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THE ELUSIVE ENTRY ANGLE 

Where does the entry angle come from? This paper will show that the answer to this 
question reveals a connection between longitudinal and lateral behavior that has gone 
largely unnoticed. 

In beam models, entry angle refers to the angle between the tangent to the web 
centerline and the normal to the roller axis at the line of entry onto the roller. Whenever 
the entry angle becomes non-zero, a web that is moving longitudinally through a process 
will also move laterally on the roller in a direction that returns the entry angle to zero. If 
the web is modeled as a perfectly flexible string, this behavior is intuitively obvious 
because it bends sharply on entering a roller that is pivoted or shifted laterally. However, 
in the case of the most commonly used Euler-Bernoulli (E-B) beam model, the web can’t 
make a sharp bend. If it is initially perpendicular to the roller axis, beam theory says that, 
provided there is no slipping, it should remain perpendicular as the roller is shifted or 
pivoted and thus wouldn’t move. We know from experience, however, that a real moving 
web begins to move laterally soon after a roller pivots or shifts? So, how can this be?  

NOMENCLATURE 

A cross sectional area of web 
E elastic modulus 
G shear modulus 
h thickness of web 
I area moment of inertia 
L span length 
m mass per unit length 
n Shear factor for Timoshenko beam 
s Laplace variable 
t time 
T tension in units of force 
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Vo   web velocity in machine direction 
x distance along length of web 
y lateral displacement of web 
y0 lateral web displacement at upstream roller, relative to ground 
yL lateral web displacement at downstream roller, relative to ground 
z lateral displacement of roller relative to ground 
θL angle between web plane and plane of roller motion at entry to roller 
θ0 angle between web plane and plane of roller motion at exit of roller 
θr angle of roller axis 
β boundary defect angle 
ρ density 
ϕ rotation of cross section (bending angle) 
ψ shear angle 
0 subscript indicating value of variable at x = 0 
L subscript indicating value of variable at x = L 

The Normal Entry Equation 
The entry angle enters into lateral dynamic analysis through equation {1}1. It is 

commonly referred to as the normal entry equation. Other less-used names are the roller 
climbing equation, steering equation, parallel entry equation and velocity equation. It 
defines the lateral velocity of the web dyL/dt at the line of first contact with a roller2. The 
entry angle is the quantity inside the parenthesis on the right side of equation {1}. It is the 
difference between the roller angle, θr and the web slope dyL/d x. The circumferential 
surface speed of the roller is V. The lateral position of the web relative to the roller is yL 
and z is the roller position relative to ground.  

 L L
r

dy dy dzV
dt dx dt

θ = − + 
 

  {1} 

The subscripts L and 0 on variables denote their value at the line of entry (x = L) and 
at the exit of the upstream roller (x = 0), respectively. 

                                                           
1 Valid only at the line of entering contact provided there is enough traction for the 

web to adhere to the roller surface without slipping at that location. 
2 To be strictly accurate, dyL/dt is the lateral velocity of the intersection of 

streamlines of web particles and the line of entering contact. 
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Figure 1 – Illustration of normal entry and curvature transport in Shelton’s dissertation 

Slope 
Slope is calculated from a static analysis of web shape [1]3. Equation {2} shows the 

equation for lateral position y(x) that results when face angles4 φL, φ0 and lateral 
displacements, yL, y0 are chosen as boundary conditions. The shape factors, g4, g5 and g6 
depend on span dimensions, mechanical parameters of the web and distance along the 
span. 

It is tempting to think that face angles have been chosen as boundary conditions 
because they match the roller angles. The main point of this paper hinges on the fact that 
this is not the case, but for the moment, we have no reason to assume otherwise and it is 
instructive to see where this assumption leads.  

 ( ) ( ) ( ) ( )( ) , , , , , ,0 0 4 5 0 6y x y y y g x K L g x K L g x K LL Lφ φ= + − + +   {2} 

 From this, expressions for slope and curvature are developed. The equation for slope 
at the entry to a downstream roller (x = L) is, 

 ( )
( , )1 ( , ) ( , )0 2 0 3

h K LdyL y y h K L h K LL Ldx L
φ φ= − + +   {3} 

The factors, h1, h2 and h3 depend on span dimensions and mechanical parameters of 
the web and whether shear is included. 

The face angle φL in {3} is set equal to the roller angle θr. Making this change and 
substituting {3} into the normal entry equation, the following relationship is obtained. 

