

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

KNAPSACK PROBLEMS;

METHODS, MODELS AND APPLICATIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

In partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

KAYODE BADIRU
Norman, Oklahoma

2009

KNAPSACK PROBLEMS;

METHODS, MODELS AND APPLICATIONS

A DISSERTATION APPROVED FOR THE
SCHOOL OF INDUSTRIAL ENGINEERING

BY

Dr. Pakize Pulat - Chair

Dr. Yongpei Guan - Co-chair

Dr. Thomas Landers

Dr. Randa Shehab

Dr. Sridhar Radhakrishnan

© Copyright by KAYODE BADIRU 2009
All Rights Reserved.

iv

Acknowledgements

I would like to thank GOD for his mercies, grace, guidance, protection,

provision, and blessings upon my life. All these wouldn’t have been possible without

HIM.

My sincere appreciation to Dr. Simin Pulat, my advisor, for her support,

encouragement, assistance, and contributions throughout this research. Also, I’m very

grateful to Dr. Yongpei Guan, my co-advisor, for his time, help, and useful evaluation

of the accuracy of this research. Special thanks to Dr. Tom Landers, Dr. Theodore

Trafalis, Dr. Randa Shehab, and Dr. Sridhar Radhakrishnan for their time. I’m deeply

honored to have them as my committee members.

My gratitude goes to my family, my wife and boys, for their continued support,

anxiety, patience, and concerns. I would also like to thank Dr. Badiru, Dr. Osisanya,

Mr. Adeoye, Pastor Okusanya, and families. Special thanks to Reverend Olanrewaju,

Reverend Adebowale, Pastor Blessing, and my late Pastor, Pastor Okusanya, who

would have greatly rejoiced with me on the completion of this research.

I dedicate this research to my wife, Mary and boys, Tobi and Wola.

 v

Contents

Acknowledgements ... iv

Abstract .. xii

1. Introduction ... 1

1.1 Overview .. 1

1.2 Research Objectives ... 2

1.3 Organization of the Dissertation .. 3

2. Literature Review .. 5

2.1 Knapsack Problems .. 5

2.2 Tabu Search .. 16

2.3 Dynamic and Stochastic Knapsack Problems .. 20

3. Multiple Knapsack Problems with Assignment Restrictions 23

3.1 Statement of the Problem ... 23

3.2 Successive Knapsack Algorithm .. 24

3.3 Selective Successive Knapsack Algorithm .. 25

3.4 Largest Unutilized Capacity First Algorithm ... 26

3.5 The Assignment Procedures ... 27

3.6 Data Generation ... 31

4. Tabu Search ... 34

4.1 Properties of Tabu Search .. 34

4.2 Problem Definition ... 36

4.3 Solution Method ... 37

4.4 Steps of Tabu Search Procedure .. 38

 vi

5. Stochastic Knapsack Problems with Penalty Cost ... 44

5.1 Introduction .. 44

5.2 Notations .. 45

5.3 Mathematical Formulation for n-job 1-processor Case 46

5.4 n-Job 1-processor Numerical Example .. 48

5.5 Job Assignment Scenarios ... 51

5.6 Convexity of Cost Function ... 53

5.7 The n-job m-processor Problem ... 57

5.8 The n-job m-processor Problem Formulation .. 58

5.9 The Solution Method for n-job m-processor Problem ... 59

5.10 Numerical Example Data Generation .. 61

5.11 Numerical Example Results ... 62

6. Inspection Problem – an SKPPC Problem .. 63

6.1 Introduction .. 63

6.2 Problem Formulation ... 63

6.3 Algorithm ... 65

6.4 Numerical Example .. 67

6.5 Experimental Results ... 71

6.6 Further Experimentation .. 84

6.7 Results and Analysis .. 95

7. Conclusion and Further Research ... 97

7.1 Conclusions .. 97

7.2 Further Research .. 99

 vii

Bibliography ... 100

Appendix A: MATLAB Code for the Assignment Algorithms 104

Appendix B: MATLAB Code for the Tabu Search Implementation in MKAR 114

Appendix C: MATLAB Code for the SKPPC ... 137

Appendix D: MATLAB Code for the Inspection Problem .. 141

 viii

List of Tables

Table 1: The Assignment Procedures .. 30

Table 2: Results of unutilized capacities of all Assignment Procedures 33

Table 3: Results of Tabu Search Implementation on MKAR ... 43

Table 4: The two possible realizations of each item ... 47

Table 5: 2-job assignment results for selection of 2, 3, 4, 5, and 6 items 49

Table 6: 2-job assignment results for selection of 7, 8, 9, and 10 items 50

Table 7: Results of 1st SKPPC Problem .. 62

Table 8: Scenarios for 2-inspector, 4-package assignments .. 65

Table 9: Penalty Cost Results for Some Scenarios with different utilization penalty 68

Table 10: Total cost as a function of n and m ... 69

Table 11: Capacity of 20 results for 5 values of λ1 ... 71

Table 12: Capacity of 30 results for 5 values of λ1 ... 72

Table 13: Capacity of 40 results for 5 values of λ1 ... 73

Table 14: Capacity of 50 results for 5 values of λ1 ... 74

Table 15: Package type 1 probability of 0.2 results for 5 values of λ1 76

Table 16: Package type 1 probability of 0.3 results for 5 values of λ1 77

Table 17: Package type 1 probability of 0.4 results for 5 values of λ1 78

Table 18: Package type 1 probability of 0.2 results for 5 values of λ1 79

Table 19: Processing times of 16 and 1 results for 5 values of λ1 80

Table 20: Processing times of 14 and 3 results for 5 values of λ1 81

Table 21: Processing times of 12 and 5 results for 5 values of λ1 82

 ix

Table 22: Processing times of 10 and 7 results for 5 values of λ1 83

Table 23: p1=16, p2=1 values for 5 capacities .. 85

Table 24: p1=16, p2=3 values for 5 capacities .. 86

Table 25: p1=16, p2=5 values for 5 capacities .. 87

Table 26: p1=16, p2=7 values for 5 capacities .. 88

Table 27: p1=16, p2=9 values for 5 capacities .. 89

Table 28: p1=14, p2=1 values for 5 capacities .. 91

Table 29: p1=12, p2=1 values for 5 capacities .. 92

Table 30: p1=10, p2=1 values for 5 capacities .. 93

Table 31: p1=8, p2=1 values for 5 capacities .. 94

 x

List of Figures

Figure 1: Tabu Search Implementation in MKAR .. 39

Figure 2: Typical Job Assignment Scenarios .. 51

Figure 3: Addition of a job to the current assignment of S3 with n jobs 52

Figure 4: Algorithmic steps of the 1st SKPPC Problem .. 60

Figure 5: Expected total inspection cost versus n and m ... 70

Figure 6: Graph for capacity of 20 results for 5 values of λ1 .. 72

Figure 7: Graph for capacity of 30 results for 5 values of λ1 .. 73

Figure 8: Graph for capacity of 40 results for 5 values of λ1 .. 74

Figure 9: Graph for capacity of 50 results for 5 values of λ1 .. 75

Figure 10: Graph for Package type 1 probability of 0.2 results for 5 values of λ1 76

Figure 11: Graph for Package type 1 probability of 0.3 results for 5 values of λ1 77

Figure 12: Graph for Package type 1 probability of 0.4 results for 5 values of λ1 78

Figure 13: Graph for Package type 1 probability of 0.5 results for 5 values of λ1 79

Figure 14: Graph for processing times of 16 and 1 results for 5 values of λ1 81

Figure 15: Graph for processing times of 14 and 3 results for 5 values of λ1 82

Figure 16: Graph for processing times of 12 and 5 results for 5 values of λ1 83

Figure 17: Graph for processing times of 10 and 7 results for 5 values of λ1 84

Figure 18: Graphical representation of Table 21 ... 86

Figure 19: Graphical representation of Table 22 ... 87

Figure 20: Graphical representation of Table 23 ... 88

Figure 21: Graphical representation of Table 24 ... 89

 xi

Figure 22: Graphical representation of Table 25 ... 90

Figure 23: Graphical representation of Table 26 ... 91

Figure 24: Graphical representation of Table 27 ... 92

Figure 25: Graphical representation of Table 28 ... 93

Figure 26: Graphical representation of Table 29 ... 94

Figure 27: Graph of 2-inspector problem with p2 increased to 3 96

 xii

Abstract

Knapsack problem (KP) has broad applications in different fields such as

machine scheduling, space allocation, and asset optimization. Meanwhile, it is a hard

problem due to its computational complexity, but numerous solution approaches have

been developed for a variety of KP. In this dissertation, an extensive literature review is

first provided. Then, the research focuses on methods, models, and applications for two

variations of Knapsack problem: Multiple Knapsack Problem with Assignment

Restrictions (MKAR) and Stochastic Knapsack Problem with Penalty Cost (SKPPC).

A new procedure, Largest Unutilized Capacity First Algorithm (LUCF) is

developed and tested on MKAR along with other assignment procedures available in

the literature. It is concluded that LUCF performs very well and it returns the best

initial feasible solution among all types of greedy algorithms for the solution of the

MKAR. After the generation of initial feasible solutions, a tabu-search procedure is

implemented to generate improved solutions. Three versions of intensification

procedures are implemented within the tabu search procedure. Experimental results

show significant improvement over the initial solution quality with the tabu search

procedure. That is, this approach yields a high percentage of utilization for all

combinations of problems, based on the initial solution provided by LUCF.

For SKPPC, for each item of the knapsack, there are several possible processing

times, each with certain probability of selection. For a given knapsack capacity, a

strategy is developed to assign the optimal number of items to each the knapsack.

Mathematical formulations are provided for both single knapsack and m-knapsack

cases. The objective value function for the single knapsack problem exhibits a convex

 xiii

property, which leads to an optimal strategy to assign the number of items. For the m-

knapsack case, the processing time of each item will be revealed after pre-scan

operations. LUCF heuristic is combined here to obtain good solutions. This approach is

finally adapted to the package security inspection problem. We discuss how one can

determine the optimal number of items in each knapsack and the optimal number of

operators needed for inspection with the objective of maximizing operator utilization

and throughput.

 1

Chapter 1

Introduction

1.1 Overview

The pioneering work of Dantzig [7] in the late 1950’s has been followed by

numerous researches in the area of Knapsack Problems (KP). These problems have

been studied extensively and intensively since then (Pisinger [34]). In the most general

sense, the problem deals with the assignment of a set of items into a number of

knapsacks with each item having size and value associated with it. The objective is to

maximize the total value of assigned items while observing the capacities of the

knapsacks.

Many theoretical studies of knapsack problems have been intended and applied

to the real-life problems. Many, that were mostly applications oriented, made

researchers and practitioners look for better and fast solutions to cope with the vast

industrial and financial management problems (Pisinger [34]).

Knapsack problems are usually sub-problems of more complex combinatorial

optimization problems, and most of them require the selection of a subset of some given

items resulting in the maximization of a profit sum, with the total assigned weight not

exceeding the capacity of the knapsack(s). All knapsack problems are classified as

being NP-hard, meaning that their optimal solutions cannot be obtained by the

application of polynomial time algorithms. However, several years of research have

 2

exposed the structural properties of these problems making them easier to solve

(Pisinger [34]).

The knapsack problems have a variety of real life applications including

financial modeling, production and inventory management systems, stratified sampling,

design of queuing network models in manufacturing, and control of traffic overload in

telecommunication systems. Other areas of applications include yield management for

airlines, hotels and rental agencies, college admissions, quality adaptation and

admission control for interactive multimedia systems, cargo loading, capital budgeting,

cutting stock problems, and computer processing allocations in huge distributed

systems.

1.2 Research Objectives

Multiple Knapsack Problem (MKP) generally is the assignment of items into

several knapsacks. The items usually have weights, and costs associated with them,

which may vary from item to item. The knapsacks may be of different capacities as

well. Stochastic Knapsack Problem (SKP), on the other hand, assumes that the weight

of the item is not known until it is placed in the knapsack. However, the weight is

assumed to follow a probability distribution. The assignment of items to a knapsack

generally works with the actual weights of the items already assigned and the

probability distribution of the unassigned items. The objective in both cases is either to

maximize capacity (or expected capacity) utilization or the most cost effective

assignment. Knapsack capacities are usually never exceeded in the final assignment.

In this study, a new greedy algorithm that yields very attractive initial solution

for the MKP is proposed. This algorithm’s performance was then compared with that of

 3

the most common assignment procedures. Multiple Knapsack Problems with

Assignment Restrictions (MKAR), a new variant of MKP, is studied in regards to

obtaining initial feasible solutions using the most common assignment procedures.

Tabu search was later employed to improve the initial solutions generated to yield better

results.

Stochastic Knapsack Problems with Penalty Cost (SKPPC) having different item

types is studied to determine optimal assignment. Only two item types were studied,

and each item type has a possible processing time determined by a probability of

selection. The problem was extended to multiple processors for different processing

times. Expected penalty cost and percentage of utilization were recorded for various

problem sizes.

1.3 Organization of the Dissertation

Chapter 2 comprises the literature review on knapsack problems, its solution

procedures, and some common application areas. Also included is explanation of tabu

search, and dynamic and stochastic knapsack problem.

Chapter 3 contains a variant of the multiple knapsack problem - multiple

knapsack problem with assignment restriction (MKAR). This was the start of the

research for this dissertation. A new algorithm, Largest Unutilized Capacity First,

LUCF was developed and tested against other known greedy procedures for assigning

items to knapsacks.

Tabu Search, an efficient search method, is the discussion of Chapter 4. The

tabu search procedure was applied to the initial solution generated for the MKAR. The

LUCF algorithm was one of the methods used to generate an initial feasible solution.

 4

Stochastic knapsack problem with penalty cost (SKPPC) is the topic of

discussion in both Chapters 5 and 6. A study of SKPPC involving the assignment of

two item types with probabilities of selection was investigated. Penalties were given for

both under-utilization and over-utilization of the knapsack capacity. The extension of

the problem to many processors was formulated and solved. Analyses were performed

on the various variables of the problem.

Chapter 7 concludes this report with summary, conclusions and suggestions for

further research.

 5

Chapter 2

Literature Review

2.1 Knapsack Problems

The basic concept of all the families of knapsack problems involve the selection

of some items, each with profit and weight values, to be packed into one or more

knapsacks with capacity. The item profit pj, weight wj, as well as the capacity c of the

knapsack are all assumed to be positive integers.

Several instances of knapsack problems, despite their worst-case complexity,

may have efficient solutions via heuristic methods with acceptable computational times.

The heuristics take advantage of the well defined structures inherent in these problems.

Dantzig [7] was the first to order items according to their profit-to-weight ratio,

and then find a solution for the continuous 0-1 knapsack problem.

n

n

w

p

w

p

w

p
≥≥≥ ...

2

2

1

1 .

The ordering of the items according to this ratio can be done in O(nlogn) time (Dantzig

[7]). The continuous 0-1 knapsack problem has its constraints on { }jj mx ,...,1,0∈

relaxed to jj mx ≤≤0 . A greedy algorithm is then applied on the profit-to-weight ratio

to assign items to knapsack starting with the largest until we reach the first item that

cannot be assigned. The first unassigned item is termed the break item b (

{ }∑ =
>=

j

i i cwjb
1

:min) resulting in an initial feasible solution. The optimal solution

 6

can then be the selection of all items j < b plus the residual of the knapsack capacity

which can be represented by a fraction of item b. This procedure is utilized frequently

for various types of knapsack problems.

Dynamic programming generates solutions to several knapsack problems in

pseudo-polynomial time, meaning a time controlled by the number of items in a

problem. Efficient algorithms have been developed by incorporating bounding tests in

dynamic programming procedures.

Horowitz and Sahni’s [20] solution approach for 0-1 knapsack problem in

)2(nO worst-case time involves dividing the items into two sets. Two sets of feasible

solutions are later merged after all feasible solutions of each set are enumerated. By

recursively dividing the problem in two parts, makes the 0-1 knapsack problem solvable

through parallel computation which runs in O(log n log c) where n and c are the number

of items and the capacity of the knapsack, respectively.

 Knapsack problems can also be solved using reduction algorithms (Martello and

Toth [30]). Efficient ones have been developed which consist of fixing several decision

variables at their optimal values before the problem is solved. This procedure decreases

the decision space thereby resulting in efficient computations.

Martello and Toth [28] developed a branch-and-bound algorithm, which requires

the solution of a 0-1 knapsack problem every time a lower/upper bound is found, for the

multiple knapsack problems.

Heuristic algorithms like Tabu search and Genetic Algorithm have also appeared

in recent times for the solution of knapsack problems. Chu et al. [6] proposed a genetic

algorithm for the multidimensional knapsack problem. A heuristic based on tabu search

 7

was presented by Glover and Kochenberger [13] whereby a flexible memory structure

that integrates recency and frequency information of critical events during the solution

process was employed.

The 0-1 Knapsack Problem (KP), the root of all knapsack problems, involves

the selection of a subset of n items into a single knapsack. The total profit of all items

selected is to be maximized without the total weights exceeding the capacity of the

knapsack. The general formulation of the problem follows:

maximize ∑
=

n

j
jj xp

1

 (2.1)

subject to ,
1

cxw
n

j
jj ≤∑

=

{ },1,0∈jx .,...,1 nj =

where jp is the profit of each item, jw is the weight, and jx is 1 if item j is assigned to a

knapsack or 0 otherwise.

Martello and Toth [27] proposed a new way of computing the upper bound for

the 0-1 knapsack problem, and also presented a branch-and-bound algorithm for the

same problem type. A bound-and-bound algorithm [28] defined as a tree-search

technique that makes use of a lower bound to determine the branches to follow in the

decision was later formulated for 0-1 multiple KP [28]. The term “bound-and-bound”

was defined, for a maximization problem, as a tree-search technique that makes use of a

lower-bound in determining the branch to investigate further in a decision tree.

 Pisinger [33] presented a minimal algorithm for the 0-1 KP based on a dynamic

programming approach, where the core problem is gradually extended and

computational sorting and reduction of the core is minimal. A core (Balas and Zemel

 8

[2]) is when only a small amount of the items are enumerated when there is a large

probability of reaching to an optimal solution. It was shown that when the process

terminates due to some bounding tests, the core processed is actually much smaller than

the total number of solvable symmetrical core possible.

 Hung and Fisk [21] developed a depth-first branch-and-bound algorithm for the

solution of the 0-1 MKP by constructing successive higher levels of the decision tree

either by assigning an object to a knapsack or by excluding that object from all

knapsacks. This implies that every node generates m+1 descendent nodes, where m

denotes the number of knapsacks. The essential steps of the algorithm are very much

like those developed for the 0-1 KP by Ahrens and Finke [1].

The Multiple-choice Knapsack Problem (MCKP) is another variant of the 0-1

KP involving the selection of exactly one item j from Ni, where Ni denotes the number

of item i available for each of the m items. This is formulated as follows:

maximize ∑ ∑
= ∈

m

i Nj
ijij

i

xp
1

 (2.2)

subject to ,
1

cxw
m

i Nj
ijij

i

≤∑ ∑
= ∈

 ,1=∑
∈ iNj

ijx .,...,1 mi =

 { },1,0∈ijx ,,...,1 mi = and .iNj ∈

 Several algorithms for MCKP have been presented over the last twenty years.

Most of these algorithms start by solving linear MCKP (LMCKP) so as to obtain an

upper bound. Dudzinski and Walukiewicz [9] showed that MCKP can be solved in

 9

pseudo-polynomial time (a time controlled by the number of items) through dynamic

programming. The two stages of solution of LMCKP are: a.) LP-dominated items are

reduced by sorting the items in each class according to increasing weights, and delete

some unpromising states by applying some dominance criteria; b.) a greedy algorithm is

then used to solve the reduced LMCKP. Upper bound tests may be employed to fix

several variables in each class to their optimal value after the two initial procedures

mentioned before.

 Balas and Zemel [2] with Fayard and Plateau [10] suggested considering the

core which is a small subset of the items in the solution of a KP. A core can be found

through partitioning procedure in O(n) time, where n is the number of items. Martello

and Toth [29] showed that the restricted KP defined on the core items can be solved

easily for several classes of data in linear time. Pisinger [33] proposed a simple

algorithm for solving LMCKP, as well as for deriving an initial feasible solution.

Dynamic programming was later used from the starting initial solution to solve MCKP

by adding new classes to the core as needed. This showed that to solve the MCKP to

optimality, the consideration of a minimum number of classes are required.

