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THE EFFECTS OF CERTAIN SPECIFICATION ERRORS 
ON THE PROPERTIES OF PARAMETER ESTDIATES IN 
SMALL SAMPLES OF A SINGLE EQUATION MODEL

CHAPTER I

INTRODUCTION - A FRAMEWORK WITHIN WHICH TO WORK

Econometrics 
Econometrics is a science which deals with the 

problems of model-building and forecasting and . . may 
be defined as the quantitative analysis of actual economic 
phenomena based on the concurrent development of theory 
and observation, related by appropriate methods of inference."^ 
"Econometrics, the result of a certain outlook on the role of 
economics, consists of the application of mathematical statis­
tics to economic data to lend empirical support to the models
constructed by mathematical economics and to obtain numerical 

2results."

1Paul A. Samuelson, Tjailing C. Koopmans, and J.
Richard N. Stone, "Report of the Evaluative Committee for 
Econometrics," Econometrica, XXII (April, 1954), l4l.

2Gerhard Tintner, Methodology of Mathematical Economics 
and Econometrics, International Encyclopedia of Unified Science, 
II, No. b (Chicago*: University of Chicago Press, 19&6 ) , p"I 74 •
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"The main objective of econometrics is to give

3empirical content to a priori reasoning in economics." The 
objective has two primary purposes: in the measurement
of parameters which would promote a better understanding of 
true economic relationships and in the ability to use these 
parameters to be able to forecast future values of economic 
variables. In the area of the forecasting ability of para­
meters, "Perhaps more than anything else, we want equations 
that can forecast the future. For this purpose 'the future' 
should be interpreted to include anything unknown to the fore­
caster when he did his work; thus a person might 'forecast' 
some aspect of nineteenth century behavior by means of theory 
and data derived solely from the twentieth century. The 
latter sort of forecasting, that is, of temporally past data,
can be useful for testing theories, but of course practical

l̂interest centers on forecasting the temporal future."

The Method of Least Squares 
Population Regression Function 

This paper is primarily concerned with the analysis of 
two variable single equation model using the method of least 
squares. The method of least squares adheres to the principles

Arthur S. Goldberger, Econometric Theory, (New York 
John Wiley & Sons, Inc., 1964), p. 1.

Lawrence R. Klein, An Introduction to Econometrics, 
(Englewood Cliffs, N.J.: Prentice-Hall, Inc., 19&2) , pT ÎT

LCarl F. Christ, Econometric Models and Methods,
(New York: John Wiley & Sons, Inc. , I966 ) , pi 5"!
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of statistical inference as its goal is to make correct
inferences from a sample as to the true function form ex­
isting between certain variables. For example, suppose 
economists wanted to analyze the two variables consumption 
and income. Economists theorize that certainly these two 
variables must be related in some form. It might be logical 
to conclude that current spending is some function of current 
income. Using Y to represent consumption and X to represent 
income, then

Yi = f (X_) (1-1)
Since Y is some function of X, Y is considered the dependent 
variable, dependent on a particular value of income, (X^). 
Further, theory may have specified the exact form in which Y^ 
is a function of X^, and that this exact form is a linear 
one. Then

= a + bX^ (1-2)
It should not be expected that each individual within a defined 
income group would spend exactly the same amount as another 
individual in that same population. As a consequence, a 
stochastic element would have to be added to Equation 1-2 
yielding

Y^ = a + bX^ + u^ (1-3)
where u denotes a stochastic variable which may take on 
positive or negative values. If each value of X^ represents 
a distinct population, then the mean value of Y^ would be 
a + bX_, but the actual values of Y^ would be a + bX^ + u^



4
for an individual unit within the population. Because re­
gression models deal with such a variety of populations (one 
for each value of X^), certain assumptions are made concerning 
the conditional probabilities of the values. These are 
that the values of are random variables statistically 
independent of each other and that the means of the Y^ distri­
butions lie directly on the regression line. It is assumed 
that the density functions of Y^, for each value of , have 
a constant variance.

Usually the deviations of each Y^ from its expected 
value are described in terms of the - stochastic error so that 

Y. = a + bX. + u.X X X
where the u^ are independent random variables with a mean 
equal to zero and a constant variance. The distribution of 
u is just the distribution of Y transformed to a zero mean, 
and is pictured in Figure 1. However, no exact form of the 
density function need be specified.

A brief summary of the assumptions made concerning 
the error terms is appropriate. First,it was assumed that

E(u^) = 0 (1-4) '
Second, it was assumed that Y^ is a random variable; 
therefore,

E(u.u.) = 0 when i / j (1-5)^ J
Third, the density functions of u^ is constant,given a 
particular value for the independent variable.

E(u.)^ = d-6)



■w
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Another assumption associated with the error term is that

E(X^u^) = O (1-7)
The actual insertion of the error term in Equation 

1-3 may be justified on the basis of several considerations. 
First, u^ is simply an unpredictable element in human re­
sponses. Since there is no systematic component in the ele­
ment, it should be expected to have a zero mean. For example, 
in the consumption function there are many factors which alter 
the spending habits of different families making the same 
income. These factors cause some families to spend more than 
the average of their income group and others to spend less.
It might be expected that those who spend more will counteract 
the families who spend less. Second, it is possible that 
certain variables have been excluded from the original equation, 
and third, it is possible that there has been an error in ob­
serving the values. The influence of the latter two possi­
bilities enter the error terms as deviations from their means,

5hence they always have a zero mean.
Ifhen one of the assumptions of Equations 1-4 to 1-7 is 

violated a specification error occurs. For example, if 
E(u^Uj) / O when i / j 

then the error terms are autocorrelated and a specification 
error exists. An incorrect economic theory in this analysis

^See Potluri Rao and Roger LeRoy Miller, Applied Eco­
nometrics , (Belmont, Calif.; Wadsworth Publishing Company, 
Inc., 1971), pp. 7-8.
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is not called a specification error.

In the preceeding analysis it has been assumed that 
is fixed. When X is a random variable the analysis does 

not break down if the conditional means E(Y^/X^) are sought 
in relation to a given value of X^. With X^ random, the 
statistical procedures appropriate for fixed values of X^ re­
main valid provided the same assumption as outlined in Equa— 
tions 1-4 to 1—7 hold.

Sample Regression Function 
The analysis just completed is associated with the 

population linear regression model. Unfortunately, except 
for synthetic studies, a population's properties and parameters 
usually are unknown and have to be estimated from available data. 
The goal of a sample regression function should be to esti­
mate accurately the parameters of the parent population. To 
accomplish this goal the assumptions made for the parent popu­
lation regarding , X^, and u^ should hold in the sample data. 

The sample regression equation is
Y. = a + h X .  + e. (1-8)X I X

where e^ represents an observable residual term, and a and b 
represent estimates of a and b. Rewriting Equation 1-8 yields 

6i = Yi - â  (1-9)
in which it is desired that

^See Dennis J. Aigner, Basic Econometrics, (Englewood 
Cliffs, N. J.: Prentice-Hall, Inc., 1971), pp. 16- 1 7.
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î(e^) = O

Unfortunately, there are many estimates of a and b that will 
satisfy this condition. Therefore, it is necessary to specify 
a second condition, namely that the sum of the deviations of 
the residuals squared must be a minimum. Thus

Se^^ = - a - bX_)2 (1-10)
is to be minimized.

To minimize a function it must be set equal to zero. 
From Equation 1-10

( V8a) = -2 Z(Yj. - a - bX^) (l-ll)
(<)/6b) = -2Hx^(Y^ - a -bX^) (1-12)

Substituting Equation 1—9 into 1—12
(^/^b)He^^ = -2)Gx_e^ (1-13)

which when set equal to zero 
E(X^e^) = O

The correlation between the independent variable and the
residuals is equal to zero.

When Equations 1-11 and 1-12 are set equal to zero 
the result is the "normal equations"

= a n + bJX^
£ X ^ Y ^  = a T X ^  + b £ x ^ ^

which, when solved, yield
b = £ xy/£x^ ( l-l4)
a = Y - b X (1-15)

where lower case letters represent deviations from the mean.



Violations of Assumptions 
A Correlation between X and u 

If a correlation exists between X and u, then from 
Equation l-l4

b =Zx(Y - Y)/
= (SxY / 2 x ^) - (Y Ex/Ex^)
= SxY/ £x^ 

and since Y = a + bX + u
= Ex(a + bX + u)/]Cx^
= (a E x  + b ExX + Exu)/Sx^
= b + 2 xu/2 x^ (1—1 6)

since 2x = 0, and ExX = E x ^ .
If a correlation exists between X and u then Exu / O

causing E(b) / b. The estimate of b is biased. Since
a = Ÿ - bX 

/\ ■ yvand b is biased, a will also be biased. Because of the influ­
ence the regression coefficient b exerts in a single-equation 
analysis, in comparison to a, subsequent proofs are to be 
limited to the estimation of b.

A Exu / O will not only have an effect on bias but 
also on consistency. As the sample size increases to infinity
a consistent estimator will provide a perfect point estimate

/\of the true parameter. The parameter b is consistent if 
E(b^ - b)^ —■ > 0 as n — *■ OO 

Consistency is measured in terms of the mean—square error (MSE),
MSE = E(^^ - b)^ (1-1 7)
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It must follow that

E(b^ - b)^ = E(b^ - b)^ + (b - b)^ (I-I8 )
or that the MSE is equal to the variance of the estimator
plus the square of its bias. Consistency, then, requires
that an estimator's bias and variance both approach zero as
the sample size increases to infinity. It is observable from
Equation 1—18 . . that a biased estimator may thus show a
smaller mean-square error than an unbiased one if it more than

8compensates for its bias by having a smaller variance."
Often the square roots of the variance and MSE of an 

estimator are used, in which case they are termed the standard 
deviation and the root mean-square error (RMSE).

A correlation between X and u will cause an estimator 
to be inconsistent. The inconsistency can be seen in Figure
2. In Figure 2, X and u are positively correlated. The posi­
tive values of x are associated with positive values of u, 
and negative values of x are associated with negative values 
of u. The consequences of a positive correlation between X 
and u is that least squares produces a slope with an upwards 
bias and an intercept with a downward bias. The bias in b in 
Figure 2 will persist even for an infinitely large sample.
The reason for the bias is that when X and u are correlated,

9some of the effects of u are wrongly attributed to X,
gJ. Johnston, Econometric Methods, (New York; McGraw- 

Hill Book Company, Inc., 1963)1 p. 277-
9see Ronald J. Konnacott and Thomas H, Wonnacott, 

Econometrics, (New \ork: John Wiley & Sons, Inc., 1970),
pp. 152-1 5 3.



