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Abstract 

DETECTING EAVESDROPPING ACTIVITY IN 

FIBER OPTIC NETWORKS 

 

Gregory G. MacDonald 

University of Oklahoma, 2012 

 

Advisor:  James J. Sluss, Jr. 

 

The secure transmission of data is critical to governments, military 

organizations, financial institutions, health care providers and other enterprises.  The 

primary method of securing in-transit data is though data encryption.  A number of 

encryption methods exist but the fundamental approach is to assume an eavesdropper 

has access to the encrypted message but does not have the computing capability to 

decrypt the message in a timely fashion.  Essentially, the strength of security depends 

on the complexity of the encryption method and the resources available to the 

eavesdropper.  The development of future technologies, most notably quantum 

computers and quantum computing, is often cited as a direct threat to traditional 

encryption schemes.   It seems reasonable that additional effort should be placed on 

prohibiting the eavesdropper from coming into possession of the encrypted message in 

the first place. 

One strategy for denying possession of the encrypted message is to secure the 

physical layer of the communications path.   Because the majority of transmitted 

information is over fiber-optic networks, it seems appropriate to consider ways of 

enhancing the integrity and security of the fiber-based physical layer. 
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The purpose of this research is to investigate the properties of light, as they are 

manifested in single mode fiber, as a means of insuring the integrity and security of the 

physical layer of a fiber-optic based communication link.  Specifically, the approach 

focuses on the behavior of polarization in single mode fiber, as it is shown to be 

especially sensitive to fiber geometry.  Fiber geometry is necessarily modified during 

the placement of optical taps.   

The problem of detecting activity associated with the placement of an optical 

tap is herein approached as a supervised machine learning anomaly identification task.  

The inputs include raw polarization measurements along with additional features 

derived from various visualizations of the raw data (the inputs are collectively referred 

to as “features”).  Extreme Value Theory (EVT) is proposed as a means of 

characterizing normal polarization fluctuations in optical fiber.  New uses (as anomaly 

detectors) are proposed for some long-time statistics (Ripley’s K function, its variant 

the L function, and the Hopkins statistic). These metrics are shown to have good 

discriminating qualities when identifying anomalous polarization measurements.  The 

metrics have such good performance only simple algorithms are necessary for 

identifying modifications to fiber geometry.  
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Chapter 1: Introduction 

 

The secure transmission of data is critical to governments, military 

organizations, financial institutions, health care providers and other enterprises.  

Traditionally, the emphasis in security has focused on protecting the message to be 

transmitted by encrypting it at the sender and decrypting it at the receiver. The 

encryption/decryption process is usually performed by software at the presentation 

layer of the OSI reference model.  The primary goal of the encryption/decryption 

process is to secure the message for as long as it has some inherent value to an 

eavesdropper
1
.  This process usually assumes an eavesdropper has access to the 

encrypted message but does not have the computing capabilities to decrypt the 

message.  

 The future development of quantum computers and quantum computing is 

frequently cited as a threat to present day software-based encryption methods.  Even 

simulations of quantum computers may become a looming threat to security.  In 2010, 

the Institute for Advanced Simulation at the Julich Supercomputing Centre reported the 

successful 42-qubit simulation of Shor’s integer factorization algorithm [2] using the 

                                                 
1
 Absolute security can be achieved by use of the one-time pad; a non-repeating random 

key that is as long as the message itself [1]. 



2 

JUGENE supercomputer [3].    Given this looming threat to software-based encryption 

methods, protection at other levels of the OSI reference model are likely to become 

more relevant and important.  For example, securing the transmitted message at the 

physical layer has been previously investigated and includes methods such as optical 

encryption and optical steneganography [4].   

 It is safe to say that most transmitted information traverses a fiber-optic link at 

some point in its journey from the sender to the receiver.  Once thought to be highly 

secure, fiber-optic links are easily tapped as demonstrated and described by numerous 

YouTube videos [5-7].  The tapping devices described in these videos are available at a 

moderate cost, usually well under $1000.  In all cases, fiber optic taps require direct 

access to the fiber optic cable (outer jacket removed). 

Specific instances of fiber-optic tapping are understandably difficult to verify.  

Organizations that experience incidents of unwanted optical tapping are not usually 

interested in publicizing the details of such events.   One popularly cited incident is 

described in a 2003 Black Hat Federal Briefing by iDefense and Opterna [8].   In this 

case, authorities discovered an optical fiber tap (similar to those described in the 

aforementioned YouTube videos) on a portion of Verizon’s network leading to a 

mutual fund company.  The timing of the discovery coincided with the release of 

quarterly financial numbers. 

The desire to intercept in-transit data is not limited to criminal activity.  The 

press has reported that the United States Government recently spent $1 billion dollars to 

outfit the U.S.S. Jimmy Carter (a Seawolf class nuclear attack submarine) with the 

capability of tapping undersea fiber-optic links (2005).  Conspiracy theories abound as 
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to the cause of numerous undersea fiber-optic cable interruptions in the Middle East in 

2008. 

It is clear the U.S. Federal Government considers fiber tapping a potential threat 

to their own networks and has specified certain measures that must be taken to secure 

sensitive networks (NSTISSI-7003, AFMAN33-221).  Some of these measures include: 

encasing the fiber-optic cable in cement, installing the fiber-optic cable in a pressurized 

conduit, and continuous surveillance of the entire fiber-optic link.   The first method 

assumes an eavesdropper will not be able to gain access to the fiber-optic cable 

(protection but no monitoring). The second method assumes pressure fluctuations will 

signal attempts to gain access to the fiber-optic cable (monitoring but minimal to no 

protection).  The last method assumes any attempt to gain access to the fiber-optic cable 

will be directly observed so that appropriate measures can be taken to reduce the 

possibility of compromising sensitive information. 

Over the last few years a market has developed for products capable of 

detecting fiber-optic taps.  A few of the companies that make fiber-optic tap monitors 

include Eigenlight, Oyster Optics and Optnera.  Detection approaches include power 

analysis for single mode fiber, and speckle analysis for multimode fiber.  There are no 

known papers or patents proposing the use of polarized light for detecting fiber-optic 

based network tapping activity.  

The purpose of this research is to investigate the properties of light, as they are 

manifested in single mode fiber, as a means of insuring the integrity and security of the 

physical layer of a fiber-optic based communication link.  Specifically, the approach is 

to examine the behavior of certain properties of light in single mode fiber when the 
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geometry of the fiber is perturbed.  Fiber geometry is necessarily modified during the 

placement of optical taps.  The focus is on the polarization properties of light as they 

are found to be particularly sensitive to fiber geometry.   

This dissertation is organized as follows:  Chapter 2 contains a brief overview 

describing the nature of polarized light, how it is experimentally measured, and its 

representation in Stokes space. Chapter 3 contains a description of the birefringent 

properties of single mode fiber, along a description of the physical phenomena that give 

rise to fiber birefringence. Chapter 4 discusses optical-fiber tapping mechanisms. 

Chapter 5 documents the experimental configuration used for this dissertation, along 

with a description of the measured data and various representations of the measured 

data.  These representations lead to other methods and metrics that are helpful in 

identifying activity leading to the placement of optical taps. This chapter concludes by 

characterizing the task of detecting optical tapping events as a two-class (no tapping 

event / tapping event) supervised machine learning anomaly identification problem. 

Chapter 6 discusses the method for choosing the “best” subset of features for optical 

tapping identification.  Chapter 7 describes the three distributions behind Extreme 

Value Theory (EVT) and proposes using predictions from EVT to characterize the 

“natural” state of the fiber.   Chapter 8 discusses the results of a simple tree based 

algorithm on observed and on synthetically produced data.   Chapter 9 concludes this 

dissertation with a discussion of future work and a few summary remarks. 
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  The original contributions of this dissertation are: 

 The use of Extreme Value Theory to characterize the “natural” state of 

optical fiber.  

 The use of Extreme Value Theory as an automated domain expert for 

supervised learning problems. 

 The use of Ripley’s K function and specifically its variant, the L function, as 

an anomaly detector. 

 The use of the Hopkins test statistic as an anomaly detector. 

 The use of polarized light in single mode fiber as an ultra-sensitive fiber-

optic tapping sensor. 
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Chapter 2: Fundamentals of Polarized Light 

 

This chapter contains a brief description of polarized light and how it is 

experimentally measured and represented.  Essentially, the state of polarization is 

determined by the path traced out by the tip of the electric field vector over time. The 

state of polarization is described in terms of the Stokes parameters.  All states of 

polarization can be conveniently represented with the Stokes parameters mapped onto 

the Poincare sphere. Every location on the Poincare sphere represents a specific state of 

fully polarized light. Every location inside the sphere represents some state of partially 

polarized light.    

 

2.1 Fundamental Principles of Polarized Light 

Electromagnetic radiation consists of oscillating electric and magnetic fields.  

The electric field E and magnetic field H vectors are mutually perpendicular and are 

both orthogonal to the direction of propagation S (sometimes called the Poynting 

vector).  The state of polarization is determined by the path traced by the “tip” of the 

electric field vector E over time.  
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Assuming Cartesian coordinates, and that the direction of propagation S is along 

the positive z-axis (outward from the page), we can write the electric field E vector (for 

a quasi-monochromatic source) as the sum of two orthogonal components [9]. 

 

E0 = îE0x + ĵE0y 

 

Figure 1  Electric field vector E and orthogonal components E0x and E0y. 

 

This figure shows the electric field vector E and the two orthogonal components.  The 

relative amplitudes and phases of the two components determine the direction and path 

traced by the tip of the electric field vector over time – giving rise to various states of 

polarization. 

 

The corresponding wave function is: 

E = E0exp i(kz-wt) 

where k is the propagation constant,  z is the distance along the direction of 

propagation, w is the angular frequency and t is time.  

