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ABSTRACT

Although a considerable amount of work has been done 
in the area of probabilistic linear programming, a method does 
not exist which can compute the distribution function of the 
optimal value in a practical computational manner. This is 
particularly true for those problems involving more them a 
few random variables.

This study proposes an algorithm based upon a "best" 
choice criterion for entering and leaving variables as a 
method for computing the distribution function. These cri­
teria are similar to those that apply to regular deterministic 
linear programming except that they apply to the cases where 
the coefficients of the objective function or the restrictions 
of the constraints are random variables.

Additionally, a modification to the algorithm is 
developed vdiich will yield an approximation for the distribu­
tion function without the requirement of a complete investi­
gation of all possible bases.

Two computer programs based on the algorithm have been 
developed that compute the information that is required for 
solution of the problem.
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CHAPTER I 

INTRODUCTION

Linear programs with some of their coefficients 
subject to random variation have been considered in several 
forms and under several different names. Among these are 
probabilistic linear programming, stochastic linear program­
ming, chance constrained programming, linear programming under 
uncertainty, and recourse programming. In effect, these are 
different problems selected from the general class of linear 
programming problems that are non-deterministic. This general 
class of non-deterministic linear programs (i.e., those having 
random variables for some of their coefficients) will here­
after be referred to in this paper as probabilistic linear 
programming.

The initial interest in probabilistic linear programs 
arose from a problem dealing with the allocation of aircraft 
to routes when the demand for their service was unknown. This 
problem was considered by 6. B. Dantzig and A. R. Ferguson 
(8) under the conditions that the demand distribution was dis­
crete, and later by S. E. Elmaghraby (11) for the case where 
the demand distribution is continuous.
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2
The next efforts in this area consisted of attempts 

by several authors, notably Dantzig, Madansky, and Charnes 
and Cooper, to eliminate the effect of the random variables 
by optimizing the expected value or the variance of the ob­
jective function or selecting alternatives such that the con­
straints would be violated with only a small probability.

Later developments have fallen into one of two cate­
gories \diich, according to Dempster (9), comprise the entire 
class of linear programming problems that have random vari­
ables for their parameters. These two categories are defined 
essentially by the timing of the decision making process rela­
tive to the realization of the random variables.

If the decision is to be made before the behavior of 
the random variables is known, the category is known as the 
"Here-and-Now" approach in the terminology of Madansky (13). 
This category has been investigated under different names by 
various authors, notably Dempster (9, 10), Walkup and Wets 
(21), Wets (22), and Williams (24)• Their general approach 
has been to select some criterion, usually optimizing the ex­
pected value of the objective function, and including a penal­
ty function that represents the cost associated with making 
an incorrect decision. This leads to the development of 
equivalent convex programs which in general are non-linear 
euid serve as approximations to the original probabilistic 
linear programming problem.
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If the decision is to be made after the behavior of 

the random variables is known, we have the type of problem 
that Hadcmsky (13) referred to as the "Wait-and-See" problem. 
This problem was classified by Tintner (19) as the "Distribu­
tion Problem" euid subsequently was investigated by Tintner 
(20, 21) and Sengupta and Tintner (17, 18). This is the kind 
of problem with which this paper will be concerned. It con­
sists of determining the distribution of the optimum value of 
the objective function when the distribution of the random 
variables in the problem is known.

Tintner and Sengupta*s work was based mainly upon 
problems related to agricultural economics. Their basic ap­
proach was to take all of the possible combinations of the 
values of the random variables and compute the optimum value 
of the deterministic linear program that is defined by each 
combination. They then used the method of sample moments to 
fit a probability distribution function to these values. The 
following two problems exist with this method: (1) the number
of linear programs to be solved increases rapidly as the num­
ber of possible values for these random variables increase, 
amd (2) the distributions so derived are approximations.

Bereanu (1, 2) developed a method for determining the 
distribution of the optimal value of the objective function 
when the coefficients of the objective function or the con­
straint restrictions are random variables. Bereanu assumes 
that the random variables have finite lower and upper bounds
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and proceeds by setting each random variable at its lower 
bound and solving the resulting deterministic linear program.
He determines the range over which the optimal solution re­
mains feasible by using the sensitivity analysis technique of 
parametric linear programming. He changes bases and applies 
the sensitivity analysis technique to the new basis and repeats 
this process until all optimal solutions have been investi­
gated. Using the information so obtained, Bereanu computes 
the distribution of the optimum value of the objective 
function.

The objective of this research will be to develop an 
algorithm to determine the distribution of the optimum value 
of the objective function that does not depend upon solving 
a sequence of linear programs. This algorithm will be based 
upon Bereanu's results, but will offer improvements in the 
method of changing bases. Additionally, a modification to 
the algorithm will be developed which will allow an approxi­
mation of the optimum value of the objective function without 
the complete enumeration of all of the possible bases.

The algorithm is based upon methods that are similar 
to the simplex technique of deterministic linear programming 
and enables the investigator to determine the value of the 
objective function and the value of the basic variables at 
each iteration.



CHAPTER II

AN ALGORITHM FOR LINEAR PROGRAMS THAT ARE 
FUNCTIONS OF RANDOM VARIABLES

Consider the general maximization problem of linear 
programming represented in the following form

Maximize = CX o
subject to AX s b 

X % 0
where A is an (mxn) matrix; b is (mxi), x is (nxl), and C is 
(Ixn). Adding slack variables to the constraints, the problem 
can be represented by

Maximize X^ = CX o
subject to AX = b 

X > 0

where A is [mx (m+n)]; b is (mxl), x is t(m+n)xl]; c is 
[Ix(m+n)1.

When some (or all) of the parameters of this problem 
(i.e., C, b, or A) are random variables, the problem becomes 
a Stochastic (or Probabilistic) Linear Programming Problem.

5
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Two cases of this general problem will be considered 

in this paper. Case I will deal with the problem when the 
vector C is a vector of random variables and all other param­
eters are known deterministically. Case II will deal with the 
problem when b is a vector of random variables and all other 
parameters are known deterministically.

Case I; C-vector is a Vector of Random Variables
When the C vector is the only parameter that is a ran­

dom variable, the problem becomes essentially one of determin­
ing the probability that a feasible basis is optimal.

Since the number of feasible bases is finite, the 
problem of determining the distribution of the optimum value 
of the objective function becomes one of determining the dis­
tribution of the optimal value of the objective function for 
a particular basis, the probability that this particular basis 
is optimal, and summing the product of these two values over 
all possible bases to obtain the distribution of the optimal 
value of the objective function.

One might question the statement that the optimal 
value of the objective function occurs at an extreme point 
(a basis) when the coefficients of the objective function are 
random variables. To see that this is true, consider the fol­
lowing theorem:

Theorem 1: The optimum solution of the linear program­
ming problem.



Maximize X = CX o
subject to (A,I)X =

X > Ô

where C is a vector of independent random variables whose dis­
tributions are known in advance, when it is finite must occur 
at an extreme point (a basis) of the feasible space defined 
by the constraint set.

Proof of the theorem;
1. Let X^, i = 1, . k be the extreme points of the feas­

ible space and let X_* = Max CX^^^ = CX^”  ̂ where X^®' iso i
the extreme point at which the value of objective function 
is a maximum. Note: Since this is a "Wait-and-See” Prob­
lem, let the random vector C assume a particular value 
denoted by C '.

2. Suppose there exists a point X^^* which is not an extreme 
point but which can yield a better value of the objective 
function, i.e., X^^^^ = C*X^^^ k X^* * C*X^®\

3. Since X*^* is not an extreme point, it can be expressed
as a convex combination of the extreme points of the feas­
ible space.

x(l) = Z X.x(i), X. i 0; Z X. = 1
i»l ^ ^ i«l ^

4. Therefore: X_^^^ = C*X^^^ « C* Z X.X^^^
° i=l ^

X = z c,* x.x(i) = z x,(c,' x(i))
o i«l ^ ^ i=l ^ ^
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5. By hypothesis: so k C'X^^\

6. X^^) = E X. (C.'x(i)) < I X.C x(™), X < CX^®^ E X^° i=l 1 1 - i=l 1 O - i=i 1

7. X^(l) i Cx(®) « X *.o o
8. This contradicts the assumption that a better value for 

the solution can occur at a point which is not an extreme 
point and the proof of the theorem is complete.

Let fĵ (X^) be the distribution of the objective func­
tion for the fth basis and be the probability tha,t the &th 
basis is optimal. The distribution of the objective function 
will then be given by

f v  -
Since the number of bases is finite, this sum exists and is 
finite.

In order to determine P^, let us examine the condi­
tions required for a given basis to be optimal. For the maxi­
mization problem this condition is satisfied for a particular 
basis when all non-basic variables are such that their coef­
ficients in the objective function row are non-negative. Let 
Cg be the coefficient corresponding to the current basic 
solution, let B be the basis matrix from the matrix A corre­
sponding to the current basic solution, and let P. be the

J

column from A corresponding to a particular non-basic variable, 
The non-negativity condition stated above becomes: for any X^



that is a non-basic variable, its coefficient (C_B ^P.-C.)
»  J J

must be non-negative [i.e., (CgPT^Pj-Cj) > 0]. Let 
= {C|CnB“^P.-C.) > 0, c e C}. The set S. defines the space

• B  3  3  %

over which a particular basis I is optimal. Thus

Po = I f(c) dc

These are the conditions stated by Bereanu (1) ex­
pressed in the notation used by Taha (20). They form the 
basis of the solution algorithm.

The algorithm depends upon two criteria for choosing 
the entering and leaving variables as a means of changing 
bases. These criteria are respectively the optimality and 
feasibility criteria. Since for this problem, the C-vector 
is the only random variable in the problem, the feasibility 
criterion remains the same as for deterministic linear 
programming.

To reiterate, the feasibility criterion is based upon 
selecting the leaving variable so that all remaining basic 
variables remain non-negative (> 0). Using matrix notation, 
let Xg be a vector corresponding to a basic feasible solution, 
and let the vectors of the A matrix corresponding to Xg be 
denoted by P̂ ,̂ P^, ..., P^. Let B « (P^, Pg, ..., denote 
the basis matrix where B is square (mxm) and non-singular.
Let P^ denote the right hand side of the contraint equations. 
The linear programming problem can now be expressed as
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Maximize X = CX o

subject to (A,I)X =
X % 0

Since Xg is a basic feasible solution and B is its correspond­
ing matrix as defined above, we have that

and thus Xg = b”^P^.

Also, BXg = p* = X^Pk

so that Xg = b”^P^

and *k =

where the subscript k denotes the kth element of the vector 

*B-
Let Pj be a vector from the remaining n non-basic vec­

tors of (A,I), and let Xj be its corresponding variable. Then

j.
where is a scalar with a least one non-zero value. It 
follows that

Bo^ = Pj

or = B~^Pj.

Let 6 be any real number. Thus OBoP = OPy. Since 
BXg = P^, then by subtraction, B(Xg - 0o^) + 8P^ = P^,
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The new vector, X*, where

8

is a solution to the linear program with X. = 8. However, it
J

contains (m+1) variables and is non-basic, so 8 must be selec­
ted so that one of the former basic variables is set to zero. 
Additionally, all of the elements of X* must remain non­
negative. These conditions may be expressed mathematically 
as,

(Xĵ  — 8a^^) > 0, k = 1, 2, ..., m 
and X^ = 8 > 0

This yields the following selection criteria: Select

8 = min {— y, > 0}
k o ’ k

and call this value 8*. Therefore

e* = min   o^i > 0
k V

Since this criteria for selecting the leaving variable depends 
upon B, B~^, and and none of these depends upon C,
then the feasibility criterion for the case where C is the 
only random variable remains the same as for ordinary deter­
ministic linear programming.
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In deterministic linear programming, the criterion for 

selecting the entering variable, the optimality criterion, is 
based upon selecting the most promising non-basic variable 
which when introduced into solution will cause improvement in 
the objective function. When the coefficients of the objec­
tive function of the linear program are random variables, the 
optimality criterion of ordinary linear programming does not 
apply. Â modified version of the optimality criterion suit­
able for use with the probabilistic case will now be developed, 

Consider the linear program stated earlier.

Maximize = CXo
subject to AX < b 

X > 0

where C is a vector of random variables. Adding slack vari­
ables and renaming the vector b as P^, the problem can be 
written as

Maximize = CXo
subject to (A,I)X =

X > 0.

Let Xg be a basic feasible solution and Cg = (C^, Cg,
..., C^) be the corresponding coefficients of the objective 
function. For the current basis, = CgXg and BXg = P^ +
Xg = b“^Pq . It follows that, X^ = CgXg = CgB~lpg. Now if Xj 
is the entering variable, then
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- 8a 3

■i -1and a = B P.

Let X^* be the new value of the objective function correspond­
ing to Xg*. The only reason to introduce the variable Xj into 
the solution would be to improve the solution (i.e., X^’>X^). 
We have that

*o = %

*o’ ■

- %  - - Cj)

*o’ = - Cj)

Therefore, the only way for X^' > X^ is for eCC^a^ - Cj) 
to be negative, and since 0 > 0 this implies that (Cga^-Cj)<0.