Fig. 2.“ How Correlation of X and u Makes 
b Biased and Inconsistent

When X is positive 
tends to be positive

True line 
' = a + bX

Fitted line

0 X



12
In summary, if the covariance between Xu / O, then 

biased and inconsistent estimators may result. The assumption 
of E(Xu) = 0 will be satisfied if either X is fixed or if X 
is a random variable distributed independently of u. The 
question still remains why the covariance between X and u is 
not equal to zero.

A dependence between the independent variable and the 
error term can be caused by errors of observation. The effects 
of such errors are as follows;

X' = X + u (1-19)
Y' = Y + V (1-20)
Y = a + bX (1-21)

where X' and Y ' are the observed values of X and Y , and u and
V are the errors of observation. It follows that

Y* = a + bX + V (1-22)
= a + b(X' - u) + V
= a + bX' + (v - bu) (1-23)

The covariance of X' and (v — bu) is
E [(X‘ - X)(v - bu)] = E fu(v - vu)] ( 1-24)

= E(uv) - b E(u^)
= -b Var (u) (1-25)

Since the covariance is not equal to zero, a dependence exists 
between the error term (v - bu) and the explanatory variable
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X'

If there were an observation error in X but not in Y, 
the results would be identical. Again assuming Equations 
1-19 and 1-21, and that Y = Y ', then

Y or Y' = a + bX (1-26)
= a + b(X' — u)
= a + bX' - bu (1-27)

The covariance of X ' and (-bu) is
E [(X' - X)(-bu)] = E [u(-bu)l

= E(u) — b E(u^)
= -b Var (u) (1-2 8)

Errors in observation are not the only causes of 
bias. Lagged variables may also cause a correlation between
the independent variable and the error term. In the equation

Y^ = a + bY^  ̂ + u^ (1-29)
the independent- variable is neither fixed nor randomly

For a complete analysis of errors in observation, 
see Abraham Wald, "The Fitting of Straight Lines if Both Vari­
ables Are Subject to Error," Annals of Mathematical Statistics, 
XI (1940), 284-300.

M.S. Bartlett, "The Fitting of Straight Lines Ifhen 
Both Variables Are Subject to Error," Biometrics, V (1949)» 
207-212.

Albert Madansky, "The Fitting of Straight Lines When 
Both Variables Are Subject to Error," Journal of the American 
Statistical Association, LIV (1959)» 173-205.

Max Halperin, "Fitting of Straight Lines and Pre­
diction When Both Variables Are Subject to Error," Journal of 
the American Statistical Association, LVI (Septemberl 1961),
6 57-6 6 9 .
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distributed independently of and, hence, u^. Therefore,
a correlation exists between the independent variable and the

. 11 error term.
Following the same analysis as lagged variables, in 

the simultaneous equation model of
Y = a + bX + u (1-30)
X = Y + Z (1-31)

the covariance of X and u is not equal to zero. Ifhen u takes 
on a large value, Y becomes greater as a consequence of Equa­
tion 1—30; when Y is greater, X is greater (as illustrated in 
Equation.1-31)1 since Z is fixed; thus u and X are positively 
correlated.

Another cause of bias might be the incorrect inference 
of the functional form existing between variables. If a lin­
ear function were used when a non-linear function was called 
for, there might exist a correlation between the independent 
variable and the error term.

Heteroscedasticity 
If the conditional variances of the error terms are 

identical, as depicted in Figure 1, the error terms are said

11For the mathematical proof, see J. Johnston, Econo— 
metric Methods, (New York: McGraw-Hill Book Company, Inc.,
1 9 6 3), pp. 2 1 9-2 2 5.

12For a complete analysis of simultaneous equation 
models see E. Malinvaud, Statistical Methods of Econometrics, 
(Chicago: Rand, McNally & Co., 1 9 6 6), pp. 497-613»
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to be homoscedastic. IVhen they appear as they do in Figure 
3t the error terms are heteroscedastic. There can exist 
various forms of the probability density function of the error 
terms. The calculus involved in minimizing the density 
functions is awkward to develop, so assumptions usually are 
made as to the nature of the form. The most common assumption
made is that the standard deviation of the error terms in­
creases proportionally for each value of the independent 
variable.

The assumption that the density function of the error
term is proportional to the independent variable is justified
on the basis of empirical evidence concerning budgetary data. 
For example, in the consumption function there is empirical 
evidence to suggest that the variance of spending habits would 
be quite different between low— and high—income individuals. 
Among the high—income individuals, the spending pattern would 
vary greatly, but among the low—income individuals, a majority

13of their income would be spent on daily necessities.
The effect of heteroscedasticity clearly cannot be on 

bias, because, from Equation I-1 6 , only the covariance between 
X and u controls the bias, which heteroscedasticity does not 
effect. The unbiascdness property of least squares is un­
affected by the presence of interdependent disturbances in 
general. "From the point of view of estimation and hypothesis

13See David S. Huang, Regression and Econometric Meth­
ods , (New York; John Wiley & Sons, Inc., 1970), P% l4b.
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testing, the main effect of heteroscedasticity . . .  is not
on bias or consistency but on efficiency." One unbiased
estimator is said to be more efficient than another if its
variance is smaller. From Figure 3, the standard error of an
estimator would become unusually large because the density
function of the error term changes for each value of X^. In
equation form,

Var (b) = E(b - b)^ (1-32)
from Equation l-l6

= E ( 2’xu/^x^)
2̂Assuming fixed X values, thenfx is a constant, and

E(Zxu/ fx^)^ becomes
2\2 2 2 2 2  = (1/ix ) E(x^ u^ + . . . + x^ u^ + ^x^XgU^Ug

If the assumptions of Equations 1—4, 1-5i and 1-6 hold,
then E(x.^u.^) = x.^^r ^ (1-34)1 1  1 u
and

Var (b) = x^/(Tx^)^u
= / Z x^ (1-35)

If heteroscedasticity is present, then the complicated Equa­
tion 1—33 cannot be reduced to Equation 1—35.

Forecasting
Most econometric models are derived for their ability 

to forecast. Estimators having the properties of being unbi­
ased, efficient, and consistent play a large role in a re­
searcher's confidence in a given forecast. It is from the

l4Edward J. Kane, Economic Statistics and Econometrics 
An Introduction to Quantitative Economics, (New York; Harper 
& Row, Publishers, 1960), pT 3&3.
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estimated parameters and their respective distributions that 
forecasts are to be made. If the specification error of a 
correlation between the independent variable and the error 
term is present, projections into the future could lead to 
incorrect conclusions. If projections were carried to future 
values of in Figure 2, the forecasts would be much larger 
than the corresponding true values.

Heteroscedasticity also leads to difficulties when 
forecasting. The variance of the estimators will be so large 
as to yield interval estimates of the parameters and subse­
quent forecasts which will be unduly large.



CHAPTER II 

THE MONTE CARLO METHOD

Introduction 
Chapter 1 reviewed the individual effects of two 

specification errors in a single—equation model. The two 
specifications reviewed were those of a correlation between 
the independent variable and the error term, and heteroscedas— 
ticity. The individual effects of a correlation between the 
independent variable and the error term are that biased and 
inconsistent estimators may result. Heteroscedasticity yields 
estimates which, have an unusually large variance, causing 
inefficiency. The individual effects of each specification 
error are known a priori.

It is not known a priori what the joint effects of 
the two specification errors are. "A striking weakness of 
the current state of econometrics is that the joint result 
of several complications cannot be inferred as the sum of 
their separate results.” It is the goal of this research 
paper to analyze what the combined effects of a correlation

^J. Johnston, Econometric Methods, (New York: McGraw-
Hill Book Company, Inc" 19^3), p% 2TG1

19
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between the independent variable and the error term and 
heteroscedasticity may be.

The Monte Carlo Technique

The problem of using real data 
To test the joint effects of two specification errors 

it is necessary to be able to isolate and distinguish them 
from the effects of other complications. Real data for which 
parameter values are generally unknown usually provide no 
basis for such an analysis. If a specification error is sus­
pected in a model, a test for its presence usually is based 
on the assumption that other specification errors do not 
exist.

For example, the one test to determine the presence
of autocorrelated error terms, the Durbin-Watson test, assumes

2normally distributed and homoscedastic error terms. The most 
widely accepted test for the presence of heteroscedasticity, 
the Goldfeld-Quandt test, assumes that the error terms are

3non—autocorrelated. It is clear that the individual presence
of heteroscedasticity and autocorrelation cannot be known with 
certainty.

2j. Durbin and G. S. Watson, "Testing for Serial 
Correlation in Least Squares Regression. 1," Biometrika,
XXXVII (December, 1950), 409-428.

J. Durbin and G. S. Watson, "Testing for Serial 
Correlation in Least Squares Regression. 11," Biometrika,
XXXVIII (June, 1951), 159-178.

3Stephen M. Goldfeld and Richard E. Quandt, "Some 
Tests for Homoscedasticity," Journal of the American Statis­
tical Association, LX (June, 1985), 539-547•
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In a consumption-incorae analysis it might be expected 

that the variance of the error term is some function of in­
come. If this is in fact true, then it might seem to follow 
that a correlation between the error term and the independent 
variable exists. For, if in the case of heteroscedasticity 

Var (u) = f (X) (2-1)
where X represents income, then

u = f (X) (2-2)
The question that arises is which specification error caused 
the other, or are they both caused separately?

The purpose, then, of a Monte Carlo analysis would be 
to attempt to isolate the effects of the specification errors, 
individually and jointly. Such studies might suggest techni­
ques of estimation which could be applied to real economic 
models.

Methodology of a Monte Carlo Analysis 
The Monte Carlo method, with which so many econometric 

studies have been made, has cast a great deal of light on the 
small sample properties of estimators. The basic format of 
the method is to evaluate a given model by designing a syn­
thetic system which matches it. In the real world economists 
usually have to make decisions based on a limited amount of 
data, especially in time—series analyses. Therefore, Monte 
Carlo models usually deal with small samples.

