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Abstract

A sensor’s performance is constrained by the amount of resources at its disposal

and the utilization of those resources. A radar system, for example, has a lim-

ited amount of transmit power-aperture per unit time to track a multitude of

targets. A typical approach when tracking multiple dynamic targets is to time

interleave the update intervals until all the radar tasks are performed. The

advent of more agile sensors, such as digital-at-every-element apertures, opens

the possibility for dynamic sensor resource allocation strategies to achieve

better tracking performance in target-dense, resource-constrained scenarios.

With proper research into aperture allocation, such as the analysis provided

in this dissertation, an all-digital radar can intelligently exploit the degrees

of freedom offered by all-digital radars to increase tracking performance. In

this dissertation, we investigate adaptive aperture allocation for tracking a

large number of targets. The strategies are first introduced with a parallel,

linear channel model, then increased in realism with a non-linear measure-

ment model, and finally applied to a full tracking system. We derive various

strategies for allocating power and aperture, and compare their performance

based on tracking related metrics. Finally, we investigate the relationship be-

tween the aperture allocation strategies and the target locations for multiple

scenarios designed to represent the environment for a radar tracking system.

This research provides groundbreaking strategies for optimal radar aperture

xiii



allocation using the digital-at-every-element architectures to reduce the overall

system uncertainty and decrease the uncertainty on a per-target basis. Inte-

grating aperture allocation with the management of other degrees of freedom

will increase multi-target tracking performance well beyond the current state

of the art.

xiv



Chapter 1

Introduction

1.1 Overview

Active sensors, such as radar systems, illuminate their surroundings and pro-

cess the reflected signal to gain knowledge of the environment. Commonly, a

radar system is capable of observing and estimating a moving target’s location

and radial velocity through signal processing techniques. By consistently ob-

serving these characteristics, the system can combine multiple measurements

to track the target’s characteristics, or state, over time. The accuracy of the

system’s track estimate depends on resolution, signal-to-noise ratio (SNR),

and update rate. Unfortunately, these radar properties are related and can-

not all be improved arbitrarily. For example, to maximize the update rate,

the radar’s transmit energy could be divided to illuminate every target during

every update interval. By splitting the energy across targets, the individual

target SNR will not achieve the maximum possible compared to illuminating

the same target with the full antenna aperture. Therefore, a compromise is

necessary to achieve the best results for the required application.

Fortunately, modern radar architectures are increasingly able to reconfig-

ure and achieve this compromise dynamically based on the scenario. Arbitrary
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waveform generators [1] allow waveform diversity for reconfigurable SNR or

bandwidth while frequency variability [2] provides interference avoidance or

circumvention of target radar cross section (RCS) fluctuations [3], [4]. In

general, more agile radar systems are necessary to address the increasingly

congested frequency spectrum and environments inundated with targets. For

example, the next-generation, digital at every element, or all-digital, radar

architectures [5] will extend system adaptability to include independent wave-

form synthesis and signal digitization at every antenna element. Contrary to

conventional phased array radars, which are limited in the number and diver-

sity of simultaneously formed beams [6], the independent elemental control of

all-digital radar systems allows the aperture to be arbitrarily configured into

sub-arrays, as well as the ability to perform even more sophisticated waveform

synthesis techniques. Therefore, the all-digital architecture can control the

gain and power allocated per target by configuring the aperture and forming

beams using a variable number of elements.

Thus, the ability of radar systems to reconfigure is a promising attribute

toward achieving the desired operating performance in highly congested and

dense target environments. As these system architectures are emerging, the

strategies and algorithms to configure these architectures for optimal sensing

resource allocation are also still in their infancy. Techniques, such as parti-

cle filtering, and metrics, such as mutual information and quality-of-service,

have been proposed [7]–[10] to facilitate dynamic resource allocation in multi-

function radar systems. In [11], a radar network’s target tracking performance

was improved by providing feedback to the network’s fusion center, and a

multiple beam power distribution algorithm in [12] exploits prior knowledge

to increase multi-target tracking performance. In [13], adaptive transmit wave-
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form techniques based on previous observations aided in better focused beams

to increase estimation accuracy.

Along with the traditional phased array mode, all-digital radars also have

the potential to dynamically reconfigure for multiple input, multiple output

(MIMO) or distributed radar modes. Many papers have researched adaptive

allocation for MIMO and distributed systems [14]–[19]. In [20], the mutual

information was maximized by measuring targets in an adaptive sequence.

Similarly, in [21], QR decomposition, using a waterfilling approach to calculate

the optimal weights in R and to enforce the total power constraint in Q, was

used to determine the power allocation for a linear Gaussian measurement

model, represented in matrix form.

Many previous efforts have researched waveform design using information

theoretic optimization techniques [22]–[27]. In [22], an information theoretic

approach was used to design the waveform for measuring targets that do not

behave as simple point targets, which were modeled as Gaussian random pro-

cesses. In [23], the mutual information metric and the enemy intercept per-

formance were combined for low probability of intercept radar into a single

function using the Kullback-Leibler divergence, which can be optimized using

an interior point and sequential quadratic programming method. In [24], the

mutual information criteria was used to optimally design the waveform for

a joint radar/communication system without degrading the communication

system performance. By maximizing the mutual information in [24], it was

shown that increasing mutual information does not necessarily increase detec-

tion performance. Although information-based waveform optimization aims

to exploit sensor reconfigurability for improved radar performance, this disser-

tation focuses on reconfiguring the aperture spatially and does not consider

3



the performance benefits of adapting the temporal waveform.

This dissertation is motivated by the potential of all-digital radars to adap-

tively reconfigure their apertures and form an arbitrary number of beams on

transmit. To abstract this architecture into mathematical frameworks suitable

for optimization, multiple simplified models are used to investigate the perfor-

mance of adaptively allocated radar resources. Through these simplified mod-

els, we examine the trade-offs between different dynamic aperture allocation

approaches for differing target properties and dynamics. The aperture alloca-

tion strategies proposed are based on the potential of the all-digital, reconfig-

urable radar architecture, and are derived using multiple information theoretic

metrics. Optimized metrics include mutual information, mean-squared error

(MSE), the number of lost targets, and the number of deleted tracks. These

metrics compare the effect of dynamically allocating transmit elements over

multiple targets on system error. This dissertation also examines the effect

of allocating available sensing resources to counter the increase in parameter

uncertainty due to target dynamics.

1.2 Research Objective

This dissertation introduces multiple useful measurement and estimation mod-

els for multi-target radar tracking systems. The measurement and estimation

models are used to derive and compare multiple innovative aperture alloca-

tion strategies for reconfigurable tracking radars. Then these strategies are

compared for contested and target-dense environments using an overall sys-

tem uncertainty metric, the number of targets lost by the radar system metric,

and the number of deleted tracks metric.
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1.3 Executive Summary

This dissertation combines concepts, such as the parallel channel model [28],

the Kalman filter [29], and the non-linear measurement behavior [30], from the

literature with established mathematical concepts, such as Lagrangian multi-

pliers [31] and Bayesian estimation [32], to derive novel approaches to allocate

an all-digital aperture. These innovative approaches and the accompanying

original analysis and results extend the current state-of-the-art in radar re-

source allocation to include the additional spatial aperture degree of freedom.

Many traditional metrics and terms, such as MSE, entropy, and mutual in-

formation [28], are included with the new lost targets (i.e. failed channels)

and deleted tracks metrics to compare the approaches, and provide original

results. The non-linear representation for angle-of-arrival and range with the

given specifications in Chapters 6 and 2, and the results in Sections 4.3, 5.3,

6.3, and 7.2 are original contributions by this publication.

1.4 Outline of the Dissertation

Following the Introduction, Chapter 2 describes the operation of the Kalman

Filter for tracking multiple targets in Gaussian distributed noise. Chapter 3

explains how information theory can be used to model the operation of active

sensors, with an emphasis on radar systems for multi-target tracking. Chapter

4 details the first, and most simplistic, radar model, approaches for power

allocation, and the results of each allocation method. Chapter 5 extends the

first radar model to include the possibility of coordinated movement between

the targets by including a covariance matrix in place of independent target

dynamics. The same approaches for power allocation as in Chapter 4 are

5



extended to include the additional target correlation, and the results of each

allocation method are provided.

Chapter 6 replaces the constant noise power model from Chapter 4 with

a more realistic variable noise power model that calculates the measurement

error variance for each measurement as a non-linear look up table (LUT) de-

pendent on SNR. The aperture allocation approaches and the results from each

strategy are also explained in detail. Chapter 7 includes the non-linear mea-

surement error variance LUT from Chapter 6 as the input data for a Kalman

Filter tracker to demonstrate actual tracker performance in the Cartesian co-

ordinate system for the proposed allocation approaches. Finally, Chapter 8

concludes the dissertation.

6



Chapter 2

Kalman Filter

2.1 Introduction

A common goal for a sensor such as a radar is to determine the location of

a target. These targets move over time requiring the sensor to periodically

update the location estimate. To overcome the noise included in each obser-

vation and achieve a more accurate estimate, a sensor can combine multiple

measurements together to track the target over time. This amalgamation of

measurements is referred to as tracking due to its ability to keep track of the

target, or filtering due to its smoothing effect over time [33]. More generally,

the filtering, or tracking, technique can track any parameter state; for exam-

ple, target location and velocity. The Kalman filter is the most widely used

approach to combine these measurements for state tracking over time [33].

While this chapter focuses on tracking a single parameter’s state over time,

these techniques can be implemented in parallel to track multiple parameters

simultaneously. The Kalman filter technique is used in many different fields,

including biomedical signal processing, space vehicles reentry, aircraft, car,

and missile tracking, navigation, guidance, altitude control, sonar, radar, and

others [34].
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The Kalman filter’s popularity is due to its measurement model simplicity

and its effectiveness on Gaussian processes with additive white Gaussian noise

[33]. A process, or state variable, is Gaussian if the process’ values, or the

target’s movement, vary according to a Gaussian distribution around a central

point. For example, an airplane moving in a straight line would actually

vary along the line depending on the steadiness of the pilot, the control’s

exactness, the environmental effects of the wind and air resistance, etc. All of

these factors contribute to a Gaussian distributed movement along the desired

trajectory. Along with the process’ Gaussian distribution, the Kalman filter

also accounts for Gaussian distributed noise included in each measurement.

The measurement noise induces a Gaussian distributed estimate error around

the correct process value. The Kalman filter assumes that these errors do not

depend on the process’ state.

While many adaptations exist to apply the Kalman filter technique to dif-

ferent models [35]–[39], we focus on the discrete-time, linear-Gaussian Kalman

filter. The discrete-time Kalman filter performs measurements and subsequent

estimation updates at distinct, separate points in time. For a radar system,

these points in time correspond to each coherent processing interval (CPI).

After each measurement is received, the Kalman filter calculates the new es-

timate using a recursive approach by predicting the process’ state and then

combining that prediction with the received measurement. The Kalman filter

measurement model is

pk = Mqk + rk, (2.1)

where pk is the vector of measurements at time step k, M is the observation

matrix, qk is the actual state vector at time step k, and rk is the vector of

zero mean Gaussian noise with covariance matrix R at time step k. Since the

8



measurements are captured at discrete time steps, the change in state between

each set of measurements must be modeled. The tracker predicts this state

change by leveraging the intimate relationship between state variables and

applying a state transition matrix. For the target movement tracker example,

the state transition matrix exploits the interaction between the motion state

variables (location, velocity, acceleration, etc.). This state transition is applied

using

q̃k = Φq̂k−1, (2.2)

where Φ is the state transition matrix, q̂k−1 is the state value estimate at time

step k − 1, and q̃k is the predicted state at time step k.

In reality, the state transition between measurements also include a dy-

namic noise caused by environmental and external factors. Therefore, the

tracker includes a dynamic noise when calculating the state covariance ma-

trix. By estimating both the parameter state and parameter covariance ma-

trix through the same iterative approach, the tracker is able to completely

characterize a random process [40] at a single time step. The corresponding

covariance prediction equation is

S̃k = ΦSk−1ΦT + D, (2.3)

where S̃k is the predicted parameter covariance matrix estimate at time step

k. T is the transpose operator, D is the parameter dynamic noise matrix, and

Sk−1 is the parameter covariance matrix estimate at time step k − 1.

D represents the covariance matrix due to the parameter state’s variability.

In tracking terminology, this increase is referred to as the process noise in

sequential estimation. Each entry of D signifies the parameter’s variability

9



in that dimension. For moving target tracking, a larger dynamic variance

specifies the object has a better ability to maneuver in that dimension, while

a larger amount of covariance specifies the change of one target state variable

will affect the other state variable. The amount of uncertainty added by D

can be determined with knowledge of the parameter [41].

After predicting the current parameter state estimate from the previous

state estimate and measuring the current actual parameter state, the tracker

must combine both values into one estimate. This integration is calculated by

q̂k = q̃k + Kk(pk −Mq̃k), (2.4)

where Kk is the Kalman filter weight matrix defined as

Kk = S̃kMT
[
MS̃kMT + R

]−1
, (2.5)

where R is the measurement error covariance matrix, which is inversely de-

pendent on SNR. By allocating the aperture, the radar affects the signal’s

SNR for each target, and subsequently the measurement error covariance ma-

trix for each measurement. By modifying the measurement error covariance

matrix, the Kalman weights in (2.5) change and ultimately affect tracking

performance. By intelligently allocating the aperture, the allocation strate-

gies can positively affect tracking performance to achieve better results for the

metrics in Chapter 3.

Although the parameter covariance matrix is not measured by the sensor,

the covariance update equation in (2.6) includes the Kalman filter weights in

(2.5), which depend on SNR, and the previously predicted covariance estimate

from (2.3), which depends on the target’s maneuverability. The relationship

10



between D in (2.3) and R in (2.5) determines whether the resulting estimated

variance for each parameter is increased due to the parameter’s maneuverabil-

ity or decreased by the measurement strength. By combining (2.3) and (2.5),

the parameter covariance matrix becomes

Sk = [I−KkM] S̃k, (2.6)

where I is the identity matrix. The updated estimates for both the state and

covariance matrices are recursively applied as the previous estimate at the next

time step.

2.2 Example Implementation

To implement a Kalman filter, both the tracker’s coordinate system and the

parameter’s dynamic model are necessary. While many coordinate systems [42]

and dynamic models [43] exist, we focus on the three dimensional Cartesian

coordinate system and the constant velocity model. With these choices, the

parameter state becomes

qk =



xk

yk

zk

ẋk

ẏk

żk



, (2.7)

where xk, yk, and zk are the actual state location in Cartesian coordinates

at time step k, and ẋk, ẏk, and żk are the actual velocity components in the

Cartesian plane at time step k [44]. The corresponding covariance matrix
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becomes

S =



σ2
x σ2

x,y σ2
x,z σ2

x,ẋ σ2
x,ẏ σ2

x,ż

σ2
x,y σ2

y σ2
y,z σ2

y,ẋ σ2
y,ẏ σ2

y,ż

σ2
x,z σ2

y,z σ2
z σ2

z,ẋ σ2
z,ẏ σ2

z,ż

σ2
x,ẋ σ2

y,ẋ σ2
z,ẋ σ2

ẋ σ2
ẋ,ẏ σ2

ẋ,ż

σ2
x,ẏ σ2

y,ẏ σ2
z,ẏ σ2

ẋ,ẏ σ2
ẏ σ2

ẏ,ż

σ2
x,ż σ2

y,ż σ2
z,ż σ2

ẋ,ż σ2
ẏ,ż σ2

ż



, (2.8)

where σ2
a,b is the covariance defined as

σ2
a,b = E[(a− E[a])(b− E[b])], (2.9)

where E[] is the expected value of the random variable [44].

