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Abstract

Knapsack problem (KP) has broad applications in different fields sas
machine scheduling, space allocation, and asset optimization. Meanivlsl a hard
problem due to its computational complexity, but numerous solution apprdaabes
been developed for a variety of KP. In this dissertation, an extensnagureereview is
first provided. Then, the research focuses on methods, models, and mpditat two
variations of Knapsack problem: Multiple Knapsack Problem with Assent
Restrictions (MKAR) and Stochastic Knapsack Problem with Penalty CoBtREK

A new procedure, Largest Unutilized Capacity First AlgorithmJQE) is
developed and tested on MKAR along with other assignment procedaiésbke in
the literature. It is concluded that LUCF performs verylaeald it returns the best
initial feasible solution among all types of greedy algorghior the solution of the
MKAR. After the generation of initial feasible solutions, a talearch procedure is
implemented to generate improved solutions. Three versions of intatisific
procedures are implemented within the tabu search procedure. Espiiimesults
show significant improvement over the initial solution quality with taku search
procedure. That is, this approach yields a high percentage of utiizédr all
combinations of problems, based on the initial solution provided by LUCF.

For SKPPC, for each item of the knapsack, there are several pqasibéssing
times, each with certain probability of selection. For a given latkpgapacity, a
strategy is developed to assign the optimal number of iteneadb the knapsack.
Mathematical formulations are provided for both single knapsack nakdapsack

cases. The objective value function for the single knapsack problefitexniconvex

Xii



property, which leads to an optimal strategy to assign the nurhlitents. For them
knapsack case, the processing time of each item will be reve#tied pre-scan
operations. LUCF heuristic is combined here to obtain good solutions.approach is
finally adapted to the package security inspection problem. Vessishow one can
determine the optimal number of items in each knapsack and tmeabpiumber of
operators needed for inspection with the objective of maximizing topeuslization

and throughput.
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Chapter 1

Introduction

1.1 Overview

The pioneering work of Dantzig [7] in the late 1950’s has been feliohy
numerous researches in the area of Knapsack Problems (KP)e finddems have
been studied extensively and intensively since then (Pisinger [84h)e most general
sense, the problem deals with the assignment of a set of itdmsa inumber of
knapsacks with each item having size and value associated witieibbjective is to
maximize the total value of assigned items while observingctpacities of the
knapsacks.

Many theoretical studies of knapsack problems have been intended aied appl
to the real-life problems. Many, that were mostly applicationgented, made
researchers and practitioners look for better and fast solutbonspe with the vast
industrial and financial management problems (Pisinger [34]).

Knapsack problems are usually sub-problems of more complex comihator
optimization problems, and most of them require the selection of atsaftsome given
items resulting in the maximization of a profit sum, with tb&ltassigned weight not
exceeding the capacity of the knapsack(s). All knapsack problemeslassified as

being NP-hard, meaning that their optimal solutions cannot be obtained by the

application of polynomial time algorithms. However, several yy@drresearch have



exposed the structural properties of these problems making therer ¢o solve
(Pisinger [34]).

The knapsack problems have a variety of real life applications ingudi
financial modeling, production and inventory management systemsjesdraampling,
design of queuing network models in manufacturing, and control ofcti@ferload in
telecommunication systems. Other areas of applications inclatterganagement for
airlines, hotels and rental agencies, college admissions, quadiéyptation and
admission control for interactive multimedia systems, cargo Igadapital budgeting,
cutting stock problems, and computer processing allocations in hsgebuted

systems.

1.2 Research Objectives

Multiple Knapsack ProblemMKP) generally is the assignment of items into
several knapsacks. The items usually have weights, and costmi@ssedth them,
which may vary from item to item. The knapsacks may be of diifecapacities as
well. Stochastic Knapsack Proble®KP), on the other hand, assumes that the weight
of the item is not known until it is placed in the knapsack. Howeverwtight is
assumed to follow a probability distribution. The assignment of itenes knapsack
generally works with the actual weights of the items aalye assigned and the
probability distribution of the unassigned items. The objective in batbsca either to
maximize capacity (or expected capacity) utilization or thest cost effective
assignment. Knapsack capacities are usually never exceeded in thesiigaheent.

In this study, a new greedy algorithm that yields very dt@gnitial solution

for theMKP is proposed. This algorithm’s performance was then compared with that of



the most common assignment procedures. Multiple Knapsack Problerhs wit
Assignment RestrictionsMKAR), a new variant ofMKP, is studied in regards to
obtaining initial feasible solutions using the most common assignprecedures.
Tabu search was later employed to improve the initial solutions genevatiedd better
results.

Stochastic Knapsack Problems with Penalty Cost (SKPPC) having diffenent i
types is studied to determine optimal assignment. Only two types were studied,
and each item type has a possible processing time determinadpbybability of
selection. The problem was extended to multiple processors feretif processing
times. Expected penalty cost and percentage of utilizatioa veeorded for various

problem sizes.

1.3 Organization of the Dissertation

Chapter 2 comprises the literature review on knapsack problensnlutson
procedures, and some common application areas. Also included isatixplaof tabu
search, and dynamic and stochastic knapsack problem.

Chapter 3 contains a variant of the multiple knapsack problem -pieult
knapsack problem with assignment restriction (MKAR). This was dtart of the
research for this dissertation. A new algorithmargest Unutilized Capacity First,
LUCF was developed and tested against other known greedy praedoiusssigning
items to knapsacks.

Tabu Search, an efficient search method, is the discussion of Chapter 4. The
tabu search procedure was applied to the initial solution generated for the MKAR. The

LUCF algorithm was one of the methods used to generate an initial feasible solution.



Stochastic knapsack problem with penalty cost (SKPPC) is the toipi
discussion in both Chapters 5 and 6. A study of SKPPC involving thegpnassit of
two item types with probabilities of selection was investigated. RPemalere given for
both under-utilization and over-utilization of the knapsack capacithe extension of
the problem to many processors was formulated and solved. Analgseperformed
on the various variables of the problem.

Chapter 7 concludes this report with summary, conclusions and suggestions f

further research.



Chapter 2

Literature Review

2.1 Knapsack Problems

The basic concept of all the families of knapsack problems involveetketion
of some items, each with profit and weight values, to be packedoim or more
knapsacks with capacity. The item pradit weightw;, as well as the capacityof the
knapsack are all assumed to be positive integers.

Several instances of knapsack problems, despite their worst-cag@exity,
may have efficient solutions via heuristic methods with acceptaishputational times.
The heuristics take advantage of the well defined structures inherent in thesengrobl

Dantzig [7] was the first to order items according to theafipto-weight ratio,

and then find a solution for the continuous 0-1 knapsack problem.

PyPey s Pa :

Wl W2 Wn
The ordering of the items according to this rabn be done i©(nlogn) time (Dantzig
[7]). The continuous 0-1 knapsack problem has dsstaints onx; € {O,L...,mj}

relaxed td < x; <m;. A greedy algorithm is then applied on the prafitveight ratio

to assign items to knapsack starting with the kstrgmtil we reach the first item that

cannot be assigned. The first unassigned itemeimead thebreak item b (

b= min{j :Zfﬂwi > c}) resulting in an initial feasible solution. &loptimal solution



can then be the selection of all items b plus the residual of the knapsack capacity
which can be represented by a fractiontei b. This procedure is utilized frequently
for various types of knapsack problems.

Dynamic programming generates solutions to sevienabsack problems in
pseudo-polynomial time, meaning a time controlled tbe number of items in a
problem. Efficient algorithms have been developgdngorporating bounding tests in
dynamic programming procedures.

Horowitz and Sahni's [20] solution approach for khhapsack problem in

O(v2") worst-case time involves dividing the items intmtsets. Two sets of feasible

solutions are later merged after all feasible sohst of each set are enumerated. By
recursively dividing the problem in two parts, malke 0-1 knapsack problem solvable
through parallel computation which runsGog nlog ¢) wheren and c are the number
of items and the capacity of the knapsack, resypalgti

Knapsack problems can also be solved using rextuatgorithms (Martello and
Toth [30]). Efficient ones have been developedahldonsist of fixing several decision
variables at their optimal values before the pnwbig solved. This procedure decreases
the decision space thereby resulting in efficierhputations.

Martello and Toth [28] developed a branch-and-boalgdrithm, which requires
the solution of a 0-1 knapsack problem every tin@ager/upper bound is found, for the
multiple knapsack problems.

Heuristic algorithms like Tabu search and GenetgoAthm have also appeared
in recent times for the solution of knapsack protde Chu et al. [6] proposed a genetic

algorithm for the multidimensional knapsack problefheuristic based on tabu search



was presented by Glover and Kochenberger [13] vidyeaeflexible memory structure
that integrates recency and frequency informatioaritical events during the solution
process was employed.

The 0-1 Knapsack Problem (KP), the root of all knapsack problems, involves
the selection of a subset mftems into a single knapsack. The total profiatfitems
selected is to be maximized without the total wesgkxceeding the capacity of the

knapsack. The general formulation of the problehoWs:

maximize Y’ p; , (2.1)

=]

n
subject to) w;x; <c,
-1

X, € {04}, j=1..,n
wherep; is the profit of each itemy; is the weight, and; is 1 if item j is assigned to a

knapsack or 0 otherwise.

Martello and Toth [27] proposed a new way of conmmuthe upper bound for
the 0-1 knapsack problem, and also presented ahpi@md-bound algorithm for the
same problem type. A bound-and-bound algorithm] [@8fined as a tree-search
technique that makes use of a lower bound to daterthe branches to follow in the
decision was later formulated for 0-1 multiple KE8]. The term “bound-and-bound”
was defined, for a maximization problem, as a se&rch technique that makes use of a
lower-bound in determining the branch to invesedatther in a decision tree.

Pisinger [33] presented a minimal algorithm fag 831 KP based on a dynamic
programming approach, where the core problem isduglly extended and

computational sorting and reduction of the corenisimal. A core (Balas and Zemel



[2]) is when only a small amount of the items aneiraerated when there is a large
probability of reaching to an optimal solution. was shown that when the process
terminates due to some bounding tests, the coepsed is actually much smaller than
the total number of solvable symmetrical core guesi

Hung and Fisk [21] developed a depth-first braanbd-bound algorithm for the
solution of the 0-1 MKP by constructing succesdngher levels of the decision tree
either by assigning an object to a knapsack or Xsiuding that object from all
knapsacks. This implies that every node genemates descendent nodes, where
denotes the number of knapsacks. The essentia efege algorithm are very much
like those developed for the 0-1 KP by Ahrens amté-[1].

The Multiple-choice Knapsack Problem (MCKP) is another variant of the 0-1
KP involving the selection of exactly one itgrfrom N;, whereN; denotes the number

of itemi available for each of trmitems. This is formulated as follows:

maximizei DoPiX; (2.2)

i=1 jeN;

m
subject to) > w;x; <c,

i=1 jeN;

ZX” :1: i:l,...,m

jeN;

x; €{01, i=1..m andjeN,.

Several algorithms for MCKP have been presentest the last twenty years.
Most of these algorithms start by solving linear K& (LMCKP) so as to obtain an

upper bound. Dudzinski and Walukiewicz [9] shoviedt MCKP can be solved in



pseudo-polynomial time (a time controlled by thenber of items) through dynamic
programming. The two stages of solution of LMCHie: a.) LP-dominated items are
reduced by sorting the items in each class acogrgirincreasing weights, and delete
some unpromising states by applying some dominariiegia; b.) a greedy algorithm is
then used to solve the reduced LMCKP. Upper bdests may be employed to fix
several variables in each class to their optiméthevafter the two initial procedures
mentioned before.

Balas and Zemel [2] with Fayard and Plateau [1@]gested considering the
core which is a small subset of the items in the sotutf a KP. A core can be found
through partitioning procedure @(n) time, wheren is the number of items. Martello
and Toth [29] showed that the restricted KP definadthe core items can be solved
easily for several classes of data in linear timeisinger [33] proposed a simple
algorithm for solving LMCKP, as well as for deriginan initial feasible solution.
Dynamic programming was later used from the stguititial solution to solve MCKP
by adding new classes to the core as needed. shhiged that to solve the MCKP to
optimality, the consideration of a minimum numbgclasses are required.

Other 0-1 KP problem types include the Multidimensil Knapsack problem
[6], the Bounded Knapsack problem (BKP) [36], thebdunded Knapsack problem
(UKP) [19], the Subset-Sum problem (SP) [41], thalthdle Knapsack problem (MKP)
[35], the Bin-Packing problem (BP) [26], the MulgpConstrained Knapsack problem
[10], the Generalized Assignment problem (GAP) {b¢ Quadratic Knapsack problem

(QKP) [4], and the Precedence Constrained Knapsaddem (PCKP) [22].



The other variants that require mentioning are Mealr Knapsack problem
[22], the Max-Min Knapsack problem [22], the Minimation Knapsack problem [22],
the Equality Knapsack problem [22], the Strongly€@ated Knapsack problem [22],
the Change-Making Knapsack problem [22], and thda@sing Knapsack problem
[22]. Others are the Parametric Knapsack probl@g], [the Fractional Knapsack
problem [22], the Set-Union knapsack problem [2&)d the Multiperiod Knapsack
problem [22].

Pisinger [35] developed and implemented an exaurihm for large multiple
knapsack problems. The MKP is defined as the assgt of some o items intom
knapsacks, where the knapsacks may be of diffesgdcities. The aim of the problem
is to maximize total profit in a way that the capac; of any knapsack is not exceeded.

This is formulated as follows:

maximize > > p;x, (2.3)
i=1 j=1
subject to) wx; <c, i=1..m
j=1
ZXH <1 j=1...n
i=1
x; {01}, i=1..m  j=1..n

X is 1 if item] is assigned to knapsackor O otherwise. All coefficients, w;, andc;
are assumed positive integers.
The following assumptions are also essential tadalrivial cases:

1. max{w} <max{ci}

10



2.mn{w}<min{c}
3. Zn; w, >max{c}

The first assumption ensures each item is admésgilbd at least one knapsack
or else, it may be discarded from the problem. Jéeond assumption deals with the
fact that if any item cannot fit into the smallesapsack, the knapsack can be excluded
from the problem. The last inequality assures #tlatems will not fit into the largest
knapsack. The paper [35] is devoted to large prabsituations where the ratidm,
ratio of number of items to number of knapsacksery large.

The algorithm presented in the paper [35] incorgzrasome well know
procedures to achieve its goal. The algorithm degello and Toth’s [28] bound-and-
bound framework. A series of subset-sum problerasalved to obtain lower-bounds
as well as tighten the knapsacks capacity consdtaiifhe algorithm derives upper-
bounds by incorporating a well-performing 0-1 jis@ck problem through surrogate
relaxation. Surrogate relaxation (by Lagrangeaatesy) involves the replacement of
the original objective function by a new set of stwaints, the surrogate constraints. A
separable dynamic programming algorithm is useddbring the subset-sum problems,
and items that cannot be assigned are eliminatesfflryent reduction rules which are
rules for reducing a KP.

Upper-bound is derived by using surrogate relaratin some of the side constraints.

The SMKP may be formulated thus:

maximizezm:i P;X; (2.4)

i=1 j=1

11



subjecttozm:nizn:vvmj ézm:nici, i=1..,m
i=1

il
inj <1, j=1...n
i1

x; € {01}, i=1..m  j=1..n
The best choice of multipliers of the surrogatexetl problem, SMKP, is a positive

constantk (wherek is a positive numberas proved by Martello and Toth [28]. The

choice of these multipliers turns the SMKP into:

maximize ) p; x| (2.5)
=1

n
subject tod w x; <c,
j=1

x| € {01}, j=1..,n.
The introduced variablex'j :ZZ ,%; shows whether item is chosen for any of the

knapsacki, wherei = 1tom, and Iikewisec=zi";lci represents the capacity of all

knapsacks.

This paper [35] also utilizes the bound-and-boulgbrdghm of Martello and
Toth [28], MTM, to derive both the lower-bounds ampper-bounds. Lower-bounds
are found by solvingn individual 0-1 knapsack problems. Upper-boun@sgenerated
from the results of the surrogate relaxed problems.

Knapsacks are ordered in increasing order of céesgci <c, <...<c,, and

filled one after the other in that order. All agstd items are considered permanent by

the branching process, and only the unassigneds it considered when lower and
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upper bounds are being computed. The proceduesnsnated when the gap between

the lower and upper bound can no longer be tigltene

Hifi et al. [18] developed and proposed severalriséics for approximately
solving the multiple-choice multidimensional knagsgroblem, MMKP, which is an
NP-hard combinatorial optimization problem. The MMKP igsr@re complex version
of the 0-1 knapsack problem, whose high computatioamplexity in the formulation
of an exact solution makes it unsuitable for r@aktdecision making applications.

The MMKP has classes); of items, with each clask, i = 1, ....,n, consisting
of r; items. Each item, wherej = 1, ..., r;, of classJ; has the profit value;, non-
negative, and requires resources of weight veats(wh;, W3, ..., w™;) with the
component of each weightk;, k = 1, ...,mnon-negative. A vectdC = Ccc ..,
C™ represents the amount of available resources.

The MMKRP is formulated as below:

maximizezn:ivij X; (2.6)

i-1 j=1
n
subject tod > wix; <C“ k=1..m
-1 j-1

fi

X; =1, i=1...n

IS
x; < {01, i=1...,n, j=1..r.
The MMKP aims to pick exactly one item from eatdss in order for the total

profit of items picked to be maximized, subjecat@ilable resource constraints.
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A feasible solution exists for alk € {L,...,m}, where Zillzrj‘:lvw'm <C*and only one

item is picked from each class. Thatdsis 1 if itemj of theith classJ; is picked, or O

otherwise.

Hifi et al. [18] discuss three algorithms. Thesfirtwo are considered
constructive and complementary solution approactwsle the third uses guided
local search (GLS) method.

The GLS algorithm by Hifi et al. [18], which is consider&al be a metaheuristic,
is similar to tabu search because of its memorljzation to propel the search to
promising regions. It includes a penalty term ire thbjective function to avoid
revisiting undesirable features of the previoushited solutions. The algorithm has
proven to be effective in solving some hard comioiral optimization problemsGLS
has also been used effectively for the travelingssaan problem, quadratic assignment
problem, and resource allocation. It has also lzgmgaied on vehicle routing and bin-

packing problems.

The aims of the algorithm are:
a. use a greedy algorithm to start at a lower bound
b. improve the quality of the initial solution by ugitheCP
c. propel the search to the neighborhood for improvenad the solution by

applyingCCP

A pseudo-utility ratio is computed for each itemthg following formula:
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V.
——,je{L...r}, where(.,) is a scalar product.

(W)
The items are arranged in decreasing order ofpesido-utility ratio, and are assigned
starting with the largest, picking only one iterorfr each class, until all classes have

been covered.

The complementary procedure, CP, comprises of aD Abd a DROP phase.