In Monte Carlo analyses econometricians first specify
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the model to be analyzed. A careful choice of the variables 
involved in the model must be made and the exact functional 
form existing between them determined. All properties, in­
cluding the mean, variance, and covariance of the variables 
and the error terms, are specified. Such specifications 
provide the researcher with population parameters and the 
probability density functions involved, a priori.

Having specified the properties of the population, 
the researcher takes samples from it and compares the esti­
mates, with their density functions, to the actual values.
A relatively large number of samples, each of small size, 
is used to gain information about the estimates and their 
density functions. A relatively large number of samples is 
necessary to insure correct inferences and to allow analyses 
to be made of their density functions.

In a Mpnte Carlo analysis there can be one or many 
models. Usually, models with and without specification er­
rors, or with and without a second specification error, are 
compared to attempt to determine the particular effects a 
certain specification error or errors has on a particular 
model. Once the model has been specified appropriately for 
the task for which it was designed, the data must be gener­
ated. The data must be generated in such a manner that they 
contain certain properties, which are chosen by the research­
er.

For a point of reference in the generation of
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synthetic data, econometricians use random numbers. The 
random numbers may contain a mean equal to zero and a 
finite variance to simulate the population error terms.
From a matrix of random numbers with such properties, trans­
formations of the matrix can be made by the premultiplication 
of another matrix. This matrix could be the population 
variance-covariance matrix. How the transformation is to 
take place depends upon what the researcher is trying to 
accomplish. For example, if a correlation between different 
independent variables is desired (multicollinearity), the 
random number matrix could be premultiplied by the popula­
tion variance—covariance matrix, for which the covariance 
between the independent variables would not equal zero.
From the parameters, error terms, and independent variables, 
the dependent variables can be generated and estimated para­
meters and density functions calculated and compared to the 
true structural parameters specified in the beginning.

In generating independent variables from a random 
number matrix the assumption is made that the independent 
variables are not fixed. The assumption that the independent 
variables are themselves random is justified on the grounds 
that any economic model is merely a part of some larger true 
structure of an economic system. Thus, a predetermined 
variable can only be considered as such when theorizing that

tia particular model is complete. Certainly, the predetermined
5See Tjalling Koopmans, "Statistical Estimation of Simultaneous Economic Relations," Journal of the American 

Statistical Association, XL (December, 1045)♦ 448—466,
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variables of a small model may well be the dependent vari­
able in a larger model, in which case they will not be fixed.

By a similar analysis the effects on forecasting can 
be analyzed. Dependent variables generated from the struc­
tural parameters (true values) can be compared to dependent 
variables generated from the estimated parameters (estimated 
values). Point and interval estimates can be compared and 
analyzed. Monte Carlo analyses have not been as effective 
in the area of forecasting as they have been on the small 
sample properties of estimators. "At the present time the 
number of computer simulation studies that can claim even a 
modicum of success in predicting the behavior of some economic 
system are meager i n d e e d . T h e  reason for this inadequacy 
in forecasting is because computer simulation techniques are 
based on probability theory, not truth.

Monte Carlo Analyses 
Econometric literature is abundant with Monte Carlo 

analyses. From several of these studies this researcher 
received valuable ideas in terms of model specification and 
data generation. A few significant articles will be reviewed 
to analyze some of the accomplishments made using the Monte 
Carlo technique,

W. A. Neiswanger and T. A. Yancey attempted to deter­
mine how a correlation between the predetermined variables

5Thomas H. Naylor, Joseph L. Balintfy, Donald S. 
Burdick, and Kong Chu, Computer Simulation Techniques, (New 
York; John Wiley & Sons^ Inc,, 1 9 6 6), pp. 31^-319•
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and the error terras, and between different predetermined variables 
(multicollinearity), in a simultaneous equation model, 
affected pairameters estimated from least squares and limited 
information single equation methods.^ They compared models 
with and without a secular trend in the dependent variables 
not explained by the predetermined variables and the para­
meters of the structural equations. The authors defined this 
trend as autonomous growth.

The authors used 120 samples of 25 for each of their 
models, which included one model with a time component and 
one without. All of the structural parameters, error terms, 
and predetermined variables were specified, in addition to 
the specification of their respective properties. The means, 
variances, covariances, and correlations of the X's and u's 
were all specified.

The X's and u's, with their specified properties, 
were generated from a matrix of random numbers. The elements 
in the matrix had an expected value equal to zero and a 
variance of one. Through a transformation of the population 
variance-covariance matrix, the authors could specify any 
correlation between the X's and u's that they desired. This 
method seemed appropriate for the analysis in this research 
paper.

W. A. Neiswanger and T. A. Yancey, "Parameter Esti­
mates and Autonomous Growth," Journal of the American Stat­
istical Association, LIV (Junel 1959), 389-402.
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The authors' conclusion was that the inclusion of 

time as an additional predetermined variable in a model is 
justified when time series data are used.

Potluri Rao and Zvi Griliches tested the efficiency 
of various two—stage estimation procedures in a model in 
which both the error terms and the independent variable were

7autocorrelated. The authors started with the belief that 
the sampling variation in the autocorrelated coefficient 
negated much of the gain from efficient estimation techniques, 
The initial hypothesis, however, was rejected. In this an­
alysis, least squares estimators proved to be inefficient 
when autocorrelation was present.

An analysis of the presence of observation errors
gin least squares was conducted by George W. Ladd. He con­

cluded that the errors of observation caused only little 
bias in least squares estimators but did increase the stand­
ard error of the estimators. The author also noticed that 
when least squares was applied directly to a simultaneous 
equation model, with a small non-zero covariance between the 
predetermined variables and the error terms, the result was 
not a very large bias. He further concluded that even in

Potluri Rao and Zvi Griliches, "Small—Sample Proper­
ties of Several Two-Stage Regression Methods in the Conte t 
of Auto-Correlated Errors," Journal of the American Statis­
tical Association, LXIV (March, 1969) , 253*"272. 

oGeorge W. Ladd, "Effects of Shocks and Errors in 
Estimation: An Empirical Comparison," Journal of Farm
Economics, XXXVIII (May, 1956), 48$-494.
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instances where the covariance between X and u was large, 
there may be a regression coefficient where the least squares 
bias is negligible.

Guy H, Orcutt and Donald Cochrane analyzed the com­
bined effects of autocorrelation and a correlation between
the predetermined variable and the error terms in a system

gof equations by the least squares method. Orcutt and Coch­
rane’s analysis is similar to that done here, in that the 
joint effects of two specification errors dealing directly 
with the error terms are analyzed. The correlation between 
the predetermined variables and the error terms was caused 
by lagged variables. The effect of autocorrelation, like 
that of heteroscedasticity, is not on bias or consistency 
but on efficiency. Lagged variables do lead to biased re­
sults and, in the authors* model, produced a negative bias. 
The simultaneous presence of the two complications produced 
a substantial positive bias, a result which certainly could 
not be expected by the specification error's individual 
effects. The authors concluded that a prior knowledge must 
exist about the intercorrelation of the error term to be able 
to justify the using of least squares. Unless this is possi­
ble , transformations cannot be used to randomize the error 
terms.

9Guy H. Orcutt and Donald Cochrane, "A Sampling Study 
of the Merits of Autoregressive and Reduced Form Transform­
ations in Regression Analysis," Journal of the American 
Statistical Association, XLV (September, 1949), 35^“372.
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In the same article, em attempt at short term point 

forecasting was made. Forecasts for the next period were 
made from knowledge of the independent variable and regres­
sion coefficient calculated from the series up to that point. 
The forecasts were compared to the actual values of the 
dependent variable obtained in the original generation of 
the data. The results were rewarding when the estimated 
variance of the errors of individual forecasts obtained from 
the analysis coincided with the actual values.

One of the most comprehensive Monte Carlo analyses 
thus far completed was accomplished by Robert S u m m e r s . A  
simultaneous equation model was constructed which introduced 
a correlation between predetermined variables which were 
themselves autocorrelated. A comparison of least squares 
with four other estimating techniques suggested that least 
squares estimators had the greatest bias and the smallest 
variance. The minimum variance property of least squares 
caused a root mean square error comparable to all but one 
estimating technique. However, it is a minimum variance 
around a biased mean. In the overall ratings of the various 
estimating techniques, least squares placed last, except for 
the isolated samples where the model was misspecified.

In an analysis on forecasting, the expected values

Robert Summers, ”A Capital Intensive Approach to 
the Small Sample Properties of Various Simultaneous Equa­
tion Estimators," Econometrics, XXXIII (January, 1965)» 
l-40.
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of the endogenous variables, for given values of the pre­
determined variables, was computed. The forecasts were 
compared on a pairwise basis for each of the estimating 
techniques involved. In almost every experimental design, 
least squares proved inferior to the other estimating 
techniques.

Another analysis on forecasting was made by Richard
11J. Foote and Frederick V. Waugh. They compared forecasts

obtained from least squares and another method of estimation
with inconclusive results.

John S. Chipman analyzed the method of least squares
12when multicollinearity was present. The conclusions dif­

fered from those in proceeding articles in that Chipman main­
tains that least squares yields a minimum variance estimator 
if, and only if, it is biased.

J. Durbin analyzed the properties of estimators when
some of the predetermined variables were lagged values of

13the dependent variable. His result was that when the error 
terms are normally distributed the method of least squares 
leads to optimum estimators. Durbin demonstrated that the 
properties of least squares are asymptotically the same as

11Richard J . Foote and Frederick V, Waugh, "Results 
of an Experiment to Test the Forecasting Merits of Least 
Squares and Limited Information Equations," Econometrics,
XXVI (November, 1958), 6 0 7-6 0 8.

John S, Chipman, "On Least Squares With Insuffi­
cient Observations," Journal of the American Statistical 
Association, LIX (December, 1964), 1078-1111.

13J. Durbin, "Estimation of Parameters in Time—Series 
Regression Models," Journal of the Royal Statistical Society, 
XXII (January, I96O), 139-153.
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those of the least squares coefficients of regression models 
containing no lagged variables, whether or not the errors 
are normally distributed.