Once the state vector is determined, the sensor’s output is also necessary to

define the measurement equation. In this example, the sensor will be a radar

system sensing the target’s range and angle of arrival in both azimuth and

elevation. The radar system implements a coordinate system transformation

to produce measured values in the tracker’s Cartesian coordinate system. The

resulting measurement equation is

pk =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0





xk

yk

zk

ẋk

ẏk

żk



+



ν2
x

ν2
y

ν2
z

0

0

0



, (2.10)

where ν2
x, ν2

y , and ν2
z are the measurement noise variances in the x, y, and z

dimension.
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The observation matrix, M, is defined in (2.10) for a Kalman filter im-

plementation, and does not necessarily match the observation matrix for the

measurement sensor. For example, (2.10) can be implemented for a radar

tracking system, even though the radar sensor measures a target’s range, ele-

vation, azimuth, and radial velocity. In this case, the range, elevation, and az-

imuth must first be transformed into the tracker’s Cartesian coordinate system

before being input into the Kalman tracker as a measurement. Additionally,

the radial velocity can be ignored, and the implemented tracker is capable of

tracking the targets with only measured location data.

The corresponding parameter state estimate is

q̂k =



x̂k

ŷk

ẑk

ˆ̇xk
ˆ̇yk
ˆ̇zk



, (2.11)

where x̂k, ŷk, and ẑk are the state location estimates in Cartesian coordinates,

and ˆ̇xk, ˆ̇yk, and ˆ̇zk are the velocity vector estimates in the Cartesian plane.

Substituting (2.11), (2.2) becomes

q̃k =



1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





x̂k−1

ŷk−1

ẑk−1

ˆ̇xk−1

ˆ̇yk−1

ˆ̇zk−1



, (2.12)
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where T is the amount of time between each CPI. Since the target model in

(2.7) includes only location and velocity, the dynamic noise, D, is determined

based on the target’s acceleration. Haug [41] provides a detailed explanation

and calculation of the dynamic noise based on acceleration for a constant

velocity tracker. Based on Haug’s explanation, the dynamic noise is

D =



δ2
x 0 0 δ2

x,ẋ 0 0

0 δ2
y 0 0 δ2

y,ẏ 0

0 0 δ2
z 0 0 δ2

z,ż

δ2
x,ẋ 0 0 δ2

ẋ 0 0

0 δ2
y,ẏ 0 0 δ2

ẏ 0

0 0 δ2
z,ż 0 0 δ2

ż



, (2.13)

where δ2
x, δ2

y , and δ2
z are the variances in the x, y, and z dimension, δ2

ẋ, δ2
ẏ ,

and δ2
ż are the variances in the x, y, and z velocity vector, and δ2

x,ẋ, δ2
y,ẏ, and

δ2
z,ż are the covariances between the target’s location and velocity states [41].

These dynamic variances and covariances are determined by the parameter’s

acceleration and the period between each measurement [41]. The number of

properties and dimensions tracked by the parameter state determines the size

of D. In this implementation, a three dimensional parameter state including

location and velocity causes D to be a six by six square matrix to include

dynamic noise for each parameter state variable and their covariances.
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Substituting (2.13), (2.3) becomes

S̃k =



1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



Sk−1



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

T 0 0 1 0 0

0 T 0 0 1 0

0 0 T 0 0 1



+



δ2
x 0 0 δ2

x,ẋ 0 0

0 δ2
y 0 0 δ2

y,ẏ 0

0 0 δ2
z 0 0 δ2

z,ż

δ2
x,ẋ 0 0 δ2

ẋ 0 0

0 δ2
y,ẏ 0 0 δ2

ẏ 0

0 0 δ2
z,ż 0 0 δ2

ż



. (2.14)

Substituting these equations into (2.4), (2.5), and (2.6) implements the full

Kalman filter.

This chapter introduced concepts and equations to recursively estimate a

parameter’s value using the Kalman filter. These techniques are a useful in-

troduction to future concepts in this dissertation. The relationship between D

and SNR will be investigated in this dissertation to achieve the best system re-

sults for specific metrics. The metrics used for comparison along with a parallel

channel model to describe the interaction between multiple parameters will be

described in Chapter 3. Chapter 7 will implement the Kalman tracker and

provide results from the multiple approaches on the tracker’s performance.
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Chapter 3

Information Theory

A common information theory construct models the act of transmitting values

through a channel and receiving the values corrupted by noise with indepen-

dent parallel channels [28]. This model is shown in Figure 3.1, where Xn,k is

the input value for the nth channel at the kth time step, ρn,k is the amount of

transmit power allocated to the nth channel at the kth time step, Zn,k is the

additive noise (commonly Gaussian [28]) for the nth channel at the kth time

step, and Yn,k is the received data, corrupted by noise, for the nth channel at

the kth time step.

Contrary to communication systems, which try to recover the transmitted

value on the channel output, this effort applies the parallel Gaussian channel

model to the parameter estimation problem with an active sensor. The pa-

rameters are modeled as the channel input, while the illumination strength of

the active sensor toward each parameter is modeled as the power amplifier of

the channel. For a radar system, the all-digital architecture enables the sensor

to reconfigure and allocate resources dynamically across the multiple channels.

For this dissertation, the channels are independent, including the independent

Gaussian noise sources, with the only interaction between them being a total

power constraint for a specific illumination or time step. Chapter 5 will in-
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Figure 3.1: Parallel channel model for estimation of multiple parameters from
[45]

vestigate the case when the input values are correlated, but still models the

channel measurements as independent. Similar to (2.1), we mathematically

define the model as

yk =
√

Pkxk + zk k = 1, 2, ..., K (3.1)

where xk is the vector of parameters to estimate at time step k, zk is the vector

of zero mean Gaussian noise with covariance matrix N at time k, Pk is the

power matrix allocated at time step k, yk is the measured data vector at time

k, and K is the total number of time steps.

While (3.1) is strikingly similar to (2.1), there are distinct differences to

warrant separate variables for each signal. Equation (2.1) defines the mea-

surement of a single parameter in multiple dimensions, while (3.1) defines the

measurement of multiple parameters. To integrate (2.1) and (3.1), the vectors

of (2.1) must be combined to represent one element of the vectors in (3.1).
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To model the overall power constraint of a typical radar, a total overall

power, P , constrains the amount of allocated power by

tr(Pk) ≤ P, (3.2)

where tr() is the trace operator. Since the amount of power allocated to each

channel is distinct and the measurement channels are independent, the power

matrix is a diagonal matrix given by

Pk =



ρ1,k 0 · · · 0 · · · 0

0 ρ2,k · · · 0 · · · 0
... ... . . . ... ... ...

0 0 . . . ρn,k · · · 0
... ... ... ... . . . ...

0 0 · · · 0 · · · ρN,k



. (3.3)

Substituting (3.3), (3.2) can simplify to

N∑
n=1

ρn,k ≤ P. (3.4)

Entropy, mutual information, and mean-square error (MSE) are important

quantitative mathematical metrics for sufficiently comparing a system’s ability

to estimate parameter values. The measure of a single random variable’s

uncertainty is referred to as entropy, while the measure of uncertainty for a

set of random variables is joint entropy [28]. For a group of random parameters

Xk = [X1,k, . . . , XN,k], with instances defined as xk = [x1,k, . . . , xN,k] and joint
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probability density function (pdf) defined by pk(xk), the joint entropy is

H(Xk) = −
∫

xk∈Xk

pk(xk) log pk(xk)dxk (3.5)

where the integration bounds are defined by every possible combination of

the random parameters and log is the natural logarithm. For a multivariate,

real-valued Gaussian random vector, the joint entropy becomes

H(Xk) = 1
2 log [det (2πeΣk)] (3.6)

where Σk is the multivariate covariance matrix and det is the determinant

operator.

Conditional entropy is useful in ascertaining a parameter’s entropy when

the random parameter is not directly observed, but a separate yet related

set of variables can be measured. In this case, the conditional entropy of a

set of random variables, Xk = [X1,k, . . . , XN,k], given another set of random

variables, Yk = [Y1,k, . . . , YN,k], is

H(Xk|Yk) = −
∫

yk∈Yk

∫
xk∈Xk

pk(yk,xk) log pk(xk|yk)dykdxk. (3.7)

Conditional entropy is related to mutual information because both metrics de-

scribe the relationship between the entropies of two random variables. While

conditional entropy relates the value of both variables’ entropies, mutual in-

formation determines the reduction in entropy of one variable when provided

access to another separate but related variable. The mutual information, de-

rived using both joint and conditional entropy, between two groups of random
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variables is defined as

I(Xk; Yk) = H(Xk)−H(Xk|Yk). (3.8)

For Gaussian random variables and a linear measurement model with additve

Gaussian noise, the resulting measurements and parameters are jointly Gaus-

sian [46]. The mutual information between jointly Gaussian variables is [25],

[47]

I(xk,yk) = 1
2 log

[
det

(
ΣkN−1Pk + I

)]
, (3.9)

where I is the identity matrix. The relationship between mutual information,

entropy, and conditional entropy is depicted in Figure 3.2 [28].

To account for noise corruption, an estimator is useful to extract an es-

timate, x̂n,k, of the actual signal, xn,k, for the nth parameter at time k. To

compare the accuracy of the estimate with the actual signal, the estimate’s

MSE is [48]

MSE (x̂k) = 1
N

N∑
n=1

(x̂n,k − xn,k)2 . (3.10)

For completeness, we note that Guo, Shamai, and Verdú [49] derived the

intimate relationship between mutual information and minimum MSE given

by
∂

∂Pk

I(xk,yk) = 1
2MMSE (x̂) (3.11)

where MMSE is the minimum mean-squared error. Therefore, information

metrics and MSE, the typical metric for tracking performance quantification,

are very closely associated. These quantitative metrics will be used throughout

the rest of this dissertation to quantify and derive multiple approaches to

aperture allocation for multiple target tracking.
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Figure 3.2: Relationship between entropy and mutual information from [28]
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Chapter 4

Power Allocation

4.1 System Model

A simplified measurement model is crucial for initial investigations into aper-

ture allocation without building a complete operating system. Applying the

system model from Chapter 3, we assume the parameters in (3.1) are com-

pletely independent. For a target tracking application, the channels from the

parallel channel model in Figure 3.1 represent each target for tracking. There-

fore, channels and targets are used interchangeably throughout this chapter.

The channel independence assumption simplifies the parameter covariance ma-

trix, Σk, to a diagonal matrix such that

Σk =



σ2
1,k 0 · · · 0

0 σ2
2,k · · · 0

... ... . . . ...

0 0 · · · σ2
n,k


(4.1)

where σ2
n,k is the nth channel’s variance at time k. For this simplification, we

use a Bayesian estimation paradigm to determine the parameters’ variance over

time using the common model of Gaussian priors [28] with known variance.
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To quantify the Bayesian approach, the belief state defined as the probability

distribution of the parameter [8] is

bn,k = p(xn,k|yn,k) ∼ N (µn,k, σ2
n,k) (4.2)

where xn,k is the channel input, yn,k is the channel measurement, and µn,k

is the estimated parameter value. Each measurement updates the estimated

parameter value of the belief state with new information and decreases the

uncertainty, or variance, of the belief state. When the estimated value of

the parameter changes due to a measurement, the decrease in uncertainty,

or variance, due to the measurement, is countered by an increase between

measurements due to the parameter dynamics or variability. Before the sub-

sequent measurement, the increase in variance, δ2
n,k for the nth channel at time

k, causes the belief state to become

b̂n,k+1 ∼ N (µn,k, σ2
n,k + δ2

n,k). (4.3)

After the subsequent measurement, the posterior belief state for a prior Gaus-

sian with a known variance becomes

bn,k+1 ∼ N
(
yn,kρn,k+1(σ2

n,k + δ2
n) + µn,kν

2
n

ρn,k+1(σ2
n,k + δ2

n) + ν2
n

,
(σ2

n,k + δ2
n)ν2

n

ρn,k+1(σ2
n,k + δ2

n) + ν2
n

)
(4.4)

where µn,k and σ2
n,k are the previous belief state’s mean and variance, and yn,k

is the current measurement [50].

Substituting the diagonal matrix in (4.1) and extracting a single channel’s

entropy, the single channel version of (3.6) becomes

h(Xn,k) = 1
2 log

(
2πeσ2

n,k

)
(4.5)
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Applying the same simplification to the definition of mutual information and

accounting for the increase in uncertainty between measurements due to pa-

rameter variability produces the single channel version of (3.9) as

I(xn,k, yn,k) = 1
2 log

(
1 +

ρn,k+1(σn,k + δ2
n,k)

ν2
n,k

)
. (4.6)

4.2 Power Allocation Strategies

Using the model in Section 4.1, we develop a short-term objective function and

three long-term objective functions to obtain four resource allocation strategies

in this section. The approaches in this section derive solutions for
√

Pk in (3.1)

to represent the power allocated to each channel. For a sensor with constant

gain across channels, the power allocated for each channel determines the total

resources allocated.

4.2.1 Mutual Information Maximization

By measuring a set of variables, the knowledge or information of each variable

is increased based on the strength of each measurement. The mutual informa-

tion metric is a quantitative measure of the information amount gained from

each measurement. By maximizing this metric, the knowledge of each variable

is subsequently increased and the amount of uncertainty is decreased. The first

power allocation approach, described in this section, maximizes the summation

of mutual information over all channels as the optimization function.

Mutual information is the knowledge gained for a specific measurement.

Although increasing mutual information for the immediate measurement max-

imizes the benefit of that measurement, it doesn’t correlate to optimal long-

term performance [24]. To optimize the long-term performance, mutual infor-
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mation must be maximized across all measurements and for every time step,

which is computationally infeasible for a real time system. Instead, the mutual

information maximization approach of this section increases the information

gained for the immediate measurement, and must be recalculated before each

measurement to determine the power allocation. By recalculating before each

measurement, the mutual information maximization approach optimizes the

power allocation for the immediate measurement on a short-term time line.

Summing (4.6) over all channels results in the objective function to optimize

the power allocation for the next measurement at the kth time step being

R
(k)
tot =

N∑
n=1

1
2 log

(
1 + ρn,k+1

σ2
n,k + δ2

n

ν2
n

)
. (4.7)

For many active sensors, such as a radar, the amount of power being ra-

diated by the aperture at a specific time is constrained by a given total con-

straint. The power constraint is captured in (3.4) and must be applied to each

measurement. To apply the constraint to the maximum mutual information

approach, the Lagrangian multiplier technique is implemented to include the

constraint in (3.4). By applying the Lagrangian multiplier technique, (4.7)

becomes

R
(k)
tot =

N∑
n=1

1
2 log

(
1 + ρn,k+1

σ2
n,k + δ2

n

ν2
n

)
− λ

(
N∑
n=1

ρn,k+1 − P
)

(4.8)

where λ is the Lagrangian multiplier. The derivative of (4.8) with respect to

the power allocated to the nth channel, ρn, is

∂R
(k)
tot

∂ρn,k+1
=

σ2
n,k + δ2

n

2ρn,k+1
(
σ2
n,k + δ2

n

)
+ 2ν2

n

− λ. (4.9)
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Setting (4.9) equal to zero to minimize and solving for ρn,k+1, (4.9) becomes

ρn,k+1 = 1
2λ −

ν2
n

σ2
n,k + δ2

n

. (4.10)

The Langrangian multiplier can be removed from (4.10) by calculating the

derivative of (4.8) with respect to the Langrangian multiplier. The derivative

of (4.8) with respect to λ is

∂R
(k)
tot

∂λ
=

N∑
n=1

ρn,k+1 − P. (4.11)

Minimizing (4.11) by setting it equal to zero, substituting (4.10), and solving

for λ becomes

λ = N

2
(
P +∑N

n=1
ν2
n

σ2
n,k

+δ2
n

) . (4.12)

Since (4.12) has a summation across all channels, a change in indexes is re-

quired when substituting into any equations using n to symbolize the current

channel. After changing the index in (4.12) to p, substituting (4.12) back into

(4.10) will remove the Lagrangian multiplier from the set of equations. After

the substitution, the maximum solution of (4.7) becomes

ρn,k+1 = 1
N

P +
N∑
p=1

ν2
p

σ2
p,k + δ2

p

− ν2
n

σ2
n,k + δ2

n

. (4.13)

Calculating the power allocation using (4.13) maximizes total mutual infor-

mation across the parallel measurements at a time instance k + 1.

