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ABSTRACT

Although a considerable amount of work has been done
in the area of probabilistic linear programming, a method does
not exist which can compute the distribution function of the
optimal value in a practical computational manner. This is
particularly true for those problems involving more than a
few random variables,

This study proposes an algorithm based upon a "best"
choice criterion for entering and leaving variables as a
method for computing the distribution function. These cri-
teria are similar to those that apply to regular deterministic
linear programming except that they apply to the cases where
the coefficients of the objective function or the restrictions
of the constraints are random variables,

Additionally, a modification to the algorithm is
developed which will yield an approximation for the distribu-
tion function without the requirement of a complete investi-
gation of all possible bases.

Two computer programs based on the algorithm have been
developed that compute the information that is required for
solution of the problem,
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CHAPTER 1
INTRODUCTION

Linear programs with some of their coefficients
subject to random variation have been considered in several
forms and under several different names. Among these are
probabilistic linear programming, stochastic linear program-
ming, chance constrained programming, linear programming under
uncertainty, and recourse programming. In effect, these are
different problems selected from the general class of linear
programming problems that are non-deterministic. This general
class of non-deterministic linear programs (i.e., those having
random variables for some of their coefficients) will here-
after be referred to in this paper as probabilistic linear
programming.

The initial interest in probabilistic linear programs
arose from a problem dealing with the allocation of aircraft
to routes when the demand for their service was unknown, This
problem was considered by G. B. Dantzig and A. R. Ferguson
(8) under the conditions that the demand distribution was dis-
crete, and later by S, E. Elmaghraby (11) for the case where
the demand distribution is continuous.
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The next efforts in this area consisted of attempts
by several authors, notably Dantzig, Madansky, and Charnes
and Cooper, to eliminate the effect of the random variables
by optimizing the expected value or the variance of the ob-
jective function or selecting alternatives such that the con-
straints would be violated with only a small probability.

Later developments have fallen intc one of two cate-
gories which, according to Dempster (9), comprise the entire
class of linear programming problems that have random vari-
ables for their parameters. These two categories are defined
essentially by the timing of the decision making process rela-
tive to the realization of the random variables.

If the decision is to be made before the behavior of
the random variables is known, the category is known as the
"Here-and-Now"” approach in the terminology of Madansky (13).
This category has been investigated under different names by
various authors, notably Dempster (9, 10), Walkup and Wets
(21), Wets (22), and Williams (24)., Their general approach
has been to select some criterion, usually optimizing the ex-
pected value of the objective function, and including a penal-
ty function that represents the cost associated with making
an incorrect decision. This leads to the development of
equivalent convex programs which in general are non-linear
and serve as approximations to the original probabilistic

linear programming problem,
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If the decision is to be made after the behavior of
the random variables is known, we have the type of problem
that Madansky (13) referred to as the "Wait-and-See" problem.
This problem was classified by Tintner (19) as the "Distribu-
tion Problem" and subsequently was investigated by Tintner
(20, 21) and Sengupta and Tintner (17, 18). This is the kind
of problem with which this paper will be concerned. It con-
sists of determining the distribution of the optimum value of
the objective function when the distribution of the random
variables in the problem is known.

Tintner and Sengupta'’s work was based mainly upon
problems related to agricultural economics. Their basic ap-
proach was to take all of the possible combinations of the
values of the random variables and compute the optimum value
of the deterministic linear program that is defined by each
combination, They then used the method of sample moments to
fit a probability distribution function to these values., The
following two problems exist with this method: (1) the number
of linear programs to be solved increases rapidly as the num-
ber of possible values for these random variables increase,
and (2) the distributions so derived are approximations,

Bereanu (1, 2) developed a method for determining the
distribution of the optimal value of the objective function
when the coefficients of the objective function or tﬁe con-
straint restrictions are random variables. Bereanu assumes

that the random variables have finite lower and upper bounds
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and proceeds by setting each random variable at its lower
bound and solving the resulting deterministic linear program.
He determines the range over which the optimal solution re-
mains feasible by using the sensitivity analysis technique of
parametric linear programming. He changes bases and applies
the sensitivity analysis technique to the new basis and repeats
this process until all optimal solutions have been investi-
gated. Using the information so obtained, Bereanu computes
the distribution of the optimum value of the objective
function.

The objective of this research will be to develop an
algorithm to determine the distribution of the optimum value
of the objective function that does not depend upon éolving
a sequence of linear programs. This algorithm will be based
upon Bereanu's results, but will offer improvements in the
method of changing bases. Additionally, a modification to
the algorithm will be developed which will allow an approxi-
mation of the optimum value of the objective function without
the complete enumeration of all of the possible bases.

The algorithm is based upon methods that are similar
to the simplex technique of deterministic linear programming
and enables the investigator to determine the value of the
objective function and the value of the basic variables at

each iteration.



CHAPTER 11

AN ALGORITHM FOR LINEAR PROGRAMS THAT ARE

FUNCTIONS OF RANDOM VARIABLES

Consider the general maximization problem of linear

programming represented in the following form

Maximize X, = CX
subject to AX < b
X20
where A is an (mxn) matrix; b is (mxl), X is (nxl), and C is
(1xn), Adding slack variables to the constraints, the problem

can be represented by

Maximize Xo CX
subject to AX = b
X>0
where A is [mx(m+n)); b is (mxl), x is [(m+n)x1l}); C is
[1x(m+n)].
When some (or all) of the parameters of this problem
(i.e., C, b, or A) are random variables, the problem becomes

a Stochastic (or Probabilistic) Linear Programming Problem.
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Two cases of this general problem will be considered
in this paper. Case I will deal with the problem when the
vector C is a vector of random variables and all other param-
eters are known deterministically. Case II will deal with the

problem when b is a vector of random variables and all other

parameters are known deterministically.

Case I: C-vector is a Vector of Random Variables

When the C vector is the only parameter that is a ran-
dom variable, the problem becomes essentially one of determin-
ing the probability that a feasible basis is optimal.

Since the number of feasible bases is finite, the
problem of determining the distribution of the optimum value
of the objective function becomes one of determining the dis-
tribution of the optimal value of the objective function for
a particular basis, the probability that this particular basis
is optimal, and summing the product of these two values over
all possible bases to obtain the distribution of the optimal
value of the objective function.

One might question the statement that the optimal
value of the objective function occurs at an extreme point
(a basis) when the coefficients of the objective function are
random variables. To see that this is true, consider the fol-

lowing theorem:

Theorem 1: The optimum solution of the linear program-

ming problem,
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Maximize Xo = CX
subject to (A, I)X =P

X>0

where C is a vector of independent random variables whose dis-

tributions are known in advance, when it is finite must occur

at an extreme point (a basis) of the feasible space defined
by the constraint set.
Proof of the theorem:

1. Let xi, i=1, ..., k be the extreme points of the feas-
ible space and let X * = Max cx®) = cx™ yhere x™ g
the extreme point at which the value of objective function
is a maximum. Note: Since this is a "Wait-and-See"” Prob-
lem, let the random vector C assume a particular value
denoted by C°'.

2. Suppose there exists a point x(l)

which is not an extreme
point but which can yield a better value of the objective
function, i.e., Xo(l) = C'X(l) >3 xb* = C'x(m).

3. Since X(l) is not an extreme point, it can be expressed
as a convex combination of the extreme points of the feas-

ible space.

k . K
x o 3 ax®, 20 2 A =1
i=1 i=1
(1) (1) k (i)
4., Therafore: X = C'X =C' ¥ A.X
o IoAy
i=l
k k
x 1) - ¢ c;’ Aix‘i) = I A lcy” x (1),
° i=1 i=1
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5. By hypothesis: cx(m) = Max cx(l), so cx(m) 2 C'X(i).
i

k . k n
(1) (i) (m) (1) (m)

6. x = 2 A- (c- 'x ) 5 z l-c x x < CX z l-

° =1 1 i=1 1 Tl 2 i=1' 1

7. %, < cx™ < x s,

8. This contradicts the assumption that a better value for
the solutién can occur at a point which is not an extreme
point and the proof of the theorem is complete.

Let f, (X ) be the distribution of the objective func-
tion for the L£th basis and Pz be the probability that the gth
basis is optimal. The distribution of the ghjective function
will then be given by
5

£(X)) =
o g=1

P, fz (xo)

Since the number of bases is finite, this sum exists and is
finite,

In order to determine PE' let us examine the condi-
tions required for a given basis to be optimal. For the maxi-
mization problem this condition is satisfied for a particular
basis when all non-basic variables are such that their coef-
ficients in the objective function row are non-negative., Let
Cp be the coefficient corresponding to the current basic
solution, let B be the basis matrix from the matrix A corre-
sponding to the current basic solution, and lgt Pj be the

column from A corresponding to a particular non-basic variable.

The non-negativity condition stated above becomes: for any xj
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that is a non-basic variable, its coefficient (CBB-IPj-Cj)

must be non-negative [i.e., (CBB"l

L
= {cchB-lpj-Cj) 2 0, ce C}. The set Sz defines the space

.~C.) > 0]. L
PJ CJ) > 0] et S

over which a particular basis 2 is optimal. Thus

P, = f(c) dc
P f
Sy

£(X,) = ggl szz(xo)

These are the conditions stated by Bereanu (1) ex-
pressed in the notation used by Taha (20). They form the
basis of the solution algorithm,

The algorithm depends upon two criteria for choosing
the entering and leaving variables as a means of changing
bases. These criteria are respectively the optimality and
feasibility criteria. Since for this problem, the C-vector
is the only random variable in the problem, the feasibility
criterion remains the same as for deterministic linear
programming.

To reiterate, the feasibility criterion is based upon
selecting the leaving variable so that all remaining basic
variables remain non-negative (> 0). Using matrix notation,
let Xg be a vector corresponding to a basic feasible solution,
and let the vectors of the A matrix corresponding to X be
denoted by Pir Pyr eoer Ppo Let B = (Pl, Pz, ceoy Pm) denote
the basis matrix where B is square (mxm) and non-singular.
Let P, denote the right hand side of the contraint equations.

The linear programming problem can now be expressed as
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Maximize xo = CX
subject to (A,I)X = P,
X220

Since Xg is a basic feasible solution and B is its correspond-

ing matrix as defined above, we have that

BXB = PO
and thus Xy = B-IPO.
m

Also, BX, =P = §% XUP

B o k=1 k™ k
so that Xy = B']'P°
and ' ' = (871p)

xk o’k

where the subscript k denotes the kth element of the vector
XB.
Let Pj be a vector from the remaining n non-basic vec-

tors of (A,I), and let xj be its corresponding variable. Then

m .
P> Jp =p
k=l°k k 3
where ukJ is a scalar with a least one non-zero value. It
follows that
szpt
@ j

1
j.
Let 6 be any real number. Thus 6Bal = er. Since

or o) =B

BxB = Po' then by subtraction, B(XB - eaJ) + er = Po'
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The new vector, X', where

. N .
. (xa - ea3)= (B P, - eaJ)
0 0

is a solution_to the linear program with xj = 6. However, it
contains (m+l) variables and is non-basic, so 6 must be selec-
ted so that one of the former basic variables is set to zero.
Additionally, all of the elements of X' must remain non-
negative. These conditions may be expressed mathematically

as,

- J
(X, - 6a,”) 2

v
o
-
~
"
[
-
V]
-
[ ]
L
]
-
3

and X. =0
J

v
o

This yields the following selection criteria: Select

- mi J
B-m]tn{——i-,uk > 0}
a

k

and call this value 0*, Therefore

(Bﬁlpo)k
k a, J
k

Since this criteria for selecting the leaving variable depends
upon B, B'l, P, and ukj, and none of these depends upon C,
then the feasibility criterion for the case wﬁere C is the
only random variable remains the same as for ordinary deter~

ministic linear programming.
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In deterministic linear programming, the criterion for
selecting the entering variable, the optimality criterion, is
" based upon selecting the most promising non-basic variable xj
which when introduced into solution will cause improvement in
the objective function. When the coefficients of the objec-
tive function of the linear program are random variables, the
optimality criterion of ordinary linear programming does not
apply. A modified version of the optimality criterion suit-
able for use with the probabilistic case will now be developed.

Consider the linear program stated earlier,

Maximize xo = CX
subject to AX < b

X>0

where C is a vector of random variables. Adding slack vari-
ables and renaming the vector b as Po' the problem can be

written as

Maximize xo = CX
subject to (A,I)X = P

X 2 0.

