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Abstract 

This dissertation presents the results of a series of experiments 

designed to expand our understanding of the role that auditory cortex plays in 

threshold-level frequency discrimination.  The unifying hypothesis of this 

dissertation is that auditory cortex is involved in discrimination of fine-grained 

frequency differences.  Recording neural responses to auditory stimuli during 

performance of a difficult frequency discrimination task opens the door to 

investigating possible neural mechanisms which may encode frequency 

change detection.  Additionally, simultaneous recording of neural and 

psychophysical data allows for insight into the rats’ perception of or lack of 

perception of a frequency change (as inferred from the behavioral response to 

the stimuli). 

Briefly, the results of these studies show that rats are capable of 

performing a frequency discrimination task and that their thresholds are 

comparable to those found in other mammals, including humans, making them 

a suitable candidate for studying how fine grain frequency differences are 

processed.  Post-surgery psychophysical results show that implantation of a 

chronic recording device in the rat’s auditory cortex did not have a large effect 

on frequency discrimination thresholds or other behavioral measures.  

Recordings from rat auditory cortex revealed a neural correlate of the 

frequency discrimination ability in the onset response of cortical neurons to the 

target tone.  Additionally, the onset latency of auditory cortex responses was 

shown to be correlated with behavioral reaction times.  The results document 
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an increase in firing rate (facilitation) relative to the reference tone based on 

whether the rat made a decision to respond or not to respond to the 

presentation of a target tone.  This facilitation was not stimulus specific, as 

was shown to be correlated with behavior, but not the frequency or frequency 

shift.  Finally, the response strength of auditory cortex to frequency changes 

was shown to be modulated according to the relevance to task performance.    

Facilitation to the frequency change was not seen when the frequency change 

was irrelevant to the task the despite correct performance of the task.   

The results of this series of experiments implicate auditory cortex as an 

important component in the resolution of small frequency differences and 

suggest that signals from auditory cortex may play a significant role in the 

perception of frequency changes as well as in the decision to respond to those 

frequency changes.  Future studies in this field could help to elucidate how 

neural codes from sensory cortex relate to perception and how they contribute 

towards the formation of decisions while performing a detection task such as 

the one presented here. 
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Chapter 1 

 

1. Introduction 

Helen Keller expressed the importance of hearing in modern society, 

saying "Blindness separates us from things; deafness separates us from 

people."  For humans, hearing has developed an important role as the basis 

for verbal communication.  However, even before the advent of speech, 

humans were heavily reliant on auditory information.  A fine sense of hearing 

may have enabled early humans to survive.  While ancestral humans were 

likely aided by visual information in tasks necessary to thrive such as 

gathering food, locating shelter, finding companionship, or navigating 

obstacles (Rodman 2004), subtle sound differences could provide more 

immediate and necessary information by alerting would-be prey to the 

advances of predators.  Unlike vision, hearing is not limited by lighting 

conditions or obstacles that may block lines of sight. 

One component of sound information is frequency.  Auditory frequency 

is defined as the rate of oscillation in a sound wave and is the primary 

determining factor in what humans perceive as pitch.  One key component of 

human verbal communication is the transmission of subtle differences in 

frequency.  While timing differences play a role in verbal communication, 

especially in Latin-based languages (Shannon et al., 1995), the ability to 

interact as a community is partially dependent on our ability to resolve subtle 

differences in spectral information (Zeng et al., 2005).  Additionally, auditory 
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information can alert us to the approach of modern dangers, such as speeding 

cars or trains, where small differences in frequency can inform a listener 

whether a sound source is quickly advancing or traveling away from them. 

 

1.1. Functions of the Auditory Pathway 

In humans, sound waves first enter the body at the ear canal.  The 

pinna, the flesh-covered cartilage surrounding the ear canal, helps to funnel 

sound waves into the ear canal, especially from forward facing sources.  

Pressure from sound waves vibrates the tympanic membrane located at the 

innermost point of the ear canal.  The tympanic membrane pushes on and 

creates movement in a chain of three tiny bones, the ossicles, which constitute 

the middle ear: the malleus, the incus, and the stapes.  Motion from the 

ossicles serves to create pressure on the cochlea, which displaces the virtually 

incompressible cochlear fluid within.  Movement of the cochlear fluid is 

transferred into oscillations of the basilar membrane, causing it to stimulate 

inner and outer hair cells by sliding across them.  The hair cells are arranged 

tonotopically, and transform the previously mechanical energy into electrical 

signals containing frequency information along the central auditory pathway. 
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Figure 1.1.  The auditory 
neural pathway.  From 
Kandel et al., 2000 
(adapted from Brodal 
1981). 

From the inner ear, auditory information travels along auditory nerve 

fibers and enters the brain stem through the 8th cranial nerve.  From the 

8th cranial nerve it enters the medulla and is divided into 3 pathways at the 

cochlear nucleus.  The trapezoidal body pathway travels to the pons where 

sound localization is performed at the superior olivary nuclei complex by 

comparing differences in certain features of the sound information received 
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from either ear.  The   medial superior olive nucleus compares temporal 

delays, while the lateral superior olive nucleus uses differences in intensity 

to identify the special origin of the sound source.  The 3 pathways converge 

in the midbrain where sound localization information from the pons is 

processed in the inferior colliculus.  From the midbrain the sound 

information is delivered to the diencephalon (thalamus) at the medial 

geniculate nucleus, where it is relayed to the primary auditory cortex. 

In humans, the primary auditory cortex is ventral to the lateral sulcus.  

It is arranged tonotopically, with lower frequencies represented in the rostral 

regions and higher frequencies in the caudal regions (Bendor & Wang, 

2005).  Layers I, II, III, and IV of the primary auditory cortex receive input 

from the thalamus.  Layer V projects back to the thalamus, and Layer VI 

sends signals to the thalamus as well as to other cortical areas, notably the 

secondary auditory areas (Read et al., 2002).  Secondary “belt” auditory 

areas surround the primary auditory cortex and are thought to perform 

higher-order auditory processing (Penfield & Perot, 1963). 

 

1.2. Role of Auditory Cortex in Frequency Discrimination 

Many species of mammals have an auditory cortex region functionally 

and organizationally similar to that of humans (Kaas & Hackett, 2000; Hackett 

et al., 2001; Wallace et al., 1997; Bizley et al., 2005; Winer & Lee, 2007).  The 

similarities in auditory systems allow for data to be compared across species, 

and perhaps most importantly applied to human systems. 
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Reports on performance from early experiments in auditory cortex 

ablation studies failed to consistently show any significant impairment in 

frequency discrimination ability.  Cats with bilateral lesions of the auditory 

cortices displayed a “temporary amnesia” in their ability to discriminate 

changes in frequency but that ability eventually returned (Butler et al., 1957; 

Goldberg & Neff, 1961), while slightly different stimulus parameters such as 

testing at different reference and target frequencies or ablation of additional 

cortical areas resulted in a permanent inability to relearn frequency 

discrimination tasks post-op in cats (Meyer & Woolsey, 1952) and dogs (Allen, 

1946).  These varied results led some investigators to conclude that the 

auditory cortex is not necessary for auditory perception (Masterton & Berkley, 

1974). 

More recent investigations concerning the role of primary auditory 

cortex in frequency discrimination have led to a more clear understanding.  

Mongolian gerbils did not show any deficit in their ability to discriminate large 

changes (3 octaves difference) in pure tones 2-5 days after bilateral ablation of 

primary auditory cortex (Ohl et al., 1999).  Rats were still able to significantly 

perform frequency discrimination tasks of at least half octave changes within 3 

days of bilateral ablation of primary auditory cortex (Ono et al., 2006).  Only 

one lab found an impaired ability in rats to discriminate between broad falling 

and rising tone sequences after bilateral ablation of primary auditory cortex, 

though their report did not disclose the length of time the rats were allowed to 

recover post-op (Rybalko et al., 2006).  These reports suggest that the 
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auditory cortex may not be essential for perception or discrimination of broad 

frequency changes if the subject is allowed ample time to recuperate following 

surgery. 

Additional clues to the role of primary auditory cortex in frequency 

discrimination are revealed when testing with a stimulus set that includes 

changes in frequency difference that are smaller than half-octave changes.  

Fine-grained frequency perception testing has resulted in higher-threshold 

frequency difference limens (Tramo et al., 2002) and impaired discrimination 

abilities (Mendez & Geehan, 1988) in some human patients with bilateral 

primary auditory cortex lesions.  Investigators found similar results when 

testing smaller frequency change discrimination ability in macaques with 

bilateral auditory cortex lesions, concluding that the monkeys were unable to 

determine whether or not the sound stimulus they were presented with 

contained a change in frequency (Harrington et al., 2001).  The results of 

these studies seem to imply that though primary auditory cortex may not be 

necessary for broader, coarse frequency discrimination, it is necessary for the 

detection of smaller, fine-grained frequency changes. 

Investigations utilizing immediate and reversible disabling effects 

through administration of drugs have helped to further clarify the role of 

primary auditory cortex in normal frequency discrimination.  The Doppler-

shifted constant-frequency (DSCF) area in bats, a disproportionately large 

area of the bat primary auditory cortex, is dedicated to processing critical fine-

grained frequency components of bat sonar within a narrow frequency range 
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(Suga et al., 1987).  Neurons in DSCF feature very narrow frequency 

response areas (Suga & Manabe, 1982).  Application of muscimol, a GABAA 

receptor agonist, to DSCF had no effect on coarse frequency discrimination, 

but significantly impaired ability to discriminate small differences for up to 3.2 

hours (Riquimaroux et al., 1991).  Similar results were found in rats when 

bilateral muscimol administration to primary auditory cortex initially blocked all 

tone detection, with coarse frequency discrimination ability returning several 

hours before small frequency differences were able to be resolved (Talwar et 

al., 2001).  These studies support the hypothesis that primary auditory cortex 

is necessary for detection of threshold-level frequency changes. 

 

1.3. Importance of Fine Frequency Resolution in Humans 

It is possible that the ability to resolve small frequency differences is 

instrumental in the comprehension and retention of instructions or is an 

underlying factor in learning or attention disorders.  Frequency discrimination 

ability has been correlated with SAT math scores (Watson, 1991) and reading 

ability (Ahissar et al., 2000).  Additionally, impaired frequency discrimination 

has been associated with Attention Deficit Hyperactivity Disorder in children 

(Sutcliffe et al., 2005), language impairment (Mengler et al., 2005), language 

learning disorders (Elliot et al., 1989), and certain forms of dyslexia (Banai & 

Ahissar, 2004).  A better understanding of how we discriminate subtle 

frequency differences could lead to a more complete understanding of these 
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disorders and eventually result in treatments though pharmacological 

manipulation or electrical stimulation.  

 

1.4. Neural Mechanisms of Detection and Link to Decision Making 

Linking neural activity to behavioral abilities and sensory perception 

makes a powerful case for establishing the role of cortical areas and is a 

central goal for contemporary neuroscience.  Neural correlates of detection 

ability have been shown in both firing rate and spike timing of response in 

various sensory systems. 

One of the earlier and more notable contributions towards linking neural 

activity to perception comes from Britten et al. (1992), who showed that weakly 

tuned individual cells of monkey middle temporal visual area increased in firing 

rate in correlation with the detectability of motion in a visual direction 

discrimination task.  Later work from this lab theorized how input from multiple 

directionally-tuned middle temporal visual area cells may be combined in 

higher areas to determine motion direction of the stimulus (Shadlen et at., 

1996).  Further work on the middle temporal visual area in monkeys revealed 

that responses there were not only correlated with detection, but were also 

predictive of the monkeys’ responses on individual trials, whether the trial was 

performed correctly or incorrectly (Britten et al., 1996).  These groundbreaking 

discoveries paved the way for future investigations seeking detection and 

decision correlates in other sensory systems. 
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A handful of studies have reported finding detection correlates in the 

auditory system.  Responses correlated with behavioral detection thresholds 

have been shown for tone detection (Niwa et al., 2012a; Niwa et al., 2012b; 

Zhang et al., 2012), click-train speed discrimination (Dong et al., 2011), 

acoustic flutter discrimination (Lemus et al., 2009) and speech sound 

discrimination (Engineer et al., 2008; Shetake et al., 2011; Tsunada et al., 

2011; Ranasinghe et al., 2012).  However, no one has shown a neural 

mechanism for discrimination of frequency, which is thought to be one of the 

more fundamental components of sound.  In this study I will show that the 

onset response to tones containing a change in frequency contains 

information suitable to encode the detection of differences in frequency. 

 

1.5. Dissertation Outline 

The starting hypothesis of this dissertation was that auditory cortex 

contributes to the resolution of fine-grain frequency differences.  The 

introductory chapter reviews previous auditory cortex ablation studies and 

justifies why I am looking at auditory cortex for further evidence linking that 

area to frequency discrimination.  The next chapter reviews the general 

experimental apparatus and procedures used throughout this report. 

Chapter 3 reports on the psychophysical thresholds of a previously 

unreported strain and gender of rat during a repeating standard frequency 

discrimination task.  This chapter serves to establish that the species used in 

subsequent chapters has comparable thresholds to other mammalian species 
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and thus is a suitable candidate for modeling of the auditory system.  

Additionally, this chapter shows that implantation surgery does not change 

behavioral trends in the frequency discrimination task, validating the 

comparison of neural and psychophysical data presented in subsequent 

chapters.   

Chapter 4 investigates possible connections between AC responses to 

frequency differences and the behavioral detection ability of rats.   Increases in 

onset firing rate to deviant frequencies are shown to be correlated with the hit 

rate.  Onset latencies are likewise correlated to behavioral reaction times.  

Both of these pieces of evidence further support the case for AC as an 

important area in discrimination of frequencies.   

Chapter 5 delves further into the correlation between neural responses 

and behavioral measures and investigates whether the neural mechanism 

found in the onset response to auditory stimuli is predictive of the subjects’ 

behavioral decision regarding detection of the change in frequency.  The 

results demonstrate that increases in onset firing rate to deviant tones at 

different frequencies can predict the behavioral decision of the rat while 

performing a frequency discrimination task.  Additionally, this chapter shows 

that neural responses in auditory cortex to frequency changes are modulated 

by relevance.   

Chapter 6 reviews the main findings of this dissertation.  I form general 

conclusions about the results of the studies presented.  I also suggest 
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directions for future research to further understanding of the role of auditory 

cortex in frequency discrimination. 



12 
 

Chapter 2 

 

2. Apparatus and General Procedures 

Testing methods common to each chapter of this dissertation are 

reported here.  Additional procedures specific to each chapter are described in 

the Methods section of that chapter. 

Briefly, male Long-Evans hooded rats were trained on a go/no-go task.  

Subjects were housed on a 12:12 light-dark cycle with training and testing 

being conducted during the light part of the cycle.  Animals were maintained at 

or above 85% of pre-training weight (~200 grams).  Animals were allowed 

access to food if they were unable to earn enough food during testing to 

maintain 85% of their pre-training weight.  The care and use of animals in this 

study conformed to the NIH guidelines and the University of Oklahoma 

Laboratory Animal Resources and Institutional Animal Care and Use 

Committee (IACUC) regulations. 

 

2.1. Apparatus 

Subjects were trained and tested in an acoustically transparent acrylic 

cage inside a double-walled, anechoic acoustic chamber (~-30dB attenuation).  

A nosepoke with an infrared beam was mounted in the back wall of the cage 

and a piezoelectric loudspeaker (CTS Powerline KSN-1165) was mounted 

directly above the rat’s head (~35cm) when engaged in the poke.  
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Figure 2.1.  Diagram showing 
typical testing booth set up and 
dimensions.   