For a constant measurement and dynamic variance, maximizing the mutual

information across parallel channels at each time step will eventually cause

the parameter variances to settle at a steady state. When this steady state
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is reached, the posterior and prior variances should become equal, meaning

the mutual information gained at each time step is the same as the dynamic

variance injected between steps. We can exploit this behavior to derive the

steady state variance by equating the prior and posterior variances. After

substituting σ2
n,∞ for the prior and posterior variance in (4.4), the asymptotic

variance is

σ2
n,∞ =

(σ2
n,∞ + δ2

n)ν2
n

ρn,∞(σ2
n,∞ + δ2

n) + ν2
n

. (4.14)

By rearranging (4.14), the asymptotic power of the mutual information max-

imization approach is then

ρn,∞ = δ2
nν

2
n

σ2
n,∞(σ2

n,∞ + δ2
n) . (4.15)

The long-term effects of the mutual information maximization approach

can be derived using the asymptotic power allocation in (4.15). A system

of equations for the long-term results can be derived by applying this power

allocation to (4.9). Therefore, substituting the asymptotic power allocation in

(4.15) for ρn,k+1, (4.9) becomes

∂In,k
∂ρn,∞

=
σ2
n,∞

2ν2
n

− λ. (4.16)

Maximizing (4.16) requires setting it equal to zero. Solving for λ then becomes

λ =
σ2
n,∞

2ν2
n

. (4.17)

Equation (4.17) defines the Lagrangian multiplier, λ, for the nth channel, but

the multiplier is common across all the channels. Deriving (4.17) for every
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channel results in

λ =
σ2

1,∞

2ν2
1

=
σ2

2,∞

2ν2
2

= ... =
σ2
n,∞

2ν2
n

. (4.18)

Generalizing (4.18) for every channel and simplifying, the long term variance

at steady state for each channel can be solved numerically by

σ2
n,∞

ν2
n

=
σ2
m,∞

ν2
m

, (4.19)

where n and m refer to different channels. The power constraint requires that

N∑
n=1

ν2
nδ

2
n

σ2
n,∞(σ2

n,∞ + δ2
n) = P. (4.20)

By solving the system of equations in (4.19) and (4.20), the asymptotic pa-

rameter variance for the mutual information maximization approach can be

calculated for a given measurement and dynamic variance. In contrast to Sec-

tions 4.2.2, 4.2.3, and 4.2.4, the mutual information maximization approach

calculates the power allocation before each measurement occurs.

4.2.2 Entropy Asymptote Minimization

The excessive computational complexity required to maximize the mutual in-

formation in Section 4.2.1 for an optimal long-term solution restricted the ap-

proach to a short-term optimization. Because mutual information depends on

the knowledge gained from the previous measurement, increasing the numer-

ical search to multiple measurements increases the computational complexity

exponentially for each additional measurement.

In contrast, the approach in this section, the asymptotic entropy mini-

mization approach, exploits the steady state entropy that is reached when the
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power allocation, measurement variance, and dynamic variance are held con-

stant. The approach in this section calculates and minimizes these asymptotic

parameter variances by, once again, setting the prior variance and posterior

variance equal for each channel. This approach achieves a long term solution,

whose time line before reaching a steady state is dependent on the dynamic,

measurement, and initial parameter variances. Using the quadratic formula

and rearranging to find the asymptotic variance, (4.14) becomes

σ2
n,∞ = −δ

2
n

2 +

√√√√(δ2
n

2

)2

+ δ2
nν

2
n

ρn,∞
. (4.21)

Since the steady-state variance requires a constant power allocation across

time, the time subscript can be removed for power, ρn. Substituting into

(4.5), the asymptotic entropy becomes

H(Xn,∞) = 1
2 log

2πe ·

−δ2
n

2 +

√√√√(δ2
n

2

)2

+ δ2
nν

2
n

ρn


 . (4.22)

Since (4.22) is the entropy for a single channel, the total objective function

must optimize across all N channels with a summation. The objective function

of this summation is

Rtot =
N∑
n=1

1
2 log

2πe ·

−δ2
n

2 +

√√√√(δ2
n

2

)2

+ δ2
nν

2
n

ρn


 . (4.23)

Applying the Lagrange multiplier technique with the constraint in (3.4), (4.23)

becomes

Rtot =
N∑
n=1

1
2 log

2πe ·

−δ2
n

2 +

√√√√(δ2
n

2

)2

+ δ2
nν

2
n

ρn


−λ( N∑

n=1
ρn − P

)
. (4.24)
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The derivative of (4.24), with respect to ρn, is

∂Rtot

∂ρn
= ν2

n

δ2
nρ

2
n + 4ν2

nρn − ρn
√

(δ2
nρn)2 + 4δ2

nν
2
nρn
− λ. (4.25)

Setting (4.25) equal to zero to minimize and solving for λ yields

λ = ν2
n

δ2
nρ

2
n + 4ν2

nρn − ρn
√

(δ2
nρn)2 + 4δ2

nν
2
nρn

. (4.26)

Performing the same derivative for ρ1, ρ2, ..., ρN results in

λ = ν2
1

δ2
1ρ

2
1 + 4ν2

1ρ1 − ρ1

√
(δ2

1ρ1)2 + 4δ2
1ν

2
1ρ1

=

ν2
2

δ2
2ρ

2
2 + 4ν2

2ρ2 − ρ2

√
(δ2

2ρ2)2 + 4δ2
2ν

2
2ρ2

=

... = ν2
N

δ2
Nρ

2
N + 4ν2

NρN − ρN
√

(δ2
NρN)2 + 4δ2

Nν
2
NρN

. (4.27)

Abstracting this result for the mth and nth channels results in a set of N − 1

equations given by

δ2
nρ

2
n

ν2
n

1 + 4ν2
n

δ2
nρn
−

√√√√1 + 4ν2
n

δ2
nρn

 =

δ2
mρ

2
m

ν2
m

1 + 4ν2
m

δ2
mρm

−

√√√√1 + 4ν2
m

δ2
mρm

∀n 6= m, (4.28)

which, when also including (3.4), becomes a system of N equations for N

unknowns. Solving this system of equations produces the optimal power allo-

cation to minimize the long-term summation of entropy across channels.

When the measurement variance to dynamic variance is the same ratio

for each channel, the power allocation for this approach simplifies to an even
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distribution. This condition can be mathematically described as

ν2
n = Aδ2

n n = 1, 2, ..., N (4.29)

where A is a constant. Compared to the asymptotic performance of Section

4.2.1 in (4.19) and (4.20), when (4.29) is true the mutual information maxi-

mization approach has the same performance as the asymptotic entropy min-

imization approach. Section 4.3 shows results when (4.29) is true. Equation

(4.29) is also the only case where evenly distributing the energy is the optimal

long-term solution for minimizing the entropy. Some circumstances can result

in similar results between the asymptotic entropy minimization approach and

evenly distributing the power (such as when resources are very scarce), even

though (4.29) is the only condition when they are both mathematically equal.

4.2.3 Highest Entropy Asymptote Minimization (Min-

imax)

The total entropy is important to determine the uncertainty of a whole system,

but some objectives require each channel uncertainty to be reduced. Each

channel’s uncertainty level is important for systems that require a specified

amount of uncertainty to benefit from the channel. For example, a target

tracking type system might require a certain amount of uncertainty to be able

to continue tracking the target. Once the target’s uncertainty increases beyond

a system threshold, the system loses track of that target.

Threshold or peak entropy metrics are important for modeling the ability

of a radar tracking system to maintain track on a specific target. When the un-

certainty of a channel increases beyond the threshold, a radar system may not
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have enough information to reliably update the channel via new measurements

and would lose track of the moving target.

In contrast to the preceding strategies, which minimized the total entropy

on either a short-term or long-term basis, the approach in this section cal-

culates the power allocation to achieve the smallest possible entropy value

for every channel. To reduce the most uncertain channels, more resources,

or power, must be allocated to decrease the uncertainty as much as possi-

ble. Allocating many resources to the more uncertain channels does not leave

many resources left for the less uncertain channels. Therefore, the less un-

certain channels increase until all channels reach the same entropy value. At

this point, the approach in this section has reduced all the entropies as much

as possible. Therefore, the system of equations for this approach is derived

by setting (4.22) equal for all targets. Mathematically, this system of N − 1

equations is defined by

log

2πe ·

−δ2
n

2 +

√√√√(δ2
n

2

)2

+ δ2
nν

2
n

ρn


 =

log

2πe ·

−δ2
m

2 +

√√√√(δ2
m

2

)2

+ δ2
mν

2
m

ρm


∀n 6= m, (4.30)

with (3.4) being the N th equation.

To calculate the asymptotic performance of this approach, we substitute

the result of solving (4.30), with (3.4), into (4.22). If the asymptotic perfor-

mance does not reduce each channel’s uncertainty enough to meet the system

requirement for channel entropy, which is determined experimentally, we re-

allocate the power without including the channel requiring the highest power

(i.e., that channel will receive no power).
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4.2.4 Variance Asymptote Minimization Below a

Threshold

The approaches in sections 4.2.1, 4.2.2, and 4.2.3 are restricted between ei-

ther optimizing for an average or a min-max type metric. Optimizing for the

min-max metric does not consider the overall system performance, while the

average metrics do not allow an upper entropy threshold to be applied. The

min-max metric compromises the overall system performance by focusing only

on each channel’s entropy. The average type approaches ignores any channel

specific requirements that could cause all channels to be inadequate. In con-

trast, by minimizing the average entropy while maintaining channel entropies

below a threshold, both metrics can be combined with the ability to trade-

off by setting the threshold value. By applying this concept, we are able to

provide a compromise between the previous strategies.

The objective of this section is to reduce the asymptotic variance, given in

(4.21) below a given threshold, ε. Mathematically, this becomes

σ2
n,∞ = −δ

2
n

2 +

√√√√(δ2
n

2

)2

+ δ2
nν

2
n

ρn
< ε. (4.31)

Solving for the power, ρn, yields the power allocation required to achieve

ρn >
δ2
nν

2
n(

ε+ δ2
n

2

)2
−
(
δ2
n

2

)2 . (4.32)

If the power allocation calculated in (4.32) exceeds the constraint in (3.4), the

channel with the highest amount of allocated power should be removed and

receive zero power. Then, (4.32) is recalculated for the remaining channels,

and iterate the process of removing the highest channel and recalculating until
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the total power requirement is met. After the variances are reduced below

the given threshold with (4.32), the residual power can be distributed with

the asymptotic entropy minimization approach to reduce the overall system

uncertainty.

If the given entropy threshold is high, then only a minimal amount of power

(if any) will be allocated using (4.32). In this case, we allocate the resulting

power allocation with the asymptotic entropy minimization approach. By

setting the correct threshold, the system designer is able to trade off between

minimizing the highest entropy and minimizing the overall system uncertainty.

4.3 Results - Independent Parallel Channels

To effectively compare the power allocation strategies detailed in Section 4.2,

this section details multiple scenarios to highlight the different approaches.

Along with the four approaches in Section 4.2, we simulate the scenarios using

two baseline approaches. These baseline approaches include evenly distribut-

ing the power across channels and applying all power to the channel with the

highest variance (named the greedy approach).

For each scenario, the initial parameter entropies, H(Xn,0), are determined

by substituting an even power allocation into (4.22). To quantify the amount

of resources available for the simulations in this section, each approach can

allocate 10 units (Watts) of power per unit of time. Three of the four sim-

ulations demonstrate the performance of each approach in Section 4.2 over a

certain variable. Scenario one varies the SNR values, scenario two varies the

dynamics between each channel, and scenario three varies the number of chan-

nels. The fourth scenario demonstrates that the condition in (4.29) results in

the mutual information maximization, asymptotic entropy minimization, and
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the even distribution approaches having the same asymptotic performance.

4.3.1 Differing SNR Environment

The first scenario assigns different measurement variances for two channels

while assigning them the same dynamic variances. To represent channels with

slow variability, the dynamic variances were chosen to be low, with a value

of 0.0001, to represent channels with low variability, while the measurement

covariance matrix,

Σm =

104 0

0 108

 , (4.33)

was selected to represent one medium and one low-SNR target. For a target

tracking application, these variances are analogous to two barely maneuvering

objects at different ranges. Substituting 5 units of power for each channel

into (4.22) results in channel one’s initial entropy being 1.02, while channel

two’s initial entropy is 3.32. To quantify the results, (4.19) and (4.20) are

used for the mutual information maximization approach, and (4.22) for the

remaining approaches, to calculate the asymptotic entropy for each channel.

The resulting entropies for each channel were then averaged across the two

channels for each method to calculate the values in Table 4.1. Compared to

Table 4.1, the initial variances are low for one target and high for the other

target. The resulting average entropies are in between both starting values.

Figure 4.1 displays the simulation results for 10,000 time steps to evaluate

performance over time. Analysis of this plot shows that the results for multiple

allocation strategies are close enough to overlap on this graph. Both the mini-

mize highest entropy and greedy approaches overlap, and the even distribution

approach overlaps with the asymptote optimized approach in Figure 4.1. Even
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Table 4.1: Asymptotic entropy for differing SNR variances.

Approach Asymptotic Entropy
“Even Distribution” 2.1678
“Asymptotic Optimized” 2.1678
“Mutual Information” 3.1458
“Minimize Highest” 3.1459
“Threshold” 2.2985

though the even distribution and optimized asymptotic approaches appear to

have the same results, the asymptotic approach actually has marginally better

performance that can be observed by zooming into the figure. The mutual

information (MI) maximization performs best (has the lowest entropy) for the

time period shown. However, the time line of this figure is deceptive for the

long-term performance, which is apparent when comparing the performance

of each approach to the asymptotic values in Table 4.1. Although the mutual

information maximization approach appears better in the figure, eventually it

will reach a worse steady state than the asymptotic minimized approach.

Both the greedy and minimize highest entropy approaches ignore the chan-

nel with a measurement variance of 104, and allocates all the energy to the

channel with a measurement variance of 108. By only focusing on the higher

measurement variance target, both approaches sacrifice the average entropy

metric in order to reduce the highest entropy target as much as possible. A

compromise between reducing the high measurement variance channel and

minimizing the overall entropy is shown by the threshold approach. By chang-

ing the threshold value, the threshold approach varies between the asymptotic

minimization approach and the minimize highest entropy approach.
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Figure 4.1: Entropy comparison for differing SNR variances.
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Table 4.2: Asymptotic entropy for differing dynamic variances.

Approach Asymptotic Entropy
“Even Distribution” 3.6539
“Asymptotic Optimized” 3.6406
“Mutual Information” 4.8290
“Minimize Highest” 4.8290
“Threshold” 3.7788

4.3.2 Differing Dynamic Environment

Complementary to the first scenario, the second scenario simulates two chan-

nels with different dynamic variances and the same measurement variance.

The measurement variance for each target is set equal to 104, while the dy-

namic covariance matrix,

Σd =

10−2 0

0 104

 , (4.34)

includes one channel with a large variability and one channel with minimal

variability. For a target tracking application, the two channels would represent

targets at the same distance from the sensor but with different amount of state

vector variability. Substituting 5 units of power for each channel into (4.22)

results in channel one’s initial entropy being 2.17, while channel two’s initial

entropy is 6.10. Using (4.19) and (4.20) or (4.22) (depending on the approach),

the asymptotic entropies are calculated and shown in Table 4.2.

Figure 4.2 displays the simulation results for 10,000 time steps to evaluate

the performance over time. Analysis of this plot shows that the results of

multiple allocation strategies are close enough to overlap on this graph. Once

again, the asymptotic entropy minimization approach appears to overlap with

the even distribution in this graph, even though Table 4.2 verifies that their
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Figure 4.2: Entropy comparison for differing dynamic variances.

steady state values are actually different. The greedy, MI maximization, and

minimize highest entropy approaches have similar results, until the end of the

time line, due to allocating the majority of the power to the more dynamic

channel.