When the C vector is a vector of random variables, 
this condition, (CgO^-Cj) <0, does not have a meaning in the 
absolute sense, so a probability statement will be developed 
to represent this condition.

The first condition will be that a variable will be 
considered as a candidate for an entering variable as long 
as the following probability statement holds:

P[(C_B"lp. - C.) <01 > 0
J 3
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The selection criterion thus becomes: from among

those non-basic variables whose P[(C_B^P. - C.) < 0] > 0,B ] J
select as the candidate for the entering variable that vari­
able Xj corresponding to the greatest probability value.

This modified optimality criterion and the regular 
feasibility criterion function to change bases until all feas­
ible bases of the linear program have been investigated.

At each feasible basis the linear progreun will have 
a probability of being optimal. This is the probability P^ 
mentioned earlier in this chapter.

The conditions that determine P^ are contained in the 
optimality criterion. A particular basis will be optimal as 
long as there are no non-basic variables whose coefficients 
are negative. This is the condition (CgB"^Pj - Cj) > 0, and, 
since C is a vector of random variables, this condition de­
fines the set

= {C|(CgB'^Pj - Cj) > 0}

The probability of a particular basis a being optimal is now 
given by

P. = f f(c)dc
* "'s.

The Case I Algorithm 
Step 1: a. Select a starting basic feasible solution. The

normal condition will be to select the slacic 
variables as the starting solution.
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b. Set the solution index to correspond to the 

starting solution.
Step 2: Select the candidate for the entering variable using

the modified optimality criterion.
Step 3; Select the candidate for the leaving variable using 

the regular feasibility criterion.
Step 4; a. Set the solution index to correspond to the new 

solution.
b. Check the solution list to determine if this solu­

tion has been investigated before.
1. If solution has been investigated before, re­

turn to Step 2 and select the next most prom­
ising candidate.

2. If solution has not been investigated before, 
proceed to Step 5.

Step 5: Carry out a primal simplex iteration in order to up­
date the tableau.

Step S: Use the information contained in the objective func­
tion row to compute and the probabilities required 
to evaluate the new non-basic variables. Return to 
Step 2.

Step 7: The algorithm terminates when all feasible solutions
have been investigated.

The solution index mentioned in Steps lb, 4a, and 4b 
of the algorithm is a reference system that is used to prevent
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cycling in the algorithm. The modified optimality criterion 
which selects the entering variable at each iteration can 
produce as the new basis a basis that has previously been 
considered. This is an undesirable feature since no new in­
formation is obtained by returning to a previous basis, and 
this may cause the algorithm to cycle and not consider all 
of the feasible bases.

The solution index prevents the algorithm from cycling 
by creating a reference number for each basis when it is 
determined by the selection of the entering and leaving vari­
ables. This reference number is compared to the list of 
reference numbers corresponding to previously considered bases 
and if the current basis has been investigated before, it will 
not be checked again. The algorithm proceeds by selecting 
the next most promising candidate for an entering variable 
using the modified optimality criterion and repeating the 
process of assigning a solution index and checking the list 
of reference numbers.

The reference system uses a number that consists of 
as many digits as there are problem variables. The digits in 
the number are set to a value of one if the corresponding 
variable is a member of the basis or to a value of zero if the 
variable is not a member. Consider an example with four vari­
ables and two constraints. The solution index for the basis 
that consists of variables Xg and would be the number 0101.

The complete procedure is shown by a flowchart in 
Figure 1.
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^  START ̂

SET STARTING BASIC 
FEASIBLE SOLUTION

SET SOLUTION INDEX 
TO CORRESPOND TO 
STARTING SOLUTION 

AND STORE IN 
SOLUTION TABLE

SELECT ENTERING 
VARIABLE Xa TO 
CORRESPOND TO 

P[(CgB-l* -Cj)<0]>C

SELECT LEAVING VAR] 
ABLE USING FEASI­
BILITY CRITERION

SET SOLUTION INDEX 
TO CORRESPOND TO 

NEW SOLUTION

SELECT NEW ENTERING 
VARIABLE BASED UPON 
"MODIFIED" OPTIMALITY 
CRITERION EXCLUDING 

PREVIOUSLY CONSIDERED 
________ Xj'S________

NO. m s  THIS 
SOLUTION BEEN 
INVESTIGATED

b e f o r e?

.YES

HAVE 
ALL NON- 

ISIC VARIABLES 
BEEN CONSIDERED AS 

ENTERING VARI­
ABLES?

rES

Figure la. Flowchart for the Case I Algorithm
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PERFORM A SIMPLEX 
PRIMAL ITERATION

COMPUTE %  AND PROB 
ABILITIES FOR NEW 

INON-BASIC VARIABLES

ALL FEASIBLE SOLUTIONS 
HAVE BEEN INVESTIGATED

HALT

Figure lb. Case I Flowchart Continued.
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Example Problem 

Maximize = C^X^ + CgXg

subject to X^ + 2Xg < 10

2X

*1' *2 i ®
where and are independent remdom Vcuriables 

Adding slack variaüoles and rewriting.

Maximize X^ = C^X^ + CgXg + 0 X^ + 0 X^ 

subject to X^ + 2Xg + Xg = 10

2Xĵ  + Xg + X^ = 10
Xi, Xg, X3 , X, > 0

Assume that the distributions of and are distri­
buted exponentially with parameters = 1 /1 0 , ^ 2  ” 1/10» re­
spectively. That is,

- l iC .  , - y i  C-
f  (Ci> = * xJ  e , 0 < "

“ ^2^2 1 “l è  ^2f  (C2 ) = Xge 2 2 ^ ^   ̂ 10 2 , 0 < C, < *

Tableau 1: X^ X^ X^ X^ X^

-C^ -Cg 0 0 0
1 2 1 0 10
2 1 0 1 10



20
X 1 = 0 o

= G
Solution Index: 0011
Current Basic Variables: (X^, X^)
Selection of Entering Variable:

P[-Ci < 01 = P[C^ > 0] = J f (Cĵ )dCĵ  = 1

PE-Cg < 0] = PECg > 0] = f(CgldCg = 1

The probability values are equal, so the selection at 
this point is arbitrary. Select Xg as the entering 
variable.

Selection of Leaving Variad)le :
Ratios: 10/2 = 5 select Xg as being 10/1 = 10

New Solution Index: 0101

Tableau 2: Xo %1 X2 *3 ^4
C2/2 - 0 Cj/2 0 SCg

1/2 1 1/2 0 5
.J/2 ... 0 -1/2 1 5

^2 - JL =2>^=1-5=2 - JL £(Ci)f(C2)dC^dC. 
®2 ®2 

Sg = (CiCg/Z z 0 and Cg/2 - % 0}
r« rc,/2 

*■2 - I  * ‘=2> X  f(Ci)dC^dC;
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Co/2

'î ■ /, n  • j[ n  " i * i

- 1 '  é

- / ;  ^  • ‘i « 3

- 1 - ' 4 [  • i - ' ^ i
Pg = [0 + 1] + 2/310 - 1] = 1 - 2/3 = 1/3

Selection of Entering Variable:
P[Xg will enter] = P[C2/2 < 0 ] = 0
P[X^ will enter] = PIC2/2 - < 0 ]
P t C j / 2  -  <=1 <  0 1  =  J [ "  * < C 2 >  %  " 3  f ( C i ) d C ^ d C ;
P[C2/2 - < 0] = 1 - PIC2 / 2 - Cl a 0] = 1-1/3 = 2/3
Select as the entering variable.

Selection of Leaving Variable:
Ratios : - 10

= 10/3 + select X^ as leaving

New Solution Index: 1100
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Tableau 3:

* 2  =̂ 3 *4
0 » ¥ 2 - ¥ i 3^1-3<=2 10/3(C^ + Cg)

0 1 2/3 -1/3 10/3
1 0 -1/3 2/3 10/3

= 10/3 (C^ + Cg)

*’3 = JL =2 >
®3

®3 = (C|(2/3 Cg - 1/3 Z 0) and (2/3 - 1/3 Cg

®3 = / ; c  “  " 2

^3 = dCĵ  = 1/3

Selection of Entering Variable:
P[Xg will enter] = P[2/3 Cg - 1/3 < 0]
P[Xj will enter] = P[2/3 - 1/3 < 0]
These two probabilities are both equal to 1/3 so the 

choice is again arbitrary. However, if X^ is chosen as 
the entering variable, the leaving variable will be X^. 
This would cause the new basis to be (Xg, X^) which has 
already been investigated in Tableau 2. The Solution
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Index would be set to 0101, and since this basis has been 
considered previously, the algorithm would proceed by se­
lecting Xg as the entering variable.

Selection of Leaving Variable:
Ratios: 3.33/0.667 = 5 + leaving variable is Xg.

New Solution Index: 1010

Tableau 4: X^ X^ X^ X^

0 Cĵ /2-C2 0 C^/2

0 3/2 1 -1/2 5
1 1/2 0 1/2 5

»4 - JU[ «=2 >

Sj = {C|{C^/2 - Cg) > 0 and C^/2 > 0}

fC./2P4= J f(Ci)dcJ 1 f(C2>dC2
P4 = 1/3

The algorithm terminates at this point because all 
feasible bases have been investigated. For this problem, the 
only non-basic variable in Tableau 4 with a probability of 
improving the objective function is X2 . The feasibility cri­
terion would select Xg as the leaving variable yielding the 
new basis (X^, X2 ) which has been investigated previously.
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The distribution of the optimal value of the objective 

function may now be calculated.

Case II. b-Vector is a Vector of Random Variables
Again consider the linear programming problem in the 

following form:

Maximize = CX 
subject to (A,l)x = b

X i 0

and let = b. This yields the form

Maximize X^ = CX o
subject to (A,I)X = Pq

X > 0

In order to develop the algorithm for this case, it is 
necessary to consider the optimality and feasibility criteria. 
The optimality criterion remains the same as for deterministic 
linear programming. Let Cg be the coefficient vector corre­
sponding to the current basis that is defined by the basis 
matrix B. It follows that

and the only reason for changing basis is if the new basis 
will cause an improvement in the value of the objective func­
tion. Letting X^* denote the value of the objective function 
for the new basis, this condition yields.
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*o‘ >

0a^'
' " ‘S '  S ’ (

S '  = S S  - + «Cj

S ’ = S  - ® <S“  ̂- S ’

since 0 is positive the condition X^* > requires that 
(CgO^ - Cj) < 0, CgB"^Pj < Cj. The vector is the only ran­
dom variable in this problem, so the optimality criterion re­
mains the Scune as that for deterministic linear programming.

Considering the feasibility criterion, let the vectors 
of current basis B be denoted by (P^, P^, ,,,, P^). Then,

= s
J i  = S '

s -
Let Pj be a new vector from the remaining non-basic vectors 
in (A,I). It follows that,

m .
E P^ * P .k«l ^ K 3

and letting = (a^i,

Boi = Pj
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Multiplying both sides by g we obtain 0 Ba^ = 8Pj, and sub­
tracting BXg = Pq yields

B(Xg - 8ui) + 6 Pj = Pq

BX* = pQ - ePj

X* = B"^ (Pq - 8]pj) = B'lp^ - 8 B~^P j

B”^P - 8a 3oX* = 8

The feasibility criterion would dictate that the new 
basis be selected so th%t its components will be non-negative. 
This means that - 8ai > 0 for k = 1, . m and Xj = 8 > o 
Since

. -1.Xg - 8a] = Pq " - 0

B Ip . ,
then 8 <  ^  and aJ = pT^p.

aJ J
B~lp

which yields 8 < — —

The selection of 8 is therefore dependent upon B~^, P^, and 
Pj. P^ is the vector of random variables, so the choice of 
8 must be accomplished by some mechanism that accounts for 
this factor. This consideration suggests selecting as the 
leaving variable that variable which has the lowest probabil­
ity of creating an infeasibility if it is selected as the 
leaving variable.
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For this case where the b vector is a vector of random 

variables, the distribution of the optimum value of the ob­
jective function is determined by considering the value of the 
objective function at each optimal basis and taking into 
account the likelihood of feasibility of each basis.

For the purpose of considering the feasibility condi­
tion, consider the matrix form of the linear programming prob­
lem. At any iteration the current values of the problem are 
given in the following matrix-tableau form:

CgB"^A-Cj

B ^A I b "^p _

where Cg is an defined previously and and represent a 
division of the C vector with Cjj representing the coeffi­
cients corresponding to the starting solution of the problem.

At any iteration the value of the basic variable is 
given by

In the case where is a vector of random variables, the 
problem becomes one of determining if a basis is feasible. In 
order to determine the distribution of the optimal value of 
the objective function, one must find an optimal basis and 
then determine the probability that the basis is feasible.
The feasibility condition is satisfied as long as all basic
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variables are non-negative. This means that Xg > 0 and since 
Xg = then > 0 .

Let = {b|B“^P^ >0}. The set is the set of all 
values of the random variables for which the problem is feas­
ible. The set of inequalities so defined determines the space 
over which a particular optimal basis is feasible. Letting 

denote the probability that an optimal basis is feasible, 
this yields

- I f(b)db

This analysis forms the basis of the algorithm for 
the case where the b vector is a vector of random variaüdles.