 

2.2. Calibration 

Tone amplitude for all stimuli in this study was set to 60 dB sound 

pressure level (SPL), relative to a 20 µPa (RMS) standard, using a voltage–

intensity calibration function specific to the loud-speaker that was ascertained 

using a 1/4-inch  ACO Pacific condenser microphone placed in the 

approximate center of the stereotypical head position.  Calibration functions 

were determined for 533 frequencies, spanning a range from 1 to 40 kHz with 

0.01 octave spacing, by playing a pure tone at each frequency at set 

amplitude of 1 volt and recording the resultant intensity.  Calibrations 

coefficients were calculated assuming sound intensity varies linearly with 

voltage amplitude within the intensity range tested and that a voltage 
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amplitude of zero would produce an intensity equivalent to the 20 µPa (RMS) 

background noise standard.  Linear interpolation was used to set voltage 

amplitudes for frequencies not explicitly tested during calibration.  Adjusting for 

the rat audiogram, 60 dB SPL should be approximately between 40 and 60 dB 

above hearing threshold (Kelly & Masterton, 1977; Borg, 1982) within the 

tested frequency range of 2 to 32 kHz, and the effective sound level at those 

endpoints should be ~40 and ~55 dB, respectively. 

Acoustic stimuli were presented to behaving animals using the 

calibrated, free-field speaker in a double-walled acoustic chamber.  A custom-

made head-stage amplifier (Tucker Davis Technology) was directly attached to 

the electrode connector.  Neural data were digitized at 25 kHz and band-pass 

filtered from 825 to 4500 Hz, 6 dB/oct.  

 

2.3. Behavioral Paradigm 

Rats initiated a trial by engaging a central infrared-monitored nosepoke.  

Following a 50-ms delay, stimuli were delivered as a discrete tone train 

composed of a random number of reference tones seamlessly followed by two 

discrete target tones.  The target tones were shifted from the reference 

frequency by ±0 to 1 octave (±0–67%). Frequency change percentages were 

calculated using the direction-insensitive equation: Δf = 2·|(f reference – f target)|/( f 

reference + f target).  Reference and target tones were 200-ms in duration with 5-

ms onset and offset cosine ramps, with a 200-ms inter-tone interval (ITI).  The 

frequency change occurred in the ITI, and the number of reference tones was 
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randomly set between 1 and 18, generating discrete nosepoke hold times in 

multiples of the 400-ms tone/ITI period.  A trial was scored as a hit if the 

subject withdrew from the nosepoke within 600 ms of the onset of the first 

target tone.  Two target tones were presented so rats could not cue on silence.  

Hit trials were rewarded with a 45-mg food pellet.  Failure to withdraw within 

600-ms of the onset of the first target tone was scored as a miss and resulted 

in a 5-second “time out”.  Catch trials (0% Δf) were presented in order to 

estimate false alarm rate. 8.57% of trials were catch trials.  Withdrawal from 

the nosepoke within 600 ms of the 0% frequency “change” in a catch trial was 

scored as a false alarm.  Remaining in the nosepoke through a catch trial was 

scored as a correct rejection.  Trials in which the rats withdrew before the 

onset of the target tones were scored as an abort and were discarded from 

analysis. 

 

 
Figure 2.2.  Behavioral paradigm for the discrete tone frequency discrimination task.  
Rats initiated trials by engaging a nosepoke which triggered a series of 1 to 18 
reference tones (”R”) followed by a pair of target tones (“T”) from a speaker overhead.  
Withdrawal from the nosepoke within 600 ms of the onset of the first target tone was 
scored as a “hit” or “false alarm.”  Withdrawal after 600 ms was scored as a “miss” or 
“correct rejection.”  All tones were 200 ms in duration and were separated by 200-ms 
silent inter-tone intervals. 
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Reference frequencies in training were varied over 18 frequencies 

ranging from 2.31 to 27.66 kHz in 0.2105 octave steps.  Subjects were initially 

trained with target tones of ±5–20% Δfs while required nosepoke hold times 

were incrementally increased up to 20 seconds.  Subjects graduated to testing 

when they showed detection for all |Δf| ≥ 10% with a d’ index of ≥1.96 (Green 

& Swets, 1966) and could hold for as long as 20 seconds before target tone 

presentation. 

The size of the stimulus set was decreased during testing in order to 

ensure repeated presentations of individual stimuli by limiting reference 

frequencies to 3 frequency values: 4.15, 8.61, and 17.85 kHz.  The total 

stimulus set used in testing consisted of 105 combinations of the 3 reference 

frequencies with upward and downward Δfs of ±1–9% in 1% steps, ±10–20% 

in 2% steps, ±half and ±full octave changes, and 0% change catch trials.  

Stimuli from abort trials were added to the end of the stimulus set for retesting.  

Hold times were randomly set between 0.4 and 7.2 s and were not reset by 

aborts.  

 

2.4. Surgery and Recording 

Prior to testing, rats were implanted in auditory cortex (AC) with micro-

wire recording arrays under ketamine, xylazine and acepromazine anesthesia 

as previously reported (Sloan et al., 2009).  Following a midline incision, 

removal of a portion of the right temporalis muscle and placement of 6 bone 

screws, a craniotomy was performed over auditory cortex. The dura was 
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resected and cortical probes were implanted to a depth of 500-800 µm in the 

primary auditory cortex.  Kwikcast silicone rubber was used to close the 

craniectomy.  Acrylic was used to seal and attach the electrode connector to 

the skull.  

 

2.5. Analysis 

Neural recordings were obtained with an array of 16 independent 

microelectrodes.  To determine whether or not a channel was recording 

activity from a tone-driven multi-unit cluster (MUC), peri-stimulus time 

histograms (PSTHs) were constructed from responses to all target tones |Δf| ≥ 

10% within a recording session.  An MUC was determined to be “tone-driven” 

if the mean onset response to the target tones exceeded 3 standard 

deviations from the spontaneous rate.  The spontaneous rate was calculated 

over the 50 ms prior to tone onset during the silent inter-stimulus interval 

period.  The mean onset response was defined as the average firing rate from 

10-30 ms after target tone onset.  Recordings from MUCs which did not show 

tone-driven activity were excluded from the study. 

Spike activity was analyzed by first binning spike times into PSTHs with 

1-ms time bins and converted to spike rate. PSTHs from MUCs were 

smoothed using a 5-ms moving window.  Temporal based spike sorting was 

attempted on all channels, but action potentials were irresolvable to single 

units at the majority of sites, and all signals are henceforth assumed to 
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originate from multi-unit clusters.  Single recording electrodes were temporally 

separated into up to three individual MUCs. 
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Chapter 3 

 

3. Psychophysical Results of Rats Performing a Frequency 

Discrimination Task 

 

3.1. Introduction 

Frequency discrimination studies in rats that have traditionally used two 

behavioral paradigms to measure frequency discrimination abilities: two 

alternative forced choice (2AFC) and repeating standard.  2AFC paradigms, in 

which rats are presented with a pair of tones and must decide if their 

frequencies were the same or different, tend to report higher thresholds (Kelly, 

1973; Syka et al., 1996; Talwar & Gerstein, 1999).  Repeating standard 

Go/No-Go paradigms, in which rats are presented with a sequence of 

reference tones at one frequency followed by a sequence of target tones at 

another frequency, tend to report lower frequency detection thresholds (Talwar 

& Gerstein, 1998, Sloan et al., 2009).  Talwar and Gerstein argued that a 

“repeating standard” paradigm presents a “detection” problem (when a 

frequency change occurs), and that two-tone, go/no-go trial paradigms present 

an “identification” problem (if a frequency change occurred).  Animals 

performing a 2AFC frequency discrimination task are presented with all stimuli 

before being asked whether the stimuli are the same or are different.  In this 

way they are asked to identify whether or not a frequency change occurred.  A 

repeating standard frequency discrimination task requires subjects to listen to 
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a series of stimuli and try to detect when the stimulus frequency changes.  

Reference sequence durations are typically randomized so that the subject 

cannot predict when targets will be presented and must continually compare 

current stimuli to previous stimuli.   There is evidence supporting the use of 

different strategies for different types of frequency discrimination tasks in the 

discovery of different cortical processing pathways for different frequency 

discrimination tasks.  Cats with bilateral lesions of the primary auditory 

cortices, suprasylvian and lateral gyri were unable to relearn a two-tone 

frequency discrimination task at Δf = 40% (Thompson, 1960), while cats with 

bilateral lesions of the same cortical areas were able to relearn a repeating 

standard frequency discrimination task at Δf = 18% (Cranford, 1978).  In Sloan 

et al. (2009) we hypothesized that frequency difference limens (FDLs; the 

smallest difference in frequency that can be detected more accurately than at 

chance levels) measured with repeating standard paradigms are smaller due 

to the priming of the auditory system with preceding iso-frequency sequences.   

Cortical priming, in a general sense, is any process by which neural 

responses to preceding stimuli affect the responses to following stimuli.  Some 

types of auditory priming include forward masking, in which responses to 

preceding stimuli inhibits responses to following stimuli  (Brosch & Schreiner, 

1997), and repetition suppression (sometimes referred to as “habituation”; 

Wehr & Zador, 2005; Qin & Sato, 2004; Weinberger, 1991), in which 

responses to stimuli are inhibited by repeated exposure.  Auditory stream 

biasing is another priming phenomenon in which forward 
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facilitation/suppression builds up over the course of a sequence of discrete 

tones, leading to the percept of the sequence as a continuous stream instead 

of individual, discrete sounds (Rogers & Bregman, 1993; Beauvois & Meddis, 

1997).  Auditory stream formations are dependent on parameters such as tone 

duration and inter-stimulus intervals (Bregman et al., 2000), and under the 

proper conditions can occur in under a second (Micheyl et al., 2005).  If 

auditory stream formation is occurring during a repeating standard paradigm 

then discrete tone sequences may be perceived as a single, unified sound 

object in the same way that a continuous tone of the same duration as the 

sequence would be perceived as a single sound object.  Our previous study 

on the discrimination of tone-step frequency shifts within continuous tones 

revealed lower FDLs in rats than when performing a similar task using discrete 

tone sequences (Sloan et al., 2009). However, FDLs for the discrete tone task 

appeared to decrease as the overall tone sequence duration was increased, 

which may also have increased the likelihood that sequences were perceived 

as streams. It is possible that auditory streaming increases the likelihood of 

detecting a difference in stream tones. 

In our previous study (Sloan et al., 2009), all frequency differences 

were preceded by at least 2.1 seconds of reference tones, which may have 

induced a bias towards perception of the reference frequency sequence as an 

auditory stream and the presentation of the target as the beginning of another.  

This study proposes that increasing the number of repeating tones preceding 

a target frequency change will result in improved detection ability.  To test this 
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hypothesis we changed parameters of the frequency discrimination task.  In 

the revised paradigm presented here the minimum number of reference tones 

preceding a target frequency change was lowered to 1 and the maximum was 

set at 18.  All parameters of the discrete tone task from the present study are 

the same as from Sloan et al. (2009), except that inter-stimulus interval was 

increased from 100 ms to 200 ms.  This should not impact behavioral 

measures, as variance of inter-stimulus interval has been shown to have no 

effect on FDLs (Talwar & Gerstein, 1998).  By randomizing the number of 

reference tones and including trials with fewer reference tones it should be 

possible to measure the effect that the number of reference tones has on 

FDLs of rats. 

Another objective of this report is to measure the effect that reference 

frequency has on FDLs of rats.  All animal species have ranges of sound 

frequency that are more crucial to survival and communication.  As an 

example, bats have overrepresented frequency representation in primary 

auditory cortex of cells tuned to detect changes in the Doppler shift constant 

frequency (~64 kHz) used in the echo locating of their prey (Suga et al., 1987).  

Early audiometric tests estimated that rats have extremely high-frequency 

hearing ranges and reported that albino rats are capable of discriminating 

frequencies up to approximately 48 kHz (Gourvitch & Hack, 1966).  Later 

tests, however, reported that the preferred hearing range of albino rats is from 

4 kHz to 38 kHz (Kelly & Masterton, 1977).  Assuming that the preferred 

hearing range of albino rats is similar to that of the strain used in this 
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experiment, the present study investigates how target frequency changes 

outside of the rat’s preferred range might affect detection ability.  This report 

also uses the opportunity to test another strain and gender of rat.  Logistical 

and practical concerns made this strain of rat easily available for these 

experiments, and had the additional benefit of allowing us to add to the overall 

body of literature on rat frequency discrimination.   

The final objective of this study is to ensure that the rats are capable of 

performing fine-grained frequency discrimination both before and after 

implantation surgery.   The ability to link neural responses to behavioral 

measures is fundamental in modern neuroscience studies.  The ultimate goal 

of this series of experiments is to study the neural responses in AC during 

discrimination of fine-grained frequency differences.  Data from the subjects 

used in this study will be invalidated if they incapable of performing this task.  

Non-invasive means of obtaining neural signals, such as fMRIs, are typically 

cost-prohibitive and can restrict movement of subjects.  Implantation of 

chronic, multi-channel recording devices allows for neural data to be recorded 

simultaneously from numerous cells while permitting the subject to move 

about relatively unhindered, but at the cost of some damage to the implanted 

area.  Temporal lobe damage (including auditory cortex) have been shown to 

have varying effects on the localization and recognition of auditory stimuli 

(Penfield & Evans, 1934; Bocca et al., 1955; Sanchez-Longo et al., 1957; 

Jerger, 1960; Kimura, 1974), as well as perception and discrimination of tonal 

patterns (Milner, 1958).  It is important to know if neural responses being 
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gathered from implanted subjects represent normal behavior or if damage to 

cortical areas from implantation changes the strategies implemented by those 

subjects in performance of tasks.  By comparing pre-surgery behavioral 

measures to post-surgery behavioral measures we hope to ascertain whether 

or not behavioral responses in a frequency discrimination task change due to 

implantation surgery. 

 

3.2. Methods 

Data from 9 un-implanted male Long-Evans hooded rats were obtained 

in this study.  Six of the rats from the un-implanted group were implanted with 

a chronic, multi- electrode recording device implanted onto their AC.  

Behavioral measures of 6 implanted rats were included in the post-surgery 

group.  Additional details concerning the Methods of this study can be found in 

Chapter 2.4.  The care and use of animals in this study conformed to NIH 

guidelines and the University of Oklahoma Laboratory Animal Resources and 

Institutional Animal Care and Use Committee (IACUC) regulations.   

 
3.3. Results 

3.3.1. Pre-surgery 

Behavioral testing was conducted over 348 individual testing sessions 

(median 44 sessions per animal, n = 9 animals).  Animals were previously 

familiarized with a “tone step” discrimination task as described in the methods 

section for ~3-7 daily sessions before beginning training on the discrete tone 
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discrimination task.  The learning curve of the rats (Figure 3.1) shows a steady 

increase in false alarm corrected hit rate (ANOVA; F(14, 132) = 2.559, p = 0.003) 

as function of training session number.  False-alarm corrected hit rate is used 

as the measure of learning in this analysis to show that learning of this task is 

a combination of both increasing hit rate and decreasing false-alarm rate.  The 

learning curve of the Long-Evans rats shown in this study resembles the 

learning curve of the Sprague-Dawley rats reported by Sloan et al. (2009). 

 

 
 
Figure 3.1.  Mean false alarm-
corrected hit rate from all animals 
(n = 9) as a function of training 
time.  Error bars show 95% 
confidence intervals.  All mean 
false-alarm corrected hit-rates 
were above “chance” (8.33% 
correct) during these training 
sessions. 
 

