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Abstract

In the quantum theory the vacuum is not empty space. It is considered as a state

of infinite energy arising due to zero point fluctuations of the vacuum. Calculation

of any physically relevant process requires subtracting this infinite energy using a

procedure called normalization. As such the vacuum energy is treated as an infinite

constant. However, it has been established beyond doubt that mere subtraction

of this infinite constant does not remove the effect of vacuum fluctuations and it

cannot be treated just as a mathematical artifact. The presence of boundaries, which

restricts the vacuum field, causes vacuum polarization. Any non-trivial space-time

topology can cause similar effects. This is manifested as the Casimir effect, whereby

the boundaries experience a force due to a change in the energy of the vacuum. To

calculate the vacuum energy we treat the boundaries or other restrictive conditions

as classical backgrounds, which impose boundary conditions on the solution of the

vacuum field equations. Alternatively, we can incorporate the classical background in

the Lagrangian of the system as classical potentials, which automatically include the

boundary conditions in the field equations. Any change in the boundary conditions

changes the vacuum energy and consequently the Casimir force is experienced by the

boundaries.

In this dissertation we study the geometric aspect of the Casimir effect. We con-

xii



sider both the scalar field and the physically relevant electromagnetic field. After

a brief survey of the field in Chapter 1, we derive the energy expression using the

Schwinger’s quantum action principle in Chapter 2. We present the multiple scat-

tering formalism for calculating the vacuum energy, which allows us to calculate the

interaction energy between disjoint bodies and subtract out the divergent terms from

the beginning. We then solve the Green’s dyadic equation for the electromagnetic

field interacting with the planar background surfaces, where we can decompose the

problem into two transverse scalar modes. In Chapter 3 we collect all the solutions

for the scalar Green’s functions for the planar and the cylindrical geometries, which

are relevant for this dissertation.

In Chapter 4 we derive the interaction energy between two dielectric slabs of finite

thickness. Taking the thickness of the slabs to infinity leads to the Lifshitz results

for the two infinite dielectric semi-spaces, while taking the dielectric permittivity to

infinity gives the well-known Casimir energy between two perfect conductors. We

then present a simple model to consider the thin-plate limit (taking the thickness

of the slabs to zero) based on Drude-Sommerfeld free electron gas model, which

modifies the plasma frequency of the material to include the finite size dependence.

We get a non-vanishing result for the Lifshitz energy in the slab thickness going to

zero limit. This is remarkable progress as it allows us to understand the infinitesimal

thickness limit and opens a possibility of extending this model to apply it to graphene

and other two dimensional surfaces. The Casimir and Casimir-Polder results in the

perfect conductor limit give us the expected results.

In Chapter 5 we study the lateral Casimir torque between two concentric corru-

gated cylinders described by δ-potentials, which interact through a scalar field. We

derive analytic expressions for the Casimir torque for the case when the corrugation

xiii



amplitudes are small in comparison to the corrugation wavelengths. We derive ex-

plicit results for the Dirichlet case, and exact results for the weak coupling limit, in

the leading order. The results for the corrugated cylinders approach the correspond-

ing expressions for the case of corrugated parallel plates in the limit of large radii of

the cylinders (relative to the difference in their radii) while keeping the corrugation

wavelength fixed.

In Chapter 6 we calculate the lateral Casimir energy between corrugated parallel

dielectric slabs of finite thickness using the multiple scattering formalism in the per-

turbative approximation and obtain a general expression, which is applicable to real

materials. Taking the thickness of the plates to infinity leads us to the lateral Lifshitz

formula for the force between corrugated dielectric surfaces of infinite thickness. Tak-

ing the dielectric constant to infinity leads us to the conductor limit which has been

evaluated earlier in the literature. Taking the dilute dielectric limit gives the van der

Waals interaction energy for the corrugated slabs to the second order in corrugation

amplitude. The thin plate approximation proposed in Chapter 4 is used to derive the

Casimir energy between two corrugated thin plates. We note that the lateral force

between corrugated perfectly conducting thin plates is identical to the ones involving

perfectly conducting thick plates. We also evaluate an exact expression (in terms of

a single integral) for the lateral force between corrugated (dilute) dielectric slabs.

xiv



Chapter 1

A brief survey of the Casimir effect

H. B. G. Casimir in 1948 [1] studied the change in the zero point energy (ZPE) of

the electromagnetic field in the presence of two neutral perfectly conducting par-

allel plates, which were separated by a distance larger than the wavelength corre-

sponding to the atomic frequencies, and predicted that they would experience an

attractive force. This phenomenon of modification of the vacuum state in the pres-

ence of macroscopic objects is called the Casimir effect in the literature. It has

widespread implications from fundamental to applied physics as well as in chemical

and biological processes. In the following few decades after Casimir’s prediction it

received relatively little attention, mostly theoretical, due to lack of convincing ex-

perimental evidence. However, in the last fifteen years the interest in the field has

sparked again with the new advances in experimental techniques, like atomic force

microscopy, which has allowed experimentalists to measure forces at small scales with

great accuracy. The major thrust in the study of the Casimir effect has come from

the field of nanotechnology, where the miniaturization of electro-mechanical devices

to MEMS (micro-electro-mechanical systems) and NEMS (nano-electro-mechanical

1



systems) has brought us into a regime in which quantum effects can no longer be

neglected and the Casimir force dominates. On the other hand, Casimir effects for

quantized fields in curved spaces can provide considerable insight into the problems

related to gravitation, cosmology, extra dimensions, and unification theories. For an

up-to-date account see [2].

The purpose of this Chapter is to present a brief historical survey and familiarize

the reader with the basic understanding of the field. The rest of the Chapter is or-

ganized as follows. In Section 1.1, we present the interaction of macroscopic bodies

with the radiation field from two different viewpoints – one in which the macroscopic

bodies are fluctuating and the field is treated as classical and the other in which the

field is fluctuating and the macroscopic bodies are considered classical. In Section 1.2

we present a basic example calculation of the Casimir energy using the zeta function

regularization scheme. Section 1.3 introduces major theoretical and experimental ad-

vances in the field with emphasis on the effect of geometry, material and temperature

on the Casimir energy.

1.1 Fluctuating Molecules versus Fluctuating Fields

1.1.1 Fluctuating molecules viewpoint and Casimir-Polder

result

Two neutral molecules experience the weak van der Waals force whose precise na-

ture was understood only after the birth of quantum mechanics. The spontaneous

random distribution of electrons inside an atom causes self polarization of the atom.

This temporary dipole can induce mutual polarization in nearby atoms and cause an

2



attractive force between them. In 1930 London [3, 4], using second order perturbation

theory, showed that the interaction of two fluctuating dipoles falls with distance as

1/R6, where R is the separation distance between the two dipoles. However, while

studying the stability of colloids, Verwey and Overbeek observed that colloids of

coarse particles were more stable than that predicted by the theory [5]. They also

observed that the attractive interaction should decay faster than the London poten-

tial 1/R6. Overbeek then pointed out that due to the finite value of the speed of light

retardation effects should be taken into account when the separation between atoms

becomes larger than the wavelength corresponding to atomic frequencies. Casimir

and Polder [6] included retardation effects in analyzing the London-van der Waals in-

teraction between an atom and a perfectly conducting plate, and between two atoms.

Using second and fourth order perturbation theory in the two cases they obtained

rather simple results given by

Uap=− 3~c

8πR4
α, (1.1a)

Uaa=− 23~c

4πR7
α1α2, (1.1b)

where Uap is the interaction energy of the atom-plate configuration and Uaa is the

interaction energy of the atom-atom configuration. αi refers to the polarizability of

the corresponding atom and R is the separation distance between two objects. For the

case of two atoms they obtained the 1/R7 dependence consistent with the observation

by Verwey and Overbeek.
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1.1.2 Fluctuating fields viewpoint and Casimir result

In the concluding remarks of their paper [6] Casimir and Polder mentioned that the

simplicity of the results suggest that it might be “possible to derive these results from

more elementary considerations.” In 1948 Casimir [7, 1] analyzed the problem con-

sidering the macroscopic bodies to be static but the electromagnetic field interacting

with them to be now fluctuating 1. In [7] he was able to reproduce the results given

by Eq. (1.1) while in [1] he considered the case of interaction two perfectly parallel

conductors. This change in viewpoint from the fluctuating objects to the fluctuating

fields requires us to consider local action of the fields in contrast to the action at a

distance between atoms in the former. This also requires the use of quantum field

theory instead of quantum mechanics for analyzing the problem.

We associate each point in space with fluctuations of the electromagnetic field. The

energy of each mode is given by that of the harmonic oscillator energy En = ~ω(n +

1/2), where n is the number of particles in the particular state under consideration.

For the ground state of the vacuum, when there are no particles, n = 0. The energy

of the vacuum state is

E0 =
∑

k

1

2
~ωk, (1.2)

associated with the vacuum field, which can take any value. Therefore, this energy

is infinite. The presence of the macroscopic bodies leads to the boundary conditions

on the electromagnetic field, which modifies the characteristic frequencies of the field.

The possible modes of the electromagnetic field are now restricted by the presence of

the boundaries. Consequently, the ZPE refers to different allowed frequencies. The

1During a visit to Copenhagen, Casimir mentioned this work to Neils Bohr and explained his
quest for a “simpler and elegant derivation”. Bohr thought over it and commented “must have
something to do with zero-point energy”
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ZPE of the vacuum state in the presence of the external bodies is given by

E0pp =
∑

k

1

2
~ω̄kpp, (1.3)

where kpp is the wavevector in presence of the macroscopic body. The sum is still over

an infinite range and consequently this energy is also infinite. Subtracting Eq. (1.3)

from Eq. (1.2) may yield a finite result for the vacuum energy. This procedure is

subtle and requires regularization.

1.2 Need for regularization and renormalization

As mentioned in Section 1.1, results obtained for the vacuum energy are infinite. The

divergence arising from infinite degrees of freedom as described in previous section

are ultraviolet divergences. These types of divergences can be controlled by a regular-

ization procedure. We begin by introducing a regularization parameter to make the

divergent expression finite, which in some limit reproduces the original expression.

This limit is taken at the end of the calculation. Different regularization procedures

should give the same finite value of the energy, which makes the analysis unambigu-

ous. On the other hand there are divergences arising due to the topology of the system

since the configuration space is bounded. Mostly in the cases where only single bod-

ies are present one has to consider the renormalization procedure, i.e., subtracting

proper counter terms leading to redefinition of physical parameters. Various geomet-

ric parameters like volume, surface area, curvatures are used for this purpose. In

cases where the coupling of the fluctuating field with gravity is considered, mass can

be used for renormalization [8]. However, so far there is no standard renormalization

5



R

Figure 1.1: Two parallel perfectly conducting metal plates separated by distance R.

procedure which works for every case similar to the renormalization in quantum elec-

trodynamics, for example. The Casimir force between separate bodies, in contrast,

is in general finite. More information on renormalization in presence of background

potentials can be found in Chapter 4 of the book by Bordag et al [9] and the review

article by Nesterenko et al [10].

Using zeta-function regularization for obtaining Casimir’s result – Exam-

ple calculation

In the following we sketch an example calculation for the two parallel plate config-

uration using the zeta-function regularization procedure [11]. Consider two perfectly

conducting infinite long parallel plates separated by a distance R as shown in Fig. 1.1.

The presence of conducting parallel plates imposes boundary conditions on the elec-

tromagnetic field

E × n̂ = 0, B . n̂ = 0, (1.4)

where E and B are electric and magnetic fields respectively and n̂ is the unit vector

normal to the surface of the boundary. The field can be decomposed into transverse

electric and transverse magnetic modes, where each can be described by a massless
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scalar field ϕ(x, t) obeying free Klein-Gordon equation

�ϕ(x, t) = 0. (1.5)

Using the fact that parallel plate geometry has translational invariance in two direc-

tions we can write the vacuum energy starting from Eq. (1.3) as

E0pp =
~

2

∫

d2k

(2π)2
2

∞
∑

m=1

ωk⊥,m, (1.6)

where E0pp is the energy per unit area, k⊥ =
√

k2
x + k2

y, and the oscillator frequency

ωk⊥,m is given by

ωk⊥,m = c

√

k2
⊥ +

(

mπ

R

)2

. (1.7)

Eq. (1.6) now reads

E0pp =
~c

2

∫

d2k

(2π)2
2

∞
∑

m=1

(

k2
⊥ +

(

mπ

R

)2
)

1
2

, (1.8)

where the factor of 2 takes care of the contributions from the two modes. This

expression, as it sits, is divergent. In the zeta-function regularization procedure we

replace the power 1
2

by −s. The resulting integral is now convergent as long as

Re s > 3
2
. Evaluation of Eq. (2.1) with this change gives

Ereg
0pp =

~c

4π

(

π

R

)−2s+2

ζ(2s − 2)
Γ(s − 1)

Γ(s)
. (1.9)

Analytically continuing the value of s to −1
2

reproduces the result for the Casimir

7



energy per unit area

E0pp = − π2

720

~c

R3
. (1.10)

The Casimir force is defined as

F0pp = −∂E0pp

∂R
. (1.11)

Thus the Casimir force per unit area or the Casimir pressure P using Eq. (1.10) is

given by

P = − π2

240

~c

R4
, (1.12)

which is attractive. For a separation distance of 1 micro-meter the Casimir pressure

is 1.30 milli-Pascal and it increases rapidly as R decreases.

1.3 Important advances in the Casimir effect

The geometry and configuration confining the fluctuating field considered by Casimir

are ideal, i.e., perfectly conducting infinitely long parallel plates with smooth surfaces

at zero temperature. However, for experiments one has to consider finite-sized real

materials with arbitrary surface roughness at non-zero temperature. To counter the

problem of keeping two surfaces parallel most experiments are done with one curved

object and another flat object. Calculation of the Casimir energy for geometries

and configurations other than the parallel plates configuration, taking into account

the aforementioned parameters, is challenging. Therefore, progress in fundamental

understanding of the field has been rather slow. In the following we present the

important theoretical and experimental landmarks in the field of the Casimir effect
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along with their importance in the advancement of the field, which address some of

these issues like geometry, material, and temperature dependences.

1.3.1 Theoretical advances

Effects of geometry and material

In 1955 Lifshitz [12] developed a macroscopic theory for the case of two semi-infinite

slabs of real materials with arbitrary dielectric constants ǫ, thereby greatly generaliz-

ing Casimir’s original work. Later papers by his group simplified the formalism and

generalized the system to replace the intermediate vacuum by a third material. They

also applied the theory to the thin films on the surface of the solid [13, 14]. The cal-

culation, though lengthy, did not pose any new mathematical challenge. Nowadays,

the Lifshitz calculation can be reproduced very simply, for example see chapter 3 of

the book by Milton [15].

The first calculation for a curved geometry was performed by Boyer for a perfectly

conducting spherical shell [16]. Casimir in 1953 [17] had suggested that stability of

a classical electron could be explained by an attractive force due to ZPE. However,

Boyer concluded that the Casimir energy of a perfectly conducting shell is repulsive,

i.e, directed outward on the shell. This result was confirmed with greater precision by

different calculations later [18, 19, 20]. However, the repulsive nature of the Casimir

energy in this case generated more questions. One such being — How does the

Casimir energy depend on the geometry of the bounding surface? Inclusion of material

properties in the curved surface configuration leads to new structures of divergences.

The first attempt to evaluate the Casimir energy for a dielectric sphere was undertaken

by Milton in 1980 [21]. For the particular case of speed of light being different on
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two sides for the spherical shell, the ZPE is infinite. However, for the dilute (weak)

approximation, a finite part can be extracted [22]. Some of these results are listed in

Table 1.1. It is interesting to note that in all the cases listed in Table 1.1, the Casimir

energy for the single sphere is repulsive.

For the cylindrical geometry calculations turned out be more difficult as trans-

verse electric and transverse magnetic modes cannot be separated except for perfect

conductors. For the infinitely long conducting circular cylinder the first correct result

was obtained by DeRaad and Milton [24] who found the Casimir energy for the elec-

tromagnetic case to be attractive, although its magnitude is small compared to the

corresponding spherical case. The case of a dielectric cylinder was first considered by

Brevik et al [25]. Various authors considered approximations similar to the spherical

geometry, i.e., the dilute approximation and the speed of light being the same on

either side of the cylindrical shell, and found that the Casimir energy, calculated up

to the second order of the small parameter, vanishes. A summary of these results is

listed in Table 1.1.

Various other geometries of the bounding surfaces like cylinders of triangular [32]

and rectangular shapes, rectangular boxes [33, 34, 35], wedges [36, 37, 38], and objects

of arbitrary shapes are being considered by researchers for a better understanding

of the sign and magnitude of the Casimir energy and the divergences which arise.

Calculations are performed using different dimensions, boundary conditions, confined

fields, and models. Some of the important calculational approaches are the mode

summation method, zeta function method [39], heat and cylinder kernel method [40],

stress tensor method using Green’s function, multiple scattering formalism [41, 19, 42],

and worldline technique [43]. Description of all this is beyond the scope of the present

1This table is reproduced from [23] with author’s permission.

10



Type ESphereR ECylinderR
2 References

EM +0.04618 -0.01356 [16][24]
D +0.002817 +0.0006148 [26][27]
(ε − 1)2 +0.004767 = 23

1536π
0 [22][28]

ξ2 +0.04974 = 5
32π

0 [29][30]
λ2 +0.009947 = 1

32π
0 [31][23]

Table 1.1: Summary of the Casimir energy (E) for a sphere and the Casimir energy
per unit length (E) for a cylinder both of radius R. Type describes different boundary
conditions– perfectly conducting for electromagnetic fields (EM), Dirichlet for scalar
fields (D), dilute (weak) dielectric for electromagnetic fields for coefficient of (ǫ − 1)2,
dilute dielectric for electromagnetic fields, with media having same speed of light

on either side of the boundary, for coefficient of ξ2 = (ǫ−1)2

(ǫ+1)2 , and weak coupling for

a scalar field with semi-transparent δ-function boundary. The last column lists the
references.

thesis. Detailed references on advances in these areas can be found in recent book on

the subject [9]. For the current status of the field see [2, 44].

Temperature effects

The cases described above are idealized in that only the geometric effects at zero

temperature on quantum fluctuations of the vacuum state are considered. Any other

form of excitation of the vacuum state is neglected. In a more general case one

has to consider states with real thermal photons. Thus vacuum fluctuations can

arise because of thermal effects in addition to the quantum effects. The energy of

such a system is the Casimir energy at non-zero temperature and requires statistical

treatment of the system in the realm of the quantum field theory [15, 9].

The first non-zero temperature effect calculation was carried out by Lifshitz [12]

who did it for real materials. These results had some transcription errors, which were

noted by Hargreaves [45] who analyzed the difference between Lifshitz’s and other

author’s calculations. For history of other works see recent books [15, 9]. The case
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of a perfect conductor can be obtained by taking the dielectric permittivity ǫ of the

material to infinity. The procedure for taking this limit, though, is the cause of much

debate in the field currently [2, 46] as it gives different low and high temperature

dependences. Conventionally the ǫ → ∞ limit is taken before the ω → limit so the

contribution from TE (transverse electric) zero mode is retained. In the modified

scheme this order of taking limits is reversed thereby removing the zero mode from

the beginning. According to Milton [47], the low temperature result for the Casimir

pressure of an ideal metal using the modified scheme is given by

PT = − π2

240R4

[

1 +
16

3
(RT )4

]

+
ζ(3)

8πR3
T, (1.13)

where RT ≪ 1. The term linear in T is absent in the conventional result obtained

by Lifshitz and other authors [47]. Fig. 1.2 shows the low temperature effect on the

fractional change in the Casimir pressure P with respect to the Casimir pressure at

zero temperature P0 plotted against the separation distance R. For distance between

plates of the order 1 µ m at room temperature (300 K) RT ∼ 0.1. The linear depen-

dence in T dominates other terms at low temperature limit and therefore, should be

observable in experiments.

The high temperature result changes by a factor of 1
2

from the conventional result

in the modified scheme, and is given by

PT = − ζ(3)

8πR3
T. (1.14)

The linear dependence on temperature at high temperature limit shows the classical

behavior of the system.
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Figure 1.2: Variation of fractional change in the Casimir pressure with respect to
the Casimir Pressure at zero temperature with the separation distance R between
conducting plates. The large dashed curve(blue) is for T = 100K, line curve(green)
is for T = 200K and small dashed curve(red) is for T = 300K.

1.3.2 Experimental advances

Many early experiments were performed to confirm the Casimir effect with inconclu-

sive results [48, 49, 50, 51, 52, 53, 54, 55, 56]. These include experiments conducted on

insulators as well as conductors. Specifically in [51] Sparnaay considered two parallel

metal plates, which is the original configuration considered by Casimir. The experi-

ment showed existence of the long range force, however, the error in the measurement

was 100%. The first convincing proof came in a study of thin helium films done by

Sabisky and Anderson in 1972 [57] confirming Lifshitz theory within an accuracy of

1%.

The first modern accurate experiment between conductors was performed by Lam-

oreaux in 1997 [58] in which he used a torsional balance to measure the force between
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a gold plated plane and a gold coated sphere. The measurements agreed with Lif-

shitz theory within an accuracy of 5%. However, recently Lamoreaux had expressed

more conservative estimates about the error [59]. In following years Mohideen et

al [60, 61, 62] did experiments on the same configuration using atomic force mi-

croscopy. They claimed accuracy of within 5% with theory. Other groups have

claimed similar precision [63]. In 2002, Bressi et al [64] performed the experiment for

measuring the Casimir force between parallel metallic surface and claimed a precision

of 15%. The Purdue group led by Decca has carried out several experiments using

a micro-mechanical oscillator for measurement of the Casimir force at small separa-

tion distance [65, 66, 67, 68, 69]. These measurements are claimed to be so precise

that they could put constraints on extra dimensions at short distances. They have

also tested the low temperature thermal effects, which are still controversial as shown

recently by another experiment and related discussions [68, 70, 71, 72].

Results for the parallel geometry were known exactly including the material prop-

erties and temperature correction while experiments struggled with keeping the sur-

faces parallel at such a small distance in early years. To avoid this, most of the

experiments are done with one plane and other curved surface. These configurations

until recently were studied using the proximity force approximation (PFA) developed

by Derjaguin in 1934 [73]. PFA treats curved surfaces as made up of various paral-

lel plates for which results are well known. This approximation works very well at

small separation; however, its range of validity is debatable, specifically for the rough

and corrugated surfaces. In the earlier experiments, reaching very small distances

was also a major difficulty. In the last few years exact numerical techniques have

been developed [74, 75], which can be applied to various geometries, for evaluating

the Casimir energy and force. These results have been compared with the recent
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experiments [76, 2].

1.4 Summary

The field of Casimir physics is currently a very active field. Considerable advances

are achieved in both theoretical and experimental regimes [77]. These have, on the

one hand, helped in improving our understanding of the behavior of the vacuum

in presence of separate bodies and their material properties and to some extent of

thermal effects. On the other hand they have generated more fundamental questions

like the different forms of divergences arising due to the presence of the boundaries,

coupling of the vacuum field to gravity, the attractive or repulsive nature of the

Casimir energy, which model best describes the thermal behavior of the vacuum,

or whether considering the Casimir effect as an effect of the zero point fluctuations

is correct. Since the Casimir effect involves macroscopic bodies at large separation

distances relative to the atomic distances most of the predictions based on material

properties, geometry and thermal effects can be tested by current experiments. The

purpose of this short sketchy review was to expose the reader to this field of open

questions. The most up-to-date current status of the research done in this field can be

found in [2, 44], which can direct the reader to the rich and diverse nature of research

being done in this field.
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Chapter 2

Mathematical foundations

The presence of boundaries, which restricts the fields, causes vacuum polarization.