4.3.3 Equal Variance Ratio Between Channels

By assigning the same dynamic to measurement variance ratio to each channel,

we can show that this condition causes the mutual information, asymptote

optimization, and even distribution approach to have the same performance.

Using this criteria, the dynamic and measurement covariance matrices were
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Table 4.3: Asymptotic entropy with equal variance ratio.

Approach Asymptotic Entropy
“Even Distribution” 1.4029
“Asymptotic Optimized” 1.4029
“Mutual Information” 1.4029
“Minimize Highest” 1.4582
“Threshold” 1.4303

chosen to be

Σd =

2 0

0 5

 Σm =

4 0

0 10

 . (4.35)

Figure 4.3 and Table 4.3 demonstrate that all three approaches (mutual infor-

mation maximization, asymptote entropy minimization, and even distribution)

for this scenario, which abide by the requirement in (4.29), have the same al-

location.

The remaining results are, predictably, in lowest-to-highest order the thresh-

olding approach, the highest entropy minimization, and then the greedy ap-

proach.

4.3.4 Three Channels

The preceding scenarios used the overall average entropy to compare the ap-

proaches, while single channel metrics, referred to as a min-max metric, might

be a more effective objective for some systems. The min-max metric aims to

decrease the entropies below a specified value. By increasing the number of

channels and analyzing the entropies of each target, in contrast to the average,

the performance of each approach for each channel is more apparent. To this

end, this simulation increases the number of channels to three with the same

dynamic variance, δ2 = 1, for each channel, and a measurement covariance
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Figure 4.3: Entropy comparison for equal variance ratio between channels.
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matrix of

Σm =


100 0 0

0 5050 0

0 0 10000

 . (4.36)

Figures 4.4 and 4.5 display each channel’s entropies over time, with the

highest entropy marked with a data point, for all six power allocation strate-

gies. Ranking the approaches based on the lowest maximum asymptotic

entropy, from best to worst, would be “Minimize Highest Entropy”, “Min-

imize Below Threshold”, “Greedy”, “Even”/“Asymptote Optimized” (tied),

and “Mutual Information Optimized”.

If minimizing the channels below a specified variance threshold, in this case

a threshold value of 3.4, would achieve the system objective, “Minimize Highest

Entropy” and “Minimize Below Threshold” would be the only two approaches

to achieve this objective for all three channels. For the tracking threshold,

the “Minimize Highest Entropy” and “Minimize Below Threshold” approaches

would be the only two approaches to maintain track on all three targets. The

“Greedy” approach would lose all three targets, the “Mutual Information Op-

timized” approach would lose two targets, and the “Even”/“Asymptote Opti-

mized” approaches would both lose one target.

The parameter model for this chapter assumes the channel dynamics are

independent of each other, which is not always the case. Sometimes the pa-

rameter state variability is dependent on the surrounding parameters. For the

target tracking example, a swarm of targets that move together have correlated

dynamic variances. Channels with dependent state variability are investigated

in next chapter.
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Chapter 5

Correlated Targets

5.1 System Model

Although the simple model detailed in Chapter 4 is useful, it assumed an inde-

pendence between the parameters’ variability. While many applications esti-

mate only parameters that adhere to the independence assumption of Chapter

4, other applications include parameters whose variability are correlated with

other parameters. By removing the independence assumption, more realistic

scenarios can be simulated including interactions between the parameters. In

the target tracking application, correlated parameters occur when the objects

are moving in a coordinated pattern. In this case, when one target changes its’

state vector, another target performs a similar maneuver. The mathematical

system model for this interaction between channels is given in (3.1). As will

be shown, the equations derived in this chapter can be used for the indepen-

dent scenarios and simplify to the equations in Chapter 4 when independent

parameters are substituted into the equations. For a target tracking applica-

tion, the channels from the parallel channel model in Figure 3.1 represent each

target for tracking. Therefore, channels and targets are used interchangeably

throughout this chapter.

45



As the channel input varies over time, it is modeled as a Gaussian random

variable. We characterize the parameter using a Bayesian estimation paradigm

with the previous time step’s Gaussian distribution as the prior and updated

by measuring the parameter value through the parallel channel model shown in

Figure 3.1. The belief state, which is used to quantify the Bayesian approach

and characterize the parameters’ probability distribution [8], is

bk = p(xk|yk) ∼ N (µk,Σk) (5.1)

where µk is the estimated parameter vector at time k and Σk is the belief

covariance matrix at time k. Since an active sensor does not have control over

the target parameter, the target parameter is modeled as varying between

measurements according to a Gaussian distribution. To model this variation

between measurements, the belief covariance matrix in (5.1) is increased be-

tween measurements by a constant referred to as the multi-parameter dynamic

covariance, ∆. In contrast to D in Chapter 2, ∆ combines the dynamic vari-

ances of each parameter, δ2
n, in a single covariance matrix. Unlike Chapter 4,

∆ is not necessarily diagonal, with the cross-terms accounting for correlation

between targets’ maneuverability.

The increase in belief covariance matrix due to the channel’s variability

occurs between each measurement, so if no measurement occurs, then the

parameter’s covariance matrix continues to grow. Although the increase occurs

between each measurement, the actual dynamic covariance matrix is a constant

and doesn’t change, evidenced by the lack of a time index. Applying the

increase in the covariance matrix due to parameter variability after the time
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elapsed between measurements, (5.1) becomes

b̂k+1 ∼ N (µk,Σk + ∆). (5.2)

By measuring the parameter, the increase in the belief state’s uncertainty

caused by the dynamic variance can be decreased, depending on the quality

of the measurement. By intelligently controlling the measurement strength, a

system can achieve better results for a given metric. The belief state after the

system takes a measurement is

bk+1 ∼ N
([

Pk+1N−1 + (Σk + ∆)−1
]−1 [

(Σk + ∆)µk + N−1yk+1
]
,[

N−1P k + (Σk + ∆)−1
]−1

)
(5.3)

where yk+1 is the subsequent measurement [50]. Since the measurement vari-

ance, N, and dynamic variance, ∆, do not change over time, denoted by the

lack of a time subscript, a constant power allocation, Pk+1, causes the system

to converge to a steady state over time. The steady state occurs when the

amount of information extracted by the measurement equals the increase in

uncertainty due to the parameter’s variability. The resulting steady state also

occurred for the uncorrelated model in Chapter 4, which was shown in the

simulations from Section 4.3.

5.2 Resource Allocation Strategies

For a large number of channels, intelligent approaches to resource allocation

are important to minimize parameter uncertainty. To obtain intelligent ap-

proaches, this section derives numerical solutions for
√

Pk based on the metrics
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given in Chapter 3. Two allocation strategies detailed in this section focus on

the overall system entropy metric, while one strategy minimizes the highest

parameter entropy, and the last approach maintains every parmeter’s entropy

below a given threshold.

5.2.1 Mutual Information Maximization

Similar to Chapter 4, the first approach maximizes the mutual information

across all channels for the correlated model. After accounting for the covari-

ance matrix increase between measurements for mutual information in (3.9),

the objective function at the kth time step is

R
(k)
tot = 1

2 log
[
det

(
(Σk + ∆)N−1Pk+1 + I

)]
. (5.4)

By applying the Lagrangian multiplier technique with the constraint in (3.2),

(5.4) becomes

R
(k)
tot = 1

2 log
[
det

(
(Σk + ∆)N−1Pk+1 + I

)]
− λ [tr (Pk+1)− P ] . (5.5)

Using properties from [51], the derivative of (5.4) with respect to the power

allocated to channel n at time step k + 1, ρn,k+1, is

∂R
(k)
tot

∂ρn,k+1
= tr

[(
(Σk + ∆)N−1Pk+1 + I

)−1
Γn,k

]
− λ. (5.6)
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where

Γn,k = ∂

∂ρn,k+1

(
(Σk + ∆)N−1Pk+1 + I

)
=

0 · · · 0 σ2
1,n,k+δ2

1,n
ν2
n

0 · · · 0

0 · · · 0 σ2
2,n,k+δ2

2,n
ν2
n

0 · · · 0
... . . . ... ... ... . . . ...

0 · · · 0 σ2
N,n,k+δ2

N,n

ν2
n

0 · · · 0


, (5.7)

ν2
n is the nth diagonal value of N, δ2

l,n is the lth row and nth column value of

the ∆ matrix, σ2
l,n,k is the lth row and nth column value of the Σ matrix at

time k, and λ is the Lagrangian multiplier.

Maximizing (5.6) requires setting it equal to zero. Solving for λ then be-

comes

λ = tr
[(

(Σk + ∆)N−1Pk+1 + I
)−1

Γn,k

]
. (5.8)

Deriving (5.8) for every channel yields

λ = tr
[(

(Σk + ∆)N−1Pk+1 + I
)−1

Γ1,k

]
=

tr
[(

(Σk + ∆)N−1Pk+1 + I
)−1

Γ2,k

]
=

... = tr
[(

(Σk + ∆)N−1Pk+1 + I
)−1

ΓN,k

]
. (5.9)

Generalizing (5.9) for every channel, maximizing mutual information is ob-

tained by numerically solving

tr
[(

(Σk + ∆)N−1Pk+1 + I
)−1

Γn,k+1

]
=

tr
[(

(Σk + ∆)N−1Pk+1 + I
)−1

Γm,k+1

]
,∀n 6= m (5.10)
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for Pk+1 with the constraint in (3.2).

The result in (5.10) converges to (4.13) by applying the independence as-

sumption given by

Σk =



σ1 0 · · · 0 · · · 0

0 σ2 · · · 0 · · · 0
... ... . . . ... ... ...

0 0 . . . σn · · · 0
... ... ... ... . . . ...

0 0 · · · 0 · · · σN



(5.11)

and

∆ =



δ1 0 · · · 0 · · · 0

0 δ2 · · · 0 · · · 0
... ... . . . ... ... ...

0 0 . . . δn · · · 0
... ... ... ... . . . ...

0 0 · · · 0 · · · δN



. (5.12)

Similar to Chapter 4, during each measurement, if more information is

gained than the uncertainty inserted by the parameter’s dynamic variance,

then the overall belief state entropy will ultimately decrease. By reducing the

system entropy, less information exists for the system to gain through mea-

surement. After many iterations, this process will eventually reach a point

where the amount of information gained equals the uncertainty introduced

through the dynamic variance at each time step. In a similar fashion, if less

information is gained than the uncertainty inserted by the parameter’s dy-

namic variance, the opposite process will happen, but with the same steady

state result. This convergence process is experimentally shown in Section 5.3.1

through simulation.
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Due to this convergence, allocating power to maximize mutual information

eventually produces an asymptotic parameter covariance matrix, Σ∞, where

the prior covariance matrix is equal to the posterior covariance matrix. To

calculate the asymptotic covariance matrix, the posterior covariance matrix

after measurement in (5.3) is set equal to the prior covariance matrix (before

dynamic variance is added on the previous step) to obtain

Σ∞ =
[
N−1P∞ + (Σ∞ + ∆)−1

]−1
. (5.13)

Solving for the asymptotic power matrix, P∞, yields

P∞ = NΣ−1
∞ −N(Σ∞ + ∆)−1, (5.14)

which depends on the measurement noise, dynamic, and parameter covariance

matrices. Substituting (5.14) for the power matrix, (5.10) becomes

tr
[(

I + Σ−1
∞∆

)−1
Γn,k

]
= tr

[(
I + Σ−1

∞∆
)−1

Γm,k

]
, ∀n 6= m. (5.15)

To solve the system of N − 1 equations in (5.15), the power distribution at

infinity solved in (5.14) must be substituted into the power constraint to derive

the N th equation. The power constraint becomes

tr [P∞] = tr
[
NΣ−1

∞ −N(Σ∞ + ∆)−1
]

= P. (5.16)

The asymptotic variance of the mutual information maximization approach

can then be calculated by solving this system of equations.

Once again, substituting (5.11) and (5.12) causes (5.15) and (5.16) to con-

verge to (4.19) and (4.20), respectively. Equations (5.15) and (5.16) show that
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even though the mutual information strategy only allocates power for the next

measurement, the long-term power allocation, and subsequently the long-term

performance, can still be calculated.

5.2.2 Entropy Asymptote Minimization

While the mutual information approach focuses on decreasing the uncertainty

for the next time step, increasing the optimization beyond a single step results

in exponentially increased mathematical complexity. On the other hand, a

constant power allocation will result in long-term steady state behavior. By

leveraging this consequence, a long-term solution can be derived by assuming a

constant (over time) power allocation and optimizing the system’s asymptotic

entropy. Due to the unchanging nature of the power matrix for this approach,

the power distribution at infinity is the same as the power applied at time k,

and the time index can be removed. Substituting the constant power matrix,

P, and rearranging (5.13) yields

∆−1P−1N = ∆−1Σ∞∆−1Σ∞ + ∆−1Σ∞. (5.17)

After completing the square, (5.17) becomes

∆−1P−1N + 1
4I =

(
∆−1Σ∞ + 1

2I
)(

∆−1Σ∞ + 1
2I
)
. (5.18)

Simplifying and solving for the asymptotic entropy results in

Σ∞ = −∆
2 ±

(∆
2

)2

+ ∆P−1N

1/2

. (5.19)
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Substituting (5.19) into the equation for entropy in (3.6) and using the Lan-

grangian multiplier technique to include the power constraint in (3.2), the

objective function to minimize is

Rtot = h(Xk) = 1
2 log

det

πe ·
−∆

2 +
(∆

2

)2

+ ∆P−1N

1/2




− λ [tr(P)− P ] . (5.20)

The derivative of (5.20), derived using theorems from [51], with respect to the

power of channel n is

∂Rtot

∂ρn
= tr

1
2

−∆
2 +

(∆
2

)2

+ ∆P−1N

1/2

−1

(∆
2

)2

+ ∆P−1N

−1/2

Υn

− λ (5.21)

where

Υn =



0 · · · 0 − δ2
1,nν

2
n

ρ2
n

0 · · · 0

0 · · · 0 − δ2
2,nν

2
n

ρ2
n

0 · · · 0
... . . . ... ... ... . . . ...

0 · · · 0 − δ2
N,nν

2
n

ρ2
n

0 · · · 0


. (5.22)

Minimizing (5.21) requires setting it equal to zero. Solving for λ then becomes

λ = tr

1
2

−∆
2 +

(∆
2

)2

+ ∆P−1N

1/2

−1

(∆
2

)2

+ ∆P−1N

−1/2

Υn

 . (5.23)
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Deriving (5.23) for every channel yields

λ = tr

1
2

−∆
2 +

(∆
2

)2

+ ∆P−1N

1/2

−1 (∆

2

)2

+ ∆P−1N

−1/2

Υ1



= tr

1
2

−∆
2 +

(∆
2

)2

+ ∆P−1N

1/2

−1 (∆

2

)2

+ ∆P−1N

−1/2

Υ2



= ... = tr

1
2

−∆
2 +

(∆
2

)2

+ ∆P−1N

1/2

−1

(∆
2

)2

+ ∆P−1N

−1/2

ΥN

 . (5.24)

Generalizing (5.24) for every channel, minimizing the asymptotic entropy is

obtained by numerically solving

tr

1
2

−∆
2 +

(∆
2

)2

+ ∆P−1N

1/2

−1 (∆

2

)2

+ ∆P−1N

−1/2

Υn

 =

tr

1
2

−∆
2 +

(∆
2

)2

+ ∆P−1N

1/2

−1 (∆

2

)2

+ ∆P−1N

−1/2

Υm

 ,
∀n 6= m. (5.25)

The Lagrangian multiplier technique uses the constraint in (3.2) to in-

tegrate the objective functions for each channel as a system of equations in

(5.24). By substituting another channel’s derivative for λ to derive (5.25),

the constraint added by the Lagrangian multiplier is removed from the set of

equations. Therefore, the constraint in (3.2) must be included when solving

(5.25).

