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Abstract

The focus of our research is on a new automated smoothing method and its ap-

plications. Traditionally, the application of a smoothing method to a collection

of polylines produces a new smoothed dataset. Although the new dataset was

derived from the original dataset, it is stored independently. Since many smooth-

ing methods are slow to execute, this is a valid trade-off. However, this greatly

increases the data storage requirements for each new smoothing. A consequence

of this approach is that interactive map systems can only offer maps at a discrete

set of scales. It is desirable to have a fast enough method that would support

the reuse of a single base dataset for on-the-fly smoothing for the production of

maps at any scale.

We were able to create a framework for the automated smoothing of river

networks based on the following major contributions:

� A wavelet–based method for polyline smoothing and endpoint preservation

� Inverse Mirror Periodic (IMP) representation of functions and signals, and

dimensional wavelets

� Smoothing of features that does not change abruptly between scales

xiii



� Features are pruned in a continuous manner with respect to scale

� River network connectedness is maintained for all scales

� Reuse of a base geographic dataset for all scales

� Design and implementation of an interactive map viewer for linear hydro-

graphic features that renders in subsecond time

We have created an interactive map that can smoothly zoom to any region.

Numerical experiments show that our wavelet-based method produces carto-

graphically appropriate smoothing for tributaries. The system is implemented

to view hydrographic data, such as the USGS National Hydrography Dataset

(NHD). The map demonstrates that a wavelet–based approach is well suited for

basic generalization operations. It provides smoothing and pruning that is con-

tinuously dependent on map scale.
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Chapter 1

Introduction

1.1 Motivation

Maps are representations of the world around us. When cartographers make a

map, it is their job to select which features appear on that map. This selection

process is a combination of both art and science. Researchers are looking for ways

to formalize this process with the purpose of identifying the elemental operations

in map making. The creation of a map is a tedious and time consuming activity.

With the advent of computers, it is natural to attempt to automate it.

In order to automate this process, the data should be available in digital form.

A geographic information system (GIS) is a system to capture, store, and display

digital geographic data. A GIS typically represents rivers, boundaries, and cities

as collections of polylines, polygons, and points. It is the task of an automated

system to extract a relevant subset of this data to produce a usable map.

Automated map creation involves the application of several generalization

operators. This includes smoothing, simplification, and pruning. Smoothing is

the extraction of a general trend in polyline data. Simplification is the reduction
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in the number of vertices in a polyline. Pruning is the selection of features that

are relevant for a given map.

The focus of our research is on a new automated smoothing method and its

applications. Traditionally, the application of a smoothing method to a collection

of polylines produces a new smoothed dataset. Although the new dataset was

derived from the original dataset, it is stored independently. Since many smooth-

ing methods are slow to execute, this is a valid trade-off. However, this greatly

increases the data storage requirements for each new smoothing. A consequence

of this approach is that interactive map systems can only offer maps at a discrete

set of scales. It is desirable to have a fast enough method that would support

the reuse of a single base dataset for on-the-fly smoothing for the production of

maps at any scale. This would counteract the need for increased data storage

requirements.

There are several existing methods for smoothing: the Douglas–Peucker algo-

rithm, Perkal’s ε–circle method, Fourier transform method, Gaussian smoothing,

and others. However, none of them satisfy our desired requirements.

Recently wavelets have emerged as a new mathematical tool with wide practi-

cal applications. Addison [1] provides a review of various applications of wavelets

to fluids, data compression, medicine, finance, geophysics, and other areas. They

have also been applied to cartographic issues, such as smoothing. However, the

research in wavelet-based cartographic smoothing was inconclusive. In particu-

lar, researchers have indicated that features were not smoothed in a cartograph-

ically appropriate manner. For example, some generalizations produced self-

intersections. Others smoothed the feature unevenly, see [3]. Some algorithms

were slow, required excessive storage, and as a result were not scalable to larger

datasets.

2



A major stumbling block for the generalization of linear feature networks (road

networks, river networks, etc.) is the drift that occurs after smoothing. While

not an issue when smoothing a single linear feature, this becomes problematic

when smoothing a collection of linear features that should remain connected.

A desirable characteristic of any smoothing method is the preservation of some

critical points. In particular, if the endpoints are not preserved then gaps may

appear between adjacent linear features.

We hypothesize that by using wavelets we can achieve the following:

� Smoothing of linear features in a cartographically appropriate manner

� Generalization of linear feature networks

� Reuse of a single base dataset to produce maps at any scale

� A fast execution time suitable for on-the-fly smoothing

1.2 Research path

In 2008, we had the opportunity to work on a project that required the develop-

ment of an interactive map viewer. When rendering a map, it became immedi-

ately clear that this was a challenging task. We had to deal with labelling, prun-

ing, and point-reduction. In particular, we implemented the Douglas–Peucker

algorithm to simplify highways, borders, and rivers. This was necessary to re-

duce rendering time to allow for acceptable interactivity. It also demonstrated the

deficiencies of this approach. Namely, each simplified layer had to be stored sep-

arately which led to a significant increase in the dataset size. Also, the algorithm

was quite slow.

3



We researched current efforts in multi-scale databases and their visualization.

Such a database is designed to support the production of multiple scale maps

from a single base dataset. Around the same time, we learned that wavelets are a

mathematical theory based on multiresolution analysis. As a result, we thought

that wavelets could be applied to solve the multi-scale map generation problem.

Since wavelet theory is a difficult concept to grasp, our intention was to use

wavelets as a “black box” from a toolkit. During the literature review, we found

that many researchers were working in this area. Many of them also used wavelet

toolkits to carry out their experiments. However, their results had limited appli-

cability [3]. This could be due to their use of simple wavelet families.

Additionally, a significant difficulty in linear feature network generalization

is the feature drift problem. After smoothing, a feature’s shape has changed and

some drift or movement from the original feature has occurred. When multiple

features need to be joined, like when a stream joins a river, the smoothed features

may no longer connect.

A promising solution to this problem was presented in the paper by Li, et

al. [32] (discussed later in this chapter). They show that using standard-wavelet-

smoothing, for Italy’s coastline, produced gaps between adjacent linear features.

The authors proposed a remedy based on the construction of a special family

of wavelets that preserve linear feature endpoints, see Figures 1.1(a) and 1.1(b).

However, their computationally expensive method requires significant storage

overhead for each linear feature. As a result, the size of the dataset must be

reduced to fit within memory constraints. This makes their method impracti-

cal to use for real-world geographic datasets. A practical solution to endpoint

preservation remained unresolved.

During our investigation of moving-average-based smoothing we realized that

4



(a)

(b)

Figure 1.1: (a) Smoothed coastline of Italy with gaps between adjacent seg-
ments, (b) Smoothed coastline of Italy with an endpoint preservation method
[32]. Reprinted with permission from Elsevier.
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when certain functions are averaged by symmetric kernels their endpoints are

preserved. This led us to believe that similar results could be achieved with

wavelets too.

As a result, we have devised a method based on three major components:

1. Functions are represented in special symmetric and periodic form. We call

such representations Inverse Mirror Periodic (IMP) form.

2. Biorthogonal wavelet families with symmetric scaling functions.

3. The chosen biorthogonal wavelet family is scaled appropriately to the end-

points of the function. We call such wavelet families dimensional wavelets

because they reflect the length of the linear feature they approximate.

To justify this method, it was necessary to prove that dimensional wavelet

families acting upon IMP functions would achieve the desired effect of preserving

the endpoints. Additionally, we devised a wavelet-based algorithm that smooths

linear features in a manner continuously dependent on an accuracy parameter.

This constitutes the main theoretical study of our research.

Having developed a theoretical basis for linear feature smoothing. We applied

it to a real-world river network system. Such a dataset was available from the

United States Geological Survey (USGS), which maintains the National Hydrog-

raphy Dataset:

The National Hydrography Dataset (NHD) is the surface water
component of The National Map. The NHD is a digital vector dataset
used by geographic information systems (GIS). It contains features
such as lakes, ponds, streams, rivers, canals, dams and streamgages.
These data are designed to be used in general mapping and in the
analysis of surface-water systems [64].
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The National Map project contains an interactive viewer for the NHD [65]. It

provides for several discrete map scales to view the data. However, discrete map

scales make it difficult for a user to relate objects from one scale to another. This

makes for a poor user experience. The viewer is image tile based—this means

that each scale shows different pre-rendered images. Such an approach requires

a massive amount of storage for the images, and it is impossible to display the

map at intermediate scales.

To demonstrate the capability of our method, we decided to implement a Ver-

mont hydrography viewer. An issue that remained to be solved was the preser-

vation of network connectedness after smoothing. For example, a child tributary

that flows into a parent tributary (in between endpoints) may become discon-

nected after smoothing. It was solved by devising an algorithm that uses the

hierarchy of tributaries to snap the children back to their parents.

The resulting viewer has been evaluated by a group of participants who pro-

vided their opinion on the performance of the Vermont viewer. They also com-

pared their experience with the National Map viewer. Generally, the participants

preferred our viewer.

1.3 Contributions

As we have already mentioned, the smoothing of polylines by wavelets introduces

some undesirable effects. In particular, two adjacent polylines may become dis-

connected after this procedure. Figure 1.1(a) shows such gaps between adjacent

segments. The issue is how to preserve the endpoints of the polylines after the

smoothing operation.

In our research we concentrate on the generalization of hydrography flowline
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river networks. These types of networks present a wide variety of linear feature

shapes to be smoothed. Other linear features, such as roads, will be considered

in future work. Accordingly, we present our research in terms of tributaries and

river networks, even that it may have other applications.

Another obstacle to overcome is the possible violation of river network con-

nectedness. In other words, tributaries may become detached from the rivers they

flow into after smoothing. Such a map would not be cartographically accurate.

We also have to resolve how to fluidly transition between maps at different

scales. This is needed for implementing continuous zoom-operations in an inter-

active map viewer. Interactivity implies that such a viewer should perform all

these actions in subsecond time.

We were able to create a framework for the automated smoothing of river

networks based on the following major contributions:

� A wavelet–based method for polyline smoothing and endpoint preservation

� Inverse Mirror Periodic (IMP) representation of functions and signals, and

dimensional wavelets

� Smoothing of features that does not change abruptly between scales

� Features are pruned in a continuous manner with respect to scale

� River network connectedness is maintained for all scales

� Reuse of a base geographic dataset for all scales

� Design and implementation of an interactive map viewer for linear hydro-

graphic features that renders in subsecond time
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1.4 Overview

Chapter 2 is devoted to cartographic issues. We discuss digitization, simplifica-

tion, smoothing, refinement and review them. We present the Douglas–Peucker

algorithm, which is the most popular method for reducing vertices in a polyline.

Although it is not a smoothing method, it is often used as one because of its sim-

plicity. We also consider several smoothing algorithms: Perkal’s ε–circle method,

Fourier transform method, and Gaussian smoothing. Next we look at the use of

wavelets in cartography. Wavelets are used for smoothing, terrain modeling, and

satellite image compression.

Chapter 3 is a brief tutorial on wavelets and a compilation of reference ma-

terials. Since our research expands standard wavelet theory and since wavelet

conventions are not standardized, it is appropriate to present a unified wavelet

theory description. We start with basic wavelet concepts, including masks and

scaling functions. We introduce orthogonal systems and multi-resolution analysis.

We discuss the structure of orthogonal and biorthogonal wavelet families. Then,

we give examples of biorthogonal wavelet families with symmetric masks. The

transition between wavelet coefficients is described in signal processing terms.

This topic is the Discrete Wavelet Transform, which includes the definition of

low and high pass filters.

Chapter 4 examines our modifications to the wavelet method. We introduce

dimensional wavelets which are specially scaled biorthognal wavelets tuned to

the size of their underlying linear features. We also introduce the Inverse Mirror

Periodic (IMP) representation for functions and signals. Our main results in

this chapter are theorems in section 4.3.1. They show that IMP functions and

signals retain their IMP structure under transforms by dimensional wavelets.
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Dimensional wavelets along with IMP functions provide the theoretical basis for

our system.

Chapter 5 shows how to apply dimensional wavelets to smooth linear features.

It shows how to transform tributaries to IMP form, and how to decompose them

into wavelet details. The TributarySynthesis algorithm describes how to use

the wavelet details to obtain smoothed tributaries. Our main result is a theorem

(5.3.4) that proves that the algorithm preserves the endpoints of the tributaries

and smooths them in a continuous manner with respect to map scale. We also

provide a detailed evaluation of the algorithm as it applies to various tributaries.

We chose three tributaries of various length. For each tributary (T1, T2, and

T3) we smoothed them for three different accuracy levels and plotted the results.

We demonstrate that our method can smooth a variety of tributary shapes in

a cartographically appropriate manner. In particular, tributary T3 contained a

complicated spiral-like feature that was still smoothed appropriately.

An important quantitative measure of the accuracy of the approximation is

the deviation of the smoothed tributary from the original. We show the deviation

of tributary T3 along a portion of its length. Our analysis of 5,322 tributaries

shows a slight correlation between maximal deviation and tributary length.

Chapter 6 describes our method for the generalization of river networks. It

is based on an application of our method for linear feature generalization. This

approach consists of two stages: the preprocessing stage and the generalization

stage. The preprocessing stage divides the river network into a collection of trib-

utaries. This stage involves decycling the network in order to prioritize the edges

of the graph by their Strahler numbers. A tributary is defined as the maximal

linear feature with the same Strahler number. Each tributary is decomposed into

wavelet details. Some additional metadata related to the tributary’s hierarchy is
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also stored in a database. A complete description of the database is provided in

Chapter 7.

The generalization stage uses two functions ε(s) and σ(s). When a user

requests a map of a region, the system infers the scale s of the requested map.

The first function ε(s) relates the accuracy of the smoothing to s, and the second

function σ(s) relates the amount of pruning to s. The processing of the user’s

request involves the determination of tributaries that should be shown on the

map, their prioritization, their wavelet-based smoothing, and their pruning. Our

algorithms smooth and prune tributaries in a manner that is continuous with

respect to the map’s scale.

Chapter 7 discusses an implementation of the system. The goal of the imple-

mentation is to produce an interactive viewer for hydrographic data. The viewer

illustrates the practicality of the wavelet-based smoothing framework. We used

the Vermont flowline hydrography as a base dataset. This dataset was retrieved

from the USGS NHD website. The next step was to use a spatial index to build

an in-memory graph that represented the river network. At this stage we imple-

mented the UndoCycles, Strahler, and GetTributaries algorithms. The

system data structures are also presented in this chapter.

The TributaryDecomposition algorithm was implemented according to

our dimensional wavelet theory that is described in Chapter 5. Smooth functions

require fewer wavelet details to represent them accurately, than non-smooth ones.

Accordingly, our implementation involves an additional step of spline interpolat-

ing the tributary polylines. This also produces a better representation of the

actual physical feature.

Our renderer uses the TributarySynthesis and FormTree algorithms.

Additional steps are taken to improve its rendering speed. As a result the system
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executes in subsecond time.

A study was conducted to evaluate the responsiveness of the implemented

viewer and to compare it to the National Map Viewer. The evaluation study

material is attached in Appendix A. Overwhelmingly, the participants indicated

that our viewer was more responsive than the USGS National Map viewer. The

participants preferred our smooth pruning strategy, as well as multi-touch track-

pads. Additionally, they indicated that our viewer was easier to use for zooming

operations.

Chapter 8 summarizes our results and provides conclusions. In the future we

plan to extend our system so that it will take into account other map layers,

support progressive data transfer over the Internet, and allow for the viewing of

large geospatial datasets. Additionally, we will look into algorithms that provide

more flexible generalization options.

12



Chapter 2

Cartographic generalization

The focus of our research is on a new automated smoothing method. One of

its intended applications is for the smoothing of geographic linear features. This

chapter provides a brief background on cartographic issues to provide context for

our method.

Maps are a visual way to present geographic data. Typically, geographic data

is stored in a Geographic Information System (GIS). Such a system encodes ge-

ographic features as collections of numerical values. A GIS can capture, analyze,

and display geographic information. For a general introduction to cartography

and GIS see [27, 15, 33].

For the sake of readability, we refer to linear features and their networks as

tributaries and river systems. However, it could be applicable to other linear

features including borders, shorelines, and roads. These applications are not

addressed in this dissertation, but are a subject of future research. In a GIS a

linear feature is represented by a polyline. A polyline is a sequence of coordinate

points (vertices) that are connected by line segments. It is important to notice

that the polyline serves as an approximation of the original geographic feature.
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In this chapter, we discuss cartographic digitization and generalization. We

consider the simplification, smoothing, and refinement generalization operators.

We present the Douglas–Peucker algorithm, which is the most popular method

for reducing vertices in a polyline. Although it is not a smoothing method, it is

often used as one because of its simplicity. We also consider several smoothing

algorithms: Perkal’s ε–circle method, Fourier transform method, and Gaussian

smoothing. We also review how wavelets are applied in GIS.

Current research efforts for automated multi-scale map production are di-

rected at reusing a baseline geographic dataset [42]. Traditionally, a separate

database is maintained for each required map scale. This means that the same

feature is represented multiple times. When features need to be updated, it is

necessary to update each database accordingly. This can be a time consuming

and error prone job. Therefore, such an approach could become unmanageable

for more than a few map scales. Wavelets provide a natural way to reuse a single

dataset for multi-scale map production. Multi-resolution databases are reviewed

at the end of this chapter.

2.1 Digitization

To represent geographic features in a GIS, it is necessary to digitize them [27, 15].

The digital data can be obtained in a variety of ways: surveying, high-resolution

GPS [8], Light Detection And Ranging (LiDAR) [10], and the digitization of ex-

isting paper maps. Merwade [40] describes an automated method for delineating

hydrological features from aerial photography.

Figure 2.1(a) shows an aerial photograph [58] of the Snake River in Grand

County, Utah. Its polyline representation is shown in Figure 2.1(b). This poly-
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(a) Aerial photograph (b) Polyline representation (c) Spline representation

Figure 2.1: A polyline and spline digitization of Bowknot Bend along the Green
River in Grand County, Utah.

line represents the center flowline of the river. Additionally, Figure 2.1(c) shows

a cubic spline interpolation of the polyline. It can be seen that the spline inter-

polation provides a more realistic representation of the original river.

2.2 Generalization

According to Stanislawski [56],

A principal objective of cartographic generalization is reduction of
content and detail of geospatial data in a manner that appropriately
portrays remaining features at smaller scales.

Plazanet [44] describes generalization as the process of selecting the key geo-

graphic features to maintain, while removing unimportant features when produc-

ing a map at a targeted scale.

McMaster and Shea [38], describe twelve generalization operators: aggrega-

tion, amalgamation, classification, collapse, displacement, enhancement, exag-

geration, merge, refinement, simplification, smoothing, and typification. Other

generalization models are discussed by Li [34].

15



2.3 Simplification, Smoothing, and Refinement

At this time our system only employs three generalization operators: simplifica-

tion, smoothing, and refinement. It applies these operators in a manner that is

continuous with respect to the scale of the map. Examples of these operators are

shown in Figures 2.2, 2.3, and 2.4.

According to McMaster and Shea [38], simplification (point reduction) is the

process of reducing the number of coordinate points (polyline vertices) of a fea-

ture while retaining its original character. The benefits of simplification include

reduced plotting time and reduced storage. However, it can introduce distortions

and some important details of the feature can be lost. Figure 2.2 illustrates a

reduction in the number of vertices in the polyline, however the overall shape is

preserved.

The smoothing operator relocates the original coordinate points, with the

intention of “capturing only the most significant trends of the line,” [38]. While

the original linear feature is a polyline, smoothing produces a smooth line that

resembles the polyline. Figure 2.3 illustrates a smoothing of the original polyline.

Notice that several of the vertices have shifted their location.