The steps o€P are:

1. assign items using the pseudo-utility to pick testbdrom each class

2. CPterminates if the obtained solution is a feasséte FS

3. for an unfeasible statd)S the DROP phase considers the most violated
constraint in the&C

4. the class of the largest weighted item of the mmdated constraint is selected

5. the ADD phase selects another item from this clasd, swap with the previous
item of the most violated constraint

6. if the new state is still US, another item is swagppvith the just selected one,
and this continues until an FS or the smallest asifglity amount for the

obtained solution is reached.

The complementary CP approa€lCP, utilizes an iterative improvement of the initial
feasible solution.
The steps o€CP are:

1. a swapping strategy of picked items
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2. a replacement stage which consists of replacingptheiously assigned items

with a new one selected from the same class.

2.2 Tabu Search

The tabu search method was developed by Glovértfl4olve combinatorial
optimization problems. Combinatorial optimizatipnoblems, by definition, have a
large discrete solution space. Tabu search impestsctions on the search process
while rummaging around the feasible region (Gloaed Laguna [15]). The search
makes use of both short-term and long-term memofrlé® short-term memory is used
to perform moves by exploring neighborhood pointslevlong-term memory aids in
the intensification of the search once an improvaigection is found or in the
diversification of the search to areas previoustgxplored. The tabu search method
can be used to guide any process that employs af gabves for transforming one
solution into another and offers an estimation loé function for measuring the
attractiveness of these moves (Glover [11]).

The tabu search method can initially be viewedaa®rm of neighborhood
search (Glover and Laguna [15]). For the neighbodhsearch, a current solution has
an associated set of neighbors in the feasibleomegi The objective function is
evaluated at each neighboring point and comparathstgthe objective function value

of the current point to determine the next “move”.
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The tabu search procedure moves from one poimdthar in an effort to locate
the global optimum. The procedure has the ahbititgscape from a local optimum by
accepting a sequence of “non-improving” moves. altstages, a tabu list is kept of
moves that the procedure is not allowed to makee@ [32]). The list contains a fixed
number of entries. Every time a move is made énttighborhood of the current point,
the previous point is recorded at the top of thmithst and other entries are shoved
down one position while the bottom entry is remaovddhe size of the tabu list should
not be too small to prevent cycling, but a big 6sttabu moves unduly constrains the
search.

For unconstrained optimization, Prabandari [3gditabu search to find starting
points for optimization techniques. Each local nboiwhen coupled with a local
optimization technique for unconstrained optimiaati problems, is expected to
converge to a different local point.

Quadratic assignment problem (QAP) deals withassgnment oh objects to
n locations in a way to minimize the total distaricees flow measure between the
locations (Skorin-Kapov [40]). Methods for QAP alve two phases: construction and
improvement. Skorin-Kapov [40] incorporated taleargh into the improvement phase
of the quadratic assignment problem to continuesdach beyond local optimality.

Traveling salesman problem (TSP) is finding a cleteptour that minimizes the
total distance travelled by a salesman while vigit@ll of then cities once, only once
and returning to the starting city. TSP is a splecase of QAP. The assignment

problem is to ensure that the salesman visits hal dities once and terminates his
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journey at the same city from where he started oxKj25] used tabu search as a tour
improvement algorithm by switching the positionpoints in the tour.

Facility layout is the arrangement of departmewthin a facility. Premkumar
[38] used tabu search to find a layout better ti@ninitial layout of a plant simulation
layout (PSL) software while minimizing the costatved in doing so.

Pinedo [32] used tabu search to reduce the nuwmibtardy jobs on a single
machine. The neighborhood of a schedule with seta@ardiness of jobs was sought
through adjacent pair wise interchanges of jobsaldu list of jobs that were swapped
recently was also kept.

Tabu search based procedure for Solving 0-1 Mbje€ive Knapsack
Problem, the Two Objective Case was developed byieXaand Arnaud [42]. The
paper addresses a case of MultiObjective Combimtddptimization MOCO)
Problems, the so called 0-1 MultiObjective Knapsgti MOKP).

MOCO can be formulated as below:
maximize 2(x), Z(x), ..., (X (2.7)
subject tox e X.
X is a discrete subset ok", defines the decision spacé(xq, Z(x), ..., 2(X) arep
objective functions.

The difficulty of MOCO arises due to research of all elements ofeffieient
frontier, E(P) that grows with number of objective funcBon Tabu search, TS, was
introduced for MOCO problems because of its efficiein obtaining good solutions
for many mono-objective combinatorial problems.

The 0-1 MOKP can be formerly formulated as below:
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maximize > c/x i=1..p. (2.8)

i=1

n
subject to) wx < @
i=1

x, € {01}, j=1..,n

All coefficients,c;, w ando, are positive integers.

The basic steps of the algorithm developed in dpep[42] are:

1. the use of a greedy algorithm to obtain an apprakion of supported efficient
solutions SE(P)

2. tabu search is used and any potential solwithrat is generated, is added to the
set of approximate solutions if it dominates sorokitgons, and the solutions
dominated are removed

3. adecision space reduction method is then employed

The decision space reduction method used involvestroduction of an additional
constraint. Glover first introduced the boundsdiby Xavier and Arnaud [42], which

are

LB = maxH w < a)} (w;) sorted in decreasing order, and
i=1

UB = maxHZwi < a)} (w;) sorted in increasing order.
i=1

The addition of an extra constraiﬁt}ln:lxi =b, be[LB, UB], allows for the reduction of

the decision space containing both dominated feaaitd infeasible solutions.
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The Tabu Search Based Procedure (TSBP) components of Xavier and Arnaud’s
paper [42] were investigated by two algorithmiciaaons. The first starts with one
initial feasible solution, and then explores ongelaafter the other in the solution space
until a defined termination condition is satisfiedlhe other uses a greedy mechanism
to generate an initial feasible solution. The exrgtion uses the information identified
by the greedy algorithm to move from one layerhi® other until a stopping criteria is
reached.

Tabu search has also appeared in recent timeshéosdalution of knapsack
problems. A heuristic based on tabu search wasepted by Glover and Kochenberger
[13] whereby a flexible memory structure that imtdgs recency and frequency
information of critical events during the solutipnocess was employed. Glover and
Lokketangen [16] developed a tabu search appraackofving zero-one mixed integer
programming problems. A new approach to tabu ke#inat provides a balance
between intensification and diversification strasgwas proposed by Hanafi and

Freville [17].

2.3 Dynamic and Stochastic Knapsack Problems (DSKP)

Kleywegt and Papastavrou [24]'s definition of DSK as follows. Items,
having associated reward, demand (size) for adiiesource (the knapsack) arrives
according to a Poisson process in time. There jmrd distribution according to a
known probability between the resource requirememd rewards which becomes
known at the time of item’s arrival. An item igher accepted or not. A reward is

recorded for an acceptance and a penalty is inddorea rejection. The problem can be
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stopped at any time yielding a terminal value whimhy be due to the amount of
resources remaining. The objective is to maxinteeexpected value (rewards minus
costs) accumulated given a waiting cost withimathorizon.

A classical SKP involves the assignment of itemth\hown sizes, or weights,
into a knapsack having a fixed capacity. The dbjeds to maximize profit/reward.
Resources that have weights and probabilitieseareasted and assigned to a knapsack
with a fixed capacity. A typical example involviésms arriving randomly over time
which must either be accepted or rejected on tbewphout consideration of complete
information. This information includes the arrivahe, the amount requested and the
associated rewards derived from such operation.

The stochastic knapsack problem has been studieBdsg and Tsang [39].
They looked at a knapsack with an integer volunpabke of holding different classes
of objects. Objects are assumed to arrive randéonbe assigned to the knapsack, and
the arrival is exponentially distributed with medepending on the system state. They
worked on finding a procedure to maximize the agengevenue by either accepting or
rejecting an object.

Dynamic and stochastic knapsack problem (DSKP) thastitle of the paper
published by Kleywegt and Papastavrou [23]. Tpeiper outline a scenario whereby
items to be assigned to knapsack arrive accordingPoisson process in time.
Associated with each item, is its reward, size, antimited resource. The item’s
reward is received if it is accepted and a penaltpaid if rejected. The resource
requirement and reward of an item are jointly distied according to a known

probability distribution. These become known whiemitem arrives.
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Papastavrou et al. [31] included deadlines in tisaidy of the DSKP. The
problem definition is the same as previously désctiwith the addition of fixed time
horizon. They determined the optimal policy foe tthapsack within the time allowed
in order to maximize the expected accumulated réwar

Kleywegt and Papastavrou [24] improved on theirviopnes work by having
items with random sizes. Their objective was ttedrine the maximum expected
value (rewards minus costs) accumulated. A rewsardceived if an item is accepted,
and a penalty is incurred if rejected. The respuegjuirements and rewards are known
at the time of the demand’s arrival, but unknowiolee then. They showed that the
DSKP has an optimal assignment that includes batreasily computed threshold
acceptance rule and an optimal stopping one.

The stochastic knapsack problem (SKP) to be studiwedlves items with
possible processing times. The processing timesiaknown but have probabilities of
being selected. The objective of the problem wooédto minimize the expected
penalty cost of all assignments. Two versiondef$tochastic Knapsack Problem with
Penalty CostSKPPC, would be investigated; the one processor and npangessors

case. Both the expected penalty cost and peraeofagilization would be recorded.
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Chapter 3

Multiple Knapsack Problems with Assignment

Restrictions (MKAR)

3.1 Statement of the Problem

The Multiple Knapsack Problem with Assignment Restrictions (MKAR) is a
variant of the well-studiedMultiple Knapsack Problem (MKP), which is a
generalization of singl&napsack Problem (KP). The MKAR deals with items that are
constrained to particular knapsacks. The probketmetsolved is to maximize assigned
weights for each knapsack, with due consideraiothé assignment restrictions. The

formal representation of this kind of knapsack peabis described as follows:

maximize Y > w;x; (3.1)
ieM jeB
subject to w;x; <c,, ieM
<8
X <1, jeN
ieA
x; < {01} ieA jeN,

where, the variablg; indicates whether an items assigned to a knapsaick
The MKAR can be described as follows:

N The set of items to be assigndi: {1, . . .,n}

M The set of knapsacks to be filled,= {1, . . ,m}

W The weight of item)
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p; The profit of item
Ci The capacity of knapsack
A The set of knapsacks that can hold ife# isa subset oM
Bi The set of items that can be assigned to knaps8cks a subset oN
A feasible assignment is one in which:
e Each item is assigned to at most one knapsack,
e Assignment restrictions are satisfied,
e Total weight of items assigned to a knapsack doegxceed its capacity.
The following assumptions can be made:
w;, p; > 0 and integers for gllin N
¢i >0 and integer for allin M
min { w; } <min { ¢ }

max { w; } <max { G }

Zn) w; > max{ ¢}

i=1
Dawande et al. [8] started the pioneering worthia area of knapsack problems
and developed two major algorithms, which are ssgige knapsack, and selective

successive knapsack algorithms.

3.2 Successive Knapsack Algorithm (SK)

This is the same as maximizing assigned weight uaggignment restrictions.
This simple algorithm assign items to knapsacks aftex the other. One knapsack is
completely filled before going to the next. Thegedure of the algorithm is as follows:

1. Initialize S=N, Weight; =0
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2. For each knapsack
2.1 Solve a single knapsack problem for each kredsaith item setS N B;
2.2 LetS be the set of items packed with tofedi ght;

2.3 Remove&s from S

3.3 Selective Successive Knapsack (SSK) Algorithm

This is the other algorithm presented in the péyebawande et al. [8] which is
bi-criteria. It involves maximizing assigned weigand minimizing total unused

capacity. The steps of the algorithm follow:

Initialize S=N, R=M, Weight; = 0,AW = O (total assigned weight)
(1) For alli e R, calculateWeight; andWaste by solving a single knapsack problem for
knapsack with setS n B;. Weight; is the total weight of assigned items in knapsack
Waste is the unutilized space of the knapsack
(2) Pick the knapsack with minimum ratio\&Bste / Weight;, say knapsack
(3) Pack items into knapsakko obtainWeight,, addWeighty to AW.
(4) If AW > T/3, then terminate the algorithm.
(5) Otherwise,
(5.1) Remove assigned items fr&@and knapsack from R.
(5.2) If Ris nonempty, go to Step (1).

(5.3) IfRis empty, terminate the algorithm.
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Research was conducted which involves proposisighdar algorithm to the SSK to
solve this kind of knapsack problem (Dawande ef&}). It was realized that the SSK
generates solution using the procedure of subsetmoblems, hence the decision to
investigate to see if there can be an improvemerihis procedure by using a different
approach. A procedure called traegest unutilized capacity first (LUCF) algorithm
was developed. It is a greedy algorithm that arargpth the items and knapsacks in
non-decreasing order of their values, and assignsiéxt item to the knapsack with the

largest unutilized capacity. The items are arrdngghw, >w, >...>w,, while the
knapsacks are ordered such tmat>c,>...>c,. It was believed that, a better

approach to this problem will be the selection ofaygsack based upon unutilized
capacity, which means selecting the knapsack \WeHdrgest available space first. The
idea comes from scheduling theories whereby largestessing time first is used for
allocating jobs on parallel machines to minimizenptetion time. Such scheduling
results in load balancing amongst the machinethisncase, knapsack capacities would
be balanced thereby maximizing the weight assighnoénitems in the various

knapsacks.

3.4 Largest Unutilized Capacity First Algorithm (LUCF)

The steps of the LUCF, the algorithm developedaar®llows:
Initialize S=N, R=M, Weight; = 0, Space = 0
(1) For each item

Pick the knapsadkwith Space = max(c; - Weight;) in A;

(2) If w; > Space, remove iten) from S
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(3) Otherwise assign item j to knapsack
(3.1) Weight; = Weight; +w,
(3.2) Remove item from S

(4) If min{w}in A > Space, remove knapsadkfrom R
J

(5) If Ris nonempty, go to Step (1)

(6) If Ris empty, terminate the algorithm.

Ten different ways of assigning items to knapsagkse modeled and studied.
The same data set was used for all the ten proegdufhe performance of all were

recorded and compared against the proposed LUC¥ithig.

3.5 The Assignment Procedures

The ten assignment procedures can be dividedwuartajor groups; those with
smallest items assigned first and ones with langests first.

Procedure 1 had both the items and the knapsackisged in increasing order,
that is, smallest items with smallest knapsackée ifems were then assigned to the
knapsacks simultaneously. This means that the itext was assigned to the next
knapsack in line. This continues until no knapdaa& enough space to accept the next
item.

Procedure 2 also had both the items and the kokpsaranged in increasing

order. However, unlike procedure 1, the next kaaksvas filled completely until the
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next item cannot be assigned. This procedure wasnuied until all knapsacks have
been assigned the most items.

Procedure 3 is similar to procedure 1 in the aspeassignment, but the items
and knapsacks are initially arranged in oppositgegr The items are arranged in
increasing order, smallest items first, while tmapsacks are in non-decreasing order,
largest knapsacks first. The items were then asdignto the knapsacks.

Procedure 4 had the same item and knapsack amamgjeas procedure 3, but
similar assignment as procedure 2. The next kmépsga filled completely before
processing to the next.

Procedure 5 had the items arranged in decreasihgr @and the knapsacks
arranged in increasing order. This was largeststemallest knapsacks setup. Items
were then assigned simultaneously into the knapsack

Procedure 6 had the items arranged in non-deagasder, and the knapsacks
arranged in increasing order. The assignment vaased out with each knapsack
completely filled before the next.

Procedure 7 was one of the three setups that diddthee items and knapsacks
arranged in non-decreasing order. It was largestd, largest knapsacks procedure.
The items were then assigned simultaneously irddktiapsacks until no item could be
admissible by any knapsack.

Procedure 8 shared the same items and knapsacigament with procedure 7.
However, knapsacks were completely filled one dfterother during assignment. This

continued until the next item couldn’t fit into tHaapsack with the largest unused

28



space. The procedure was stopped at this poioé shre remaining knapsacks would
have smaller unused space.

Procedures 9 and 10 shared the same assignméotgiro Largest unutilized
capacity knapsack was selected next during theepsocThis means that the next item
would be assigned to the knapsack that has thee$tiggpace. Procedure 9 had the
items arranged in increasing order while procedixevas the opposite with the items
arranged in non-decreasing order. Items were tssiged one after the other until
there was no space for the next one in any of tia@gacks. Procedure 10 is the largest
unutilized capacity first (LUCF) algorithm.

Items sizes of 25, 50, 100, and 200 were genegratddssigned to knapsacks of
capacities 2, 3, 4, and 5. The data generatiops steere taken from the book by

Martello and Toth [30].
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The ten procedures studied are:

Table 1: The Assignment Procedures

PROCEDURE 1

Assign next smallest item to the

Next Smallest knapsack

PROCEDURE 2

Fill next smallest knapsack with the

Next smallest items

PROCEDURE 3

Assign next smallest item to the

Next biggest knapsack

PROCEDURE 4

Fill next biggest knapsack with the

Next smallest items

PROCEDURE 5

Assign next biggest item to the

Next smallest knapsack

PROCEDURE 6

Fill next smallest knapsack with the

Next biggest items

PROCEDURE 7

Assign next biggest item to the

Next biggest knapsack

PROCEDURE 8

Fill next biggest knapsack with the

Next biggest items

PROCEDURE 9

Assign next smallest item to the

Knapsack with the biggest space

PROCEDURE 10

(LUCF)

Assign next biggest item to the

Knapsack with the biggest space
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3.6 Data Generation

Uncorrelated items were generated with uniformly random in [10, 100], and

capacities having; uniformly random in[OAZWj/m,O.GZWj /m} fori = 1, m1.

j=1 j=1

n m-1
The capacity of thenth knapsack was set g = [0.52 W, —Zc} .
=1

i
The following conditions must be satisfied forfalfmulations:
(1)w;, p; > 0 and integers for gllin N

(2) ¢ >0 and integer for allin M

(3) min { w; } <mini { ci }

(4) max{w } <max{ci}
(S)Zn: w; > max{c}

The items generated were sorted in ascending éodesome procedures and
in descending order for other procedures. The samag done for the knapsack
capacities generated.

MATLAB and EXCEL were the computation platform&ll codes for both
the generation of data sets and execution of kifigam assignments were performed
in MATLAB. An EXCEL table was used to compare tiesults generated.

Twenty runs of each knapsack/item combination vesecuted, and the same
data set was used for all the procedures at allsinThe minimum, maximum, and the
average of the unutilized capacities were then rdsab for each procedure for the

twenty replications.
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All the procedures were able to fully utilize tkeapsack capacity at least 50%
of the time. Procedures 5, 6, 7, 8, and 10 allrnetd maximum utilization in at least
one replication. The best performers, in all thee¢ categories of data recorded, are
procedures 6, 8, and 10.

The proposedlUCF (procedure 10) procedure performed very well arsbng
all studied procedures, and returned best inibaltons about 70% of the time. The
table on the next page shows the performance caosoparof the ten procedures.