Let XB be a basic feasible solution and CB = (Cl, Cz,
. Cm) be the corresponding coefficients of the objective

function. For the current basis, xo = CpXp and BxB
1

e n" _ - -1 .
xB =B Po. It follows that, X = CBXB = CBB Po. Now if xj

=P°+

)
is the entering variable, then
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.
o - 0)

and ad = B 1p

3
Let xo' be the new value of the objective function correspond-
ing to XB'. The only reason to introduce the variable xj into

the solution would be to improve the solution (i.e., x°'>xo).

We have that
X, = G%p
X' =(C,, c.) |¥p ~ Oc .
o B’ 7j 8
= - J
xo' = CBXB OCBa + ecj

L j-
X,' = CgXg = 8(Cpa’ - C;)

x L
(o)

- i_
Xb G(CBQ Cj)

Therefore, the only way for xo' > x° is for e(CBaj - Cj)
to be negative, and since 6 > 0 this implies that (CBaj-Cj)<0.
When the C vector is a vector of random variables,
this condition, (CBaj-cj) < 0, does not have a meaning in the
absolute sense, so a probability statement will be developed
to represent this condition.
The first condition will be that a variable will be
considered as a candidate for an entering variable as long

as the following probability statement holds:

-1
, = N < >
P[(CBB pJ cJ) 0] 0
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The selection criterion thus becomes: from among

1

those non-basic variables whose P[(CBB' P. - cj) < 0] >0,

select as the candidate for the entering 3ariab1e that vari-
able xj corresponding to the greatest probability value.

This modified optimality criterion and the regular
feasibility criterion function to change bases until all feas-
ible bases of the linear program have been investigated.

At each feasible basis the linear program will have
a probability of being optimal. This is the probability P,
mentioned earlier in this chapter.

The conditions that determine P, are contained in the
optimality criterion. A particular basis will be optimal as
long as there are no non-basic variables whose coefficients

are negative. This is the condition (CBB'lP. - cj) 2 0, and,

J
since C is a vector of random variables, this condition de-

fines the set

-1
s, = {c| (cgB Py = Cy) 2 0}

The probability of a particular basis a being optimal is now

given by

P, = f f(c)dc
2 sz

The Case I Algorithm

Step 1: a. Select a starting basic feasible solution. The
normal condition will be to select the slack

variables as the starting solution.
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b. Set the solution index to correspond to the
starting solution. |
Step 2: Select the candidate for the entering variable using
the modified optimality criterion.
Step 3: Select the candidate for the leaving variable using
the regular feasibility criterion,
Step 4: a. Set the solution index to correspond to the new
solution.
b. Check the solution list to determine if this solu-
tion has been investigated before.

1. If solution has been investigated before, re-
turn to Step 2 and select the next most prom-
ising candidate.

2. If solution has not been investigated before,
proceed to Step 5.

Step 5: Carty out a primal simplex iteration in order to up-

date the tableau.

(1)

Use the information contained in the objective func-
tion row to compute P, and the probabilities required
to evaluate the new non-basic variables. Return to
Step 2.

Step 7: The algorithm terminates when all feasible solutions
have been investigated.

The solution index mentioned in Steps 1lb, 4a, and 4b

of the algorithm is a reference system that is used to prevent
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cycling in the algorithm., The modified optimality criterion
which selects the entering variable at each iteration can
produce as the new basis a basis that has previously been
considered. This is an undesirable feature since no new in-
formation is obtained by returning to a previous basis, and
this may cause the algorithm to cycle and not consider all
of the feasible bases.

The solution index prevents the algorithm from cycling
by creating a reference number for each basis when it is
determined by the selection of the entering and leaving vari-
ables., This reference number is compared to the list of
reference numbers corresponding to previously considered bases
and if the current basis has been investigated before, it will
not be checked again. The algorithm proceeds by selecting
the next most promising candidate for an entering variable
using the modified optimality criterion and repeating the
process of assigning a solution index and checking the list
of reference numbers,

The reference system uses a number that consists of
as many digits as there are problem variables. The digits in
the number are set to a value of one if the corresponding
variable is a member of the basis or to a value of zero if the
variable is not a member. Consider an example with four vari-
ables and two constraints. The solution index for the basis
that consists of variables X, and X, would be the number 0101.

The complete procedure is shown by a flowchart in

Figure 1.
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SET STARTING BASIC
FEASIBLE SOLUTION

}

SET SOLUTION INDEX

TO CORRESPOND TO

STARTING SOLUTION
AND STORE IN
SOLUTION TABLE

® -
SELECT ENTERING

VARIABLE X5 TO
co SPO TO

~+p.=-C.)<0]>
P[(CBB PJ C]) 0]>(

I

SELECT LEAVING VAR]

ABLE USING FEASI- SELECT NEW ENTERING
BILITY CRITERION VARIABLE BASED UPON
"MODIFIED"” OPTIMALITY
CRITERION EXCLUDING [*
PREVIOUSLY CONSIDERED
SET SOLUTION INDEX X.'S
TO CORRESPOND TO il

NEW SOLUTION

HAS THIS
NO_~SOLUTION BEEN
INVESTIGATED
BEFORE?

BBEN CONSIDERED AS
ENTERING VARI-
ABLES?

Figure la. Flowchart for the Case I Algorithm.
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PERFORM A SIMPLEX
PRIMAL ITERATION

!

COMPUTE B; AND PROB
ABILITIES FOR NEW
| NON-BASIC VARIABLES

ALL FEASIBLE SOLUTIONS
HAVE BEEN INVESTIGATED

'

HALT

Figure 1lb. Case I Flowchart Continued.
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Example Problem

Maximize Xb = Clx1 + szz

subject to xl + 2x2 <10

2X, + X, £ 10

1 2
SR 20
where C1 and C2 are independent random variables.

Adding slack variables and rewriting,

Maximize Xo = Clx1 + CZX2 + 0 X3 + 0 X4

10

subject to X, + 2x2 + x3

2X, + X, + X, =10
Xy0 X0 X3y X, 20
Assume that the distributions of Cl and C2 are distri-
buted exponentially with parameters A, = 1/10, 12'= 1/10, re-

spectively. That is,

 aAc —= C
f(C)-Ae-Azcz-—]-‘-emlcz 0<C.L <o
2) = A = 10 r 0 3C 3
Tableau 1: xo xl x2 x3 x4
1 ¢, ¢, 0 0 0
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x1 =0
o

Pl =0
Solution Index: 0011

Current Basic Variables: (X3, X,)

Selection of Entering Variable:

P[--C1 < 0] = P[C1 > 0] = JE f(Cl)dcl =1

f(c,dc
J, fese,

The probability values are equal, so the selection at

]
)

P[-C2 < 0] = P[C2 > 0]

this point is arbitrary. Select X, as the entering

variable.
Selection of Leaving Variable:

Ratios: 10/2 = 5 + select x3 as being 10/1 = 10
New Solution Index: 0101

Tableau 2: xo xl x2 x3 x4
C2/2 - Cl 0 cz/z 0 5C2
1/2 1 1/2 0 5
3/2 0 -1/2 1l 5
x 2 = sc

o
0

2

2 ffs £(C,, C,)dcC,dC, = ffs £(c,)£(C,)dc,dc,
2 2

s, = {c|c,/2 2 0 and C,/2 - C; 2 0}

© 02/2
P, = '[0 f(Cz) J; f(Cl)d(!ldC2



w 1, Cy/2 1
_ 1 1072 1 T
P2 -‘[0 10 e -L 10 e élCldC:2
® 1. ¢ 1. 9C./2
- - )
P, = fo I%_ . 02 e Tﬂcl]o ac,
" "I%"zr -C,/20 ]
P2 -‘Io m e _—e + 1 dCz
- 1 3 ]
1 102 1 T30%
Pz’.iO[rGe 10 ¢ dc,
© "I—lc _ ® 3
_ 1 _"To%2 _ 2 3 "3
Pz —L I-o- e dC2 3 -[0 w e dcz
1 -] 3 ]
b [ '1'6‘:2] . 2[ ‘76‘:2]
2 - "¢ k] e
0 0
P, = [0+1] +2/3[0 - 1] =1 - 2/3 = 1/3

Selection of

P[x3 will enter]

P[X1 will enter]

P[C2/2 - C, < 0]

1l

P[CZ/Z - C, < 0]

1
Select xl as the

Entering Variable:

= P[C2/2 <0] =0

= P[C2/2 - Cl < 0]

= [® g f £(C.)dC.dC
jo 2 Je sp V%
= 1-7PiC,/2 - €1 2 0] = 1-1/3 = 2/3

entering variable,

Selection of Leaving Variable:

Ratios: 1%- = 10

5
372

New Solution Index:

= 10/3 + select x4 as leaving

1100
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Tableau 3:
X, ¥, X, X4 X,
2. 1
0 1 2/3 -1/3 10/3
1 0 -1/3 2/3 10/3
x3=10/3 (c, +C)
o 1 .72

o
fl

3 fL f(Cl, CZ) dCldC2
3

tn
i

3 {c| (2/3 C, -1/3C, 20) and (2/3¢C) -1/3C, 2 0)}

© 2C 1
1
P, = ‘ f(C)f Le 1072 4
37 Y, 1 C1/2‘1‘!5' 2

(- ]

f 2 e'i‘tlicl[_e‘ﬂls'cz]
0

- 3 3
p=f el o TOCL, 1 7707, 4

3 b “I0 10 1

201

Cl/2
= 1/3

Selection of Entering Variable:
P[X, will enter] = P[2/3 C, - 1/3 C, < 0]
P[X4 will enter] = P[2/3 C1 - 1/3 C2 < 0]
.These two probabilities are both equal to 1/3 so the
choice is again arbitrary. However, if X, is chosen as
the entering variable, the leaving variable will be X,
This would cause the new basis to be (xz, x4) which has

already been investigated in Tableau 2. The Solution
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Index would be set to 0101, and since this basis has been
considered previously, the algorithm would proceed by se-
lecting X5 as the entering variable.
Selection of Leaving Variable:
Ratios: 3.33/0.667 = 5 + leaving variable is xz.

New Solution Index: 1010

- x x
Tableau 4: Xo Xl XZ 3 4

0 C1/2-C2 0 C1/2 501

0 3/2 1l -1/2 5
1 1/2 0 1/2 5

o
"

5C4
4 IL f(Cl, Cz) dcldc2
4

4 = {cl(cy/2 - ¢,) 2 0andC,/2 > 0}

© C1/2

4 1/3

2]
i

)
I

The algorithm terminates at this point because all
feasible bases have been investigated. For this problem, the
only non-basic variable in Tableau 4 with a probability of
improving the objective function is X, The feasibility cri-
terion would select Xy as the leaving variable yielding the

new basis (xl, xz) which has been investigated previously.
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The distribution of the optimal value of the objective

function may now be calculated.

Case II. b-Vector is a Vector of Random Variables

Again consider the linear programming problem in the

following form:

Maximize xb = CX
subject to (A,I)X = Db
X220

and let Po = b, This yields the form

Maximize X, = CcX

subject to (A,I)X = Po
X>0
In order to develop the algorithm for this case, it is

necessary to consider the optimality and feasibility criteria.
The optimality criterion remains the same as for deterministic
linear programming. Let Cp be the coefficient vector corre-
sponding to the current basis that is defined by the basis
matrix B, It follows that

and the only reason for changing basis is if the new basis
will cause an improvement in the value of the objective func-
tion. Letting xo' denote the value of the objective function

for the new basis, this condition yields,
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X ''> X
o] (o]

3
. XB - 0a

- j
o' = Cp¥p = Cpr” +0C,

>
0

- - i
xo' - xo O(Cﬁu Cj)

Since 6 is positive the condition xb' > X, requires that
5 -1 i -
(Cﬁu Cj) < 0, CgB Pj < Cj. The vector P, is the only ran
dom variable in this problem, so the optimality criterion re-
mains the same as that for deterministic linear programming.
Considering the feasibility criterion, let the vectors

of current basis B be denoted by (Pl, Pz, esreys Pm). Then,

BXB = Po
m
z P P and
k=1 ** k o!
-1

Let Pj be a new vector from the remaining non-basic vectors
in (A,I)., It follows that,

m .
£ P =P
k=1 k "k

and letting aj = (alj, azj. ceey O j)
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Multiplying both sides by g we obtain eBaj = er, and sub-
tracting BxB = Po yields

B(X; - 6ad) + 6B, = P,

" = -
BX Po BPj

-1 1 1

PO - 0B "P.

j
B lp - 0al
X' = °
0

The feasibility criterion would dictate that the new

' = - =R

basis be selected so that its components will be non-negative.

This means that X - eaj >0fork=1, ..., mand xj =0 > 0.