The Case II Algorithm 
Step Is a. Place the problem in tableau form and select a 

starting solution.
b. Check the optimality of the problem using the 

regular Optimality Criterion.
c. If the problem is optimal, go to Step 3; other­

wise go to Step 2.
Step 2s a. Select the candidate for the entering variable 

using the optimality criterion.
b. Select the candidate for the leaving variable 

based upon the modified Feasibility Criterion,
i.e., select the variable j with the least value 
for the probability statement P[B ^P^/B ^P^ < 0],
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c. Perform a Primal Simplex iteration and go to 

Step 1, part b.
Step 3; a. Record the current value of the objective 

function.
b. Set the solution index to correspond to the 

solution.
c. Compute the probability that the current optimal 

basis is feasible. That is.

- L f(b)db
Of

d. Compute the probability that the basic variables 
are negative and proceed to Step 4.

Step 4: a. Select the leaving variable to be that variable
corresponding to the variable that has the great­
est value for the probability statement, 
P[(b“^P^)^ < 0 ],

b. Select the entering variable from among the non- 
basic variables according to the Optimality Cri­
terion of the Dual Simplex Method.

c. Set the solution index to correspond to the new 
solution.

d. If all optimal feasible solutions have been in­
vestigated, go to Step 5. If not, go to Step 4e.

e. Check the solution list to determine if this 
solution has been investigated before.
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1. If the solution has been investigated before, 

return to Step 4a and select the next most 
promising candidate.

2. If the solution has not been checked before, 
update the tableau by performing a Dual Sim­
plex iteration. Return to Step 3.

Step 5: If all optimal feasible basis have been considered,
the algorithm terminates. (This will be detected 
when optimality has been achieved and the processes 
of changing basis to consider feasibility causes the 
problem to become non-optimal.)

The complete procedure is shown by a flow chart in Figure 2.

Example Problem 
Consider the dual problem of the example that was pre­

sented for Case I.

Minimize = lOY^ + lOYg 

subject to Y^ + 2Yg ^ Cg

+ *2 i C,
X w  Ï, £ 0

Changing the sense of the inequalities and adding 
slack variables gives

Minimize Y^ = lOY^ + lOYg + O'Yg + O'Y, 

subject to -Y, - 2Y_ + Y_ = -C-
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PLACE PROBLEM IN 
TABLEAU FORM

IS 
PROBLEM 
OPTIMAL

SELECT ENTERING VARIABLE 
USING OPTIMALITY CRITERION 
SELECT LEAVING VARIABLE 

USING MODIFIED FEASIBILITY 
_______CRITERION_________ _I

RECORD THE CURRENT VALUE 
OF THE OBJECTIVE FUNCTION 

SET SOLUTION INDEX FOR 
THE CURRENT BASIC SOLUTION

COMPUTE PROBABILITY THAT 
THE CURRENT OPTIMAL 
BASIS IS FEASIBLE

= / c £(b)db

UPDATE TABLEAU BY COMPUTE PROBABILITY THAT
PERFORMING A PRIMAL BASIC VARIABLES ARE
SIMPLEX ITERATION NEGATIVE

0
Î

SELECT LEAVING VARIABLE 
AS VARIABLE (i) CORRES­
PONDING TO P[(B-lp_)i<0] 

THAT IS MAXIMUM°____I
SELECT ENTERING VARIABLE 

ACCORDING TO THE 
OPTIMALITY CRITERION OF 
THE DUAL SIMPLEX METHOD

Figure 2a. Flowchart for the Case II Algorithm.
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SET SOLUTION INDEX TO 
REPRESENT THIS NEW 

SOLUTION

HAVE 
ALL OPTIMAL 

FEASIBLE SOLUTIONS 
BEEN INVESTI­

GATED?
HALT

HAS
THIS SOLUTION 
BEEN INVESTI­

GATED?
DELETE THE SELECTED 
LEAVING VARIABLE 

FROM CONSIDERATION

UPDATE TABLEAU BY 
PERFORMING A DUAL 
SIMPLEX ITERATION

Figure 2b. Case II Flowchart Continued.



33

-2*1 - *2 + *4 = -(=2
Yi, Yj, Yj, Y^ > 0

Tableau 1: Y^ Yĵ  Y^ Yj Y^

—10 —10 0 0 0
-1 - 2  1 0 -C^
— 2 — 1 0 1 —Co

Since the problem is a minimization problem, it is 
optimal. The current basis is (Yg, Y^). The set de­
fining the space over which the basis is feasible is given
by

= {Cl -C^ and -C^ ^ 0}

Thus = JJ^ f(C^, Cg) dC^dCg

= J ̂  f(C^) J  ° f(Cj^)dC3̂ dC2 = 0

Y 1 = 0 o
= 0

Solution Index: 0011
Selection of Leaving Variable:

P[-Ci < 0 ] = PlCĵ  > 01 = 1

PC-Cg < 0 ] = PCCg > 0 ] = 1
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The probêüt>ility values are equal, so the selection at 

this point is arbitrary. Select as the leaving
variable.

Selection of Entering Varicible ;
Ratios: -10/-1 = 10

-10/-2 = 5 -»■ select as entering.
New Solution Index: 1010

Tableau 2: Y^ Y^ Y^ Y^ Y^

1 0 -5 0 -5 5C^

0 -3/2 1 -1/2 C^/2 -

1 1/2 0 -1/2 C./2

Og = {cl(C2 /2 - C^) and > 0 }

92 = j j  fCl'Cz'

r- rc,/z
92 = X  ^"=2 ' Jo

- J c . l V 2

„ .  p * . ] - .

q, = 1 - 2/3 = 1/3
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Selection of Leaving Variable;

P [%1 will leave] = PECg/Z < 0 ] = 0

P[Yg will leave] = PEECg/Z - C^) < 0 ]
r CO < CO

PEECg/Z - C j ) < 0] = f ( C j ^ )  J  ^^f(C^)dC^dC2 = Z/3

Select Y 3 as the leaving variable.
Selection of Entering Variable;

Ratios; -5/-^ = 10/3 + select Yg as entering

-5/-^ = 10 

New Solution Index: 1100

Tableau 3; Y^ Y^ Yg Yg Y^

0

0

0 -10/3 -10/3 10/3 (Cĵ  + Cg)

1 -Z/3 1/3 Z/3Ci - 1/30%

1 0 1/3 -Z/3 Z/3C2 - l/3Ci

Yq  ̂= 10/3 + 10/3 Cg

O 3 = {C| (2/3 Cĵ  - 1/3 Cg) and (Z/3 - 1/3 > 0}

^ 3  “ J J q dCj^dCj

r  r '""zq? = J  f (C ,)  J  f(C,)dC,dC2 
^ ''0 ^ nzg/z i A ^

Qg - 1/3 (Note calculation is the same as the 
previous example.)



36
Selection of Leaving Varieible:P[Yĵ  will leave] = P[(2/3 - 1/3 C^) < 0]PCYg will leave] = P[(2/3 - 1/3 Ĉ ) < 0]

r* rc ,/2P[Ŷ  will leave] = J  f(C^) J  ^ f(C2)dCĵ dC2 = 1/3
r* rCg/ZP[Y2 will leave] = J f (C2) J  f (Ĉ )̂dĈ dC2 = 1/3

These values are equal, so the selection is arbitrary; 
however, if Y^ is selected as the leaving variable the 
entering variable becomes Y^, and this will produce a new 
basis of (Y^, Yg) which has been considered before. The 
solution index feature of the algorithm will detect this 
and choose Y^ as the leaving variêüale. The entering vari­
able becomes Y^ and this will produce a new basis of 
(Y2 , Y^), which has not been investigated previously.

New Solution Index: 0101

Tableau 4: Y^ Y^

1 -5 0 -5 0 5C^

1/2 1 -1/2 0 Cĵ /2

-3/2 0 -1/2 1 0 ^ / 2 - C2

V  = S‘=l
“ (C|C]^/2 and (Cĵ /2 - C^) > 0 }
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9 4 = 4  J, ((Cg) dC^dC^

<J4 = 1/3

Any further attempt to change bases causes the prob­
lem to become non-optimal or to try to return to a previ­
ously investigated basis. Thus, the algorithm terminates 
with the following results:

V  = ®' V  = SCz' V  = ^3 (Cl + C,), = 5C^
“ ®' ^ 2 ” ^ 3 “ V 3, q, = 1/3

These results are the same as those that were obtained 
when the primal problem was solved using the Case I 
Algorithm.

In order to determine the distribution of optimal 
we use the following relationship

that was developed earlier in this chapter. Since = 0 and 
= 0 with probability one the product of q^^f(Y^^) equals 

zero and does not contribute to the distribution of Y^. The 
remaining terms are [qgf(Y^^) + q^f(Y^^) + q^f(Y^^)J. Since 
for this exanq>le 9 % = Sg = 9 4 » then

f(Y^) = 1/3 [f(Y^^) + f(Yo^) + f(Yo^)l
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2 4Let us now examine the nature of and Y . Noticeo o2that Yq = SCg and that Cg is distributed exponentially with

2X = 1/10. Since Y^ is the product of a constant and a ran­
dom variable, its distribution is a function of the random 
variable. This condition yields the distribution of Y^ which

4is exponential with X = 1/50. Notice also, that Y^ = 5C^ and
since is distributed exponentially with X = 1/10, we have
that Yq ^ is distributed exponentially with X = 1/50.

The random variable Y^^ is a function of both c, ando 1
C2 and is in particular the product of a constant times the 
sum of and Cg. Since and Cg are exponentially distrib­
uted with equal parameters the distribution of their sum is 
a gamma distribution with parameters r = 2 and X = 1/10. Thus
Yq ^ is distributed as a gamma with r = 2 and X = 3/100.

The distribution of optimal Y^ is given by the alge­
braic sum of these distributions. Therefore

f(Y^) = 1/3 If(Yq ^) + f(Y^^) + f(Yo^)l

where f(Yg^) is gamma with r = 1, X = 1/50,
f(Y^^) is gamma with r = 2, X = 3/100,
f(Y^^) is gamma with r = 1, X = 1/50.

The range of values over which these distributions are valid
is given by the conditions that define the range of the ran-

i 2dom variables that define each Y^ . Since Y^ » 5Cg and range
2of Cg is 0 to » the range on Y^ is 0 to * and similarly the

range of Y^^ and Y^^ is 0 to «. This yields the following:
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2 1f(Y/) =

3
3 3 3 “TÏTÏÏ̂f (Yq ) = Yns Î3T • W t f '  ®  f 0 < V  i «

4 1 “50''f(Yq ) = e , 0 ^ w < ®

In order to check that f(Y^) is a probability dis­
tribution function consider

f(Y_)dY
All ° *o

This integral should be equal to a value of one if f(Y^) is 
a probability distribution function. This is verified as 
follows:

f(Yo)dYo = Jl/3 f(YQ^) d Y ^  + Jl/3 f (Y^^) dY

+ J 1/3 f(Y

3
o

o">

£(Yo>dYo - 1/3 JJ f(Y/) d Y /  + JJ f (y/) dY

• r * » .

f(Yo>dYo = 1/3 [1 + 1 + 1] = 1

and this demonstrates that the function f(Y^) is a probability 
distribution function.



CHAPTER III

MODIFICATION OP THE ALGORITHM FOR CALCULATION OF AN 
APPROXIMATION OF THE DISTRIBUTION OF THE OPTIMAL 

VALUE OF THE OBJECTIVE FUNCTION

The algorithm developed in Chapter II for Case I 
considers all of the feasible bases of a problem. In order to 
develop an approximation algorithm let us investigate how the 
algorithm functions to cover the probability space defined by 
the random variables.

Notice that the probability space over which the 
bases are optimal is a subset of R^. The algorithm developed 
in Chapter II divides this space into subspaces by cutting 
the original space with hyperplanes that yield convex sub­
spaces. This is easily seen since the space R^ is convex and 
the hyperplanes are convex and it follows that the inter­
section of convex sets is convex. The only common points are 
the boundaries of the subspace which are the hyperplanes and 
these are of measure zero as far as the probability functions 
are concerned.

To show that the algorithm proceeds contiguously 
around the probability space it is necessary to show that

40



41
one of the hyperplanes that defines the subspace over which 
the i ^  basis is optimal also is one of the hyperplanes that 
defines the subspace over which the (i + 1 ) basis is opti­
mal. This is equivalent to showing that these two subspaces 
have a common boundary. These boundaries are defined by the 
coefficients of the non-basic variables at each basis.

Let Xj and X^ be the entering and leaving variables 
respectively at the i^^ iteration of the simplex method. By
definition Xj is a non-basic variable at the i iteration

sitand a basic variable at the (i + 1 ) iteration and X^ is 
basic at the i^^ iteration and non-basic at the (i + 1 ) 
iteration. Consider the general linear programming problem 
in the form:

Maximize X^ = CX 
subject to (A,I)X = Po

X k 0

Let C = (Cj , Cjj), where Cjj represents the vector correspond­
ing to the coefficients of the starting solution Xjj. Let

Then, according to Taha (20), it follows that the following 
matrix tableau is equivalent to the tableau form of the 
simplex method:
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1 -  (=11

, 0 b“^a B-1 ■ b”^po

The coefficients of and can be found by producing this 
tableau at any iteration.