If   E0 is real, light is linearly polarized.  If E0 is complex, light is elliptically 

polarized.  If the real and imaginary parts of E0 are equal, light is circularly polarized.  
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The relative amplitudes and phases of the two orthogonal components determine the 

direction and path traced out by the tip of the electric field E over time.  This path is 

referred to as the state of polarization (SoP).  If the direction of rotation is clockwise, 

the SoP is said to be right-handed.  If the direction of rotation is counterclockwise, the 

SoP is said to be left-handed
2
.              

 

2.2 Stokes Parameters and the Poincare Sphere 

Although the above description of polarization is in terms of the electric field of 

the light wave, it is not convenient to measure polarization in such a manner.  

Fortunately, it is possible to measure the optical power of the light wave and derive the 

SoP in terms of the normalized Stokes polarization parameters (S1, S2, and S3).  The 

normalized Stokes parameters are determined from a set of intensity measurements 

taken after light is passed through various types of optical elements [10].  Stokes 

parameters can then be mapped onto the Poincare sphere (figure 2) providing a 

convenient way to describe any SoP. 

Each point on the sphere represents a unique SoP.  The region of the sphere 

where S3 = 0 (the “equator”) describes various orientations of linearly polarized light.  

Areas where S3 > 0 (the “northern hemisphere”) represent right-handed elliptically 

                                                 
2
 Various conventions exist for determining right-handedness or left-handedness.  As a 

result, the literature contains conflicting definitions of right and left-handedness.  The 

interpretation appears to depend on whether the person defining polarization is a 

physicist or electrical engineer. 
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polarized light, while areas where S3 < 0 (the “southern hemisphere”) represent left-

handed elliptically polarized light. 

The eccentricity of the ellipse depends on its “latitude” while the orientation of 

the ellipse depends on the “longitude.” As we move from the “equator” to the “poles” 

the polarization ellipticity decreases from 1 to 0.  The upper most point on the sphere 

(the “north pole”) represents right handed circularly polarized light, and the lower most 

point on the sphere (the “south pole”) represents left handed circularly polarized light. 

It should be noted that antipodal points on the Poincare sphere represent mutually 

orthogonal states of polarization.  Points inside the sphere represent partially polarized 

light.  Points on the sphere represent fully polarized light.  The origin of the sphere 

represents depolarized light. 

 

 

 

Figure 2 Poincare sphere. 

 

This figure shows the mapping of the Stokes parameters onto the Poincare sphere.  

Every SoP can be represented by a point on the surface of the sphere (fully polarized 

light) or inside the surface of the sphere (partially polarized light). 
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In terms of the Poincare sphere, the four (non-normalized) Stokes parameters are 

defined as [11]: 

             s0 = total power (polarized + unpolarized) 

             s1 = s0 cos(2γ)cos(2β)  

          s2 = s0 cos(2γ)sin(2β)  

                                    s3 = s0  sin(2γ) 

 

Figure 3 Poincare sphere geometry. 

 

The “normalized” Stokes parameters are given by: 

S1 = s1/s0 

S2 = s2/s0 

S3 = s3/s0 
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For fully polarized light, 

s0 = {(s1)
2
 + (s2)

2 
+ (s3)

2
}

1/2 

 

The degree of polarization (DoP) is given by: 

 

 

 

Example states of polarization along with their respective normalized Stokes 

parameters are illustrated in figure 4. 

 

Figure 4 States of polarization and their respective Stokes parameters. 
 

The above figure shows various states of polarization and their respective Stokes 

parameter values.  Figure 4(a) shows linearly polarized light in the horizontal direction 

(LHP), (b) shows linearly polarized light at 45
○
, (c) shows linearly polarized light at 

135
○
, (d) – (f) show elliptically polarized light of various orientations. 
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Some of the examples in figure 4 show Stokes parameters having negative 

values.  How is it possible to have negative values for the Stokes parameters if, as 

mentioned above, they are derived from intensity measurements? The intensity 

measures are made using a device called a polarimeter (figure 5).  The Stokes 

parameters are derived using sum and differences of the measured intensities.   

 

 

 

 

 

 

 

 

Figure 5 Polarimeter for measuring polarization. 

 

This figure illustrates the typical design of a polarimeter.  The optical elements 

facilitate the measurement of the intensity present in various components of the 

incoming signal. 

 

The incoming light wave is split into four components of equal intensity using a 

4-way beam splitter.  The light from each beam splitter is then passed through various 

optical elements (polarizers and waveplates).  Photodiodes (PD) measure the 4 different 

intensities (P0, P90, P45 and P45,λ/4).   
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The following sums and differences are calculated to arrive at the non-

normalized Stokes parameters: 

                                                            s0 = P0 + P90 

                                                            s1 = P0 – P90  

                                                            s2 = 2P+45 – s0  

                                                            s3 = 2P45,λ/4– s0  

 

Clearly, if the number of photons reaching the P90  photodiode is greater than the 

number of photons reaching the P0  photodiode,  the quantity s1  <  0, hence S1  < 0 

(recall S1 = s1/s0). 
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Chapter 3: Birefringent Properties of Single Mode Fiber 

 

Fiber birefringence is inherent to all fiber and arises from internal and external 

sources. It is the birefringent properties of optical-fiber that make tapping activity 

detectable. The behavior of polarization in optical fiber has been studied from various 

perspectives.  For example, there is an abundance of literature on polarization mode 

dispersion (PMD) and polarization dependent loss (PDL) as both of these tend to have 

detrimental effects on the quality of the communication channel.  A number of studies 

have attempted to model fiber birefringence and a few of these are mentioned in 

passing
3
.  The primary importance of this chapter is the studies that characterize the 

polarization fluctuations in fiber installed in a variety of environments.  These 

fluctuations arise from the birefringent properties of fiber. 

 

3.1 Internal Sources of Birefringence 

In single mode fiber above a specific wavelength only one mode of light 

propagates (HE11 mode).  This fundamental mode actually consists of two degenerate 

orthogonal sub-modes (HE11(x) and HE11(y)).  Because of the birefringent properties of 

                                                 
3
 This work treats the effects of birefringence on the properties of light as a stochastic 

process with minimal reliance on first principles. 
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single mode fiber these two sub-modes propagate at different velocities, resulting in the 

random coupling of energy between the two sub-modes.  The result is random 

fluctuations in the state of polarization as the light propagates through the fiber.  

Randomness aside, there is a characteristic distance along the fiber at which the state of 

polarization repeats. This distance is known as the beat length and is on the order of 

20m – 100m for single mode fiber in a laboratory environment [12]. 

If a “perfectly” isotropic fiber existed, the received state of polarization would 

remain unchanged from the transmitted state of polarization.  Intrinsic conditions that 

result in departure from perfectly isotropic conditions occur during the manufacturing 

process and become a permanent characteristic of the fiber (see section 4.1 for a 

discussion on fiber construction).  They include a non-circular core (geometric 

birefringence), non-symmetrical stress fields in the cladding (stress birefringence), 

micro bubbles and other imperfections [13].  Together, these produce anisotropic 

variations in the indices of refraction along the fiber.  These variations in the index of 

refraction lead to different propagation velocities for the two orthogonal sub-modes.  

 

Figure 6 Internal sources of fiber birefringence. 

 

This figure shows some of the intrinsic sources of fiber birefringence, largely 

attributable to the manufacturing process.  These sources give rise to anisotropic 

conditions causing changing indices of refraction and different propagation velocities. 
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3.2 External Sources of Birefringence 

External sources of birefringence include lateral stresses, bends, temperature 

variations [14] and external magnetic fields [15-16].  Birefringence is also a function of 

the wavelength of the light source and so any drift in the source wavelength will add to 

the overall birefringence properties of the fiber
4
.  An analysis of birefringence 

contributions (produced separately) by asymmetrical lateral stress, bends, twists, and 

electric/magnetic fields are given in [17].   An analysis of the combined effects is 

discussed in [18]. 

 

3.3 Models of Birefringence 

This dissertation treats SoP fluctuations as a stochastic process with minimal 

reliance on first principles.  However, birefringence modeling efforts include those 

based on random coupling theory [19-20], probability density functions of the Jones 

matrix [21], and other statistical characterizations [22-25].  The Jones matrix describes 

the rotation of the SoP of light as it propagates through an optical device. 

 

3.4 Time Evolving State of Polarization in Fiber 

A number of studies have been performed to characterize the magnitude and 

nature of evolving SoP in optical fiber.  Polarization fluctuations (in the form of PMD) 

have been studied for aerial cables, buried cables and for spooled cables in an 

environmentally controlled setting [26].  It was shown that a variation in fiber 

                                                 
4
 This phenomenon was easily observed in the laboratory when switching the light 

source from 1310 nm to 1550 nm.  
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temperature leads to PMD fluctuations and that the rate of fluctuation follows the rate 

of temperature change.  Aerial cables were more susceptible to PMD fluctuations.  This 

was attributed to the frequency of temperature changes.  Polarization fluctuations on 

long terrestrial links also confirmed strong dependence of polarization fluctuations with 

temperature change [27]. 

One of the first studies performed on buried fiber found polarization 

fluctuations to be slow, on the order of hours, with daily fluctuations generally between 

2
○ 

- 10
○
 as measured on the Poincare sphere [28-29].  This agrees well polarization 

behavior observed for this dissertation. 

Polarization fluctuations for underground fiber and submarine fiber found 

polarization fluctuations for submarine cable to be significantly larger than the 

fluctuations for underground fiber [30].  This was presumed to result from physical 

disturbances produced by wave action, and also to the fact a portion of the cable was 

exposed on the shoreline, and thus subject to greater temperature variations. 