The refinement (pruning) operator reduces the number of displayed features

on a map. This is done to reduce map clutter and increase its clarity. For

example, a small scale map should show only major rivers, while a large scale

map may show every single stream. Figure 2.4 illustrates how only the major

network features remain after refinement.
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Figure 2.2: Simplification operator

Figure 2.3: Smoothing operator

Figure 2.4: Refinement (pruning) operator

2.3.1 Simplification

Li [34] states that point reduction algorithms have been studied intensely. The

most popular among them is the algorithm by Douglas and Peucker [16], also

known as Ramer’s Algorithm [47]. While the algorithm does reduce the num-

ber of points, it also introduces several undesirable artifacts. These artifacts

include self-intersection, cross-intersection, shape distortion, and starting point

dependency. Attempts have been made to rectify these issues, such as the Li–

Openshaw algorithm [35]. Raposo [49] provides an analysis of several other point

reduction algorithms. For example, Guilbert [23] describes a method to detect
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Figure 2.5: Illustration of Douglas–Peucker algorithm

critical points of a polyline feature. These critical points are used for simplifica-

tion. Shi, Cheung [53], Cromley, and Campbell [13] evaluate the performance of

such algorithms.

Douglas–Peucker algorithm

A popular method for line generalization is the Douglas–Peucker algorithm. Con-

sider for example a sequence P of seven points pi, where i = 1, 2, 3, . . . , 7. Accord-

ing to the algorithm, we connect the points p1 and p7 by a straight line segment,

as shown in Figure 2.5.

We compute the distances from the remaining points p2, p3, p4, p5, p6 to the

segment p1p7. If each distance is smaller than accuracy ε > 0, then the algorithm

is stopped. The segment p1p7 becomes the generalization of the original sequence.

Otherwise, choose the point farthest from p1p7. In the figure, this is p3. Connect

p1 to p3, and p3 to p7. Now rerun the algorithm on both segments p1p3 and p3p7.

In this example, the algorithm stops after this iteration because the accuracy is

satisfied. The generalized polyline consists of segments p1p3 and p3p7.
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Input: Polyline P = {p1, p2, . . . , pN} and accuracy ε
Output: Simplified polyline P ε

1 Let P ε ← P
2 if N ≤ 2 return P ε

3 Connect points p1 and pN
4 for i = 2 to N − 1 do
5 Compute the distance di from point pi to the segment p1pN
6 end for
7 Find any dj ←MAX(di) where 2 ≤ i ≤ N − 1
8 if dj < ε then
9 return P ε

10 else
11 Call Douglas–Peucker({p1, . . . , pj}, ε)
12 Call Douglas–Peucker({pj, . . . , pN}, ε)
13 end if

Algorithm 2.1: The Douglas–Peucker algorithm

The accuracy affects the number of points that are eliminated from the origi-

nal polyline. Choosing a small accuracy ε results in a better approximation to the

original polyline. One desirable outcome of the algorithm is endpoint preserva-

tion. In the example above, the endpoints p1 and p7 always remain the endpoints

of any simplified polyline.

This recursive algorithm has time complexity O(n2). A detailed analysis of

the performance of the algorithm as well as an enhancement is described by

Hershberger [28] and Jenks [29]. Additionally, a parallel implementation of the

algorithm is detailed by Vaughan et al. [66]. The disadvantage of this general-

ization method is its long execution time. Ramos et al. [48] propose an efficient

method to store multiple generalized versions of the geographic data obtained by

running the Douglas-Peucker algorithm. This is useful when implementing an

interactive multi-scale system.
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2.3.2 Smoothing

The smoothing operator approximates the original polyline f by a smooth curve.

The smoothed curve does not necessarily pass through all the vertices of the

polyline. Generally, the level of smoothing depends on the desired accuracy

ε ≥ 0. It is desirable that the smoothed curves f ε satisfy f ε → f as ε→ 0. The

accuracy is typically dependent on the map’s scale. This is justified by Li and

Openshaw’s [35] “natural principle”:

. . . for a given scale of interest, all details about the spatial variation
of geographical objects beyond certain physical limitations are unable
to be presented and can be neglected.

Perkal’s ε–circle method

In 1965, Perkal [43] proposed an ε–circle method for smoothing borders of polyg-

onal areas. This method can also be applied to polylines. Given a polyline, a

circle of diameter ε is rolled along the line. By tracing the center of the circle, we

obtain a smoothed version of the polyline. Clearly, small features are neglected

in this approach. Also, as ε → 0 the smoothed curves approach the original

polyline. However, research by Christensen [12] shows that the computer imple-

mentation of this method is difficult. Note that this algorithm does not preserve

the endpoints of the original curve.

Fourier transform method

The Fourier transform provides another smoothing method [7, 44].

Consider the space L2[0, π] of square integrable functions. For such functions
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we define the inner product 〈f, g〉 and the norm by

〈f, g〉 =

∫ π

0

f(t)g(t) dt, ‖f‖ =

√∫ π

0

|f(t)|2 dt.

A system of functions {un}∞n=1 ∈ L2[0, π] is called an orthonormal basis if

‖un‖ = 1, n ∈ N, 〈un, um〉 = 0, m 6= n,

and

f =
∞∑
n=1

cnun, where cn = 〈f, un〉

for any f ∈ L2[0, π].

Approximations for f are defined as partial sums of the above series

fN =
N∑
n=1

cnun.

An example of an orthonormal basis in L2[0, π] is un(t) =
√

2
π

sin(nt), n =

1, 2, 3, . . .

It follows from the orthonormality of the basis un that

‖f‖2 =
∞∑
n=1

c2n and ‖fN‖2 =
N∑
n=1

c2n. (2.1)

The identities in (2.1) are known as Parseval’s identities [6].

An efficient way to approximate functions using the Fourier series method is to

only use the Fourier coefficients cn = 〈f, un〉 with the highest magnitudes. The

level of approximation (smoothing) is controlled by the accuracy parameter ε.

This is summarized in the following algorithm:

21



Input: Function f and accuracy ε > 0
Output: Approximation f ε

1 Given f compute its Fourier coefficients cn = 〈f, un〉, n = 1, 2, 3, . . .
2 csorted ← Sort the coefficients in descending order of their magnitude
3 Compute ‖f‖2 =

∑∞
n=1 c

2
n

4 Choose first M coefficients from csorted such that

M∑
i=1

c2sorted,i ≥ (1− ε)‖f‖2

5 Compute the approximation fM =
∑M

i=1 csorted,i usorted,i
6 return f ε ← fM

Algorithm 2.2: The Fourier approximation algorithm

The error of the approximation produced by the Fourier approximation al-

gorithm can be bounded by error = ‖f − f ε‖2 ≤ ε‖f‖2. The efficiency of this

algorithm can be improved if the function f is properly extended outside the

interval [0, π]. A method for such an extension is described in section 4.2. A

direct implementation of this algorithm yields an O(n2) time complexity. How-

ever, a Fast Fourier Transform (FFT) implementation yields an O(n log n) time

complexity [46].

Gaussian smoothing

Gaussian smoothing is discussed by Fdez-Valdivia et al. [17]. The smoothed

curves are used to find points with the greatest curvature. Such points are con-

sidered to be important features of the original curve. This information is used to

reduce the number of points in the linear feature in a scale appropriate manner.

A similar approach is used by Thapa [61]. Rosin [50] subdivides a curve based

on curvature, and then performs Gaussian smoothing on each segment.

Gaussian smoothing is a weighted moving average method. Let f(t), t ∈ R
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be a function, and ε > 0 be an accuracy parameter. This parameter controls the

level of smoothing. The smoothed function f ε is defined by:

f ε(t) =

∫ ∞
−∞

f(z)U(t− z, ε) dz,

where the Gaussian U(t, ε) is given by

U(t, ε) =
1

2
√
πε
e−

t2

4ε .

This gives an accuracy dependent smoothing for f , since f ε → f as ε → 0.

Further information can be found in the book by Greenberg [21].

Other smoothing methods

Nöllenburg et al. [41] present a polyline morphing algorithm. In this approach,

polylines are smoothed by a smoothing method at a fixed number of scales.

Then, to achieve an approximation at any intermediate scale, the precomputed

smoothed curves are appropriately interpolated.

Burghardt [9] and Guilbert [22, 24] use a snake model to achieve smoothing.

A snake is defined as a B-spline that has minimal energy. Energy is defined as

the sum of internal and external energies. The internal energy is a measure of the

sinuosity (deviation from a straight line) of the curve, and the external energy is

a measure of the distance of the curve to neighboring map objects.

Saux [51] uses B-spline curves to approximate coastlines. The algorithm se-

lects representative vertices of the original polyline. Then, a B-spline with mini-

mal curvature is selected to approximate the polyline.

These approaches require repeated minimization procedures to obtain differ-
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ent levels of smoothing. Therefore, they are computationally expensive algo-

rithms that are not well-suited for on-demand smoothing at multiple scales.

2.3.3 Refinement/Pruning

McMaster [38] gives the following definition for refinement:

In many cases, where like features are either too numerous or too small
to show to scale, no attempt should be made to show all the features.
Instead, a selective number and pattern of the symbols are depicted.
Generally, this is accomplished by leaving out the smallest features,
or those which add little to the general impression of the distribution,
but can be accomplished by using a representative pattern of the
symbols. . . Though the overall initial features are thinned out, the
general pattern of the features is maintained.

Töpfer and Pillewizer [62] propose a Radical Law for feature selection. The

law can be stated as

nf = na

√
Ma

Mf

,

where nf is the number of objects which can be shown at the target scale, na is

the number of objects shown on the source map, Ma is the scale denominator of

the source map, and Mf is the scale denominator of the target map.

Stanislawski [56, 55] uses the drainage area of a river network to determine

how to prune the network. This metric is used to assign priority to tributaries of

the river system. Their research is used to support automated generalization of

the USGS National Hydrography Dataset.

Assigning priority to tributaries is essential for pruning operations. Horton

[36] proposed an algorithm for such prioritization. Another popular stream or-

dering method is based on Strahler numbers [20]. While any prioritization can

be used, we selected Strahler numbers in our implementation to assign priority
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to tributaries. The selection of one prioritization method over another was not

essential our research on smoothing.

2.4 Wavelets in cartography

Recently, wavelets have emerged as a new mathematical tool with wide practical

applications. Addison [1] provides a review of various applications of wavelets

to fluids, data compression, medicine, finance, geophysics, and other areas. A

mathematical foundation is detailed in Chapters 3 and 4.

2.4.1 Smoothing

Wavelets have cartographic applications as well. Balboa and López [3] analyze the

effectiveness of wavelets used for linear feature smoothing. The authors use Haar

wavelets to generalize linear features. They evaluate the method’s performance

using mathematical measures such as:

� Percentage change in number of coordinates

� Percentage change in the standard deviation of the number of coordinates

per 100 meters of the line

� Percentage change in angularity with sign

� Percentage change in angularity in absolute value

� Total areal difference in absolute value

� Percentage change in the number of inflection points
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To establish a baseline for the quantification, Balboa and López also measure

the results of generalization by the Douglas–Peucker algorithm. The authors’

results show that generalizations using Haar wavelets poorly maintain the original

position and geometry of the linear feature. However, the general tendency (or

trend) of the polyline is preserved. The method performs poorly because it

depends on the homogeneity of the polyline. The homogeneity of the polyline

refers to how similar in terms of sinuosity different segments of the line are.

The method simplifies different parts of the polyline in a non-uniform fashion.

Furthermore, this can cause crossings.

The authors discuss that by using the above measures, it is possible to classify

segments of the polyline as sinuous or straight. This classification can then be

used as an input parameter to a generalization algorithm. The authors conclude

that the comparison between the wavelet approach and the Douglas–Peucker al-

gorithm was mixed. Some measures, such as the standard deviation of the number

of coordinates, performed better under the wavelet methods. However, the an-

gularity measures were better under the Douglas–Peucker algorithm. According

to Balboa and López, the wavelet method is useful for trend extraction used in

strong scale reductions, segmentation of the polyline, and the classification of the

curve based on sinuosity. However, Fritsch and Lagrange [19] conclude that a

wavelet-based algorithm provides acceptable smoothing of linear features.

Shu, et al. [54] equate the linear feature generalization problem to data de-

noising. They state that noises are unimportant details in the data that can

be removed. The discussion centers on various techniques for wavelet coefficient

thresholding. The authors use Töpfer’s Radical Law of feature selection to deter-

mine which coefficients to keep at each wavelet dilation level. The results of the

experiments show that few coefficients need to be kept in order to give a good
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approximation of the original linear feature. For these experiments the authors

used db4 wavelets [63]. This family provides a smoother approximation than Haar

or db2 wavelet families.

Li et al. [32] use B-spline wavelets subjected to certain constraints. Con-

strained B-spline wavelets have the added property that they can preserve certain

key points from the original base data. This is important when generalizing a

linear feature that should be connected to an adjacent linear feature.

Approximations using non-constrained wavelets are subject to geographic

location drifts. Figure 1.1(a) illustrates the use of non-constrained B-spline

wavelets. It shows gaps between independently generalized linear features of

Italy’s coastline. Figure 1.1(b) shows how constrained B-spline wavelets solve

this problem. This method resolves the important issue of endpoint preservation

by using a matrix to perform a minimization routine. However, this technique

does not scale well for more than a few linear features. The method requires the

storage of a matrix associated with each linear feature. Additionally, the mini-

mization is computationally expensive, which makes the method unsuitable for

on-demand applications.

Hahmann et al. [25] shows how to generalize polygonal features while pre-

serving their areas. Wang and Zhang [67] use wavelets to simplify NURBS

(non-uniform rational B-spline) curves. Their method preserves the endpoints

of the smoothed curve by nullifying certain rows in the matrix that represents

the wavelet transform. Finkelstein and Salesin [18] describe an application of

wavelets for smoothing. Their method also uses a matrix-based approach. Such

an approach is computationally expensive and requires significant storage over-

head for each linear feature. This makes their method impractical to use with

real-world geographic datasets. Chieppa et al. [11] present a similar method.
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2.4.2 Other uses for wavelets

Terrain modelling

McArthur et al. [37] use various families of wavelets to generalize raw digital

terrain elevation data (DTED). The goal is to create a hierarchically structured

multiple-levels-of-detail database for use in applications such as flight simulation.

A hierarchy enables efficient rendering of the terrain so that only relevant local

details need to be updated.

Bjørke and Nilsen [5] use 2D wavelets to generate simplified terrain models.

The authors investigate the effects of wavelet coefficient thresholding on the gen-

eralization. It is shown that wavelet methods are an efficient way to represent

the terrain. However, artifacts can be introduced when thresholds are set too

high. The authors note that artifacts can be removed from flat surfaces, such as

lakes and oceans, by masking the area and eliminating it from the generalization

routine. In their experiments, the authors use biorthogonal average interpolating

2D wavelets. Zhang et al. [71, 72] use wavelets to generalize large terrain models

for an interactive 3D viewer.

Tate et al. [60] investigate the effectiveness of wavelets and regression methods

for noise elimination of LiDAR digital surface models. They conclude that both

techniques are effective, however the regression method produces better results.

Satellite Image compression

Wu et al. [69, 68] describe the design of an online viewer for high-resolution

digital orthophotos (satellite imagery). The system applies a 2D Haar wavelet

transform to the photos. It allows for progressively higher resolution approxi-

mations. Therefore, the client can efficiently download images from the server
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Figure 2.6: Fort Irwin terrain wavelet approximations [37]. Reproduced with
permission from the American Society for Photogrammetry & Remote Sensing,
Bethesda, MD.
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by receiving only the wavelet coefficients associated with the relevant map scale.

The client keeps track of what data has already been received to prevent unneces-

sary downloading of the same data. Wu et al. [69] do recognize that Daubechies

wavelets would achieve better compression, but to keep processing time low Haar

wavelets were chosen instead.

A major bottleneck in the system is the amount of bandwidth available for

transmitting data to the client. To achieve even more transmission savings,

the system employs three additional compression techniques: quantization, run-

length coding, and Huffman coding. The quantization technique is used to set the

number of bits used to represent a coefficient. For example, larger magnitude co-

efficients use 8-bits, and smaller magnitude coefficients use 4-bits. This technique

does not drastically affect the reconstruction of the photo because larger magni-

tude coefficients dominate the approximation. The authors’ prototype achieves

compression ratios of 10:1 for the 0.5m/pixel photos in one example case. The au-

thors conclude that their technique achieves efficient, high-performance viewing

of image data over low-bandwidth networks.

2.5 Multi-resolution databases

A GIS multi-resolution database is used to store a single base geographic dataset

in such a way that multiple scale maps can be derived from it. Bertolotto and

Egenhoffer [4] review various challenges with regard to progressive transmission

and the storage of such databases.

Sester and Brenner [52] describe a framework for a multi-resolution database.

They break down cartographic generalization into a sequence of elementary gen-

eralization operators. These operators are applied to the base data to produce
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maps at the desired scale. When a user requests a new map, only the relevant

change operations are applied to the current map. The goal of their approach is

to reduce the redundancy of the transmitted data.

Hamid et al. [26] propose a progressive transmission technique that reduces

the data transmission time by eliminating topological checks for certain vertices.

Antoniou et al. [2] discuss the difficulties in the transmission of vector data.

They propose a tile-based system for sending data only in the client’s viewport.

Yang et al. [70] investigate efficient transmission of vector data over the Internet.

They propose a rule-based point reduction method that maintains topological

consistency during progressive data transmission. Ramos et al. [48] describes an

efficient way to store the multiple simplified polylines that result from execution

of the Douglas–Peucker algorithm.
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Chapter 3

Wavelets

Wavelets are a mathematical tool to approximate functions. They can also be

viewed from a signal processing perspective, in which an input signal is pro-

cessed by a wavelet transformation into an output signal. Depending on the

type of wavelet transform and the selection of wavelet parameters, different out-

put waveforms can be achieved. We use wavelets to process our input polyline

tributary into a smoothed output tributary as shown in Figure 3.1.

wavelet
transform

input output

parameters

Figure 3.1: Transformation of a signal using wavelets
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For a general discussion of wavelets see Daubechies [14]. Our presentation

follows the conventions in the book by Urban [63].

This chapter provides a brief tutorial on wavelets and gives a compilation

of reference materials. Since our research expands standard wavelet theory, it

is appropriate to present a unified wavelet theory description. We start with

basic wavelet concepts, including masks and scaling functions. We introduce

orthogonal systems and multi-resolution analysis.

Next, we discuss the structure of orthogonal and biorthogonal wavelet fam-

ilies. Then, we give examples of biorthogonal wavelet families with symmetric

masks. The Discrete Wavelet Transform (DWT) establishes how decomposition

coefficients at different expansion levels are related. This relationship is usually

described using signal processing terminology. Accordingly, we define the low

and high pass filters used in DWT.

3.1 Wavelet concepts

Given function f(t), t ∈ R, its wavelet decomposition consists of a sequence of

progressively finer frames (approximations) fj(t), t ∈ R, j = 0, 1, . . . The frames

fj approach f as j →∞. Any frame fj is a combination of dilated and translated

versions ϕj,k, k ∈ Z of a fixed scaling function ϕ(t), t ∈ R. Function ϕ has a

finite support, i.e. it vanishes outside of a bounded interval I ⊂ R.

The difference dj(t) = fj+1(t)−fj(t), t ∈ R, between the finer frame fj+1 and

the preceding coarser frame fj, is called the details. Consequently, producing a

finer frame fj+1 (better approximation for f) from a coarser frame fj amounts

to adding the details to it: fj+1 = fj + dj. Similarly, the difference between any

two frames fJ and fK with J > K is the sum of the corresponding details, or
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fJ(t) = fK(t) + dK(t) + dK+1(t) + · · ·+ dJ−1(t), t ∈ R. We can say that the fine

frame fJ is the sum of the coarse frame fK and all the details corresponding to the

expansion levels between K and J−1. The advantage of working with the details,

rather than the frames, is that the details become small for finer expansion levels.

Small values can be disregarded, which allows for higher compression rates.

Any frame fj is a combination of dilated and translated versions ϕj,k, k ∈ Z

of the scaling function ϕ. Similarly, the details can be represented as a combi-

nation of dilated and translated versions ψj,k, k ∈ Z of a fixed wavelet function

ψ(t), t ∈ R. These combinations are written as

fj(t) =
∑
k∈Z

cj,kϕj,k(t), and dj(t) =
∑
k∈Z

dj,kψj,k(t), t ∈ R.