Let the coefficients of X^ and X^ be denoted by (Zj-C^) 
and (Z -C^) respectively. Since Z. = C_,b”^P. and Z^ = C_b”^P^, 
these coefficients are found in the top row of the tableau as 
indicated by the general form of the coefficients. Since the 
simplex pivot method is equivalent to the above method, consi­
der the argument based upon the simplex technique.

Theorem 2: The Case I algorithm of Chapter II inves­
tigates the probability space of optimal bases in a contiguous 
manner.

The coefficient of X^ at the i*̂  ̂iteration is (Zj-Cj) 
and the coefficient of X^ at the i^^ iteration is equal to 
zero since it is a basic variable (see Appendix A). At the

S t and(i + 1 ) iteration, the coefficient of X^ is (Z^ - C^),
the coefficient of X^ is equal to zero. According to the
simplex technique, the pivot element selected for the î **
iteration is determined by the selection of X^ and X^ and is
denoted by The simplex pivot method then creates the
(i + I)®*" iteration by replacing each element â ^̂  at the î **
iteration that is not in the row and column of the pivot by

(i)
(i+1 )
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sitThe coefficient of at the (i+1) iteration is thus given by

(Z -c , (i+1) = (y c r )  • V  : (^j-Cj) • 1' r r' ]
r

U..I
“r

(Z -c ) = - - L  (Z. - C.)1a^D D 3

Therefore, the coefficient of the non-basic variable at the 
(i + 1) iteration is equal to a constant K times the coeffi­
cient of the non-basic variable X^ at the i^^ iteration where 
K = -l/Opi.

Since the hyperplanes that form the boundaries of the
optimal space for each basis are defined by the condition
(Zĵ  - Cĵ ) k 0 for the non-basic variables k, the condition
(Zj - Cj) > 0 at the i^^ iteration and (Z^ - C^) = K(Zj-Cj) ̂ 0

at the (i + 1)®^ iteration define the Scune hyperplane. This 
shows that the probability space over which the bases at the 
î *' and (i + 1 )®^ iteration are optimal have a common boundary 
and that the algorithm presented in Chapter II proceeds con­
tiguously around the probability space, and Theorem 2 is 
proved.

Letting M denote the number of feasible bases and 
noticing that

M
E P. * 1 

i=l ^
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we have a method readily available for modifying the algorithm 
to give an approximation algorithm. Instead of continuing to 
iterate until all feasible bases have been considered, the 
accumulated probability of feasible bases being optimal will 
be used to cause the iterative process to stop.

Let Y denote a variable whose value is to be selected 
by the decision maker and reflects his evaluation of the worth 
of complete information. The criterion for continuing itera­
tions will be to continue selecting entering and leaving vari­
ables to compute the (s + 1 )®^ iteration until

s
(1 - I P.) & Y, where s < M 

i=l 1

Since this modified algorithm will operate to produce 
f*(X^) which is an approximation of f(X^), it is only neces­
sary to consider what occurs as y approaches zero. This means 
that

s
(1 - I P.) z Y 

i=l ^
as Y approaches zero gives

s
(1 - Z P.) a 0 

i=l ^
s

or 1 a E P,
i=l ^

M
but since £ P. = 1

i=l ^
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it follows

s
E p. — 1 1=1 ^

and therefore s equals M which means that

- *«o>

The Case I algorithm modified for the approximation 
algorithm becomes:

Step 1: a. Select a value for y and select a starting basic
feasible solution.

b. Same as before.
s

Step 2: a. If (1 - E p.) a y, proceed to Step 7.
i=l ^

b. If not, select the candidate for the entering
variable using the modified optimality criterion. 

Step 3: Scune as before.
Step 4: a. Same as before

b. Same as before except for
1. If solution has been investigated before 

return to Step 2b and select the next most 
promising candidate.

Step 5: Same as before.
Step 6 : Use the information contained in the objective func-

8
tion row to compute p., E p., and the probabilities

^ £= 1 *
required to evaluate the new non-basic variables. 
Return to Step 2a.
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Step 7 : The algorithm terminates when the y limit is 

violated.

The algorithm in Chapter II for Case I and the modi­
fied version just presented selects entering variables based 
upon their probability of improving the objective function.
As shown previously, this causes the probability space over 
which feasible bases are optimal to be swept out in a contigu­
ous fashion. This does not imply that the bases are consi­
dered in decreasing order of probability of being optimal.

To see that the bases are not necessarily considered 
in this manner consider the following example problem:

Maximize - C^X^ + CgXg
subject to Xĵ  + 2Xg i 10

2X^ + Xg < 10 

+ Xg ^ 6

X^, Xg % 0

Figure 3 is a graph of the feasible space for this problem 
and shows that it has five feasible bases, namely (X^ = 5,
X^ — 0) , (X^ — 0, X^ — 5) , (Xĵ  — 4, X2 — 2), (X^ — 2, X2 — 4) , 
and (X^ ~ 0 , X2 — 0 ).

Assume C^ and C2 are exponentially distributed inde­
pendent random variables with parameters = 1 / 1 0 and 
^2 = 1 / 1 0 respectively, and add slack variables to make the 
constraints equalities. Select y to be equal to 0.4.
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10

0 5 10

Figure 3. Graph of Feasible Space 
for Example Problem.

Tableau 1:

-C, -C.
1
2
1

2
1
1

0
1
0
0

0
0
1
0

0
0
0
1

0
10
10
6

Pi = P(-C^ and -Cg % 0 ) = 0

Solution Index: 00111
Current Basic Variables: (Xg, X^, Xg)

(1 - E Pĵ ) = l - p ^  = l -  0 = l X y  
Selection of Entering Variable:

P[-C, < 01 = P[C, > 0] = 1, P[-C, < 0] = P[C_ > 0] = 1
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The probability values are equal, so the selection is 

arbitrary. Select as the entering variable.
Selection of Leaving Variable:

Ratios: 10/1 = 10
10/2 = 5 -► select as leaving variable 
6/1 =  6 

New Solution Index: 10101

Tableau 2: X_ X, X-, X_ X. X_0 1 2 3 4 5
1 0 C^/2~C^ 0 C^ / 2 0 5C^

0 3/2 1 -1/2 0 5
1 1/2 0 1/2 0 5

 0 1/2 0 - 1/2 1 1

V  = 5=1
P2 = P[Ci/ 2 - Cg and C^ / 2 z 0 ]

P2 = *<=2 > } “ *«=1 > <5=i'5=2 = 1/5

Current Basic Variables: (X^, X^, Xg)
2

(1 - Pi) = 1 - (Pi + Pg) = 1 - (0 + 1/3) = 2/3 4 Y 

Selection of Entering Variable:
P[Ci/ 2 < 0 ) = 0
P[Ci/2 - Cg < 0] = 1 - PtCi/2 - Cg 2 0] = 1 - Pi = 2/3

Selection of Leaving Variable:
Ratios « * 10/3
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^ = 2 ^select X- as leaving.17?
New Solution Index: 11100

Tableau 3: X̂  ̂ X^ X^ X^ Xg

1 0 0 0 C^-Cg 2C2-C^ 4Cj_+2C2

0 0 1 1 - 3  2

1 0  0 1 - 1  4

0 1 0 - 1 2  2

= 4c^ + 2C2 

P 3 = P[(C^ - Cg) and (2C2 - k 0 ] 

r“ f 2C2P3 = f (C2 ) f (Ĉ ) dCj^dC2 = 1/ 6

Current Basic Variables: (X^, X2 , Xg)
3

(1 - I p.) = 1 - (0 + 1/3 + 1/6) = 1 - 1/2 = 0.5 Z Y
i=l 1

Using the entering and leaving variables selection 
criteria as before we obtain 

New Solution Index: 11010

Tableau 4: X^ Xĵ  X2 X3 X^ Xg

1 0  0 Cg-C^ 0 2C^-C2 2C ĵ +4C2
0 0 1 1 3  2

1 0 - 1 0 2  2 

0 1 1 0 - 1  4
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= 2C- + 4C» o ± z

P4 = PEfCg - c^) and (2C^ - C^) k 0 ]

P4 = f(c^) ^ ftCg) dCgdCi = 1/6

Current Basic Variables: (X^, X^, X^)
4

(1 - E p.) = 1 - (0 + 1/3 + 1/6 + 1/6) = 1 - 2/3 = 1/3 < Y i=l ^
At this point the approximation algorithm would stop 

leaving one feasible basis uninvestigated (see Figure 3). 
Continuing to the next iteration produces 

New Solution Index: 01011

^ 0 ^ 1 X2 ^3 ^4 ^5
1 C2/2-C1 0 C/ 2 0 0 SC2

3/2 0 -1 / 2 1 0 5
1 / 2 0 -1/2 0 1 1

1 / 2 1 1/2 0 0 5

*0 ® =
P5 = PttCg/Z - C^) and C^/2 z 0]

Ps = X ” X "  ^ “=2> “ 21=1 = 1/3
Since Pg > P4 the bases are not considered in decreas­

ing order of probability of being optimal and this example 
serves as a counter example to the premise that bases are con­
sidered in decreasing order.
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Figure 4 is a graph of the space of the random vari­

ables over which the feasible bases are optimal and shows how 
this space is swept out by the algorithm.

For the case where the b-vector is a vector of random 
variables (Case II of Chapter II), we are concerned with the 
probêibility of feasibility of optimal bases. The algorithm 
for this case considers all of the optimal bases of a problem 
of this type. An argument similar to that given for Case I 
provides the basis for the construction of an approximation 
algorithm for the case where the b-vector is a vector of 
random variables.

Let N denote the number of optimal bases of a problem
'hhand the probability that the i. optimal basis is feasible. 

Then,
N
2 q, = 1 
1=1 *

and again we have a method for modifying the Case II algorithm 
to give an approximation algorithm. Instead of continuing to 
iterate until all optimal bases have been considered, the 
accumulated probability of optimal bases being feasible will 
be used to cause the iterative process to stop.

Let a denote a variable whose value is to be selected 
by the decision maker and reflects his evaluation of the worth 
of complete information. The criterion for continuing itera­
tions will be to continue selecting leaving and entering vari­
ables to compute the (s + 1 )°^ iteration until
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2C

2C

1C, is distributed f(C.)

Cg is distributed f(Cj) = e ^  , 0 < v ^ 00

Figure 4, Graph of Probability Space.
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s

(1 - E q») < a, where s < N 
A= 1 *

The Case II algorithm modified for this a limit approx­
imation now becomes;

Step 1 : Same.
Step 2 : Same.
Step 3: a. Same.

b. Same.
c . Same.
d. If (1 sE q.) 3 a proceed to Step 5. If not, & = 1

go to Step 3e. 
e. Compute the probability that the basic variables 

are negative and proceed to Step 4.
Step 4 : Same.
Step 5: The algorithm terminates when the a limit is vio­

lated.

Example Problem 
As an example of the use of the modified Case II 

algorithm consider the following problem that was presented 
by Bereanu (2).

Minimize = 3X̂  ̂+ 4X^ + 5X^ + 2X^ + 2Y^ + 3Yg + 5Yg

+ 4Y^ + + 5Zg + 2Zg + 3Z^

subject to * 1 + * 2 * * 3 * * 4 * 1 1 * 0 0 0

Y^ + Yg + Yg + Y* Z 13,000
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+ Z4 3 8 , 0 0 0

= 7,000+u
%2 + Yg + Zg = 10,000
X3 + Y3 + Z3 = 5,000
X^ + + Zj = 1 ,0 0 0+v

X^, Yĵ , Z^ i 0, i = 1, «••, 4

where u and v are exponentially distributed random variables 
with = 2/1000 and X^ = 3/1000. Select a to be 0.01.

Replacing each equality constraint by two inequality 
constraints and adding slack variables puts the problem in 
the form found in Tableau 1.

The random variables in this problem appear in the 
restrictions of the constraints so the problem will be in de­
termining the feasibility of optimal solutions. Tableau 1 is 
not feasible so is selected as the leaving variable, Yg 
is selected as the entering variable and a Dual Simplex itera­
tion is performed to produce Tableau 2.

Tableau 2 is not feasible so Sg is selected as the 
leaving variable, Y^ is selected as the entering variable 
and a Dual Simplex iteration is performed to produce Tableau
3.

The former process continues until Tableau 6 is 
obtained.

Examination of Tableau 6 reveals that the problem is 
optimal (minimization problem) and the basis has a probability



TABLEAU 1

*1 *2 *3 ^4 ^1 ^2 ^3 ^4 "l ^2 ^3 4̂ Si S2 S3 S4 S5 S6 s? Ss S9 SiO Sll
-3 -4 -5 ■-2 -2 —3 “5 —4 “6 -5 ■■2 -3 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11,000
0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 13,000
0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 8,000
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7,000+u
-1 0 0 0 -1 0 0 0 ■-1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -7,000-u
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 T_ 0 0 0 0 0 10,000
0 -1 0 0 0 -1* 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -10,000
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 5,000
0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 -5,000
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1,000+v
0 0 0 -•1 0 0 0 -1 0 0 0 -■1 0 0 0 0 0 0 0 0 0 0 1 -1,000-v

^Indicates pivot element determined by optimality and feasibility criteria.