Other 0-1 KP problem types include the Multidimensional Knapsack problem

[6], the Bounded Knapsack problem (BKP) [36], the Unbounded Knapsack problem

(UKP) [19], the Subset-Sum problem (SP) [41], the Multiple Knapsack problem (MKP)

[35], the Bin-Packing problem (BP) [26], the Multiple-Constrained Knapsack problem

[10], the Generalized Assignment problem (GAP) [5], the Quadratic Knapsack problem

(QKP) [4], and the Precedence Constrained Knapsack problem (PCKP) [22].

 10

The other variants that require mentioning are Nonlinear Knapsack problem

[22], the Max-Min Knapsack problem [22], the Minimization Knapsack problem [22],

the Equality Knapsack problem [22], the Strongly Correlated Knapsack problem [22],

the Change-Making Knapsack problem [22], and the Collapsing Knapsack problem

[22]. Others are the Parametric Knapsack problem [22], the Fractional Knapsack

problem [22], the Set-Union knapsack problem [22], and the Multiperiod Knapsack

problem [22].

Pisinger [35] developed and implemented an exact algorithm for large multiple

knapsack problems. The MKP is defined as the assignment of some of n items into m

knapsacks, where the knapsacks may be of different capacities. The aim of the problem

is to maximize total profit in a way that the capacity ci of any knapsack is not exceeded.

This is formulated as follows:

maximize ∑∑
= =

m

i

n

j
ijj xp

1 1

 (2.3)

subject to ,
1

i

n

j
iji cxw ≤∑

=

 .,...,1 mi =

 ,1
1

≤∑
=

m

i
ijx .,...,1 nj =

 { },1,0∈ijx ,,...,1 mi = .,...,1 nj =

xij is 1 if item j is assigned to knapsack i, or 0 otherwise. All coefficients pj, wj, and ci

are assumed positive integers.

The following assumptions are also essential to avoid trivial cases:

1. maxj { wj } ≤ maxi { ci }

 11

2. minj { wj } ≤ mini { ci }

3. wj > maxi { ci }

The first assumption ensures each item is admissible into at least one knapsack

or else, it may be discarded from the problem. The second assumption deals with the

fact that if any item cannot fit into the smallest knapsack, the knapsack can be excluded

from the problem. The last inequality assures that all items will not fit into the largest

knapsack. The paper [35] is devoted to large problem situations where the ratio n/m,

ratio of number of items to number of knapsacks, is very large.

The algorithm presented in the paper [35] incorporates some well know

procedures to achieve its goal. The algorithm uses Martello and Toth’s [28] bound-and-

bound framework. A series of subset-sum problems are solved to obtain lower-bounds

as well as tighten the knapsacks capacity constraints. The algorithm derives upper-

bounds by incorporating a well-performing 0-1 knapsack problem through surrogate

relaxation. Surrogate relaxation (by Lagrangean strategy) involves the replacement of

the original objective function by a new set of constraints, the surrogate constraints. A

separable dynamic programming algorithm is used for solving the subset-sum problems,

and items that cannot be assigned are eliminated by efficient reduction rules which are

rules for reducing a KP.

Upper-bound is derived by using surrogate relaxation on some of the side constraints.

The SMKP may be formulated thus:

maximize ∑∑
= =

m

i

n

j
ijj xp

1 1

 (2.4)

∑
=

n

i 1

 12

subject to ,
111

i

m

i
i

n

j
iji

m

i
i cxw ∑∑∑

===

≤ ππ .,...,1 mi =

 ,1
1

≤∑
=

m

i
ijx .,...,1 nj =

 { },1,0∈ijx ,,...,1 mi = .,...,1 nj =

The best choice of multipliers of the surrogate relaxed problem, SMKP, is a positive

constant k (where k is a positive number) as proved by Martello and Toth [28]. The

choice of these multipliers turns the SMKP into:

maximize ∑
=

n

j

l
jj xp

1

 (2.5)

subject to ,
1

cxw
n

j

l
ji ≤∑

=

 { },1,0∈l
jx .,...,1 nj =

The introduced variables ∑ =
=

m

i ij
l
j xx

1
shows whether item j is chosen for any of the

knapsack i, where i = 1to m, and likewise ∑ =
=

m

i icc
1

represents the capacity of all

knapsacks.

This paper [35] also utilizes the bound-and-bound algorithm of Martello and

Toth [28], MTM, to derive both the lower-bounds and upper-bounds. Lower-bounds

are found by solving m individual 0-1 knapsack problems. Upper-bounds are generated

from the results of the surrogate relaxed problems.

Knapsacks are ordered in increasing order of capacities, mccc ≤≤≤ ...21 , and

filled one after the other in that order. All assigned items are considered permanent by

the branching process, and only the unassigned items are considered when lower and

 13

upper bounds are being computed. The procedure is terminated when the gap between

the lower and upper bound can no longer be tightened.

 Hifi et al. [18] developed and proposed several heuristics for approximately

solving the multiple-choice multidimensional knapsack problem, MMKP, which is an

NP-hard combinatorial optimization problem. The MMKP is a more complex version

of the 0-1 knapsack problem, whose high computational complexity in the formulation

of an exact solution makes it unsuitable for real-time decision making applications.

The MMKP has n classes Ji of items, with each class Ji, i = 1, …., n, consisting

of ri items. Each item j, where j = 1, …, ri, of class Ji has the profit value vij, non-

negative, and requires resources of weight vector, Wij=(w1
ij, w2

ij, …, wm
ij) with the

component of each weight wkij, k = 1, …, m non-negative. A vector C = (C1,C2, . . ,

Cm) represents the amount of available resources.

The MMKP is formulated as below:

maximize ∑∑
= =

n

i

r

j
ijij

i

xv
1 1

 (2.6)

subject to k
n

i

r

j
ij

k
ij Cxw

i

≤∑∑
= =1 1

 .,...,1 mk =

 ,1
1

=∑
=

ir

j
ijx .,...,1 ni =

 { },1,0∈ijx ,,...,1 ni = .,...,1 irj =

 The MMKP aims to pick exactly one item from each class in order for the total

profit of items picked to be maximized, subject to available resource constraints.

 14

A feasible solution exists for all { },,...,1 mk ∈ where k
ij

n

i

r

j

k
ij Cxwi ≤∑ ∑= =1 1

and only one

item is picked from each class. That is, xij is 1 if item j of the ith class Ji is picked, or 0

otherwise.

Hifi et al. [18] discuss three algorithms. The first two are considered

constructive and complementary solution approaches, while the third uses a guided

local search (GLS) method.

The GLS algorithm by Hifi et al. [18], which is considered to be a metaheuristic,

is similar to tabu search because of its memory utilization to propel the search to

promising regions. It includes a penalty term in the objective function to avoid

revisiting undesirable features of the previously visited solutions. The algorithm has

proven to be effective in solving some hard combinatorial optimization problems. GLS

has also been used effectively for the traveling salesman problem, quadratic assignment

problem, and resource allocation. It has also been applied on vehicle routing and bin-

packing problems.

The aims of the algorithm are:

a. use a greedy algorithm to start at a lower bound

b. improve the quality of the initial solution by using the CP

c. propel the search to the neighborhood for improvement of the solution by

applying CCP

A pseudo-utility ratio is computed for each item by the following formula:

 15

},...,1{,
,

i

ij

ij
ij rj

WC

v
u ∈= , where .,. is a scalar product.

The items are arranged in decreasing order of this pseudo-utility ratio, and are assigned

starting with the largest, picking only one item from each class, until all classes have

been covered.

The complementary procedure, CP, comprises of an ADD and a DROP phase.

The steps of CP are:

1. assign items using the pseudo-utility to pick the best from each class

2. CP terminates if the obtained solution is a feasible state, FS

3. for an unfeasible state, US, the DROP phase considers the most violated

constraint in the C

4. the class of the largest weighted item of the most violated constraint is selected

5. the ADD phase selects another item from this class, and swap with the previous

item of the most violated constraint

6. if the new state is still US, another item is swapped with the just selected one,

and this continues until an FS or the smallest unfeasibility amount for the

obtained solution is reached.

The complementary CP approach, CCP, utilizes an iterative improvement of the initial

feasible solution.

The steps of CCP are:

1. a swapping strategy of picked items

 16

2. a replacement stage which consists of replacing the previously assigned items

with a new one selected from the same class.

2.2 Tabu Search

 The tabu search method was developed by Glover [14] to solve combinatorial

optimization problems. Combinatorial optimization problems, by definition, have a

large discrete solution space. Tabu search imposes restrictions on the search process

while rummaging around the feasible region (Glover and Laguna [15]). The search

makes use of both short-term and long-term memories. The short-term memory is used

to perform moves by exploring neighborhood points while long-term memory aids in

the intensification of the search once an improving direction is found or in the

diversification of the search to areas previously unexplored. The tabu search method

can be used to guide any process that employs a set of moves for transforming one

solution into another and offers an estimation of the function for measuring the

attractiveness of these moves (Glover [11]).

 The tabu search method can initially be viewed as a form of neighborhood

search (Glover and Laguna [15]). For the neighborhood search, a current solution has

an associated set of neighbors in the feasible region. The objective function is

evaluated at each neighboring point and compared against the objective function value

of the current point to determine the next “move”.

 17

The tabu search procedure moves from one point to another in an effort to locate

the global optimum. The procedure has the ability to escape from a local optimum by

accepting a sequence of “non-improving” moves. At all stages, a tabu list is kept of

moves that the procedure is not allowed to make (Pinedo [32]). The list contains a fixed

number of entries. Every time a move is made in the neighborhood of the current point,

the previous point is recorded at the top of the tabu list and other entries are shoved

down one position while the bottom entry is removed. The size of the tabu list should

not be too small to prevent cycling, but a big list of tabu moves unduly constrains the

search.

 For unconstrained optimization, Prabandari [37] used tabu search to find starting

points for optimization techniques. Each local point, when coupled with a local

optimization technique for unconstrained optimization problems, is expected to

converge to a different local point.

 Quadratic assignment problem (QAP) deals with the assignment of n objects to

n locations in a way to minimize the total distance times flow measure between the

locations (Skorin-Kapov [40]). Methods for QAP involve two phases: construction and

improvement. Skorin-Kapov [40] incorporated tabu search into the improvement phase

of the quadratic assignment problem to continue the search beyond local optimality.

 Traveling salesman problem (TSP) is finding a complete tour that minimizes the

total distance travelled by a salesman while visiting all of the n cities once, only once

and returning to the starting city. TSP is a special case of QAP. The assignment

problem is to ensure that the salesman visits all the cities once and terminates his

 18

journey at the same city from where he started. Knox [25] used tabu search as a tour

improvement algorithm by switching the position of points in the tour.

 Facility layout is the arrangement of departments within a facility. Premkumar

[38] used tabu search to find a layout better than the initial layout of a plant simulation

layout (PSL) software while minimizing the cost involved in doing so.

 Pinedo [32] used tabu search to reduce the number of tardy jobs on a single

machine. The neighborhood of a schedule with a lower tardiness of jobs was sought

through adjacent pair wise interchanges of jobs. A tabu list of jobs that were swapped

recently was also kept.

 Tabu search based procedure for Solving 0-1 MultiObjective Knapsack

Problem, the Two Objective Case was developed by Xavier and Arnaud [42]. The

paper addresses a case of MultiObjective Combinatorial Optimization (MOCO)

Problems, the so called 0-1 MultiObjective Knapsack (0-1 MOKP).

MOCO can be formulated as below:

maximize z1(x), z2(x), …, zp(x) (2.7)

subject to Xx ∈ .

X is a discrete subset of nℜ , defines the decision space. z1(x), z2(x), …, zp(x) are p

objective functions.

The difficulty of MOCO arises due to research of all elements of the efficient

frontier, E(P) that grows with number of objective functions. Tabu search, TS, was

introduced for MOCO problems because of its efficiency in obtaining good solutions

for many mono-objective combinatorial problems.

The 0-1 MOKP can be formerly formulated as below:

 19

maximize ∑
=

n

i
i

j
i xc

1

 .,...,1 pj = (2.8)

subject to ω≤∑
=

n

i
ii xw

1

 { },1,0∈ix .,...,1 nj =

All coefficients, cj
i, wi and ω, are positive integers.

The basic steps of the algorithm developed in the paper [42] are:

1. the use of a greedy algorithm to obtain an approximation of supported efficient

solutions SE(P)

2. tabu search is used and any potential solution x that is generated, is added to the

set of approximate solutions if it dominates some solutions, and the solutions

dominated are removed

3. a decision space reduction method is then employed

The decision space reduction method used involves the introduction of an additional

constraint. Glover first introduced the bounds used by Xavier and Arnaud [42], which

are

LB =








≤∑
=

s

i
iws

1

max ω , (wi) sorted in decreasing order, and

UB =








≤∑
=

s

i
iws

1

max ω , (wi) sorted in increasing order.

The addition of an extra constraint,∑ =
=

n

i i bx
1

, b∈[LB, UB], allows for the reduction of

the decision space containing both dominated feasible and infeasible solutions.

 20

The Tabu Search Based Procedure (TSBP) components of Xavier and Arnaud’s

paper [42] were investigated by two algorithmic variations. The first starts with one

initial feasible solution, and then explores one layer after the other in the solution space

until a defined termination condition is satisfied. The other uses a greedy mechanism

to generate an initial feasible solution. The exploration uses the information identified

by the greedy algorithm to move from one layer to the other until a stopping criteria is

reached.

Tabu search has also appeared in recent times for the solution of knapsack

problems. A heuristic based on tabu search was presented by Glover and Kochenberger

[13] whereby a flexible memory structure that integrates recency and frequency

information of critical events during the solution process was employed. Glover and

Lokketangen [16] developed a tabu search approach for solving zero-one mixed integer

programming problems. A new approach to tabu search that provides a balance

between intensification and diversification strategies was proposed by Hanafi and

Freville [17].

2.3 Dynamic and Stochastic Knapsack Problems (DSKP)

Kleywegt and Papastavrou [24]’s definition of DSKP is as follows. Items,

having associated reward, demand (size) for a limited resource (the knapsack) arrives

according to a Poisson process in time. There is a joint distribution according to a

known probability between the resource requirements and rewards which becomes

known at the time of item’s arrival. An item is either accepted or not. A reward is

recorded for an acceptance and a penalty is incurred for a rejection. The problem can be

 21

stopped at any time yielding a terminal value which may be due to the amount of

resources remaining. The objective is to maximize the expected value (rewards minus

costs) accumulated given a waiting cost within a time horizon.

A classical SKP involves the assignment of items with known sizes, or weights,

into a knapsack having a fixed capacity. The objective is to maximize profit/reward.

Resources that have weights and probabilities are requested and assigned to a knapsack

with a fixed capacity. A typical example involves items arriving randomly over time

which must either be accepted or rejected on the spot without consideration of complete

information. This information includes the arrival time, the amount requested and the

associated rewards derived from such operation.

The stochastic knapsack problem has been studied by Ross and Tsang [39].

They looked at a knapsack with an integer volume capable of holding different classes

of objects. Objects are assumed to arrive randomly to be assigned to the knapsack, and

the arrival is exponentially distributed with mean depending on the system state. They

worked on finding a procedure to maximize the average revenue by either accepting or

rejecting an object.

Dynamic and stochastic knapsack problem (DSKP) was the title of the paper

published by Kleywegt and Papastavrou [23]. Their paper outline a scenario whereby

items to be assigned to knapsack arrive according to Poisson process in time.

Associated with each item, is its reward, size, and a limited resource. The item’s

reward is received if it is accepted and a penalty is paid if rejected. The resource

requirement and reward of an item are jointly distributed according to a known

probability distribution. These become known when the item arrives.

 22

Papastavrou et al. [31] included deadlines in their study of the DSKP. The

problem definition is the same as previously described with the addition of fixed time

horizon. They determined the optimal policy for the knapsack within the time allowed

in order to maximize the expected accumulated reward.

Kleywegt and Papastavrou [24] improved on their previous work by having

items with random sizes. Their objective was to determine the maximum expected

value (rewards minus costs) accumulated. A reward is received if an item is accepted,

and a penalty is incurred if rejected. The resource requirements and rewards are known

at the time of the demand’s arrival, but unknown before then. They showed that the

DSKP has an optimal assignment that includes both an easily computed threshold

acceptance rule and an optimal stopping one.

The stochastic knapsack problem (SKP) to be studied involves items with

possible processing times. The processing times are unknown but have probabilities of

being selected. The objective of the problem would be to minimize the expected

penalty cost of all assignments. Two versions of the Stochastic Knapsack Problem with

Penalty Cost, SKPPC, would be investigated; the one processor and many processors

case. Both the expected penalty cost and percentage of utilization would be recorded.

 23

Chapter 3

Multiple Knapsack Problems with Assignment

Restrictions (MKAR)

3.1 Statement of the Problem

 The Multiple Knapsack Problem with Assignment Restrictions (MKAR) is a

variant of the well-studied Multiple Knapsack Problem (MKP), which is a

generalization of single Knapsack Problem (KP). The MKAR deals with items that are

constrained to particular knapsacks. The problem to be solved is to maximize assigned

weights for each knapsack, with due consideration to the assignment restrictions. The

formal representation of this kind of knapsack problem is described as follows:

maximize ∑ ∑
∈ ∈Mi Bj

ijj

i

xw (3.1)

subject to ,i
Bj

ijj cxw
i

≤∑
∈

 Mi ∈

 ,1≤∑
∈ jAj

ijx Nj ∈

 { },1,0∈ijx jAi ∈ Nj ∈ ,

where, the variable xij indicates whether an item j is assigned to a knapsack i.

The MKAR can be described as follows:

N The set of items to be assigned, N = {1, . . ., n}

M The set of knapsacks to be filled, M = {1, . . , m}

wj The weight of item j

 24

pj The profit of item j

ci The capacity of knapsack i

Aj The set of knapsacks that can hold item j, Aj is a subset of M

Bi The set of items that can be assigned to knapsack i, Bi is a subset of N

A feasible assignment is one in which:

• Each item is assigned to at most one knapsack,

• Assignment restrictions are satisfied,

• Total weight of items assigned to a knapsack does not exceed its capacity.

The following assumptions can be made:

wj, pj > 0 and integers for all j in N

 ci >0 and integer for all i in M

minj { wj } ≤ mini { ci }

maxj { wj } ≤ maxi { ci }

wj > maxi { ci }

 Dawande et al. [8] started the pioneering work in this area of knapsack problems

and developed two major algorithms, which are successive knapsack, and selective

successive knapsack algorithms.

3.2 Successive Knapsack Algorithm (SK)

This is the same as maximizing assigned weight under assignment restrictions.

This simple algorithm assign items to knapsacks one after the other. One knapsack is

completely filled before going to the next. The procedure of the algorithm is as follows:

1. Initialize S = N, Weighti = 0

∑
=

n

i 1

 25

2. For each knapsack i

2.1 Solve a single knapsack problem for each knapsack i with item set S ∩ Bi

 2.2 Let Si be the set of items packed with total Weighti

 2.3 Remove Si from S

3.3 Selective Successive Knapsack (SSK) Algorithm

This is the other algorithm presented in the paper by Dawande et al. [8] which is

bi-criteria. It involves maximizing assigned weight and minimizing total unused

capacity. The steps of the algorithm follow:

Initialize S = N, R = M, Weighti = 0, AW = 0 (total assigned weight)

(1) For all i ∈ R, calculate Weighti and Wastei by solving a single knapsack problem for

knapsack i with set S ∩ Bi. Weighti is the total weight of assigned items in knapsack i,

Wastei is the unutilized space of the knapsack i.

(2) Pick the knapsack with minimum ratio of Wastei / Weighti, say knapsack k.

(3) Pack items into knapsack k to obtain Weightk, add Weightk to AW.

(4) If AW ≥ T/3, then terminate the algorithm.

(5) Otherwise,

 (5.1) Remove assigned items from S and knapsack k from R.

 (5.2) If R is nonempty, go to Step (1).

 (5.3) If R is empty, terminate the algorithm.

 26

 Research was conducted which involves proposing a similar algorithm to the SSK to

solve this kind of knapsack problem (Dawande et al. [8]). It was realized that the SSK

generates solution using the procedure of subset-sum problems, hence the decision to

investigate to see if there can be an improvement on this procedure by using a different

approach. A procedure called the largest unutilized capacity first (LUCF) algorithm

was developed. It is a greedy algorithm that arranges both the items and knapsacks in

non-decreasing order of their values, and assigns the next item to the knapsack with the

largest unutilized capacity. The items are arranged with mwww ≥≥≥ ...21 , while the

knapsacks are ordered such that nccc ≥≥≥ ...21 . It was believed that, a better

approach to this problem will be the selection of knapsack based upon unutilized

capacity, which means selecting the knapsack with the largest available space first. The

idea comes from scheduling theories whereby largest processing time first is used for

allocating jobs on parallel machines to minimize completion time. Such scheduling

results in load balancing amongst the machines. In this case, knapsack capacities would

be balanced thereby maximizing the weight assignment of items in the various

knapsacks.