Any non-trivial space-time topology can cause similar effects. These restrictions man-

ifest themselves as the Casimir effect, whereby the boundaries experience a force due

to a change in the energy of the vacuum. To calculate the vacuum energy we treat the

boundaries or the other restrictive conditions as classical backgrounds, which impose

boundary conditions on the solution of the vacuum field equations. Alternatively,

we can incorporate the classical background in the Lagrangian of the system as a

classical potential, which automatically includes the boundary conditions in the field

equation. There are several ways for evaluating the vacuum energy, for example,

mode summation method, cylinder kernel expansion, Green’s function approach, and

worldline technique. Chapter 1 introduced a simple example calculation using the

zeta-function regularization process. In this thesis, however, we will confine ourselves

to the Green’s function approach. In this Chapter, we present the derivation of the

vacuum energy in terms of the Green’s dyadic using standard field theory techniques.

For the case of interaction between two separate rigid bodies the divergent terms can
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be subtracted out from the onset thereby defining a finite interaction energy using

the multiple scattering formalism, which we present next in the chapter. Following

that we present the procedure for solving for the Green’s dyadic.

2.1 Vacuum energy

2.1.1 Electromagnetic case

We start by assuming that space is filled with the electromagnetic field, which is

interacting with background macroscopic dielectric bodies. The action is

W [E, H, A, φ; P, ε, µ] =
∫

d3x
∫

dt L(E, H, A, φ; P, ε, µ). (2.1)

where φ is the scalar potential, A is the vector potential, E is the electric field, H is the

magnetic field, P is the external polarization source, ε is the dielectric function, and

µ is the dielectric permittivity. We shall neglect the dynamics (time dependence) of

the dielectric bodies at the macroscopic level–for example we do not consider moving

dielectrics. This still leaves us with two other venues for time dependence. First is the

motion at the microscopic level of electrons and nuclei forming the dielectric body.

This motion collectively contributes to the conductivity of a dielectric body, which

will be one of the parameters in our study. The second form of time dependence

is in the duration of the time for which a particular process is being investigated,

which is introduced as the limits of integration of the time in Eq. (2.1). For most

purposes it is sufficient to assume this time interval to be large enough to be replaced

by ±∞. However, in the early 19th century while proposing a model for conductivity

in metals, Sommerfeld studied the signal velocity in a dispersive medium, and in a
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study of signal velocity in the wave propagation and its consequence on causality,

Brillouin at Sommerfeld’s suggestion in 1913, noticed the necessity to keep track of

this formal fallacy of infinite time interval [78]. In general this needs to be taken

into account primarily in relation to questions related to causality, and Nernst’s heat

theorem, which states that change in entropy of a system should approach zero at

zero temperature.

The dielectric function codes the response of the system, as induced polarization,

in the presence of an electric field. This effect should be causal and requires the time

dependence in the construct [εE] to be of the form

[εE](t) =
∫ t

−∞
dt′ ε(t − t′)E(t′), (2.2)

where we suppressed the spatial dependence. The above statement of causality trans-

lates non-trivially into the frequency domain [79]. Nevertheless, we shall find it con-

venient to work in the frequency domain because our discussions will be restricted to

static situations. This is achieved using the Fourier transform

f(t) =
∫ ∞

−∞

dω

2π
e−iωtf̃(ω) (2.3)

written here for an arbitrary function of time, f(t). We shall often drop the tilde in

the Fourier transformed function.

The Fourier transformed action is

W [E, H, A, φ] =
∫

d3x
∫

dω

2π
L(E, H, A, φ), (2.4)
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where the Fourier transformed Lagrangian density is

L(E, H, A, φ)=
1

2
H(x, −ω) · µ(x, ω)H(x, ω) − 1

2
E(x, −ω) · ε(x, ω)E(x, ω)

+E(x, −ω) · ε(x, ω)
[

− ∇φ(x, ω) + iωA(x, ω))
]

−H(x, −ω) · (∇ × A(x, ω)) + P(x, −ω) ·
[

− ∇φ(x, ω) + iωA(x, ω)
]

,

(2.5)

Using the least action principle we obtain

δH : B(x, ω) = ∇ × A(x, ω),

δE : E(x, ω) = −∇φ(x, ω) + iωA(x, ω),

δA : ∇ × H(x, ω) = −iω
[

[εE](x, ω) + P(x, ω)
]

,

δφ : ∇ ·
[

[εE](x, ω) + P(x, ω)
]

= 0.

(2.6a)

Here B = µH. The homogeneous Maxwell’s equations can be obtained by taking the

curl of the electric field and the divergence of the magnetic field, which we list here

for completeness.

∇ × E(x, ω)=iωB(x, ω), (2.7a)

∇ · B(x, ω)=0, . (2.7b)

In general, the medium could be anisotropic and magnetic in which case the dielectric

permittivity and permeability will be tensors. In this thesis we focus on non-magnetic,

linear, isotropic, dispersive medium where µ(x, ω) = 1. The Maxwell’s equations in
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Eqs. (2.6a) and (2.7a), in the frequency domain are

∇ × E(x, ω)=iωH(x, ω), (2.8a)

∇ × H(x, ω)=−iω
[

ε(x, ω)E(x, ω) + P(x, ω)
]

. (2.8b)

Divergence of Eqs. (2.8a) and (2.8b) corresponds to Eqs. (2.7b) and (2.6a) in the

frequency domain. Using Eq. (2.8a) in Eq. (2.8b) we have

−
[

∇ × ∇ × − ω2ε(x, ω)1
]

· E(x, ω) = −ω2P(x, ω). (2.9)

Eq. (2.9) guides us to define the electric Green’s dyadic satisfying the differential

equation

−
[

− 1

ω2
∇ × ∇ × + ε(x, ω)1

]

· Γ(x, x′; ω) = 1δ(3)(x − x′), (2.10)

and also defines the relation between the electric field and polarization source, medi-

ated through the electric Green’s dyadic Γ(x, x′; ω),

E(x, ω) =
∫

d3x′ Γ(x, x′; ω) · P(x′, ω). (2.11)

To derive the vacuum energy we start with the action W [E, H, A, φ; P],where it is a

functional of E, H, A, φ, and P. The vacuum persistence amplitude is defined by

Z[P] = 〈0+|0−〉P. (2.12)
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We use Schwinger’s quantum action principle [80, 81, 82, 83, 84, 85, 86]

δZ = i〈0+|δW [E, H, A, φ; P]|0−〉, (2.13)

whose variation with the fields E, H, A, and φ reproduces the equations of motion

given in Eq. (2.7) is interpreted as referring to the operator fields now. Variation with

respect to the external source P gives us

δP : δZ = i
∫

d3x
∫

dω

2π
δP(x, −ω) 〈0+|E(x, ω)|0−〉P, (2.14)

which implies

1

i

δZ[P]

δP(x, −ω)
= 〈0+|E(x, ω)|0−〉P. (2.15)

Using this in Eq. (2.9) we can write

−
[

− 1

ω2
∇ × ∇ × + ε(x, ω)1

]

· 1

Z[P]

1

i

δZ[P]

δP(x, −ω)
= P(x, ω). (2.16)

Notice that operator is Γ−1 given in Eq. (2.10). So we can write the vacuum expec-

tation value of E given by Eq. (2.16) using above equation as

1

Z[P]

1

i

δZ[P]

δP(x, −ω)
=
∫

d3x Γ(x, x′; ω) · P(x′, ω) . (2.17)

We can solve this functional differential equation for Z[P]. One possible solution is

Z[P] = Z[0]e
i
2

∫

dω
2π

∫

d3x
∫

d3x′P(x,−ω)·Γ(x,x′;ω)·P(x′,ω) + Q[ε], (2.18)

where Q[ε] is a constant in P. The argument of the exponential in the above equation

21



is defined as the effective action W
[

P
]

. In absence of the background potential, i.e.

for ε = 1, the effective action is given by

W0[P] =
1

2

∫

dω

2π

∫

d3x
∫

d3x′ P(x, −ω) · Γ0(x, x′; ω) · P(x′, ω) + Q[1], (2.19)

where, Γ0(x, x′; ω) is the free Green’s dyadic when no boundary is present and it

satisfies

−
[

− 1

ω2
∇ × ∇ × + 1

]

· Γ0(x, x′; ω) = 1δ(3)(x − x′). (2.20)

Next if we switch off the external source as well then vacuum does not decay and can

be written in terms of a constant phase θ

Z0[0] = 〈0+|0−〉P=0 = eiθ = eW0[0]. (2.21)

This implies that Q[1] = θ, which is a pure constant. Varying the vacuum persistence

amplitude with respect to the background potential parameter ε(x, ω) we get

δε(x, ω) : δZ[P]=
i

2

∫ dω

2π

∫

d3x δε(x, −ω)〈0+|E(x, −ω) · E(x, ω)|0−〉P

=
i

2

∫

dω

2π

∫

d3x δε(x, −ω)
1

i

δ

δP(x, ω)

1

i

δ

δP(x, −ω)
Z[P].(2.22)

We can formally write the solution for this as

Z[P] = e
i
2

∫

dω
2π

∫

d3x[ε(x,−ω)−1] 1
i

δ
δP(x,ω)

1
i

δ
δP(x,−ω) Z0[P], (2.23)
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which using Eq. (2.19) can be written as

Z[P] = e
i
2

∫

dω
2π

∫

d3x[ε(x,−ω)−1] 1
i

δ
δP(x,ω)

1
i

δ
δP(x,−ω) e

i
2

∫

dω
2π

∫

d3x
∫

d3x′
P(x,−ω)·Γ0(x,x′,ω)·P(x′,ω) + Q[1].

(2.24)

Notice that we can safely drop the term Q[1] as it will not contribute to the solution.

Using the exponential identity

e
1
2

∇T·A·∇e
1
2

xT·B·x+cT·x+r = e
1
2

xT·B·K·x+cT·K·x+ 1

2
cT·K·A·c+r+ 1

2
Tr ln K, (2.25)

for matrices where K is the solution to the matrix equation

[

1 − A · B
]

·K = 1, (2.26)

we conclude that

Z[P] = e
i
2

∫

dω
2π

∫

d3x
∫

d3x′
P(x,−ω)·Γ(x,x′;ω)·P(x′,ω) +2πδ(0) i

2

∫

dω
2π

Tr ln ΓΓ0
−1

, (2.27)

where we have used Green’s dyadic equation to obtain this final form. The trace is

over space variables only. Trace over the frequency domain leads to 2πδ(0) which will

be interpreted as the infinite time τ of the process. For Z[0] we get

Z[0] = 〈0+|0−〉P=0 = eiW [0] = eτ 1
2

∫

dω
2π

Tr ln ΓΓ0
−1

. (2.28)

Since 〈0+|0−〉P=0 = 〈0−|e−iHτ |0−〉P=0 = e−iEτ , comparing with above equation we

conclude that

E =
i

2

∫

dω

2π
Tr lnΓΓ

−1
0 . (2.29)
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This is the principal formula we will use for calculating the Casimir energy. It is

worth noting that the total vacuum energy is given by the trace-log of the electric

Green’s dyadic only. While in the frequency domain, we place confidence in the

so-called Euclidean postulate [87, 88], and switch to imaginary frequencies after a

Euclidean rotation using ω → iζ . Correspondingly the dielectric function will be:

ε(x, ω) → ε(x, iζ). This leads to

E = −1

2

∫ dζ

2π
Tr lnΓΓ

−1
0 . (2.30)

2.1.2 Scalar case

We list the corresponding formula when the vacuum is assumed to be filled by single

scalar field φ(x) without derivation. The scalar field interacting with a background

potential is described by the Lagrangian

L(φ(x)) = −1

2
(∂µφ(x))2 − 1

2
V (x)φ(x)2 (2.31)

The vacuum energy can be written as

E =
i

2τ
Tr ln G G−1

0 , (2.32)

where G(x, x′) is the scalar Green’s function in the presence of the boundary, which

satisfies

−
[

∂2 − V (x)
]

G(x, x′) = δ(4)(x − x′), (2.33)
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and G0(x, x′) is the free scalar Green’s function, which obeys

−∂2 G0(x, x′) = δ(4)(x − x′), (2.34)

2.2 Multiple scattering formalism

The energy calculated using the formula given by Eq. (2.30) is divergent. These di-

vergences arise due to the bulk contribution, self energy of the background potential,

and curvature and corners of the boundaries. We require regularization and renor-

malization procedures to obtain a finite expression. However, in the presence of two

non-overlapping boundaries it is possible to extract a finite energy for the interaction

between two rigid boundaries using the multiple scattering (MS) formalism, which is

all we need to define the Casimir force experienced by the boundaries. Multiple scat-

tering techniques have been in use for a very long time (see introduction of [89] for a

brief review of MS techniques). Notice that in Eq. (2.30) we have already subtracted

the infinite bulk contribution given by

E0 = −1

2

∫

dζ

2π
Tr lnΓ0. (2.35)

The free Green’s dyadic Γ0(x, x′; iζ) satisfies Eq. (2.20). Comparing Eqs. (2.10) and

(2.20), it is suggestive to define a potential

V(x, iζ) = 1
[

ε(x, iζ) − 1
]

(2.36)
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to rewrite Eq. (2.10) in the form

−
[

1

ζ2
∇ × ∇ × + 1 + V(x, iζ)

]

· Γ(x, x′; iζ) = 1δ(3)(x − x′). (2.37)

This allows us to write the solution (in symbolic notation) for the Green’s dyadic in

the presence of a medium in terms of the free Green’s dyadic, defined in Eq. (2.20)

in the form

Γ · Γ−1
0 =

[

1 − Γ0 · V
]−1

. (2.38)

For a system described by two disjoint boundaries, the potential is given by

V = V1 + V2. (2.39)

Using this in Eq. (2.38) we can write

Γ · Γ−1
0 =Γ2 · Γ−1

0

[

1 − Γ1 · V1 · Γ2 · V2

]

Γ1 · Γ−1
0

=
[

1 − Γ0 · V2

]−1[

1 − Γ1 · V1 · Γ2 · V2

][

1 − Γ0 · V1

]−1
.

(2.40)

Substituting this in Eq. (2.30) we get

E = E1 + E2 + E12, (2.41)

where the self energy contributions of the individual potentials Ei are given by

Ei = −1

2

∫

dζ

2π
Tr ln

[

1 − Γ0 · Vi

]−1
, i = 1, 2, (2.42)
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which in general are divergent. The remaining part of the energy is the interaction

term E12 between two disjoint boundaries and is given by

E12 =
1

2

∫

dζ

2π
Tr ln

[

1 − Γ1 · V1 · Γ2 · V2

]

. (2.43)

Vi refers to the potential describing single boundary and Γi refers to the Green’s

dyadic when only one boundary is present. It is written in terms of the free Green’s

dyadic as

Γi =
[

1 − Γ0 · Vi

]−1
Γ0. (2.44)

We can define the T-matrix as

Ti = Vi

[

1 − Γ0 · Vi

]−1
, (2.45)

The interaction energy can be written in terms of T-matrix as

E12 =
1

2

∫ dζ

2π
Tr ln

[

1 − Γ0 · T1 · Γ0 · T2

]

. (2.46)

The two expressions of the interaction energy given by Eq. (2.43) and Eq. (2.46) are

equivalent. It is interesting to pause and think about the two forms. The Green’s

dyadic Γi describes the electromagnetic propagator in presence of the i-th boundary,

which according to Eq. (2.44) is essentially the modification of the free propagator

Γ0 due to the existing boundary. These modified propagators mediate between the

two boundaries V1 and V2 causing interaction. On the other hand, the Ti-matrix

describes the modification of the potential Vi due to its own fluctuations. The infor-

mation from one boundary is mediated to other boundary by free propagators causing
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interaction. The former approach is what describes the fluctuating fields interacting

with static bodies viewpoint as mentioned in Section 1.1.2, while the later approach

describes the interaction of the fluctuating bodies (molecules) viewpoint presented in

Section 1.1.1.

In this thesis we will be considering the two disjoint background potentials and

use Eq. (2.43) form of the interaction energy for evaluation of the Casimir energy.

Writing out the explicit space dependence we have

E12 =
1

2

∫ ∞

−∞

dζ

2π

∫

d3x tr ln
[

1 − Γ1(x, x′) · V1(x
′) · Γ2(x

′, x) · V2(x)
]

, (2.47)

where trace is now only on the dyadic indices. This allows us to subtract off the

divergent bulk contribution as well as the self energy contributions from the individual

potential from the onset.

2.3 Green’s dyadic

In the previous section we obtained the central formula given by Eq. (2.30) for eval-

uating the vacuum energy, which requires us to solve for the corresponding Green’s

dyadic for a given system. The Green’s dyadic, as the name suggests, is a second

rank tensor quantity having nine scalar components, which are coupled. The formal

Green’s function technique can be found in standard mathematical texts, for exam-

ple, Chapter 7 of Morse and Feshbach [90]. This thesis concentrates on parallel plate

geometry for the electromagnetic case and cylindrical geometry for the scalar case.

Therefore, in this Section we outline the procedure for obtaining Green’s dyadic for

the parallel geometry. We will present the scalar Green’s function for the cylindrical
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case in the next chapter.

2.3.1 Free Green’s dyadic

We start with the free Green’s dyadic Γ0 that satisfies Eq. (2.20). Taking the diver-

gence of Eq. (2.20) we have

∇ · Γ0(x, x′; iζ) = ∇δ(3)(x − x′). (2.48)

Using this in conjunction with the identity

∇ × (∇ × Γ0) = (∇∇ − 1∇2) · Γ0, (2.49)

we can write Eq. (2.20) as

−[∇2 − ζ2]Γ0(x, x′; iζ) = −ζ21δ(3)(x − x′) + ∇∇δ(3)(x − x′). (2.50)

Consider the scalar Green’s function G0, which satisfies Eq. (2.34). In the frequency

space that equation can be written as

−[∇2 − ζ2]G0(x, x′; iζ) = δ(3)(x − x′). (2.51)

The free Green’s dyadic now has the formal solution in terms of free Green’s scalar

as

Γ0(x, x′; iζ) = [∇∇ − ζ21]G0(x, x′; iζ). (2.52)

We will write an explicit form for this in the next chapter.
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2.3.2 Green’s dyadic equations

Next we turn our attention to the general Green’s dyadic in in the presence of restric-

tive boundaries. For a non-magnetic, linear, isotropic, dispersive medium we wrote

the differential equation satisfied by Γ in Eq. (2.37)

−
[

1

ζ2
∇ × ∇ × + 1 + V(x, iζ)

]

· Γ(x, x′; iζ) = 1δ(3)(x − x′), (2.53)

which is related to the electric field and the polarization source as

E(x, iζ) =
∫

d3x′ Γ(x, x′; iζ) · P(x′, iζ). (2.54)

Eq. (2.53) is a second order differential equation coupling the scalar components of

the Green’s dyadic. Using the free Green’s dyadic Eq. (2.20) we can formally write

the solution for the Green’s dyadic as given in Eq. (2.44)

Γ =
[

1 − Γ0 · V
]−1

Γ0. (2.55)

This can be written as an infinite series and getting an explicit solution for the Green’s

dyadic depends on the potential describing the boundary and in turn on the boundary

conditions imposed by it. As it turns out, it is not a trivial task. Even for the simple

case of a step function potential re-summing the series is very difficult. In order to

proceed further and keeping our goal of solving for the parallel geometry in mind

we use technique given in [91] and define the corresponding magnetic Green’s dyadic

Φ(x, x′; iζ)

H(x, iζ) =
∫

d3x′ Φ(x, x′; iζ) · P(x′, iζ). (2.56)
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In terms of the electric and magnetic Green’s dyadic, defined in Eqs. (2.54) and (2.56),

the Maxwell’s equations given by Eqs. (2.8) are contained in

−∇ × Γ(x, x′; iζ)=ζΦ(x, x′; iζ), (2.57a)

∇ × Φ(x, x′; iζ)=ζ
[

ε(x, iζ)Γ(x, x′; iζ) + 1δ(3)(x − x′)
]

. (2.57b)

This is illustrated by taking the dot-product of Eqs. (2.57) with P on the right and

taking the integral over x′, which reproduces the expressions in Eqs. (2.8). The homo-

geneous equations given by Eq. (2.7) can be obtained, similarly, by taking divergence

from the left. Using Eq. (2.57a) in Eq. (2.57b) gives the second order differential

equation for the Green’s dyadic given in Eq. (2.10). The above equations are coupled

first order differential equations. This doesn’t reduce the amount of work; however,

it provides a framework for solving the Green’s dyadic for the case of a step potential

(parallel geometry) as we shall see in next section.

2.4 Solution to the Green’s dyadic for translation-

ally symmetric potential in x − y directions

Consider the physical situations involving translational symmetry in the x-y direc-

tions. We begin by writing the Green’s dyadic and the unit operator in terms of basis

vectors

Γ=Γxx̂ + Γyŷ + Γzẑ, (2.58a)

Φ=Φxx̂ + Φyŷ + Φzẑ, (2.58b)

1=x̂ x̂ + ŷ ŷ + ẑ ẑ. (2.58c)
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In this case the potential given by Eq. (2.36) depends on the z-coordinate

V (z) = [ε(z) − 1]. (2.59)

Using a Fourier transform in x-y directions we can define the dimensionally reduced

dyadic

Γ(x, x′; iζ)=
∫

d2k

(2π)2
eik⊥·(x−x′)⊥γ(z, z′; iζ, k), (2.60a)

Φ(x, x′; iζ)=
∫

d2k

(2π)2
eik⊥·(x−x

′)⊥φ(z, z′; iζ, k), (2.60b)

where k2
⊥ = k2

x + k2
y = k2. Due to rotational symmetry in the x-y directions we can

choose ky = 0, kx = k, without any loss of generality. Using Eqs. (2.58) and (2.60) in

Eq. (2.57) we have

φx=
1

ζ

∂

∂z
γy, (2.61a)

φy=−1

ζ

∂

∂z
γx + i

k

ζ
γz, (2.61b)

φz=−i
k

ζ
γy. (2.61c)

and

γx=
1

ζ

1

ε(z)

∂

∂z
φy − δ(z − z′)

ε(z)
x̂, (2.62a)

γy=
1

ζ

1

ε(z)

∂

∂z
φx − i

k

ζ

1

ε(z)
φz − δ(z − z′)

ε(z)
ŷ, (2.62b)

γz=i
k

ζ

1

ε(z)
φy − δ(z − z′)

ε(z)
ẑ. (2.62c)
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Using Eqs. (2.61a) and (2.61c) in Eq. (2.62b) we obtain the differential equation for

γy to be

−
[

∂2

∂z2
− k2 − ζ2ε(z)

]

γy(z, z′; iζ, k) = −ζ2 ŷ δ(z − z′). (2.63)

Similarly using Eqs. (2.62a) and (2.62c) in Eq. (2.61b) we have

−
[

∂

∂z

1

ε(z)

∂

∂z
− k2

ε(z)
− ζ2

]

φy(z, z′; iζ, k) = −iẑ
kζ

ε(z)
δ(z − z′) + x̂

ζ

ε(z)

∂

∂z
δ(z − z′).

