b) +2 +1 (b) +2 0 

(c) i 0 0 -t-j. I (c) 0 -------····-···-------- ---r-- ------:--r----··---·····--·------·-· 
(d) o .~-; 1 +2 ~~ : 1 (d) 1 

0 

0 
--~-- ---l-~~-~-----------~~--~---~·-------·-·-··-~-.... ·~-------- --~-- ........... ···-----·--. -· .... 

' i '! (e) 0 1 +2 1 (e) 0 or +2 +2 or +1 
-------- r····---- --·-· ...... ---· -----·-t-----------------~--~--------- :--·---- ··- ·--- -....... --- -. r 

i ! ! i (f) \ 0 : 
--· _j _________ - ·-· ···-·-·-· .J. _____________ ll__ ___ j_ ______________________ j_ 

+2 

Table I. Potentials for Updating Red-Black Trees 



CHAPTER V 

COMPARISONS AND DISCUSSIONS 

The comparisons among these search tree data structures 

are discussed below. 

1. The bottom-up insertion (algorithm HBI) of HB(k) 

trees takes 0(1) rotations in the worst case and 0(1) bal

ance-tag updates in the amortized case. The bottom-up dele

tion (algorithm HBD), on the other hand, ta~es O(log n) 

rotations in the worst case. The top-down insertion (algor

ithm HBTI) of HB(k) trees takes 0(1) rotations and balance

tag updates in the amortized case, the top-down deletion 

(algorithm HBTD) takes O(log n) rotations in the worst case. 

The tree height in the worst case of an AVL tree is about 

1.44 * log(N+l). 

2. The bottom-up updating (algorithms RBI and RBD) of 

red-black trees take 0(1) rotations in the worst case and 

O(l) color changes in the amortized case, and the top-down 

updating (algorithms RBTI and RBTD) for red-black trees take 

0(1) rotations and color updates in the amortized case 

(100). The height of tallest red-black tree containing N 

internal nodes is about 2*log(N+l). 

3. The top-down updating (algorithms WBT and WBMT) of 

weight-balanced trees take O(log n) rebalances in the worst 

80 



81 

case and a second top-down pass is required if the updating 

is redundant, and the worst case search time is about 

2*log(N+l) where a=(l-)2/2). 

4. The bottom-up updating (algorithms Bl2I and Bl2T) 

of 1-2 brother trees take O(log n) rebalances in the worst 

case. Ottmann and Wood (76) studied the space utilization 

of 1-2 brother trees, and concluded that it requires 1.618*N 

internal nodes to hold N records in the worst case and 

approximately 1.5*N in the average case. 

5. The splay tree structures have the amortized time 

bound of O(log n) for all standard tree operations (algor

ithms SPLAY and SPLAYT) such as search, join, split, insert, 

and delete. 

6. The K-d tree structures have the average perform

ances of O(log n) for insertion, search, and deletion. How
~% ever, the deletion takes O(n ) and insertion takes O(n) 

in the worst case. 

Red-black trees are slightly better than AVL trees on 

storage requirements because red-black trees require one bit 

per node for color-tag (black or red), and AVL trees require 

two bits per node for balanced-tag (+1, 0, or -1). The 1-2 

brother trees do not carry balance information but they con-

tain many unary nodes. 

The truly top-down updating of a weight balanced tree 

has the advantages: (a) it eliminates the use of parent 

pointers or avoids the use of a stack to hold the access 

path, and (b) the weight factor ~can be chosen to trade off 

fast search time and rebalancing effort. The weight bal-



82 

anced tree structures need more space to hold balance infor

mation, e.g., the RANK field (only 2 bits are needed for AVL 

trees). 

The splay tree structure has the following advantages 

over balanced search tree structures: (a) the updating 

algorithms are conceptually simple and easy to implement, 

(b) the truly top-down updating version has simple locking 

protocol when concurrent operations are allowed, (c) it car

ries no balance information and needs less space, and (d) it 

has less operation cost, if the usage pattern is skewed (in 

the case when the locality model applies}. The drawbacks of 

a splay tree structure are (a) it requires more local res

tructing, and (b) it has very expensive individual operation 

cost and cannot be used in real time applications. 

The merits of K-d trees are that a single data struc

ture can store multikey records and handle a variety of 

queries very efficiently. The disadvantages of using.K-d 

tree structures are that random deletion is very expensive 

and there is no restructing technique which guarantees an 

O(log n) access time. 



CHAPTER VI 

APPLICATIONS AND CONCLUSIONS 

6.1 Applications 

Developments in memory technology have resulted in 

faster, larger, and less expensive memory implementations 

over time; these trends are likely to continue for some 

time. The existence of top-down update versions of tree 

data structures is important not only because such algor

ithms provide fast search, easy update, and convenient pro

cessing both randomly and sequentially but also because many 

users can access the structure concurrently without inter

fering with each other. 