 

Data from 47 sessions (median 3 sessions per animal) was discarded 

due to sub-criterion performance (<75% false alarm-corrected hit rate) to half- 

and full-octave shifts expected to be easily detected, supra-threshold 

frequency changes.  Figure 3.1 includes data from trials with frequency 

differences below half-octave changes and thus does not represent 75% false-

alarm corrected hit rate being achieved in the mean of any session number.  

The number of included pre-implant testing sessions per animal ranged from a 
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minimum of 12 to a maximum of 137.  Overall thresholds were not significantly 

correlated with the number of testing sessions (r = 0.59, p = 0.098).   

 

 

 
 
 
 
 
 
Figure 3.2.  A) Psychometric 
functions of pre- surgery hit rate 
as a function of Δf for all animals 
(n = 9).  Hit rates were combined 
across all reference frequencies.  
B) Comparison of frequency 
difference limens (FDLs) of 
upward and downward frequency 
change directions as a function of 
reference frequency.  Error bars 
show 95% confidence interval. 
 

 

Uncorrected hit rates for each animal (n = 9) are shown as a function of 

Δf in Figure 3.2A.  These psychometric curves resemble curves from similar 

frequency discrimination paradigms used by Sloan et al. (2009).  The FDLs of 

upward and downward frequency changes are plotted for each reference 

frequency to investigate the effects that frequency change direction has on 

detection ability (Figure 3.2B).  FDLs for the lowest reference frequency (4.15 

kHz) were significantly higher for decreasing frequency changes (t-test, p = 

0.019).  Conversely, FDLs for the highest reference frequency (17.8 kHz) were 
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significantly higher for increasing frequency changes (t-test, p < 0.001).  FDLs 

did not show a significant difference for frequency change direction at the 

middle reference frequency (8.6 kHz; t-test, p = 0.63). 

The data suggest that there is an effect of frequency change direction 

at the lowest (4 kHz) and highest (17.8 kHz) reference frequencies. However, 

these edge effects are likely due to the small number of reference frequencies 

used in this study. Previous frequency discrimination studies which used a 

larger number of reference frequencies found slightly lower FDLs to downward 

frequency changes (Sloan et al., 2009), although this effect was inconsistent 

with trends found in lower and higher reference frequency FDLs from the 

present study. The edge effects seen in the FDLs at the lower reference 

frequency could also be partially due to the downward target frequency 

changes from the 4.14 kHz reference frequency being located outside of the 

rat’s preferred hearing range (Kelly & Masterton, 1977), and thus being difficult 

to detect. Walker et al. also showed that in cases of frequency discrimination 

tasks that used two or fewer reference frequencies, ferrets attempted to at 

least partially employ a perfect pitch strategy, essentially discounting reference 

tones, which biased their hit rates towards targets in the middle of the 

frequency range (2009).  Although directional effects were significant, the 

effect size was small compared to overall FDLs and both upwards and 

downwards FDLs were within a range of FDLs consistent with previous reports 

of frequency discrimination in rats (Kelly, 1970; Syka et al., 1996; Talwar & 

Gerstein, 1998; Talwar & Gerstein 1999; Sloan et al., 2009).  Because 
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frequency change direction showed no consistent effects across reference 

frequencies and no significant effect on FDLs for all reference frequencies 

combined (t-test, p = 0.396), frequency changes will be reported as 

directionless |Δf|%. 

Average hit rates showed significant increase (ANOVA; F(17, 161) = 

12.13, p < 0.0001) as a function of increasing |Δf| (Figure 3.3A).  The pre-

surgery average 50% hit rate FDL was interpolated at |Δf| = 3.58%.  Mean hit 

rates were significantly correlated with increasing |Δf| (Spearman’s rank test; r 

= 0.99, p < 0.0001).  It should be noted that mean hit rates to octave changes 

(67% |Δf|; 94% ± 2.8%) were smaller than hit rates to half octave changes 

(34% |Δf|; 97% ± 1.1%), although the difference between these two target 

ranges was not significant (t-test; p = 0.12).  

Average reaction times to targets on “go” trials (“false alarm” response 

to Δf = 0% catch trials and “hit” response to trials with |Δf| > 0% targets) are 

shown in Figure 3.3B as a function of |Δf|.  Mean reaction times ranged from 

315 ms ± 24 ms at Δf = 0% to 153 ms ± 22 ms at one octave changes.  Larger 

frequency differences resulted in faster response times (Spearman’s rank test; 

r = -0.98, p < 0.0001; ANOVA; F(17, 161) = 39.25, p < 0.0001) as a function of 

increasing |Δf|. 
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Figure 3.3.  Psychometric 
functions (pre-surgery) of A) 
mean hit rate and B) response 
time to ‘go’ response trials and 
from all animals (n = 9) as a 
function of absolute frequency 
difference.  The dashed line in 
the top plot shows to the 50% 
correct threshold, corresponding 
to |Δf| = 3.58%. Error bars show 
95% confidence intervals.  
 

 

To investigate the effects of trial hold time on frequency discrimination 

ability, a plot of FDL as a function of the number of reference tones is shown in 

Figure 3.4.  Detection thresholds were inversely correlated with number of 

reference tones (Spearman’s rank test; r = -0.74, p < 0.001) and were shown 

to decrease (ANOVA; F(17, 155) = 3.91, p < 0.0001) as a function of increasing 

number of reference tones.  Response times were likewise inversely 

correlated with number of reference tones (Spearman’s rank test; r = -0.94, p 

< 0.0001) and were shown to decrease (ANOVA; F(17, 155) = 6.72, p < 0.0001) 

as a function of increasing number of reference tones.  Hit rates were divided 

into 5 |Δf|% range bins representing different ranges of detectability and are 

shown in Figure 3.4C.  All |Δf|% bins showed increases in hit rate that were 

correlated with increasing number of reference tones (see Appendix A).  
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These results support the hypothesis that the number of reference tones has a 

significant effect on the behavioral responses of the rat.  However, when 

looking at trials that only include 3+ reference tones, neither detection 

thresholds (ANOVA; F(15, 137) = 0.89, p = 0.578), response time (ANOVA; F(15, 

143) = 0.408, p = 0.975), nor hit rates in any |Δf| bin (see Appendix A) retain a 

significant increase as an effect of number of reference tones.  These results 

show that rats achieve asymptotic performance measures after exposure to 3 

reference tones. 

 

 

 
 
 
 
 
 
 
 
Figure 3.4.  Psychometric 
functions (pre-surgery) of A) mean 
frequency difference limen (FDL) 
B) mean response time to non-
catch trials resulting in a “hit” and 
C) mean hit rate are shown as a 
function of number of reference 
tones from all animals (n = 9).  Hit 
rates are divided into 5 |Δf|% 
range bins.  Error bars show 95% 
confidence intervals. 
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3.3.2. Post-surgery 

All 9 rats reached performance criteria (achieving a significant d-prime 

rating of ≥ 1.96 for trials within a session and were able to hold for a 20 s 

reference duration) within 5 sessions of discrete tone discrimination training at 

the most difficult testing level.  Total time spent training from tone-step 

familiarization to surgery was generally 15-30 days.  Rats became eligible for 

electrode implantation after reaching performance criteria.  One rat died during 

the implantation surgery.  Data from another two of the rats were excluded 

from further analysis because the stimulus set used for testing them was 

slightly different from the stimulus set used to test the remaining 6 rats. 

Rats were given 3 days to recuperate after implantation surgery before 

testing was resumed.  The session immediately following surgery of each rat 

was omitted from all analysis to allow the animal to become reacquainted with 

the task.  Additionally, this extra “practice” session was intended to give the 

animal more time to recover from the effects of surgery.   

Figure 3.5 shows FDLs and hit rates for sessions before and after 

surgery.  Analyses of pre- and post-implantation sessions reveal an apparent 

effect of surgery, especially for discrimination at the lowest reference 

frequency (4.14 kHz).  Several data points for discrimination thresholds for the 

lowest reference frequency lie well above the unity line, indicating that surgery 

may have had a pronounced effect on animals’ ability to discriminate tones 

around that frequency.  The 6 rats averaged a significant (t-test; p = 0.001) 

threshold increase of 4.75% |Δf| at the 4.14 kHz reference frequency after 
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implantation surgery.  FDLs between pre- and post-surgery measures at the 2 

highest reference frequencies (8.61 and 17.85 kHz) increased only 0.31% and 

0.70%, respectively.  A majority of the points (8 of 12) for the higher two 

reference frequencies lie above but still near the unity line, showing that 

although discrimination thresholds were better before surgery they were less 

affected by the procedure.  These increases, though small, were shown to be 

significant (t-test; p = 0.002 for 8.61 kHz and p < 0.001 for 17.85 kHz).     

The sample size and number of sessions included in each of these 

groups were the same.  The data therefore suggest that these deficits in FDL 

were an effect of implantation surgery.  It should be noted, however, that even 

after surgery the rats were still displaying the ability to discriminate fine-

grained frequency differences. 

 

 

Figure 3.5.  Effects of surgery on frequency discrimination as measured by (A) 50% 
correct performance threshold (|Δf| %) and (B) hit rate.  Each scatter point represents 
one animals (n = 6) that provided psychophysical data after implantation surgery.  
Data from each rat were calculated from results of the 3 pre-surgery sessions against 
the 2nd-4th post-surgery sessions.  Dashed lines show the unity lines for each figure. 
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Plotting the pre- and post surgery false alarm-corrected hit rates (Figure 

3.5B) mirrors effects seen in the threshold plot (Figure 3.5A).  Performance for 

the two highest reference frequencies decreased only 5.60% and 5.55% for 

the 8.61 and 17.85 kHz reference frequencies, respectively.  However, paired 

t-test analysis shows that the differences at both of these reference 

frequencies were significant (p < 0.001 for both reference frequencies). 

The 6 rats averaged a 14.90% drop in hit rate for trials at the 4.14 kHz 

reference frequency after implantation surgery, which was also shown to be a 

significant change (p < 0.001).  Figure 3.5 represents mean measures 

collected from 3 pre-surgery and the 2nd-4th post-surgery sessions, however, 

extending the analysis to include all pre- and post-surgery sessions confirms 

that discrimination ability remains impaired after surgery, with the greatest 

effect being seen at the 4.14 kHz reference frequency. 

Data from 12 sessions (median 2.5 sessions per animal) were 

discarded due to sub-criterion performance (<75% false alarm-corrected hit 

rate) to half- and full-octave shifts which should be supra-threshold.  The 

number of included post-implant testing sessions per animal ranged from a 

minimum of 7 to a maximum of 57.  Overall thresholds were not significantly 

correlated with the number of testing sessions (r = 0.552, p = 0.244). 



34 
 

 

 
 
 
 
 
Figure 3.6.  A) Psychometric 
functions of post- surgery hit 
rate as a function of Δf for all 
animals (n = 6).  Hit rates were 
combined across all reference 
frequencies.  B) Comparison 
of frequency difference limens 
(FDLs) of upward and 
downward frequency change 
directions as a function of 
reference frequency.  Error 
bars show 95% confidence 
interval. 
 

 

Uncorrected hit rates for each animal (n = 6) are shown as a function of 

Δf in Figure 3.6A.  FDLs of upward and downward frequency changes are 

plotted for each reference frequency to investigate the effects that frequency 

change direction has on detection ability (Figure 3.6B).  FDLs for the lowest 

reference frequency (4.15 kHz) were significantly higher for decreasing 

frequency changes (t-test, p = 0.035).  FDLs for the highest reference 

frequency (17.8 kHz) were significantly higher for increasing frequency 

changes (t-test, p = 0.002).  FDLs did not show a significant difference for 

frequency change directions of the middle frequency (8.6 kHz; t-test, p = 0. 

223).  Because post-op frequency change direction still showed no effect on 

FDLs for all reference frequencies combined (t-test, p = 0. 223), frequency 
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changes will continue to be reported as directionless |Δf|% (see p. 26 for a 

discussion of these effects). 

Post-surgery trends in behavioral data as functions of |Δf| were similar 

to trends seen in the pre-surgery data.  Average hit rates showed general 

increases and a significant difference (ANOVA; F(17, 107) = 26.54, p  < 0.0001) 

as an effect of increasing |Δf| (Figure 3.7A).  The post-surgery average 50% 

hit rate frequency difference limen was interpolated at |Δf| = 4.85%, increasing 

1.27% from pre-surgery measures.  Mean hit rates were significantly 

correlated with increasing |Δf| (Spearman’s rank test; r = 0.99, p < 0.0001).  As 

with the pre-surgery data, hit rates to octave changes (67% |Δf|; 85% ± 3.9%) 

were again smaller than hit rates to half octave changes (34% |Δf|; 96% ± 

4.0%), this time showing a significant difference between the two (t-test; p = 

0.0015).   

Average reaction times of “go” trials (“false alarm” response to Δf = 0% 

catch trials and “hit” response to trials with |Δf| > 0% targets) are shown in 

Figure 3.7B as a function of |Δf|.  Mean reaction times ranged from 298 ms ± 

100 ms at Δf = 0% to 179 ms ± 30 ms for one-octave changes.  Larger 

frequency differences resulted in faster response times (Spearman’s rank test; 

r = -0.83, p < 0.0001; ANOVA; F(17, 107) = 14.61, p < 0.0001), indicating that 

target |Δf| has a significant effect on response latency. 
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Figure 3.7.    Psychometric 
functions (post-surgery) of A) 
mean hit rate and B) response 
time to ‘go’ response trials and 
from all animals (n = 6) as a 
function of absolute frequency 
difference.  The dashed line in the 
top panel shows to the 50% 
correct threshold, corresponding 
to |Δf| = 3.58%.  Error bars show 
95% confidence intervals. 
 

 
   

The effect of number of reference tones on post-surgery rat 

psychometrics is investigated in Figure 3.8.  As with pre-surgery thresholds, 

the mean post-surgery detection thresholds of all test subjects were inversely 

correlated with number of reference tones (Spearman’s rank test; r = -0.73, p 

< 0.001).  However, unlike effects seen in the pre-surgery group, post-surgery 

thresholds from all test subjects were not significantly variant (ANOVA; F(17, 94) 

= 0.74, p = 0.752) as a function of number of reference tones.  This lack of 

variation in post-surgery detection thresholds is likely due to the wide range of 

thresholds from subjects at trials with one reference tone (5.57% ± 5.50%).  

Trends in post-surgery response times remained similar to pre-surgery trends, 

as response times decreased for trials with 1 to 3 reference tones before 
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leveling out. However, neither the inverse correlation (Spearman’s rank test; r 

= -0.21, p = 0.41) nor the decrease as a function of increasing reference tone 

(ANOVA; F(17, 94) = 0.74, p = 0.75) were significantly different after 

implantation.  Post-surgery hit rates in all ranges of detectability showed a 

correlation with increasing number of reference tones (see see Appendix A).  

Additionally, the middle 3 |Δf| hit rate bins (1-4%, 5-9% and 10-20% |Δf|) 

showed an increase in mean hit rate as a function of increasing reference tone  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.8.  Psychometric 
functions (post-surgery) of A) 
mean frequency difference 
limen (FDL) B) mean 
response time to non-catch 
trials resulting in a “hit” and C) 
mean hit rate are shown as a 
function of number of 
reference tones from all 
animals (n = 6) prior to 
implantation surgery.  Hit rates 
are divided into 5 |Δf|% range 
bins.  Error bars show 95% 
confidence intervals. 
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number (see Appendix A), again showing that the number of reference tones 

has a significant effect on the behavioral responses of the rat.  Of the 3 |Δf| hit-

rate bins which increased as a function of number of reference tones, only 2 

were not significantly changed for trials with 3+ reference tones (see Appendix 

A).  These results suggest that, unlike un-implanted rats, implanted rats 

continue to benefit from further reference tone exposures.  It is possible that 

this is an effect of practice, as the implanted rat group represents data from six 

of the same, albeit more-experienced, rats from the un-implanted group. 