                                                           
3 See appendix A for details 
4 The face is defined as a plane that is perpendicular to the web centerline when the 

web is in a relaxed state. The face angle is the angle between a normal to this plane and 
the x-axis after forces are applied. It is also called the bending angle. For models without 
shear, the face angle is equal to the web slope. The shear angle, ψ is the angular 
contribution to slope from shear deformation. 
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 ( ) 1
0 2 0 3

( , )
( , ) ( , )L L

o r L r
dy h K L dzV y y h K L h K L
dt L dt

θ θ φ = − − − − +  
  {4} 

For an Euler-Bernoulli (E-B) beam, h1 and h3 are zero and h2 is unity at x = L.  So, 
if a web is initially in a state of uniaxial tension and the downstream end is suddenly 
pivoted (without lateral shifting) through an angle θr, equation {4} becomes, 

 0Ldy
dt

=   {5} 

Thus, if the web is initially perpendicular to the roller axis, it will never move 
laterally on the roller. If there is nothing wrong with the shape analysis (and that’s been 
around for a while now), there is no obvious reason to think that this naïve solution 
wouldn’t be correct.  

Even though something is clearly missing, it is interesting to see what the full length 
of the span looks like for typical E-B and Timoshenko versions of this model. This is 
done by solving equation {4} for yL (it won’t be zero when the effect of shear is included) 
and substituting into {2}. To keep things simple, it will be assumed that the upstream 
span is in a state of uniform uniaxial stress. So, y0 and φ0 are set to zero. 

 

                          (a) E-B beam                                               (b) Timoshenko beam 

Figure 2 –Naïve models 

The curves in Figure 2 show the shape of the web after it has reached steady state 
and compares it with the Shelton model (which agrees with experiment). In Figure 2(a) 
the downstream end of the E-B beam pivoted with the roller but didn’t move laterally. In 
2(b), which includes shear deformation, the downstream end has moved laterally, but it 
falls significantly short of the Shelton model. 

So, what is missing? 
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SHELTON’S METHOD: CURVATURE TRANSPORT 

Shelton thought about the problem just described. In his seminal dissertation on 
lateral web dynamics [2] he argued that the entry angle changes because slope variation 
due to upstream web curvature is transported onto the roller by the web’s longitudinal 
motion (pages 102-104). This is illustrated in Figure 1 (a reproduction from the 
dissertation)5. He says, “The difference in the lateral velocity of the web edge relative to 
the roller between the time of passing of Points A and B may be expressed as” 

 L L

A BA B

dy dy y yV
dt dt x x

 ∂ ∂
− = − ∂ ∂ 

  {6} 

Then, he divides both sides by the time, ∆t, that it takes for A to move to B. On the 
right side ∆t is replaced by the equivalent quantity ∆x/V. As points A and B are moved 
infinitesimally close together the left side becomes the lateral acceleration relative to the 
roller and the right side becomes the product of V2 and curvature. Adding d2z/dt2 to 
account for roller motion produces equation {7}, known as the acceleration equation  

 
2 2 2

2
2 2 2

L Ld y d y d zV
dt dx dt

= +   {7} 

This is used as one of two dynamic boundary conditions (the normal entry equation 
is the other) in a second order solution based on the shape equation for curvature. 

The problem with curvature transport is that it produces an expression for lateral 
acceleration that conflicts with the definition obtained by simply differentiating the 
normal entry equation. Shelton was aware of this and made the following comment about 
it.  

“Note that Equation 4.1.5 [the acceleration equation] is not merely the 
derivative of Equation 4.1.2 [the normal entry equation]; differentiation of the 
latter equation results in an extra term containing the velocity of roller 
swivelling, dθ/dt. Because of the assumption that shear deflection is negligible, 
no acceleration can occur as an instantaneous result of roller swiveling. But 
only indirectly as the web curvature changes. A suddenly swivelling roller 
instantaneously swivels the downstream end of the web an equal amount, so that 
no instantaneous change in steering rate occurs, in contrast to the first-order 
theory of Chapter III [which employs a flexible string model of the web].” 

Still, there can be only one value for lateral acceleration at any instant and if the 
normal entry equation is valid, there is no reason to think that its time derivative wouldn’t 
provide it. 