Balanced binary search tree structures have been imple

mented in primary memory to organize directories and tables 

for assemblers, compilers, and other system routines because 

these applications require fast access and have growing 

tables. For example the key of each record within an assem

bler or complier may be a symbolic identifier denoting a 

variable in a FORTRAN program, and the rest of that record 

may contain information about the type of that variable and 

its storage allocation. 

Wright (106,107) studied the use of balanced binary 

search trees to organize magnetic bubble memories (MBM), a 

83 



84 

newly developed secondary memory device. He proved that the 

balanced binary search trees are reasonable alternatives to 

multiway trees (such as B-trees) for organizing large files 

in the MBM. Wright's result enhances the importance of 

developing top-down versions of updating balanced binary 

search trees. 

Sarnak and Tarjan (90) gave the definition of persls

tent search tree structures: a persistent search tree has 

the property of that after an insertion or deletion, the old 

version of the tree can still be accessed. They used the 

red-black tree as a persistent data structure to solve pla

nar point location problems because the amortized cost per 

update for red-black trees is 0(1). They concluded that 

this persistent data structure has O(log m) search time, 

O(log n) update time, and requires 0(1) amortized space per 

update starting from the empty tree, where m is the total 

number of updates and n is the total number of tree nodes. 

The top-down algorithms presented in this thesis apply to 

persistent tree structures. 

6.2 Conclusions 

Search tree data structures are very important techni

ques for organizing large files, maintaining tables, solving 

geographic range queries, supporting dedicated database sys

tems, and performing computer graphics. Several conclusions 

are described as follows. 

1. The existence of top-down updating algorithms makes 

concurrent data processing easier, however, the use of non-



homogeneous tree structures causes the updating operations 

to be less efficient. 

85 

2. The performances of insertion algorithms for red 

black trees and AVL trees are similar; they require 0(1) 

rotation in the worst case. However, the deletion algorithm 

for red-black trees requires only 0(1) rotations in the 

amortized case, which is much better than the deletion 

algorithm of AVL trees which requires O(log n) rotations in 

the worst case. 

3. The top-down update algorithm for red-black trees 

is easy to implement and suitable for concurrent operations. 

On the other hand, the update algorithm for AVL trees has 

complex prebalancing strategy. 

4. The WB-trees have longer search time and need more 

space for storing balance information but by selecting the 

weight factor, we can trade off fast search time and reba

lancing effort. 

5. The splay trees are very efficient for maintaining 

tables in the system if the locality model applies. The 

updating algorithms are conceptually simple and easy to 

implement, and the truly top-down updating version has a 

simple locking protocol when concurrent operations are 

allowed. The individual operation cost is very expensive 

and cannot be used in real time applications. 

6.3 Suggestions 

Several suggestions for further study are described as 

follows. 



86 

1. This thesis covers only part of the search tree 

data structures. Other search tree structures such as the 

biased binary search trees (12), the biased multiway search 

trees (12,28), heaps (94,99), and~-~ trees (20) are neces

sary for the completeness of this study. 

2. Three new versions of top-down updating algorithms 

for the HB(k)-trees, WB-trees, and splay trees are presented 

for concurrent data processing environment. We suggest that 

the technique of amortized analysis should be applied to 

evaluate the performance of the above top-down updating 

algorithms. 

4. The self-adjusting version of B-tree structure 

requires further study. 

5. There is a very challenging problem of K-d trees, 

namely, to develop an efficient updating algorithm which can 

perform rebalancing after an update operation and guarantee 

O(log n) updates in the worst case. 

86 



A SELECTED BIBLIOGRAPHY 

(1) Ade1son-Velskii, G. M., and Landis, Y. M., "Algorithm 
for the organization of information," Dok1. Akad. 
Nauk. USSR, 146, (1962), 263-266. Engl1sh 
Transl. in Soviet Math. Dokl., 3, (1962), 
1259-1262. 

(2) Aho, A. v., Hopcroft, J. E., and Ullmann, J.D., 
Data structures and algorithms, Addison-Wesley 
Publishing Company, California, 1983. 

(3) Allen, B., "On the costs of optimal and near-optimal 
binary search trees," Acta Informatica, 18, 
(1982), 255-263. 

(4) Allen, B., and Munro, I., "Self-organizing binary 
search trees," J. of ACM, 25, 4, (Oct. 1978), 
526-535. 

(5) Ayala, D., Brunet, P., Juan, R., and Navazo, I., 
"Object representation by means of nonminimal 
decision quadtrees and octtrees," ACM Trans. on 
Graphics, 4, 1, (Jan. 1985), 41-59. 

(6) Baer, J. L., "Weight balanced trees," Proc. AFIPS 1975 
NCC, AFIPS Press, Montvale, NJ. 1975, 417-472. 