The next step, in the solution of the problem, whe design of an
improvement method. Tabu search was implementeédeinmprovement stage of the

initial solution generated by the procedures.
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Chapter 4

Tabu Search

4.1 Properties of Tabu Search

The tabu search method can initially be viewedaa®rm of neighborhood
search (Glover and Laguna [15]). For the neightodhsearch, a current solution has
an associated set of neighbors in the feasibleomegi The objective function is
evaluated at each neighboring point and comparathsigthe objective function value
of the current point to determine the next “move”.

The following steps explain the neighborhood seamwthod adapted from
Glover and Laguna [15].

Step 1: Initialization
1.1 Select a starting poinf'¥’ in the feasible space.
1.2Record the current “best” solution. 1% is better than %, set X = x",
else ¥* remains.
Step 2: Decision and Termination
2.1 Choose a solution?¥, from the neighborhood points d’%.
2.2 Terminate if: (i) ¥ can not be found by applying the decision criteria

(i) when a termination criterion is met.

Step 3: Update

Reset ¥ = X" and perform Step 1(b). Return to Step 2.
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The tabu search method uses the above neighborbeamdh strategies and
builds upon the set of criteria to be employed tvenfrom one point to another. While
doing so, it employs the use of a tabu list, skemtq, and long-term memory structures.
Several unique terms and definitions are useddnahu search method.

Tabu sizeis the number of moves in the tabu liStabu list is the set of moves
that are not permitted by the search at any pdaticnioment. The&umber of restarts
is the maximum number of times the tabu searcheohae is run before a particular
search is terminated. Restarts diversify the $etrmther areas on the surface of the
measured sample in hopes of obtaining an improwddtisn. The number of
iterations equals the number of moves allowed within eactareslteration is a move
from one sample point to another on the measureswefdace. This could be a move
from a good solution to a bad solution becauséhégistic allows such moves in order
to escape from local optimality. The number ofat®ns is always a function of the
size of the sample to be measured. mhmber of destroyed iterationsis the number
of non-improving moves allowed within each restaNon-improving moves, or bad
moves, are moves from a current solution to a swluwith an objective function value
worse than the current solution. This enables#agch to escape from a region of local
optimal solution to an immediate neighboring regionsearch of a better solution.
Short-term memory stores the best solution for each restart. Theeaunis that the
global optimal solution should be contained in $e¢ of good solutions. The solution
for each set of iterations is recorded and the bekition picked out of the recorded
solutions. Long-term memory stores the number of times each point has been

sampled. Intensification is the process of focusing the search in areasemrevious
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best solutions were obtained. This strategy assuhe the global optimum will be in
this neighborhood.Diversification is the process of focusing the search in unexglore

areas by avoiding previously visited locations.

4.2 Problem Definition

Tabu search, a very reliable and promising searcbegure, is to be applied to
the Multiple Knapsack Problem with Assignment Restrictions (MKAR). The MKAR
deals with items that are constrained to partickife@psacks.

The formal representation of this kind of knapspiadblem follows:

maximize Y > w;x; (4.1)
ieM jeB;
subject to w;x; <c,, ieM
<8
X <1, jeN
ieA
x; € {01}, ieA jeN,

where the variablg; indicates whether an itejms assigned to a knapsack
The notations of MKAR can be described as follows:

N The set of items to be assigndds {1, . . .,n}

M The set of knapsacks to be filled,= {1, . . ,m}

W, The weight of item)

p; The profit of item

Ci The capacity of knapsack

A The set of knapsacks that can hold ife/ a subset oM

36



B; The set of items that can be assigned to knapsBck subset oN

The utilization of the features of tabu searchxpected to bring good results in
reasonable time. The tabu size, tabu list, numabbad moves allowed, short and long-
term memories, intensification, and diversificatiwould be the most used for finding
the solution of the MKAR. The tabu size and lisiuM be determined by the problem
sizes. The number of bad moves allowed would b&sgeld good results. The short-
term memory would be used to store the result efattons, while the long-term
memory would store the best overall result. Thensification step would be in three
steps. The first step would be individual optimiaatof each knapsack assignment,
while the second step is the employment of proldetreduction by fixing some items
in the solution set. Third step would be the pé@se exchange of items between
knapsacks. All these are implemented after anainfeasible solution has been
obtained. Diversification to other regions of gwution space would be carried out by
using the solutions obtained by the various assarinmethods as a starting point
before the steps of the intensification procedur&ébe unattractive solutions, i.e. bad
moves, during iterations would be allowed to sdaif propels the procedure into other
regions. The algorithm stops after a fixed nundfeterations, and maybe by the use of

a stopping termination criterion.

4.3 Solution Method

The solution would be obtained by the following oragteps:
1. Implement the various assignment methods to olstaieries of feasible starting

solutions.
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2. Initialize tabu size (TS), tabu list (TL), numbefr lmad moves allowed, (BM),
short-term memory (SM), and the long-term memony)L

3. Pick the procedure with smallest unutilized capacit

4. Perform intensification to improve on the solutmistain.

5. Perform diversification to improve solution.

6. Terminate algorithm if best assignment is obtaioedfter all solutions methods

have been investigated.

4.4 Steps of Tabu Search Procedure

The major steps of the solution method involve &cpdures. These procedures are the
main procedure, 3 intensification procedures adiversification procedure.

The main procedure (MP) involves obtaining initiehsible solutions from all
the procedures. The procedure with the maximufization was then selected for the
next stage, the first intensification procedure.

The first intensification procedure (IP1) consisfstrying to maximize the
overall capacity utilization by solving single krsagk problem for each knapsack. The
result obtained was then passed over to the senmtsification procedure, 1P2.

Further improvement was the aim of IP2, the sedat&hsification procedure.
This involves reducing the problem size by makioge items to be included in the
assignment solution. That is, some items are figabdays selected, in any assignment.

Pair-wise exchange of items between knapsacksthepurpose of IP3, the
third intensification procedure. Items are excleh@etween two knapsacks to see if

further improvement could be made on the solution.
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The last, but not the least, was the diversificafwocedure, D, which is an
integral part of tabu search. The nbest solution, in terms of capacity utilizatic
amongst the remaininprocedures acts as a starting solution IR, and the whol
steps with IP2, and IP3 were repee This was done for all thprocedurs until all
have been utilized.

The proceduredelow were implemented in MATLABto perform he steps

outlinedin solving the MKAF.

Intensification
Procedure 2

Intensification
Procedure 3

Diversification
Procedure

Best
Solution

Figure 1: Tabu Search Implementation in MK,
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4.4.1 Main Procedure (MP)

1.

2.

3.

Solve theMKAR using ALL PROCEDURES

Save the solutions of all procedures in Mresult

Pick the procedure with the best solution Zbgst andXbest
MakeZ* = Zbest, andX* = Xbest

RemoveMbest from Mresult

Initialize TL=4and BM =0

. CALL IP1

4.4.2 Intensification Procedure 1 (IP1)

1.

2.

Initialize Z, X, SN, R=M

UpdateTL

Pick the knapsack, say knaps&ckvith the largest unutilized capacity
Solve0-1 KP on knapsack to yieldZ andX

If Z>Z*, replacez* with Z, andX* with X

Elself Z<Z*,BM = BM +1

Remove assigned items frddand knapsack from R

If R={0}and BM < 4, go to step 2

CALL IP2
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4.4.3 Intensification Procedure 2 (IP2)

1.

2.

Initialize Z, X, SN, R=M, BM =0,F

UpdateTL

Pick the knapsack, say knaps&gckvith the largest unutilized capacity

Fix F items in knapsadk

Solve theMKAR using theLUCF algorithm on the reduced problem to yi&d
andX

If Z>2Z*, replacez* with Z, andX* with X, F=F + 1

Remove assigned items frddand knapsack from R, go to step 2
IfZz<zZ*,BM=BM+1, F=F+ 1,

If BM = 4, Remove assigned items frd@and knapsack from R go to step 2

CALL IP3

4.4.4 Intensification Procedure 3 (IP3)

1.

2.

Initialize Z, X, SSN, R=M, BM =0

UpdateTL

Pick two adjacent knapsacks, say knapsatksdk2
Exchange items between knapsakkandk2

Solve0-1 KP on knapsackl andknapsack? to yieldZ andX
If Z>Z*, replacez* with Z, andX* with X
ElseifZ<z*,B=B+1

If BM < 4, go to step 2

CALL DP
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4.4.5 Diversification Procedure (DP)

1. Pick the next best procedure from Mbest
2. Remove this procedure from Mbest
3. CALLIP1

4. If Mresult ¢ {0}, go to step 1

5. Terminate the algorithm, and recdtl andX* as the best solution obtained

The performance of the procedure was measured éopehcentage utilization
which is defined as the percentage ratio of thal totilization by the total knapsack
capacities.

sum(utilizations)

%Utilization = — .
sum(capacities)

This was found to be more than 99% from the 16 lprab solved. Table 3 contains the
percentage utilization for the items/knapsack comations generated and analyzed.

The table has data for initial solution, final 4adn, and the percentage increase.
The initial solution was the best overall solutisslected from all the initial feasible
results of the ten procedures after the executioth® main procedure. The final
solution is the best result obtained from all ttepps of both the intensification and the
diversification procedures.

The three levels of intensifications were employedbtain the best solution
possible. No comparison could be carried out teckhthe performance of the
intensification procedures against each other tmxthey have different starting points.

It was also observed that the there was no consigtén regards to solution
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improvement from one intensification procedure tmther. There was little or no
improvement in some cases. IP1, the first intecegibn procedure, seems to give the
best solution improvement in most cases in terneapécity utilization increase.

The item sizes of 25, 50, 100, and 200 were geedrand assigned into 2, 3, 4,
and 5 knapsacks. The tabu search was terminatedyapoint a full utilization is
obtained. This occurred three times in all theesr problems solved. Maximum

utilizations were obtained six times after theialisolution were improved upon.

Table 3: Results of Tabu Search Implementation &#AR.

# of Knapsack | # of ltems Solution

m n initial final %increase

2 25 98.87 100.00 1.14
50 97.39 100.00 2.68
100 99.71 100.00 0.29
200 100.00 100.00 0.00

3 25 98.31 99.48 1.19
50 100.00 100.00 0.00
100 99.96 100.00 0.04
200 97.47 99.55 2.14

4 25 98.18 99.39 1.23
50 100.00 100.00 0.00
100 92.39 99.96 8.20
200 99.98 100.00 0.02

5 25 97.72 99.19 1.50
50 97.96 100.00 2.08
100 99.88 99.97 0.09
200 99.84 100.00 0.16
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Chapter 5

Stochastic Knapsack Problems with Penalty Cost

(SKPPC)

5.1 Introduction

In this chapter, we consider the stochastic kndpgsoblem with penalty cost.
More specifically, we focus on the case where thsr@nly one item type. The
processing time for each item of the specified tigpenknown. We assume that the
processing time can take one of two possible vali#s probabilities associated with
each value. The goal is to assign the items witknawn processing times into
knapsacks in a way to minimize expected underzatiibn of the knapsacks.

The first problem we studied involves a single lssgk. This study was then
extended to multiple knapsacks. Although the motd bear similarity to problems
discussed previously on DSKP, these have penalty @ssociated with both under-
utilization and over-utilization of resources. Tpr@babilities associated with item types
are known prior to the commencement of executioramf problem. This property
makes it different from all DSKP, studied to datehich consider mostly dynamic
probabilities. The objective is to minimize theaaloexpected penalty cost. There is
penalty cost for under-utilization, as well as eu@lization of resources. This means
that the expected total cost value always has alfyefunction for both cases of
assignments. All item assignment combinations geeerated, these are called

scenarios, and the expected cost value calculated for eaehasio.
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The steps of the solution procedure, of a one-kadpsvo-item-type problem would
be:

1. compute all possible item assignments,

2. estimate the objective values among all scenaaias,

3. increase number of item type and repeat step 1

The motivation of our research involves securitgpiection of packages at the
airports. Packages are categorized into two grdugh-risk and low-risk. The high-
risk packages require more inspection time. Theative is to minimize total expected
cost of packages inspected, and a penalty costisred if the given time is not fully

utilized or over-utilized.

5.2 Notations

The problem can be described either in terms oédulng jobs or item assignment.
Here, C which normally represents the knapsack capacityatso mean the available
machine time in case of job processing, or ressuesailable to processors.Cmax

would then mean the processing time of the lastgslbcompared to the maximum
assigned weight in case of knapsack assignmentshoW loss of generality, we can
present the problem using the following notatiomsilar to job scheduling in a

production planning environment.

First, we assume the processing timé; ior one realization of the processing time of
each job and; is the value for the other realization of the mssing time of the job.

The expected processing time is defined as E[T].
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Objective function = minimize expected total pepalbst.
n = number of jobs

p; = processing time of jop

o; = probability associated with selection of job

A1 = penalty for each unit time for under-utilization

A2 = penalty for each unit time for over-utilization

¢ = set of all possible scenarios

C = total available machine time/resources

Cmax = completion time of the last assigned job

5.3 Mathematical Formulation for n-job-1-processor Case

The objective is to minimize expected total penaligt of processing a set of items.
Items were assigned by selecting the number ofsitémat generates the minimum
penalty cost. Since each item has two possibleasies, for a set af items, there are

2" possible scenarios.

The mathematical formulation can be described b®ifs:

Minimize )" S [4 maxC — 5,0 + 4, MaxCy., — C.0)] (5.1)

keg

S, = the probability that the" scenario will happen

o=

max

completion time of last job under scendsio

ko _
max

C Z pjk for all k € g where pjk = the processing time for jghn scenari.
J
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n = number of items waiting for service
For the case that all items are the same type, that34; with probabilityo. andp; = t;

with probabilityle. Then to assign jobs, we will gen+1scenarios.

For an n-job problem, this problem can be written as:
nn
f(n) = Z(kjak @A-a)"*{A, maxC -ct_ .0) + 4, maxc’_ —CO0)} (5.2)
k=0

Where,

ck  =tk+t,(n—K)

For instance, in the following, we list a two-item case.

Table 4: The two possible realizations of each item

Processing time for | Processing time for
Probability
the first item the second item
Scenario 1 ty t; o’
Scenario 2 ty t2 20 (1-0)
Scenario 3 to t (1- o)?
The 2-job type can be represented mathematical as below:
2 2 k 2-k k k
f@=> J A-a)* {1, maxC -c’_.0) + 4, maxc’,, - C0)} (5.3)
k=0

If the completion time of all scenarios is less tkathen
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2 (2

f@=2 {kjak (1-a)"{4.(C~Crad} (5.4)
k=0

If the completion time of all scenarios is greater tGathen

2,(2
f =z(kjak(1— @) {2, Chox =)} (55)

5.4 n-job-1-processor Numerical Example

Each job has two possible processing times of 16 andadh with the
probabilities 0.2 and 0.8 respectively. The results arersimthe obtained table.

Tables 5 and 6 show the worksheet derived for this ¢ypgroblem. It was
noted, from the results, that the values obtained started teasecrafter an initial
descent. This makes us conclude that the results couldilwresex structure after this

behavior was repeatedly obvious for some other assigrsoenarios as well.
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Table 5: 2-job assignment results for selection of 2, B,ahd 6 items
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5.5 Job Assignment Scenarios

A job assignment may consist of several scenarios. G&easgos would be
under-utilized most of the time at the start of job assignmehter the initial steps,
the assignment of an additional job to any of the scenar&s result either in that
scenario to be still under-utilized or over-utilized.

An example of a typical job assignment with 5 scenaBgs$, S5, S, S, that

are under-utilized is shown as follows:

Figure 2: Typical Job Assignment Scenarios

The current objective function for this setup is
SAd, + S;4d; + Si4,d; + S4d, + SA4d; (5.6)

d=C-c _fori=1to5

1 max
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<—d; —

t;

)

(1-a)

Figure 3: Addition of a job to the current assignmerfafith n jobs

To prove the convexity of the value function, we first gmal an example
corresponding to scenario 3. Assume we have assigjodd and we plan to assign the
n+1" job. For instance, supposing jok1 is added tds, this makes the objective

value of this scenario to be

max{1,S,x(d, -t* ,),,Sa(t, —d.)}

(5.7)
+max{4 S, - a)(d, —t2,,), ,S, - a)(t2,, — d.)}

where,

t: . =processing time of job+1 with probabilityo

t?, = processing time of job+1 with probability le

Assuming all assignments ogeXceed available time of resources, this leads to

lzssa(trlm —-d;) + 4,50~ a)(tn2+1 —d,) (5.8)
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In general, if for both scenarios after the assignmettianii+1" job, the resource limit
(time limit C) is not reached, we ha¥é (n+1)— f *(n) = -4, S,E[T]. (5.9)
If f>(n)>C,then we havef *(n+1) - f *(n) = 1,S,E[T]. (5.10)
Otherwise, if f *(n) < C, we analyze the following cases:
(1) if for both scenarios after assignment of the "hjdb, the resource limit (time
limit C) is not reached, we ha¥e (n+1) — f =(n) =-4,S,E[T]. (5.11)
(2) if only one assignment exceeded the capacity and the ditheot, without loss
of generality, we assunte,, <t® . Then,
f2(n+1) - f2(n) = 4Sa(d; ~ t,.1) + 4,5, A~ a)(ty, — d;) — 4,S,ds. (5.12)
(3) if both assignments exceed the capacity, then we have

f2(n+1)~f2(n) = L,Sa(ty,, — ds) + 4,5, (- a)(tr, — d;) — 4,S,0s. (5.13)

5.6 Convexity of Cost Function

It was noticeable during experiment and testing that the costidanhas
convexity properties, hence in this section, we prove thatctst functionf(n), is

convex.

To prove convexity, we need to show that for each stenae have

afs(n)_afs(n—l)>0 (5.14)
on on '

this is equivalent to proving that

f*(n+2)—f°(n+) > f*(n+) - f3(n)> f°(n)— f°(n-1). (5.15)
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Note here, if f °(n) > C,then we have increment of inserting each additional job after

job n to bed,SE[T]. If f°(n)<C,then we have increment of inserting each additional

job before joln to be — 4, SE[T], which is less thaa,SE[T]. The conclusion holds for

both ends.

In the following, we only need to prove that the conclusiadsfor steps in-between.

Without loss of generality, we can assurhgn) < C. After adding one additional job,

we only need to consider two cases.

Case 1. We have the total finish time of one scenario lalger C and the total

finishing time of the other scenario smaller ti@nas shown in Figure 3. Under this

case, we have

f°(n+)-f°(nN)=-4Sat, +4,S A-a)(t, —d;) - A4S (1-a)d,.

Note here, for notation brevity, we usénstead oft: , andt, instead oft’ ,.
Then, we can observe that,

f*(n+1)-f° (n)=-4,Sat, +1,SL-a)(t, —d;) - 4,SL-a)d, >

- 4,Sat; + 4,SA-a)(d; —t,) -4, SA-a)d, = -4, SE[T].