Since
-6a) = g~1p - 6ad
Xy - b B P, -0%a’20
B~lp . 41
then 6 < —2 and ¢ = B”p,
o) 3
B™lp
which yields 0 < ;:I;_

The selection of 6 is therefore dependent upon B-l, P, and
Pj. Po is the vector of random variables, so the choice of

¢ must be accomplished by some mechanism that accounts for
this factor. This consideration suggests selecting as the
leaving variable that variable which has the lowest probabil-
ity of creating an infeasibility if it is selected as the

leaving variable.
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For this case where the b vector is a vector of random
variables, the distribution of the optimum value of the ob-
jective function is determined by considering the value of the
objective function at each optimal basis and taking into
account the likelihood of feasibility of each basis.,

For the purpose of considering the feasibility condi-
tion, considexr the matrix form of the linear programming prob-
lem, At any iteration the current values of the problem are

given in the following matrix-~tableau form:

X
-1 1l (o} 1l
2188 A% T - (%% P
1 ~1 xI -1
0 B A B X B Po
IX

where Cg is an defined previously and C; and CII represent a
division of the C vector with CII representing the coeffi-
cients corresponding to the starting solution of the problem.

At any iteration the value of the basic variable is
given by

X = BTE

In the case where Po is a vector of random variables, the
problem becomes one of determining if a basis is feasible. 1In
order to determine the distribution of the optimal value of
the objective function, one must find an optimal basis and

then determine the probability that the basis is feasible.

The feasibility condition is satisfied as long as all basic
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variables are non-negative. This means that X; > 0 and since
Xp = B’lpo, then B'IPO > 0,
Let o, = {b|B™'P_ > 0}. The set g, is the set of all
values of the random variables for which the problem is feas-
ible. The set of inequalities so defined determines the space

over which a particular optimal basis is feasible. Letting

d, denote the probability that an optimal basis is feasible,
this yields

Q,

This analysis forms the basis of the algorithm for

the case where the b vector is a vector of random variables.

The Case II Algorithm

Step 1: a. Place the problem in tableau form and select a
starting solution.
b, Check the optimality of the problem using the
regular Optimality Criterion.
c., If the problem is optimal, go to Step 3; other-
wise go to Step 2.
Step 2: a. Select the candidate for the entering variable
using the optimality criterion.
b. Select the candidate for the leaving variable
based upon the modified Feasibility Criterion,
i.e., select the variable j with the least value

for the probability statement P[B"]'PO/B"IPj < 0].



Step 3:

Step 4:

a.

C.

a.

C.

d.
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Perform a Primal Simplex iteration and go to
Step 1, part b,
Record the current value of the objective
function.
Set the solution index to correspond to the
solution,
Compute the probability that the current optimal
basis is feasible, That is,
q, = _L f£(b)db
L
Compute the probability that the basic variables
are negative and proceed to Step 4.
Select the leaving variable to be that variable
corresponding to the variable that has the great-
est value for the probability statement,
pr(8”le ), < 0.
Select the entering variable from among the non-
basic variables according to the Optimality Cri-
éerion of the Dual Simplex Method.
Set the solution index to correspond to the new
solution,
If all optimal feasible solutions have been in-
vestigated, go to Step 5. If not, go to Step 4de.
Check the solution list to determine if this

solution has been investigated before.
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1. If the solution has been investigated before,
return to Step 4a and select the next most
promising candidate.
2, If the solution has not been checked before,
update the tableau by performing a Dual Sim-
plex iteration. Return to Step 3.

Step 5: If all optimal feasible basis have been considered,
the algorithm terminates. (This will be detected
when optimality has been achieved and the processes
of changing basis to consider feasibility causes the
problem to become non-optimal.)

The complete procedure is shown by a flow chart in Figure 2,

Example Problem

Consider the dual problem of the example that was pre-

sented for Case I.

Minimize Yo = 10Y1 + 10!2
subject to Yl + 2Y2 x 02

2Y. + Y, >C

1 2 2

Y Y2 >0

1'
Changing the sense of the inequalities and adding
slack variables gives
Minimize Yo = 10Y1 + 10Y2 + 0-Y3 + 0-Y4

subject to -Yl - 2!2 + Y3 = -c1
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PLACE PROBLEM IN
TABLEAU FORM

RECORD THE CURRENT VALUE
OF THE OBJECTIVE FUNCTION
SET SOLUTION INDEX FOR
THE CURRENT BASIC SOLUTION

3

SELECT ENTERING VARIABLE
USING OPTIMALITY CRITERION
SELECT LEAVING VARIABLE
USING MODIFIED FEASIBILITY

COMPUTE PROBABILITY THAT
THE CURRENT OPTIMAL
BASIS IS FEASIBLE

a= Jf, fwav

‘ CRITERION

:

UPDATE TABLEAU BY
PERFORMING A PRIMAL
SIMPLEX ITERATION

COMPUTE PROBABILITY THAT

BASIC VARIABLES ARE
NEGATIVE

Figure 2a.

!

SELECT LEAVING VARIABLE

AS VARIABLE (i) CORRES-

PONDING TO P[(B-lp ) ;<01
THAT IS MAXIMUM®

L

SELECT ENTERING VARIABLE
ACCORDING TO THE
OPTIMALITY CRITERION OF
THE DUAL SIMPLEX METHOD

Flowchart for the Case II Algorithm,
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SET SOLUTION INDEX TO
REPRESENT THIS NEW
SOLUTION

HAVE
ALL OPTIMAL
FEASIBLE SOLUTIONS
BEEN INVESTI-
GATED?

HALT

DELETE THE SELECTED
LEAVING VARIABLE
FROM _CONSIDERATION

UPDATE TABLEAU BY
PERFORMING A DUAL
SIMPLEX ITERATION

Figure 2b. Case II Flowchart Continued.



Tableau 1l: Y Y Y Y Y

Since the problem is a minimization problem, it is
optimal, The current basis is (Y3, Y4). The set Q, de-

fining the space over which the basis is feasible is given

by
Q = {c| -Cl and -C2 2 0}
Thus q, = j L f (Cl, Cz) dcldc2
1l
0 0
q, = f f(Cz) f f(Cl)d('.!ldC2 =0
, 1 _
Yo =0
ql =0

Solution Index: 0011

Selection of Leaving Variable:

!
)

P[-c1 < 0] = P[cl > 0]

P[-C2 < 0] = P[C2 >0] =1
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The probability values are equal, so the selection at

this point is arbitrary. Select Y4 as the leaving

variable.
Selection of Entering Variable:
Ratios: -10/-1 = 10
-10/-2 = 5 + select Yl as entering.

New Solution Index: 1010

Tableau 2: Y Y Y Y Y

0 -3/2 1 -1/2 02/2 - C1

0
N
|

= {c|(c,/2 - ¢;) and C,/2 2 O}

qz = ff f(C 'CZ) dCl 2
Q,
q, = -[o £(C,) f 2/ f(Cl)dC1d02

- 1, 1C,/2
-r3¢, 162
a, = f £(C )[—e 1] dc

[ ]

l-2/3=1/3

te]
N
i

Q
N
"
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Selection of Leaving Variable:
P[Yl will leave] = P[02/2 < 0] =0

P[Y3 will leave] = p[(cz/z - Cl) < 0]

pPl(c,/2 - Cl) < 0] = f

£(C,) f f£(c,)dc.,ac, = 2/3
0 1l CZ/Z 1 1772

Select Y 3 as the leaving variable.

Selection of Entering Variable:

Ratios: -5/-%-= 10/3 + select Y2 as entering

-5/-3 = 10

New Solution Index: 1100

Tableau 3: Yo Yl Y2 Y3 Y4
1 0 0 -10/3 -10/3 10/3 (Cl + cz)
0 1 -2/3 1/3 2/3(31 - 1/3C!2
1l 0 1/3 -2/3 2/302 - 1/3Cl
3 _
Yo = 10/3 Cl + 10/3 02

Q, = {c|(2/3 ¢; - 1/3 c,) and (2/3 C, - 1/3 C;) 2 0}

], terey acac,
Q3

@ 2c,
a3 = -]’ £(c,) ﬁ/' £(c,)dC,dc
3° J, 2 &, L2

R
w
"

1/3 (Note calculation is the same as the

Q
w
]

previous example.)
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Selection of Leaving Variable:

P[Y1 will leavel] = P[(2/3 C2 -1/3 Cl) < 0]

P[Y2 will leave] = P[(2/3 C1 - 1/3 Cz) < 0]

o Cc./2

P[Y, will leave] = fo £(C,) _’; 2 £(c,)dc,dc, = 1/3
w C,/2

P[Y, will leave] = -[o £(C,) L £(c,)dc,dc, = 1/3

These values are equal, so the selection is arbitrary;
however, if Y2 is selected as the leaving variable the
entering varizhle becomes Y3, and this will produce a new
basis of (Yl, Y3) which has been considered before. The
solution index feature of the algorithm will detect this
and choose Yl as the leaving variable. The entering vari-
able becomes Y4 and this will produce a new basis of

(Yz, Y4), which has not been investigated breviously.
New Solution Index: 0101

Tableau 4: Yo Yl Yz Y3 Y4

l1 =5 0 <5 0 5C
1/2 1 -1/2 0 Cl/Z

-3/2 0 -1/2 1l C1/2 -C,

0
Y
]

{clc,/2 ana (c,/2 - c,) 2 0}

q, = _UQ £(c,,c,) dc,dc,
4
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® c,/2
_ 1
a, = j; £(c,) _]; £(C,) dc,dc,

1/3

d4

Any further attempt to change bases causes the prob-
lem to become non-optimal or to try to return to a previ-
ously investigated basis. Thus, the algorithm terminates

with the following results:

1 _ 2 _ 3_10 4

ql =0, q2 = 1/31 ‘I3 = 1/3, d4 = 1/3

= 5C1

These results are the same as those that were obtained

when the primal problem was solved using the Case I

Algorithm.

In order to determine the distribution of optimal Yo

we use the following relationship

q i
z qif(Yo )

£(y) =
° i=1

that was developed earlier in this chapter. Since q; = 0 and

%

1l

= 0 with probability one the product of qlf(Yol) equals

zero and does not contribute to the distribution of Yo‘ The

remaining terms are [qu(Yoz) + q3f(Yo3) + q4f(Yo4)]. Since

for this example d; = d3 = 9y then

2 3 4
f(Yo) = 1/3 [f(Yo ) + f(Yo ) + f(Yo )]
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Let us now 2xamine the nature of Y°2 and Y°4. Notice

that Y°2 = SC2 and that C, is distributed exponentially with

A =1/10. Since Y°2 is the product of a constant and a ran-
dom variable, its distribution is a function of the random
variable. This condition yields the distribution of sz which

is exponential with A = 1/50. Notice also, that Yo4 = SC1 and

since c, is distributed exponentially with A = 1/10, we have

that Y64 is distributed exponentially with A = 1/50.

3 is a function of both C1 and

C, and is in particular the product of a constant times the

The random variable Yo

sum of Cy and C,. Since C1 and C, are exponentially distrib-
uted with equal parameters the distribution of their sum is
a gamma distribution with parameters r = 2 and A = 1/10. Thus
v_? is distributed as a gamma with r = 2 and A = 3/100.

The distribution of optimal Yo is given by the alge-

braic sum of these distributions. Therefore
£(Y ) = 1/3 [£(Y.2) + £(x.2) + £(x. %))
(o) o o o

where f(Yoz) is gamma with r = 1, A = 1/50,

£(¢_) is gamma with r = 2, A = 3/100,

f(Y°4) is gamma with r = 1, A = 1/50.
The range of values over which these distributions are valid
is given by the conditions that define the range of the ran-
dom variables that define each Yoi. Since Y°2 = 502 and range

of c, is 0 to » the range on Y°2 is 0 to » and similarly the

3

range of Y, and 204 is 0 to ». This yields the following:
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In order to check that f(Yo) is a probability dis-

tribution function consider

£(Y_)dy
J;ll Y, °© o

This integral should be equal to a value of one if f(Yo) is

a probability distribution function. This is verified as

follows:
_ 2 2 3 3
£(y_)ay = _[1/3 £(y%) ay_© + -[1/3 £(Y_ ") ay

+ f1/3 £(v.%) av ?

® 2 2 ® 3 3
£(Y_)ay = 1/3 _]; £(y ) ay ° + j(; £(y %) ay,
® 4 4
+ f £(Y") ay,
0
f(Yo)dYo =1/3 [1 +1 + 1] = }

and this demonstrates that the function f(Yo) is a probability

distribution function.



