
IMPLEMENTATION OF MINI-TASK: A LANGUAGE 

BASED ON ADA'S TASKING MODEL 

By 

Monty D. Bates .. 
Bachelor of Science in Arts and Sciences 

Oklahoma State University 

Stillwater, Oklahoma 

1985 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER OF SCIENCE 
December, 1987 



T~~f) 

\'1<61 

6~;)9i 

C"f- ';A 

I 

I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 

I 

I 
I 
I 
I 



"'~~ .. :!.fl..·~~ 

i>\ ~' ·~ ;' ; . ;\' 

IMPLEMENTATION OF MINI-TASK: A LANGUAGE 

BASED ON ADA'S TASKING MODEL 

Thesis Approved: 

Thesis Adviser 

~~ 

Dean of the Graduate College 



PREFACE 

Mini-task is an efficient compiler for multi-tasking 

programs. Mini-task takes the advantageous features of 

Ada's tasking model and produces a small and efficient tar

get code. 

I would like to thank Dr. G. E. Hedrick for providing 

the initial topic for this thesis and for serving as my ma

jor advisor. I would like to express my sincerest appreci

ation to Dr. J. P. Chandler_ for his guidance in my educa

tion and for serving on my committee. I owe a special 

thanks to Dr. K. M. George for his continual assistance, 

his valuable insight, and for serving on my committee. 

I would also like to thank Brother Isidore for his as

sistance and insight in completing this paper. 

Finally, I would like to express my appreciation for 

the support and patience my parents offered during my stu

dies. 

iii 



Chapter 

I. 

II. 

TABLE OF CONTENTS 

INTRODUCTION . . . . . . . . . . . . . . . 
Statement of Problem • • • ••••• 
Introduction of Language Implemented 

LITERATURE REVIEW 

The Ada Compiler Karlsruhe 

III. DISCUSSION OF LANGUAGE DESCRIPTION, SYNTAX, 

Page 

1 

2 
3 

5 

7 

AND SEMANTICS • • • • • • • • • • • • 10 

IV. 

v. 

A Discussion of Mini-task • 

INTRODUCTION TO DIANA 

Notation of DIANA • • • • • • • 
External Representation of DIANA 

FORMAL LANGUAGE DESCRIPTION, SYNTAX, 
AND SEMANTICS • • • • • • • • . • • 

VI. IMPLEMENTATION TECHNIQUES 

Introduction to Compilers • • • • 
Implementation Decisions • • 
Implementation Techniques 

VII. DISCUSSION OF POSSIBLE BACK-END TECHNIQUES 

Memory Management • • • • • • • • • • 
Task Switching ••••••••••• 

VIII. SUMMARY, CONCLUSIONS, AND SUGGESTED FURTHER 

10 

18 

20 
22 

27 

31 

31 
32 
33 

41 

41 
42 

RESEARCH • • • • • • • • • • • • • • • • . 4 4 

Suggestions for Future Research • • 

SELECTED BIBLIOGRAPHY • 

APPENDIX - MINI-TASK COMPILER • 

iv 

45 

46 

49 



LIST OF FIGURES 

Figure 

1. Simple Mini-task example ••• 

Page 

4 

2. Structure of an Ada compiler • • • • • • • • • 8 

3. Types of DIANA attributes. • • • • • • • • 19 

4. Sample Mini-task program 

5. 

6. 

7. 

8. 

Sample Mini-task program 

Formal description of Mini-task and DIANA. 

Mini-task reserved words . • 

Example of "insert" program •• 

v 

24 

24 

27 

35 

39 



CHAPTER I 

INTRODUCTION 

Mini-task is a language based on Ada's tasking model. 

The development of the Ada language followed a unique pat

tern in the history of programming languages. In the early 

1970's the United States Department of Defense decided to 

develop a standard programming language for computers con

tained in larger systems such as an aircraft, ships, and 

communication systems. Pratt [Pratt, 1984] gives a more 

extended history of the development of Ada. 

The Pascal design was the starting point for the 

design of Ada, but the resulting language has many differ

ences from Pascal. Ada is a much larger and more complex 

language than Pascal, and it includes several major sets of 

features that are not contained in the Pascal Language. 

Some of these features include tasks and concurrent execu

tion, real-time control of tasks, exception handlers, 

abstract data types, as well as separate compilation. Due 

to the advantageous attributes listed above as well as oth

ers, the study in this thesis is based on the Ada's tasking 

model. 

In the programming language Ada, tasks are program 

segments which can be executed in parallel with one anoth-

1 



2 

er. Each task can be considered to execute on a separate 

processor. Different tasks process independently, except 

at points where they synchronize. The Ada ANSI Reference 

Manual states "Parallel tasks (parallel ·logical processors) 

may be implemented on multicomputers, multiprocessors, or 

with interleaved execution on a single physical processor" 

(ARM 9.0.5). 

Although Ada has many excellent features, it is such a 

large language that its compile time is considered to be 

inefficient, and the size of the target code produced is 

long. These drawbacks cause Ada to be impracticable when 

tasking is the only needed feature. Since Mini-task is a 

smaller language, it results in more efficient processing 

while still retaining the necessary tasking features. 

Statement of Problem 

This thesis addresses the language Mini-task. Mini

task is a language based on Ada's tasking model. A front

end compiler which produces intermediate code based on 

Descriptive Intermediate Attributed Notation for Ada (DIA

NA) for Mini-task is implemented. Each phase of the com

piler is independent of any target machine. The implemen

tation includes lexical analysis, symbol table management, 

semantic analysis, and the generation of the external in

termediate code which is based on DIANA. Also included in 

the implementation are the error handling routines which 

correspond with each phase. 



3 

Although Mini-task possesses the Ada tasking features, 

Mini-task does not contain separate compilation, packages, 

subprograms, and other Ada entities. Mini-task is designed 

so that the code for tasking programs will compile faster 

and more efficiently. 

The intermediate language that Mini-task produces is 

based on DIANA, a general purpose intermediate language. 

DIANA is flexible, and it has the potential to become a 

widely accepted intermediate language. A strong advantage 

of DIANA becoming a widely accepted intermediate language 

would be only one standardized back-end would need to be 

developed for each machine type. DIANA has the versatility 

to be used as the intermediate language for many different 

compilers. 

Due to the increasing interest in a common intermedi

ate language for Ada, DIANA was designed in January 1981 by 

teams from Karlsruhe University, Carnegie-Mellon Universi

ty, Intermetrics and Softech. DIANA reflects the abstract 

syntax structure of an Ada program together with the addi

tional information gained by lexical and semantic analysis. 

Introduction to the language implemented 

A Mini-task program always begins with the reserved 

word PROCEDURE. The user defined program name follows and 

then the reserved word IS. All declarations for the main 

program follow, separated by commas, and ending with a 

colon. The type, which is always an INTEGER in Mini-task, 



4 

follows. All statements are terminated by semicolons. 

Output statements consist of the reserved word PUT followed 

by a single variable in parenthesis. The Ada notation is 

followed for assignment statements. Tasks are always de

clared beginning with the reserved·word TASK followed by 

the user defined task name. Entries are declared in the 

task declaration, as shown in chapter V. The task body 

begins with the reserved words TASK BODY followed by a 

structure similar to the main program. A simple example 

follows. 

PROCEDURE main IS 
num, x, y INTEGER; 

TASK tl; 

TASK BODY tl is 
result, a, b 

BEGIN 
a := 3; 
b := 3; 

INTEGER; 

result := a + b; 
PUT(result); 

END tl; 

BEGIN 
X := 2 i 
y := 2; 
num := x + y; 
PUT ( num) ; 

END main; 

Figure 1. Simple Mini-task example. 

Chapter III contains a more detailed discussion of Mini-

task. 



CHAPTER II 

LITERATURE REVIEW 

Literature which discusses some important factors en-

countered when implementing languages similar to Mini-task 

is currently available. One such factor is deciding on 

which intermediate language is suited best for use. 

An intermediate code to represent the interface of a 

portable compiler front-end to the various code generators 

must fulfill the following requirements: 

- It must provide a full and detailed description of the 
semantics of the source program. 

- It must provide a machine-independent representation of a 
given program. 

- It must provide a flexible notation with respect to the 
different implementation choices which may be taken from 
a specific implementation. 

- It must allow for the application of extensive and so
phisticated optimization techniques. 

- It must allow for easy and systematic generation of effi
cient code [Lorho, 1984, Pratt, 1984, Waite, 1984]. 

DIANA fulfills all of the above requirements [Goos, 

1981, Rogers, 1984, Rosenblum, 1985]. 

Intermediate representations of Ada programs as they 

appear at the end of the analysis phase are used not only 

as input for a back-end, but also for various other uses 

5 



6 

. ' 

within a programming environment. The uses include seman-

tic analyzers, optimizers, and syntax-directed editors. 

DIANA is based on the formal definition of Ada. For each 

DIANA tree the meaning of the tree must be defined. In DI-

ANA a single definition exists for·each Ada entity. The 

authors of DIANA have defined an externally visible ASCII 

form of DIANA representation for Ada programs because it is 

essential to have a representation that can be communicated 

between computing systems. From a representation of DIANA 

the original source program can be recreated. This re-

quirement was introduced to support all kinds of program 

manipulation [Rosenblum, 1985, Goos, 1982]. 

A DIANA tree exists in two forms: before and after 

semantic analysis. The tree before semantic analysis 

represents the abstract syntax. It only contains informa-

tion such as the source position of each entity, the exter-

nal representation of values, the string representation of 

identifiers, and similar entities as attributes. From this 

information the source program can be recreated, since all 

of the information to recreate the program is stored. The 

tree after semantic analysis represents an attributed parse 

tree, in which the semantic attributes are completed. 