(2.64)

Let us now define reduced electric gE(z, z′) and magnetic gH(z, z′) scalar Green’s

functions1 which satisfy

−
[

∂2

∂z2
− k2 − ζ2ε(z)

]

gE(z, z′)=δ(z − z′), (2.65a)

−
[

∂

∂z

1

ε(z)

∂

∂z
− k2

ε(z)
− ζ2

]

gH(z, z′)=δ(z − z′). (2.65b)

It is now straightforward to obtain γy and φy in terms of gE and gH as

γy(z, z′; iζ, k)=−ŷζ2gE(z, z′), (2.66a)

φy(z, z′; iζ, k)=−iẑ
kζ

ε(z′)
gH(z, z′) − x̂

ζ

ε(z′)

∂

∂z′
gH(z, z′), (2.66b)

where we integrated by parts to obtain the second term in the φy expression. The

remaining components are completely given in terms of γy and φy as

φx=
1

ζ

∂

∂z
γy, (2.67)

φz=−i
k

ζ
γy, (2.68)

1Here we use the notation in Schwingeret al [91], which was reversed in many of Milton’s publi-
cations, for example in Milton’s book [15] and [92].
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and

γx=−1

ζ

1

ε(z)

∂

∂z
φy − x̂

δ(z − z′)

ε(z)
, (2.69)

γz=i
k

ζ

1

ε(z)
φy − ẑ

δ(z − z′)

ε(z)
. (2.70)

Using the above the electric and magnetic Green’s dyadic are given in terms of the

reduced Green’s function as

φ(z, z′; iζ, k) =





















0 −ζ ∂
∂z

gE(z, z′) 0

− ζ
ε(z′)

∂
∂z′ g

H(z, z′) 0 − ikζ
ε(z′)

gH(z, z′)

0 ikζgE(z, z′) 0





















(2.71)

and

γ(z, z′; iζ, k) =





















1
ε(z)

∂
∂z

1
ε(z′)

∂
∂z′ g

H(z, z′) 0 ik
ε(z)

1
ε(z′)

∂
∂z

gH(z, z′)

0 −ζ2gE(z, z′) 0

− ik
ε(z)

1
ε(z′)

∂
∂z′ g

H(z, z′) 0 k2

ε(z)ε(z′)
gH(z, z′)





















− δ(z − z′)

ε(z)

















1 0 0

0 0 0

0 0 1

















.

(2.72)

Thus for the physical situations involving translational symmetry in x and y directions

and non-magnetic, linear, isotropic, dispersive medium the whole problem decouples

to solving for two scalar transverse electric and transverse magnetic Green’s function,

which are subject to the boundary conditions imposed by the physical problem.
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Chapter 3

Scalar Green’s functions

In the previous Chapter, Section 2.3, we presented the formal solution for the free

Green’s dyadic and the Green’s dyadic in presence of a translationally symmetric

background potential in terms of two free scalar Green’s function. In this chapter

we collect solutions to these scalar Green’s function for the configurations we will be

dealing in this thesis.

3.1 Free scalar Green’s function

In absence of any boundary the free Green’s function G0(x, x′; iζ), which satisfies

Eq. (2.51) has translational symmetry in all coordinates. Therefore it can depend

only on (x − x′). In three dimensions the explicit solution is given by

G0(x − x′; iζ) =
e−|ζ||x−x′|

4π|x − x′| . (3.1)
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If we assume translational invariance in one dimension then we can Fourier transform

one coordinate and write

G0(x − x′; iζ) =
∫

dkz

2π
eikz(z−z′)g0(x⊥ − x′

⊥; κ), (3.2)

where κ is defined by κ2 = ζ2 + k2
z . Then the two dimensional reduced Green’s

function g0(x⊥ − x′
⊥; κ) is written in terms of the modified Bessel function K0 as

g0(x⊥ − x′
⊥; κ) =

1

2π
K0(κ|(x⊥ − x′

⊥|). (3.3)

We can go ahead and assume translation symmetry in x-y directions and write

G0(x − x′; iζ) =
∫

d2k

(2π)2
eik⊥·(x−x

′)⊥g0(z − z′; κ), (3.4)

where now κ2 = ζ2 + k2
⊥. The one dimensional reduced Green’s function g0(z − z′; κ)

has the solution

g0(z − z′; κ) =
1

2κ
e−κ|z−z′|. (3.5)

We also note that when the complete space consists of a uniform dielectric medium

then κ is replaced by κ′2 = ζ2ε + k2
⊥ in the above equation.

3.2 Transverse electric Green’s function

Next we turn our attention to the solution of the transverse electric Green’s func-

tion for the case of translational symmetry in x-y direction. The potential V(x, iζ),
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z = a

ε2ε1

Figure 3.1: Two layered dielectric material.

described in Eq. (2.36), now has dependence on the z-coordinate only

V (z) = [ε(z) − 1]. (3.6)

The differential equation for the electric Green’s function in Eq. (2.65a) can be written

as

−
[

∂2

∂z2
− κ2 − ζ2V (z)

]

gE(z, z′; κ) = δ(z − z′), (3.7)

where κ2 = ζ2 + k2
⊥.

3.2.1 Two layered dielectric medium

Consider two dielectric media of permittivity ε1 and ε2 separated by a plane surface

located at z = a shown in Figure 3.1. This physical situation can be described by

V (z) = (ε1 − 1)θ(a − z) + (ε2 − 1)θ(z − a), (3.8)

where θ(z − a) = 0 if z < a, and θ(z − a) = 1 if z > a. Using the matching

conditions, which are (a) gE is continuous and (b) d
d z

gE(z, z′) is discontinuous across

the boundary, we can solve the differential equation (2.65a). The solution for the
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Figure 3.2: Regions for investigation of the Green’s function for the step potential.

electric Green’s function is

gE(z, z′) =
sn

κz + κz′

e−κz |z−z′| +
tn

κz + κz′

e−κz|z−ai|e−κz′ |z′−ai|, (3.9)

where n represents regions 1 to 4 in Figure 3.2. Coefficients sn = 1 if n = 1, 2, and

zero otherwise. This basically represents the bulk term and is present only when z

and z′ are in the same region. In the above equations κz and κz′ take on values of κi

based on the regions in which the respective z, z′ are in. κ2
i = k2+ζ2εi = κ2+ζ2(εi−1)

for i = 1, 2, and coefficients tn are given in Table 3.1, where

t3 = 1 t2 = −αji

t1 = αij t4 = 1

Table 3.1: Transition matrix coefficients for the two layered dielectric media.
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(ε1 − 1) g(z, z′) ∂
∂z

g(z, z′) ∂2

∂z2 g(z, z′)

0.1

1.0

10

Figure 3.3: Electric Green’s function for the infinite slab. (a = 0, κ = 1, ζ = 1.)

αij =
κi − κj

κi + κj

. (3.10)

When one medium is vacuum, i.e. ε → 1 for that medium, κ′ → κ for that medium.

We plot the transverse electric Green’s function gE and its derivatives in Fig-

ure 3.3. The discontinuities along the slab surface is magnified for the higher value

of dielectric permittivity. The discontinuity along the diagonal line corresponds to

z = z′, which is the contribution from the δ-function on the right hand side of

Eq. (3.7). This is a universal feature.
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z = a z = b

ε1 ε2 ε3

Figure 3.4: Three layered dielectric material.

3.2.2 Three layered dielectric medium

Next we consider three dielectric media separated by plane surfaces located at z = a

and z = b as shown in Figure. 3.4, which can be described by the potential

V (z) = (ε1 − 1)θ(a − z) + (ε2 − 1) [θ(z − a) − θ(b − z)] + (ε3 − 1)θ(z − b). (3.11)

The middle slab has thickness d = b − a. The solution can be expressed in the form

gE(z, z′) =
sn

κz + κz′

e−κz |z−z′| + e(z)T · 1

∆

tn

κz + κz′

· e(z′) (3.12)

where n denotes regions from 1 to 9 in Figure 3.5. The coefficients sn = 1, if n = 1, 2, 3,

and zero otherwise. The vector e(z) is defined in terms of the free Green’s function

as

e(z)T =
(

e−κz |z−ai|, e−κz |z−bi|

)

. (3.13)

The determinant ∆ is given by

∆ = (1 − α21α23e−2κ2d), (3.14)
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Figure 3.5: Regions for investigation of the Green’s function for the slab potential.

where κ2
2 = κ2 +ζ2(ε2 −1). The coefficients tns are given in Table 3.4. For the specific

t5 =

[

0(1 − α21α23)e−κ2d

0 0

]

t7 =

[

0α21e−κ2d

0 1

]

t3 =

[

0 0
0−(α23 − α21e−κ2d)

]

t4 =

[

1 alpha23e−κ2d

0 0

]

t2 =

[

α21 α21α23e−κ2d

α21α23e−κ2d α23

]

t9 =

[

0 0
α21e−κidi1

]

t1 =

[

−(α21 − α23e−κ2d)0
0 0

]

t6 =

[

1 0
α23e−κidi0

]

t8 =

[

0 0
(1 − α21α23)e−κ2d0

]

Table 3.2: Transition matrix coefficients for the three layered dielectric medium.

case when ε1,3 = 1 describes a dielectric slab. The solution can be obtained by setting

κ1,3 = κ in above equations. Subscript 2 used to identify the middle dielectric layer

can be replaced by i to denote i-th slab.
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3.2.3 Five layered dielectric medium

Let us now consider the potential

V (z) = (ε1 − 1)θ(a1 − z) + (εA − 1) [θ(z − a1) − θ(z − b1)]

+(ε2 − 1) [θ(z − b1) − θ(z − a2)] + (εB − 1) [θ(z − a2) − θ(z − b2)]

+(ε3 − 1)θ(z − b2), (3.15)

where d1,2 = b1,2 − a1,2 and a = a2 − b1. The choice of subscript is governed by the

fact that when d1,2 → 0 we get potential described in the previous subsection. This

is shown in Figure 3.6.

z = a1 z = b1 z = a2 z = b2

ε1 εA ε2 εB ε3

Figure 3.6: Five layered dielectric material.

The solution can be written as before

gE(z, z′) =
sn

κz + κz′

e−κz |z−z′| + e(z)T · 1

∆

tn

κz + κz′

· e(z′) (3.16)

where n denotes regions given in Figure 3.7. The coefficients sn = 1, if n =

1, 2, 3, A, B, and zero otherwise. The vector e(z) is defined in terms of the free

Green’s function as
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Figure 3.7: Regions for investigation of five region Green’s function.

e(z)T =
(

e−κz |z−a1|, e−κz |z−b1|, e−κz|z−a2|, e−κz |z−b2|

)

. (3.17)

To save space we define

δ11=α2A + αA1e
−2κAd1 (3.18a)

δ12=1 + α2AαA1e
−2κAd1 (3.18b)

δ21=1 + α2BαB3e−2κBd2 (3.18c)

δ22=α2B + αB3e−2κBd2 (3.18d)

Using these notations the determinant ∆ is given by

∆ = δ11δ22e−κ2a − δ12δ21eκ2a. (3.19)

In Tables 3.3 and 3.4 we give the non-vanishing components of the coefficients tn.
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t
a1b2

5 =
[

(αA1 + α2A)(α2B + αB3)

−(1 + α2AαA1)(1 + α2BαB3)
]

e−κAd1−κBd2

t
b1b2

Q
=−
[

(1 − α2Aα2B) + αB3 (α2B − α2A)
]

e−κBd2

t
a1b2

Q
=t

b1b2

Q
αA1e−κAd1

t
b1b2

7 =− (1 + α2BαB3) δ11e−κBd2

t
a2b2

7 =− (1 + α2BαB3) δ12e−κBd2

t
a1a2

N
=−
[

(1 − α2Aα2B) + αA1 (α2A − α2B)
]

e−κAd1

t
a1b2

N
=t

a1a2

N
αB3e−κBd2

t
a1a2

O
=−αA1 (1 − α2Aα2B)

]

e−κAd1

t
a1b2

O
=t

a1a2

O
αB3e−κBd2

t
b1a2

O
=− (1 − α2Aα2B)

t
b1b2

O
=t

b1a2

O
αB3e−κBd2

t
b1a2

P
=−δ11

t
b1b2

P
=t

b1a2

P
αB3e−κBd2

t
a2a2

P
=−δ12e−κ2a

t
a2b2

P
=t

a1a2

P
αB3e−κBd2

t
a1a2

4 =− (1 + α2AαA1) δ22e−κAd1

t
a1b1

4 =− (1 + α2AαA1) δ11e−κAd1 eκ2a

t
b1b1

M
=−δ12eκ2a

t
a1b1

M
=t

b1b2

M
αA1e−κAd1

t
b1a2

M
=−δ22

t
a1a2

M
=t

b1a2

M
αA1e−κAd1

t
b1b1

2 =−δ11δ21eκ2a

t
b1a2

2 =−δ11δ22

t
a2b1

2 =t
b1a2

2

t
a2b2

2 =−δ22δ12eκ2a

t
a1a1

L
=
[

α2Aδ22e−κ2a − δ21eκ2a
]

t
a1b1

L
=
[

α2Aδ21eκ2a − δ22e−κ2a
]

e−κAd1

t
b1b1

U
=
[

α2Aδ21eκ2a − δ22e−κ2a
]

t
a1b1

U
=t

b1b1

B
αA1e−κAd1

t
b1a1

U
=t

a1b1

B

t
a1a1

U
=
[

α2Aδ22e−κ2a − δ21eκ2a
]

αA1e−κAd1

t
b1b1

U
=−δ12eκ2a

t
b1a1

U
=t

b2b1

U
αA1e−κAd1

t
a2b1

U
=−δ22

t
a2a1

U
=t

a2b1

U
αA1e−κAd1

t
a1a1

1 =
[

δ21δ11eκ2a − δ22

(

α2AαA1 + e−2κAd1

)

e−κ2a
] t

a1a1

S
=
[

α2Aδ22e−κ2a − δ21eκ2a
]

t
b1a1

S
=
[

α2Aδ21eκ2a − δ22e−κ2a
]

e−κAd1

t
a2a1

6 =− (1 + α2AαA1) δ22e−κAd1

t
b1a1

6 =− (1 + α2AαA1) δ11e−κAd1 eκ2a

Table 3.3: Transition matrix components of five layered dielectric medium scalar electric Green’s function–First three
columns.
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t
a2b2

R
=
[

α2Bδ12eκ2a − δ11e−κ2a)
]

e−κBd2

t
b2b2

R
=
[

α2Bδ11eκ2a − δ12eκ2a
]

t
b2b2

3
=
[

δ21δ12eκ2a − δ11(α2BαB3 + e−κBd2)eκ2a
]

t
a2a2

B
=
[

α2Bδ12eκ2a − δ11e−κ2a)
]

t
a2b2

B
= t

a2a2

B
αB3e−κBd2

t
b2a2

B
= t

b2a2

B

t
b2b2

B
=
[

α2Bδ11eκ2a − δ12eκ2a
]

t
b2a2

R
=
[

α2Bδ12eκ2a − δ11e−κ2a)
]

e−κBd2

t
b2b2

R
=
[

α2Bδ11eκ2a − δ12eκ2a
]

t
a2b1

X
= −δ11

t
b2b1

X
= t

a2b1

X
αB3e−κBd2

t
a2a2

X
= −δ12eκ2a

t
b2a2

X
= t

a2a2

X
αB3e−κBd2

t
b2b1

9
= − (1 + α2BαB3) δ11e−κBd2

t
b2a2

9
= − (1 + α2BαB3) δ12e−κBd2

t
a2a1

V
= −αA1 (1 − α2Aα2B)

]

e−κAd1

t
b2a1

V
= t

a2a1

V
αB3e−κBd2

t
a2b1

V
= − (1 − α2Aα2B)

t
b2b1

V
= t

a2b1

V
αB3e−κBd2

t
b2b1

W
= −

[

(1 − α2Aα2B) + αB3 (α2B − α2A)
]

e−κBd2

t
b2a1

W
= t

b2b1

W
αA1e−κAd1

t
a2a1

T
= −

[

(1 − α2Aα2B) + αA1 (α2A − α2B)
]

e−κAd1

t
a1b2

T
= t

a2a1

T
αB3e−κBd2

t
b2a1

8
=
[

(αA1 + α2A)(α2B + αB3)
−(1 + αA1α2A)(1 + α2BαB3)

]

e−κAd1−κBd2

Table 3.4: Transition matrix components of five layered dielectric medium scalar electric Green’s function–last two
columns.
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3.2.4 Green’s function for a single δ-function potential

For the sake of completeness we list the solution for the Green’s function for a single

semi-transparent δ-function potential, described by V = λδ(z − a), which satisfies

−
[

∂2

∂z2
− κ2 − λδ(z − a)

]

g(z, z′; κ) = δ(z − z′) (3.20)

and has the solution

g(z, z′; κ) =
1

2κ
e−κ|z−z′| − 1

2κ

λ

λ + 2κ
e−κ|z−a|e−κ|z′−a|. (3.21)

We plot the scalar Green’s function g(z, z′) for semi-transparent δ-plate and its

derivatives in Figure 3.8. The discontinuities along the plate surface increase as λ

increases, which is a measure of increasing reflectivity of the plate. The discontinuity

along the diagonal line corresponds to z = z′, which is there due to the δ-function

on right hand side of Eq. (3.20). For comparable numbers the behavior of Green’s

function for both semi-transparent plate and infinite thickness slab is similar except

for the qualitative behavior that for the slab transverse electric Green’s function goes

to zero in the slab region as permittivity increases while the scalar Green’s function

for the single semi-transparent δ-function potential goes to zero only on the plate

surface as λ goes to infinity. This represents the Dirichlet boundary condition.

3.3 Transverse magnetic Green’s function

Solving for the transverse magnetic Green’s function requires imposing physical bound-

ary conditions on the Green’s function solutions since its not possible to get both
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λ g(z, z′) ∂
∂z

g(z, z′) ∂2

∂z2 g(z, z′)

0.1

1.0

10

Figure 3.8: Green’s function for single δ-plate. (a = 0, κ = 1.)
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matching conditions on the boundary using Eq. (2.65b). Therefore, one condition

needs to be fixed using the physical boundary conditions. For the electromagnetic

field we know that [εE]3(z) is continuous on the boundary. Then using

γ33(z, z′) =
1

i
〈E3(z)E3(z′)〉, (3.22)

and Eq. (2.72) and the continuity of [εE]3(z) we can conclude that gH(z, z′) is contin-

uous at the boundary of the two dielectric surfaces. This allows us to get the second

condition from the Green’s functions equation, which is

[

− 1

ε(z)

∂

∂z
gH(z, z′)

]z=a+ǫ

z=a−ǫ

= 0. (3.23)

The solution for the scalar magnetic Green’s function for the two layered dielectric

medium is

gE(z, z′) =
sn

κz + κz′

e−κz |z−z′| +
tn

κz + κz′

e−κz|z−ai|e−κz′ |z′−ai|, (3.24)

where κz = κz/ε(z). This solution is similar to the scalar electric Green’s function

solution except that κzs are replaced by κzs everywhere except in exponentials. This

feature is generic for the θ-potential, so we will use solutions of the electric Green’s

function for the other case described in the previous section and let κi → κi every-

where except in the exponential.
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3.4 Cylindrical scalar Green’s function

For the scalar field interacting with background potential, the Lagrangian density is

given by Eq. (2.31) and corresponding Green’s function obeys the differential equation

given by Eq. (2.33). Consider two concentric semi-transparent cylinders described by

the potential

V (r) = λ1δ(r − a1) + λ2δ(r − a2), (3.25)

such that a = a2 − a1 > 0. Using translational symmetry in θ and z directions we

can write

G(0)(x, x′) =
∫

dω

2π
e−iω(t−t′)

∫

dk

2π
eik(z−z′)

∞
∑

m=−∞

1

2π
eim(θ−θ′) g(0)

m (r, r′; κ), (3.26)

where κ2 = k2 −ω2. The reduced Green’s function, g(0)
m (r, r′; κ), satisfies the equation

−
[

1

r

∂

∂r
r

∂

∂r
− m2

r2
− κ2 − λ1δ(r − a1) − λ2δ(r − a2)

]

g(0)
m (r, r′; κ) =

δ(r − r′)

r
.

(3.27)

The solution for g(0)
m (r, r′; κ) in the above equation can be written in a form similar

to the parallel plate case as

g(0)
m (r, r′; κ) = snIm(κr<)Km(κr>) + e(z)T · 1

∆
tn · e(z′), (3.28)

where as in three layered dielectric case n denotes regions from 1 to 9 in Figure (3.5).

Coefficients sn = 1, if n = 1, 2, 3, and zero otherwise. The vector e(z) is defined in

terms of the free Green’s function for the cylindrical case as

e(z)T =
(

Im(κr), Km(κr)

)

. (3.29)
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the determinant ∆ is

∆ = 1 + λ̃1 I1K1 + λ̃2 I2K2 + λ̃1λ̃2 I1K2

(

I2K1 − I1K2

)

. (3.30)

We have used the notation λ̃i ≡ λiai, Ii ≡ Im(κai) and Ki ≡ Km(κai) for i = 1, 2.

The coefficients tns are given in Table 3.4.
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t5 =

[

0 1

0 0

]

t7 =





0 1 + λ̃1I1K1

0 λ̃1I2
1



 t3 =







0 0

−
[

λ̃1λ̃2I1I2

(

I2K1 − I1K2

)

0 +λ̃1I2
1 + λ̃2I2

2

]







t4 =

[

λ̃2K2

2 1 + λ̃2I2K2

0 0

]

t2 =





−λ̃2K2

2

(

1 + λ1a1I1K1

)

λ̃1λ̃2I2

1
K2

2

λ̃1λ̃2I2

1
K2

2

(

1 + λ̃2I2K2

)

−λ̃1I2

1



t9 =

[

0 0

1 + λ̃1I1K1 λ̃1I2

1

]

t1 =







−
[

λ̃1λ̃2K1K2

(

I2K1 − I1K2

)

0

+λ̃1K2
1 + λ̃2K2

2

]

0 0






t6 =





λ̃2K2

2 0

1 + λ̃2I2K2 0



 t8 =

[

0 0

1 0

]

Table 3.5: Transition matrix amplitude for the Greens function of two concentric cylinders.
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Chapter 4

Lifshitz energy for thick and thin

materials

With the necessary mathematical tools in our bag we can now proceed to apply them

to study the Casimir effect in planar and cylindrical geometries. In this chapter we

apply the multiple scattering formalism to real materials with planar configuration.

We shall start by considering the interaction energy between two dielectric slabs

of finite thickness and obtain the standard Lifshitz energy between infinite dielectric

semi-spaces and the Casimir energy between two perfectly conducting plates separated

by the vacuum from the general expression. We shall next consider infinitesimally

thin plates, which could be considered as idealized δ-function plates and verify the

standard Casimir result for the perfectly conducting plates. We also present the case

of an atom in front of a thick slab and thin plate for both the dielectric material and

the perfect conductor and obtain the standard Casimir-Polder result.
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a

d1 d2

a1 b1 a2 b2

Figure 4.1: Two dielectric slabs of different finite thickness separated by a distance a.