The main idea of the wavelet method is to work with the coefficients cj,k and

dj,k, rather than with the corresponding frames fj and the details dj. Given a

frame fj, its sequence of coefficients cj,k, k ∈ Z is denoted by cj. Thus cj,k =

(cj)k, k ∈ Z. Similarly, the sequence of the wavelet coefficients dj,k is denoted

by dj. Coefficient sequences cj and dj are called signals, since they are treated

using signal processing methods.

Wavelet transforms are categorized by class and further categorized by family.

There are several wavelet classes. Our system is based on biorthogonal wavelets,

which are a generalization of orthogonal wavelets. In the next sections, we give

detailed descriptions of orthogonal wavelets, biorthogonal wavelets, the Discrete

Wavelet Transform.
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3.2 Orthogonal wavelets

3.2.1 Naming conventions

Before we begin our discussion of orthogonal wavelets, it is important to point

out there are multiple notations commonly used to refer to a wavelet family. We

will follow the notation used by Urban [63], in which the families are denoted by

db1, db2, db3, . . . , dbN, . . . This is equivalent to the alternative notation DAUB2,

DAUB4, DAUB6, . . . , DAUB2N, . . . used by Daubechies [14] and Press, et al.

[46].

3.2.2 Mask and scaling function

Each family of orthogonal wavelets dbN is defined by the mask a and the scaling

function ϕ. A mask is a finite sequence

a = (a0, a1, a2, . . . , a2N−1),

where N is the number appearing in the dbN designation of the family. The

length of the mask a is 2N .

The scaling function ϕ is defined by the equation

ϕ(t) =
2N−1∑
k=0

akϕ(2t− k), t ∈ R. (3.1)

This equation is called the refinement equation because ϕ is defined through a

refined version of itself. Also note that the coefficients of the refinement equation

are from the mask a.
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Additionally, the scaling function ϕ is normalized by

∑
k∈Z

ϕ(t− k) = 1, t ∈ R. (3.2)

With this normalization, the scaling function ϕ satisfying (3.1) is unique, [63,

Prop. 2.6].

For example, a commonly referenced orthogonal wavelet family is the Haar

wavelet family. It is also known as db1. Its mask is

a = (a0, a1) = (1, 1),

and its refinement equation is

ϕ(t) = a0ϕ(2t− 0) + a1ϕ(2t− 1) = ϕ(2t) + ϕ(2t− 1), t ∈ R. (3.3)

In this case, there is an explicit solution for the refinement equation (3.3)

ϕHaar(t) =


1, 0 ≤ t < 1,

0, otherwise.

Now consider the db2 orthogonal wavelet family. Its mask is

a = (a0, a1, a2, a3) = (0.68301, 1.18301, 0.31698,−0.18301). (3.4)

More precise values of ak for db2 can be found in Urban [63]. The corresponding
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refinement equation for db2 is

ϕ(t) = a0ϕ(2t− 0) + a1ϕ(2t− 1) + a2ϕ(2t− 2) + a3ϕ(2t− 3), t ∈ R. (3.5)

For orthogonal wavelet families dbN with N ≥ 2 it is proved that it is im-

possible to find an explicit closed-form scaling function ϕ [14]. However, we can

still compute the values of ϕ by using the Cascade Algorithm that is presented

in section 4.5. Our smoothing method uses this algorithm.

0 1 2 3

0

1

2

3

Figure 3.2: db1 scaling function

0 1 2 3

0

1

2

3

Figure 3.3: db2 scaling function

3.2.3 Orthogonal systems and expansions

To continue our discussion of orthogonal wavelet families it is necessary to define

some operations.

The inner product (dot product) of two vectors ~b and ~c in R2 is defined by

~b · ~c = 〈b1, b2〉 · 〈c1, c2〉 = b1c1 + b2c2.
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The norm of ~b is defined by

‖~b‖ =
√
~b ·~b =

√
b21 + b22.

The coordinate vectors {~i, ~j} form an orthonormal system in R2, since

~i ·~j = 〈1, 0〉 · 〈0, 1〉 = 0, ‖~i‖ =
√

12 + 02 = 1, ‖~j‖ =
√

02 + 12 = 1.

Let ~b ∈ R2. If

~b = s1~i+ s2~j,

then we can find the coefficients s1 and s2 as follows. Take the dot product of ~b

with ~i. This gives

~b ·~i = (s1~i+ s2~j) ·~i = s1~i ·~i+ s2~j ·~i = s1‖~i‖2 = s1,

because of the orthogonality of ~i and ~j.

Thus s1 = ~b ·~i. Similarly s2 = ~b · ~j. Therefore, writing ~b ·~i = 〈~b,~i〉 and

~b ·~j = 〈~b,~j〉 we get the expansion

~b = 〈~b,~i〉~i+ 〈~b,~j〉~j. (3.6)

Now suppose that functions {wk, k ∈ Z} form an orthonormal system in

L2(R). This means that the inner products are

〈wk, wl〉 =

∫ ∞
−∞

wk(t)wl(t)dt = 0, k, l ∈ Z, k 6= l
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and the norms are

‖wk‖ =

√∫ ∞
−∞
|wk(t)|2dt = 1, k ∈ Z.

Suppose that

f(t) =
∑
k∈Z

skwk(t), t ∈ R. (3.7)

Then, taking the inner product of f with wk, we get sk = 〈f, wk〉, k ∈ Z, because

of the orthonormality of the system {wk, k ∈ Z}. Thus expansion (3.7) can be

written as

f(t) =
∑
k∈Z

〈f, wk〉wk(t), t ∈ R, (3.8)

similarly to the R2 example (3.6).

If f does not allow the representation (3.7), then

f 6=
∑
k∈Z

〈f, wk〉wk.

However, this sum can be considered an approximation of f . To say it more

precisely, we need to introduce the notion of a span of a system of functions. The

span of the system of functions {wk} is defined by

span{wk, k ∈ Z} =
{∑

k

ckwk

}
,

where the sum is over finitely many elements. Now we define the closure of the

span span as all the limits of the elements of the span in L2(R).

Let the subspace M be defined by

M = span{wk, k ∈ Z} ⊂ L2(R),
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and the approximation fM be

fM =
∑
k∈Z

〈f, wk〉wk.

We say that fM is the projection of f onto M .

3.2.4 Multiresolution analysis

We define dilated (compressed/stretched) and translated (shifted) versions of the

scaling function ϕ by

ϕj,k(t) =
√

2
j
ϕ(2jt− k), j, k ∈ Z, t ∈ R. (3.9)

For j = 0 we have

ϕ0,0(t) = ϕ(t), ϕ0,1(t) = ϕ(t− 1), ϕ0,−5(t) = ϕ(t+ 5),

and so on. For j = 1 we have

ϕ1,0(t) =
√

2ϕ(2t), ϕ1,1(t) =
√

2ϕ(2t− 1), ϕ1,−5(t) =
√

2ϕ(2t+ 5),

and so on.

The coefficients of the mask a in (3.4) are chosen in such a way that, for a

fixed j ∈ Z, the system {ϕj,k, k ∈ Z} is orthogonal in L2(R), i.e. 〈ϕj,k, ϕj, l〉 =

0, k, l ∈ Z, if k 6= l. The normalization factor
√

2
j

makes the system orthonormal

in L2(R), i.e ‖ϕj,k‖ = 1, k ∈ Z.
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For each j ∈ Z let the subspace Sj ⊂ L2(R) be defined by

Sj = span{ϕj,k, k ∈ Z}. (3.10)

where the span means that we consider all possible finite sums

f(t) =
∑
k

sj,kϕj,k(t), t ∈ R

for some coefficients sj,k. For example, for j = 0

f(t) = 3.5ϕ0,−1(t)− 2.2ϕ0,1(t) + 17ϕ0,2(t)

= 3.5ϕ(t+ 1)− 2.2ϕ(t− 1) + 17ϕ(t− 2) ∈ span{ϕ0,k, k ∈ Z}.

The bar over the span (the closure in L2(R)) means that we can also take infinite

sums

f =
∑
k∈Z

sj,kϕj,k

as long as the resulting function f is in L2(R).

Let f ∈ S0. This means that the function f can be represented as

f(t) =
∑
k∈Z

s0,kϕ0,k(t) =
∑
k∈Z

s0,kϕ(t− k), t ∈ R (3.11)

for some coefficients s0,k ∈ R, k ∈ Z.

The scaling function ϕ ∈ S0. Rewriting the refinement equation (3.1) using

(3.9) we get

ϕ(t) =
2N−1∑
k=0

ak
1√
2

√
2ϕ(2t− k) =

2N−1∑
k=0

ak√
2
ϕ1,k(t), t ∈ R.
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Therefore ϕ ∈ S1 in addition to ϕ ∈ S0.

In the same way we argue that any function f ∈ S0 can also be represented

by functions ϕ1,k(x), k ∈ Z. This means that any such function f ∈ S1. That is,

S0 ⊂ S1. Extending this reasoning to arbitrary j ∈ Z, we get Sj ⊂ Sj+1, j ∈ Z.

This is called the multiresolution analysis [63, definition 2.3].

The conclusion Sj ⊂ Sj+1, j ∈ Z can be restated by saying that any function

f that can be represented by coarse functions ϕj,k, k ∈ Z

f =
∑
k∈Z

sj,kϕj,k (3.12)

can also be represented by finer functions ϕj+1,k, k ∈ Z,

f =
∑
k∈Z

sj+1,kϕj+1,k. (3.13)

The exact transition between the coefficients sj,k and sj+1,k is handled best using

the signal processing methods described in section 3.4.

The above description can be summarized by stating that any function fj from

Sj (i.e., of the form (3.12)) can also be represented in the form (3.13) in Sj+1 with

no loss of information. However, if one chooses an arbitrary fj+1 ∈ Sj+1, then its

representation (frame) fj using only the coarser functions ϕj,k may cause a loss

of information. We say that such a representation in Sj will lack the details dj

which are defined by

dj(t) = fj+1(t)− fj(t), t ∈ R. (3.14)

Therefore we have fj+1 = fj +dj. That is, the finer representation consists of the

coarser representation and the details.
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We would like to represent the details dj in a form similar to (3.12), so that

they can be handled by a signal processing method.

3.2.5 dbN wavelets

Consider a dbN family with mask a, and scaling function ϕ. The mask a is

extended periodically to Z with the period 2N .

The wavelet function ψ for this family is defined by

ψ(t) =
2N−1∑
k=0

bkϕ(2t− k), t ∈ R, (3.15)

where

bk = (−1)ka1−k, 0 ≤ k ≤ 2N − 1, (3.16)

[63, section 5.5, proposition 5.1].

Therefore, the wavelet for the db1 (Haar) family is

ψHaar(t) = a1ϕ
Haar(2t)− a0ϕHaar(2t− 1) = ϕHaar(2t)− ϕHaar(2t− 1), t ∈ R.

The wavelet for db2 family is

ψ(t) = a1ϕ(2t)− a0ϕ(2t− 1) + a3ϕ(2t− 2)− a2ϕ(2t− 3), t ∈ R.

The definition of the wavelet ψ is chosen so that ψ ⊥ ϕ, in L2(R), in other words

〈ψ, ϕ〉 = 0. This justifies the orthogonal wavelet name.

Just as in (3.9) we define

ψj,k(t) =
√

2
j
ψ(2jt− k), j, k ∈ Z, t ∈ R. (3.17)
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For each j ∈ Z let the subspace Wj ⊂ L2(R) be defined by

Wj = span{ψj,k, k ∈ Z}. (3.18)

Recall that the details dj represent the “difference” between the frames fj+1 and

fj. It can be shown that dj ∈ Wj,

dj(t) =
∑
k∈Z

dj,kψj,k(t) =
∑
k∈Z

〈f, ψj,k〉ψj,k(t), t ∈ R. (3.19)

Note that the coefficients dj,k ∈ R and the details functions dj, use the same

letter d, [63, section 5.4.1].

Since fj+1 = fj + dj, we can write

fj+1(t) = fj(t) + dj(t)

= fj−1(t) + dj−1(t) + dj(t) = · · · = fK(t) +

j∑
l=K

dl(t), , t ∈ R, (3.20)

[63, section 5.2.1].

This means that the finest approximation fj+1 of f is represented by a very

coarse approximation fK plus all the details dl accumulated while transitioning

from the finest level j + 1 to the coarsest level K.

In principle, the representation (3.20) of fj+1 by the sum of the details does

not contain any new information about fj+1, nor does it lose any information.

The point of such a representation is that details are usually very small and can be

ignored. This allows for significant storage compression of the approximations of

f . More importantly, it gives an efficient and fast method for computing various

approximations of f .
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3.3 Biorthogonal wavelets

Orthogonal wavelets are too restrictive for many applications. For our general-

ization algorithm we want the tributary endpoints to remain fixed after simpli-

fication. To accomplish this we need wavelets based on symmetric masks with

an odd length. The orthogonal wavelets do not have symmetric masks, so the

wavelet framework has to be modified by replacing orthogonality constraints with

more flexible biorthogonality constraints, see equation (3.27).

3.3.1 Naming conventions

Urban [63, section 2.7] classifies biorthogonal wavelets by a pair of positive inte-

gers d and d̃ with d+ d̃ being an even number. The integers d and d̃ are related

to the smoothness of the scaling functions; where bigger values refer to increased

smoothness. Another notation for a biorthogonal wavelet family is pair (Ñ ,N),

where N is the length of the primary mask a, and Ñ is the length of the dual

mask ã. There may be several different biorthogonal wavelet families described

by the same classification.

3.3.2 Masks and scaling functions

A biorthogonal wavelet family is defined by two finite masks a and ã. Additionally

we require the masks to be symmetric and odd in length

a = (a−M , ..., a0, ..., aM), ã = (ã−M̃ , ..., ã0, ..., ãM̃). (3.21)
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Accordingly, we have two scaling functions: the primary scaling function ϕ, and

the dual scaling function ϕ̃ satisfying the refinement equations

ϕ(t) =
M∑

k=−M

akϕ(2t− k), and ϕ̃(t) =
M̃∑

k=−M̃

ãkϕ̃(2t− k), t ∈ R, (3.22)

and the normalization conditions

∑
k∈Z

ϕ(t− k) = 1, and
∑
k∈Z

ϕ̃(t− k) = 1, t ∈ R. (3.23)

Since the masks are symmetric, that is a−k = ak and ã−k = ãk, the scaling

functions are even (see Theorem 4.3.1). This means that ϕ(−t) = ϕ(t) and

ϕ̃(−t) = ϕ̃(t) for any t ∈ R.

Tables 3.1 - 3.4 show the coefficients for the masks a and ã for various biorthog-

onal wavelet families with symmetric masks. For example, for the wavelet family

(5–3) the primary mask a has 3 non-zero coefficients

a = (a−1, a0, a1) = (0.5, 1.0, 0.5),

and the dual mask ã has 5 non-zero coefficients

ã = (ã−2, ã−1, ã0, ã1, ã2) = (−0.25, 0.50, 1.50, 0.50,−0.25).

Because of a different normalization adopted by Daubechies [14], our mask coeffi-

cients differ by a factor of
√

2 from the values given there. The (9–7) biorthogonal

wavelet family described in Table 3.4 is also known as the FBI wavelet, because

it is used by the Federal Bureau of Investigation to compress fingerprint images

[30]. The graphs of the scaling functions ϕ and ϕ̃ for the FBI (9–7) biorthogonal

46



wavelet family are shown in Figures 3.4 and 3.5.

Table 3.1: Biorthogonal family (5–3)

k ak ãk

0 1.0 1.50

±1 0.5 0.50

±2 -0.25

Table 3.2: Biorthogonal family (9–3)

k ak ãk

0 1.0 1.406250

±1 0.5 0.593750

±2 -0.250000

±3 -0.093750

±4 0.046875

Table 3.3: Biorthogonal family (13–3)

k ak ãk

0 1.0 1.3671875

±1 0.5 0.6328125

±2 -0.240234375

±3 -0.15234375

±4 0.06640625

±5 0.01953125

±6 -0.009765625
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Table 3.4: Biorthogonal family (9–7) (FBI)

k ak ãk

0 1.11508705245689 1.205898036472

±1 0.59127176311341 0.533728236886

±2 -0.05754352622794 -0.156446533058

±3 -0.09127176311391 -0.033728236886

±4 0.053497514822

The wavelet coefficients are defined by

bk = (−1)kã1−k, k = −M̃ + 1, ..., M̃ + 1,

b̃k = (−1)ka1−k, k = −M + 1, ...,M + 1, (3.24)

[63, equation 5.16]. Note that the primary wavelet coefficients bk are defined

using the dual mask ã. The primary and the dual wavelets are defined by

ψ(t) =
M̃+1∑

k=−M̃+1

bkϕ(2t− k), and ψ̃(t) =
M+1∑

k=−M+1

b̃kϕ̃(2t− k), t ∈ R. (3.25)

For example, if a symmetric mask a has length N = 5 (M = 2), and

a = (a−2, a−1, a0, a1, a2) = (a2, a1, a0, a1, a2),

then

b̃ = (b−1, b0, b1, b2, b3) = (−a2, a1,−a0, a1,−a2).

Note that the wavelet mask b̃ has the same length 5 as a, but it is not symmetric,

since its indices run from −1 to 3.
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Figure 3.4: Primary scaling function ϕ for the FBI (9–7) biorthogonal wavelet
family
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Figure 3.5: Dual scaling function ϕ̃ for the FBI (9–7) biorthogonal wavelet family
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The translated and dilated versions of the scaling functions and the wavelets

are defined by

ϕj,k(t) =
√

2
j
ϕ(2jt− k), ψj,k(t) =

√
2
j
ψ(2jt− k), j, k ∈ Z, t ∈ R. (3.26)

The dual scaling functions and the wavelets are defined similarly. Let 〈·, ·〉 be

the inner product in L2(R). The biorthogonality conditions [63, sections 2.7 and

5.3] are

〈ψj,k, ψ̃l,m〉 = δj,lδk,m, 〈ϕj,k, ϕ̃j,m〉 = δk,m, (3.27)

where δk,m = 0 if k 6= m, and δk,m = 1 if k = m.

Then the expansions of the frames and the details can be written as

fj(t) =
∑
k∈Z

cj,kϕj,k(t), (3.28)

where cj,k = 〈f, ϕ̃j,k〉, j, k ∈ Z, and

dj(t) =
∑
k∈Z

dj,kψj,k(t) =
∑
k∈Z

〈f, ψ̃j,k〉ψj,k(t), t ∈ R, (3.29)

[63, sections 5.3 and 5.4]. The multiresolution equation is

fJ(t) = fJ−1(t) + dJ−1(t) = fJ−2(t) + dJ−2(t) + dJ−1(t) = · · ·

= fK(t) +
J−1∑
j=K

dj(t), t ∈ R. (3.30)

It describes the decomposition of a fine level frame fJ into a coarse level frame

fK and the details dj for all levels between K and J − 1.
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3.3.3 Convergence of the approximations

According to the theory of biorthogonal wavelets [63, section 5.3], we can estimate

the L2(R) norm of the difference fJ − fK in terms of the detail coefficients of f .

We have

fJ(t)− fK(t) =
J−1∑
j=K

dj(t) =
J−1∑
j=K

∑
k∈Z

dj,kψj,k(t), t ∈ R, (3.31)

and

cψ

J−1∑
j=K

∑
k∈Z

|dj,k|2 ≤

∥∥∥∥∥
J−1∑
j=K

∑
k∈Z

dj,kψj,k

∥∥∥∥∥
2

L2(R)

≤ Cψ

J−1∑
j=K

∑
k∈Z

|dj,k|2, (3.32)

where the constants cψ and Cψ depend only on the biorthogonal wavelet family.

This means that they do not depend on a particular function f .

3.4 Discrete Wavelet Transform

The central part of the wavelet transform method is a fast transition between

coarse and fine level coefficients cj,k for the frames fj(x), and for coefficients dj,k

for the details dj(x). This is usually explained in signal processing terms [39, 57].

Let

u = (u0, u1, . . . , u2N−1)

be a discrete signal of length 2N . We assume that the signal is somehow extended

beyond its range of indices, that is, for all k ∈ Z. One typical extension method

is by zero padding. Then signal u becomes

uzero = (. . . , 0, 0, 0, u0, u1, . . . , u2N−1, 0, 0, 0, . . . ).
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Another common way to extend u is periodically:

uperiodic = (. . . , u0, u1, . . . , u2N−1, u0, u1, . . . , u2N−1, u0, u1, . . . , u2N−1, . . . ).

