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CHAPTER I 

INTRODUCTION 

Mind and Body 

The relationship between the body and the mind has been one of the 

basic concerns of philosophers throughout history. The seventeenth 

century French philosopher Descartes (15) thought that the body and the 

mind are two and separate, not one and interconnected. Yet, for 

centuries, anecdotal evidence has accumulated suggesting that the mind 

can influence vulnerability to diseases. Almost 2000 years ago, the 

Greek physician Galen noted that depressed women were more likely to get 

cancer. In addition placebos, which are made up of inactive substances 

in the place of drugs, have often been prescribed by doctors because 

these have often proven to be effective in the treatment of patients 

(29). 

The whole organism is now believed to be an open system in dynamic 

interaction with its environment. Two systems have been developed for 

the organism to adapt to its environment. These are the nervous 

(neuroendocrine) and the immune systems. The nervous (neuroendocrine) 

system is affected by cognitive stimuli that can be physical, emotional, 

or social. The immune system on the other hand is affected by non

cognitive stimuli such as viruses, bacteria, or tumors. Both types of 

stimuli are presented to the body through the environment (5, 13). 
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An interaction between the two systems has been shown (7, 8, 18, 

60). Bullock (7), using horseradish peroxidase, found a direct 

innervation of the thymus from the brain stem and the spinal cord. The 

innervation of the thymus, spleen, lymph nodes and bone marrow have been 

known for some time (8, 60). Many, however, assumed that the nerves 

mainly regulated blood flow. This was questioned by Felton and his 

colleagues (18) who showed that lymphoid tissues have nerve fibers which 

not only surround blood vessels, but are also found among lymphocytes, 

through which they twist and turn. They have also showed that 

noradrenaline-secreting nerves are found in those areas of lymphoid 

tissue that have T cells, but not those having B cells. Thus the 

connections are not random. 
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Another mode of interaction between the nervous (neuroendocrine) and 

immune systems is chemically, the mediators of stress being good 

examples. Stress can be defined as any physiological, psychological, or 

behavioral response, within the organism, elicited by provocative agents 

(16). 

Stress has been shown to enhance the induction and development of 

experimental tumors in rats and mice. Stress has also been shown to 

augment immune functions and retard tumor growth (46). Stress 

chronicity, timing and intensity appear to play a role in determining the 

nature of its effect on the immune system (54). The importance of timing 

can be shown by the work of Amkraut et al. (1). These researchers have 

examined the effect of timing on the development of Moloney sarcoma virus 

(MSV)-induced tumors, using brief electric shocks as a stressor. The 

electric shocks were administered for 4 hrs (10 periods per hr, for a 

period of 10 sec) on each of 3 consecutive days, prior to or following 
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virus inoculation. Reduction in the size of tumors was found in mice 

shocked prior to inoculation with MSV. On the other hand, an enhancement 

in tumor size was noticed when the shocks were administered after virus 

inoculation. 

It gradually became clear that many immunological parameters were 

affected by the nature and intensity of exposure to stressors. Acute 

exposure to a stressor, for example, suppressed the humoral immune 

response, while repeated exposure resulted in an apparent adaptation of 

the animals to the stressor, and in some cases, an enhanced response 

(52). The exposure of mice to sound stress for up to 20 days suppressed 

the activation of splenic B lymphocytes using lipapolysaccharide (LPS) as 

a mitogen, but more extended exposure resulted in an enhanced response 

(36). Decreased T cell responses to mitogenic stimulation occurred for 

two weeks following peer separation in monkeys raised together from 

infancy. Mitogen responses returned back to baseline within several 

weeks of reunion (43). 

Stress classically has been shown to act through the hypothalamic

pituitary-adrenal (HPA) axis. The stressor excites the hypothalamus, 

which acts as a bridge between the brain and the endocrine system. The 

hypothalamus then releases corticotropin hormone-releasing factor (CRF). 

The CRF acts on the pituitary gland to elicit increased production and 

release of adrenocorticotropic hormone (ACTH) into the general 

circulation. Upon reaching the adrenal cortex, ACTH triggers the 

secretion of corticoids, mainly glucocorticoids, such as cortisol or 

corticosterone (47, 57). 

Some effects on the immune system of increased corticosterone 

concentration in the blood plasma are (a) decreased circulating 



lymphocytes (lymphocytopenia), (b) thymus involution, and (c) loss of 

tissue mass of the spleen and peripheral lymph nodes (45, 57). Also, 

some mineralocorticoids are released affecting salt and water metabolism 

(25). 
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In addition to ACTH, stress causes the release of 8-endorphin from 

the pituitary gland into the blood stream (23). Also during stress, 

enkephalins and catecholamines are released from the adrenal medulla into 

the blood stream (24). Recent studies have suggested that these 

substances also interact with the components of the immune system and 

modify the immune response (37). 

Opioids and Endogenous 

Opioid-Like Peptides 

S-endorphin and the enkephalins belong to a group of compounds, 

found in mammalian tissues, having an activity similar to opium in terms 

of relief from pain. Opium has been known, for more than 2000 years, to 

be an analgesic. The principal alkaloids produced from opium and having 

an analgesic action are morphine (10% of opium), codeine (0.5%), and 

thebaine (0.2%). 

There is much confusion concerning the terminology of drugs having 

an activity similar to opium (or morphine). Words like "opiates," 

"opioids," "endogenous opioid peptides," and "endorphins" have often been 

used interchangeably without a definite delineation between them. In 

this thesis, the following terms "opioids," "endogenous opioid-like 

peptides," and "opioid antagonists" will be employed to have the 

following meanings. 
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The term "opioids" is used to designate all exogenous substances 

that bind specifically to any of several types of opioid receptors and 

produce some agonistic activity. This group includes, but is not 

restricted to, compounds derived from opium. Some substances, on the 

other hand, such as naloxone, bind to the receptors for opioids, but 

exert little or no agonistic activity. They are designated here as 

"opioid antagonists" because they will prevent the binding and subsequent 

action of opioids. The term "endogenous opioid-like peptides" specifies 

all compounds produced in mammalian tissues that bind specifically to one 

or more of the opioid receptor types. This group is made up of the 

endorphins, the enkephalins, and the dynorphins. 

The presence of highly specific opioid receptors in the mammalian 

nervous system was first demonstrated by binding studies using morphine, 

and other compounds produced from opium (4). It was not clear, however, 

why receptors for compounds produced from opium were present in mammalian 

tissues. It was, therefore, logical to hypothesize, and look for, 

endogenous ligands for these receptors. 

The actual presence of these endogenous compounds was revealed when 

researchers succeeded in isolating them from mammalian tissues. 

Teschemacher et al. (56) demonstrated the presence of a 31 amino acid 

peptide in the bovine pituitary gland with opioid-like activity. This 

peptide was ultimately termed S-endorphin (49). Hughes, Kosterlitz and 

coworkers (27), using pig brain, were able to isolate two pentapeptides 

with opioid-like activity. They termed them methionine (met-) and 

leucine (leu-) enkephalin. 

S-endorphin is the most potent naturally occurring analgesic agent. 

It is derived from the parent compound pre-pro-opiomelanocortin 



(Figure 1). This latter contains ACTH and MSH in its mid portion and 

B-LPH in its c terminus. B-LPH is the direct precursor of s-endorphin 

which constitutes the C terminal 31 amino acids of pre-pro

opiomelanocortin. Two other forms of endorphin termed a- and y- also 

exist (4, 17, 22). 

s-endorphin is present in highest concentration in the pituitary 

gland possibly due to the high content of its precursor, B-LPH, there. 
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It can also be found in the brain, especially in the hypothalamus; and is 

also found, though in small quantities, in the pancreas, the antrum, the 

eye, and the placenta of some species. It is also present in the 

reproductive organs of the male rat (10, 22, 51). 

a-endorphin is also derived from pre-pro-opiomelanocortin 

(Figure 1). It is present in small quantities in the brain. It is a 

peptide made up of 16 amino acids, which are identical to the first 16 

amino acids of B-endorphin (4). 

Each of the enkephalins, met- and leu-enkephalin, is made up of five 

amino acids, differing only at their C terminal amino acid. The amino 

acid sequence of met-enkephalin is Tyr-Gly-Gly-Phe-Met, while that of 

leu-enkephalin is Tyr-Gly-Gly-Phe-Leu (11). The enkephalins are not 

derived from pre-pro-opiomelanocortin, although met-enkephalin has the 

same amino acid sequence as the N terminal five amino acids of 

B-endorphin. Met-enkephalin, in fact, is the end product in the 

processing of the precursor peptide pre-pro-enkephalin, where six copies 

exist. Leu-enkephalin is the end product in the processing of 

pre-pro-dynorphin as well as pre-pro-enkephalin. Three copies of 

leu-enkephalin are derived from the first compound, and one copy is 

derived from the latter (Figure 1) (17, 58). 