 

3.4. Discussion 

 This chapter presents behavioral measures of a previously 

undocumented strain and gender of rat performing a repeating standard 

go/no-go frequency discrimination task.  Analysis was performed to investigate 

what potential effects reference frequency and the number of reference tones 

might have on FDLs of rats.  Finally, this chapter shows that rats retain the 

ability to discriminate fine-grained frequency differences after implantation 

surgery on AC, which justifies the use of these subjects in subsequent 

chapters as an auditory systems model for studying the neural mechanisms of 

fine-grained frequency discrimination.   

 

3.4.1. Effects of streaming on frequency discrimination 

 Previous reports from our lab have suggested that rats would show 

improved performance and decreasing response latency with increasing 
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numbers of preceding reference tones in frequency discrimination tasks (Sloan 

et al., 2009).  However, due to the relatively long minimum reference tone 

duration (2.1 s) of trials in the paradigm used for that previous report, no 

significant effect was found.  It was hypothesized that significant effects might 

be seen if the minimum reference duration were decreased below 2.1 

seconds. 

The foundation for this hypothesis is found in other studies measuring 

rat performance during frequency discrimination tasks.  Rats performed better 

in a repeating standard task with 5-35 seconds of exposure to 250-ms discrete 

reference tones (separated by 350-ms inter-stimulus intervals) than to a two-

tone discrimination task with only a single 250 ms discrete reference tone 

preceding the target (Talwar & Gerstein, 1998).   The average threshold for 

detection (defined as A’ = 0.85) for the repeating standard task was Δf = 

3.26%, while the two-tone discrimination task averaged a larger detection 

threshold of Δf = 6.25%.  Another similar two-tone discrimination study using 

longer, 1-s pure tones separated by a 300-ms inter-stimulus interval yielded a 

relatively high detection threshold (defined as false alarm corrected hit rate = 

50%) of Δf = 5.7% (Syka et al., 1996).  The findings of these studies indicate 

that one brief reference tone may not be enough to achieve maximum 

frequency discrimination ability.   

It is possible that frequency discrimination ability is enhanced when 

deviant frequency tones break a stream that has been established from 

exposure to the reference frequency.  In this scenario frequency discrimination 
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ability enhancement would be a function of number of individual tones over 

time.  Single, continuous tones have been shown to require longer exposure to 

build up a streaming effect than repeated discrete tones (Bregman & 

Dannenbring, 1973; Tougas & Bregman, 1990).  Alternatively, these results 

could indicate that repeating standard and 2AFC tasks are processed 

differently, possibly due to the different tactics (“detection” vs. “identification”) 

utilized to perform the tasks.  

The current data show that at least 2 reference tones (800-ms hold 

time, a total of 400-ms tone presentation) are required for near-threshold |Δf| 

targets (5-9%) to reach 50% false alarm corrected hit rate.  Additionally, larger 

|Δf| target ranges (10-20% and full octave) showed lower hit rates to trials with 

only a single reference tone and continual improvement to trials with at least 4 

reference tones.  Response latency to “hit” trials resemble effects seen in hit 

rate, with longer reaction times being seen in trials with 1 or 2 reference tones 

for all |Δf| targets.  Thus it is apparent that longer exposure to reference tones 

enables better performance and faster reaction times in rats performing 

discrete tone “repeating standard” frequency discrimination tasks. 

It is interesting that half-octave |Δf|s had a higher hit rate in both the un-

implanted and implanted groups, although this effect was only significant in the 

implanted group.  One possible explanation for the deficit in octave hit rates is 

the shared harmonic between the reference and target tone.  A target tone 

that is one octave away from the reference, while being well above detection 

threshold, would share harmonic frequencies with the preceding reference 
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tone.  It is possible that rats use harmonic differences as a partial cue in 

detecting frequency differences, and thus are less capable of discriminating 

between tones that have differences of one octave than between tones with 

differences that are not one octave.  However, it has been suggested that 

harmonic cues are not utilized when performing frequency discrimination or 

frequency modulation direction identification tasks, but that they do appear to 

be utilized in simple frequency modulation detection (Shackleton & Carlyon, 

1994).  While the role of harmonics has been explored using complex 

frequency modulation stimuli (Moore & Glasberg, 1990; Plack & Carlyon, 

1995), the role that harmonic similarities play in simple pure-tone frequency 

discrimination warrants further investigation in future studies.  It would be 

interesting to see if hit rates to 2, 3, or 4 octave changes might be less than hit 

rates to 1.5, 2.5 or 3.5 octaves.   

 

3.4.2. Effects of frequency change direction 

The poor performance on downward-going low frequency shifts and 

upward-going high frequency shifts shows a bias that could suggest the rats at 

least partly employed a “perfect pitch” strategy similar to that seen in ferrets by 

Walker et al. (2009).  Walker et al. trained ferrets in a 2AFC frequency 

discrimination paradigm thought to require comparison of a target frequency to 

a reference frequency, but tests with multiple reference frequencies showed 

that ferrets ignored the reference frequency and attempted to classify target 

frequencies irrelative to reference frequencies.  Since there are only 3 
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reference frequencies used in the present study, it could be that the rats 

attempt to employ a strategy akin to a bank of 4 bandpass filters, essentially 

trying to identify frequencies that are not one of the references, as opposed to 

notch filters, which one would expect to perform best when the summed 

distance to each notch is greatest, i.e. when the target frequency is at the 

edges.  Presumably, based on the 18-reference frequency results reported by 

Sloan et al. (2009), this directional bias can be somewhat countered by 

employing multiple references within a session, but this would decrease the 

repetitions of each unique stimulus and lessen the strength of statistical 

analysis. 

The high FDL to downward shifts at the 4.15 kHz reference frequency 

might be expected, as audiometric testing on intensity difference limens of 

albino rats showed that ~4 kHz was the lower border of the rats’ preferred 

frequency range, which was shown to have an upper border at ~38 kHz (Kelly 

& Masterton, 1977).  A downward target change from 4.15 kHz would fall 

outside the rats’ preferred hearing range.  However, the difference in 

frequency change direction at the highest frequency is surprising.  Upward 

target changes from 17.85 kHz, even as large as one octave, would still fall 

well within the rats’ preferred hearing range. 

Consistent effects of frequency change direction have been difficult to 

pinpoint.  Syka et al. (1996) found no significant effect of frequency change 

direction in pigmented rats, but with a small sample size of 3 rats, while Sloan 

et al. (2009) found lower thresholds for downward changes when combining 
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across 18 reference frequencies and with a sample size of 24 rats.  Talwar & 

Gerstein (1998) only tested with upward-going shifts.  Cats (Brown et al., 

2004), Cercopithecus monkeys, and one Rhesus monkey (Sinnott et al., 1987) 

showed lower FDLs for downward shifts, similar to Sloan et al. (2009), but 

Japanese macaques and humans have shown lower FDLs for upward shifts 

(Sinnott et al., 1987).   

The relatively small number of reference frequencies used in this study, 

and the significant differences between upward and downward frequency 

difference limens, suggest that there may be significant directional effects with 

physiological underpinnings. However, other studies that have tested with 

larger numbers of reference frequencies have not found consistent directional 

effects despite observing similar significant comparisons.  Sinnot et al. tested 

passerine birds with as many as 7 reference frequencies, and noted similar 

directional effects, better for upwards shifts at lower reference frequencies and 

better for downward shifts at higher reference frequencies (1980). However, 

the directional effects were not consistent between the endpoints, i.e. there 

was no inflection point where the directional effect flipped, but rather 

alternating directional preference that would be difficult to explain 

physiologically.  Sloan et al. (2009) observed the same effect in rats when 

testing with 18 different reference frequencies.  Significant directional effects 

were seen at some reference frequencies, but the effects varied across the 

spectrum without any clear trend.  The directional effects reported here do 

show significance, but this might more reflect an influence of standard 
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statistical tests that aren't conservative with regards to psychophysical data 

comprised of thousands of data points. 

While these studies do not conclusively demonstrate that directional 

effects exist, it is likely that if they exist they are small enough that they are 

often missed with small experimental sample sizes.  The presence of such 

directional effects might be an evolutionary tool, designed to make animals 

more tuned to sound sources that are moving towards or away from them.  

Doppler effects of sound sources moving closer to the listener create higher 

pitched frequencies, and it would stand to reason that species typically hunted 

as prey might be more attuned to upward frequency changes to give an early 

warning of advancing predators.  Predatory fish species have been shown to 

respond differently than fish species typically hunted as prey to wave patterns 

simulating still water, surface winds, and approaching boats (Gabel et al., 

2010).  This suggests that animals may be more attuned to stimuli warning 

them of dangers, with different interactions based on their location on the food 

chain.  However, to date no study has been conducted to support the 

hypothesis that mammalian predator and prey species have Doppler shift 

specific preferences. 

 

3.4.3. Comparison to previous studies 

While the discrete tone frequency discrimination paradigm presented in 

this paper is novel for measuring FDLs in hooded rats, the results are still 

comparable to other repeating standard paradigms used in previous studies. 
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 Figure 3.9 shows the results of this study as compared to previous studies 

measuring FDLs in rats.   

 There are numerous differences in behavioral paradigm which may 

account for the slight differences in FDLs reported in this and other rat 

frequency discrimination studies.  Syka et al. (1996) only utilized a 2AFC 

paradigm.  Talwar & Gerstien (1998) used a repeating standard paradigm 

which resulted in FDLs of 3.06% for all frequencies combined.  However, rats 

in Talwar & Gerstein’s study had a minimum of 5 s of reference tone before 

presentation of the target and were given a relatively long window (2 s) in 

which to indicate perception of the target, suggesting that this task may have 

been less difficult than that reported here.  The repeating standard frequency 

detection paradigm used in this study is derived from that used in Sloan et al. 

(2009).  The behavioral paradigm used in this paper only differs from that used 

by Sloan et al. (2009) in that this paper used fewer reference frequencies (3 as 

compared to 18, spread over roughly the same frequency range) and that this 

paper included shorter hold times (0.4 s compared to 2.1 s in Sloan et al., 

2009).  Sloan et al reported an FDL of 3.06% for all frequencies combined.  

The un-implanted group data from the present study are comparable to a 50% 

correct frequency change threshold of 3.58% for all frequencies combined. 

Further differences between this study and those previous are in the 

strain of animals tested.  Syka et al. (1996) performed experiments using 

female Long-Evans. Talwar & Gerstien (1998) used female Wistar.  Sloan et 

al. (2009) used female Sprague-Dawleys.  The present data represents 
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thresholds of the male Long-Evans strain.  It is unlikely however that gender or 

strain variance account for differences in measured FDLs, which are more 

likely due to differences in behavioral paradigm. 

 
Figure 3.9.  A) A comparison of measured FDLs of this study against FDLs 
measured in rats of previously published studies.    B)  A comparison of FDLs 
measured for five mammalian species using ‘‘repeating standard” frequency 
discrimination tasks: Human, Monkey, Gerbil (Sinnott et al., 1992), Chinchilla (Prosen 
et al., 1989), and Rat (present data). 
  

3.4.4. Effects of surgery of performance 

Overall behavioral trends between un-implanted and implanted rats 

were similar in every behavioral measure.  Hit rates, FDLs, and response 

times of both groups showed improvement to larger |Δf| targets and trials with 

a greater number of reference tones.  Implanted rats appeared to continue to 

improve behavioral frequency change detection with increasing number of 

reference tones, while frequency change detection in un-implanted rats 

approached an asymptote at 3 reference tones (1.2 s).  This could be an effect 
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of implantation surgery.   Damage to AC has been shown to have various 

effects on auditory task performance (Meyer & Woolsey, 1952; Butler et al., 

1957; Goldberg & Neff, 1961; Kelly, 1973; Ohl et al., 2001).  However, it could 

also be an effect of training.  All implanted animals (n = 6) had previously 

learned the frequency discrimination task and provided un-implanted data.  

Previous studies have shown improved discrimination thresholds with 

repeated practice in humans (Ari-Even Roth et al., 2003), monkeys 

(Recanzone et al., 1993), and rats (Syka et al., 1996; Talwar & Gerstien, 

1998).  It is also possible that the lack of asymptotic behavioral measures in 

the implanted rats is due to the smaller sample size of that group compared to 

the un-implanted group.  Several data points showed a wide range of values 

during 1 and 2 reference tone trials, which may have washed out any 

significant effect that might have been seen in shorter duration trials with a 

larger sample size.  
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Chapter 4 

 

4. Neural Correlates of Frequency Discrimination in Behaving 

Rats  

 

4.1. Introduction 

Neural correlates of behavior have been extensively studied in the 

visual (Tolhurst et al., 1983; Britten et al., 1992; Shadlen et al., 1996; Liu and 

Newsome, 2005; Purusgothaman & Bradley, 2005) and somatosensory 

systems (Hernandez et al., 2000; Romo et al., 2002; Luna et al., 2005; 

Vazquez et al., 2012).  Similarly, different types of sound stimuli detection 

have been linked to neural response activity in primary auditory cortex (A1).  

Tone detection (Niwa et al. 2012a; Niwa et al. 2012b; Zhang et al., 2012), 

click-train speed discrimination (Dong et al., 2011), acoustic flutter 

discrimination (Lemus et al., 2009) and speech sound representation 

(Engineer at al., 2008; Shetake et al., 2011; Tsunada et al., 2011; Ranasinghe 

et al., 2012) have all been shown to have neural correlates in responses of 

auditory cortex (AC). 

A previous publication from our lab has demonstrated that rats 

performing a discrete tone discrimination task can reliably detect frequency 

differences as low as 0.03 octaves, or ~ 3% (Sloan et al., 2009).  Similar 50% 

correct frequency discrimination thresholds have been found in previous rat 

studies (Syka et al., 1996; Talwar & Gerstein, 1998; Talwar & Gerstein, 1999).  
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However it has not been shown that auditory cortex is capable of resolving 

threshold level frequency differences.  Supra-threshold frequency differences 

(~17% Δf) have been documented in spectro-temporal receptive fields of ferret 

A1 cells. These cells displayed enhanced responsiveness to target and 

suppressed responsiveness to reference tones (Fritz et al., 2005).  Learning a 

frequency discrimination task has been shown to increase target tone onset 

response in A1 of owl monkeys (Blake et al., 2002).  Both of these reports 

reveal neural mechanisms within AC which, by increasing contrast between 

reference and target tone responses, could facilitate discrimination of 

frequency differences.  However, neither study described the neural correlates 

of threshold-level frequency discrimination in behaving animals. 

If A1 is involved in threshold-level frequency discrimination then 

behavioral detection ability should be correlated with neural activity in AC.  To 

test this hypothesis multi-unit neural activity in AC of rats was recorded during 

a discrete tone frequency discrimination task.  The purpose of this study was 

to determine if AC encodes small frequency differences on par with behavioral 

thresholds.  The results of this study demonstrate that increases in the firing 

rate during the onset responses of AC cells to deviant frequencies (target 

tones) are correlated with detection ability.  Additionally, the data demonstrate 

that the onset latency of AC cells to deviant frequencies is correlated with the 

behavioral response time (nose poke withdrawal). These results demonstrate 

that AC contains sufficient information for performance of threshold-level 

frequency discrimination.  
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4.2. Methods 

A total of 5 male Long-Evans hooded rats were used in this study.  