CHAPTER III

MODIFICATION OF THE ALGORITHM FOR CALCULATION OF AN
APPROXIMATION OF THE DISTRIBUTION OF THE OPTIMAL

VALUE OF THE OBJECTIVE FUNCTION

The algorithm developed in Chapter II for Case I
considers all of the feasible bases of a problem. In order to
develop an approximation algorithm let us investigate how the
algorithm functions to cover the probability space defined by
the random variables.

Notice that the probability space over which the
bases are optimal is a subset of Rn' The algorithm developed
in Chapter II divides this space into subspaces by cutting
the original space with hyperplanes that yield convex sub-
spaces. This is easily seen since the space Rn is convex and
the hyperplanes are convex and it follows that the inter-
section of cénvex sets is convex. The only common points are
the boundaries of the subspace which are the hyperplanes and
these are of measure zero as far as the probability functions
are concerned.

To show that the algorithm proceeds contiguously
around the probability space it is necessary to show that

40



41
one of the hyperplanes that defines the subspace over which
the ith basis is optimal also is one of the hyperplanes that
defines the subspace over which the (i + 1)St basis is opti-
mal. This is equivalent to showing that these two subspaces
have a common boundary. These boundaries are defined by the

coefficients of the non-basic variables at each basis.

Let xj and X. be the entering and leaving variables

th

respectively at the i iteration of the simplex method. By

definition xj is a non-basic variable at the ith iteration
and a basic variable at the (i + l)st iteration and xr is

th

basic at the i iteration and non-basic at the (i + 1)St

iteration. Consider the general linear programming problem

in the form:

Maximize Xo = CX

i
)

subject to (A,I)X

X220
Let C = (CI, CII)’ where CII represents the vector correspond-
ing to the coefficients of the starting solution Xyqe Let

-CB

M1

1l

0 B
-1

1 ¢, )

o 81

Then, according to Taha (20), it follows that the following

matrix tableau is equivalent to the tableau form of the

simplex method:



1 1 -1
_}_._FEP_.A :.E;_._FEP_._f_FE?- _FEP_.EP_
0 B IA 1 B'lpo

The coefficients of xj and X_can be found by producing this

tableau at any iteration.

Let the coefficients of xj and X be denoted by (zj-cj)

. . _ -1 _ -1
and (Zr Cr) respectively. Since zj = CgB Pj and Z,.=CgB P,

these coefficients are found in the top row of the tableau as
indicated by the general form of the coefficients. Since the
simplex pivot method is equivalent to the above method, consi-
der the argument based upon the simplex technique.

Theorem 2: The Case I algorithm of Chapter II inves-

tigates the probability space of optimal bases in a contiguous

manner.

The coefficient of xj at the ith

iteration is (zj-cj)
th

and the coefficient of xr at the i iteration is equal to

zero since it is a basic variable (see Appendix A). At the
(i + 1)St iteration, the coefficient of xr is (zr - Cr), and

the coefficient of Xj is equal to zero. According to the

simplex technique, the pivot element selected for the ith

iteration is determined by the selection of Xj and X, and is

denoted by arj. The simplex pivot method then creates the

(i + 1)st iteration by replacing each element a,, at the ith

iteration that is not in the row and column of the pivot by

1) . “rj - a, (i) , arz(i)

o d

r

(i+1) _ 2ke

kg
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The coefficient of xr at the (i+1)St iteration is thus given by

PR ¢ 5 IR B ey (1),
(Zr C.) a (zj cj) 1

(i+1)
(Zr-Cr)

(i+l) _
(Zr-Cr) =

(i+1) - -—_T (zj _ Cj)i
Oy

(z -C.)

Therefore, the coefficient of the non-basic variable xr at the

(i + 1)St iteration is equal to a constant K times the coeffi-

th

cient of the non-basic variable X. at the i iteration where

= - j
K = l/ar .
Since the hyperplanes that form the boundaries of the
optimal space for each basis are defined by the condition
(zk - Ck) 2 0 for the non-basic variables k, the condition

th

(zj - cj) > 0 at the i iteration and (Zr - Cr) = K(zj-cj) 2 0

at the (i + 1)St iteration define the same hyperplane. This
shows that the probability space over which the bases at the
ith and (i + 1)St iteration are optimal have a common boundary
and that the algorithm presented in Chapter II proceeds con-
tiguously around the probability space, and Theorem 2 is

proved.

Letting M denote the number of feasible bases and

noticing that

M
I P, =1
i=1 *
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we have a method readily available for modifying the algorithm
to give an approximation-algorithm. Instead of continuing to
iterate until all feasible bases have been considered, the
accumulated probability of feasible bases being optimal will
-be used to cause the iterative process to stop.

Let vy denote a variable whose value is to be selected
by the decision maker and reflects his evaluation of the worth
of complete information. The criterion for continuing itera-
tions will be to continue sglecting entering and leaving vari-
ables to compute the (s + 1)St iteration until

| s
(1 - = P;) <y, wvhere s < M
i=1

Since this modified algorithm will operate to produce
f*(xo) which is an approximation of f(xo), it is only neces-

sary to consider what occurs as y approaches zero. This means

that
s
i=1
as y approaches zero gives
s
i=l
8
or lsgs I Pi
i=1
M
but since z P; = 1

i=1
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it follows

and therefore s equals M which means that

s=M
* =
£ (Xo) i

P, (X1 = £(x)
L

1
The Case I algorithm modified for the approximation

algorithm becomes:

Step 1: a. Select a value for y and select a starting basic
feasible solution.

b. Same as before.
s

Step 2: a. If (1 - _E pi) £ v, proceed to Step 7.
b. If not, ;;iect the candidate for the entering
variable using the modified optimality criterion.
Step 3: Same as before.
Step 4: a. Same as before
b. Same as before except for
1. If solution has been investigated before
return to Step 2b and select the next most
promising candidate.

Step 5: Same as before.

Step 6: Use the information contained in the objective func-
8
tion row to compute Pyr L Pyr and the probabilities
L=
required to evaluate the new non-basic variables.

Return to Step 2a.
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Step 7: The algorithm terminates when the y limit is

violated.

The algorithm in Chapter II for Case I and the modi-
fied version just presented selects entering variables based
upon their probability of improving the objective function.

As shown previously, this causes the probability space over
which feasible bases are optimal to be swept out in a contigu-
ous fashion. This does not imply that the bases are consi-
dered in decreasing order of probability of being optimal.

To see that the bases are not necessarily considered

in this manner consider the following example problem:

Maximize Xo = clxl + sz2

subject to xl + 2x2 s 10
le + X, < 10

X, + X, 6

Xl, X2 2 0

Figure 3 is a graph of the feasible space for this problem
and shows that it has five feasible bases, namely (Xl =5,

and (xl =0, X, =0).

2
Assume C, and C, are exponentially distributed inde-

pendent random variables with parameters Al = 1/10 and

Az = 1/10 respectively, and add slack variables to make the

constraints equalities. Select y to be equal to 0.4.



47

0 5 10 1

Figure 3. Graph of Feasible Space
for Example Problem.

Tableau 1l: xo xl x2 x3 x4 x5
1 -C1 -c2 0 0 0 0
1 2 1 0 0 10
2 1l 0 1 0 10
1 1 0 0 1 6
xol =0

P, = P(-C; and -C, 2 0) = 0
Solution Index: 00111
Current Basic Variables: (x3, Xyr X5)
(1- iil Pj) =l1-p;=1-0=1f£%y

Selection of Entering Variable:

P[-c1.< 0] = P[c1 >0] =1, P[-c2 < 0] = 1>[c2 >0] =1
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The probability values are equal, so the selection is
arbitrary. Select xl as the entering variable.
Selection of Leaving Variable:
Ratios: 10/1 = 10
10/2 = 5 + select x4 as leaving variable
6/1 = 6

New Solution Index: 10101

Tableau 2: xo Xl Xz X3 X4 xs
1 0 C1/2-C2 0 cl/z 0 5Cl
0 3/2 1 -1/2 0 5
1 1/2 0 1/2 0 5
0 1/2 0 -1/2 1 1
2 _
Xo = 501

P, = P[C1/2 - C, and 01/2 2 0]

- -] o0
p, = f £(C,) £(c,) dc,dc, = 1/3
2 0 2 2c, 1) 96962

Current Basic Variables: (xl' x3, x5)
2
(l-'lei)=1-(p1+pz)=1-(0+1/3)=2/3‘Y
1=
Selection of Entering Variable:
P[Cl/2 <0)] =0
P[C,/2 ~C, < 0] =1-P[C,/2~-C, 20] =1-p, =2/3

Selection of Leaving Variable:

. 5
Ratios: /] 10/3
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5 _
172 10

) : i
177 = 2 =+ select x5 as leaving.

New Solution Index: 11100

Tableau 3: X X

o X1 % X3 X4 Xg

1 0 0 0 Cl-C2 2C2-Cl 4C1+2C2

6o o 1 1 -3 2
1 0 o0 1 -1 4
0 1 o0 -1 2 2
x 3 = ac; + 2c,

p3 = Pl(C; - C;) and (2C, - Cy) 2 0]

© 2C2
_]; £(C,) £(c,) dc,dc, = 1/6

P =
)
Current Basic Variables: (xl, x2, x3)
3
1- pi) =1-(0+1/3+1/6) =1 ~-1/2 =0.5¢£ ¥
i=1

Using the entering and leaving variables selection
criteria as before we obtain

New Solution Index: 11010

Tableau 4: xo xl x2 x3 x4 xs
1 0 0 cz-c1 0 2c1--c2 2c1+4c2
0 0 1l 1 3 2
1l 0 -1 0 2 2
0 1 1 0 -1 4
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Xo = 201 + 4C2
Py ='P[(C2 - Cl) and (201 - C2) 2 0]
© szcl
p, = [ £y £(c,) dc,ac, = 1/6
Current Basic Variables: (xl, xz, x4)
4
(1 -1z pi) =1-(0+1/3 +1/6 +1/6) =1 -2/3 =1/3 < ¥
i=1

At this point the approximation algorithm would stop
leaving one feasible basis uninvestigated (see Figure 3).
Continuing to the next iteration produces

New Solution Index: 01011

Tablesu 5: xo x1 X2 x3 X4 xs
1 C2/2-Cl 0 02/2 0 0 SC2
3/2 0 -1/2 l 0 5
1/2 0 -1/2 0 1 1
1/2 1 1/2 0 0 5
5 _
xb = Scl
Pg = P[(C2/2 - Cl) and C2/2 2 0]
[ -] [~ -]
P = j £(cC,) f(c,) dc,4c, = 1/3
5 o 1 2C 2 271

1
Since Pg > P, the bases are not considered in decreas-

ing order of probability of being optimal and this example
serves as a counter example to the premise that bases are con-

sidered in decreasing order.
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Figure 4 is a graph of the space of the random vari-
ables over which the feasible bases are optimal and shows how
this space is swept out by the algorithm.

For the case where the b-vector is a vector of random
variables (Case II of Chapter II), we are concerned with the
probability of feasibility of optimal bases. The algorithm
for this case considers all of the optimal bases of a problem
of this type. An argument similar to that given for Case I
provides the basis for the construction of an approximation
algorithm for the case where the b-vector is a vector of

random variables.

Let N denote the number of optimal bases of a problem

and q, the probability that the zth optimal basis is feasible.

Then,
N

oy BTt
and again we have a method for modifying the Case II algorithm
to give an approximation algorithm. Instead of continuing to
iterate until all optimal bases have been considered, the
accumulated probability of optimal bases being feasible will
be used to cause the iterative process to stop.

Let a denote a variable whose value is to be selected
by the decision maker and reflects his evaluation of the worth
of complete information. The criterion for continuing itera-

tions will be to continue selecting leaving and entering vari-

ables to compute the (s + 1)8t iteration until



o ae o _ .1 1o -
C1 is distributed f(cl) =315 © r 0 S ucg

1 '11V
C2 is distributed f(C2) = Yo © y 0 £ Vo

Figure 4. Graph of Probability Space.
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s
(1 - £ qz) < a, where s < N
=1
The Case II algorithm modified for this o limit approx-

imation now becomes:

Step 1: Same.
Step 2: Same.

Step 3: a. Same.

b. Same.
Cc. Same.
s
d. If (1 - 221 qz) S o proceed to Step 5. If not,

go to Step 3e.
e. Compute the probability that the basic variables
are negative and proceed to Step 4.
Step 4: Same.
Step 5: The algorithm terminates when the o limit is vio-

lated.

Example Problem

As an example of the use of the modified Case II

algorithm consider the following problem that was presented

by Bereanu (2).