Another factor encountered in implementing Mini-task 

was examining similar compilers already in existence. One 

is the Ada Compiler Karlsruhe. 



7 

The Ada Compiler Karlsruhe 

The Ada Compiler Karlsruhe consists of a front-end 

generating the intermediate language DIANA, a middle-part 

mapping DIANA to the low level intermediate language AIM, 

and a back-end producing machine code either for the SIE-

MENS 7000 series or the MC68000. At the time of the publi-

cation, the tasking model had not been implemented. 

Several tools have been constructed around the com-

piler. A formatter which is based on DIANA permits print-

ing the Ada program in pretty format. Another such tool is 

a back-trace tool for program debugging which provides the 

position in the source program corresponding with the ob-

ject program. A third tool is a library-user-system which 

provides the state of the library and the effect of recom-

pilations. 

The front-end of the compiler consists of the follow-

ing: A LALR(l) parser for syntax analysis, an attribute 

grammar for semantic analysis to produce the intermediate 

language DIANA, and an optimization phase. The DIANA tree 

reflecting the Ada source program structure is shaped into 

a form which is suitable for code generation with the help 
{ 

of DIANA attributes and attributes computed by the middle-

end. The optimization phase of the front-end of the com-

piler reduces its definition table space by importing only 

the entities whose identifier occurs within the source pro-

gram. 



8 

The techniques used in the Ada Compiler Karlsruhe are 

supported automatically and machine independent. Supposed-

ly, this will meet the goals of a reliable and maintainable 

compiler [Persch, 1983]. 

Another factor is how the compiler should be struc-

tured. Following is a diagram displaying the phases of the 

compiler. 

+----------------------------------------------------------+ 
Analyzer (Front-end) 

+---------------------+ 
Lexical Analysis 
Pragma Handler 
Parser 

+---------------------+ 
I 

DIANA 
I +---------------+ 

I Semantic I 
Analyzer 

+-------------~-+ 

I 
DIANA 

I +----------------------------------------------------------+ 
Synthesizer (Back-end) 

+---------------------------------------------------+ 
non-optimizing optimizing 
tree transformations tree transformations 

tree flattening tree flattening 
+-------------------------~-------------------------+ 

I 
Low Level Intermediate Language 

I +---------------+ 
I ~~~=ration I 
+---------------+ 

Figure 2. Structure of an Ada compiler 
[Baker, 1985, Waite, 1984]. 



9 

The analyzer, or compiler front-end contains the 

parser, the lexical analyzer, pragma handler, and the se

mantic analyzer. The parser produces the intermediate code 

DIANA and the semantic analyzer traverses through the DIANA 

tree completing semantic attributes. 

The synthesizer, or back-end of the compiler, contains 

the optimizing routines, tree transformation routines, tree 

flattening routines, which produce the low level intermedi

ate language, and finally producing the target code [Aho, 

1986, Halstead, 1974, Lorho, 1984, Waite, 1984]. 



CHAPTER III 

DISCUSSION OF LANGUAGE DESCRIPTION, SYNTAX, 

AND SEMANTICS 

A Discussion of Mini-task 

Mini-task is a language based on Ada's tasking model. 

Tasks in Mini-task are program blocks that may be executed 

in parallel or concurrently with other tasks in the same 

program. Each task is considered to be executed by its own 

logical processor and proceeds independently of the other 

tasks, except at points where they synchronize. 

The semantics of the tasks in Mini-task are similar to 

the Ada tasks. Every task in Mini-task is declared in the 

declarative part of some enclosing program unit, which is 

referred to as its parent. The parent task may be a main 

program, or it may be another task. The execution of the 

parent task results in the concurrent execution of the de

clared tasks. If more than one task is specified in the 

declarative part of the parent, all the tasks will be exe

cuted concurrently both with one another and with the 

parent task. Each task is executed in its own sequential 

order, independent of the order of others, except when ex

plicit statements cause synchronization. Each task may 

finish executing its statements or it may be aborted, but 

10 



11 

the parent task does not complete its execution until all 

of the tasks declared in it have completed their execution. 

Synchronization between tasks is achieved by a rendez

vous between a task issuing an ENTRY call and a task ac

cepting the call by an ACCEPT statement. An ENTRY of a 

task is called by other tasks, and it may have parameters. 

ENTRY calls and ACCEPT statements are the principle means 

of inter-process communication. 

Mini-task does not specify the order in which tasks 

declared are activated. A Mini-task program with more than 

one task usually consists of a parent containing the tasks 

that perform the required actions. The body of the parent 

is usually responsible for the control of the tasks. 

Each task consists of a task specification and a task 

body. A task can be declared as a type if its declaration 

starts with the reserved words TASK TYPE. Without the 

reserved word TYPE, a single task is declared. The body of 

the task is defined by the corresponding TASK BODY. 

The task name at the beginning of a task specification 

must correspond with the task body's name. If the simple 

task name appears at the the end of the task specification 

or match body, it must be identical to the name at the 

start of its task specification and its task body. 

An ENTRY call consists of the name of the task in 

which the ENTRY ACCEPT is located and the name of the ENTRY 

ACCEPT statement accepting the call, separated by a period. 



12 

Parameters follow in parenthesis similar to a procedure 

call in Ada. An example of an entry call calling taskl en

try tl with parameter "a" follows. 

taskl.tl(a); 

An ENTRY ACCEPT statement, as described above, is 

similar to the syntax of a procedure call in Ada. The EN

TRY specification may have parameters with the binding 

modes: IN, OUT, IN OUT, and may be called from other tasks 

by ENTRY calls. The modes will be discussed later in this 

chapter. An ENTRY call cannot be executed until it has 

been synchronized with an ACCEPT statement in the body of 

the task. The syntax for an ENTRY call is simply the ENTRY 

name followed by any actual parameters in parentheses. 

The actions to be performed when an ENTRY_is called 

are specified in the corresponding ACCEPT statement. The 

syntax of an ACCEPT statement is: 

ACCEPT entry_name(formal_parameters) do 

sequence_of_statements; 

end entry_name; 

The formal parameters in the ENTRY declaration and the AC

CEPT statement must be identical. An ACCEPT statement for 

an ENTRY may appear only in the task body of the task which 

had the declared ENTRY. Tasks can execute ACCEPT state

ments only for their own entries. The sequence of state

ments between the "do" and the "end" in the ACCEPT state-



13 

ment is referred to as the critical section. The execution 

of the calling task is suspended during the execution of 

the critical section. 

The modes discussed above, IN, OUT, IN OUT, imply the 

direction of the variables in the critical section. If the 

mode is IN, the value of the variable is transferred into 

the critical section. If the mode is OUT, the value is 

transferred out of the critical section. IN OUT implies 

the value is transferred in at the beginning of the criti

cal section' and transferred out at the end of the critical 

section. 

More than one task can issue an ENTRY call for the 

same ACCEPT statement, which means it is possible for ENTRY 

calls to occur faster than they can be processed by the 

corresponding ACCEPT statements. If this occurs the ENTRY 

calls are stored in a queue that is associated with the EN

TRY name and processed on a first-come-first-served basis. 

Each execution of a corresponding ACCEPT statement removes 

one ENTRY call from the queue and allows the process with 

that ENTRY call to continue executing. A task may have 

more than one ACCEPT statement for an ENTRY declaration, 

but there will be only a single queue of waiting ENTRY 

calls for each ENTRY name. To prevent confusion a task may 

be in only one queue at a time. Each entry possesses its 

own queue to contain all unserviced entry calls. 

The next entities that need to be discussed are the 

SELECT statements: the selective waits, the conditional 



14 

entry calls, and the timed entry calls. 

The select statement allows tasks to choose their next 

action among several entry calls. The SELECT statement be

gins with the reserved word SELECT and terminates with the 

reserved words END SELECT. The number of guards in a 

SELECT statement is at the discretion of the programmer. 

When working with SELECT statements, some basic rules must 

be followed. 

1) A., select alternative may be one of three entities: 

A) an accept statement B) a delay statement c) a 

terminate statement 

2) If the select statement contains a delay statement, 

the select statement cannot have an ELSE alterna

tive or a TERMINATE. 

3) If the select statement does contain a TERMINATE 

alternative, it cannot have an alternative begin

ning with DELAY or an ELSE clause. 

4) No more than one TERMINATE alternative may be 

available. 

The guards are evaluated by the select statement. Either a 

guard that is evaluated as true, or an absent guard, is 

considered to be open. If a guard is evaluated as false, 

then it is considered to be closed. A rendezvous occurs 

when an open alternative begins with an ACCEPT statement, 

and a corresponding entry call has been received. In some 

cases several entry calls may occur before a select state-



15 

ment is executed, which causes the entry calls to be in

serted into the queue. In this case, it is possible to 

have more than one guard open, which results in one open 

guard selected at random. It is also acceptable to have 

more than one unconditional statement; which participates 

in the same random selection. A delay statement following 

an open alternative produces a delay; however, if another 

guard becomes true before the delay elapses, then that 

guard will be evaluated. An else statement can follow if 

there is not an ELSE and all of the guards are closed, the 

task waits for a guard to open. 

A conditional entry call issues an entry call that is 

then revoked if a rendezvous is not immediate. 

The DELAY statement suspends the execution of a task 

for a specified amount of time. The syntax for the DELAY 

statement is: 

DELAY simple_expression; 

where simple_expression is the number of seconds to be de

layed. The execution of the DELAY statement evaluates the 

simple_expression and suspends the task for at least the 

number of seconds specified by the expression. If the 

result is a negative number, the DELAY will be the same as 

that of a delay with a zero specification. The maximum and 

minimum values are implementation dependent, but the upper 

limit should be at least the number of seconds in a day. 