Figure 1. Molecular origin of endogenous opioid-like peptides. The 
opioid active core sequences are represented by solid 
bars ( .... ) and the putative signal regions of the 
precursors by thatched bars (~). The following 
abbreviations have been used: MSH, melanocyte 
stimulating hormone; ACTH, adrenocorticotrophic 
hormone; End, endorphin; ME, met-enkephalin; LE, 
leucine-enkephalin; Neo, neoendorphin; Dyn, dynorphin; 
R, arginine; K, lysine; T, threonine; L, leucine; E, 
Glutamic acid; W, tryptophan; G, glycine; and F, 
phenylalanine. The structures are for bovine pre-pro
opiomelanocortin, bovine pre-pro-enkephalin and porcine 
pre-pro dynorphin (17). 
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The enkephalins are found in the brain, the gut, and the adrenal 

medulla, where it has been localized to chromaffin cells containing 

catecholamine by immunocytochemistry (22, 24). 

Opioid Receptors 

The concept that there are several types of opioid receptors 

originated from the observation that, in man, nalorphine had a dual 

action, antagonizing the analgesic effect of morphine and also acting as 

an analgesic in its own right. It was concluded that the analgesic 

effect of nalorphine was mediated by a receptor which is different from 

that for morphine. That concept was reaffirmed by finding different 

pharmacological profiles among several opioids (39). 

The existence of multiple opioid receptors is now well established. 

The receptors that are generally accepted are the ~' K, 8, and to a 

lesser degree, a types (Table I). The ~-type favors morphine-like drugs, 

such as morphine and pethidine, and the opioid antagonist naloxone. The 

K-type favors cyclazocine-like drugs (i.e., ketocyclazocine and 

ethylketocyclazocine) as well as the dynorphins. The 6-type favors the 

2 5 
enkephalins, including the synthetic compound (D-ala , D-leu ) 

enkephalin. The a-type favors N-allylnormetazocine (SKF 10047). 

B-endorphin appears to be equally active at both ~ and 6 receptors 

(3, 9, 39, 48, 63). 

Opioid compounds bind stereospecifically, and the pharmacological 

activity resides in the (-) isomer, while the (+) isomer is devoid of 
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TABLE I 

BINDING OF OPIOIDS TO MULTIPLE OPIOID RECEPTORS 

Opioid Receptor 
Type 

]l 

K 

Ligand 

morphine, pethidine, naloxone, and 
S-endorphin 

ketocyclazocine, ethylketocyclazocine 
and the dynorphins 

met-, leu-enkephalin and s-endorphin 

N-allylnormetazocine 
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this activity. 1 In the morphinan series, for example, levorphanol, the 

(-) isomer has all the analgesic activity where as dextrorphan has none. 

Little information about the membrane components responsible for 

binding has yet accumulated, because of resistance to solubilization and 

purification in an active form. Simon et al. (50) claimed that a single 

high molecular weight binding component of 370,000-380,000 was observed 

following extraction with Brij 36-T, a non-ionic detergent, but they did 

not publish its sepharose elution profiles. The chemical nature of 

opioid receptors are still under investigation, and some work suggests 

that they contain protein and lipid components. 

Physiological Effects of Endogenous 

Opioid-Like Peptides 

Non-Immune Systems 

Endogenous opioid-like peptides have been known primarily for their 

behavioral effects. Their central administration into the brain causes 

analgesia. Also, some endogenous opioid-like peptides cause dream-like 

euphoria, and reality escape, similar to morphine which has been 

known for centuries to have mood altering properties. Moreover, a role 

for these peptides in mental diseases has been suggested, when it was 

shown that an intra-cerebroventricular administration of S-endorphin in 

rats induced catalepsy (30). Catalepsy is a condition characterized by 

waxy rigidity of the muscles. 

1The (+) isomer is dextrorotatory because it rotates a plane of 
polarized light in a clockwise direction, which a (-) isomer is 
levoratatory because it rotates the plane of polarized light in the 
opposite or counter-clockwise direction. 



Endogenous opioid-like peptides are also involved in the 

physiological regulation of cardiovascular functions at various levels. 

They increase the vagal tone and decrease the central sympathetic 

activity resulting in bradycardia and hypotension. They are also 

mobilized if the baroreceptor-mediated and other hypotensive mechanisms 

are insufficient to keep the blood pressure under a certain limit (4, 

55). 

12 

Besides their addiction liability, suppression of normal breathing, 

which can be observed sometimes at an analgesic dose level, is probably 

the main contraindication of their clinical application. This 

respiratory depressant action of opioids can be reversed by opioid 

antagonists, such as naloxone, which actually explains their efficiency 

in the treatment of acute opioid poisoning (4, 11). 

Contrary to their respiratory and cardiovascular action, the 

intestinal effects of endogenous opioid-like peptides are primarily 

mediated by peripheral opioid receptors situated in the gastrointestinal 

tract. These endogenous opioid-like peptides inhibit spontaneous 

peristalsis mostly after meals. They also decrease pancreatic and 

intestinal fluid secretions (55). 

Endogenous opioid-like peptides act also as thermoregulators. They 

induce hyperthermia by elevating the thermoregulatory set point of the 

organism's thermostat in the anterior hypothalamus resulting in 

inhibition of heat-escaping behavior (4). 

Immune System 

During stress, S-endorphin was found to be released from the 

pituitary gland (23). The variations in its secretion from the pituitary 
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gland, and in its circulating plasma level were not correlated with 

changes in the cerebral concentration of the peptide. That meant that 

its effect might be directed somewhere else. 

The effect of opioids and endogenous opioid-like peptides on the 

immune system was first suggested by the pioneering work of Wybran in 

1979 (62). Wybran et al. suggested the presence of met-enkephalin-like 

and morphine-like receptors on human peripheral blood T lymphocytes. 

They performed active rosette assays between T lymphocytes and sheep red 

blood cells and reported that met-enkephalin increased the percentage of 

active T rosettes while morphine decreased it. Plotnikoff and coworkers 

(35) have reported an increase in active T cell rosettes after addition 

of met-enkephalin but not leu-enkephalin. Enkephalins have also been 

reported to decrease the spleen weights of mice at both 10 and 30 mg/kg 

doses (42). 

McCain and coworkers (33), using human T lymphocytes, reported that 

-7 S-endorphin decreases blastogenesis at a concentration of 10 M, but 

-9 could not show it at 10 M. PHA was used as the mitogen. The addition 

of naloxone did not have a reversing effect, which suggests that the 

action of &-endorphin on PHA-mediated blastogenesis is via a non-opioid 

receptor mechanism. In contrast, Gilman (20) has reported an enhancement 

of rat lymphocyte proliferative responses using PHA and ConA as mitogens, 

and S-endorphin as a modulator of the response. When a mixture of 

lipopolysaccharide and dextran sulfate (LPS/DS) was used no significant 

effect was shown. These results suggest that the effect is mediated 

through T lymphocytes and that B lymphocytes are not involved. Using 

naloxone did not reduce the effect. In contrast to S-endorphin, 

a-endorphin and [D-ala 2-met 5] enkephalin did not modify proliferative 
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responses to mitogen. Plotnikoff and coworkers (41) have reported that 

leu-enkephalin increases lymphocyte blastogenesis using PHA as a mitogen. 

This effect was noticed in dilutions of 1:100 and 1:250 of PHA but not in 

1:500. Also an increase in lymphocyte blastogenesis was noticed for met

enkephalin at concentrations ranging between 10-4 - 10-12 M using 

dilutions of 1:100 of PHA. At lower concentrations of PHA (dilution 
-4 

1:500), only high doses of (2x10 M) enkephalins were significant. 

In contrast, Wybran (61) could not show any significant effect of 

enkephalins using human peripheral blood lymphocytes. No effect on 

mitogen-induced proliferation was observed except in the case of 

leu-enkephalin at a very narrow concentration range (1o-5M). 

Mathews et al. (32) have published data showing that S-endorphin 

(10-14 M) and met-enkephalin (10-9) could significantly increase the 

spontaneous cytotoxicity induced by natural killer (NK) cells against 

51cr labeled K562 target cells. The increased NK activity was dose 

dependent. Naloxone inhibited the augmentation of NK activity produced 

by B-endorphin and met-enkephalin. Thus, in this assay, B-endorphin 

activity appears to be mediated via classical opioid receptors. By using 

soft agarose single cell analysis assays, they showed that B-endorphin 

could increase the number of effector to target cell conjugates and the 

number of active NK cells. They could not show any modification of NK 

activity with a-endorphin (1o-12- 10-6M), ieu-enkephalin 

(1o-12- 10-6M), or morphine (10- 12 - 10-6M). 

Wybran et al. (61) have also attempted to determine whether morphine 

and several enkephalins could modify the human NK activity of peripheral 

blood mononuclear cells against 51cr radiolabeled K562 cells. The 



results can be summarized as follows. Morphine, leu-enkephalin and 

met-enkephalin increase NK activity by approximately 30 percent and 

usually at a concentration ranging between 10-8 and 10-5 M. However, 

D-ala2-met 5 enkephalin increased NK activity less than the previously 
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mentioned compounds (around 20%) and in a smaller range of concentration. 

The increase in NK activity elicited by each of these compounds was 

reversed when each compound at 1 ~M was incubated with naloxone at 1 ~M. 

Perhaps these latter results relate to the observation of Plotnikoff 

et al. (43) that BDF mice inoculated with L1210 leukemia cells, and 

treated with leu-enkephalin or met-enkephalin, had a lower mortality than 

untreated animals. Inasmuch as NK activity may be a control mechanism in 

tumor growth, it is possible that the lower mortality was related to an 

enhanced NK activity. Unfortunately, immunological tests were not 

performed on these animals. 