In our application the signal is extended by inverse periodic mirroring (explained

in Chapter 4). However, in this section there are no restrictions on the extension

of the signal u.

3.4.1 Elementary signal operations

First, we define some elementary operations for arbitrary signals u and v, [63,

section 5.4].

Mirror

(ul)k = u−k, k ∈ Z. (3.33)

For example

u = (. . . , u−1, u0︸︷︷︸
k=0

, u1, u2, . . . ), ul = (. . . , u2, u1, u0︸︷︷︸
k=0

, u−1, . . . ).

That is, the pivot for the mirroring operation is the element at the index k = 0,

which retains its position.

Downsampling

(↓ u)k = u2k, k ∈ Z, (3.34)
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For example

u = (. . . , u−2, u−1, u0, u1, u2, . . . ), ↓ u = (. . . , u−2, u0︸︷︷︸
k=0

, u2, . . . ).

Upsampling

(↑ u)k =


um, k = 2m,

0, k = 2m+ 1

, k ∈ Z, (3.35)

For example

u = (. . . , u−2, u−1, u0, u1, u2, . . . ), ↑ u = (. . . , u−2, 0, u−1, 0, u0︸︷︷︸
k=0

, 0, u1, 0, u2, . . . ).

Dot product

Given signals u and v, their dot product u · v is the number defined by

u · v =
∑
m∈Z

umvm, k ∈ Z. (3.36)

Convolution

Given signals u and v, their convolution u∗v is a new signal, whose components

are defined by

(u ∗ v)k =
∑
m∈Z

umvk−m, k ∈ Z. (3.37)

For example, assume that

u = (. . . , u−2, u−1, u0, u1, u2, . . . ), v = (v−1, v0, v1).
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That is, all other elements of v are zeros. Then

(u ∗ v)0 = u−1v1 + u0v0 + u1v−1, (u ∗ v)1 = u0v1 + u1v0 + u2v−1,

and so on. In other words, the convolution component (u∗v)k is the dot product

of the signal u with the mirrored signal vl that is shifted k places to the right.

3.4.2 Low-pass and High-pass filters

Let u be a signal. Let a and ã be the masks associated with a biorthogonal

wavelet family. If the masks are symmetric, then a = al, and ã = ãl. Recall that

the wavelet masks b and b̃ were defined in (3.24), and they are not symmetric.

Define the Low-pass filter L−, and its dual L+ by

L−u =
1√
2
↓ (u ∗ ãl), (3.38)

L+u =
1√
2

(↑ u) ∗ a. (3.39)

Define the High-pass filter H−, and its dual H+ by

H−u =
1√
2
↓ (u ∗ b̃l), (3.40)

H+u =
1√
2

(↑ u) ∗ b, (3.41)

as in Urban [63, section 5.4].

The Discrete Wavelet Transform (DWT) establishes the following transition
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rules between the frame and the detail signals

cj−1 = L−cj, dj−1 = H−cj, cj = L+cj−1 +H+dj−1. (3.42)

The last equation implies that

cj = L+cj−1 +H+dj−1 = L+L−cj +H+H−cj = (L+L− +H+H−)cj,

or L+L− + H+H− = Identity. Therefore the DWT algorithm gives lossless

reconstruction of the data. The rules (3.42) are algebraic forms of the refinement

equations (3.22), [63, section 5.4].
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Chapter 4

Dimensional wavelets and IMP

representations

This chapter describes our new method for smoothing linear features. It consti-

tutes the main theoretical contribution of the dissertation. It is based on three

major components:

1. Functions represented in special symmetric and periodic form. We call such

representations Inverse Mirror Periodic (IMP) form.

2. Biorthogonal wavelet families with symmetric scaling functions

3. Appropriate scaling of the chosen biorthogonal wavelet to the endpoints of

the function. We call such wavelet families dimensional wavelets because

they reflect the length of the linear feature they approximate.

Our main results are the theorems and their proofs in section 4.3. They

state that IMP functions and signals retain their IMP structure under wavelet

transformations.
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First, we introduce our dimensional scaling functions, and IMP functions

and signals. Then we prove our main results. The Discrete Wavelet Transform

(DWT) provides a method for transitioning between expansion levels. However,

to start this process, it is necessary to know frame expansion coefficients for a

fine expansion level. We call such a level the oversampling level. We show that

the determination of the expansion coefficients at this level amounts to sampling

of the function. Finally, we describe the Cascade algorithm, which is used to

compute values of the scaling and wavelet functions.

4.1 Dimensional scaling functions

Let ϕ be a scaling function, and h > 0. Define

ϕ(h)(t) = ϕ

(
t

h

)
, t ∈ R. (4.1)

We call ϕ(h) a dimensional scaling function because it is scaled by length h.

Then, according to the refinement equation (3.22)

ϕ(h)(t) = ϕ

(
t

h

)
=

M∑
k=−M

akϕ

(
2
t

h
− k
)

=
M∑

k=−M

akϕ
(h)(2t− kh), t ∈ R. (4.2)

By the normalization condition (3.23)

∑
k∈Z

ϕ(h)(t− kh) =
∑
k∈Z

ϕ

(
t− kh
h

)
=
∑
k∈Z

ϕ

(
t

h
− k
)

= 1, t ∈ R. (4.3)

57



Using the substitution t = y + k, and the normalization condition (3.23) we get

∫
R
ϕ(t)dt =

∑
k∈Z

∫ k+1

k

ϕ(t)dt =
∑
k∈Z

∫ 1

0

ϕ(y + k)dy =

∫ 1

0

[∑
k∈Z

ϕ(y + k)

]
dy = 1.

The substitution y = t/h gives

∫
R
ϕ(h)(t)dt =

∫
R
ϕ

(
t

h

)
dt = h

∫
R
ϕ(y)dy = h. (4.4)

Similar conclusions are held for the function ϕ̃(h). To summarize, functions ϕ(h)

and ϕ̃(h) are the scaling functions satisfying modified refinement equations

ϕ(h)(t) =
M̃∑

k=−M̃

akϕ
(h)(2t− kh), ϕ̃(h)(t) =

M̃∑
k=−M̃

ãkϕ̃
(h)(2t− kh), t ∈ R, (4.5)

the normalization conditions

M∑
k=−M

ϕ(h)(t− kh) = 1,
M̃∑

k=−M̃

ϕ̃(h)(t− kh) = 1, t ∈ R, (4.6)

and ∫
R
ϕ(h)(t)dt = h,

∫
R
ϕ̃(h)(t)dt = h. (4.7)

The translated and dilated versions of the new scaling functions and the wavelets

are defined by

ϕ
(h)
j,k (t) =

√
2
j

√
h
ϕ(h)(2jt− kh), t ∈ R, j, k ∈ Z, etc. (4.8)

The direct verification shows that they satisfy the biorthogonality conditions

(3.27). Therefore all the results of section 3.3 remain valid for the subfamily of
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Figure 4.1: Inverse mirror periodic (IMP) representation of x(t)

the dimensional scaling functions and wavelets ϕ(h), ϕ̃(h) and ψ(h), ψ̃(h).

4.2 IMP functions and signals

Definition 4.2.1. Function f(t), t ∈ R is called Inverse Mirror Periodic (IMP)

of length γ, if

1. f(0) = f(γ) = 0.

2. f(−t) = −f(t) for any t ∈ R.

3. f(γ − t) = −f(γ + t) for any t ∈ R.

In other words, an IMP function f of length γ is odd with respect to t = 0, and

with respect to t = γ. Accordingly, f(t+2γ) = f(γ+(t+γ)) = −f(γ−(t+γ)) =

−f(−t) = f(t), t ∈ R. So, such a function is 2γ periodic.

Given a function f(t) defined for 0 ≤ t ≤ γ with f(0) = f(γ) = 0, we

can extend it for all t ∈ R as an IMP function by defining f(−t) = −f(t) for

−γ ≤ t < 0, and then extending it as a 2γ periodic function (see Figure 4.1).

The restriction of f to [0, γ] is called the representative part of f .
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Definition 4.2.2. A discrete signal c = (. . . , c0, c1, . . . , cM−1, cM , . . . ) is called

Inverse Mirror Periodic (IMP) of length M , if

1. c0 = cM = 0.

2. c−k = −ck for any k ∈ Z.

3. cM−k = −cM+k for any k ∈ Z.

We can say that an IMP signal of length M is odd with respect to k = 0 and

k = M . Furthermore, ck+2M = cM+(k+M) = −cM−(k+M) = −c−k = ck for any

k ∈ Z, so it is a 2M periodic signal. Notice that an IMP signal of length M is

actually defined for any k ∈ Z.

Let c = (c0, c1, . . . , cM−1) be a signal of length M with c0 = 0. We can

extend it to an IMP signal defined for all k ∈ Z by defining c−k = −ck for

k = 1, 2, . . . ,M − 1, c−M = 0, and then extending it as a 2M periodic signal

for all k ∈ Z. The part of c with the indexes from 0 to M − 1 is called the

representative part of c.

Definition 4.2.3. It is convenient to describe and handle IMP signals by using

the wrapping array notation. Let c = (0, c1, . . . , cM−1) be a signal of length M .

Then its IMP extension is the wrapping array (also denoted by c)

c =
←−
{ 0, c1, . . . , cM−1

−→
} .

In this case we say that the wrapping array c has length M , even though it is

defined for all indices k ∈ Z.
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4.3 Operations with IMP functions and signals

The next theorem shows that the scaling function associated with a symmetric

mask is symmetric (even).

Theorem 4.3.1. If a mask a is symmetric with an odd length, then the corre-

sponding scaling function ϕ is even, i.e. ϕ(t) = ϕ(−t) for any t ∈ R.

Proof. By definition, the scaling function ϕ satisfies the refinement equation

ϕ(t) =
M∑

k=−M

akϕ(2t− k), t ∈ R, (4.9)

and it is normalized by

∑
k∈Z

ϕ(t− k) = 1, t ∈ R. (4.10)

With this normalization the scaling function ϕ satisfying (4.9) is unique, [63,

Proposition 2.6].

Let Φ(t) = ϕ(−t). Use substitution k = −m, and the symmetry condition

a−m = am to get

Φ(t) = ϕ(−t) =
M∑

k=−M

akϕ(−2t− k) =
M∑

k=−M

akΦ(2t+ k)

=
M∑

m=−M

a−mΦ(2t−m) =
M∑

m=−M

amΦ(2t−m), t ∈ R. (4.11)

Thus

Φ(t) =
M∑

k=−M

akΦ(2t− k), t ∈ R. (4.12)
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Furthermore, using m = −k

∑
k∈Z

Φ(t− k) =
∑
k∈Z

ϕ(−t+ k) =
∑
m∈Z

ϕ(−t−m) = 1, t ∈ R

by (4.10) with t being replaced by −t ((4.10) is valid for any t). Thus Φ is

another solution of (4.9) that satisfies the normalization condition (4.10). The

uniqueness implies that

ϕ(t) = Φ(t) = ϕ(−t), t ∈ R.

4.3.1 Main results

Theorem 4.3.2. Let L− and L+ be the low-pass filters associated with a biorthog-

onal wavelet family with symmetric masks a and ã. Suppose that c is an IMP

signal of length 2N . Then signal c− = L−c is an IMP signal of length N . The

signal c+ = L+c is an IMP signal of length 4N .

Proof. Recall that

L−c =
1√
2
↓ (c ∗ ãl).

First, we show that signal u = c∗ ãl is IMP of length 2N . Since ã is a symmetric

mask, we have ã = ãl. Also ã is a finite mask with nonzero indices in the range

[−M̃, M̃ ]. Therefore

(u)k = (c ∗ ã)k =
∑
m∈Z

cmãk−m =
∑
m∈Z

cmãm−k =
k+M̃∑

m=k−M̃

cmãm−k.
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That is, the mask ã is slid k elements along c, so that ã0 is aligned with ck. Then

we compute the dot product of these two vectors. Thus, using n = −m and the

fact that c is an IMP signal, we get

u−k =
−k+M̃∑

m=−k−M̃

cmãm+k =
k+M̃∑

n=k−M̃

c−nã−n+k = −
k+M̃∑

n=k−M̃

cnãn−k = −uk

for any k ∈ Z. In particular, u0 = 0.

Now, using n = m+ 4N and cn−4N = cn

uk+4N =
−k+4N+M̃∑

m=−k+4N−M̃

cmãm+4N−k =
−k+M̃∑

n=−k−M̃

cn−4N ãn−k =
−k+M̃∑

n=−k−M̃

cnãn−k = uk.

Therefore u is 4N periodic. This implies

u2N−k = −u−2N+k = −u2N+k, k ∈ Z,

and, consequently, u2N = 0. Thus u is an IMP signal of length 2N .

The downsampling operator ↓ u removes the odd indexes in u. Therefore we

still have (↓ u)−k = −(↓ u)k, since u is IMP. Also we see that ↓ u is periodic

with half the period of u. That is ↓ u is an IMP signal of length N .

A similar argument shows that c+ = L+c is an IMP signal of length 4N .

The next theorem shows that any frame of an IMP function is an IMP signal,

provided that the scaling functions are suitably chosen. Then we prove that its

inverse is also true.

Theorem 4.3.3. Let f be an IMP function of length h, and ϕ(h), ϕ̃(h) be the

scaling functions associated with a biorthogonal wavelet family with symmetric
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masks. Fix an integer j ≥ 1. Then the frame coefficients cj,k, k ∈ Z form an

IMP signal of length M = 2j.

Proof. By the definition

cj,k =
〈
f, ϕ̃

(h)
j,k

〉
=

∫
R
f(t)ϕ̃

(h)
j,k (t) dt.

We have

cj,k =

∫
R
f(t)ϕ̃

(h)
j,k (t) dt =

∫
R
f(t)

√
2
j

√
h
ϕ̃(h)(2jt− kh) dt

=

∫
R
f(t)

√
2
j

√
h
ϕ̃

(
2j
t

h
− k
)
dt, (4.13)

and

cj,−k =

∫
R
f(t)ϕ̃

(h)
j,−k(t) dt =

∫
R
f(t)

√
2
j

√
h
ϕ̃(h)(2jt+ kh) dt

=

∫
R
f(t)

√
2
j

√
h
ϕ̃

(
2j
t

h
+ k

)
dt. (4.14)

Let y = −t. Then, using f(−y) = −f(y) and ϕ̃(−t) = ϕ̃(t) we get

cj,−k =

∫
R
f(−y)

√
2
j

√
h
ϕ̃
(
−2j

y

h
+ k
)
dy

= −
∫
R
f(y)

√
2
j

√
h
ϕ̃
(

2j
y

h
− k
)
dy = −cj,k. (4.15)

In particular, cj,−0 = −cj, 0. Therefore, cj, 0 = 0. Now we prove that the coef-

ficients cj,k are 2M periodic in k, that is cj,2M+k = cj,k for any k ∈ Z. Using
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t = y + 2h, M = 2j and the 2h periodicity of f

cj,2M+k =

∫
R
f(y + 2h)

√
2
j

√
h
ϕ̃

(
2j
y + 2h

h
− 2M − k

)
dy

=

∫
R
f(y)

√
2
j

√
h
ϕ̃
(

2j
y

h
− k
)
dy = cj,k. (4.16)

Thus,

cj,M−k = −cj,−(M−k) = −cj,−M+k = −cj,2M+(−M+k) = −cj,M+k.

This equality with k = 0 also shows that cj,M = 0. Therefore the coefficients

cj,k, k ∈ Z form an IMP signal.

Theorem 4.3.4. Let cj be an IMP signal of length M = 2j. Let h > 0 and

ϕ
(h)
j,k (t) =

√
2
j

√
h
ϕ(h)(2jt− kh), j, k ∈ Z, t ∈ R. (4.17)

Then function

fj(t) =
∑
k∈Z

cj,kϕ
(h)
j,k (t), t ∈ R (4.18)

is an IMP function of length h.

Proof. Using m = −k we obtain

fj(−t) =
∑
k∈Z

cj,kϕ
(h)
j,k (−t) =

∑
k∈Z

cj,k

√
2
j

√
h
ϕ

(
−2j

t

h
− k
)

= −
∑
k∈Z

cj,−k

√
2
j

√
h
ϕ

(
2j
t

h
+ k

)
= −

∑
m∈Z

cj,m

√
2
j

√
h
ϕ

(
2j
t

h
−m

)
= −

∑
m∈Z

cj,mϕ
(h)
j,m(t) = −fj(t). (4.19)
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Also, using M = 2j, m = k − 2M , and cj,m+2M = cj,m we get

fj(t+ 2h) =
∑
k∈Z

cj,kϕ
(h)
j,k (t+ 2h) =

∑
k∈Z

cj,k

√
2
j

√
h
ϕ

(
2j
t+ 2h

h
− k
)

=
∑
k∈Z

cj,k

√
2
j

√
h
ϕ

(
2j
t

h
+ 2M − k

)
=
∑
m∈Z

cj,m+2M

√
2
j

√
h
ϕ

(
2j
t

h
−m

)

=
∑
m∈Z

cj,m

√
2
j

√
h
ϕ

(
2j
t

h
−m

)
=
∑
m∈Z

cj,mϕ
(h)
j,m(t) = fj(t), (4.20)

so fj(t+ 2h) = fj(t) for any t ∈ R. Thus, fj(h− t) = −fj(−h+ t) =

− fj(h+ t), t ∈ R. Therefore fj is an IMP function of length h.

4.3.2 Wavelet decomposition of IMP functions

The wavelet decomposition of an IMP function f has a very special structure.

Fix an approximation level N . It is shown in section 4.4 how to compute the

coefficients of its frame cN . According to Theorem 4.3.3, the frame cN of f is an

IMP signal of length 2N , the frame cN−1 is an IMP signal of length 2N−1, and so

on. According to (3.42) it takes N consecutive applications of the filters L− and

H− to completely decompose cN , that is to reach the IMP signal c0 =
←−
{ 0
−→
} of

length 1. This signal is identically equal to zero.

The result of the decomposition of f is N detail signals dj, j = 0, ..., N − 1.

Since the mask b̃ is not symmetric, the signals dj are not IMP. However, dj is

a periodic signal of period 2j+1. The decomposition process is reversed by N

consecutive applications of the operation cj = L+cj−1 +H+dj−1, which perfectly

reconstructs (synthesizes) the frame cN from the details.
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4.4 Oversampling level and expansion coefficients

To use the DWT for an IMP function f of length h, we first have to compute

the signal cN for some frame fN . Similarly to (3.28), the frame coefficients cN,k

are defined by cN,k = 〈f, ϕ̃(h)
N,k〉 =

∫
R f(t)ϕ̃

(h)
N,k(t) dt. The evaluation of integrals is

a computationally expensive operation. However, we show in this section that a

sample of the function f at a fine mesh on [0, h] is approximately equal to the

signal cN (up to a constant factor). We call such a fine mesh the oversampling

mesh for f .
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Figure 4.2: Dilated and translated dual scaling function ϕ̃
(h)
j,k for the FBI (9–7)

biorthogonal wavelet family

By (4.7), (4.8), and using y = 2jt− kh we get

∫
R
ϕ̃
(h)
j,k (t)dt =

√
2
j

√
h

∫
R
ϕ̃(h)(2jt− kh)dt =

1
√
h
√

2
j

∫
R
ϕ̃(h)(y)dy =

√
h
√

2
j . (4.21)

Since the mask ã defining ϕ̃ is symmetric and of an odd length, then ϕ̃ is an even
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function, see Theorem 4.3.1. The scaling function ϕ̃ has a bounded support in R

which is symmetric about the point t = 0, [63, propositions 2.11, 2.13]. Therefore

the support of ϕ̃
(h)
j,k is centered at the point tj,k such that 2jtj,k − kh = 0. That

is, tj,k = kh
2j

. This is illustrated in Figure 4.2. The length of the support of ϕ̃
(h)
j,k

shrinks to zero, as j →∞.