3.4 Largest Unutilized Capacity First Algorithm (LUCF)

The steps of the LUCF, the algorithm developed, are as follows:

Initialize S = N, R = M, Weighti = 0, Spacei = 0

(1) For each item j

 Pick the knapsack i with Spacei =
i

max(ci - Weighti) in Aj

(2) If wj > Spacei, remove item j from S

 27

(3) Otherwise assign item j to knapsack i

(3.1) Weighti = Weighti + wj

(3.2) Remove item j from S

(4) If
j

min {wj} in Aj > Spacei, remove knapsack i from R

(5) If R is nonempty, go to Step (1)

(6) If R is empty, terminate the algorithm.

 Ten different ways of assigning items to knapsacks were modeled and studied.

The same data set was used for all the ten procedures. The performance of all were

recorded and compared against the proposed LUCF algorithm.

3.5 The Assignment Procedures

The ten assignment procedures can be divided into two major groups; those with

smallest items assigned first and ones with largest items first.

 Procedure 1 had both the items and the knapsacks arranged in increasing order,

that is, smallest items with smallest knapsacks. The items were then assigned to the

knapsacks simultaneously. This means that the next item was assigned to the next

knapsack in line. This continues until no knapsack has enough space to accept the next

item.

 Procedure 2 also had both the items and the knapsacks arranged in increasing

order. However, unlike procedure 1, the next knapsack was filled completely until the

 28

next item cannot be assigned. This procedure was continued until all knapsacks have

been assigned the most items.

 Procedure 3 is similar to procedure 1 in the aspect of assignment, but the items

and knapsacks are initially arranged in opposite order, The items are arranged in

increasing order, smallest items first, while the knapsacks are in non-decreasing order,

largest knapsacks first. The items were then assigned into the knapsacks.

 Procedure 4 had the same item and knapsack arrangement as procedure 3, but

similar assignment as procedure 2. The next knapsack is filled completely before

processing to the next.

 Procedure 5 had the items arranged in decreasing order and the knapsacks

arranged in increasing order. This was largest items-smallest knapsacks setup. Items

were then assigned simultaneously into the knapsacks.

 Procedure 6 had the items arranged in non-decreasing order, and the knapsacks

arranged in increasing order. The assignment was carried out with each knapsack

completely filled before the next.

 Procedure 7 was one of the three setups that had both the items and knapsacks

arranged in non-decreasing order. It was largest items, largest knapsacks procedure.

The items were then assigned simultaneously into the knapsacks until no item could be

admissible by any knapsack.

 Procedure 8 shared the same items and knapsack arrangement with procedure 7.

However, knapsacks were completely filled one after the other during assignment. This

continued until the next item couldn’t fit into the knapsack with the largest unused

 29

space. The procedure was stopped at this point since the remaining knapsacks would

have smaller unused space.

 Procedures 9 and 10 shared the same assignment protocol. Largest unutilized

capacity knapsack was selected next during the process. This means that the next item

would be assigned to the knapsack that has the biggest space. Procedure 9 had the

items arranged in increasing order while procedure 10 was the opposite with the items

arranged in non-decreasing order. Items were then assigned one after the other until

there was no space for the next one in any of the knapsacks. Procedure 10 is the largest

unutilized capacity first (LUCF) algorithm.

 Items sizes of 25, 50, 100, and 200 were generated and assigned to knapsacks of

capacities 2, 3, 4, and 5. The data generation steps were taken from the book by

Martello and Toth [30].

 30

The ten procedures studied are:

Table 1: The Assignment Procedures

PROCEDURE 1 Assign next smallest item to the

Next Smallest knapsack

PROCEDURE 2 Fill next smallest knapsack with the

Next smallest items

PROCEDURE 3 Assign next smallest item to the

Next biggest knapsack

PROCEDURE 4 Fill next biggest knapsack with the

Next smallest items

PROCEDURE 5 Assign next biggest item to the

Next smallest knapsack

PROCEDURE 6 Fill next smallest knapsack with the

Next biggest items

PROCEDURE 7 Assign next biggest item to the

Next biggest knapsack

PROCEDURE 8 Fill next biggest knapsack with the

Next biggest items

PROCEDURE 9 Assign next smallest item to the

Knapsack with the biggest space

PROCEDURE 10

(LUCF)

Assign next biggest item to the

Knapsack with the biggest space

 31

3.6 Data Generation

Uncorrelated items were generated with wj uniformly random in [10, 100], and

capacities having ci uniformly random in 







∑ ∑

= =

n

j

n

j
jj mwmw

1 1

/6.0,/4.0 for i = 1, m-1.

The capacity of the mth knapsack was set to cm = 







−∑ ∑

=

−

=

n

j

m

i
jj cw

1

1

1

5.0 .

The following conditions must be satisfied for all formulations:

(1) wj, pj > 0 and integers for all j in N

(2) ci >0 and integer for all i in M

(3) minj { wj } ≤ mini { ci }

(4) maxj { wj } ≤ maxi { ci }

(5) wj > maxi { ci }

 The items generated were sorted in ascending order for some procedures and

in descending order for other procedures. The same was done for the knapsack

capacities generated.

 MATLAB and EXCEL were the computation platforms. All codes for both

the generation of data sets and execution of knapsack/item assignments were performed

in MATLAB. An EXCEL table was used to compare the results generated.

 Twenty runs of each knapsack/item combination were executed, and the same

data set was used for all the procedures at all times. The minimum, maximum, and the

average of the unutilized capacities were then recorded for each procedure for the

twenty replications.

∑
=

n

i 1

 32

 All the procedures were able to fully utilize the knapsack capacity at least 50%

of the time. Procedures 5, 6, 7, 8, and 10 all returned maximum utilization in at least

one replication. The best performers, in all the three categories of data recorded, are

procedures 6, 8, and 10.

 The proposed LUCF (procedure 10) procedure performed very well amongst

all studied procedures, and returned best initial solutions about 70% of the time. The

table on the next page shows the performance comparisons of the ten procedures.

 The next step, in the solution of the problem, was the design of an

improvement method. Tabu search was implemented in the improvement stage of the

initial solution generated by the procedures.

 33

Table 2: Results of the unutilized capacities of all Assignment Procedures

 34

Chapter 4

Tabu Search

4.1 Properties of Tabu Search

 The tabu search method can initially be viewed as a form of neighborhood

search (Glover and Laguna [15]). For the neighborhood search, a current solution has

an associated set of neighbors in the feasible region. The objective function is

evaluated at each neighboring point and compared against the objective function value

of the current point to determine the next “move”.

The following steps explain the neighborhood search method adapted from

Glover and Laguna [15].

Step 1: Initialization

1.1 Select a starting point xnow in the feasible space.

1.2 Record the current “best” solution. If xnow is better than xbest, set xbest = xnow,

else xbest remains.

Step 2: Decision and Termination

2.1 Choose a solution, xnext, from the neighborhood points of xnow.

2.2 Terminate if: (i) xnext can not be found by applying the decision criteria or

 (ii) when a termination criterion is met.

Step 3: Update

 Reset xnow = xnext, and perform Step 1(b). Return to Step 2.

 35

 The tabu search method uses the above neighborhood search strategies and

builds upon the set of criteria to be employed to move from one point to another. While

doing so, it employs the use of a tabu list, short-term, and long-term memory structures.

Several unique terms and definitions are used in the tabu search method.

Tabu size is the number of moves in the tabu list. Tabu list is the set of moves

that are not permitted by the search at any particular moment. The number of restarts

is the maximum number of times the tabu search procedure is run before a particular

search is terminated. Restarts diversify the search to other areas on the surface of the

measured sample in hopes of obtaining an improved solution. The number of

iterations equals the number of moves allowed within each restart. Iteration is a move

from one sample point to another on the measurement surface. This could be a move

from a good solution to a bad solution because the heuristic allows such moves in order

to escape from local optimality. The number of iterations is always a function of the

size of the sample to be measured. The number of destroyed iterations is the number

of non-improving moves allowed within each restart. Non-improving moves, or bad

moves, are moves from a current solution to a solution with an objective function value

worse than the current solution. This enables the search to escape from a region of local

optimal solution to an immediate neighboring region in search of a better solution.

Short-term memory stores the best solution for each restart. The concept is that the

global optimal solution should be contained in the set of good solutions. The solution

for each set of iterations is recorded and the best solution picked out of the recorded

solutions. Long-term memory stores the number of times each point has been

sampled. Intensification is the process of focusing the search in areas where previous

 36

best solutions were obtained. This strategy assumes that the global optimum will be in

this neighborhood. Diversification is the process of focusing the search in unexplored

areas by avoiding previously visited locations.

4.2 Problem Definition

Tabu search, a very reliable and promising search procedure, is to be applied to

the Multiple Knapsack Problem with Assignment Restrictions (MKAR). The MKAR

deals with items that are constrained to particular knapsacks.

The formal representation of this kind of knapsack problem follows:

maximize ∑ ∑
∈ ∈Mi Bj

ijj

i

xw (4.1)

subject to ,i
Bj

ijj cxw
i

≤∑
∈

 Mi ∈

 ,1≤∑
∈ jAj

ijx Nj ∈

 { },1,0∈ijx jAi ∈ Nj ∈ ,

where the variable xij indicates whether an item j is assigned to a knapsack i.

The notations of MKAR can be described as follows:

N The set of items to be assigned, N = {1, . . ., n}

M The set of knapsacks to be filled, M = {1, . . , m}

wj The weight of item j

pj The profit of item j

ci The capacity of knapsack i

Aj The set of knapsacks that can hold item j, Aj a subset of M

 37

Bi The set of items that can be assigned to knapsack i, Bi a subset of N

 The utilization of the features of tabu search is expected to bring good results in

reasonable time. The tabu size, tabu list, number of bad moves allowed, short and long-

term memories, intensification, and diversification would be the most used for finding

the solution of the MKAR. The tabu size and list would be determined by the problem

sizes. The number of bad moves allowed would be set to yield good results. The short-

term memory would be used to store the result of iterations, while the long-term

memory would store the best overall result. The intensification step would be in three

steps. The first step would be individual optimization of each knapsack assignment,

while the second step is the employment of problem set reduction by fixing some items

in the solution set. Third step would be the pair-wise exchange of items between

knapsacks. All these are implemented after an initial feasible solution has been

obtained. Diversification to other regions of the solution space would be carried out by

using the solutions obtained by the various assignment methods as a starting point

before the steps of the intensification procedures. The unattractive solutions, i.e. bad

moves, during iterations would be allowed to see if this propels the procedure into other

regions. The algorithm stops after a fixed number of iterations, and maybe by the use of

a stopping termination criterion.

4.3 Solution Method

The solution would be obtained by the following major steps:

1. Implement the various assignment methods to obtain a series of feasible starting

solutions.

 38

2. Initialize tabu size (TS), tabu list (TL), number of bad moves allowed, (BM),

short-term memory (SM), and the long-term memory (LM).

3. Pick the procedure with smallest unutilized capacity.

4. Perform intensification to improve on the solution obtain.

5. Perform diversification to improve solution.

6. Terminate algorithm if best assignment is obtained or after all solutions methods

have been investigated.

4.4 Steps of Tabu Search Procedure

The major steps of the solution method involve 5 procedures. These procedures are the

main procedure, 3 intensification procedures and a diversification procedure.

The main procedure (MP) involves obtaining initial feasible solutions from all

the procedures. The procedure with the maximum utilization was then selected for the

next stage, the first intensification procedure.

 The first intensification procedure (IP1) consists of trying to maximize the

overall capacity utilization by solving single knapsack problem for each knapsack. The

result obtained was then passed over to the second intensification procedure, IP2.

 Further improvement was the aim of IP2, the second intensification procedure.

This involves reducing the problem size by making some items to be included in the

assignment solution. That is, some items are fixed, always selected, in any assignment.

 Pair-wise exchange of items between knapsacks was the purpose of IP3, the

third intensification procedure. Items are exchanged between two knapsacks to see if

further improvement could be made on the solution.

 The last, but not the least, was the diversification procedure, DP

integral part of tabu search. The next

amongst the remaining

steps with IP2, and IP3 were repeated.

have been utilized.

The procedures

outlined in solving the MKAR

Figure 1: Tabu Search Implementation in MKAR.

39

The last, but not the least, was the diversification procedure, DP

integral part of tabu search. The next best solution, in terms of capacity utilization,

amongst the remaining procedures acts as a starting solution for IP1, and the whole

steps with IP2, and IP3 were repeated. This was done for all the procedure

 below were implemented in MATLAB, to perform t

in solving the MKAR.

Figure 1: Tabu Search Implementation in MKAR.

The last, but not the least, was the diversification procedure, DP, which is an

best solution, in terms of capacity utilization,

IP1, and the whole

procedures until all

, to perform the steps

 40

4.4.1 Main Procedure (MP)

1. Solve the MKAR using ALL PROCEDURES

2. Save the solutions of all procedures in Mresult

3. Pick the procedure with the best solution say Zbest and Xbest

4. Make Z* = Zbest, and X* = Xbest

5. Remove Mbest from Mresult

6. Initialize TL = 4 and BM = 0

7. CALL IP1

4.4.2 Intensification Procedure 1 (IP1)

1. Initialize Z, X, S=N, R=M

2. Update TL

3. Pick the knapsack, say knapsack k, with the largest unutilized capacity

4. Solve 0-1 KP on knapsack k to yield Z and X

5. If Z > Z*, replace Z* with Z, and X* with X

Else If Z ≤ Z*, BM = BM +1

6. Remove assigned items from S and knapsack k from R

7. If { }0=R and BM < 4, go to step 2

8. CALL IP2

 41

4.4.3 Intensification Procedure 2 (IP2)

1. Initialize Z, X, S=N, R=M, BM = 0, F

2. Update TL

3. Pick the knapsack, say knapsack k, with the largest unutilized capacity

4. Fix F items in knapsack k

5. Solve the MKAR using the LUCF algorithm on the reduced problem to yield Z

and X

6. If Z > Z*, replace Z* with Z, and X* with X, F = F + 1

Remove assigned items from S and knapsack k from R, go to step 2

7. If Z ≤ Z*, BM = BM +1, F = F + 1,

If BM = 4, Remove assigned items from S and knapsack k from R go to step 2

8. CALL IP3

4.4.4 Intensification Procedure 3 (IP3)

1. Initialize Z, X, S=N, R=M, BM = 0

2. Update TL

3. Pick two adjacent knapsacks, say knapsacks k1 and k2

4. Exchange items between knapsacks k1 and k2

5. Solve 0-1 KP on knapsack k1 and knapsack k2 to yield Z and X

6. If Z > Z*, replace Z* with Z, and X* with X

Else if Z < Z*, B = B + 1

7. If BM < 4, go to step 2

8. CALL DP

 42

4.4.5 Diversification Procedure (DP)

1. Pick the next best procedure from Mbest

2. Remove this procedure from Mbest

3. CALL IP1

4. If { }0∉Mresult , go to step 1

5. Terminate the algorithm, and record Z* and X* as the best solution obtained

The performance of the procedure was measured by the percentage utilization

which is defined as the percentage ratio of the total utilization by the total knapsack

capacities.

)(

)(
%

capacitiessum

nsutilizatiosum
nUtilizatio = .

This was found to be more than 99% from the 16 problems solved. Table 3 contains the

percentage utilization for the items/knapsack combinations generated and analyzed.

The table has data for initial solution, final solution, and the percentage increase.

The initial solution was the best overall solution selected from all the initial feasible

results of the ten procedures after the execution of the main procedure. The final

solution is the best result obtained from all the steps of both the intensification and the

diversification procedures.

The three levels of intensifications were employed to obtain the best solution

possible. No comparison could be carried out to check the performance of the

intensification procedures against each other because they have different starting points.

It was also observed that the there was no consistency in regards to solution

 43

improvement from one intensification procedure to another. There was little or no

improvement in some cases. IP1, the first intensification procedure, seems to give the

best solution improvement in most cases in terms of capacity utilization increase.

The item sizes of 25, 50, 100, and 200 were generated, and assigned into 2, 3, 4,

and 5 knapsacks. The tabu search was terminated at any point a full utilization is

obtained. This occurred three times in all the sixteen problems solved. Maximum

utilizations were obtained six times after the initial solution were improved upon.

Table 3: Results of Tabu Search Implementation on MKAR.

of Knapsack # of Items Solution
m n initial final %increase

2 25 98.87 100.00 1.14
 50 97.39 100.00 2.68
 100 99.71 100.00 0.29
 200 100.00 100.00 0.00
3 25 98.31 99.48 1.19
 50 100.00 100.00 0.00
 100 99.96 100.00 0.04
 200 97.47 99.55 2.14
4 25 98.18 99.39 1.23
 50 100.00 100.00 0.00
 100 92.39 99.96 8.20
 200 99.98 100.00 0.02
5 25 97.72 99.19 1.50
 50 97.96 100.00 2.08
 100 99.88 99.97 0.09
 200 99.84 100.00 0.16

 44

Chapter 5

Stochastic Knapsack Problems with Penalty Cost

(SKPPC)

5.1 Introduction

In this chapter, we consider the stochastic knapsack problem with penalty cost.

More specifically, we focus on the case where there is only one item type. The

processing time for each item of the specified type is unknown. We assume that the

processing time can take one of two possible values with probabilities associated with

each value. The goal is to assign the items with unknown processing times into

knapsacks in a way to minimize expected under-utilization of the knapsacks.

The first problem we studied involves a single knapsack. This study was then

extended to multiple knapsacks. Although the problems bear similarity to problems

discussed previously on DSKP, these have penalty cost associated with both under-

utilization and over-utilization of resources. The probabilities associated with item types

are known prior to the commencement of execution of any problem. This property

makes it different from all DSKP, studied to date, which consider mostly dynamic

probabilities. The objective is to minimize the total expected penalty cost. There is

penalty cost for under-utilization, as well as over-utilization of resources. This means

that the expected total cost value always has a penalty function for both cases of

assignments. All item assignment combinations are generated, these are called

scenarios, and the expected cost value calculated for each scenario.

 45

The steps of the solution procedure, of a one-knapsack two-item-type problem would

be:

1. compute all possible item assignments,

2. estimate the objective values among all scenarios, and

3. increase number of item type and repeat step 1

The motivation of our research involves security inspection of packages at the

airports. Packages are categorized into two groups: high-risk and low-risk. The high-

risk packages require more inspection time. The objective is to minimize total expected

cost of packages inspected, and a penalty cost is incurred if the given time is not fully

utilized or over-utilized.

5.2 Notations

The problem can be described either in terms of scheduling jobs or item assignment.

Here, C which normally represents the knapsack capacity can also mean the available

machine time in case of job processing, or resources available to processors. cmax

would then mean the processing time of the last job as compared to the maximum

assigned weight in case of knapsack assignments. Without loss of generality, we can

present the problem using the following notations similar to job scheduling in a

production planning environment.

First, we assume the processing time is t1 for one realization of the processing time of

each job and t2 is the value for the other realization of the processing time of the job.

The expected processing time is defined as E[T].

 46

Objective function = minimize expected total penalty cost.

n = number of jobs

pj = processing time of job j

αj = probability associated with selection of job j

λ1 = penalty for each unit time for under-utilization

λ2 = penalty for each unit time for over-utilization

φ = set of all possible scenarios

C = total available machine time/resources

cmax = completion time of the last assigned job

5.3 Mathematical Formulation for n-job-1-processor Case

The objective is to minimize expected total penalty cost of processing a set of items.

Items were assigned by selecting the number of items that generates the minimum

penalty cost. Since each item has two possible scenarios, for a set of n items, there are

2n possible scenarios.

The mathematical formulation can be described as follows:

 Minimize)]0,max()0,max([max2max1 CccCS kk

k
k −+−∑

∈

λλ
φ

 (5.1)

kS = the probability that the kth scenario will happen

kcmax= completion time of last job under scenario k

∑=
j

k
j

k pcmax for all φ∈k where k
jp = the processing time for job j in scenario k.

 47

n = number of items waiting for service

For the case that all items are the same type, that is, pj = t1 with probability α and pj = t2

with probability1-α. Then to assign n jobs, we will get n+1scenarios.