Johnson et al. (28) have reported that ACTII and a-endorphin were 

potent inhibitors (~ 80% suppression) of the antibody response to the 

!-cell-dependent antigen, sheep erythrocytes, at a concentration of 

0.5 ~M. Met- and leu-enkephalin were moderate inhibitors (approximately 

60% suppression) at 0.2 - 2 ~M, and S- and y-endorphin were minimal 

inhibitors (approximately 20% suppression) at S-6 ~M. 

Brown et al. (6) demonstrated that S-endorphin and met-enkephalin 

inhibited the production of a T lymphocyte chemotactic factor (LCF) by 

Con A-stimulated peripheral blood mononuclear cells. Inhibition of LCF 

-11 -6 production was observed by using concentrations of 10 - 10 M 

s-endorphin or met-enkephalin but not a-endorphin~ 

These results are summarized in Table II which exhibit conflicting 

reports about the effect of some opioids and endogenous opioid-like 
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TABLE II 

EFFECT OF OPIOIDS ON SEVERAL IMMUNE PARAMETERS 

Immune Parameter Species Author (Reference) Compound Effect 

Lymphocyte Rat Gilman (20) S -Endorphin t 
Proliferation 

Human McCain (33) S -Endorphin 
"" 

Murine Plotnikoff (41) Met-enkephalin t 
Leu-enkephalin t 

Human Wybran (61) Met-enkephalin -+ 

Leu-enkephalin -+ 
Morphine -+ 

Active T-rosette Human Plotnikoff (35) Met-enkephalin t 
Leu-enkephalin -+ 

Human Wybran (62) Met-enkephalin t 
Morphine 

"" 
Plaque Forming Cells Murine Johnson (28) a-Endorphin t 

(PFC' s) S-Endorphin -+ 

y-Endorphin -+ 

Natural Killer (NK) Human Mathews (32) S-Endorphin t 
Cell Activity Met-enkephalin t 

Leu-enkephalin -+ 

Morphine -+ 

a-Endorphin -+ 

Human Wybran (61) Met-enkephalin t 
Leu-enkephalin t 
Morphine t 

Lymphocyte Human Brown (6) 13-Endorphin 
"" Chemotactic Factor a-Endorphin -+ 

(LCF) Production Met-enkephalin 
"" 

Key: t = enhanced; + = inhibited; -+ = no effect. 
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peptides. Even within one parameter, there is much variability and, 

indeed, contrasting results. In lymphocyte proliferation, for example, 

S-endorphin exerted two opposite effects (20, 33). Also met-enkephalin 

and leu-enkephalin did not exhibit consistent effects on lymphocyte 

proliferation (41, 61). Therefore, it is difficult to draw conclusions 

using these results. Evidently, there is a need for more investigation 

into the effects of these compounds, in several immune parameters, for us 

to be able to understand the available results. 

Opioid Receptors on Immune Cells 

These various effects on the immune system suggested the presence of 

opioid receptors on immune cells. Indeed, a few studies reported the 

presence of these receptors on different immune cells using direct 

binding assays. Lopker et al. (31) demonstrated the presence of opioid 

receptors on human phagocytic leukocytes. Both human granulocytes and 

monocytes exhibited stereospecific, high-affinity binding of 

3-quinuclidinyl benzilate (QNB) and dihydromorphine. When using QNB, the 

apparent Kd to monocytes was approximately 20 nM, while the apparent Kd 

to granulocytes was approximately 16 nM. 

Hazum et a1. (26), using 125r-labelled SH[D-ala2] endorphin, 

reported the presence of specific non-opioid receptors for s-endorphin in 

cultured human lymphocytes. They suggested that the C-terminal region of 

s-endorphin is essential for this binding activity, since they found that 

a-endorphin was not active. 

Mehrishi et al. (34) have also reported the presence of naloxone and 

morphine receptors on human peripheral blood lymphocytes and platelets. 
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Ausiallo et al. (2) reported the existence of leu-enkephalin binding 

activity on the surface of a human lymphoid T cell line. They suggested 

that binding was due to receptors made up of Lipoproteins. Their 

suggestion was based on the finding that phospholipase A2 and 

proteinase K caused a marked inhibition of the enkephalin binding. 

Lastly, Johnson and coworkers (28) reported the presence of opioid 

receptors on mouse spleen cells using [3H] met-enkephalin. They 

suggested the existence of at least one type of binding site for 

[3H] met-enkephalin with Kd = 5.9 x lo-10 although they presented no 

experimental data to verify that. All results are summarized in Table 

III. 

Considering the reports of functional actions (Table II), it seems 

clear that opioids and endogenous opioid-like peptides have effects on 

the immune system of some mammalian species including mice. These 

functions should be mediated by receptors on immune cells, the presence 

of which has been reported (Table III). Nevertheless, these results are 

still few, and are not conclusive. The reported presence of receptors by 

Mehrishi (34) was neither clear nor very convincing. Furthermore, the Kd 

reported by Johnson (28) for a binding between met-enkephalin and opioid 

receptors on mice spleen cells was not substantiated by data to verify 

that. 

Facing a scarcity of information and a need to clarify some reported 

results, it was important to look for the presence of opioid receptors on 

immune cells to demonstrate that opioids and endogenous opioid-like 

peptides actually bind to these cells to carry on their functions. My 

hypothesis was that there are opioid receptors of at least one type on 

mice spleen cells. A binding assay would provide a direct method when 
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TABLE III 

BINDING STUDIES TO IMMUNE AND BLOOD COMPONENTS 

Type Author Possible 
of Cells Species (Reference) Ligand Receptor 

Monocytes Human Lopker (31) [3 H] dihydromorphin ]J 

Granulocytes Human Lopker (31) [3H]dihydromorphin ]J 

Cultured Human Hazum (26) SH-[125I]- non-opioid 
Lymphocytes (D-ala2)-endorphin 

Peripheral Human Mehrishi (34) [3H] naloxone ]J 

Blood 
Lymphocytes 

Platelets Human Mehrishi (34) [3H] naloxone ]J 

Cloned T Cells Human Ausiallo (2) [3H] leu-enkephalin 0 

Mouse Spleen Murine Johnson (28) [3H] met-enkephalin 0 
Cells 
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looking for the presence of such receptors. Mice were available to us 

through our colony at Oklahoma State University. Consequently, it was 

feasible to use their spleen cells for our research. Two reasons 

prompted me to use spleen cells; the first was lack of binding studies to 

these cells using opioids and endogenous opioid-like peptides, and the 

second was the availability of immunological tools related to the immune 

cells of mice. 



CHAPTER II 

MATERIALS AND METHODS 

Animals 

One to four month old male and female BALB/c mice were used. These 

mice were obtained from a colony that originated from the Jackson 

Laboratory (Bar Harbor, ME) and maintained at Oklahoma State University. 

All mice were housed at a maximum density of six animals per cage and 

were maintained on Lab Blox (Ellison's Seed and Supply, OK) and water ad 

libitum. The light/dark cycle was at 12 hr intervals. 

Reagents 

[3H] naloxone (54 Ci/m mole) and [3H](D-ala2 , D-leu5) enkephalin 

(29.1 Ci/m mole) were purchased from Amersham International (Amersham, 

U.K.). B-endorphin, a-endorphin, (D-ala2, D-leu5)-enkephalin, (D-ala2)

methionine enkephalin, naloxone, and Phytohemagglutinin (PHA-P) were 

purchased from Sigma Chemical Company (St. Louis, MO). [methyl-3H] 

thymidine (2.0 Ci/m mole), econofluor, and aquasol were purchased from 

New England Nuclear (Boston, MA). Whatman glass microfibre,filters, 

AH-934, GF-A, -B, -c, -D, and -F (2.4 em diam.) and the Metrical Membrane 

Filter, GA-6 (2.4 em diam.), were purchased from Fisher Scientific 

Company (Pittsburgh, PA). Trichloroacetic acid (TCA) was purchased from 

MC/B Manufacturing Chemists, Inc. (Norwood, OH). 
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Buffer and Media 

Enriched RPMI 1640 and 10% FCS (pH 7.4) was used as a suspending 

medium for cells in lymphocyte proliferation assay. They have the 

following ingredients per liter: RPMI 1640 medium (1 pack), sodium 

pyruvate (110.0 mg), 1-glutamine (292.0 mg), MEM amino acids, SOx 

(20.0 ml), MEM non essential amino acids, lOOx (10.0 ml), MEM vitamins 

solution, lOOx (4.0 ml), penicillin (100 IU/ml), streptomycin 74% 
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(135 mg/1), and 10% FCS (100 ml) purchased from GIBCO (Grand Island, NY). 

Amphotericin B (2.5 mg), deoxycholate (2.05 mg), and 2-mercaptoethanol 

0.35% (1.0 ml) were purchased from Sigma Chemical Company (St. Louis, 

MO). 

Hank's balanced salt solution (HBSS), pH 7.4, was purchased in 

powder form from GIBCO (Grand Island, NY) and rehydrated according to 

instructions. 

Phosphate buffer saline (PBS), pH 7.4, 296 mOsM contained 7.9 mM 

Na 2HP04 , 2.6 mM NaH2Po4 , and 154 mM NaCl. 