When the dynamic covariance matrix has complete correlation between any
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two or more channels, (5.25) is not defined due to the inverse. When this sit-

uation occurs, only the correlated channel with the lowest measurement noise

variance should be included while the other completely correlated channels

should be ignored. If the dynamics of multiple channels are completely corre-

lated, then a change in one channel will be reflected with the same change in

the other channel. Therefore, the sensor only needs to measure one channel,

and can predict the value of both channels from one measurement. The lowest

measurement noise variance channel is measured because the sensor can gain

information from that channel easier than the other channels.

To verify the accuracy of (5.25), the system of equations are consistent with

the uncorrelated versions in (4.28). In order to compare with the uncorrelated

case in Section 4.2.2, (5.11) and (5.12) must be substituted into (5.25). After

substituting, (5.25) converges to the uncorrelated version in (4.28).

5.2.3 Highest Entropy Asymptote Minimization (Min-

imax)

In contrast to the approaches in Sections 5.2.1 and 5.2.2, which minimize to-

tal system uncertainty, the highest entropy minimization approach reduces

the channel with the highest asymptotic entropy as much as possible without

increasing the other channels above it. For a tracking application, a thresh-

old entropy could symbolize the amount of uncertainty allowable before the

system loses track of a target. Therefore, the highest entropy minimization

approach will calculate the lowest possible uncertainty that all the channels

can simultaneously reach in their steady state. The resulting power allocation

reduces the most uncertain channel, causing the other channels to increase in

uncertainty, until all the channel entropies are equal. Due to this property, the
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asymptotic entropy for each channel are set equal for this minimax approach.

Instead of a closed-form solution, which is not possible for this approach,

the allocation is numerically calculated by equating the diagonal values of the

asymptotic parameter covariance matrix. The asymptotic parameter covari-

ance matrix is given by (5.19). Since equating (5.19) for each channel only

generates N − 1 equations, the constraint in (3.2) must be included to be able

to solve the system of equations.

Although the minimax approach determines the allocation necessary to re-

duce the highest entropy, the resulting solution might not be sufficient to reach

the system’s threshold uncertainty. Since all the channels’ uncertainties are

equal, none of the channels would be maintained under the desired entropy. In

the tracking example, the system would lose track of all the targets. Instead,

the algorithm can ignore the channel requiring the most power (i.e. this chan-

nel will receive no power) and recalculate the allocation without it. This would

sacrifice one target to be able to track the remaining targets. The allocation

algorithm can repeat this procedure until the desired entropy is reached. In

other words, the hardest channels to maintain should be removed until the

residual channels can be reduced below the system’s threshold.

5.2.4 Variance Asymptote Minimization Below a

Threshold

The previous approaches optimized either an average-type metric or a min-

max type metric, but did not provide the opportunity to compromise between

the two objectives. The average-based metrics do not offer the desired cus-

tomization for a specified system, while the min-max strategy doesn’t perform

the optimal allocation for any remaining power budget after the threshold has
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been achieved. The variance asymptote minimization approach combines the

two metrics to create a configurable compromise between the average type

and min-max type optimization. This compromise is achieved by first calcu-

lating the power allocation necessary for every channel to reach the desired

asymptotic entropy. Once all the channels have enough power to attain the

threshold, the remaining power is allocated to minimize the overall system

uncertainty. Similar to the minimize highest entropy asymptote approach, if

not enough power is avaiable to minimize all the channels below the thresh-

old, the channel requiring the most power must be dropped, while applying

the allocation approach to the remaining targets. Using the tracking example,

this approach is able to track as many targets as possible with an acceptable

level of performance, while lowering the overall system uncertainty with the

remaining energy.

The compromise between each approach is determined by the threshold

value. A higher threshold doesn’t require much power to be allocated to each

channel to reach the desired threshold. Therefore, a higher threshold causes

this approach to perform more like the entropy asymptote minimization ap-

proach. In contrast, a lower threshold requires more power allocated to each

channel to attain the required entropy. Therefore, a smaller threshold causes

this approach to allocate power closer to the highest entropy minimization ap-

proach. To calculate the allocation for this approach, the asymptotic entropy

given in (5.19) is set less than the threshold matrix, E. Since both the power

allocation matrix and the threshold matrix are diagonal, setting (5.19) less

than E reduces each diagonal of (5.19) below the system threshold ε. After
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factoring ∆ from (5.19), this is mathematically shown by

E > Σ∞ = ∆
[(

∆−1P−1N + 1
4I
)1/2
− 1

2I
]

(5.26)

where

E =



ε 0 · · · 0

0 ε · · · 0
... ... . . . ...

0 0 · · · ε


. (5.27)

Solving for P, the amount of power for each channel to reach the required

threshold is

P > N
[
E∆−1E + E

]−1
. (5.28)

Because the threshold is a system specification related to acceptable tracking

performance, it is assumed to be the same across all channels. For systems

with resource variations, this threshold can be based on the resources selected

for each channel. Similar to the entropy minimization approach, when two or

more channels are completely correlated, a solution does not exist for (5.28).

In this case, only the correlated channel with the lowest noise power should

be measured. The other correlated channels should be ignored and receive no

power.

The power matrix calculated by (5.28) must adhere to the power constraint

in (3.2). When (3.2) is not met, sufficient resources do not exist to obtain the

required performance for every channel. When this occurs, (5.28) should be

recalculated without the channel allocated the most power. By replicating this

procedure, a power allocation that does meet the constraint in (3.2) will be

found. Once the amount of power allocated by (5.28) meets the requirement
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in (3.2), then the entropy minimization approach is used for the remaining

power allocation.

5.3 Results

To compare the performance of each resource allocation technique described

in Section 5.2, this section highlights multiple scenarios and evaluates metrics

from Chapter 3. Two baseline approaches are included for comparison pur-

poses: 1) evenly distributing the total power across the channels at each time

step, and 2) allocating all power to the channel with the highest uncertainty

at each time step (also called the greedy approach).

Two metrics are selected to compare the performance of each allocation

strategy. The system’s average MSE, an overall system metric, is the first

metric used to compare the different approaches’ performance. A low aver-

age MSE indicates lower total error and better estimation of the channels

as a whole. The average MSE metric is also related to the amount of total

information extracted by each approach over time.

The second metric is the number of failed channels, which counts the num-

ber of channels that rise above an unacceptable amount of uncertainty, desig-

nated by a MSE threshold value. This metric relates to a system specification

that defines when it is unable to reliably estimate the value of a channel whose

uncertainty has become too large. For the tracking example, the possibility of

losing track of a target is comparable to the failed channel metric.

While each strategy strives to minimize both metrics, the amount of avail-

able resources determines the ease with which that is possible. For this section,

the simulated system is provided only 50 units (e.g., Watts) of power to al-

locate at each time step. When the resources are scarce, i.e. the amount of
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Table 5.1: Correlated Targets Radar Parameters.

Unambiguous Range 5 km
Blind Range 100 m
Bandwidth 50 MHz
Noise Power -201 dB

transmit power per target is low, then it is more difficult to reduce both the

overall uncertainty and the number of failed channels. The performance of

each approach with a limited amount of resources is numerically investigated

in this section.

While the parameter variance transition between time steps is well defined

by the posterior variance equation in (5.3), the initial parameter variances

are not strictly defined, and must be selected by the system. In this section,

the parameter variances’ initial starting point is determined by calculating

the asymptotic variance in (5.19) for an evenly divided amount of power.

Since (5.19) might set the initial parameter variance above the failed channels

threshold (causing the parameter to be initially considered failed), any initial

parameter variances above the variance threshold are reduced to be the same

as the threshold value.

For each simulation, the unique channel measurement variances are gen-

erated according to a uniform distribution between 1.8 and 3 × 105, and the

distinctive set of parameter dynamic variances are generated according to a

Rayleigh distribution with a scale parameter of 0.31. These distributions are

analogous to tracking targets with a range of 1.5 to 30 km, according to the

radar range equation, and accelerating at a mean of 2.3 g’s [41] with the radar

properties specified in Table 5.1. The noise covariance matrix, N, and the

dynamic covariance matrix, ∆ are modeled as constant over time.
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With these specifications, this section proceeds in Section 5.3.1 with a

simulation of one particular realization of measurement and dynamic variances,

and comparing each approach for the average MSE metric. Although one

realization of measurement and dynamic variances is useful for demonstrating

how each approach reaches a steady state, it is not considerably useful for

comparing the approaches for a broader range of scenarios. Section 5.3.2

addresses this issue by comparing each approach using the average MSE metric

over 1,000 Monte Carlo simulations for a varying number of channels and a

variance threshold of 210. To account for the second metric, the same Monte

Carlo simulations as Section 5.3.2 are reported with the failed channels metric

for comparison in Section 5.3.3. The simulations reported in Sections 5.3.1,

5.3.2, and 5.3.3 still included independent channels to compare the approaches

from Section 5.2. In contrast, the simulation reported in Section 5.3.4 varies

the amount of correlation between the targets for 100 Monte Carlo simulations

with the same noise and dynamics as Sections 5.3.2 and 5.3.3 for a constant 50

channels and a constant variance threshold of 175. The average MSE metric

for correlated channels is not analyzed due to the lack of variability between

each approach when correlation is varied.

5.3.1 Single Realization

A single realization is important for demonstrating the typical behavior of each

approach as a function of time. To this end, the average MSE performance

of each approach in estimating 50 channels is displayed versus log time in

Figure 5.1. For this example, the threshold approach, in contrast with the

other approaches, does not reach an a steady state. It is important to note

that for a variance threshold of 210, even though the majority of approaches

61



100 101 102 103 104 105

Time Step

102

103

104

A
ve

ra
ge

 T
ar

ge
t M

S
E

One Realization for 50 Channels

Greedy
Even
Entropy Asymptote
Mutual Information
Minimize Highest
Threshold

Figure 5.1: Average MSE comparison for a single realization.

have an average MSE below the threshold, the individual channels of these

approaches may not necessarily be under the same threshold. To quantify the

comparison, the MSE of each approach averaged across both time and targets

is given in Table 5.2 with the same relative results between the approaches as

Figure 5.1.

In Figure 5.1 the asymptotic entropy and the even distribution approach

overlap with the lowest average MSE values. In Table 5.2, the even distri-

bution is shown to have a slightly better result due to the rounding when

calculating the power allocation for the asymptotic optimized approach. Both

the minimization below a threshold and minimize highest entropy approaches

have a higher average MSE in order to reduce the maximum number of in-

dividual channels under the chosen threshold. Although all the approaches
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Table 5.2: MSE averaged over number of channels for single realization.

Approach Average MSE
Greedy 204.8
Even Distribution 178.1
Asymptotic Entropy 178.7
Mutual Information 3,954.8
Minimize Highest 234.7
Threshold 6,715.6

overlap in the initial time steps of Figure 5.1, a closer look confirms that the

mutual information approach initially has the lowest average entropy. This

strategy is not able to maintain that benefit over the long term. As long as

the variance threshold is changed accordingly, changing the number of chan-

nels will only change the amount of uncertainty for each strategy, but will not

affect the order. The order in which the approaches are defined from best to

worst performing is only affected a change in SNR, dynamics, or threshold (in

the case of the minimize below threshold approach).

5.3.2 Monte Carlo Average Mean Squared Error

To complement the single scenario results of Section 5.3.1, Monte Carlo sim-

ulations are able to compare the approaches over a range of scenarios. Each

Monte Carlo simulation captures the results for a specific scenario that are

combined to generate an overall system performance for a general comparison.

With the same dynamic and noise distributions as in Section 5.3.1, Figure

5.2 displays the results for a Monte Carlo simulation with a range of channels

between 10 and 100. By averaging the MSE across the differing number of

channels, a more quantitative result is given in Table 5.3 for comparison.

The only difference in performance order between each approach, compared
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Figure 5.2: Monte Carlo simulation comparing average MSE over a varying
number of targets.

Table 5.3: MSE averaged over number of simulations for Monte Carlo simula-
tion.

Approach Average MSE
Greedy 101.4
Even Distribution 88.2
Asymptotic Entropy 88.9
Mutual Information 2,974.4
Minimize Highest 121.0
Threshold 2,964.3
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to Section 5.3.1, is the threshold strategy. This difference is caused by the

constant threshold selected for every Monte Carlo trial, even while the number

of channels is changing. Since the threshold stays constant while the number

of channels increases, the average metric performance of the threshold strategy

comparably deteriorates as the amount of power available per target decreases.

As the number of channels continues to increase, the resources are not sufficient

for the threshold approach to reduce the higher number of channels under the

threshold. To increase the resources per target tracked, the threshold approach

causes a substantial reduction in average performance by allocating zero power

to the channels with the highest MSE.

5.3.3 Independent Failed Channels

The average MSE metric used for comparison in Sections 5.3.1 and 5.3.2 does

not account for systems that require a limited amount of uncertainty for a

channel to be useful. For a tracking application, losing track of targets due to

an excess of uncertainty is more important to the continuity of a tracker versus

the reduction of overall system uncertainty. Continually losing tracks wastes

signal processing resources by continuously detecting, re-initializing, and then

deleting the tracks. Instead, by determining which tracks are not capable of

being tracked due to resource limitations, the system can remove those tracks

from re-initialization. The benefit of ignoring these channels becomes clear in

resource constrained scenarios.

Similar to Section 5.3.2, we simulate the failed channel metric using a

Monte Carlo simulation with the same characteristics. The simulation counts

and records the number of channels that increase above the given threshold.

Since the metric describes the channels as failed, once a channel variance
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Figure 5.3: Failed channels comparison for a varying number of uncorrelated
channels.

increases beyond the threshold, it is considered broken and unrecoverable.

Figure 5.3 shows the number of failed channels averaged across each Monte

Carlo simulation. The percentage of this average, summed and divided by the

number of channels, for all the Monte Carlo simulations is given in Table 5.4.

Since the minimize below threshold approach actively aims to maintain

the channels below the same threshold as the metric, it achieves the best per-

formance for the threshold metric. The minimize highest entropy approach

has good performance when the amount of resources is abundant, but starts

drastically degrading to become the worst approach when resources are scarce

because it can’t keep all the targets under the desired threshold. Much like

the minimize highest entropy approach, the greedy approach does well with an
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Table 5.4: Percentage of failed channels for Monte Carlo simulation of inde-
pendent channels.

Approach Percentage of Failed Channels
Greedy 75.9%
Even Distribution 30.3%
Asymptotic Entropy 30.6%
Mutual Information 70.9%
Minimize Highest 61.2%
Threshold 3.4%

abundance of resources but drastically gets worse with less resources per chan-

nel. The even distribution and entropy asymptote minimization approaches

have a similar performance with the number of failed channels metric. While

these approaches are not the best for this metric, they still perform relatively

well compared to the remaining strategies in the resource constrained scenar-

ios.

5.3.4 Correlated Failed Channels

While the simulations reported in Sections 5.3.1, 5.3.2, and 5.3.4 only included

channels with uncorrelated dynamics, this section varies the amount of corre-

lation between the channels. Comparing the performance of each approach on

channels with correlated dynamics is useful for channels whose values change

in relation to the other channels due to external forces such as vicinity and

environmental factors. For the tracking example, channels with correlated dy-

namics are analogous to targets that fly in formation or are affected by the

same weather conditions. Instead of varying the number of targets, as in Sec-

tion 5.3.3, the Monte Carlo results displayed in Figure 5.4 have a static number

of channels set at 10 and the amount of correlation between channels varies.

The percentage of failed channels for each approach is given in Table 5.5.
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Figure 5.4: Failed channels comparison for a varying amount of correlation.

Table 5.5: Percentage of failed channels for a Monte Carlo simulation of cor-
related channels.