The DELAY statement can be used with the SELECT state-



16 

ment to create a timed ENTRY call. A timed ENTRY call is

sues a call if, and only if, a rendezvous is possible 

within the specified delay time. The DELAY in·the follow

ing example is given in an •or• clause. If the rendezvous 

occurs within the time period, the·ENTRY call and any 

statements associated with it are executed. If the rendez

vous does not occur within the time period, the sequence of 

statements following the DELAY statement is executed. Ex

ample: 

SELECT 

taskl.requesti 

OR 

DELAY lO.Oi 

put ( •• REQUEST can • t be sa ti sf ied" > i 

END SELECTi 

This SELECT statement limits the request call,to 10 

seconds. If the task does not accept the ENTRY within 10 

seconds, the message will be printed and execution will 

continue with the statements following the END SELECT. 

If the above example would have contained "ACCEPT re

quest" instead of "request", then the ENTRY taskl.request 

is called within the prescribed delay time. If the delay 

expires, the message is printed and the request is no 

longer acceptable, and execution continues just as before. 



SELECT 

ACCEPT request; 

OR 

DELAY 10.0; 

put(" REQUEST can't be satisfied"); 

END SELECT; 

If the example is changed to a SELECT •• ELSE as follows: 

SELECT 

ACCEPT request; 

ELSE 

DELAY 10.0; 

put(" REQUEST can't be satisfied"); 

END SELECT; 

17 

The execution is quite different than the above two exam

ples. If the ENTRY call of request cannot be accepted at 

once, then the "else" part is executed. A 10 second delay 

occurs, and the message is printed. The processing contin

ues after the "END SELECT", as before [Gilpin, 1986, Helm

bold, 1985, Wiener, 1983]. 



CHAPTER IV 

INTRODUCTION TO DIANA 

DIANA is an intermediate form of Ada programs that is 

especial!~ suitable for an interface between the front and 

back ends of Ada compilers. It is also well suited for 

pretty printers and other tools in the Ada support environ

ment. DIANA is based on the formal definition of Ada. It 

encodes the results of lexical, syntactic, and static se

mantic analysis, but it does nqt include the results of 

dynamic semantic analysis, of optimization, or of code gen

eration. 

DIANA is best viewed as an abstract data type that can 

be modeled as an attributed parse tree. The actual data or 

file structures used to present the abstract data type are 

hidden. 

DIANA is referred to as a "tree", "abstract syntax 

tree", or "attributed parse tree" and nodes are referred to 

in the trees. Although the word tree is used, the authors 

of DIANA make no reference that the data structure used to 

implement DIANA is a tree using pointers. Instead, the no

tion of attributed trees is the abstract model for the de

finition of DIANA. 

There are two types of DIANA users: DIANA producers 

18 



19 

and DIANA consumers. The study in this thesis is concerned 

with the DIANA producer which is a compiler front-end based 

on Ada's tasking model. 

A DIANA tree can be represented in an ASCII form to 

assist debugging and to allow communication between comput-

ing systems, but it is not the typical communication 

between tools. 

The implementation may decide how accurately comment 

positions are recorded and how to associate comments with 

particular nodes. DIANA has no requirement about either 

the internal or the external representation of comments, 

and an implementation does not have to support the screen 

position of the tokens (lx_scrpos) or the comments in the 

Ada code (lx comments) to be considered a DIANA producer or 

DIANA consumer [Goos, 1982, Rosenblum, 1985]. 

There are four kinds of attributes defined in DIANA: 

as-

lx 

sm 

cd 

Structural attributes define the 
abstract syntax tree of an ADA program. 

Lexical attributes provide information 
about the source form of the program. 
Examples: spelling of identifiers, po
sition in the source file. 

Semantic attributes encode:the results 
of semantic analysis. Example: type 
and overload resolution. 

Code attribute provides information 
from representation specifications that 
must be observed by the Back End of the 
compiler. 

Figure 3. Types of DIANA attributes. 



20 

Notation of DIANA 

In the DIANA Reference Manual, DIANA is presented in a 

notation called IDL, Interface Description Language. The 

advantages of presenting DIANA in IDL are its simplicity 

and its similarities with Backus-Naur Form (BNF). Upper 

case character strings represent IDL class names; lower 

case strings beginning with lx_, as_, sm_, or cd are IDL 

attributes. Other lower case strings represent node names, 

and strings beginning with an upper case letter represent 

reserved words in IDL. Examples: 

DECL OP DEF OCCURRENCE 
lx srcpos sm address 
constant var-const id 
Structure Root Type 

examples of IDL class names 
examples of IDL attributes 
examples of IDL node names 
examples of IDL reserved words 

The language can be given in a form similar to BNF. The se.t 

of abstract trees used to model the DIANA abstract data 

type can be viewed as a language, where the terminal sen-

tences are attributed parse trees instead of character 

strings. Consider an example IDL class name: 

EXP ::=leaf I tree 

The definition may be read: 'The notion of an EXP is de-

fined to be either a leaf or a tree'. Class names, the 

equivalent to nonterminals in BNF, never appear in the sen-

tences of the language; their only use is to define the 

language. Node names, the equivalent to terminals in BNF, 



21 

appear in the sentences or trees of the language. IDL re-

quires a semicolon to terminate a definition. As with BNF, 

more than one production with the same left-hand side may 

occur; after the first definition, the following defini-

tions introduce other alternatives~ 

The definition of the node specifies the attributes 

that are present in the node, as well as the names and 

types of the attributes. An example of a node definition 

with three attributes with their names op, left, right, and 

their types OPERATOR, EXP, and EXP respectively, follow. 

tree => op 
left 
right 

OPERATOR, 
EXP, 
EXP ; 

Unlike BNF, the order of the attribute specifications is 

insignificant. The right-hand side of the production must 

be a sequence of zero or more attributes specifications 

separated by commas and terminated by.a semicolon. Multi-

ple definitions of a node are permitted, but the additional 

attribute specifications are concatenated on to the previ-

ous specifications. 

tree => op 
tree => right 
tree => left 

and 

tree => op 
left 
right 

For example: 

OPERATOR; 
EXP ; 
EXP; 

OPERATOR, 
EXP, 
EXP ; 

both possess the same attributes. 



22 

Some nodes have no attributes. Example: 

foo => 

As in Ada, a comment is introduced by a double hyphen 

'--' and is terminated by the end of the line. Also the 

IDL is case sensitive, which means identifiers that are 

spelled identically except for the case are considered to 

be different. Identifiers in IDL consist of a letter fol

lowed by an optional sequence of letters, digits, and iso

lated underscore characters. 

External Representation of DIANA 

A standard .external form of DIANA is defined to help 

in debugging and to allow communication between computing 

systems. The square brackets surround the attributes of a 

node, and the angle brackets surround items of a sequence. 

Examples of ASCII representation of DIANA nodes: 

plus 

leaf 

tree 

name "A" ] 

left leaf [ name "A" ] ] 

The node 'plus' has no attributes, and the node 'leaf' 

has one attribute 'name' which is 'A'. Also the node 

'tree' has one attribute 'left leaf', which contains anoth

er node with one attribute 'name'. 

Each node is represented by its corresponding name. 

The representations of its attributes are separated by 



23 

semicolons, and are surrounded by opening and closing 

brackets. If there are no attributes, the brackets may be 

omitted. 

Each attribute in the nodes is represented by the name 

of the attribute, followed by the representation of the 

attribute's value. 

In the nodes, comments begin with the double hyphen 

and terminate with the end of the line. Spaces are insig-

nificant except to separate tokens, while case distinctions 

are significant. 

To have a shared attribute value, one occurrence of 

the value must be labeled and all other occurrences must 

refer to that label. Any attribute may be labeled. Each 

label is followed by a colon and its node name. Each label 

reference consists of the label identifier followed by a 

circumflex instead of the usual representation of the at-

tribute value. A label identifier consists of a letter 

followed by an optional sequence of letters, digits, and 

isolated underscore characters. There are many ways in 

which A+A can be represented. Two of these ways are shown 

below. 

tree [ left leaf [ name "A"] 
op plus : 
right leaf [ name "A] 

tree [ left AOl~ : 
op plus ; 
right AOl~ ] 

AOl: leaf [ name "A"] 



24 

A complete external representation begins with the 

root node of the structure followed by a sequence of zero 

or more nodes. The root indication can be either a label 

referencing itself or another node. Since the representa-

tion of the subnodes can be contained within the parent 

node, it is possible for the entire external representation 

to be given by the root. It is also legal to represent the 

DIANA tree in a flat form, where node-valued attributes are 

always referring to labels of non-nested nodes. 

Following is an example of a partial Mini-task program 

and its DIANA external representation. 

procedure progl is 
a,b,c : integer; 

task tl; 

task body tl is 
f,g,h : integer; 

Figure 4. Sample partial Mini-task program. 

The corresponding DIANA representation. The formal defini-

tion of DIANA in chapter V may be needed to completely 

understand the tree. 

AO: compilation 

Al: comp_unit 

as list < Al~ > ] 

as unit body A2~ 
as=pragma_s ] 

Figure 5. Sample partial DIANA program. 