(7) Baer, J. L., Du, H. c., and Ladner, R. E., 
"Binary search in a multiprocessing enviroment," 
IEEE Trans. on Computer, C-32, 7, (July 1983), 
667-677. 

(8) Baer, J •. L., and Schwab, B., "A comparison of tree 
balancing algorithms," Communications of ACM, 20, 
5, (May 1977), 322-330. 

(9) Bayer, R., "Symmetric binary B-trees: Data structure 
and maintenance algorithm," Acta Informatica, 1, 
(1972)' 290-306. 

(10) Bayer, R., and McCreight, C. C., "Organization and 
maintenance large ordered indexes," Acta Informa
tica, 1, 3, (1972), 173-189. 

87 



(11) Bayer, R., and Schkolnick, M., "Concurrency of 
operation on B-trees," Acta Informatica, 9, 
(1977), 1-21. 

(12) Bent, S., Sleator, D., and Tarjan, D. R., "Biased 
search trees," SIAM J. on Computer, 14, 3, 
(1985), 545-568. 

(13) Bentley, J. L., "Multidimensional binary search trees 
used for associative searching," Communications 
of A CM , 18 , 9 , ( 19 7 5 ) , 50 9- 51 7 • 

88 

(14) Bentley, J. L., "Multidimensional binary search trees 
in database application," IEEE Trans. on Software 
Eng., SE-5, 4, (July 1979), 333-340. 

(15) Bongiovanni, G., and Wang, C. K., "Tree search in 
major/minor loop magnetic bubble memories," IEEE 
Trans. on Computer, C-30, 8, (Aug. 1981), 
537-545. 

(16) Brown, F. W., and Kollias, J. G., "A partial analysis 
of random height-balanced trees," SIAM J. on Com
puter, 8, 1, (Feb. 1979), 33-41. 

(17) Burton, F. w., and Kellis, J. G., "Comments on the 
explicit quad tree as a structure for computer 
graphics," The Computer J., 26, 2, (1983), 188. 

(18) Chang, H. and Iyengar, s. S., "Efficient algorithm to 
globally balance a binary search trees," Communi
cations of ACM, 27, 7, (July 1984), 695-702. 

(19) Chang, J. M., and Fu, K. S., "Extended K-d tree 
database organization a dynamic multiattribute 
clustering method," IEEE Trans. on Software Eng., 
SE-7, 3, (May 1981), 284-290. 

(20) Choy, D. M., and Wong, C. K., "Construction of 
optimal a-b leaf trees with applications to prefix 
code and information retrieval," SIAM J. on Com
puter, 12, 3, (1983), 426-446. 

(21) Chung, K. M., and Luccio, F., and Wong, C. K.,"A tree 
storage scheme for magnetic bubble memories," 
IEEE Trans. on Computer, C-29, 10, (Oct. 1980), 
864-874. 

(22) Comer, D., "The ubiquitous B-tree," Computing 
Surveys, 11, 2, (June 1979), 121-137. 

(23) Dekel, E., and Sahni, S., "Binary trees and parallel 
scheduling algorithms," IEEE Trans. on Computer, 
C-32, 3, (March 1983), 307-315. 



(24) Diehr, G., and Faaland, B., "Optimal pagination of 
B-trees with variable-length items," Communica
t i on s o f A CM , 2 7 , 3 , (March 19 8 4 ) , 2 41 - 2 4 7 . 

89 

(25) Ellis, c. S., "Concurrent search and insertion in AVL 
trees," IEEE Trans. on Computers, C-29, 9, (Sep. 
1980), 811-817. 

(26) Ellis, c. s., "Concurrent search and insertion in 2-3 
trees," Acta Informatica, 14, (1980), 63-86. 

(27) Eppinger, J. L., "An emprical study of insertion and 
deletion in binary search trees," Communications 
of ACM, 26, 9, (Sep. 1983), 663-669. 

(28) Feigenbaum, J., and Tarjan, R. E., "Two new kinds of 
biased search trees," Bell Sys. Tech. J. 62, 10, 
part 2, {1983), 3139-3158. 

(29) Finkel, R. A., and Bentley, J. L., "Quad trees: A data 
structure for retrieval on composite key," Acta 
Informatica, 4, (1974), 1-9. 

(30) Foster, C. C., "A generalization of AVL trees," 
Communications of ACM, 16, {1973), 513-517. 

(31) Frost, R. A., and Peterson, K. M., "A short note on 
binary search trees," The Computer J., 25, 1, 
{1982), 158. 

(32) Gannet, G. H., "Balancing binary trees by internal 
path reduction," Communications of ACM, 26, 12, 
{Dec. 1983), 1074-1081. 

(33) Gonnet, G. H., and Oliver, H. J., and Wood, D., 
"Height-ratio-balanced trees," The Computer J., 
26, 2, (1983), 106-108. 

(34) Gotlieb, "Optimal multi-way search trees," 
SIAM J. on Computer, 10, 3, (1981), 422-433. 