Ü1in



TABLEAU 2

*1 ^2 ^3 ^4 ^1 ^2 ^3 ^4 "l 2̂ 3̂ 4̂ ^1 ^2 ^3 ®4 ^5 ^8 h o h i
•3 -1 -5 -2 -2 0 -5 -4 -6 '-2 -2 -3 0 0 0 0 0 0 -3 0 0 0 0 30,000
1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11,000
0 -1 0 0 1 0 1 1 0 -1 0 0 0 1 0 0 0 0 1 0 0 0 0 3,000
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 8,000
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7,000+u
•1 0 0 0 -1* 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -7,000-u
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 10,000
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 5,000
0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 -5,000
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1,000+v
0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1,000-v

^Indicates pivot element determined by optimality and feasibility criteria.

Ola\



TABLEAU 3

Xl ^2 ^3 ^4 ^1 ^2 ^3 ^4 1̂ 2̂ 3̂ 4̂ ^1 ^2 S3 S4 S5 Se S7 Ss S9 SlO Sll
-1 •-1 -5 -2 0 0 -5 -4 -4 -2 -2 -3 0 0 0 0 -2 0 -3 0 0 0 0 44,000+2u
1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11,000

-1 -1 0 0 0 0 1 1 -1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 -4,000—u
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 8,000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 7,000+u
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 10,000
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 5,000
0 0 -1 0 0 0 --1 0 0 0 -1* 0 0 0 0 0 0 0 0 0 1 0 0 -5,000
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1,000+v
0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1,000-v

*Zndicates pivot element determined by optimality and feasibility criteria.

Ul



TABLEAU 4

*1 ^2 ^3 ^4 ^1 ?2 ^3 ^4 "l 2̂ ^3 4̂ ^1 ^2 S3 S4 S5 Se S7 Ss S9 SlO Sll
—1 —1 —3 —2 0 0 -3 -4 -4 <-2 0 -3 0 0 0 0 -2 0 -3 0 -2 0 0 54,000+2u
1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11,000

—1*—1 0 0 0 0 1 1 -1 -1 0 0 0 1 0 0 1 0 1 0 0 0 0 -4,000-u
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 8,000
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 7,000+u
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 10,000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 V 0 0 0 0 0 0 0 0 -1 0 0 5,000
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1,000+v
0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1,000-v

ui00

*Indicates pivot element determined by optimality and feasibility criteria.



TABLEAU 5

h ^2 ^3 ^4 ^1 ^2 Y3^4 "l ^2 ^3 ^4 ^1 ^2 ®3 ^4 SlO Sll
0 0 -3 -2 0 0 -4 -5 -3 -1 0 -3 0 -1 0 0 -3 0 -3 0 -2 0 0 58,00D+3u
0 0 1 1 0 0 1 1 -1 -1 0 0 1 1 0 0 1 0 1 0 0 0 0 7,000-u
1 1 0 0 0 0 '-1 -1 1 1 0 0 0 -1 0 0 -1 0 -1 0 0 0 0 4,000+u
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 8,000
0 -1 0 0 0 0 1 1 -1 -1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3,000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 .0 0 0 -1 0 0 0 0 10,000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 5,000
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1,000+v
0 0 0 -1* 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1,000-v

*Indicates pivot element determined by optimality and feasibility criteria.

U1
so



TABLEAU 6

Xl ^2 ^3 ^4 ^2 ^3 ^4 "l 2̂ ^3 "4 Si ®2 S3 S4 S5 Se s? Ss S9 SlO Sll
0 0 -3 0 0 0 <-4 -3 -3 -1 0 -1 0 -1 0 0 -3 0 -3 0 -2 0 -3 60 ! 000+3u+2v
0 0 1 0 0 0 1 0 -1 -1* 0 -1 1 1 0 0 1 0 1 0 0 0 1 6,000—u—v
1 1 0 0 0 0 -1 -1 1 1 0 0 0 •-1 0 0 -1 0 -1 0 0 0 0 4,000+u
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 8,000
0 ■-1 0 0 0 0 1 1 -1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3,000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 10,000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 5,000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 •-1 1,000+v

*Indicates pivot element determined by optimality and feasibility criteria.

o
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of being feasible. This condition is (6000 - u - v) ^ 0 which 
defines the set = { (u,v) : (u+v) i. 6000}. The current 
value of is 60,000 + 3u + 2v and at this point the distri­
bution of is given by

f(Xo> -

The probability that this optimal basis is feasible 
is given by

= P16000 - u - V > 0] = P [ u + V i  6000]

Jroo r 6000-v
f(v) I f(u) dudv 

0 •'0

3 / 1 0 0 0 ^ 6000-v

qj^ =  J ” 3 / 1 0 0 0  g - S / l O O O  V  g y

- 3.-12 f 1/1000 e-1/1000 V  gyJo

Now

= 1 - 3e"12 = 1 _ 0.00001875

q^ = 0.99998125 
s=l

1 - Z q, = 1 - 0.99998125 = 0.00001875 ^ a 
&=1 *

so the algorithm terminates.
The only reason for changing bases (i.e., investi­

gating another solution) would be if an infeasibility could 
exist in the current solution. This condition would be
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satisfied if (6000 - u - v) were negative, but the probability 
of this is extremely small (approximately 0.00001875). The 
approximation algorithm with a set at any value above this 
small probability would terminate and yield = 60,000
+ 3u + 2v with probability and f(X^*) = qĵ fĵ (X̂ )̂. Bere­
anu's technique would be to use sensitivity analysis to find 
the set that defines q^ and then would require a change of 
basis using parametric programming methods to investigate the 
other basis which has a probability of optimality of 
qg = 0.00001875.

An estimate of the amount of information that is lost 
by using the approximation algorithm is desirable. Of course, 
the total amount of the probability space that is left out is 
less than or equal to a by the nature of the algorithm. 
Another interesting measure is the change in expected value 
that would occur if more bases were investigated. Let s 
denote the last basis that is checked and consider the con­
tribution of the (s + 1)®^ basis. We know that

s
(1 - E q.) S a

N s
and that E q, = (1 - E q.) 6 a

A=s+ 1 ^ &= 1
N

so E q, 3 a
&=s+l *

Also since q^ % 0 for each &, we have that

so 9(s+l) S »



TABLEAU 7

*2 *3 *4 ^2 ^3 ^4 ^2 ^3 ^4 ^1 ^2 ^3 ^4 ^5 ^6 ^7 ^8 ^9 ^10 ^11_________________

0 0 “*4 0 0 0 —5 —3 —2 0 0 0 —1 —2 0 0 —4 0 —4 0 —2 0 -4 54,000+4u+3v
0 0 —1 0 0 0 —1 0 1 1 — 1 —1 —1 0 0 —1 0 —1 0 0 0 —1 u+v—6/000

10.000-v
14.000-u-v 

0
3/000 mw

0
16/000-u-v 

0
5/000

0
1/000+v
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The difference between f* (X̂ ) at the s iteration 

and f*(X^) at the (s + 1)®^ iteration is given by

(s+1 ) - = 9(s+l) *(s+l) <*o>

Therefore, f*(X^) - fMX^)^ < a f(;+i, (x„)

At any iteration, the value of the basic variables is 
given by

For the case where all of the constraint relationships are 
sums, it follows that

B'^Po ^ Pq

Also, at any iteration

*o “ V ^ P o  

*o = CgB'lPo i V o

The largest possible value for Cg would be the ro largest coef-
]

Bficients in the objective function. Let C_^ denote these;
this gives

*o  ̂<=bPo  ̂V  Po
This yields

* * < V s r t  - * * « 0 > 8 ^ “ *S+1 <*0 > ^ “ ( ( V  Po>
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and the difference in the expected value is less than

a E[X, ] =  a f :
"(s+1 )

These values for Bereanu*s example problem are

*o =

11,000
13.000 
8,000 
7,000+u

1 0 . 0 0 0  
5,000 
1 ,0 0 0+v

Cg = (5, 5, 4, 6, 5, 3, 4)

This gives 
1C * = (55,000 + 65,000 + 32,000 + 28,000 + 6u15 O

+ 50,000 + 15,000 + 4,000 + 4v)

C„ = 249,000 + 6u + 4v15 O

For the selected a value (i.e., a = 0.01) we have that

a f(C„ P_) = 0.01 f (249,000 6u + 4v)15 O

The random variables u and v are independently distri­
buted according to exponential probability distribution func­
tions with parameters = 2/1000 and X^ = 3/1000. Let 
y^ = 6u and y2 = 4v. The distribution of these random vari­
ables is exponential with parameters = 2/6000 and Xg = 3/4000
respectively. Let f . (X) denote the distribution of the

^1 ^ 2
sum of these two random variables. This distribution must be 
approximated since it is the distribution of the sum of two
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gamma distributions each with parameter r = 1 but with unequal 
X's.

The characteristic function of is given by
—1

♦ „ (u) = (1 - ^ )
n  *1

and for y^ by

If these characteristic functions are approximately equal,
then their probability laws are approximately equal.

In order to construct an approximation function, let
X* = (X^ + Xg)/^ and let f^*(X) be an approximation of f^ (X)
and f * (X) be an approximation of f (X) where f * (X) and 

^ 2 ^ 2 ^ 1  
f * (X) are given by 
” 2

f(X) = X* e"^** dX, 0 i X i »

Now, é (u) = 4» (u) à (u)
^1 ^ 2  ^ 1  ^ 2

and this indicates that f . (X) is a gamma distribution
^1 ^ 2

with parameters r = 2, and X* = 13/24,000.
The difference in expected values when the (s+1) 

basis is not investigated is less than or equal to a (249,000) 
+ oEEX^s+l] or 0.01(249,000) + 0.01(48,000/13) « 2527.

2Examination of Tableau 7 gives the value of X^
- 54,000 + 4u + 3v and qg = 0.00001875. This means that for
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this problem the actual difference in the expected value of 
the objective function is approximately

1.875 X 1 0"S (54 X 10^) + 1.875 x lO”^ E[X^^]

2As before, the distribution of is the distribution of the 
sum of the random variables = 4u and yg = 3v which are 
exponentially distributed with X parameters 1 / 2 0 0 0 and 1 / 1 0 0 0  
respectively. Using the same type of approximation as before, 
this means that the actual difference is approximately

1.875 X 10"5 [54,000 + 8000/3] = 1.06

This value represents a very small difference in the expected 
value of the optimum of the objective function emd indicates 
that the approximation algorithm eliminates only a small 
amount of information when it does not investigate this basis.

The choice rule for entering variables used by the 
algorithms of Chapter II and the approximation algorithms en­
sures that if a basis has a zero probability of being optimal, 
it will never be considered. This occurs because the selec­
tion condition for the entering variable represents the amount 
of the probability space that has not yet been considered.

The selection rule selects a non-basic variable to 
enter only if it has a positive probability of contributing to 
the objective function. This means that for some non-basic 
variable, the following statement is true:
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p [(c «b“^p . - C.) < 0] > 0

The actual value of this probability statement is the amount 
of the probability space that has not been previously consi­
dered. Therefore, the entering variable choice rule will 
eliminate from consideration those bases that have a zero 
probability of being optimal. This feature offers a further 
savings in computational effort since it is not necessary to 
consider these bases in the computation of the distribution 
of the optimal value of the objective function.



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS

Algorithms have been presented for the solution of 
the distribution problem of probabilistic linear programming 
under the conditions that either the coefficients of the ob­
jective function or the restrictions of the constraints are 
random variables. These algorithms are based upon the simplex 
technique with appropriate modification of the rules for se­
lecting entering and leaving variables to account for the 
presence of random variables in the problem.

The method developed by Tintner and Sengupta (18, 19) 
for finding the distribution of the optimal value of the objec­
tive function requires the solution of as many linear programs 
as there are combinations of remdom variables and the possible 
values that they may assume. For problans involving more than 
a few random variables, the number of computations required 
becomes quite burdensome. The algorithms presented in this 
paper offer the advantage of producing the desired distribu­
tion of the optimal value of the objective function without 
requiring the solution of more than one linear program.

69
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Another feature of llntner and Sengupta*s method is 

that it is dependent upon sampling techniques for selecting 
values for the random variables and for fitting a function to 
the optimal values that are obtained. Because of this, the 
method actually produces an approximate distribution and not 
an exact distribution. Tintner and Sengupta do not give any 
bounds upon the error that may be produced by this technique.

The algorithm presented in Chapter II of this paper 
will produce the exact distribution of the optimal value of 
the objective function. The approximation algorithm of Chap­
ter III produces an approximate distribution and gives a bound 
on the error in the mean and variance of the distribution of 
Xq that is created by the approximation.