Polarization fluctuations studies were performed in a long-haul terrestrial (1800 

km) AT&T WDM link between Florida and Louisiana [31].  Polarization behavior was 

characterized as “elastic” (a tendency to return to the original state of polarization) or 

“inelastic” (no such tendency to return to the original state of polarization), with a 

“transient” event defined as a greater than 10
○ 

rotation on the Poincare sphere within 

100 msec.  Many of the transients were attributed to human activity and to maintenance 

activity on adjacent fiber cables.   
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PMD studies of two fibers installed in the same physical cable found that 

polarization drift is remarkably similar between the two fibers [32]
5
.  This is not to say 

the SoP was the same in the two fibers, but rather the magnitude and rate of change of 

the SoP in the two fibers were similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
5
 This observation can be used to provide further discrimination between non-

threatening fiber perturbations (maintenance activity) and suspicious fiber perturbations 

(optical tapping). 
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Chapter 4: Fiber Optic Tapping Methods  

 

Unlike copper cables, fiber optical cables produce no unwanted or 

compromising emissions.  Interception of the data stream requires access to the fiber-

optic cable.   The general technique for intercepting data in fiber optic networks involve 

coupling a portion of the light pulse from the network fiber to an eavesdropping fiber or 

eavesdropping photodetector using one of the following mechanisms: fiber bending, 

optical splitting,  evanescent coupling, or scattering [33].  All techniques involve 

removing some portion of the fiber cable jacket.  Previously mentioned YouTube video 

references of fiber optic tapping demonstrations all begin with the fiber jacket already 

removed.  Jacket removal is required prior activity.  It is this activity that is detectable 

through polarization monitoring.  This activity is detectable prior to the actual 

placement of the optical tapping device. 

 

4.1 Fiber Construction 

The figure below illustrates the most important components of the fiber cable.  

In single mode fiber (SMF), the purpose of the cladding is to keep the information 

(light) confined to the core.  It is able to do this because the index of refraction of the 
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cladding is less than that of the core resulting in the confinement of light to the core by 

way of total internal reflection (Snell’s Law). 

 

 

 

Figure 7 Basic construction of fiber optic cable 

 

In order to “tap” transmissions, light must be coupled out of the core to another 

device.  What follows is a description of typical methods used to couple light out of the 

fiber core. 

 

4.2 Tapping Methods 

In-transit data propagates in the core of the fiber cable.  In order to gain access 

to the transmitted information it is necessary to remove the outer jacket followed by 

removal of the cladding by a polishing process.   
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4.2.1 Fiber Bending 

Light is coupled out of the core when the bend radius reaches a critical angle.  

At this radius, total internal reflection is compromised and some portion of the light is 

emitted from the core.  The emitted light can then be detected by a suitably placed 

optical detector. 

 

 

Figure 8 Optical tapping via fiber bending. 

 

 

4.2.2 Optical Splitting / Evanescent Coupling 

These two techniques are essentially the same.  In the case of optical splitting, 

the original path is cut and a pre-manufactured device (splitter) is inserted into the path.  

Clearly, the act of cutting the path is easily detectable as no flow of information is 

possible immediately after the cut occurs.   

In the case of evanescent coupling, the cladding is polished close to the core and 

the tapping fiber is placed next to the core resulting in partial capture of light. 

 

 

 

Figure 9 Optical tapping via splitting/coupling. 
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4.2.3 Scattering 

This method involves using a laser to etch a Fiber Bragg grating onto the core of 

the fiber.   Some portion of the light is then scattered out from the core and can then be 

detected by a suitably placed optical detector. 

 

 

 

 

 

Figure 10 Optical tapping via scattering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scattered light 
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Chapter 5: Fiber Optic Tap Detection – Problem Formulation  

 

This chapter begins by describing the experimental setup used for this 

dissertation.  This is followed by a discussion of a few examples of data obtained from 

several sets of extended observations.  Examples are given for undisturbed fiber as well 

as for perturbed fiber.  It will become evident that the attribute of light most sensitive 

to the environment is the state of polarization.  This chapter concludes with a 

discussion of additional representations of the measured data and various features that 

can be derived from those representations.  New uses for some long established metrics 

are proposed. Some of the metrics are widely used for other purposes in disciplines 

such as astronomy, botany, ecology, epidemiology and forestry. The purpose is to 

construct a set of features that in some way react to the presence of unusual 

polarization fluctuations. 

 

5.1 Experimental Configuration 

The experimental components for this work consisted of an Agilent 8509C 

lightwave polarization analyzer, an Agilent 8169A polarization controller (not visible),  

and a 100m “breakout” cable containing multiple strands of single mode fiber (figure 

11).  The source laser (λ=1550nm) was located inside of the analyzer.  The white 
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arrows show the path of the light from the polarization analyzer, through the short 

(orange) cable, into the polarization controller, through the breakout cable, and back to 

the polarization analyzer. 

 

 

 

Figure 11 Equipment used for polarization measurements. 

 

 The black breakout cable was installed under the raised floor of the TCOM lab.  

The breakout cable was placed in a cable tray for part of the path and directly on the 

floor for the remainder of the path.  It was not affixed to any structure.  The cable ran 

the length of the raised floor before returning to the instrument area. One of the internal 

single mode fiber cables was attached to the polarization analyzer.  Air handlers 

produced forced air movement under the raised floor during all data acquisition periods.  

A nearby air handler produced small but continuous table vibrations. 
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Measurements were gathered at fifteen (15) second intervals. The following 

data were recorded at each interval: 

1) The power P of the received signal (this is essentially s0) 

2) The degree of polarization DoP of the received signal (0%-100%) 

3) The state of polarization SoP of the received signal (expressed in terms of 

the normalized Stokes parameters - S1, S2, S3) 

 

5.2 Visualization of the Raw Features 

The following figures show polarization drift for undisturbed fiber over a period 

of approximately 68 hours (16,381 measurements taken at 15 second intervals).  The 

polarization drift is relatively slow with little excursion on the Poincare sphere. 

   

 

 

Figure 12 Stokes measurements for unperturbed fiber – case #1. 
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Another 68 hour collection of data shows much the same behavior.   

Polarization drift is relatively slow with little excursion on the Poincare sphere. 

 

 

Figure 13 Stokes measurements for unperturbed fiber – case #2. 

 

These following graphs show the degree of polarization DoP for both cases 

discussed above (figures 12 and 13).  Notice that in both cases the DoP remains close to 

100%.  Relative to the DoP, the SoP is far more sensitive to environmental conditions. 

 

 

Figure 14  Degree of polarization measurements for unperturbed fiber. 

(Case #1 [left] and Case #2 [right]) 
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The following graphs show the SoP and DoP response to physical perturbations 

of the fiber.  Again, note how much more sensitive the SoP (figure 15) is to these 

perturbations as compared to the DoP (figure 16). 

 

 

 

Figure 15 Stokes measurements for perturbed fiber. 

 

 

 

Figure 16 Degree of polarization measurements for perturbed fiber. 

 

This figure shows that the degree of polarization changes very little even when the fiber 

is perturbed. 
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The relationship between SoP, DoP and P (aka S0) were discussed in chapter 2. 

A key empirical observation is that the degree of polarization DoP remains close to 

100% for both cases (undisturbed and perturbed).  Although not shown, the power 

received P (S0) changed very little for the undisturbed and perturbed cases.  Essentially, 

there is little information in either of these attributes. 

Recalling for a moment the expression that relates the Stokes parameters to the 

degree of polarization; 

 

 

 

if DoP and S0 change very little, a change in one Stokes parameter requires a change in 

at least one other Stokes parameter and in all likelihood, a change in the other two 

Stokes parameters.  One special case must be considered and that occurs when a 

disturbance causes one of the Stokes parameters to change sign but not magnitude.  

Strictly speaking, neither of the other two parameters is required to change. Random 

perturbations resulting in such a scenario are thought to be exceedingly rare.   

Given any two normalized Stokes parameters, the magnitude of the remaining 

normalized Stokes parameter is largely determined. For example, linearly polarized 

light in the horizontal direction is represented by normalized Stokes parameters [S1, S2, 

S3] = [1 0 0].  Consider an external disturbance that causes S1 to suddenly change to 

0.500.  Assuming that either S2 or S3 do not both change and, recalling that the DoP 

remains very near 100%, either S2 or S3 must change to ± 0.500.  Again, it is far more 
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probable that both S2 and S3 undergo change.  For this reason, an observation will be 

labeled as anomalous if all three Stokes parameters change by a “substantial” amount.  

The notion of “substantial” will be developed in Chapter 7 with the help of Extreme 

Value Theory.   

 

5.3 Visualization of Raw Feature Transformations 

Visualizing the data in different forms provide some hints as to what metrics 

may be useful for detecting tapping activity.  This section describes some of the 

different visualizations and mappings of the raw features.  These visualizations suggest 

the construction and development of additional features.  These features come from 

ordinary statistics, point process statistics, and spatial statistics – although the latter two 

share many common elements. 

 

5.3.1 First Differences (1D) and Features from Ordinary Statistics 

In time series analysis and forecasting, a common preprocessing step is to 

remove any trend in the data and model the resulting time series.  Trends can often be 

removed by taking first differences.  In fact, a stationary stochastic process can often be 

produced using the first differences of the original data [34].  Stationary stochastic 

processes are a special type of stochastic process, suggesting that the generating process 

is in a state of equilibrium. 

Below are some examples of first differences of the Stokes parameters using the 

same data as shown in the examples section 5.2.  The vertical scale in figure 17 is 
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highly magnified to show some amount of minutia
6
.   The undisturbed fiber case is case 

#1 and the perturbed fiber case is case #2. 

 

 

Figure 17 Case #1 - First Differences - undisturbed fiber (highly magnified). 

 

 

 

Figure 18 Case #1 - First Differences - undisturbed fiber (slightly magnified). 

                                                 
6
 The “natural” scale for the normalized Stokes parameters is from -1 to 1. 
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The next two figures show the measures Stokes parameters (figure 19) and the 

first differences (figure 20).  The vertical scale in figure 20 is slightly magnified. 

 

Figure 19 Case #2 - Normalized Stokes parameters - perturbed fiber.  

(No magnification) 

 

 

Figure 20 Case #2 - First differences - perturbed fiber. 

(Slightly magnified) 
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The polarization measurements obtained can be thought of a sampled points 

generated from a continuous function.  What arouses suspicion of a physical fiber 

disturbance is the presence of some sort of discontinuity in the measured signal.  