Regardless of any concern about it, Shelton showed in his dissertation [Error! 
Bookmark not defined.] that using equation {7} in a dynamic model produced excellent 
agreement with experiments. He tested four configurations; a parallel pair with KL = 2, a 
                                                           

5 When reading some of the references in the bibliography it is important to keep in 
mind that Shelton followed Timoshenko’s sign convention and used a left-handed 
coordinate system based on the assumption that the positive z-axis is directed out of the 
page toward the reader. Brown, Benson and Sievers used right-handed coordinates. 
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parallel pair with KL =10, an oversteering guide and an understeering guide. Amplitude 
and phase response were measured in each case at six different frequencies. All had long 
spans in which the effects of shear were insignificant. 

BENSON’S METHOD: THE MATERIAL DERIVATIVE 

Benson, in a 2002 paper [3], found a better way to derive the acceleration equation. 
He started by assuming that the pivoting velocities of the roller angle, θr, and web face 
angle, φL, must match at the line of entry of the web onto the roller.  He then applied the 
material derivative and arrived at the following expression. 

 r L L Ld D d dV
dt Dt dt dx
θ φ φ φ

= = +   {8} 

Benson chose to organize his model in the form of four first-order equations. So, he 
wasn’t interested in anything like acceleration equation {7} as a boundary condition. 
Nevertheless, to help establish the validity of his model, he showed that equation {8} 
could be used to derive it. The result of his derivation, shown in equation {9} below, 
included the effect of shear and is in agreement with Brown [Error! Bookmark not 
defined.].  

 
2 2 2

2
2 2 2

L L L L Ld y d y d z d dV V V
dt dxdt dx dt
y y = + − + 

 
  {9} 

When shear yL is eliminated, equation {9} defaults to Shelton’s acceleration 
equation {7}. 

THE ENTRY ANGLE IS CAUSED BY LONGITUDINAL TRANSFER OF MASS 

In a 2017 IWEB paper [4], I showed that the entry angle of the normal entry equation 
{1} is entirely due to the effect of mass transferred longitudinally between spans. I won’t 
repeat the details of the analysis of that paper, but will, instead, summarize the principle 
results. 
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(a)                                                                        (b) 

Figure 3 –Effect of mass transfer after roller shift without shear (Euler-Bernoulli model) 

In Figure 3(b), the web is shown shortly after a moment of force comes into 
existence at the entry to the roller. In the case shown here, a sudden lateral shift of the 
roller to the left produced curvature with its center at some point far to the right. The 
curvature created a tapered, incremental strain profile which is positive on the left side 
and negative on the right. The positive incremental strain on the left caused a decrease in 
mass flow from span 1 to 2 relative to the flow at the center. This, in turn, caused an 
accumulation of mass in span 1, shown as the wedge-shaped area A. Area A also 
represents the deficit of mass in span 2. The negative incremental strain on the right 
caused an increase in mass flow from span 1 to 2 and created the wedge-shaped 
accumulation of mass in span 2 labeled B. Area B also represents the deficit of mass in 
span 1.  

The net effect is angular rotation of the face of the web at the line of entry through an 
angle, β. There is no slipping involved in the formation of β. It is entirely due to 
variations in mass flow that change the relationship between face angle and roller angle 
from  φL = θr   to φL =  θr + β. Analysis of the relationship between the strain profile and 
mass flow shows that β is defined as, 

 
2

2
L L

r
dy d yd d V

dt dt dx dx
β θ − = − = 

 
  {10} 

When the angle β  begins growing, the web begins moving relative to the roller in a 
direction that reduces the moment that caused it. It will continue to move until the entry 
angle becomes zero. 

For a Timoshenko model with shear, relationship {10} becomes, 

 ( )
2

2
L L

L r
dy d yd d daV

dt dt dx dtdx
yβ y θ − + = − = − 

 
  {11} 
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and 

 1 nTa
AG

= +   {12} 

where n is the shear factor, T is the longitudinal tension, A is the cross-sectional area of 
the web and G is the shear modulus. 

When shear is included in the model, the face between the two spans still rotates as 
described above, but β increases by the factor, a, and the entry angle becomes -β  - y. 

It is fair to ask why mass transfer is needed. After all, Shelton’s and Benson’s 
equations aren’t wrong. The answer is that it is an essential part of the physical picture 
that has been missing and, as will be shown in a companion paper, it is the key to 
understanding how to combine lateral and longitudinal behavior in a single model. 

Connections with the Methods of Shelton and Benson 
Since Shelton’s E-B model was confirmed by experiment and Benson’s material 

derivative can be used to derive Shelton’s acceleration equation, it should not be 
surprising to find that they are both mathematically equivalent to the mass transfer model. 