Let j be sufficiently large. If a function f is continuous, then it changes very

little over the small support of ϕ̃
(h)
j,k . Thus f(t) ≈ f(tj,k) for any t ∈ supp ϕ̃(h)

j,k .

By (4.21)

〈
f, ϕ̃

(h)
j,k

〉
=

∫
R
f(t)ϕ̃

(h)
j,k (t)dt ≈

∫
R
f

(
kh

2j

)
ϕ̃
(h)
j,k (t)dt =

√
h
√

2
j f

(
kh

2j

)
. (4.22)

The frame fj is given by fj =
∑

k∈Z cj,kϕ
(h)
j,k . Since the scaling functions

ϕ(h), ϕ̃(h) form a biorthogonal system, we conclude that cj,k = 〈f, ϕ̃(h)
j,k 〉. Thus,

according to (4.22), for a sufficiently large j

cj,k = 〈f, ϕ̃(h)
j,k 〉 ≈

√
h
√

2
j f

(
kh

2j

)
, k ∈ Z. (4.23)

Let us examine this conclusion more closely. The support of the dimensionless

dual scaling function ϕ̃ is [−M̃, M̃ ], where M̃ is defined by the dual mask ã, see

(3.21). Accordingly, the support of ϕ̃(h) is [−M̃h, M̃h], and

supp ϕ̃
(h)
j,k =

[
kh

2j
− M̃ h

2j
,
kh

2j
+ M̃

h

2j

]
. (4.24)

It is convenient to define hj = h/2j. The geometric meaning of hj is the subin-

terval length (the mesh resolution) of the mesh on interval [0, h] associated with
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the dilation level j. Then the mesh is extended to R. We have

supp ϕ̃
(h)
j,k =

[
(k − M̃)hj, (k + M̃)hj

]
, (4.25)

and (4.23) becomes

cj,k ≈
√
hjf(khj), k ∈ Z. (4.26)

Therefore, for a sufficiently large j the computation of the expansion coefficients

cj,k is just the sampling of the function f at the mesh corresponding to the level j.

Notice, that the approximation sign in (4.26) can be replaced by the equality

sign if the function f is constant over the support of ϕ̃
(h)
j,k . Furthermore, by

Theorem 4.3.1, ϕ̃ is an even function. Therefore, if f is a linear function, then

the approximation in (4.22) is an equality. Thus equation (4.26) also becomes an

equality.

We can therefore conclude the following. Let N ∈ N be so large that the

derivative f ′ can be assumed to be nearly constant over any interval of length

2M̃hN , where hN = h/2N . Then function f is well approximated by linear

functions over any such interval, and it is acceptable to compute the coefficients

cN,k according to formula

cN,k =
√
hNf(khN), k ∈ Z. (4.27)

Practically, the value for N is determined experimentally based on the appli-

cation’s performance.
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4.5 Cascade Algorithm

The Cascade algorithm is used to compute values of scaling functions and wavelets

at diadic points. Diadic points are points of the form k/2j, j, k ∈ Z. Combined

with an interpolation this gives us a way to compute the scaling functions and

wavelets for any t ∈ R.

The idea of the Cascade algorithm is to run the unit signal e = (. . . , 0, 1, 0, . . . )

through the inverse wavelet transform with all the details set equal to zero. Note

that signal e is not an IMP signal. If the dual low-pass filter L+ is applied to e,

then the result is the scaling function ϕ. If the dual high-pass filter H+ is applied

to e, then the result is the wavelet ψ, [14, section 6.5].

The Cascade algorithm for the scaling function ϕ is the following

1. Define the unit signal e by e0 = 1, and ek = 0 for any k 6= 0. That is

e = (. . . , 0, 1, 0, . . . ).

2. Choose a sufficiently large K ∈ N. Let c = e. Repeat the following

computation K times: c← L+c.

3. Let hK =
1

2K
. According to (4.27),

ϕ

(
k

2K

)
= ϕ(k hK) =

1√
hK

ck, k ∈ Z. (4.28)

The graphs of the scaling functions ϕ and ϕ̃ for the FBI (9–7) biorthogonal

wavelet family are shown in Figures 3.4 and 3.5. They were obtained by using

the Cascade algorithm.
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Chapter 5

Wavelet-based smoothing of

linear features

This chapter describes how to to smooth linear features using dimensional wavelets

. Although our method can be applied to any multidimensional polyline of fi-

nite length, in our application we are focused on smoothing the centerline of a

tributary.

Given a tributary T , our goal is to decompose it into a sequence of wavelet

details. First, we transform it into IMP form. Then, the TributaryDecom-

position algorithm obtains the wavelet details. At the synthesis stage, these

details are used to construct smoothed versions T ε of T that depend on an accu-

racy parameter ε.

Our main result, Theorem 5.3.4, asserts that T ε and T have the same end-

points, and that T ε approximates T continuously with respect to ε.

We also provide a detailed evaluation of the algorithm as it applies to various

tributaries. We chose three tributaries of various length. For each tributary (T1,

T2, and T3) we smoothed them for three different accuracy levels and plotted
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the results. We demonstrate that our method can smooth a variety of tributary

shapes in a cartographically appropriate manner. In particular, tributary T3 con-

tains a complicated spiral-like feature that the algorithm smooths appropriately.

A quantitative measure of the accuracy of the approximation is the deviation

of the smoothed tributary from the original. We show the deviation of tributary

T3 along a portion of its length. Our analysis of 5,322 tributaries shows a slight

correlation between maximal deviation and tributary length.

5.1 Transformation of a tributary to the IMP

form

Before we can decompose T into a sequence of wavelet details, we need to rep-

resent T in Inverse Mirror Periodic (IMP) form. The first step is to parametrize

the tributary by its length. To accomplish this, we use the Great-circle distance

formula to compute the distance between points on the tributary. A more precise

method can also be used.

5.1.1 Great-circle distance formula

To compute the distance between two points on the surface of a sphere, we use

the Great-circle distance formula. Let (λs, φs) and (λf , φf ) be the longitude and

latitude of a start point and final point, respectively. Let their differences be ∆λ

and ∆φ. Let ∆σ be the (spherical) angular difference, or central angle. It can

be computed from the haversine formula:

∆σ = 2 arcsin

(√
sin2 ∆φ

2
+ cosφs cosφf sin2 ∆λ

2

)
.
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Figure 5.1: Tributary T

For ∆σ given in radians, the arc length distance d between these two points is

d = R∆σ,

where R is the radius of the sphere. The average radius for a spherical approxi-

mation of Earth is 6, 371.01 km.

5.1.2 Tributary parametrization

Let T = {p0, p1, . . . , pM} be a tributary with a flow direction, where pi = (xi, yi)

are the vertices of the polyline, see Figure 5.1. Here xi, yi are the longitude and

latitude coordinates of the vertex pi. Assume that the vertices are arranged in

the same order as the direction of the flow in T . Next, we parametrize T by its

length.
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First we compute the length li of each segment pi−1pi, for i = 1, . . . ,M using

the Great-circle distance formula. Let l0 = 0. Then the total length of the

tributary is

γT =
M∑
i=0

li.

Let ti be the distance between p0 and pi along the polyline, that is

ti =
i∑

k=0

lk.

This way, each vertex pi is associated with its parameter value ti, 0 ≤ ti ≤ γT .

Therefore, the positions of the vertices are given by

p0 =
(
x(0), y(0)

)
,

p1 =
(
x(t1), y(t1)

)
,

...

pM =
(
x(γT ), y(γT )

)
.

Now our goal is to define the point on the polyline that corresponds to any

particular value of t, where 0 ≤ t < γT . Given t, we find ti such that ti ≤ t < ti+1.

Define x(t) and y(t) by

x(t) = x(ti)+
t− ti
ti+1 − ti

(
x(ti+1)−x(ti)

)
, y(t) = y(ti)+

t− ti
ti+1 − ti

(
y(ti+1)−y(ti)

)
.

In other words, the point
(
x(t), y(t)

)
is on the segment pipi+1, in a position

proportional to its distance from pi.

The result of this procedure is the parametrization T (t) =
(
x(t), y(t)

)
, 0 ≤

t ≤ γT , where γT is the length of T . If point p ∈ T , and t is the distance from p0
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to p along the polyline, then T (t) = p, In particular, if tm is the distance along

the polyline between the vertices p0 and pm, then T (tm) = pm.

5.1.3 Transformation to the IMP form

Now that we have obtained a parametrization of tributary T as
(
x(t), y(t)

)
, 0 ≤

t ≤ γT , we can continue with its transformation to the IMP form. Since both

the longitude component x(t) and the latitude component y(t) are treated in the

same way, we will just discuss x(t).

The slope and the x-intercept of the baseline (line connecting the endpoints

of x(t)) are computed by

ax =
1

γT

(
x(γT )− x(0)

)
, bx = x(0).

Next, the baseline is subtracted from the x(t), giving x∗(t) defined by

x∗(t) = x(t)− axt− bx, 0 ≤ t ≤ γT .

Then x∗(0) = x∗(γT ) = 0. Figures 5.2 and 5.3 show the x and y components

of T together with their baselines. Figures 5.4 and 5.5 show the transformed

components x∗(t) and y∗(t).

Geometrically, this means that the transformed polyline
(
x∗(t), y∗(t)

)
,

0 ≤ t ≤ γT is a closed loop with the start and the end points at the origin as

shown in Figure 5.6.

Now we extend x∗(t) to the values of the parameter t in the interval [−γT , 0]
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Figure 5.2: The longitude component x of T with its baseline
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Figure 5.3: The latitude component y of T with its baseline

76



0 km 1 km 2 km 3 km 4 km 5 km

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

t

x
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Figure 5.5: Function y∗(t)
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Figure 5.6: Transformed polyline
(
x∗(t), y∗(t)

)
, 0 ≤ t ≤ γT

by inverse mirroring. This means that

x∗(t) = −x∗(−t), −γT ≤ t ≤ 0.

Finally, extend x∗(t) periodically with the period 2γT for all t ∈ R. The

transformed polyline
(
x∗(t), y∗(t)

)
, t ∈ R is now extended to become a figure-8

shaped loop, see Figure 5.7. Figure 4.1 shows IMP-extended x∗(t) by itself.

5.2 Wavelet decomposition of a tributary

After the tributary T is represented in IMP form
(
x∗(t), y∗(t)

)
, t ∈ R, our next

step is to determine its wavelet details. First, we determine the oversampling

mesh for T . Then we sample x∗ at the oversampling mesh to obtain the wavelet

frame coefficients at the oversampling level.
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Figure 5.7: Transformed polyline
(
x∗(t), y∗(t)

)
, t ∈ R after extension

5.2.1 Oversampling

The representative part of the IMP function x∗ is defined on the interval [0, γT ].

The wavelet framework (section 4.4) requires that the interval be divided into 2N

subintervals. Furthermore, we require that these subintervals should satisfy the

inequality δ/2 ≤ hN < δ, where δ > 0 is the bound on the mesh resolution. This

is needed to ensure that all tributaries are smoothed similarly. In our system,

the value of δ is determined experimentally.

We define the mesh resolution hN as the distance between sampling points.

The mesh size 2N is the number of sampling intervals. The number N and the

mesh resolution hN are determined by

N =
⌊

log2

(γT
δ

)⌋
+ 1, and hN =

γT
2N
. (5.1)
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Note that the mesh size and mesh resolution depend on the length γT of the

tributary.

To obtain the wavelet frame signal cN for x∗ at the oversampling level N , we

sample x∗ at the mesh points khN , k = 0, 1, . . . , 2N − 1. This means that we let

cN =
←−
{ cN,0, cN,1, . . . , cN,2N−1

−→
} ,

where cN,k =
√
hN x∗(khN), k = 0, 1, . . . , 2N − 1; see formula (4.27).

5.2.2 Wavelets details of T

According to section 4.3.2, the wavelet frame signal cN can be decomposed into N

detail signals d0, . . . ,dN−1. To find them, we perform N consecutive applications

of the filters L− and H−, by letting j decrease from j = N to j = 1

cj−1 = L−cj and dj−1 = H−cj.

We retain the coefficients dj−1,k with −M̃ ≤ k ≤ 2j−1 + M̃ in dj−1 using

M̃ from the dual mask ã; see (3.21), (3.24). At the same time, we compute the

magnitudes

d2j−1 =
∑
k

|dj−1,k|2,

in which the sum is over the retained coefficients in dj−1.

5.2.3 Wavelet details thresholding

We would like to discard details that have a small effect on the tributary ap-

proximation. Let ε0 ≥ 0 be the initial accuracy. According to the theory of
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biorthogonal wavelets, we can estimate the L2(R) norm of the difference between

two frames in terms of the detail coefficients, see (3.32).

We discard details dj that do not affect the initial accuracy by finding the

smallest integer Jx such that 0 ≤ Jx < N − 1 and

N−1∑
j=Jx+1

d2j ≤ γT ε
2
0. (5.2)

We normalize the error estimate (5.2) by the length of the tributary γT so that

the approximations are comparable for different length tributaries. An analysis of

this normalization is given in section 5.4. Details satisfying (5.2) can be discarded

since their influence on the reconstruction of x is within the specified accuracy

ε0. In other words, keep the details dj for 0 ≤ j ≤ Jx and discard the rest.

5.2.4 Summary of the decomposition stage

The complete description of the decomposition stage is given by the Tributary-

Decomposition algorithm.

Input: Parametric representation T (t) =
(
x(t), y(t)

)
, 0 ≤ t ≤ γT of the tributary,

oversampling mesh bound δ > 0, and initial accuracy ε0 ≥ 0.
Output: Detail signals dxj , j = 0, 1, . . . Jx, and dyj , j = 0, 1, . . . Jy of fi-

nite length for the x and y components of the tributary T ; and parameters
ax, bx, ay, by, γT , Jx, Jy.

1 Compute the oversampling mesh level N and its mesh resolution hN by (5.1)
2 Transform the x component of T into an IMP function x∗ (section 5.1.3)
3 Retain the slope ax, and the x-intercept bx
4 Find the wavelet frame signal cN (section 5.2.1)
5 Find the details signals d0, . . . ,dN−1 (section 5.2.2)
6 Find the magnitudes d20, . . . , d

2
N−1

7 Retain details d0, . . . ,dJx that affect the initial accuracy ε0 (section 5.2.3)
8 Repeat lines 2–7 for the y component of T

Algorithm 5.1: The TributaryDecomposition algorithm
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5.3 Tributary synthesis

The goal of the Tributary synthesis stage is to construct a smoothed tributary

T ε that has the same endpoints as T and is continuously dependent on the ac-

curacy ε. This is achieved by finding the frames cJ and cJ+1 such that cJ does

not satisfy the accuracy requirement, and cJ+1 does satisfy it. The smoothed

tributary T ε is constructed from the frame ĉ that interpolates the frames cJ and

cJ+1.

5.3.1 Finding level J

Let the accuracy parameter ε satisfy ε ≥ ε0. We would like to disregard the

details dj for the x component of T that do not affect the required accuracy ε.

We find the smallest integer J such that 0 ≤ J < Jx and

Jx∑
j=J+1

d2j ≤ γT (ε2 − ε20) <
Jx∑
j=J

d2j

is satisfied. This implies that d2J > 0.

However, if d2Jx > γT (ε2−ε20), then let J = Jx. In other words, the finest level

details are already non-negligible.

One other possibility is if
∑Jx

j=0 d
2
j ≤ γT (ε2 − ε20). Then we let xε(t) = axt +

bx, 0 ≤ t ≤ γT . In this case, all the details are negligible.

5.3.2 Interpolated frame ĉ

Now we use the DWT procedure to construct the output frame and the smoothed

x component of T . To find cJ−1 we perform J − 1 consecutive applications of

the filters L+ and H+, by letting j increase from j = 1 to j = J − 1, where
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cj = L+cj−1 +H+dj−1 and c0 =
←−
{ 0
−→
} . The result is the frame signal cJ−1.

Now we define the interpolated frame ĉ by

ĉ = L+cJ−1 +
1

d2J

(
Jx∑
j=J

d2j − γT (ε2 − ε20)

)
H+dJ−1. (5.3)

The smoothed component x∗,ε of the tributary T is given by

x∗,ε(t) =
∑
k

ĉkϕ
(h)
J,k(t), 0 ≤ t ≤ γT , h = γT , (5.4)

where k is such that t ∈ suppϕ(h)
J,k.

Finally we reconstruct xε by

xε(t) = x∗,ε(t) + ax t+ bx, 0 ≤ t ≤ γT .

5.3.3 Summary of the synthesis stage

The formal description of the synthesis stage is

Input: The output of the TributaryDecomposition algorithm and accuracy
parameter ε ≥ ε0.

Output: Smoothed tributary T ε =
(
xε, yε

)
1 Find level J for the x component of T (section 5.3.1)
2 Find interpolated frame ĉ and the smoothed component xε of T (section 5.3.2)
3 Find level J for the y component of T (section 5.3.1)
4 Find interpolated frame ĉ and the smoothed component yε of T (section 5.3.2)

Algorithm 5.2: The TributarySynthesis algorithm

83



5.3.4 Preservation of endpoints and continuous

smoothing of tributaries

In this section we present our main result, Theorem 5.3.4 proves that tributary

T and its smoothing T ε have the same endpoints. Furthermore, smoothed trib-

utaries T ε change continuously with respect to the accuracy parameter ε.

Definition 5.3.1. The distance d(P,Q) between two points P and Q on Earth

can be found by the Great-circle distance formula (section 5.1.1).

Definition 5.3.2. Let T and T̂ be two tributaries defined over the same interval

0 ≤ t ≤ γ. The deviation between them at t ∈ [0, γ] is defined by d
(
T (t), T̂ (t)

)
.

Definition 5.3.3. The maximal deviation E between two tributaries of length

γ is defined by

E(T, T̂ ) = max
0≤t≤γ

d(T (t), T̂ (t)).

Theorem 5.3.4. Let T be a tributary. Suppose that ε ≥ ε0, and the smoothed

tributary T ε =
(
xε, yε

)
has been obtained using the TributarySynthesis algo-

rithm. Then

1. The tributaries T and T ε have the same endpoints.

2. The smoothed tributaries T ε are continuously dependent on ε. That is

E(T τ , T ε) = max
0≤t≤γT

d(T τ (t), T ε(t))→ 0, as τ → ε.

Proof. Let T = (x, y) and T ε = (xε, yε). According to the Tributary decomposi-

tion and synthesis algorithms we have

x(t) = x∗(t) + axt+ bx, y(t) = y∗(t) + ayt+ by, 0 ≤ t ≤ γT , (5.5)
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and

xε(t) = x∗,ε(t) + axt+ bx, yε(t) = y∗,ε(t) + ayt+ by, 0 ≤ t ≤ γT , (5.6)

where x∗ and y∗ are IMP functions that are defined for any t ∈ R.

Part I. By Theorem 4.3.3 the frame cj of x∗ is an IMP signal of length

2j. The same Theorem shows also that cj−1 is an IMP signal of length 2j−1.

By Theorem 4.3.2 signal L+cj−1 is IMP of length 2j. According to DWT cj =

L+cj−1 +H+dj−1, section 3.4. Therefore the signal H+dj−1 = cj − L+cj−1 is an

IMP signal of length 2j. Note that dj−1 is not an IMP signal itself.

Therefore ĉ = L+cj−1 +αH+dj−1 is an IMP signal of length 2j for any α ∈ R.

In particular, the frame ĉ constructed in section 5.3.2 is IMP of length 2J . Now

it follows from Theorem 4.3.4 that x∗,ε is an IMP function of length h = γT .

Since any IMP function of length γT is equal to zero at t = 0 and at t = γT , we

conclude that x∗,ε(0) = x∗,ε(γT ) = 0. By (5.6) xε(0) = x∗,ε(0) + bx = x(0), since

bx = x(0). Similarly yε(0) = y(0). Thus T ε(0) = T (0).

Concerning the other endpoint of T , we have xε(γT ) = x∗,ε(γT ) + axγT + bx =

x(γT ), since ax = (x(γT ) − x(0))/γT . Similarly yε(γT ) = y(γT ), and T ε(γT ) =

T (γT ). In conclusion, T (0) = T ε(0), and T (γT ) = T ε(γT ), which proves the first

part of the Theorem.