Discontinuity is well defined for continuous functions but not so well defined for a set 

of sampled data.  The definition for discontinuity as it is used here is any “unusually 

large” change from one interval to the next.  As a reminder,  the notion of “unusually 

large” will be developed in Chapter 7 with the assistance of Extreme Value Theory. 

Measures from ordinary statistics include the skewness and kurtosis of a 

distribution.  The skewness of a distribution is strongly affected by its symmetry.  

Skewness may be negative, positive, or undefined.  Distributions that are nearly 

symmetric will have skewness close to zero.  The use of skewness to identify anomalies 

is not new.  A recent method called OUTSKEWER identifies outliers based on the 

skewness of a distribution as extremal values are removed one at a time [35].  

Skewness will be close to 0 for a normal distribution. 

The kurtosis of a distribution has long been used as an outlier detector [36].  

The kurtosis of a distribution is influenced by the tails of the distribution.  Kurtosis will 

be close to 3 for a normal distribution. 

Using the data depicted in figure 20 (perturbed fiber) and a moving window 

with a window size of 50 observations (50 points in the distribution), the graphs of 

skewness and kurtosis are shown in figures 21 and 22, respectively.   
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Figure 21 First differences - Skewness (perturbed fiber). 

 

 

Figure 22 First differences - Kurtosis (perturbed fiber). 

 

The presence of the suspected anomaly as it enters the window of 50 points is 

clearly visible as a sudden change in the skewness and kurtosis of the distribution.  

Both the skewness and kurtosis remain elevated as long as this single anomaly remains 

in the window under investigation.  It seems obvious that both metrics demonstrate 
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some potential for identifying the first occurrence of an anomaly in the observation 

window.  The skewness and kurtosis of the window distribution will be added to the list 

of features for anomaly detection. 

 

5.3.2 First Differences (2D) and Features from Point Process Statistics 

Another way to visualize first differences is with scatter plots of the first 

differences:   S2 vs. S1, S3 vs. S1 and S3 vs. S2.  The following three graphs show scatter 

plots of the first differences for undisturbed fiber. 

 

 

 

Figure 23 Scatter plot of the first differences - undisturbed fiber. 

 

The following three graphs show scatter plots of the first differences for perturbed 

fiber. 

 

 

Figure 24 Scatter plot of the first differences - perturbed fiber. 
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Methods for modeling point processes are used in astronomy [37], ecology [38], 

epidemiology [39], forestry [40] and other disciplines.  There are a plethora of methods, 

most of which are beyond the scope of this work.  As expected, there are the customary 

characterizations for point processes as there are for ordinary data (e.g., stationarity).  A 

simple test of stationarity for point processes is based on the behavior of the first order 

intensity λ measure.  The standard estimator of intensity λ is defined as the number of 

points present in a window divided by the size of the window (area for 2D or volume 

for 3D).  Measures involving the degree of dependency amongst events in space are 

known as spatial autocorrelation measures.  Measures of spatial autocorrelation include 

y include Morans’s I (41), Geary’s c [42], and others.   

Two summary characteristics of interest in this dissertation are Ripley’s K 

function [43], and its variant, the L function.  These two functions are used to detect 

departure from spatial homogeneity, but actually reveal the same information.  The L 

function appears to be preferred over the K function due to some graphical display 

advantages.  The K function will be discussed first and then the relationship between 

the K and L functions will be described. 

Ripley’s K function is a second-order statistic and is commonly used to identify 

the distance at which clustering occurs.  Ripley’s K function characterizes the average 

number of points found within some distance of a chosen point. A collection of points 

in space may exhibit clustering, regularity, or complete spatial randomness (CSR).  

Clustering is easy to visualize because the space appears to consist of one or more 

groups of points separated away from other points.  Regularity is also easy to imagine 

because the points appear to comprise a grid with regular spacing between the 
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individual points.  Complete spatial randomness is characterized by the homogeneous 

Poisson point process. 

A homogeneous Poisson process N is characterized by two fundamental 

properties [44]: 

(1) The number of points of N in any bounded set B follows a Poisson 

distribution with mean λ*v(B) for some constant λ (λ is known as the 

intensity or point density and defines the mean number of points in a unit 

volume v).  This is known as the Poisson distribution of point counts. 

(2) The numbers of points of N in k disjoint sets form k independent random 

variables, for arbitrary k.  This is known as the completely random property. 

 

The mean number of points to be found in a unit volume is given by: 

λ*v(B) = E(N(B)) 

 

The K function is defined as [45]: 

 

K(s) = 1/(λ
2
Ar)∑i≠j∑Is(dij) 

 

where Ar is the area of the region of interest, dij is the distance between the i
th

 and j
th

 

events in the region of interest, and Is(dij) is an indicator function which equals 1 if dij  ≤  

s and is 0 otherwise.  The distance s is usually limited to no more than 0.5 times the 

length of the shorter side of the rectangular area under study.   Ripley’s K(s) has the 

following interpretations: 
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If K(s) =  s
2
  then Poisson process 

If K(s) >  s
2
  then Cluster process 

If K(s) <  s
2
  then Regular process 

 

The result is represented by a graph of K(s) vs. s.   

 

The L function is defined as: 

 

L(s) =         – s 

 

L(s) has the following interpretations: 

 

If L(s) =    then Poisson process 

If L(s) >    then Cluster process 

If L(s) <    then Regular process 

 

The result is represented as a graph of L(s) vs. s.  The graph of the L function has the 

advantage of showing a Poisson distributed point process as a horizontal line L(s) = 0. 

Examples of how these functions have been used include the study of 

neoplasms in humans and dogs in Michigan [46], and the spatial clustering of disease in 

poultry flocks in Ireland [47].  The first study used the K function to conclude that 

spatial aggregations of neoplasms in the two species were not independent of one 

another.  The second study used the K function to identify spatial clustering of poultry 
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flocks affected with the Newcastle disease in Northern Ireland.  In practice, it is 

common to determine the K function profiles for a control population and diseased 

population and graph the difference between the two functions as a function of distance 

s. 

The behavior of these two functions will be examined using synthetically 

generated data.  The generated data consist of 50 datasets produced by randomly 

selecting 50 locations in the x-y plane.  The randomly generated points are confined to 

the window bounded by {x: 0 ≤ x ≤ 1} and {y: 0 ≤ y ≤ 1}.   In this case, the values of s 

will range from 0.01 to 0.50 in increments of 0.01 (in keeping with the practice of 

limiting the range of s to one-half the size of the study region).  The goal here is not 

necessarily to achieve a Poission distributed set of points, but rather to observe the 

behavior of the two functions when an anomalous data point enters the observation 

window. Several of the randomly generated datasets are shown in figure 25.  The 

resulting K and L function profiles for the 50 randomly generated datasets is shown in 

figure 26.     Both functions tend to suggest a regular distribution of points rather than a 

tendency to cluster. 

 

 

 

 

 

 

 



39 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Random Distribution of Points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Random Distribution of Points

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

s

L
(s

)

L-Function Profile

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Random Distribution of Points

 

 

 

 

 

  

(No spatial anomaly) 

 

 

Figure 26 K and L function profiles for randomly distributed data. 

(No spatial anomaly) 

 

The following figure shows the L function profile for the 50 randomly generated 

datasets and for these same datasets but with one of the data points moved to an 

“anomalous position” of (x, y) = (1.5, 1.5).  The reason why the distance s is extended 

(figure 27) is due to the fact the region of investigation has been expanded because of 

the location of the anomalous data point. 
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Figure 25 Sample randomly generated datasets. 
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.  

Figure 27  The L-function profile for normal (blue) and abnormal (green) 

datasets. 

(Spatial anomaly present) 

 

The profile for the L function shows strong clustering for datasets containing an 

anomalous data point.   
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the presence of an anomalous data point, the expectation is that the function profiles 

will show evidence of clustering as shown in figure 27.   

It seems apparent that both functions demonstrate some potential for identifying 

the first occurrence of an anomaly in the observation window.  Since both functions 

reveal the same information, only one of these functions is required.  The maximum 

value of the L function will be added to the list of potential features.  The L function 

will be calculated after all points in the observation window are mapped into the 

following space:  {x: -1 ≤ x ≤ 1} and {y: -1 ≤ y ≤ 1}. 

 

5.3.3 First Differences (2D) and Features from Spatial Statistics 

Another way to visualize the data is by using 3D scatter plots of the first 

differences for S1, S2, and S3.  First differences for undisturbed fiber are shown in figure 

28.  The first differences for perturbed fiber are shown in figure 29. 

 

Figure 28 3D first differences – undisturbed fiber. 
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Figure 29 3D first differences - perturbed fiber. 

 

The Hopkins statistic h [48] is another test statistic for assessing the presence of 

spatial regularity, spatial randomness, and spatial clustering.  The null hypothesis H0  is: 

the spatial pattern is generated by a Poisson process.  The value of the test statistic h 

ranges from 0 to 1, with values < 0.50 suggesting spatial regularity, values = 0.50 

suggesting randomness (no structure), and values > 0.50 suggesting some measure of 

clustering.  Values close to 1.0 suggest strong clustering. 

The Hopkins statistic h has an n-dimensional definition.  It is possible to apply 
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reason is to permit a direct comparison of the anomaly detection capability of the 2D 
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The Hopkins statistic h is calculated as follows:  Let Xn be a collection of n 

points in 2D space.  Let Ym be a collection of m randomly location points in the same 

2D space, with m<<n
7
.  Let uj be the minimum distance from Yj  to the nearest point in 

Xn, and let wj be the minimum distance from a randomly selected point in Xn to its 

nearest point.   The Hopkins test h statistic in 2-dimensional space is defined as 

follows: 

h = 

   
    

         
   

 

In practice, the Hopkins statistic h calculated as the mean value after a number of 

iterations.  Under the null hypothesis (points are generated by a Poisson process) h will 

be beta distributed with parameters (m, m).   