Similarly, we can observe that

f°(n+)-f°(nN)=-4Sat, +1,S L-a)(t, —d,)-4S 1-a)d, <

A,SA-a)t, < A,SA-a)t, + A,Sat, = 4, SE[T].

Case 2: We have the total completion times of both realizatioger IthanC.

this case, we have

f5(n+1) - f5(n) = 4,Sa(t, —d,) + 4,SL-a)(t, — d,).
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It is easy to see that
f(n+1) - f*(n)=A,Sa(t, —d,;)+ 1,SA-a)(t, —d,;) > 0> -1, SE[T] (5.20)
and

f*(n+1 - f°(n)=4,Sa(t, —d;)+ A,SA-)(t, —d,)

< A,Sat, + 4,S1-a)t, = L,E[T]. G.21)
This conclusion also holds.

In the following, we only need to show that

fs(n+2)— f3(n+1) > f5(n+1) - f5(n) (5.22)

For the above case 1, sinéé(n+2)- f°(n+1) > f°*(n+1) - f °(n)is obvious for case
2.
In order to show f°(n+2)- f°(n+1) > f°(n+1) - f°(n) holds for case 1, if

2t, — d, > 0,then we have

f*n+2)- f*(n+) =LSa@-a)t, + L,SAL-a)1- a)t, + ,Saa (2t, —d,)
+L,Sa - o)t +t, —d;) — 4,Sa(d; - t)) (5.23)
= ,Sa (2, —d,) + 1,S(L-a)t, — 4,Sa(d, - 1)

Under this case, in order to shoW’(n+2)— f°(n+21) > f°(n+1) - f*(n),we only
need to prove that

,Sa(2t, —d;) + 4,51 a)t, — 4,Sa(d; - 1)
> —1,Sat, + 4,5 a)(t, — dy) — 4SL—)ds.

(5.24)
Since 2t, —d, >0 according to our assumption aidS(1—- «)d, > 0,we only need to
prove that4,Sat, — 4,Sa(d, —t,) > -4,S(1—- «)d,. (5.25)
It is equivalent to provel, Se (2t, —d,) > 0> -4,S(1- a)d.. (5.26)

It is easy to see that the above inequality halises?t, > d,and 4,S1—«)d, > 0.
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Thus, the conclusion holds.

If 2t, <d,,then we have

fs(n+2)- f5(n+1) = L,Sa - a)t, + 4,SA-a)L-at, — 4, Saat,
+ 4,Sa - a)t, +t, —dy) - A Sa (- a)(d, —t,).

We need to prove that

ALSa(l-a)t, + L,SA-a)1-a)t, — 4,Saat;
+ 2,Sal-a)(t, +t,— d) - Sa (- 2)(d; -t)
> -4,Sat, + ,SA-a)(t, —d;) - 4,Sa (1- a)d,

That is, we need to prove

A,Sa (- a)t, — 4, Saat, + A,Sa (- a)(t, — d,)
- 4Sa@-a)(d;—-t,) 2 -4,Sat, - 1,S1-a)d, - 4,SA-a)d,.

Thus, we want to show

(i) 2,Sa@-a)t, + A,Sa (- a)({t, —d;) + 4,S1-a)d, >0

and

(i) 4,Sat, — 4, Saat, + 4,SA- a)d, — 4,Sa(@- a)(d, —t;) > 0 valid.
Sinced, > a(d, —t,) and a > &?, (ii) is valid.

We also have

ot, +a(t, —d,))+d, =2at, + 1-)d, > 201, + 20— a)t, = 2t, > 0.
Therefore, (i) holds.

We also can conclude the function is convex.
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5.7 Then-job m-processor Problem

This is the extension of thejob-1-processor problem discussed earlier. This
problem involvesm number of inspectors, amdnumber of packages withnumber of
possible outcomes. The objective of the problerto iminimize the expected penalty
cost for all inspectors. Each job will go througie-scan to visualize the processing
time of the job. Therefore, the processing timeaxh type of package is known before
assignment, and dependent on the probability ofstiection of that package. Two
kinds of problems were formulated in this categor@ne is to find the maximum
number of packages that could be assigned witlgiven time limit. The other is to

minimize the total penalty cost for all inspecttosa given number of packages.

5.7.1 Maximize the Number of Packages and MinimizBenalty Cost

Packages are assigned to the inspectors basedeoantbunt of resources
available. The next package is assigned to thpeater with the largest available
resources. This is done to achieve a sequentattion of available resources to each
inspector. This will in turn lead to the minimiiat of penalty incurred. There is a
penalty for both under-utilization and over-utilimam of resources. In this problem,

only the under-utilization penalty was considered.

The following notations were used throughout thiendt@n of this problem:

n = total number of packages
m = total number of inspectors

| = possible outcomes for all packages
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p, = inspection time of packagevith outcomd
o, = probability associated witlp,

C = total available resources for each inspector
A1 = unit penalty cost for under-utilization

A2 = unit penalty cost for over-utilization

c¢' = competition time of the last job in inspection

5.8 Then-job m-processor Problem Formulation

Objective function of this problem is to minimiZeetexpected penalty cost for

all inspectors. This can be formulated as below:

min. Zm:[i I ZI: a.a o, {A,maxC-c' 0)+ 1, max(' —C,O)}J (5.33)
iT\S151 51
st. iZ::xij =1 j=1...n.
x; € {01}, i=1..m  j=1..n
c :ji:;‘)qj Pis, i=1..m

X, = packagg is assigned to inspector

p, = inspection time of packagevith outcomd

c = Xi1Pris, + Xi2Pas, +-oo-F X Prs,

Since only the under-utilization of resources waissidered for this problem, the

formulation can be simplified as:
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min. i[lz I Iz a,ag o, A maxC-c ,O)J (5.34)

$=1S,=1 S§,=1
This formulation is subject to the same set of tamnds as the one above, but with only

the under-utilization penalty cost

5.9 The Solution Method for then-job m-processor Problem

We use the sampling approximation average methabliee the problem. To
obtain the average value, we take samples andndibiiaverage value of these samples
as the approximation of the objective function ealurhe solution of each sample will
involve the assignment of packages to inspectot# alh inspectors have been fully
utilized. The Largest Unutilized Capacity FirktUCF) rule was again utilized in the
solution to solve each sample.

Each sample can be solved using the following &lyoic steps:
Initialize P = N, R =M, ¢ = 0 (utilized space)C (available resources). For notation
brevity, we letp; represent the realized processing tipyefor somes based on the
sampling result.
(1) Pick a packaggfrom P
(2) Select an inspectowith min ()
(3)Ifc+p>c

(a) Remove inspectofromR

(b) Go to Step (2)
(4) Otherwise assign packapg® inspectoi, remove packagefrom P and update' =
c+p

(5) If eitherR or P is nonempty, go to Step (1).
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(6) Otherwiseterminate the algorithr

These steps are representecthe flowchart below:

Is this
processor
fully
utilized?

Yes

Are all
processors
fully
utilized?

Yes

Figure 4: Algorithmic steps of tr1® SKPPCProblem
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5.10 Numerical Example Data Generation

We test the case that each job has two possibleagons. For instancés2.

Uncorrelated package were generated with processimasp; uniformly distributed in

[10, 100], and capacities uniformly distributed ir{OAZ p,/m06> p, /m} fori =1,
=1 -1

n m-1
m-1. The capacity of the” knapsack was set m, {0.52 p, —Zc]} . Note here,
i1 i-1

p; represents the expected processing time. Bas#udsonve also assunmg; uniformly
distributed in [10, 100]. The average of all cafes was then calculated for equal
resources amongst all inspectors. A random nursbgenerated to determipeto be

P for somes=1 or 2. If the random number is less than thenp; = pj;. Otherwise,

p= po. All data generated were made integers exceptHerprobabilistic values.

Finally, we sef equal to 1.

The following conditions must be satisfied forfalimulations:
(1) ps > 0 and integers for gll
(2) ¢ > 0 and integer for all

(3) min, . {p;5} <min{c)

(4) max; . { p;s;} < max{c}

(S)i p>max{c}
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5.11 Numerical Example Results

As described in the previous section, each packagewo possible processing
times with each having its own probability of beeggigned. A number was generated
between 0 and 1 to determine the processing tineadt job.

The proposed. UCF was used to assign job after pre-scan. Assignmwast
stopped once none of the packages left can be taccbp any inspector without being
over-utilized. The penalty was calculated for epeatkage/inspector combinations.
One hundred samples were computed for each condnrextd the average penalty and
capacity utilization were calculated. We testesesawith package sizes to be 25, 50,
100, and 200 and they are assigned to 2, 3, S1@muspectors respectively.

Table 7 shows the results obtained for the varigeckage/inspector
combinations. The actual expected penalty costsrerorded in the table. It was
observed that the larger the ratin, the better the results produced.

Table 7: Results of*1ISKPPC Problem.

# of Inspectors # of Packages Solution

m n Penalty Cost % Utilization

2 25 1.66 97.49
50 0.11 99.17
100 0.00 99.63
200 0.00 99.85

3 25 6.02 95.11
50 0.79 98.52
100 0.02 99.41
200 0.00 99.77

5 25 23.50 90.69
50 6.04 96.78
100 0.58 98.95
200 0.01 99.58

10 25 107.17 74.48
50 45.42 90.77
100 10.81 97.06
200 1.04 99.05
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Chapter 6

Inspection Problem — an SKPPC Problem

6.1 Introduction

Inspection of packages or containers at an inbquwidt, security check of
passengers at the airports, inspection of goods samdices, in general, require
allocation of resources. In this section, we foduserr attention on inspection of
packages where each package can be classifiedhagh-aisk and low-risk package

depending on a set of factors determining the levaisk for the package. Let,

denote the probability that a package is of typeherel=1, 2 represent high-risk and
low-risk packages, respectively. Ligtdenote the processing time for packagé type

[. Assumingm inspectors an€ time units of maximum inspection time per inspecto
the problem is to determine the number of inspsctord number of packages to be
assigned to each inspector in a way that the ezgeetiue of the total inspection cost is
minimized. The total inspection cost is definedtls weighted cost of the under-
utilization and over-utilization of the inspectadsring the inspection period;. We
next formulate the problem as a stochastic knapgsoklem and discuss solution

methodology.

6.2 Problem Formulation

As discussed in the previous chapter, the inspegifoblem can be formulated

as follows:
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= (6.1)
st. D% =1, j=1..n
i=1
X; {01}, i=1...m, j=1...n
c'=> %P =1..m
j=1
where,

X; = package is assigned to inspector

c¢' = total inspection time for inspectounder scenari§.

For ann-package andainspectorinspection problem, there will B& package arrival
combinations with each package being either higlowtrisk type. Each inspector may
inspect none or all packages provided that the supackages inspected by all of the
inspectors equal. Let § denote the number of packages inspected by ingpewiith

probability o; of occurrence. Thengg ag .. is the probability of a scenario. As an

example, consider a 4-package, 2-inspector probldmre are 8 possible inspection
sequences with 1 and 2 indicating high-risk and-tisk packages, respectively. These

combinations are:

PRRPRRRRERE
NNNNPR PR P
NNRFRPRNNPR P
NFEFNRNRENP
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There are 5 scenarios for each inspector as shelewb

Table 8: Scenarios for 2-inspector, 4-package assgts

Scenarios Inspector 1 Inspector 2
1 0 packages 4 packages
2 1 package 3 package
3 2 packages 2 packages
4 3 packages 1 package
5 4 packages 0 packages

For the sake of simplicity, let's refer to Scenafioas the scenario where
inspector 2 inspects all the packages. SimiladysIredefine the rest of the scenarios.
Scenarios 4 and 5 will have same probability ofuo@nce and same objective function
value as Scenarios 1 and 2, hence will not be atggrcalculated. Let the objective

function value contributed by a scenario be ingéidatyZ (j,n— j). This means that

out of n inspected packagepjpackages are inspected by inspector 1, and thdyes

inspector 2.

6.3 Algorithm

An algorithm was developed to solve any instarfd@ie problem involving any

number of inspectors, any number of packages wihdkage types.

6.3.1 Notations

n = numbers of packages inspected
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m = numbers of inspectors

o, = probability associated with assignment of paekiygel

a, = probability associated with assignment of paekiyge?2

p: = inspection time for package type

p2 = inspection time for package tyge

C = time available for inspection

Z* = optimal scenario, scenario with the minimumatohspection cost
S = scenaria

G = inspection cost of scenailio

6.3.2 Steps of the Algorithm

Sep 1. Initialize the variables, m, a1, az, p1, p2, C, Z*, S, G
Sep 2: Compute all possible package arrival combinatians fand all possible
feasible scenarios fan.
Sep 3: Calculate the penalty costfor S.
Sep 4: Recordz(S) for the minimunt;.
If Z(S) <Z*, replacez* with Z(S).
If S is the last scenario, go to Step 5, else go tp Ste
Sep 5: Recordz(S).
All computations of the algorithm were perform@dMATLAB. The number
of packages to be inspected, number of inspeqtoobabilities of selection, processing
times of packages, time available to inspectors, the utilization penalties were all

initially specified at the beginning of the MATLA&bde.
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The unique combinations of package assignmentheascomputed, and stored
in an array, with the probability for each assignime

The total penalty cost for all scenarios was thaltulated, and the table of
results generated. The data was then exported BEXGCEL for the graphical
representation.

The problems of assignment of 15 packages wekedalithin minutes. This
was repeated for different values of the variabls®st graphs for data representation
were produced in EXCEL, with just a handful in MAAB. This was because of the
easier data manipulation in EXCEL to quickly adjaggraphical output to showcase a

different data set.

6.4 Numerical Example

The under-utilization penalty,;, and the over-utilization penalty), are
constants such thag+ A, =1.

An inspection problem considering two-package syp&h inspection timep;
andp, of 16 and 1 and probabilities anda, of selection 0.2 and 0.8, respectively was
formulated, solved using MATLAB and EXCEL and rdsutabulated as shown in
Table 9. The number of packages assigned ranged3rto 10, although the program
is able to give results for any number of packag&le table below shows the results
obtained for five values of the utilization penadtiwith capacity (inspection time) of 20
time units. The results in the table were the lmdgéctive function value for each
scenario. Note that, the best solution for eadtarpater value combinations occur,

when the packages are distributed equally amongn8pectors. This is logical since
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one does not know the type of the package to jgeated until the inspection is done
on the package and that the inspectors have samenaof inspection time available to
them. Hence both the packages and inspectors asdeoed indistinguishable by this
problem.

Table 9: Penalty Cost Results for Some Scenaritisdifferent utilization penalty

pl=16,p2=1,prob1=0.2,prob2=0.8
capacity =20
n Al=0.1 A1=0.2 A1=0.3 Al=04 A1=05

Z3(1,2) 3 6.0800 8.8800 11.6800 14.4800
Z42,2) 4 3.3600 8.1600 10.5600 12.9600
Z5(2,3) 5 3.9520 5.9520 7.9520 9.9520 11.9520
Z4(3,3) 6 4.5440 6.1440 9.3440 10.9440
Z4(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352
Zg(4,4) 8 6.7264 7.5264 8.3264 9.9264
Zy(4,5) 9 8.2784 8.6784 9.0784 9.4784 9.8784
Z10(5,5) 10 9.8304 9.8304 9.8304 9.8304

From the table above, the minimum penalty cosefeh problem as a function of the
penalty cost is highlighted. The scenario with imiim penalty cost suggested that 10
packages would yield minimum penalty cost for aopgm with equal utilization value.
Assignment of five packages to each inspectorbalthe best assignment for this case.
Other problems were formulated and solved for wericombinations of the
input parameter values. Table 10 contains resutts 2y 3 and 4 inspectors. Figure 5
illustrates graphs for the expected total inspectiosts as a function of the number of
packages inspected when the under-utilization aseal-otilization costs are penalized
equally. It can be seen from the graphs that tipeebed total penalty cost increases as
the number of inspectors increase. For the 2-ctep@roblem, the minimum penalty

cost of 9.8304 came from scenadq(5, 5). The minimum penalty cost of 14.7456
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resulted from scenarid;s(5, 5, 5) for the 3-inspector problem. The questime can
pose is; if 15 packages are to be inspected dwritigme period, is it better to have 2
inspectors or 3 inspectors? In general, whatasogtimal number of inspectors needed
as a function of number of packages to be insp@cted

Table 10: Total cost as a functionrohndm

pl=16, | probl=0.2,
p2=1 prob2 =0.8 k=20 Al1=0.1

n m=2 m=3 m=4

3 14.4800 24.0000 34.0000
4 12.9600 22.4800 32.0000
5 11.9520 20.9600 30.4800
6 10.9440 19.4400 28.9600
7 10.4352 18.4320 27.4400
8 9.9264 17.4240 25.9200
9 9.8784 16.4160 24.9120
10 9.8304 15.9072 23.9040
11 10.5852 15.3984 22.8960
12 11.3400 14.8896 21.8880
13 12.3963 14.8416 21.3792
14 13.4526 14.7936 20.8704
15 14.7396 14.7456 20.3616
16 16.0265 15.5004 19.8528
17 17.4897 16.2552 19.8048
18 18.9528 17.0100 19.7568
19 20.5501 18.0663 19.7088
20 22.1475 19.1226 19.6608
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Figure 5: Expected total inspection cost versasdm

It can be seen from Figure 5 that the expected pataalty cost is convex as a
function ofn. As m increases the value afwhich gives the minimum expected total
inspection cost increases. For the 2-inspector lpnobthe minimum penalty cost of
9.8304 came from scenarfyo (5, 5). The minimum penalty cost of 14.7456 resiilt
from scenariaZ;s (5, 5, 5) for the 3-inspector problem. SimilarBg, (5, 5, 5, 5) gives
the minimum cost for the 4-inspector problem. Thaimal number of jobs to be
assigned to each inspector is 5. For the exampjdajied by Table 10 and Figure 5, if
number of items to be inspected during an inspeqteriod is less than 15, then using
two inspectors will give the minimum expected cotthe number of packages
inspected is more than 20, then 4 inspectors wi# the minimum expected cost. One
needs to run the algorithm with more than 20 paekdg determine when it is best to

add another inspector.
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6.5 Experimental Results
Experiments were run with various values of prenes times, capacities
(maximum inspector time), utilization penalty, gomdportion of high-risk and low-risk

items. The next sections discuss results for pachmeter variation.

6.5.1 Changes in Capacities

The experiments were run by varying the maximurailakle inspector time,
also referred to as capacity, Each inspector was assumed to have the sameityapa
ranging from 20 to 50 time units. These capac#lu®s were chosen arbitrarily. The
following tables and graphs illustrate results@sr 20, 30, 40, and 50.