(35) Gottlieb, A., "Comments on concurrent-search and 
insertion in AVL trees," IEEE Trans. on Computer, 
c- 3 0 , 1 0 , ( Oct . 1 9 81 ) , 812 . 

(36) Guibas, L. J., and Sedgewick, R., "A dichromatic 
framwork for balanced trees," Proc. 19th Annual 
IEEE Symp. on Foundations of Comput. Sc1., 
0978), 8-21. 

(37) Gupta, U., Lee, D. T., and Wong, C. K., "Ranking 
and unranking of 2-3 trees," SIAM J. on Computer, 
11, 3, {Aug. 1982), 582-590. 



90 

(38) Hansen, W. J., "A cost model for the internal 
organization of B -tree models," ACM Trans. on 
Prog. Lang. and Sys., 3, 4, (Oct. 1981), 508-532. 

(39) Held., G., and Stonebraker, M., "B-trees 
re-examined," Communications of ACM, 21, 2, (Feb. 
1978), 139-143. 

(40) Huang, S. H., and Wong, C. K., "Binary search trees 
with limited rotation," BIT, 23, (1983), 436-455. 

(41) Huang, S. H., and Wong, C. K., "Average number of 
rotation and access cost in IR-trees," BIT, 24, 
(1984), 387-390. 

(42) Karlton, P. L., and Fuller, S. H., "Performance of 
height balanced trees," Communications of ACM, 
19, (Jan 1976) , 23-28. 

(43) Korth, H. F., and Si1berschatz, A., "Database System 
Concepts," McGraw-Hill, Inc. New York, (1986). 

' 
(44) Knuth, D. E., "Optimum binary search trees," Acta 

Informatica, 1, (1971), 14-25. 

(45) Knuth, D. E., The art of computer programming, 
Vol. 3: Sorting and Searching, Addison-Wesley, 
Reading, MA, (1973). 

(46) Kosaraju, S. R., "Insertion and deletion in one-sided 
height balanced trees," Communications of ACM, 
21, 3, (March 1978), 226-229. 

(47) Kriegel, H. P., and Vaishnavi, V. K., and Wood, D., 
"2-3 brother trees," BIT, 18, (1978), 425-435. 

(48) Kung, H. T., and Lehman, P. L., "Concurrent 
manipulation of binary search trees," ACM Trans. 
on Database Sys., 5, 3, (Sep. 1980), 354-382. 

(49) Kuspert, K., "Storage utilization in B*-trees with a 
generalized overflow technique," Acta Informa
tica, 19, (1983), 35-55. 

(50) Kwong, Y. S., and Wood, D~, "On B-trees: Routing 
schemes and concurrency," Proc. 1980 ACM SIGMOD 
Internat. Conf. Management of Data, (1980), 
207-213. 

(51) Kwong, Y. S., and Wood, D., "A new methood for 
concurrency in B-trees," IEEE Trans on Software 
Eng., SE-8, 3, (May 1982) 211-222. 



(52) Lee, D. T., and Wong, c. K., "Worst-case analysis for 
region and partial region search in multidimen
sional binary search trees and balanced quad 
trees," Acta Informatica, 9, (1977), 23-29. 

(53) Leeuwen, J. v., and Overmars, M. H., "Stratified 
balanced search trees," Acta Informatica, 18, 
(1983), 345-359. 

(54) Libera, F. D., and Gosen, F., "Using B-trees to solve 
geographic range queries," The Computer J., 29, 
2, (1986), 176-181. 

(55) Luccio, L., and Pagli, L., "On the height of height 
balanced trees," IEEE Trans. on Computer, C-25, 
7, (Jan. 1976), 87-90. 

(56) Luccio, F., and Pagli, L., "Rebalancing· height 
balanced trees," IEEE Trans. on Computer, C-27, 
5, (May 1978), 386-396. 

(57) Luccio, F., and Pagli, L., "Comment on generalized 
AVL trees," Communications of ACM, 23, 7, (July 
1980), 394-395. 

(58) Manber, U., "Concurrent maintenance of binary search 
trees," IEEE Trans. on Software Eng., SE-10, 6, 
(Nov. 1984), 777-784. 

(59) Manber, u., and Ladner, R. E., "Concurrency control 
in a dynamic search structure," ACM Trans. on 
Database Sys., 9, 3, (Sep. 1984), 439-455. 

91 

(60) Martin, w. A., and Ness, D. N., "Optimizing binary 
trees growth with a sorting algorithm," Communi
cations of ACM, 15, 2, (1972), 88-93. 

(61) Mehlhorn, K., "Nearly optimal binary search trees," 
Acta Informatica, 5, (1975), 287-295. 

(62) Mehlhorn, K., and Tsakalidis, A., "An amortized 
analysis of insertions into AVL-trees," SIAM J. 
on Computer, 15, 1, (Feb. 1986), 22-33. 