Tris-ammonium chloride (Tris/Cl) contained 0.17 M Tris 

[(hydroxymethyl) amino methane] and 0.16 M ammonium chloride. 

Spleen Cell Preparation 

The method of Ortez (38) was modified as described for preparing 

mice spleen cells. The mice were anaesthetized with chloroform and 

killed by cervical dislocation. They were pinned down to a cardboard, 

the abdominal cavity of each was opened, and the spleens were cut loose 

from the surrounding mesentery and fat. Each spleen was cut into 2-4 

pieces which were disrupted in a dual 22 homogenizer in HBSS. 
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The spleen cells were dispensed in HBSS (5 mls/spleen) and 

centrifuged (CRU-5000 (IEC)) at 1800 RPM for 12 min. The supernatant was 

discarded and the spleen cells were washed again in HBSS (3 mls/spleen). 

After the second wash, the spleen cells were suspended in Tris/Cl 

(2.5 mls/spleen) to lyse RBC's. After an incubation period of 10 min at 

room temperature, the cells were centrifuged at the same conditions as 

above. They were resuspended in HBSS (2-3 mls/spleen) and counted under 

the microscope using a hemocytometer. Cell viability, determined by 

Trypan blue (0.2%) exclusion, ranged between 90-95%. The number of 

8 
spleen cells collected from each mouse averaged between 1 and 2xl0 • The 

number of mice used in each experiment ranged between 1 and 4. If the 

cells were to be used in a proliferation assay, this process was carried 

out under sterile conditions and the cells were suspended in enriched 

RPMI 1640 and 10% FCS at the final stage. 

Brain Membrane Preparation 

A mouse used as a. spleen donor was also used to prepare brain 

membranes. After removing the spleen, the skull was opened with the help 

of a pair of scissors and forceps. The brain was removed, and 

homogenized between the frosted ends of two microscope slides. Brain 

membranes were washed two times and resuspended in HBSS (5 mls/brain). 

Peritoneal Exudate Cells (PEC's) Preparation 

In PEC's preparation, the method of Gallily and Feldman (19) was 

modified as described. Three mice were injected intraperitoneally (i.p.) 

with 2-2.5 mls of 3% thioglycollate using a 21 g needle. The variation 
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in the amount of injected thioglycollate was related to the size of mice 

used. 

Four days later, PEC's were harvested. The mice were anaesthetized 

with chloroform. Each mouse was pinned down to a cardboard with the 

abdomen up. An incision was made through the skin, and up the center 

line. The skin was pulled to the sides exposing the abdominal wall. 

HBSS (4 mls) were injected into the peritoneal cavity, using a 26 g 

needle. The HBSS injected contained 5 U/ml of heparin to prevent blood 

clotting. The injection was made along the mid-anterior line. The 

abdomen area was then massaged to allow the HBSS to circulate throughout 

the abdominal cavity. A lateral pull on the abdomen was applied to 

create a pocket of fluid at the flank area. After 5 min, a needle was 

inserted, and suction was applied to retrieve the peritoneal fluid; 

3-3.5 mls were usually harvested. This procedure was done for all three 

mice used in each experiment. 

PEC's from the injected mice were added together and were 

centrifuged for 15 min at 2400 RPM. After the cells were washed again, 

the supernatant was aspirated, and the pellet was suspended in 2 mls of 

Tris/Cl. After an incubation time of 10 min at room temperature, the 

cells were centrifuged for 15 min at 2400 RPM. The supernatant was 

aspirated, and the cells were resuspended in 3 mls of HBSS. 

The PEC's tended to clump due to thioglycollate stimulation. 

Consequently, counting the cells under the microscope using a 

hemocytometer, gave an underestimate of the amount of cells that are 

7 
there. The PEC's recovered ranged between 2 and 5 x 10 cells for three 

mice. 
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Cell Proliferation Assay 

The method of Gilman (20) for cell proliferation was modified as 

described. A sterile suspension of spleen cells was used in each 

experiment. The mitogen PHA and one of the endorphins or the enkephalins 

(test compounds) were added to spleen cells in culture tubes. A number 

of spleen cells (varying with the experiment) were suspended in 800 ~1 of 

enriched RPMI and 10% FCS. 100 ~1 of 100 ~g/ml PHA was added to the 

spleen cells. Immediately after the addition of PHA, 100 ~1 of enriched 

RPMI and 10% FCS or test compound was added. The compound tested and its 

concentration varied with the experiment. For the most part, they were 

-10 endorphins and enkephalins compared over concentration ranges of 1 x 10 

-4 
to 1 x 10 M. All test compounds as well as PHA were prepared as lOx 

stock solutions in enriched RPMI and 10% FCS. 

Two kinds of controls were used. The first control represents the 

basic proliferation of spleen cells without using a mitogen. These 

control tubes contained only spleen cells in 1 ml of the suspending 

medium. The second control represented cell proliferation of spleen 

cells due to PHA only, without the use of a modulator (an endorphin or an 

enkephalin). These control tubes contained spleen cells and PHA in 1 ml 

of the suspending medium. In all experiments, the first control and 

experimental cultures were run in triplicate, while the second (mitogen 

positive) control cultures were run in sextuplicate (six times). 

The control and experimental culture tubes were incubated in a 

humidified water-jacketed chamber (National, a Heinacke company) of 3% co 2 

in air, at 37° c. They were pulsed with 200 ~1 containing 0.5 ~Ci of 

[methyl-3H] thymidine, at 56 hour of culture. 
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Cell culture was terminated by centrifugation of culture tubes at 74 

hour, in a CRU-5000 centrifuge (IEC) at 2400 RPM, for 15 min. 

Supernatants were aspirated and the spleen cells were resuspended in 

100 ~1 of PBS. The contents of each culture tube were transferred to 

13 x 26 mm pieces of 3 MM filter papers and kept overnight to air dry. 

The next day, the filter papers were immersed in 10% TCA 

(10 ml/filter paper) for 20 min. Then they were transferred to another 

batch of 10% TCA (10 ml/filter paper) for 20 min. Each filter paper was 

then dipped four times in chloroform, and placed under a heated lamp to 

dry for approximately 15 min. The filter papers were left for 5 min to 

cool, and then each was transferred to a glass vial having 10 mls of 

econofluor scintillation fluid. Radioactivity was measured using Beckman 

LS 7500 liquid scintillation counter. 

Receptor Binding Assay 

In receptor binding assays, the method of Mehrishi (34) was adopted 

as modified. Radioactive opioid compounds were used to look for opioid 

receptors on mouse spleen cells. Mouse brain cell membranes were used as 

positive controls because they carry both ~ and o opioid receptors. The 

radioactive compounds used were either [3H] naloxone or 

[3H](D-ala2, D-leu5)-enkephalin. Binding assays were conducted in 

duplicate, triplicate, or sometimes pentuplicate, using culture tubes 

(12x75) for incubation. Binding experiments were carried out in glass 

tubes when (3H] naloxone was the radioactive compound used. In contrast, 

plastic tubes were employed when [3H](D-ala2 , D~leu5)-enkephalin was 

used, because of the potential binding of peptides to glass. Mouse 

spleen cells (1 x 10 7) (or brain membranes) were suspended in a final 
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volume of 300 ~1 of HBSS and added to each test tube. Either 

5 3 5 
1.1 x 10 DPM of [ H] naloxone or S.S x 10 DPM of 

3 2 5 
[ H](D-ala , D-leu )-enkephalin, dissolved in SO ~1 of HBSS, were quickly 

added to spleen cells (or brain membranes) unless otherwise mentioned. 

Specificity of the binding was demonstrated by adding SO ~1 of a 

1 x 10-4 M solution of unlabelled naloxone or (D-ala 2, D-leu5)-enkephalin 

(depending on the radiolabel used) to compete with the radioactive 

compound, while 50 ~1 of HBSS were added to other samples. Specific 

binding was the difference in binding in the presence and the absence of 

unlabelled ligands. After addition of the [~] compound, the samples 

were incubated at room temperature for 1 hr, unless otherwise stated. 

In competitive binding assays, SO ~1 of unlabelled naloxone at a 

concentration range between 1 x 10-4 to 1 x 10-9 M competed with 

[3H] naloxone, while SO ~1 of HBSS were added to other samples. The 

culture tubes were then treated similar. to those in other binding assays. 

In saturation assays, SO ~1 of unlabelled (D-ala 2, D-leu5)-

3 2 5 enkephalin were added to SO ~1 of [ H](D-ala , D-leu )-enkephalin ranging 

3 s 
in concentration between S.S x 10 to S.S x 10 DPM, while SO ~1 of HBSS 

were added to other samples. The culture tubes were treated similar to 

those in other binding assays. 

A filtration technique was employed to separate the bound and free 

radioactive compounds. A filtration box, having 12 wells connected to a 

vacuum pump, was used (Millipore). In each well, one fiberglass filter 

(Whatman AH-934) was positioned. Each filter was sealed with a 

polyethylene ring to prevent any leaks to the outside. 