4.1 Interaction energy of two slabs

When the background potential depends only on one co-ordinate, then we can solve

the Green’s dyadic in terms of the reduced Green’s dyadic as shown in Section 2.4.

The interaction energy between two disjoint bodies is given by Eq. (2.43). Consider

two parallel dielectric slabs separated by the vacuum, which are described by the

potentials

Vi(z) = (εi − 1) [θ(z − ai) − θ(z − bi)] , (4.1)

where bi −ai = di for i = 1, 2 are the thickness of slabs, and a2 −b1 = a is the distance

between the slabs (see Figure 4.1). εi are the dielectric permittivities of the slabs,

which are constant. Using translational symmetry we can write the Casimir energy

per unit area for parallel slabs in the form

E(a, di, εi − 1) =
E12

LxLy

=
1

2

∫ ∞

−∞

dζ

2π

∫

d2k

(2π)2
tr ln

[

1 − K(iζ, k)
]

, (4.2)
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where the trace is now only over the dyadic indices. The dyadic K(iζ, k) is given in

terms of the reduced Green’s dyadic in Eq. (2.72) as

K(iζ, k) = (ε1 − 1)(ε2 − 1)
∫ b1

a1

dz
∫ b2

a2

dz′γ1 9©(z′, z; iζ, k) · γ2 4©(z, z′; iζ, k), (4.3)

where the circled number in the subscript denotes the region in Figure 3.5 in which

the dyadic is to be evaluated. The reduced Green’s dyadic is given in terms of the

electric and magnetic Green’s functions in Eqs. (2.65a) and (2.65b) whose solutions

for parallel slabs described by the potentials in Eq. (4.1) are given in Eq. (3.12).

The region of evaluation is unambiguously specified by the integration regions. The

solution for the Green’s dyadic for an individual plate is unaware of the presence of

the other plate. Thus the meshed regions in Figure 4.2 belongs to the solid (blue)

lines, which according to Figure 3.5 corresponds to region 9 for the first slab and

region 4 for the second slab. The solution to the reduced electric Green’s dyadic is

given by Eq. (2.72). Notice that we can omit the δ-function term since z and z′ are

never evaluated at the same point. Using the equivalence of the trace-log and log-det

we can decompose the interaction energy into the transverse electric and transverse

magnetic parts as

E(a, di, εi−1) =
1

2

∫ ∞

−∞

dζ

2π

∫

d2k

(2π)2







ln
[

1−KE(iζ, k)
]

+tr ln
[

1−KH(iζ, k)
]







, (4.4)

where

KE(iζ, k)=(ε1 − 1)(ε2 − 1)ζ4
∫ b1

a1

dz
∫ b2

a2

dz′ gE
1 9©(z′, z; iζ, k)gE

2 4©(z, z′; iζ, k), (4.5)

KH(iζ, k)=(ε1 − 1)(ε2 − 1)
∫ b1

a1

dz
∫ b2

a2

dz′ γH
1 9©(z′, z; iζ, k) · γH

2 4©(z, z′; iζ, k). (4.6)
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z

z
′

a1 b1 a2 b2

b2
a2

b1

a1

z

z
′

a1 b1 a2 b2

b2

a2

b1

a1

Figure 4.2: Region of integration for γ1(z, z′) (left) and γ2(z, z′) (right) in Eq. (4.3)
shown as crosshatched.

The dimensionally reduced Green’s dyadics are

γH
1 9©(z′, z; iζ, k) =

1

ε1











∂
∂z′

∂
∂z

gH
1 9©(z′, z) ik ∂

∂z′ g
H
1 9©(z′, z)

−ik ∂
∂z

gH
1 9©(z′, z) k2gH

1 9©(z′, z)











, (4.7)

where we have used the fact that in region 9 (see Figure 3.5 and Figure 4.2)

ε1(z) → ε1, ε1(z
′) → 1. (4.8)

Similarly

γH
2 4©(z, z′; iζ, k) =

1

ε2











∂
∂z

∂
∂z′ g

H
2 4©(z, z′) ik ∂

∂z
gH

2 4©(z, z′)

−ik ∂
∂z′ g

H
2 4©(z, z′) k2gH

2 4©(z, z′)











(4.9)

where in region 4 (see Figure 3.5 and Figure 4.2)

ε2(z) → 1, ε2(z
′) → ε2. (4.10)
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Using Eqs. (4.8) and (4.10) in the equation for the magnetic Green’s function given

by Eq. (2.65b) we have

∂

∂z′
gH

1 9©(z′, z) = −κgH
1 9©(z′, z),

∂2

∂z′2
gH

1 9©(z′, z) = κ2gH
1 9©(z′, z), (4.11a)

∂

∂z
gH

2 4©(z, z′) = −κgH
2 4©(z, z′),

∂2

∂z2
gH

2 4©(z, z′) = κ2gH
2 4©(z, z′). (4.11b)

Multiplying the two dyadics, and using Eqs. (4.11) to simplify the resulting expression,

we obtain

KH(iζ, k) =









KH
11(iζ, k)KH

13(iζ, k)

KH
31(iζ, k)KH

33(iζ, k)









, (4.12)

whose components are

KH
11(iζ, k)=ε̂1ε̂2

∫ b1

a1

dz
∫ b2

a2

dz′

[

κ2ζ2 − κ3 ∂

∂z
+ κζ2 ∂

∂z′
− κ2 ∂

∂z

∂

∂z′

]

gH
12, (4.13a)

KH
33(iζ, k)=ε̂1ε̂2

∫ b1

a1

dz
∫ b2

a2

dz′

[

−k2ζ2 + k2κ
∂

∂z

]

gH
12, (4.13b)

KH
13(iζ, k)=−(ikκ)

k2
KH

33(iζ, k), (4.13c)

KH
31(iζ, k)=

(ikκ)

κ2
KH

11(iζ, k), (4.13d)

where we have defined shorthand notations ε̂i = (εi − 1)/εi for i = 1, 2 and gH
12 =

gH
1 9©(z′, z)gH

2 4©(z, z′) to save typographic space. We can now show that

det KH(iζ, k) = KH
11(iζ, k)KH

33(iζ, k) − KH
13(iζ, k)KH

31(iζ, k) = 0, (4.14)

which implies

tr ln
[

1 − KH(iζ, k)
]

= ln
[

1 − tr KH(iζ, k)
]

. (4.15)
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Further,

tr KH(iζ, k) = ε̂1ε̂2

∫ b1

a1

dz
∫ b2

a2

dz′

(

1 − κ

ζ2

∂

∂z

)(

1 +
κ

ζ2

∂

∂z′

)

gH
12(z, z′). (4.16)

4.1.1 Evaluation

Using Subsection (3.2.2) for the specific case of the slab where the permittivity ε1,3 = 1

and ε2 → εi corresponding to the i-th slab we can obtain the relevant region-specific

Green’s functions

gE
1 9©(z2, z1; iζ, k)=

e−κ(z2−b1)

(κ1 + κ)

[

e−κ1(b1−z1) + α1e
−κ1d1e−κ1(z1−a1)

]

(1 − α2
1e−2κ1d1)

, (4.17a)

gE
2 4©(z1, z2; iζ, k)=

e−κ(a2−z1)

(κ2 + κ)

[

e−κ2(z2−a2) + α2e−κ2d2e−κ2(b2−z2)
]

(1 − α2
2e−2κ2d2)

, (4.17b)

where the single interface reflection coefficients αi’s are defined as

αi =
κi − κ

κi + κ
. (4.18)

We again introduce shorthand notation to keep track of the structure of the terms

we are evaluating

KE(iζ, k)=tE
1 (iζ, k) tE

2 (iζ, k) e−2κa, (4.19a)

tr KH(iζ, k)=tH
1 (iζ, k) tH

2 (iζ, k) e−2κa, (4.19b)
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where

tE
i (iζ, k)=

eκa

(1 − α2
i e−2κidi)

(εi − 1)ζ2

(κi + κ)

∫ bi

ai

dz uE
i (z), (4.20a)

tH
i (iζ, k)=

eκa

(1 − ᾱ2
i e−2κidi)

(εi − 1)ζ2

εi(κ̄i + κ)

∫ bi

ai

dz

[

1 + (−1)i κ

ζ2

∂

∂z

]

uH
i (z), (4.20b)

where

uE
1 (z)=e−κ(a2−z)

[

e−κ1(b1−z) + α1e−κ1d1e−κ1(z−a1)
]

, (4.21a)

uE
2 (z)=e−κ(z−b1)

[

e−κ2(z−a2) + α2e−κ2d2e−κ2(b2−z)
]

, (4.21b)

and the corresponding magnetic functions uH
i (z) are obtained by changing respective

barred quantities. Completing the z-integral in Eq. (4.20a) and using the definition

of κi before Table 3.1 to replace (εi − 1)ζ2 we derive

tE
i (iζ, k) =

αi

∆N
i

, i = 1, 2, (4.22)

where the determinants ∆N
i ’s are

1

∆N
i

=
(1 − e−2κidi)

∆i

=
(1 − e−2κidi)

(1 − α2
i e−2κidi)

, (4.23)

Repeating the procedure in Eq. (4.20b) and using the identity

k2 ± κκi = −ζ2εi

(κ̄i ∓ κ)

(κi ∓ κ)
, (4.24)

we derive

tH
i (iζ, k) =

ᾱi

∆̄N
i

, i = 1, 2, (4.25)
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where the barred quantities are obtained by replacing κi → κi/εi everywhere except

in the exponentials. Thus we have the Casimir interaction energy between parallel

slabs to be

E(a, di, εi − 1) =
1

2

∫ ∞

−∞

dζ

2π

∫

d2k

(2π)2







ln
[

1 − tE
1 (iζ, k) tE

2 (iζ, k) e−2κa

]

+ ln
[

1 − tH
1 (iζ, k) tH

2 (iζ, k) e−2κa

]







.

(4.26)

It is instructive to note that the dependence in the properties of the individual plates

is inside tE
i and tH

i . More explicitly we have

tE,H
i (iζ, k) → tE,H

i (iζ, k; di, εi − 1). (4.27)

4.1.2 Lifshitz energy for two infinite dielectric semi-spaces

We can obtain the standard Lifshitz result [12] by taking the thick-plate limit (di →

∞). In this case we have ∆N
i → 1 and ∆̄N

i → 1. Thus

tE
i (iζ, k; ∞, εi − 1) = αi, tH

i (iζ, k; ∞, εi − 1) = ᾱi. (4.28)

Using this in Eq. (4.26) we get

E(a, ∞, εi − 1) =
1

2

∫ ∞

−∞

dζ

2π

∫

d2k

(2π)2







ln
[

1 − α1 α2 e−2κa

]

+ ln
[

1 − ᾱ1 ᾱ2 e−2κa

]







.

(4.29)

Here αi and ᾱi are the reflection coefficients rTE and rTM used in the literature.
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4.1.3 Casimir energy for two perfectly conducting plates

It is straightforward to obtain the classic Casimir energy for the two perfectly con-

ducting plates from either Eq. (4.28) or Eq. (4.29). For a perfect conductor we take

the limit (εi → ∞), for which we have αi → 1, ᾱi → −1, ∆N
i → 1 and ∆̄N

i → 1,

tE
i (iζ, k; di, ∞) = 1, tH

i (iζ, k; di, ∞) = −1. (4.30)

This leads to

E(a, di, ∞)=
1

2

∫ ∞

−∞

dζ

2π

∫

d2k

(2π)2
2 ln

[

1 − e−2κa

]

=
1

2π2

∫ ∞

0
κ2dκ ln

[

1 − e−2κa

]

=− π2

720 a3
. (4.31a)

The above result is true without necessarily taking the thick-plate limit, which amounts

to saying that in the perfect conductor limit the only region of interest is the space

in between the slabs since the fields are zero inside the perfect conductor.

4.1.4 van der Waals interaction energy between two slabs

In the dilute dielectric limit (εi − 1 ≪ 1), which is also the van der Waals limit, we

have

tE
i (iζ, k; di, εi − 1) ∼ (εi − 1)(1 − e−2κdi)

ζ2

4κ2
,

tH
i (iζ, k; di, εi − 1) ∼ (εi − 1)(1 − e−2κdi)

(ζ2 − 2κ2)

4κ2
.

(4.32)
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This leads to van der Waals energy between two slabs given by

E(a, di, εi − 1)∼−(ε1 − 1)(ε2 − 1)

256 π3

∫ ∞

−∞

dζ

2π

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π
(1 − e−2κd1)(1 − e−2κd2)

×e−2κa

[

ζ4

κ4
+

(ζ2 − 2κ2)2

κ2

]

=−1

3

23 (ε1 − 1)(ε2 − 1)

1920 π2

1

2

∂3

∂a3
ln

[

a(a + d1 + d2)

(a + d1)(a + d2)

]

. (4.33)

In the thick plate limit the above expression leads to the classic van der Waals inter-

action energy between two thick slabs as

E(a, ∞, εi − 1) ∼ −1

3

23 (ε1 − 1)(ε2 − 1)

640 π2 a3
. (4.34)

4.2 Plasma model for a thin-plate

The permittivity for a real material is described by classical models like Drude and

plasma models. These models are described for the bulk material, which do not take

into account the finite thickness of the material. We are interested in taking the

thickness of the slabs described in the previous section to zero. Naively this will

lead to vanishing interaction energy between two infinitesimally thin plates. In this

section we describe a simple model for the dielectric permittivity, which allows us to

take the thickness going to zero limit without giving a vanishing result. In particular

we want to reproduce the δ-function potential starting from Eq. (4.1), for which we

need (εi − 1) ∝ d−1
i .

The Drude model for the dielectric permittivity uses the Maxwell-Boltzmann dis-

tribution for the electrons, which leads to the classical number density of electrons,
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ne(∞). However, electrons obey the Fermi-Dirac statistics. Sommerfeld revised the

Drude model by using the Fermi-Dirac distribution for electrons to calculate the elec-

tron number density in metals, ne. Sommerfeld’s revision has been further extended,

but our discussion will be restricted to Sommerfeld’s model, which is sufficient for our

case where we do not ascribe detailed quantum structure to the background potential.

We start with the plasma model, in which a conductor is described by

ε − 1 = −ω2
p

ω2
. (4.35)

The above equation seems to indicate εi < 1, which might naively lead to violate

causality, but we refer to chapter 7 of [79] for a discussion on how Eq. (4.35) is

compatible with causality. The plasma frequency for a metal in the non-quantum

regime is defined as

[ωp(∞)]2 =
e2

m∗
ne(∞), (4.36)

where e is the charge of electron and m∗ is the effective mass of the electron. The ∞ in

the parenthesis denote the non-quantum regime, and the parameter representing the

transition from classical to quantum will be introduced in the following subsection.

4.2.1 Number density

In the Sommerfeld model the electrons inside a metal are modeled as a gas. The

electrons are assumed to be not interacting with each other. To describe the electrons

in the electron gas, we consider the energy states of a slab of thickness d which is
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infinite in extent in the x-y directions using the Schrödinger equation as

En(kx, ky) =
~

2

2m∗

[

k2
x + k2

y +
n2π2

d2

]

, n = 0, 1, 2, . . . . (4.37)

The energy states are required to satisfy Neumann boundary conditions because the

flux of electrons through the walls is zero. This translates into n = 0 also correspond-

ing to an energy state. The total number of electrons in the slab is equal to twice

the sum of occupied energy levels. In terms of the maximum occupied energy level,

called the Fermi energy EF , we can thus write

ne =
ntot(EF )

LxLyd
= 2

1

d

∞
∑

n=0

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π
θ(EF − En(kx, ky)), (4.38)

where the factor of 2 accommodates two electrons in each state. The k-integrals are

evaluated trivially to yield

ne =
π

2d3

[N ]
∑

n=0

(N2 − n2) =
π

2d3

[(

[N ]N2 − 1

3
[N ]3

)

+
(

N2 − 1

2
[N ]2

)

− 1

6
[N ]

]

, (4.39)

where [N ] is the integer part of N , which is defined as

N =

√

2m∗EF d2

~2π2
=

kF d

π
=

2d

λF

, (4.40)

and expressed in terms of Fermi wave-vector, kF , and Fermi wavelength, λF , defined

for suitable insight. For metals described by the Drude-Sommerfeld’s model the

Fermi wavelength ranges between 0.3 nm - 1 nm. Notice that the limit ~ → 0 limit is
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equivalent to taking kF → ∞ (N → ∞). The number density in the limit N → ∞ is

ne(∞) =
π

2d3

2

3
N3 =

k3
F

3π2
, (4.41)

Using Eq. (4.41) in Eq. (4.39) we have

ne(N) = ne(∞)ν(x), (4.42)

where

ν(x)=ne(∞)
[

3

2

(

x − 1

3
x3
)

+
3

2N

(

1 − 1

2
x2
)

− 1

4N2
x
]

, x =
[N ]

N
. (4.43)

We note the limiting cases (see Figure 4.3)

x =
[N ]

N
→



















0 if N < 1,

1 if N → ∞.

(4.44)

Convergence of x to unity is very slow. In particular we make an error of 1% in

replacing x → 1 even for N=100. The limiting cases for ν(x) in Eq. (4.43) are:

ν(x) →























3π
2kF d

if N < 1,

1 if N → ∞.

(4.45)
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Figure 4.3: Fractional Floor function [N ]
N

plotted with respect to N .

Using Eq. (4.45) we have the following limiting expressions for the number density in

Eq. (4.42):

ne(N) → ne(∞)























3
2N

if N < 1 (2d < λF ),

1 if N → ∞ (2d ≫ λF ).

(4.46)

For the first case corresponding to the thin-plate regime, we see the explicit de-

pendence on the thickness of the plate. This is expected in the sense that we can

intuitively get this dependence by a dimensional argument.

4.2.2 de-Haas–van Alphen effect

The third term inside the square bracket on the right hand side of Eq. (4.37) exhibits

the discretization of the Fourier modes due to confinement. The energy of a charged

particle in the presence of a magnetic field also involves an analogous discretization

Emag
n (kx, ky) =

~
2

2m∗

[

k2
x + k2

y + n2 2eB

~c

]

, n = 0, 1, 2, . . . , (4.47)
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which is the famous Landau quantization. Comparison of Eqs. (4.37) and (4.47)

suggests the following correspondence between quantum thin plate effects and the

quantization effects due to the presence of the magnetic field:

d2

π2
↔ ~c

2eB
. (4.48)

de-Haas and van-Alphen in 1930 experimentally measured the magnetization of a

sample of bismuth as a function of high magnetic field at relatively low temperatures,

and found oscillations in the plot. The interpretation of these oscillations was given

by Onsager in 1952. These oscillations were earlier predicted in 1930 by Landau [93],

who was unaware of the experimental result. This phenomenon which is a signature of

a purely quantum effect has been observed in measurements of various other physical

quantities [94]. The de-Haas–van Alphen effect is used to probe the Fermi surface of

a material and to measure the number density.

The oscillations in the function ν(x), see Eq. (4.43), plotted in Figures 4.4 and

4.5, are the source of the de-Haas–van Alphen oscillations. For comparison refer to

Figure 14.3 in [94].

4.2.3 Plasma frequency

Using Eq. (4.46) in Eq. (4.36) we have the quantum correction to the plasma frequency

due to finite thickness of the plate to be

[ωp(N)]2 = [ωp(∞)]2ν(x) → [ωp(∞)]2























3
2N

if N < 1 (2d < λF ),

1 if N → ∞ (2d ≫ λF ),

(4.49)
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where ωp(∞) was introduced in Eq. (4.36) and can be written in the form (using

Eq. (4.41))

[ωp(∞)]2 =
(ckF )3

ω0
. (4.50)

We introduced

1

ω0
=

e2

3π2m∗
. (4.51)

Typical numbers for metals that are described well by Drude-Sommerfeld’s model

of free electron gas are:

ωp(∞)=(1 − 7) × 1015 rad

s
for typical thick metals, (4.52)

ckF =(1 − 6) × 1018 rad

s
for typical thick metals, (4.53)

ω0=3.2 × 1024 rad

s
for m∗ = me. (4.54)

Using the above we obtain that for materials described by Drude-Sommerfeld’s model

we have

ωp(∞)

ckF

∼ 10−3. (4.55)

4.3 Casimir energy for materials described by Drude-

Sommerfeld model

The plasma model is described by Eq. (4.35),

(εi − 1)ζ2 = [ζpi(∞)]2, (4.56)
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where ζpi(∞) is the classical plasma frequency of the i-th plate, after Euclidean ro-

tation. We shall limit our discussion to plasma models because Casimir energies

are relatively easier to analyze in this regime. The Casimir energy between slabs

described by plasma model is given by Eq. (4.26) in conjunction with Eq. (4.56),

E(a, di, εi − 1) → EL(a, di; ζpi(∞)), (4.57)

where the subscript stands for Lifshitz even though the above expression is generalized

to be applicable for slabs of finite thickness. We have restricted ourselves by choosing

the plasma model for simplicity, which is emphasized by the use of arrow instead

of equal. ζpi(∞) thus represents a parameter that describes the dielectric constant

(εi − 1).

The Drude-Sommerfeld model is obtained in the model by the replacement

ωp(∞) → ωp(N) (4.58)

in Eq. (4.57) using Eq. (4.49), which leads to the expression for the Casimir energy

between slabs described by Drude-Sommerfeld’s model as

EL(a, di; ζpi(∞)) → EP (a, di; ζpi(N)), (4.59)

where the subscript ‘P ’ now stands for ‘Plates’.

Use of the Fermi energy introduces a model dependent scale in the problem. In

the Drude-Sommerfeld model we have the relation between the ωp(∞) and kF given
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by Eq. (4.50). We shall prefer to keep them independent though and replace

EP (a, di; ζpi(N)) → EP (a, di; ζpi(∞), kF i), (4.60)

with the understanding that a particular model provides the relation between ζp(∞)

and kF . Since ωp(N) → ωp(∞) in the limit kF → ∞, we conclude that the expression

for the Casimir energy between two slabs given by EL(a, di; ζpi(∞)) is obtained by

taking kF → ∞ in the generalized expression. Thus we have the relation

EP (a, di; ζpi(∞), ∞) = EL(a, di; ζpi(∞)). (4.61)

We choose the Fermi momentum to set the scale in the problem by fixing kF = 1.

This leads to the following redefinition of the parameters

EP (a, di; ζpi(∞), kF i), → EP (kF a, N ; π
ζpi(∞)

ckF i

, kF i). (4.62)

Plots of EP (kF a, N ; π ζpi(∞)

ckF i
, kF i) for various values of ζpi(∞)

ckF i
have been generated in

Figures 4.6. For ζpi(∞)

ckF i
≪ 1 the percentage deviations relative to the corresponding

Lifshitz formula are about 20%. However, the Casimir energy itself is relatively small

for
ζpi(∞)

ckF i
≪ 1. The most remarkable deviation is in the modified expression for the

Casimir energy between two slabs having a non-zero limit as the thickness of one of

the slabs goes to zero, d → 0.
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4.4 Semi-transparent δ-function conducting thin-

plates

Using Eq. (4.49) which generalized the definition of the plasma frequency as a guiding

principle we claim that an infinitesimally thin conducting slab will always be described

by the model

(εi − 1)ζ2 =
λi

di

, (4.63)

where λi is a parameter with dimensions of inverse length. (λi → λic
2, c = 1.)