Conclusions
These Monte Carlo studies, as can be expected, cover 

a wide range of specification errors and methods of esti­
mation. In reviewing many articles, this author noticed a 
conspicuous absence of Monte Carlo analyses covering the 
topic of heteroscedasticity. In fact, not one article can 
be found on the effects of heteroscedasticity in its com­
bined presence with another specification error. In this 
paper an attempt will be made to analyze the effects of hetero­
scedasticity where it is combined with a correlation between 
the independent variable and the error term in a single 
equation model. .



CHAPTER III 

THE MODEL 

Introduction
The effects of two specification errors, each in­

volving the error term, is analyzed to determine their 
combined effects on parameters and forecasting. The two 
specification errors are those of heteroscedasticity and a 
correlation between the independent variable and the error 
term. For simplicity, the correlation between the indepen­
dent variable and the error term is to be defined as r; and 
when r / O, then this specification error exists. A single 
equation Monte Carlo analysis will be used to determine the
effects of heteroscedasticity and r / 0 in a least squares
analysis. The individual effects of each specification 
error are known.^ It is assumed in this analysis that there 
are no errors of observation.

Model Specifications 
The model to be used is the simple linear function

= 3.64 + .90i6(X^) + u^

The individual effects of heteroscedasticity and 
r / 0 are reviewed in Chapter I.

31
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where

X = 2 8 7 . 3

Var (X) = 4638 
Var (u) = 76

and
E(Uĵ ) = 0
E(u.u.) = 0 when 1 / j 
E(u.^) /
E(X^u^) / 0
The parameters were obtained from a linear time— 

series regression of a consumption function using quarterly 
observations from 1948 to 1 9 6 7. By choosing parameters 
from a consumption function it may be possible that a 
close analogy to real data can be drawn in this analysis.
As stated in Chapters I and II, heteroscedasticity might be 
expected when dealing with aggregative economic data on 
consumption. Spending and saving habits of individuals in 
different income brackets might be expected to vary. If the 
variance of spending habits is dependent upon income, then 
r / 0 may follow,̂  unless the form of heteroscedasticity is 
such to cause a zero correlation for r. In time

2Ralph D. Husby, "A Nonlinear Consumption Function 
Estimated from Time—Series and Cross-Section Data," 'Hie Re­
view of Economics and Statistics, LX (February, 197lTl 76—79■ 

Linear functions are covered in this analysis.
3Review equations 2-1 and 2-2 and the subsequent

analysis.
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series data no particular form of heteroscedasticity is 
to be expected " . . .  since the variables are of similar

4orders of magnitude for the different observations . . . ."
A random form of heteroscedasticity is not expected 

to cause r / 0; however, there are other factors present in 
aggregative economic data to cause a correlation between X 
and u. The correlation can easily be caused by errors of 
observation, lagged variables, and incorrect specification 
of a model. Therefore, the two specification errors being 
analyzed are relevent to current economic literature.
However, because the data is synthetic it may not be possible 
to duplicate a real-world model with all of its complexities.

Two models are to be computed and analyzed. Hence­
forth they are to be defined as Model 1 and Model 11. Model 
1 contains but one specification error, that of r / 0. The 
actual values chosen for r are +.9, +.5, +1, -.1, -.3, and 
-.9» For each value of r, 50 samples are drawn of size 20.
For each r there will be 50 estimates of a and b from which 
the mean, standard deviation, and root mean square error will 
be computed. In addition, the estimated standard error of

A Aeach individual a and b value will be obtained and analyzed 
in the following ways:

1. The number of times the estimated parameter val—
Aues are greater than two standard errors, (b> 2 SE)

4E. Malinvaud, Statistical Methods of Econometrics, 
(Chicago: Rand McNally & Company, 1966), p̂  256.



3k

and (a > 2 SE).
2. The number of times the absolute values of the 
estimated parameters minus the true parameter are 
greater than two standard errors, |b — b) >  2 SE 
and |a - a j 2 SE.
3. The number of times the absolute values of the 
estimated parameters minus the mean of the esti­
mated parameters are greater than two standard 
errors, |b — b| ’>■ 2 SE and | a — a| > 2 SE.

The two standard errors represents a 95 percent confidence 
limit, or a 5 percent level of significance, based on the 
^  distribution. The critical value for a 5 percent level 
of significance on the ^  distribution is 1.729* If an 
estimate of a parameter is greater than two standard errors, 
it is significantly different from zero, based on a 5 percent 
level of significance. Ifhen |p — p| "7 two standards errors, 
the estimated parameter would fall outside the confidence
interval. the same analysis holds for the difference between
A , Â p and p.

The individual effects on bias can then be analyzed 
with various correlations between the independent variable 
and the error term. From the Neiswanger and Yancey and Sum­
mers articles it might be expected that estimated parameters 
would differ from the true parameters by more than two 
standard errors a large number of times.

In Model 11, the second specification error, hetero­
scedasticity, is to be introduced in addition to the
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specification error of r / O. The values which r may take 
on are the same as those specified in Model 1, Again, 50 
samples of size 20 are to be generated for each value of r.
The same mean values and measures of dispersion computed in 
Model 1 are repeated.

Data Generation 
The X's and u's have to be generated in such a manner 

that they maintain their respective variances and correlations, 
In order to accomplish this, specific covariances between 
X and u were specified. Given the variances and corre­
lations desired, the covariances can be computed and are 
given in Table 1,

The method of actually generating the X and u values 
entailed the transforming of a matrix of random variâtes.
This was accomplished by premultiplying the random variate 
matrix by a P matrix, which is a triangular matrix such that

PP' = M where M is the population variance—covariance matrix . 

of the X's and u's,^ That P is a triangular matrix means
that for all elements of P (P..) will be equal to gero when

 ̂J
j y i. The P matrix is actually defined as a lower case 
triangular matrix. An example, using a 2 by 2 matrix, is

5See W, A, Neiswanger and T, A, Yancey, "Parameter 
Estimates and Autonomous Gi’owth," Journal of the American 
Statistical Association, LIV (June, 1959)» 392,



Table 1.— The Population Variance-Covariance Values 
of X and u for Different Values of r

r ^11 Migônd ^22

+ . 9 4 6 3 8 . +534.33629 76
+ .5 4638 +296.85349 76
+ .1 4638 + 59.37069 76
— • 1 4638 - 59.37069 76
- • 3 4638 -296.85349 76
- . 9 4638 -534.33629 76

U}en
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[:
Pli °
p p21 22

P P11 21M . r
22j b*

therefore,

and

p p 11 11 ^11^21
^ 11^21 ^ 21^21 ^ ^ 22^22

^11 ~ ^11

^21 “ ^12^ ^11 ~ ^21^ ^11

22 f 22 ^21

11
21

1  = P "  “- 1
J  |_̂ *21 ^22j

since

11 M 11

^11^21 “ ^12 " ” 21

^21 ^ ^22 *̂22
In order that the elements of P have a single solu­

tion, M must be a symmetrical matrix; otherwise, this method 
of data generation could.not be used. The proof that M is 
symmetrical follows. If 

M = PP'

then
M* = (PP')'

= (P')’ P' 
= PP'
= M
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Since M is symmetrical, M = PP' has an orthonormal set of 
eigenvectors X^, . . . , X^, such that X^X^' = 1 and
X.X.' = 1 and X.X.* = O where MX.' = A X . i s  the eigen-X J  X J X X X ' X
value corresponding to the eigenvector X^, Now 

X.MX. • = X. A.X. 'X X  X X X
= A.X.X. •X X X
= X.X

A = X.PP'X.'X X X
= (X^P)(X^P)'> 0 

Note that X^P is a row vector and for any row vector Q / 0, 
QQ' >• 0. Since PP' = M is positive definite, all the roots 
(eigenvalues) of M must be positive

The elements of the X^P vector are a linear equiva­
lent to a weighted sum of the squares of the elements in 
(X^P)'• If X^P consists of normally and independently dis­
tributed variables with a zero mean and a constant variance 
(Equations 1-4, 1-5» and 1—6), then a transformation insures 
that the (X^P)' vector consists of the same properties.^ Of 
course, the same holds true if one or more of the assumptions 
is violated.

Dr. Frank L. Salzman of the Department of Mathematics, 
Florida Technological University, assisted in the proof that 
M was a positive definite matrix.

^See J. Johnston, Econometric Methods, (New York; 
McGraw-Hill Book Company, Inc., 1963), pp. 9^-101.
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Model 1

rx(l). . .X(20)l O 1 pjj. . 2o1 r^lll
j^u(l). . .u(20)J |̂ P21 ^22j |_̂ 21* ' *^2,2oJ |_0 J

The S matrix consists of random numbers with the 
specifications E(S^^) = O and SD (S^^) = 5* The elements

of the S matrix change for every sample, whereas the ele­
ments of P remain fixed for each value of r. The elements 
of the P matrix, for each value of r, are given in Table 2.
The L matrix simply contains the mean values for X and u, 
the latter being zero. The L matrix is actually a 2 by 20 
matrix with each element of each row being identical.

After the X's and u's are generated with their spe­
cific properties, the Y's are generated and estimates of the
parameters are obtained.
Model 11

To obtain the X's and u's for Model 11 the S matrix 
was altered. The elements to the first row of
the matrix, remained the same with a mean equal to zero and 
a standard deviation of five. The second row, elements 
to Sg 2Q, had a mean equal to zero but had a standard devi­
ation changing randomly from element to element. The standard 
deviation could take on values from 0.01 to 9*99 randomly, 
so that the expected value of the different standard devia­
tions remained constant at 5» The variance of u changed for 
each and every value of X.



Table 2.— Values for the P Matrix such that PP' = M

r ^ 1 ^21 ^12 ^22

+ .9 2.72411 +.31384 0.00000 . 1 5 2 0 0

+ .5 2.72411 + .1 7 4 3 6 0.00000 . 3 0 1 9 9

+ .1 2.72411 + .0 3 4 8 7 0.00000 .3 4 6 9 6

-.1 2.72411 - . 0 3 4 8 7 0.00000 .3 4 6 9 6

-.05 2.72411 - . 1 7 4 3 6 0.00000 . 3 0 1 9 9

9 2.72411 - . 3 1 3 8 4 0.00000 .14200

*"O
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The values for the P matrix are the same as those 

in Model 1 and are given in Table 2. The L matrix is the
same as in Model 1. Again, after the X's and u's are gener­
ated with their specified properties the Y's are generated 
and estimators obtained.