At the end of the incubation time, each filter paper was quickly 

wetted with 2 mls of HBSS having 1% bovine serum albumin (BSA). Bovine 
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serum albumin reduced the amount of non-specific binding to filter 

papers. The samples were then quickly rinsed with cold HBSS (4 washes, 2 

mls each wash) which was applied to the filters. The samples were 

treated one at a time. The total elapsed time for filtration and washing 

was approximately 45 sec per sample. The vacuum was applied at a level 

that would keep the filter wet between each wash, but buffer would not 

remain standing on the filter. 

After finishing all the samples, the filters were placed in plastic 

vials containing 6 mls of aquasol. The contents of the vials were then 

mixed well by shaking. The vials were stored for a few hours, and then 

counted in a Beckman LS 7500 liquid scintillation counter. 

Protein Determination Assay 

The Coomassie Blue microassay was used to estimate protein. Biorad 

reagent (0.4 ml) was added to 1.6 ml of protein solutions (BSA standard 

or unknown samples). After 10 min, absorbance was read on a 

spectrophotometer (spectronic 20) at A595. A curve relating absorbance 

to protein content of the standard BSA solution was generated. The 

protein content of each sample was estimated from this curve. 

Statistical Analysis 

Results of cell proliferation assays were expressed as the mean cpm 

of PHA stimulated cultures minus the mean of control (basal cell 

proliferation) cultures+ standard error mean (SEM). The paired 

Student's t test was used in determining significant differences between 

experimental cultures (PHA and an endorphin or an enkephalin) and 

cultures having only PHA. p 2 0.05 was considered statistically 



significant (53). Stimulation index (SI) was the ratio of the mean cpm 

of experimental cultures to the mean cpm of cultures having only PHA. 
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Results of binding assays were expressed as mean cpm minus 

nonspecific binding to the AH-934 filters. The Paired Student's t test 

was used to determine the presence of specific opioid receptors by 

comparing treatments having unlabelled ligands with those lacking them. 

p~ 0.05 represented a significant difference between the two treatments. 



CHAPTER III 

RESULTS 

Standardization of Binding 

Choosing an Appropriate Filter 

Before beginning to study opioid receptors on lymphocytes, it was 

necessary to develop a suitable radioligand binding assay. The first 

component of the assay to be tested was the step involving separation of 

bound and free radioligands. Because of its speed of action, a 

filtration method was selected. Table IV shows the results of a study to 

determine the most appropriate filter type. Several grades of fiberglass 

filters and a single pore size membrane filter were tested. Each filter 

type was tested in triplicates and triplicate determination was made on 

each filter. 

In this experiment, 6 x 106 or 9 x 10 6 (depending on experiment) 

spleen cells were suspended in 600 ~1 of PBS and added to the filter. 

The filter was then washed 4 times (2 mls each) with PBS. The filtrate 

was collected and measured 8.6 ml. The protein content of three 1.6 ml 

aliquots of each filtrate was estimated as described in Materials and 

Methods. The average absorbance and calculated protein content for each 

filtrate are presented in Table IV. The protein content of the entire 

600 ~1 spleen cell suspension was determined using cells disrupted in 

deionized water. The percentage of protein passing through the filter 
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TABLE IV 

PERCENTAGE OF PROTEIN PASSING THROUGH A FILTER 

Filter 1 Filter 2 Filter 3 
Filter Type Absorbancea Protein Absorbancea Protein Absorbancea Protein 
(pore size) ± SEM (]Jg) ± SEM (]Jg) ± SEM (]Jg) 

GA-G (0.45 ]Jm) 0.095 + 0.002 4.9 0.092 + 0.004 4. 77 ND ND - -
GF-F (0.7 ]Jm) 0.038 + 0.006 1.47 0.030 + 0.001 1.13 0.015 + 0.001 0.40 

GF-B ( 1. 0 ]Jm) 0.031 + 0.004 1.18 0.040 + 0.001 1.60 0.025 + 0.009 0.89 - - -
GF-C ( 1. 2 ]Jm) 0.054 + 0.002 2.80 0.054 + 0.003 2.80 0.049 + 0.005 2.50 - -
AH-9 34 (1. 5 ]Jm) 0.036 + 0.005 1.94 0.056 + 0.003 2.90 0.054 + 0.003 2.80 -

GF-A (1 • 6 ]Jm) 0.080 + 0.001 3.48 0.037 + 0.005 1.45 0.058 + 0.004 2.41 

GF-D (2.7 wm) 0.083 + 0.003 3.62 0.079 + 0.007 3.42 0.086 + 0.004 3.81 

-
aAbsorbance at A 595. 

bAmount of protein poured on the filter was 113.52 ]Jg. 

cAmount of protein poured on the filter was 75.37 J.1&· 

Protein Protein Protein 
Avg. Total Passed 
(]Jg) (]Jg) (%) 

4.84 26.02 22.9b 

1.00 5.38 7.1c 

1.22 6.56 11.5c 

2.70 14.51 12.8b 

2.55 13.71 12.lb 

2.45 13.17 17 .5c 

3.62 19.46 25.8c 

w ...... 
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was calculated as the ratio of the protein passing through the filter to 

the amount added. These values are expressed in the last column of 

Table rv. 

Based upon the study, filter GF-F showed the best protein retention 

value (7.1%) and would have been our first choice. However, another 

factor, equally important in filter choice, was the amount of non-

specific binding of radioligand to filters. Therefore, the four best 

filters by protein retention (GF-F, GF-B, GF-A, and AH-934) were selected 

for evaluation of [3a] naloxone retention. The filters were prewashed 

5 with 2 mls of HBSS. Then 250 ~1 of HBSS having 1.1 x 10 DPM of 

[3H] naloxone, without spleen cells, was quickly added to the prewashed 

filters. The results are shown in Table v. A definite pattern was clear 

from these results. The larger the pore size, the less [3H] naloxone was 

retained. Consequently, given radiolabelled compound binding alone in 

choosing a filter, AH-934 would have been our optimum choice. AH-934 was 

ultimately selected for use throughout the rest of the studies because it 

allowed the least amount of nonspecific binding to filter (66.8 + 5.4), 

and at the same time, a moderate amount of proteins to pass through 

(12.1%). 

Effect of Washing on [3H] Naloxone Retention 

In binding assays, it is important to keep nonspecific binding to a 

minimum. One source of nonspecific binding is radioligand that is not 

effectively washed away. Therefore, an experiment was performed to 
) 

determine the number of washes of a filter necessary to effectively 

reduce nonspecific binding (see Table VI). Filtration was done using 



TABLE V 

NON-SPECIFIC RETENTION OF [3H] NALOXONE ON FILTERS 

Filter Type 3 [ H] Naloxone Retention on 
(pore size) Filter Paper (CPM ± SEM) 

AH-934 (1.5 11m) 66.8 + 5.4 

GF-B (1.0 ).lm) 78.6 + 3.5 

GF-C (1.2 ).lm) 79.1 + 10.1 

GF-F (0.7).lm) 93.9 + 3.6 

Note: No spleen cells were incubated with 
[3H] naloxone, or added to filters. The 
experiment was run in triplicates. 

TABLE VI 

EFFECT OF WASHING ON [3H] NALOXONE RETENTION 
BY AH-934 FILTERS 

Number 
of Washes 

2 

4 

6 

8 

10 

3 [ H] Naloxone Retention on 
Filter Paper (CPM ± SEM) 

379.2 + 61.1 

223.8 + 28.9 

169.1 + 7.4 

135.7 + 34.9 

85.6 + 0.4 

Note: Results are expressed as cpm excluding non
specific binding to filters AH-934. The 
experiment was run in duplicates. 
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AH-934 filters which were washed with 2, 4, 6, 8, or 10 washes 

(2 mls/wash). The results clearly showed the more washes applied to a 

3 
filter, the less [ H] naloxone was being retained on that filter. 
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Notwithstanding these results, it was assumed that too many washes might 

be reducing specific binding as well. Therefore, it was decided that 

four washes were enough to reduce nonspecific binding, and still be able 

to maintain specific binding. 

Role of BSA as an Antiadsorbent 

Bovine serum albumin (BSA), being an antiadsorbent, was chosen to 

prewash the filters. Different concentrations of BSA ranging between 0.0 

to 4.0% were used. 3 5 [ HJ naloxone (1.1 x 10 DPM) was added to the 

prewashed filters without incubation with spleen cells. The results have 

shown that BSA decreased the amount of nonspecific binding to filters 

when used at concentrations ranging between 1 and 2% by about 33% 

(Figure 2). When the amount of BSA was increased up to 4.0%, there was a 

substantial increase in binding (306%). Thus, it was decided to prewash 

filters with 1% BSA in all future experiments. 

Effect of Number of Spleen Cells on Binding 

A variable number of spleen cells ranging between 0.75 x 10 6 and 

1 x 10 8 were suspended in HBSS and incubated with 1.1 x 105 DPM of 

3 [ H] naloxone. Figure 3 shows an increase in binding as the number of 

spleen cells was increased. These results represented a total of both 

specific and nonspecific binding. It was felt that at a high 

concentration of spleen cells, nonspecific binding would be substantial, 

a condition unfavorable in binding assays. Also, at very high 



Figure 2. Prewash of AH-934 with bovine serum albumin. No spleen 
cells were incubated with 1.1 x 105 DPM of [3H] 
naloxone. The experiment was run in duplicate. 
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Figure 3. Effect of spleen cell numbeG on binding. Spleen cells 
ranging between 0.75 x 10 and 1 x 108 were incubated 
with 1.1 x 105 DPM of [3H] naloxone, for 30 min at 
37°C. Experiment was run in triplicate. 
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7 8 
concentrations (5 x 10 - 1 x 10 ) spleen cells were not suspended well 

in the medium. 
7 

Therefore, we decided to use 1 x 10 spleen cells in 

future binding assays. 