Table 11: Capacity of 20 results for 5 value&. of

pl1=16,p2=1,prob1=0.2,prob2=0.8
capacity =20
n A1=0.1 Al=0.2 A1=0.3 A1=04 A1=05
z3(1,2) | 3 3.2800 6.0800 8.8800 11.6800 14.4800
Z42,2) | 4 3.3600 5.7600 8.1600 10.5600 12.9600
Z5(23) | 5 3.9520 5.9520 7.9520 9.9520 11.9520
Z6(3,3)| 6 4.5440 6.1440 7.7440 9.3440 10.9440
Z7(34) | 7 5.6352 6.8352 8.0352 9.2352 10.4352
Z8(4,4)| 8 6.7264 7.5264 8.3264 9.1264 9.9264
Z9(4,5) | 9 8.2784 8.6784 9.0784 9.4784 9.8784
Z10(5,5) | 10 9.8304 9.8304 9.8304 9.8304 9.8304
Z11(5,6) | 11 12.1852 11.7852 11.3852 10.9852 10.5852
712(6,6) | 12 14.5400 13.7400 12.9400 12.1400 11.3400
Z13(6,7) | 13 17.1963 15.9963 14.7963 13.5963 12.3963
Z14(7,7) | 14 19.8526 18.2526 16.6526 15.0526 13.4526
Z15(7,8) | 15 22.7396 20.7396 18.7396 16.7396 14.7396
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Figure 6: Graph for capacity of 20 results for fuea ofi,
Table 12: Capacity of 30 results for 5 value&.of
pl1=16,p2=1,prob1=0.2,prob2=0.8
capacity =30
n A1=01 | A1=02 | A1=03 | A1=04 | A1=05

z3(1,2) | 3 4.8800 9.6800 | 14.4800 | 19.2800 | 24.0800

Z4(2,2) | 4 4.5600 8.9600 | 13.3600 | 17.7600 | 22.1600

z52,3) | 5 4.5120 8.5120 | 12.5120 | 16.5120 | 20.5120

Z6(3,3) | 6 4.4640 8.0640 | 11.6640 | 15.2640 | 18.8640

Z7(34) | 7 4.7872 7.9872 | 11.1872 | 14.3872 | 17.5872

z8(4,4) | 8 5.1104 7.9104 | 10.7104 | 13.5104 | 16.3104

Z9(45) | 9 5.8432 8.2432 | 10.6432 | 13.0432 | 15.4432
710(5,5) | 10 6.5760 8.5760 | 10.5760 | 12.5760 | 14.5760
711(5,6) | 11 7.7184 9.3184 | 10.9184 | 125184 | 14.1184
712(6,6) | 12 8.8608 | 10.0608 | 11.2608 | 12.4608 | 13.6608
z13(6,7) | 13 10.3899 | 11.1899 | 11.9899 | 12.7899 | 13.5899
Z14(7,7) | 14 11.9189 | 123189 | 12.7189 | 13.1189 | 13.5189
Z15(7,8) | 15 13.7993 | 13.7993 | 13.7993 | 13.7993 | 13.7993
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Table 13: Capacity of 40 results for 5 value&.of
pl=16,p2=1,prob1=0.2,prob2=0.8
capacity =40
n AM=01 | A1=02 | A1=03 | A1=04 | A1=05

Z3(1,2) | 3 6.8000 | 13.6000 | 20.4000 | 27.2000 | 34.0000

Z4(2,2) | 4 6.4000 | 12.8000 | 19.2000 | 25.6000 | 32.0000

Z5(2,3) | 5 6.0640 | 12.0640 | 18.0640 | 24.0640 | 30.0640

Z6(3,3) | 6 57280 | 11.3280 | 16.9280 | 22.5280 | 28.1280

Z7(34) | 7 55328 | 10.7328 | 15.9328 | 21.1328 | 26.3328

Z8(4,4) | 8 5.3376 | 10.1376 | 14.9376 | 19.7376 | 24.5376

Z9(4,5) | 9 5.3536 9.7536 | 14.1536 | 18.5536 | 22.9536
Z10(5,5) | 10 5.3696 9.3696 | 13.3696 | 17.3696 | 21.3696
Z11(5,6) | 11 5.6518 9.2518 | 12.8518 | 16.4518 | 20.0518
Z212(6,6) | 12 5.9341 9.1341 | 12.3341| 155341 | 18.7341
Z13(6,7) | 13 6.5194 9.3194 | 12.1194 | 14.9194 | 17.7194
Z14(7,7) | 14 7.1048 9.5048 | 11.9048 | 14.3048 | 16.7048
Z15(7,8) | 15 8.0125 | 10.0125 | 12.0125| 14.0125| 16.0125
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Figure 8: Graph for capacity of 40 results for fuea ofi,
Table 14: Capacity of 50 results for 5 value&. of
pl1=16,p2=1,prob1=0.2,prob2=0.8
capacity =50
n A1=01 | A1=02 | A1=03 | A1=04 | A1=05
Z3(1,2) | 3 8.8000 17.6000 26.4000 35.2000 | 44.0000
Z4(2,2) | 4 8.4000 16.8000 25.2000 33.6000 | 42.0000
Z52,3) | 5 8.0000 16.0000 24.0000 32.0000 | 40.0000
76(3,3) | 6 7.6000 15.2000 22.8000 30.4000 38.0000
Z7(34) | 7 7.2224 14.4224 21.6224 28.8224 36.0224
78(4,4) | 8 6.8448 13.6448 20.4448 27.2448 34.0448
Z9(4,5) | 9 6.5280 12.9280 19.3280 25.7280 32.1280
Z10(5,5) | 10 6.2112 12.2112 18.2112 24.2112 30.2112
Z11(5,6) | 11 6.0838 11.6838 17.2838 22.8838 28.4838
Z712(6,6) | 12 5.9565 11.1565 16.3565 21.5565 26.7565
Z713(6,7) | 13 6.0503 10.8503 15.6503 20.4503 25.2503
Z14(7,7) | 14 6.1441 10.5441 14.9441 19.3441 23.7441
Z715(7,8) | 15 6.5014 10.5014 14.5014 18.5014 22.5014
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Figure 9: Graph for capacity of 50 results for fuea ofi,

The increase in capacity resulted in increasberpenalty cost in all cases. This
was to be expected since there is more resourcaitalale to the inspectors. The
resulting minimum penalty cost for each value.plas also changed. For example, the
minimum penalty cost changed from 3.2800 to 4.4®40.,=0.1 for capacities 20 and
30 respectively. The resulting assignment alssmgéd fromZ3(1,2) for capacity 20 to

Zs(3,3) for capacity 30. Similar observations weo#icged for other values.

6.5.2 Changes in Probabilities

The design of experiment was next formulated foanging values in the
probabilities of selection of the 2 package types.capacity of 20 time units was

chosen, with all other variables constant. The gbdly of selection of package type 1
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used were chosen as 0.2, 0.3, 0.4, and 0.5. Tlosviog tables and graphs resulted
from that experiment.

Table 15: Package type 1 probability of 0.2 redalt$ values o,

pl=16,p2=1,capacity=20
prob1=0.2
n Al=0.1 A1=02 | A1=03 | A1l=04 A1l=0.5

z3(1,2) | 3 3.2800 6.0800 11.6800 14.4800

Z42,2) | 4 3.3600 5.7600 8.1600 10.5600 12.9600

7z5(2,3) | 5 3.9520 5.9520 7.9520 9.9520 11.9520

Z6(3,3) | 6 4.5440 6.1440 7.7440 9.3440 10.9440

Z734) | 7 5.6352 6.8352 8.0352 9.2352 10.4352

z8(4,4) | 8 6.7264 7.5264 8.3264 9.1264 9.9264

Z9(4,5) | 9 8.2784 8.6784 9.0784 9.4784 9.8784
Z10(5,5) | 10 9.8304 9.8304 9.8304 9.8304 9.8304
Z11(5,6) | 11 12.1852 | 11.7852 | 11.3852 10.9852 10.5852
712(6,6) | 12 14.5400 | 13.7400 | 12.9400 12.1400 11.3400
Z713(6,7) | 13 17.1963 | 15.9963 | 14.7963 13.5963 12.3963
Z14(7,7) | 14 19.8526 | 18.2526 | 16.6526 15.0526 13.4526
Z15(7,8) | 15 22.7396 | 20.7396 | 18.7396 16.7396 14.7396
Zn* ——A1=01 —8—i1=02
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Figure 10: Graph for Package type 1 probabilitQ.@f results for 5 values @f
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Table 16: Package type 1 probability of 0.3 redalt$ values o,

pl=16,p2=1,capacity=20
prob1=0.3
n Al=0.1 A1l=02 | A1=0.3 A1=0.4 A1 =0.5
Z3(1,2) | 3 3.4300 5.7800 8.1300 10.4800 12.8300
Z42,2) | 4 3.9600 5.7600 7.5600 9.3600 11.1600
Z52,3)| 5 5.5430 6.7930 8.0430 9.2930 10.5430
Z6(3,3) | 6 7.1260 7.8260 8.5260 9.2260 9.9260
Z7134) | 7 9.6162 9.7662 9.9162 10.0662 10.2162
Z8(4,4) 8 12.1064 | 11.7064 | 11.3064 10.9064 10.5064
Z9(4,5) 9 15.3243 | 14.3743 | 13.4243 12.4743 11.5243
Z10(5,5) | 10 18.5421 | 17.0421 | 15.5421 14.0421 12.5421
Z11(5,6) | 11 22.6181 | 20.5681 | 18.5181 16.4681 14.4181
Z12(6,6) | 12 26.6942 | 24.0942 | 21.4942 18.8942 16.2942
Z13(6,7) | 13 31.0677 | 27.9177 | 24.7677 21.6177 18.4677
Z14(7,7) | 14 35.4412 | 31.7412 | 28.0412 24.3412 20.6412
Z15(7,8) | 15 40.0124 | 35.7624 | 31.5124 27.2624 23.0124
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Figure 11: Graph for Package type 1 probabilitQ.&fresults for 5 values af
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Table 17: Package type 1 probability of 0.4 redalt$ values o,

pl=16,p2=1,capacity=20
prob1=0.4
n Al=0.1 A1=0.2 A1=0.3 Al=04 Al=0.5
z3(3,2) | 3 3.8200 5.7200 7.6200 9.5200 11.4200
Z4(2,2) | 4 5.0400 6.2400 7.4400 8.6400 9.8400
75(2,3) | 5 7.9560 8.4560 8.9560 9.4560 9.9560
Z6(3,3) | 6 10.8720 10.6720 10.4720 10.2720 10.0720
Z7(34)| 7 15.0552 14.1552 13.2552 12.3552 11.4552
Z8(4,4)| 8 19.2384 17.6384 16.0384 14.4384 12.8384
Z9(45)| 9 24.2856 21.9856 19.6856 17.3856 15.0856
Z10(5,5) | 10 29.3328 26.3328 23.3328 20.3328 17.3328
Z11(5,6) | 11 35.1196 31.4196 27.7196 24.0196 20.3196
712(6,6) | 12 40.9064 36.5064 32.1064 27.7064 23.3064
Z713(6,7) | 13 46.9171 41.8171 36.7171 31.6171 26.5171
Z14(7,7) | 14 52.9278 47.1278 41.3278 35.5278 29.7278
Z15(7,8) | 15 59.0655 52.5655 46.0655 39.5655 33.0655
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Figure 12: Graph for Package type 1 probabilitQ dfresults for 5 values af
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Table 18: Package type 1 probability of 0.2 redalt$ values o,

pl=16,p2=1,capacity=20
prob1=0.5
n Al=0.1 A1=0.2 A1=0.3 Al=0.4 Al=0.5
Z3(3,2) | 3 4.4500 5.9000 7.3500 10.2500
Z4(2,2) | 4 6.6000 7.2000 7.8000 8.4000 9.0000
75(2,3) | 5 11.1250 10.8750 10.6250 10.3750 10.1250
Z6(3,3) | 6 15.6500 14.5500 13.4500 12.3500 11.2500
Z7(34) | 7 21.6750 19.7250 17.7750 15.8250 13.8750
z8(4,4) | 8 27.7000 24.9000 22.1000 19.3000 16.5000
Z9(4,5) | 9 34.5688 30.9188 27.2688 23.6188 19.9688
Z10(5,5) | 10 41.4375 36.9375 32.4375 27.9375 23.4375
Z11(5,6) | 11 48.8375 43.4875 38.1375 32.7875 27.4375
712(6,6) | 12 56.2375 50.0375 43.8375 37.6375 31.4375
Z713(6,7) | 13 63.7703 56.7203 49.6703 42.6203 35.5703
Z14(7,7) | 14 71.3031 63.4031 55.5031 47.6031 39.7031
Z15(7,8) | 15 78.8984 70.1484 61.3984 52.6484 43.8984
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Figure 13: Graph for Package type 1 probabilitQ.&f results for 5 values af
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The changes in the probability of selection ofka@e types had different effect
on the results as compared to the changes notici iprevious section. Most penalty
cost values were increased as the value;pthe probabilty of selection of item 1
increases. The only exception to this trends(4,2), the assignment of 3 items. The
penalty cost values reduces fqr = 0.3, 0.4, and 0.5 for tables 15, 16, 17 and &

highlighted values in the tables show this trend.

6.5.2 Changes in Processing Times

The processing times for both package types watied to see the effect on the
solutions for the same five values)gfwith capacity of 20, and probabilities of 0.2, and
0.8 respectively for the package types. The follmMables and graphs resulted from
that experiment.

Table 19: Processing times of 16 and 1 results faalues of\,

prob1=0.2,prob2=0.8,capacity=20
pl=16,p2=1
A1=0.1 A1=0.2 A1=0.3 A1=04 A1=05

n
z3(1,2) | 3 3.2800 6.0800 8.8800 11.6800 14.4800
Z422) | 4 3.3600 5.7600 8.1600 10.5600 12.9600
7z5(2,3) | 5 3.9520 5.9520 7.9520 9.9520 11.9520
76(3,3) 6 4.5440 6.1440 7.7440 9.3440 10.9440
Z7(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352
z8(4,4) | 8 6.7264 7.5264 8.3264 9.1264 9.9264
Z9(4,5) | 9 8.2784 8.6784 9.0784 9.4784 9.8784
Z10(5,5) | 10 9.8304 9.8304 9.8304 9.8304 9.8304

Z11(5,6) | 11 12.1852 11.7852 11.3852 10.9852 10.5852
712(6,6) | 12 14.5400 13.7400 12.9400 12.1400 11.3400
Z13(6,7) | 13 17.1963 15.9963 14.7963 13.5963 12.3963
Z14(7,7) | 14 19.8526 18.2526 16.6526 15.0526 13.4526
Z15(7,8) | 15 22.7396 20.7396 18.7396 16.7396 14.7396
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Figure 14: Graph for processing times of 16 aneslilts for 5 values 0f;

Table 20: Processing times of 14 and 3 results falues of.,

prob1=0.2,prob2=0.8,capacity=20

pl=14,p2=3
n A1=0.1 A1=0.2 A1=0.3 A1=04 A1=0.5
Z3(4,2) | 3 2.7600 5.2000 7.6400 10.0800 12.5200
Z4(2,2) | 4 2.5600 4.4800 6.4000 8.3200 10.2400
7Z5(2,3) | 5 2.9520 4.3520 5.7520 7.1520 8.5520
Z6(3,3) 6 3.3440 4.2240 5.1040 5.9840 6.8640
Z7(3,4) 7 5.6688 6.0288 6.3888 6.7488 7.1088
Z8(4,4)| 8 7.9936 7.8336 7.6736 7.5136 7.3536
Z9(45)| 9 11.0352 10.3552 9.6752 8.9952 8.3152
Z10(5,5) | 10 14.0768 12.8768 11.6768 10.4768 9.2768
Z11(5,6) | 11 17.6427 15.9227 14.2027 12.4827 10.7627
712(6,6) | 12 21.2086 18.9686 16.7286 14.4886 12.2486
Z13(6,7) | 13 25.3643 22.6043 19.8443 17.0843 14.3243
Z14(7,7) | 14 29.5200 26.2400 22.9600 19.6800 16.4000
Z15(7,8) | 15 34.2000 30.4000 26.6000 22.8000 19.0000
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Figure 15: Graph for processing times of 14 anesBilts for 5 values 0f;

Table 21: Processing times of 12 and 5 results falues of.;

prob1=0.2,prob2=0.8,capacity=20
pl=12,p2=5
n A1=0.1 A1l=0.2 A1=0.3 A1=04 A1=05
Z3(1,2) | 3 2.2400 4.3200 6.4000 8.4800 10.5600
Z4(2,2) | 4 1.7600 3.2000 4.6400 6.0800 7.5200
Z5(2,3) | 5 2.7200 3.5200 4.3200 5.1200 5.9200
Z6(3,3)| 6 3.6800 3.8400 4.0000 4.1600 4.3200
Z7(34) | 7 6.8800 6.4000 5.9200 5.4400 4.9600
Z8(4,4)| 8 10.0800 8.9600 7.8400 6.7200 5.6000
Z945) | 9 15.8400 14.0800 12.3200 10.5600 8.8000
Z10(5,5) | 10 21.6000 19.2000 16.8000 14.4000 12.0000
Z11(5,6) | 11 27.3600 24.3200 21.2800 18.2400 15.2000
Z12(6,6) | 12 33.1200 29.4400 25.7600 22.0800 18.4000
Z13(6,7) | 13 38.8800 34.5600 30.2400 25.9200 21.6000
Z14(7,7) | 14 44.6400 39.6800 34.7200 29.7600 24.8000
Z15(7,8) | 15 50.4000 44.8000 39.2000 33.6000 28.0000
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Figure 16: Graph for processing times of 12 aneshilts for 5 values 0f;

Table 22: Processing times of 10 and 7 results faalues of\,

prob1=0.2,prob2=0.8,capacity=20
p1=10,p2=7
n A1=0.1 Al1=0.2 A1=0.3 A1=04 A1=05
z3(31,2) | 3 1.7200 3.4400 5.1600 6.8800 8.6000
Z42,2) | 4 0.9600 1.9200 2.8800 3.8400 4.8000
7z5(2,3) | 5 3.0000 3.2000 3.4000 3.6000 3.8000
Z6(3,3) | 6 5.0400 4.4800 3.9200 3.3600 2.8000
zZ7134) | 7 11.8800 10.5600 9.2400 7.9200 6.6000
z8(4,4) | 8 18.7200 16.6400 14.5600 12.4800 10.4000
Z9(4,5) | 9 25.5600 22.7200 19.8800 17.0400 14.2000
Z10(5,5) | 10 32.4000 28.8000 25.2000 21.6000 18.0000
Z11(5,6) | 11 39.2400 34.8800 30.5200 26.1600 21.8000
712(6,6) | 12 46.0800 40.9600 35.8400 30.7200 25.6000
Z13(6,7) | 13 52.9200 47.0400 41.1600 35.2800 29.4000
Z14(7,7) | 14 59.7600 53.1200 46.4800 39.8400 33.2000
Z15(7,8) | 15 66.6000 59.2000 51.8000 44.4000 37.0000
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Figure 17: Graph for processing times of 10 anestilts for 5 values of;

The results obtained for changing the processmgdiof the package types had

decrease in penalty costs for some assignmentsarghse for some. The assignment

of up to 6 items all had reductions in the corresjiiog values between tables, while the

rest of the tables show increasing data valuesdmtwubsequent tables for selection of

7 to 15 items. This pattern was observed for @b values recorded.