Neural recordings were taken from AC of each subject via chronic, multi-

electrode implants.  Additional details concerning the Methods of this study 

can be found in Section 1.4.  The care and use of animals in this study 

conformed to NIH guidelines and were in accordance with the University of 

Oklahoma Laboratory Animal Resources and Institutional Animal Care and 

Use Committee (IACUC) regulations.   

 

4.3. Results 

Tone-driven neural activity was recorded from a total of 85 electrodes 

implanted chronically in AC of 5 rats while they performed a discrete tone 

frequency discrimination task.  Spike sorting analysis revealed that 12 of the 

85 channels were recording activity from two different multi-unit clusters 

(MUCs), so that activity from a total of 97 MUCs was recorded.  These 

recordings were used to determine the correlation between neural activity and 

two behavioral measures: hit rate and response time.  

The rats were tested on equivalent upward (+Δf) and downward (-Δf) 

frequency changes. In concordance with previous studies (Syka et al., 1996, 

Sloan et al. 2009) the rats in the present study did not show a significant 

difference in their ability to discriminate ascending and descending frequency 

changes (ANOVA; p = 0.811) for all reference frequencies combined, thus 

frequency differences in this study are reported in absolute magnitude.  
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Figure 4.1.  The psychometric 
function of mean hit rate is 
shown from all rats (n = 5) as a 
function of absolute frequency 
difference.  The dotted line 
shows 50% correct threshold, 
corresponding to |Δf| = 4.66%.  
Reference frequencies used 
were 4.15, 8.61, and 17.85 kHz.  
Error bars show 95% confidence 
intervals. 
 

 
 

Analysis of the behavioral data reveals that discrimination performance 

improved with increasing frequency difference. Spearman’s rank test showed 

that average hit rates were significantly correlated with frequency difference (r 

= 0.99, p < 0.001). The average 50% hit rate frequency difference limen was 

interpolated at |Δf| = 4.66%. 

The predominant neural responses to tone presentations were onset 

and offset responses.  Behavioral reaction times, measured as the time from 

tone onset to nosepoke withdrawal, to more salient target tones (|Δf| ≥ 10%) 

averaged 199.7 ms from tone onset while performing frequency discrimination 

tasks, indicating that rats responded to large Δf targets before offset response 

to tone presentation is seen in the AC responses (~210 ms).  This timing 

difference suggests that the offset response of tones may not be playing a role 

in frequency discrimination. 
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Some MUCs showed increased firing rates during presentation of target 

tones for the duration of the tone.  It is possible that this increased spike rate 

during target tone presentation could be a factor in the detection of a 

difference in frequency.  The mean population spike activity diagram (Figure 

4.4A) shows an increased spike rate during target tone presentation (seen 

beginning at ~550 ms) to larger |Δf| targets.  However, an analysis of response 

times indicates that increases in spike rate prior to target tone cessation could 

be motion artifact generated by the sound the rat makes as it is withdrawing 

from the nosepoke.  This hypthesis is supported when dividing the neural 

responses into trials in which the rats did and did not respond to the target 

tone (discussed further in Chapter 4; Figure 4.3).  Trials in which the rats did 

not respond to target tones do not show an increase in spike rate during 

presentation of the target tone. 

Reaction times indicate that neural activity after target tone onset 

response may be motion artifact and/or irrelevant to the process of frequency 

discrimination.  Therefore, I hypothesize that behavior in the frequency 

discrimination task may be most clearly represented by the onset response to 

the target tone.  The onset response to reference tones typically occurred at 

~10 ms and ended ~30 ms after tone onset.  The difference in firing rate 

between target and reference tones within this window will be the neural 

mechanism focused on in this and the following chapters. 

MUCs from this study showed a diversity of response types and 

bandwidth tuning. Neural recordings were analyzed from single MUCs from 
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multiple sessions pooled together to create a spectro-temporal spike activity 

diagram (STSAD) (n = 97). Multiple sessions were pooled in this way, as 

responses recorded from single trials or even single sessions did not typically 

contain enough spikes to achieve statistical significance.  Differences in mean 

onset spike rate between final reference tone and first target tone were 

calculated as a function of |Δf| for each MUC. The correlation between the 

difference in onset response spike rate to frequency changes and the 

behavioral hit rate detection were individually calculated for each MUC. 

Increases in firing rate to target tones from 46 of the 97 MUCs (47.4%) from 

this study were correlated with behavioral performance.  Mapping of the 

location of the behaviorally correlated MUCs in relation to each other within 

each rat showed that behaviorally correlated MUCs were scattered over the 

entire cortical area covered by the 16 channel electrode array.   

An example MUC with neural responses that are significantly correlated 

to hit rate (Spearman’s rank test; r = 0.73, p = 0.0008) is shown in Figure 4.2. 

Onset responses to the target tone for Δf = 0% catch trials closely resemble 

the onset responses to the reference tone, as would be expected. However, 

as the frequency difference between reference and target tone increases, the 

onset firing rate difference between reference and target tone increases.  This 

increase in onset firing rate is closely correlated with the hit rate of this rat 

during sessions from which these neural data were recorded. 
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Figure 4.2.  A) The mean STSAD of final reference tone and the first target tone of 
an example MUC with an increase in mean onset firing rate that is correlated with 
detection ability (n = 46 of 97 MUCs) is shown as a color map for |Δf| ranging from 
0% to 20%.  Mean response times to target tones at each |Δf| are shown by white 
markers with error bars indicating 95% confidence interval.  The color bar shows the 
spike rate (spikes / s) scale.  The dashed white lines at 50 ms and 450 ms represent 
tone onsets for the reference and target tones.  The pink and green boxes show 
reference and target presentation times (50-250 ms and 450-650 ms, respectively). 
B) The mean difference STSAD between the final reference tone and the first target 
tone is shown for |Δf| ranging from 0% to 20%.  The dashed white lines represent the 
mean onset window (10-30 ms) used for analysis. C) Mean population changes in 
onset spike rate between target tone and final reference tone (circles) and 
psychometric function of correlated mean hit rate (gray curve; Spearman’s rank test; r 
= 0.73, p = 0.0008) are shown as a function of target |Δf|.  The dashed black line 
represents 0% change in spike rate and 0% hit rate.  STSADs are shown smoothed 
with a 5 ms/3 |Δf| box smooth.  Reference frequencies used were 4.15, 8.61, and 
17.85 kHz.  
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Figure 4.3.  A) The mean STSAD of final reference tone and the first target tone of 
an example MUC with an increase in mean onset firing rate that is not correlated with 
detection ability (n = 51 of 97 MUCs) is shown as a color map for |Δf| ranging from 
0% to 20%.  Mean response times to target tones at each |Δf| are shown by white 
markers with error bars indicating 95% confidence interval.  The color bar shows the 
spike rate (spikes / s) scale.  The dashed white lines at 50 ms and 450 ms represent 
tone onsets for the reference and target tones.  The pink and green boxes show 
reference and target presentation times (50-250 ms and 450-650 ms, respectively). 
B) The mean difference STSAD between the final reference tone and the first target 
tone is shown for |Δf| ranging from 0% to 20%.  The dashed white lines represent the 
mean onset window (10-30 ms) used for analysis. C) Mean population changes in 
onset spike rate between target tone and final reference tone (circles) and 
psychometric function of un-correlated mean hit rate (gray curve; Spearman’s rank 
test; r = 0.19, p = 0.44) are shown as a function of target |Δf|.  The dashed black line 
represents 0% change in spike rate and 0% hit rate.  STSADs are shown smoothed 
with a 5 ms/3 |Δf| box smooth.  Reference frequencies used were 4.15, 8.61, and 
17.85 kHz.  

Figure 4.3 shows an example MUC with an invariable onset response 

to all target tones across all frequency differences |Δf| ≤ 20%. The onset to 

target tones in this cell resembles the onset to preceding reference tones.  
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Analysis of the difference in spike rate between reference and target tones 

over the 10-30 ms onset window shows that target tones ranged from -33.8 to 

31.0 spikes / s.  These differences were not correlated with hit rate detection 

of this rat during sessions from which these neural data were recorded 

(Spearman’s rank test; r = 0.19, p = 0.44).  Non-behaviorally correlated 

increases in onset spike rate to target tones were seen in 51 of 97 tone-driven 

MUCs. 

The mean normalized population response of all behaviorally correlated 

MUCs (n = 46 of 97) is shown in Figure 4.4A. Responses were normalized to 

the onset of the reference tone. Responses to 0% Δf target tone catch trials 

show similar onset response rates and inhibitory periods as responses to 

identical preceding reference tones. However, onset responses to |Δf | > 0% 

target tones differed from those of reference tones, featuring stronger and 

longer-lasting onset responses as the |Δf| increased.  

Figure 4.4B shows the difference in onset responses between target 

and reference tones as a function of frequency difference for the population. In 

general, larger frequency differences result in larger increases in firing rate. 

There is a ~25% increase in the peak firing rate near the detection threshold of 

4.66%. Responses to 0% Δf target catch trials show no difference compared 

to responses to the identical preceding reference tones. However, the data 

show a ~20% increase in peak firing rate for sub-threshold (2-4% |Δf|) 

changes, with ever larger increases for increasing frequency differences. It is 
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clear that AC onset responses increase to even sub-threshold frequency 

differences during behavior. 

 
Figure 4.4.  A) Mean population STSAD of final reference tone and the first target 
tone are shown combined for all behaviorally correlated multi-unit clusters (n = 46 
from 665 sessions) as a color map for |Δf| ranging from 0% to 20%.  Multi-unit 
clusters were normalized by the average onset amplitude of the final reference tone.  
Mean response times to target tones at each |Δf| are shown by white markers with 
error bars indicating 95% confidence interval.  The color bar shows the normalized 
spike rate (%) scale.  The dashed white lines at 50 ms and 450 ms represent tone 
onsets for the reference and target tones.  The pink and green boxes show reference 
and target presentation times (50-250 ms and 450-650 ms, respectively). B) Mean 
difference in STSADs between the final reference tone and the first target tone is 
shown for all behaviorally correlated multi-unit clusters for |Δf| ranging from 0% to 
20%.  The dashed white lines represent the mean onset window (10-30 ms) used for 
analysis. C) Mean population changes in onset spike rate between target tone and 
final reference tone (circles) and psychometric function of correlated mean hit rate 
(gray curve; Spearman’s rank test; r = 0.79, p = 0.0001) are shown as a function of 
target |Δf|.  The dashed black line represents 0% change in spike rate and 0% hit 
rate.  Error bars show 95% confidence interval. STSADs are shown smoothed with a 
5 ms/3 |Δf| box smooth.  Reference frequencies used were 4.15, 8.61, and 17.85 
kHz.  
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The difference in mean onset firing rate, averaged over 10-30 ms 

following tone onset, between target and reference tones from the 46 

behaviorally correlated MUCs (gathered from a total of 665 sessions) is shown 

as a function of |Δf| in Figure 4.4C. In general, the mean onset firing rate 

difference increases with increasing |Δf| targets, ranging from -0.40% ± 1.32% 

for 0% Δf catch trials to 47.16% ± 3.36% at full octave changes. Also shown is 

the mean hit-rate as a function of |Δf| weighted to the number of MUCs 

recorded from each session, which shows similar trends and is significantly 

correlated to the changes in the driven rate of AC responses (Spearman’s 

rank test; r = 0.79, p = 0.0001). Onset responses in AC gradually increase with 

increasing frequency differences between the reference and target tones.  

It should be noted that while normalized increases in onset response to 

octave frequency changes (47.1 ± 3.36%) were substantially larger than 

increases to half-octave frequency changes (19.4 ± 2.06%) the hit rate 

between these two frequency difference magnitudes was shown (in the 

previous chapter) to be significantly higher for half octave changes.  The larger 

increase in neural response seen in AC to octave frequency changes paired 

with the lower detection rates would seem to suggest that signals from AC are 

not playing a key role in the detection of those frequency changes.  It is 

possible that other processing areas are sending conflicting information about 

the presence of an octave frequency change (possibly confounded by 
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harmonic similarities), which when integrated with information from AC results 

in decreased detection ability. 

The activity of the remaining 51 MUCs (gathered from a total of 398 

sessions) that were not behaviorally correlated individually was also not 

significantly correlated with behavior (Spearman’s rank test; r = 0.41, p = 0.09) 

when combined into a mean normalized population response.  However, when 

all recordings were combined across all 97 tone-driven MUCs (from 1063 

sessions), regardless of significant individual correlation with behavior, the 

correlation of mean onset response to hit rate was also significant 

(Spearman’s rank test; r = 0.66, p = 0.003), though less representative of 

behavioral measures.  

The behavioral analysis shows significant directional effects at the 

lower (4.14 kHz) and higher (17.8 kHz) reference frequencies for the post-

surgery group (Figure 3.6B).  However, with only one reference frequency 

tested in the middle range, it's difficult to argue that the directional effects 

definitely reflect some physiological cause.  Other studies that used more 

reference frequencies did not see consistent directional effects that might be 

suggested by this data (Sinnott et al., 1980; Sloan et al., 2009).  If a 

psychophysical frequency change direction bias does exist, then the neural 

mechanism which is shown to correlate with hit rate with respect to 

directionless frequency changes in trials combining all reference frequencies 

should also be representative of hit rate with respect to frequency change 

direction in trials at individual reference frequencies.  The preceding analysis 
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groups reference frequencies to preserve sample sizes for statistical analysis, 

but a separate analysis for each reference frequency actually suggests that 

there may be neurophysiological correlates to the directional effects.  

Spearman’s rank test correlations show that the increase in onset response to 

target tones as a function of Δf with respect to frequency change direction 

were significantly correlated to hit rate for trials at 4.14 kHz (r = 0.51, p = 

0.002) and 17.8 kHz (r = 0.82, p < 0.0001) reference frequencies, showing that 

changes in onset firing rate have the same biases towards upward and 

downward frequency changes.  These results add validity to the proposed 

neural mechanism of detection by showing that effects which may cause 

changes in detection ability are also affecting the neural responses associated 

with that detection. 

Another common measure of behavioral response is reaction time. B.F. 

Skinner’s law of latency states that reaction time is inversely related to the 

salience of the stimulus (Skinner, 1938), and larger frequency differences 

should result in faster response times.  Behavioral reaction time was 

measured during testing as the time it took the rats to withdraw from the 

nosepoke following the onset of the target tone. 

Onset latency was defined as the first point on the PSTH for the target 

tone response at which the spike rate exceeded 2 standard deviations from 

the spontaneous rate.  The spontaneous rate was calculated over the 50 ms 

prior to tone onset during the silent inter-stimulus interval period.  Figure 4.5 

shows the onset latency and the mean reaction time to “go” trials (trials 
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resulting in a hit or false alarm) as a function of the difference in frequency of 

the target from the reference.  The data show decreasing reaction times and 

shorter onset latency to increasing frequency differences.  Spearman’s rank 

test shows a significant correlation between response time and onset latency 

in AC (r = 0.87, p < 0.0001).  This close relationship between neural response 

onset latency and behavioral reaction times is consistent with the hypothesis 

that activity in AC contains information sufficient to drive threshold-level 

frequency discrimination.  

 

 

Figure 4.5.  Mean population 
changes in target tone onset 
response latency, measured as the 
first point in the target response 
PSTH which exceeded 2 standard 
deviations of the spontaneous rate 
(white points), and the psychometric 
function of response time (gray line; 
Spearman’s rank test; r = 0.87, p < 
0.0001) to trials which resulted in a 
“Go” response are shown as a 
function of target |Δf|.  Error bars 
show 95% confidence interval of 
tone-driven MUCs (n = 97 from 
1063 sessions).  Data was collected 
in 5 ms moving-window bins.  
Reference frequencies used were 
4.15, 8.61, and 17.85 kHz.  