Approach Percentage of Failed Channels
Greedy 66.7%
Even Distribution 28.6%
Asymptotic Entropy 28.7%
Mutual Information 63.4%
Minimize Highest 55.1%
Threshold 14.5%
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The added correlation, compared to the independent Monte Carlo simula-

tions in Section 5.3.3, is able to improve the performance of every approach

except the thresholding approach. The approaches that improve as the correla-

tion increases are able to prioritize the channels with a lower measurement vari-

ance to gain knowledge about all the targets. When the correlation between

targets approaches one, the even distribution and minimal entropy approaches

actually have an average number of failed channels less than the thresholding

approach. While the thresholding approach doesn’t improve with correlation,

the mutual information maximization approach also is not able to capitalize

much with the increased correlation compared to the other approaches, and

performs the worst with high correlation.
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Chapter 6

Aperture Allocation

6.1 System Model

While the models in Chapters 4 and 5 provide introductory examples regarding

a system’s ability to manage resources toward optimizing multiple parameter

estimation, they do not realistically model the process of measuring the pa-

rameter’s value, especially for a radar system. The measurement variances in

Chapters 4 and 5 would realistically vary based on the signal-to-noise ratio

(SNR) of the channel. To account for this modification in the measurement

error, a mathematical model is defined at time instance k as

yk = xk + ek k = 1, 2, ..., K (6.1)

where xk is the vector of parameters to be estimated, ek is the measurement

error vector, yk is the measured data vector, and K is the total number of

time steps.

In this model, we implement a measurement error variance that is a non-

linear function of SNR. To calculate the nonlinear function, we simulated the

azimuth phase ratio estimation using the phase monopulse estimation tech-

nique for a pulse-Doppler radar. After simulating Monte Carlo trials for 1,000
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realizations of noise, the error for each measurement was averaged for a con-

stant SNR. The estimation error values displayed in Figure 6.1 were deter-

mined by performing the Monte Carlo simulation for a range of SNR values.

The function of error versus SNR defined in Figure 6.1 determines the mea-

surement error variance based on the measurement SNR. Since the aperture

allocation affects the measurement SNR through the aperture power and gain,

this chapter applies aperture allocation techniques for the nonlinear measure-

ment model to determine the SNR and subsequently the measurement error

variance for each measurement.

The nonlinear measurement model in Figure 6.1 has a low-SNR regime with

a constant error for each SNR value and a high-SNR regime with an inversely

linear relationship between error and SNR. The low-SNR error is constant to

represent the minimal information received from a low-SNR measurement as if

no measurement occurred. As shown in Figure 6.1 for the azimuth monopulse

phase ratio [30], reducing the SNR below a specific SNR value does not change

the measurement error variance. This behavior is typical for a non-linear

estimation problem, but the SNR measurement threshold, or the knee in the

curve, is dependent on the system characteristics and varies based on system

sensitivity.

To derive the approaches, we separate the mathematical approximation of

Figure 6.1 into a two sub-function piecewise equation, one for the low-SNR

and one for high-SNR. The high-SNR regime is given in [52], while the low-

SNR regime was empirically derived to match the simulated values in Figure

6.1. The piecewise error variance equation for the monopulse azimuth phase
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Table 6.1: Aperture Allocation Radar Parameters.

Center Frequency 5 GHz
Bandwidth 50 MHz
Pulse Repetition Frequency 5 kHz
Pulse Width 20 µs
LFM Chirp Rate 2.5×1012 1

s2

Blind Range 3 km
Unambiguous Range 30 km
Number Fast Time Pulses 128
Antenna Spacing λ

2 m
Number of Antenna Elements 100
Power Per Element 1 W
Noise Power -205 dB

ratio is
ε2
lowsnrn = c1

(
c

[10 log10(SNRn)+c3]
2

)
+ c4 : SNRn < ζ

ε2
highsnrn = 8

a2
rxnSNRn

: SNRn > ζ
(6.2)

where arxn is the number of aperture elements used for monopulse processing

on receive for the nth target, SNRn is the SNR achieved after pulse compression

with time-bandwidth product τnβn and integration over a CPI of M pulses for

the nth target, and c1, c2, c3, c4, and ζ are constants that depend on the system.

ζ is a measurement threshold that separates the low-SNR regime and the

high-SNR regime in Figure 6.1. The value of ζ is determined experimentally

based on the sensitivity of the system. For the azimuth phase ratio monopulse

estimation in Figure 6.1, c1, c2, c3, c4, and ζ are found through simulation to

be -0.0031, 1.75, -11, 0.0935, and 15 dB, respectively, for this system. The

radar parameters to determine these constants are given in Table 6.1.

Similar to Chapters 4 and 5, the azimuth ratio parameter is assumed to

adhere to a Gaussian distribution. Due to this similarity, the azimuth ratio’s
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belief state is

bn,k = p(xn,k|yn,k) ∼ N (µn,k, σ2
n,k). (6.3)

Once again, the parameter’s variability increases the belief state’s uncertainty

between each measurement, and the belief state prior to the next measurement

becomes

b̂n,k+1 ∼ N (µn,k, σ2
n,k + δ2

n,k). (6.4)

By representing the parameter as a random signal with a belief state, the

Bayesian estimation paradigm can be used to recursively estimate the param-

eter. The model in (6.1) with a Gaussian parameter and a known variance

causes the belief state representation after a measurement to be

bn,k+1 ∼ N

yn,k+1
(
σ2
n,k + δ2

n,k

)
+ µn,kε

2
n,k+1(

σ2
n,k + δ2

n,k

)
+ ε2

n,k+1
,

(
σ2
n,k + δ2

n,k

)
ε2
n,k+1(

σ2
n,k + δ2

n,k

)
+ ε2

n,k+1

 (6.5)

where ε2
n,k is the measurement error variance. Equation (6.5) has the same form

as (4.4) with the fraction ν2
n

ρn,∞
being replaced by ε2

n and with ε2
n represented

by a piecewise equation.

For the monopulse estimation application, the processing gain and radar

range equation define the SNR that appears in (6.2). Rearranging the radar

range equation and including the processing gain variables, the SNR is

SNRn = τnβnM
a2
txnPeGeGrnλ

2ςn

(4π)3 R4
nkToNfβnLs

(6.6)

where atxn is the number of transmit digital array elements allocated to the

nth target, Pe is the per-element transmit power, Ge is gain of each element,

Grn is the receive gain for the nth target, λ is the operating wavelength, ςn

is the radar cross section (RCS) of the nth target, k is Boltzmann’s constant,
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To is the receiver temperature, Nf is the noise figure, βn is the bandwidth for

the nth channel, and Ls is the system losses. The quadratic dependence on

the number of transmit antenna elements is due to the dependence of both

the transmit power and transmit gain on the number of transmit elements.

Equation (6.6) can be simplified into the number of transmit elements, atxn ,

and the SNR for a single element, SNReln , given by

SNRn = a2
txnSNReln . (6.7)

Instead of allocating power in Chapters 4 and 5, each approach in this

chapter calculates the number of transmit antenna elements, atxn , for each

channel. By calculating the number of transmit antenna elements, each ap-

proach is able to affect both the antenna gain and power transmitted toward

each target. Similar to the power constraint in (3.2), the number of antenna

elements in (6.6) is constrained across all targets for allocation by

N∑
n=1

atxn ≤ A (6.8)

where A is the total number of antenna elements.

6.2 Aperture Allocation Strategies

Using the model in Section 6.1, we develop a short-term objective function and

three long-term objective functions to obtain four aperture allocation strate-

gies in this section. The approaches in this section derive solutions for atxn to

represent the number of transmit antenna elements allocated to each target.

The number of transmit elements affects the amount of power and gain allo-

cated to that target, which affects the SNR through (6.7), and ultimately the
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estimation performance by (6.2).

6.2.1 Mutual Information Maximization

The first proposed approach maximizes the summation of mutual information

over all targets at each time step to reduce the overall system entropy metric.

Due to the piecewise nature of (6.2), a system of equations cannot be easily

derived to maximize the mutual information. Instead, the approach is derived

by replacing ν2
n

ρn,∞
in (4.6) by (6.2). After substituting, the low-SNR and high-

SNR objective functions for this approach at the kth time step are

fk =


∑N
n=1

1
2 log

1 + σ2
n,k+δ2

n

c1

(
c

[10 log10(SNRn)+c3]
2

)
+c4

 SNRn < ζ

∑N
n=1

1
2 log

(
1 + (σ2

n,k+δ2
n)a2

rxn
SNRn

8

)
SNRn > ζ.

(6.9)

Although (6.9) is not easily optimized, it can be solved, including the con-

straint in (6.8), with a numerical solver. A conditional statement can be

implemented to select between the high-SNR and low-SNR equation. The

piecewise function provides an equation to optimize, but the implementation

might produce a local maximum instead of the desired global result by getting

stuck on either the low- or high-SNR state. Since the parameter variance de-

pends on SNR, which changes at each time step, the element allocations should

also be calculated at each time step, which is contrasted with the approaches

in Sections 6.2.2, 6.2.3, and 6.2.4.

The mutual information approach achieves good performance, but with an

increased computational complexity due to frequently update the allocation.
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6.2.2 MSE Asymptote Minimization

In order to alleviate the complexity burden of the mutual information max-

imization approach in Section 6.2.1, the asymptotic MSE minimization ap-

proach reduces the entropy by only calculating the element allocation once

at the beginning of an experiment. Realistically, this approach would require

recalculation every time the environment changes. By only calculating the

number of elements in the beginning, the number of elements allocated to a

target are constant throughout time, and the target’s variance will converge

to a steady state. This steady state is reached when the information gained

from each measurement is equal to the uncertainty increase caused by the pa-

rameter’s dynamic variance. Mathematically, this case is defined by the prior

variance in (6.3) being equal to the posterior variance in (6.5), becoming

σ2
n,∞ =

(σ2
n,∞ + δ2

n)ε2
n

(σ2
n,∞ + δ2

n) + ε2
n

. (6.10)

Solving (6.10) for the steady state variance, σ2
n,∞, yields

σ2
n,∞ = −δ

2
n

2 +

√√√√(δ2
n

2

)2

+ δ2
nε

2
n (6.11)

Substituting (6.2) into (6.11) and summing across all channels results in the

objective function for both the high- and low- SNR regimes to be

fk =


∑N
n=1

[
− δ2

n

2 +
√(

δ2
n

2

)2
+ δ2

n

(
c1
(
c

[10 log10(SNRn)+c3]
2

)
+ c4

)]
SNRn < ζ

∑N
n=1

[
− δ2

n

2 +
√(

δ2
n

2

)2
+ δ2

n
8

a2
rxnSNRn

]
SNRn > ζ

(6.12)

Similar to the prior case, a constrained numerical solver can use the constraint

in (6.8) and a conditional statement to solve (6.12). The implementation of the
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piecewise function in (6.12) has the possibility of a local optimum being cal-

culated instead of a global point due to using the conditional statement. Even

though the asymptotic entropy minimization approach requires less computa-

tion, the mutual information maximization approach from Section 6.2.1 can

sometimes achieve better results.

6.2.3 Parameter Variance Minimization Below a

Threshold

In contrast to previous approaches, which minimized the overall system uncer-

tainty, this approach only allocates resources to targets that can be maintained

below a specified variance threshold. The targets that can’t be maintained be-

low the given threshold are ignored and are not allocated any resources. Given

a specific threshold, γ, the objective function is

γ >


− δ2

n

2 +
√(

δ2
n

2

)2
+ δ2

n

[
c1
(
c

[10 log10(SNRn)+c3]
2

)
+ c4

]
SNRn < ζ

− δ2
n

2 +
√(

δ2
n

2

)2
+ δ2

n
8

a2
rxn

SNRn SNRn > ζ

. (6.13)

By substituting (6.7) for SNRn and solving (6.13) for atxn , the number of

transmit antenna elements for each target is

atxn >



√√√√10
1

10 logc2

[
γ(γ+δ2

n)
c1δ2

n
− c4
c1

]
− c3

10

SNReln
SNRn < ζ√

8δ2
n

a2
rxn

SNRelnγ(γ+δ2
n) SNRn > ζ

. (6.14)

Equation (6.14) calculates one allocation value for the low-SNR case and one

value for the high-SNR case. Selecting the value for atxn depends on the

number of elements required to reach the high-SNR regime, which is calculated
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by

athresn =
√

ζ

SNReln

. (6.15)

If the low-SNR equation of (6.14) is above the threshold number of elements

given in (6.15), then the high-SNR equation in (6.14) should be used. If the

low-SNR equation of (6.14) does not meet the threshold in (6.15), then the

low-SNR equation should be used.

The results of (6.14) are sorted and allocated from lowest to highest number

of elements until the remaining number of elements is not enough to satisfy

the allocation minimum for any remaining targets. The remaining targets

are ignored and receive no elements allocated toward them. Once there are

not enough elements remaining to fulfill (6.14) for the next target, the excess

elements are allocated using the asymptotic entropy minimization approach

given in Section 6.2.2 for the previous targets.

6.2.4 Measurement Above SNR Threshold

Similar to the method in Section 6.2.3, this strategy increases the benefit for

a select number of targets instead of allocating resources to achieve a system-

wide average metric. Instead of minimizing the variance of each target, this

approach maximizes the number of targets with measurements that have suf-

ficient SNR. The number of elements required to achieve a beneficial measure-

ment, meaning the SNR is above the noise floor (i.e. the high-SNR regime),

is calculated using (6.15). Since the system might not have enough resources

to satisfy the requirement of every target to reach the high-SNR regime, the

results of (6.15) are sorted by target and then allocated from least to most

until not enough elements remain to ensure the next target’s measurement

exceeds the noise floor. Any remaining resources, even though they cannot
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benefit the leftover targets, are evenly distributed among the targets that will

achieve beneficial measurements to increase their SNR further.

6.3 Results

This section compares the performance of each element allocation approach in

Section 6.2 to two baseline approaches: 1) distributing the number of elements

evenly between all the targets and 2) using the whole aperture to measure the

target with the highest variance (AKA the greedy approach). The approaches

are compared using both the average estimated MSE and the number of “lost

targets” metrics. While a lower average estimated MSE increases the overall

estimate of all the targets, the number of “lost targets” metric compares the

uncertainty on a target by target basis. The “lost targets” metric specifies

a MSE threshold, γ, that is analogous to a tracker losing track of a specific

target.

The parameter variances are initialized by solving (6.11) for the high-SNR

regime with an even power distribution, unless that variance is above γ. Any

starting variances above γ are automatically reduced below γ to guarantee the

initial variance does not cause the approaches to immediately lose that target.

The RCS value, range, and dynamic variance of each target are randomly

selected from a probability distribution function. Both the RCS value and

the range come from a uniform distribution with the range between 3km and

30km and the RCS value between 2 and 40 m2. The dynamic variance, on the

other hand, uses a Rayleigh distribution to emphasize less dynamic, or lower

accelerating, targets with a scale parameter of 0.007. A scale parameter of this

magnitude corresponds to a average acceleration of 2.82 g’s. The simulations

in this section use the same system parameters as given in Table 6.1.
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Table 6.2: Average estimated MSE and percentage of lost targets comparison
averaged across varying target amounts.

Single Monte Carlo
Realization Simulations

Approach Average Average MSE Percentage of
MSE per Target Lost Targets

Greedy 0.011 0.23×10−3 42.3%
Even Distribution 0.008 0.23×10−3 41.1%
MSE Asymptote 0.006 0.21×10−3 35.8%
Mutual Information 0.008 0.20×10−3 36.4%
Track Threshold 0.006 0.22×10−3 31.4%
Measure Threshold 0.006 0.21×10−3 32.4%

This section compares the performance of each approach for a single re-

alization of five targets using the average MSE metric in Section 6.3.1. The

single realization provides a view of the system’s performance over time for

a specific scenario. Although each realization will have differing results, the

qualitative analysis of a single scenario provides useful insights. Then, to ac-

count for differing scenarios, 1,000 different realizations are averaged together

in Sections 6.3.2 and 6.3.3 to compare the approaches using the average MSE

and lost targets metric, respectively, for varying numbers of targets.