6.6 Further Experimentation

Further experiments were conducted to see whichallar has the most

significant effect on the penalty cost. Therefange variable is changed at a time while
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the others were kept constant. The focus was @pithcessing times and the available
resources or capacity. The probabilities were lkaptstant at 0.2 and 0.8 for the

package types 1 and 2 respectively, whike\,= 0.5 for all recorded results.

6.6.1 Changing p with p; constant

Processing time for package type 2 was increaselg Weping that of type 1
constant, and the processing time of package tywasldecreased with that of type 2
constant. Five capacity values of 20, 25, 30,a8f6, 40 were used. The tables with the

graphs on the next pages were recorded.

Table 23: p1=16, p2=1 values for 5 capacities

pl=16,p2=1
n k=20 k=25 k=30 k=35 k =40

Z3(1,2) | 14.4800 | 19.2800 | 24.0800 | 29.0000 | 34.0000
Z4(2,2) | 12.9600 | 17.5600 | 22.1600 | 27.0000 | 32.0000
75(2,3) | 11.9520 | 16.2320 | 20.5120 | 25.1040 | 30.0640
Z6(3,3) | 10.9440 | 14.9040 | 18.8640 | 23.2080 | 28.1280
Z7(3,4) | 10.4352 | 14.0112 | 17.5872 | 21.5088 | 26.3328
Z8(4,4) | 9.9264 | 13.1184 | 16.3104 | 19.8096 | 24.5376
Z9(4,5) | 9.8784 | 12.6608 | 15.4432 | 18.3792 | 22.9536
Z10(5,5) | 9.8304 | 12.2032 | 14.5760 | 16.9488 | 21.3696
Z11(5,6) | 10.5852 | 12.1552 | 14.1184 | 16.0816 | 20.0518
Z12(6,6) | 11.3400 | 12.1072 | 13.6608 | 15.2144 | 18.7341
Z13(6,7) | 12.3963 | 12.4295 | 13.5899 | 14.7502 | 17.7194
Z14(7,7) | 13.4526 | 12.7518 | 13.5189 | 14.2861 | 16.7048
Z15(7,8) | 14.7396 | 13.3991 | 13.7993 | 14.1994 | 16.0125
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Figure 18: Graphical representation of Table 21

Table 24: p1=16, p2=3 values for 5 capacities

pl=16,p2=3

20

25

30

35

40

Z3(1,2)
Z4(2,2)
75(2,3)
76(3,3)
27(3,4)
Z8(4,4)
Z9(4,5)
710(5,5)
Z11(5,6)
712(6,6)
713(6,7)
Z14(7,7)
715(7,8)

12.0800
9.7600
8.9120
8.0640
8.5088
8.9536

10.1152

11.2768

12.9627

14.6486

16.9243

19.2000

22.0000

16.8800
14.3600
12.4240
10.4880
9.2688
8.0496
8.8016
9.5536
10.9118
12.2700
14.0739
15.8777
18.0066

21.6800
18.9600
16.7040
14.4480
12.8448
11.2416
10.3552

9.4688

9.6801

9.8915
11.4332
12.9749
14.8941

26.6000
23.8000
21.1040
18.4080
16.4208
14.4336
13.1376
11.8416
11.2501
10.6586
10.7323
10.8060
12.1485

31.6000
28.8000
26.0640
23.3280
20.7840
18.2400
16.2272
14.2144
13.2133
12.2122
11.8927
11.5732
11.8776
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Figure 19: Graphical representation of Table 22

Table 25: p1=16, p2=>5 values for 5 capacities

pl=16,p2=5

20

25

30

35

40

Z3(1,2)
Z4(2,2)
75(2,3)
76(3,3)
Z7(3,4)
28(4,4)
79(4,5)
710(5,5)
Z11(5,6)
212(6,6)
713(6,7)
Z14(7,7)
Z15(7,8)

10.0000
7.2000
6.9600
6.7200
7.7600
8.8000

14.4800
11.1600
9.0000
6.8400
7.3680
7.8960

12.4000
16.0000
19.6000
23.2000
26.8000
30.4000
34.0000

9.4480
11.0000
14.6000
18.2000
21.8000
25.4000
29.0000

19.2800
15.7600
12.8960
10.0320
8.5120
6.9920
8.1344
9.2768
11.2384
13.2000
16.8000
20.4000
24.0000

24.2000
20.6000
17.2960
13.9920
11.6784
9.3648
8.4592
7.5536
9.1875
10.8214
13.1107
15.4000
19.0000

29.2000
25.6000
22.0640
18.5280
15.5424
12.5568
10.8320

9.1072

8.7750

8.4429
10.4700
12.4972
15.0486
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Figure 20: Graphical representation of Table 23

Table 26: p1=16, p2=7 values for 5 capacities

pl=16,p2=7

20

25 30

35

40

Z3(1,2)
Z4(2,2)
75(2,3)
Z6(3,3)
Z7(3,4)
28(4,4)
Z9(4,5)
710(5,5)
Z11(5,6)
712(6,6)
713(6,7)
Z14(7,7)
715(7,8)

8.2400
5.2800
5.8400
6.4000

12.0800 16.8800
7.9600 12.5600
6.7280  9.0880
5.4960 5.6160

10.8000
15.2000
19.6000
24.0000
28.4000
32.8000
37.2000
41.6000
46.0000

7.8480  6.2272
10.2000 6.8384
14.6000 10.4192
19.0000 14.0000
23.4000 18.4000
27.8000 22.8000
32.2000 27.2000
36.6000 31.6000
41.0000 36.0000

21.8000
17.4000
13.4880
9.5760
7.7552
5.9344
7.4672
9.0000
13.4000
17.8000
22.2000
26.6000
31.0000

26.8000
22.4000
18.0640
13.7280
10.6080

7.4880

7.3824

7.2768
10.0384
12.8000
17.2000
21.6000
26.0000
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Figure 21: Graphical representation of Table 24

Table 27: p1=16, p2=9 values for 5 capacities

pl=16,p2=9

20

25

30

35

40

Z3(1,2)
Z4(2,2)
Z5(2,3)
Z6(3,3)
Z7(3,4)
28(4,4)
79(4,5)
710(5,5)
Z11(5,6)
712(6,6)
713(6,7)
Z14(7,7)
715(7,8)

6.4800

3.3600

7.2800
11.2000
16.4000
21.6000
26.8000
32.0000
37.2000
42.4000
47.6000
52.8000
58.0000

9.6800
4.7600
5.4800
6.2000
11.4000
16.6000
21.8000
27.0000
32.2000
37.4000
42.6000
47.8000
53.0000

14.4800
9.3600
6.8160
4.2720
7.9360

11.6000

16.8000

22.0000

27.2000

32.4000

37.6000

42.8000

48.0000

19.4000
14.2000
9.6800
5.1600
5.8800
6.6000
11.8000
17.0000
22.2000
27.4000
32.6000
37.8000
43.0000

24.4000
19.2000
14.1600
9.1200
6.9984
4.8768
8.4384
12.0000
17.2000
22.4000
27.6000
32.8000
38.0000
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Figure 22: Graphical representation of Table 25

Increasing the processing times of package 2 vkakping that of 1 constant
resulted in more increased number of correspordiatg values between the tables. For
example, the recorded values for capacity of 4Qlted in decrease in all values
between table 23 and 24, while 2 vales increasesdeea tables 24 and 25. Five data
values increased between tables 25 and 26, anti@sviacreased in tables 26 and 27.
Generally, a total of 12, 25, 36, and 45 penaltEincreased respectively between the

tables. This trend is shown on the tables withutderlined numbers.
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6.6.2 Changing p with p, constant

Processing time for package type 1 was decreaséd kdeping that of type 2

constant. Five capacity values of 20, 25, 30aB%6, 40 were used.
The tables with the graphs following were recorded

Table 28: p1=14, p2=1 values for 5 capacities

pl=14,p2=1
20 25 30 35 40
Z3(1,2) 14.9200 19.7200 24.6000 29.6000 34.6000
Z4(2,2) 13.4400 18.0400 22.8000 27.8000 32.8000
Z5(2,3) 12.3600 16.6400 21.0960 26.0560 31.0160
Z6(3,3) 11.2800 15.2400 19.3920 24.3120 29.2320
Z7(3,4) 10.6224 14.1984 17.8704 22.6944 27.5184
Z8(4,4) 9.9648 13.1568 16.3488 21.0768 25.8048
Z9(4,5) 9.7168 12.4992 15.2816 19.6512 24.2256
Z10(5,5) 9.4688 11.8416 14.2144 18.2256 22.6464
Z11(5,6) 9.5976 11.5608 13.5240 17.0437 21.2597
Z12(6,6) 9.7265 11.2801 12.8337 15.8618 19.8730
Z13(6,7) 10.1895 11.3499 125103 14.9585 18.7239
Z14(7,7) 10.6526 11.4198 12.1869 14.0551 17.5748
Z15(7,8) 11.7396 11.8042 12.2044 13.4486 16.6931

40
—0—20
=25
35
AN 30
N R =35
R =3ie=40
R R
25 +—
20 Ra TSNS
0 *‘h-._ ;‘"#
5 T
DO PP P DD DD DS NN B
A A R AR A A

Figure 23: Graphical representation of Table 26
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Table 29: p1=12, p2=1 values for 5 capacities

pl=12,p2=1
20 25 30 35 40
Z3(1,2) 15.3600 20.2000 25.2000 30.2000 35.2000
Z4(2,2) 13.9200 18.6000 23.6000 28.6000 33.6000
Z5(2,3) 12.7680 17.0880 22.0480 27.0080 32.0000
Z6(3,3) 11.6160 15.5760 20.4960 25.4160 30.4000
Z7(3,4) 10.8096 14.3856 19.0560 23.8800 28.8128
Z8(4,4) 10.0032 13.1952 17.6160 22.3440 27.2256
Z9(4,5) 9.5552 12.3376 16.3488 20.9232 25.6768
Z10(5,5) 9.1072 11.4800 15.0816 19.5024 24.1280
Z11(5,6) 9.0033 10.9665 14.0356 18.2516 22.6519
Z12(6,6) 8.8993 10.4529 12.9896 17.0008 21.1758
Z13(6,7) 9.1100 10.2703 12.1975 15.9629 19.8103
Z14(7,7) 9.3206 10.0878 11.4054 14.9251 18.4448
Z15(7,8) 9.8091 10.2093 10.8847 14.1291 17.3736
40
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Figure 24: Graphical representation of Table 27
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Table 30: p1=10, p2=1 values for 5 capacities

pl=10,p2=1
20 25 30 35 40
Z3(1,2) 15.8000 20.8000 26.4000 30.8000 35.8000
Z4(2,2) 14.4000 19.4000 25.2000 29.4000 34.4000
7Z5(2,3) 13.1760 18.0400 24.0000 28.0000 33.0000
Z6(3,3) 11.9520 16.6800 22.8000 26.6000 31.6000
Z7(3,4) 10.9968 15.4176 21.6032 25.2080 30.2000
Z8(4,4) 10.0416 14.1552 20.4064 23.8160 28.8000
Z9(45) 9.3936 13.0464 19.2256 22.4512 27.4096
Z710(5,5) 8.7456 11.9376 18.0448 21.0864 26.0192
Z11(5,6) 8.4089 11.0275 15.2435 19.7769 24.6585
712(6,6) 8.0722 10.1173 14.1285 18.4674 23.2978
Z13(6,7) 8.0304  9.4365 13.2020 17.2460 21.9944
Z14(7,7) 7.9886  8.7558 12.2755 16.0245 20.6911
715(7,8) 8.2142 8.6144 115652 14.9243 19.4762
40
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Figure 25: Graphical representation of Table 28
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Table 31: p1=8, p2=1 values for 5 capacities

pl=8,p2=1

20

25

30

35 40

Z3(1,2)
Z4(2,2)
75(2,3)
76(3,3)
Z7(3,4)
28(4,4)
Z9(4,5)
710(5,5)
Z11(5,6)
712(6,6)
713(6,7)
Z14(7,7)
715(7,8)

16.4000
15.2000
14.0320
12.8640
11.7792
10.6944
9.7440
8.7936
8.0193
7.2451
6.9508
6.6566
6.6193

21.4000
20.2000
19.0000
17.8000
16.6112
15.4224
14.3184
13.2144
12.2353
11.2563
10.4410

9.6258

9.0013

26.4000
25.2000
24.0000
22.8000
21.6032
20.4064
19.2256
18.0448
16.9019
15.7590
14.6816
13.6042
12.6219

31.4000 36.4000
30.2000 35.2000
29.0000 34.0000
27.8000 32.8000
26.6000 31.6000
25.4000 30.4000
24.2016 29.2000
23.0032 28.0000
21.8116 26.8020
20.6201 25.6041
19.4454 24.4141
18.2708 23.2241
17.1737 22.0525
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Figure 26: Graphical representation of Table 29
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Increasing the processing times of package 1 wWkakping that of 2 constant
resulted in lesser decreased number of correspgraiita values between the tables.
For example, the recorded values for capacity ofe&hilted in 7 decreases between
table 28 and 29, while 4 vales decreased betwddest29 and 30. Seventeen data
values decreased between tables 28 and 29, araldgs\decreased in tables 29 and 30.
Generally, a total of 17, 12, and 5 penalty cosisrehsed respectively between the

tables. This trend is shown on the tables withuthéerlined numbers.

6.7 Results and Analysis
Recall thaZ (j,n—j) wherej = 0, 1, . . ,n, refers to the objective function

value for each problem. As one would expect, ti@mal penalty cost occurred when
the packages were equally distributed among theinspectors for even number of

packages. For odd number of packages, minimallfyenast occurred when one

inspector inspects one more package than the offieas is Zn(g'g) resulted in the

minimum penalty cost for even n values an,q(nT_l,nTJrl) was always minimal for

odd n values. A further look at the 2-inspectorppem with a change in the processing
time of package type 2 from 1 time units to 3 tiomets with all other variables held

constant yielded the graph below:
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Figure 27: Graph of 2-inspector problem withincreased to 3

The graph above shows a decrease in the optimettolg function value from
9.8304 to 8.0640, with optimal scenario changirmgnfZ,o(5, 5) toZs(3, 3). This is to
be expected since the processing time for bothgmeskis bigger than in the previous
problem, meaning fewer packages could be inspactéd same time period.

The variables all had different effects on the sotu of the problems. The
effects all depend on the problem formulated. @Gdhespeaking penalty costs values
will increase faster, if the larger processing timessigned the bigger probability of
selection. The same cannot be confirmed for obsngpenalty function, capacity, and
processing time. The most noticeable and conhsféect is the convex property of all

results recorded for all data sets.
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Chapter 7

Conclusions and Further Research

7.1 Conclusions

In this research, motivated by Knapsack Probleni?)(Kve looked at various
KP methods, models, and applications.

We developed a new method for solviliKAR, multiple knapsack problems
with assignment restrictions, a variant of thKP (multiple knapsack problems).
Efficient results were obtained by implementing hotthe developed algorithm, and
existing ones. Nine existing assignment procedui#is the developed oné,UCF —
largest unutilized capacity first, were implementedseveral generatdP (knapsack
problems) and the initial feasible solutions for @oblems recorded. These results
were compared using three measurement yardstitks;ninimum, average, and
maximum values returned by each procedure. Thssigrament procedures including
LUCF procedure showed the most promising results incaégories. TheUCF
algorithm was among the best greedy assignmentaaidtir obtaining initial starting
feasible solutions for the problems solved, andchetould be implemented in any
multiple knapsack problems where an initial feasgalution is required.

Tabu search was employed to improve on the irfe@asible results obtained for
the MKAR by the ten assignment procedures. This was daoté through three major
procedures. The main procedure was to get the fbastble solution from all the

assignment procedures. The intensification proeetas three parts to obtain the best
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solution possible, and the diversification procedwas to ensure that other solutions
are explored. The implementation of tabu searolcquiure led to improvement on the
MKAR's initial feasible solutions every time. The onéxceptions occur when
maximum capacity utilization was the initial sobrti obtained by any of the tens
procedures employed.