The notion of extending the usefulness of the Hopkins test statistic beyond 

assessing the spatial distribution of points includes an estimate of the appropriate 

number of clusters present in spatial patterns that contain multiple sub-clusters [49].  In 

this dissertation, the usefulness of the Hopkins statistic is redefined to signify the 

presence of an anomalous event. A point distant from all other points expands the 

region under investigation making the previously existing points appear to cluster.  The 

expectation is a sudden elevation of the Hopkins statistic h to nearly 1.  This is similar 

to what happens with the K and L functions.   

Consider the following random distribution of 50 points in 2D space.  Visual 

inspection of this set of points does not strongly suggest the presence of clustering.  The 

                                                 
7
 The usual practice is to choose m = 0.1n. 
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Hopkins test statistic h for this arrangement of point locations is 0.44 (mean value after 

1000 iterations). 

 

Figure 30 Example of the distribution of the Hopkins statistic.  

(No spatial anomaly) 
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Because the observation window has expanded, casual inspection now suggests the 

presence of one emerging cluster and one data point that seems to be unusually distance 

from the majority of points (the cluster).  The Hopkins statistic for this arrangement of 

point locations is 0.65 (mean value after 1000 iterations). 
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Figure 31 Example of the distribution of the Hopkins statistic. 

(One moderately anomalous event) 

 

 

Finally, suppose the point is moved from (x = 1.2, y = 1.2) to (x = 1.5, y = 1.5).  

This makes the point more distant and consequently “more” anomalous.   The Hopkins 

test statistic for this arrangement of point locations is now 0.83. 

 

 

Figure 32 Example of the distribution of the Hopkins statistic.  

(One severely anomalous event) 
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Consider the behavior of the Hopkins statistic when applied to a sliding 

window.   Two cases are of interest: 

(1) The anomalous set of points persist for a longer period of time that is 

spanned by the sliding window 

(2) The anomalous set of points persist for a period of time that is shorter than 

the time that is spanned by the sliding window 

 

The first case is illustrated using a sequence of measurements shown in figure 

33.   Let the window size be 50 samples and let the period spanned by the anomalous 

sequence be 185 intervals, beginning with interval 8586 (figure 33). The Hopkins 

statistics will be calculated using the spatial arrangement created by a scatter plot of the 

S3 first differences vs. the S1 first differences, taken 50 points at a time.   

 

Figure 33 Stokes measurements with synthetically introduced anomalies. 

 

0 5000 10000 15000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Stokes Parameters

Time Interval

N
o
rm

a
liz

e
d
 S

to
k
e
s
 P

a
ra

m
e
te

rs

 

 

s1(blue), s2(red), s3(green)

Persistent fiber perturbation 



47 

The graph in figure 34 shows the calculated Hopkins statistic prior to the sliding 

window entering the anomalous sequence A, while the window is fully engulfed by 

anomalous sequence B, and when the window is exiting the anomalous sequence C.  

The first anomalous event results in a sudden change in the Hopkins statistic – 

suggesting the presence of clustering (defined here as an anomaly).  During the period 

when the window is fully engulfed by the anomalous events, the Hopkins statistic 

eventually returns to values suggesting no clustering present (the exact behavior will 

depend on the distribution of points).  Essentially, a prolonged anomalous period 

(relative to past behavior) becomes the “new normal” and will diminish the 

discriminating nature of this statistic.  When exiting the anomalous sequence, the 

Hopkins statistic again rises and then eventually returns to a state that suggests the 

absence of clustering. 

 

 

Figure 34 Hopkins statistic profile for long term anomalies. 
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As another example, consider much smaller perturbations with a shorter 

duration (shorter than the window size). The perturbations start at interval t = 1280 

(figure 35).  The first anomalous event results in a sudden change in the Hopkins 

statistic – suggesting the presence of clustering (figure 36).  During the period where 

the window is larger than the anomalous sequence, the Hopkins statistic decreases but 

remains somewhat elevated.  The Hopkins statistic suddenly decreases as all anomalous 

events exit the window.  The Hopkins statistic tends to maintain its discriminating 

nature for short term anomalies. 

 

Figure 35 Stokes measurements with synthetically introduced anomalies. 

 

0 5000 10000 15000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Stokes Parameters

Time Interval

N
o
rm

a
liz

e
d
 S

to
k
e
s
 P

a
ra

m
e
te

rs

 

 

s1(blue), s2(red), s3(green)

Persistent fiber perturbation 



49 

 

Figure 36 Hopkins statistic profile for short term anomalies. 

 

 

From these examples, it seems apparent that the Hopkins statistic can be used as 
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Anomaly detection
8
 techniques fall into two major categories:  detection based 

on supervised learning, and detection based on unsupervised learning.  Tools include 

neural networks (e.g., replicator neural networks [51] and self-organizing maps), one-

class support vector machines, tree methods (e.g., isolation forest [52]), and many 

others.  So many methods and approaches exist that there is even a considerable volume 

of survey literature [53-56].  

Methods are often developed for specific application domains or specific classes 

of problems and may not be perform well in other application domains.  Examples of 

application domains include:  hyperspectral imagery for target detection [57], network 

intrusion detection [58-61], trajectory-based anomaly identification [62], VHF radar 

anomaly detection for oceanography applications [63], and others. 

For some application domains, anomalous data is not considered to be of value 

but a nuisance, and is removed from the collection as part of a data preprocessing task. 

These kinds of anomalies are usually referred to as outliers. 

 

 

 

 

 

 

 

 

                                                 
8
 Anomaly detection is also referred to as novelty detection or outlier detection. 
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Chapter 6: Feature Selection 

 

The previous chapter produced a number of features.  Each of these appears to 

have some ability to identify the presence of anomalous behavior. Some features may 

prove to be better “predictors” than others.  This chapter discusses the method for 

selecting the features that have the greatest potential for producing a high performing 

anomaly detector.  The method of choice is the ReliefF algorithm.  Examples of feature 

selection using the ReliefF algorithm will be given for classification and regression 

problems. 

 

6.1 Feature Selection – Common Approaches 

One of the tasks at hand in learning any concept is to choose the subset of 

features that appear to be the best “predictors” of the target value, and to discard 

features that do not appear to be of significant predictive value.  One of the benefits of 

eliminating these so called low-value features is a reduction in computational 

complexity.  This translates to quicker runtimes and results.  Elimination of low-value 
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features can also help the generalization characteristics and overall performance of the 

resulting algorithm [64-65]
9
.  

There are many methods of performing feature selection.  They include myopic 

and non-myopic methods.  Myopic approaches rank feature importance independently 

of other features. Essentially, feature independence is assumed as far as the target value 

is concerned. Non-myopic approaches rank feature selection after considering feature 

interactions. Myopic methods include statistical hypothesis testing, class separability 

measures (divergence, Bhattacharyya distance), scatter matrices (within-class scatter, 

between-class scatter) [67], and information theoretic measures (information gain, gain-

ratio, minimum description length) [68].   The J-measure is sometimes used to assess 

the importance of a particular feature value. 

Caution should be exercised when using myopic feature selection methods.  A 

feature is often considered to be of low-value if it is highly correlated with another 

feature.   The common belief is that selecting one feature is sufficient because no 

further information can be teased out from the highly correlated feature.  Several 

interesting example have been given that counter this and some other widely believed 

practices regarding feature selection [69].  The examples demonstrate the following: 

1)  Noise reduction and consequently better class separation may be obtained by 

adding variables that are presumably redundant. 

                                                 
9
 This appears to be somewhat counterintuitive, especially in context of the information 

theoretic “data processing inequality theorem” [66] which loosely states:  “no clever 

manipulation of the data can improve the inferences that can be made from the data.”  
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2)  Very high feature correlation (or anti-correlation) does not mean the absence 

of variable complementarity.  However, perfectly correlated features are truly 

redundant. 

3)  A feature that is completely useless by itself can provide a significant 

performance improvement when taken with others. 

4)  Two features that are useless by themselves can be useful together. 

 

Feature selection also includes filter methods and wrapper methods.  Filter 

methods select subsets of variables as a pre-processing step without regard to concept 

to be learned.  The selection criteria are independent of the problem at hand and do not 

consider the target value. Wrapper methods consider the target value and try different 

collections of features to see which subset performs best.  This can be dependent on the 

learning algorithm as well as the concept to be learned.  Wrapper methods are more 

complex since feature selection depends on solving the problem at hand many times.  

The approach used for this dissertation is the non-myopic assessment provided by the 

ReliefF algorithm. 

     

6.2 The Relief/ReliefF Algorithms 

The original Relief algorithm [70] provides a non-myopic method of assessing 

feature importance for binary classification problems.  The Relief algorithm takes into 

consideration not only the difference in feature values and classes, but also the distance 

between the feature vectors.  By taking the distance between feature vectors into 

account, the contribution of each feature is assessed in a non-myopic manner.  The 
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basic idea is to assign a relative weight to each feature indicating the feature’s value to 

the concept to be learned:  the higher the relative weight, the higher value the feature is 

to learning the concept.  Features with relative weights < 0 are considered to be 

irrelevant to the concept to be learned. 

The original Relief algorithm is as follows:  Given a random sample of m 

feature vectors from a dataset having n feature vectors and a features, assign a relative 

quality measure (weight) -1 ≤  W ≤ 1 to each feature according to the following: 

1.  assign all features to have a weight W of 0 

2. select one of the feature vectors at random 

3. find the nearest feature vector from the same class H and the nearest feature 

vector from  the other class M 

4. for each feature,  calculate/update the weight W of the feature  

5. go to step 2 until all m samples are processed 

 

The weight W of each feature is calculated and updated according to the following: 

W = W – diff(feature,instance,H)/m + diff(feature,instance,M)/m 

where, diff(feature, instance, H or M) has several different definitions depending on 

whether the feature is discrete or continuous. 

 

The presence of noise (either in classification or in the feature values 

themselves) can affect the determination of the nearest feature vector.  The original 

Relief algorithm is very sensitive to noise.   An extension to the Relief algorithm, 

known as ReliefF [71], is less sensitive to noise and will even handle cases where some 
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feature values are missing
10

.  The effect of noise is mitigated by taking not just the 

nearest feature vector from both classes, but the nearest k feature vectors from both 

classes where k   [5, 20]. 