For an n-job problem, this problem can be written as:

)}0,max()0,max({)1()(max2max
0

1 CccC
k

n
nf kk

n

k

knk −+−−







= ∑

=

− λλαα (5.2)

Where,

)(21max kntktck −+=

For instance, in the following, we list a two-item case.

Table 4: The two possible realizations of each item

Processing time for

the first item

Processing time for

the second item
Probability

Scenario 1 t1 t1 α2

Scenario 2 t1 t2 2 α (1- α)

Scenario 3 t2 t2 (1- α)2

The 2-job type can be represented mathematical as below:

)}0,max()0,max({)1(
2

)2(max2max

2

0
1

2 CccC
k

f kk

k

kk −+−−







= ∑

=

− λλαα (5.3)

If the completion time of all scenarios is less than C, then

 48

)}({)1(
2

)2(max

2

0
1

2 k

k

kk cC
k

f −−







= ∑

=

− λαα (5.4)

If the completion time of all scenarios is greater than C, then

)}({)1(
2

)2(max2

2

0

2 Cc
k

f k

k

kk −−







= ∑

=

− λαα (5.5)

5.4 n-job-1-processor Numerical Example

 Each job has two possible processing times of 16 and 1, each with the

probabilities 0.2 and 0.8 respectively. The results are shown in the obtained table.

 Tables 5 and 6 show the worksheet derived for this type of problem. It was

noted, from the results, that the values obtained started to increase after an initial

descent. This makes us conclude that the results could have a convex structure after this

behavior was repeatedly obvious for some other assignment scenarios as well.

 49

Table 5: 2-job assignment results for selection of 2, 3, 4, 5 and 6 items

 50

Table 6: 2-job assignment results for selection of 7, 8, 9 and 10 items

 51

5.5 Job Assignment Scenarios

 A job assignment may consist of several scenarios. The scenarios would be

under-utilized most of the time at the start of job assignments. After the initial steps,

the assignment of an additional job to any of the scenarios may result either in that

scenario to be still under-utilized or over-utilized.

 An example of a typical job assignment with 5 scenarios, S1, S2, S3, S4, S5, that

are under-utilized is shown as follows:

Figure 2: Typical Job Assignment Scenarios

The current objective function for this setup is

515414313212111 dSdSdSdSdS λλλλλ ++++ (5.6)

i
i cCd max−= for i = 1 to 5

S1

S2

S3

S4

S5

C

 52

Figure 3: Addition of a job to the current assignment of S3 with n jobs

To prove the convexity of the value function, we first analyze an example

corresponding to scenario 3. Assume we have assigned n jobs and we plan to assign the

n+1th job. For instance, supposing job n+1 is added to S3, this makes the objective

value of this scenario to be

)})(1(),)(1(max{

)}(),(max{

3
2

132
2

1331

3
1

132
1

1331

dtStdS

dtStdS

nn

nn

−−−−+

−−

++

++

αλαλ

αλαλ
 (5.7)

where,

 =+
1

1nt processing time of job n+1 with probability α

=+
2

1nt processing time of job n+1 with probability 1-α

Assuming all assignments on S3 exceed available time of resources, this leads to

))(1()(3
2

1323
1

132 dtSdtS nn −−+− ++ αλαλ (5.8)

C

S3

33

d3

t1

t2

α

(1-α)

 53

In general, if for both scenarios after the assignment of the n+1th job, the resource limit

(time limit C) is not reached, we have][)()1(31
33 TESnfnf ss λ−=−+ . (5.9)

If ,)(3 Cnf s ≥ then we have].[)()1(32
33 TESnfnf ss λ=−+ (5.10)

Otherwise, if ,)(3 Cnf s < we analyze the following cases:

(1) if for both scenarios after assignment of the n+1th job, the resource limit (time

limit C) is not reached, we have][)()1(31
33 TESnfnf ss λ−=−+ . (5.11)

(2) if only one assignment exceeded the capacity and the other did not, without loss

of generality, we assume .2
1

1
1 ++ < nn tt Then,

.))(1()()()1(3313
2

132
1

1331
33 dSdtStdSnfnf nn

ss λαλαλ −−−+−=−+ ++ (5.12)

(3) if both assignments exceed the capacity, then we have

.))(1()()()1(3313
2

1323
1

132
33 dSdtSdtSnfnf nn

ss λαλαλ −−−+−=−+ ++ (5.13)

5.6 Convexity of Cost Function

It was noticeable during experiment and testing that the cost function has

convexity properties, hence in this section, we prove that the cost function, f(n), is

convex.

To prove convexity, we need to show that for each scenario, we have

,0
)1()(

≥
∂

−∂
−

∂
∂

n

nf

n

nf ss

 (5.14)

this is equivalent to proving that

)1()()()1()1()2(−−≥−+≥+−+ nfnfnfnfnfnf ssssss . (5.15)

 54

Note here, if ,)(Cnf s ≥ then we have increment of inserting each additional job after

job n to be][2 TSEλ . If ,)(Cnf s < then we have increment of inserting each additional

job before job n to be],[1 TSEλ− which is less than][2 TSEλ . The conclusion holds for

both ends.

In the following, we only need to prove that the conclusion holds for steps in-between.

Without loss of generality, we can assume .)(Cnf s < After adding one additional job,

we only need to consider two cases.

Case 1: We have the total finish time of one scenario larger than C and the total

finishing time of the other scenario smaller than C, as shown in Figure 3. Under this

case, we have

.)1())(1()()1(3132211 dSdtStSnfnf
ss αλαλαλ −−−−+−=−+ (5.16)

Note here, for notation brevity, we use t1 instead of 1 1+nt and t2 instead of .2
1+nt

Then, we can observe that,

≥−−−−+−=−+ 3132211)1())(1()()1(dSdtStSnfnf
ss αλαλαλ

].[)1())(1(13123111 TSEdStdStS λαλαλαλ −=−−−−+− (5.17)

Similarly, we can observe that

≤−−−−+−=−+ 3132211)1())(1()()1(dSdtStSnfnf
ss αλαλαλ

].[)1()1(1222222 TSEtStStS λαλαλαλ =+−≤− (5.18)

Case 2: We have the total completion times of both realizations larger than C. Under

this case, we have

).)(1()()()1(322312 dtSdtSnfnf ss −−+−=−+ αλαλ (5.19)

 55

It is easy to see that

][0))(1()()()1(1322312 TSEdtSdtSnfnf ss λαλαλ −≥≥−−+−=−+ (5.20)

and

].[)1(

))(1()()()1(

22212

322312

TSEtStS

dtSdtSnfnf ss

λαλαλ

αλαλ

=−+≤

−−+−=−+
 (5.21)

This conclusion also holds.

In the following, we only need to show that

)()1()1()2(nfnfnfnf ssss −+≥+−+ (5.22)

For the above case 1, since)()1()1()2(nfnfnfnf ssss −+≥+−+ is obvious for case

2.

In order to show)()1()1()2(nfnfnfnf ssss −+≥+−+ holds for case 1, if

,02 31 >− dt then we have

)()1()2(

)())(1(

)2()1)(1()1()1()2(

13122312

1313212

3122212

tdStSdtS

tdSdttS

dtStStSnfnf ss

−−−+−=

−−−+−+

−+−−+−=+−+

αλαλαλ

αλααλ

ααλααλααλ

 (5.23)

Under this case, in order to show),()1()1()2(nfnfnfnf ssss −+≥+−+ we only

need to prove that

.)1())(1(

)()1()2(

3132211

13122312

dSdtStS

tdStSdtS

αλαλαλ

αλαλαλ

−−−−+−≥

−−−+−
 (5.24)

Since 02 31 ≥− dt according to our assumption and ,0)1(32 ≥− dS αλ we only need to

prove that .)1()(3113111 dStdStS αλαλαλ −−≥−− (5.25)

It is equivalent to prove .)1(0)2(31311 dSdtS αλαλ −−≥≥− (5.26)

It is easy to see that the above inequality holds since 312 dt ≥ and .0)1(31 ≥− dS αλ

 56

Thus, the conclusion holds.

If ,2 31 dt < then we have

).)(1())(1(

)1)(1()1()1()2(

1313212

112212

tdSdttS

tStStSnfnf ss

−−−−+−+

−−−+−=+−+

ααλααλ

ααλααλααλ
 (5.27)

We need to prove that

3132211

1313212

112212

)1())(1(

))(1())(1(

)1)(1()1(

dSdtStS

tdSdttS

tStStS

ααλαλαλ

ααλααλ

ααλααλααλ

−−−−+−≥

−−−−+−+

−−−+−

 (5.28)

That is, we need to prove

.)1()1())(1(

))(1()1(

313211131

3121112

dSdStStdS

dtStStS

αλαλαλααλ

ααλααλααλ

−−−−−≥−−−

−−+−−
 (5.29)

Thus, we want to show

(i) 0)1())(1()1(3231212 ≥−+−−+− dSdtStS αλααλααλ (5.30)

and

(ii) 0))(1()1(131311111 ≥−−−−+− tdSdStStS ααλαλααλαλ valid. (5.31)

Since)(133 tdd −≥ α and ,2αα ≥ (ii) is valid.

We also have

.02)1(22)1(2)(111313311 ≥=−+≥−+=+−+ tttdtddtt αααααα (5.32)

Therefore, (i) holds.

We also can conclude the function is convex.

 57

5.7 The n-job m-processor Problem

This is the extension of the n-job-1-processor problem discussed earlier. This

problem involves m number of inspectors, and n number of packages with l number of

possible outcomes. The objective of the problem is to minimize the expected penalty

cost for all inspectors. Each job will go through pre-scan to visualize the processing

time of the job. Therefore, the processing time of each type of package is known before

assignment, and dependent on the probability of the selection of that package. Two

kinds of problems were formulated in this category. One is to find the maximum

number of packages that could be assigned within a given time limit. The other is to

minimize the total penalty cost for all inspectors for a given number of packages.

5.7.1 Maximize the Number of Packages and Minimize Penalty Cost

Packages are assigned to the inspectors based on the amount of resources

available. The next package is assigned to the inspector with the largest available

resources. This is done to achieve a sequential reduction of available resources to each

inspector. This will in turn lead to the minimization of penalty incurred. There is a

penalty for both under-utilization and over-utilization of resources. In this problem,

only the under-utilization penalty was considered.

The following notations were used throughout the definition of this problem:

n = total number of packages

m = total number of inspectors

l = possible outcomes for all packages

 58

jlp = inspection time of package j with outcome l

lα = probability associated with jlp

C = total available resources for each inspector

λ1 = unit penalty cost for under-utilization

λ2 = unit penalty cost for over-utilization

ci = competition time of the last job in inspection i

5.8 The n-job m-processor Problem Formulation

Objective function of this problem is to minimize the expected penalty cost for

all inspectors. This can be formulated as below:

min. ∑ ∑∑ ∑
= == =











−+−

m

i

ii
sss

l

S

l

S

l

S

CccC
n

n1
21

11 1

)}0,max()0,max({...
21

1 2

λλααα (5.33)

st. ,1
1

=∑
=

m

i
ijx .,...,1 nj =

{ },1,0∈ijx ,,...,1 mi = .,...,1 nj =

∑
=

=
n

j
jSij

i

j
pxc

1
 .,...,1 mi =

ijx = package j is assigned to inspector i

jlp = inspection time of package j with outcome l

nnSinSiSi
i pxpxpxc +++=

21 2211

Since only the under-utilization of resources was considered for this problem, the

formulation can be simplified as:

 59

min. ∑ ∑∑∑
= == =











−

m

i

i
sss

l

S

l

S

l

S

cC
n

n1 11 1

)0,max(...
21

1 2

λααα (5.34)

This formulation is subject to the same set of constraints as the one above, but with only

the under-utilization penalty cost λ.

5.9 The Solution Method for the n-job m-processor Problem

We use the sampling approximation average method to solve the problem. To

obtain the average value, we take samples and obtain the average value of these samples

as the approximation of the objective function value. The solution of each sample will

involve the assignment of packages to inspectors until all inspectors have been fully

utilized. The Largest Unutilized Capacity First (LUCF) rule was again utilized in the

solution to solve each sample.

Each sample can be solved using the following algorithmic steps:

Initialize P = N, R = M, ci = 0 (utilized space), C (available resources). For notation

brevity, we let pj represent the realized processing time pjsj for some sj based on the

sampling result.

(1) Pick a package j from P

(2) Select an inspector i with min (ci)

(3) If ci + pj > c

 (a) Remove inspector i from R

 (b) Go to Step (2)

(4) Otherwise assign package j to inspector i, remove package j from P and update ci =

ci + pj

(5) If either R or P is nonempty, go to Step (1).

(6) Otherwise, terminate the algorithm.

These steps are represented by

Figure 4: Algorithmic steps of the

60

terminate the algorithm.

These steps are represented by the flowchart below:

Figure 4: Algorithmic steps of the 1st SKPPC Problem

 61

5.10 Numerical Example Data Generation

 We test the case that each job has two possible realizations. For instance, l=2.

Uncorrelated package were generated with processing times pj uniformly distributed in

[10, 100], and capacities ci uniformly distributed in 







∑ ∑

= =

n

j

n

j
jj mpmp

1 1

/6.0,/4.0 for i = 1,

m-1. The capacity of the mth knapsack was set to cm = 







−∑ ∑

=

−

=

n

j

m

i
jj cp

1

1

1

5.0 . Note here,

pj represents the expected processing time. Based on this, we also assume pjsj uniformly

distributed in [10, 100]. The average of all capacities was then calculated for equal

resources amongst all inspectors. A random number is generated to determine pj to be

pjsj for some sj=1 or 2. If the random number is less than,
1s

α then pj = pj1. Otherwise,

pj= pj2. All data generated were made integers except for the probabilistic values.

Finally, we set λ equal to 1.

The following conditions must be satisfied for all formulations:

(1) pjsj > 0 and integers for all j

(2) ci > 0 and integer for all i

(3) }{min}{min , iijjsj csp
j

≤

(4) }{max}{max , iijjsj csp
j

≤

(5) pj > maxi { ci } ∑
=

n

i 1

 62

5.11 Numerical Example Results

As described in the previous section, each package has two possible processing

times with each having its own probability of being assigned. A number was generated

between 0 and 1 to determine the processing time of each job.

The proposed LUCF was used to assign job after pre-scan. Assignment was

stopped once none of the packages left can be accepted by any inspector without being

over-utilized. The penalty was calculated for each package/inspector combinations.

One hundred samples were computed for each combination and the average penalty and

capacity utilization were calculated. We tested cases with package sizes to be 25, 50,

100, and 200 and they are assigned to 2, 3, 5, and 10 inspectors respectively.

Table 7 shows the results obtained for the various package/inspector

combinations. The actual expected penalty costs are recorded in the table. It was

observed that the larger the ratio m/n, the better the results produced.

Table 7: Results of 1st SKPPC Problem.

of Inspectors # of Packages

Solution
m n Penalty Cost % Utilization
2 25 1.66 97.49
 50 0.11 99.17
 100 0.00 99.63
 200 0.00 99.85
3 25 6.02 95.11
 50 0.79 98.52
 100 0.02 99.41
 200 0.00 99.77
5 25 23.50 90.69
 50 6.04 96.78
 100 0.58 98.95
 200 0.01 99.58

10 25 107.17 74.48
 50 45.42 90.77
 100 10.81 97.06
 200 1.04 99.05

 63

Chapter 6

Inspection Problem – an SKPPC Problem

6.1 Introduction

Inspection of packages or containers at an inbound point, security check of

passengers at the airports, inspection of goods and services, in general, require

allocation of resources. In this section, we focused our attention on inspection of

packages where each package can be classified as a high-risk and low-risk package

depending on a set of factors determining the level of risk for the package. Let lα

denote the probability that a package is of type l, where l=1, 2 represent high-risk and

low-risk packages, respectively. Let pjl denote the processing time for package j of type

l. Assuming m inspectors and C time units of maximum inspection time per inspector,

the problem is to determine the number of inspectors and number of packages to be

assigned to each inspector in a way that the expected value of the total inspection cost is

minimized. The total inspection cost is defined as the weighted cost of the under-

utilization and over-utilization of the inspectors during the inspection period, C. We

next formulate the problem as a stochastic knapsack problem and discuss solution

methodology.

6.2 Problem Formulation

As discussed in the previous chapter, the inspection problem can be formulated

as follows:

 64

min ∑ ∑∑ ∑
= == =











−+−

m

i

ii
sss

l

S

l

S

l

S

CccC
n

n1
21

11 1

)}0,max()0,max({...
21

1 2

λλααα
 (6.1)

st. ,1
1

=∑
=

m

i
ijx .,...,1 nj =

{ },1,0∈ijx ,,...,1 mi = .,...,1 nj =

∑
=

=
n

j
jSij

i

j
pxc

1
 .,...,1 mi =

where,

ijx = package j is assigned to inspector i

ic = total inspection time for inspector i under scenario Si.

For an n-package and m-inspector inspection problem, there will be 2n package arrival

combinations with each package being either high or low-risk type. Each inspector may

inspect none or all packages provided that the sum of packages inspected by all of the

inspectors equal n. Let Si denote the number of packages inspected by inspector i with

probability αi of occurrence. Then,
mSSS ααα ...

21
 is the probability of a scenario. As an

example, consider a 4-package, 2-inspector problem. There are 8 possible inspection

sequences with 1 and 2 indicating high-risk and low-risk packages, respectively. These

combinations are:

 1 1 1 1
 1 1 1 2
 1 1 2 1
 1 1 2 2
 1 2 1 1
 1 2 1 2
 1 2 2 1
 1 2 2 2

 65

There are 5 scenarios for each inspector as shown below:

Table 8: Scenarios for 2-inspector, 4-package assignments

Scenarios Inspector 1 Inspector 2

1 0 packages 4 packages

2 1 package 3 package

3 2 packages 2 packages

4 3 packages 1 package

5 4 packages 0 packages

For the sake of simplicity, let’s refer to Scenario 1 as the scenario where

inspector 2 inspects all the packages. Similarly, let’s redefine the rest of the scenarios.

Scenarios 4 and 5 will have same probability of occurrence and same objective function

value as Scenarios 1 and 2, hence will not be separately calculated. Let the objective

function value contributed by a scenario be indicated by),(jnjZ n − . This means that

out of n inspected packages; j packages are inspected by inspector 1, and the rest by

inspector 2.

6.3 Algorithm

 An algorithm was developed to solve any instance of this problem involving any

number of inspectors, any number of packages with 2-package types.

6.3.1 Notations

n = numbers of packages inspected

 66

m = numbers of inspectors

1α = probability associated with assignment of package type 1

2α = probability associated with assignment of package type 2

p1 = inspection time for package type 1

p2 = inspection time for package type 2

C = time available for inspection

Z* = optimal scenario, scenario with the minimum total inspection cost

Si = scenario i

ci = inspection cost of scenario i

6.3.2 Steps of the Algorithm

Step 1: Initialize the variables n, m, α1, α2, p1, p2, C, Z*, Si, ci.

Step 2: Compute all possible package arrival combinations for n and all possible

feasible scenarios for m.

Step 3: Calculate the penalty cost ci for Si.

Step 4: Record Zi(Si) for the minimum ci.

 If Zi(Si) < Z*, replace Z* with Zi(Si).

 If Si is the last scenario, go to Step 5, else go to Step 3.

Step 5: Record Zi(Si).

 All computations of the algorithm were performed in MATLAB. The number

of packages to be inspected, number of inspectors, probabilities of selection, processing

times of packages, time available to inspectors, and the utilization penalties were all

initially specified at the beginning of the MATLAB code.

 67

 The unique combinations of package assignment was then computed, and stored

in an array, with the probability for each assignment.

 The total penalty cost for all scenarios was then calculated, and the table of

results generated. The data was then exported into EXCEL for the graphical

representation.

 The problems of assignment of 15 packages were solved within minutes. This

was repeated for different values of the variables. Most graphs for data representation

were produced in EXCEL, with just a handful in MATLAB. This was because of the

easier data manipulation in EXCEL to quickly adjust a graphical output to showcase a

different data set.

6.4 Numerical Example

 The under-utilization penalty, λ1, and the over-utilization penalty, λ2 are

constants such that λ1+ λ2 =1.

 An inspection problem considering two-package types with inspection time, p1

and p2 of 16 and 1 and probabilities α1 and α2 of selection 0.2 and 0.8, respectively was

formulated, solved using MATLAB and EXCEL and results tabulated as shown in

Table 9. The number of packages assigned ranged from 3 to 10, although the program

is able to give results for any number of packages. The table below shows the results

obtained for five values of the utilization penalties with capacity (inspection time) of 20

time units. The results in the table were the best objective function value for each

scenario. Note that, the best solution for each parameter value combinations occur,

when the packages are distributed equally among the inspectors. This is logical since

 68

one does not know the type of the package to be inspected until the inspection is done

on the package and that the inspectors have same amount of inspection time available to

them. Hence both the packages and inspectors are considered indistinguishable by this

problem.