The algorithms are not dependent upon placing upper 
and lower bounds on the range of the random variables as in 
Bereanu's computational method. Additionally, Bereanu's method 
does not give a specific procedure for changing bases, but re­
lies on parametric programming methods. The algorithms devel­
oped in this paper are based upon the simplex method and con­
tain specific rules for changing bases that prevent considera­
tion of bases that have a probability of being optimal equal 
to zero. This condition is not necessarily guaranteed by 
Bereanu's computational technique.

The method of selecting entering and leaving variables 
is important since it selects candidates that are best ac­
cording to a probabilistic measure of their ability to improve
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the solution. As stated in chapter III, the algorithms inves­
tigate the probability space in a contiguous manner and this 
leads to the concept of producing the approximation algorithms.

Bereanu's technique requires an investigation of all 
of the feasible bases of the problem and in this sense it is 
totally enumerative. He does not present an approximation 
algorithm based upon his technique.

The modified approximation algorithms make possible a 
determination of an approximation of the distribution of the 
optimal value of the objective function. Bounds are given for 
the amount of probability of either optimality or feasibility 
that is omitted and the difference in the expected value of the 
distribution function that is caused by using the approxima­
tion algorithms. These algorithms are important because of 
the savings in computational effort that they produce. This 
reduction of ccxnputations becomes even more significant as the 
number of random variables in a problem increases.

Two computer programs are given in Appendix B. The 
first of these programs is designed to produce the information 
required for determination of the distribution of the optimal 
value of the objective function when the C-vector is a random 
vector whose elements are described by discrete probability 
distribution functions. The second program handles the same 
case with the exception that the elements of the C-vector are 
described by continuous normal distribution functions.
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The algorithms developed in this dissertation do not 

consider the case where both the C-vector and the b-vector are 
simultaneously vectors of random variables. This condition 
offers an area for further research and a possible extension 
of this work. Additionally, different rules for selecting 
entering and leaving variables may be developed and their 
effect upon the investigation of the probability space will 
need careful consideration.

The integrations that are necessary for the determina­
tion of the probability that either a feasible basis is opti­
mal or that an optimal basis is feasible present some diffi­
culty. In general, these are conditional integrals, and in 
the case where the original variables are normally distrib­
uted, this integration must be accomplished by numerical 
methods. This process has not been included in the computer 
program and provides an area for further work in terms of 
reducing the effort required in solving a problem of this 
type. A similar comment holds for the discrete program since 
the summations required are conditional sums, and again this 
process has not been included in the current computer program.

Another area for further work is the development of 
computer programs that will consider probability distributions 
other than the discrete or continuous normal cases.
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APPENDIX A

PROOF THAT THE COEFFICIENTS OF THE BASIC VARIABLES 
ARE ZERO WHEN THE C-VECTOR IS A 

VECTOR OF RANDOM VARIABLES

Theorem: Let the C-vector be a vector whose elements are
independent random variables and consider the linear 
program

Maximize X = CX o
subject to AX = P^ 

X ^ 0

The coefficients of the basic variables of this prob­
lem are equal to zero.

Proof: 1. Consider the general tableau form of the problem
which represents the solution at any iteration.

Cg - Coefficients of basic varied>les
76
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B - portion of the A matrix associated with the 

basic variables 
(Cj, - a partition of C-vector where Ĉ j. represents 

the coefficients of the starting solution.
2. The coefficients of all of the variedsles are given

by either (CgB”^A - C^) or (CgB"^ - Ĉ j.)
3. Consider a variable and assume that it is a 

basic variable.
4. The coefficient of is given by (C^B'^P^ - C^) 

or (CgB"^ - Cj).
5. Since X^ is a basic variable, its column vector

Pj is an element of B.
6 . Therefore, b”^ contains the inverse of this column

vector and thus CgB”^P^ for the jth variable
which is basic becomes C^I = C^.

7. Therefore, (C^B'^Pj - C^) = (C^ - C^),
8 . Now, Cj is a random variable so let Cj assume any

of its possible values, say Cj*.
9. Therefore, (C^B'^Pj - Cj) = (Cj* - Cj*) = 0  and

since (C_B~^P. - C.) is the coefficient of a basic = ] ]
variable, the theorem is proved.



APPENDIX B 
COMPUTER PROGRAMS

The two computer programs presented in this appendix 
entitled respectively PROGRAM 'DISCRETE* and PROGRAM 'CONTINU­
OUS* are written in Fortran IV. They are designed to use the 
Case I Algorithm when the coefficients of the objective func­
tion are either discretely distributed random variables or 
continuously distributed normal random variables.

Each of these programs produces as its output a modi­
fied taüaleau that contains the information needed for the 
construction of the inequalities that define the set Ŝ .̂
This set is necessary for the computation of the probability 
that a feasible basis is optimal, i.e., P̂ .̂

In addition, the tableaux contain the basic variables 
and their values at each iteration. This information is pre­
sented in a form that is similar to the regular simplex method 
tableau.

The program user must supply the data that defines 
the problem that he wishes to solve. This includes the number 
of original variables in the problem, the number of constraint 
equations, the probability distributions of the random vari­
ables, the coefficients of the constraint equation (the A
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matrix), the constraint restrictions (the b vector), and the 
starting solution. The programs use this data and the Case I 
Algorithm to produce the output described eüoove.

PROGRAM 'DISCRETE* User Information

Progrcun Limitations 
As currently written this program will handle a linear 

program with a maximum of nine random coefficients in the ob­
jective function and a maximum of nine constraint equations. 
This limitation may be removed by changing the Dimension 
Statements in the program. Let n be the number of variables 
and m be the number of constraints and k be the number of 
possible values of the random variables. The Dimension State­
ments should be modified as follows: A[m, (m+n) ], CONTAB
[(mi-n), (m+n+1)], VRV ICm+n) , k], PRU [(m+n), k) , PR (m+n),
KV (m+n). At the beginning of the program the statement 
MAX = 9 should be changed to MAX = (m+n). These changes will 
handle emy size linear program up to the limitations of the 
computer being used.

Input Required
Card 1.

Columns 1-5 : The number of constraint equations in Format
15

Columns 6-10: The number of original variables (not includ­
ing slacks) in Format 15
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Columns 11-80: Blank

Card 2.
Column 1 : Blank
Columns 2-16: Value of the random variable in Format F15.6
Columns 17-32: Probability of the random variable having the

value in Col. 2-16 in Format F15.6 
Columns 33-80: Blemk

Note: The second card is repeated until all values
of the random variable have been read in and the last card 
of this set for each random variables is followed by Card 3 
which signals the end of this random variable.

Card 3.
Column 1 : Blsuik
Columns 2-16: Zero in Format F15.6
Columns 17-32: Zero in Format F15.6
Columns 33-80: Blank

Note: Slack variables are indicated by a Card 2 with
zero in Columns 2-16 and 1.0 in Columns 17-32 and again each 
of these is followed by a Card 3.

Card 4. Beginning in Column 2 in a F7.3 Format, this 
card contains the coefficients of the A matrix and the b vec­
tor with each card representing one equation. This card is 
repeated as required to read in all of the constraint 
equations.
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Card 5. This card contains the information concerning 

the starting solution.
Columns 1-5 : The column of the basic variable in the start­

ing solution in Format IS 
Columns 6-10: The row of the basic variable in the starting

solution in Format IS 
Columns 11-80: Blank

Note: There will be as many of these cards as there
are constraint equations (i.e., m of these).

A listing of this program and an excunple problem 
follow at the end of this appendix.

PROGRAM 'CONTINUOUS* User Information

Program Limitations 
The same general comments given for program limita­

tions for PROGRAM 'DISCRETE* apply to this program. The 
Dimension Statement for PROGRAM 'CONTINUOUS* should be modi­
fied as follows: A[ (m, (m+n)], CONTAB [(m+n), (m+n+1)], RVMV
(m+n), RVAR (m+n), PR (m+n) in order to handle program with 
more than nine total variables. Also, for this program the 
statement MAX = 9 should be changed to MAX = (m+n).

Input Required 
Card 1. Same as for PROGRAM * DISCRETE.*
Card 2.

Column 1 : Blank
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Columns 2-8 : Mean value of the random variad)le in Format

P15.6
Columns 9-15: Variance of the random variêüsle in Format

F15.6
Columns 16-80 : Blank

Note: There will be (m+n) of these cards with the
slack variables having zero mean and zero variance.

Card 3. Same as Card 4 for PROGRAM 'DISCRETE.* 
Card 4. Same as Card 5 for PROGRAM * DISCRETE.*
A listing of this program and an example problem 

follow at the end of this appendix.
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c  PROGRAM DI S CRE T E
C PROGRAM D I S C R E T E  COMPUTES T E E  INFORMATION NECESSARY FOR THE 
C CALCULATI ON 0 =  THE P R O R A R I L I T V  THAT A F E A S I B L E  B A S I S  I S  
C OPTI MAL WHEN THE C O E F F I C I E N T S  OF THE O B J E C T I V E  F UN C T I O N  ARF 
C D I S C R E T E L Y  D I S T R I B U T E D  PANDCM VA R I A B L E S  

I N T E G E R $ 2  I H E A D « I X O  
D I ME N S I O N  I H E A D ( 9 )
D I ME N S I O N  A ( 9 » 9 | .  C C N T A B I R « I 0 ) •  VR V ( 9 # 9 ) #  P R V I 9 . 9 I  
DI MENSI ON T V R V f l O O O ) *  T P R V I l O O O l • K V f 9 > « I B A S I S l l O O )  
D I ME N S I O N  P R < 9  )
DATA I H E A J / « C l »  • • C 2 * . * C 3 «  , * C 4 *  * * C 5 *  . « C f i *  ♦ • C 7 « ,
DATA 1 X 0 / * X 3 » /
DATA V R V , P R V , C O N T A B / A I * . 0 . B I * . 0 . 9 0 * . 0 /
I N = 5  
I O U T = 6  
MAX = 9
NBA S E - 0  
1 8 = 0

R E A O ( I N » 5 3 3 0 : M . N . E  
WRI TE 11 OUT$ 4 9 0 0 )  M$N$B  
NV=M*N  
NN=NV*1  
MM=M
DO 3 0 0  J = 1 $ N V  
K=0
DO t o o  L=1  $MAX
R E A D ! I N $ 5 6 0 0 )  V R V ( L $ J ) $ P R V ( L $ J )
I F ( P R V ( L $ J ) . E 0 . 3 . 0 )  GO TO 2 0 0  
K=K4l 

1 0 0  CONTINUE  
2 0 0  CONTI NUE  

K V I J ) = <
3 0 0  CONTI NUE

DO 4 0 0  J = 1 $ N V  
K V N = K V ( J )
DO 4 0 0  L = I $ K V N  

W R I T E ! 1 U U T $ S 2 0 0 )  V P V ( L $ J ) $ P R V f L $ J )
4 0 0  CONTI NUE

DO 4 5 0  1=1 $ NV 
C O N T A B ! I $ I ) = - I .

4 5 0  CONTINUE
DO 5 0 0  1=1 $MM
READ!  I N $ 5 2 S 0 )  !  A!  I $ J )  $ J = l $ N N )

5 0 0  CONTINUE
DO 5 4 0  K=i$MM 
RE A D ! I N $ 5 0 0 0 )  U U $ I  I 
DO 5 2 0  U = I $ N N  
I F ! U . E Q $ U U )  GO TO 5 2 0
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DO 5 2 0  1 = 1 «NV
CONT^aC I t J ) = C C N T A i C I  I I  , J ) * r . O N T A B (  I . J J )

5 2 0  CONTINUE
DO 5 3 0  1 = 1 «NV 
CONTAOC I $ J J 1 = 0 .