Minimize xo = 3x1 + 4x2 + 5x3 + 2x4 + 2Y1 + 322 + 5Y3

+ 4Y4 + 621 + 522 + 223 + 3%

4

subject to Xl + xz + x3 + X, S 11,000

Yl + Y, + Y3 +Y, % 13,000



54

Z, + 2, + 253+ 3%,< 8,000
xl + Yl + zl = 7,000+u
X2 + Y2 + 22 = 10,000
x3 + Y3 + 23 = 5,000
Xg + ¥y + 2, = 1,000+v

where u and v are exponentially distributed random variables
with Au = 2/1000 and Av = 3/1000. Select a to be 0.01.

Replacing each equality constraint by two inequality
constraints and adding slack variables puts the problem in
the form found in Tableau 1.

The random variables in this problem appear in the
restrictions of the constraints so the problem will be in de-
termining the feasibility of optimal solutions. Tableau 1 is
not feasible so 87 is selected as the leaving variable, Y,
is selected as the entering variable and a Dual Simplex itera-
tion is performed to produce Tableau 2.

Tableau 2 is not feasible so S¢ is selected as the
leaving variable, Yl is selected as the entering variable
and a Dual Simplex iteration is performed to produce Tableau
3.

The former process continues until Tableau 6 is
obtained.

Examination of Tableau 6 reveals that the problem is

optimal (minimization problem) and the basis has a probability



TABLEAU 1

X) Xp Xy X ¥y Yy ¥ Y, 2y 25 253 2,8y 8, 8,585; 555585, Sg Sg 8,4 5y

0

-3 -4-5-2-2-3~5-4-6-5-2-3 0 0 0 0 0 0 0 0 0 O

11,000

0

l 11100 O O OO OOOT11 O O O O O O O O O

13,000

0

6 o 0o 01 111900 0 0 O 1 O OOOO0OO0OTUO0OTUO0OFGO

8,000

0

o 0 0 0 0 0 0 0 1111 0 01 0 0 0 0 0 00O

7,000+u

0

1 0 0 6010 0 0 1 0 00 OO OOOT1l1D00 090 0 O

wn

5

-7,000-u

0

0

0
0 0 0 O

0

-1 0 0 0-1 0 0 0-1 0 0 0 0 O O O 1 0 O

10,000

0

1

6o 10 0 0 10 0 0 1 0 0 0 0 0 o0 O

-10,000

0

0-1 0 0 0-*0 0 0-1 0 0 0 O 0 0 O O 1 0 O O

5,000

0

o 01 0 0 010 0 010 0 O O OO0OOOUO0OTU111I 0O

-5,000

0

o 0-1 0 0 0-1L 0 0O O-1L 0 O O O 0 0 0 O O 1 O

1,000+4v

0

0o 0 010 0 01 0 0 010 0 0 O0 O O 0 0 0 1

1

6o 0 0-2 6 0 0-1 0 O 0-1 0 0 0 0 0 0 0 0 O0 O

*Indicates pivot element determined by optimality and feasibility criteria.



TABLEAU 2

X) Xy X3 X4 Xy Yy Y3 ¥, 2y 25 %3 2, S) S, 53 5, Sg Sg 8, Sg Sg Sy Sy

30,000

0

3«1 ~-5-2-2 0~-5~4-6-2-2-3 0 0 0 0 0 0-3 0 0 O

11,000

0

l1 11140 0 O 0O 0O C 0 0 1 0 0 0 0 O O O OO

3,000

0

-1 0 0 1 011 0-1 0 0 01 0 O OC O 1 0 0O

8,000

0

0

0

¢ 0 0 0 0 0 0 01 1011 0 0 1210 0 0 00O

7,000+4+u

0

l1 0 0 0 1 0 0 01 0 0 0 0 0 0O 1 0 0 0 0 OO

=7,000-u

0

-1 0 0 0~1*0 0 0O~-1L 0 O 0 0 0 0 O 1 0 0 O0 O O

0

6 0o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 o0 0 O

10,000

0

610 0 0112 0 OO 0 0 0 0 0 0 0 0-1L 0 0 O

5,000

0

o 01 o 0 010 0 01 0 0 00 0 0 0 0 1 0 O

-5,000

0

o 0-1 0 0 0~«1 0 0 0-1 0 0 0 0 0 0 0 O O 1 O

1,000+4v

0 0 0 0 0 1 0

0

o 0 01 0 0 0 1 0 O O 1 o0 0 O

-1,000-v

1

o 0 0-1 0 0 0-1 0 0 0~-1 0 0 0 0 0 0 0 0 o0 O

*Indicates pivot element determined by optimality and feasibility criteria.



TABLEAU 3

X) Xy X3 X ¥y ¥y Y3 ¥, %) 25 253 2,5y 8, S35, S5 5g 5, 83 89 8,45 84

-1-1-5-2 0 0-5-4-4-2-2-3 0 0 0 0-2 0-3 0 0 0

44,000+2u

0

11,000

0

0o 0 0 0 O

l1 111000 OO OO OOT11 0 0 O O

-4,000-u

0

-1-1 0 0 0 0 1 2-1-1 0 0 0 1 0 0 O O O O O0 O

8,000

0

6o 0 0 0 0 00 0 11 01 0 0 11 0 0 0 0 o0 0 O

0 0

0

0O 0 0 0 00 0 00 0 0 0 0 0 0 11 0 O

7,000+u w

0

1 0 0 60 1 0 0 0 10 0 0 0 0 0 0-1 0 0 0 O0 O

7

0

0 O

0 0 0o 0 0 0 00 0 0 0 0 00 0 0 0 1 1 o

10,000

0

o1 00 01 0 0 01 0 0 0 0 0 0 0 0-1 0 0 O

5,000

0

o 6010 0 01 0 0 01 0 0 0 0 0 0 0 0 1 00O

-5,000

0

o 0-1 0 0 0-1 0 0 0-1*0 0 0 0 0 0 0 0 0 1 O

1,0004+v

0
1

o 0 01 0 0 01 0 0 01 0 0 0 0 0 0 0 0 O 1

o o 0-1 0 0 0-1 0 0 0-1 0 0 0 0 O O 0 O O O

*Indicates pivot element determined by optimality and feasibility criteria.



TABLEAU 4

Xy Xy X3 X4 ¥y ¥, ¥y ¥y 2y %5 %3 2, 8) 8, S3 54 S5 5557 Sg 89 839 853

54,000+2u

0

-] -1 -3-2 0 0~3~4-4-2 0-3 0 0 0 0-2 0-3 0-=-2 0

11,000

0

l1 11100 0 O0 OO OOO1 0 0 0 O O O OOCOCTFO

-4,000-“

0

0 0

-l*-1 0 0 0 0 1 1=-1-1 0 0 O 1 O O 1 O 1 O

8,000

0

o 0o 0 0 0 00 0 11 01 0 0 1 0 0 o0 00 0 O

0o o 00 ¥ 00 0 0O 0 0 0 0 0 0 11 0 00 O0O

7,0004u
[+ 2]

0

l1 0 0 0 0 00 021 0 0 0 0 0 0 0-<10100 00O

0

1 1 0 0 O

0o 6 0 0 0 0 0 0 0 0 6 0 0 0 0 0 O

0 10 0 0 1 0 0 0 1 O

10,000

o 0o 0o 0 0 0~-L 0 0 0 O

C

o 0 0 0 0000 0 0 0 & 0 0O O OOOCOTUOT11 11O

5,000

0

0o 0 0 0 0 0 0 0= 0

v
o 0 01 0 0 01 0 0 0 10 0 0 O 0 O0 O O0C 0 1

0o 021 0 0 0 1 0 0 O 1

1,000+v

0

-l,OOO-V

1

0

0

o 0 0-1 0 0 0~-1 0 O O0-1 0 0 0 O 0 O O O

*Indicates pivot element determined by optimality and feasibility criteria.



TABLEAU 5

X) Xy Xy X, ¥y ¥, ¥y ¥, 2y %5 25 2,8, 8, 8,85, S5 S55S, Sy 59 594 S13

0 0-3-2 0 0-4-5=3-1 0-3 0-1L 0 0<3 0-3 0-=2 0

58,000+3u

0

0

o 0o 11909011 1-1~-1 001110 011 0 1 0 0O

4,000+u

0

110 0 0 0-21-1 110 0 O0-1 0 0-<1 0-1 00 O

8,000

0
0

6o 0o 0o 0 00 0 01 121 01 0 01 0 0 0 O OUOFDO0

0-2 0 0 0 0 11-1-1 0 0 0 1 0 1 1 0 0 0 0 O

3,000

0

o 0 0 01 0 0 01 0 0 0 0 0 0 0 0 0 1 0 0 O

0

6o 0o 0o 0 0 0 0 00 0 0 0 0 0 0 0 0 11 0 000

10,000

0

0o 1 0 0 010 0 01 0 0 0 0O 0 0 0 0-1 0 0 0O

0

6o 0 0o 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

5,000

0

o 010 0 0 1 00 010 0 0 0 0 O 0 O O0-=1 o0

0O 0 01 00 03100TO0U1TU0TU0TUO0TGO0TUO0TUO0TO0TUO0O0 1

1,000+v

0
1

-1,000~v

0O 0 0-1*0 0 0-¥r 0 0 0-1 0 0 0 O O O O O O O

*Indicates pivot element determined by optimality and feasibility criteria.




TABLEAU 6

X) Xy X3 Xy ¥y ¥y ¥y ¥y 2y 25 %3 2, 8) 5, 5385, 55 55 87 85 89 5,45 513

60,000+3u+2v

-3

-3 0-2 0

o 0-3 0 0 0~-4-3-3~1 0-1 0-1 0 0=3 0

6,000-u~-v

1

o 01 0o 0 01 60-1-1*0-1 110 01 0 1 0 0 O

4,000+u

0

11000 0-1-11100 0-1 0 0-1 0-10 0 O
0o 0 0 0 0 0 0 0 21010901100 0 090 00O

o-1 0 0 0 0 2 2-1 0 0 0 O 1 0 1 1 o0 0 O

8,000

0

0

0 0

0o 0 0 0200 01210 0 0 0 O O OOOT10 00

3,000

0

0
0

6o 0o 0 0 00 0 0 0 0 0 00 0 0 0 01 1 0 0 O

10,000

c 10 0 0 12 0 0 0 1 0 0 0 0 0 0 0 0-1 0 0 O

o 0 o 0o 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121 O

5,000

0

o 0 0 0 001 0 0 0 121 0 0 0 0 0 0 0 0 0-1 0

1

o 0 0 0 000 00 0 0 0O 0 0 0 0 0 0 0 0 0 1

1,000+v

-1

o 0 01 0 0 02 0 0 0 1 0 0 0 0 0 0 0 0 0 O

*Indicates pivot element determined by optimality and feasibility criteria.
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of being feasible. This condition is (6000 - u - v) 2 0 which
defines the set Q = {f(u,v) : (utv) £ 6000}. The current

value of X, is 60,000 + 3u + 2v and at this point the distri-

bution of X, is given by
fKXb) = qlfl(xo)

The probability that this optimal basis is feasible

" is given by

q, = P{6000 - u - v > 0] = P{u + v g 6000]

© 6000-v
f £(v) ] f (u) dudv
0 0

” 6000-v
q, = f 3/1000 e~3/1000 v [_e 2/1000 u] av
0 0

te}
=t
i

q; = fo 3/1000 ¢~ 3/1000 v 4,

[+ -]
- 3e712 j 1/1000 171000 v 4,
0

q =1- 3e12 = 1 - 0.00001875

9 = 0.99998125
s=1
Now 1 - 2:1 q, = 1 - 0.99998125 = 0.00001875 5 o
so the algorithm terminates.
The only reason for changing bases (i.e., investi-
gating another solution) would be if an infeasibility could

exist in the current solution. This condition would be
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satisfied if (6000 - u - v) were negative, but the probability
of this is extremely small (approximately 0.00001875). The
approximation algorithm with a set at any value above this
small probability would terminate and yield xo = xo1 = 60,000
+ 3u + 2v with probability 9, and f(xo*) = qlfl(xol). Bere-
anu's technique would be to use sensitivity analysis to find
the set that defines q; and then would require a change of
basis using parametric programming methods to investigate the
other basis which has a probability of optimality of
q, = 0.00001875.