Forecasting
An attempt was made here in the area of short term 

point forecasting. Forecasted values of the dependent vari­
able (Y) were compared to the true values of Y. The true 
values of Y were obtained by extending the random variate 
matrix (the S matrix) so that five additional values of X 
and u could be obtained for each sample.
pcd). . .X(25)-j 0 -irsjj. . -Sj^25-| f-L^q
jji(l). . .u(25)^ ^21 ̂22j  L^ 2 1 ' * *^2 ,25j  LP J

From X(21), u(2l); X(22), u(22); X(23), u(2)); X(24), u(24); 
and X(25), u(2 5 ); values of Y(2l), Y(22), Y(23), Y(24), and 
Y (2 5) were obtained. These are the true values of Y. The 
forecasted values of Y were obtained from the sample esti­
mator and from the respective values for X.

Y(21) = a + bX(2l)
Y(22) = a + bX(22)
A A ^Y(2 3 > = a + bx(23)
Y (24) = a + bX(24)
Y(25) = a + bX(25)
From these values the difference between the actual 

and forecasted values of Y were obtained.
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Y(21) - Y(21)
Y(22) - Y(22)
Y(23) - Y(23)
Y(24) - Y(24)
Y(25) - Y(25)
For each value of r there are 50 sets of such values 

from which the mean deviation is to be calculated. From this 
analysis it is hoped that it can be learned how the speci­
fication errors of heteroscedasticity and r / 0 effect short­
term forecasts.

The extra five units of data will be used only in 
forecasting and they are not to be considered when the bias, 
SD, RMSE, and SE are computed for Models 1 and 11.



CHAPTER IV 

THE ANALYSIS

Estimates of the Parameters
Each of the two Models (with and without heterosce— 

dasticity) was used to obtain 50 estimates for each of the 
parameters. The estimates respective distributions for 
various correlations between the independent variable and 
the error terms were also obtained. The result of this an­
alysis is given in Tables 3 to 15» The seven factors common 
to a majority of the tables are as follows:

(1) The mean value of each parameter estimated 
which was obtained from a sample of 50.

(2) The standard deviation of the estimated para­
meters .

(3) The mean of the standard errors obtained
for each of the 50 samples.

(4) The root mean square error,
(5) The number of times a sample parameter

was greater than two standard errors,
(p > 2 SE).

(6) The number of times the absolute value of a 
sample parameter minus the true value was

43
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more than two standard errors, (tp - 2 SE).

(7 ) The number of times the absolute value of a
sample parameter minus the mean value of that 
parameter's distribution was more than two 
standard errors, (Ip - pi >  2 SE).

In Tables 3 a»d 4, the results obtained from Models 1 and 
11 where a high positive and negative correlation existed 
between X and u are revealed. The correlation in Teble 3 is 
+ . 9 and in Table 4 the correlation is —.9 . The results pre­
sented in these two ables indicates that the estimators were 
biased. For the positive correlation of .9, estimates of b 
were overestimated and estimates of a were underestimated 
as shown in Figure 2. For the negative correlation of .9
the estimates of b were underestimated and the estimates of

Aa were overestimated. Because the bias in b in Tables 3 and 
4 was of approximately the same magnitude, but in different 
directions, the standard deviation, mean of the standard 
errors, and root mean square error were almost identical 
between a positive and negative correlation in Models 1 and 
11. However, the standard deviation, mean of the standard 
errors, and the root mean square error were considerably 
larger for Model 11, where heteroscedasticity was present, 
than they were for Model 1. Both the standard deviation 
and the mean of the standard errors increased over five times 
while the root mean square error increased by only about 17 
percent. It does not appear that heteroscedasticity had any
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Table 3.~^Mean Values of Coefficients with Measures of

Dispersion for 50 Samples of 20 Observations 
for Models 1 and 11. The Coefficient of
Correlation between X and u is +.9

a b

Parameters p +3.64 + .9 0 1 6

Model 1
Means of estimates -2 9 .3 2 8 9 1 .0 1 6 5

S.D. of estimates 3 .1 8 0 0 .0 1 0 9

Mean of S.E, 8 . 2 3 2 1 .0 2 86

RMSE 3 3 .1 2 8 9 .1 1 5 5

p > 2 S.E. 0 50

1 p — p|> 2 S.E. 50 50

|p - p|> 2 S.E. 0 0

Model 11 •
Means of estimates -28.2402 1 .0 1 3 6

S.D. of estimates 3 7 .7 5 9 4 .1 3 0 7

Mean of S.E. 4 2 .1 1 7 6 .1465
RMSE 5 0 .7 7 0 6 .1 7 7 1

p >  2 S.E. 0 50

Ip - P 1> 2 S.E. 4 4
, A A .1P - P 1 > 2 S.E. 2 2
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Table 4.— Mean Values of Coefficients with Measures of 

Dispersion for 50 Samples of 20 Observa­
tions for Models 1 and 11. The Coefficient
of Correlation between X and u is - . 9

a b

Parameters p + 3.64 + . 9 0 1 6

Model 1
Means of estimates 3 6 .8 2 3 5 .7 8 6 1

S.D, of estimates 3 .1 8 0 0 .0 1 0 9

Mean of S.£. 8 .2 5 6 6 .0 2 8 7

RMSE 33.3446 . 1 1 6 0

p >  2 S.E. 50 50

|p - p|> 2 S.E. 50 50

Ip - p I*>2 S.E. 0 0

Model 11
Means of estimates 3 7 .9 1 2 2 .7 8 3 2

S.D. of estimates 3 7 .7 5 9 4 . 1 3 0 7

Mean of S.E. 4 2 .3 8 6 8 .1 4 7 4

RMSE
A

53.0486 . 1 8 3 4

p >  2 S.E. 7 50

Ip - pj >2  S.E. 6 6
|p - p| > 2  S.E. 3 3
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effect over bias since there was only a small difference 
between the estimated parameters of Models 1 and 11.

In Model 1, the estimated parameters exceeded the 
true parameters in each instance, indicating the difficulty 
in using least squares when a correlation between X and u 
is present. In Model 11 the estimated parameters exceeded 
the true parameters only 8 percent of the time. The result 
can be misleading because the reason for the low percentage 
was due to the very large standard error, and not due to 
the estimated parameters being closer to the true values 
when heteroscedasticity and r / 0 is present.

In both models, the estimate of b exceeded two stand­
ard errors 100 percent of the time. The a values were greater 
than two standard errors 50 times for Model 1 with a negative 
correlation, but failed to exceed it once for the positive 
correlation. The estimated parameters that exceeded their 
mean values by two standard errors, on the average, was 5 
percent.

The behavior of Models 1 and 11 with a positive and 
negative correlation of .5 is presented in Tables 5 and 6.
The results on bias, standard deviation, mean of the stand­
ard errors, and root mean square error appeared to be similar 
to the results obtained in Tables 3 and 4. Again the posi­
tive bias was equal to the negative bias, leaving the standard 
deviation, mean of the standard errors, and the root mean 
square error almost identical between the models with the
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Table 5-— Mean Values of Coefficients with Measures of

Dispersion for 50 Samples of 20 Observations 
for Models 1 and 11. The Coefficient of 
Correlation between X and u is +.5

a b

Parameters + 3.64 + .9 0 1 6

Model 1
Means of estimates -14.5220 . 9 6 5 1

S.D, of estimates 6 . 3 1 8 0 .0 2 1 8

Mean of S.E, 8 . 2 9 0 5 .0 2 8 8

RMSE 19.2640 . 0 6 7 3

p > 2 S.E. 0 50

Ip - pi > 2 S.E. 31 32

Ip — pl > 2  S.E. 0 0

Model 11
Means of estimates -1 2 .3 5 9 0 .9 5 9 3

S.D. of estimates 7 5 . 0 1 6 2 .2 5 9 7

Mean of S.E. 8 2 .6 0 1 7 .2 8 7 4

RMSE 8 1 .9 3 5 1 .2 8 5 4

p >  2 S.E. 2 45
jp - p| ^ 2 S.E. 2 2
Ip - pj > 2 S.E. 2 2
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Table 6,— Mean Values of Coefficients with Measures of

Dispersion for 50 Samples of 20 Observations 
for Models 1 and 11. The Coefficient of 
Correlation between X and u is -.5

a b

Parameters p + 3.64 + . 9 0 1 6

Model 1
Means of estimates 2 2 . 2 2 8 1 . 8 3 7 1

S.D. of estimates 6 . 3 1 8 1 .0 2 1 8

Mean of S.E. 8 .3 1 4 3 4 .0 2 8 9

RMSE 1 9 . 6 9 0 2 .0 6 8 2

p > 2 S.E. 44 50

Ip - p| > 2  S.E. 34 34

jp - > 2 S.E. 1 1

Model 11
Means of estimates 2 4 . 3 9 2 9 . 8 3 1 3

S.D. of estimates 7 5 . 0 1 9 5 .2 5 9 7

Mean of S.E. 8 2 . 7 5 2 1 . 2 8 7 9

RMSE 8 3 . 1 5 4 2 . 2 8 7 4
A ,p >  2 S.E. 2 4i
jp - p | >2 S.E. 
jp - P[ > 2  S.E.

3 3
3 3
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different correlations. Compared to the correlations of + 
and —.9 , the root mean square error was small in Model 1 but 
considerably larger in Model 11. A smaller root mean square 
error should have resulted from a smaller correlation, but 
it is difficult to explain why it became larger for Model
11. The smaller root mean square error was probably caused 
by the fact that, even though the bias was smaller, the 
standard deviation became larger causing a larger root mean 
square error.

Ifhen heteroscedasticity was present, the minimum 
variance property of least squares was lost. In Model 11 
the root mean square error was approximately equal to the 
mean of the standard error and not much smaller than the 
standard deviation of the estimates. The number of times 
an estimate was greater than two standard errors was smaller, 
on the average, than was the case in Tables 3 and 4 due to 
the smaller correlation involved between X and u. The reason 
for a never being greater than two standard errors in Model 
1 for correlations between X and u of + . 9  and + . 5  is that the 
estimates of a are negative while the standard error is al­
ways positive.