(63) Miller, R., and Snyder, L., "Multiple access to 
B-trees," Proc. Conf. Info. Sci. and Sys., 
(1973), 400-407. 

(64) Miller, R. E., and Pippenger, N., and Rosenberg, 
A. L., "Optimal 2,3-trees," SIAM J. on Computer, 
8, 1, (Feb. 1979), 42-59. 



(65) Moitra, A., and Iyengar, s. S., "A maximally parallel 
balancing algorithm for obtaining complete bal
anced binary trees," IEEE Trans. on Computers, 
C-34, 6, (June 1985), 563-565. 

(66) Mullin, J. K., "Change area B-trees: A technique to 
aid error recovery," The Computer J., 24, 4, 
(1981), 367-373. 

(67) Nievergelt, J., "Binary search trees and file 
organization," Computing Surveys, 6, 3, (Sep. 
1974), 195-207. 

(68) Nievergelt, J., and Reingold, E. M., "Binary search 
trees of bounded balance," SIAM J. on Computer, 
2, 1, ( March 1973), 33-43. 

(69) Oliver, H., "A new class of balanced search trees: 

92 

Half-balanced binary search tree," RAIRO Informa
tigue Theoretigue, 16, (1982), 51-71. 

(70) Oliver, M.A., and Wiseman, N. E., "Operations on 
quadtree encoded images," The Computer J., 26, 1, 
(1983), 83-91. 

(71) Ottmann, T., and Six, H. w., "Eine neue klasse von 
ausgeglichenen binarbaumen," Angewandte Informa
tick, 18, (1976), 395-400. 

(72) Ottmann, T., and Six, H. w., and Wood, D., "Right 
brother trees," Communications of ACM, 21, 9, 
(Sep. 1978), 769-776. 

(73) Ottmann, T., and Karlsruhe, H. w. S., ans Wood, D., 
"The implementation of insertion and deletion 
algorithm for 1-2 brother trees," Computing J., 
26, ( 1981)' 367-378. 

(74) Ottmann, T., Schrapp, M., and Wood, D., "Purely top 
down updating algorithms for stratified search 
trees," Acta Informatica, 22, (1985), 85-100. 

(75) Ottmann, T., and Stucky, w., "Higher order analysis 
of random 1-2 brother trees," BIT, 20, (1980), 
302-314. 

(76) Ottmann, T., and Wood, D., "1-2 brother trees or AVL 
trees revisited," The Computer J., 23, 3, (1981), 
248-255. 

(77) Ottmann, T., and Rosenberg, A. L., and Six, H. S., 
"Binary search trees with binary comparison 
cost," International J. Comput. and Info. Sci., 
13, 2, (1984), 77-101. 



93 

(78) Ottmann, T., and et al., "Minimal-cost brother 
trees," SIAM J. on Computer, 13, 1, (Feb. 1984), 
197-217. 

(79) Ouksel, M., anScheuermann, P., "Multidimensional 
B-trees: Analysis of dynamic behavior," BIT, 21, 
(1981), 401-418. 

(80) Overmars, M. H., and Leeuwen, J. v., "Dynamic 
multidimensional data structure based on quad
and k-d trees," Acta Informatica, 17, (1982), 
267-285. 

(81) Pallo, J. M., "Enumerating, ranking and unranking 
binary trees," The Computer J., 29, 2, (1986), 
171-175. 

(82) Raiha, K. J., and Zweben, S. H., "An optimal 
insertion algorithm for one-sided height-balanced 
binary search trees," Communications of ACM, 22, 
9, (Sep. 1979), 508-512. 

(83) Reingold, E. M., and Hansen, w. J., Data Structures," 
Little, Brown and Company, Boston, (1983). 

(84) Rosenberg, _A. L., and Snyder, L., "Minimal-comparison 
2,3-trees," SIAM J. on Computer, 7, 4, (Nov. 
1978), 465-480. 

(85) Rosenberg, A. L., and Snyder, L., "Time- and space 
optimality in B-trees," ACM Trans. on Datsbase 
Sys., 6, 1, (March 1981), 174-183. 

(86) Samadi, B., "B-trees in a system of multiple users," 
Information Processing Letter, 5, 4, (1976), 
107-112. 

(87) Samet, H., "The quadtree and related hierarchical data 
structures," Computing Surveys, 16, 2, (1984). 

(88) Samet, H., "A quadtree medial axis transform," 
Communications of ACM, 26, 9, (Sep. 1983), 
660-693. 

(89) Samet, H., and Webber, R. E., "Storing a collection 
of polygons using quadtrees," ACM Trans. on 
Graphics, 4, 3, (July 1985), 182-222. 