Table 9: Penalty Cost Results for Some Scenarios with different utilization penalty

 p1=16,p2=1,prob1=0.2,prob2=0.8

 capacity =20

 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 3.2800 6.0800 8.8800 11.6800 14.4800

Z4(2,2) 4 3.3600 5.7600 8.1600 10.5600 12.9600

Z5(2,3) 5 3.9520 5.9520 7.9520 9.9520 11.9520

Z6(3,3) 6 4.5440 6.1440 7.7440 9.3440 10.9440

Z7(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352

Z8(4,4) 8 6.7264 7.5264 8.3264 9.1264 9.9264

Z9(4,5) 9 8.2784 8.6784 9.0784 9.4784 9.8784

Z10(5,5) 10 9.8304 9.8304 9.8304 9.8304 9.8304

From the table above, the minimum penalty cost for each problem as a function of the

penalty cost is highlighted. The scenario with minimum penalty cost suggested that 10

packages would yield minimum penalty cost for a problem with equal utilization value.

Assignment of five packages to each inspector will be the best assignment for this case.

Other problems were formulated and solved for various combinations of the

input parameter values. Table 10 contains results with 2, 3 and 4 inspectors. Figure 5

illustrates graphs for the expected total inspection costs as a function of the number of

packages inspected when the under-utilization and over-utilization costs are penalized

equally. It can be seen from the graphs that the expected total penalty cost increases as

the number of inspectors increase. For the 2-inspector problem, the minimum penalty

cost of 9.8304 came from scenario Z10(5, 5). The minimum penalty cost of 14.7456

 69

resulted from scenario Z15(5, 5, 5) for the 3-inspector problem. The question one can

pose is; if 15 packages are to be inspected during a time period, is it better to have 2

inspectors or 3 inspectors? In general, what is the optimal number of inspectors needed

as a function of number of packages to be inspected?

Table 10: Total cost as a function of n and m

p1 = 16,
p2 = 1

 prob1 = 0.2,
prob2 = 0.8 k = 20 λ1λ1λ1λ1 = 0.1

n m=2 m=3 m=4
3 14.4800 24.0000 34.0000
4 12.9600 22.4800 32.0000
5 11.9520 20.9600 30.4800
6 10.9440 19.4400 28.9600
7 10.4352 18.4320 27.4400
8 9.9264 17.4240 25.9200
9 9.8784 16.4160 24.9120
10 9.8304 15.9072 23.9040
11 10.5852 15.3984 22.8960
12 11.3400 14.8896 21.8880
13 12.3963 14.8416 21.3792
14 13.4526 14.7936 20.8704
15 14.7396 14.7456 20.3616
16 16.0265 15.5004 19.8528
17 17.4897 16.2552 19.8048
18 18.9528 17.0100 19.7568
19 20.5501 18.0663 19.7088
20 22.1475 19.1226 19.6608

 70

Figure 5: Expected total inspection cost versus n and m

It can be seen from Figure 5 that the expected total penalty cost is convex as a

function of n. As m increases the value of n which gives the minimum expected total

inspection cost increases. For the 2-inspector problem, the minimum penalty cost of

9.8304 came from scenario Z10 (5, 5). The minimum penalty cost of 14.7456 resulted

from scenario Z15 (5, 5, 5) for the 3-inspector problem. Similarly, Z20 (5, 5, 5, 5) gives

the minimum cost for the 4-inspector problem. The optimal number of jobs to be

assigned to each inspector is 5. For the example displayed by Table 10 and Figure 5, if

number of items to be inspected during an inspection period is less than 15, then using

two inspectors will give the minimum expected cost. If the number of packages

inspected is more than 20, then 4 inspectors will give the minimum expected cost. One

needs to run the algorithm with more than 20 packages to determine when it is best to

add another inspector.

5

10

15

20

25

30

35

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m=2 m=3 m=4

.

 71

6.5 Experimental Results

 Experiments were run with various values of processing times, capacities

(maximum inspector time), utilization penalty, and proportion of high-risk and low-risk

items. The next sections discuss results for each parameter variation.

6.5.1 Changes in Capacities

 The experiments were run by varying the maximum available inspector time,

also referred to as capacity, C. Each inspector was assumed to have the same capacity,

ranging from 20 to 50 time units. These capacity values were chosen arbitrarily. The

following tables and graphs illustrate results for C= 20, 30, 40, and 50.

Table 11: Capacity of 20 results for 5 values of λ1

 p1=16,p2=1,prob1=0.2,prob2=0.8
 capacity =20
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 3.2800 6.0800 8.8800 11.6800 14.4800
Z4(2,2) 4 3.3600 5.7600 8.1600 10.5600 12.9600
Z5(2,3) 5 3.9520 5.9520 7.9520 9.9520 11.9520
Z6(3,3) 6 4.5440 6.1440 7.7440 9.3440 10.9440
Z7(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352
Z8(4,4) 8 6.7264 7.5264 8.3264 9.1264 9.9264
Z9(4,5) 9 8.2784 8.6784 9.0784 9.4784 9.8784

Z10(5,5) 10 9.8304 9.8304 9.8304 9.8304 9.8304
Z11(5,6) 11 12.1852 11.7852 11.3852 10.9852 10.5852
Z12(6,6) 12 14.5400 13.7400 12.9400 12.1400 11.3400
Z13(6,7) 13 17.1963 15.9963 14.7963 13.5963 12.3963
Z14(7,7) 14 19.8526 18.2526 16.6526 15.0526 13.4526
Z15(7,8) 15 22.7396 20.7396 18.7396 16.7396 14.7396

 72

Figure 6: Graph for capacity of 20 results for 5 values of λ1

Table 12: Capacity of 30 results for 5 values of λ1

 p1=16,p2=1,prob1=0.2,prob2=0.8
 capacity =30
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 4.8800 9.6800 14.4800 19.2800 24.0800
Z4(2,2) 4 4.5600 8.9600 13.3600 17.7600 22.1600
Z5(2,3) 5 4.5120 8.5120 12.5120 16.5120 20.5120
Z6(3,3) 6 4.4640 8.0640 11.6640 15.2640 18.8640
Z7(3,4) 7 4.7872 7.9872 11.1872 14.3872 17.5872
Z8(4,4) 8 5.1104 7.9104 10.7104 13.5104 16.3104
Z9(4,5) 9 5.8432 8.2432 10.6432 13.0432 15.4432

Z10(5,5) 10 6.5760 8.5760 10.5760 12.5760 14.5760
Z11(5,6) 11 7.7184 9.3184 10.9184 12.5184 14.1184
Z12(6,6) 12 8.8608 10.0608 11.2608 12.4608 13.6608
Z13(6,7) 13 10.3899 11.1899 11.9899 12.7899 13.5899
Z14(7,7) 14 11.9189 12.3189 12.7189 13.1189 13.5189
Z15(7,8) 15 13.7993 13.7993 13.7993 13.7993 13.7993

-4

1

6

11

16

21

26

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 73

Figure 7: Graph for capacity of 30 results for 5 values of λ1

Table 13: Capacity of 40 results for 5 values of λ1

 p1=16,p2=1,prob1=0.2,prob2=0.8
 capacity =40
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 6.8000 13.6000 20.4000 27.2000 34.0000
Z4(2,2) 4 6.4000 12.8000 19.2000 25.6000 32.0000
Z5(2,3) 5 6.0640 12.0640 18.0640 24.0640 30.0640
Z6(3,3) 6 5.7280 11.3280 16.9280 22.5280 28.1280
Z7(3,4) 7 5.5328 10.7328 15.9328 21.1328 26.3328
Z8(4,4) 8 5.3376 10.1376 14.9376 19.7376 24.5376
Z9(4,5) 9 5.3536 9.7536 14.1536 18.5536 22.9536

Z10(5,5) 10 5.3696 9.3696 13.3696 17.3696 21.3696
Z11(5,6) 11 5.6518 9.2518 12.8518 16.4518 20.0518
Z12(6,6) 12 5.9341 9.1341 12.3341 15.5341 18.7341
Z13(6,7) 13 6.5194 9.3194 12.1194 14.9194 17.7194
Z14(7,7) 14 7.1048 9.5048 11.9048 14.3048 16.7048
Z15(7,8) 15 8.0125 10.0125 12.0125 14.0125 16.0125

0

5

10

15

20

25

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 74

Figure 8: Graph for capacity of 40 results for 5 values of λ1

Table 14: Capacity of 50 results for 5 values of λ1

 p1=16,p2=1,prob1=0.2,prob2=0.8
 capacity =50
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 8.8000 17.6000 26.4000 35.2000 44.0000
Z4(2,2) 4 8.4000 16.8000 25.2000 33.6000 42.0000
Z5(2,3) 5 8.0000 16.0000 24.0000 32.0000 40.0000
Z6(3,3) 6 7.6000 15.2000 22.8000 30.4000 38.0000
Z7(3,4) 7 7.2224 14.4224 21.6224 28.8224 36.0224
Z8(4,4) 8 6.8448 13.6448 20.4448 27.2448 34.0448
Z9(4,5) 9 6.5280 12.9280 19.3280 25.7280 32.1280

Z10(5,5) 10 6.2112 12.2112 18.2112 24.2112 30.2112
Z11(5,6) 11 6.0838 11.6838 17.2838 22.8838 28.4838
Z12(6,6) 12 5.9565 11.1565 16.3565 21.5565 26.7565
Z13(6,7) 13 6.0503 10.8503 15.6503 20.4503 25.2503
Z14(7,7) 14 6.1441 10.5441 14.9441 19.3441 23.7441
Z15(7,8) 15 6.5014 10.5014 14.5014 18.5014 22.5014

3

8

13

18

23

28

33

38

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 75

Figure 9: Graph for capacity of 50 results for 5 values of λ1

 The increase in capacity resulted in increase in the penalty cost in all cases. This

was to be expected since there is more resources available to the inspectors. The

resulting minimum penalty cost for each value of λ1 has also changed. For example, the

minimum penalty cost changed from 3.2800 to 4.4640 for λ1=0.1 for capacities 20 and

30 respectively. The resulting assignment also changed from Z3(1,2) for capacity 20 to

Z6(3,3) for capacity 30. Similar observations were noticed for other values.

6.5.2 Changes in Probabilities

 The design of experiment was next formulated for changing values in the

probabilities of selection of the 2 package types. A capacity of 20 time units was

chosen, with all other variables constant. The probability of selection of package type 1

3

8

13

18

23

28

33

38

43

48

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 76

used were chosen as 0.2, 0.3, 0.4, and 0.5. The following tables and graphs resulted

from that experiment.

Table 15: Package type 1 probability of 0.2 results for 5 values of λ1

 p1=16,p2=1,capacity=20
 prob1=0.2
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 3.2800 6.0800 8.8800 11.6800 14.4800
Z4(2,2) 4 3.3600 5.7600 8.1600 10.5600 12.9600
Z5(2,3) 5 3.9520 5.9520 7.9520 9.9520 11.9520
Z6(3,3) 6 4.5440 6.1440 7.7440 9.3440 10.9440
Z7(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352
Z8(4,4) 8 6.7264 7.5264 8.3264 9.1264 9.9264
Z9(4,5) 9 8.2784 8.6784 9.0784 9.4784 9.8784

Z10(5,5) 10 9.8304 9.8304 9.8304 9.8304 9.8304
Z11(5,6) 11 12.1852 11.7852 11.3852 10.9852 10.5852
Z12(6,6) 12 14.5400 13.7400 12.9400 12.1400 11.3400
Z13(6,7) 13 17.1963 15.9963 14.7963 13.5963 12.3963
Z14(7,7) 14 19.8526 18.2526 16.6526 15.0526 13.4526
Z15(7,8) 15 22.7396 20.7396 18.7396 16.7396 14.7396

Figure 10: Graph for Package type 1 probability of 0.2 results for 5 values of λ1

3

8

13

18

23

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 77

Table 16: Package type 1 probability of 0.3 results for 5 values of λ1

 p1=16,p2=1,capacity=20
 prob1=0.3
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 3.4300 5.7800 8.1300 10.4800 12.8300
Z4(2,2) 4 3.9600 5.7600 7.5600 9.3600 11.1600
Z5(2,3) 5 5.5430 6.7930 8.0430 9.2930 10.5430
Z6(3,3) 6 7.1260 7.8260 8.5260 9.2260 9.9260
Z7(3,4) 7 9.6162 9.7662 9.9162 10.0662 10.2162
Z8(4,4) 8 12.1064 11.7064 11.3064 10.9064 10.5064
Z9(4,5) 9 15.3243 14.3743 13.4243 12.4743 11.5243

Z10(5,5) 10 18.5421 17.0421 15.5421 14.0421 12.5421
Z11(5,6) 11 22.6181 20.5681 18.5181 16.4681 14.4181
Z12(6,6) 12 26.6942 24.0942 21.4942 18.8942 16.2942
Z13(6,7) 13 31.0677 27.9177 24.7677 21.6177 18.4677
Z14(7,7) 14 35.4412 31.7412 28.0412 24.3412 20.6412
Z15(7,8) 15 40.0124 35.7624 31.5124 27.2624 23.0124

Figure 11: Graph for Package type 1 probability of 0.3 results for 5 values of λ1

3

8

13

18

23

28

33

38

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 78

Table 17: Package type 1 probability of 0.4 results for 5 values of λ1

 p1=16,p2=1,capacity=20
 prob1=0.4
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 3.8200 5.7200 7.6200 9.5200 11.4200
Z4(2,2) 4 5.0400 6.2400 7.4400 8.6400 9.8400
Z5(2,3) 5 7.9560 8.4560 8.9560 9.4560 9.9560
Z6(3,3) 6 10.8720 10.6720 10.4720 10.2720 10.0720
Z7(3,4) 7 15.0552 14.1552 13.2552 12.3552 11.4552
Z8(4,4) 8 19.2384 17.6384 16.0384 14.4384 12.8384
Z9(4,5) 9 24.2856 21.9856 19.6856 17.3856 15.0856

Z10(5,5) 10 29.3328 26.3328 23.3328 20.3328 17.3328
Z11(5,6) 11 35.1196 31.4196 27.7196 24.0196 20.3196
Z12(6,6) 12 40.9064 36.5064 32.1064 27.7064 23.3064
Z13(6,7) 13 46.9171 41.8171 36.7171 31.6171 26.5171
Z14(7,7) 14 52.9278 47.1278 41.3278 35.5278 29.7278
Z15(7,8) 15 59.0655 52.5655 46.0655 39.5655 33.0655

Figure 12: Graph for Package type 1 probability of 0.4 results for 5 values of λ1

3

13

23

33

43

53

63

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 79

Table 18: Package type 1 probability of 0.2 results for 5 values of λ1

 p1=16,p2=1,capacity=20
 prob1=0.5
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 4.4500 5.9000 7.3500 8.8000 10.2500
Z4(2,2) 4 6.6000 7.2000 7.8000 8.4000 9.0000
Z5(2,3) 5 11.1250 10.8750 10.6250 10.3750 10.1250
Z6(3,3) 6 15.6500 14.5500 13.4500 12.3500 11.2500
Z7(3,4) 7 21.6750 19.7250 17.7750 15.8250 13.8750
Z8(4,4) 8 27.7000 24.9000 22.1000 19.3000 16.5000
Z9(4,5) 9 34.5688 30.9188 27.2688 23.6188 19.9688

Z10(5,5) 10 41.4375 36.9375 32.4375 27.9375 23.4375
Z11(5,6) 11 48.8375 43.4875 38.1375 32.7875 27.4375
Z12(6,6) 12 56.2375 50.0375 43.8375 37.6375 31.4375
Z13(6,7) 13 63.7703 56.7203 49.6703 42.6203 35.5703
Z14(7,7) 14 71.3031 63.4031 55.5031 47.6031 39.7031
Z15(7,8) 15 78.8984 70.1484 61.3984 52.6484 43.8984

Figure 13: Graph for Package type 1 probability of 0.5 results for 5 values of λ1

3

13

23

33

43

53

63

73

83

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 80

 The changes in the probability of selection of package types had different effect

on the results as compared to the changes noticed in the previous section. Most penalty

cost values were increased as the value of α1, the probabilty of selection of item 1

increases. The only exception to this trend is Z3(1,2), the assignment of 3 items. The

penalty cost values reduces for λ1 = 0.3, 0.4, and 0.5 for tables 15, 16, 17 and 18. The

highlighted values in the tables show this trend.

6.5.2 Changes in Processing Times

 The processing times for both package types were varied to see the effect on the

solutions for the same five values of λ1 with capacity of 20, and probabilities of 0.2, and

0.8 respectively for the package types. The following tables and graphs resulted from

that experiment.

Table 19: Processing times of 16 and 1 results for 5 values of λ1

 prob1=0.2,prob2=0.8,capacity=20
 p1=16,p2=1
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 3.2800 6.0800 8.8800 11.6800 14.4800
Z4(2,2) 4 3.3600 5.7600 8.1600 10.5600 12.9600
Z5(2,3) 5 3.9520 5.9520 7.9520 9.9520 11.9520
Z6(3,3) 6 4.5440 6.1440 7.7440 9.3440 10.9440
Z7(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352
Z8(4,4) 8 6.7264 7.5264 8.3264 9.1264 9.9264
Z9(4,5) 9 8.2784 8.6784 9.0784 9.4784 9.8784

Z10(5,5) 10 9.8304 9.8304 9.8304 9.8304 9.8304
Z11(5,6) 11 12.1852 11.7852 11.3852 10.9852 10.5852
Z12(6,6) 12 14.5400 13.7400 12.9400 12.1400 11.3400
Z13(6,7) 13 17.1963 15.9963 14.7963 13.5963 12.3963
Z14(7,7) 14 19.8526 18.2526 16.6526 15.0526 13.4526
Z15(7,8) 15 22.7396 20.7396 18.7396 16.7396 14.7396

 81

Figure 14: Graph for processing times of 16 and 1 results for 5 values of λ1

Table 20: Processing times of 14 and 3 results for 5 values of λ1

 prob1=0.2,prob2=0.8,capacity=20
 p1=14,p2=3
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 2.7600 5.2000 7.6400 10.0800 12.5200
Z4(2,2) 4 2.5600 4.4800 6.4000 8.3200 10.2400
Z5(2,3) 5 2.9520 4.3520 5.7520 7.1520 8.5520
Z6(3,3) 6 3.3440 4.2240 5.1040 5.9840 6.8640
Z7(3,4) 7 5.6688 6.0288 6.3888 6.7488 7.1088
Z8(4,4) 8 7.9936 7.8336 7.6736 7.5136 7.3536
Z9(4,5) 9 11.0352 10.3552 9.6752 8.9952 8.3152

Z10(5,5) 10 14.0768 12.8768 11.6768 10.4768 9.2768
Z11(5,6) 11 17.6427 15.9227 14.2027 12.4827 10.7627
Z12(6,6) 12 21.2086 18.9686 16.7286 14.4886 12.2486
Z13(6,7) 13 25.3643 22.6043 19.8443 17.0843 14.3243
Z14(7,7) 14 29.5200 26.2400 22.9600 19.6800 16.4000
Z15(7,8) 15 34.2000 30.4000 26.6000 22.8000 19.0000

3

8

13

18

23

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 82

Figure 15: Graph for processing times of 14 and 3 results for 5 values of λ1

Table 21: Processing times of 12 and 5 results for 5 values of λ1

 prob1=0.2,prob2=0.8,capacity=20
 p1=12,p2=5
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 2.2400 4.3200 6.4000 8.4800 10.5600
Z4(2,2) 4 1.7600 3.2000 4.6400 6.0800 7.5200
Z5(2,3) 5 2.7200 3.5200 4.3200 5.1200 5.9200
Z6(3,3) 6 3.6800 3.8400 4.0000 4.1600 4.3200
Z7(3,4) 7 6.8800 6.4000 5.9200 5.4400 4.9600
Z8(4,4) 8 10.0800 8.9600 7.8400 6.7200 5.6000
Z9(4,5) 9 15.8400 14.0800 12.3200 10.5600 8.8000

Z10(5,5) 10 21.6000 19.2000 16.8000 14.4000 12.0000
Z11(5,6) 11 27.3600 24.3200 21.2800 18.2400 15.2000
Z12(6,6) 12 33.1200 29.4400 25.7600 22.0800 18.4000
Z13(6,7) 13 38.8800 34.5600 30.2400 25.9200 21.6000
Z14(7,7) 14 44.6400 39.6800 34.7200 29.7600 24.8000
Z15(7,8) 15 50.4000 44.8000 39.2000 33.6000 28.0000

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 83

Figure 16: Graph for processing times of 12 and 5 results for 5 values of λ1

Table 22: Processing times of 10 and 7 results for 5 values of λ1

 prob1=0.2,prob2=0.8,capacity=20
 p1=10,p2=7
 n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5

Z3(1,2) 3 1.7200 3.4400 5.1600 6.8800 8.6000
Z4(2,2) 4 0.9600 1.9200 2.8800 3.8400 4.8000
Z5(2,3) 5 3.0000 3.2000 3.4000 3.6000 3.8000
Z6(3,3) 6 5.0400 4.4800 3.9200 3.3600 2.8000
Z7(3,4) 7 11.8800 10.5600 9.2400 7.9200 6.6000
Z8(4,4) 8 18.7200 16.6400 14.5600 12.4800 10.4000
Z9(4,5) 9 25.5600 22.7200 19.8800 17.0400 14.2000

Z10(5,5) 10 32.4000 28.8000 25.2000 21.6000 18.0000
Z11(5,6) 11 39.2400 34.8800 30.5200 26.1600 21.8000
Z12(6,6) 12 46.0800 40.9600 35.8400 30.7200 25.6000
Z13(6,7) 13 52.9200 47.0400 41.1600 35.2800 29.4000
Z14(7,7) 14 59.7600 53.1200 46.4800 39.8400 33.2000
Z15(7,8) 15 66.6000 59.2000 51.8000 44.4000 37.0000

0

10

20

30

40

50

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 84

Figure 17: Graph for processing times of 10 and 7 results for 5 values of λ1

 The results obtained for changing the processing times of the package types had

decrease in penalty costs for some assignments and increase for some. The assignment

of up to 6 items all had reductions in the corresponding values between tables, while the

rest of the tables show increasing data values between subsequent tables for selection of

7 to 15 items. This pattern was observed for all data values recorded.