Restricting ourselves to frequencies and wavelength of the order

ζ2 ≪ λi

di

, k2 ≪ λi

di

, (4.64)

which are good approximations for a thin plate, we make the following leading-order

replacements:

εi∼
λi

diζ2

[

1 + O
(

ζ2 di

λi

)]

, (4.65a)

κi∼
√

λi

di

[

1 + O
(

ζ2 di

λi

, κ2 di

λi

)]

. (4.65b)

Using the above approximations to calculate the Casimir energy between two slabs

of finite thickness translates to bounding the limits of integrations in Eq. (4.26) as

E(a, di; εi − 1) → ETP(a, di; λi) ∼ 1

2

∫

√

λi
di

−

√

λi
di

dζ

2π





∫

√

λi
di

−

√

λi
di

dk

2π





2
{

· · ·
}

, (4.66)

where ‘TP’ denotes thin plate, and the curly bracket represents the corresponding

term in Eq. (4.26). Rescaling the integral parameters with a then tells us that the
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Figure 4.7: Fractional error in Casimir energy due to thin plate approximation as a
function of d/a for λa = 1.

thin plate approximation gives a good estimate of Casimir energy in the regime

di

a
≪ λia. (4.67)

This has been illustrated in Figure 4.7 where we plot the the ratio of Casimir en-

ergy with the cutoff limits over the complete integral limits. The approximation

contributes to less than 10% error for d
a

< 10 λa.

Using the leading-order replacements in Eq. (4.65) we can further derive

αi ∼ 1, ᾱi ∼ −1,
1

∆i

∼ λi

λi + 2κ
,

1

∆̄i

∼ λi

λi + 2 ζ2

κ

. (4.68)

The above thin plate approximations when substituted in Eq. (4.26) leads to a non-

zero contribution to the Casimir energy given as

ETP(a, λi) =
1

2

∫ ∞

−∞

dζ

2π

∫

d2k

(2π)2







ln
[

1−t1(κ)t2(κ) e−2κa

]

+ln
[

1−t1

(

ζ2

κ

)

t2

(

ζ2

κ

)

e−2κa

]







,

(4.69)
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where

ti(κ) =
λi

λi + 2κ
. (4.70)

We note the feature that the magnetic contribution to the Casimir energy in the thin

plate limit is obtained by the replacement

κ → ζ2

κ
(4.71)

inside the transition coefficients of the electric contribution. This was observed in the

calulation of the lateral Casimir force between corrugated thin plates (see Chapter 6)

and thus seems to be a generic feature in the thin plate limit.

Taking thin-plate limit first

It is of interest to ask if infinitesimally thin plates can be described using δ-function

potentials. To answer this assertively we begin by replacing the potentials in Eq. (4.1)

with its δ-function limits after introducing di’s in the expression. Thus, we consider

V (z) =
λ1

ζ2
δ(z − b1) +

λ2

ζ2
δ(z − a2). (4.72)

Most of the discussion in Section 4.1 remains the same with the change appearing in

the following expression

K(iζ, k) = λ1 λ2

[

γTP
1 9©(z′, z; iζ, k) · γTP

2 4©(z, z′; iζ, k)
]

z=b1
z′=a2

, (4.73)

where the reduced Green’s dyadic with superscript TP are now for the thin plates.

The difference now is that we are taking the thin plate limit before carrying out the z
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and z′ integration while in the earlier part of the section it was done other way. The

expressions for KE and KH now read as

KE
di→0(iζ, k)=λ1λ2

[

gE
1 9©(z′, z; iζ, k)gE

2 4©(z, z′; iζ, k)
]

z=b1
z′=a2

=µE
1,d1→0(iζ, k)µE

2,d2→0(iζ, k), (4.74)

tr KH
di→0(iζ, k)=

λ1

ε1

λ2

ε2

[(

1 − κ

ζ2

∂

∂z

)(

1 +
κ

ζ2

∂

∂z′

)

gH
1 9©(z′, z)gH

2 4©(z, z′)

]

z=b1
z′=a2

=µH
1,d1→0(iζ, k)µH

2,d2→0(iζ, k), (4.75)

where di → 0 represents the thin plate result. Using

µE
i,di→0(iζ, k)=

λi

λi + 2κ

1

2
uE

i,di→0(ai)

=
λi

λi + 2κ
e−κa, (4.76)

µH
i,di→0(iζ, k)=− λi

λi + 2 ζ2

κ

1

2

√

di

λi

[

∂

∂z
uH

i,di→0(z)

]

z=ai

=− λi

λi + 2 ζ2

κ

e−κa, (4.77)

which leads to the same result as we obtained earlier in Eq. (4.69).

Taking λi → ∞ limit leads to the standard Casimir energy between two perfectly

conducting plates. This agrees with the results given in [95] for the Casimir energy

for the two perfectly conducting thin plates.
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4.5 Casimir-Polder energy for thick and thin con-

ductors

In [95] Bordag found that the Casimir-Polder force for the infinitesimally thin per-

fect conductor is 13% less than the standard value while for a thick conductor it is

unchanged. It is therefore relevant to check these results using our method for taking

the thin plate limit. In this Section we present the Casimir-Polder energy for an

atom in front of a thick dielectric slab and thin conducting plate. We take the perfect

conductor limit in both cases to obtain the standard Casimir-Polder result.

4.5.1 Atom in front of a thick dielectric slab

Let us consider the physical situation of an atom in front of a dielectric slab shown

in Figure 4.8. The background potential for this system is described by

V (x; iζ)=V1(x; iζ) + V1(x; iζ)

=(ε1(iζ) − 1) [θ(z − a) − θ(z − b)] + 4παP (iζ)δ(3)(x − x0). (4.78)

where αP (iζ) is the polarizability tensor of the atom, which is located at x0 =

(0, 0, a2). We have kept the frequency dependence of the permittivity to keep ex-

pressions general. Since the atom interacts weakly with the slab, only the single scat-

tering term from the expansion of the multiple scattering formula given by Eq. (2.43)
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Figure 4.8: Atom in front of a finite size dielectric slab.

is important. Thus the interaction energy is given by

ECP
12 =−1

2

∫ ∞

−∞

dζ

2π
TrΓ1 · V1 · Γ0 · V2

=−1

2

∫ ∞

−∞

dζ

2π
[4παP (iζ)] ·

∫

d3xΓ1(x0, x) · V1(x) · Γ0(x, x0)

=−1

2

∫ ∞

−∞

dζ

2π
[4παP (iζ)] · [Γ1 − Γ0] . (4.79)

For an isotropic polarizable atom we have

ECP
12 =

1

2

∫ ∞

−∞

dζ

2π

∫ ∞

−∞

d2k

2π
[4παP (iζ)] (ε1(iζ) − 1)K(k, ζ ; a, d1), (4.80)

where

K(k, ζ ; a, d1) =
∫ b1

a1

dz trγ1(a2, z; k, ζ) · γ0(z, a2; k, ζ). (4.81)
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Using Eqs. (2.52),(3.4), and (3.5) we can write the explicit form for the reduced free

Green’s dyadic as

γ0(z, z′; iζ, k) =

















−κ2 0 −ikκ η(z − z′)

0 ζ2 0

−ikκ η(z − z′) 0 k2

















1

2κ
e−κ|z−z′|, (4.82)

where η(z) = 1 if z > 1, and η(z) = −1 if z < 1. Using this and Eq. (2.72) we have

the result

ECP
12 = −1

2

∫ ∞

−∞

dζ

2π
[4παP (iζ)]

∫

d2k

(2π)2
e−2κa

[

(κ2 − k2)

2κ

α1

∆1

− (κ2 + k2)

2κ

ᾱ1

∆̄1

]

, (4.83)

which is the expected result found in the literature [15]. In the thick-plate limit

d → ∞ we have

E
CP (d→∞)
12 = −1

2

∫ ∞

−∞

dζ

2π
[4παP (iζ)]

∫ d2k

(2π)2
e−2κa

[

(κ2 − k2)

2κ
α1 − (κ2 + k2)

2κ
ᾱ1

]

.

(4.84)

If the polarizability is independent of the frequency then taking the perfect conductor

limit ε1 → ∞ we reproduce the standard Casimir-Polder energy

E
CP (ε1→∞)
12 = − 3αP

8πa4
. (4.85)
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4.5.2 Atom in front of a δ-function conducting plate

We can take the thin-plate limit d → 0 in Eq. (4.83) described in Sections 4.2 and 4.4

E
CP (d→0)
12 = −1

2

∫ ∞

−∞

dζ

2π
[4παP (iζ)]

∫ ∞

−∞

d2k

(2π)2
e−2κa

[

(κ2 − k2)

2κ

λ1

λ1 + 2κ

+
(κ2 + k2)

2κ

λ1

λ1 + 2 ζ2

κ

]

.

(4.86)

In the perfect conductor limit λ1 → ∞

E
CP (λ1→∞)
12 = −1

2

∫ ∞

−∞

dζ

2π
[4παP (iζ)]

∫ ∞

−∞

d2k

(2π)2
e−2κaκ, (4.87)

which when αP (iζ) is independent of frequency gives the standard Casimir Polder

result

E
CP (ε1→∞)
12 = − 3αP

8πa4
. (4.88)

Thus a δ-function perfectly conducting thin-plate interacting with an atom re-

produces the Casimir-Polder energy exactly, which we believe is the correct result.

For a perfect conductor the field goes to zero at the surface and the skin depth of

the material is zero as well. Therefore the region beyond the slab or plate does not

contribute to the energy. We believe that the thickness of the material should not

affect the perfect conductor results.

4.5.3 Discussion

As we see in previous subsection our result does not agree with Bordag’s claim of

reduction of 13% in the Casimir Polder energy for an atom in front of a thin conductor

[95]. He attributes the origin of this discrepancy to the freedom in choice of the
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boundary condition for the normal component of the electric field E⊥. For a perfect

conductor the required boundary conditions are E‖ = H⊥ = 0. This, according to

him leaves room to impose different boundary conditions on the normal component of

the electric field in different cases. However, notice that if the boundary conditions for

perfect conductor are used in conjunction with the Maxwell’s equation (∇ · E = 0)

for a charge–and current-less space then the condition on the third component is

unambiguously fixed. This according to him is the case for the thick material, while

for the thin material the third component remains free. He shows the calculation

for the energy, for the two cases, by calculating propagator for the photon field. We

can easily check that the electric field obtained from both the forms are same, which

indicates that the energy obtained from the two forms should also be the same. This

seems to be a puzzling result, which we intend to discuss with him personally.

In this context we should also point out previous work by Fetter in [96], where

he considers the motion of an electron in the vicinity of a thin-plate modeled by the

electron gas in presence of neutralizing background and shows that the dynamics of

the electron is different in this case from the bulk material. He, however, considers

only real conductors and is not considering quantum vacuum effects.
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Chapter 5

Casimir torque: Cylindrical

non-contact gears

In the previous chapter we concentrated on the planar background potential, which

depends only on one length parameter. Thus the Casimir energy per unit area also

depends on one parameter. If we define the Casimir force as the change in the Casimir

energy with respect to the separation parameter, we get the force acting normal to the

planar surface. However, ideally material surfaces are not smooth and have surface

roughness and corrugations. In such a case the potential would be two or three dimen-

sional and we can expect the presence of a force lateral to the surface in addition to

the normal force [97, 98]. On one hand it is very interesting as it leads to possibilities

of designing nano-gears [99, 100, 101]. On the other hand solving the problem analyt-

ically gets difficult as the potential is no longer separable. Theoretical analysis of the

lateral Casimir force has been done using the proximity force approximation, piece-

wise summation, the perturbative approximation, and exact numerical calculations.

Experimentally it has been verified to very good accuracy recently [102, 103, 104].
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In this chapter we present the perturbative approach towards calculating the lat-

eral Casimir force for the case of two concentric corrugated cylinders [105], which in

this case would be the Casimir torque. The Casimir torque between two material bod-

ies, which is the rotational analog of the Casimir force, was studied for the first time

in 1973 [106]. The Casimir torque between two uni-axial birefringent dielectric plates

was studied in [107]. A non-contact rack and pinion arrangement was first proposed

by Ashourvan et al [100] and discussed in the proximity force approximation (PFA)

limit. This proposal was generalized to the design of a non-contact gear consisting

of two corrugated concentric cylinders in [108, 109] to discuss possible experimental

arrangements.

5.1 Casimir torque

Let us consider two concentric corrugated cylinders described by the semi-transparent

δ-function potentials,

Vi(r, θ) = λi δ(r − ai − hi(θ)), (5.1)

where i = 1, 2 refer to the individual cylinders. The mean distance between the

cylinders is a = a2 − a1 > 0, and the functions hi(θ) describe the profile of the

corrugations associated with the individual cylinders. We define the function

a(θ) = a + h2(θ) − h1(θ), (5.2)

which measures the relative corrugations between the cylinders. The corrugations

hi(θ) are chosen in a way such that the mean of the relative corrugations evaluates

82



to a over a period,

1

2π

∫ 2π

0
dθ
[

h2(θ) − h1(θ)
]

= 0. (5.3)

Rotation of one cylinder with respect to the other changes the geometric configuration

of the background potential leading to the change in the total energy. This will give

rise to a torque between the cylinders, which is given by

T = −∂E

∂θ0
, (5.4)

where E is the total Casimir energy associated with the two concentric corrugated

cylinders, including the divergent contributions associated with the single cylinders.

Angular rotation, θ0, describes the shift of the corrugations on the inner cylinder as

h1(θ + θ0).

When both the cylinders are uncorrugated or when either one of the cylinders is

uncorrugated, rotation of one cylinder with respect to the other does not change the

geometric configuration of the system. Hence, there are no torques in these cases.

Using this fact we can now write the total energy as

E = E(0)(a) + E1(a, h1) + E2(a, h2) + E12(a, h1, h2, θ0), (5.5)

where, E(0) is the energy of the configuration when both the cylinders are uncor-

rugated, Ei is the additional contribution to the Casimir energy when one of the

cylinders is uncorrugated, and E12 is the contribution to the energy which is present

only when both cylinders are corrugated. Thus Ei is expected to go to zero if the

corrugations hi(θ) goes to zero. Similarly, the interaction energy E12 goes to zero

when either of the corrugations hi is zero. The interaction energy does not change
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when the angular rotation is in multiples of 2π. Thus, E12 is the interaction energy

due to the presence of corrugation, and only this term in Eq. (5.5) contributes to the

torque between the cylinders. We treat the uncorrugated cylindrical configuration as

a background whose potential is

V
(0)

i (r) = λiδ(r − ai), i = 1, 2, (5.6)

which has no angular dependence. We can further write

∆E = E − E(0) = E1 + E2 + E12, (5.7)

where we suppress the dependencies of the various terms. ∆ represents the devia-

tion of the quantity from the background. Thus we can define the potential of the

corrugated cylinders as

Vi = V
(0)

i + ∆Vi, i = 1, 2. (5.8)

5.1.1 Casimir energy contributing to the lateral force

Using the formula Eq. (2.32) to evaluate the change in the total energy from the

background energy given by Eq. (5.7), we have

∆E = E − E(0) =
i

2τ
Tr ln GG−1

0 − i

2τ
Tr ln G(0)G−1

0 =
i

2τ
Tr ln GG(0)−1

, (5.9)

where G0 is the free Green’s function, which satisfies Eq. (2.34). Note that G0 cancels

in the above expression and the reference now is with respect to the uncorrugated

surfaces. The Green’s function G satisfies Eq. (2.33). The potentials in our case are
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disjoint so we can symbolically write the Green’s function equation as

[

− ∂2 + V1 + V2

]

G = 1. (5.10)

Similarly the Green’s function associated with the background satisfies the differential

equation,
[

− ∂2 + V
(0)

1 + V
(0)

2

]

G(0) = 1. (5.11)

Then using above two equations and Eq. (5.8) we obtain

GG(0)−1
=
[

1 + G(0)∆V1 + G(0)∆V2

]−1
. (5.12)

Following steps in section 2.2 we can get the interaction energy term as

E12 = − i

2τ
Tr ln

[

1 − G1∆V1G2∆V2

]

, (5.13)

where Gi (i = 1, 2) are the Green’s functions for the configuration when only one of

the cylinder has corrugations on it and it satisfies

[

−∂2 + V
(0)

1 + V
(0)

2 + ∆Vi

]

Gi = 1. (5.14)

Using Eq. (5.11) we observe that

GiG
(0)−1

= (1+G(0)∆Vi)
−1 = 1−G(0)∆Vi(1+G(0)∆Vi)

−1 = 1−(1+G(0)∆Vi)
−1G(0)∆Vi.

(5.15)

The interaction energy given by Eq. (5.13) is similar to the expression given by

Eq. (2.43) except that now the background energy associated with the uncorrugated
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cylinders has been subtracted out as evident from the ∆Vi terms.

5.1.2 Formal series expansion

Using Eq. (5.15) to expand Gi∆Vi in terms of G(0)∆Vi we can write

Gi∆Vi = (−1)n
∞
∑

n=1

(

G(0)∆Vi

)n
. (5.16)

We can now formally expand the logarithm given in Eq. (5.13) as a series in terms of

background Green’s function only

E12 =
i

2τ
Tr

∞
∑

m=1

1

m





∞
∑

n1=1

∞
∑

n2=1

(−1)n1(−1)n2

{

G(0)∆V1

}n1
{

G(0)∆V2

}n2





m

. (5.17)

Our potentials in Eq. (5.1) can be formally expanded in powers of hi as

∆Vi(r, θ) =
∞
∑

n=1

V
(n)

i (r, θ) =
∞
∑

n=1

[−hi(θ)]n

n!

∂n

∂rn
V

(0)
i (r) = λi

[

e−hi(θ) ∂
∂r − 1

]

δ(z − ai),

(5.18)

so we can further write the series expansion as

E12 =
i

2τ
Tr

∞
∑

m=1

1

m





∞
∑

n1=1

∞
∑

n2=1

(−λ1)
n1(−λ2)n2

{

G(0)
[

e−h1∂ − 1
]

δ1

}n1

×
{

G(0)
[

e−h2∂ − 1
]

δ2

}n2





m

,

(5.19)

where we again use symbolic notation and suppress the variable dependence in hi, ∂,

and the delta functions. This expansion allows us to do calculations perturbatively

in terms of background Green’s functions, which has the advantage of solving them

in the one-dimensional case.

86



5.2 Second order perturbation in Casimir energy

due to corrugations

When the corrugations can be treated as small perturbations we can approximate

the potentials by keeping a few terms in the expansion in Eq. (5.17). Thus, to the

leading order the interaction energy of the corrugations in Eq. (5.17) is given by

E
(2)
12 =

i

2τ
Tr
[

G(0)∆V
(1)

1 G(0)∆V
(1)

2

]

, (5.20)

where the superscripts (2) represents the second order perturbation in a quantity,

which here is the corrugation amplitude. In the leading order the potentials is

∆Vi(r, θ) ≈ V
(1)

i (r, θ) = hi(θ)
∂

∂r
V

(0)
i (r), (5.21)

where we have used the superscript (1) to represent the first order perturbation in

the quantity.

5.2.1 Interaction energy

We presented the solution to the scalar Green’s function for the two concentric cylin-

ders in terms of the reduced Green’s function in Section 3.4. Using the reduced

Green’s function defined in Eq. (3.26) we can write the interaction energy, to the

leading order, in Eq. (5.20) as

E
(2)
12

Lz

=
1

(2π)2

∞
∑

m=−∞

∞
∑

n=−∞

(h̃1)m−n(h̃2)n−m L(2)
mn, (5.22)
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where (h̃i)m are the Fourier transforms of the functions describing the corrugations

hi(θ)

(h̃i)m =
∫ 2π

0
dθ e−imθ hi(θ). (5.23)

The kernel L(2)
mn in Eq. (5.22) can be written as

L(2)
mn = − 1

4π

∫ ∞

0
κ dκ I(2)

mn(a1, a2; κ), (5.24)

where κ2 = k2
z −ω2 = k2

z +ζ2, after switching to imaginary frequencies by a Euclidean

rotation, ω → iζ . The related matrix I(2)
mn(a1, a2; κ) is expressed as derivatives of the

reduced Green’s function in the form

I(2)
mn(a1, a2; κ) = λ1λ2

∂

∂r

∂

∂r̄

[

r r̄ g(0)
m (r, r̄; κ) g(0)

n (r̄, r; κ)
]

∣

∣

∣

∣

∣

r̄=a1,r=a2

. (5.25)

The reciprocal symmetry in the Green’s function leads to the following symmetry in

the above kernel:

I(2)
mn(a1, a2; κ) = I(2)

nm(a2, a1; κ). (5.26)

Thus we need to evaluate the reduced Green’s functions and their derivatives at the

point r̄ = a1, r = a2. Using Section 3.4 we can evaluate

g(0)
m (a1, a2; κ) =

1

∆
I1K2. (5.27)

The relevant first derivatives are evaluated using the averaging prescription described

in the appendix A of [110],which is not necessary in either the Dirichlet or weak limit,
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as

{

∂

∂r
g(0)

m (r, r′; κ)

}

r=a1
r′=a2

=
κ

∆

[

I ′
1K2 +

λ1

2κ
I1K2

]

, (5.28a)

{

∂

∂r
g(0)

m (r, r′; κ)

}

r=a1
r′=a2

=
κ

∆

[

I1K ′
2 − λ2

2κ
I1K2

]

, (5.28b)

where we have used a prime to denote the derivative of the modified Bessel function

with respect to the argument. The derivatives acting on the second variable in the

Green’s function can be deduced using the symmetry of the Green’s function. The

relevant second derivatives are evaluated to be

{

∂

∂r

∂

∂r′
g(0)

m (r, r′; κ)

}

r=a1
r′=a2

=
κ2

∆

[

I ′
1K ′

2 +
λ1

2κ
I1K

′
2 − λ2

2κ
I ′

1K2 − λ1

2κ

λ2

2κ
I1K2

]

. (5.29)

The above evaluations used the Wronskian,

[Im(x)K ′
m(x) − I ′

m(x)Km(x)] = −1

x
, (5.30)

satisfied by the modified Bessel functions.
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The expression in Eq. (5.25) is evaluated using Eqs. (5.27),

I(2)
mn(a1, a2; κ)=

λ1λ2

∆∆̃

[

I1K2 Ĩ1K̃2

+κa1 I1K2

(

Ĩ ′
1K̃2 +

λ1

2κ
Ĩ1K̃2

)

+ κa1

(

I ′
1K2 +

λ1

2κ
I1K2

)

Ĩ1K̃2

+ κa2 I1K2

(

Ĩ1K̃
′
2 − λ2

2κ
Ĩ1K̃2

)

+ κa2

(

I1K ′
2 − λ2

2κ
I1K2

)

Ĩ1K̃2

+ κa1κa2

(

I1K ′
2 − λ2

2κ
I1K2

)(

Ĩ ′
1K̃2 +

λ2

2κ
Ĩ1K̃2

)

+κa1κa2

(

I ′
1K2 +

λ1

2κ
I1K2

)(

Ĩ1K̃ ′
2 − λ2

2κ
Ĩ1K̃2

)

+ κa1κa2

(

I ′
1K ′

2 +
λ1

2κ
I1K

′
2 − λ2

2κ
I ′

1K2 − λ1

2κ

λ2

2κ
I1K2

)

Ĩ1K̃2

+ κa1κa2 I1K2

(

Ĩ ′
1K̃

′
2 +

λ1

2κ
Ĩ1K̃ ′

2 − λ2

2κ
Ĩ ′

1K̃2 − λ1

2κ

λ2

2κ
Ĩ1K̃2

)

]

,

(5.31)

where we have used the notation in which the modified Bessel function with a tilde on

it is of order n and that without a tilde is of order m. The tilde on ∆ means that we

use the corresponding modified Bessel functions in Eq. (3.30). Using this along with

Eqs. (5.24) and (5.22) gives the interaction energy between two corrugated concentric

cylinders. Notice that we still have an integration and two sums to perform. We shall

analyze this result for two limiting cases—the Dirichlet (strong coupling) and the

weak coupling limit.
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5.2.2 Dirichlet limit

For the case of the Dirichlet limit (aλ1,2 ≫ 1) the expression in Eq. (5.31) takes the

relatively simple form

I(2)D
mn (a1, a2; κ)=− 1

a1a2

1

[I2K1 − I1K2]

1

[Ĩ2K̃1 − Ĩ1K̃2]

=− 1

a1a2

1

Dm(α; κR)

1

Dn(α; κR)
(5.32)

where the superscript D stands for Dirichlet, and we have introduced the function

Dm(α; x) = Im

(

x[1 + α]
)

Km

(

x[1 − α]
)

− Im

(

x[1 − α]
)

Km

(

x[1 + α]
)

, (5.33)

to save typographical space. R = (a1 + a2)/2 is the mean radius of the two cylinders

under consideration, and α = a/2R is a related variable, which by definition is less

than unity. We note that

a2

a1a2
=

4 α2

(1 − α2)
. (5.34)

Two cylinders with very large radius, such that ai → ∞ with a kept fixed, will

simulate a parallel plate in the region of small variations in the angle (θ → 0). This

corresponds to m, n → ∞, such that m/R is finite and α → 0. These limits are

compatible with the leading uniform asymptotic approximants to the modified Bessel

functions for large orders, see for eg. [111],

Im(mz) ∼
√

t

2πm
emη(z) and Km(mz) ∼

√

πt

2m
e−mη(z), m → ∞, (5.35)

where

t =
1√

1 + z2
and η(z) =

√
1 + z2 + ln

z

1 +
√

1 + z2
. (5.36)
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Using the above asymptotic behaviors and neglecting terms of order α we can deduce,

for large order m,

4 α2

(1 − α2)

1

Dm(α; κR)

1

Dn(α; κR)
∼ κma

sinh κma

κna

sinh κna
, (5.37)

where we have denoted κ2
m = κ2 + (m/R)2 and κ2

n = κ2 + (n/R)2. Using the above

limiting form in Eq. (5.32), and after interpreting m/R → k as the Fourier trans-

form of the coordinate containing the corrugations on the plates, we reproduce the

expression derived for the corrugated plates in [110].