 

6.2.1 Feature Section for Classification  

As an example of ReliefF, consider a feature vector x consisting of 5 features 

whose values are drawn at random from beta distributions having the following 

parameters: (4.6, 2.0), (5.3, 2.1), (9.8, 2.8), (2.7, 2.1) and (8.7, 9.8).  Values generated 

from the distributions have range [0, 1].  Assume that class membership is determined 

according to the unknown rule: 

 

If the value of feature 1 < 0.4360 and the value of feature 4 > 0.8620  class 1, 

Otherwise  class 2 

 

Clearly, features 2, 3, and 5 are irrelevant when it comes to determining class 

membership.  The ReliefF algorithm (k=5) assessed feature importance according to the 

following relative weights (figure 37): 

                                                 
10

 A theoretical and empirical comparison of the various Relief algorithms is given in 

[72]. 
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Figure 37  Example feature selection using the ReliefF algorithm – Classification. 

 

Although no concept has been learned, ReliefF correctly determined that features 1 and 

4 were more relevant to learning the concept than were features 2, 3, and 5. 
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1).  Let the unknown concept to be learned be defined as follows: 

 

Target = feature(1)
2.5

 + feature(4) – 2*feature(9) 

 

Clearly, features 2, 3, 5, 6, 7, 8, and 10 are irrelevant to the concept.  The ReliefF 
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Figure 38  Example feature selection using the ReliefF algorithm – Regression. 

 

 

Again, although no concept has been learned, ReliefF determined that features 1, 4 and 

9 were more relevant to learning the concept than were the remaining features.  (Recall 

that feature importance scores < 0 are considered to come from features that are 

irrelevant to the concept). 
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developed in Chapter 5. 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Feature Number

F
e
a
tu

re
 I

m
p
o
rt

a
n
c
e

RELIEFF Feature Ranking



58 

 

 

 

 

Chapter 7: The Domain Expert – Extreme Value Theory 

 

One of the important goals in this dissertation is to identify a small subset of 

events that are substantially different from the majority of events, without defining 

what “substantially different” means a priori.  The approach is to learn the majority 

behavior from the data so that aberrations in the data are easily identified.  For this 

application it is assumed that aberrations are extremely rare.   

The two main learning methods are supervised learning and unsupervised 

learning.  For binary classification tasks, supervised learning involves the labeling of 

each event (usually performed by a domain expert) as being in member of one class or 

the other class.   Supervised learning is tedious in that the domain expert must manually 

examine and label each event.  Unsupervised learning does not require class assignment 

by a domain expert, but attempts to classify events based either on measures of 

similarity or measures of dissimilarity (distance measures, clustering methods, forest 

methods, and one-class support vector machines).  The approach taken here is to treat 

this problem as a supervised learning problem using Extreme Value Theory (EVT) to 

characterize the state of the undisturbed fiber and then to transition to the role of the 

domain expert (automated). 
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7.1 Classical Extreme Value Theory (EVT) 

Extreme value theory [73] is somewhat unique in that it is used to model events 

that are more extreme than the events observed in the past
11

.  EVT is concerned with 

the study of asymptotic behavior of extreme and consequently, rare events.  In its most 

straight forward form, EVT provides a method of probabilistically predicting the 

occurrence of events having magnitudes that are less than or greater than some 

threshold
12

.  Generally, the threshold is usually lower or higher than the magnitude of 

any previously recorded event.  EVT is used in the field of hydrology to predict the 

probability and severity of flooding events [74], and in climatology to predict the 

probability and severity of rainfall events [75].  It is also used in financial risk 

management analysis, value at risk analysis and other applications.   

EVT focuses on the statistical behavior of,  

Mi = max{X1, . . ., Xn}i 

where X1, . . ., Xn is sequence of independent random variables having a common 

distribution function F. 

In practice, X1, . . ., Xn are a sequence of observations (or measurements) taken 

at regular time intervals, while Mi is the maximum of the i
th

 sequence.  A common 

example would be the daily rainfall amounts (X1, . . ., X365) for some geographical 

                                                 
11

 Gaussian methods tend to model central tendency of distributions.  EVT models the 

tails of distributions. 

12
 EVT is also used to predict probabilities of minimal magnitude events.  This is 

commonly found in applications of structural analysis and failure where the minimal 

behavior of some structural element is of interest.   
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location, with Mi being the annual maximum rainfall for the same geographical 

location.  The Extremal Types Theorem
13

 says the following:   

If sequences of constants an  > 0 and bn exist such that: 

 

Pr{(Mn – bn)/an ≤ z}  G (z)  as n  ∞ 

 

where G is a non-degenerate distribution function
14

, then G belongs to one of the 

following distributions: 

 

I:               G(z) = exp{ -exp [-(z-b)/a]}  for  -       

 

II:              G(z) =     0                                 for  z   

                                 exp{ -[(z-b)/a -α
}        for  z    

 

III:            G(z) =    exp{ -[-(z-b)/a]
-α

}      for  z    

                                 1                                 for z     

 

for parameters a                                     II and III, α       

In other words, the rescaled sample maxima converge in distribution to a 

variable having a distribution within one of the above mentioned families.  Each of the 

above distributions (Types I, II, and III) are known as extreme value distributions.  

                                                 
13

 This theorem is also known as the Fisher-Tippett-Gnedenko theorem. 

14
 A degenerate distribution is:  Pr(X=k) = 1 when k = x and 0 when k ≠ x.  In physics 

this is a translated Dirac delta function. 
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Type I is known as the Gumbel distribution, type II is known as the Frechet 

distribution, and type III is known as the Weibull distribution.  A significant 

observation is that the three types of extreme value distributions are the only possible 

limits for the distributions of the maximums regardless of the parent distribution F. 

These three types of distributions can be combined into a single distribution 

known as the Generalized Extreme Value distribution: 

 

G(z)  = exp{ -[1 +            -1/ } 

where,  

{z : 1 + 
      

 
   ,                         

 

The scale parameter    shape parameter    and location parameter    are estimated from 

the data using maximum likelihood methods.  G(z) represents a distribution of the 

maxima (or minima, depending on the problem).  It is now possible to ask about the 

probability of observing a value greater than some extreme value over the next 100 

blocks.  In this case, the 100 blocks is known as the return period. 

There are two popular approaches for implementing EVT. The first method is 

called the peak over threshold (POT) model.   The second method is sometimes called 

the block maxima (or minima) method
15

.   

 

                                                 
15

 The block maxima approach is a special case of the more general approach of 

modeling the n
th 

largest order statistics in a block. 
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7.1.1 Peak over Threshold Models  

Peak over threshold (POT) models use only values that exceed some 

predetermined threshold.  Consider a model where the rainfall total for some 

geographic location has been recorded on a daily basis for a period of 20 years.  Further 

assume the block size for the model is 365 and that a threshold has been set at 5 inches 

of rainfall in any given day.  In the case where no daily rainfall exceeds 5 inches, no 

data for that year will be used in the model.  This approach can lead to a waste of 

potentially useful data. 

 

7.1.2 Block Maxima Models 

Block maxima models address this problem by using the maximum occurring 

data value from each block without regard to threshold exceedance.  With this approach 

and the example above, the model will use data from each of the 20 years. 

 

7.2 Block Maxima Models - Example 

The following is an example of EVT block maxima predictions for the 

probability of observing various first difference maxima for normalized Stokes 

parameter S1.  The magnitude of the first differences for the first 300 measurements of 

the Stokes parameter S1 is divided into 10 blocks of 30 measurements per block.  

Measurements were taken every 15 seconds. 

The leftmost graph shows the magnitude of the first differences for the first 300 

measurements of S1 (figure 39).  The rightmost graph shows the block maximum for 

each of the 10 blocks. EVT maximum predictions for various return periods are shown 
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in figure 40.  For example, the probability of observing an event with magnitude 

difference > 4.0 x 10
-4 

in the next block is 0.01.  In this case, the return period is 1/0.01 

or 100 blocks. 

 

 

Figure 39  S1 first differences and block maxima. 

  

 

Figure 40 EVT return predictions. 
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EVT will be used to characterize the “natural” behavior of the fiber (no 

disturbance).  Once EVT characterizes this behavior, it will serve as the domain expert 

and use EVT block maxima predictions based on a return period of 1000 blocks to label 

observations as normal or anomalous.  Assuming measurements are taken at 15 second 

intervals, and a block size of 50 is used, 1000 blocks represents approximately 8.68 

days.  As mentioned earlier, the rule for labeling an observation as anomalous will 

require the observation to exceed the return value (for a return period of 1000) for all 

three Stokes parameters.  
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Chapter 8: Experimental Results 

 

EVT will monitor the natural state of the fiber for the purpose of characterizing 

the usual magnitudes of the first differences of all three Stokes parameters.  The 

monitoring period will consist of 30 blocks, with each block containing 50 observations 

(no overlapping blocks)
16

.  After the characterizing phase is completed,   thresholds for 

unusual behavior will be derived and will be based on a return period of 1000 blocks. 

From this point on, EVT will take on the role as the domain expert, labeling each 

incoming observation as normal or anomalous.  Each incoming observation displaces 

the oldest observation in the window.  All of the features in chapter 5 will be calculated 

for each observation.  Relevant features will be selected by the ReliefF feature selection 

algorithm.  The selected features along with the label assigned by EVT will be used to 

search for a suitable algorithm for detecting anomaly polarization measurements.   

 

                                                 
16

 Extreme Value Theory distinguishes between independent and dependent sequences.  