 

4.4. Discussion 

Action potentials were recorded from AC neurons in chronically 

implanted rats performing a frequency discrimination task and two neural 

correlates of behavior were identified.  First, increases in firing rate to the 

onset of the target tone relative to the reference were shown to be correlated 
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with frequency discrimination performance.  This observation is consistent with 

reports in primary somatosensory (Hernandez et al., 2000) and visual 

(Tolhurst et al., 1983; Britten et al., 1998; Liu & Newsome, 2005) cortex that 

neural responses are correlated with behavioral discrimination.  Second, the 

onset latencies of AC responses to target tones were shown to be correlated 

with behavioral response time. 

The role of AC in frequency discrimination has historically been difficult 

to establish.  Frequency specific information is first resolved at the cochlea 

before being passed through sub-cortical auditory areas.  Several studies 

have shown that the sub-cortical processing is sufficient for gross frequency 

discrimination, as rats with intact sub-cortical nuclei but bilaterally ablated AC 

have been able to discriminate sounds with large frequency differences 

(Meyer & Woolsey, 1952; Butler et al., 1957; Goldberg & Neff, 1961; Kelly, 

1973; Ohl et al., 2001).  However, acute bilateral deactivation of A1 with the 

GABAA agonist muscimol has been shown to temporarily eliminate the ability 

of rats to detect tones or perform frequency discrimination (Talwar et al., 

2001).  As the drug effect fades, the ability to detect tones returns first, 

followed by the ability to discriminate large frequency differences and finally 

the ability to discriminate smaller frequency differences.  Similar results were 

found in the specialized Doppler-shifted constant-frequency A1 area of the 

mustached bat when fine grained frequency resolution was impaired for up to 

3.2 hours following muscimol deactivation (Riquimaroux et al., 1991).  Bilateral 

lesion studies in rats showed that AC is required for discrimination of subtle 
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differences in complex speech sounds (Porter et al., 2010) and amplitude 

modulated sounds (Cooke et al., 2007), but not for detection of large 

differences in frequency or intensity.  Similar deficits in detection of subtle 

sound differences have been shown in human patients with bilaterally 

destroyed A1 (via stroke or seizure; Mendez & Geehan, 1988, Tramo et al., 

2002).  The results of these studies suggest that A1 is most likely normally 

involved in resolving fine-grain frequency differences in auditory stimuli.  The 

correlation between AC responses at near-threshold level and behavior 

presented here supports this hypothesis. 

The number of cells needed to accurately represent behavioral 

measures is an often-debated subject.  A vision study on the detection of 

motion signals found that responses of single middle temporal visual area 

(MT) cells of monkeys were typically adequate to encode psychophysical 

measures (Britten et al., 1992).  However, the responses of single MT cells 

during a visual speed discrimination task was found to be less representative 

of behavior than population MT responses when using stimuli at near 

perceptual threshold levels (Liu & Newsome, 2005).  MUCs, but not single 

units, in A1 were correlated with speech sound discrimination (Engineer et al., 

2008).  Even pooling responses of weakly correlated MT cells (which may be 

optimized to respond to different aspects of visual stimuli) produced better 

correlations with behavior than single cell responses (Shadlen et at., 1996).   

While population coding may represent behavioral measures more 

accurately than single cells, it does not necessarily preclude contributions of 



64 
 

specialized cells.  A study in MT of monkeys found that population responses 

of finely tuned cells closely correlated with perceptual decisions even though 

population responses of all active MT cells showed poor correlation with 

behavior (Purushothaman & Bradley, 2005).  The data presented here are 

consistent with these findings and show that the correlation between behavior 

and increases in firing rate onset responses between final reference and first 

target tone averaged over the entire population of tone-driven MUCs 

(Spearman’s rank test; r = 0.66, p = 0.003) was less than the correlation for a 

restricted population only including individually behaviorally correlated MUCs 

(Spearman’s rank test; r = 0.79, p = 0.0001).  This finding, along with the 

individually significant correlation found in the nearly half of tone-driven MUCs 

(47.4%), suggests that frequency difference information may be processed by 

a specialized subset of cells and not integrated broadly from AC.  

Recently it has been shown that both humans (Bitterman et al., 2008) 

and non-human primates (Bartlett et al., 2011) have a subset of A1 cells with 

narrow frequency tuning on the order of 0.08 octave bandwidths, or an ~11% 

frequency difference, in humans and 0.05 octaves, or an ~7% frequency 

difference, in monkeys, yet both species have displayed the ability to resolve 

frequency differences far smaller (Sinnott et al., 1985; Sinnott & Brown, 1993; 

Wienicke et al., 2001).  There are many models that can explain how these 

narrowly tuned cells could be used to perform finer resolution frequency 

discrimination.  However, the discrepancy between behavioral thresholds and 

frequency selectivity of these fine-tuned cells suggests that single cell model 
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hypotheses are not adequate.  Bartlett et al. (2011) proposed that these finely 

tuned neurons serve to sharpen frequency responses in A1, but that 

population coding is still required for resolution of near threshold changes.  

While sorting of the MUCs in this study was attempted, very few were 

resolvable to single units.  Therefore, this study cannot determine if single 

units encode these behavioral measures.  However, the population of AC units 

(Figure 4.3) clearly shows that even sub-threshold frequency differences are 

being encoded by combined responses of AC cells.  

It is important to note that both of these studies, which report finding 

ultra-fine frequency resolution A1 cells, were conducted on passively listening 

human subjects (Bitterman et al., 2008) and non-human primates (Bartlett et 

al., 2011).  It is well-documented that behavioral context alters neural 

response properties in AC (Fritz et al., 2003; Atiani et al., 2009; Otazu et al., 

2009).  A study with anesthetized cats has shown that preceding auditory 

stimuli can alter the response of neurons to following stimuli if they are within 

430 ms (Brosch & Schreiner, 1997), effectively masking the latter tone making 

it indistinguishable from the first.  However, both monkeys and humans are 

able to discriminate complex, closely-spaced (<430 ms) auditory stimuli 

(monkey howl vocalizations) when attending in a behavioral task (Fugate et 

al., 2008).  It is likely that the ability of the auditory system to resolve small 

frequency differences might similarly only be seen while rats are attending to 

stimuli.  This hypothesis is supported by the findings of Recanzone et al. 

(1993), who showed that attending to auditory stimuli decreased the frequency 
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response area of A1 cells in owl monkeys.  Despite the clear representation of 

threshold-level behavior in population responses, the possibility of single cell 

models also representing behavioral thresholds cannot be discounted.  It is 

possible that the finely-tuned frequency response areas of single cells during 

task engagement could also account for behavioral frequency resolution 

abilities. 

In addition to behavioral discrimination of frequency differences being 

encoded in the mean firing rates of AC cells, neural response latency was 

shown to be correlated with reaction times of rats performing a frequency 

discrimination task.  This study demonstrates that more salient frequency 

differences resulted in faster behavioral response times.  Likewise, more 

salient frequency differences achieved significantly higher-than-spontaneous 

firing rates more quickly.  The correlation between psychophysical reaction 

time and AC firing latency supports the hypothesis that frequency difference 

information is present within activity of AC. 

The study presented in this chapter shows that information necessary 

to encode threshold-level frequency differences is present in AC.  The 

information from this study, however, cannot definitively lead to the conclusion 

that discrimination of frequency differences is occurring there.  Auditory 

information ascends from the thalamus to AC.  AC has been shown to be 

necessary for threshold-level frequency discrimination, however the present 

study cannot determine if AC is the first location within the neural auditory 

pathway to encode this information, or if it is just a necessary relay point.  
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Future studies pairing recordings from AC and sub-cortical auditory nuclei in 

behaving animals could enhance understanding of the role of subcortical 

auditory nuclei in frequency discrimination. 
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Chapter 5 

 

5. Neural Correlates of Decision Making in Rats Performing a 

Frequency Discrimination Task 

 

5.1. Introduction 

Recent studies have shown neural correlates in auditory cortex (AC) 

related to discrimination of such auditory stimuli as acoustic flutter (Lemus et 

al., 2009), click-train speed (Dong et al., 2011), speech sounds (Engineer at 

al., 2008; Shetake et al., 2011; Tsunada et al., 2011; Ranasinghe et al., 2012), 

amplitude modulation (Niwa et al., 2012a, Niwa et al., 2012b) and simple tone 

detection (Zhang et al., 2012).  The previous chapter of this dissertation 

describes neural responses which are highly correlated with detection ability of 

threshold-level differences during performance of a frequency discrimination 

task.  The extent to which this neural mechanism may also encode information 

underlying subsequent behavioral decisions remains to be answered. 

Neural correlates of discrimination often contain responses from both 

correct and incorrect judgments about the same stimuli.  Neural responses 

can be correlated with actual stimulus dimensions and/or what the subject 

judges those dimensions to be.  Neural correlates of discrimination in the 

visual system have been shown to also be predictive of the subject’s 

response.  Weakly tuned individual cells in the medial temporal gyrus of 

monkeys were shown to not only correlate with discrimination thresholds 
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(Britten et al., 1992, Shadlen et al., 1996), but to also predict behavioral 

decisions in a motion direction discrimination task (Britten et al., 1996).  

Similar results have been shown in the somatosensory system as well.  

Increases in firing rate of primary somatosensory cells were shown to correlate 

with the detection ability of monkeys performing a vibrotactile discrimination 

task (Hernandez et al., 2000).  Later studies in primary (Luna et al., 2005) and 

secondary somatosensory cortices (Romo et al., 2002) showed that this 

detection mechanism was predictive of behavioral reports. 

It is uncertain, however, whether the neural responses in AC simply 

reflect stimulus features, or also reflect the animal’s behavioral decisions 

regarding the stimulus.  The correlation between neural responses from AC 

and corresponding behavioral decisions has met with conflicting reports.  

Recordings from A1 were shown to represent discrimination thresholds, but 

did not represent behavioral decisions of subjects performing acoustic flutter 

discrimination (Lemus et al., 2009), click train discrimination (Dong et al., 

2011), or tone-detection (Zhang et al., 2012).  However, A1 responses from 

monkeys performing a more difficult amplitude modulation discrimination task 

were shown to be correlated with the animal’s behavioral decision (Niwa et al., 

2012b).  Higher firing rates were seen in responses of A1 during trials in which 

monkeys reported detection of an amplitude modulated tone versus trials with 

the same stimulus for which monkeys reported no detection. 

The purpose of this study is to investigate whether or not there is a 

correlation between neural responses in AC and behavioral decisions during 
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performance of a threshold-level frequency discrimination task.  Additionally, 

responses in AC were monitored during a task when the subjects are trained 

to ignore the same frequency changes to determine if differences in neural 

responses to identical stimuli are modulated by task relevance.  

 

5.2. Methods 

A total of 5 male Long-Evans hooded rats were used in this study.  

Neural recordings were taken from AC of each subject via chronic, multi-

electrode implants.  Additional details concerning the Methods of this study 

can be found in Chapter 2.4.  The care and use of animals in this study 

conformed to NIH guidelines and University of Oklahoma Laboratory Animal 

Resources and Institutional Animal Care and Use Committee (IACUC) 

regulations.   

 

5.2.1. Noise Detection Task 

In addition to the frequency discrimination task which has been 

described in previous chapters, this study reports on neural responses during 

testing of a broadband noise detection task.  Four of the rats which 

participated in the frequency discrimination task from this report also 

participated in the noise detection task.  The noise detection task was similar 

to the frequency discrimination task in several ways.  The rats had no 

indication at the beginning of the sessions which stimulus set they would be 
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tested on that day.  However, they typically only required 1 or 2 trials before 

beginning to perform the task correctly.   

Rats initiated a trial by engaging a central nosepoke.  Following a 50 

ms delay, stimuli were delivered as two discrete 200 ms, 60 dB reference tone 

trains (R1 and R2) composed of a random number of tones followed by a pair 

of broadband noise targets.  R1 contained between 1-18 tones, followed by 

R2 which also contained between 1-18 tones, but the number of tones in the 

combined reference sequences never exceeded 20 tones.  The number of 

tones in each reference train was independent of each other.  Reference 

tones and reference trains were separated with a 200 ms inter-tone interval.  

The frequency of R1 was randomly varied between 3 frequency values: 4.15, 

8.61, and 17.85 kHz.  R2 was at a second frequency different from R1 (except 

during Δf = 0%). The frequency of R2 was shifted either upward or downward 

from R1 by a frequency step of Δf = ±0–9% in 1% steps, or ±10–20% in 2% 

steps.  Frequency change percentages were calculated using the direction-

insensitive equation: Δf = 2·|(f R1 – f R2)|/( f R1 + f R2).  The final tone of R2 was 

followed by a pair of 200 ms, 60 dB broadband noise targets.  Hits, misses, 

false alarms, and correct rejection trial outcomes were dependent on the rat’s 

response to the broadband noise targets following R2. 



72 
 

 

Figure 5.1.  Behavioral paradigms for the discrete tone frequency discrimination and 
noise detection tasks.  For the frequency discrimination task rats initiated trials by 
engaging a nosepoke, which triggered presentation of a series of between 1 to 18 
reference tones (”R”) followed by a pair of target tones (“T”).  For the noise detection 
task subjects would elicit 2 reference tone sequences (“R1” and “R2”) which would 
each contain between 1 and 18 reference tones each, followed by a pair of 
broadband noise targets (“T”).  Withdrawal from the nosepoke within 600 ms of the 
onset of the first target was scored as a “hit” or “false alarm.”  Withdrawal after 600 
ms was scored as a “miss” or “correct rejection.”  All tones and noise bursts were 
200 ms in duration and were separated by 200 ms silent inter-tone-intervals. 

 
A trial was scored as a hit if the subject withdrew from the nosepoke 

within 600 ms of the onset of the first target noise burst.  Two target noise 

bursts were presented so rats could not cue on silence.  Hit trials were 

rewarded with a 45 mg food pellet.  Failure to withdraw within 600 ms of the 

onset of the first target noise burst was scored as a miss and resulted in a 5 

second “time out” during which the cage lights were extinguished and 

nosepoke signals were ignored.  Catch trials (trials in which no noise burst 

followed R2) were presented in order to estimate false alarm rate.  Withdrawal 

from the nosepoke within 600 ms prior to the end of the final tone of R2 during 
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a target-less catch trial was scored as a false alarm.  Remaining in the 

nosepoke through a catch trial was scored as a correct rejection.  Trials in 

which the rats withdrew before the onset of the target tones were scored as an 

abort and were discarded from analysis. 

 

5.3. Results 

Recordings were taken from 66 electrodes with tone driven neural 

activity implanted chronically in 5 rats.  Although recordings were stable during 

sessions, day-to-day variability suggested that recordings might not 

consistently include the same set of neurons, so each multi-unit cluster was 

analyzed independently for each recording session.  In total, recordings from 

240 multi-unit cluster samples were collected over a 6 month period from 5 

animals (66 electrodes) while performing a discrete tone frequency 

discrimination task.  The previous chapter of this dissertation showed that the 

difference in peak driven onset rate in rat AC between reference and target 

tones was correlated with behavioral detection.  The present study 

investigates whether or not neural responses in auditory cortex reflect 

behavioral decisions during a frequency discrimination task.   