A2: subprogram_body 

A3: proc_id 

A4: procedure 

AS: param_s 

A6: block 

A7: item s 

AS: var 

A9: id s · 

AlO: var id 

All: var id 

Al2: var id 

Al3: constrained 

Al4: used name id 

Figure 5. (Continued) 

as_designator A3-
as header A4- ; 
as-block stub A6-

lx_symrep "progl" 
sm spec ; 
sm-body ; 
sm-location ; 
sm--:-stub ; 
sm=::first ] 

as_param_s AS-

as list < > ] 

as item s A7- Al9- ; 
as stm s ; 
as=::alternative_s ] 

as list < AS- Als- > ] 

as id s A9- ; 
as-type spec Al3-
as=::object_def void ] 

lx symrep "a" 
sm-obj type ; 
sm-address ; 
sm:=obj_def ] 

lx symrep "b" 
sm-obj type ; 
sm-address ; 
sm:=obj_def ] 

lx symrep "c" 
sm-obj type ; 
sm-address 
sm:=obj_def ] 

as name Al4- ; 
as-constraint void 
cd=::impl_size ; 
sm type struct ; 
sm-base-type ; 
sm:=constraint ] 

lx symrep 11 integer 11 

sm-defn l 

25 



AlS: task decl 

Al6: task_spec 

Al7: decl s 

Al8: var id 

Al9: item s 

A20: var 

A21: id s 

A22: var id 

A23: var id 

A24: var id 

A25: constrained 

A26: used name id 

Figure 5. (Continued) 

as id Ai8 ... ; 
as-task de£ Al6 ... 

as decl s Al7 ... ; 
sm-body-; 
sm-address ; 
sm:=storage_size 

as list < > ] 

lx_symrep "tl" 

as list < A20 ... > 

as ids A21 ... ; 
as-type spec A25 ... ; 
as:=object_def void ] 

26 

as list < A22 ... A23 ... A24 ... >l 

lx symrep "f" 
sm-obj type ; 
sm-address ; 
sm:=obj_def ] 

lx symrep "g" 
sm-obj type ; 
sm-address ; 
sm:=obj_def ] 

lx symrep "h" 
sm-obj type ; 
sm-address ; 
sm:=obj_def ] 

as name A26 ... ; 
as-constraint void 
cd:=impl_size ; 
sm type struct ; 
sm-base-type ; 
sm:=constraint ] 

lx symrep "integer" 
sm-defn ] 



CHAPTER V 

FORMAL LANGUAGE DESCRIPTION, SYNTAX, 

AND SEMANTICS 

The context-free syntax of the language implemented is 

described using a simple variant of Backus-Naur-Form. 

Square brackets imply optional items; braces imply zero or 

more occurrences. 

Below each set of production rules for Ada, the defin-

ition of the DIANA abstract type is given. 

task-declaration::= task-specification 

task-specification ::=TASK [TYPE] identifier [is 
{ entry declaration } 

END [task_simple_name]] 

TASK DEF ::=task spec; 

task decl => as id 
as task def 

TYPE SPEC ::= task_spec; 

task spec => 
task:=spec => 

as decl s 
sm-body-
sm-address 
sm:=storage_size 

ID, 
TASK_DEF; 

DECL_S, 
BLOCK STUB_VOID, 
EXP_VOID, 
EXP_VOID; 

BLOCK_STUP_VOID :-:= block I stub I void; 

Figure 6. Formal description of Mini-task and DIANA 

27 



task-body::= TASK BODY task simple name IS 
[declarative part]-

BEGIN -
sequence of statements 

END [task_sTmpie_name] ; 

task_body => as id 
as-block stub 

DEF ID ::= task_body_id; 

task_body_id => 
lx_symrep 
sm type spec 
sm-body
sm-first 
sm-stub 

entry_declaration ::=ENTRY 

ID, 
BLOCK_STUB; 

symbol_rep; 
TYPE_SPEC, 
BLOCK STUB VOID, 
DEF_OCCURRENCE, 
DEF_OCCURRENCE; 

28 

identifier [(discrete range)] 
[ formal_part 1 ; -

HEADER ::=entry; 

DSCRT RANGE VOID ::= DSCRT_RANGE I void; 

entry => as_dscrt_range_void 
as_param_s 

DEF ID ::= entry_id; 

lx_symrep 
entry_id => sm spec 

sm-address 

DSCRT RANGE_VOID, 
PARAM_S; 

symbol_rep; 
HEADER, 
EXP_VOID; 

entry_call_statement : : = entry name 
[actual_parameter_part] 

entry_call => as name NAME, 
PARAM_ASSOC_S; 
EXP_S; 

as param assoc s 
entry_call => sm_normalize_param_s 

accept_statement ::=ACCEPT entry simple name 
[{entry index}] -
[formal-part] [DO 
sequence of statements 

END [entry_simple_name]]; 

entry_index ::=expression 

Figure 6. (Continued) 



29 

accept => as name 
as_param_assoc_s 

accept => ~s stm s 

NAME, 
PARAM_ASSOC_S; 
STM_S; 

delay_statement ::=DELAY simple_expression 

delay => as_exp : EXP; 

select statement ::=selective wait 
conditional entry call 
timed_entry:=call -

selective wait ::=SELECT 
select alternative 

{ OR 
select alternative } 

[ELSE 
sequence_of_statements] 

END SELECT ; 

select => as select clause s 
as stm s 

SELECT_CLAUSE_S, 
STM_S;. 

SELECT CLAUSES ::=select clauses; 

select clause s => as list : seq of SELECT_CLAUSE; 

select alternative ::= [WHEN condition=>] 
selective wait alternative 

selective wait alternative ::=accept alternative - - I delay alternative 
terminate_alternative 

accept_alternative ::=accept statement 
[sequence_of_statements] 

delay_alternative ::=delay statement 
[sequence_of_statements] 

terminats alternative ::=TERMINATE; 

SELECT CLAUSE ::= select_clause; 
SELECT CLAUSE ::= pragma; 

select clause => as_exp_void 
as stm s 

Figure 6. (Continued) 

EXP_VOID, 
STM_S; 



30 

conditional_entry_call ::=SELECT 
entry call statement 
[sequence of statements] 

cond_entry => as stm sl 
as-stm-s2 

timed_entry_call ::=SELECT 

ELSE - -
sequence_of_statements 

END SELECT ; 

STM_S, 
STM_S; 

entry call statement 
[sequence_of_statements] 

OR 
delay_alternative 

END SELECT; 

timed_entry => as stm sl 
as-stm-s2 

STM_S, 
STM_S; 

abort statement ::=ABORT task name{, task name} 

NAMES ::= name_s; 

name s => as list : seq of NAME; 

abort => as name s NAME_S; 

Figure 6. (Continued) 



CHAPTER VI 

IMPLEMENTATION TECHNIQUES 

Introduction to Compilers 

A compiler is a program that reads a program written 

in the source language and translates it into an equivalent 

program in the target language. There are many types of 

source and target languages. Source languages range from 

the traditional programming languages FORTRAN and COBOL to 

specialized languages for solving certain problems. A tar

get language may be another programming language, or a cer

tain machine language. 

There are two parts to a compiler: the analysis and 

the synthesis. The analysis of the compiler consists of 

the following three phases. Lexical analysis groups char

acters read from the input into meaningful tokens. 

Hierarchical analysis, also called syntax analysis, groups 

tokens of the source program into grammatical phrases that 

are used by the compiler to synthesize output. Semantic 

analysis checks to ensure that the components of a program 

fit together meaningfully. The synthesis phase translates 

the intermediate representation into the desired target 

program [Aho, 1986, Lorho, 1984]. 

31 



32 

An essential task of a compiler is to record the iden-

tifiers used in the source program and maintain information 

about various attributes of each identifier. A symbol 

table is a data structure, used by all phases of the com-

piler, which contains a record for ·each identifier. Each 

record contains fields for the attributes of the identifier 

which contain pertinent information such as its type, its 

scope, and if it is a procedure name, information about its 

arguments and the type returned, if any. 

Every phase of the compiler can possibly encounter er-

rors. When a phase does encounter an error, it must deal 

with the error, and continue processing to allow additional 

errors to be detected. 

The front end of the compiler consists of the 

analysis, as described above, symbol table creation, the 

generation of the intermediate code, and, of course, the 

necessary error handling routines that go along with each 

phase. The back-end of the compiler consists of the code 

optimization phase, the code generation phase, and also the 

necessary symbol table management and error handling rou-

tines. The study in this thesis deals with the front end 

of the Mini-task compiler. 
f 

A possible back-end is dis-

cussed briefly in chapter VII. 

Implementation Decisions 

It is necessary to address specific implementation tech-

niques of the compiler developed in this thesis. 



33 

As previously mentioned, the external form of DIANA is 

used to assist in debugging and to allow communication 

between computing systems, but it is not the typical com

munication between tools. However, this study primarily is 

concerned with the compiler front-end only. Therefore, a 

compiler back-end needs to be developed to consume the 

external representation produced by this study's compiler. 

The flat form of external representation was chosen 

from the forms described above. The flat form is more 

direct in the areas of reading and debugging; consequently, 

the possible occurrence of errors is reduced. 

Implementation Techniques 

The implementation of Mini-task is broken into six 

stages: the lexical analysis, the symbol table routines, 

the generation of the intermediate code based on DIANA, the 

syntactic analysis, the semantic analysis, and the error 

handling routines. These stages will be discussed in vari

ous segments of this chapter. 

The main program of the compiler is in the file 

"main.c" and consists of several of the phases drivers. 