The non-overlapping block approach more closely reflects a series of independent 

observations. No block contains information from any other block. 
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8.1 Example EVT Fiber Characterizations 

Measurements from two of the more lengthy data acquisition periods are 

examined in this section.  Both datasets consist of data collected every 15 seconds for 

over 3 days (over 16,000 observations). For dataset #1, the 1000 block return period 

thresholds are:  S1 = 0.00093, S2 = 0.00025 and S3 = 0.00033. The distribution of 

observed values for the entire 3 day period is shown in figure 41.  The thresholds are 

illustrated by the red vertical lines for all but S1, as the threshold for S1 is beyond the 

right hand limit of the horizontal scale.  The return value for S1 was not exceeded 

during the duration of the collection.  The return value for S2 was exceeded during 

intervals 1572, 15519, and 15525.  The return value for S3 was exceeded during 

intervals 4327, 4507, and 5625.  No exceedance intervals were in common.  Therefore, 

EVT did not flag an anomalous event during the 3 day period. 

 

  

 

 

 

 

 

 

 

Figure 41 Distribution of first differences for dataset #1. 
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For dataset #2 the 1000 block return period threshold for S1 = 0.00052, S2 = 

0.00031, and S3 = 0.00056.  The distribution of observed values for the entire 3 day 

period is shown in figure 42, along with their respective thresholds.   

 

 

 

 

 

 

 

 

The return value was not exceeded for any of the three Stokes parameters. 

Therefore, EVT did not flag any anomalous events during the 3 day period for dataset 

#2.  In fact, observing anomalous events for the undisturbed fiber did not occur.  This 

presents a problem for the ReliefF algorithm as it must have examples from both 

classes in order to perform feature selection. Either the decision rule on what 

constitutes anomalous behavior must be changed, or synthetic (or physical) 

disturbances of various magnitudes must be created. The choice was to introduce 

synthetic disturbances of various magnitudes.  Even extremely small disturbances were 

effective in producing anomalous cases (according to the EVT anomaly rule), as 

explained in the next example. 

An anomalous period was introduced in dataset #2 beginning at interval 8335 

and ending at interval 8612.  The Stokes parameters for the original dataset and the 

Figure 42 Distribution of first differences for dataset #2. 
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dataset containing the synthetic anomalies are shown in figure 43.  The synthetic 

anomalies are of such small magnitude they cannot be seen.  

 

 

 

Figure 43 Small magnitude synthetic anomalies for dataset#2. 

 

Original dataset #2 (L), Anomalous dataset #2 (R) 

(Fiber perturbations are from interval 8335 to 8612) 

 

The 1000 block return period threshold remains the same as above since the 

anomalies do not occur until after block 1500 (S1 = 0.0052, S2 = 0.0031, and S3 = 

0.0056).  The return period threshold was exceeded for all three Stokes parameters for 

most intervals from 8336 to 8612.   

 

8.2 Feature Selection using ReliefF 

Once the characterization phase is complete, EVT begins to classify each 

observation as normal or anomalous according to the previously discussed rule 

requiring threshold exceedance for all three Stokes parameters.  All of the features in 

chapter 5 are calculated for each observation.  Any given observation will necessarily 

influence feature values for all windows in which the observation is present.  
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The relative feature weights for the synthetic anomalies discussed in the 

previous section are shown in figure 44 (using ReliefF with k = 15).  Features 1-3 are 

the first differences for the three Stokes parameters, features 4-6 are the skewness 

values, features 7-9 are the kurtosis values, features 10-12 are the L-function values, 

and features 13-15 are the Hopkins values.  Features 1-9 are 1-dimensional features and 

features 10-15 are 2-dimensional features.  Note the most relevant features appear to be 

the first differences (features 1-3)!  ReliefF has simply discovered the EVT parameters 

used to classify the observations.  Ignoring these for the moment, it would appear the 

most relevant features in descending order are:   

 

14    13    15    12     7     4    11    10     5     6     8     9 

 

 

Figure 44 Relative feature weights for small magnitude synthetic anomalies. 
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Running this analysis again with larger anomalies yields the relative feature 

weights graph shown in figure 46.   

 

Figure 45 Moderate magnitude synthetic anomalies for dataset #2. 

 

 

Figure 46 Relative feature weights for moderate synthetic anomalies. 
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It would appear the most relevant features in descending order are:  

 

4    14    13    15    12    10    11     7     5     6     9     8 

 

Running this analysis for a third time with still larger anomalies (figure 47) 

yields the relative feature weights graph shown in figure 48.  It would appear the most 

relevant features in descending order are: 

 

14    13    15    12    10    11     5     6     7     8     4     9 

 

 

Figure 47 Large magnitude synthetic anomalies for dataset #2. 

 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Stokes Parameters

Time Interval

N
o
rm

a
liz

e
d
 S

to
k
e
s
 P

a
ra

m
e
te

rs

 

 

s1(blue), s2(red), s3(green)



72 

 

Figure 48 Relative feature weights large synthetic anomalies. 

 

Generally speaking, the Hopkins statistic seems to be the feature with the 

highest relevance.  However, considering relative feature weights range from -1 to 1, 

relative feature weights of 0.1 - 0.2 are not all that impressive.  Based on feature 

response to anomalies given in section 5.3, higher relative feature weights are to be 

expected.   

In the examples above, all of the simulated disturbances were created to last 

longer than the window size of 50 observations.  The expected higher feature weights 

were not observed due to the fact most of the features tend to react to long-term 

disturbances as if they had become the “new normal.”  In other words, the ranges of the 

various statistics tend to revert back to the original ranges once a “new normal” is 

established. This behavior dilutes the amount of information associated with the feature 

value.  A “new normal” is established when the duration of the disturbances is greater 

than the size of the observation window.   
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There is another troublesome issue introduced by the window approach.  

Consider the case where a single anomalous point enters the window, followed by 49 

normal points.  EVT will label the 49 points as normal but since the features apply to 

the window, feature values continue to react in a manner that signals the presence of 

anomalous data.  This will continue as long as the one anomalous point remains in the 

window.  This causes feature values for the window (which continue to signal anomaly) 

to be applied to the points labeled as normal.  This behavior is a second reason for the 

dilution of information associated with feature values. 

This suggests a more accurate model may be possible if the EVT rule for 

anomaly identification is modified such that the first anomaly encountered in the 

window triggers the anomaly label for this point and the next n – 1 points, where n is 

the window size.  The influence of this point will persist thru the entire window.  This 

approach can be justified based on the importance of detecting the very beginning of 

fiber-optic tapping activity.  The resulting interpretation of an anomalous point is that it 

is present in a window in which anomalous behavior has been observed, but may not be 

anomalous itself. 

Consider the following situation where synthetic anomalies lasted for only 4 

observations (intervals 7171 through 1724).  Again, the disturbances are relatively 

small (figure 49).  From here on out features 1 – 3 will be skewness, 4 – 6 will be 

kurtosis, 7 – 9 will be the L function values, and 10 – 12 will be the Hopkins statistic.  
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Figure 49 Small magnitude synthetic anomalies (short term). 

 

 

ReliefF assessed the relative importance of the features as shown in figure 50.   

 

 

Figure 50 Relative feature weights for small synthetic anomalies. 
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Consider the moderate anomalies from interval 7037 to 7039 (figure 51) 

  

Figure 51 Relative feature weights for moderate synthetic anomalies. 

 

 

 

 
 

Figure 52 Relative feature weights for moderate synthetic anomalies. 
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As a final example, consider the following anomalies from interval 12162 to 12175 

(figure 53). 

 

Figure 53 Relative feature weights for large synthetic anomalies. 

 

 

Figure 54 Relative feature weights for large synthetic anomalies. 
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It is clear from the previous examples that feature weight profiles are not all 

alike.  Most features appear to have some relevancy from time to time but obvious 

consistency is lacking.  If any general observation can be made, it would seem that the 

L function feature appears to be a leading candidate. 

 

 

8.3 The Learning Algorithm 

Before continuing on, it would be good to make the following observation.  

From the extended data acquisitions discussed earlier, and the studies characterizing 

polarization fluctuations in buried fiber as being slow, the expectation is that an 

anomaly in the absence of a physical disturbance is extremely rare.  This means a 

simple model that arbitrarily predicts all observations as being normal, is highly 

accurate.  Consider the case where only 1 anomaly occurs in 1000 blocks.  With 50 

observations per block this is 1 anomaly in 50,000 observations.  A model that 

arbitrarily predicts 50,000 normal events and 0 abnormal events is correct 99.998% of 

the time.  This sounds impressive until it is realized the model missed the only 

important event in the collection.   The accuracy of a model for this application domain 

should be assessed based on the resulting confusion matrix (true positives, false 

positives, true negative, false negatives). 

The variation in feature weight profiles shown in section 8.2 suggest that most 

all of the features have something to say from time to time. The relative importance of a 

feature tends to manifest itself differently depending on characteristics of the data 

collection. The total number of features is 12.  This is not considered to be high 

dimensional and so using all of the features should not be problematic. 
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The approach will be as follows:  A set of 5 decision trees will be constructed, 

with each tree using a random subset of 3 features.  Each tree will provide a 

classification for each observation.  The final classification will be based on majority 

vote
17

.  It is well known that a majority decision by committee of weak learners
18

 tends 

to improve the overall accuracy of the learning algorithm, provided there is 

independency amongst the committee members. The majority vote “correctness” 

profile for a collection of weak learners is shown in figure 55.  The blue line is the 

“correctness” profile for weak learners having a 51% success rate; the red line is the 

“correctness” profile for weak learners having a 56% success rate. The use of random 

features for each tree tends to promote independence between the trees.    

 

Figure 55 Majority vote "correctness" profile for p=0.51 and p=0.56. 

 

This figure shows the probability of a correct decision by majority vote of a collection 

of weak independent learners. Each learner is an independent trial to the binomial 

distribution. 

                                                 
17

 Majority vote is one form of “ensemble learning” or learning by a “committee of 

experts.” 
18

 A weak learner is one having accuracy > 0.50. 
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The use of a random subset of features for trees in a forest is known as Random 

Forests™ [76].  The approach used here is a simpler version of Random Forests™ in 

that the selection of random features is set for each tree, and not randomized within the 

tree. 
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The dataset used to develop the forest of trees consists of 32,761 observations.  

This is actually two extended data collections merged together with injection of 

synthetic anomalies of various magnitudes.  The merged dataset is shown in figure 56. 