5 3 0  CONTINUE  
5 4 0  C O N T I n u e  
5 5 0  CONTINUE

W B I T E ( I O U T « 5 3 0 0 )
WRI TE ( I  OUT# 5 8 0 0 )  (  H- HADt  J )  • J =1  #NV> • IXG
DO 6 0 0  1 = 1 # N V
WRITE ( 1 0 ü T # 5 9 3 0 ) l H E  ACf I ) . ( CONTAR( I # J ) # J = 1 . N N )  

6 0 0  CONTINUE
W R I T E ! I 0 U T . 5 7 0 0 )

DO 6 5 0  1 = 1 .MM
WR : TE ( I OUT ,  5 2 0 0 )  ( A ( I # J )  ,  J-=l  #NN)

6 5 0  CONTINUE
u u=o
I 8 A S E = 0  
P T = I  #0  
P M A X = 0 . 0  
DO 9 0 0  U = 1 , N V  
I CT = 0

DO 8 0 0  1 = 1 #NV
IFICUNTAa (I.U).EO.O.) GO TO 800 
IF(ICT.NE.O) GO rO 700 
1C T=K V( I )
CON=CONTAafI#U)
DO 6 7 5  K = 1 . ICT 
TVRVC K) = V R V ( K # I ) * C C K  
T P R V I K ) = P 4 V C K # I )

6 7 5  CONTINUE  
SO TO 8 0 0  

7 0 0  CONTINUE  
L M T = K V ( I )
KM=LMT#:CT  
C O N = C O N T A B ( t # U )
DO 7 5 0  K=I#LMT  
KK=KM- K4 I CTF1  
0 0  7 5 0  L = l # I C T
T V R V I K K ) = T V R V ( L ) 4 C C K « V R V f K # I )
T P H V I K K ) = T P R V I L ) * P R V ( K # | )
KK=KK«-1 

7 5 0  CONTINUE
I CT=I CT4 LMT  

8 0 0  CONTINUE
I F  f I C T . N E . O )  GO TO P 5 0  
I B A S E = I B A S E 4 | 0 * 4 C N V > U )
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P H (  J» = 0 , 0  
GO T3  9 0 0  

aso CONTINUE  
P I  VLZ = 0 .  0  
DO 8 7 5  < = l * I C T  
I F ( T V R V ( K | . G T . . 0 ) CC TO 8 7 5  
I F ( T V R V f K ) « N E « « 0 >  GC TO 8 6 0  
P R V L Z = P R V L Z * T P ^ V | K 1 / 2 .
GO TO 3 7 5  

8 6 0  CONTINUE
P R V L Z = P R V L Z » T P R V ( K I  

8 7 5  CONTI NUE
P T = P T * ( l . O - P R V L Z I  
I F I P M A X . G T . P R V L Z I  GO TO 9 9 0

p m a x - p r v l z
J J  = J  

8 9 0  CONTI NUE
P R (  J)  =P» VLZ  

9 0 0  CONTI NUE  
18=18+1
I B A S I  SCI 8 1 = 1  BASE  
I F C J J . E a . n i  GO TD 1 6 0 0  

9 5 0  CONTI NUE
N d A S E = I S A S E + I O * * ( N V - J J )
H T E S T = 9 9 9 9 .
I I = 0
DO 1 0 0 0  1 = 1 .MM 
IFCAC I * J J ) . L E . O . I  GO TO 1 0 0 0  
R = A C I « N N I / A C I • J J I  
I F C R . G E . R T E S T l  GO TO 1 0 0 0  
11=1 
RTE S T = «

1 0 0 0  CONTINUE
I F C I l . E Q . O )  GO TO 1 0 6 0  

DO 1 0 2 0  J = 1 , N V  
I F C A C I I . J l . N E . 11 GO TO 1 0 2 0  
DO 1 0 1 0  I = 1 » M  
I F C 1 1 . E 3 . I 1 GO TO 1 0 1 0  
IFCAC I . J I . N E . O I  GO TO 1 0 2 0  

1 0 1 0  CONTI NUE
DO 1 0 1 5  1 = 1 . N V
I F C C 3 N T A B C l « J » « N E . O . )  GO TO 1 0 2 0  

1 0 1 5  CONTI NUE
N 3 A S E = N 3 A S c - 1 0 # $ C N V - J )
GO TO 1 0 4 0  

1 0 2 0  CONTINUE
W R I T E C l O U T * 5 5 0 0 }
GO TO 1 6 0 0
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1 0 4 0  CONTINUE
o n  10  5 0  J = 1 * I B
I F ( N A A S E . E Q . I B A S I S I J ) ) GO TO 1 0 6 0  

1 0 5 0  CONTI NUE
GO TO 1 0 9 0  

1 0 6 0  CONTI NUE  
P R (  J J  )= . 0  
J J = 0
P M A X = 0 . O  
0 0  10  7 0  J =  1 , NV
I F f P M A X . G E * P R ( J ) 1  GC TO 1 0 7 0  
P M A X = P T ( J )
J J  = J  

10  7 0  CONTI NUE
I F ( J U . E O . O )  GO TO 1 6 0 0  
GO TO 9 5 0  

1 0 9 0  CONTI NUE
= I V O T = A ( I 1 • J J )
o n  1 1 0 0  1 = 1 , MM
OO 1 1 0 0  J = 1 , N N
I F ( I . E O . I I ) GO TU 1 1 0 0
I F ( U . E O . U J l  GO TO 1 1 0 0
A(  I .  J ) = (  A d  ,  J ) * P I V C T - A (  I ,  J J ) * A I  I I ,  J  ) I / P I V O T  

1 1 0 0  CONTI NUE
OQ 1 2 0 0  U = 1 , N N  
A ( 1 I  .  J )  =AC 11  ,  J ) / P I  VOT 

1 2 0 0  CONTINUE
DO 1 3 0 0  1 = 1 , MM
AI I , J U ) = 0 .

1 3 0 0  CONTI NUE
AI  I I , J J } = 1 •  
o n  1 4 0 0  J = 1 , N N  
0 0  1 4 0 0  1 = 1 , MV 
I F i J , E Q , J J )  GO TO 1 4 0 0
C O N T A T ! I , U ) = C C N T A 3 ( I  , J l - A ( I I , J I 4 C O N T A R f I , J J )  

1 4 0 0  C O N T I N J E
0 0  1 5 0 0  1 = 1 , NV  
C0NTA5C I , J J )  =  0 . 0  

1 5 0 0  C O N T I N J E  
GO TO 5 5 0  

1 6 0 0  CONTI NUE  
CALL EXIT  

4 9 0 0  FORMAT!" " . 2 : 5 , F 8 . 3 )
5 0 0 0  FORMATI 2 1 5 , 2 F 4 , 2 )
5 1 0 0  FORMAT I I  H l >
5 2 0 0  FORMAT! 5H , 1  0 F 7 . 3 )
5 2 5 0  F O R M A T ! I X , 1 0 F 7 . 3 )
5 3 0 0  FORMATI 12H1NEW T A B L E A U )
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5 4 0 0  F ORMA T* I H , F 7 . 3 * 2 I * >
5 5 0 0  FORMAT* • « • • E R R O R  I * )
5 6 0 0  FORMAT* IH . 3 F 1 5 . 6 I  
5 7 0 0  FORMAT( 1  HO)
5 8 0 0  FORMAT * • 0 •  * 4 X . 1 0 ( 2 X• A 2 « 3 X ) )  
5 9 0 0  FORMAT * IH • A 2 * 2 X « 1 C F 7 . 3 )

END
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NEW TABLEAU
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Cl C2 C3 C4 xo
Cl -1,000 c.c 0.0 o.c 0.0
c? n.o -I.000 0.0 0.0 c.o
C3 1 .000 2.000 0.0 o.c 10.000
C4 2.C0C l.OOC Q.C 0.0 10.000

1 .000 2.000 1.000 0.0 10.000
2.000 1 .000 0.0 l.CCO 10.000



NFW TABLFAIJ
90

Cl C2 C3 C4 xr
Cl — 1#000 c.c c.o o.c c.o
C2 c.sno 0.0 0.500 0.0 5.00CC3 c.o 0.0 * l .000 0.0 0.0
C4 1,‘îOC r.o -0.500 o.c 5.00C

C.500 I.000 0.500 0.0 5.000
1.500 0.0 —0.500 I.COO 5.0CC
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NFW TAPtFAU

Cl C2 C3 C4 xc
Cl o . n c . o - 0 . 1 1 1 0 . 6 6 7 3 .3 3 1
C2 0 . 0 0 . 0 0 . 6 6 7 - 0 . 1 3 3 3 . 3 3 3
Cl c . o 0 . 0 - I . 000 O.C 0 . 0
C4 c . c 0 . 0 - 0 . 0 0 0 -I.COO C.CCO

o . n 1 .0 0 0 0 . 6 6 7 - 0 . 1 3 3 3 . 3 1 1
I .  000 0 . 0 - 0 . 1 1 1 0 . 6 6 7 1 .^ 13



CM

e c u o w oc o c o c cc c o o o co • # • • • *
X  If o ino If in
c o o c co o c c oinÜ inc If in< • • * • • #
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c  PROGRAM CU N T 1 N U 3 J S
C PROGRAM CONTIPWOUS COMPUTES THE INFORMATION NECESSARY FOR 
C THE CALCULATI ON 0 =  T4 E F R O B A B I L I T Y  THAT A F E A S I B L E  B A S I S  I S  
C OPTIMAL WFEN THE C O E F F I C I E N T S  OF THE O B J E C T I V E  F UN C T I O N  ARE 
C I NDEPENDENT NORMAL RANOCM VARI ABLES  

I NTEGERA 2  I H E A D , I X O  
DI ME NS I ON I H E A D ( 9 )
DI ME NS I ON A ( 9 » 9 > t  CCNTABCR «1 0  ) « RVMV 1 9 1 • RV A R I 9  I 
D I ME N S I 3 N  I B A S I S I l O C I . P R f 9 )
DATA C O N T A B / 9 0 A 0 . 0 /
DATA I H = A J / * C I '  • • C 2 *  . •  C 3  • ,  * C4 * .  • C5 • . »  C6«
DATA I X D / ' X 3 ' /
I N = 5  
I 0 U T = 6  
MAX = 9  
NOASE=0  
I B = 0

R E A D l I N . S O a O )  M . N . B  
* R I T E ( I 0 U T , A 9 D 0 )  M , K , B  
NV=M+N  
NN=NV+I  
MM=M 
K=0
DO 2 0 0  J = I . N V
R E A D ! I N . S S O O )  RVMV( J ) « R V A P I J )
MR I T E ( I O U T . 5 2 0 0 )  R V M V ( J ) .  R V A R ( J )

2 0 0  C O N T I N J E  
4 0 0  CONTINUE

DO 4 5 0  1 = 1 , NV 
CQNT AB(  I .  I ) =  - I  •

4 5 0  CONTINUE
DO 5 0 0  1 = 1 , MM
R E A D ! I N , 5 2 5 0 )  ( At  I , J ) , J - 1 , N N )

5 0 0  CONTINUE
DO 5 4  0  K = l , M M  
R E A D t l N . S O O O )  J J , I  I 
DO 5 2 0  J = 1 , N N  
DO 5 2 0  l = l , N V  
I F ( J . E Q . J J )  GO TO 5 2 0
CONTABI 1 , J ) = C C N T A B ( I , J ) - A C ! I , J ) * C O N T A R C I , J J )

5 2 0  CONTI NJ E
DU 5 3 0  1 = 1 , N V  
C O N T A B C I , J J ) = 0 #

5 3 0  CON T I NJ E  
5 4 0  CONTINUE  
5 5 0  CONTINUE

W R I T E ( 1 0 U T , 5 3 0 0 )
M R I T E t l O U T . S B O O )  f I H E A D t J )  , J = f  , N V ) * 1 X 0
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ou 6 0 0  1 = 1 «NV
W n i T E f 1 0 U T » S 9 0 0 )  I H E A D ( T )  « { C O N T A B f I • J l « J = l  , N N )  

6 0 0  CONTI NJ E
WRITE ( I  OUT > 5 1 0 0 )
0 0  6 5 0  1 = 1 , 4 M
W R I T E ! I O J T , S 2 0 0 ) ( A ( I . J ) . J = I . N N *

6 5 0  CONTINUE  
J J = 0  
I B A S E = 0  
P T = I . 0  
P M A X = 0 . 0  
OO 9 0 0  J = I , N V  
O M E A N = 0 , 0  
0 V A R = 0 . 0  
I C T = 0
OU 8 0 0  1 = 1 , NV
I FCCQNTAB ( : , J ) . E O . O . )  CO TO 8 0 0  
I C T = I C T + 1
D M E A N = O M E A N + R V M V ! I ) $ C O N T A B ( I , J )
D V A R = D V A R + R V A T ! I ) * C O N T A B ( I , J ) * C O N T A Q ( l , J )

8 0 0  CONTINUE
I F f I C T . N E . O )  3 0  TO 6 5 0  
I R A S E = I W A S E + 1 0 * * ( N V - J }
P R (  J )  = 0 ,  0  
GO TO 9 0 0  

8 5 0  CONTINUE
P R V L Z = P R O a ( O M E A N . O V # R I  
W R I T E ( l O U T . 5 1 0 0 )
P T = P T * ( 1 . 0 - P R V L Z )
I F ( P M A X . G T . P R V L Z )  GC TO 8 9 0  
PMAX=PRVLZ  
J  J=«J 

8 9 0  CONTINUE
P H ! J ) = P R V _ Z  

9 0 0  CONTINUE  
1 8 = 1 8 + 1
I 8 A S I S C i a ) = I d A S E  
I F ( J J , E 0 , 0 )  GO TO 1 6 0 0  

9 5 0  CONTINUE
N 8 A S E = : d A S E + 1 0 * * ! N V - J J )
R T E S T = 9 9 9 9 .
11 = 0
0 0  1 0 0 0  1 = 1 , MM
I F ! A C I , J J ) . L E . O . )  GC TO 1 0 0 0  
3 = A ( 1 , N N ) / A C 1 • J J )
I F C R . G E . R T E S T ) 0 3  TO 1 0 0 0  
1 1 = 1
RTEST=T
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1 0 0 0  CONTINUE

i F ( : i . E a . o )  G u  t a  i 0 6 0  
0 0  10 2 0  J = l » M V  
I F C A (  I I • J ) . N E . l > GC r n  1 0 ? 0  
DO 1 0 1 0  1 = 1 , M 
I F ( I I . E O . I )  GO 1 0  1 0 1 0
I F ( A ( I . J l . N E . O I  Gü TC 1 0 2 0  