[3 H] Naloxone Binding to Spleen, 

Brain and PEC 

Competitive Inhibition Using Spleen Cells 

[3H] naloxone was incubated with 1 x 10 7 spleen cells. Then, 
-9 

variable concentrations of unlabelled naloxone ranging between 1.7 x 10 

and 1.7 x 10-S M were added to the incubated cells (Figure 4). Although 

there was a difference between control and experimental tubes, this 

difference was not statistically significant (p ~ 0.05). This was an 

indication that there was probably no specific receptors of the ~ type. 

Nevertheless, this experiment had been done at a single condition (room 

temperature, 1 hr) and it could not be ruled out that other conditions 

might reveal receptor specific binding. 

Relation Between Incubation Time and Binding 

Spleen cells were incubated with [3H] naloxone at room temperature 

for different incubation periods ranging between 30 min and 3.0 hrs. At 

each incubation time, specific binding was tested by adding unlabelled 

naloxone (Table VII). There was no significant difference between the 

two treatments (with and without unlabelled naloxone) at all incubation 

times. Nevertheless, a small difference between the two treatments 

persisted. 



Figure 4. Competitive inhibition of naloxone: Spleen cells. 
Variable concentrations of unlabelled naloxone ranging 
between 1.7 x 10-8 and 1.7 x 10-S M were added to the 
incubated cells. Cells were incubated for 1 hr at room 
temperature. Results are expressed as cpm excluding 
nonspecific binding to AH-934 filters. Experiment was 
run in duplicate. 
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TABLE VII 

EFFECT OF INCUBATION TIME ON SPECIFIC BINDING 

Incubation (-) Cold Naloxone (+) Cold Naloxone 
Time (CPM ± SEM) (CPM ± SEM) 

30 min 190.3 + 12.8 173.5 + 3.2 

50 min 158.0 + 14.1 142.5 + 16.4 

1 hr 200.6 + 41.4 101.0 + 28.4 

1.5 hrs 144.8 + 13.2 97.2 + 33.6 

2 hrs 156.9 + 62.6 93.1 + 14.8 

3 hrs 191.0 + 27.3 166.9 + 13.8 

Note: Spleen cells were incubated with [3H] naloxone at room 
temperature for incubation periods ranging between 30 min and 
3.0 hrs. 1.7 x 10-S M naloxone was added for some tubes for the 
indicated incubation time. The experiment was done in duplicate. 
Results were expressed as cpm excluding nonspecific binding to 
AH-934 filters. 
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Specificity of Binding to Brain Cell Membranes 

There was the possibility that the binding assay was not working 

right. A competitive inhibition assay using brain cell membranes would 

serve as a proper control, since it was known that they contain opioid 

receptors of the ~ type. Brain cell membranes were incubated, with 

[3H] naloxone and variable concentrations of unlabelled naloxone between 

1.7 x 10-9 and 1.7 x 10-6 as mentioned in the materials and methods. 

Figure 5 shows that an increase in the concentration of unlabelled 

naloxone led to the decrease of [3H] naloxone binding. The competitive 

inhibition was significant (p < 0.05) at all concentrations of unlabelled 

naloxone used. At 1.7 x 10-6 M unlabelled naloxone there was a 80.2% 

decrease in binding, and still the curve did not level off. This 

competitive inhibition was a clear demonstration of specific binding. 

Thus our assay system was working well. 

Specificity of Binding: Brain and Spleen 

It was important, therefore, to use brain cell membranes (positive 

control) and spleen cells in the same experiment. They were incubated 

with 1.1 x 10 5 DPM of [3H] naloxone for 1 hr at room temperature. 

-5 3 1.7 x 10 M unlabelled naloxone was used to inhibit [ H] naloxone 

binding. It is clear from Figure 6 that brain membranes contained 

specific receptors for naloxone. On the other hand, the spleen cells 

again failed to show any significant (p ~0.05) specific binding 

(111.3 + 10.8 compared to 89.7 ~ 9.9). This further suggested that 

either there are no specific ~ type opioid receptors in spleen cells or 

that the receptors were too few to be detected by our assay procedure. 

In another experiment, 5.5 x 105 DPM of [3H] naloxone were incubated with 



Figure 5. Competitive inhibition of naloxone: Brain cell 
membranes. Variable concentrations of unlabeled 
naloxone ranging between 1.7 x 10-9 and 1.7 x 10-6 were 
added to brain cell membranes which were incubated with 
1.1 x 10 5 DPM of [3H] naloxone for 1 hr at room 
temperature. Experiment was run in triplicate. 
Results are expressed as counts excluding nonspecific 
binding to AH-934 filters. (*) indicates a significant 
difference (p 2 0.05) from control. 
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Figure 6. Specificity of [3H] naloxone binding using 1.1 x 105 DPM: 
Brain and spleen. The cells were incubated with 
[3H] naloxone for 1 hr at room temperature with and 
without 1.7 x 10-5M naloxone. Experiment was run in 
triplicate. Results are expressed as cpm excluding 
nonspecific binding to AH-934 filters. (*) indicates a 
significant difference (p ~0.05) from control. 
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spleen cells with or without 1.7 x 10-5 M naloxone for 1 hr at room 

temperature. Figure 7 shows that there was no significant difference 

between the two treatments for spleen cells. This meant that increasing 

the concentration of [3H] naloxone did not provide any evidence of a 

significant (p ~ 0.05) specific binding to ~ receptors. On the other 

hand, 1.7 x 10-5 M naloxone inhibited [3H] naloxone binding to brain cell 

membranes, demonstrating specific binding to~ receptors. 

Competitive Inhibition: Brain and PEC 

The persistent observation of a small amount of specific binding to 

spleen cells prompted the speculation that there may be a small 

population of cells possessing a high number of receptors. One minor 

component of spleen cells are macrophages. Therefore a competitive 

inhibition assay using both PEC's, a source of macrophages, and brain 

cell membranes was performed to determine the presence of specific 

opioid receptors on PEC's. It is clear from the data in Figure 8 that 

PEC's, like spleen cells, failed to show a decrease in binding upon the 

addition of 1.7 x 10-5 M unlabelled naloxone. This is an indication of 

the absence of specific~ receptors on PEC's. Brain cell membranes, 

serving as a positive control, clearly showed specific binding. A second 

experiment also using PEC's gave comparable results. 

Standardization of Proliferative Assay 

Effect of PHA Concentration 

Phytohemagglutinin (PHA), a predominantly T cell activator, was used 

as a mitogen. Different concentrations of PHA ranging between 5 and 

30 ~g/ml PHA were added to 1.0 x 10 spleen cells (Figure 9a). The dose 



Figure 7. Specificity of [3H] naloxone binding using 5.5 x 105 DPM: 
Brain and spleen. The cells were incubated with 
[3H] naloxone for 1 hr at room temperature with and 
without 1.7 x 10-5M naloxone. Brain cell membranes 
were run in singlet. Spleen cells were run in 
pentuplicate. Results are expressed as counts excluding 
nonspecific binding to filters. 
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Figure 8. Specificity of binding: Brain and PEC. 0.8 x 107 PEC's 
were incubated with [3H] naloxone for 1 hr at room 
temperature with and without 1.7 x 10-5M naloxone. 
Experiment was run in triplicate. Results are 
expressed as counts including nonspecific binding to 
filters. (*) indicates a significant difference 
(p 2 0.05) from control. 
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Figure 9. Effect of PHA concentration on PHA-induced lymphocyte 
proliferation. Spleen cells were incubated with 
variable PHA concentrations ranging between 5 and 
30 ~g/ml. (a) Spleen cells used were 1.0 x 106. 
(b) Spleen cells used were 2.5 x 106. 
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response curve generated, peaked at 5 ~g/ml and dropped down steadily as 

the concentration of PHA increased. At 5 ~g/ml, PHA caused about 540% 

increase over basal cell proliferation. This increase dropped down to 

410% at 10 ~g/ml. A slightly different dose response curve was generated 

6 
using 2.5 x 10 spleen cells and the same concentration range of PHA 

(Figure 9b). The curve peaked at between 10 and 15 ~g/ml of PHA and then 

dropped down steadily at higher concentrations. 

Effect of Cell Number 

A variable number of spleen cells ranging between 0.5 x 106 and 

10 x 106 were tested to determine the effect of spleen cell number on 

PHA-induced proliferation. Figure 10 shows that the lymphocyte prolifer-

ation increased with an increase in cell number, reaching.a peak of 

6 832.6 + 72.7 cpm at 2.0 x 10 cells, and then began to decline steadily 

at higher concentrations of cells. It was interesting to notice that 

6 lymphocyte proliferation dropped to -96.7 + 12.1 cpm at 10 x 10 spleen 

cells, which was significantly below basal cell proliferation (p < 0.05). 