The first step of the main program is to read the command 

line to determine which source file to compile. This is 

done through the C language's way of passing the command

line arguments to the main. When main is called to begin 

execution, it is called with two arguments. The first, 

(argc) is the number of command-line arguments with which 



34 

the program was invoked; the second (argv) is a pointer to 

an array of character strings that contain the arguments 

[Kernighan, 1978]. "If" statements are used to test the 

number of arguments. If there are no arguments, Mini-task 

terminates. If there is more than·one argument, an error 

message is printed, and the program terminates. Since 

Mini-task requires that all Mini-task programs end with 

filenames ending with ".mt", the last three characters are 

tested. If the characters are not ".mt", an error message 

is printed, and the program terminates. If the constant 

"DEBUG" is assigned a positive value in the header file 

"mt.h", the debug file is opened for a compiler trace. If 

th~ constant "DEBUG" is assigned the value "0", no debug

ging statements are printed. The second phase of the main 

program is the initialization of the variables. The third 

phase calls the parser (yyparse) which in turn calls the 

lexical analyzer <yylex) and other routines discussed in 

this chapter. The fourth and final phase of the main pro

gram calls the routines "chkblks" and "sm diana" to com

plete the final semantic analysis phases. 

As mentioned above, the third phase of the main pro

gram results in calling the lexical analyzer. The lexical 

analyzer is responsible for reading the source file and 

producing tokens for the parser. A token consisting of all 

alphabetic characters could be an identifier name or a 

reserved word; therefore, the routine "rwtable" is called 

to determine if the token is in the list of reserved words. 



"rwtable" consists of a binary search which searches for 

the reserved words. 

Reserved Words 
abort 
accept 
begin 
body 
delay 
do 
else 
end 
entry 
in 
integer 
is 
null 
or 
out 
procedure 
put 
select 
task 
terminate 
type 
when 

Figure 7. Mini~task reserved words. 

35 

If the token is identified as a reserved word, the value 

of the reserved word is returned to the lexical analyzer, 

which is returned to the parser. If the token is not a 

reserved word, it is obviously an identifier, which causes 

the value of the identifier token to be returned. 

All strings regardless of whether they are uppercase 

or lowercase are sent to the routine "lease" which copies 

the original string (yytext) to a new string (temp), while 

converting all uppercase to lowercase. This conversion al-

lows for different programmer styles of case distinction. 

The programmer never sees the case conversion, because the 



36 

original string is printed in the listing file. The lower 

case string is only used for the symbol table routines and 

the reserved word lookup routines. 

The listing file is produced at the time of lexical 

analysis. In order to have error messages printed below 

the source line, a buffer is used to store the error mes

sages. The source line is also stored in a buffer in order 

to keep track of the characters for error displaying. A 

dollar sign is printed below the first character of the to

ken that causes the error. Warnings are displayed in a 

similar manner, except a circumflex is displayed below the 

tokens causing warnings. The only so called warnings in 

Mini-task are undecodable characters. If the lexical 

analyzer cannot identify a character, a warning is pro

duced, and the character is ignored by the parser. 

The file "mt.h" is a header file that is included in 

most of the routines in the compiler. "Mt.h" contains the 

data structures used for the DIANA templates, the symbol 

table routines, and various stacks throughout the compiler. 

During the running of a compiler, a task control block is 

kept of the current task. The data structure works as a 

stack, where the parser pushes the name of the task on the 

stack when it encounters the declaration of the task or the 

task body. 

A stack is used to keep track of the current task. 

When the parser encounters a task declaration or a task 

body, it pushes the task name on the stack. When the 



37 

parser encounters the corresponding end to one of these en-

tities, the parser pops the blockname off of the top of the 

stack. Also, the testing to see if the declared task name 

matches the ending name is accomplished at this point. The 

stack uses the following data structure. 

struct stacker { 
char blockname[MAXIDLEN] 
} ; 

During the semantic analysis phase, a routine (check-

ends) is called to see if the the declared tasks· match the 

tasks bodies. If they do not match, 11 yyerror 11 is called. 

11 Yyerror 11 is the error handling procedure. Errors can 

be detected in all phases of the compiler. When 11 yyerror 11 

is called, the number of errors, 11 nerrs 11 , for the line is 

set to true, and the total number of errors for the pro-

gram, 11 tnerrs 11 , is incremented. A dollar sign is inserted 

into the error message buffer, 11 temperrl 11 , and the error 

message is concatenated to the buffer also. 

The parser is the heart of the compiler. Yacc, Yet 

Another Compiler Compiler, is used to build the parser. 

11 Insert 11 is a routine that inserts DIANA nodes into 

the DIANA tree. A template is allocated when a node is 

neeaed by the routine_ 11 getnode 11 • 11 Getnode 11 requires one 

parameter: the node name. Each DIANA node is inserted into 

a DIANA node template. 



struct template { 
char name[MAXIDLEN]; 
struct { 

char name[MAXIDLEN]; 
struct anode *list; 

} att[MAXATT]; 
} ; 

MAXIDLEN is a constant containing the maximum identifier 

38 

length. MAXATT is a constant containing the maximum number 

of attributes each DIANA node has. If this program were to 

be expanded, MAXATT would probably increase, because some 

DIANA nodes require more attributes. Each DIANA node has 

attributes which may have any number of children. Since 

the number may be small or large, a linked list is used to 

keep the list of children. The following data structure is 

used to keep a list of the children nodes. 

struct anode { 

} ; 

struct anode *alist; 
int dnode; 

The routine "alocnode" allocates the nodes. Each node con-

tains a pointer for the next node, which has the value of 

NULL when it is a leaf node, and and integer pointing to 

the leaf. The symbol table and supporting routines are 

very simple because the symbol table is used only for se-

mantic analysis, and there is only one type: INTEGER; The 

symbol table does not contain the storage for the values of 

the variables as in most languages. DIANA is the only 

structure that is passed to the back-end of the compiler, 

consequently, the DIANA nodes are used for the actual 



39 

storage of t.he variables. The data structure for the sym-

bol table follows. 

struct stemplate { 
char blockname[MAXIDLEN]; 
struct { 

char name[MAXIDLEN]; 
} symbol[MAXSYM]; 
} 

MAXIDLEN is a constant that contains the maximum identifier 

length. The constant MAXSYM contains the maximum number of 

elements for the symbol table [Johnson, 1975, Lesk, 

Schreiner, 1985]. 

Following is an example of how nodes are inserted into 

the DIANA tree. 

if (strcmp(type,"compilation") == 0){ 

} 

/* Compilation */ 
dpointer = getnode("compilation"); 
addatt(dpointer,"as_list <">; 

/* Comp unit */ 
dpointer = getnode("comp unit"); -
dlink(dcurrent,"as list ~",dpointer); 
addatt(dpointer,"as_unit_body"); 
addatt(dpointer,"as_pragma_s"); 

dpointer = getnode("subprogram_body">; 
dlink(comp unit,"as unit body",dpointer); 
addatt(dpointer,"as-desi~nator"); 
addatt(dpointer,"as-header"); 
addatt(dpointer,"as=:block_stub"); 

Figure 8. Example of "insert" program. 

Before the first line of the source program is parsed, 

the parser calls the routine "insert" and sends the node to 

be inserted which is "compilation". An "if" construct is 



40 

used to find the correct entry". When the correct entry is 

found, a node is allocated by the routine "getnode". 

"Dcurrent" and "dpointer" point to the new node. Since the 

node "compilation" has only one node, "addatt", a routine 

to insert attributes into the node; is only called once. 

"Addatt" sends the pointer to the node in the tree and the 

attribute to be inserted into that node. The nodes 

"comp_unit" and "subprogram_body" are inserted into the 

tree at the same time. "Dlink" is a routine used to link 

the nodes together. For a more detailed description of 

the compiler, refer to the Appendix. 



CHAPTER VII 

DISCUSSION OF POSSIBLE BACK-END 

TECHNIQUES 

The implementation of Mini-task in this thesis con

sists of the front-end only. However, the back-end 

deserves a short discussion. To begin, the compiler writer 

would need to gain a thorough understanding and a working 

knowledge of DIANA and the machine that is used for imple

mentation. Also, the compiler writer would need to be fam

iliar with the following techniques. Two important factors 

in implementing a pack-end of Mini-task are memory manage

ment techniques and task switching. 

Memory Management 

Many modern high-level languages are implemented using 

a stack-based memory management system. The available 

run-time storage is organized as a single stack with code 

and static data at the bottom and free storage at the top. 

A stack pointer is positioned at the bottom of the free 

area. As memory is allocated the stack pointer moves up 

the stack, and as memory is released it moves down. 

Storage must therefore be freed in the reverse order to 

that of allocation. Most operations take place on the top 

41 



42 

of the stack [Burns, 1985, Lorho, 1984, Waite, 1984]. 

When a subprogram is called, a new activation record 

is placed on the top of the stack which includes local 

variables and a return address. Chains of subprogram calls 

therefore cause no difficulty, nor does recursive calling 

or reentrant usage. As Ada has recursive subprogram calls 

and data structures whose size is calculated at r·un-time, 

it encourages the use of a stack-based memory management 

structure. What loss of efficiency there might be by not 

utilizing fully the available hardware registers is compen

sated by portability considerations [Aho, 1986, Lorho, 

1984, Pratt, 1981, Waite, 1984, Burns, 1985]. 

With a multi-tasking program each task can, to some 

extent, be seen as a separate program, so each task will 

have its own stack. However, creation of a task is depen

dent on some state of the parent (master). A child task 

may also require access to shared variables held on its 

parent's stack. From these considerations a structure 

known as a cactus stack is used. A cactus stack consists 

of a variable number of stacks, one for each task in the 

program [Burns, 1985, Baker, 1985]. 

Task Switching 

When there is only one processor, a context switch 

must let the different tasks take turns on the CPU. In 

order to switch tasks the old task's activation record must 

be stored on the run time stack and the new task's record 



43 

mounted. Ideally, this should be done with very few 

machine instructions, or maybe even just one. If this can

not be accomplished, the code should be optimized so that 

fewer context switches are needed [Burns, 1985]. 