(90) Sarnak, N., and Tarjan, R. E., "Planar point location 
using persistent search trees," Communication of 
A CM , 2 9 , 7 , ( J u 1 y 19 8 6 ) , 6 6 9- 6 7 9 • 



--------

94 

(91) Scidmore, A. K., and Weinberg, B. L.,"Storage and 
search properties of a tree-organized memory sys
tem," Communications of ACM, 6, 1, (Jan. 1963), 
28-31. 

(92) Sleator, D., and Tarjan, R. E., "Self-adjusting 
binary search trees," Communications of ACM, 32, 
3, (1985)' 652-686. 

(93) Sleator, D., and Tarjan, R. E., "Self-adjusting 
heaps," SIAM J. on Computer, 15, 1, (Feb. 1986), 
52-69. 

(94) Stasko, J. T., and Vitter, J. S., "Pairing heaps: 
Experiments and analysis," Communications of ACM, 
30, 3, (March, 1987), 234-249. 

(95) Stephenson, C. J., "A method for constructing binary 
search trees by making insertions at the root," 
International J. Comput. Info. Sci., 9, (1980), 
15-29. 

(96) Sussenguth Jr., E. H., "Use of tree structure for 
processing files," Communications of ACM, 26, 1, 
(Jan. 1983), 17-20. 

(97) Szwarcfiter, J. L., "Optimal multiway search trees 
for variable size keys," Acta Informatica, 21, 
(1984)' 47-60. 

(98) Tarjan, R. E., "Updating a balanced search tree in 
0(1) rotations," Information Processing Letter, 
16, 5, (June 1983), 253-257. · 

(99) Tarjan, R. E., Data Structures and Network Algorithms 
Society for Industrial and Applied Mathematics, 
Philadelphia, PA., (1983). 

(100) Tarjan, R. E., "Efficient Top-Down Update of 
Red-Black Trees," Computer Sci. Dept. Princeton 
Univ., CS-TR-006-85. 

(101) Tarjan, R. E., "Amortized computational complexity," 
S I AM J • A 1 g . D i s c . Math . , 6 , 2 , ( 19 8 5 ) , 3 0 6- 318 . 

(102) Tarjan, R. E., "Algorithm design," Communications 
of ACM, 30, 3, (March 1987), 204-212. 

(103) Unterauer, K., "Dynamic weighted binary search 
trees," Acta Informatica, 11, (1979), 341-362. 



(104) Vaishnavi, V. K., and Kriegd, H. P., and Wood, D., 
"Optimal multiway search trees," Acta Informa
tica, 14,(1980), 119-133. 

(105) Woodward, J. R., "The explicit quadtree as a 
structure for computer graphics," The Computer 
h 25, 2, (1982), 235-238. 

(106) Wright, w. E., "Binary search trees in secondary 
memory," Acta Informatica, 15, (1981), 3-17. 

(107) Wright, w. E., "Some file structure considerations 
pertaining to magnetic bubble memory," The Com
puter J., 26, 1, (1983), 43-51. 

95 

(108) Wright, W. E., "Some average performance measures for 
the B-tree," Acta Informatica, 21, (1985), 
541-557. 

{109) Yao, c. c., "On random 2-3 trees," Acta Informatica, 
9, {1978), 159-170. 

{110) Yau, M-M., and Srihari, S. N., "A hierarchical data 
structure for multidimensional digital images," 
Communications of ACM, 26, 7, (1983), 504-515. 

(111) Zaki, A. S., "A comparative study of 2-3 trees and 
AVL trees," International J. of Comput. and Info. 
Sci., 12, 1, (1983), 13-33. 

{112) Zaki, A. S., "A space saving inserting algorithm for 
2-3 trees," The Computer J., 27, 4, ( 1984), 
368-372. 

(113) Zaki, A. s., and Baer, J. L., "Query cost in HB(l) 
trees vs. 2-3 trees," International J. of Comput. 
and Info. Sci., 10, 6, (1981), 383-395. 



APPENDIX A 

DEFINITIONS OF TREE VARIANTS 

96 



A.l Height-Ratio-Balanced Trees 

The height-ratio-balanced trees are defined (33} as 

follows. 

Let T be an extended binary tree such that T consists 

of a root node with two subtrees T~ and Tr. The "balance 

factor", B(T) of a tree is then defined as 

1/2, if T has no child. 

B(T) = 

h(T~)/(h(T~}+h(Tr)}, otherwise. 

97 

Where h(T~) denotes the height ofT's left subtree and h(Tr} 

denotes the height of T' right subtree. A tree T is said to 

be "height-ratio-balanced" of order~, or in the set of 

hrb(u.) for 0 <= ~ <= 1/2, if 

1. ~ <= B(T) <= 1-~. 