10  1 0  CONTINUE
DO l o i s  1 = 1 . NV
I F ( C O N T A B I I . J ) . N E . 0 . )  GO TO 1 0 2 0  

1 0 1 5  CONTINUE
N B A S E = N B A S E - 1 3 $ $ I N V - J )
GO TO 1 0 4 0  

1 0 2 0  CONTINUE
M R I T E I I O U T . S S O O )
GO TO 1 6 0 0  

1 0 4 0  CONTINUE
DO 1 0 5 0  J =1  , I B  
I F ( N 3 A S E . E Q . I B A S I S ( J ) )  GO 

1 0 5 0  CONTI NJ E
GO TO 1 0 0 :

1 0 6 0  CONTINUE  
P R C J J ) = . 0  
J J = 0
P M A X = 0 . 0  
DO 1 0  7 0  J = t , N V
I F I P M A X . G E . P R I  J ) I  GC TO 1 0 7 0  
P M A X = P R ( J }
J J = J  

1 0 7 0  CONTINUE
I F ( J J . E Q . O I  G3 
GU TO 9 5 0  

1 0 9 0  CONTINUE
P I V O T = A (  1 1 , J J  )
DO 1 1 0 0  1 = 1 . MM 
DO 1 1 0 0  J = 1 « N N  
I F ( l . E O . I I )  GD 
I F I J . E U . J J )  GO

TO 1 0 6 0

T3 1 6 0 0

T3
TO

1 t o o
I 1 0 0

AI I . J ) = I AI 1 . J ) * P I V O T - A I I • J J ) 4 A ( I  I . J ) I / P I V O T
1 1 0 0  C O N T irA JE

DO 1 2 0 0  J = 1 . N N  
AI I I . J ) = A I I I . J ) / 3 I V O T  

1 2 0 0  CONTI NJ E
DO 1 3 0 0  1 = 1 . MM 
A I I . J J )  = 0 .

1 3 0 0  CONTI NJ E
A l l  I . J J ) = 1 .
DO 1 4 0 0  J = 1 . N N
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DO 1 4 0 0  1 = 1 , NV 
I F ( J . E a . J J )  GO TO 1 4 0 0
C O N T A B I I , J ) = C C N T A B ( I , J ) - A ( I I , J ) 4 C O N T A 3 t I , J J )

1 4 0 0  CONTINUE
DO 1 5 0 0  1 = 1 . NV
C O N T A B I 1 • J J ) = 0 , 3  

1 5 0 0  CONTINUE  
GO TO 5 5 0  

1 6 0 0  CONTI NUE  
CALL E X I T  

4 9 0 0  FORMATI* * . 2 I 5 , F 8 . 3 )
5 0 0 0  F O R M A T | 2 I 5 , 2 F 4 . 2 #
5 1 0 0  FORMATI I HO)
5 2 0 0  F ORMATI 5 H . 1 3 F 7 . T )
5 2 5 0  F O R M A T I I X . 1 0 F 7 , 3 >
5 3 0 0  F O R M A T I 1 2 H 1 N E *  TABLEAU)
5 4 0 0  F ORMA TI I H , F 7 . 3 . 2 1 5 )
5 5 0 0  FORMATI* ' . ' E R R O R  1 ' )
5 6 0 0  F ORMA TI I H . 3 F 1 S . 6 )
5 7 0 0  F O R M A T I I H I )
5 8 0 0  FORMAT I ' 0 ' . 4 X . 1 0 1 2 X , A 2 , 3 X ) )
5 9 0 0  FORMAT I l H  . A 2 . 2 X . 1 C F 7 . 3 )

END
C T H I S  1 5  A SUBPROGRAM THAT CALCULATES  THE P R O B A B I L I T Y  OF A 
C NORMALLY D I S T R I B U T E D  RANDOM B E I N G  NONNEGATIVE GI VEN  
C I T S  MEAN AND VARIANCE

FUNCTI ON P R 3 8 I F M . S M )
D I ME N S I O N  A I 7 3 I
DATA A / . 5 0 0 0 . . 5 1 9 9 . . 5 3 9 8 . . 5 5 9 6 . . 5 7 9 3 . . 5 9 8 7 . . 6 1 7 9 , . 5 3 6 8

1 ,  . 6 5 5 4 . . 6 7 3 6 . . 6 9 1 5 . . 7 0 8 8 . . 7 2 5 7 . . 7 4 2 2 . . 7 5 8 0 . . 7 7 3 4
2  . . 7 3 8 1 . . 3 0 2 3 , . 8 1 5 9 . . 8 2 8 9 .  . 6 4 1 3 .  . 8 5 3 1 . . 8 6 4 3 .  . 8 7 4 9
3  , . 8 8 4 9 . . 8 9 4 4 . . 9 0 3 2 , . 9 1 1 5 . . 9 1 9 2 • . 9 2 6 5 . . 9 3 3 2 •  . 9  3 9 4
4  , . 9 4 5 2 . . 9 5 0 5 . . 9 5 5 4 , . 9 5 9 9 , . 9 6 4 1 , . 9 6 7 8 , . 9 7 1 3 . . 9 7 4 4
5  , . 9 7 7 2 , . 9 7 9 8 , . 9 8 2 1 . . 9 8 4 2 , . 9 8 6 1 , . 9 8 7 8 , , 9 8 9 3 , . C 9 0 6
6  , . 9 9 1 8 , . 9 9 2 9 , . 9 9 3 8 . . 9 9 4 6 , . 9 9 5 3 , . 9 9 6 0 , . 9 9 6 5 , . 9 9 7 0
7  , . 9 9 7 4 , . 9 9 7 8 , . 9 9 8 1 , . 9 9 8 4 , . 9 9 8 7 , . 9 9 8 9 , . 9 9 9 0 , . 9 9 9 2
8  , . 9 9 9 3 . . 9 9 9 4  . . 9 9 9 5 , . 9 9 9 6 , . 9 9 9 7 . . 9 9 9 7 , . 9 9 9 8 , . 9 9 9 9
9  . 1 . 0 0 0 /

Y = - F M / S Q R T | S M )
I F I V . N E . O . O )  3 0  TO 1 0 0  
P R O 8 = 0 . 5
RETURN  

1 0 0  CONTINUE  
Y Y = A B S I V )
I F I V Y . L T .
P R O B = 1 . 0  
GO TO 3 0 0  

2 0 0  CONTINUE

3 . 6 )  GO TO 2 0 0
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I=YY/.06 
OI = 1 * .  3 b  
1=!+1 
O J = I * . O b  
A I = A ( I )
AJ-A( I»1 }
PWOb=AI  + ( Y Y - O I  ) /  A J - A I  )

3 0 0  CONTINUE
I F t Y . G T .  . 0 }  RETURN  
P R n B = l . - P R O U  
RETURN  
END
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"» ? c.ioc
i c .O ' i c i  ro .no o  
ir.r?rirc.rnc 
c.n r.o
0,r n , / )
r.n n.n



OdO'i j Oü * l U'U 0*0 ÜUU* I ÜUÜ* I
OOO*Jl 0* J OÜU “ I j'U JUJ'l UUU'Z
JJJ'Jl 0*0 J*U uOU* I ODU'C ULU'l

hj.'v 0*0 J'O J*0 JJU'l Uûü'I b J
JJ-•:I ( • J O'u 0*0 OUU* 1 uOU'd VJ
jjj'ji J* j J'O J'O Jou*C JUu" I t J

J* J J*U 0*0 J* J jdo* i- 0*0 iJ
J* J U'U 0*0 0*0 U"U uOO*I- JJ
JX S,3 V3 kJ iO I'J

IV J InV 1 Jî
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NFW TARLFAU

Cl c? C3 04 05 %r
n -1.000 c.o 0.0 0.0 0.0 c.o
r.2 0.50C c.c C.500 o.c 0.0 5.C0C0.0 c.o -1.000 o.c c.c c.c
r4 1 . =00 o.c -r.500 0.0 0.0 5.0CC
C9 0.500 0.0 -0.500 c.c 0.0 l.CCC

r.500 I.one 0,500 0.0 0.0 5.00C
1.500 0,0 -0,500 l.COO o.c 5.00C
0.500 0.0 -0.500 o.n 1 .000 1 .CCC
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NFW TARLF&II

Cl C? Cl C4 C5 xn
Cl C.o 0.0 -l.ooo c.c 7 . 0 0 0 2.CCC
c? 0.0 0.0 l.ooo o.c - 1 .oco 4. roc
Cl O.C c.c -l.COO o.c 0.0 c.c
C4 0,0 c.o l.ooo o.c -3.000 2.C0C
cs 0.0 C.o 0.0 o.c - 1 .OCO c.c

0.0 l.COO l.COO 0.0 -l.ooo 4 . 000
0.0 0.0 l.COO l.COO -3.0CC 2.CCC
l . o o o 0.0 -l.ooo o.c 2-000 2.CCC
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NFW TAniFAU

Cl C2 C3 C4 cs xn
r I o.n 0.0 o.c 1.000 -1.000 4.000
c? 0.0 c.o o.c -1,000 ?.occ 2.CCC
c? 0.0 0.0 0.0 l.COO -3.000 2.CCC
C4 c.o c.n c.c -1.00C o.c c.o
f.S 0.0 0.0 0.0 o.c -I.oco c.c

c.c I.oco o.c -l.ooo 2.000 2.000
0.0 0.0 1.000 l.ooo -3.one 2.CCC
1 .000 0.0 0.0 l.ooo -l.ooo 4.000
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NEW tableau

Cl c? C.3 C4 C5 xr
r I 0.0 0.500 0.0 c. son C.o 5.one
c? 0,0 -l.ooo 0.0 o.c c.o c.c
Cl 0.0 1.5CC C.C -0.500 0.0 5.COG
C4 0.0 0.0 O.C -1.00C c.c c.o
C5 0.0 0.500 0.0 -0.500 0.0 l.CCC

c.n 0.500 0.0 -c.soo 1.000 l.CCC
0.0 1.500 l.ooo -0.500 0.0 s.CGC
l.OCO C.50C o.c 0.500 0.0 5.00C



APPENDIX C

PROOF THAT THE PROBABILITY OF THE INTERSECTION OF THE SETS 
THAT DEFINE THE PROBABILITY SPACE OVER WHICH FEASIBLE 

BASES ARE OPTIMAL IS EQUAL TO ZERO

Theorem: Let S^ = {c|(CgB ^P^ - C^) > 0} define the
set over which the i basis is optimal, and let Sĵ  = {C|
(C_b”^P^ - C^) z 0 } define the set over which the basis15 jT X
is optimal. Then P[S^/^ S^] = 0 when i ^ k.

Proof:
1. Theorem 2 of Chapter III proved that the bases were inves­

tigated contiguously, so to prove this theorem, it is only 
necessary to prove it for two adjacent bases.

2 . S^ and Sĵ  are convex sets since they were formed by the 
intersection of convex sets.

3. Assume that P(S^/^Sj^) ^ 0 when i ^ k, i.e., P ( S ^ n
= Pĵ  %

4. For 3 * •., be true, then S^) contains at least one 
element that has a positive probability with respect to 
the probability distribution functions.

5. This requires that there exist some element of and 
that is in the interior of both of these sets.
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6 . Let K = (i + 1), so and are sets associated with

adjacent bases. Let be the entering variable at the
i^^ basis and X^ be the leaving variable at the i^^ basis.

7. Then, one of the conditions that defines the set is
(Z^ - C^) > 0 in the (i + 1 )®^ tableau, and one of the
conditions that defines the set is (Ẑ  - C^) > 0 in 
the i^^ tableau. Since the sets are adjacent, (Z^ - C^)
= K (Zj - Cj) where K = ~ l/a^i.

8 . Therefore, at the (i + 1)®^ tableau
1

(Z^ — C^) = — — T (Zj. — c^)
t -r

r r' ] 3

and since (Z. - C.) = (C_B ^P. - C.)] ] “ 3 D
1we have (Z - C )  ----^ (C„B P. - C.)

^ ^ ct  ̂  ̂ ^r
9. Therefore (Z^ - C^) > 0 gives (- 1/a^^) (CgST^Pj - Cj) i 0

and since > 0 , (CgB ^Pj - Cj) < 0 .
10. The set of C's that are elements of 8 ^̂ must satisfy the

condition (C„B~^P. - C.) > 0  and the set of C's that are “ 3 3
elements of S^ must satisfy the condition (C^B ^Pj-C%) < 0 .

11. The only set of C's that will satisfy these conditions is 
the set of C's that satisfy the equality (C^B ^Pj-C%) = 0.

12. Therefore, (S. H  S. ) = {c|(C„b“^P. - C.) = 0}, and thisX K ^ J J
defines the boundary between the sets.
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13. This boundary is of probability measure zero with respect 

to the joint probability distribution functions, so 
P(S^O Sĵ ] / 0 and this condradicts the assumption of 
Step 3.

14. Therefore, P[S^D S^] = 0 and the theorem is proved.