CHAPTER VIII 

SUMMARY, CONCLUSIONS, AND SUGGESTED 

FURTHER RESEARCH 

Summary and Conclusions 

In this thesis Mini-task and its front-end implementa

tion are discussed. Mini-task is a language based on Ada's 

tasking model. The front-end of the compiler produces an 

intermediate code based on DIANA. The intermediate 

language DIANA has proven to be a well suited intermediate 

language for Mini-task. DIANA is flexible, and it has the 

potential to become a widely accepted intermediate 

language. DIANA also possesses the versatility to be used 

as the intermediate language for many different compilers. 

The front-end of Mini-task is currently implemented on 

a Perkin Elmer 3230 running UNIX System V. The implementa

tion is written with approximately 1200 lines of "C" code 

and 250 lines of "lex" and "yacc" code. The routines are 

divided into fifteen files. UNIX's "makefile" utility is 

used to compile the programs. 

Mini-task is a well suited language for programmers 

who want to write multi-tasking programs. Due to its small 

size, Mini-task has the potential to produce an efficient 

target program. The intermediate code produced, as shown 

44 



in this thesis, is considered compact, as compared with 

many Ada program's intermediate codes. 

Suggestions for Future Research 

45 

During the investigation of Mini-task and its front

end implementation, it became clear that developing a 

standardized intermediate language would be beneficial to 

computer scientists. It would enable computer scientists 

to have one intermediate language, and each machine would 

only require a standardized back-end compiler. When a new 

language is designed, only the front-end of the compiler 

for the new language would need to be developed to produce 

the standardized intermediate code. 

There are some directions suitable for extending the 

current work: an implementation of a DIANA consumer and a 

DIANA employer. The DIANA consumer would accept as input 

the output of the compiler discussed in this thesis, and 

other compilers producing DIANA. Implementation of a DIANA 

employer is another interesting research topic. A DIANA 

employer is a program that uses DIANA as an intermediate 

language, without producing the external representation. 

The program would consist of a front-end producing DIANA 

and a back-end consuming DIANA. 

There is also a potential to expand the current imple

mentation of Mini-task. Ideally, Mini-task would contain 

features such as more types, preferably programmer defined 

types, separate compilation, and exception handlers. 



SELECTED BIBLIOGRAPHY 

Aho, A. B., Sethi, R, Ullman, J. D~ (1986). Compilers 
Principles, Techniques, and Tools. Reading, MA: 
Addison-Wesley Publishing Company. 

Baker, T. P., Riccardi, G.A. (1985). Ada Tasking: from 
Semantics to efficient implementation. IEEE 
Software. 2,2, Pages 9-22. 

Burns, A. (1985). Concurrent Programming in Ada. 
Cambridge: Cambridge University Press. 

Gilpin, G. (1986). Ada:~ guided Tour and Tutorial. 
New York, NY: Prentice Hall Press. 

Goos, G., Harmanis, J. (1982). 
the Semantic Analysis of Ada. 
Springer-Verlag. 

An Attribute Grammar for 
New York, NY: 

Goos, G., Winterstein, G. (1981). Trends in Information 
Processing Systems. 3rd Conference of the European 
Cooperation in Informatics. Berlin, Germany: 
Sprinter-Verlag. 

Halstead, M. H. (1974). A Laboratory Manual for Compiler 
and Operating System Implementation. New York, NY: 
American Elsevier Publishing Company, Inc. 

Helmbold, D., Luckham, D. (1985). Debugging Ada Tasking 
Programs. IEEE Software. 2,2, Pages 47-57. 

Johnson, S. C. (1975). Yacc: Yet Another Compiler
Compiler. Bell Laboratories, Murray Hill, NJ. 

Kernighan, B. w., Ritchie, D. M. (1978). The C 
Programming Language. Englewood Cliffs, NJ:-Prentice
Hall, Inc. 

Ledgard, H., Marcotty, M. (1981). The Programming 
Language Landscape. Chicago, IL: Science Research 
Associates, Inc. 

Lesk, M. E., Schmidt E. LEX- A lexical Analyzer 
Generator. Bell Laboratories, Murray Hill, NJ. 

46 



Lorho, B. (1984). Methods and Tools for Compiler 
Construction. Cambridge: Cambridge University Press. 

Persch, G. (1983). Ada Compiler Karlsruhe Overview. 
Ada-Europe/Adatec Joint Conference on Ada. Pages 
2.1-2.4. 

Pratt, T. W. (1984). Programming Languages Design and 
Implementation. Englewood Cliffs, NJ: Prentice-Hall, 
Inc. 

Rogers, M. W. (1984). Ada: Language, Compilers and 
Bibliography. Cambridge: Cambridge University Press. 

Rosenblum, D. S. (1985). A Methodology for the design of 
Ada transformation tools in a DIANA environment. IEEE 
Software, 2, 2, Pages 34-36. 

Schreiner, A. T., Friedman, Jr. G. H. (1985). 
Introduction to Compiler Construction with UNIX. 
Englewood Cliffs, NJ: Prentice-Hall, Inc. 

United States Department of Defense, (1983). Reference 
Manual for the Ada Programming Language. New York, NY: 
Sprintger-Verlag:-

Waite, W. M., Goos, G. (1984). Compiler Construction. 
New York, NY: Springer-Verlag. 

Wiener, R., Sincovec, R. (1983). Programming in Ada. 
New York, NY: John Wiley & Sons. 

47 



APPENDIXES 



#include <stdio.h> 
addonword(i,sl,s2) 

int i; 
char *sl,*s2;{ 

int j; 

MINI-TASK COMPILER 

for(j=O; (strcmp(dnode[i] .att[j] .name,sl) != 0); ) 
if(++j >= MAXATT){ 

fprintf(stderr, 11 addonword: can't find the attO); 
exit(4); 

} 
strcat(dnode[i].att[j].name, .. 11 ); 

strcat(dnode[i].att[j].name,s2); 
} 

addonstring(i,sl,s2) 
int i; 
char *sl,*s2;{ 

int j; 

for(j=O; (strcmp(dnode[i].att[j].name,sl) != 0); ) 
if(++j >= MAXATT){ 

fprintf(stderr, 11 astring: can't find the attO); 
exit(4); 

} 
strcat(dnode[i].att[j].name, 11 

strcat(dnode[i].att[j].name,s2); 
strcat(dnode[i].att[j].name, .. 

} 
addatt(i,s) 

int i; 
char *s;{ 

struct anode *alocnode(); 
int j; 

for(j=O; (strcmp(dnode[i].att[j].name, 1111 ) != 0); ) 
if(++j >= MAXATT){ 

fprintf(stderr, 11 Not enough atts; fix MAXATTO); 
exit(4); 

} 
strcpy(dnode[i].att[j].name,s); 

} 
dlink(i,s,j) 

49 



int i; 
char *s; 
int j;{ 

struct anode.*alocnode(), *temp, *prev; 
int k; 

for(k=O; (strcmp(dnode(i].att(k].name,s) != 0); 

} 

if((++k >= MAXATT) I l 
(strcmp(dnode[i].att[k].name,"") == 0)){ 
fpri~tf(stderr,"can't find att: ~sO,s); 
exit(4); 

} 
prev =temp= dnode[i].att[k].list; 
while (temp != (struct anode *) NULL){ 

if (temp->dnode == -1){ 
temp->dnode = j; 
return; 

} 
prev = temp; 
temp = temp->alist; 

} 
if (prev == (struct anode *) NULL) 

dnode[i].att[k].list =temp= alocnode(); 
else 

prev->alist =temp= alocnode(); 
temp->dnode = j; 

addent(s) 
char *s;{ 

int i; 

for(i=O ; i < MAXSYM; i++){ 
if(strcmp(stable[curb].entry[i].name,s) 

yyerror("Entry already declared"); 
return(i); 

} 

0){ 

else if(strcmp(stable[curb].entry[i].name,"") 
strcpy(stable[curb].entry[i].name,s); 

} 

return(i); · 
} 

} 
fprintf(stderr,"addent: MAXSYM too smallO); 
exit(4); 

chkent(tname,ename) 
char *tname; 
char *ename;{ 

int block,i; 

for(block=O ; block < MAXSYM; block++> 

50 

0){ 



} 

if(strcmp(stable[block].blockname,tname) -- 0) 
break; 

if(block >= MAXSYM){ 
yyerror("Undefined task"); 
return; 

} 

for(i=O ; i < MAXSYM; i++) 
if(strcmp(stable[block].entry[i].name,ename) -- 0) 

return; 

yyerror("Undefined entry"); 

dinit(ptr) 
int ptr; { 

int i; 

strcpy(dnode[ptr].name,""); 
for(i=O; i<MAXATT; i++){ 

strcpy(dnode[ptr].att[i].name,""); 
dnode[ptr].att[i].list = (struct anode*) NULL; 

} 
} 
ainit(ptr) 

struct anode *ptr; { 

ptr->dnode = -1; 
ptr->alist = (struct anode *) NULL; 

} 
getnode(s) 

char *s;{ 

} 

if(++nnodes > MAXDNODES){ 

} 

fprintf(stderr,"not enough nodes allocatedO); 
exit(4); 

dinit(nnodes-1); 
strcpy(dnode[nnodes-l].name,s); 
return(nnodes-1); 

struct anode *alocnode(){ 

} 

struct anode *ptr; 

ptr = (struct anode*) malloc(sizeof(struct anode)); 
ainit(ptr); 
return(ptr); 

int nnodes; /* Curent number of DIANA nodes */ 

struct template dnode[MAXDNODES]; 