6.6 Further Experimentation

 Further experiments were conducted to see which variable has the most

significant effect on the penalty cost. Therefore, one variable is changed at a time while

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5

 85

the others were kept constant. The focus was on the processing times and the available

resources or capacity. The probabilities were kept constant at 0.2 and 0.8 for the

package types 1 and 2 respectively, while λ1=λ2= 0.5 for all recorded results.

6.6.1 Changing p2 with p1 constant

Processing time for package type 2 was increased while keeping that of type 1

constant, and the processing time of package type 1 was decreased with that of type 2

constant. Five capacity values of 20, 25, 30, 35, and 40 were used. The tables with the

graphs on the next pages were recorded.

Table 23: p1=16, p2=1 values for 5 capacities

p1 = 16, p2 = 1
n k = 20 k = 25 k = 30 k = 35 k = 40

Z3(1,2) 14.4800 19.2800 24.0800 29.0000 34.0000
Z4(2,2) 12.9600 17.5600 22.1600 27.0000 32.0000
Z5(2,3) 11.9520 16.2320 20.5120 25.1040 30.0640
Z6(3,3) 10.9440 14.9040 18.8640 23.2080 28.1280
Z7(3,4) 10.4352 14.0112 17.5872 21.5088 26.3328
Z8(4,4) 9.9264 13.1184 16.3104 19.8096 24.5376
Z9(4,5) 9.8784 12.6608 15.4432 18.3792 22.9536

Z10(5,5) 9.8304 12.2032 14.5760 16.9488 21.3696
Z11(5,6) 10.5852 12.1552 14.1184 16.0816 20.0518
Z12(6,6) 11.3400 12.1072 13.6608 15.2144 18.7341
Z13(6,7) 12.3963 12.4295 13.5899 14.7502 17.7194
Z14(7,7) 13.4526 12.7518 13.5189 14.2861 16.7048
Z15(7,8) 14.7396 13.3991 13.7993 14.1994 16.0125

 86

Figure 18: Graphical representation of Table 21

Table 24: p1=16, p2=3 values for 5 capacities

p1 = 16, p2 = 3
 20 25 30 35 40

Z3(1,2) 12.0800 16.8800 21.6800 26.6000 31.6000
Z4(2,2) 9.7600 14.3600 18.9600 23.8000 28.8000
Z5(2,3) 8.9120 12.4240 16.7040 21.1040 26.0640
Z6(3,3) 8.0640 10.4880 14.4480 18.4080 23.3280
Z7(3,4) 8.5088 9.2688 12.8448 16.4208 20.7840
Z8(4,4) 8.9536 8.0496 11.2416 14.4336 18.2400
Z9(4,5) 10.1152 8.8016 10.3552 13.1376 16.2272

Z10(5,5) 11.2768 9.5536 9.4688 11.8416 14.2144
Z11(5,6) 12.9627 10.9118 9.6801 11.2501 13.2133
Z12(6,6) 14.6486 12.2700 9.8915 10.6586 12.2122
Z13(6,7) 16.9243 14.0739 11.4332 10.7323 11.8927
Z14(7,7) 19.2000 15.8777 12.9749 10.8060 11.5732
Z15(7,8) 22.0000 18.0066 14.8941 12.1485 11.8776

5

10

15

20

25

30

35

k = 20

k = 25

k = 30

k = 35

k = 40

 87

Figure 19: Graphical representation of Table 22

Table 25: p1=16, p2=5 values for 5 capacities

p1 = 16, p2 = 5
 20 25 30 35 40

Z3(1,2) 10.0000 14.4800 19.2800 24.2000 29.2000
Z4(2,2) 7.2000 11.1600 15.7600 20.6000 25.6000
Z5(2,3) 6.9600 9.0000 12.8960 17.2960 22.0640
Z6(3,3) 6.7200 6.8400 10.0320 13.9920 18.5280
Z7(3,4) 7.7600 7.3680 8.5120 11.6784 15.5424
Z8(4,4) 8.8000 7.8960 6.9920 9.3648 12.5568
Z9(4,5) 12.4000 9.4480 8.1344 8.4592 10.8320

Z10(5,5) 16.0000 11.0000 9.2768 7.5536 9.1072
Z11(5,6) 19.6000 14.6000 11.2384 9.1875 8.7750
Z12(6,6) 23.2000 18.2000 13.2000 10.8214 8.4429
Z13(6,7) 26.8000 21.8000 16.8000 13.1107 10.4700
Z14(7,7) 30.4000 25.4000 20.4000 15.4000 12.4972
Z15(7,8) 34.0000 29.0000 24.0000 19.0000 15.0486

5

10

15

20

25

30

35

20

25

30

35

40

 88

Figure 20: Graphical representation of Table 23

Table 26: p1=16, p2=7 values for 5 capacities

p1 = 16, p2 = 7
 20 25 30 35 40

Z3(1,2) 8.2400 12.0800 16.8800 21.8000 26.8000
Z4(2,2) 5.2800 7.9600 12.5600 17.4000 22.4000
Z5(2,3) 5.8400 6.7280 9.0880 13.4880 18.0640
Z6(3,3) 6.4000 5.4960 5.6160 9.5760 13.7280
Z7(3,4) 10.8000 7.8480 6.2272 7.7552 10.6080
Z8(4,4) 15.2000 10.2000 6.8384 5.9344 7.4880
Z9(4,5) 19.6000 14.6000 10.4192 7.4672 7.3824

Z10(5,5) 24.0000 19.0000 14.0000 9.0000 7.2768
Z11(5,6) 28.4000 23.4000 18.4000 13.4000 10.0384
Z12(6,6) 32.8000 27.8000 22.8000 17.8000 12.8000
Z13(6,7) 37.2000 32.2000 27.2000 22.2000 17.2000
Z14(7,7) 41.6000 36.6000 31.6000 26.6000 21.6000
Z15(7,8) 46.0000 41.0000 36.0000 31.0000 26.0000

5

10

15

20

25

30

35

20

25

30

35

40

 89

Figure 21: Graphical representation of Table 24

Table 27: p1=16, p2=9 values for 5 capacities

p1 = 16, p2 = 9
 20 25 30 35 40

Z3(1,2) 6.4800 9.6800 14.4800 19.4000 24.4000
Z4(2,2) 3.3600 4.7600 9.3600 14.2000 19.2000
Z5(2,3) 7.2800 5.4800 6.8160 9.6800 14.1600
Z6(3,3) 11.2000 6.2000 4.2720 5.1600 9.1200
Z7(3,4) 16.4000 11.4000 7.9360 5.8800 6.9984
Z8(4,4) 21.6000 16.6000 11.6000 6.6000 4.8768
Z9(4,5) 26.8000 21.8000 16.8000 11.8000 8.4384

Z10(5,5) 32.0000 27.0000 22.0000 17.0000 12.0000
Z11(5,6) 37.2000 32.2000 27.2000 22.2000 17.2000
Z12(6,6) 42.4000 37.4000 32.4000 27.4000 22.4000
Z13(6,7) 47.6000 42.6000 37.6000 32.6000 27.6000
Z14(7,7) 52.8000 47.8000 42.8000 37.8000 32.8000
Z15(7,8) 58.0000 53.0000 48.0000 43.0000 38.0000

0

5

10

15

20

25

30

35

40

45

50

20

25

30

35

40

 90

Figure 22: Graphical representation of Table 25

Increasing the processing times of package 2 while keeping that of 1 constant

resulted in more increased number of corresponding data values between the tables. For

example, the recorded values for capacity of 40 resulted in decrease in all values

between table 23 and 24, while 2 vales increased between tables 24 and 25. Five data

values increased between tables 25 and 26, and 7 values increased in tables 26 and 27.

Generally, a total of 12, 25, 36, and 45 penalty costs increased respectively between the

tables. This trend is shown on the tables with the underlined numbers.

0

5

10

15

20

25

30

35

40

45

50

55

60

20

25

30

35

40

 91

6.6.2 Changing p1 with p2 constant

Processing time for package type 1 was decreased while keeping that of type 2

constant. Five capacity values of 20, 25, 30, 35, and 40 were used.

The tables with the graphs following were recorded.

Table 28: p1=14, p2=1 values for 5 capacities

p1 = 14, p2 = 1
 20 25 30 35 40

Z3(1,2) 14.9200 19.7200 24.6000 29.6000 34.6000
Z4(2,2) 13.4400 18.0400 22.8000 27.8000 32.8000
Z5(2,3) 12.3600 16.6400 21.0960 26.0560 31.0160
Z6(3,3) 11.2800 15.2400 19.3920 24.3120 29.2320
Z7(3,4) 10.6224 14.1984 17.8704 22.6944 27.5184
Z8(4,4) 9.9648 13.1568 16.3488 21.0768 25.8048
Z9(4,5) 9.7168 12.4992 15.2816 19.6512 24.2256

Z10(5,5) 9.4688 11.8416 14.2144 18.2256 22.6464
Z11(5,6) 9.5976 11.5608 13.5240 17.0437 21.2597
Z12(6,6) 9.7265 11.2801 12.8337 15.8618 19.8730
Z13(6,7) 10.1895 11.3499 12.5103 14.9585 18.7239
Z14(7,7) 10.6526 11.4198 12.1869 14.0551 17.5748
Z15(7,8) 11.7396 11.8042 12.2044 13.4486 16.6931

Figure 23: Graphical representation of Table 26

5

10

15

20

25

30

35

40

20

25

30

35

40

 92

Table 29: p1=12, p2=1 values for 5 capacities

p1 = 12, p2 = 1
 20 25 30 35 40

Z3(1,2) 15.3600 20.2000 25.2000 30.2000 35.2000
Z4(2,2) 13.9200 18.6000 23.6000 28.6000 33.6000
Z5(2,3) 12.7680 17.0880 22.0480 27.0080 32.0000
Z6(3,3) 11.6160 15.5760 20.4960 25.4160 30.4000
Z7(3,4) 10.8096 14.3856 19.0560 23.8800 28.8128
Z8(4,4) 10.0032 13.1952 17.6160 22.3440 27.2256
Z9(4,5) 9.5552 12.3376 16.3488 20.9232 25.6768

Z10(5,5) 9.1072 11.4800 15.0816 19.5024 24.1280
Z11(5,6) 9.0033 10.9665 14.0356 18.2516 22.6519
Z12(6,6) 8.8993 10.4529 12.9896 17.0008 21.1758
Z13(6,7) 9.1100 10.2703 12.1975 15.9629 19.8103
Z14(7,7) 9.3206 10.0878 11.4054 14.9251 18.4448
Z15(7,8) 9.8091 10.2093 10.8847 14.1291 17.3736

Figure 24: Graphical representation of Table 27

5

10

15

20

25

30

35

40

20

25

30

35

40

 93

Table 30: p1=10, p2=1 values for 5 capacities

p1 = 10, p2 = 1
 20 25 30 35 40

Z3(1,2) 15.8000 20.8000 26.4000 30.8000 35.8000
Z4(2,2) 14.4000 19.4000 25.2000 29.4000 34.4000
Z5(2,3) 13.1760 18.0400 24.0000 28.0000 33.0000
Z6(3,3) 11.9520 16.6800 22.8000 26.6000 31.6000
Z7(3,4) 10.9968 15.4176 21.6032 25.2080 30.2000
Z8(4,4) 10.0416 14.1552 20.4064 23.8160 28.8000
Z9(4,5) 9.3936 13.0464 19.2256 22.4512 27.4096

Z10(5,5) 8.7456 11.9376 18.0448 21.0864 26.0192
Z11(5,6) 8.4089 11.0275 15.2435 19.7769 24.6585
Z12(6,6) 8.0722 10.1173 14.1285 18.4674 23.2978
Z13(6,7) 8.0304 9.4365 13.2020 17.2460 21.9944
Z14(7,7) 7.9886 8.7558 12.2755 16.0245 20.6911
Z15(7,8) 8.2142 8.6144 11.5652 14.9243 19.4762

Figure 25: Graphical representation of Table 28

5

10

15

20

25

30

35

40

20

25

30

35

40

 94

Table 31: p1=8, p2=1 values for 5 capacities

p1 = 8, p2 = 1
 20 25 30 35 40

Z3(1,2) 16.4000 21.4000 26.4000 31.4000 36.4000
Z4(2,2) 15.2000 20.2000 25.2000 30.2000 35.2000
Z5(2,3) 14.0320 19.0000 24.0000 29.0000 34.0000
Z6(3,3) 12.8640 17.8000 22.8000 27.8000 32.8000
Z7(3,4) 11.7792 16.6112 21.6032 26.6000 31.6000
Z8(4,4) 10.6944 15.4224 20.4064 25.4000 30.4000
Z9(4,5) 9.7440 14.3184 19.2256 24.2016 29.2000

Z10(5,5) 8.7936 13.2144 18.0448 23.0032 28.0000
Z11(5,6) 8.0193 12.2353 16.9019 21.8116 26.8020
Z12(6,6) 7.2451 11.2563 15.7590 20.6201 25.6041
Z13(6,7) 6.9508 10.4410 14.6816 19.4454 24.4141
Z14(7,7) 6.6566 9.6258 13.6042 18.2708 23.2241
Z15(7,8) 6.6193 9.0013 12.6219 17.1737 22.0525

Figure 26: Graphical representation of Table 29

5

10

15

20

25

30

35

40

20

25

30

35

40

 95

Increasing the processing times of package 1 while keeping that of 2 constant

resulted in lesser decreased number of corresponding data values between the tables.

For example, the recorded values for capacity of 25 resulted in 7 decreases between

table 28 and 29, while 4 vales decreased between tables 29 and 30. Seventeen data

values decreased between tables 28 and 29, and 12 values decreased in tables 29 and 30.

Generally, a total of 17, 12, and 5 penalty costs decreased respectively between the

tables. This trend is shown on the tables with the underlined numbers.

6.7 Results and Analysis

 Recall that),(jnjZ n − where j = 0, 1, . . , n, refers to the objective function

value for each problem. As one would expect, the minimal penalty cost occurred when

the packages were equally distributed among the two inspectors for even number of

packages. For odd number of packages, minimal penalty cost occurred when one

inspector inspects one more package than the others. That is)
2

,
2

(
nn

Zn resulted in the

minimum penalty cost for even n values and)
2

1
,

2
1

(
+− nn

Zn was always minimal for

odd n values. A further look at the 2-inspector problem with a change in the processing

time of package type 2 from 1 time units to 3 time units with all other variables held

constant yielded the graph below:

 96

Figure 27: Graph of 2-inspector problem with p2 increased to 3

The graph above shows a decrease in the optimal objective function value from

9.8304 to 8.0640, with optimal scenario changing from Z10(5, 5) to Z6(3, 3). This is to

be expected since the processing time for both packages is bigger than in the previous

problem, meaning fewer packages could be inspected in the same time period.

The variables all had different effects on the solution of the problems. The

effects all depend on the problem formulated. Generally speaking penalty costs values

will increase faster, if the larger processing time is assigned the bigger probability of

selection. The same cannot be confirmed for changes in penalty function, capacity, and

processing time. The most noticeable and constant effect is the convex property of all

results recorded for all data sets.

 97

Chapter 7

Conclusions and Further Research

7.1 Conclusions

In this research, motivated by Knapsack Problems (KP), we looked at various

KP methods, models, and applications.

We developed a new method for solving MKAR, multiple knapsack problems

with assignment restrictions, a variant of the MKP (multiple knapsack problems).

Efficient results were obtained by implementing both the developed algorithm, and

existing ones. Nine existing assignment procedures with the developed one, LUCF –

largest unutilized capacity first, were implemented on several generated KP (knapsack

problems) and the initial feasible solutions for all problems recorded. These results

were compared using three measurement yardsticks; the minimum, average, and

maximum values returned by each procedure. Three assignment procedures including

LUCF procedure showed the most promising results in all categories. The LUCF

algorithm was among the best greedy assignment method for obtaining initial starting

feasible solutions for the problems solved, and hence could be implemented in any

multiple knapsack problems where an initial feasible solution is required.

Tabu search was employed to improve on the initial feasible results obtained for

the MKAR by the ten assignment procedures. This was carried out through three major

procedures. The main procedure was to get the best feasible solution from all the

assignment procedures. The intensification procedure has three parts to obtain the best

 98

solution possible, and the diversification procedure was to ensure that other solutions

are explored. The implementation of tabu search procedure led to improvement on the

MKAR’s initial feasible solutions every time. The only exceptions occur when

maximum capacity utilization was the initial solution obtained by any of the tens

procedures employed.

Also, motivated by airport security package inspection, Stochastic Knapsack

Problem with Penalty Cost (SKPPC), a variant of SKP (stochastic knapsack problem),

was formulated and studied. Formulations were created for both the 1-processor, and

m-processor set-ups. The problem involves the selection of two-item types, and two

kinds of problem were investigated. The first was to find the maximum number of

packages that would be assigned within a time period. The second problem looked at

involves maximizing both the number of packages assigned and the minimum number

of inspectors that would be required. The main objective for both problems was to

minimize the expected penalty costs. Penalty cost is incurred for both under-utilization

and over-utilization of resources. The variables of the problems were varied to see their

effects on the solutions obtained. These include changes in the processing times of the

package types, the probabilities of selection of the processing times of package types,

the penalty cost function, and the resources available to the inspectors. All recorded

data were also graphed for visual presentation and analysis. The objective to minimize

the total expected penalty cost was easily achieved for all problems solved. The

research also includes a proof of the convexity property exhibited by this particular

problem.

 99

7.2 Further Research

Further research could be done on MKAR in terms of finding a single algorithm

to solve the problem to near optimality as quickly as possible, rather than using an

improvement procedure on an initial feasible solution.

The number of item types for the SKPPC could be increased to accommodate

various kinds of problems of that nature. The actual penalty function, λ, should be

assigned a real value to see its effect on results obtained. A complete enumeration of a

problem should involve both the penalty cost from under-utilization, over-utilization,

and inventory cost on unassigned items.

 100

Bibliography

[1] Ahrens, J.H. and Finke, G. (1975), Merging and Sorting Applied to the 0-1
Knapsack problems, Operations Research, 23, pp. 1099-1109.

[2] Balas, E. and Zemel, E. (1980), An algorithm for large 0-1 Knapsack Problems,
Operations Research, 28, pp. 1130-1154.

[3] Bellman, R. E. (1957), Dynamic Programming, Princeton University Press,
Princeton, NJ.

[4] Caprara, A., Pisinger, D. and Toth, P. (2003), Exact solution of the Quadratic
knapsack problem, INFORMS Journal on Computing, Vol. 11, pp. 125 - 137.