6.3.1 Single Realization

Simulating targets for extreme values of SNR and dynamic variance explores

the usefulness of each approach for large variations of target characteristics.

To this end, the single realization in this section included five targets with

large variations: one at low-dynamics (0.01 g’s) and low-SNR (range of 30

km), one at high-dynamics (9 g’s) and high-SNR (range of 3 km), one at

low-dynamics and high-SNR, one at high-dynamics and low-SNR, and one at

medium-dynamics (4.5 g’s) and medium-SNR (range of 13.5 km). The average
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Figure 6.2: Average estimated MSE comparison for a single realization.

estimated MSE for these five targets are shown in Figure 6.2 versus log time.

Figure 6.2 shows that each approach, except the greedy approach, reaches a

steady state MSE value. The greedy approach does not reach a steady state

because it constantly switches the allocation between two targets and never

settles to a constant allocation. The values in the second column of Table 6.2

average the MSE over both time and targets to quantify each approach.

By allocating most of the resources to the medium-dynamics and medium-

SNR target, the asymptotic MSE and tracking threshold approaches have the

best results. In this scenario, they have extremely similar performance and

almost overlap in Figure 6.2. The measurement threshold approach is close

to the performance of the asymptotic MSE and tracking threshold approaches

because it also allocates a little over the majority of resources to the medium-
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dynamics and medium-SNR target. Although the approach still focuses on

the medium level target, it spreads the resources more evenly between the two

high-SNR targets and the medium target. The mutual information maximiza-

tion strategy focuses the majority of the aperture on the high-SNR targets

and overlaps in performance with the even distribution approach. Finally the

greedy approach performs the worst because it only allocates energy to the

medium and high dynamics targets.

6.3.2 Monte Carlo Average Mean Squared Error

The realization in Section 6.3.1 displays the results for a single scenario but

does not provide quantitative performance over many different scenarios. In-

stead, Monte Carlo simulations are useful to compare the performance across

many different scenarios. Figure 6.3 compares the results for each approach

by averaging the MSE across time and targets, and dividing by the number

of targets for 1,000 realizations. Each Monte Carlo simulation is performed

for a varying number of targets between 10 and 100. The values in the third

column of Table 6.2 quantify these results by averaging across the Monte Carlo

simulations.

Comparing the results shows that the mutual information approach has the

best average MSE but also requires the highest amount of computation. The

MSE asymptote and measurement threshold approaches perform extremely

similar, and are a close second best. The MSE asymptote approach is not

the best, which is attributed to the possibility of reaching a local maximum

instead of a global result. The tracking threshold approach rounds out the

proposed approaches in fourth with the baseline approaches, greedy and even,

performing the worst.
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Figure 6.3: Average estimated MSE comparison for a varying number of tar-
gets.
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6.3.3 Lost Targets

In contrast to previous sections, which compares the approaches using the MSE

metric, this section compares the results of Monte Carlo simulations using the

lost targets metric. The lost targets metric is analogous to the error becoming

so high that a tracker is unable to reliably provide an estimate of the actual

target location. This threshold depends on the system, but -16 dB was used for

the lost target error threshold in this simulation. The Monte Carlo simulations

have the same characteristics as in Section 6.3.2, only with a different metric

for comparison. If the variance of a target goes above the threshold variance

threshold at any point during the simulation, then the target is considered

lost for the entire simulation. The average number of lost targets across 1,000

realization is shown in Figure 6.4 for a varying number of targets between 10

and 100. The fourth column of Table 6.2 also quantifies the percentage of lost

targets averaged across the Monte Carlo simulations.

Unsurprisingly, the tracking threshold approach performs the best because

it is actively decreasing the variance of as many targets as possible below

the variance threshold. The measurement threshold approach is a close sec-

ond in performance and actually performs the same as the tracking thresh-

old approach in the highly resource constrained scenarios, when the system

is tracking 100 targets with 100 elements to allocate. The MSE asymptote

and mutual information maximization approaches are third and fourth, re-

spectively, even though the mutual information approach overtakes the MSE

asymptote approach in the resource constrained scenarios. Once again, the

baseline approaches, the greedy and even distribution, perform the worst for

the lost targets metric.
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Figure 6.4: Lost targets comparison for a varying number of targets.
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Chapter 7

Tracking Radar Simulation

7.1 Overview

As described in Chapter 2, trackers are able to increase the estimation accuracy

of a fluctuating parameter value by combining multiple measurements. Pre-

vious chapters represented the recursive estimation using a belief state prior

distribution and posterior equation. Instead of representing the estimation

using the belief state posterior equation, many systems implement a Kalman

filter to recursively estimate the parameter value. Along with the recursive es-

timation in (2.4), the Kalman filter also recursively calculates the covariance

using (2.6), which is related to (5.3) by the Woodbury matrix identity [53].

Although many implementations of a Kalman filter exist, this chapter uses

a constant velocity implementation, due to the fact that the velocity is con-

sidered constant in (2.12), described in Chapter 2. Although the constant

velocity tracker is the simplest model, it provides the necessary constructs to

evaluate the proposed allocation strategies and analyze the motivation behind

each strategy for multiple scenarios. An example of the tracker’s performance

in two dimensions is shown in Figure 7.1. The initial estimate, represented by

a dotted line, on the right side of Figure 7.1 is far off from the actual target lo-
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Figure 7.1: Tracker performance in two dimensions.

cation due to the initial measurement error, but the tracker’s estimate quickly

converges to the actual location. The error included in each measurement is

transferred, but considerably reduced, to the tracker’s estimate. By combin-

ing the measurements together, the tracker is able to reduce the effects of the

measurement error, but not completely remove it causing the estimate to still

slightly vary around the target’s trajectory.

Along with the recursive Kalman filter estimator, the measurement model

in Chapter 6 is extended to three dimensions to now include both range and

elevation for the radar measurements. When the received measurement is

located below the noise floor, the system receives no information from the

measurement and must guess the parameter’s state based on the possible val-

ues. Since range has a larger number of possible values and a larger resolution,
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without accounting for the difference in units, than angle of arrival, the un-

certainty of the range measurement is much higher than the error in the angle

of arrival, as shown in Figure 7.2.

The inclusion of both range and elevation angle to the measurement model

from Chapter 6 requires additional estimates to be calculated. Since the ele-

vation angle estimate is determined through the same monopulse technique as

the azimuth angle, it has the same accuracy plot in Figure 6.1 and equation

in (6.2). The calculation of range is vastly different than the monopulse tech-

nique and requires a new high-SNR equation to characterize that estimate.

Since the low-SNR equation in (6.2) is generic, only the constant values are

necessary to change. For range, the constants c1, c2, c3, c4, and ζ were found

through simulation to be -1, 1.25, 75.8, 109.2, and 18.5, respectively, for this
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Table 7.1: Aperture Allocation Radar Parameters.

Center Frequency 50 MHz
Bandwidth 1 MHz
Pulse Repetition Frequency 1 kHz
Pulse Width 10 µs
LFM Chirp Rate 1×1011 1

s2

Blind Range 1.5 km
Unambiguous Range 150 km
Number Fast Time Pulses 128
Antenna Spacing λ

2 m
Number of Antenna Elements 100
Power Per Element 1 W
Noise Power -205 dB

system. The properties of this system are shown in Table 7.1. The range

high-SNR equation, from [54], for a linear frequency modulated waveform is

ε2
highsnrn = 3c2

8π2SNRnβ2 : SNRn > ζ, (7.1)

where c is the speed of light.

By combining the realistic Kalman filter estimator with the realistic mea-

surement model in Chapter 6, this chapter applies and analyzes the resource

allocation approaches from Chapter 6 to explain their operation for multiple

realistic scenarios.

7.2 Results

The results in this chapter are based on multiple scenarios designed to increase

the understanding of each aperture allocation strategy from Chapter 6. The

greedy and even distribution approaches are provided as baseline comparisons

and will not be analyzed. Beyond demonstrating each allocation strategy using
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specific scenarios, this chapter also investigates the effect of varying both the

number of targets and the time between updating the resource allocation for

each strategy by implementing Monte Carlo simulations for each. During the

specific scenarios, the approaches recalculate the aperture allocation every 10th

CPI. To ease the readability of the scenario plots, the data is down-sampled

to a data point every 100 CPIs.

Along with the average tracker MSE and lost targets metrics, we include a

deleted tracks metric to compare the amount of resources wasted by the system

tracking a target that is ultimately deleted. A tracker deletes a track when a

useful measurement is not received for a specific number of time steps, or CPIs.

In this case, a threshold of four CPIs is used to determine whether a track is

deleted. For the tracker estimation model, the lost targets metric required a

MSE of 1× 104 before considering a target to be lost. The lost targets metric

is calculated using the Euclidean distance in Cartesian coordinates for the

tracker.

The radar properties for every simulation in this section are given in Table

7.1. In the Monte Carlo simulations, the targets’ initial ranges are randomly

selected from a uniform distribution between the two values. The targets’

initial velocities are selected from a Rayleigh distribution based on a maximum

of 300 m/s with a binary random variable, either a 1 or -1, to determine the

direction. Targets’ accelerations are determined by a Gaussian distribution

based on the dynamic variance. The Monte Carlo simulation also varies the

targets’ RCS values based on a uniform distribution from 2 to 40 m2.
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7.2.1 Two Target Scenario #1

The first scenario is split into three related sub-scenarios, named 1A, 1B, and

1C. These scenarios are related because they all contain two targets with the

same RCS of 20 m2: one moving around the radar at a constant range and the

other target starting close to and moving away from the radar. The different

variants change the initial range of the first target and the dynamic variances

for both targets. The dynamic variances determine the amount of typical

accelerations based on a Gaussian distribution.

Scenario 1A, shown in Figure 7.3, includes two targets: one at a constant

range of 50,990 m and another target starting at a range of 2,263 m, with

each target having an acceleration variance of 7.4 g’s. Since only two targets

exist, the number of elements allocated to target #1 is analyzed, while the

remaining elements are allocated to target #2. The allocation for target #1

is shown in Figure 7.4.

Initially, all of the approaches start with over 95% of the elements allocated

to target #1 due to close proximity of target #2 with the radar. Since target

#2 is close to the radar, it does not need many resources to achieve a good

estimate. In contrast, target #1 needs more resources to increase the SNR

enough to measure its location. As target #2 starts moving away from the

radar, the mutual information maximization approach is the first to start

allocating more resources to target #2 and reaches an even distribution around

the 230th CPI, when the second target is at a range of 14,950 m. In contrast,

the other approaches do not reach an even distribution until CPI 900, when

the second target is at 49,700 m.

As the second target moves away from the first target, the mutual infor-

mation approach continues to allocate evenly until CPI 1,520 while the other
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Figure 7.3: Scenario 1A trajectory.
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approaches progress much quicker to 26 elements allocated to target #1. In

this scenario, 26 elements satisfies (6.15) for target #1. In other words, when

target #1 receives less than 26 elements, then the target’s SNR is too low to

generate a beneficial measurement. All of the approaches reach 26 elements

around CPI 1850, except for the measurement threshold approach, which de-

viates and allocates all the resources to target #1.

At CPI 1850, target #2 is 87,200 meters away from the antenna and the

measurement threshold approach has reached a decision point. Based on the

measurement model, the minimum number of elements to achieve a useful

measurement is available to either target, but not both. Therefore, the mea-

surement threshold approach must either continue to allocate resources to

target #2 and ignore target #1, or vice versa. The approach chooses tar-

get #1 and allocates all the resources toward it while the other approaches

continue to split the resources between both targets. Toward the end of the

scenario, around CPI 8950 and a range of 406,000 m for target #2, the mutual

information maximization approach calculates that target #2’s SNR is too low

for any information to be gained and also allocates all the resources to target

#1.

Scenario 1B is similar to 1A, with all the same parameters except that

target #1 is closer to the radar at 25,500 m. The resource allocation of each

strategy in scenario 1B for the first target is shown in Figure 7.6. Compared

to scenario 1A, the resource allocation approaches for this scenario start out

allocating fewer elements to target #1. The mutual information maximization

approach also waits until the 320th CPI, when the second target is at 18,854

m, to evenly distribute the resources. The other approaches reach the even

point at about the same time, around CPI 430 or when the second target is
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Figure 7.4: Scenario 1A resource allocation for target #1.
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Figure 7.5: Scenario 1B trajectory.
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Figure 7.6: Scenario 1B resource allocation for target #1.

25,500 m away from the radar.

Since target #1 is closer than in scenario 1A, the target requires fewer

elements to achieve a useful measurement. In this case, only seven elements

are required to gain a beneficial measurement of target #1. The measure-

ment threshold approach reaches this point at CPI 2050, which is later than

in scenario 1A because target #2 must get far enough away to decrease its

SNR enough to require greater than 93 elements for a useful measurement.

Since target #1 is closer, the mutual information maximization approach also

allocates all the resources to target #1 earlier than scenario 1A because more

information can be gained from the first target when it is closer.

Scenario 1C has the same distances as scenario 1B but decreased the ac-

celeration variance from 7.4 g’s to 2.7 g’s. Compared to scenario 1B, the
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Figure 7.7: Scenario 1C trajectory.
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Figure 7.8: Scenario 1C resource allocation for target #1.

allocation for this scenario starts at the same amount and takes longer to

reach the even distribution point at CPI 830, due to the slow acceleration of

target #2. The CPI at which the measurement threshold approach reaches

the decision is also later at CPI 2470. The most notable difference due to the

reduction in dynamic variance is for the tracking threshold approach, which

stops allocating more resources toward the second target before it reaches the

minimum number for a useful measurement of target #1, which is seven ele-

ments. Also toward the end of this scenario’s timeline, the tracking threshold

and asymptotic MSE optimized approaches start to allocate more resources

back to target #1 due to the reduction in dynamic variance.
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Scenario 2 Target Locations
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Figure 7.9: Scenario 2 trajectory.

7.2.2 Two Target Scenario #2

The second scenario replaces the constant range target from scenario #1 with

another target that starts close to the radar and moves away from the radar.

Therefore, this scenario, shown in Figure 7.9, simulates two targets that start

close to the radar, at 2,121 m, and move away with the same acceleration

variance of 7.4 g’s. Once again the RCS values of both targets is 20 m2.

Although their acceleration variances are the same, the actual velocity and

acceleration at a specific time are different between the targets. Figure 7.10

shows the difference in range over time due to the difference in velocities and

accelerations.

The corresponding resource allocation for each method is shown in Fig-
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Figure 7.10: Scenario 2 range.
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ure 7.11. Since the targets are initially extremely close to each other, the

approaches split the resources evenly between the targets. Quickly, the first

target accelerates and the approaches respond by allocating more resources

to it. The approaches focus on the further target because the nearby target

is close enough to gain enough information with a small amount of resources.

During this time, the mutual information maximization approach only deviates

by four elements from the even distribution approach.

Around CPI 1030, the targets switch relative position from the radar, with

the first target closer and the second target further away. To account for this

change, the approaches transition to favoring the second target with more

resources. The targets cross again at CPI 1475, and the approaches start to

switch back as well, until CPI 1560, when target #1 is 85,600 m and target

#2 is 75,000 m away. At this point, the targets’ SNRs are low enough that

getting worthwhile information from both targets is difficult. Therefore, the

measurement threshold approach immediately allocates all the resources to

the closer target. The other approaches are slower to transition entirely to the

closer target but finally reach that point around CPI 1940, when the targets

are at 108,610 and 101,290 meters, respectively.

Finally around CPI 2200, at distances of 124,380 and 114,530 meters, re-

spectively, the measurement threshold approach determines both targets to be

too far away for beneficial measurements so it evenly distributes the resources

between both targets. The remaining approaches continue to allocate all the

resources toward the closest target, even when the targets alternate relative

locations.
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Figure 7.11: Scenario 2 resource allocation for target #1.
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Scenario 3 Target Locations
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Figure 7.12: Scenario 3 trajectory.
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Figure 7.13: Scenario 3 range.