Using Eq. (5.32) in Eq. (5.24) the L-matrix in the Dirichlet limit takes the form

L(2)D
mn =

1

a2

1

4π

∫ ∞

0
κ dκ

a2

a1a2

1

Dm(α; κR)

1

Dn(α; κR)
, (5.38)

which also leads to the corresponding result for the corrugated plates.

5.2.3 Weak coupling limit

For the case of the weak coupling limit (aλ1,2 ≪ 1) the expression in Eq. (5.31) takes

the form

I(2)W
mn (a1, a2; κ) = λ1λ2

∂

∂a1
a1

∂

∂a2
a2

[

Im(κa1)Km(κa2)In(κa1)Kn(κa2)
]

, (5.39)

where W stands for weak coupling limit. Using the above expression for the I-matrix

in Eq. (5.24) we can write the L-matrix in the weak coupling limit as

L(2)W
mn = −λ1λ2

4π

∂

∂a1
a1

∂

∂a2

1

a2
Fmn

(

a1

a2

)

, (5.40)
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where we have introduced the function

Fmn(β) =
∫ ∞

0
x dx Km(x)Kn(x)Im(βx)In(βx). (5.41)

Taking the uniform asymptotic approximants of the modified Bessel functions, see

Eq. (5.35), in the above expression, we can reproduce the corresponding result for the

corrugated plates in [110].

It is possible to convert the above integral into a single sum using the technique

described in [89]. We replace those modified Bessel functions which are well defined

at the origin, Im, with their power series expansions, then perform the integral using

∫ ∞

0
x dx xm+n+2kKm(x)Kn(x) =

1

2

2m+n+2k(m + n + 2k + 1)!

k!(k + m)!(k + n)!(k + m + n)!
, (5.42)

for m ≥ 0, n ≥ 0, k ≥ 0, which leaves Eq. (5.41) in terms of two sums. One of the

sums can be performed after regrouping the terms, and leads to

Fmn(β)=
1

2
βm+n

∞
∑

k=0

β2k 1

(m + n + 2k + 1)!

k
∑

k′=0

k!(k + m)!(k + n)!(k + m + n)!

k′!(k′ + m)!(k − k′)!(k − k′ + n)!

=
1

2

∞
∑

k=0

β2k+m+n

(2k + m + n + 1)
, m ≥ 0, n ≥ 0. (5.43)

Substituting the above expression into Eq. (5.40), and taking the derivatives with

respect to a1 and a2, we immediately perform the sum, leading to

L(2)W
mn =

λ1λ2

8π

1

a2
2

∂

∂β

[

βm+n+1

1 − β2

]

= −λ1λ2

16π

1

a2
α2 ∂

∂α

[

1

α

(

1 − α

1 + α

)m+n

(1 − α2)

]

, m ≥ 0, n ≥ 0,

(5.44)
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θ0

a
a1

a2

Figure 5.1: Non-contact gears: Concentric corrugated cylinders with the same cor-
rugation frequency, ν = 15, on each cylinder. θ0 is the angular shift between the
gears.

where we have denoted β = a1/a2 for convenience. Interpreting m/R → k1 and

n/R → k2, and taking the limit m → ∞, n → ∞, while keeping k1,2 fixed, we obtain

the expression for the L-kernel for corrugated plates in the weak limit [110].

5.3 Sinusoidal corrugations

Next we consider the particular case of sinusoidal corrugations, as described in Fig-

ure 5.1, so that we will have

h1(θ)=h1 sin[ν(θ + θ0)], (5.45a)

h2(θ)=h2 sin[νθ], (5.45b)

where h1,2 are the corrugation amplitudes and ν is the frequency associated with

the corrugations. Necessarily, ν must be a positive integer. The Fourier transforms,

(h̃i)m, corresponding to the above corrugations are

(h̃1)m = h1
2π

2i

[

eiνθ0δm,ν − e−iνθ0δm,−ν

]

. (5.46)
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In general the corrugation frequencies of the two cylinders can be different. However,

we note that, to the leading order, the interaction energy gets contributions only

when both cylinders have the same frequency.

Using the above expression in Eq. (5.22) and using the symmetry property of I(2)
mn

in Eq. (5.26), which further lets us deduce L(2)
mn = L(2)

nm, we can write

E
(2)
12

Lz

= cos(νθ0)
h1h2

2

∞
∑

m=−∞

L
(2)
m,m+ν = − cos(νθ0)

h1h2

8π

∞
∑

m=−∞

∫ ∞

0
κ dκ I

(2)
m,m+ν(a1, a2; κ),

(5.47)

where the kernel has been explicitly evaluated in Eq. (5.31).

5.3.1 Dirichlet limit

In the Dirichlet limit the interaction energy in Eq. (5.47) can be expressed in the form

E
(2)
12

2πR Lz

= cos(νθ0)
π2

240 a3

h1

a

h2

a
B(2)D

ν (α) (5.48)

where we have divided by a factor of 2πR, which is the mean circumference in the

direction of corrugations. We have also defined a suitable function B(2)
ν (α) to make

it convenient to compare our results with those obtained in the PFA limit and with

those for corrugated plates in the appropriate limits. We define

B(2)D
ν (α) =

15

π4

∞
∑

m=−∞

8α3
∫ ∞

0
x dx

4 α2

(1 − α2)

1

Dm(α; x)

1

Dm+ν(α; x)
. (5.49)

Using Eq. (5.37) it is straightforward to verify the corrugated plate limit of the above

expression. The function B(2)D
ν (α) has been plotted with respect to t0 = 2αν in figure

5.2. The redefined parameter helps us compare our results with the corrugated plates.
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Figure 5.2: Dirichlet limit: Plots of B(2)D
ν ( t0

2ν
) versus t0, for t0 < 2ν and fixed ν. The

dashed curve is the corresponding plot for corrugated plates which is approached by
the corrugated cylinders for larger values of ν.

We note that for larger values of ν the plots approach the curve for the corrugated

plates very quickly. We note that B(2)D
ν (1) = 0, because for α = 1 the radius of the

inner cylinder approaches zero. Thus, it is pointless to consider the regime α > 1.

We also note that B(2)D
ν (0) = 1, which then implies the PFA limit.

The Casimir torque per unit area, for the Dirichlet case, can thus be evaluated,

using Eq. (5.48) in Eq. (5.4), to be

T (2)D

2πR Lz

= ν sin(νθ0)
π2

240 a3

h1

a

h2

a
B(2)D

ν (α). (5.50)

5.3.2 Weak coupling limit

The evaluation for the L-matrix in the weak limit in Eq. (5.44)is valid for positive

indices only. Therefore, we begin by rewriting the expression for the interaction

energy in Eq. (5.47) in the form

E
(2)W
12

Lz

= cos(νθ0)
h1h2

2

[

2
∞
∑

m=0

L
(2)W
m,m+ν +

ν−1
∑

m=1

L
(2)W
m,ν−m

]

, (5.51)
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where the finite sum is interpreted as zero when ν = 1. We have used the symmetry

property mentioned before Eq. (5.47), and further used L(2)W
m,n = L

(2)W
−m,n = L

(2)W
m,−n =

L
(2)W
−m,−n, which can be deduced from eq (5.39) using the Bessel function property

I−m(x) = Im(x) and K−m(x) = Km(x). After substituting the L-matrix, derived in

Eq. (5.44), into the above equation we can immediately perform the sums to yield

E
(2)W
12

2πR Lz

= cos(νθ0)
λ1λ2

32π2 a

h1

a

h2

a
B(2)W

ν (α), (5.52)

where we have defined the function

B(2)W
ν (α) = −α3

2

∂

∂α

[

1

α2

(

1 − α

1 + α

)ν

(1 − α2)(1 + 2αν + α2)

]

. (5.53)

The Casimir torque per unit area, for the weak coupling limit, can thus be evaluated,

using Eq. (5.52) in Eq. (5.4), to be

T (2)W

2πR Lz

= ν sin(νθ0)
λ1λ2

32π2 a

h1

a

h2

a
B(2)W

ν (α). (5.54)

We note that B(2)W
ν (0) = 1. This verifies that the above result satisfies the proximity

force theorem. As in the Dirichlet case, we note that B(2)W
ν (1) = 0, because for α = 1

the radius of the inner cylinder approaches zero. The above result should also yield

the result for corrugated parallel plates in the limit ν → ∞, a1,2 → ∞, R → ∞, such

that a and ν/R is finite. Also, in this limit α → 0. Recalling the corrugated plates

parameter [110], k0a → νa/R = 2να ≡ t0, we note that the limit to corrugated plates

is achieved by taking the limit ν → ∞ with t0 kept fixed. To this end we rewrite
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Figure 5.3: Weak coupling limit: Plots of B(2)W
ν ( t0

2ν
) versus t0, for t0 < 2ν and fixed ν.

The dashed curve is the corresponding plot for corrugated plates which is approached
by the corrugated cylinders for larger values of ν.

Eq. (5.53) in terms of t0 as

B(2)W
ν

(

t0

2ν

)

= −t3
0

2

∂

∂t0

[

1

t2
0

(

1 − t0

2ν

)ν (

1 +
t0

2ν

)−ν
(

1 − t2
0

4ν2

)(

1 + t0 +
t2
0

4ν2

) ]

(5.55)

in which the ν → ∞ limit can be immediately taken to yield

lim
ν→∞

B(2)W
ν

(

t0

2ν

)

= −t3
0

2

∂

∂t0

[

1

t2
0

(1 + t0) e−t0

]

=
t3
0

2

∂2

∂t2
0

[

1

t0

e−t0

]

, (5.56)

which matches the result for the corrugated plates exactly. The function B(2)W
ν (α)

has been plotted with respect to t0 in figure 5.3. As in the case of Dirichlet case, we

note that for larger values of ν the plots approach the plot for corrugated plates very

quickly.
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5.4 Summary

We have evaluated the Casimir torque between two concentric corrugated cylinders

perturbatively in the corrugation amplitude for the scalar case and obtained explicit

expressions for the case when the cylinders have sinusoidal corrugations. Nonzero

contributions in the leading order requires the corrugation frequencies on the two

cylinders to be identical. Our results for the Casimir torque reproduce the results

for the lateral force on corrugated parallel plates in the limit of large radii and small

corrugation wavelengths, which gives confidence in the calculational technique.

The amount of calculational complexity increases in analytic evaluation of the

higher order, which was one of the achievements in our calculation for the parallel

plate geometry. Since we could obtain the exact result for the weak case, comparison

of the perturbative calculation when the next-to-leading order contribution is included

matched remarkably well with the exact case. Thus doing a higher order calculation

could be worth the effort. However, the scalar case is a toy model and for any practical

purposes we need to consider the electromagnetic case, which we take up next for

the parallel geometry. In addition new exact numerical techniques [74, 75] were

proposed, which evaluates the Casimir energy for the arbitrary shapes and corrugation

amplitudes by numerically evaluating the scattering matrix or the reflection matrix for

a particular geometry. These, although requiring truncating the matrix at some order,

are still very powerful techniques, which are very useful for experimental purposes.

However, our approach will have the advantage of providing analytical expressions,

which yields complementary insight and understanding of the subject.
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Chapter 6

Lateral Casimir energy:

Electromagnetic gears

In the previous chapter we talked about a design of a non-contact gear in a cylin-

drical geometry described by two concentric corrugated semi-transparent corrugated

cylinders [105] and analyzed it in the presence of a scalar field. In the earlier work we

calculated the contribution of the next-to-leading order to the lateral Casimir force

between two corrugated semi-transparent δ-function plates interacting with a scalar

field [110]. For anything practical we need to set up the problem for the real electro-

magnetic field. In this chapter we present our ongoing work on the evaluation of the

lateral force between two corrugated dielectric (non-magnetic) slabs of finite thick-

ness interacting through the electromagnetic field [112]. We can analyze the result

for various limiting cases such as the perfect conductor limit and the dilute dielectric

limit. Taking the thickness of the dielectric slabs to infinity leads us to the lateral

force between dielectric slabs of infinite extent. Taking the thin-plate limit based on

the model proposed in Chapter 4, Section 4.2, we have calculated the lateral force
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ε1 ε2

d = 2π

k0

y0

a
h1 h2

d1 d2

Figure 6.1: Parallel dielectric slabs with sinusoidal corrugations.

between corrugated thin plates.

6.1 Interaction energy between two corrugated di-

electric (non-magnetic) slabs

We consider two dielectric slabs of infinite extent in x-y plane, which have corrugations

in the y-direction, as described in Figure 6.1. We describe the dielectric slabs by the

potentials

Vi(z, y) = (εi − 1) [θ(z − ai − hi(y)) − θ(z − bi − hi(y))] , (6.1)

where i = 1, 2, designates the individual dielectric slabs. θ(z) is the Heaviside theta

function defined previosly. hi(y) describes the corrugations on the surface of the

slabs. We define the thickness of the individual slabs as di = bi − ai, such that

a = a2 − b1 > 0 represents the distance between the slabs. The permittivities of the

slabs are represented by εi. Following Subsection 5.1.1 and Section 5.2 in the previous

chapter with the change that the scalar Green’s function is now replaced with the
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Green’s dyadic we can obtain the contribution to the interaction energy between the

two slabs in leading order in the corrugation amplitudes to be

E
(2)
12 = −1

2

∫

dζ

2π
Tr
[

Γ
(0)∆V

(1)
1 · Γ(0) ∆V

(1)
2

]

, (6.2)

where ∆V
(1)

i are the leading order contributions in the potentials described by Eq. (6.1)

due to the presence of corrugations given as

∆V
(1)

i (z, y) = −hi(y) (εi − 1) [δ(z − ai) − δ(z − bi)] . (6.3)

Note in particular that

V
(0)

i (z) = (εi − 1) [θ(z − ai) − θ(z − bi)] , (6.4)

describes the potential for the case when the corrugations are absent and represents

the background in the description of the lateral forces. Γ
(0) = Γ

(0)(x,x′; iζ) is the

Green’s dyadic in the presence of background potential V
(0)

i (z) and satisfies

[

1

ζ2
∇ × ∇ × + 1 + V

(0)
1 + V

(0)
2

]

· Γ(0)(x,x′; iζ) = −1δ(3)(x − x′). (6.5)

The corresponding reduced Green’s dyadic γ(0)(z, z′; kx, ky, iζ) is defined by Fourier

transforming in the transverse variables as

Γ
(0)(x,x′; iζ) =

∫ dkx

2π

dky

2π
eikx(x−x′)eiky(y−y′) γ(0)(z, z′; kx, ky, iζ), (6.6)
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and it satisfies the differential equation

















− ∂2

∂z2 + k2 + ζ2ε(z) −kxky ikx
∂
∂z

−kxky − ∂2

∂z2 + k2 + ζ2ε(z) iky
∂
∂z

ikx
∂
∂z

iky
∂
∂z

− ∂2

∂z2 + k2 + ζ2ε(z)

















· γ(0)(z, z′; kx, ky, iζ)

= −ζ2δ(z − z′).

(6.7)

We have used the definitions k2 = k2
x + k2

y and

ε(z) − 1 = V
(0)

1 (z) + V
(0)

2 (z). (6.8)

The solution to γ(0) is given in Eq. (2.72), which we can read out from the general

solution for the case of five layered dielectric medium presented in Section 3.2.3 for

the specific case of dielectric permittivities ε1,2,3 = 1. Using the fact that our system

is translationally invariant in the x-direction, we can write

E
(2)
12

Lx

=
∫ ∞

−∞

dky

2π

∫ ∞

−∞

dk′
y

2π
h̃1(ky − k′

y) h̃2(k
′
y − ky) L(2)(ky, k′

y), (6.9)

where Lx is the infinite length in the x-direction and h̃i(ky) are the Fourier transforms

of the functions hi(y) describing the corrugations. The z-integrals contributing to the

trace in Eq. (6.2) is trivially evaluated due to δ-function form of the potential in

Eq. (6.3). The kernel L(2)(ky, k′
y) is then given by

L(2)(ky, k′
y) = −1

2

∫

dζ

2π

∫

dkx

2π
I(2)(kx, ζ, ky, k′

y), (6.10)
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where the I(2)-kernel is given by

I(2)(kx, iζ, ky, k′
y) = (εa − 1) (εb − 1)

[

γ(0)
T© (a2, a1; kx, ky, iζ) · γ(0)

M© (a1, a2; kx, k′
y, iζ)

−γ(0)
8© (b2, a1; kx, ky, iζ) · γ(0)

O© (a1, b2; kx, k′
y, iζ)

−γ(0)
V© (a2, b1; kx, ky, iζ) · γ(0)

2© (b1, a2; kx, k′
y, iζ)

+γ(0)
W© (b2, b1; kx, ky, iζ) · γ(0)

P© (b1, b2; kx, k′
y, iζ)

]

,

(6.11)

where the reduced Green’s dyadics are evaluated using solutions to Eq. (6.7). The

circled quantities in subscripts refer to the regions of evaluation in Figure 3.7. We

note that

γ(0)(z, z′; kx, ky, iζ) = γ(0)†
(z′, z; kx, ky, iζ). (6.12)

Our task thus reduces to evaluating the reduced Green’s dyadic in the presence of

the background, which are just the parallel slabs.

6.2 Evaluation of the reduced Green’s dyadic

In Section 2.4 we obtained the solution to the Green’s dyadic for the planar geometry.

For simplicity we exploited the rotational symmetry of the problem to set the Fourier

component ky = 0 and kx = k. However, the corrugated geometry does not have this

symmetry and therefore L(2)-kernel explicitly depends on ky. We thus need to know

the reduced Green’s dyadic arbitrary ky, which can be obtained easily by the rotation

γ(0)(z, z′; kx, ky, iζ) = R · γ(0)(z, z′; k, 0, iζ) · RT , (6.13)
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where

R =
1

k

















kx −ky 0

ky kx 0

0 0 k

















. (6.14)

Using Eq. (2.72) in above equations we get

γ(0)(z, z′; kx, ky, iζ) =























k2
x

k2
1

ε(z)
∂
∂z

1
ε(z′)

∂
∂z′ gH − ζ2 k2

y

k2 gE kxky

k2
1

ε(z)
∂
∂z

1
ε(z′)

∂
∂z′ gH + ζ2 kxky

k2 gE ikx

ε(z′)
1

ε(z)
∂
∂z

gH

kxky

k2
1

ε(z)
∂
∂z

1
ε(z′)

∂
∂z′ gH + ζ2 kxky

k2 gE k2
y

k2
1

ε(z)
∂
∂z

1
ε(z′)

∂
∂z′ gH − ζ2 k2

x

k2 gE iky

ε(z′)
1

ε(z)
∂
∂z

gH

− ikx

ε(z)
1

ε(z′)
∂

∂z′ gH − iky

ε(z)
1

ε(z′)
∂

∂z′ gH k2

ε(z)ε(z′)
gH























−δ(z − z′)

ε(z)

1

k2

















k2
x kxky 0

kxky k2
y 0

0 0 k2

















. (6.15)

The δ-functions in Eq. (6.15) do not contribute in the evaluation of the I(2)-kernel in

Eq. (6.11) because they are evaluated at different points. We now need to evaluate

the electric and magnetic scalar Green’s functions gE and gH for the two parallel slab

configuration, which as we mentioned in the previous section, can be read off using

Section 3.2.3.
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6.3 I-kernel for corrugated dielectric slabs

We evaluate I(2)(kx, iζ, ky, k′
y) in Eq. (6.11) as

I(2)(kx, iζ, ky, k′
y) =

− 1

k2

1

k′2

e−a(κ+κ′)

2κ 2κ′





1

∆

1

∆′
M(−α1, −α′

1)M(−α2, −α′
2)(k2

x + kyk′
y)2ζ4

+
1

∆

1

∆̄′
M(−α1, ᾱ′

1)M(−α2, ᾱ′
2)k2

x(ky − k′
y)2ζ2κ′2

+
1

∆̄

1

∆′
M(ᾱ1, −α′

1)M(ᾱ2, −α′
2)k2

x(ky − k′
y)2ζ2κ2

+
1

∆̄

1

∆̄′

{

M(ᾱ1, ᾱ′
1)(k

2
x + kyk′

y)κκ′ + M(−ᾱ1, −ᾱ′
1)

k2k′2

ε1

}

×
{

M(ᾱ2, ᾱ′
2)(k

2
x + kyk′

y)κκ′ + M(−ᾱ2, −ᾱ′
2)

k2k′2

ε2

}



,

(6.16)

where

∆ =
[

(1 − α2
1 e−2κ1d1)(1 − α2

2 e−2κ2d2) − α1α2(1 − e−2κ1d1)(1 − e−2κ2d2) e−2κa
]

, (6.17)

and

M(αi, α′
i) = (εi − 1)

[

(1 − α2
i ) e−κidi(1 − α′

i
2
) e−κ′

i
di

− (1 + αi)(1 − αi e−2κidi)(1 + α′
i)(1 − α′

i e−2κ′

i
di)
]

,

(6.18)

where various quantities are already defined in earlier chapters.