2. Both T~ and Tr are also in the set of hrb(~}. 

A.2 One-Sided Height-Balanced Binary Trees 

Knuth (45} put another restriction on the AVL trees 

that defines a class of one-sided height-balanced trees 

(also known as R-trees}. The restriction is added by not 

allowing the height of any node's left subtree to exceed 

that of its right subtree. That is the balance-tag of any 

node is either 1 or 0, and can be represented by using one 

bit of storage per node. A one-sided height-balanced tree 

satisfies 

1. 1 >= (h(Tr}-h(T~}} >= 0. 

2. Tr and T~ are one-sided height-balanced trees. 

97 



APPENDIX B 

EXAMPLES OF TREE OPERATIONS 

98 



' ( ) 
.I 

> 

> 

Figure 32 

An Example of Bottom-Up Insertion into An AVL Tree 

CAS~ (a.) 

+l 

) 

Gtse (c) ., 

ca.se. (eJ 

0 

+I 

99 



CiJ'qL (_f.) 
..,.. 

C()QJ-(cl) 

,...... 

... , 

delett ® ..... 
"> , 

sw11r ® ,,,n,@ 

~eldt@ 
...... 
> , 

(Ml. (_11) 

0_ 

@ 

f!.Jv.lt. ( b ) ......._ ----7 

+I 

cl~ 
@ 

II 

CIJAA. l 4.) 
....... 
7 

Cft-u (b) 
...... 
T 

&se te.J 

> 

Figure 33 An Example of Bottom-Up Deletion from An AVL Tree 

.,., 

+I 

0 

,_. 
0 
0 



rnmrtF?J\ Insert$ 

'--
case (b) r 

D 
I 

....._ 

case \c}' 

r 

1. 

..._ 
case (d) 

7 

~e(e~ 

7'- ,) 
I 

Insert E 

Figure 34 An Example of Bottom-Up Insertion into A Red-Black Tree 
....... 
0 
....... 



case (a) ' 

5\Jap F with E 

Figure 35 An Example of Bottom-Up Deletion from A Red-Black Tree 
...... 
0 
N 



Insert A 1. 
~-'i"' 

~! 
Ins~~ 

Nt = 2 (in tree header) Nt = 3 

1. 2.. 

Insert D, 
-----,' 

Nt = 5 Nt = 6 

l. 

I 1 

Insert c' 
? 
~I : -t.J_ 

}S" ?C. I 

case (c) (A 

Nt = 4 

).. 

case (d)._,. 

T 

Nt = 8 
fi:'\Z. . ' 

For \!Y ; 1 denotes the RANK field, i denotes the "Height. 
Cases (c) & (d) are shoon in Figure 30, -\' is chosen for o<. / ( Wl3(~) .,l.tae). 

2. 1. 

'F 

..... 
r 

Insert F• 

2. 

.. 

Nt = 7 

I 
'i: 

Figure 36 An Example of Top-Down Updating for A Weight-Balanced Tree ....... 
0 
w 



Insert 2 . ~ 
)76 tJ 

Insert 7 

Figure 37 

_Ins_ert_3- &,1( 
---r~> -1-,' 

~ 

Insert 10 

...... 
case (gTT 

Insert 13 

Insert 5 
\. -? 

An Example of Bottom-Up Insertion into A 1-2 Brother Tree ~ 
C) 

""' 



Delete 4 

case (a) & (c) )--

Delete 8 

Swap 8 with 7 

case (e) case (d) 

Figure 38 An Example of Bottom-Up Deletion from A 1-2 Brother Tree I-' 
0 
01 



106 

Figure 39 

An Example of Bottom-Up Splaying A Node in A Binary Tree 

Splay atE 

(Zig-Zig) 

(Zig-Zag) 

(Zig) 



'-

Insert (F,so,gl IF ls-ol ~I 

=====l~> o I < 
Insert (G,90,d) 