7.2.3 Four Target Scenario

The third and final scenario compares the allocations for more than two targets

by combining the first two scenarios. In this scenario, four targets are tracked:

the first two at a constant, but different, range, and the last two starting at the

same range of 2,121 m, but traveling away from the radar at different speeds,

but the same acceleration variance. The two constant range targets, targets

#1 and two, are at 7,071 and 70,711 meters, respectively. All four targets

have acceleration variances of 7.4 g’s and RCS values of 20 m2. The ranges of

each target throughout the scenario are shown in Figure 7.13. Although the

simulation lasted for 10,000 CPIs, some plots are reduced in scope to increase

the visibility of critical points in the graph.
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As seen in Figure 7.14, the measurement threshold initially favors the sec-

ond target with over 95% of the resources. Due to the vicinity of targets #2,

#3, and #4 to the radar, those targets require only a minimal amount of re-

sources to achieve a useful measurement. As targets #3 and #4 move away

from the radar, they require more resources to be effectively measured, so the

approach starts decreasing the amount allocated to target #1 and allocating

them to targets #3 and #4. Since target #4 is further away, it receives more

resources to produce a useful measurement compared to target #3. This con-

tinues until CPI 1240, when targets #3 and #4 reach ranges of 63,845 and

61,625 meters. At this point, the radar does not have enough resources to

measure all three targets sufficiently, and it must pick two of the three targets

to measure. This method ends up splitting the resources between targets #3

and #4 because they require less resources to achieve a better SNR than target

#2.

As target #4 continues moving, it finally gets further away than target

#2, so the radar stops allocating resources to target #4 and only focuses on

targets #2 and #3. When target #3 gets to 88,364 meters away, the radar

does not have enough resources to maintain tracks for both targets #2 and

#3. Therefore, the approach allocates all the resources to target #2 due to

it being closer. Throughout the scenario, target #1 was constantly allocated

one element because it is close enough to the radar that one element is able to

achieve a useful measurement. If this target was further away, that constant

allocation would be increased along with the distance until it receives resources

similar to target #2.

Similar to the measurement threshold approach, the mutual information

maximization approach initially allocates over 90% of the resources to target
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Figure 7.14: Scenario 3 resource allocation for target #1 using the measure-
ment threshold approach.
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#2. Almost immediately, though, the MI maximization approach reduces that

allocation to half and allocates the remaining half to the other three targets,

with target #1 getting the second most resources. As targets #3 and #4

get in the vicinity of target #1 (between CPIs 150 and 300), target #2 still

gets about 50% of the resources, while the remaining resources are split evenly

between the other three targets. While targets #3 and #4 have ranges between

targets #1 and two (between CPIs 300 and 1200), all four targets receive some

resources, although target #1 typically receives the least, with the majority of

resources being determined between targets #1, #3, and #4 by their current

uncertainty.

After CPI 1200, when targets #3 and #4 are in the same vicinity as target

#2, the majority of resources is split between targets #3 and #4 until target

#4 becomes further away than target #2 at CPI 1350. After CPI 1350, the

resources are split between targets #2 and #3 while targets #1 and #4 receive

a minimal amount. As targets #3 and #4 continue to get further away, the MI

maximization approach continues to decrease the amount of resources allocated

to those targets and increases the amount allocated to target #1 until targets

#3 and #4 reach the point where no more information can be gained through

measurements. The higher percentage of allocation split between targets #3

and #4 switch around CPI 2,800 and again around CPI 3,800 due to switching

which one is the closer target. When targets #3 and #4 become too far away,

the approach settles on allocating 57% of the resources to target #2 and 43%

to target #1 for the remaining time.

Similar to the measurement threshold and MI maximization approaches,

the optimized asymptotic MSE approach initially allocates over 90% of the

resources toward target #2. As targets #3 and #4 move away from the radar
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Figure 7.15: Scenario 3 resource allocation for target #1 using the mutual
information maximization approach.
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Figure 7.16: Scenario 3 resource allocation for target #1 using the MSE asymp-
tote optimization approach.

and toward target #2, the strategy transfers more and more of target #2’s

resources between targets #3 and #4. Target #2 reaches zero elements around

the same time as target #4 reaches the same range as target #2. At which

point, the asymptotic MSE optimized approach immediately allocates half the

resources to target #2, which never relinquishes less than 40% of the resources

after that. The remaining resources are allocated to either the third or fourth

target, with the further away target being allocated the most resources.

The tracking threshold approach is the last strategy and it follows a very

similar allocation as the asymptotic MSE optimized approach. The distinct

difference between the two approaches is the transition between situations

inside the scenario. A different situation occurs when the targets transition
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Figure 7.17: Scenario 3 resource allocation for target #1 using the tracking
threshold approach.

to a different order in range (in other words, when one target passes another

one in range), which causes the allocation to change. The asymptotic MSE

optimized approach is more drastic in the allocation changes when a new

situation occurred, while the tracking threshold approach is more gradual in

its effects.

7.2.4 Varying Number of Targets

Beyond the scenarios described in Sections 7.2.1, 7.2.2, and 7.2.3, 10 Monte

Carlo simulations were performed, each of which performed 1,000 realizations

(with 1,000 CPIs per realization) with varying initial target locations, initial

target velocities, target dynamic variances, and target RCS values. The 10
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Monte Carlo simulations varied the number of targets from low (10) to high

(100) in increments of 10. The amount of resources is the same between each

simulation, such that the simulations with fewer targets have more resources

per target while the simulations with many targets have a comparably scarce

amount of resources (i.e. resource-constrained). The only aperture allocation

strategy that updates the amount of resources throughout the simulation is

the greedy approach. All the other approaches only perform the aperture

allocation calculation in the beginning. For each Monte Carlo simulation, the

average MSE, the number of lost targets, and the number of deleted tracks

are used to compare each resource allocation approach.

Figure 7.18 displays the average MSE results for the varying number of

targets. With an abundance of resources compared to the number of targets,

the asymptotic MSE optimized, MI maximization, and measurement threshold

approaches achieve the best average performance. As the amount of resources

becomes more scarce, the asymptotic MSE and MI maximization perform

closer to the evenly distributed approach while the measurement threshold

approach performs 13% better than every other approach when resource con-

strained.

Figure 7.19 displays the number of deleted tracks based on the SNR lev-

els of each target in consecutive CPIs. A track is deleted when the target’s

measurement is in the noise floor for five consecutive CPIs. For this metric,

the measurement threshold approach performs the best for every number of

target simulated, because it is actively optimized to minimize this metric. The

MI maximization approach performs second best for 10 targets, but decreases

considerably in performance when resources are scarce. The tracking threshold

approach performs second best for the Monte Carlo simulations beyond the

112



10 20 30 40 50 60 70 80 90 100

Number of Total Targets

0.5

1

1.5

2

2.5

3

3.5

4

M
ea

n 
S

qu
ar

ed
 E

rr
or

108 Monte Carlo Average MSE

Greedy
Even
MSE Optimized
Mutual Information
Track Threshold
Meas Treshold

Figure 7.18: Average MSE comparison for a varying number of targets.
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Figure 7.19: Number of deleted tracks comparison for a varying number of
targets.

simulation with the least number of targets (10). The asymptotic MSE opti-

mized approach performs worse than the MI maximization, tracking threshold,

and evenly distributed approached until they all have similar performance in

the resource constrained simulation.

Figure 7.20 shows the number of targets lost for each Monte Carlo simula-

tion. Similar to the deleted tracks metric, the measurement threshold approach

performs the best, and the MI maximized approach performs well when the

resources are abundant. Unlike the deleted tracks metric, the asymptotic MSE

optimized approach performs close to the MI maximized approach. Both the

asymptotic MSE optimized and MI maximized approaches degrade in per-

formance as the amount of resources per target decreases until they perform

114



10 20 30 40 50 60 70 80 90 100

Number of Total Targets

60

65

70

75

80

85

90

95

100

P
er

ce
nt

ag
e 

of
 T

ar
ge

ts
 L

os
t

Monte Carlo Average Lost Targets

Greedy
Even
MSE Optimized
Mutual Information
Track Threshold
Meas Treshold

Figure 7.20: Number of lost targets comparison for a varying number of tar-
gets.

similar to the even distribution approach for resource constrained scenarios. In

the resource constrained scenario, the measurement threshold approach per-

forms about 10% better than the next closest approach.

The results in Figures 7.18, 7.19, and 7.20 are averaged over the range of

targets in each figure and quantified in Table 7.2. The measurement threshold

approach is obviously the best with a 6% better average MSE, 2% decrease

in deleted tracks, and a 9% decrease in lost targets compared to the next

closest approach. The table also shows that after the measurement threshold

approach, no second best approach exists for all three metrics.
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Table 7.2: Average MSE and percentage of lost targets comparison averaged
across varying target amounts.

Approach Average Percentage of Percentage of
MSE Deleted Tracks Lost Targets

Greedy 2.34×108 100% 97.9%
Even Distribution 1.24×108 97.8% 90.7%
MSE Asymptote 1.11×108 98.6% 85.7%
Mutual Information 1.10×108 97.6% 84.7%
Track Treshold 1.17×108 96.3% 86.2%
Measurement Threshold 1.04×108 94.0% 77.0%

7.2.5 Varying Allocation Update Rates

While Section 7.2.4 varies the number of targets, this section shows the results

of 10 Monte Carlo simulations, each of which performed 1,000 realizations

(with 1,000 CPIs per realization), with a varied number of CPIs between each

resource allocation update. By reducing the number of CPIs between resource

allocations, the approaches can update the amount allocated for each target

more often. Since the targets move throughout the simulation, intuitively, the

approaches would perform better when they update the allocation amounts

more often. While the approaches were able to reallocate the amount of re-

sources, the number of targets were constant across simulations at 50. The

same three metrics as Section 7.2.4, average MSE, the number of deleted tar-

gets, and the number of lost targets, are used for comparison.

The average MSE metric, shown in Figure 7.21, shows that the approaches

do not perform drastically different when the number of updates are increased.

The appearance of separation between each approach, compared to Figure

7.18, is due to the difference in the y axis scale.

The number of deleted tracks, shown in Figure 7.22, highlights a prob-

lem with the given metric. When the allocation is updated more often than
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Figure 7.21: Average MSE comparison for varying update rates.
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Figure 7.22: Number of deleted tracks comparison for varying update rates.
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once in the beginning or less often than the number of CPIs for deletion, the

measurement and tracking threshold approaches’ performance degrade. In-

tuitively, any increase in the update frequency beyond once in the beginning

should perform better, but the intermediate update frequencies do not follow

this expectation. This side effect of the metric is because those approaches

can change the targets receiving energy during each update. Those approaches

either allocate enough resources to measure a target, or completely ignores a

target causing that track to be deleted. When the amount of CPIs between

each update is higher than the number of CPIs for deletion, in this case five

CPIs, ignoring a target for one update cycle will cause its track to be deleted.

The deleted tracks are not removed after they have been marked as deleted, so

at each update, those approaches can allocate resources to targets that have

already been deleted (while ignoring targets that have not been deleted yet

causing them to subsequently be deleted). When the allocation update is every

CPI, the frequency is high enough to switch between targets without causing

their tracks to be deleted.

Each approaches’ performance for the number of lost targets, shown in Fig-

ure 7.23, does not vary much when the approaches re-allocate the resources

often. Although the number of lost targets metric could have the same problem

as the deleted tracks metric, the use of lost targets metric allows the tracker

to develop a good estimate of the parameter’s state, which can continue re-

cursively without losing track. For example, if the target is traveling in a

straight line and the tracker has a strong estimate of its state, even completely

ignoring the target and introducing very poor measurements into the tracker

might take a while for the tracker to deviate from the predicted straight line.

Therefore, switching the targets between updates might not cause as much
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Figure 7.23: Number of lost targets comparison for varying update rates.
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Table 7.3: Average MSE and percentage of lost targets comparison averaged
across varying update rates.

Approach Average Percentage of Percentage of
MSE Deleted Tracks Lost Targets

Greedy 2.13×108 100% 98.2%
Even Distribution 1.26×108 98.8% 91.4%
MSE Asymptote 1.10×108 99.8% 86.2%
Mutual Information 1.12×108 99.8% 85.3%
Track Treshold 1.20×108 98.5% 87.0%
Measurement Threshold 1.06×108 94.0% 76.3%

degradation as compared to the deleted tracks metric.

The results in Figures 7.21, 7.22, and 7.23 are averaged over the range of

targets in each figure and quantified in Table 7.3. The measurement threshold

approach once again has the best performance overall with comparable results

to Section 7.2.4.
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Chapter 8

Conclusions and Future Work

8.1 Summary

This dissertation details multiple frameworks to model the measurement and

estimation processes for a multi-target tracking radar system. These frame-

works range from the simple linear measurement and Bayesian posterior equa-

tion estimation to a more realistic non-linear measurement and tracker based

estimation model. This dissertation also demonstrates a straightforward model

extension for tracking correlated target movements. After describing each

framework, multiple aperture allocation strategies are derived by applying dif-

ferent optimization metrics to the given models. Finally, using information

theory and tracking metrics, each aperture allocation’s performance is quan-

tified for comparison.

Results from Chapter 7 demonstrate that the most important goal for

the overall system is to apply enough resources for a given target to increase

its measurement above the noise floor. Allocating any resources below this

amount for a given target allocates resources to a target without receiving a

beneficial measurement, and ultimately wastes the resources without receiv-

ing any information about the target. Once the measurements are increased
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beyond the noise floor, the allocation strategies in Chapters 4 or 5 should be

applied for the targets receiving energy to optimize for the selected metric.

8.1.1 Future Work

Although many allocation approaches were derived for models with varying

degrees of realism, much more work is necessary before these strategies are

applied to real systems. Chapter 7 demonstrated that the best approach is in-

creasing the target measurements above the noise floor, but it did not compare

the best approach for the remaining aperture. To determine the best approach

for the remaining aperture, approaches from the linear measurement model in

Chapter 4 or 5 should be compared using the tracker based estimation model.

Combining the linear measurement and tracker based estimation models will

demonstrate the best approach to use with the remaining aperture.

Also, the results demonstrated for this dissertation assumed a spatial in-

dependence between targets, meaning that each target is separated enough

in angle that their corresponding beams do not overlap and cause interaction

between measurements. This assumption simplified the mathematical deriva-

tions for this dissertation but would not be true for an actual system. In this

case, one measurement can receive information about two targets, although

better resolution may be necessary to differentiate any targets located spatially

close together.

The approaches described here focused on optimizing the performance

based on the Gaussian distribution posterior variance equation, but did not

consider the resiliency of a tracker to continue tracking non-maneuvering tar-

gets, i.e. targets that are constantly moving in a straight line. Typically, tar-

gets with a large dynamic variance can change its current trajectory quickly,
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but a large dynamic variance does not mean that the target actually will devi-

ate from a straight line. By incorporating the probability of a target actually

maneuvering into the allocation technique, the aperture allocation strategies

could implement a priority structure to time interleave measurements accord-

ingly to achieve better performance.

So far, the estimation model has received exact SNR values to calculate

the necessary allocation, but an actual system would have to estimate this

value based on the received signal strength. This SNR estimation is difficult

to achieve in real systems due to variability in components, target reflectivity,

and environmental effects over time, but this estimation is critical to allocate

the optimal amount of resources.

So far, we have focused on Gaussian distributed parameters throughout this

dissertation but not all parameters, such as RCS variability, operate according

to this assumption. Extending these approaches to non-Gaussian parameters

and using a particle filter tracker to estimate the results may be beneficial for

realistic scenarios.

Finally, this dissertation has focused on aperture allocation, but all-digital

arrays have many other degrees of freedom that can be leveraged for optimal

tracking performance. By including those other degrees of freedom, such as

waveform design, fast time, and slow time scheduling, along with the spatial

aperture allocation, the radar can efficiently optimize the resources for the

necessary tracking performance.
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