Substituting Eq. (6.16) in Eq. (6.10) and subsequently using it in Eq. (6.9) gives

the interaction energy between the two corrugated dielectric slabs. The physical
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parameters involved in the expression of energy are

E = E(a, di, (εi − 1); hi, k0, y0) (6.19)

We will consider the ideal (perfect) conductor limit, the dilute (weak) dielectric limit,

the thick plate limit and the thin plate limit for the interaction energy. The approx-

imations involved in these are:

(εi − 1) → ∞ : Ideal conductor limit.

(εi − 1) ≪ 1 : Dilute dielectric limit

di ≫ a : Thick plate limit.

(εi − 1)ζ2 = λi

di
, with di ≪ λia

2 : Thin plate limit.

E(k0a, (εi − 1), k0hi, k0di, k0y0) : Exact dilute dielectric limit.

E(0, (εi − 1), k0hi, k0di, k0y0) : Dilute dielectric PFA.

E(k0a, (εi − 1)(1), (k0hi)
(2), k0di, k0y0) : Dilute dielectric limit in

perturbative leading order.

We have scaled the physical parameters with the wavevector k0 to get dimensionless

parameters.

6.3.1 Ideal conductor limit

In the ideal (perfect) conductor limit (εi → ∞) we have the approximations:

εi → ∞, κi ∼ ζ
√

εi → ∞, κ̄i ∼ ζ√
εi

→ 0,

α → 1, ᾱi → −1, ∆ → (1 − e−2κa).

(6.20)
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Using the above in Eq. (6.16) we have

I(2)
ε→∞(κ, κ′, ky − k′

y)=I
(2)
D (κ, κ′)



1 − k2
x(ky − k′

y)2

κ2κ′2

+
ζ2

κ2

ζ2

κ′2





k2
x(ky − k′

y)2

k2k′2
+

{

k2
x + kyk′

y

kk′
+

kk′

ζ2

}2








=I
(2)
D (κ, κ′)



2 − k2
x(ky − k′

y)2

κ2κ′2
− ζ2(ky − k′

y)2

κ2κ′2





=I
(2)
D (κ, κ′)



2 − (k2
x + ζ2)

(ky − k′
y)2

κ2κ′2





=I
(2)
D (κ, κ′)



1 +
{κ2 + κ′2 − (ky − k′

y)2}2

4 κ2κ′2



 , (6.21)

where

I
(2)
D (κ, κ′) = − κ

sinh κa

κ′

sinh κ′a
. (6.22)

The contribution from 1 inside the square bracket in the above expression can be

associated to the contribution from the Dirichlet mode in the scalar case [110]. It is

worth pointing out that the total contribution is not two times the Dirichlet mode.
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6.3.2 Thin plate limit

Using the thin plate approximations collected in Appendix A in Eq. (6.16) gives the

thin plate limit for the I(2)-kernel to be

I
(2)
T P (kx, ζ, ky, k′

y) =I(2)
s (κ, κ′) − k2

x(ky − k′
y)2

k2k′2



I(2)
s (κ, κ′)

− I(2)
s

(

κ,
ζ2

κ′

)

− I(2)
s

(

ζ2

κ
, κ′

)

+ I(2)
s

(

ζ2

κ
,
ζ2

κ′

)





+ I(2)
s

(

ζ2

κ
,
ζ2

κ′

)[

κ2

ζ2

κ′2

ζ2
− (ky − k′

y)2

ζ2

]

.

(6.23)

where

I(2)
s (κ, κ′) = −λ1

2κ

λ2

2κ′

e−a(κ+κ′)

∆s∆′
s

[

κ

(

1 +
λ1

2κ

)

+ κ′

(

1 +
λ1

2κ′

)]

×
[

κ

(

1 +
λ2

2κ

)

+ κ′

(

1 +
λ2

2κ′

)] (6.24)

is the I(2)-kernel for the scalar case [see Eq. (49) in [110]], and ∆s is given by

∆s =

(

1 +
λ1

2κ

)(

1 +
λ2

2κ

)

− λ1

2κ

λ2

2κ
e−2κa, (6.25)

which was defined [in Eq. (A2)] in [110].

Taking the perfect conductor limit of Eq. (6.23), i.e. taking λi → ∞ we reproduce

the result in Eq. (6.21), which is expected since thickness of the perfectly conducting
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material body should be irrelevant. This involves

I(2)
s ((κ, κ′)→I

(2)
D (κ, κ′) (6.26)

I(2)
s

(

κ,
ζ2

κ′

)

→ ζ2

κ′2
I

(2)
D (κ, κ′) (6.27)

I(2)
s

(

ζ2

κ
, κ′

)

→ζ2

κ2
I

(2)
D (κ, κ′) (6.28)

I(2)
s

(

ζ2

κ
,
ζ2

κ′

)

→ζ2

κ2

ζ2

κ′2
I

(2)
D (κ, κ′) (6.29)

where I
(2)
D (κ, κ′) was defined in Eq. (6.22).

6.3.3 Dilute dielectric limit

In the dilute dielectric limit, (εi − 1) ≪ 1, we have κi, κ̄i → κ, and αi, ᾱi → 0.

Further,

∆ → ∆W = eκa, and MW (αi, α′
i) = M(0, 0) = (εi −1)

[

e−di(κ+κ′) −1
]

. (6.30)

Thus the I(2)-kernel takes the form

I
(2)
W (iζ, κ, κ′, ky − k′

y) = − (ε1 − 1)

2κ

(ε2 − 1)

2κ′
e−a(κ+κ′)

[

e−d1(κ+κ′) − 1
][

e−d2(κ+κ′) − 1
]

ζ4C
(2)
W (ζ, κ, κ′, ky − k′

y)

(6.31)
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where

C
(2)
W (iζ, κ, κ′, ky − k′

y)=
1

ζ4

1

k2k′2

[

(k2
x + kyk′

y)2ζ4 + k2
x(ky − k′

y)2ζ2(κ2 + κ′2)

+
{

(k2
x + kyk′

y)2κκ′ + k2k′2
}2
]

(6.32)

=1 +
1

ζ4

[

κκ′ + k2
x + kyk′

y

]2
(6.33)

=1 +
1

4ζ4

[

(κ + κ′)2 − (ky − k′
y)2 − 2ζ2

]2

. (6.34)

6.3.4 Thick plate limit

In the thick plate limit we have

∆ → (1 − α1α2e−2κa) and M(αi, α′) → −(εi − 1)(1 + αi)(1 + α′
i). (6.35)

Using the following relations

(1 − αi)
ζ

2κ

√
εi − 1=

√
αi, (6.36)

(1 + ᾱi)
ζ

2κ

√
εi − 1=

√
αi

ζ2

κ2

(

1 − k2

κκi

)−1

, (6.37)

(1 − ᾱi)
ζ

2κ

√
εi − 1=

√
αi

√
εi

ζ

κ

(

1 − k2

κκi

)−1√

1 − k2

κ2
i

, (6.38)
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in Eq. (6.16) we derive

I
(2)
di→∞(kx, ζ, ky, k′

y) =

−
√

α1α′
1α2α′

2





2κ e−κa

(1 − α1α2e−2κa)

2κ′ e−κ′a

(1 − α′
1α

′
2e−2κ′a)

−k2
x(ky − k′

y)2

k2k′2







2κ e−κa

(1 − α1α2e−2κa)
− 2κ e−κa

(1 − ᾱ1ᾱ2e−2κa)

ζ2

κ2

1
(

1 − k2

κ1κ

)

1
(

1 − k2

κ2κ

)







×






2κ′ e−κ′a

(1 − α′
1α

′
2e−2κ′a)

− 2κ′ e−κ′a

(1 − ᾱ′
1ᾱ

′
2e−2κ′a)

ζ2

κ′2

1
(

1 − k′2

κ′

1κ′

)

1
(

1 − k′2

κ′

2κ′

)







+
2κ e−κa

(1 − ᾱ1ᾱ2e−2κa)

2κ′ e−κ′a

(1 − ᾱ′
1ᾱ

′
2e−2κ′a)

ζ2

κ2

1
(

1 − k2

κ1κ

)

1
(

1 − k2

κ2κ

)

ζ2

κ′2

1
(

1 − k′2

κ′

1κ′

)

1
(

1 − k′2

κ′

2κ′

)

×
[

k2
x(ky − k′

y)2

k2k′2
+
{k2

x + kyk′
y

kk′
+

kk′

ζ2

ζ2ε1

κ1κ′
1

}{k2
x + kyk′

y

kk′
+

kk′

ζ2

ζ2ε2

κ2κ′
2

}

]



, (6.39)

which probably can be factored into a simpler form.

6.4 Sinusoidal corrugations

We now consider sinusoidal corrugations described by

h1(y)=h1 sin[k0(y + y0)], (6.40a)

h2(y)=h2 sin[k0y]. (6.40b)

where k0 is the wavenumber corresponding to the corrugation wavelength. The

Fourier transforms h̃i(k) for sinusoidal corrugations evaluates to

h̃1(k) = h1
2π

2i

[

eik0y0δ(k − k0) − e−ik0y0δ(k + k0)
]

. (6.41)
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Using the above expression in eq. (6.9), we write

E
(2)
12

LxLy

= cos k0y0
h1h2

4π

∫ ∞

−∞
dk L(2)(k, k+)

= − cos k0y0
h1h2

16π2

∫ ∞

−∞
dk
∫ ∞

0
κ̄ dκ̄ I(2)(κ, κ+),

(6.42)

where we have treated 2πδ(0) = Ly as the infinite length in the y direction. We have

used the symmetry property in the I(2)-kernel, and performed suitable rescaling in

the integration variables. We define k± = k ± k0, and κ2
± = κ̄2 + k2

±.

6.4.1 Perfect conductor limit

Using the expression for the I(2)-kernel given by Eq. (6.22) in Eq. (6.42) and taking

derivative with respect to y0 gives the lateral force per unit area in the conductor

limit as

F (2)
ε→∞ = 2k0a sin(k0y0)

∣

∣

∣F
(0)
Cas

∣

∣

∣

h1

a

h2

a
A(1,1)

ε→∞(k0a), (6.43)

where

A(1,1)
ε→∞(t0) =

15

π4

∫ ∞

−∞
dt
∫ ∞

0
s̄ds̄

s

sinh s

s+

sinh s+

[

1

2
+

(s2 + s2
+ − t2

0)2

8 s2s2
+

]

, (6.44)

where s2 = s̄2 + t2 and s2
+ = s̄2 + (t+ t0)

2. We note that A(1,1)
ε→∞(0) = 1. See Figure 6.2

for the plot of A(1,1)
ε→∞(k0a) versus k0a. We observe that only in the PFA limit is

the electromagnetic contribution twice that of the Dirichlet case, and in general the

electromagnetic case is less than twice that of the Dirichlet case. Since the above

expression involves a convolution of two functions we can evaluate one of the integrals
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Figure 6.2: Plot of A(1,1)
ε→∞(k0a) versus k0a.

to get

A(1,1)
ε→∞(t0)=

15

4

∫ ∞

0
du

sin(2t0u/π)

(2t0u/π)





sinh2 u

cosh6 u

(

7

2
− sinh2 u

)

−1

2

(

2t0

π

)2 sinh2 u

cosh4 u
+

1

16

(

2t0

π

)4 sinh2 u

cosh2 u



 (6.45)

which reproduces the result in Emig et al [113] apart from an overall factor of 2,

which presumably is a typo in Emig et al [113]. Even though Eq. (6.45) involves only

a single integral it turns out that the double integral representation in Eq. (6.44) is

more useful for numerical evaluation because of the oscillatory nature of the function

sin x/x.

6.4.2 Dilute dielectric limit

For the dilute dielectric case, and assuming the dielectric constants to be independent

of frequency, we can write the interaction energy as

E
(2)W
12

LxLy

= cos(k0y0)
h1

a

h2

a

23(ε1 − 1)(ε2 − 1)

320π2a3
A

(1,1)
W (k0a, d̄i). (6.46)
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Figure 6.3: Plot of A
(1,1)
W (k0a) versus k0a for different values of di/a when d1 = d2.

Differentiation with respect to y0 gives the lateral Casimir force per unit area

F
(2)
ε→1 = 2k0a sin(k0y0)

∣

∣

∣F
(0)
vdW

∣

∣

∣

h1

a

h2

a
A

(1,1)
ε→1(k0a), (6.47)

where the dielectric permittivity approaches 1 from above. F
(0)
vdW is the dilute limit

to the Lifshitz formula or the force obtained using van der Waals (Casimir-Polder)

interactions [114]. It is given by

F
(0)
vdW = −23(ε1 − 1)(ε2 − 1)

640π2a4
. (6.48)

The coefficient A
(1,1)
ε→1(k0a) is given by

A
(1,1)
W (k0a, d̄i) =

5

46

∫ ∞

−∞
dt
∫ ∞

0

s̄ ds̄

ss+

e−(s+s+)
[

e−d̄1(s+s+) − 1
][

e−d̄2(s+s+) − 1
]

[

s̄4 +
1

2

{

s̄2 + t2
0 − (s + s+)2

}2
]

,

(6.49)

where d̄i = di/a. We observe that
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A
(1,1)
W (k0a, ∞)=

5

46

∫ ∞

−∞
dt
∫ ∞

0

s̄ ds̄

ss+
e−(s+s+)

[

s̄4 +
1

2

{

s̄2 + t2
0 − (s + s+)2

}2
]

,

A
(1,1)
W (0, d̄i)=1 − 1

(1 + d̄1)5
− 1

(1 + d̄2)5
+

1

(1 + d̄1 + d̄2)5

=
a3

2

∂3

∂a3
ln

[

a(a + d1 + d2)

(a + d1)(a + d2)

]

=
a3

2

[

1 − ed1
∂

∂a

][

1 − ed2
∂

∂a

]

∂2

∂a2

1

a
, (6.50)

A
(1,1)
W (0, ∞)=1. (6.51)

The above evaluations were achieved by going to spherical polar coordinates. The

angular integrals are immediate and the radial integral involves gamma functions. In

Figure 6.3 we plot A
(1,1)
W (k0a, ∞) with respect to k0a for different values of d̄i when

both the thicknesses are same. We see that the lateral force in the dilute dielectric

limit decreases with decreasing thickness of the slabs.

6.5 Proximity force approximation

We can verify that our results given in Section 6.4 in the proximity force approxi-

mation (PFA) matches the standard PFA result for the sinusoidal corrugations. The

PFA limit is obtained by keeping hi/a fixed while taking k0a → 0. We can write the

distance between the corrugated slabs as

a(y) = a + h2 sin[k0y] − h1 sin[k0(y + y0)]. (6.52)

In the PFA limit the two surfaces are very close such that the distance between them

is small in comparison to the corrugation wavelength. Then we can approximate the
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surface to be made out of small length sections which can be treated as parallel plates.

6.5.1 Perfect conductor limit

Using the expression for the Casimir force between parallel plates in the perfect

conductor limit we can thus write

dEPFA
D (a(y)) = −Lx dy

π2

720

1

a(y)3
, (6.53)

where we interpret Lx dy to be the area of the small section under consideration. Thus

the total Casimir energy in this approximation, after interpreting Ly = limN→∞ Nd,

will be

EPFA
D

LxLy

=− π2

720

1

a3

1

2π

∫ π

−π
dθ

1
[

1 + h2

a
sin θ − h1

a
sin(θ + k0y0)

]3

=− π2

720

1

a3

1

2π

∫ π

−π
dθ

1
[

1 − r
a

cos θ
]3 , (6.54)

where we have used the substitutions: r sin α = h2 − h1 cos k0y0, r cos α = h1 sin k0y0,

and used the periodicity property of the function to eliminate α. We note that

r2 = h2
1 + h2

2 − 2h1h2 cos(k0y0).

We calculate the lateral Casimir force in the proximity force approximation, by

taking derivative of the energy with respect to y0, which is

F PFA
ε→∞ = 2 k0a sin(k0y0)

∣

∣

∣F
(0)
Cas

∣

∣

∣

h1

a

h2

a

1

4





5

(1 − r2

a2 )
7
2

− 1

(1 − r2

a2 )
5
2



 for |h1|+|h2| < a.

(6.55)

It is easy to check that for k0a = 0 the lateral force given by Eq. (6.43) matches

exactly with the above equation for the leading order in h1h2.
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6.5.2 Dilute dielectric limit

To calculate the dilute dielectric case in the PFA, we start with the van der Waals

interaction energy for the parallel slabs in Eq. (4.34) and use Eq. (6.51) to write

Eslabs
12W

LxLy

= −23(ε1 − 1)(ε2 − 1)

1920π2a3
A

(1,1)
W (0, d̄i). (6.56)

The PFA limit is constructed using the element

dEPFA
12W = −Lxdy

23(ε1 − 1)(ε2 − 1)

1920π2

[

1 − ed1
∂

∂a

][

1 − ed2
∂

∂a

]

1

2

∂2

∂a2

1

a(y)
, (6.57)

where a(y) = a + h2 sin(k0y) − h1 sin k0(y + y0). Using Eq. (105) in [110] we can

perform the y-integral to obtain

EPFA
12W

LxLy

= −23(ε1 − 1)(ε2 − 1)

1920π2

[

1 − ed1
∂

∂a

][

1 − ed2
∂

∂a

]

1

2

∂2

∂a2

1√
a2 − r2

, (6.58)

where r2 = h2
1 + h2

2 − 2h1h2 cos(k0y0). As a consistency check one can evaluate the

h1h2-term contribution from the above expression to obtain Eq. (6.46).

6.6 Non-perturbative dilute dielectric case

The dilute dielectric (weak) limit, though not very exiting experimentally, provides

a good check for any approximate results as it can be solved exactly. To calculate

the lateral force non-perturbatively in the dilute dielectric limit we start from the

expression [115]

EW
12 = − 23

(4π)3

∫

d3r
∫

d3r′ V1(r)V2(r
′)

|r − r′|7 . (6.59)
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Using the potentials for our corrugations given by Eq. (6.1) and using the integral

∫ ∞

∞
dx

1

(x2 + a2)
7
2

=
16

15a6
(6.60)

we have

EW
12

Lx

= − 23

(4π)3

16

15

∫ ∞

∞
dy
∫ ∞

∞
dy′

∫ b1+h1(y)

a1+h1(y)
dz
∫ b2+h2(y′)

a2+h2(y′)
dz′ (ε1 − 1)(ε2 − 1)

[(y − y′)2 + (z − z′)2]3
.

(6.61)

Substituting z1 = z − b1 − h1(y), z2 = z′ − a2 − h2(y′), and then taking z1 → −z1 we

have

EW
12

Lx

= −23(ε1 − 1)(ε2 − 1)

60π3

×
∫ ∞

∞
dy
∫ ∞

∞
dy′

∫ d1

0
dz1

∫ d2

0
dz2

1

[(y − y′)2 + {z1 + z2 + a(y, y′)}2]3
,

(6.62)

where a(y, y′) = a − h1(y) + h2(y′). Using the indefinite integral

∫

dz1

∫

dz2
1

[b2 + (z1 + z2 + a)2]3
= − 1

8b2

1

[b2 + (z1 + z2 + a)2]

+
3(z1 + z2 + a)

8b5
tan−1 (z1 + z2 + a)

b
,

(6.63)

changing variables y − y′ → y, y + y′ → 2θ/k0, and using the substitutions after

Eq. (6.54) we can write

EW
12

LxLy

= −23(ε1 − 1)(ε2 − 1)

960π4

[

1 − ed1
∂

∂a

][

1 − ed2
∂

∂a

]
∫ ∞

∞
dy
∫ 2π

0
dθ R(y, θ; a), (6.64)
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where

R(y, θ; a) = − 1

y2

1

(y2 + x̄2)
+

3x̄

y5
tan−1

[

x̄

y

]

, x̄ = a − r(k0y) cos θ, (6.65)

where

r(k0y)=
√

h2
1 + h2

2 − 2h1h2 cos(k0y + k0y0) (6.66)

=2h sin

(

k0y + k0y0

2

)

(if h1 = h2 = h). (6.67)

To investigate the pole structure of the function R(y, θ; x) we write

r(k0y) cos θ = r0 + r2y2 + r4y4 + O(y6), (6.68)

where r0 = r(0). We note that r0, r2, and r4, are independent of a. Further using

tan−1

[

x̄

y

]

=
π

2
− y

x̄
+

1

3

y3

x̄3
− 1

5

y5

x̄5
+ O(y7), (6.69)

we derive the pole structure of the function R(y, θ; a) to be

R(y, θ; a) =
3π

2

(a − r0)

y5
− 3

y4
− 3π

2

r2

y3
− 3π

2

r4

y
+

2

5

1

(a − r0)4
+ O(y), (6.70)

which has poles around y = 0. But, the pole terms are linear in a and thus they

cancel in the four terms of the square brackets in Eq. (6.64) to yield

[

1 − ed1
∂

∂a

][

1 − ed2
∂

∂a

]

R(y, θ; a) =
2

5

[

1 − ed1
∂

∂a

][

1 − ed2
∂

∂a

]

1

(a − r0)4
+ O(y). (6.71)

This assures us that the energy in Eq. (6.64) is well defined.

120



The θ-integrals can be carried out using

1

2π

∫ 2π

0
dθ

1

y2 + x̄2
=

1

y2

2

r̃
Im



s− − 1

s−





−1

(6.72)

and

1

2π

∫ 2π

0
dθ

x̄

y
tan−1

[

x̄

y

]

= −
(

1 +
π

2
ã
)

− Im
[

ã ln s− − r̃

4

(

s− − 1

s−

)

]

, (6.73)

where the the expressions on the right hand side have been expressed in terms of the

complex numbers

s± =
1

r̃

[

(ã + i) ±
√

(ã + i)2 − 1
]

= exp
[

±i cos−1
(

ã + i

r̃

)]

, (6.74)

which are roots of

z2 − 2
(ã + i)

r̃
z + 1 = 0. (6.75)

We note that

|s+| > 1

|s−| < 1







, if
ã

r̃
> 0 and

1

r̃
6= 0. (6.76)

The evaluation of the second of the above integrals has been described in Appendix B.