Equating the two values of acceleration from Shelton’s model (acceleration of 
equation {7} and the time derivative of velocity from the normal entry equation {1}) 
produces the second equality of expression {10}.  

Substituting dyL/dx = φL (true for an E-B beam) in Benson’s material derivative {8} 
also produces the second equality of expression {10}. 

Why Did Benson’s Velocity Matching Work? 
In its relaxed state, all the particles in a uniform web are assumed to be moving in 

straight lines aligned with the x-axis. As the web deforms, those paths become 
streamlines that are congruent with the web shape. It is these curved streamlines to which 
the shape equations such as {3} apply. It is important to realize, however, that in a 
moving web, the particles following those paths will not all be travelling at the same 
speed. For example, particles on the outside edge of a curve, and not in proximity to a 
roller, will be travelling faster than particles on the inside edge. Then, when they arrive at 
the roller, where, it is assumed, they will “stick” to its surface, they must take on its 
velocity. That velocity must be the same at all points along the line of entry. Benson 
recognized this fact in his velocity matching boundary condition when he said, “It is 
further expected that the web will stick to the roller for all points of first contact – not just 
at the web’s centerline. To achieve that, we must also match the rotational velocities of 
the roller and the web.” That can only happen if the rate of mass flow changes. So, 
although he made no mention of it, velocity matching at the roller effectively engages the 
mathematics of mass transfer.6  

Limitations of Beam Theory Models 
Beam theory, because of its 1-dimensional nature, accommodates only simple strain 

profiles produced by moments due to pivoting or shifting of rollers. There are other 
interesting problems like concave roller applications that can only be solved with 2-D 
                                                           

6 I owe Dilwyn Jones a debt of gratitude for reviewing early versions of this paper 
and patiently defending Benson’s method. I was inclined to distrust anything that didn’t 
explicitly mention mass conservation, but he convinced me of its validity, using an 
argument similar to the one I just made. 
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numerical methods like those described in “Effects of Concave Rollers, Curved-Axis 
Rollers and Web Camber on the Deformation and Translation of a Moving Web” [5]. 

CONCLUSION 

Mass transfer7, in the form of the continuity equation, has been part of tension 
analysis for decades, but it has not been used explicitly in the analysis of lateral behavior. 
It is now clear, however, that it is a vital part of the conceptual framework for both 
subjects. 

 
 

APPENDIX A 

WEB SHAPE EQUATIONS FOR A BEAM MODEL 

The Elastic Curve  
Shelton was the first to use beam theory in models of lateral web dynamics. He 

derived equations for the elastic curve of single spans using both Euler-Bernoulli and 
Timoshenko beam theories [6, 7]. The method presented here is due to Lisa Sievers and 
is particularly suited to multi-span problems [8]. It begins by first observing that the 
bending and shear angles are additive. The face is defined as a plane that is perpendicular 
to the web centerline when the web is in a relaxed state. The face angle ϕ is the angle 
between a normal to this plane and the x-axis after forces are applied. It is also called the 
bending angle. For models without shear, the face angle is equal to the web slope. The 
shear angle, ψ is the angular contribution to slope from shear deformation. 

 
dy
dx

φ y= +  {13} 

 

Figure 4 –Relationship of Slope, shear angle and bending angle 

slopedy
dx
=  , shear angleψ = , bending angleφ=  

She then applied Hamilton’s principle [9] to derive the equations of motion.  
This produces a solution that includes both time and spatial derivatives. The time 

derivatives are useful in determining the potential effect of natural vibrations. She found 
                                                           

7 And its close cousin, transport of strain. 
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that the separation between the natural frequencies of the web and frequencies of interest 
in typical applications, while not as great as one might expect, are usually adequate to 
safely ignore the time-related terms. Details may be found in several references [8, 10, 
11]. When the time-related terms are removed, the following two equations are left, 

 
2

1 0
2

nT d y d
AG dxdx

φ + − = 
 

 {14} 

 
2

0
2

d AG dyEI
n dxdx

φ φ + − = 
 

 {15} 

These relationships can be manipulated to obtain the same fourth order differential 
equation found by Shelton. 

 
4 22 0
4 2

d y d yK
dx dx

− =  {16} 

where, 

 2

1

TK
nTEI
AG

=
 + 
 

 {17} 

The solution to {16}, familiar to all web handling researchers, is 

 ( ) ( )( ) sinh cosh1 2 3 4y x C Kx C Kx C x C= + + +  {18} 

The solution just described applies to a Timoshenko beam model that includes the 
effects of shear deformation. It defaults to the Euler-Bernoulli (E-B) beam model if the 
shear factor n is set to zero.   