Also, motivated by airport security package insjpect Stochastic Knapsack
Problem with Penalty Cost (SKPPC), a variant of SEi®chastic knapsack problem),
was formulated and studied. Formulations weretecefor both the 1-processor, and
m-processor set-ups. The problem involves the sefeof two-item types, and two
kinds of problem were investigated. The first wasfind the maximum number of
packages that would be assigned within a time geribhe second problem looked at
involves maximizing both the number of packagesgassl and the minimum number
of inspectors that would be required. The mairedibye for both problems was to
minimize the expected penalty costs. Penalty isosicurred for both under-utilization
and over-utilization of resources. The variablethe problems were varied to see their
effects on the solutions obtained. These inclidenges in the processing times of the
package types, the probabilities of selection ef phocessing times of package types,
the penalty cost function, and the resources availto the inspectors. All recorded
data were also graphed for visual presentationasatlysis. The objective to minimize
the total expected penalty cost was easily achideedall problems solved. The
research also includes a proof of the convexitypery exhibited by this particular

problem.
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7.2 Further Research

Further research could be done on MKAR in termnafing a single algorithm
to solve the problem to near optimality as quiclily possible, rather than using an
improvement procedure on an initial feasible soluti

The number of item types for the SKPPC could beea®ed to accommodate
various kinds of problems of that nature. The acpenalty function), should be
assigned a real value to see its effect on resbt@ned. A complete enumeration of a
problem should involve both the penalty cost fronder-utilization, over-utilization,

and inventory cost on unassigned items.
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Appendix A
MATLAB Code for the Assignment Algorithms
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clear

% # of items and knapsacks

n = input ( ' enter total number of packagess: ' );
disp( " " )

m = input ( ' enter number of inspectors: ' );
disp( "' )

r =input ( ' enter number of replications/run: ' );
knaprt = [J;

knaprs = zeros (r,10); % storage for knapsack residual space

cap = zeros (r,m); % storage for knapsack capacity

cond = zeros (1,r); % storage for conditions

knaprsum = zeros (1,10); % storage for sum of knapsack unutilized
space

% whiler >0

% generating item weights

a = ceil(random( 'unif 10, 100, n, 1));

w = a;

w = sort (w); % item weights sorted in ascending order

% generating item processing times probabilities
p = vpa((random( ‘'unif  , 0.1, 0.8, n, 1)),1);

% f = item weights
%f=-1*w;

al =0.4* (sum(w)/m)
a2 = 0.6 * (sum(w)/m)

% generating similar knapsack capacities

a = (random( ‘unif ,al, a2, m-1, 1))

a(m, 1) = 0.5 * sum(w) - sum (a)

c = ceil(a)

c=sort (c) % knapsack capacities sorted in ascending order

cap (r,:)=c'

if max (w) <= min (c) & min (c) >= min (w) & sum (w) > max (c);
cond (1,r)=1

end

% b = capacities
% b=c;

% generating A

A=l

for i=1:m
A=[A;wT];

end
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% storing the items sorted in ascending order
iteml = zeros(n,2);
for i=1:n
iteml (i, 1) =;
iteml (i, 2) =w (i, 1);
end
iteml; % items sorted in ascending order

% adding knapsack restrictions to items sorted in a scending order
d1 = [item1 b];
w = w(n:-1:1); % item weights sorted in descending order

% storing the items sorted in descending order
item2 = zeros(n,2);
for i=1:n
item2 (i, 1) =;
item2 (i, 2) =w (i, 1);
end
item2; % items sorted in descending order

% adding knapsack restrictions to items sorted in d escending order
d2 = [item2 b];

% storing the knapsacks sorted in ascending order
knapcl = zeros(m,2);
for i=1:m
knapcl (i, 1) =1i;
knapcl (i, 2) =c (i, 1);
end
knapcl; % knapsacks sorted in ascending order

¢ = c¢(m:-1:1); % knapsack capacities sorted in descending order
% storing the knapsacks sorted in descending order
knapc2 = zeros(m,2);
for i=1:m
knapc2 (i, 1) =i;
knapc2 (i, 2) =c (i, 1);
end
knapc2; % knapsacks sorted in descending order

% residual capacities storage
knapr = zeros (10,m);

% MODEL 1

% storage location for knapsack assignment
aknapl = [zeros(n ,1) item1 zeros(n ,1)];
knapl = knapcl;

% assignment of items to knapsacks
k=1,
for i=1:n

for j=km
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if iteml (i, 2) <=knapl (j, 2)
aknap1l (i, 1) = knapl (j, 1);
knapl (j, 2) = knapl (j, 2) - aknapl
aknap1l (i, 4) = knapl (j, 2);

if j<m
k=j+1;
else
k=1;
end
break
elseif j<m
continue
end
end
end
aknapi;
for i=1:m
knapr (1, i) = knapl (i, 2);
end

aknapl % model 1 knapsack assignment
% MODEL 2

% storage location for knapsack assignment
aknap2 = [zeros(n ,1) item1 zeros(n ,1)];
knap2 = knapcl;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if iteml (i, 2) <=knap2 (j, 2)
aknap?2 (i, 1) = knap2 (j, 1);
knap2 (j, 2) = knap2 (|, 2) - aknap2
aknap? (i, 4) = knap2 (j, 2);
if j<m
k=j;
else
k=1,
end
break
elseif j<m
continue
end
end
end

aknap2;

for i=1:m
knapr (2, i) = knap2 (i, 2);
end
aknap2 % model 2 knapsack assignment
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% MODEL 3

% storage location for knapsack assignment
aknap3 = [zeros(n ,1) item1 zeros(n ,1)];
knap3 = knapc2;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if iteml (i, 2) <=knap3(j, 2)

aknap3 (i, 1) = knap3 (j, 1);

knap3 (j, 2) = knap3 (j, 2) - aknap3

aknap3 (i, 4) = knap3 (j, 2);

if j<m

break
elseif j==m
k=1;
end
end
end

aknap3;

for i=1:m
knapr (3, i) = knap3 ((m+1)-i, 2);
end
aknap3 % model 3 knapsack assignment

% MODEL 4

% storage location for knapsack assignment
aknap4 = [zeros(n ,1) item1 zeros(n ,1)];
knap4 = knapc2;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if iteml (i, 2) <=knap4 (j, 2)

aknap4 (i, 1) = knap4 (j, 1);

knap4 (j, 2) = knap4 (|, 2) - aknap4

aknap4 (i, 4) = knap4 (j, 2);

if j<m

else
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break

elseif j==m
k=1,
end
end
end
aknap4;
for i=1:m
knapr (4, i) = knap4 ((m+1)-i, 2);
end

aknap4 % model 4 knapsack assignment

% MODEL 5

% storage location for knapsack assignment
aknap5 = [zeros(n ,1) item2 zeros(n ,1)];
knap5 = knapcl;

% assignment of items to knapsacks

k=1,
for i=1:n
for j=km
if item2 (i, 2) <= knap5 (j, 2)
aknap5 (i, 1) = knap5 (j, 1);
knap5 (j, 2) = knap5 (j, 2) - aknap5
aknap5 (i, 4) = knap5 (j, 2);
if j<m
k :j +1;
else
k=1,
end
break
elseif j<m
continue
end
end
end
aknapb5;
for i=1:m
knapr (5, i) = knap5 (i, 2);
end

aknap5 % model 5 knapsack assignment

% MODEL 6

% storage location for knapsack assignment
aknap6 = [zeros(n ,1) item2 zeros(n ,1)];
knap6 = knapc1;
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% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if item2 (i, 2) <= knap6 (j, 2)
aknap6 (i, 1) = knap6 ( j, 1);
knap6 (j, 2) = knapé (|, 2) - aknap6
aknap6 (i, 4) = knap6 (j, 2);
if j<m
k=j
else
k=1,
end
break
elseif j==m
k=1,
end
end
end

aknapé;

for i=1:m
knapr (6, i) = knap6 (i, 2);
end
aknap6 % model 6 knapsack assignment

% MODEL 7

% storage location for knapsack assignment
aknap?7 = [zeros(n ,1) item2 zeros(n ,1)];
knap7 = knapc2;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if item2 (i, 2) <=knap7 (j, 2)

aknap? (i, 1) = knap7 (j, 1);

knap7 (j, 2) = knap7 (j, 2) - aknap7

aknap? (i, 4) = knap7 (j, 2);

if j<m

break
elseif j<m
continue
end
end
end
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aknap7;

for i=1:m
knapr (7, i) = knap7 ((m+1)-i, 2);
end
aknap7 % model 7 knapsack assignment

% MODEL 8

% storage location for knapsack assignment
aknap8 = [zeros(n ,1) item2 zeros(n ,1)];
knap8 = knapc2;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if item2 (i, 2) <=knap8 (j, 2)
aknap8 (i, 1) = knap8 (j, 1);
knap8 (j, 2) = knap8 (|, 2) - aknap8
aknap8 (i, 4) = knap8 (j, 2);
if j<m
k=j;
else
k=1,
end
break
elseif j==m
k=1,
end
end
end

aknaps;

for i=1:m
knapr (8, i) = knap8 ((m+1)-i, 2);
end
aknap8 % model 8 knapsack assignment

% MODEL 9

% storage location for knapsack assignment
aknap9 = [zeros(n ,1) item1 zeros(n ,1)];
knap9 = knapc2;

% assiginment of items to knapsacks
for i=1:n
knap9 = sortrows(knap9,[2]);
for j=m:-1:1
if iteml (i, 2) <=knap9 (j, 2)
aknap9 (i, 1) = knap9 (j, 1);
knap9 (j, 2) = knap9 (j, 2) - aknap9
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aknap9 (i, 4) = knap9 (j, 2);
break
elseif j>1
continue
end
end
end

aknap9;
for i=1:m
knapr (9, i) = knap9 ((m+1)-i, 2);
end
aknap9 % model 9 knapsack assignment
% MODEL 10
% storage location for knapsack assignment
aknapl0 = [zeros(n ,1) item2 zeros(n ,1)];

knapl10 = knapc2;

% assignment of items to knapsacks

for i=1:n
knap10 = sortrows(knap10,[2]);
for j=m:-1:1

if item2 (i, 2) <= knap10 (j, 2)
aknap10 (i, 1) = knap10 (j, 1);

knap10 (j, 2) = knapl10 (j, 2) - aknap 10 (i, 3);
aknap10 (i, 4) = knapl0 (j, 2);
break
elseif j>1
continue
end
end
end
aknapl0;
for i=1:m
knapr (10, i) = knap10 ((m+1)-i, 2);
end

aknapl0 % model 10 knapsack assignment
% Knapsack residual capacities for all models
knapr

knaprs (r, :) = knaprs (r,:) + sum(knapr")
knaprsum = knaprsum + knaprs (r, :)

% Storing residual capacities for all models + knap sack capacities

knapr = knapr’;
knapr = horzcat(knapr, knapcl(:,2));
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knaprt = vertcat(knaprt , knapr)

end

knaprx(1,1) = min (knaprsum);
knaprx(1,2) = mean (knaprsum);
knaprx(1,3) = max (knaprsum);

knaprx;

capsum = sum(sum(cap));

all(cond)

wklwrite( 'knapsac.xls' ,knaprs)

% wklwrite('knapA.xIs' , A)
% wklwrite('knapC.xls', c)

wklwrite( 'knapCap.xIs' , cap)
wklwrite(  'knapsum.xls' , knaprsum)
wklwrite( 'knaprt.xIs' , knaprt)
wklwrite( 'Capsum.xls' , capsum)
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Appendix B

MATLAB Code for The Tabu-Seach Implemataion in

MKAR
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clear

% # of items and knapsacks

n = input ( ' enter total number of items: ' );
disp( " " )

m = input ( ' enter number of knapsacks: );
disp( "' )

r=1 %input (' enter number of replications/run: );

disp( "' )

knaprt = [J;

knaprs = zeros (r,10); % storage for knapsack residual space
cap = zeros (r,m); % storage for knapsack capacity

cond = zeros (1,r); % storage for conditions

knaprsum = zeros (1,10); % storage for sum of knapsack unutilized
space

while r>0

% generating item weights

a = ceil(random( ‘'unif 10, 100, n, 1));

w = a;

w = sort (w); % item weights sorted in ascending order

% generating assignment restriction
b = ceil(random( 'unif, 0, m, n, m));

% f = item weights
%f=-1*w;

% generating profits
% a = ceil(random('unif', 10, 100, n, 1));
% p=a;

al = 0.4 * (sum(w)/m)
a2 = 0.6 * (sum(w)/m)

% generating similar knapsack capacities

a = (random( ‘'unif ,al, a2, m-1, 1))

a(m, 1) =0.5* sum(w) - sum (a)

¢ = ceil(a)

c= sort (c) % knapsack capacities sorted in ascending order

cap (r,:)=c'

if max (w) <= min (c) & min (c) >= min (w) & sum (w) > max (c);
cond (1,r)=1

end

% b = capacities
%b=c;

% generating A
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% storing the items sorted in ascending order
item1 = zeros(n,2);

for i=1:n

iteml (i, 1) =1i;

iteml (i, 2) =w (i, 1);
end

iteml; % items sorted in ascending order

% adding knapsack restrictions to items sorted in a scending order
d1 = [item1 b];
w = w(n:-1:1); % item weights sorted in descending order

% storing the items sorted in descending order
item2 = zeros(n,2);

for i=1:n

item2 (i, 1) =1i;

item2 (i, 2) =w (i, 1);
end

item2; % items sorted in descending order

% adding knapsack restrictions to items sorted in d escending order
d2 = [item2 b];

% storing the knapsacks sorted in ascending order
knapcl = zeros(m,2);

for i=1:m
knapcl (i, 1) =i;
knapcl (i, 2) =c (i, 1);
end

knapcl; % knapsacks sorted in ascending order

c =c(m:-1:1); % knapsack capacities sorted in descending order
% storing the knapsacks sorted in descending order
knapc2 = zeros(m,2);

for i=1:m
knapc2 (i, 1) =1i;
knapc2 (i, 2) =c (i, 1);
end

knapc2; % knapsacks sorted in descending order
% residual capacities storage

knapr = zeros (10,m);

% MODEL 1

% storage location for knapsack assignment
aknapl = [zeros(n ,1) item1 zeros(n ,1) b];
knapl = knapcl;
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% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if (aknapl (i, 3) <=knapl (j, 2)) & (any(knapl(j,1

aknapl(i,5:4+m)))

aknap1l (i, 1) = knapl (j, 1);

knapl (j, 2) = knapl (], 2) - aknapl

aknap1l (i, 4) = knapl (j, 2);

if j<m
k :j +1;
else
k=1;
end
break
elseif j<m
continue
end
end
end
aknapi;
for i=1:m
knapr (1, i) = knapl (i, 2);
end

aknapl % model 1 knapsack assignment
% MODEL 2

% storage location for knapsack assignment
aknap2 = [zeros(n ,1) item1 zeros(n ,1) b];
knap2 = knapcl;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if (aknap2 (i, 3) <= knap2 (j, 2)) & (any(knap2(j,1
aknap2(i,5:4+m)))
aknap?2 (i, 1) = knap2 (j, 1);
knap2 (j, 2) = knap2 (|, 2) - aknap2
aknap? (i, 4) = knap2 (j, 2);
if j<m
k=j
else
k=1,
end
break
elseif j<m
continue
end
end
end
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aknap2;

for i=1:m
knapr (2, i) = knap2 (i, 2);
end
aknap2; % model 2 knapsack assignment

% MODEL 3

% storage location for knapsack assignment
aknap3 = [zeros(n ,1) item1 zeros(n ,1) b];
knap3 = knapc2;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if (aknap3 (i, 3) <= knap3 (j, 2)) & (any(knap3(j,1

aknap3(i,5:4+m)))

aknap3 (i, 1) = knap3 (j, 1);

knap3 (j, 2) = knap3 (j, 2) - aknap3

aknap3 (i, 4) = knap3 (j, 2);

if j<m

elseif j==m
k=1;
end
end
end

aknap3;

for i=1:m
knapr (3, i) = knap3 ((m+1)-i, 2);
end
aknap3; % model 3 knapsack assignment

% MODEL 4

% storage location for knapsack assignment
aknap4 = [zeros(n ,1) item1 zeros(n ,1) b];
knap4 = knapc2;

% assignment of items to knapsacks
k=1,
for i=1:n

for j=km
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if (aknap4 (i, 3) <= knap4 (j, 2)) & (any(knap4(j,1
aknap4(i,5:4+m)))
aknap4 (i, 1) = knap4 (j, 1);
knap4 (j, 2) = knap4 (j, 2) - aknap4
aknap4 (i, 4) = knap4 (j, 2);
if j<m
k=j;
else
k=1,
end
break
elseif j==m
k=1,
end
end
end

aknap4;

for i=1:m
knapr (4, i) = knap4 ((m+1)-i, 2);
end
aknap4; % model 4 knapsack assignment

% MODEL 5

% storage location for knapsack assignment
aknap5 = [zeros(n ,1) item2 zeros(n ,1) b];
knap5 = knapcl;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if (aknap5 (i, 3) <= knap5 (j, 2)) & (any(knap5(j,1

aknap5(i,5:4+m)))

aknap5 (i, 1) = knap5 (j, 1);

knap5 (j, 2) = knap5 (j, 2) - aknap5

aknap5 (i, 4) = knap5 (j, 2);

if j<m
k=j+1;
else
k=1;
end
break
elseif j<m
continue
end
end
end
aknap5;
for i=1:m
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knapr (5, i) = knap5 (i, 2);
end
aknap5; % model 5 knapsack assignment

% MODEL 6

% storage location for knapsack assignment
aknap6 = [zeros(n ,1) item2 zeros(n ,1) b];
knap6 = knapcl;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if (aknap6 (i, 3) <= knapb (j, 2)) & (any(knap6(j,1
aknap6(i,5:4+m)))
aknap6 (i, 1) = knap6 (j, 1);
knap6 (j, 2) = knap6 (|, 2) - aknap6
aknap6 (i, 4) = knap6 ( j, 2);
if j<m
k=j;
else
k=1,
end
break
elseif j==m
k=1,
end
end
end

aknapé6;

for i=1:m
knapr (6, i) = knap6 (i, 2);
end
aknap6; % model 6 knapsack assignment

% MODEL 7

% storage location for knapsack assignment
aknap? = [zeros(n ,1) item2 zeros(n ,1) b];
knap7 = knapc2;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if (aknap7 (i, 3) <= knap7 (j, 2)) & (any(knap7(j,1

aknap7(i,5:4+m)))

aknap? (i, 1) = knap7 (j, 1);

knap7 (j, 2) = knap7 (j, 2) - aknap7

aknap? (i, 4) = knap7 (j, 2);
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if j<m
k=j+1;
else
k=1;
end
break
elseif j<m
continue
end
end
end

aknap7;

for i=1:m
knapr (7, i) = knap7 ((m+1)-i, 2);
end
aknap7; % model 7 knapsack assignment

% MODEL 8

% storage location for knapsack assignment
aknap8 = [zeros(n ,1) item2 zeros(n ,1) b];
knap8 = knapc2;

% assignment of items to knapsacks
k=1,
for i=1:n
for j=km
if (aknap8 (i, 3) <= knap8 (j, 2)) & (any(knap8(j,1
aknap8(i,5:4+m)))
aknap8 (i, 1) = knap8 (j, 1);
knap8 (j, 2) = knap8 (|, 2) - aknap8
aknap8 (i, 4) = knap8 (j, 2);
if j<m
k=j;
else
k=1,
end
break
elseif j==m
k=1,
end
end
end

aknaps;
for i=1:m
knapr (8, i) = knap8 ((m+1)-i, 2);

end
aknap8; % model 8 knapsack assignment
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% MODEL 9

% storage location for knapsack assignment
aknap9 = [zeros(n ,1) item1 zeros(n ,1) b];
knap9 = knapc2;

% assiginment of items to knapsacks
for i=1:n
knap9 = sortrows(knap9,[2]);
for j=m:-1:1
if (aknap9 (i, 3) <= knap9 (j, 2)) & (any(knap9(j,1
aknap9(i,5:4+m)))
aknap9 (i, 1) = knap9 (j, 1);

knap9 (j, 2) = knap9 (j, 2) - aknap9 (i, 3);
aknap9 (i, 4) = knap9 (j, 2);
break
elseif j>1
continue
end
end
end
aknap9;
for i=1:m
knapr (9, i) = knap9 ((m+1)-i, 2);
end

aknap9; % model 9 knapsack assignment

% MODEL 10

% storage location for knapsack assignment
aknap10 = [zeros(n ,1) item2 zeros(n ,1) by;
knapl10 = knapc2;

% assignment of items to knapsacks

for i=1:n
knapl10 = sortrows(knap10,[2]);
for j=m:-1:1

if (aknaplO (i, 3) <=knapl0 (j, 2)) & (any(knap10(
aknapl10(i,5:4+m)))
aknap10 (i, 1) = knap10 (j, 1);

knapl0 (j, 2) = knapl10 (j, 2) - aknap 10 (i, 3);
aknap10 (i, 4) = knapl0 (j, 2);
break
elseif j>1
continue
end
end
end
aknapl0;
for i=1:m
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knapr (10, i) = knap10 ((m+1)-i, 2);
end
aknap10; % model 10 knapsack assignment

% Knapsack residual capacities for all models
knapr

knaprs (r, ;) = knaprs (r,:) + sum(knapr")
knaprsum = knaprsum + knaprs (r, :)