Results similar to those above were obtained from 
Tables 7 and 8 where a relatively low correlation of + and 
— ,1 existed between X and u. The bias for both models was 
smaller due to the lower correlation involved. It is pe­
culiar that the standard deviation tended to become larger
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Table 7.— Mean Values of Coefficients with Measures of

Dispersion for 50 Samples of 20 Observations 
for Models 1 and 11. The Coefficient of 
Correlation between X and u is +.1

a b

Parameters p + 3.64 + . 9 0 1 6

Model 1
Means of estimates . 2 0 9 8 .9 1 3 8

S.D. of estimates 6.1737 . 0 2 5 0

Mean of S.B. 8 . 3 2 7 9 .0 2 8 9

RMSE 8.0423 . 0 2 7 9

p > 2 S.E. 0 50

Ip - p| >  2 S.E. 2 1
Ip - p|> 2  S.E. 0 0

Model 11
Means of estimates 1 3 .4 7 4 3 .9 0 7 1

S.D. of estimates 8 6 . 1 9 0 8 .2 2 5 5

Mean of S.E. 9 4 . 8 5 2 3 .3 3 0 0

RMSE 9 2 .5 0 6 6 .3 2 0 5

p > 2 S.E. 2 38

1p - pi > 2 S.E. 3 3
I p - pj > 2 S.E. 3 2
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Table 8 .— Mean Values of Coefficient’s with Measures of

Dispersion for 50 Samples of 20 Observations 
for Models 1 and 1 1. The Coefficient of 
Correlation between x and u is - . 1

a b

Parameters p + 3 . 6 4 + .9016

Model 1

Means of estimates 7 .5 5 9 8 .8882
S.D. of estimates 7.2589 .0250
Mean of S.E. 8.3326 .0289
RMSE 8 . 3 4 6 8 .0286
p >  2 S.E. 6 50
Ip - p1 > 2  S.E. 1 1

|p - p|> 2 S.E. 1 1

Model 11

Means of estimate's 1 0 .0 4 4 9 .8815
S.D. of estimates 86.1908 . 2 9 8 4

Mean of S.E. 94.8824 .3301
RMSE 92.7411 .3210
Ap >  2 S.E. 2 39

| 0  - p| > 2 S.E. 3 3

1 p - pl > 2  S.E. 3 3
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as the correlation between X and u diminished. It can also be
seen that Tables 7 and 8 contain the largest mean of the stand­
ard errors and root mean square errors of the data analyzed.
The standard deviation of the estimates increased nine times 
with the introduction of heteroscedasticity, while the mean 
of the standard errors and the root mean square error in­
creased approximately eleven times. As was expected, a smaller 
percentage of parameters exceeded two standard errors.

A comparison of the estimated parameter b of Models 
1 and 1 1 , for positive correlations between X and u can be 
seen in Table 9 * The bias decreased as the correlation be­
tween X and u decreased, while the standard deviation in­
creased as the correlation decreased. The mean of the stand­
ard error remained relatively constant for Model 1 but in­
creased drastically with the introduction of heteroscedasti­
city. No discernable trend could be seen from the root mean 
square error of Model 1 ; however, in Model 11 the root mean 
square error became substantially larger as the correlation 
decreased. The number of estimated parameters which exceeded 
two standard errors became smaller as r approached zero.

Exactly the same analysis held for the negative cor­
relations listed in Table 1 0. The bias decreased with a 
smaller correlation, while the standard deviation increased 
and the mean of the standard errors and root mean square error 
increased substantially in Model 1 1 . The estimated parameters 
exceeded twice their standard error in each instance in Model 
1 , but appeared to decline to 78 percent for Model 1 1. In



Table 9 *— Comparing the Estimate of b in Model 1 and Model 11 (shown in 
Parentheses) with Different Positive Correlations between 
X and u. The True Value for b is +.9OI6

Correlations +. 9 + .5 + .1
AMean value of b 1.0165 .9651 .9138

(1.0136) (.9593) (.9071)
S.D. of estimated b .0109 .0218 .0250

(.1307) (.2597) (.2255)
Mean of S.E, .0286 .0288 .0289

(.1 4 6 5) (.2874) (.3300)
RMSE . 1 1 5 5 .0673 .0279

(.1771) (.2854) (.3205)
Ab >  2 S.E. 50 50 50

(50) (4 5 ) (3 8)
lb - bl> 2 S.E. 50 32 1

(4 ) (2 ) (3 )
|A A *lb - b!> 2 S.E. 0 0 0

(2 ) (2 ) (2 )

VI.c-



Table 1 0.— Comparing the Estimate of b in Model 1 and Model 11 (shown in 
Parentheses) with Different Negative Correlations between 
X and u. The True Value for b is +.9016

Correlations -.9 -.5 — # 1

AMean value of b .7861 .8371 .8882
(.7832) (.8313) (.8815)

S.D. of estimated b .0109 .0218 .0250
(.1307) (.2597) (.2 9 8 4)

Mean of S.E. .0287 .0289 .0289
(.1 4 7 4) (.2879) (.3301)

RMSE .1160 .0682 .0286

A
(.1834) (.2 8 7 4) (.3210)

b >  2 S.E. 50 50 50
(50) (4 1 ) (3 9 )

lb - bi > 2 S.E. 50 34 1

• (6 ) (3 ) (3 )
1 ̂  A 1]b - b I >  2 S.E. 0 1 1

(3 ) (3 ) (3 )

uiVJI
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additionf 4 percent of the estimates were within two stand­
ard errors of the mean of the estimates.

The phenomena that the standard deviation increased 
as the correlation between X and u decreased is analyzed 
further in Table 1 1. The results of Model 11 with a zero 
correlation between X and u are presented in Table 1 1 , there­
fore, only the specification error of heteroscedasticity was 
present. From analyzing Tables 9 » 1 0 , and 11 the trend that 
the standard deviation, mean of the standard errors, and 
root mean square errors decreased on the average as r appro­
ached zero appeared. This trend was due to the method of 
data generation. The element of the P matrix becomes
larger as the covariance between X and u decreased. From 
the formula

__ = lA
where

^22 ~  /^22  ^21

^21 ” ^^12^^11 - ^*21^^11 
and M^2 and M^^ represent the population covariance between
X and u, P^^ increased as the covariance increased. This 
caused P^g to become smaller the greater the value of r. A 
smaller Pgg value (for the higher value of r) was multiplied 
by the random number matrix causing a smaller standard devi­
ation, mean of the standard errors, and root mean square 
error.

Two parameter frequency distributions were selected 
and analyzed to determine if the distributions were normal 
or skewed. Since the bias for the positive and negative
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Table 1 1.— Mean Values of Coefficients with Measures of 

Dispersion and Forecasts for $0 Samples of 
20 Observations for Model 1 1 . The Coefficient 
of Correlation between X and u is O.*

a b

Parameters p +3 • 64 +.9016

Means of estimates 1 0 .1 4 8 4 .8825
S.D. of estimates 6 5 . 8 4 2 4 .2635
Mean of S.E. 96.0895 . 3 3 4 6

BMSE 82.6954 .2873
Ap > 2 S.E. 1 38
Ip - >  2 S.E. 2 2

)p - pi ^  2 S.E. 2 1

Forecasts

Y(2 1) - Y(2 1 ) -.0578
Y(2 2) - Y(2 2 ) -.1366
Y(2 3 ) - Y(23) +3.5106 ■ '

Y(2 4) - Y(2 4 ) - . 2 0 2 0

Y(2 5) - Y(2 5 ) +2.9103

*The P matrix used to obtain the data necessary for 
this Table is

[2 . 7 2 4 1 1 0 .00000“!
0 . 0 0 0 0 0 0 ,3 4 8 7iJ
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correlations were equal, though in opposite directions, and 
since heteroscedasticity did not effect the bias, it was not 
necessary to analyze all of the parameter distributions in­
volved. The percentage of times the 50 estimated parameters 
fell within a given interval in Model 1 , with r == + . 9 is 
shown in Table 1 2. There did not appear to be any skewnessto 
the distribution —  the parameters seemed to be normally 
distributed about their mean.

In Table 13 the estimated parameters' frequency dis­
tribution of Model 1 1 , with r = + .1 are shown. Again, a skew­
ness was not discernable and it does appear that the 
parameters are normally distributed. The result that the 
estimated parameters were normally distributed about their 
mean should have been expected, since the values for the 
independent variables and error terms, (hence dependent vari­
ables) were generated from normally distributed random num­
bers. The actual dispersion of the estimated parameters was 
much greater in Table 13 than it was in Table 1 2 , due to the 
presence of heteroscedasticity.

In Table l4 the 50 estimated parameters and two 
standard errors are shown for Model 1 with a correlation 
between X and u of -.5 » In 88 percent of the instances,

/Vthe estimate of a exceeded two standard errors while b ex­
ceeded two standard errors 100 percent of the time. The 
estimates of b exceeded two standard errors generally by 
at least ten times, however, a remained consistently
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Table 1 2.— Frequency Distribution for the Estimated 

Parameters of Model 1 , with a Corre­
lation between the Independent Vari­
able and the Error Term of + . 9

a = —29 «3289 b = 1.0165

Interval Percent Interval Percent

Less than -37.8289 2 Less than .9911 2

-36.8290 to -37.8289 0 .9911 to .9940 0

-35.8290 to -36.8289 0 .9 9 4 1 to .9970 0

-34.8290 to -35.8289 4 .9971 to 1 . 0 0 0 0 2

-33.8290 to -34.8289 4 1 .0 0 0 1 to 1.0030 4

-32.8290 to -33.8289 4 1.0031 to 1.0060 6

-31.8290 to -32.8289 6 1.0061 to 1.0090 10

-30.8290 to -31.8289 12 1.009 to 1 . 0 1 2 0 12
-29.8290 to -30.8289 8 1 .0 1 2 1 to 1.0150 8