Ins~rt ~;,-~? LJ~ 

~~~ 

'
Insert (D,20,eV

....

Insert (J,BO,k

~ert (C,30,d) }"'

--~
Insert (A,lO,a)T

J'>'F
~

Figure 40 An Example of Insertion into A K-d Tree
0
--J

108

Figure 41

An Example of Top-Down Insertion into An AVL Tree

+I

0

>
{0

+1

JC denotes the current node, f denotes the "long"

109

Figure 42 Examples of Top-Down Insertion into An HB(3) Tree

Insert 109.5

(example 1)

-z.

Insert 43.8

(example 2)

Single left
rotation at 42

X ~x. denotes the current llXJVeTlei'lt,
~ denotes a subtree,
Insert ions are made :in Figt..tr:-e 50.

+ denotes the "long",
0 denotes an external node,

'®
£1

Prebalancing, insert 12.5

(single right at 35)
single left at 15

(case a in Figure 24)

tag(28) = max(-rn,l-s) = max(-2,1-2) = -1
tag(35) = mt1-s = 2+1-2 = +1
tag(16) = -k = -3
tat?(l5) = -(k-1) = -2

Figure 42 (Continued)

-z.

Single right >
rotatim at 16

:(.(new current node)

-t_

~
~
C)

_,

Figure 43

-1 cMP@
~
7

~i,rt rvtM·~
®®

>
)>.vV'.c. "'~\orA "otp

......._

.. "' hl•ie. "Shor,t "'J'

Cl

An Example of Top-Down Deletion from An AVL Tree
,__.
,__.
,__.

112

Figure 44 Examples of Top-Down Deletion from An HB(3) Tree

Delete 40)

(example 2)
Single left
rotation at 41

)

:X:,.........:::(. denotes the current node ITXJVellE11t, • denotes the "short",
.6, denotes a subtree, 0 denotes an exten1al node,

Deletions are rm.de in Figure 50

Figure 44 (Continued)

single left at 99 &
single right at 92

Node 92 becarEs the new current after prebalancing,
This is the case (b) in Figure 26.

tag(99) = -1 (not changed)
tag(l03) = -(s+m)-1 = -(1+1)-1 = -3
tag(94) = max(l-q,-p) = max(l-2,-1) = 0
tag(92) = (p+l-q_) = 1+1-2 = 0
after delete node 92, tag(92) becomes +1

113

~: 01 =·~ bf0~
==~~~~ ~u6 ~

';/1cF J i

Single
left)"

(color A black)

&-&'C../

Insert D
>

(color A & D black)

()

~

0

Insert I
T

>

Insert F
----- .~

T

Figure 45 An Example of Top-Down Insertion into A Red-Black Tree
1--'
1--'

""'

(color F red)

(current node JOOVelrellt)

(node B has red granichildren)
(node D has red children)

~

._,~1M

(red node is deleted)
(F renains as an index)

. >

Figure 46 An Example of Top-Down Deletion from A Red-Black Tree

.......

.......
Ul

116

Figure 47

An Example of Index-Position Search

J5

Search for the 18-th elements in the above tree.

(1). (COUNT = 0), left access because 18 > RANK(O).
(2). (COUNT = RANK(O)), right access because 18 < (COUNT+RANK(T)).
(3). (COUNT not changed), left access because 18 > (COUNT+RANK(Q)).
(4). (COUNT= COUNT+RANK(Q)), right access because

18 < (COUNT+RANK(S)).
(5). (COUNT not changed), stop because 18 = (COUNT+RANK(R)).

'bo ~ 15 denotes the RANK field of 0.

117

Figure 48

An Example of Top-Down Splaying Operations

Splay at E

Left-left

Right

~tnal

(44,45)

Search Ttea Data Stxu:tures

~

W.il'ltad

Binary Search Trees
cxntaina 0118 kay

Static
Resnucturinl

llJon;lnt.c
RestN:tlJrtn8

(67)

Biased
BinarY Tl:ees

(12,28)

Ue~tad
Binary Trees

002)

. ---~----~

'lbt:al
Resn:ucturing

/~
I I

I \
I \

·~ .. -
rm-il'lted

Balanced
Tl;ees

,f\
I\
! \

'\
\

tbt-balanced
1'ceea

' I

{\
I
I

I I \
\ HeWlt llei8Jlt Splay K-d ~timal Naar-optillal. Balanced Balanced Trees Trees

(44,45) (3 61) rc- ' 'l'r.s (4,92,94)03,80) . A<)
AVI. Trees HB(k) Trees

(1,45) (30,57)

ltJltiway Search Trees

cxn/~ 0118 kay

/ '.

W.iitltad ~ifthtst

1\ r I \\ !

I \
/ \

I \
I \ /

q,tiDal Biased
(45) 2,b lreea

(12,28)

Ba1moed

'l'tMa
~bral lbl-balareed

Trees (34,97,104)

~-~

(10,22)

.•,

()Jidtreal OcttteeS

(29,87) (29)

Figure 49 A Classifications of Search Tree Data Structures 1-'
1-'
ro

119

--

VITA

Yick-Kwan Chen

Candidate for the Degree of

Master of Science

Thesis: SEARCH TREE DATA STRUCTURES AND THEIR
APPLICATIONS

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Taipei, Taiwan, Republic of
China, January 8, 1953, the son of Mr. and Mrs.
Yau-Sua Chen. Married to Sue-Cheng Chang on
July 19, 1984.

Education: Graduated from National Normal High School,
Taipei, Taiwan, in July, 1971; received the
Bachelor of Science degree with a major in
Chemical Engineering from National Tsing Hua
University, in June, 1976; received the Master of
Science degree with a major in Chemical
Engineering from Oklahoma State University, in
December, 1981; completed requirements for Master
of Science degree in Computing and Information
Science at Oklahoma State University, in May,
1987.

Professional Experience: Research Associate, National
Tsing Hua University, 1978-1979; Thermal Design
Engineer, Applied Information Development Inc.,
Tulsa, Oklahoma, 1981-1982.