% Storing residual capacities for all models + knap sack capacities
knapr = knapr’;

knapr = horzcat(knapr, knapcl(:,2));

knaprt = vertcat(knaprt , knapr)

knaprsu = (sum(knapcl(:,2))- knaprs)/(sum(knapcl(:, 2)))*100
r=r-1;
end

knaprx(1,1) = min (knaprsum);
knaprx(1,2) = mean (knaprsum);
knaprx(1,3) = max (knaprsum);

knaprx;
capsum = sum(sum(cap));
all(cond)

%wk1write('knapsac.xIs',knaprs)

% wklwrite('knapA.xIs' , A)

% wklwrite('knapC.xls', ¢)
%wk1lwrite('knapCap.xls', cap)
%wklwrite('knapsum.xls', knaprsum)
%wk1write('knaprt.xIs' , knaprt)
%wk1write('Capsum.xIs', capsum)

rL=1,;

r2 = 10;

jnaprs = zeros (r1,10); % storage for knapsack residual space
jnaprsum = zeros (1,10); % storage for sum of knapsack unutilized
space

jknaprs = knaprs;

while r2>0

[r3,r4] = min ( jknaprs ); % maximum utilized capacity model
jknaprs (1, r4) = inf;
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if rd==1 % is it model 1?
% MODEL 1

jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knap1,;

ajnap = aknap1;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap?2 = ajnap;

ml=m;

% tabu search implementation

while m1>0
if jnapl(ml,2)==0
ml=ml-1;
continue
else
for i=1:n
if ajnapl(i,1) == jnapl (Mm1,1)
ajnapl(i,1) = 0;
ajnapl(i,4) = 0;
end
end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end

for i=1nn
if (ajnapl (i, 3) <=jnapl (m1i, 2)) & (ajnapl(i,1)=
ajnapl (i, 1) =jnapl ( m1, 1);
jnapl (mi, 2)=jnapl(mi, 2)-a
ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(ml,2)
ajnap = ajnhapl;
jnap(mi,2) = jnapl(mi,2);
else
ajnapl = ajnap;
jnapl(mi,2) = jnap(mi,2);

end
end
ml=ml-1;
end
for i=1:m
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jnapr (1, i) = jnapl (i, 2);
end

jnapl;
jnap2 = [jnap2 jnapl(:,2)];
ajnap?2 = [item2 ajnap2(:,1) ajnapl(:,1)];

end

if r4==2 % is it model 27?
% MODEL 2

jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knap2;

ajnap = aknap2?;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap2 = ajnap;

ml=m;

% tabu search implementation

while m1>0
if jnapl(m1,2)==0
ml=ml-1,;
continue
else
for i=1:n
if ajnapl(i,1) == jnapl (Mm1,1)
ajnapl(i,1) = 0;
ajnapl(i,4) = 0;
end
end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end

for i=1n
if (ajnapl (i, 3) <=jnapl (m1i, 2)) & (ajnapl(i,1)=
ajnapl (i, 1) =jnapl ( m1, 1);
jnapl (mi, 2)=jnapl(mi, 2)-a
ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(ml,2)

ajnap = ajnhapl;
jnap(ml,2) = jnapl(m1i,2);
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else
ajnapl = ajnap;
jnapl(mi,2) = jnap(mi,2);
end

end
ml=ml-1;
end

for i=1:m
jnapr (2, i) = jnapl (i, 2);
end

jnapl;
jnap2 = [jnap2 jnapl(:,2)];
ajnap?2 = [item2 ajnap2(:,1) ajnapl(:,1)];

end

if r4==3 % is it model 3?
% MODEL 3

jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knap3;

ajnap = aknap3;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap2 = ajnap;

ml=m;

% tabu search implementation

while m1>0
if jnapl(m1,2)==0
ml=ml-1,;
continue
else
for i=1:n
if ajnapl(i,1) == jnapl (Mm1,1)
ajnapl(i,1) = 0;
ajnapl(i,4) = 0;
end
end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end
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for i=1n
if (ajnapl (i, 3) <=jnapl (mi, 2)) & (ajnapl(i,1)=
ajnapl (i, 1) =jnapl ( m1, 1);
jnapl (mi, 2)=jnapl (mi, 2)-a
ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(mi,2)
ajnap = ajnapil;
jnap(mi,2) = jnapl(mi,2);
else
ajnapl = ajnap;
jnapl(mi,2) = jnap(mi,2);
end

end
ml=ml-1;
end

for i=1:m
jnapr (3, i) = jnapl (m+1)-i, 2);
end

jnapi;
jnap2 = [jnap2 jnapl(:,2)];
ajnap2 = [item2 ajnap2(;,1) ajnapl(;,1)];

end

if r4d==4 % is it model 4?
% MODEL 4

jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knap4;

ajnap = aknap4;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap?2 = ajnap;

ml=m;

% tabu search implementation

while m1>0

if jnapl(ml,2)==0

ml=ml-1;
continue

else
for i=1:n

if ajnapl(i,1) == jnapl (m1,1)

ajnapl(i,1) = 0;
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ajnapl(i,4) = 0;
end
end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end

for i=1n
if (ajnapl (i, 3) <=jnapl (mi, 2)) & (ajnapl(i,1)=
ajnapl (i, 1) =jnapl ( m1, 1);
jnapl (mi, 2)=jnapl (mi, 2)-a
ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(mi,2)
ajnap = ajnapil;
jnap(ml,2) = jnapl(mi,2);
else
ajnapl = ajnap;
jnapl(mi,2) = jnap(mi,2);
end

end
ml=ml-1;
end

for i=1:m
jnapr (4, i) = jnapl ((m+21)-i, 2);
end

jnapi;
jnap2 = [jnap2 jnapl(:,2)];
ajnap2 = [item2 ajnap2(;,1) ajnapl(;,1)];

end

if r4==5 % is it model 5?
% MODEL 5

jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knap5;

ajnap = aknap5;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap?2 = ajnap;

ml=m;
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% tabu search implementation

while m1>0
if jnapl(ml,2)==0
ml=ml-1,
continue
else
for i=1:n
if ajnapl(i,1) == jnapl (m1,1)
ajnapl(i,1) = 0;
ajnapl(i,4) = 0;
end
end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end

for i=1n
if (ajnapl (i, 3) <=jnapl (mi, 2)) & (ajnapl(i,1)=
ajnapl (i, 1) =jnapl ( m1, 1);
jnapl (mi, 2)=jnapl (mi, 2)-a
ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(mi,2)
ajnap = ajnapi;
jnap(mi,2) = jnapl(mi,2);
else
ajnapl = ajnap;
jnapl(mi,2) = jnap(mi,2);
end

end
ml=ml-1;
end

for i=1:m
jnapr (5, i) = jnapl (i, 2);
end
jnapi;
jnap2 = [jnap2 jnapl(:,2)];
ajnap2 = [item2 ajnap2(;,1) ajnapl(;,1)];
end

if r4==6 % is it model 6?
% MODEL 6
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jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knap6;

ajnap = aknap6;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap2 = ajnap;

ml=m;

% tabu search implementation

while m1>0
if jnapl(m1,2)==0
ml=ml-1,;
continue
else
for i=1:n
if ajnapl(i,1) == jnapl (Mm1,1)
ajnapl(i,1) = 0;
ajnapl(i,4) = 0;
end
end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end

for i=1:n
if (ajnapl (i, 3) <=jnapl (m1i, 2)) & (ajnapl(i,1)=
ajnapl (i, 1) =jnapl ( m1, 1);
jnapl (mi, 2)=jnapl (mi, 2)-a
ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(mi,2)
ajnap = ajnhapl;
jnap(mi,2) = jnapl(mi,2);
else
ajnapl = ajnap;
jnapl(mi,2) = jnap(mi,2);
end

end
ml=ml-1;
end

for i=1:m

jnapr (6, i) = jnapl (i, 2);
end
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jnapl;
jnap2 = [jnap2 jnapl(:,2)];
ajnap2 = [item2 ajnap2(;,1) ajnapl(;,1)];

end

if r4==7 % is it model 77?
% MODEL 7

jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knap7;

ajnap = aknap7;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap2 = ajnap;

ml=m;

% tabu search implementation

while m1>0
if jnapl(ml,2)==0
ml=ml-1;
continue
else
for i=1:n
if ajnapl(i,1) == jnapl (m1,1)
ajnapl(i,1) = 0;
ajnapl(i,4) = 0;
end
end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end

for i=1n
if (ajnapl (i, 3) <=jnapl (mi, 2)) & (ajnapl(i,1)=
ajnapl (i, 1) =jnapl ( m1, 1);
jnapl (mi, 2)=jnapl (mi, 2)-a
ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(mi,2)
ajnap = ajnapil;
jnap(mi,2) = jnapl(mi,2);

else
ajnapl = ajnap;
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jnapl(m1,2) = jnap(m1,2);
end

end
ml=ml-1;
end

for i=1:m
jnapr (7, i) = jnapl (m+21)-i, 2);
end

jnapl;
jnap2 = [jnap2 jnapl(:,2)];
ajnap2 = [item2 ajnap2(;,1) ajnapl(;,1)];

end

if r4==8 % is it model 87?
% MODEL 8

jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knaps;

ajnap = aknaps;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap?2 = ajnap;

ml=m;

% tabu search implementation

while m1>0
if jnapl(ml,2)==0
ml=ml-1;
continue
else
for i=1:n
if ajnapl(i,1) == jnapl (m1,1)
ajnapl(i,1) = 0;
ajnapl(i,4) = 0;
end
end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end

for i=1:n
if (ajnapl (i, 3) <=jnapl (mi, 2)) & (ajnapl(i,1)=
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ajnapl (i, 1) =jnapl ( m1, 1);

jnapl (mi, 2)=jnapl(mi, 2)-a

ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(ml,2)
ajnap = ajnapil;
jnap(mi,2) = jnapl(mi,2);
else
ajnapl = ajnap;
jnapl(mi,2) = jnap(mi,2);
end

end
ml=ml-1;

end

for i=1:m
jnapr (8, i) = jnapl ((Mm+1)-i, 2);

end

jnapl;

jnap2 = [jnap2 jnapl(:,2)];
ajnap?2 = [item2 ajnap2(:,1) ajnapl(:,1)];

end

if r4==9 % is it model 9?
% MODEL 9

jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knap9;

ajnap = aknap9;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap2 = ajnap;

ml=m;

% tabu search implementation

while

if

ml>0
jnapl(mi,2)==0

ml=ml-1;

continue

else

for i=1:n

if ajnapl(i,1) == jnapl (Mm1,1)

ajnapl(i,1) = 0;
ajnapl(i,4) = 0;
end
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end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end

for i=1nn
if (ajnapl (i, 3) <=jnapl (m1i, 2)) & (ajnapl(i,1)=
ajnapl (i, 1) =jnapl ( m1, 1);
jnapl (mi, 2)=jnapl(mi, 2)-a
ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(ml,2)
ajnap = ajnhapil;
jnap(mi,2) = jnapl(mi,2);
else
ajnapl = ajnap;
jnapl(mi,2) = jnap(mi,2);
end

end
ml=ml-1;
end

for i=1:m
jnapr (9, i) = jnapl ((Mm+1)-i, 2);
end

jnapl;
jnap2 = [jnap2 jnapl(:,2)];
ajnap?2 = [item2 ajnap2(:,1) ajnapl(:,1)];

end

if r4==10 % is it model 10?
% MODEL 10

jnapcl = knapcl;

jnapc2 = knapc2;

jnap = knap10;

ajnap = aknap10;

jnapl = sortrows(jnap,[2]);
ajnapl = ajnap;

jnap2 = jnap;

ajnap2 = ajnap;

ml=m;

% tabu search implementation

134

jnapl (i, 3);

0)



while m1>0
if jnapl(m1,2)==0
ml=ml-1,;
continue
else
for i=1:n
if ajnapl(i,1) == jnapl (Mm1,1)
ajnapl(i,1) = 0;
ajnapl(i,4) = 0;
end
end

for i=1:m

if jnapl(ml,1)==jnapc2(i,1)
jnapl(mi,2)=jnapc2(i,2);

end
end

for i=1:n
if (ajnapl (i, 3) <=jnapl (m1i, 2)) & (ajnapl(i,1)=
ajnapl (i, 1) =jnapl ( m1, 1);
jnapl (mi, 2)=jnapl (mi, 2)-a
ajnapl (i, 4) =jnapl ( ml, 2);
end
end

if jnapl(ml,2)<jnap(mi,2)
ajnap = ajnhapl;
jnap(m1,2) = jnapl(m1i,2);
else
ajnapl = ajnap;
jnapl(mi,2) = jnap(mi,2);
end

end

ml=ml-1;
end
for i=1:m

jnapr (10, i) = jnapl ((m+1)-i, 2);
end
jnapi;
jnap2 = [jnap2 jnapl(:,2)];
ajnap2 = [item2 ajnap2(;,1) ajnapl(;,1)];
end
r2=r2-1,

end

% Knapsack residual capacities for all models
jnapr;
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jnaprs (r1, :) = jnaprs (rl,:) + sum(jnapr');
jnaprsum = jnaprsum + jnaprs (rl, :);

jnaprsu = (sum(knapcl(:,2))- jnaprs)/(sum(knapcl(:,
% rsu = [knaprsu; jnaprsuy;

% fori=1:10

%  rsu (3,i) = 100*((rsu(2,i)/rsu(d,i))/rsu(1,)

% end

% rsu = rsu'
rsul =J;
for i=1:5

rsul = [rsul knaprsu(1,i) jnaprsu(l,i)];
end

rsu2 =J;
for i=6:10

rsu2 = [rsu2 knaprsu(1,i) jnaprsu(l,i)];
end

rsu = [rsul; rsu2]

wklwrite(  'pl.xls' ,rsu);
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Appendix C

MATLAB Code for the SKPPC
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clear

% # of items and knapsacks

n = input ( ' enter total number of packages: '
disp( ' ' )

m = input ( ' enter number of inspectors: '
disp( "' )

r =input ( ' enter number of replications/run; '
knaprt = [];

knaprave = size(r, 2);

while r>0

% generating item weights

a = ceil(random( 'unif 10, 100, n, 2));

wl = a;

w2 = ceil(mean(sum(a)));

% w = sort (w); % item weights sorted in ascending

% generating item outcomes
p =random( ‘'unif ,0,1,n, 1);

for i=1:n
if p(i,1)<0.8
b(i) = 2; % select the package with 0.8 probability
else
b(i) = 1; % select the package with 0.2 probability
end

end

al =0.4*(w2/m);
a2 =0.6 * (w2/m);

% generating similar knapsack capacities

a = (random( ‘unif ,al, a2, m-1, 1));
a(m,1)=0.5*w2 - sum (a);

¢ = ceil(sum(a)/m);

% c= sort (¢); % equal knapsack capacities

% selecting items to be assigned

for i=1:n
if b(i)==1,;
w(i)y=wl(,1);
else
w(i)y=wl(, 2);
end

end

% generating A

A=

for i=1:m
A=[A;w];

end
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w=w"

% storing the items
% iteml1 = zeros(n,2);
for i=1:n
iteml (i, 1) =1i;
iteml (i, 2) =w (i);
end

% storing the knapsack capacities
knapcl = zeros(m,2);
for i=1:m
knapcl (i, 1) =1i;
knapcl (i, 2)=c;
end

% storage location for knapsack assignment
aknap = [zeros(n ,4) bT;
knap = knapcl;

% assignment of items to knapsacks
for i=1:n
knap = sortrows(knap,[2]);
for j=m:-1:1
if (iteml (i, 2) <=knap (}, 2))
aknap (i, 1) = knap (j, 1);
aknap (i, 2) =iteml1 (i, 1);
aknap (i, 3) =iteml (i, 2);
knap (], 2) =knap (j, 2) - item1 (i
aknap (i, 4) = knap (j, 2);
break
elseif j>1
continue
else
aknap (i, 2) =item1 (i, 1);
aknap (i, 3) =iteml (i, 2);
end
end
end

knaprt = ones(m,2);

for i=1:m
for j=1:n
if aknap(j,1) ==i & aknap(j,5) ==1
knaprt(i,1) = knaprt(i,1)*0.2;
knaprt(i,2) = knaprt(i,2) + aknap(j,3);
elseif  aknap(j,1) == i & aknap(j,5) == 2
knaprt(i,1) = knaprt(i,1)*0.8;
knaprt(i,2) = knaprt(i,2) + aknap(j,3);
end
end
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knaprt(i,2) = knaprt(i,2) - 1;

knapr(1,i) = knaprt(i,1) * ( ¢ - knaprt(i,2));
end
knaprs = sum(knapr);

up = sum(knaprt(;,2))/sum(knapcl(:,2));

knaprave(r,1) = knaprs;
knaprave(r,2) = up;

r=r-1,
end

knaprave;
s = mean(knaprave);

sl =s(1,1);
s2 = 100*s(1,2);
[ 'The expected penalty costis '

[ 'The percentage of utilization is '

numa2str(s1)]

numa2str(s2)]
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MATLAB Code for the Inspection Problem
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clear all ;

% # of items and knapsacks capacities
nl=15; %input (' enter number of packagess to be

);
disp( ' " )
m=23; %input (" enter number of inspectors: ');
disp( "' )
k =18; %input (' enter amount of resources avai
inpectors: ";
disp( "' )
wl=16; %input (' enter processing time of item
);
disp( ' ' )
w2=1; %input (' enter processing time of item
disp( "' )
pl=0.2; %input (° enter probability of item type
disp( "' )
p2=1-pl; %input (' enter probability of item type
);
disp( ' " )
dl=0.5; %input (° enter under-utilization penalt
disp( "' )
d2=1-d1,; %input (" enter over-utilization penalty
N1 =m;
Bl1=1[;
E=1]
F=1
G=1;
for n=3:n1
N2 =n;
V1 = (0:n);
V2 = [wl w2];
V3 =[plp2];

Al = combn(V1, N1);
A2 = combn(V2, N2);
A3 = combn(V3, N2);

clear V*;
[r,c] = size(Al);

X = Al;
B=1

for i=1:r
if sum(X(i,:))) ==n
B=1[B; X(@i,)
end
end
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B = sort(B,2);
B = unique(B, rows' );
B1=[B1; B];

[rl c1] = size(B);

for i=1:r1
for j=1:cl
if B(ij)==0
E1(i,j) = sum(k*prod(A3,2));
else
Y = A2;

Y(:,1:n-B(i.j)=[];
E1(i,j) = sum(abs(k-sum(Y,2)).*prod
end
end
end

E2 = 0.5*sum(E1,2);
E3 = min(E2);
E=[E; E2];
F=[F;E3]

G =[G; n];

end

a,= min(E);

b =find(E == a);

clc;

disp ('the minimum penalty cost is'
disp (‘'from the assignment' ), disp(B1(b,:))
BE = [B1 E];

plot(G,F);

xlabel( '# of items inspected' );
ylabel( 'penalty cost' );

wklwrite( 'AC.xIs' F);

), disp(a)
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