-28.8290 to -29.8289 l4 1.0151 to 1.0180 12

-27.8290 to -28.8289 12 1.0181 to 1.0216 10

-26.8290 to -27.8289 10 1 .0 2 1 1 to 1 .0 2 4 0 10

-25.8290 to -26.8289 l4 1 .0 2 4 1 to 1.0270 6

-24.8290 to -25.8289 . 4 1.0271 to 1.0300 6

-23.8290 to -24.8289 2 1.0301 to 1.0330 4

-22.8290 to -23.8289 2 1.0331 to 1.0360 2

-21.8290 to -22.8289 2 1.0361 to 1.0390 4

-20.8290 to -21.8289 0 1.0391 to 1 .0 4 2 0 0

Greater than -2 0 . 8 2 9 0 0 Greater than 1 . 0 4 2 0 2
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Table 13.— Frequency Distribution for the Estimated 
Parameters of Model 11, with a Corre­
lation between the Independent Vari—
able and the Error Term of + .1

a = +13* 4743 b - .9071

Interval Percent Interval Percent

Less than -156.5257 4 Less than .0572 0
-1 5 6 .5 2 5 7 to -136.5256 0 .0572 to .1571 4

-136.5257 to -116.5256 2 .1572 to .2571 0
-116.5257 to - 96.5256 6 .2572 to .3571 4

- 96.5257 to - 76.5256 0 .3572 to .4571 4

- 76.5257 to - 56,5256 6 .4572 to .5571 4

- 56.5257 to - 36.5256 10 .5572 to .6571 8
- 36.5257 to - 16.5256 12 .6572 to .7571 l4

- 16.5257 to + 3.4743 8 .7572 to .8571 14

+ 3.4744 to + 23.4743 14 .8572 to .9571 8
+ 23.4744 to + 43.4743 6 .9572 to 1.0571 18
+ 43.4744 to + 63.4743 10 1.0572 to 1.1571 10
+ 63.4744 to + 83.4743 6 1.1572 to 1.2571 0
+ 83.4744 to +103.4743 4 1.2572 to 1.3571 8
+103.4744 to +123.4743 2 1.3572 to 1.4571 0
+123.4744 to +143.4743 6 1.4572 to 1.5571 0
+143.4744 to +163.4743 0 1.5572 to 1.6571 0
+163.4744 to +183.4743 2 1.6572 to 1.7571 0
Greater than +183.4743 2 Greater than .7571 4



Table l4

6l
.— Estimated Parameters and Two 

of Each Parameter in Model 
lation between X and u of ■

Standard 
1 with a 

- . 5

Errors
Corre-

Number Aa 2 SE Ab 2 SE

1 18.6172 18.1860 . 8 4 8 9 .0 6 4 1

2 21.3054 15.3263 . 8 4 0 4 .0530
3 23.6205 16.4447 .8323 .9560
k 1 3 -0 1 1 5 16.8087 .8694 .0574
5 28.5944 23.1325 .8165 .0801
6 33.8044 17.8106 .7988 .0625
7 21.7991 16.5606 .8372 .0576
8 26.5126 19.5663 .8209 .0680
9 20.1504 17.7216 . 8 4 5 0 .0618

10 11.5805 18.3451 .8747 .0638
11 23.7221 16.4540 .0287 .0574
12 17.0758 1 2 .9 8 4 1 .0226 .0452
13 21.8191 13.6218 . 0 2 4 2 .0 4 8 4

14 1 7 .4 6 7 5 10.2781 .0174 .0349
15 31.6005 18.5605 .0 3 1 4 .0628
16 17.5445 15.3915 .0266 .0533
17 27.1559 19.7569 .0343 .0686
18 31.0476 18.9440 .0329 .0658
19 25.6833 16.8128 .0288 .0576
20 19.0924 1 3 .0 8 4 0 .0229 . 0 4 5 9

21 27.7900 15.9090 .8179 .0551
22 28.7864 16.1510 .8165 .0566
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Table l4.— Continued.

Number Aa 2 SE A
b 2 SE

23

24

25

26
27

28
29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

13.325810.1634 .8781
15.736524.8768 .8282
18.416828.4906 .8150
1 4 .9 3 1 716.0799 .8589
2 0 .1 4 2 529.1677 .8121

21.0682 . 8 4 0 419.0332
13.690719.5819 . 8 4 9 1

1 8 .8 8 4 5 .8 4 6 7

21.9441 .8381
20.60
27.9

.9001

2 4 . 5 7 7 .8281
.785437.1172

25.0829 16.5268
10.2887 .879115.1377
26.0994 1 4 .5 5 8 5 .8227
23.0670 .834215.4933
25.3563 17.7345 .8269
21.5128 18.6325 .8392
28.7153 16.1951 .8154

.0474

.0 5 4 8

.0 6 4 0

.0516

.0698

.0670

.0476

. 0 4 4 6

.0531

.0603

.0679

.0511

.0602

.0751

.o8 4i

.0568

.0526

.0505

.0541

.0605

.0 6 4 8

.0572



Table l4.— Continued.
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Number S 2 SE b 2 S t

45 14.7958 11.5673 .8625 .0401

46 24.6669 17.0041 .8308 •060C

47 21.3338 15.1373 .8407 .0511

48 29.5037 16.6757 .8120 . 0 5 7 9

49 14.3078 17.7733 .8658 .0618

50 18.9539 14.0435 .8495 .0481



Table l4.— Continued,
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Number Aa 2 SE Ab 2 SE

23 10.1634 13.3258 .8781 .0474
24 24.8768 15.7365 .8282 . 0 5 4 8

25 28.4906 18.4168 .8150 . 0 6 4 0

26 16.0799 1 4 .9 3 1 7 .8589 ,0516
27 29.1677 2 0 .1 4 2 5 .8121 .0698
28 21.0682 19.0332 . 8 4 0 4 .0670
29 19.5819 13.6907 . 8 4 9 1 .0476
30 1 8 . 8 8 4 5 12.7543 . 8 4 6 7 .0 4 4 6

31 21.9441 15.2195 .8381 .0531
32 20.6012 1 7 .3 7 4 6 .8 4 1 6 .0603
33 27.9155 1 9 .0 4 2 0 .8155 .0679
34 3 .9 4 6 6 14.5679 .9001 .0511
35 15.5527 17.2937 .8593 .0602
36 2 4 . 5 7 7 3 21.2094 .8281 .0751
37 37.1172 24.2691 .7854 .0 8 4 1

38 25.0829 16.5268 .8243 .0568
39 10.2887 15.1377 .8791 . .0526
40 26.0994 14.5585 .8227 .0505
41 23.0670 15.4933 .8342 .0 5 4 1

42 25.3563 17.7345 .8269 .0605
43 21.5128 18.6325 .8392 . 0 6 4 8

44 28.7153 16.1951 .8154 .0572



Table l4 .— Continued.
63

Number /Va 2 SE Ab 2 SE

45 1 4 . 7 9 5 8 11.5673 .8625 .0401

46 24.6669 1 7 .0 0 4 1 .8308 .0600
47 21.3338 15.1373 .8 4 0 7 .0511
48 29.5037 16.6757 .8120 .0579
49 14.3078 17.7733 .8658 .0618
50 18.9539 1 4 .0 4 3 5 .8 49 5 .0481
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close to the value of two standard errors.

The absolute differences between an estimated para­
meter and the parameter minus two standard errors, in Model 
1 with r = —. 5 is shown in the second and third columns of 
Table 1 5» The difference between the parameter and its esti­
mate was obtained by subtracting |p — p| from two standard 
errors of the estimate. Therefore, a negative value repre­
sented the number of times jp — pl was greater than two 
standard errors. For both estimates of a and b, Ip —  pl was 
greater than two standard errors 68 percent of the time.

The absolute differences between an estimated para­
meter and the mean of the estimated parameters, minus two
standard errors, also given in Table 15 in columns four and

I A "a Ifive. In only one instance out of fifty did IP — pl exceed 
two standard errors.

In summary, it appeared that the combined effects of 
heteroscedasticity and a correlation between X and u tend to 
be related to their individual effects. Heteroscedasticity 
had no effect on bias but did decrease the efficiency of the 
estimator. The Cochrane—Orcutt article, reviewed in Chapter 
II, yielded different results than those obtained here. 
Cochrane and Orcutt found that the joint effects of lagged 
variables and autocorrelation were, in fact, different than 
the sum of their individual effects. Of course, Cochrane 
and Orcutt were analyzing different specification errors.
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Table 1 5»— Absolute Differences between an Estimated Para­

meter minus the Parameter and Minus Its Sample
Mean in 
X and u

Model 1 with a
of —.5

Correlation between

Number 2SE — |a — a) 2SE - )b - b\ 2SE - la - a\ 2SE -lb - bl

1 -3 .0 6 4 6 -.0103 14.6059 .0518
2 . 4 1 3 3 .0 0 0 4 16.6059 .0581
3 -5 . 2 3 3 5 — .0181 12.4370 .04 3 9

4 14.2613 .0496 -2.7959 -.0095
5 5.3810 .0180 11.5359 .0 4 0 3

6 .2720 .0016 17.9426 .0637
7 -9.2080 -.0319 8 . 4 6 2 5 .0301
8 -4.9160 - . 0 2 0 4 12.7544 . 0 4 1 7

9 8 . 4 8 9 0 .0301 4.1158 .0129
10 -7.9008 -.0283 9.7696 .0338
11 -8 . 2 4 0 4 -.0285 10.6079 .0367
12 -8.9953 -.0283 9.8536 .0368
13 6 . 8 0 2 4 . 0 2 4 0 1.0003 .0056
l4 -5.5002 -.0185 1 3 .3 4 8 7 .0 46 7

15 -6.3337 - . 0 2 2 4 12.5151 .0428
16 2.4917 .0090 8.5227 .0290
17 -5.3857 -.0195 13.4638 .0456
18 1.6049 .0058 17.6124 .0629
19 -2.2511 -.0047 10.7836 .0349
20 -2.4901 - . 0 1 0 2 9.1499 .0342
21 -3.6280 -.0129 15.9528 .0549



Table 15.— Continued
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Number 2SE — |a — a) 2SE - |b - b| 2SE — |a - al 2SE - |b - b|

22 - .4517 -.0013 6.8391 .0240
23 - 4.5573 -.0149 12.2200 .0439
24 - 3.5494 -.0114 4.5247 .0134
25 - 9.4000 -.0337 10.1808 .0341
26 1.4869 .0049 9.7151 .0339
27 - 3.7589 -.0112 15.8219 .0566
28 — 8.4636 — «0288 11.1172 .0390
29 - 5.2305 -.0193 14.3503 . 0 4 8 4