Examples of different neural responses from trials resulting in Go and 

No-go behavioral decisions to identical |Δf| targets are shown for an example 

MUC as a peri-stimulus time histograms (PSTHs) in Figure 5.2.  Figure 5.2A-B 

shows final reference and first target tone responses of a unit when the target 

tone is shifted by 10%.  There is no significant difference in mean onset 
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response rate to the reference tones (2-sample t-test; p = 0.37) between 

behavioral decisions, but the onset response to the target tone is significantly 

larger preceding a Go (hit) decision than a No-go (miss) decision (2-sample t-

test; p = 0.015).  The increased onset response to targets for Go decisions 

seen in this MUC was typical of those recorded in this study. 

 

 

Figure 5.2. The mean response PSTHs of an individual MUC is shown for “go” and 
“no-go” decisions to final reference and target tones.  A) This MUC shows similar 
responses to the reference tone, but increased onset response to “go” (hit) decisions 
at |Δf| = 10%.  B) Mean onset spike rates (measured from 10-30 ms after tone 
onsets) for the MUC shown in Figure 5.2A were not different between behavioral 
decisions for reference tones (t-test; p = 0.37), but were for targets (t-test; p = 0.015).  
The red and green highlighted areas show reference (50-250 ms) and target (450-
650 ms) presentation times, respectively.  Data were collected in 10 ms moving-
window bins.  Reference frequencies used were 4.15, 8.61, and 17.85 kHz. 
 

Significant differences between mean onset responses of Go and No-

go decisions to Δf = 0% catch trials were rarely found.  It is possible that this is 

because AC does not encode the perception of frequency differences when 

none are present.  It is also possible that the rarity of significant effects of this 

type for catch trials is a statistical effect due to subjects’ low false alarm rates.  

However, when combing the neural responses from false alarm and correct 

rejection trials of all MUCs from all sessions (n = 299), a significant difference 
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can be seen in the neural data between these two behavioral outcomes (2-

sample t-test; p = 0.01).  This difference can be seen in Figure 5.6.  Overall, 

the responses from these example MUCs suggest that auditory cortex does 

not simply encode stimulus features, but may also contain information 

sufficient to predict behavioral decisions during a frequency discrimination 

task.   

The mean normalized population responses of all MUCs to the final 

reference and first target tones are shown in Figure 5.3 as spectro-temporal 

spike activity diagrams (STSADs).  Neural responses preceding Go (Figure 

5.3A) and No-go (Figure 5.3B) decisions were normalized to the mean onset 

response to the final reference tone for that MUC.  Responses to reference 

tones in either decision outcome typically featured an onset response to the 

reference tones occurring ~10-30 ms after the beginning of the tone, followed 

by marked inhibition during tone presentation, and an offset response 

beginning ~10 ms after tone cessation.  Responses to target tones also 

featured an onset response from ~10-30 ms after the beginning of the tone 

and an offset response beginning ~10 ms after tone cessation.  The increased 

response during target presentation beginning ~550 ms into the trials resulting 

in a Go decision is likely a result of motion artifact, defined as a neural 

response to the sound produced by the rat while withdrawing from the 

nosepoke, as indicated by the reaction time data shown in Figure 3.4.  The 

lack of spike rate increase during No-go trials in which the rat did not generate 
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sound during withdrawal from the nosepoke (because in this instance 

withdrawal did not occur) supports this. 

 

Figure 5.3.    Mean population STSAD for the final reference tone and the first target 
tone are shown for all tone-driven MUCs (n = 299 sessions) as a color map for |Δf| 
ranging from 0% to 20% for trials which resulted in A) a “Go” behavioral response and 
B) a “No-go” behavioral response.  The color bar indicates normalized spike rate 
(spikes/s).  The dashed white lines at 50 ms and 450 ms represent tone onsets.  The 
green boxes show reference and target presentation times (50-250 ms and 450-650 
ms, respectively).  STSADs are shown smoothed with a 5 ms/3 |Δf| box smooth.  
Reference frequencies used were 4.15, 8.61, and 17.85 kHz.  Isolated multi-unit 
clusters for both responses were normalized to the average onset firing rate for the 
final reference tone for the “Go” trials of that multi-unit cluster for that |Δf|.   

 
To more clearly see the difference in the population response preceding 

Go versus No-go decisions, the responses preceding No-go decisions were 

subtracted from the responses preceding Go decisions (Figure 5.4).  There is 

no difference in mean reference tone onset response across |Δf| target trials 
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(F(15, 9404) = 1.13, p = 0.32), nor between Go and No-go outcomes (F(1, 9404) = 

0.12, p = 0.71), indicating consistent responses to reference tones regardless 

of proceeding target frequency change or behavioral decision.  The onset 

responses to target tones, however, are stronger in trials resulting in a Go 

decision than in trials resulting in a No-go decision (F(1, 9404) = 306.9, p < 

0.0001).  Even mean onset responses to sub-threshold |Δf| targets were 

significantly different between trials resulting in Go and No-go decisions (F(1, 

2868) = 79.4, p < 0.0001).  Additionally, the differences in target onset response 

rates are shown to be different across |Δf| (F(15, 9404) = 6.31, p < 0.0001).  

 

Figure 5.4.    Mean population (n = 299 sessions) difference STSAD between “Go” 
and “No-go” responses of the onsets of the final reference and the first target tones 
are shown for all tone-driven MUCs.  The color bar indicates change in normalized 
spike rate.  The dashed white lines at 50 ms and 450 ms represent tone onsets.  The 
pink and green boxes show reference and target presentation times (50-250 ms and 
450-650 ms, respectively).  STSADs are shown smoothed with a 5 ms/3 |Δf| box 
smooth.  Reference frequencies used were 4.15, 8.61, and 17.85 kHz.  Recordings 
from each isolated multi-unit cluster for both behavioral outcomes were normalized to 
the average onset firing rate for the final reference tone to trials preceding a Go 
decision.  
 

The previous chapter of this dissertation showed that larger frequency 

differences between reference and target tones resulted in higher hit rates, 

and that the increase in hit rate was correlated with increases in the mean 
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onset response difference between reference and target tones for all trials 

regardless of outcome.  To investigate the relation between this mechanism 

and the perception of a frequency difference (as inferred from the rats’ 

behavioral indication) the population onset response to the preceding 

reference tone was subtracted from the response to the target for trials 

resulting in Go (Figure 5.5A) and No-go decisions (Figure 5.5B).  Responses 

to target tones in all non-catch trials preceding Go decisions were significantly 

increased relative to the responses to preceding reference tones (multiple 

comparisons t-test, Bonferroni correction, α = 0.0016; see Appendix B for 

aggregate p-values).  Conversely, for most supra-threshold trials (|Δf| ≥ 5%, 

excluding |Δf| = 14 and 20%) resulting in No-go decisions, the responses to 

target tones were not significantly different from responses to preceding 

reference tones (multiple comparisons t-test, Bonferroni correction, α = 

0.0016; see Appendix B).  Interestingly, however, responses to most non-

catch sub-threshold targets (1% ≤ |Δf| ≤ 4% , excluding |Δf| = 3%) in trials 

resulting in No-go decisions were in fact significantly greater than responses to 

the preceding reference tones (multiple comparisons t-test, Bonferroni 

correction, α = 0.0016; see Appendix B).  This could indicate that response 

differences, while significant, did not exceed some threshold required for 

detection, and/or that misses for supra-threshold frequency changes were 

more due to procedural errors than actual non-detection.  A “procedural error” 

in this case may be due to the rat not paying attention to the stimuli, or 



79 
 

otherwise being distracted from performance of the task, which may cause the 

rat to miss a large, normally detectable frequency change.     

 

Figure 5.5.    The mean population (n = 240) difference STSAD between the onsets 
of the final reference tone and the first target tone are shown for all tone-driven MUCs 
as a color map for |Δf| ranging from 0% to 20% for trials which resulted in A) a “Go” 
behavioral response and B) a “No-go” behavioral response.  The color bar indicates 
change in normalized spike rate (spikes/s).  The dashed white lines indicate tone 
onset windows from 10-40 ms after tone onsets.  STSADs are shown smoothed with 
a 5 ms/3 |Δf| box smooth.  Reference frequencies used were 4.15, 8.61, and 17.85 
kHz.  Recordings from each isolated multi-unit cluster for both behavioral outcomes 
were normalized to the average onset firing rate for the final reference tone to trials 
preceding a Go decision.  

 
The difference in mean onset firing rate (measured 10-30 ms after tone 

onsets) between reference and target tones of each behavioral decision is 

shown as a function of |Δf| in Figure 5.6.  Trials resulting in a Go decision 

showed an increase in mean onset response ranging from 10.4% ± 7.6% to 

41.5% ± 5.6% for |Δf| ≥ 20%.  Responses to target tones preceding No-go 

decisions varied little from reference tones, ranging from -2.25% ± 4.3% to 

16.1% ± 11.6% of normalized mean reference tone onset spike rate.  The 

mean firing rate differences to trials resulting in Go decisions were significantly 

different from No-go trials (ANOVA; F(1, 9404) = 252.54, p < 0.0001).  Especially 

interesting is that even during 0% Δf target catch trials the mean firing rate 
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differences were significantly higher in trials resulting in a Go (false alarm) 

than in trials resulting in a No-go (correct rejection; 2-sample t-test; p = 0.01).  

The mean onset firing rate differences were not correlated with |Δf| from either 

trials resulting in Go (r = 0.23, p = 0.37) or trials resulting in No-go decision (r 

= 0.24, p = 0.36).  This could indicate that the differences in neural onset 

responses that were correlated to hit rate seen in the previous chapter may 

have been due to an averaging effect that gives more weight to neural signals 

from No-go trials (with smaller onset response increases) to smaller, sub-

threshold |Δf| targets or to neural signals from Go trials with higher hit rates, 

and larger onset response differences, for larger |Δf| targets. Finally, the mean 

onset firing rate differences from both behavioral decisions were likewise not 

correlated with each other (r = -0.32, p = 0.22). 

 

 

Figure 5.6.    Mean normalized 
population (n = 299 sessions) 
changes in onset amplitude from 
final reference tone to first target 
tone are shown for all tone-driven 
MUCs for trials which resulted in a 
“go” response (green) and trials 
which did not (red) as a function of 
target |Δf|.   The dashed black line 
represents a 0 spikes/s change in 
onset amplitude spike rate.  Error 
bars show 95% confidence interval.  
Data were collected in 5 ms 
moving-window bins.  Reference 
frequencies used were 4.15, 8.61, 
and 17.85 kHz.  Recordings from 
each isolated multi-unit cluster 
were normalized to the average 
onset firing rate for the final 
reference tone.   
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The neural responses seen during the frequency discrimination task 

suggest that AC increases firing rate to frequency changes when detected and 

does not increase firing rate when frequency changes are not detected.  To 

test this further, AC responses to frequency differences were measured in a 

test in which the rats were not required to detect frequency changes.  A broad-

band noise detection task was designed in which the detection target was a 

noise burst, which followed a sequence of reference tones which contained an 

irrelevant frequency shift.     

 

 

Figure 5.7.    Mean normalized 
population (n = 176) changes in onset 
spike rate between final R1 and first 
R2 tones are shown as a function of 
target |Δf| for trials in which the 
frequency change was irrelevant to 
the task.   Dashed black line 
represents 0% change in mean onset 
amplitude spike rate (measured 10-
30 ms after tone onsets).  Error bars 
show 95% confidence interval.  Data 
were collected in 5 ms moving-
window bins.  Reference frequencies 
used were 4.15, 8.61, and 17.85 kHz.  
Recordings from each isolated multi-
unit cluster were normalized to the 
average onset firing rate for the final 
reference tone. 

Differences in mean onset driven rate to the irrelevant frequency 

differences (between the final reference tone of R1 and the first reference of 

R2) are shown in Figure 5.7.  The size of response differences to irrelevant |Δf| 

are much smaller than what is seen during Go trials of the frequency 

discrimination task.  Irrelevant response differences in mean onset spike rate 
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ranged from -05.8% ± 4.8% to 15.2% ± 8.2% of normalized mean reference 

tone onset spike rate.  Differences between mean onset rate between 

reference and target tones were not statistically different (ANOVA; F(1, 5695) = 

0.85, p = 0.35).  However, analysis of the mean onset spike rate changes 

show that mean response differences were correlated with increasing |Δf| 

(Spearman’s rank test; r = 0.57, p = 0.02). 

It is also possible that the smaller increases in onset response to 

irrelevant frequency changes are due to ease of the noise detection task 

compared to the frequency discrimination task. Increasing task difficulty has 

been shown to increase effects designed to improve discrimination and 

enhance responses to attended stimuli (LaBerge et al., 1991; Lavie & Cox, 

1997; Spitzer et al., 1988; Spitzer & Richmond, 1991; Boudreau et al., 2006; 

Chen et al., 2008; Atiani et al., 2009; Niwa et al., 2012a) in the visual and 

auditory systems.  To investigate the possibility that task difficulty may be 

responsible for the extreme modulation, or possibly complete lack of 

modulation, of the firing rates to the irrelevant frequency change during the 

noise detection task the rats in this study were tested on a second, easier 

frequency discrimination task which only contained supra-threshold frequency 

change targets of |Δf| ≥ 10%.  As with the standard frequency discrimination 

task, onset response differences to frequency changes resulting in a Go 

decision during this less difficult frequency discrimination task were found to 

be larger than onset response differences from trials resulting in No-go 

decisions (Figure 5.8; ANOVA; F(1, 4365) = 249.86, p < 0.0001).  Thus, it is 
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unlikely that the decreased responses to irrelevant frequency changes in the 

noise detection task were due to task difficulty and were more likely an effect 

of modulation due to task relevance. 

 

 

Figure 5.8.    Mean normalized 
population from “easy” frequency 
discrimination task (n = 309 sessions) 
changes in onset amplitude from final 
reference tone to first target tone are 
shown for all tone-driven MUCs for 
trials which resulted in a “go” 
response (green) and trials which did 
not (red) as a function of target |Δf|.   
The dashed black line represents a 0 
spikes/s change in onset amplitude 
spike rate.  Error bars show 95% 
confidence interval.  Data were 
collected in 5 ms moving-window 
bins.  Reference frequencies used 
were 4.15, 8.61, and 17.85 kHz.  
Recordings from each isolated multi-
unit cluster were normalized to the 
average onset firing rate for the final 
reference tone.   
 

 

5.4. Discussion 

The previous chapter of this dissertation describes neural responses in 

rat AC that are highly correlated with frequency discrimination ability.  These 

results suggested that AC neurons might contain information sufficient for 

making behavioral decisions in a frequency discrimination task for even near-

threshold differences.  To investigate the hypothesis that AC responses 

contain not only stimulus information but also additional information that 

affects subsequent behavioral decisions, the neural responses recorded in  rat 

AC were grouped into the two behavioral outcomes available in this task: 
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nosepoke withdrawal (a Go decision, indicating a perceived frequency 

change) and non-withdrawal (a No-go decision, indicating no perceived 

change in frequency).  This chapter shows that responses in AC were 

predictive of the subject’s decision to respond to a frequency change in a 

threshold-level frequency discrimination task.   

Signals predicting behavioral decisions (and presumably indicating 

perceived changes in frequency) in a frequency discrimination task were 

shown to be represented in the increased difference in onset response firing 

rates between reference and target tones.  Target tones in trials resulting in a 

Go decision generated higher increases in firing rates between the mean 

onset response to reference and target tones than in trials resulting in a No-go 

decision, for all |Δf| targets tested.  In addition, neural responses in AC to Δf = 

0% catch trials that resulted in Go decisions (false alarms) were higher than in 

trials that resulted in No-go decisions (correct rejections), indicating a possible 

perception of a frequency difference when none existed.  Sub-threshold 

frequency changes showed significant but small increases in firing rate to 

target tones even in No-go decisions, suggesting that firing rates of AC cells 

may be required to increase beyond a threshold to trigger a Go decision.  