We also used the notation

ã =
a

y
, r̃ =

r

y
. (6.77)

Using the above integrals in Eq. (6.64) and observing

[

1 − ed1
∂

∂a

][

1 − ed2
∂

∂a

] (

1 +
π

2
ã
)

= 0, (6.78)
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we obtain

EW
12

LxLy

= −23(ε1 − 1)(ε2 − 1)

960π4

[

1 − ed1
∂

∂a

][

1 − ed2
∂

∂a

]

Im Q(a, hi, k0, y0), (6.79)

where

Q(a, hi, k0, y0) = −2π
∫ ∞

−∞

dy

y4



3ã ln s− − 3

4
r̃

(

s− − 1

s−

)

+
2

r̃

(

s− − 1

s−

)−1


. (6.80)

6.7 Summary

The work presented in this chapter is still in progress. We have reported the very

general result for the lateral Casimir force for dielectric slabs. We have taken the

conductor limit, the dilute dielectric limit, the thick plate limit and the thin plate

limit. Most strikingly in this study we have been able to understand the physical

meaning of the thin plate limit. We have further derived an exact formula for the

lateral Casimir force in the dilute dielectric limit. This provides a check for the

approximate results. To be able to use it fully we need to extend the perturbative

calculation to the next-to-leading order. The complexity of this task has resulted in

slow progress. However, we still believe that the next-to-leading order should be able

to accommodate the total result to better than 95 % similar to what was found in

the scalar case [110].
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Chapter 7

Conclusions and future directions

7.1 Conclusions

This thesis focuses on the response of the quantum vacuum to the geometric structure

of the background potential confining it. The vacuum energy changes in the presence

of the confining boundaries. Any variation in the confining parameters gives rise to a

change in the energy causing a non-vanishing measurable effect, namely, the Casimir

effect. We evaluate the Casimir energy for the electromagnetic field interacting with

the dielectric slabs with and without corrugations using the multiple scattering for-

malism, which allows us to subtract off the divergences from the onset. We are

able to reproduce the standard Lifshitz result for the case of parallel infinite dielec-

tric semi-spaces, the Casimir result for two perfectly conducting parallel plates, the

Casimir-Polder energy between a dielectric slab and an atom, and the Casimir-Polder

energy between a perfect conductor and an atom in Chapter 4. We present a simple

physical model that allows us to take the infinitesimally thin plate limit of the thick-

ness of the slabs by modifying the expression of the plasma frequency of the material
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to incorporate the finite size of the dielectric slab using the Drude-Sommerfeld free

electron gas model. This is a remarkable result because it could be extended to study

the vacuum energy in the presence of a single atom layer by modeling them using the

semi-transparent δ-function potential, which simplifies the calculational burden enor-

mously. The properties of the material are then encoded in the coupling constant.

Our expressions for the case of the perfect conductor limit taken after the thin-plate

limit for both the Casimir and the Casimir-Polder energy gives the expected results.

We expect our results to provide understanding of infinitesimally thin plates in the

presence of electromagnetic fields.

In Chapter 5 and 6 we calculate the leading order lateral Casimir torque and the

lateral Casimir force for the two concentric corrugated cylinders and the two parallel

dielectric corrugated surfaces respectively. We use the perturbative approximation for

the corrugation amplitude being small in comparison to the corrugation wavelength.

The analytical result obtained for the case of parallel dielectric slabs is very general

and can be used to calculate the Lifshitz energy in the leading order by applying the

appropriate model for describing the materials. Results are given for various limiting

cases of the perfect conductor limit, the dilute dielectric (weak) limit, the thick plate

limit and the thin plate limit. The complexity of doing the next-to-leading order

calculation is immense; however, we believe that similarly to the scalar case it will

bring down the theoretical error to about 1%. On the other hand we are limited by

the approximation of keeping the corrugation amplitude smaller than the corrugation

wavelength.
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7.2 Future directions

One of the logical extensions of our work is to compare our results with other exact

numerical results with respect to change in corrugation amplitude and separation

distance. This also requires us to complete the next-to-leading order calculation for

both parallel and cylindrical geometries. Our analytical results together with the

above mentioned exact results would give a wide and more complete understanding

in the study of the lateral Casimir force in real materials.

As mentioned briefly in the discussion of the Chapter 4, Bordag studied the

Casimir force and Casimir-Polder force when the perfectly conducting plates are

thin (plasma sheets). He has reported that the force between two thin perfectly

conducting plates leads to exactly the same Casimir force as for thick slabs, but the

Casimir-Polder force between a thin perfectly conducting plate and a molecule is

smaller than the standard result by 13% [95]. This discrepancy seems to originate

from a choice of boundary conditions on the electromagnetic fields. We, on other

hand, obtain identical results for Casimir and Casimir-Polder force for both thick

and thin perfect conductors. We believe it is important to explore this discrepancy

more carefully. It is worth mentioning that Bordag predicts a similar kind of change

in physics if the plates were anisotropic such that there is no conduction in the di-

rection parallel to the thickness even if the plates were thick. Therefore an analogous

calculation for anisotropic material slabs could help us in clarifying this issue further.

An additional motivation for exploring anisotropic materials arise from the theoret-

ical predictions of repulsive Casimir-Polder force in certain configurations [116]. A

repulsive Casimir force is considered as a possible solution for the stiction problem in

design of nano-mechanical devices.
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Differences in the electromagnetic properties of a thin conductor versus a thick

conductor has been considered earlier in literature. For example, in the paper [96]

Fetter considers the dynamical properties of a charge in the presence of conducting

plate. These differences in the context of Casimir effect has been studied by Barton

in a series of papers [117, 118]. It is natural to reconsider the above studies using our

methods and ask if a thin plate behaves differently from a thick plate. We tend to

believe that there will be no difference in the properties of a thin perfect conductor

and thick perfect conductor.

Although we model an idealized situation of an infinitely thin material sheet, the

above discussions in the context of the conductivity of graphene, C60 molecule, or

of carbon nanotube, are of great relevance. To model graphene the number density

is derived using a two dimensional massless Dirac-like equation [119] instead of the

Schrödinger equation. This will change the result in Section 4.2.1. We are currently

exploring this and trying to predict the interlayer bonding strength of graphite. This

will further reinforce our confidence in this model. Theoretical models describing

graphene as discussed in [120] should also be kept in perspective. These are very in-

teresting and pertinent problems to explore and have multi-disciplinary applications.
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[28] Inés Cavero-Peláez and Kimball A. Milton. Casimir energy for a dielectric
cylinder. Annals of Physics, 320(1):108 – 134, 2005.

[29] Israel Klich. Casimir energy of a conducting sphere and of a dilute dielectric
ball. Phys. Rev. D, 61(2):025004, Dec 1999.

[30] Kimball A. Milton, A. V. Nesterenko, and V. V. Nesterenko. Mode-by-mode
summation for the zero point electromagnetic energy of an infinite cylinder.
Phys. Rev. D, 59(10):105009, Apr 1999.

[31] Kimball A. Milton. Calculating Casimir energies in renormalizable quantum
field theory. Phys. Rev. D, 68(6):065020, Sep 2003.

[32] E. K. Abalo, K. A. Milton, and L. Kaplan. Casimir energies of cylinders:
Universal function. Phys. Rev. D, 82(12):125007, Dec 2010.

[33] W. Lukosz. Electromagnetic zero-point energy and radiation pressure for a
rectangular cavity. Physica, 56(1):109 – 120, 1971.

[34] Jan Ambjorn and Stephen Wolfram. Properties of the vacuum. I. Mechanical
and thermodynamic. Annals of Physics, 147(1):1 – 32, 1983.

[35] Jan Ambjorn and Stephen Wolfram. Properties of the vacuum. 2. Electrody-
namic. Annals of Physics, 147(1):33 – 56, 1983.

[36] I. Brevik and M. Lygren. Casimir effect for a perfectly conducting wedge.
Annals of Physics, 251(2):157 – 179, 1996.

[37] I. Brevik, M. Lygren, and V. N. Marachevsky. Casimir-Polder effect for a
perfectly conducting wedge. Annals of Physics, 267(1):134 – 142, 1998.

[38] I. Brevik and K. Pettersen. Casimir effect for a dielectric wedge. Annals of
Physics, 291(2):267 – 275, 2001.

[39] K. Kirsten. Spectral functions in mathematics and physics. Chapman &
Hall/CRC Press, Boca Raton, 2002.

129



[40] S A Fulling. Systematics of the relationship between vacuum energy calculations
and heat-kernel coefficients. Journal of Physics A: Mathematical and General,
36(24):6857–6873, 2003.

[41] Roger Balian and Bertrand Duplantier. Electromagnetic waves near perfect
conductors. I. Multiple scattering expansions. Distribution of modes. Annals of
Physics, 104(2):300 – 335, 1977.

[42] Oded Kenneth and Israel Klich. Casimir forces in a T-operator approach. Phys.
Rev. B, 78(1):014103, Jul 2008.

[43] Holger Gies, Kurt Langfeld, and Laurent Moyaerts. Casimir effect on the world-
line. Journal of High Energy Physics, 2003(06):018, 2003.

[44] D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, editors. Casimir Physics,
volume 834 of Lecture Notes in Physics. Springer, first edition, 2011.

[45] C. M. Hargreaves. Proc. Kon. Ned. Akad. Wetensch. B, 68:231, 1965.

[46] Kimball A. Milton. Resource Letter VWCPF-1: van der Waals and Casimir–
Polder forces. American Journal of Physics, 79(7):697–711, 2011.

[47] Kimball A Milton. The Casimir effect: Recent controversies and progress. Jour-
nal of Physics A: Mathematical and General, 37(38):R209–R277, 2004.

[48] I. I. Abrikosova and B. V. Deriagin (Derjaguin). Dokl. Akad. Nauk SSSR,
90:1055, 1953.

[49] B. V. Deriagin (Derjaguin) and I. I. Abrikosova. Direct measurement of molec-
ular attraction of solid bodies. 2. Method for measuring the gap results of ex-
periments. Zh. Eksp. Teor. Fiz., 30:993.

[50] B. V. Deriagin (Derjaguin) and I. I. Abrikosova. Zh. Eksp. Teor. Fiz., 31:3,
1956. [English transl.: Soviet Phys. JETP 4:2, 1957].

[51] M. Y. Sparnaay. Measurements of attractive forces between flat plates. Physica,
24:751–764, 1958.

[52] A. Kitchener and A. P. Prosser. Direct measurement of the long-range van der
Waals forces. Proc. Roy. Soc. (London) A, 242:403, 1957.

[53] W. Black, J. G. V. de Jongh, J. Th. G. Overbeck, and M. J. Sparnaay. Mea-
surements of retarded van der Waals’ forces. Trans. Faraday Soc., 56:1597,
1960.

[54] A. van Silfhout. Proc. Kon. Ned. Akad. Wetensch. B, 69:501, 1966.

130



[55] R. H. S. Winterton. Contemp. Phys., 11:559, 1970.

[56] J. N. Israelachivili and D. Tabor. The measurement of van der Waals dispersion
forces in the range 1.5 to 130 nm. Proc. Roy. Soc. (London) A, 331:19, 1972.

[57] E. S. Sabisky and C. H. Anderson. Verification of the Lifshitz theory of the van
der Waals potential using liquid-helium films. Phys. Rev. A, 7(2):790–806, Feb
1973.

[58] S. K. Lamoreaux. Demonstration of the Casimir force in the 0.6 to 6 microme-
ters range. Phys. Rev. Lett., 78:5–8, 1997.

[59] Steve K. Lamoreaux. Systematic correction for “Demonstration of the Casimir
force in the 0.6 to 6 µm range”. 2010, 1007.4276.

[60] U. Mohideen and A. Roy. Precision measurement of the Casimir force from 0.1
to 0.9 microns. Phys. Rev. Lett., 81:4549, 1998. [arXiv:physics/9805038].

[61] A. Roy, C.-Y. Lin, and U. Mohideen. Improved precision measurement of the
Casimir force. Phys. Rev. D, 60:R111101, 1999. [arXiv:quant-ph/9906062].

[62] B. W. Harris, F. Chen, and U. Mohideen. Precision measurement of the
Casimir force using gold surface. Phys. Rev. A, 62:052109, 2000. [arXiv:quant-
ph/0005088].

[63] H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso. Non-
linear micromechanical Casimir oscillator. Phys. Rev. Lett., 87:211801, 2001.
[arXiv:quant-ph/0109046].

[64] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso. Measurement of the Casimir
force between parallel metallic surfaces. Phys. Rev. Lett., 88:041804, 2002,
quant-ph/0203002.

[65] R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, D. López, and
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Appendix A

Thin plate approximation

A thin plate will be described by the model

(εi − 1)ζ2 =
λi

di
, (A.1)

where λi is independent of di and is a material dependent parameter. In the thin plate limit
we have the definitions

εi = 1 +
λi

diζ2
=

λi

diζ2

[

1 + ζ2 di

λi

]

, κ2
i = κ2 +

λi

di
. (A.2)

Using the approximations

ζ2 ≪ λi

di
and k2 ≪ λi

di
, (A.3)
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and with the understanding that the O(d) in the following should be read after scaling d,
we have following approximations:

κi=

√

λi

di

[

1 +
κ2

2

di

λi

]

+ O(d
3
2 ), (A.4)

κ̄i=ζ2

√

di

λi

[

1 +

(

κ2

2
− ζ2

)

di

λi

]

+ O(d2), (A.5)

αi=1 − 2κ

√

di

λi
+ 2κ2 di

λi
+ O(d2), (A.6)

ᾱi=−1 + 2
ζ2

κ

√

di

λi
− 2

ζ4

κ2

di

λi
+

ζ6

κ3

(

di

λi

)
3
2 k4

ζ4
+ O(d2), (A.7)

α2
i =1 − 4κ

√

di

λi
+ 8κ2 di

λi
− 8κ3

(

di

λi

)
3
2

+ O(d2), (A.8)

ᾱ2
i =1 − 4

ζ2

κ

√

di

λi
+ 8

ζ4

κ2

di

λi
− 8

ζ6

κ3

(

di

λi

)
3
2

[

1 +
k4

4ζ4

]

+ O(d2). (A.9)

The above can be used to further derive the following

e−κidi=1 −
√

λidi +
1

2
λidi + O(d

3
2 ), (A.10)

e−2κidi=1 − 2
√

λidi + 2λidi + O(d
3
2 ), (A.11)

(1 − α2
i )e−κidi=4κ

√

di

λi

[

1 − 2κ

√

di

λi

(

1 +
λi

2κ

)

+ 2κ2 di

λi

(

1 +
λi

2κ

)2
]

+ O(d2), (A.12)

(1 − ᾱ2
i )e−κidi=4

ζ2

κ

√

di

λi

[

1 − 2
ζ2

κ

√

di

λi

(

1 +
λi

2ζ2/κ

)

+2
ζ4

κ2

di

λi

{

(

1 +
λi

2ζ2/κ

)2

+
k4

4ζ4

}]

+ O(d2), (A.13)
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(1 − αi)(1 + αie
−2κidi)=4κ

√

di

λi

[

1 − 2κ

√

di

λi

(

1 +
λi

2κ

)

+2κ2 di

λi

(

1 +
λi

2κ

)(

1 +
λi

κ

)

]

+ O(d2), (A.14)

(1 + ᾱi)(1 − ᾱie
−2κidi)=4

ζ2

κ

√

di

λi

[

1 − 2
ζ2

κ

√

di

λi

(

1 +
λi

2ζ2/κ

)(

1 +
λi

2ζ2/κ

)

+
ζ4

κ2

di

λi

{

(

1 +
λi

2ζ2/κ

)2

+

(

1 +
λi

2ζ2/κ

)

+
1

2

k4

4ζ4

}]

+ O(d2), (A.15)

(1 − ᾱi)(1 + ᾱie
−2κidi)=4

ζ2

κ

√

di

λi

(

1 +
λi

2ζ2/κ

)

[

1 − 2
ζ2

κ

√

di

λi

(

1 +
λi

2ζ2/κ

)

+2
ζ4

κ2

di

λi

(

1 +
λi

2ζ2/κ

)

]

+ O(d2). (A.16)

Using the above we can further derive the approximations

∆=16κ2

√

d1

λ1

√

d2

λ2

[(

1 +
λ1

2κ

)(

1 +
λ2

2κ

)

− λ1

2κ

λ2

2κ
e−2κa

]

+ O(d
3
2 ), (A.17)

∆̄=16κ2

√

d1

λ1

√

d2

λ2

[(

1 +
λ1

2ζ2/κ

)(

1 +
λ2

2ζ2/κ

)

− λ1

2ζ2/κ

λ2

2ζ2/κ
e−2κa

]

+ O(d
3
2 ). (A.18)

And further

M(−αi, −α′
i)=−16

κκ′

ζ2

√

d1

λ1

√

d2

λ2
λi

[

κ

(

1 +
λi

2κ

)

+ κ′
(

1 +
λi

2κ′

)]

+ O(d
3
2 ), (A.19)

M(−αi, ᾱ′
i)=−16

κ

κ′

√

d1

λ1

√

d2

λ2
λi

[

κ

(

1 +
λi

2κ

)

+
ζ2

κ′

(

1 +
λi

2ζ2/κ′

)

]

+ O(d
3
2 ), (A.20)

M(ᾱi, −α′
i)=−16

κ′

κ

√

d1

λ1

√

d2

λ2
λi

[

ζ2

κ

(

1 +
λi

2ζ2/κ

)

+ κ′
(

1 +
λi

2κ′

)

]

+ O(d
3
2 ), (A.21)

M(ᾱi, ᾱ′
i)=−16

ζ2

κκ′

√

d1

λ1

√

d2

λ2
λi

[

ζ2

κ

(

1 +
λi

2ζ2/κ

)

+
ζ2

κ′

(

1 +
λi

2ζ2/κ′

)

]

+ O(d
3
2 ), (A.22)

M(−ᾱi, −ᾱ′
i)=−16εi

√

d1

λ1

√

d2

λ2
λi

[

ζ2

κ

(

1 +
λi

2ζ2/κ

)

+
ζ2

κ′

(

1 +
λi

2ζ2/κ′

)

]

+ O(d
3
2 ). (A.23)
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Using the above expressions we can derive

1

∆

1

∆′
M(−α1, −α′

1)M(−α2, −α′
2)=−2κ

ζ2

2κ′

ζ2
I(2)

s (κ, κ′) + O(d
1
2 ), (A.24)

1

∆

1

∆̄′
M(−α1, ᾱ′

1)M(−α2, ᾱ′
2)=−2κ

ζ2

2κ′

ζ2
I(2)

s

(

κ,
ζ2

κ′

)

ζ2

κ′2
+ O(d

1
2 ), (A.25)

1

∆̄

1

∆′
M(ᾱ1, −α′

1)M(ᾱ2, −α′
2)=−2κ

ζ2

2κ′

ζ2
I(2)

s

(

ζ2

κ
, κ′

)

ζ2

κ2
+ O(d

1
2 ), (A.26)

where I
(2)
s (κ, κ′) is

I(2)
s (κ, κ′)=− λ1

2κ

λ2

2κ′

e−a(κ+κ′)

∆s∆′
s

[

κ

(

1 +
λ1

2κ

)

+ κ′
(

1 +
λ1

2κ′

)]

×
[

κ

(

1 +
λ2

2κ

)

+ κ′
(

1 +
λ2

2κ′

)]

, (A.27)

and is the I(2)-kernel for the scalar cae (see Eq. (49) in Gears-I [110]), ∆s is given by

∆s =

(

1 +
λ1

2κ

)(

1 +
λ2

2κ

)

− λ1

2κ

λ2

2κ
e−2κa, (A.28)

which was given in Eq. (A2) in Gears-I [110]. We also need

1

∆̄

1

∆̄′
M(ᾱ1, ᾱ′

1)M(ᾱ2, ᾱ′
2)=−2κ

ζ2

2κ′

ζ2
I(2)

s

(

ζ2

κ
,
ζ2

κ′

)

ζ2

κ2

ζ2

κ′2
+ O(d

1
2 ), (A.29)

1

∆̄

1

∆̄′
M(ᾱ1, ᾱ′

1)
1

ε2
M(−ᾱ2, −ᾱ′

2)=−2κ

ζ2

2κ′

ζ2
I(2)

s

(

ζ2

κ
,
ζ2

κ′

)

ζ

κ

ζ

κ′
+ O(d

1
2 ), (A.30)

1

∆̄

1

∆̄′

1

ε1
M(ᾱ1, ᾱ′

1)M(−ᾱ2, −ᾱ′
2)=−2κ

ζ2

2κ′

ζ2
I(2)

s

(

ζ2

κ
,
ζ2

κ′

)

ζ

κ

ζ

κ′
+ O(d

1
2 ), (A.31)

1

∆̄

1

∆̄′

1

ε1
M(ᾱ1, ᾱ′

1)
1

ε2
M(−ᾱ2, −ᾱ′

2)=−2κ

ζ2

2κ′

ζ2
I(2)

s

(

ζ2

κ
,
ζ2

κ′

)

+ O(d
1
2 ). (A.32)
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Appendix B

Evaluation of contour integral

The integral

I(ã, r̃) =
1

2π

∫ 2π

0
dθ(ã − r̃ cos θ) tan−1(ã − r̃ cos θ) (B.1)

can be evaluated by integrating on a contour along the unit circle of a complex plane:

I(ã, r̃) =
1

2πi

∫

c

dz

z

[

ã − r̃

2

(

z +
1

z

)]

tan−1
[

ã − r̃

2

(

z +
1

z

)]

, (B.2)

where we used the substitutions

z = eiθ, dθ =
1

i

dz

z
, and cos θ =

1

2

(

z +
1

z

)

. (B.3)

Further using the principal value of

tan−1 x̃ =
i

2
ln
(

1 − ix

1 + ix

)

− πn, (B.4)

we can write
I(ã, r̃) = I0(ã) + J(ã, r̃), (B.5)

where

I0(ã)=
1

2πi

π

4
r̃
∫

c

dz

z2

[

z2 − 2
ã

r̃
z + 1

]

, (B.6)

J(ã, r̃)=
r̃

8π

∫

c

dz

z2

[

z2 − 2
ã

r̃
z + 1

]

ln
(z − s+)(z − s−)

(z − s∗
+)(z − s∗

−)
, (B.7)

expressed in terms of the complex numbers defined in Eq. (6.74).
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s−

s
∗
−

s+

s
∗
+

s± =
(

ã+i
r̃

)

±

√

(

ã+i
r̃

)2
− 1

c

Figure B.1: Contour in the complex s-plane. The integral in Eq. (B.7) has a pole at
s = 0 and branch points at s± and s∗

±. Strokes on a line represent branch cuts. The
integral is evaluated over a contour on the unit circle and gets contributions from the
pole at s = 0, and from the discontinuity about the branch line connecting s− and
s∗

−.

The integral in Eq. (B.6) is evaluated using residue theorem to be

I0(ã) = −π

2
ã. (B.8)

The integral in Eq. (B.7) has a pole at the origin and the complex numbers s± and s∗
±

are branch points, which are described in Figure B.1 with the branch cuts. Observe
that the discontinuities due the complex conjugates of the branch points are chosen to
cancel out. The pole at the origin contributes exactly 1 to J(ã, r̃). The discontinuity
about the branch cut connecting s− and s− contributes the rest to yield

J(ã, r̃) = −1 − Im
[

ã ln s− − r̃

4

(

s− − 1

s−

)

]

. (B.9)

Using solutions to I0(ã) in Eq. (B.8), and J(ã, r̃) in Eq. (B.9), in Eq. (B.5) we have

I(ã, r̃) = −
(

1 +
π

2
ã
)

− Im
[

ã ln s− − r̃

4

(

s− − 1

s−

)

]

. (B.10)
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