[5] Cohen, R., Katzir, L. and Raz, D. (2006), An efficient approximation for the
Generalized Assignment problem, Information Processing Letters, 100, pp. 162 -166.

[6] Chu, P. C. and Beasley, J. E. (1998). A Genetic Algorithm for the Multidimensional
Knapsack Problem, Journal of Heuristics, 4, pp. 63 - 86.

[7] Dantzig, G.B. (1957), Discrete Variable Problems, Operations Research, 5, pp. 266
- 277.

[8] Dawande, M., Kalagnanam, J., Keskinonack, R., Ravi, R. and Salman, F. S. (2000),
Approximation Algorithm for the multiple knapsack problems with Assignment
Restrictions, Journal of Combinatorial Optimization, 4, pp. 171-186.

[9] Dudzinski, K. and Walukiewicz, S. (1987), Exact methods for the Knapsack
Problem and its generalizations, European Journal of Operational Research, Vol. 28,
Issue 1, pp. 3 - 21.

[10] Fayard, D. and Plateau, G. (1977), Reduction Algorithm for single and multiple
constraints 0-1 Linear Programming Problems, Conference on Methods of
Mathematical Programming, Zakopane, Poland.

[11] Glover, F. (1965), A Multiphase Dual Algorithm for the Zero-One Integer
Programming Problem. Operations Research, 13(6), pp. 879 - 919.

[12] Glover, F. (1986), Future paths for integer programming and links to artificial
intelligence, Computers and Operations Research, Vol. 1, pp. 549 - 553.

[13] Glover, F. and Kochenberger, G. A. (1996), Critical Event Tabu Search for
Multidimensional Knapsack Problems. In Osman, I. H. and Kelly, J. P. (eds), Meta-
Heuristics: Theory and Applications. Kluwer Academic Publishers, pp. 407- 427.

 101

[14] Glover, F. (1990), Tabu search – Part II. Operations Research Society of America,
 Journal on Computing, Vol. 2, No. 1, pp. 4-32.

[15] Glover, F. and Laguna, M. (1993), Tabu search. In C. R. Reeves (Ed.), Modern
Heuristic Techniques for Combinatorial Problems, John Wiley & Sons, Inc., New
York, pp. 70-150.

[16] Glover and Lokketangen, A. and Glover, F. (1998), Solving Zero-One Mixed
Integer Programming Problems using Tabu Search, European Journal Operational
Research, Vol. 106, Issues 2 - 3, pp. 624 - 658.

[17] Hanafi, S. and Freville, A. (1998), An Efficient Tabu Search Approach for the 0–1
Multidimensional Knapsack Problem, European Journal Operational Research, Vol.
106, Issues 2 - 3, pp. 659 - 675.

[18] Hifi, M., Michrafy, M. and Sbihi, A. (2004), Heuristic Algorithms for the Multiple-
Choice Multidimensional Knapsack Problem, Journal of the Operational Research
Society, 55, pp. 1323 - 1332.

[19] Hirschberg, D.S. and Wong, C.K. (1976), A Polynomial-time algorithm for the
knapsack problem with two variables, Journal of ACM, 23, pp. 147 - 154.

[20] Horowitz, E. and Sahni, S. (1974), Computing partitions with applications to the
Knapsack Problem, Journal of ACM, 21, pp. 277 - 292.

[21] Hung, M.S. and Fisk, J.C. (1978), An algorithm for 0-1 Multiple Knapsack
Problems, Naval Research Logistics, Quarterly, 25, pp. 571 - 579.

[22] Keller, H., Pferschy, U. and Pisinger, D. (2004), Knapsack Problems. Springer.

[23] Kleywegt, A. J. and Papastavrou, J. D. (1996), The Dynamic and Stochastic
Knapsack Problem, Operations Research, Vol. 46, No. 1, pp. 17 - 35.

[24] Kleywegt, A. J. and Papastavrou, J. D. (2001), The Dynamic and Stochastic
Knapsack Problem with Random Sized Items, Operations Research, Vol. 49, No. 1, pp.
26 - 41.

[25] Knox, J. (1989), The Application of Tabu Search to the Symmetric Traveling
Salesman Problem, Ph.D. thesis, Graduate School of Business, University of
Colorado, Boulder.

[26] Lodi, A., Martello, S. and Monaci, M. (2002), Two-dimensional packing problem:
a survey, European Journal of Operational Research, Vol. 141, pp. 241 - 252.

 102

[27] Martello, S. and Toth, P. (1977), An upper bound for the Zero-One Knapsack
Problem and a branch and bound Algorithm, European Journal of Operational
Research, Vol. 1, Issue 3, pp. 169 - 175.

[28] Martello, S. and Toth, P. (1981), A bound and bound Algorithm for the Zero-One
Multiple Knapsack Problem, Discrete Applied Mathematics, 3, pp. 275 - 288.

[29] Martello, S. and Toth, P. (1988), A new algorithm for the 0-1 Knapsack Problem,
Management Science, 34, pp. 633 - 644.

[30] Martello, S. and Toth, P. (1990), Knapsack Problems: Algorithms and Computer
Implementations, John Wiley & Sons.

[31] Papastavrou, J. D., Rajagopalan, S., and Kleywegt, A. J. (1996), The Dynamic and
Stochastic Knapsack Problem with Deadlines, Management Science, Vol. 42, No. 12,
pp. 1706 - 1718.

[32] Pinedo, M. (1995), Scheduling – Theory, Algorithms and Systems, Prentice Hall,
Englewood Cliffs, New Jersey.

[33] Pisinger, D. (1995), A minimal Algorithm for the Multiple-Choice Knapsack
problem, European Journal of Operational Research, Vol. 83, Issue 2, pp. 394 - 410.

[34] Pisinger, D. (1995), Algorithms for Knapsack Problems, PhD thesis, Department of
Computer Science, University of Copenhagen, Copenhagen, Denmark.

[35] Pisinger, D. (1999), An exact Algorithm for large Multiple Knapsack Problems,
European Journal of Operational Research, Vol. 114, pp. 528 - 541.

[36] Pisinger, D. (2000), A Minimal Algorithm for the Bounded Knapsack Problem,
INFORMS Journal on Computing, Vol. 12, Issue 1, pp. 75 - 82.

[37] Prabandari, A. (1998), A Tabu-Search-Based Algorithm for unconstrained
optimization, MS thesis, School of Industrial Engineering, University of Oklahoma,
Norman, OK.

[38] Premkumar, R. (1998), Facility Layout optimization using Tabu Search, MS thesis,
School of Industrial Engineering, University of Oklahoma, Norman, OK.

[39] Ross, K. W. and Tsang, D. H. K. (1989), The Stochastic Knapsack Problem, IEEE
Transactions On Communications, Vol. 37, No. 7, pp. 740 - 747.

[40] Skorin-Kapov, J. (1990), Tabu Search Applied to the Quadratic Assignment
Problem, Journal on Computing, Vol. 2, No. 1, pp. 33 - 45.

 103

[41] Soma, N.Y. and Toth, P. (2002), An exact algorithm for the subset-sum problem,
European Journal of Operational Research, Vol. 136, pp. 57 - 66.

[42] Xavier, G. and Arnaud, F. (2000), Tabu Search Based Procedure for Solving the 0-
1 MultiObjective Knapsack Problem: The Two Objectives Case, Journal of Heuristics,
Vol. 6, pp. 361 - 383.

 104

Appendix A

MATLAB Code for the Assignment Algorithms

 105

clear

% # of items and knapsacks
n = input (' enter total number of packagess: ');
disp(' ')
m = input (' enter number of inspectors: ');
disp(' ')
r = input (' enter number of replications/run: ');
knaprt = [];

knaprs = zeros (r,10); % storage for knapsack residual space
cap = zeros (r,m); % storage for knapsack capacity
cond = zeros (1,r); % storage for conditions
knaprsum = zeros (1,10); % storage for sum of knapsack unutilized
space

% while r > 0

% generating item weights
a = ceil(random('unif' , 10, 100, n, 1));
w = a;
w = sort (w); % item weights sorted in ascending order

% generating item processing times probabilities
p = vpa((random('unif' , 0.1, 0.8, n, 1)),1);

% f = item weights
% f = -1 * w;

a1 = 0.4 * (sum(w)/m)
a2 = 0.6 * (sum(w)/m)

% generating similar knapsack capacities
a = (random('unif' , a1, a2, m-1, 1))
a (m, 1) = 0.5 * sum(w) - sum (a)
c = ceil(a)
c= sort (c) % knapsack capacities sorted in ascending order

cap (r,:)=c'

if max (w) <= min (c) & min (c) >= min (w) & sum (w) > max (c);
 cond (1,r) = 1
end

% b = capacities
% b = c;

% generating A
A = [];
for i = 1 : m
 A = [A ; w'];
end

 106

% storing the items sorted in ascending order
item1 = zeros(n,2);
for i = 1 : n
 item1 (i, 1) = i;
 item1 (i, 2) = w (i, 1);
end
item1; % items sorted in ascending order

% adding knapsack restrictions to items sorted in a scending order
d1 = [item1 b];

w = w(n:-1:1); % item weights sorted in descending order

% storing the items sorted in descending order
item2 = zeros(n,2);
for i = 1 : n
 item2 (i, 1) = i;
 item2 (i, 2) = w (i, 1);
end
item2; % items sorted in descending order

% adding knapsack restrictions to items sorted in d escending order
d2 = [item2 b];

% storing the knapsacks sorted in ascending order
knapc1 = zeros(m,2);
for i = 1 : m
 knapc1 (i, 1) = i;
 knapc1 (i, 2) = c (i, 1);
end
knapc1; % knapsacks sorted in ascending order

c = c(m:-1:1); % knapsack capacities sorted in descending order
% storing the knapsacks sorted in descending order
knapc2 = zeros(m,2);
for i = 1 : m
 knapc2 (i, 1) = i;
 knapc2 (i, 2) = c (i, 1);
end
knapc2; % knapsacks sorted in descending order

% residual capacities storage
knapr = zeros (10,m);

% MODEL 1

% storage location for knapsack assignment
aknap1 = [zeros(n ,1) item1 zeros(n ,1)];
knap1 = knapc1;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m

 107

 if item1 (i, 2) <= knap1 (j, 2)
 aknap1 (i, 1) = knap1 (j, 1);
 knap1 (j, 2) = knap1 (j, 2) - aknap1 (i, 3);
 aknap1 (i, 4) = knap1 (j, 2);
 if j < m
 k = j + 1;
 else
 k = 1;
 end
 break
 elseif j < m
 continue
 end
 end
end

aknap1;

for i = 1 : m
 knapr (1, i) = knap1 (i, 2);
end
aknap1 % model 1 knapsack assignment

% MODEL 2

% storage location for knapsack assignment
aknap2 = [zeros(n ,1) item1 zeros(n ,1)];
knap2 = knapc1;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if item1 (i, 2) <= knap2 (j, 2)
 aknap2 (i, 1) = knap2 (j, 1);
 knap2 (j, 2) = knap2 (j, 2) - aknap2 (i, 3);
 aknap2 (i, 4) = knap2 (j, 2);
 if j < m
 k = j;
 else
 k = 1;
 end
 break
 elseif j < m
 continue
 end
 end
end

aknap2;

for i = 1 : m
 knapr (2, i) = knap2 (i, 2);
end
aknap2 % model 2 knapsack assignment

 108

% MODEL 3

% storage location for knapsack assignment
aknap3 = [zeros(n ,1) item1 zeros(n ,1)];
knap3 = knapc2;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if item1 (i, 2) <= knap3 (j, 2)
 aknap3 (i, 1) = knap3 (j, 1);
 knap3 (j, 2) = knap3 (j, 2) - aknap3 (i, 3);
 aknap3 (i, 4) = knap3 (j, 2);
 if j < m
 k = j + 1;
 else
 k = 1;
 end
 break
 elseif j == m
 k = 1;
 end
 end
end

aknap3;

for i = 1 : m
 knapr (3, i) = knap3 ((m+1)-i, 2);
end
aknap3 % model 3 knapsack assignment

% MODEL 4

% storage location for knapsack assignment
aknap4 = [zeros(n ,1) item1 zeros(n ,1)];
knap4 = knapc2;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if item1 (i, 2) <= knap4 (j, 2)
 aknap4 (i, 1) = knap4 (j, 1);
 knap4 (j, 2) = knap4 (j, 2) - aknap4 (i, 3);
 aknap4 (i, 4) = knap4 (j, 2);
 if j < m
 k = j;
 else
 k = 1;
 end

 109

 break
 elseif j == m
 k = 1;
 end
 end
end

aknap4;

for i = 1 : m
 knapr (4, i) = knap4 ((m+1)-i, 2);
end
aknap4 % model 4 knapsack assignment

% MODEL 5

% storage location for knapsack assignment
aknap5 = [zeros(n ,1) item2 zeros(n ,1)];
knap5 = knapc1;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if item2 (i, 2) <= knap5 (j, 2)
 aknap5 (i, 1) = knap5 (j, 1);
 knap5 (j, 2) = knap5 (j, 2) - aknap5 (i, 3);
 aknap5 (i, 4) = knap5 (j, 2);
 if j < m
 k = j + 1;
 else
 k = 1;
 end
 break
 elseif j < m
 continue
 end
 end
end

aknap5;

for i = 1 : m
 knapr (5, i) = knap5 (i, 2);
end
aknap5 % model 5 knapsack assignment

% MODEL 6

% storage location for knapsack assignment
aknap6 = [zeros(n ,1) item2 zeros(n ,1)];
knap6 = knapc1;

 110

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if item2 (i, 2) <= knap6 (j, 2)
 aknap6 (i, 1) = knap6 (j, 1);
 knap6 (j, 2) = knap6 (j, 2) - aknap6 (i, 3);
 aknap6 (i, 4) = knap6 (j, 2);
 if j < m
 k = j;
 else
 k = 1;
 end
 break
 elseif j == m
 k = 1;
 end
 end
end

aknap6;

for i = 1 : m
 knapr (6, i) = knap6 (i, 2);
end
aknap6 % model 6 knapsack assignment

% MODEL 7

% storage location for knapsack assignment
aknap7 = [zeros(n ,1) item2 zeros(n ,1)];
knap7 = knapc2;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if item2 (i, 2) <= knap7 (j, 2)
 aknap7 (i, 1) = knap7 (j, 1);
 knap7 (j, 2) = knap7 (j, 2) - aknap7 (i, 3);
 aknap7 (i, 4) = knap7 (j, 2);
 if j < m
 k = j + 1;
 else
 k = 1;
 end
 break
 elseif j < m
 continue
 end
 end
end

 111

aknap7;

for i = 1 : m
 knapr (7, i) = knap7 ((m+1)-i, 2);
end
aknap7 % model 7 knapsack assignment

% MODEL 8

% storage location for knapsack assignment
aknap8 = [zeros(n ,1) item2 zeros(n ,1)];
knap8 = knapc2;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if item2 (i, 2) <= knap8 (j, 2)
 aknap8 (i, 1) = knap8 (j, 1);
 knap8 (j, 2) = knap8 (j, 2) - aknap8 (i, 3);
 aknap8 (i, 4) = knap8 (j, 2);
 if j < m
 k = j;
 else
 k = 1;
 end
 break
 elseif j == m
 k = 1;
 end
 end
end

aknap8;

for i = 1 : m
 knapr (8, i) = knap8 ((m+1)-i, 2);
end
aknap8 % model 8 knapsack assignment

% MODEL 9

% storage location for knapsack assignment
aknap9 = [zeros(n ,1) item1 zeros(n ,1)];
knap9 = knapc2;

% assiginment of items to knapsacks
for i = 1: n
 knap9 = sortrows(knap9,[2]);
 for j = m:-1:1
 if item1 (i, 2) <= knap9 (j, 2)
 aknap9 (i, 1) = knap9 (j, 1);
 knap9 (j, 2) = knap9 (j, 2) - aknap9 (i, 3);

 112

 aknap9 (i, 4) = knap9 (j, 2);
 break
 elseif j > 1
 continue
 end
 end
end

aknap9;

for i = 1 : m
 knapr (9, i) = knap9 ((m+1)-i, 2);
end
aknap9 % model 9 knapsack assignment

% MODEL 10

% storage location for knapsack assignment
aknap10 = [zeros(n ,1) item2 zeros(n ,1)];
knap10 = knapc2;

% assignment of items to knapsacks
for i = 1: n
 knap10 = sortrows(knap10,[2]);
 for j = m:-1:1
 if item2 (i, 2) <= knap10 (j, 2)
 aknap10 (i, 1) = knap10 (j, 1);
 knap10 (j, 2) = knap10 (j, 2) - aknap 10 (i, 3);
 aknap10 (i, 4) = knap10 (j, 2);
 break
 elseif j > 1
 continue
 end
 end
end

aknap10;

for i = 1 : m
 knapr (10, i) = knap10 ((m+1)-i, 2);
end
aknap10 % model 10 knapsack assignment

% Knapsack residual capacities for all models
knapr

knaprs (r, :) = knaprs (r,:) + sum(knapr')
knaprsum = knaprsum + knaprs (r, :)

% Storing residual capacities for all models + knap sack capacities
knapr = knapr';
knapr = horzcat(knapr, knapc1(:,2));

 113

knaprt = vertcat(knaprt , knapr)

r = r - 1;

end

knaprx(1,1) = min (knaprsum);
knaprx(1,2) = mean (knaprsum);
knaprx(1,3) = max (knaprsum);

knaprx;
capsum = sum(sum(cap));
all(cond)

wk1write('knapsac.xls' ,knaprs)
% wk1write('knapA.xls' , A)
% wk1write('knapC.xls' , c)
wk1write('knapCap.xls' , cap)
wk1write('knapsum.xls' , knaprsum)
wk1write('knaprt.xls' , knaprt)
wk1write('Capsum.xls' , capsum)

 114

Appendix B

MATLAB Code for The Tabu-Seach Implemataion in

MKAR

 115

clear

% # of items and knapsacks
n = input (' enter total number of items: ');
disp(' ')
m = input (' enter number of knapsacks: ');
disp(' ')
r = 1 %input (' enter number of replications/run: ');
disp(' ')
knaprt = [];

knaprs = zeros (r,10); % storage for knapsack residual space
cap = zeros (r,m); % storage for knapsack capacity
cond = zeros (1,r); % storage for conditions
knaprsum = zeros (1,10); % storage for sum of knapsack unutilized
space

while r > 0

% generating item weights
a = ceil(random('unif' , 10, 100, n, 1));
w = a;
w = sort (w); % item weights sorted in ascending order

% generating assignment restriction
b = ceil(random('unif' , 0, m, n, m));

% f = item weights
% f = -1 * w;

% generating profits
% a = ceil(random('unif', 10, 100, n, 1));
% p = a;

a1 = 0.4 * (sum(w)/m)
a2 = 0.6 * (sum(w)/m)

% generating similar knapsack capacities
a = (random('unif' , a1, a2, m-1, 1))
a (m, 1) = 0.5 * sum(w) - sum (a)
c = ceil(a)
c= sort (c) % knapsack capacities sorted in ascending order

cap (r,:)=c'

if max (w) <= min (c) & min (c) >= min (w) & sum (w) > max (c);
 cond (1,r) = 1
end

% b = capacities
% b = c;

% generating A

 116

A = [];
for i = 1 : m
 A = [A ; w'];
end

% storing the items sorted in ascending order
item1 = zeros(n,2);
for i = 1 : n
 item1 (i, 1) = i;
 item1 (i, 2) = w (i, 1);
end
item1; % items sorted in ascending order

% adding knapsack restrictions to items sorted in a scending order
d1 = [item1 b];

w = w(n:-1:1); % item weights sorted in descending order

% storing the items sorted in descending order
item2 = zeros(n,2);
for i = 1 : n
 item2 (i, 1) = i;
 item2 (i, 2) = w (i, 1);
end
item2; % items sorted in descending order

% adding knapsack restrictions to items sorted in d escending order
d2 = [item2 b];

% storing the knapsacks sorted in ascending order
knapc1 = zeros(m,2);
for i = 1 : m
 knapc1 (i, 1) = i;
 knapc1 (i, 2) = c (i, 1);
end
knapc1; % knapsacks sorted in ascending order

c = c(m:-1:1); % knapsack capacities sorted in descending order
% storing the knapsacks sorted in descending order
knapc2 = zeros(m,2);
for i = 1 : m
 knapc2 (i, 1) = i;
 knapc2 (i, 2) = c (i, 1);
end
knapc2; % knapsacks sorted in descending order