Part II. To prove the continuity of T ε with respect to ε, it is enough to

establish that the components of the smoothed tributaries satisfy xτ → xε and

yτ → yε as τ → ε. More precisely, let

‖xτ − xε‖∞ = max
0≤t≤γT

|xτ (t)− xε(t)|.
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Then we want to show that ‖xτ − xε‖∞ → 0, as τ → ε. Convergence for the

y-components is done similarly, so we continue only with the x-components of

the tributaries.

Our task is further simplified by using (5.6), which gives

‖xτ − xε‖∞ = ‖x∗,τ − x∗,ε‖∞.

So Part II of the Theorem would be established if we are able to show that

‖x∗,τ − x∗,ε‖∞ → 0, as τ → ε.

We continue the proof by considering various cases appearing in the Trib-

utarySynthesis algorithm, which can happen for different choices of ε ≥ ε0.

First, suppose that
Jx∑

j=J+1

d2j < γT (ε2 − ε20) <
Jx∑
j=J

d2j

for some J such that 0 ≤ J < Jx. Then the above inequality is satisfied for any

τ sufficiently close to ε. By (5.3) the corresponding frames ĉτ and ĉε satisfy

ĉτ − ĉε =
γT
d2J

(
− τ 2 + ε2

)
H+dJ−1.

Therefore

|ĉτk − ĉεk| =
γT
d2J
|ε2 − τ 2||(H+dJ−1)k|. (5.7)

By (5.4)

|x∗,τ (t)− x∗,ε(t)| ≤
∑
k

|ĉτk − ĉεk||ϕ
(h)
J,k(t)|, 0 ≤ t ≤ γT ,

where k is such that t ∈ suppϕ(h)
J,k. For any t ∈ R there are at most 2M indices
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k ∈ Z such that t ∈ suppϕ(h)
J,k, where M is defined by the primary mask a. Thus

we can estimate ‖x∗,τ − x∗,ε‖∞ ≤ C|τ − ε| for some positive constant C which

is independent of t ∈ R. Since ‖xτ − xε‖∞ = ‖x∗,τ − x∗,ε‖∞ the continuity of xε

with respect to ε follows.

Now consider the case
∑Jx

j=J+1 d
2
j = γT (ε2−ε20). Then ĉε = L+cJ−1+H+dJ−1,

which means that ĉε = cJ . If τ → ε+, i.e. τ > ε, then the above argument is

applicable with no change. If τ → ε−, then (discounting trivial cases)

ĉτ = L+cJ+
1

d2J+1

(
Jx∑

j=J+1

d2j − γT (τ 2 − ε20)

)
H+dJ = L+cJ+

γT
d2J+1

(
ε2−τ 2

)
H+dJ .

(5.8)

Therefore

x∗,τ (t) =
∑
m

(L+cJ)mϕ
(h)
J+1,m(t) +

γT
d2J+1

(
ε2 − τ 2

)∑
m

(H+dJ)mϕ
(h)
J+1,m(t)

for any 0 ≤ t ≤ γT . Observe that we have the following equivalent representations

for x∗J

x∗,ε(t) = x∗J(t) =
∑
k

cJ,kϕ
(h)
J,k(t) =

∑
m

(L+cJ)mϕ
(h)
J+1,m(t), 0 ≤ t ≤ γT .

Therefore

x∗,ε(t)− x∗,τ (t) =
γT
d2J+1

(
ε2 − τ 2

)∑
m

(H+dJ)mϕ
(h)
J+1,m(t), 0 ≤ t ≤ γT ,

and the continuity follows. Other cases can be treated similarly.

Comment. To plot the smoothed tributary according to (5.4) we have to be

able to evaluate the scaling function ϕ(t), t ∈ R. This is accomplished by using
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the Cascade algorithm with interpolation (section 4.5).

5.4 Tributary smoothing analysis

Here we present an evaluation of how our system smooths tributaries. An imple-

mentation of our system is described in Chapter 7. The goal of this analysis is

to confirm that our method preserves tributary endpoints, smooths continuously

with respect to the accuracy parameter, and produces cartographically acceptable

generalizations.

We have selected three tributaries from the Vermont river system to use in our

evaluation. These tributaries vary in length and sinuosity. They can be found in

Table 5.1. This table shows the start and end positions (longitude, latitude) of

the tributaries, their length γT , the oversampling level N , and the mesh resolution

hN .

The system’s parameters were set with an initial accuracy ε0 = 0, and an

oversampling mesh bound δ = 50 meters. This means that the mesh resolution

hN will always be between 25 meters and 50 meters. For example, T1 has a mesh

size of 2N = 26 = 64 sampling intervals, and a mesh resolution hN = γT/2
N =

1.809/64 = 0.02827 km = 28.27 meters.

Table 5.1: Sample tributaries T1, T2, T3
Start End γT N hN

T1 (-73.5041◦, 43.9720◦) (-73.5035◦, 43.9581◦) 1.809 km 6 28.27 m
T2 (-72.4709◦, 43.5426◦) (-72.3906◦, 43.5266◦) 10.537 km 8 41.16 m
T3 (-73.4022◦, 43.5699◦) (-73.3298◦, 44.5313◦) 142.526 km 12 34.80 m
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Figure 5.9: Illustration of progressive smoothing of a tributary

Figure 5.8 shows tributary T1 in New York near Burris Pond and a portion of

tributary (flowline) T3 in Lake Champlain. The spiral feature A in T3 is located

in Lapham Bay at (−73.4041◦, 43.9235◦). It is located 64.65 km from the start

of the tributary T3. This tributary flows from the south to the north.

To obtain optimal smoothing results by the wavelet method, it is advantageous

to have the original tributary to be smooth. This means that we require x and

y of T to be twice continuously differentiable functions. We accomplish this by

computing a natural spline that goes through the vertices of the polyline. The

spline interpolation procedure is described in section 7.4.2. Such a spline provides

a more natural representation of the tributary.

Figure 5.9 shows a progression of smoothing for a tributary. The original trib-

utary is rightmost in the figure. The smoothed curves correspond to decreasing

values of the accuracy parameter ε (from left to right).
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Figure 5.10: Tributary T1 and its smoothing T ε1

Figure 5.11: Tributary T2 and its smoothing T ε2
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Figure 5.12: A portion of tributary T3 and T ε3 at the spiral feature A

Figure 5.13: A portion of tributary T3 and T ε3 at the spiral feature A
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Figure 5.14: A portion of tributary T3 and T ε3 at the spiral feature A

Figures 5.10–5.14 show the positions of the smoothed tributaries with respect

to the original polyline. The smoothed tributaries are shown for the accuracy

parameters ε = 10−3, ε = 10−4, and ε = 10−5.

Figures 5.10 and 5.11 show tributaries T1, T2 and their smoothing. The figures

display the entire extent of the tributaries. We can observe that the endpoints

are preserved in the smoothed representations. In other words, T1 and T ε1 have

the same endpoints. The same is also true for T2 and T ε2 . This confirms the

design of the wavelet algorithm and Theorem 5.3.4.

Figures 5.12–5.14 show a portion of tributary (flowline) T3 in Lake Champlain

and its smoothing. Note that the smoothing is done for the entire 142.526 km

length of the tributary, but the figures show only a 1.5 km portion. Figure 5.14

shows that the smoothed tributary T ε3 for ε = 10−5 passes through the vertices of

the original polyline T3. Recall that T ε3 is designed to approximate the spline and
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not the polyline. The spline is not shown in Figure 5.14, but it is indistinguishable

from T ε3 for ε = 10−5.

To evaluate the quality of the approximation by the system, we define the

maximal deviation E(ε) by

E(ε) = max
0≤t≤γT

d
(
T (t), T ε(t)

)
,

where d(P, Q) is the distance between points P and Q on Earth. This distance

can be computed by using the haversine formula (section 5.1.1). Note that the

maximal deviation E(ε) is computed along the entire length of the tributary.

Table 5.2 shows the maximal deviation E(ε) for the sample tributaries T1, T2, T3

for accuracies ε1 = 10−3, ε2 = 10−4, and ε3 = 10−5.

Table 5.2: Maximal deviation of tributaries T1, T2, T3
E(ε1) E(ε2) E(ε3)

T1 198.8 m 30.5 m 11.2 m
T2 303.3 m 60.5 m 21.7 m
T3 867.8 m 158.9 m 28.7 m

Figures 5.15–5.17 display the maximal deviation for tributaries T1, T2, and

T3 as functions of the accuracy parameter ε. Note that in these figures, the

values of ε are shown in logarithmic scale. The figures confirm that ε controls

the smoothing in a consistent manner.

Figures 5.18–5.20 provide more detailed information about the deviation of

T3 from T ε3 . The deviation is shown for the portion of the tributary from 50 km

to 70 km from its start. Recall that the spiral feature A is located at 64.65 km

from the start of the tributary. Its range is highlighted in the figures. We observe

in Figure 5.18 that for, ε1, the deviation at this feature is about 500 m. The high

peaks between 50 km and 58 km correspond to similar spiral features located
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Figure 5.15: Maximal deviation of tributary T1 versus ε
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Figure 5.16: Maximal deviation of tributary T2 versus ε
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Figure 5.17: Maximal deviation of tributary T3 versus ε

south of feature A.

Figure 5.19 shows a deviation at the spiral feature A that is less than 150

m for ε2. Figure 5.20 shows that at A the deviation is less than 10 m for ε3.

This deviation information is presented in a different form in Figure 5.21. The

green color indicates the deviation at the point is less than 10% of the maximal

deviation stated in Table 5.2.

The complete Vermont river system contains 5,322 tributaries. Section 6.1.3

describes how they are obtained. Figures 5.22–5.24 show the maximal deviation

E(ε) of a tributary T versus its length γT . The experiments were conducted for

ε1, ε2, and ε3. For clarity, we have split the tributaries into short (0–7 km) and

long (7–60 km) groups. The figures show a slight correlation between tributary

length and the maximal deviation E(ε). This correlation is more pronounced in

the short group.
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Evaluation summary

� The algorithms for tributary decomposition and synthesis perform as de-

signed. They preserve the endpoints of the tributary. Figures 5.10 and 5.11

show tributaries T1, T2 and their smoothing. The figures display the entire

extent of the tributaries. We can observe that the endpoints are preserved

in the smoothed representations. This confirms the design of the wavelet

algorithm and Theorem 5.3.4.

� The algorithm shows the ability to smooth a variety of curve shapes. Fig-

ures 5.12–5.14 show spiral feature A along tributary T3 and its smoothing.

The algorithm achieves a full range of smoothing for this complex shape.

� The smoothed tributaries show a continuous dependency on the accuracy

parameter ε.

� The accuracy parameter ε controls the maximal deviation of the tributary.

Figures 5.15–5.17 show that a decrease in ε correlates to a nearly linear

decrease in the maximal deviation.

� Figures 5.18–5.20 show that the algorithm achieves smaller deviation in less

sinuous sections of the tributary. A topic of future research is to make the

deviation more uniform across the entire tributary.

� The experimental data shows a correlation between maximal deviation and

tributary length. This correlation is more pronounced for short tributaries

and less pronounced for long tributaries. This is illustrated in Figures 5.22–

5.24. A topic of future research is to eliminate this correlation.
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Figure 5.18: Deviation of T ε3 for ε1 = 10−3
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Figure 5.19: Deviation of T ε3 for ε2 = 10−4
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Figure 5.20: Deviation of T ε3 for ε3 = 10−5
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Figure 5.22: Deviation vs tributary length for ε1 = 10−3
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Figure 5.23: Deviation vs tributary length for ε2 = 10−4
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Figure 5.24: Deviation vs tributary length for ε3 = 10−5
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Chapter 6

A method for river network

generalization

In the previous chapter we discussed our method for smoothing a single tributary.

Now we describe a method to generalize a collection of tributaries that form a

river network.

Our river network generalization system consists of two stages: the prepro-

cessing stage and the generalization stage. The preprocessing stage is performed

to create a special database D. The generalization stage uses this database to

produce a generalized river network for the requested geographic region B.

The preprocessing stage takes the input geographic data and performs the

following steps:

� Remove network cycles

� Assign Strahler numbers to network edges

� Extract tributaries according to their Strahler numbers

� Decompose each tributary

102



� Record parent-child tributary relationships

� Store the collection of tributaries in database D

A complete description of the implemented database is provided in Chapter 7.

The model smooths and prunes tributaries in a manner that is continuous

with respect to the map’s scale.

The generalization stage performs the following steps:

� Extract a collection of tributaries TB ∈ D that intersect region B

� Synthesize the tributaries in the collection

� Restore the connectedness of the graph

� Render the tributaries (section 7.5)

The generalization stage uses two functions ε(s) and σ(s). When a user

requests a map of a geographic region B, the system infers the scale s of the

requested map. The first function ε(s) relates the accuracy of the smoothing

to s, and the second function σ(s) relates the amount of pruning to s. The

processing of the user’s request involves the determination of tributaries that

should be shown on the map, their prioritization, their wavelet-based smoothing,

and their pruning.

6.1 Preprocessing stage

The goal of the preprocessing stage is to take the input river network data and

create a database D of tributaries to support real-time generalization and high

performance rendering.
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Figure 6.1: Removing cycles from a graph according to the UndoCycles algo-
rithm. Nodes nup and nnew are distinct, but have the same coordinates.

We represent the input river network data as a directed graph G. Each node

in G may have upstream and downstream edges. If a node has no upstream edges,

it is a source. If a node has no downstream edges, it is a mouth. It is important

to note that graph G may contain more than one connected component, and it

may contain cycles.

Our method for extracting tributaries from G relies on assigning Strahler

numbers to the edges of the graph. The algorithm for such an assignment requires

that the graph be a tree. A tree is a graph where each node does not have more

than one downstream edge.

6.1.1 De-cycling of a river network graph

We remove the cycles in G by applying the UndoCycles algorithm, see Figure

6.1. It performs a breadth-first search of the graph and marks nodes as visited. If

an already visited node nup is encountered again, then a cycle is detected. This
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means that the node nup is connected to at least two downstream edges e1 and

e2. To remove the cycle, we duplicate the node nup as a new node nnew having

the same coordinates. We then disconnect the edge e1 from nup and connect it to

nnew. This algorithm produces a tree graph Gtree that represents a river network

with no cycles. The pseudocode for UndoCycles is shown in Algorithm 6.1.

Input: River network graph G
Output: Graph Gtree

1 for each mouth node n in G do
2 Traverse the upstream nodes of n in a breadth-first manner.
3 if a node nup is not visited then
4 Mark nup as visited
5 else
6 Since nup is already visited, it means that it is connected to at least one

more downstream node m besides n.

To remove the cycle we do the following:
7 (a) Create a duplicate node nnew with the same coordinates as nup
8 (b) Disconnect nup from m
9 (c) Connect nnew to m

10 (d) Mark nnew as visited
11 end if
12 Continue the traversal until all the nodes are visited
13 end for

Algorithm 6.1: The UndoCycles algorithm

6.1.2 Strahler number determination

Stream ordering algorithms are used to prioritize branches of a river network.

There are several stream ordering algorithms, but the most popular amongst

them is Strahler’s Stream Ordering Algorithm [59]. An efficient implementation

of this algorithm was discovered by Gleyzer, et. al. [20] in 2004.

For instance, in Figure 6.2, the flow of the river moves from left to right. The

mouth of the river network is the rightmost point. The Strahler algorithm
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assigns the Strahler number S = 1 to all streams that begin at a source. The

six sources are located at the beginning point of the edges labeled with a 1.

The algorithm assigns S = 2 to edges where two or more S = 1 edges merge.

In general, when two edges with the same Strahler number S merge, then the

downstream edge will have the Strahler number S + 1.

Input: River network directed acyclic graph G
Output: A labeled directed acyclic graph G

1 For each source node assign a Strahler number S = 1 to its downstream edge
2 Let m be a node with all labeled upstream edges and an unlabeled downstream

edge edown.
3 Let S be the maximum of the Strahler numbers assigned to the upstream edges

of m.
4 Let count be the number of upstream edges of m with the Strahler number S.
5 if count ≥ 2 then
6 Strahler number of edown is S + 1
7 else
8 Strahler number of edown is S
9 end if

10 Repeat until all the edges are labeled

Algorithm 6.2: The Strahler algorithm

The UndoCycles algorithm produces a directed acyclic graph Gtree. For

simplicity we will refer to it as just G. The next step is to assign Strahler num-

1

1
1

1

1

1
2

2

2

3

3

Figure 6.2: A sample river network with Strahler stream numbers
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bers to the edges of G. This is done by applying the Strahler algorithm to

each connected component of G. The pseudocode for Strahler is shown in

Algorithm 6.2.

6.1.3 Extraction of tributaries

Our method smooths linear features of G. These linear features, which we call

tributaries, are extracted according to their Strahler number. The idea of the

tributary extraction algorithm GetTributaries (Algorithm 6.3) is to chain

edges of the graph with the same Strahler number. As the algorithm traverses

the graph, it inspects upstream edges of the current node and decides if the

tributary chain is to be extended upstream, or a new tributary chain is to be

started.

Let G be a river network directed acyclic graph labeled with Strahler numbers.

The GetTributaries algorithm is applied to each mouth node in G. The result

is a collection of tributaries T of the river network G.

Let T1 and T2 be two tributaries. If T2 flows into T1, then T1 is the parent

of T2 and T2 is a child of T1. The parent-child relationship between tributaries

can be derived from the network graph G. Each tributary T retains a reference

to its parent tributary. This reference includes a unique identifier for the parent

tributary. Let A be the point where T2 merges into T1. The percentage fraction-

Joint of the length from the start of the parent tributary T1 to A is recorded in

the child tributary T2. The fractionJoint is used in the generalization stage to

restore the connectedness of the graph.

If a tributary Tnew was created as a result of a split in the network graph G

(see UndoCycles algorithm), then we retain in Tnew the unique identifier of the
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tributary T of which it was split from. In addition, we also record the percentage

of the length from the the start of T to the split point.

The pseudocode for GetTributaries is shown in Algorithm 6.3. An exam-

ple of tributaries extracted from a network graph is shown in Figure 6.3.

Input: A tributary T with n as its most upstream node
Output: A collection of tributaries T

1 for each upstream edge e of node n do
2 if eStrahler = TStrahler then
3 Chain e to T
4 Call GetTributaries(T )
5 else
6 Create an empty tributary Tnew and add it to T
7 Chain e to Tnew
8 Call GetTributaries(Tnew)
9 end if

10 end for
11 return T

Algorithm 6.3: The GetTributaries algorithm

1
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Figure 6.3: Tributaries in a river network
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6.1.4 Tributary decomposition

Each extracted tributary in T is processed by the TributaryDecomposition

algorithm described in section 5.2.4, with an initial accuracy parameter ε0 ≥ 0.

The output of the algorithm along with the other tributary attributes is stored

in database D. The attributes of a tributary that are stored in database D are

described in section 7.3.

6.2 Generalization stage

The generalization stage uses database D, created during the preprocessing stage,

and two functions relating the map scale to the map appearance. The first

function ε(s) relates the map scale to the generalization accuracy. Let ε ≥ ε0 be

the accuracy of the approximation of tributaries on a given map. Note that the

accuracy depends on the map scale. The map scale s is expressed as a fraction.

For example, a map with scale s = 1 : 10, 000 represents each 10, 000 centimeters

(100 meters) on Earth with 1 centimeter on the map.

For an s = 1 : 10, 000 scale map, we may accept an accuracy of ε = 40 meters

on Earth. For a smaller scale map s = 1 : 100, 000, the corresponding accuracy

may be ε = 400 meters. To be consistent with the preprocessing stage, we choose

ε(smax) = ε0, where smax is the largest expected map scale.

The second function σ(s) associates each scale s with a threshold Strahler

number to be used for displaying the tributaries. For example, we may decide

that only the tributaries with a Strahler number of 3 or higher are to be displayed

on maps with scale 1 : 100, 000 or smaller. Both functions ε(s) and σ(s) are

determined by experimentation to provide users with the most satisfactory map

appearance.
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The generalization stage consists of the following steps: First, the tributaries

visible in the requested map are extracted from the database, and pruned ac-

cording to σ(s). Then they are synthesized with an accuracy of ε(s). Next, the

tributaries are repositioned on the map using the tree restoration algorithm to

restore the network connectedness. Finally, the de-cycling algorithm is reversed

to restore the network cycles.