30 - 2.3683 -.0094 8.9555 .0333
31 3.2138 .0115 14.8991 .0537
32 - 2.3391 -.0080 14.7326 .0511
33 - 3.5358 -.0132 14.7233 .0 4 9 9

34 7.4371 .0253 7.9211 .0263
35 — 1.8218 - . 0 0 4 8 16.4372 .0582
36 -12.3537 - . 0 4 0 1 5.9^54 .0229
37 - 1 .5 9 8 4 -.0067 1 6 .4 6 0 7 .0564
38 - 3.3063 -.0125 14.9528 .0505
39 1.2112 .0052 15.9729 .0552
40 1 0 .4 0 4 5 .0370 8.0265 .0275
41 -3.9336 -.0131 1 4 .6 4 7 7 .0506
42 -3.9818 - . 0 1 4 0 1 4 .5 9 9 5 .0498
43 .7596 .0025 17.9240 .0633



Table 1 5.— Continued
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Number 2SE — (a — ai 2SE - lb - bl 2SE -|a - ai 2SE -lb - bl

44 - 8.8802 -.0288 9.7011 .0349
45 . 4 1 1 5 . 0 0 1 1 4 . 1 4 1 7 .0153
46 - 4 . 0 2 2 7 —.0106 1 4 .5 5 8 6 .0531
47 - 2.5565 -.0096 1 4 .2 4 9 9 . 0 4 8 1

48 - 9.1879 -.0316 9.3933 .0322
49 7.1054 .0261 9.8598 .0337
50 - 1.2704 -.0034 10.7760 .0362



68

Forecasting
In Tables l6 and 17 and five period forecasts ob­

tained from the two models are presented. The forecasts 
obtained from a specific correlation between X and u, re­
gardless of the sign, were almost identical. The only 
discernable trend was that heteroscedasticity did have an 
adverse effect on the forecasts. The results obtained 
from Model 11 are consistently larger than were their coun­
terparts of Model 1.



Table l6.--Comparing the Forecasted Values of the Dependent Variable to the 
True Values for Different Positive Correlations between X and 
u for Model 1 and Model 11 (shown in Parentheses).

Correlations + . 9 + .5 + .1

The mean value of:
Y(2 1 ) - Y(2 1 ) -.0780 -.1550 -.1781

(-2.8872) (-5.697) (-6.5449)
Y(2 2 ) - Y(2 2 ) .0809 .1607 . 1 8 4 7

(-.6522) (-1.2958) (-1 .4 8 8 7)
Y(2 3 ) - Y(2 3 ) .1019 . 2 0 2 4 .2325

(.4298) (.8538) (.9808)
Y(2 4 ) - Y(2 4 ) -.1038 -.2062 -.2369

(-.0591) (-.1174 (-.1349)
Y(2 5 ) - Y(2 5 ) .1172 .2277 . 2616

(1.3861) (-2.7539) (-3 .1 6 4 1)

Os
so



Table 1 7.— Comparing the Forecasted Values of the Dependent Variable 
to the True Values for Different Negative Correlations 
between X and u for Model 1 and Model 11 (shown in 
Parentheses)

Correlations - . 9 -.5 — • 1

The mean value of: •
Y(2 1 ) - Y(2 1 ) -.0781 - . 1 5 5 1 -.1782

(-2.8673) (-3.6966) (-6.5449)
Y(2 2 ) - Y(2 2 ) .0808 .1607 .1 84 6

(-.6523) (-1.2957) (-1 .4 8 8 7)
Y(2 3 ) - y(2 3 ) .1018 . 2 0 2 4 .2325

(.4297) (.8538) (.9809)
Y(2 4 ) - Y(2 4 ) -.10384 -.2062 -.2369

(-.0592) (-8.2857) (-.1349)
Y(2 5 ) - Y(2 5 ) . 1 1 4 6 .2277 .2616

(-1.3862) (-2 .7 5 4 0) (-3 .1 6 4 1)

■Mo



CHAPTER V 

SUMMARY AND CONCLUSION

Summary of Model 
Purpose

The purpose of this research paper was to evalu­
ate the combined effects of heteroscedasticity and a corre­
lation between the independent variable and the error terra 
in a single equation model through a Monte Carlo analysis.
The correlation between the independent variable and the error 
terra was changed from sample to sample to see whether a high 
or low correlation, in conjunction with heteroscedasticity, 
had any abnormal effects over the properties of the sample 
estimators. The effects of both specification errors were 
also sought in the area of forecasting.

Model Specifications 
The model used was
Y^ = +3 . 6 4 + .9 0 1 6(X^) + u^

where
X = 287.3

Var (X) = 4638 
Var (u) = 76

and
71
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E(u^) = 0

E(u^Uj) = O where i / j
E(u^^) / (Tû  - •
E(X^u^) i O
Two models were analyzed and compared. Model 1 

contained only one specification error that of r / 0 . The 
values for r chosen to be sampled were +.9 , +.5 » +.1 , -.1 , -.5 , 
and —.9 . For each value of r, 90 samples were drawn of size 
2 0 . From these samples, the estimated parameters were com­
puted. In Model 11 the second specification error, hetero— 
scedasticity, was introduced, in addition to the specifica­
tion error of r / 0 . For the same values of r specified 
in Model 1 , 50 samples of size 20 were again computed.^ The 
estimated sample parameters were again computed and compared 
to those of Model 1 .

Data Generation
The X's and u's were generated by transforming a

matrix of random numbers (S) whose elements (S..) had a mean1 j
equal to zero and a standard deviation of five. The S matrix 
was premultiplied by a P matrix, such that PP/ = M, where 
M was the population variance-covariance matrix of the X's 
and u's. Heteroscedasticity was introduced into Model 11 

by randomly changing the standard deviation of the second 
row of the S matrix; the result of which was that the vari­
ance of u^ changed for each of every value of X_.

^Model 11 also contains a run where r = 0 ,
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After obtaining the X's and u's it was a simple task 

for the computer to generate the Y's, the sample estimates 
and their distributions involved.

Forecasting
An attempt was also made in the area of short terra 

point forecasting. Forecasted values of the dependent vari­
able (Y^) were compared to the true values obtained for Y^.
The true values of Y were obtained by extending the S matrix 
so that five additional values of X and u were obtained.
With these additional five values of X and u, five additional 
values of Y were obtained and were the true values of Y were 
obtained from the sample estimators and from the respective 
values of X^.

Y. = a + bX.X X
where i = 2 1 , 2 2 , 23» 24 and 2 5 .
From these values the differences between the actual and fore­
casted values of Y were obtained and compared.

Summary of Findings
The analysis suggests that the joint effects of hetero— 

scedasticity and a correlation between the independent variable 
and the error term may be inferred from their individual ef­
fects. Heteroscedasticity had no discernable effect on bias
as indicated in Tables 3 to 1 0. However, heteroscedasticity 
did effect the dispersions about the biased parameters. The 
dispersions increased over five times with the inclusion of 
heteroscedasticity.
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The correlation between X and u behaved as expected 

—  the bias was positive when the correlation between X and 
u was positive, and was negative when the correlation was 
negative. For the same correlation, both positive and neg­
ative, the absolute value of the bias was identical. Also, 
the bias became greater as the correlation between X and u 
increased.

The experiment in forecasting indicated that hetero— 
scedasticity adversely effects the forecasts. The difference 
between the estimated and actual values of the dependent 
variable were considerably larger in the model with hetero­
scedasticity present, even in the absence of a correlation 
between the independent variable and the error term.

Future Analyses
It would be appropriate at this time to analyze some

of the problem? related to heteroscedasticity and a corre­
lation between the independent variable and the error term 
that this research paper did not attempt to analyze. These 
problems would have to be analyzed prior to knowing the over 
all effects of the two specification errors covered in this 
analysis.

First, least squares was the only method used to 
obtain parameters. Further, only a single equation model 
was analyzed. It might prove beneficial, if simultaneous 
equation models were used, with their various methods of 
estimating sample estimators. These might include indirect
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least squares, two stage least squares, three stage least 
squares, least squares with no restrictions, the limited 
information single equation method, and the full information 
maximum likelihood method.

Secondly, the parameters were specified a priori in 
addition to specifying the means of the independent variables 
and the error term, and the variance—covariance matrix of X 
and u. Therefore, all of the conclusions obtained from 
Tables 3 to 1? refer only to specific parameters. Of course, 
this would require the use of more elaborate procedures.

Thirdly, the analysis was applied only to a linear 
model. Some form of non-linear analysis might be applied 
to determine whether the results of this research paper are 
still valid. The non-linear forms might include some higher 
form of polynomial than a straight line or even an exponential 
form.

Fourth, the heteroscedasticity in Model 11 was intro­
duced in a random manner. The variance of the error term 
changed randomly for each and every value of the independent 
variable. It might be appropriate to test some other form 
of heteroscedasticity such as the case in which variance of 
the error term is directly proportional to the value of the 
independent variable. Such an analysis would determine whether 
or not the form of heteroscedasticity had any influence on
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the results obtained in Tables 3 to l4 .

Fifth, Tables l6 and 17 reveal that forecasts were 
made only five periods into the future. Since most models 
are made for their ability to forecast, longer duration 
forecasts might be analyzed to determine the joint effects 
of heteroscedasticity and a correlation between the inde­
pendent variable and the error terra.

Future analyses might attempt to determine the 
effects of heteroscedasticity in conjunction with other 
specification errors, even those which do not directly 
related to the error terms. Includes might be autocorre­
lation, multicollinearity, and errors of observation. Also, 
an attempt should be made to analyze more than two speci­
fication errors simultaneously. Such an attempt would be a 
monumental task to handle mathematically; however, there can 
be no doubt that this would lead to more insight into the 
areas of the properties of small estimators and their fore­
casting ability.

Conclusion
The author started this analysis with the intuitive 

feeling that heteroscedasticity, in conjunction with a 
correlation between the independent variable and the error 
term, would effect bias. The author's intuition proved to 
be incorrect. Heteroscedasticity did not discernably alter
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bias but did alter the efficiency of the estimates,

Heteroscedasticity and a correlation between the 
independent variable and the error term might be expected 
to behave as the sum of their individual effects.
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