There was no increase in onset response firing rate between reference and 

supra-threshold target tones in trials which resulted in a No-go decision, 

further supporting the hypothesis that differences in AC onset firing rate are 

required for generating a Go response.  It is possible that these supra-

threshold frequency differences did not elicit small, but significantly increased 
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onset responses similar to near-threshold frequency differences due to effects 

of inattention to a demonstrably salient stimulus. 

The contribution AC makes towards decisions in various auditory tasks 

is unclear.  Neural correlates of acoustic flutter discrimination (Lemus et al., 

2009), click train discrimination (Dong et al., 2011), and tone-detection (Zhang 

et al., 2012) all reported that increases in firing rate of cells in A1 were 

representative of detection thresholds but were not predictive of behavioral 

decisions.  A study on amplitude modulated tone discrimination reported that 

responses in A1 were both representative of thresholds and predictive of 

behavioral decisions (Niwa et al., 2012b); however, they were unable to find 

significant neural correlates of decision during the onset of their target 

stimulus.  To the best of the author’s knowledge this report is the first to show 

decision correlates in AC occurring specifically at the onset of the stimulus. 

Niwa et al. (2012b) reported that firing rate of multi-unit clusters of 

single units in A1 significantly increased during presentation of target tones in 

trials in which monkeys reported hearing an amplitude modulated tone versus 

trials in which they did not.  The nature of the amplitude modulation task 

requires neural responses to phase lock onto temporal patterns created by the 

stimuli.  This phase locking effect is typically not instantaneous, and thus Niwa 

et al. (2012b) correlated behavioral decisions with neural responses averaged 

over the entire 800 ms stimuli.  This long time window could allow for feedback 

from other areas to influence responses in A1.  Because the monkeys had to 

wait until after completion of the target presentation to report detection, it is 
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possible that the increased firing rate in A1 that they correlated with a Go 

decision may be more a depiction of general A1 activity anticipating the 

opportunity to respond.  However, whether or not this activity is an anticipatory 

response, it is still correlated to the animal’s perception of the stimuli as 

inferred from the behavioral decision.  The response window that was used to 

correlate neural responses with behavioral decision in this report is much 

smaller (20 ms) and ends 30 ms after tone onset.  This early onset time 

window indicates that the information predicting decisions is either already in 

AC by the time the stimulus reaches AC, or that these responses are 

modulated by some area that can affect AC responses on a very short time 

scale. 

Results from the frequency discrimination task lead me to believe that 

increases in A1 response to a deviant frequency tone resulted in a Go 

behavioral decision.  Attending to different aspects of stimuli has been shown 

to modify responses of A1 cells in monkeys (Hocherman et al., 1976).  If the 

rats were simply not paying attention to the stimuli they may have had larger 

responses to the preceding reference tones, which would decrease the 

difference in response between reference and target tones.  The data, 

however, shows no difference in response to reference tones between trials 

resulting in Go and No-go decisions, suggesting that the decision to Go is 

based on the response to the frequency difference.  It is possible that there 

exists some mechanism which enhances responses to frequency differences 

while attending to a task.  Evidence of this mechanism has been seen in 
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monkey A1 when onset response to target tones increased only after the 

subject learned a frequency discrimination task (Blake et al., 2002), 

suggesting that exposure to frequency changes prior to learning the task were 

undetected and/or non-attended.  For the present study, such a mechanism 

could enhance responses to target tones during trials which resulted in a Go 

decision, but perhaps not enhance responses to target tones during trials in 

which the rat was not attending to the stimuli (No-go decisions).   

To test the hypothesis that AC actively increases responses to attended 

changes in frequency, responses were recorded during a task in which rats 

were trained to ignore a frequency shift, but had to detect a broad-band noise 

following the frequency shift.  As a result, it was possible to record responses 

in AC to frequency changes during trials in which the animal withheld 

behavioral response to the frequency shift.  Onset responses to irrelevant 

frequency changes were not significantly larger than responses to preceding 

reference tones, supporting the hypothesis that enhanced frequency change 

responses in AC may be specific to behaviorally relevant stimuli.  Additionally, 

because the rats did not respond to the irrelevant frequency change, but 

waited to respond to a broad-band noise target, it may be inferred that 

increases in AC response to the frequency changes in the original frequency 

discrimination task are specific to the decision to go.  Other studies in the 

auditory system also support the idea that task relevance plays a role in 

modulation of AC.  Adaptation of ferret A1 stereo-temporal receptive fields 

(STRFs) is greater during behavior than during passive listening (Fritz et al., 



88 
 

2003; Fritz et al., 2005b; Elhilali et al., 2007).  Additionally, ferret A1 has been 

shown to rapidly modulate STRF frequency representation in order to adapt to 

the present task, and can quickly revert to pre-testing representation after 

testing (David et al., 2012).  These results support the idea that the same AC 

cells that report detection of a frequency change by increasing firing rate may 

not increase firing rate to frequency changes when they are irrelevant to the 

task being performed. 

Establishing the origin of these responses that appear to predict 

behavioral decisions would increase understanding of how frequency 

differences are processed and relayed in the auditory system.  The fact that 

increases in onset response to frequency changes were significant during the 

frequency discrimination task, in which frequency changes were relevant, but 

not significant during the noise burst detection task, in which frequency 

changes were irrelevant, suggests that frequency change detection is not an 

entirely pre-attentive process.  However, it is not possible to conclude from the 

present study that auditory cortex is the locus of the behavioral decisions.  

Given that the neural correlate of behavior is during the typical onset response 

for the stimuli, wherever the variability in the neural response originates, it is 

able to modulate auditory cortex within milliseconds of the tone onset.  It is 

possible that increased onset response strength to the target tone in auditory 

cortex is a primary contributor to the behavioral response in decision centers 

of the brain.  Additionally, it could be that the same predictive response 

mechanism can be seen in lower auditory processing centers.  Future studies 
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will need to be conducted to see if behavioral correlates can be found in 

upstream auditory areas.  By working backwards through the sub-cortical 

areas it could be possible to locate the origin of this neural mechanism and 

enhance present understanding of the role of AC in frequency discrimination.   

Determining the contribution of AC responses to the formation of 

decisions will further help to define the role of AC in frequency discrimination 

and auditory processing in general.  Decision correlates in a visual 

discrimination task have been found in higher order processing centers such 

as the parietal lobe (Shadlen & Newsome, 1996) and prefrontal cortex (Kim & 

Shadlen, 1999) of monkeys, and it is similarly likely that perceptual information 

from the auditory cortices is turned into a behavioral decision at one of these 

higher cortical areas.  Responses in the pre-frontal cortex of ferrets have been 

shown to contain behaviorally relevant information for performance of an 

auditory discrimination task (Fritz et al., 2010), but no direct link between 

activity in AC and activity in higher processing areas has been shown.  Future 

studies with simultaneous recordings from AC and higher decision centers 

may help to determine how signals from individual AC cells contribute to 

determining behavioral decisions in a frequency discrimination task and where 

a final decision may be generated. 

The results of this study show that AC neurons contain the signals 

sufficient to drive behavioral decisions in a frequency discrimination task.  

Going even further, these results suggest that responses in primary sensory 

areas might reflect the subjects’ perception of the stimulus more than they 
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reflect the actual stimulus features.  This report also shows that these signals 

are modulated by some process associated with task relevance.  It is likely 

that these findings will play an integral part in establishing the role that AC 

plays in discrimination of complex and/or near-threshold frequency 

differences, as well as helping to distinguish between stimulus features and 

perception of those stimulus features.  
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Chapter 6 

 

6. General Conclusions  

 

6.1. Review of Main Findings 

In preceding chapters I have presented the results of a series of studies 

designed to investigate possible ways in which auditory cortex might resolve 

threshold-level frequency differences.  Previous ablation studies have 

implicated auditory cortex as a fundamental component in the resolution of 

very small frequency differences.  This dissertation reports on a neural 

response mechanism present during the onset response of tones that is both 

representative of detection thresholds and predictive of decisions in 

performance of a frequency discrimination task.   

The psychophysical experiment in Chapter 3 shows that behavioral 

measures both before and after implantation surgery on a new strain and 

gender of rat performing a difficult frequency discrimination task are 

comparable to those shown by other mammals and therefore validates the use 

of this strain of rat as a model for testing in the auditory system.  I also show 

evidence that suggests the rats may have been adopting a frequency 

identification strategy rather than a frequency discrimination strategy towards 

performing this task due to the high frequency difference limens for target 

frequencies outside of the reference frequency range.  A third finding is that 

rats require 3 reference tones (1.2 s) for auditory information, possibly 
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streaming effects, to build up before rats can perform at asymptotic behavioral 

measures.  A fourth finding suggests that rats are less capable of 

discriminating between octave frequency differences than they are half octave 

frequency differences, and I hypothesized that discrimination of harmonics 

may play a role in the strategy adopted by the rats during performance of this 

frequency discrimination task. 

Neural recordings from auditory cortex of rats performing a frequency 

discrimination task in Chapter 4 show that increases in population onset 

response to frequency changes relative to onset responses to preceding 

reference tones are highly correlated with detection ability.  Additionally, onset 

latencies of population responses to frequency changes are shown to be 

correlated with reaction times of the rat.  The relation between behavioral 

measures and neural responses in this chapter suggests that auditory cortex 

is involved in the discrimination of threshold-level frequency differences.   

Chapter 5 elaborates on the findings of the previous chapter by 

showing that the neural mechanism which was shown to describe threshold-

level detection ability is not an automatic, pre-attentive mechanism of 

detection.  Increases in population onset response were shown to be 

predictive of the rat’s behavioral decision in a trial, regardless of whether the 

trial was performed correctly or incorrectly.  Finally, the neural mechanism 

previously associated with frequency discrimination was shown to be 

modulated by behavioral relevance.  Changes in onset response to irrelevant 

frequency changes were shown to be much lower than onset response to 
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relevant, detected frequency changes and were similar in dynamic range to 

relevant but undetected frequency changes.   

The results presented here support the hypothesis that auditory cortex 

is fundamental in the discrimination of threshold-level frequency differences.  

Auditory cortex was shown to contain signals that are present when rats 

indicate detection of frequency differences and are not present when 

frequency differences are apparently not detected.  Additionally, these signals 

are present when the rat reacts to a frequency change when none is actually 

presented, showing that the signals encode perception as inferred by 

behavioral responses. 

 

6.2. Directions for Future Research 

Identification of the strategies used by the rats for performance of the 

frequency discrimination task might lead to a better understanding of the 

behavioral thresholds.  Psychophysical data might not represent the truest 

measure of pure frequency discrimination ability if the rats are confounding the 

task by using harmonic differences as a cue or if they are applying additional 

bounds to the task by attempting to detect frequency change targets that lie 

only within certain range.  Adding several frequency changes in multiples of 

octaves to the stimulus set could provide a large enough sample to determine 

if rats are using harmonic differences as cues to detect frequency changes.  

This amended stimulus set should also include several very large frequency 

changes which are not octave multiples so that rats do not adjust their strategy 
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to wait for the frequent, very easy to detect large octave multiple frequency 

changes.    

One possible solution to correcting for rats performing a frequency 

identification strategy would be to set reference frequency to within a 6 kHz 

range (for example 4-10 kHz) and hold it for ~20 trials.  After ~20 trials slide 

the reference frequencies range up 3 kHz, so that the new range of reference 

frequencies partially overlaps the reference frequency range from the previous 

block of trials.  Adapting the reference frequencies in this way should cause 

poor performance to any rat adopting a frequency identification strategy and 

force them to adopt a new strategy. 

The results of this study show that auditory cortex contains signals 

predicting behavior in a frequency discrimination task.  However, based on the 

current results it cannot be conclusively determined which area of the auditory 

system these signals originate from.  It is possible that these signals are 

generated in auditory cortex.  It is also possible that they are generated earlier 

in the auditory pathway and that auditory cortex serves only as a necessary 

way-point for this information to pass through.  By recording from earlier points 

in the auditory neural pathway it could be possible to determine the origin of 

these signals and further elaborate auditory cortex’s role in frequency 

discrimination. 

This study is likewise unable to conclude how signals present in 

auditory cortex contribute towards perception of frequency differences.  It is 

possible that auditory cortex is the sole contributor towards decisions 
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concerning frequency discrimination. However, it is also possible that other 

areas submit information for performance of this task.  A study involving 

microstimulation applied to auditory cortex during performance of a frequency 

discrimination task could help to determine if responses there are driving 

behavior.  Additionally, simultaneous recordings from auditory cortex and 

higher decision centers could result in a better understanding of where 

decisions are made concerning frequency discrimination and what weight 

signals from auditory cortex carry in determining those choices.   

An exciting new avenue in the world of prosthetics could be opened if 

future studies determine that auditory cortex is the locus of frequency 

discrimination in the cortex.  If application of microstimulation to the auditory 

cortex results in the perception of frequency differences, it could be possible to 

convert signals (verbal communication, e.g.) from one source into digital 

signals that are delivered directly to auditory cortex.  This type of prosthesis 

would be instrumental in returning hearing to deaf people who are not 

candidates for cochlear implants, possibly due to damaged auditory pathways. 

The introductory chapter of this dissertation links deficits in frequency 

discrimination in humans to attention and learning disorders.  Thus, it might be 

possible to improve attention and learning ability in humans by improving their 

frequency discrimination ability.  The results of this study show that the neural 

mechanism of frequency discrimination is modulated by attention to relevant 

auditory stimuli.  Repeated performance of a threshold-level frequency 

discrimination task during developmental periods may result in improved 
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frequency discrimination ability, and could lead to decreased deficits in 

disorders linked to frequency discrimination. 
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Appendix A 

 

Statistical citations of ANOVA and Spearman’s Rank Correlation for the 

mean hit rate as a function of number of reference tones into 5 |Δf|% range bins 

detailed in Chapter 3 (Figures 3.4C and 3.8C). 
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Appendix B 

 

Statistical citations of Bonferroni corrected t-tests (α = 0.0016) comparing 

the mean population onset firing rates of the target response from each 

behavioral decision /|Δf|% to the mean population onset firing rate of the 

preceding reference tone.  Behavioral decision /|Δf|s with a significant effect are 

bolded.  These results are depicted in Figures 5.5 and 5.6. 
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Table  B1: Comparison of onset responses 
from reference and target tones  

|Δf| Behavioral 
Decision 

t-test 
(Bonferroni 
correction, 
α = 0.0016) 

0% 
Go p = 0.0097 

No-Go p = 0.67 

1% 
Go p > 0.0001 

No-Go p > 0.0001 

2% 
Go p = 0.0014 

No-Go p = 0.00018 

3% 
Go p > 0.0001 

No-Go p = 0.0022 

4% 
Go p > 0.0001 

No-Go p > 0.0001 

5% 
Go p > 0.0001 

No-Go p = 0.53 

6% 
Go p > 0.0001 

No-Go p = 0.013 

7% 
Go p > 0.0001 

No-Go p = 0.76 

8% 
Go p > 0.0001 

No-Go p = 0.072 

9% 
Go p > 0.0001 

No-Go p = 0.19 

10% 
Go p > 0.0001 

No-Go p = 0.033 

12% 
Go p > 0.0001 

No-Go p = 0.94 

14% 
Go p > 0.0001 

No-Go p > 0.0001 

16% 
Go p > 0.0001 

No-Go p = 0.0036 

18% 
Go p > 0.0001 

No-Go p = 0.028 

20% 
Go p > 0.0001 

No-Go p > 0.0001 
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