51 



struct anode *aprevious, *acurrent, *apointer; 

insert(type' char *type; 

struct anode *alocnode(); 

static int dnumber, 
mode, 
dcurrent, 
dpointer, 
block, 
var, 
id s, 
var id, 
subprogram_decl, 
entry, 
TASK id s, 
task:::::decl, 
param s, 
task_spec, 
in, 
in_out, 
out, 
decl s, 
constrained, 
subprogram body, 
procedure,
comp_unit; 

int itop; 

if (strcmp(type,"compilation") == 0){ 

} 

dcurrent = dpointer = getnode("compilation"); 
addatt(dpointer,"as_list <">; 

comp unit= dpointer = getnode("comp unit"); 
dlink(dcurrent,"as list <",dpointer)~ 
addatt(dpointer,"as unit body"); 
addatt(dpointer,"as:::::pragma_s"); 

subprogram body = dpointer = 
- getnode("subprogram body"); 

dlink(comp unit,"as unit body",dpointer); 
addatt(dpointer,"as-designator"); 
addatt(dpointer,"as-header"); 
addatt(dpointer,"as:::::block_stub"); 

else if (strcmp(type,"proc id") == 0){ 
dcurrent = dpointer = getnode("proc id"); 
addatt(dpointer,"lx symrep"); -
addonstring(dpointer,"lx symrep",yytext); 
addatt(dpointer,"sm specw); 
addatt(dpointer,"sm:::::body">; 

52 



} 

addatt(dpointer,"sm location">; 
addatt(dpointer,"sm-stub"); 
addatt(dpointer,"sm-first"); 
dlink(subprogram_body,"as_designator",dpointer); 

else if (strcmp(type,"procedure") == 0){ 
procedure= dpointer = getnode("procedure"); 
addatt(dpointer,"as param s"); 
dlink(subprogram_body,"as=header",dpointer); 

} 

dpointer = getnode("param s"}; 
addatt(dpointer,"as list~">; 
dlink(procedure,"as=param_s",dpointer); 

block= dpointer = getnode("block"); 
addatt(dpointer,"as items"); 
addatt(dpointer,"as-stm i">; 
addatt(dpointer,"as-alt~rnative s"); 
dlink(subprogram_body,"as_block=stub",dpointer); 

else if (strcmp(type,"item s") == 0){ 
stable[curb].item s = dpointer = getnode("item s"); 
addatt(dpointer,"is list<">; -
dlink(block,"as_item_s",dpointer); 

} 
else if (strcmp(type,"var") == 0){ 

} 

var = dpointer = getnode("var"); 
addatt(dpointer,"as ids"); 
addatt(dpointer,"as-type spec"}; 
addatt(dpointer,"as-object def"); 
addonword(dpointer,"as object def","void"); 
dlink(stable[curb].item_s,"as=list <",dpointer); 

else if (strcmp(type,"id s") == 0){ 
ids= dpointer = getnode("id s"); 
addatt(dpointer,"as list<">;
dlink(var,"as_id_s"-;-dpointer); 

} 
else if (strcmp(type,"var id"} == 0}{ 

var id = dpointer = ge~node("var id"); 
addatt(dpointer,"lx symrep"); -
addonstring(dpointer,"lx symrep",yytext); 
addatt(dpointer,"sm obj ~ype"); 
addatt(dpointer,"sm-address"); 
addatt(dpointer,"sm-obj def"); 
dlink(id_s,"as_list-<",dpointer)-; 

} 
else if (strcmp(type,"constrained") == 0){ 

constrained= dpointer = getnode("constrained"); 
addatt(dpointer,"as name"); 
addatt(dpointer,"as-constraint"); 
addatt(dpointer,"cd-impl size"); 
addatt(dpointer,"sm=type=struct"); 

53 



} 

addatt(dpointer,"sm base typ~");-· 
addatt(dpointer,"sm-constraint"); 
addonword(dpointer,"as constraint","void"); 
dlink(var,"as_type_spec",dpointer); 

dpointer ~ getnode("used name id"); 
addatt(dpointer,"lx symrep");
addonstring(dpointer,"lx symrep",yytext); 
addatt(dpointer,"sm defn">; 
dlink(constrained,"is_name",dpointer); 

else if (strcmp(type,"task decl") == 0){ 
task decl = dpointer = ~etnode("task decl"); 

} 

addatt(dpointer,"as id"); -
addatt(dpointer,"as-task def"); 
dlink(stable[curb].Item_s,"as_list <",dpointer); 

task spec= dpointer = getnode("task spec"); 
addatt(dpointer,"as decl s"); -
addatt ( dpointer, "sm -body">; 
addatt(dpointer,"sm-address"); 
addatt(dpointer,"sm-storage size"); 
dlink(task_decl,"as=:task_def",dpointer); 

decl s = dpointer = getnode("decl s"); 
addatt(dpointer,"as list<"); -
dlink(task_spec,"as=:decl_s",dpointer); 

else if (strcmp(type,"TASK var id") == 0){ 
dpointer = getnode("~ar-id"T; 
addatt(dpointer,"lx syrnrep"); 
addonstring(dpointer,"lx symrep",yytext); 
dlink(task_decl,"as_id",dpointer); 

} 
else if (strcmp(type,"subprogram decl") == 0){ 

subprogram decl = dpointer = -

} 

getnodeT"subprogram decl"); 
addatt(dpointer,"as designator"); 
addatt(dpointer,"as-header"); 
addatt(dpointer,"as-subprogram def"); 
dlink(decl_s,"as_list <",dpointer); 

entry= dpointer = getnode("entry"); 
addatt(dpointer,"as_dscrt_range_void"); 
addonword(dpointer,"as dscrt range void","void"); 
addatt(dpointer,"as param s"T; -
dlink(subprogram_decl,"as=:header",dpointer); 

param s = dpointer = getnode("param s"); 
addatt(dpointer,"as list<"); -
dlink(entry,"as parim s",dpointer); - -

else if (strcmp(type,"entry_id") == 0){ 

54 



} 

dpointer = getnode("entry id")~ 
addatt(dpointer,"lx symrep")~ 
addonstring(dpointer,"lx_symrep",yytext>~ 
addatt(dpointer,"sm spec")~ 
addatt(dpointer,"sm-address")~ 
dlink(subprogram_decl,"as_designator",dpointer)~ 

55 

else if (strcmp(type,"in") == 0){ 

} 

mode= in= dpointer = getnode("in")~ 
addatt(dpointer,"as ids")~ 
addatt(dpointer,"as-naie")~ 
addatt(dpointer,"as-exp void")~ 
addonword(dpointer,"as exp void","void")~ 
dlink(param_s,"as_list-<",dpointer); 

TASK ids= dpointer = getnode("id s")~ 
addatt(dpointer,"as list<">; -
dlink(in,"as_id_s",dpointer)~ 

for(itop=O~ itop <top~ itop++){ 
dpointer = getnode("in id")~ 
addatt(dpointer,"lx syirep"); 
·addonstring(dpointer,"lx symrep",stack[itop].id); 
addatt(dpointer,"sm obj type")~ 
addatt(dpointer,"sm-first"); 
dlink(TASK_id_s,"as=list <",dpointer); 

} 
top = 0; 

else if (strcmp(type,"in out") == 0){ 
mode= in out= dpointer = getnode("in out"); 

} 

addatt(dpointer,"as ids">; -
addatt(dpointer,"as-naie"); 
addatt(dpointer,"as-exp void"); 
addonword(dpointer,"as exp void","void"); 
dlink(param_s,"as_list-<",dpointer); 

TASK ids= dpointer = getnode("id s"); 
addatt(dpointer,"as list <">; -
dlink(in_out,"as_id=s",dpointer); 

for(itop=O; itop <top; itop++){ 

} 

dpointer = getnode("in out id"); 
addatt(dpointer,"lx syirep">; 
addonstring(dpointer,"lx symrep",stack[itop].id); 
addatt(dpointer,"sm obj type"); 
addatt. < dpointer, "sm -first"> ~ 
dlink(TASK_id_s,"as=list <",dpointer); 

top = 0~ 

else if (strcmp(type,"out") == 0){ 
mode= out= dpointer = getnode("out")~ 



addatt(dpointer,"as ids">: 
addatt(dpointer,"as-name">: 
addatt(dpoint~r,"as-exp void">: 
addonword(dpointer, 11as exp void","void">: 
dlink(param_s,"as_list-<",dpointer>: 

TASK ids= dpointer = getnode("id s">: 
addatt(dpointer,"as list<">: -
dlink(out,"as_id_s"-;-dpointer): 

for(itop=O: itop < top: itop++){ 
dpointer = getnode("out id">: 

56 

addatt(dpointer,"lx symrep">: 
addonstring(dpointer,"lx symrep",stack[itop].id>: 
addatt(dpointer,"sm obj type">: · 

} 

} 

addatt(dpointer,"sm-first">: 
dlink(TASK_id_s,"as=:list <",dpointer): 

top = O: 

else if (strcmp(type,"used name id") == 0){ 
dpointer = getnode("used name id"): 
addatt(dpointer,"lx symrep">:
addonstring(dpointer,"lx symrep",yytext>: 
addatt ( dpointer, "sm defn11 >: 
dlink(mode,"as_name11 ,dpointer>: 

} 
else if (strcmp(type,"delay") == 0){ 

dpointer = getnode("delay">: 
addatt(dpointer,"as exp">: 
dlink(mode,"xxxxxxx11 ,dpointer>: 

} 
else if (strcmp(type,"template") == 0){ 

dpointer = getnode("template">: 
addatt(dpointer,"lx symrep">: 
dlink(mode,"as_name11 ,dpointer): 

} 
else if (strcmp(type,"template") == 0){ 

dpointer = getnode("template">: 
addatt(dpointer,"lx symrep">: 
dlink(mode,"as_name11 ,dpointer>: 