Endogenous Opioid-Like Peptide Modulation 

of PHA Induced Proliferation 

S-Endorphin 

-11 S-endorphin was used at concentrations ranging between 2 x 10 and 

2 x 10-6 M to modulate PHA-induced proliferation. It was added to spleen 

cells (1 x 10 6) induced to proliferate by 10 ~g/ml of PHA. It is clear 

from Figure 11a that there had been a consistent increase in activation 

as the concentration of s-endorphin was decreased. -10 At 2 x 10 and 

2 x 10-11 M, which are rather physiological concentrations, the 



Figure 10. Effect of cell number on PHA induced lymphocyte 
proliferation. Spleen cells ranging between 0.5 x 106 
and 10 x 106 were incubated with 10 ~g/ml of PHA. 
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Figure 11. B-endorphin modulation of PHA-induced proliferation. 
It was added, at concentrations ranging between 2 x lo-ll 
and 2 x 10-6 M, to 1 x 106 spleen cells induced to 
proliferate by 10 ~g/ml of PHA. Two experiments (a) 
and (b) were performed. Control cultures having only 
PHA were run in sextuplicate, while B-endorphin 
modulated cultures were run in triplicate. (*) means 
a significant difference (p < 0.05) between cultures 
having S-endorphin + PHA and-cultures having PHA only. 
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activation was significant (p ~ 0.05). Unfortunately, another experiment 

using the same range of concentrations of s-endorphin did not show a 

clear modulatory effect for S-endorphin (Figure llb). 

a-Endorphin 

a-endorphin was used at concentrations ranging between 1 x l0-10 and 

1 x 10-5 M to modulate PHA-induced proliferation. It was added to spleen 

cells (1 x 10 6) induced by 10 ~g/ml PHA. Figure 12a shows that 

a-endorphin was suppressing PHA-induced cell proliferation (an activation 

index < 1.0) at all concentrations used. This suppression tended to 

increase with higher a-endorphin concentrations. Suppression was 

-6 significant (p ~ 0.05) at 1 x 10 M. Figure 12b showed the same 

tendency of increased suppression of cell proliferation as the 

concentration of a-endorphin was increased. Suppression was significant 

(p ~ 0.05) at 10-5 M. 

(D-Ala2, D-Leu5) Enkephalin 

(D-ala2 , D-leu5) enkephalin was also tested at concentrations 

-10 -5 ranging between 1 x 10 and 1 x 10 M, to determine its effect on 

PHA-induced proliferation. It was added to spleen cells (1 x 106) 

induced by 10 ~g/ml PHA. Figure 13a showed that cell proliferation 

peaked at 1 x 10-7 M of (D-ala2 , D-leu5) enkephalin, reaching an 

activation index (A.I.) of 1.21 + 0.03. When the concentration was 

further decreased, proliferation began to drop, reaching an A.I. of 1.0 

between 10-8 and 10-9 M. Suppression of cell proliferation was 

significant (p < 0.05) at 10-9 and 10-10 M, reaching A.I.'s of 

0.76 + 0.02 and 0.57 + 0.04 respectively. Figure 13b shows a similar 



Figure 12. a-endorphin modulation of PHA-induced proliferation. It 
was added, at concentrations ranging between 1 x 10-10 
and 1 x 10-S M, to cultures of 1 x 106 spleen cells 
induced to proliferate by 10 ~g/ml of PHA. Two 
experiments (a) and (b) were performed. Control 
cultures having only PHA were run in sextuplicate, 
while a-endorphin modulated cultures were run in 
triplicate. (*) means significant difference 
(p ~ 0.05) between cultures having a-endorphin and 
PHA, and cultures having PHA only. 
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Figure 13. (D-a1a 2, D-1eu5) enkephalin modulation of PHA-induced 
proliferation. It was added, at concentrations 
ranging between 1 x 10-lO and 1 x 10-5 M, to cultures 
having 1 x 106 spleen cells induced to proliferate by 
10 ~g/ml of PHA. Two experiments (a) and (b) were 
performed. Control cultures having only PHA were run 
in sextuplicate, while (D-ala2, D-leu5) enkephalin 
modulated cultures were run in triplicate. (*) means 
a significant difference (p < 0.05) between cultures 
having (D-ala2, D-leu5) enkephalin + PHA and cultures 
having PHA only. 
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dose response curve reaching a maximum at 1 x 10-7 M and then suppression 

at 1 x 10-9 and 1 x 10-lO M. 

2 (D-Ala ) Met Enkephalin 

2 (D-ala ) met enkephalin was tested at concentrations ranging between 

1 x 10 -lO and 1 x 10-5 M, to determine its effect on PHA-induced 

proliferation. It was added to spleen cells (1 x 106 ) induced by 

10 ~g/ml PHA. (D-ala2) met enkephalin (Figures 14a and b) did not show 

any modulatory activity of PHA-induced cell proliferation when used at 

concentrations ranging between 1 x 10-lO and 1 x 10-5 M. 

Binding to Spleen and Brain 

In view of the effect of (D-ala2, D-leu5) enkephalin on PHA-induced 

proliferation shown in Figure 13, we decided to look for (D-ala2, D-leu5) 

enkephalin binding to spleen cells. [3H] (D-ala2, D-leu5) enkephalin was 

used in binding assays to determine the presence of o receptors in assays 

similar to those used to test for ~ receptors. The results of a 

saturation binding assay using spleen cells (experimental) and brain cell 

membranes (positive control) is shown in Figure 15. When using the 

brain, total and specific binding were increasing with higher amounts of 

labelled enkephalin. The amount of specific binding increased from 128.9 

cpm when using 55 x 10 3 DPM, to 804.5 cpm when using 550 x 103 DPM. 

There was no difference between including and excluding unlabelled 

(D-ala 2, D-leu 5) enkephalin (1.7 x 10-5 M) at any concentration of 

3 2 
[ H] (D-ala , D-leu5) enkephalin. These results have been confirmed by 

a specificity binding assay using 550 x 103 DPM for the radioligand. The 



Figure 14. (D-ala 2) met enkephalin modulation of PHA-induced 
proliferation. It was added, at concentrations 
ranging between 1 x 10-lO and 1 x 10-5 M, to cultures 
having 1 x 106 spleen cells induced to proliferate by 
10 ~g/ml of PHA. Two experiments (a) and (b) were 
performed. Control cultures having only PIIA were run 
in sextuplicate, while (D-ala2 , D-leu5) enkephalin
modulated cultures were run in triplicate. (*) means 
a significant difference (p < 0.05) between cultures 
having (D-ala2, D-leu5) enkephalin + PHA and cultures 
having PHA only. 
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Figure 15. Saturation binding assay using [3a) (D-ala 2, D-leu5) 
enkephalin. (a) Spleen cells were used in duplicate. 
(b) Brain cells membranes were used in duplicate. 
0 with 1.7 x 10-5 M (D-ala2 , D-leu5) enkephalin; 
+without (D-ala2, n~leu5 ) enkephalin. 
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results (Figure 16) demonstrated clearly that there was no significant 

difference (p < 0.05) between including and excluding 1.7 x 10-5 M 

(D-ala2 , D-leu5) enkephalin. This would suggest that probably spleen 

cells did not have opioid receptors of o type for (D-ala2 , D-leu5) 

enkephalin. 

To determine if 5.5 x 105 DPM was not enough in picking up 

specificity, 1.1 x 10 6 DPM of the radiolabelled ligand was also used. 

The results (Figure 17) indicated the absence of specific binding 

(p 2 0.05), at both concentrations of [3H] (D-ala2, D-leu5) enkephalin, 

when spleen cells were used. It was noticed that increasing the 

radioactivity had increased the total binding, and thus increasing 

nonspecific binding. On the contrary, brain cell membranes showed 

specific binding at both used concentrations of [3H] (D-ala2, D-leu5) 

enkephalin. When using 1.1 x 10 6 DPM, it was clear that nonspecific 

binding also increased tremendously. Specific binding did not, 

essentially, change between the two concentrations suggesting that 

saturation had occurred. 
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Figure 16. Specificity of [3H] (D-ala2 , D-leuS) enkephalin binding. 
Spleen cells were used in pentuplicate. Brain cells 
membranes were used in singlet. The concentration of 
(D-ala2, D-leu5) enkephalin was 1. 7 x 10-5M. 
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Figure 17. [3H] (D-ala2, D-leu5) enkephalin binding using 5.5 x 105 
and 1.1 x 106 DPM. (a) Spleen cells were used in 
duplicate. (b) Brain cells membranes were used in 
singlet. 0 with 1.7 x 10-5M (D-ala2, D-leu5) 
enkephalin; +without (D-ala2, D-leu5) enkephalin. 
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CHAPTER IV 

DISCUSSION 

In this study, a standardized procedure for determining specific 

binding of opioids and endogenous opioid-like peptides to cell receptors 

was developed. A rationale for choosing a specific filter type by 

previous investigators was not available. The choice varied with the 

cell and radioligand types used. Whatman fiberglass filters GF-B were 

chosen by Pert et al. (40) because they are thick, and thus they are able 

to hold relatively large quantities of tissues. GF-F was suggested for 

use by others (21) without stating their reasons. In our study, Whatman 

filters AH-934 were found to be the best fit judging from results in 

Tables IV and v. They represented a reasonable compromise between tissue 

retention and radioligand exclusion. 