% residual capacities storage
knapr = zeros (10,m);

% MODEL 1

% storage location for knapsack assignment
aknap1 = [zeros(n ,1) item1 zeros(n ,1) b];
knap1 = knapc1;

 117

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if (aknap1 (i, 3) <= knap1 (j, 2)) & (any(knap1(j,1) ==
aknap1(i,5:4+m)))
 aknap1 (i, 1) = knap1 (j, 1);
 knap1 (j, 2) = knap1 (j, 2) - aknap1 (i, 3);
 aknap1 (i, 4) = knap1 (j, 2);
 if j < m
 k = j + 1;
 else
 k = 1;
 end
 break
 elseif j < m
 continue
 end
 end
end

aknap1;

for i = 1 : m
 knapr (1, i) = knap1 (i, 2);
end
aknap1 % model 1 knapsack assignment

% MODEL 2

% storage location for knapsack assignment
aknap2 = [zeros(n ,1) item1 zeros(n ,1) b];
knap2 = knapc1;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if (aknap2 (i, 3) <= knap2 (j, 2)) & (any(knap2(j,1) ==
aknap2(i,5:4+m)))
 aknap2 (i, 1) = knap2 (j, 1);
 knap2 (j, 2) = knap2 (j, 2) - aknap2 (i, 3);
 aknap2 (i, 4) = knap2 (j, 2);
 if j < m
 k = j;
 else
 k = 1;
 end
 break
 elseif j < m
 continue
 end
 end
end

 118

aknap2;

for i = 1 : m
 knapr (2, i) = knap2 (i, 2);
end
aknap2; % model 2 knapsack assignment

% MODEL 3

% storage location for knapsack assignment
aknap3 = [zeros(n ,1) item1 zeros(n ,1) b];
knap3 = knapc2;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if (aknap3 (i, 3) <= knap3 (j, 2)) & (any(knap3(j,1) ==
aknap3(i,5:4+m)))
 aknap3 (i, 1) = knap3 (j, 1);
 knap3 (j, 2) = knap3 (j, 2) - aknap3 (i, 3);
 aknap3 (i, 4) = knap3 (j, 2);
 if j < m
 k = j + 1;
 else
 k = 1;
 end
 break
 elseif j == m
 k = 1;
 end
 end
end

aknap3;

for i = 1 : m
 knapr (3, i) = knap3 ((m+1)-i, 2);
end
aknap3; % model 3 knapsack assignment

% MODEL 4

% storage location for knapsack assignment
aknap4 = [zeros(n ,1) item1 zeros(n ,1) b];
knap4 = knapc2;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m

 119

 if (aknap4 (i, 3) <= knap4 (j, 2)) & (any(knap4(j,1) ==
aknap4(i,5:4+m)))
 aknap4 (i, 1) = knap4 (j, 1);
 knap4 (j, 2) = knap4 (j, 2) - aknap4 (i, 3);
 aknap4 (i, 4) = knap4 (j, 2);
 if j < m
 k = j;
 else
 k = 1;
 end
 break
 elseif j == m
 k = 1;
 end
 end
end

aknap4;

for i = 1 : m
 knapr (4, i) = knap4 ((m+1)-i, 2);
end
aknap4; % model 4 knapsack assignment

% MODEL 5

% storage location for knapsack assignment
aknap5 = [zeros(n ,1) item2 zeros(n ,1) b];
knap5 = knapc1;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if (aknap5 (i, 3) <= knap5 (j, 2)) & (any(knap5(j,1) ==
aknap5(i,5:4+m)))
 aknap5 (i, 1) = knap5 (j, 1);
 knap5 (j, 2) = knap5 (j, 2) - aknap5 (i, 3);
 aknap5 (i, 4) = knap5 (j, 2);
 if j < m
 k = j + 1;
 else
 k = 1;
 end
 break
 elseif j < m
 continue
 end
 end
end

aknap5;

for i = 1 : m

 120

 knapr (5, i) = knap5 (i, 2);
end
aknap5; % model 5 knapsack assignment

% MODEL 6

% storage location for knapsack assignment
aknap6 = [zeros(n ,1) item2 zeros(n ,1) b];
knap6 = knapc1;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if (aknap6 (i, 3) <= knap6 (j, 2)) & (any(knap6(j,1) ==
aknap6(i,5:4+m)))
 aknap6 (i, 1) = knap6 (j, 1);
 knap6 (j, 2) = knap6 (j, 2) - aknap6 (i, 3);
 aknap6 (i, 4) = knap6 (j, 2);
 if j < m
 k = j;
 else
 k = 1;
 end
 break
 elseif j == m
 k = 1;
 end
 end
end

aknap6;

for i = 1 : m
 knapr (6, i) = knap6 (i, 2);
end
aknap6; % model 6 knapsack assignment

% MODEL 7

% storage location for knapsack assignment
aknap7 = [zeros(n ,1) item2 zeros(n ,1) b];
knap7 = knapc2;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if (aknap7 (i, 3) <= knap7 (j, 2)) & (any(knap7(j,1) ==
aknap7(i,5:4+m)))
 aknap7 (i, 1) = knap7 (j, 1);
 knap7 (j, 2) = knap7 (j, 2) - aknap7 (i, 3);
 aknap7 (i, 4) = knap7 (j, 2);

 121

 if j < m
 k = j + 1;
 else
 k = 1;
 end
 break
 elseif j < m
 continue
 end
 end
end

aknap7;

for i = 1 : m
 knapr (7, i) = knap7 ((m+1)-i, 2);
end
aknap7; % model 7 knapsack assignment

% MODEL 8

% storage location for knapsack assignment
aknap8 = [zeros(n ,1) item2 zeros(n ,1) b];
knap8 = knapc2;

% assignment of items to knapsacks
k = 1;
for i = 1: n
 for j = k:m
 if (aknap8 (i, 3) <= knap8 (j, 2)) & (any(knap8(j,1) ==
aknap8(i,5:4+m)))
 aknap8 (i, 1) = knap8 (j, 1);
 knap8 (j, 2) = knap8 (j, 2) - aknap8 (i, 3);
 aknap8 (i, 4) = knap8 (j, 2);
 if j < m
 k = j;
 else
 k = 1;
 end
 break
 elseif j == m
 k = 1;
 end
 end
end

aknap8;

for i = 1 : m
 knapr (8, i) = knap8 ((m+1)-i, 2);
end
aknap8; % model 8 knapsack assignment

 122

% MODEL 9

% storage location for knapsack assignment
aknap9 = [zeros(n ,1) item1 zeros(n ,1) b];
knap9 = knapc2;

% assiginment of items to knapsacks
for i = 1: n
 knap9 = sortrows(knap9,[2]);
 for j = m:-1:1
 if (aknap9 (i, 3) <= knap9 (j, 2)) & (any(knap9(j,1) ==
aknap9(i,5:4+m)))
 aknap9 (i, 1) = knap9 (j, 1);
 knap9 (j, 2) = knap9 (j, 2) - aknap9 (i, 3);
 aknap9 (i, 4) = knap9 (j, 2);
 break
 elseif j > 1
 continue
 end
 end
end

aknap9;

for i = 1 : m
 knapr (9, i) = knap9 ((m+1)-i, 2);
end
aknap9; % model 9 knapsack assignment

% MODEL 10

% storage location for knapsack assignment
aknap10 = [zeros(n ,1) item2 zeros(n ,1) b];
knap10 = knapc2;

% assignment of items to knapsacks
for i = 1: n
 knap10 = sortrows(knap10,[2]);
 for j = m:-1:1
 if (aknap10 (i, 3) <= knap10 (j, 2)) & (any(knap10(j,1) ==
aknap10(i,5:4+m)))
 aknap10 (i, 1) = knap10 (j, 1);
 knap10 (j, 2) = knap10 (j, 2) - aknap 10 (i, 3);
 aknap10 (i, 4) = knap10 (j, 2);
 break
 elseif j > 1
 continue
 end
 end
end

aknap10;

for i = 1 : m

 123

 knapr (10, i) = knap10 ((m+1)-i, 2);
end
aknap10; % model 10 knapsack assignment

% Knapsack residual capacities for all models
knapr

knaprs (r, :) = knaprs (r,:) + sum(knapr')
knaprsum = knaprsum + knaprs (r, :)

% Storing residual capacities for all models + knap sack capacities
knapr = knapr';
knapr = horzcat(knapr, knapc1(:,2));
knaprt = vertcat(knaprt , knapr)

knaprsu = (sum(knapc1(:,2))- knaprs)/(sum(knapc1(:, 2)))*100

r = r - 1;

end

knaprx(1,1) = min (knaprsum);
knaprx(1,2) = mean (knaprsum);
knaprx(1,3) = max (knaprsum);

knaprx;
capsum = sum(sum(cap));
all(cond)

%wk1write('knapsac.xls',knaprs)
% wk1write('knapA.xls' , A)
% wk1write('knapC.xls' , c)
%wk1write('knapCap.xls' , cap)
%wk1write('knapsum.xls' , knaprsum)
%wk1write('knaprt.xls' , knaprt)
%wk1write('Capsum.xls' , capsum)

r1 = 1;
r2 = 10;
jnaprs = zeros (r1,10); % storage for knapsack residual space
jnaprsum = zeros (1,10); % storage for sum of knapsack unutilized
space
jknaprs = knaprs;

while r2 > 0

[r3,r4] = min (jknaprs); % maximum utilized capacity model
jknaprs (1, r4) = inf;

 124

if r4 == 1 % is it model 1?
% MODEL 1

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap1;
ajnap = aknap1;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

% tabu search implementation

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;
 ajnap1(i,4) = 0;
 end
 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)
 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);
 else
 ajnap1 = ajnap;
 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m

 125

 jnapr (1, i) = jnap1 (i, 2);
end

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

if r4 == 2 % is it model 2?
% MODEL 2

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap2;
ajnap = aknap2;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

% tabu search implementation

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;
 ajnap1(i,4) = 0;
 end
 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)
 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);

 126

 else
 ajnap1 = ajnap;
 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m
 jnapr (2, i) = jnap1 (i, 2);
end

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

if r4 == 3 % is it model 3?
% MODEL 3

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap3;
ajnap = aknap3;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

% tabu search implementation

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;
 ajnap1(i,4) = 0;
 end
 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 127

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)
 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);
 else
 ajnap1 = ajnap;
 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m
 jnapr (3, i) = jnap1 ((m+1)-i, 2);
end

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

if r4 == 4 % is it model 4?
% MODEL 4

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap4;
ajnap = aknap4;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

% tabu search implementation

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;

 128

 ajnap1(i,4) = 0;
 end
 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)
 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);
 else
 ajnap1 = ajnap;
 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m
 jnapr (4, i) = jnap1 ((m+1)-i, 2);
end

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

if r4 == 5 % is it model 5?
% MODEL 5

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap5;
ajnap = aknap5;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

 129

% tabu search implementation

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;
 ajnap1(i,4) = 0;
 end
 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)
 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);
 else
 ajnap1 = ajnap;
 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m
 jnapr (5, i) = jnap1 (i, 2);
end

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

if r4 == 6 % is it model 6?
% MODEL 6

 130

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap6;
ajnap = aknap6;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

% tabu search implementation

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;
 ajnap1(i,4) = 0;
 end
 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)
 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);
 else
 ajnap1 = ajnap;
 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m
 jnapr (6, i) = jnap1 (i, 2);
end

 131

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

if r4 == 7 % is it model 7?
% MODEL 7

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap7;
ajnap = aknap7;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

% tabu search implementation

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;
 ajnap1(i,4) = 0;
 end
 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)
 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);
 else
 ajnap1 = ajnap;

 132

 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m
 jnapr (7, i) = jnap1 ((m+1)-i, 2);
end

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

if r4 == 8 % is it model 8?
% MODEL 8

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap8;
ajnap = aknap8;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

% tabu search implementation

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;
 ajnap1(i,4) = 0;
 end
 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)

 133

 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);
 else
 ajnap1 = ajnap;
 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m
 jnapr (8, i) = jnap1 ((m+1)-i, 2);
end

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

if r4 == 9 % is it model 9?
% MODEL 9

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap9;
ajnap = aknap9;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

% tabu search implementation

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;
 ajnap1(i,4) = 0;
 end

 134

 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)
 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);
 else
 ajnap1 = ajnap;
 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m
 jnapr (9, i) = jnap1 ((m+1)-i, 2);
end

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

if r4 == 10 % is it model 10?
% MODEL 10

jnapc1 = knapc1;
jnapc2 = knapc2;
jnap = knap10;
ajnap = aknap10;
jnap1 = sortrows(jnap,[2]);
ajnap1 = ajnap;
jnap2 = jnap;
ajnap2 = ajnap;
m1 = m;

% tabu search implementation

 135

while m1 > 0
 if jnap1(m1,2)==0
 m1 = m1 - 1;
 continue
 else
 for i = 1 : n
 if ajnap1(i,1) == jnap1 (m1,1)
 ajnap1(i,1) = 0;
 ajnap1(i,4) = 0;
 end
 end

 for i = 1:m
 if jnap1(m1,1)==jnapc2(i,1)
 jnap1(m1,2)=jnapc2(i,2);
 end
 end

 for i = 1:n
 if (ajnap1 (i, 3) <= jnap1 (m1, 2)) & (ajnap1(i,1)= =0)
 ajnap1 (i, 1) = jnap1 (m1, 1);
 jnap1 (m1, 2) = jnap1 (m1, 2) - a jnap1 (i, 3);
 ajnap1 (i, 4) = jnap1 (m1, 2);
 end
 end

 if jnap1(m1,2)< jnap(m1,2)
 ajnap = ajnap1;
 jnap(m1,2) = jnap1(m1,2);
 else
 ajnap1 = ajnap;
 jnap1(m1,2) = jnap(m1,2);
 end

 end
 m1 = m1 - 1;
end

for i = 1 : m
 jnapr (10, i) = jnap1 ((m+1)-i, 2);
end

jnap1;
jnap2 = [jnap2 jnap1(:,2)];
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];

end

r2 = r2 - 1;

end

% Knapsack residual capacities for all models
jnapr;

 136

jnaprs (r1, :) = jnaprs (r1,:) + sum(jnapr');
jnaprsum = jnaprsum + jnaprs (r1, :);

jnaprsu = (sum(knapc1(:,2))- jnaprs)/(sum(knapc1(:, 2)))*100;
% rsu = [knaprsu; jnaprsu];
% for i = 1:10
% rsu (3,i) = 100*((rsu(2,i)/rsu(1,i))/rsu(1,i));
% end
% rsu = rsu'

rsu1 = [];
for i = 1 : 5
 rsu1 = [rsu1 knaprsu(1,i) jnaprsu(1,i)];
end
rsu2 = [];
for i = 6 : 10
 rsu2 = [rsu2 knaprsu(1,i) jnaprsu(1,i)];
end

rsu = [rsu1; rsu2]

wk1write('p1.xls' ,rsu);

 137

Appendix C

MATLAB Code for the SKPPC

 138

clear

% # of items and knapsacks
n = input (' enter total number of packages: ');
disp(' ')
m = input (' enter number of inspectors: ');
disp(' ')
r = input (' enter number of replications/run: ');
knaprt = [];
knaprave = size(r , 2);

while r > 0

% generating item weights
a = ceil(random('unif' , 10, 100, n, 2));
w1 = a;
w2 = ceil(mean(sum(a)));
% w = sort (w); % item weights sorted in ascending order

% generating item outcomes
p = random('unif' , 0, 1, n, 1);

for i = 1 : n
 if p(i,1) < 0.8
 b(i) = 2; % select the package with 0.8 probability
 else
 b(i) = 1; % select the package with 0.2 probability
 end
end

a1 = 0.4 * (w2/m);
a2 = 0.6 * (w2/m);

% generating similar knapsack capacities
a = (random('unif' , a1, a2, m-1, 1));
a (m, 1) = 0.5 * w2 - sum (a);
c = ceil(sum(a)/m);
% c= sort (c); % equal knapsack capacities

% selecting items to be assigned
for i = 1 : n
 if b(i) == 1;
 w (i) = w1 (i , 1);
 else
 w (i) = w1 (i , 2);
 end
end

% generating A
A = [];
for i = 1 : m
 A = [A ; w];
end

 139

w = w';

% storing the items
% item1 = zeros(n,2);
for i = 1 : n
 item1 (i, 1) = i;
 item1 (i, 2) = w (i);
end

% storing the knapsack capacities
knapc1 = zeros(m,2);
for i = 1 : m
 knapc1 (i, 1) = i;
 knapc1 (i, 2) = c ;
end

% storage location for knapsack assignment
aknap = [zeros(n ,4) b'];
knap = knapc1;

% assignment of items to knapsacks
for i = 1: n
 knap = sortrows(knap,[2]);
 for j = m:-1:1
 if (item1 (i, 2) <= knap (j, 2))
 aknap (i, 1) = knap (j, 1);
 aknap (i, 2) = item1 (i, 1);
 aknap (i, 3) = item1 (i, 2);
 knap (j, 2) = knap (j, 2) - item1 (i , 2);
 aknap (i, 4) = knap (j, 2);
 break
 elseif j > 1
 continue
 else
 aknap (i, 2) = item1 (i, 1);
 aknap (i, 3) = item1 (i, 2);
 end
 end
end

knaprt = ones(m,2);

for i = 1 : m
 for j = 1 : n
 if aknap(j,1) == i & aknap(j,5) == 1
 knaprt(i,1) = knaprt(i,1)*0.2;
 knaprt(i,2) = knaprt(i,2) + aknap(j,3);
 elseif aknap(j,1) == i & aknap(j,5) == 2
 knaprt(i,1) = knaprt(i,1)*0.8;
 knaprt(i,2) = knaprt(i,2) + aknap(j,3);
 end
 end

 140

 knaprt(i,2) = knaprt(i,2) - 1;
 knapr(1,i) = knaprt(i,1) * (c - knaprt(i,2));
end

knaprs = sum(knapr);

up = sum(knaprt(:,2))/sum(knapc1(:,2));

knaprave(r,1) = knaprs;
knaprave(r,2) = up;

r = r - 1;

end

knaprave;
s = mean(knaprave);

s1 = s(1,1);
s2 = 100*s(1,2);

['The expected penalty cost is ' num2str(s1)]

['The percentage of utilization is ' num2str(s2)]

 141

Appendix D

MATLAB Code for the Inspection Problem

 142

clear all ;

% # of items and knapsacks capacities
n1 = 15; %input (' enter number of packagess to be assigned:
');
disp(' ')
m = 3; %input (' enter number of inspectors: ');
disp(' ')
k = 18; %input (' enter amount of resources avai lable to
inpectors: ');
disp(' ')
w1 = 16; %input (' enter processing time of item type 1:
');
disp(' ')
w2 = 1; %input (' enter processing time of item type 2: ');
disp(' ')
p1 = 0.2; %input (' enter probability of item type 1: ');
disp(' ')
p2 = 1 - p1; %input (' enter probability of item type 2:
');
disp(' ')
d1 = 0.5; %input (' enter under-utilization penalt y: ');
disp(' ')
d2 = 1 - d1; %input (' enter over-utilization penalty : ');

N1 = m;
B1 = [];
E = [];
F = [];
G = [];

for n = 3 : n1

 N2 = n;
 V1 = (0:n);
 V2 = [w1 w2];
 V3 = [p1 p2];

 A1 = combn(V1, N1);
 A2 = combn(V2, N2);
 A3 = combn(V3, N2);

 clear V* ;

 [r,c] = size(A1);

 X = A1;
 B = [];

 for i = 1 : r
 if sum(X(i,:)) == n
 B = [B ; X(i,:)];
 end
 end

 143

 B = sort(B,2);
 B = unique(B, 'rows');
 B1 = [B1 ; B];

 [r1 c1] = size(B);

 for i = 1 : r1
 for j = 1 : c1
 if B(i,j) == 0
 E1(i,j) = sum(k*prod(A3,2));
 else
 Y = A2;
 Y(:,1:n-B(i,j))=[];
 E1(i,j) = sum(abs(k-sum(Y,2)).*prod (A3,2));
 end
 end
 end

 E2 = 0.5*sum(E1,2);
 E3 = min(E2);
 E = [E ; E2];
 F = [F ; E3];
 G = [G; n];

end

E;
F;
a = min(E);
b = find(E == a);
clc;
disp ('the minimum penalty cost is'), disp(a)
disp ('from the assignment'), disp(B1(b,:))
BE = [B1 E];
plot(G,F);
xlabel('# of items inspected');
ylabel('penalty cost');
wk1write('AC.xls' ,F);