An estimate of the amount of information that is lost
by using the approximation algorithm is desirable. Of course,
the total amount of the probability space that is left out is
less than or equal to a by the nature of the algorithm.
Another interesting measure is the change in expected value
that would occur if more bases were investigated. Let s
denote the last basis that is checked and consider the con-

tribution of the (s + 1)St basis. We know that

s
(L - = qz) < a
=1
N 8
and that z q, = (1~ 2 qz) £ o
L=s+1 =1
N
so L q, s a
2=8+1

Also since q, 2 0 for each %, we have that

N

Tot)) < g B *°

q(s+1) sa



TABLEAU 7

X) Xp X3 X4 ¥y Yy Y3 Y, &y 25 25 24 5) S5 85 8, S5 54 8, Sg 59 514 Sy

o 0-4 0 0 0-5-3-2 0 0 0-1-2 0 0-4 0-4 0-2 0 -4 54,000+4u+3v
o 60-1 0 060 0-2 0 11 - 1-1-1 0 0-1 0-1 0 0 0 =1 u+v-6,000
10,000-v
14,000-u-v
0
3,000
0
16 ,000~-u-v
0
5,000
]
1,000+v




64
The difference between f*(xo) at the sth iteration

and f*(xo) at the (s + 1)St iteration is given by

£* (xo) (s+1) ~ £* (xo)s = q(s-l-l) f(s-l-l) (xo)

Therefore, £* (XO) (S""l) - f£* (XO)S £a f(S+1) (xo)

At any iteration, the value of the basic variables is

given by

For the case where all of the constraint relationships are

sums, it follows that

-1
B Po £ Po
Also, at any iteration
= -1
xo_CBB Po
so X_ =C.B P g CP
(o] B o B o

The largest possible value for CB would be the m largest coef-

ficients in the objective function. Let CB1 denote these;

this gives

1y

Xo £C Po £4 CB °

This yields

1
X (X g4y = 2 (X)) g s a £,(X) <0 £(Cy™ P)

o
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and the difference in the expected value is less than

1

a E[X ]=afx f(C P ) dX
O(s+1) ©(s+1) B "o O (s+1)

These values for Bereanu's example problem are

11,000 |
13,000
8,000

P = 7,000+u

10,000
5,000
1,000+v

cBl = (5,5, 4, 6, 5, 3, 4)

This gives
Bl P, = (55,000 + 65,000 + 32,000 + 28,000 + 6u

+ 50,000 + 15,000 + 4,000 + 4v)

1

CB Po = 249,000 + 6u + 4v

For the selected a value (i.e., a = 0.01) we have that
a f(CBl P,) = 0.01 £(249,000 6u + 4v)

The random variables u and v are independently distri-
buted according to exponential probability distribution func-
tions with parameters lu = 2/1000 and Av = 3/1000. Let
Y, = 6u and Y, = 4v. The distribution of these random vari-
ables is exponential with parameters Al = 2/6000 and Az = 3/4000
regpectively. Let fy1+y2(X) denote the distribution of the
sum of these two random variables. This distribution must be

approximated since it is the distribution of the sum of two
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gamma distributions each with parameter r = 1 but with unequal
A's,

The characteristic function of Yy is given by

6. (w) = @ - 39y

Yy Y
and for Yo by

o (w) = (1 - iy~

Yy A,

If these characteristic functions are approximately equal,
then their probability laws are approximately equal.
In order to construct an approximation function, let

A* = (Al + Az)/z and let fy*(x) be an approximation of f_ (X)

1 ¥
and £ *(X) be an approximation of £ _ (X) where f_ *(X) and
Y2 Y2 Yy
f_*(X) are given by
Y2
£x) =a* e ¥ ax, 0cXgsw
N = u
ow, ¢y1+y2(u) ¢y1( ) ¢y2(u)
iy, 2
iu.
= (1] -
¢Yl+y2(u) ( =)
and this indicates that £ (X) is a gamma distribution

Y +¥p
with parameters r = 2, and A* = 13/24,000.
The difference in expected values when the (s+1)St
basis is not investigated is less than or equal to a(249,000)
+ aBIX_5*1] or 0.01(249,000) + 0.01(48,000/13) = 2527.
Examination of Tableau 7 gives the value of xo2

= 54,000 + 4u + 3v and q, = 0.00001875. This means that for
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this problem the actual difference in the expected value of

the objective function is approximately

5 5 2

1.875 x 10~ E[X ]

(54 x 103) + 1.875 x 10~

As before, the distribution of x02 is the distribution of the
sum of the random variables Yy = 4u and Y, = 3v which are

exponentially distributed with A parameters 1/2000 and 1/1000
respectively. Using the same type of approximation as before,

this means that the actual difference is approximately

5

1.875 x 10 - [54,000 + 8000/3] = 1.06

This value represents a very small difference in the expected
value of the optimum of the objective function and indicates
that the approximation algorithm eliminates only a small
amount of information when it does not investigate this basis.

The chéice rule for entering variables used by the
algorithms of Chapter II and the approximation algorithms en-
sures that if a basis has a zero probability of being optimal,
it will never be considered. This occurs because the selec-
tion condition for the entering variable represents the amount
of the probability space that has not yet been considered.

The selection rule selects a non-basic variable to
enter only if it has a positive probability of contributing to
the objective function. This means that for some non-basic

variable, the following statement is true:
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-1
P[(CBB pj - cj) < 0] >0

The actual value of this probability statement is the amount
of the probability space that has not been previously consi-
dered. Therefore, the entering variable choice rule will

eliminate from consideration those bases that have a zero

probability of being optimal. This feature offers a further
savings in computational effort sincc it is not necessary to
consider these bases in the computation of the distribution

of the optimal value of the objective function.



CHAPTER IV
CONCLUSIONS AND RECOMMENDATIONS

Algorithms have been presented for the solution of
the distribution problem of probabilistic linear programming
under the conditions that either the coefficients of the ob-
jective function or the restrictions of the constraints are
random variables. These algorithms are based upon the simplex
technique with appropriate modification of the rules for se-
lecting entering and leaving variables to account for the
presence of random variables in the problem.

The method developed by Tintner and Sengupta (18, 19)
for finding the distribution of the optimal value of the objec~
tive function requires the solution of as many linear programs
as there are combinations of random variables and the possible
values that they may assume. For problems involving more than
a few random variables, the number of computations required
becomes quite burdensome. The algorithms presented in this
paper offer the advantage of producing the desired distribu-
tion of the optimal value of the objective function without
requiring the solution of more than one linear program.

69
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Another feature of i.ntner and Sengupta's method is
that it is dependent upon sampling techniques for selecting
values for the random variables and for fitting a function to
the optimal values that are obtained. Because of this, the
method actually produces an approximate distribution and not
an exact distribution. Tintner and Sengupta do not give any
bounds upon the error that may be produced by this technique.

The algorithm presented in Chapter II of this paper
will produce the exact distribution of the optimal value of
the objective function. The approximation algorithm of Chap-
ter III produces an approximate distribution and gives a bound
on the error in the mean and variance of the distribution of
X, that is created by the approximation.

The algorithms are not dependent upon placing upper
and lower bounds on the range of the random variables as in
Bereanu's computational method. Additionally, Bereanu's method
does not give a specific procedure for changing bases, but re-
lies on parametric programming methods. The algorithms devel-
oped in this paper are based upon the simplex method and con-
tain specific rules for changing bases that prev?nt considera-
tion of bases that have a probability of being optimal equal
to zero. This condition is not necessarily guaranteed by
Bereanu's computational technique.

The method of selecting entering and leaving variables
is important since it selects candidates that are best ac-

cording to a probabilistic measure of their ability to improve
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the solution. As stated in Chapter III, the algorithms inves-
tigate the probability space in a contigucus manner and this
leads to the concept of producing the approximation algorithms.

Bereanu's technique requires an investigation of all
of the feasible bases of the problem and in this sense it is
totally enumerative. He does not present an approximation
algorithm based upon his technique.

The modified approximation algorithms make possible a
determination of an approximation of the distribution of the
optimal value of the objective function. Bounds are given for
the amount of probability of either optimality or feasibility
that is omitted and the difference in the expected value of the
distribution function that is caused by using the approxima-
tion algorithms. These algorithms are important because of
the savings in computational effort that they produce. This
reduction of computations becomes even more significant as the
number of random variables in a problem increases.

Two computer programs are given in Appendix B. The
first of these programs is designed to produce the information
required for determination of the distribution of the optimal
value of the objective function when the C-vector is a random
vector whose elements are described by discrete probability
distribution functions. The second program handles the same
case with the exception that the elements of the C-vector are

described by continuous normal distribution functions.



72

The algorithms developed in this dissertation do not
consider the case where both the C-vector and the b-vector are
simultaneously vectors of random variables. This condition
offers an area for further research and a possible extension
of this work. Additionally, different rules for selecting
entering and leaving variables may be developed and their
effect upon the investigation of the probability space will
need careful consideration.

The integrations that are necessary for the determina-
tion of the probability that either a feasible basis is opti-
mal or that an optimal basis is feasible present some diffi-
culty. In general, these are conditional integrals, and in
the case where the original variables are normally distrib-
uted, this integration must be accomplished by numerical
methods. This process has not been included in the computer
program and provides an area for further work in terms of
reducing the effort required in solving a problem of this
type. A similar comment holds for the discrete program since
the summations required are conditional sums, and again this
process has not been included in the current computer program.

Another area for further work is the development of
computer programs that will consider probability distributions

other than the discrete or continuous normal cases.
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APPENDIX A

PROOF THAT THE COEFFICIENTS OF THE BASIC VARIABLES
ARE ZERO WHEN THE C-VECTOR IS A

VECTOR OF RANDOM VARIABLES

Theorem: Let the C-vector be a vector whose elements are

independent random variables and consider the linear
program
Maximize Xo = CX

subject to AX

h
)

X20

The coefficients of the basic variables of this prob-
lem are equal to zero.
Proof: 1. Consider the general tableau form of the problem
which represents the solution at any iteration.

X -
-1 -1 o c.p~lp
1 FBB A-cp| Bl -\ [y |- ( B o)

B
11 °

CB - Coefficients of basic variables

76
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B - portion of the A matrix associated with the

basic variables

(CI' CII)~ a partition of C-vector where CII represents

5.

7.
8.

" the coefficients of the starting solution.

The coefficients of all of the variables are given

1 1l

by either (CBB A - CI) or (CBB -C

II)
Consider a variable xj and assume that it is a

basic variable.

1

The coefficient of xj is given by (CBB- Pj - cj)

-1
Since xj is a basic variable, its column vector

Pj is an element of B.

Therefore, B~! contains the inverse of this column

1

vector and thus CBB- Py for the jth variable

which is basic becomes CjI =C.,.

]
-1
Th B Po - 'y = c. -c- »
erefore, (CB 3 CJ) ( 3 J)

Now, Cj is a random variable so let cj assume any

of its possible values, say Cj*.
-1
Theref C,B P. -C.) = (C,* -=C.*) =0 and
efore, (Cy 3 J) (:l J)

since (CBB-le - Cj) is the coefficient of a basic

variable, the theorem is proved.



APPENDIX B

COMPUTER PROGRAMS

The two computer programs presented in this appendix
entitled respectively PROGRAM 'DISCRETE' and PROGRAM 'CONTINU-
OUS' are written in Fortran IV. They are designed to use the
Case I Algorithm when the coefficients of the objective func-
tion are either discretely distributed random variables or
continuously distributed normal random variables.

Each of these programs produces as its output a modi-
fied tableau that contains the information needed for the
construction of the inequalities that define the set Sge
This set is necessary for the computation of the probability
that a feasible basis is optimal, i.e., P,.

In addition, the tableaux contain the basic variables
and their values at each iteration. This information is pre-
sented in a form that is similar to the regular simplex method
tableau.

The program user must supply the data that defines
the problem that he wishes to solve. This includes the number
of original variables in the problem, the number of constraint
equations, the probability distributions of the random vari-

ables, the coefficients of the constraint equation (the A
78
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matrix), the constraint restrictions (the b vector), and the

starting solution. The programs use this data and the Case I

Algorithm to produce the output described above,

PROGRAM 'DISCRETE' User Information

Program Limitations

As currently written this program will handle a linear
program with a maximum of nine random coefficients in the ob-
jective function and a maximum of nine constraint equations.
This limitation may be removed by changing the Dimension
Statements in the program. Let n be the number of variables
and m be the number of constraints and k be the number of
possible values of the random variables., The Dimension State-
ments should be modified as follows: A[m, (m+n)], CONTAB
[(mtn), (mén+l)], VRV [(m+n), k], PRU [(m+n), k], PR (m+n),
KV (m+n). At the beginning of the program the statement
MAX = 9 should be changed to MAX = (m+n). These changes will
handle any size linear program up to the limitations of the

computer being used.

Input Required
Card 1.

Columns 1-5 : The number of constraint equations in Format

IS5
Columns 6-10: The number of original variables (not includ-

ing slacks) in Format I5
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Columns 11-80: Blank
Card 2.