In a binding assay, it is important to reduce the amount of 

nonspecific binding to filters. This nonspecific binding might be 

reduced by washing or by including an antiadsorbent into the assay 

system. These two criteria were confirmed in Table VI and Figure 2. We 

found that continuous washing removed more and more radioactivity. 

Nevertheless, it was entirely possible that radioactivity specifically 

bound to the cells was also being washed away. Therefore, we settled for 

a compromise of four washes. The inclusion of 0.25-2% BSA in a prewash 

of the filter reduced the amount of nonspecific radioligand binding. 

However, it was interesting to note that when the filters were prewashed 
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with 4% BSA, a substantial increase in binding followed. Accordingly, it 

was reasonable to assume that BSA, or some contaminant at high 

concentrations bound [3H] naloxone, which was opposite to what we were 

looking for. 

Identification of specific binding between opioids and endogenous 

opioid-like peptides to opioid receptors on mouse spleen cells was the 

main objective of our studies. The existence of such receptors had been 

proposed by several authors (Table III). This can best be demonstrated 

by competition and saturation studies. Competition of [ 3H] naloxone was 

dealt with by adding unlabelled naloxone in 1000 fold excess. If there 

was specific binding, unlabelled naloxone should have been able to 

compete with [3H] naloxone, thus reducing the amount of specific binding. 

This did not happen (Figures 4, 6, and 7) when murine spleen cells were 

used. However, competitive inhibition of [3H] naloxone binding was 

demonstrated in brain cell membranes which were used as positive controls 

in the same experiment. These results did not support the presence of 

opioid receptors of the ~ type on murine spleen cells. 

Competition and saturation of [3H] (D-ala2 , D-leu5) enkephalin 

binding were the subject of Figures 15, 16, and 17. These results did 

not support the presence of opioid receptors of the o type. The results 

suggested that at 1.1 x 10 6 DPM of [ 3H] (D-ala 2, D-leu5) enkephalin, 

nonspecific binding to spleen cells and to brain cell membranes was very 

high (Figure 17). We found that increasing the amount of radioactivity, 

from 5.5 x 105 to 1.1 x 106 DPM, did not help to demonstrate specific 

binding. The use of 5.5 x 10 5 DPM was judged to be providing enough 

radioactivity to detect specific binding. 
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It was noticed that addition of naloxone or (D-ala2 , D-leu5) 

enkephalin to its corresponding [3H] compound gave a small, but 

consistent decrease in binding with spleen cells (Table VII and Figures 

6, 15, 16, and 17). There is more than one plausible explanation for 

this decrease. One possibility is that there are good numbers of opioid 

receptors on a small subpopulation of spleen cells. This possibility is 

supported by the studies of Ausiallo et al. (2) and Hazum et al. (26) who 

reported the presence of opioid receptors on cultured human T lymphocytes 

and by Lopker (31) who reported the presence of~ receptors on monocytes. 

However, we could not detect specific binding in PEC which contain a high 

percentage of macrophages. Another possibility is that there are small 

numbers of receptors on all or several subpopulations of spleen cells. A 

third possibility is that expression of opioid receptors may require an 

induction signal. The presence of such an induction signal in their 

culture systems could explain the positive findings of Ausiallo et al. 

(2) and Hazum et al. (26). 

Our results are not in congruence with Mehrishi (34) who reported 

that at least some of the [3H] naloxone binding sites on human peripheral 

blood lymphocytes (HPBL) were opioid receptors of the~ type. One reason 

may be the fact that the system that they were working with, HPBL, is 

different from mice spleen cells. In addition, there was no mention 

whether the decrease in [3H] naloxone binding upon addition of morphine 

hydrochloride was statistically significant. On the other hand, Johnson 

(28) reported [3H] leu-enkephalin binding to mouse spleen cells. 

Unfortunately, these results were not accompanied by experimental data 

which makes it difficult for us to evaluate them. In addition, 
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[ 3H] (D-ala2 , D-leu5) enkephalin, which is the radioligand we used, is 

different from theirs. 

A second problem we dealt with was the modulatory effects of 

endogenous opioid-like peptides on PHA-induced proliferation. PHA, being 

primarily aT cell activator, binds toT lymphocyte membrane receptors 

and initiates a series of metabolic events which include marked 

stimulation of lymphoblast formation and cell proliferation (59). 

PHA-induced proliferation, as extrapolated from DNA synthesis, is thought 

representative of in vivo competence. The analogous physiologic 

phenomenon, antigen stimulated blastogenesis, is considered to be an 

important step in activation of host immune defense. Therefore, 

modulation of PHA-induced proliferation may represent an in vivo 

modulation. S-endorphin exerted a significant enhancing effect at 

-10 -11 
2 x 10 and 2 x 10 M (Figure 11). The normal circulating levels of 

-10 11 
S-endorphin in rat spleen ranges between 10 and 10- M (11). 

Therefore, S-endorphin can exert its effect at rather physiological 

concentrations. An enhancement of lymphocyte proliferation using 

S-endorphin was also reported by Gilman (20) using rat spleenocytes in 

their proliferation assay. Yet, a modulatory effect using S-endorphin 

does not necessarily mean that it is mediated by opioid receptors. In 

fact, there are suggestions that S-endorphin exerts its effect through 

non-opioid receptors (26). 

Unfortunately, those results were not maintained in a second 

experiment using 6-endorphin. Indeed, a difference between results is 

not uncommon in modulation of mitogen-induced proliferation. For 

example, Gilman (20) reported an enhancement of rat lymphocyte 

proliferation in only half of the experiments they have performed. They 
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also reported a difference in the S-endorphin concentration effective in 

modulating PHA-induced proliferation between different experiments. Part 

of this variation in results is simply due to differences in the 

responsiveness of different spleen cell preparations to PHA. In 

addition, the effect of S-endorphin is probably seen only when the cells 

are suboptimally stimulated by mitogen. If a particular dose of PHA is 

maximally stimulating the cells, no additional effect of the compound 

used will be detected. In fact, a reverse effect may arise. Part of the 

experimental variation in the effect of these endogenous opioid-like 

peptides may also arise from differences between individual animals of 

the same species. These differences are a reflection of differences in 

housing conditions, in stress levels, in health state, and in genetic 

makeup between different mice. These factors may, in turn, have an 

effect on the composition and the responsiveness of spleen cells to these 

endogenous opioid-like peptides. 

We also reported that a-endorphin suppressed PHA-induced 

proliferation of spleen cells at high concentrations (10-6 - 10-5 M). 

Gilman et al. (20) reported that a-endorphin had no significant effect at 

3 x 10-S M but they did not try higher concentrations. Thus, we found no 

contradiction between our results and theirs. In fact, the only reported 

a-endorphin activity is its inhibitory role on PFC response (28). 

(D-ala2, D-met 5) enkephalin did not have any significant effect on 

PHA-induced proliferation (Figure 14). Similar results have been 

reported by Wybran (61) using HPBL and by Gilman (20) using rat 

spleenocytes, where they could not find any significant activation or 

suppression effects. On the other hand, in our experiment, 

(D-ala 2, D-leu5) enkephalin inhibited PHA-induced lymphocyte 
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proliferation at 10-9 and 10-lO M (Figure 13). These results are not in 

agreement with Plotnikoff (41) who reported an enhancement in [3H] 

thymidine uptake over a wider range of concentrations of leu-enkephalin. 

However, this enhancement was dependent on PHA concentrations. 

It becomes clear that variation in the results between different 

laboratories dealing with endogenous opioid-like peptides may be due to 

different aspects in the proliferation assay. This includes the 

endogenous opioid-like peptide, and the concentration over which it is 

used. It also includes the type of cells and the species from which the 

cells are taken. Also, the mitogen and the range of concentrations over 

which it is used are important factors. The culturing medium and length 

of culturing time may be additional factors involved. 

There appears to be a discrepancy between the results of our binding 

studies and those of modulation of PHA-induced proliferation. 

(D-ala2 , D-leu5) enkephalin, for example, suppressed PHA-induced 

prolif~ration of spleen cells, but we did not detect any opioid receptors 

of the o type. This apparent discrepancy can be resolved considering the 

difference between spleen cells used in the two assays. In binding 

assays, naive spleen cells were used, while in the cell proliferation 

assay, the spleen cells used were activated lymphocytes. Therefore, 

there is a possibility that stimulation of lymphocyte proliferation may 

have induced opioid receptors on the surface of spleen cells. 

The proliferative response of lymphocytes to T cell mitogens is a 

complex process involving the activation of existing T cells into 

activated T cells, with the participation of macrophages and soluble 

factors produced by these cells (14). Our results do not delineate the 

cellular target for the endogenous opioid-like peptides. A peptide may 
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act directly upon the proliferating T cell lymphoblast. Alternatively, 

it can exert its effect indirectly by acting primarily on macrophages, or 

the resting subset of T lymphocytes responsible for interleukin-2 

production. There is the possibility also that each of the endogenous 

opioid-like peptides exert its effect on a different subpopulation of 

spleen cells. Therefore, cell fractionation and reconstitution 

experiments should allow us to determine the cellular targets of these 

peptides. 
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