6.2.1 Tributary synthesis

The user supplies a bounding box B of a geographic region of interest along with

the map scale s. We define the collection of tributaries TB as all the tributaries

T ∈ D that intersect the bounding box B, and such that their Strahler numbers

TStrahler satisfy TStrahler ≥ bσ(s)c.

For each tributary T ∈ TB use the TributarySynthesis algorithm from

section 5.3.3 with accuracy ε = ε(s) to construct the smoothed tributary T ε.

6.2.2 Generalized tree formation and restoration of cycles

The collection of tributaries obtained in the previous step does not necessarily

preserve the connectedness of the original river network, as shown in Figure 6.4.

To reestablish the network connectedness, we use the FormTree algorithm.

The FormTree algorithm uses the collection TB of tributaries. The algo-

rithm generates a dependency graph Q that describes the parent-child relation-

ship between the tributaries in TB. The algorithm assigns higher priorities to

parents than to their children.

Let tributary T2 be a child of parent tributary T1. The point A where

T2 merges with T1 is located at fractionJoint × γT1 along T1. The value of
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Figure 6.4: Restoring river network connectedness after generalization

fractionJoint is stored with the child tributary T2 in D. During the tree forma-

tion process, point Ag is located at fractionJoint× γTg,1 along Tg,1. Let B (the

same position as A) be the end point of tributary T2. To reconnect (snap) the

generalized tributary Tg,2 to Tg,1, we simply translate Tg,2 by vector
−−→
BAg.

Input: Collection of generalized tributaries TB
Output: Collection of connected generalized tributaries Tg,B

1 Generate parent-child dependency graph Q
2 Let Tg,1 be the tributary with the highest priority in TB
3 Let Tg,2 be a child of Tg,1
4 Let Ag be the point located at fractionJoint× γT1 along Tg,1
5 Let B be the end point of Tg,2

6 Translate Tg,2 by
−−→
BAg and add it to Tg,B

7 Repeat for every child and sub-child of Tg,1 in hierarchical order
8 Repeat from Line 2 starting with the next highest priority in TB

Algorithm 6.4: The FormTree algorithm

The final step of the generalization stage is the restoration of cycles. The

111



parent-child relationship between tributaries was introduced in section 6.1.3. Ac-

cording to this definition, child tributaries merge (flow) into their parents. To

avoid confusion, we describe river network splits by introducing the ancestor-

descendant relationship.

T1

T2

T3
A

B

T1

Bnew

T3
A

B
T2

Figure 6.5: Original river network before generalization showing a split atB (top).
Generalized river network after FormTree algorithm, but before FormCycles
algorithm (bottom).

Let B be a point along tributary T3 where the flow splits into two, see Figure

6.5 (top). The start point of tributary T2 is at B. Tributary T3 is the ancestor

of T2. Tributary T2 is the descendant of T3.

During the decycling process, point B was artificially doubled. The new

point Bnew became the new starting point of tributary T2. After the FormTree

algorithm the tributaries Tg,B are generalized and form a tree. However, the

position of Bnew may not coincide with B anymore. For clarity, we will omit the

g subscript from the discussion. It is also omitted from Figure 6.5 (bottom).
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Our goal is to reattach T2 to T3. The FormCycles algorithm uses the collec-

tion Tg,B of generalized tributaries. The algorithm generates a dependency graph

R describing the ancestor-descendant relationship between the tributaries in Tg,B.

The algorithm assigns higher priorities to ancestors than to their descendants.

Then, according to these priorities, the descendant tributaries are reattached to

their ancestors.

Reattachment is achieved by a linear transformation. In Figure 6.5, we reat-

tach T2 to T3 by transforming it in such a way that point Bnew overlaps B, but

point A remains in place. Let γ be the length of tributary T2. Then a parametric

representation of T2 is
(
x(t), y(t)

)
, 0 ≤ t ≤ γ. The transformed tributary T ′2 is

given by

~T ′2(t) = ~T2(t) +

(
1− t

γ

)
−−−−→
BnewB.

Under this transformation, when t = 0, we have

~T ′2(0) = ~T2(0) +
−−−−→
BnewB = Bnew +

−−−−→
BnewB = B.

On the other hand, when t = γ we have

~T ′2(γ) = ~T2(γ) = A.

6.2.3 Smooth pruning

Pruning (refinement) is an essential element of cartographic generalization. Our

collection of tributaries T is prioritized by Strahler numbers. Given a map scale s,

we define TB as the collection of all the tributaries T ∈ T that are visible in B

and satisfy the condition TStrahler ≥ bσ(s)c.
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start
end

start
end

Figure 6.6: Smooth pruning of a tributary with Strahler number S = 2. For
σ = 2.8, only 20% of the tributary is displayed. For σ = 2.3, 70% of the tributary
is displayed.

However, under this pruning strategy a small change in scale s can cause a

sudden appearance or disappearance of a tributary. This does not provide a good

user experience (see Chapter 7). To remedy this problem, we introduce a new

smooth pruning strategy.

Under this strategy, all tributaries in TB with TStrahler ≥ bσ(s)c + 1 are dis-

played for their entire length. However, if the Strahler number of the tributary

satisfies

bσ(s)c ≤ TStrahler < bσ(s)c+ 1,

then only a portion of tributary T is displayed. More precisely, if 0 ≤ t ≤ γT

then the point T (t) is shown only if

t ≥ (σ(s)− bσ(s)c)γT .
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In our implementation, functions σ(s) and ε(s) are defined by

σ(s) =
4.5√
s

and ε(s) =
5× 10−10

s
,

where s is the map scale. We have also tested different functions and concluded

that these functions give adequate results.

Figure 6.7 shows a portion of the Vermont river network, as displayed by

our system at four different map scales. The point B indicates the junction of

the Winooski River and the Kingsbury Branch, located at (-72.4538◦, 44.2830◦).

These figures show the result of applying of smooth pruning and continuous

smoothing to the network.
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Chapter 7

Implementation

In this chapter we discuss the implementation of our river network generalization

method. The goal of our implementation is to produce an interactive viewer for

hydrographic data. The viewer illustrates the practicality of our wavelet-based

smoothing framework. We used the Vermont flowline hydrography as our base

dataset. This dataset comes from the United States Geological Survey (USGS)

National Hydrography Dataset (NHD) website. The next step was to use a spatial

index to build an in-memory graph that represented the river network. At this

stage we implemented the UndoCycles, Strahler, and GetTributaries

algorithms. The system data structures are also presented in this chapter.

The TributaryDecomposition algorithm was implemented according to

our dimensional wavelet theory described in Chapter 5. Smooth functions require

fewer wavelet details to represent them accurately, than non-smooth ones. Ac-

cordingly, our implementation adds a step to spline interpolation to the tributary

polylines. This also produces a more natural representation of the actual physical

feature.

Our renderer uses the TributarySynthesis and FormTree algorithms.
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Additional steps are taken to improve its rendering speed. As a result the system

executes in subsecond time.

We have conduced a study to evaluate the responsiveness of the implemented

viewer and to compare it to the National Map Viewer. The design and details of

the study are presented in section 7.7. The evaluation study material is attached

in Appendix A. The participants indicated that our viewer was more responsive

than the USGS National Map viewer. The participants preferred our smooth

pruning strategy, as well as multi-touch trackpads. They indicated that our

viewer was also easier to use for zooming operations.

7.1 Dataset source

We used the hydrography of the State of Vermont to evaluate the implementa-

tion of our system. It was obtained online from the USGS National Hydrography

Dataset (NHD) [64]. The hydrography is available in three resolutions: local

(1:5,000), high (1:24,000), and medium (1:100,000). We chose the medium reso-

lution dataset to keep the computational time and memory requirements within

manageable limits.
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7.1.1 Retrieval and preprocessing of the dataset

We have taken the following steps to obtain the shapefile (a standard GIS data

storage format):

� Download the Vermont dataset from http://nhd.usgs.gov/.

� Import the Hydrography dataset into a new map in ArcMap.

� Uncheck all the layers except NHDFlowLine

� Create a new definition query for NHDFlowline with the following SQL
statement "FlowDir" = 1 . This ignores all the features that do not
participate in the hydrography flow graph

� Export the selected layer to a new SHP file

– Note: Select Export Shapes in View, not All Shapes

� Name the output shapefile file vermont.shp

In Figure 7.1, the retrieved Vermont dataset is shown on a map. We observe

that the density of the river system makes it difficult to see the major waterways.

We also see that the hydrography system extends beyond Vermont’s state borders.

The current presentation is unsuitable for most maps. A map should prioritize

major waterways and hide minor streams.

7.2 Graph generation

To apply our wavelet-based method (described in Chapter 6), the river system

must be represented as a directed graph G. The vermont.shp shapefile is a

sequence of records. Each record is a sequence of vertices that forms the polyline.

Our goal is to generate the directed graph G from these records.
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7.2.1 Edges and nodes

To generate the directed graph G, we first create a new Graph object (Figure

7.2). Then we add an Edge (Figure 7.4) for each record in the shapefile. We set

the unique identifier of the edge equal to the shapefile record number. We also

set the length of the edge. The start Point and end Point are set to the start

and end vertices of the polyline.

Now that we have our list of edges, we would like to connect them together

through nodes. To achieve this, we examine each Edge. We want to see if a Node

(Figure 7.3) exists that matches the edge’s start position. If there is a match, we

set the current edge’s StartPosition to be equal to that Node. If no Node exists

at that position, then a new one is created. The same procedure is performed for

the edge’s EndPosition. When a Node is assigned to an Edge we also update

the Upstream and Downstream arrays. At the end of the procedure, we obtain

an in-memory object graph that represents the river network.

Graph class

Edges Edge[] A list of all the edges in the graph

Nodes Node[] A list of all the nodes in the graph

Figure 7.2: Data structure for the Graph class

Node class

Position Point The location of the node

IsVisited bool Indicates if the node was visited

Upstream Edge[] A list of upstream edges to this node

Downstream Edge[] A list of downstream edges from this node

Figure 7.3: Data structure for the Node class
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Edge class

ID int The unique identifier for this edge

StartPosition Point The location of the start of the edge

EndPosition Point The location of the end of the edge

StartNode Node The node at the start of the edge

EndNode Node The node at the end of the edge

Length double The length of the edge in kilometers

Strahler int The Strahler number of the edge

Figure 7.4: Data structure for the Edge class

7.2.2 Tributary extraction

To perform tributary extraction, we need to assign Strahler numbers to the edges

of the graph. The Strahler algorithm (section 6.1.2) requires that the graph

be a directed acyclic graph (tree). To do this, we apply the UndoCycles al-

gorithm (section 6.1.1) to each mouth Node in the graph. This may result in

several connected components. Once the Strahler numbers are assigned we can

extract tributaries by using the GetTributaries algorithm (section 6.1.3). The

resulting collection of tributaries is T .

7.3 System data structures

The main concept of our method is tributary. The system uses the Tributary

object to represent it, as shown in Figure 7.5. The tributary collection T is con-

verted to a collection of Tributary objects that form database D. At this point

the following Tributary attributes are set: ID, Name, Start, End, Strahler,

ParentID, AncestorID, FractionJoint, FractionJointStart, TopRight, Bottom-

Left, and Length.

The preprocessing stage uses frame signals c and detail signals d. According
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Tributary class

ID int The unique identifier for the tributary

Name String The geographic name of the tributary

Start Point The starting position of the tributary

End Point The ending position of the tributary

Strahler int The Strahler number of the tributary

ParentID int The ID of the parent tributary

AncestorID int The ID of the ancestor tributary

FractionJoint double Percentage of the length of the parent
tributary where this tributary joins it

FractionJointStart double Percentage of the length of the ancestor
tributary where this tributary splits away
from it

TopRight Point The top right corner of the bounding box

BottomLeft Point The bottom left corner of the bounding
box

Length double The length of the tributary in kilometers

JX int The finest level for the x–component

JY int The finest level for the y–component

DetailsX RangeArray[] The wavelet details for the x–component

DetailsY RangeArray[] The wavelet details for the y–component

SlopeX double The slope for the x–component

SlopeY double The slope for the y–component

InterceptX double The intercept for the x–component

InterceptY double The intercept for the y–component

Figure 7.5: Data structure for the Tributary class

RangeArray class

Data double[] The internal array of data

StartIndex int The starting index of the range

EndIndex int The ending index of the range

double GetDataAtIndex(int) Retrieves data at the requested index

Figure 7.6: Data structure for the RangeArray class
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WrappingArray class

Data double[] The internal array of data

double GetDataAtIndex(int) Retrieves data at the requested index in
IMP form. The index can be negative
and/or beyond the range of the internal
array.

Figure 7.7: Data structure for the WrappingArray class

to Chapter 4, frame signals c are IMP signals. Theoretically, they are infinite

signals, but practically it is only necessary to store their representative part. We

use the WrappingArray object (Figure 7.7) to store such IMP data.

The detail signals d are stored using the RangeArray object (Figure 7.6).

The RangeArray object extends an Array object to allow it to be defined from

a starting index to an ending index. These indices can have effectively any integer

value.

7.4 Database generation

The first step in database D generation is to replace the polyline representation

of T ∈ T with a natural cubic spline representation. To achieve this, we use the

polyline vertices as the knots of the natural cubic spline interpolation. We use the

spline interpolated tributaries as the input to the TributaryDecomposition

algorithm.

7.4.1 Spline interpolated tributaries

Smooth functions require fewer terms to approximate than functions which have

discontinuities and corners. The x and y components of a tributary T are piece-
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wise linear functions which are continuous, but not differentiable at the vertices.

The same is true for the IMP representation components x∗ and y∗.

Let x∗s(t), 0 ≤ t ≤ γT be the natural cubic spline interpolant (through the

polyline vertices) of x∗(t). Thus (x∗s)
′′(0) = (x∗s)

′′(γT ) = 0. Let it be extended

to all t ∈ R as an IMP function. Since (x∗s)(0) = (x∗s)(γT ) = 0 we conclude

that x∗s(t), t ∈ R is a twice continuously differentiable function. To simplify the

notation we will write x∗ for x∗s, and y∗ for y∗s . Since the components are splines,

their values can be easily computed for any 0 ≤ t ≤ γT .

The result is the tributary representation by IMP. It is a continuous, and

twice continuously differentiable (smooth) function. An immediate benefit of

this representation is a reduction in the number of wavelet coefficients needed to

be stored.

7.4.2 Cubic spline interpolation

Kincaid [31] offers a complete discussion of spline interpolation methods. We

present a summary here.

Suppose that we are given mesh points tk, k = 0, 1, . . . ,M , and the corre-

sponding values xk at these points. The natural cubic spline S(t), t ∈ [t0, tM ]

interpolation of these mesh points is a twice continuously differentiable function

with S ′′(t0) = S ′′(tM) = 0 (the natural spline condition), satisfying S(tk) =

xk, k = 0, 1, ...,M . In addition, over any subinterval [tk, tk+1], the spline S(t)

is required to be a cubic polynomial. In other words, S(t) is a piecewise cubic

function which has continuous first and second derivatives on [t0, tM ].

The key to finding S(t) is to determine the values of the second derivatives

of S(t), zk = S ′′(tk), at each mesh point tk. These values satisfy the following
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tridiagonal linear system of equations



u1 h1

h1 u2 h2

h2 u3 h3

. . . . . . . . .

hM−3 uM−2 hM−2

hM−2 uM−1





z1

z2

z3
...

zM−2

zM−1


=



v1

v2

v3
...

vM−2

vM−1


,

where

hk = tk+1 − tk, uk = 2
(
hk + hk−1

)
, bk =

6

hk

(
xk+1 − xk

)
, vk = bk − bk−1,

k = 1, . . . ,M − 1. Such a tridiagonal system can be efficiently solved using a

Gaussian elimination method.

Evaluation of the spline function S(t)

Given any particular value of t ∈ [t0, tM ], our goal is to find the value of the spline

function at t. The pseudocode for SplineEvaluation is shown in Algorithm 7.1.

This algorithm also computes the values S ′(t) and S ′′(t).

7.4.3 Decomposition

The spline interpolated components of a tributary T provide the input to the

TributaryDecomposition algorithm described in section 5.2.4. Using the

outputs, we can assign Tributary object attributes: JX, JY, DetailsX, De-

tailsY, SlopeX, SlopeY, InterceptX, InterceptY. All the tributaries are stored

in the database D, and this completes the preprocessing stage.

126



Input: Sequences tk, xk, zk, k = 0, 1, . . . ,M and t ∈ [t0, tM ]
Output: S(t), S ′(t), S ′′(t)

1 Find k such that tk ≤ t ≤ tk+1.
2 Compute

hk = tk+1 − tk, Ak =
1

6hk

(
zk+1 − zk

)
, Bk =

zk
2
,

and

Ck = −hk
6
zk+1 −

hk
3
zk +

1

hk

(
xk+1 − xk

)
.

3 Compute

S(t) = xk + (t− tk)
[
Ck + (t− tk)[Bk + (t− tk)Ak]

]
,

S ′(t) = Ck + 2(t− tk)Bk + 3(t− tk)2Ak,
S ′′(t) = 2Bk + 6(t− tk)Ak.

4 return S(t), S ′(t), S ′′(t)

Algorithm 7.1: The SplineEvaluation algorithm

7.5 Rendering

During interaction with the viewer, a user requests a map of a region B. From

the region and the window size we can determine the scale s of the map. Section

6.2 describes the actions in the generalization stage: tributary synthesis, graph

restoration, and smooth pruning. These steps produce the collection of connected

generalized tributaries Tg,B to be rendered.

We compute points that are visible in region B along each generalized tribu-

tary Tg ∈ Tg,B. The points are spaced 1 pixel apart in the view window. Since

the rendering of lines is a time-consuming operation, it is necessary to reduce the

number of drawing operations.
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a b
t

y

Figure 7.8: Function f and its linear interpolation L

A basic drawing operation is the DrawLine function. It draws a straight line

between two points, with a specified color and thickness. We call points supplied

to the DrawLine function the drawing points.

The points forming a tributary are computed 1 pixel apart. However, if the

tributary is nearly a straight line on a certain interval, it is much more efficient

to supply only two drawing points (the beginning and the end of the interval).

To select the drawing points we use the following inequality that describes the

maximal deviation of a curve away from its secant line.

Let f be a twice continuously differentiable function on an interval [a, b], and

L be the linear function joining the points
(
a, f(a)

)
and

(
b, f(b)

)
, as shown in

Figure 7.8. It is established in Prenter [45] that the following Lagrange error

estimate is valid

max
a≤t≤b

|f(t)− L(t)| ≤ (b− a)2

8
max
a≤t≤b

|f ′′(t)|. (7.1)
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Accordingly, suppose that we want the deviation maxa≤t≤b |f(t)−L(t)| to be

less than the pixel tolerance tol. So we require

(b− a)2

8
max
a≤t≤b

|f ′′(t)| ≤ tol.

Then the length of the interval should satisfy

|b− a| ≤

√
8× tol

maxa≤t≤b |f ′′(t)|
. (7.2)

Suppose that Tg(t0) =
(
x(t0), y(t0)

)
is a drawing point P . We proceed by

incrementing m. If tm is such that inequalities

|tm − t0| ≤

√
8× tol

maxt0≤t≤tm |x′′(t)|
, |tm − t0| ≤

√
8× tol

maxt0≤t≤tm |y′′(t)|
(7.3)

are satisfied, but an inequality in (7.3) with tm replaced with tm+1 is not satisfied,

then Q = Tg(tm) is the next drawing point.

The drawing points form a subset of all the points in the fine mesh.

7.6 Performance

In this section, we evaluate the size of the database D and the rendering time.

The size of the vermont.shp shapefile is 9.71 MB. The preprocessing stage

transforms it into the database D. The size of D depends on the initial accuracy

parameter ε0, supplied to the TributaryDecomposition algorithm (section

5.2). Table 7.1 shows the size of D for various values of ε0.