Column 1l : Blank

Columns 2-16: Value of the random variable in Format F15.6
Columns 17-32: Probability of the random variable having the

value in Col., 2-16 in Format F15,6

Columns 33-80: Blank

Note: The second card is repeated until all values
of the random variable have been read in and the last card
of this set for each random vafiables is followed by Card 3
which signals the end of this random variable,

Card 3.

Column 1 : Blank
Columns 2-16: Z2ero in Format F15.6
Columns 17-32: Zero in Format F15,6
Columns 33-80: Blank

Note: Slack variables are indicated by a Card 2 with
zero in Columns 2-16 and 1.0 in Columhs 17-32 and again each
of these is followed by a Card 3.

Card 4. Beginning in Column 2 in a F7.3 Format, this
card contains the coefficients of the A matrix and the b vec-
tor with each card representing one equation. This card is
repeated as required to read in all of the constraint

equations,
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Card 5. This card contains the information concerning
the starting solution,
Columns 1-5 : The column of the basic variable in the start-
ing solution in Format IS
Columns 6-10: The row of the basic variable in the starting
solution in Format IS
Columns 11-80: Blank
Note: There will be as many of these cards as there
are constraint equations (i.e., m of these).

A listing of this program and an example problem

follow at the end of this appendix,

PROGRAM °'CONTINUOUS' User Information

Program Limitations
The same general comments given for program limita-
tions for PROGRAM °'DISCRETE' apply to this program. The
Dimension Statement for PROGRAM 'CONTINUOUS' should be modi-
fied as follows: A[(m, (m+tn)], CONTAB [(m+n), (m+n+l)], RVMV
(m+n), RVAR (m+n), PR (m+n) in order to handle program with
more than nine total variables, Also, for this program the

statement MAX = 9 should be changed to MAX = (mé+n).

Input Required
Card 1. Same as for PROGRAM °'DISCRETE.'
Card 2.
Column 1 : Blank
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Columns 2-8 : Mean value of the random variable in Format
F15,.6
Columns 9-15: Variance of the random variable in Format
F15.6
Columns 16-80: Blank
Note: There will be (m+n) of these cards with the
slack variables having zero mean and zero variance,
Card 3. Same as Card 4 for PROGRAM 'DISCRETE.'
Card 4. Same as Card 5 for PROGRAM 'DISCRETE.'
A listing of this program and an example problem

follow at the end of this appendix.
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PROGRAM DISCRETE

PROGRAM DISCRETE COMPUTES THE INFNRMAT INN NECESSARY FNI THE
CALCULATION OF THZ PROBARBILITY THAT A FEASIBLF BASTS IS
OPT IMAL WHEN THE CODEFFICIFENTS NF THE OBJECTIVE FUNCTION ARF

DI SCRETELY DISTRIBUTED FANDCM Vv ARIABLES

100
200

300

400

450

500

INTEGEI*2 IHZAD.I X0
DIMENS ION THEAD(9)

DIMENSION A(9¢9) ¢ CONTAR(D,10)s VRV{9:92)e PRVI9.9)
DIMENSIIN TVVI1000)s TPRV(1000), KVI{9) s IBASIS{100)

DIMENSION PR{9)

DATA THEAD/'CL1® ¢%C2%4%C 3T 42 CA% 4" CS® 4°CH® " CT*s*CR, " (CO*/

DATA [X0O/°*°X)°/

DATA VRVPRVCONTAR/81%,0,R1%,0490%.,0/

IN=§S
IOUT =6
MA X =9
N3 A SE =0
18=0
READ(INs3220: MsN.E
WRITE(IOQUT +4900) M.N,B
NV=M+N
NN=NV+#1
MM =M
DO 300 J=1.NV
K=0
DO 100 =1 MAX
READ( INeSHJ0) VRVIL o J)ePRVIL o J)
IF(PRVIL1J) ¢EQede0) GO TN 200
K=K +1}
CONT INJE
CONTI NUE
KV(J)=<
CONY INJE
DO 400 J=1 NV
KVN=KV(J)
DO 400 L=1.,KVN
WRITE(IOUT ¢5200) VRVIL ¢J) oPRV(L 4 J)
CONT INVE
DN 450 I=14NV
CONTAB( I eI)==1,
CONT INUE
NO S00 [=1 .MM
READ{ INS250) (A(] ¢J) ¢ J=1¢NN)
CONT INJE
DO 540 K=z1l oMN
READ(IN¢S000) JJell
DO 520 J=1+NN
IF(JeEQeuJ) GO TO 520



520

530
540
550

600

650

675

700

750

800
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DO 520 [=1e«NV
CONTABC T o J)ISCOUNTAI(I o J)-A(IT L) CONTAR(E,U))
CIONT INUE
DO 530 I=1.NV
CONTAS( I vJJ)=0e
CONY INJE
CONTI NUE
CAONTINUZ
WRITE(INUT.5300)
WRITE (I 0UT+S800) (ITFEAN(J) 2J=1 oNV),IXO
DO 600 I=1.NV
WRITE(IQUT+59230) 1FEAC(I): (CNNTAR(Te¢J)eJ=1.NN)
CONTI NUZ
WRITE(IOUY 45700)
DO 650 I=]1 MM
WRITE(LOUT 45200) (A{T +J) sJ=1NN)
CONT INJUE
JJ=0
IBASE =0
PT=1.0
PMAX=0.0
DD 900 J=1,NV
[CT=0
DO 800 I=1+NV
IF(CONTAB ([+J)eEQeQe) GO TO AQO
IF(ICT.NEO) GO FrOo 700
ICT=KV(I)
CON=CONTAB(I1+J)
DO 675 K=1,ICT
TVRVI(K) =VRV(KI )&CCN
TPRVIK)=PIV{K, I)
CONTINUE
%0 TO 800
CONT INUE
LMT=KVI(I)
KM=LMTS$ICYT
CON=CONTAB(L+J)
DD 750 K=1.LMT *
KK=KM=-KEICT#+]
DO 750 L=1,ICT
TVRVIKK)I=TVRV(L)*CCAMWRVK.I)
TPRVIKK)=TPRVIL) ¢PRV(K,T)
KK=KK ¢}
CONTI NUE
ICT=ICTSLMT
CONT INJE
IF({ICTeNE«O) GO TO #50
IBASE=IBASE+10%%(NV-I)
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PR{J) =0.0
GO T3 4900
850 CONTINJE
PIVLZ =060
DO 875 £=1,1CY
IF(TVRVIK) «GT e ) CGC TO A7S
IFCTVRVIK)«eNE< e 0O) GC TC B60
PRVLZ=PRVLZ+T2IV(K )/ 2
GO 70 875
860 CONTINUE
PRVLZ=PRVLZ4TPRV (K )
8795 CONTI NUE
PT=PT *( 1.0-PRVLZ)
IF{PMAX « GT «PRVL.Z) GO TO 890
PMA X=PRVLZ
JJI=J
890 CONVINJE
PR( J) =PRVLZ
900 CONTINUE
IB=1I8+1
IBASI S{18)=IBASE
IF(JJ «EQ+0) GO TI 1600
950 CONTINUE
NBASE=[3ASC+108&(NV-JJ)
RTEST=93999,
[I=0
DO 1000 I=1.MM
IF(A{1:JJ)eLEQO.) GO ¥ 1000
R=A(1 NN}/Z7A(I+JJ)
IF(R«GZ+RTESTY) GO 74 1000
11=1
RTEST=R
1000 CONTINUZ
IF(II.£Q.0) GO TO 1060
DO 1020 J=1 NV
IF(A(IleJ)eNEel) GO TO 1020
DO 1010 I=1.M
IF(IIl«EQel) GO TO 1010
IF(A(1sJ)aNELO) GO TO 1020
1010 CONTINUE
DO 1015 I=1sNV
IF(CINTAB( [eJ) eNEe0e) GO TO 1020
1015 CONTINUE
NI A SE=NBASE~10¢x(NV-J)
GO 70 1040
1020 CONTINYE
WRITEC(IOUT +5500)
GO TO 1600



1040

1050

1060

1070

1090

1100

1200

1300

1400

1500

1600

4900
5000
5100
5200
5250
5300

86

CONTINUE

DO 1050 J=1e1I8
IF(NBASE.EQsIBASIS(J)) GO TO 10K0
CONTINUZ

GO Y0 19299

CONTINUE

PR(JJS )= o0

JJ=0

PMAX=0,0

DO 1070 J=1.NV
IF(PMAX «GE +PR(J)) GC TO 1070
PMA X=P( J)

JJi=J

CONT INUE

IF{JJeEQe0) GU TO 1600
GO TD 950

CONTI NUE

2IVOT=A(ILI 4 JJ)

DD 1100 I=1.Mv

DO 1100 J=1 oNN

IF{ IsEQ.If) GO TO 1100
IF(JeEQeJJ) GO TD 1100
Al oJ)=(A(L o J)EPIVOCT=A(14JJ)RA(T I, )/ VDY
CONTINUZ

DO 1200 J=1e¢NN
A(II«J)=AlIL,,J)/7P1IVQTY
CONTINUZ

DO 1300 I=1eMM

AlLT oJJ) =0

CONY INUE

AlTTLeJJ)=lo

20 1400 J=1 oNN

00 1400 I=1,.\NV
IF{JesEQeJJ) GO TO 14800
CONTAN I 4 J)=CONTAICTI oV ~A(T I ¢ J)RXCONTAR(]I,4JJI)
CONT INJE

DO 1900 1I=1NV

CONTAY( [¢JJ)=0.0

CONY INJE

GO YO 550

CONTINUZ

CALL EXIT

FORMAT(® °® (215¢F8+¢3)
FORMAT( 2156 2F 3¢ 2)
FORMAT (1 H) )

FORMAT{ SH 210F 7e3)
FORMAT(1X,10F7.3)
FORMAT(12HINEW TABLEAY)



5400
5500
5600
5700
5800
5900

87

FORMAT(1H +F7¢3:21F%)
FORMAT(®* * ,*ERROR 1°*)
FORMAT( IH +3F 15e6)

FORMAY (1HO )

FORMAT (*0°? 34X +10(2XsA2,4,3X))
FORMAT (14 +sA2¢2Xe 1CF 7,4 3)
END



000°*1
00°1
0610
uGe e
140 Ratd |
30¢*D
ouLl®o
HHIA s
LLUC®D
Juv*yu
VU J
VG1*o
JU¥*O



NEW TABLEAU

ct
c?
c3
Ca

Ccl
-1.000
0.0
1.000
2.CncC

1.000
2.,0CC

c2
C.C
2.000
1.00C

2.000
1.000

(oo e Ne N

HDO0O00

1.000
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Céa X0
0.0 o.o
0.C C.0
0.C 16.000
0.C 1C. 000

0.C 10.000
1.6CHO 1C.00C
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c1 c2 c3 Ca xec
Cl '1.000 Coc C.O U.C C.O
c2 C.500 0,0 0.500 0,0 5.00C
3 C.0 0.0 -1.000 0,0 0.0
C4 1.59C (.0 ~-0.,500 0.C 5.00C

C.50" 1.000 0,500 0,0 5.000

1.502 0.0 -0.500 1.,C00 S.0CC
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NFW TARLFAU

C1
c2
c3
Ca4

0 | | Cc3 Ca
C.C C.N -Ne333 0,667
N0 0.9 N.667 -0,233
CaN 0n,n -1.000 0,C
C.C 0.0 -3.00’) ~l.COn
0.0 1.000  0.667 =N,233
t.9n0 Q0.0 -0s233 Q.667

DWW X
e o o o M
DO wWwWw
e [NV
9 SV

3.333
34233



ooL*s
Jud°s

600°0
JU0°S
0ov*o
0L0°*s

ox

00s°0 0*0
00u°L- LLD*°1

oGu*l- 0°0
008 °0~ Lo
9°0 2°0
005°0 w0
%) )

(43

Ovs
0us

v
‘1

0u0°0

V0S

vGo* -

‘1

vuv°*l
v'u
(9 Rt %)
(FAd] t)
%9 ¢)
vy [ )
(98]

Nv3dTuvl MdN
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PROGRAM CONT INUJJS
PROGRAM CONTINJUOUS COMFUTES THE INFORMAT [ON. NECESSARY FAR