Boundary Conditions 
In this model, as in all other multi-span models to-date, the interaction of the web 

with rollers is greatly simplified. The width of the contact zone in the process direction is 
assumed to be zero.  

Four boundary conditions are required. Lateral position at the upstream and 
downstream rollers provide two of them. 

Sievers believed that the bending angle was a better choice than slope for a boundary 
condition because it would be continuous across rollers, while the slope and shear would 
be discontinuous. This is incorrect. The effect of wrap angle on rollers causes the bending 
angle to be discontinuous. However, the choice of bending angle for a boundary 
condition is advantageous for another reason. It is directly related to the roller angle (or, 
more precisely, its projection on the plane of the web). 

Expressions for shear angle ψ and bending angle ϕ are derived from equations {13}, 
{14} and {15}.  
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3

3
n d yEIa

AG dx
y = −  {19} 

where 

 1 nTa
AG

= +  {20} 

and, 

 
3

3
dy n d yEIa
dx AG dx

φ = +  {21} 

So, the boundary conditions of the Timoshenko beam model will be, 

 

0 0
3 3

03 30 0

y y y yx x L L

dy n d y dy n d yEIa EIa Ldx AG dx AGdx dxx x Lx x L
φ φ

= == =

+ = + =
= == =

 {22} 

Equation {18} and its derivatives are substituted into the four equations of {22} 
which are then solved simultaneously for C1, C2, C3 and C4.  

The Static Equation of Web Shape. 
Inserting values for C1, C2, C3 and C4 in {18}(18) and collecting terms, 

 ( ) ( ) ( ) ( )( ) , , , , , ,0 0 4 5 0 6y x y y y g x K L g x K L g x K LL Lφ φ= + − + +  {23} 

where, 

 

( )
( ) ( )

( )

cosh( ) cosh( ) cosh( ) sinh( ) 1( , , )4 sinh( ) 2 cosh( 1

cosh( ) 1 cosh( ) 1 sinh( ) sinh( ) sinh( )
( , , )5 [ sinh( ) 2 cosh( 1 ]

sinh( ) sinh( ) sinh
( , , )6

Kx KL KL Kx Kax KLg x K L KLa KL KL

KLa Kx Kax KL Kx KL Kx KL
g x K L Ka KLa KL KL

Kx KL
g x K L

+ − − − −
=

− −

− − − − − − +
=

− −

− +
=

( )
( )

( ) cosh( ) 1 ( )(cosh( ) 1)
[ sinh( ) 2 cosh( 1 ]

KL Kx KLa KL Kx Ka L x KL
Ka KLa KL KL

− − − − + − −
− −

{24} 

Equations {24} are called shape functions. 
Following the example of Young, Shelton and Kardimilas (YSK) [12], yo appears 

twice in expression {23}. This reduces the number of shape functions from four to three.  
Two other equations that will be needed later are the first and second derivatives of 

{23}(23) at x = L. 
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 ( )( ) 1
0 2 0 3

hdy x y y h hL Ldx LL
φ φ= − + +  {25} 

 ( )2 ( ) 31 2
0 02 2

gg gd y x y yL L L Ldx LL
φ φ= − + +   {26} 

where, 

 

( )
( )

( )( )
( )

( )( )
( )

sinh( ) 1
1 sinh( ) 2 cosh( ) 1

1 1 cosh( ) sinh( )
2 sinh( ) 2 cosh( ) 1

1 1 cosh( )
3 sinh( ) 2 cosh( ) 1

h
KLa KL a

a KLa KL KL

a KL KLa KL
h

a KLa KL KL

a KL
h

a KLa KL KL

−
=

− −  
+ − +

=
− −  

− −
=

− −  

  {27} 

 

( )
( )

( )
( )

( )
( )

2 2 cosh( ) 1
1 sinh( ) 2 cosh( ) 1

cosh( ) sinh( )
2 sinh( ) 2 cosh( ) 1

sinh( )
3 sinh( ) 2 cosh( ) 1

K L a KL
g

a KLa KL KL

KL KLa KL KL
g

a KLa KL KL

KL KL KLa
g

a KLa KL KL

−
=

− −  
−

=
− −  

−
=

− −  

  {28} 
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