 

 

Figure 56 Training dataset for forest development. 

 

Tree 1 is aware of features 6, 15, and 12 but uses only feature 12. Tree 2 is aware of 

features 9, 3, and 15 but uses only 9 and 13.  Tree 3 is aware of features 6, 10, and 14 

but uses only 10.  Tree 4 is aware of features 5, 6, and 8 and uses all of them.  Tree 5 is 

aware of features 9, 11, and 15 but uses only 11.  Tree 1 has only 1 level, tree 2 has 2 

levels, tree 3 has only 1 level, tree 4 has 2 levels and tree 5 has 1 level.  The results for 

each tree are given in table 1.  A majority vote by the forest corrects one 1 false positive 

in tree 1.   
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Table 1 Tree classification results (training dataset). 

 
Tree 1 Levels - 1 Predicted Class Predicted Class 

Features 6,12,15 Anomaly No Anomaly 

Actual Class Anomaly 160 0 

Actual Class No anomaly 1 31100 

 
Tree 2 Levels - 2 Predicted Class Predicted Class 

Features 9, 13,15 Anomaly No Anomaly 

Actual Class Anomaly 160 0 

Actual Class No anomaly 0 31101 

 
Tree 3 Levels - 1 Predicted Class Predicted Class 

Features 6,10,14 Anomaly No Anomaly 

Actual Class Anomaly 160 0 

Actual Class No anomaly 0 31101 

 
Tree 4 Levels - 2 Predicted Class Predicted Class 

Features 5,6,8 Anomaly No Anomaly 

Actual Class Anomaly 160 0 

Actual Class No anomaly 0 31101 

 
Tree 5 Levels - 1 Predicted Class Predicted Class 

Features 9,11,15 Anomaly No Anomaly 

Actual Class Anomaly 160 0 

Actual Class No anomaly 0 31101 
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As expected, this works well on the training dataset.  The results of the 5 trees  and the 

resulting forest will now be assessed using data not seen by the forest during training. 

The dataset used below have been held out from all previous work.  Dataset #1 

contains of 7200 observations.  It is known to contain no anomalies.  The second 

dataset is dataset #1 with some small magnitude anomalies. 

 

 

Figure 57 Example test dataset #1 (no anomalies). 

 

Classification results for the 5 trees are shown in table 2.  The forest labeled all cases 

correctly (table 3). 
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Table 2 Tree classification results (dataset #1 - no anomalies). 

 
Tree 1  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 0 0 

Actual Class No anomaly 0 7199 

 
Tree 2  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 0 0 

Actual Class No anomaly 0 7199 

 
Tree 3  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 0 0 

Actual Class No anomaly 0 7199 

 
Tree 4  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 0 0 

Actual Class No anomaly 17
19

 7182 

 
Tree 5  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 0 0 

Actual Class No anomaly 0 7199 

                                                 
19

 The false positives were caused by an elevation in the kurtosis feature.  The kurtosis 

values were slightly above the tree decision rule. 
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Table 3 Forest classification results (dataset #1 - no anomalies). 

 
Forest Majority Vote Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 0 0 

Actual Class No anomaly 0 7199 

 

 

Synthetic anomalies of small magnitude were introduced to the dataset #1 

beginning at interval 4651 and ending at interval 4568 (referred to as dataset #2).   

 

Figure 58 Example test dataset #2 (dataset #1 with small magnitude anomalies). 

 

 

Classification results for the 5 trees are shown in table 4.  Results for the forest are 

shown in table 5.  The forest labeled all cases correctly. 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Stokes Parameters

Time Interval

N
o
rm

a
liz

e
d
 S

to
k
e
s
 P

a
ra

m
e
te

rs

 

 

s1(blue), s2(red), s3(green)



85 

Table 4 Tree classification results (dataset #2 with anomalies). 

 
Tree 1  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 57 1 

Actual Class No anomaly 1 7140 

 
Tree 2  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 12 1 

Actual Class No anomaly 46 7140 

 
Tree 3  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 57 1 

Actual Class No anomaly 1 7140 

 
Tree 4  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 57 18 

Actual Class No anomaly 1 7123 

 
Tree 5  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 57 1 

Actual Class No anomaly 1 7140 
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Table 5 Forest classification results (dataset #2 with anomalies). 

 
Forest  Predicted Class Predicted Class 

  Anomaly No Anomaly 

Actual Class Anomaly 58 0 

Actual Class No anomaly 0 7141 

 

Discovering a simple algorithm that makes no mistakes is unusual.  But 

consider the following:  no tree exceeded a depth of 2 and most trees used only 1 of the 

available features.  These two observations suggest good discrimination by multiple 

features occurring at a high level in the tree.  This is consistent with the theory behind a 

recently proposed unsupervised anomaly identification method known as iforest [52].  

The isolation forest method employs random features for multiple trees and makes use 

of the fact anomalies are separated out at high levels in the tree.  The iforest anomaly 

score is partly based on the tree depth at which separation occurs. 

The sensitivity of the proposed features to anomalous polarization fluctuations 

is such that a highly accurate classifier is achieved using a simple forest of just a few 

trees.   
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Chapter 9:  Future Work and Summary 

 

Summary 

This dissertation has investigated different methods for detecting fiber optic 

tapping activity.  Empirical data suggest that polarization is especially sensitive to fiber 

geometry and therefore an effective method of monitoring fiber-optic links for tapping 

activity.  Different representations of polarization suggested different methods of 

detection; these included measures from ordinary statistics (skewness and kurtosis), 

measures from point process statistics (L function) and spatial statistics (Hopkins 

statistic h).  The use of the last two for anomaly detection appears to be new. Framed in 

a spatial context, the emergence of a cluster was construed to indicate the presence of a 

spatial anomaly, presumably caused by disturbances to fiber geometry.  Both the L 

function and Hopkins statistic h have been shown to be capable of identifying spatial 

anomalies because of their cluster detection attributes.  In the case of the Hopkins 

statistic, detection is made possible by redefining the use and interpretation of the 

metric.  In the case of the L function, anomalies produce different function profiles 

which are indicative of changes in inter-point distances. 

Most features demonstrated a high ability to distinguish between normal and 

abnormal behavior.  This ability to distinguish is further enhanced by a small set of 
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independent decision trees using a majority voting scheme.  No observations were 

misclassified. 

The contributions of this dissertation are the following: 

1) The use of Extreme Value Theory to characterize the naturally occurring 

polarization fluctuations in unperturbed fiber. 

2) The use of Extreme Value Theory as an automated domain expert for 

supervised learning problems. 

3) The use of the L function and Hopkins statistic as spatial anomaly 

identifiers. 

4) The use of polarization as an ultra-sensitive fiber-optic tapping activity 

sensor. 

 

This dissertation has raised a few questions which may be worthy further study. 

 

Is EVT an anomaly detector? 

While all features demonstrated some ability to identify spatial anomalies, the 

question must be asked:   “Why not just use EVT as the anomaly detector”?   

The series of 3-day long data acquisitions showed no anomalous periods (no 

false positives). This is encouraging because it suggests EVT performs well when it 

comes to characterizing the natural state of fiber, at least in this particular setting
20

.  

This setting is likely to mimic those where the cable is buried or otherwise installed in 

                                                 
20

 Continuous 68 hour surveillance was not performed.  However, it was fairly certain 

that no fiber perturbations took place. 
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relatively stable environments.  Any false alarms generated by EVT could probably be 

handled by adjusting the return period.  Longer return periods are associated with 

higher thresholds.  Higher thresholds are associated with less false positives but may 

produce more false negatives (missed anomalies).   

Since EVT can be used to estimate probabilities of maxima and minima, it may 

be possible to periodically “re-characterize” the natural behavior of fiber by examining 

the minimum expected fluctuation.  Falling below the minimum threshold may indicate 

a period of increased stability which would then trigger a new assessment and update of 

the maximum threshold.  This approach would provide adaptation to changing 

conditions. 

 

What about less stable environments? 

Short of actually investigating aerial and undersea cables, it may be possible to 

simulate the behavior of polarization fluctuations in these types of environments simply 

by taking every n
th

 measurement from the current collections.  Longer time intervals 

would likely result in larger fluctuations. It is not clear however, that this truly mimics a 

noisier setting.  This may only represent stable environments with larger naturally 

occurring fluctuations.  This is probably a worthwhile pursuit in any case.  Consider the 

fact that naturally occurring fluctuations, as observed in this dissertation, were rather 

small.  As such, they almost certainly included instrument error.  Similar investigations 

with larger naturally occurring fluctuations would tend to mitigate instrument error. 
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How does the length of the fiber modify the method? 

Many characteristics of fiber depend on the length of the fiber.  Relationships 

between the Stokes parameters, the degree of polarization, and the power of the 

received signal in optical fiber of greater lengths may require different approaches.  

Greater lengths of fiber should produce some degradation in the degree of polarization 

of the received signal.  Degradation in the degree of polarization may require some 

relaxation in the relationship between the Stokes parameters.  This in turn, may require 

modifications to the EVT rules used for labeling anomalous cases. 

 

What added information does the dual fiber approach yield? 

The earlier mentioned dual-fiber study noted that polarization fluctuations are 

similar for fibers sharing a common path.  This sort of configuration would certainly 

include two stands of fiber in the same breakout cable.  Consider the process of placing 

an optical tap in this environment.  The first step would be to remove a portion of the 

breakout cable in order to gain access to the two fibers.  This step is likely to produce 

similar changes to the geometry of both fibers, and similar magnitude polarization 

fluctuations in both fibers.  At this point the outer jacket must be removed from at least 

one of the two fibers.  Removal of the outer jacket should produce different polarization 

signatures between the two fibers.   

Similar magnitude changes without subsequent differing polarization signatures 

would not be as threatening as the one just described.  The first scenario suggests the 

breakout cable is being physically disturbed but not necessarily compromised. This 
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may be reflective of innocent cable maintenance activity.  The second suggests the 

breakout cable has been penetrated, increasing the probability of suspicious behavior. 
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