THE

CALCULATION OF THE FRNBABILITY THAT A FFASIBLE BASIS IS

OPT IMAL WFEN YHE COEFFICIENTYS OF THE OBJFCTIVE FUNCTION ARE
I NDEPENDENY NORMAL RANNCM VARIABLES

200
400

450

500

520

530
5S40
550

INTEGER*2 JTHEAD. I X0
DIMENSION IHEAD(I)
DIMENSION A{(999) ¢+ CCNTABI(9,10) RVMV (9) ,RVARI9)
DIMENSIJIN [BASIS(10C).PR{9)
DATA CONTAB/90%0 .0/
DATA IHSADZPCLY 42 C20 039 ,9C40 0CS® 4%CH ,"C7*,0°(C8Y,' 9"/
DATA IXD/7*XJ%/
IN=5
I0UT=6
MAX=9
NBASE =0
18=0
READ(IN+5000) MeNeB
WRITE(IOQUT 44900) MsN,.B
NV=M+N
NN=NV +1
MM=M
K=0
DO 200 J=1sNV
READ(IN«S500) RVMV{J)RVAR({Y)
WRITE(IOUT 5200) RVNVIJ) s RVAR(J)
CONT INJE
CONTI NUE
DD 450 [=1.NV
CONTAB(Is1)=-1.
CONTI NUE
DO S00 [=1sWM
READ(INe3250) (All1eJ)eI=1.NN)
CONTINUZ
DO S40 K=]1,.MM
READ(IN5200) JJe1I )
DN S20 J=1 NN
DO 520 I=1+\W
IF(J:EQeJdJ) GO TO 520
CONTAB(I o J)=CCNTAB(T o) =AlTT +J)*CNNTAR(T,+JJ)
CONT INJE
DU S30 =] NV
CONTAB(L¢JJ)=0¢
CONYT INJE

CONTINUE

CONT INUE
WRITE(IOUT+5320)
WRITE(IOUT5800) (IHEAD(J) ¢ J=1 +NV), IXO



600

650

800

850

890

900

950
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DD 600 (=1 oNV
WRITE(IOUT $5900) IHEAD(I) s (CONTARBI(I +J) ¢J=1 4NN)
CONT INUE
WRITE (10UT,+5100)
DD 550 [=1.MM
WRITE(TOUT+5200) (A(TsJ)eJ=1sNN)
CONTYI NUE
JJ=0
IBASE=0
PYT=1.0
PMAX=06,0
DN S30 J=1+NV
OMEAN=0.0
DVAR=0,0
1CT=0
DO B800 I=1.NV
IF(CONTAB (IeJ)esEQeNe) GN TO ROOD
ICT=1{T+1
DMEAN=)MEAN®RVMV(I ) *CONTAB(I ,J)
DVAR=DVAR#RVAI( I ) *CONTAB(1,J)%CONTAB(T +J)
CONTI NUE -
IF{(ICTeNZ.0) 50 YO €S0
IBASE=IBASE+10%%x(NV-J)
PR( J) =0, 0
GO TO 900
CONT INUE
PRVLZ=PRO3I(DMEAN,DVAR)
WRITE(IOUT.5100)
PT=PT %(1l «I-PRVLZ)
IF(PMAX.GT.PRVLZ) GC TN A90
PMAX=PRVLZ
JJd=J
CONTI NUE
PR(J)I=PRV_Z
CONT INJE
18=18+1
IBASIS(IB)=18ASE
IF(JJ2EQe0) GU YO 1600
CONTI]I NUE
NBASE=IJASE+10¢%(NV=J))
RTESTY =9999.
11=0
DD 1000 I=]1,MM
IF(A(LsJJ)elESDde) GC TO 1000
R=A( I NN)I/ZA(]I s JJ)
IF(R+GELRTESY) GJ) TO 1000
11=1
RTEST=R



1000

1010

1015

1020

1040

1050

1060

1070

1090

1100

1200

1300
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CONTINUE
IF(11.EQ«0) GO TO 1060
D0 1020 J=1e\V
IF(A{ Il 0J) eNE1) GC TN 1020
DO 1010 I=1+M
IF(Ifl«EQ.[) GO TO 1010
IF(A{I+J)eNEO) GO TC 1020
CONTINUZ
DO 1015 I=lsNV
IF(CONTAB(I 9sJ)eNEOe) GO TO 020
CONT INUE
NBASE=NBASE=1) ®&(NV~-J)}
G0 TO 1040
CONT INUE
WRITE(IGUT«5500)
GO0 TO 1600
CONT INUE
DO 1050 J=1,I8B
IFIN3ASE«=Q«IBASIS(J)) GO TOD 1060
CONT INJE
GO Y0 1622
CONTINUZ
PR(JJ)=e0
JJ=0
PMAX=0e0
DO 1070 J=1eNV
IF{PMAX.GEPR(J)) GC TO 1070
PMAX=PR(J)
JJI=J
CONTINUZ
IF(JJ «EQ.0) GI3 T) 1600
GU YO 950
CONTINUZ
PIVOT=Al11sJJ)
DO 1100 I=1+MM
DO 1100 J=1 NN
IF({1.EQeII) GI) T2 1100
IF(JeEQeJJ) GO TO 1100
AlLTLoI)=(A(L o+ J)SPIVOT=-A(TI 4 JJ)XRA(L1]1,J))/PTIVOT
CONY INJE
DO 1200 J=1 ¢NN
A(11:+0)=Al1Eed)/721VNY
CONT INJE
DO 1300 I=1sMM
A{l+JJ)=0¢
CONT INJE
A(T1T4J0)=1.
D0 1400 J=1,NN
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DO 1400 I=1eNV
IF(J.EQeJddd) GO TI 1400
CONTAB(I »J)=CONTAB(1:3)-A(1T,J)%CONTAB(T,4J)
1400 CONTINUZ
DO 1S00 I=1.NV
CONTAB{ I +JJ)=042
1500 CONTINUZ
GO TO 550
1600 CONTINUE
CALL EXIT
4900 FORMAT(® *,21S5:F8e3)
S000 FORMAT(2I5+2F442)
5100 FORMAT({ 1H0)
S200 FORMAT(S5H o1JF7,.3)
5250 FORMAT(1Xe10F7.3)
5300 FORMAT(12HINEW TA3LEAUY)
5400 FORMAT(1H +F7+3+215)
5500 FORMAT(?® ¢ ,*ERROR 1°)
5600 FORMAT({1H ¢3F15.6)
5700 FORMAT(1HL)
S800 FORMAT (°0°"¢4Xe10(2XeA243X%X))
5900 FORMAT (1H +A2:2Xs 1CF7,.3)
END
C THIS 1S A SUBPROGRAM THAT CALCULATES THE PRNOBABILITY OF A
C NORMALLY DISTRIBUTED RANDOIM BEING NONNEGATIVE GIVFEFN
C ITS MEAN AND VARIANCE
FUNCYT ION PRIB(FMe SM)
DIMENSION A(73)
DATA A/¢50000¢51992e539R 065596 9eS5793 95987 95179, «53A/8
006558, 06T 36E2 0691590 708B8B9a 725700 74220¢ 7580907734
067381 00302338159, ,8289, ¢8413, ¢B8531¢ sR643,,8749
2088694068944 130690323091 150691 92 ¢0e9265 9¢9332 49394
0098524 695059 095580 ¢95994 ¢ F681¢0696789e97134.9744
009772 0097984309821 909842, 98614 s9878¢ 498934 €906
2099180 099290099389¢ 9986009953 0069960 96 9965 99970
209978y e9978, ¢9981 ¢ 0699844 699879 e 998G ¢ 99904, GIS2
2809993 209994 309995 469996 309997 9 699979 «F9I984 ¢ 9999
» 1000/
==-FM/SQRT(SM)
IF(YeNEL0QeD) 50 TO 100
PROHB=0 .5
RETURN
100 CONTINUZ
YY=ABS(Y)
IF(YY LTe 3e6) GO TO 200
PROB=1.0
GO T0O 300
200 CONTINUE

VEOENONLSWN=-
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I=YY7 o025
Ol =1l *,35
i=1l+1
0J=1%.,0%
Al =A(1l)
AJ=A(1+1)
PROB=AI+{(YY~01)7 .05%(AJ-AT)
CONTI NUE
IF(YeGYTe a0) RETURN
PROB=1.~-PRNOJ
RE TURN
END
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€1
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€3
4
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1.%700
C.500

c.50¢
1.510
0.590

DDOHNONO
e & o o o

OO0

fo =N
[ ) [ ] )

QD00

c3

N.0

£.500
-F.S')O
-0.500

C.500
-0,509
“00500

100

.‘700002
OO0

2 - D
e & o

'ln

=l No Mo NeNg
QO0MOD

273D
-0
o o 0

2 2D

xr
C.0
5.C0C
c.C
S.C0C
1.CCC

5.00C
5.C0C
1.CCC



MFW TARLFAL)
cl

C1 C."

c? 0.0

c3 Q.0

C4 0,n

s g.n
g.0
n,0
1,000

OODN"INONO
e o o o o

20N 0O0O

101

xn
2.,CCC
4,c0C
c.C
2.C0C
C.C

4,000
2.CCC
2.CCC



NFW TARLFAL)

C1
c?
Cc?
Ca4
c5

OD9MNOOON
* e ® 0 0 r
25923230

DOo0009

e o o o & N\

DHDOCO0

Ll Xe
e e @
290
[« Nex
¢ o &

o

D09

102

Cc3 Ca
0.C 1.009
N0.C -1.000
0.0 1.CoN
C.C -‘.OOC
0.0 0.C
OOC ‘10000
l.0n0 1,000
N.0 1.000

Cs
-1.000

2.0CC
~-3,00C

C.C
-I.OCO

2.CC0
*3.000
—10000



MEW YTARLEAU

c1
C?
c=
Ca
cs

cece  GC.50C

103

Ca

C. 500

Nn.C
~-0.500
-1 «00C
-O.‘SOO

"'(‘o ';00
0.500

DOYOODOONM
e © o o O

D225°000

DO ==
e o o
=

o oo o

l.CCC
€.CGC
5.00C



APPENDIX C

PROOF THAT THE PROBABILITY OF THE INTERSECTION OF THE SETS

set over which the i

(CBB- P.-C) 2 0} define the set over which the k

is

THAT DEFINE THE PROBABILITY SPACE OVER WHICH FEASIBLE

BASES ARE OPTIMAL IS EQUAL TO ZERO

Theorem: Let S; = {CI(CBB-1

th

Pj - Cj) > 0} define the

basis is optimal, and let 5 = {C|

1 th

basis
optimal. Then P[Silq S ] = 0 when i # k.
Proof:

Theorem 2 of Chapter III proved that the bases were inves-
tigated contiguously, so to prove this theorem, it is only
necessary to prove it for two adjacent bases.

Si and Sk are convex sets since they were formed by the
intersection of convex sets.

Assume that P(S; /VS,) # 0 when i # k, i.e., P(S; () §)
=P, -

For 3 . be true, then (Sif1 Sk) contains at least one
element that has a positive prohability with respect to
the probability distribution functions.

This requires that there exist some element of S; and Sy

that is in the interior of both of these sets.
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11.
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Let K= (i + 1), so Si and Sk are sets associated with

adjacent bases. Let Xj be the entering variable at the

ith th

basis and X, be the leaving variable at the i basis.

Then, one of the conditions that defines the set Sk is

(zr - Cr) > 0 in the (i + 1)St tableau, and one of the
conditions that defines the set Si is (zj - Cj) > 0 in

the ith

tableau. Since the sets are adjacent, (Zr - Cr)
=K (2. - C.,) where K = - 1/a j.
(z5 - ;) /o,

Therefore, at the (i + 1)St tableau

1
z2_-C = - Z2. - C.
( r r) ;—3 ( 5 J)
ko
and since (zZ. - C.) = (C.B 'P, - C.)
J J B J J
1 -1
we have (Zr - Cr) = - ;—3 (CBB Pj - Cj)
r
- ; - 3 -1,
Therefore (Zr Cr) 2 0 gives ( l/ar ) (CBB Pj Cj) 20
; J “lp. -
and since a. >0, (CBB Pj Cj) < 0.
The set of C's that are elements of Si must satisfy the
condition (CBB-lpj - Cj) > 0 and the set of C's that are
elements of Sk must satisfy the condition (CBB-IPj-Cj) < 0.
The only set of C's that will satisfy these conditions is
the set of C's that satisfy the equality (CBB-lpj-cj) = 0.

1l

Therefore, (Sif1 Sk) = {C|(CBB Pj - Cj) = 0}, and this

defines the boundary between the sets.
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This boundary is of probability measure zero with respect
to the joint probability distribution functions, so
P[Si(\ Sk] # 0 and this condradicts the assumption of
Step 3.

Therefore, P[Si(1 Sk] = 0 and the theorem is proved.