An initial accuracy parameter should not be increased beyond ε0 = 10−5

because this would result in an unacceptable loss of accuracy during the tributary
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Table 7.1: Size of database D vs Initial accuracy ε0
ε0 Size of D
0 26.3 MB

10−7 26.3 MB
10−6 26.2 MB
10−5 22.3 MB

Table 7.2: Rendering performance for various scales

Scale s # of tributaries Synthesis Rendering Total time
1:4,000,000 12 0.005 s 0.008 s 0.020 s
1:2,000,000 59 0.021 s 0.043 s 0.071 s
1:1,000,000 174 0.050 s 0.091 s 0.150 s
1:500,000 326 0.097 s 0.104 s 0.209 s
1:300,000 152 0.093 s 0.074 s 0.174 s
1:200,000 108 0.054 s 0.067 s 0.128 s
1:100,000 163 0.116 s 0.055 s 0.178 s
1:50,000 85 0.100 s 0.045 s 0.153 s
1:25,000 85 0.150 s 0.028 s 0.185 s
1:10,000 58 0.129 s 0.025 s 0.161 s

synthesis process. Even though the size of database D, for ε0 = 10−5, is about

2.3 times bigger than the original shapefile, it contains all the multiresolution

information necessary for smoothing the tributaries at all scales.

Table 7.2 provides rendering performance information depending for various

map scales. The window size for these experiments was fixed at 1024×768 pixels.

We conducted the experiments on a 2.0 GHz Intel R© Core i7-2635QM Processor

notebook computer.

The table shows that at small scales, most tributaries are pruned away. At

large scales, the geographic region B is small so it contains few tributaries. The

rendering time directly correlates with the number of tributaries visible in the

window. The synthesis time increases with the map scale because a larger scale

implies a smaller value for the accuracy ε. This means that more wavelet details
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are needed to fulfill the accuracy requirement.

The total time reflects the amount of time needed to load the tributaries

from database D, and to perform graph restoration, synthesis, and rendering. It

is the total time from view request to final display. The table shows that the

system performs in less than 0.209 seconds for any map scale. This allows for an

interactive user experience.

7.7 Evaluation

7.7.1 Setup

We performed a study of our viewer (Vermont Viewer) to evaluate its performance

and to compare it to the USGS National Map Viewer [65]. The University of

Oklahoma Institutional Review Board (IRB) reviewed the study; Figure A.7

documents the approval of our protocol. Ten participants from the School of

Computer Science and Department of Geography responded to our recruitment

e-mail.

The physical setup for the study was a computer lab setting, as shown in

Figure A.6. Our viewer was installed and opened on an iMac R© desktop computer

with a mouse and a multi-touch trackpad (Magic Trackpad
TM

). The viewer in-

cluded several buttons that affected the rendering. A screenshot of the viewer is

shown in Figure A.1. Additionally, the website for the National Map Viewer was

opened in a web browser window.

Participants were asked to complete several tasks as detailed in the question-

naire. All tasks involved interaction with the viewers. The complete question-

naire is shown in Figures A.2–A.5. It consists of multiple choice questions as well
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as several open ended questions. On average, the study took 20 minutes for a

participant to complete.

Here is a brief description of the tasks:

Task 1.1 Use the National Map Viewer to find Points A, B and C

Determine the flow directions of the rivers near the points

Evaluate the responsiveness of the viewer

Task 1.2 Use the Vermont Viewer to find Point A

Evaluate the responsiveness of the viewer

Task 2.1 Use the Vermont Viewer to find Point B

Zoom in and out on Point B using Mode 2.1 and Mode 2.2

Describe which mode is preferable

Task 3.1 Use the Vermont Viewer to find Point C

Zoom in and out on Point C using the mouse and multi-touch

trackpad

Describe which input device is preferable

Task 4.1 Use the Vermont Viewer to find Point D

Zoom in and out on Point D using Mode 4.1 and Mode 4.2

Describe which mode is preferable

Summary Evaluate the responsiveness of both viewers

Evaluate which zoom feature was easier to use

Suggest improvements to the viewer

Provide comments
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7.7.2 Results

Tables 7.3–7.9 display aggregated results for the multiple choice questions:

Table 7.3: Indicate how responsive the National Map Viewer is (Task 1.1)

Too Slow Slow Did not notice Fast Enough Fast

0% 30% 0% 60% 10%

Table 7.4: Indicate how responsive the Vermont Viewer is (Task 1.2)

Too Slow Slow Did not notice Fast Enough Fast

0% 0% 0% 60% 40%

Table 7.5: Which mode do you prefer? (Task 2.1)

I prefer 2.1 2.1 is a little better I don’t prefer one 2.2 is a little better I prefer 2.2
than 2.2 over the other than 2.1

20% 20% 0% 30% 30%

Table 7.6: Which experience do you prefer? (Task 3.1)

I prefer the mouse The mouse wheel is I don’t prefer one The trackpad is a I prefer the
wheel a little better than over the other little better than trackpad

the trackpad the mouse wheel

20% 0% 10% 50% 20%

Table 7.7: Which mode do you prefer? (Task 4.1)

I prefer 4.1 4.1 is a little better I don’t prefer one 4.2 is a little better I prefer 4.2
than 4.2 over the other than 4.1

20% 10% 30% 10% 30%
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Table 7.8: Which map viewer did you find to be the most responsive?

The National Map The National Map I don’t prefer one The Vermont The Vermont
viewer was the viewer was a little over the other viewer was a little viewer was the
most responsive more responsive more responsive most responsive

than the Vermont than the National
viewer Map viewer

0% 10% 10% 10% 70%

Table 7.9: Which map viewer’s “zoom” feature was easier to use?

The National Map The National Map I don’t prefer one The Vermont The Vermont
viewer was easier viewer was a little over the other viewer was a little viewer was easier

to zoom easier to zoom easier to zoom than to zoom
than the Vermont the National Map

viewer viewer

0% 20% 10% 30% 40%

7.7.3 Analysis

Task 1.1 was designed to evaluate the responsiveness of the National Map Viewer.

Task 1.2 was designed to evaluate the responsiveness of the Vermont Viewer. The

participants indicated that the National Map Viewer has sufficient responsiveness.

However, they found the Vermont Viewer to be more responsive. 30% of the par-

ticipants indicated that the National Map Viewer was “slow”. Only 1 participant

indicated that the viewer was “fast”. On the other hand, all participants found

the Vermont viewer to be either “fast enough” or “fast”. It should be noted

that the National Map Viewer is a website, and the Vermont Viewer is a locally

installed application. Consequently, our viewer does not have to wait for the

download of data.

Task 2.1 was designed to evaluate two different pruning strategies. Map mode

2.1 utilized the smooth pruning strategy, described in section 6.2.3. Map mode 2.2
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utilized the discrete pruning strategy. When participants were asked to evaluate

two map modes in Task 2.1, the preference was mixed. However, a closer analysis

of the participants’ responses to the open ended questions for Task 2.1 shows

that some participants were not responding to the intent of the task. The goal of

the task was to compare two different pruning strategies. In the discrete pruning

strategy, the entire length of the tributary is displayed once a threshold zoom level

is achieved. On the other hand, in the smooth pruning strategy the tributaries

appear gradually.

All participants who did understand the intent of the task preferred smooth

pruning. Participants who preferred mode 2.2, indicated that they chose that

mode because it shows more rivers. One participant stated, “For the same amount

of scrolling, 2.2 shows more branches of rivers than 2.1.” We conclude that the

task was not properly designed to evaluate the pruning strategies. A better task

would explicitly state that the purpose is to evaluate pruning strategies.

Task 3.1 was designed to evaluate two different input devices for performing

zooming operations. Participants were asked to compare their use of a mouse

wheel to a multi-touch trackpad. The results of Task 3.1 show a strong preference

for the multi-touch trackpad for performing zooming operations. One female

participant indicated that she preferred the mouse wheel. We observed that

she had difficulty using the multi-touch trackpad because of her long nails. A

participant who is a guitar player preferred the mouse wheel as well because the

trackpad could not detect his callused fingers.

Task 4.1 was designed to evaluate the participants preference for the smooth-

ing of linear features for two different accuracy parameters ε. The synthesis part

of the generalization stage is described in section 6.2.1. We conclude that partici-

pants did not have a preference for either approach. An important implication for
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the implementation of the system is that users may find slightly lower accuracy

maps to be acceptable. Therefore, it is possible to decrease the rendering time

by using fewer wavelet details.

Finally, we asked the participants to compare the National Map Viewer to the

Vermont Viewer to summarize their experiences. They were asked to evaluate

the responsiveness of the viewers and the ease-of-use in zooming operations.

In the open ended questions, participants suggested improvements to the Ver-

mont Viewer, including a double-click interaction to zoom in, a search box, addi-

tional map layers, labels of features, a click-to-center interaction, and to display

the map scale.

After the participants completed all the tasks, they were asked to summarize

their experiences. Overwhelmingly, 70% of the participants indicated that the

“Vermont viewer was the most responsive” when compared to the National Map

Viewer. Additionally, 70% of the participants indicated that the Vermont viewer

was either a “little easier” or “easier” to use for zooming operations. We conclude

that our method is useful for designing a map viewer that supports continuous

zoom operations.
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Chapter 8

Conclusions

8.1 Automated smoothing

We were able to create a framework for the automated smoothing of river net-

works based on the following major contributions:

� A wavelet–based method for polyline smoothing and endpoint preservation

� Inverse Mirror Periodic (IMP) representation of functions and signals, and

dimensional wavelets

� Smoothed features do not abruptly change between scales

� Features are pruned in a continuous manner with respect to scale

� River network connectedness is maintained for all scales

� Reuse of a base geographic dataset for all scales

� Design and implementation of an interactive map viewer for linear hydro-

graphic features that renders in subsecond time
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The creation of a map is a tedious and time consuming activity. Researchers

are looking for ways to formalize this process with the purpose of identifying the

elemental operations and automating them.

Our system demonstrates that a wavelet-based approach is well suited for

basic generalization operations. It provides smoothing and pruning that is con-

tinuously dependent on map scale. The size of database D, that contains all the

multi-resolution information, is of the same order as the original dataset. The

system works at a speed that allows for fluid interactions with the map.

Smoothing algorithms produce a smoothed version of a tributary that is con-

tinuously dependent on some accuracy parameter. Examples include Perkal’s

ε–circle method, Fourier transform method, and Gaussian smoothing. However,

these methods have deficiencies that make them ineffective. Wavelet-based meth-

ods are multi-resolution by design. Additional effort is required to ensure that

endpoints do not move and smoothing is done continuously. Our algorithm fulfills

these requirements.

The use of wavelets for smoothing has not previously produced satisfactory

results. This is because methods for endpoint preservation required large storage

and long execution time. In Chapters 3 and 4, we developed a method for effi-

cient wavelet-based smoothing that preserves the endpoints of a tributary. These

chapters describe our method for merging wavelets with IMP representations.

Our contribution is to represent a tributary in Inverse Mirror Periodic (IMP)

form. Next we introduced dimensional wavelets. Such wavelets are appropriately

scaled to the size of the tributaries they approximate.

Numerical experiments presented in Chapter 5 show that our wavelet method

produces cartographically appropriate smoothing for tributaries. The experi-

ments were conducted for more than 5,000 tributaries from the Vermont dataset.
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They show a slight correlation between the accuracy of the approximation and

the length of the tributary.

The method is able to correctly smooth complex geographic features such as

a spiral. As expected, straight segments are approximated with less deviation

than sinuous ones.

The smoothing of linear features introduces feature drifts. While our method

preserves the endpoints, the intermediate points can shift. To produce a carto-

graphically correct generalization of a river network, it is necessary to preserve

the network connectedness.

In Chapter 6, we described our method that solves this problem. The process

involves removing cycles from the network, prioritizing the segments according

to their Strahler numbers, and extracting tributaries. Then each tributary is

decomposed into wavelet details as in Chapter 5.

Pruning is a generalization operator that is applied to reduce map clutter. In

Chapter 6, we described discrete pruning based on tributary priority. We have

also developed a smooth pruning strategy.

When the user requests a map of a region B, the window size infers the

scale s. Functions ε(s) and σ(s) determine the accuracy and the pruning level.

The tributaries that are visible in B are synthesized to the required accuracy ε(s)

and displayed according to the pruning function σ(s). In our smooth pruning

strategy, the tributaries smoothly come in and out of view depending on the

scale.

It is desirable to have a fast enough method that would support the reuse of

a single base dataset for on-the-fly smoothing for the production of maps at any

scale. Our implementation shows that the interactive map renders views in sub-

second time. We have determined experimentally that the FBI (9–7) biorthogonal
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wavelet family provides the best compromise between quality of approximation

and computation time.

Chapter 7 describes details of the implementation and presents an evaluation

study of the viewer. The results of the evaluation show that participants found

our viewer to be more responsive than the National Map Viewer. They noted

that it was easier to use for zooming operations. The participants also indicated

their preference for smooth pruning, rather than discrete pruning. Also, they

preferred zooming operations with the multi-touch trackpad, as opposed to the

mouse wheel.

8.2 Future work

8.2.1 Research

Our wavelet-based smoothing method may be useful for solving the following

problems:

� Rivers as polygons — For certain scales a river is better represented by

a polygon rather than a polyline. Its banks have to be generalized in a

coordinated manner to avoid self-intersection. Additionally, the width of

the river should be accounted for.

� Additional generalization operators — In addition to smoothing and

pruning, other generalization operators should be considered. For example,

the exaggeration operator, overemphasizes important features such as inlets.

The rules for exaggeration are different than for smoothing.

� Interaction with other layers — For a map to be useful, it should
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contain additional layers. The generalization algorithms should take these

other layers into account. For example, a road that follows a coastline

should always remain on land. Another example is that a city should always

appear on the proper bank of a river.

8.2.2 Implementation

The interactive map viewer can be extended to include additional features:

� Accuracy based on location in addition to scale — The accuracy

of a generalization can be based on other factors such as mouse position.

For example, as the mouse pans over a region, the region is rendered with

higher detail.

� Progressive data transfer over the Internet — As it was mentioned in

section 2.5, modern viewers work in a web environment. Wavelets provide

a natural mechanism for progressive data transfer.

� Viewing large geospatial datasets — Our implementation only views

the Vermont dataset. Additional research is necessary to extend the viewer

to support large datasets such as the entire US National Hydrography

Dataset.

� Multitouch interaction — Multitouch interfaces are becoming increas-

ingly common, and users expect to access data through them. Such devices

provide new ways to interact with maps in a continuous manner.

141



Bibliography

[1] P. S. Addison, The Illustrated Wavelet Transform Handbook: Introductory
Theory and Applications in Science, Engineering, Medicine and Ainance.
Institute of Physics Publishing, 2002.

[2] V. Antoniou, J. Morley, and M. Haklay, “Tiled Vectors: A Method for Vector
Transmission over the Web,” in Web and Wireless Geographical Information
Systems, ser. Lecture Notes in Computer Science, J. Carswell, A. Fothering-
ham, and G. McArdle, Eds. Springer Berlin / Heidelberg, 2009, vol. 5886,
pp. 56–71.
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Appendix A

Evaluation material

The explanation and analysis of our river network viewer evaluation study is

provided in Chapter 7. Figure A.1 shows a screenshot of our river network viewer.

It displays buttons that are referred to in the questionnaire. Figures A.2–A.5 show

the questionnaire for the study. Figure A.6 shows the lab setup.
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Figure A.1: Screenshot of our viewer
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River Network Map Viewer Questionnaire 
 

Participant #  
 

Experiment 1 

Task 1.1 

1. Open the National Map viewer 

2. Find Point A (44.050, -73.121) (latitude, longitude) by using the search box 

3. Zoom in on Point A 

4. Find the nearest river to Point A and write down the flow direction: 

 

 

 

5. Find Point B (44.018, -72.187)  by using the search box 

6. Zoom in on Point B 

7. Find the nearest river to Point B and write down the flow direction: 

 

 

 

8. Find Point C (43.048, -72.374) by using the search box 

9. Zoom in on Point C 

10. Find the nearest river to Point C and write down the flow direction: 

 

 

 

11. Indicate how responsive this viewer is? 

 

     

Too Slow Slow Didn’t notice Fast Enough Fast 

 

 

  

Figure A.2: Questionnaire – Page 1
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Task 1.2 

1. Open the Vermont map viewer 

2. Find Point A (44.050, -73.121) on the map. 

3. Zoom in on Point A 

4. Indicate how responsive this viewer is? 

 

     

Too Slow Slow Didn’t notice Fast Enough Fast 

 

Experiment 2 

Task 2.1 

1. Open the Vermont map viewer 

2. Find Point B (44.018, -72.187) on the map. 

3. Press button 2.1 

4. Zoom in and out on Point B 

5. Press button 2.2 

6. Zoom in and out on Point B again 

7. Describe the differences between the two map modes. You may try both ways again. 

 

 

 

 

 

 

8. Which mode do you prefer? 

 

     

I prefer 2.1 2.1 is a little better 

than 2.2 

I don’t prefer one 

over the other  

2.2 is a little better 

than 2.1 

I prefer 2.2 

 

 

  

Figure A.3: Questionnaire – Page 2
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Experiment 3 

Task 3.1 

1. Open the Vermont map viewer 

2. Find Point C (43.048, -72.374) on the map. 

3. Zoom in and out on Point C by using the Mouse Wheel 

4. Zoom in and out on Point C by using the Magic Trackpad 

5. Describe the differences between the two. You may try both ways again. 

 

 

 

6. Which experience do you prefer? 

 

     

I prefer the mouse 

wheel 

The mouse wheel is 

a little better than 

the trackpad 

I don’t prefer one 

over the other  

The trackpad is a 

little better than 

the mouse wheel 

I prefer the 

trackpad 

 

Experiment 4 

Task 4.1 

1. Open the Vermont map viewer 

2. Find Point D (44.531, -73.237) on the map. 

3. Press button “4.1” 

4. Zoom in and out on Point D 

5. Press button “4.2” 

6. Zoom in and out on Point D 

7. Describe the differences between the two modes. You may try both ways again. 

 

 

 

8. Which mode do you prefer? 

 

     

I prefer 4.1 4.1 is a little better 

than 4.2 

I don’t prefer one 

over the other  

4.2 is a little better 

than 4.1 

I prefer 4.2 

 

Figure A.4: Questionnaire – Page 3
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Summary 

1. Which map viewer did you find to be the most responsive? 

 

     

The National Map 

viewer was the 

most responsive 

The National Map 

viewer was a little 

more responsive 

than the Vermont 

viewer 

I don’t prefer one 

over the other  

The Vermont 

viewer was a little 

more responsive 

than the National 

Map viewer 

The Vermont 

viewer was the 

most responsive 

 

2. Which map viewer’s “zoom” feature was easier to use? 

 

     

The National Map 

viewer was easier 

to zoom 

The National Map 

viewer was a little 

easier to zoom 

than the Vermont 

viewer 

I don’t prefer one 

over the other  

The Vermont 

viewer was a little 

easier to zoom than 

the National Map 

viewer 

The Vermont 

viewer was easier 

to zoom 

 

 

3. What improvements do you suggest for the Vermont viewer?  

 

 

 

4. Do you have any comments? 

Figure A.5: Questionnaire – Page 4
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Figure A.6: Lab setup for evaluation study
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Study Title: River Network Map Viewer 
 
 
On behalf of the Institutional Review Board (IRB), I have reviewed the above-referenced research study 
and determined that it meets the criteria for exemption from IRB review. To view the documents 
approved for this submission, open this study from the My Studies option, go to Submission History, go 
to Completed Submissions tab and then click the Details icon. 
 
As principal investigator of this research study, you are responsible to: 

 Conduct the research study in a manner consistent with the requirements of the IRB and federal 
regulations 45 CFR 46. 

 Request approval from the IRB prior to implementing any/all modifications as changes could 
affect the exempt status determination. 

 Maintain accurate and complete study records for evaluation by the HRPP Quality Improvement 
Program and, if applicable, inspection by regulatory agencies and/or the study sponsor. 

If you have questions about this notification or using iRIS, contact the IRB @ 405-325-8110 or 
irb@ou.edu. 

 

Cordially, 

 

 Lara Mayeux, Ph.D. 

Vice Chair, Institutional Review Board 

Figure A.7: Institutional Review Board Approval Letter
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