} 
else if (strcmp(type,"template") == 0){ 

dpointer = getnode("template"): 
addatt(dpointer,"lx symrep">: 
dlink(mode,"as_name11 ,dpointer>: 

} 
else if (strcmp(type,"template") == 0){ 

dpointer = getnode("template">: 
addatt(dpointer,"lx symrep">: 
dlink(mode,"as_name11 ,dpointer): 

} 
else if (strcmp(type,"template") == 0){ 



dpointer = getnode("template"); 
addatt(dpointer,"lx symrep"); 
dlink(mode,"as_name",dpointer); 

} 
else{ 

} 

fprintf(stderr,"insert: can't find %s0,type); 
exit(4); 

} 
islist(s) 
chars[];{ 

} 

int i; 

for(i=O; s[i] != ' '; i++) 
i f ( S [ i ] == I ( I ) 

return(l); 
return(O); 

itoa(n,s) 
chars[]; 
int n; { 

/* convert n to characters in s */ 

} 

int i, sign; 

if < (sign = n) < 0 > 

n = -n; 
i = 0; 
do { 

s[i++] = n% 10 + '0'; 
} while ((n /= 10) > 0); 
if (sign< 0) 

s[i++l = '-'; 
s[i] =' '; 
reverse(s); 

reverse(s) 
char s [] ; { 

} 

int c, i, j; 

for (i = 0, j = strlen(s)-1; i<j; i++, j--){ 
c = s[i]; 
s[i] = s[j]; 
s[j] = c; 

} 

struct stemplate stable[MAXSYM]; 
struct stacker sstack[MAXSYM]; 
int stop; 
int curb; 

main(argc,argv) 

57 



} 

int argc; 
char*argv[]; { 

int i,j,k; 
FILE * fopen { ) ; 
char tempfn[20], dianafn[20]; 

if{argc < 2) 
exit {); 

else if{argc > 2){ 

} 

fprintf{stderr,"mt: too many arguementsO); 
exit { ) ; 

strcpy{tempfn,argv[l]); 
if{{tempfn[strlen{tempfn)-3] != '. ') I I 

{tempfn[strlen{tempfn)-2] != 'm') 
{tempfn[strlen{tempfn)-1] != 't' )){ 
fprintf{stderr,"input file must end with .mtO); 
exit { ) ; 

} 
if{{yyin = fopen{tempfn,"r")) == {FILE*> NULL){ 

printf{"mt: can't open %s0,tempfn); 
exit{); 

} 
tempfn[strlen{tempfn)-2] = ' '; 
strcpy{dianafn,tempfn>; 
strcat{dianafn,"diana"); 
strcpy{templine,""); 
strcpy{temperrl,""); 
strcpy{temperr2,""); 
strcpy{tempwarns,""); 
nerrs = 0; 
nwarns = 0; 
tnerrs = 0; 
tnwarns = 0; 
linenum = 0; /* Current line number */ 
nnodes = 0; /* Number of DAINA Nodes in tree */ 
for{j=O; j < MAXSYM; j++){ 

} 

strcpy{stable[j].blockname,""); 
for{k=O; k < MAXSYM; k++) 

strcpy{stable[j].symbol[k].name,""); 

for{j=O; j < MAXSYM; j++) 
strcpy{sstack[j].blockname,""); 

stop = -1; 
curb = -1; 
while {{i = yyparse{)) != 0); 
fprintf{stdout," Number of errors: %dO,tnerrs); 
fprintf{stdout,"Number of warnings: %dO,tnwarns); 
if{tnerrs == 0) 

treedump{dianafn,dnode,nnodes); 
fclose{yyin); 

58 



yyerror(s) 
char *s; { 

} 

int i; 

nerrs++; tnerrs++; 
for(i=O; temperrl[i] !=' '; i++) 
temperrl[i-strlen(yytext)] = '$'; 
strcat(temperr2,s); 

spush(s,decmode) 
char *s; 
short decmode;{ 

if(stop >= MAXSYM){ 
fprintf(stderr,"too many levels; adust MAXSYMO); 
exit(4); 

} 
strcpy(sstack[++stop].blockname,s); 
setcurb (); 
if(decmode == 0) return; 
if(decmode == 1 && stable[curb].decval > 0) 

yyerror("Task already declared"); 
else if{decmode == 2 && stable[curb].decval > 1) 

yyerror("Task body already defined"); 
else if(decmode == 2 && stable[curb].decval == 0) 

yyerror("Task undeclared"); 
else if(decmode != 1 && decmode != 2) 

fprintf(stderr,"decmode is: %d",decmode); 
else{ 

if(decmode == 1 && stop > 0) 
stable[curb].parent = findpar(); 

else if(stable[curb].parent != findpar() 
&& stop > 0) 

59 

yyerror("Mismatch of parent"); 
stable[curb].decval = stable[curb].decval + decmode; 

} 
} 
spop() { 

if (stop < 1) { 

} 

fprintf(stderr, 11 spop: too many popsO); 
exit(4); 

stop--; 
setcurb(); 

} 
setcurb(){ 

int i; 

for(i=O ; i < MAXSYM; i++) 
if(strcmp(stable[i].blockname, 



} 

sstack[stop].blockname) 
curb = i; 
return(curb); 

0){ 

for(i=O ; i < MAXSYM; i++) 
if(strcmp(stable[i].blockname,"") 

strcpy(stable[i].blockname, 
sstack[stop].blockname); 

curb = i; 
return(curb); 

} 

0){ 

printf("ERROR: setcurb can't find the blockO); 
exit(4); 

} 
chkblks(){ 

} 

int i,flag; 
char s[l32]; 

flag= 0; 
s[O] = ' '; 
for(i=l ; i < MAXSYM; i++) 

if ((stable[i].parent ==curb) 
&& (stable[i].decval == 1)){ 
flag++; 
strcat(s,stable[i].blockname); 

} 

if<flagH 
tnerrs++; 
printf("O** ERROR: Missing task bodies: %s0,s); 

} 

findpar () { 

} 

int i; 

for(i=O ; i < MAXSYM; i++) 
if(strcmp(sstack[stop-l].blockname, 

stable[i].blockname) == 0) 
return(i); 

fprintf(stderr,"findpar can't find the parentO); 
exit(4); 

st isit(id) 
-char id[ 1; { 

int i,j,k,temp; 

for(j=stop; j >= 0; j--){ 
for(k=O ; k < MAXSYM; k++) 

if(strcmp(stable[k].blockname, 
sstack[j].blockname) == 0) 

60 



} 

} 

temp = k; 
for(i=O ; i < MAXSYM; i++) 

if(strcmp(id,stable[ternp].syrnbol[i].name) -- 0) 
return(l); 

yyerror("Variable undeclared"); 

st insert(id) 
-char id[]; { 

} 

int i; 

for(i=O ; i < MAXSYM; i++) 
if(strcmp(id,stable[curb].syrnbol[i].narne) -- 0){ 

yyerror("Variable previously declared"); 
return(-1); 

} 

for(i=O ; i < MAXSYM; i++) 
if(strcmp(stable[curb].symbol(i].name,""> -- 0){ 

strcpy(stable[curb].symbol[i].narne,id); 
return(l); 

} 
yyerror("Out of room in symbol table: adjust MAXSYM"); 

sendtest(s) 
chars[]; { 

} 

if(strcmp(s,sstack[stop].blockname) != 0) 
yyerror("Identifier doesn't match block"); 

#define MAXTOP 20 

struct distack stack[MAXTOP]; 

int top = 0; 

push(s) 

} 

char *s;{ 

if(top >= MAXTOP){ 
fprintf(stderr,"too many variablesO); 
exit(4); 

} 
strcpy(stack[top++].id,s); 

FILE *fopen{), *diana; 

treedurnp(dianafn,dnode,nnodes) 
char dianafn[]; 
struct template dnode[]; 
int nnodes; { 

61 



} 

int i,j,isflag; 
char tlistl[l30], tlist2[130]; 
struct anode *templ; 

if((diana = fopen(dianafn,"w")) == (FILE*) NULL){ 
fprintf(stderr,"error opening %sO,dianafn); 
return; 

} 
for(i=O; i<nnodes; i++){ 

fprintf(diana,"A%d:",i); 
fprintf(diana," %-25s [ ",dnode[i].name); 
for(j=O; (j < MAXATT) && 

(strcmp(dnode[i].att[j].na:me,""> != O);j++){ 
templ = dnode[i].att[j].list; 
isflag = islist(dnode[i].att[j].name); 
strcpy(tlistl,""); 
while ((templ != (struct anode*) NULL) && 

} 

(templ->dnode != -1)){ 
strcat(tlistl,"A"); 
itoa(templ->dnode,tlist2); 
strcat(tlistl,tlist2); 
strcat(tlistl,". ">; 
templ = templ->alist; 

if (isflag) 
strcat(tlistl,"> "); 

if ( j > 0) 
fprintf(diana,"; "); 

if ((i > 99) && (j > 0)) 
fprintf(diana," "); 

else if ((i > 9) && (j > 0)) 
fprintf(diana," ">; 

fprintf(diana,"%s ",dnode[i].att[j].name); 
if (strcmp(tlistl,"") != 0) 

fprintf(diana,"%s",tlistl); 
} 
fprintf(diana,"]O); 

} 
fclose(diana); 

#define MAXDNODES 100 
#defipe MAXATT 10 
#defihe MAXSYM 10 
#define MAXIDLEN 25 

struct template { 
char name[MAXIDLEN]; /*DIANA node name*/ 
struct { 

char name[MAXIDLEN]; 
struct anode *list; 

} att[MAXATT]; 
} ; 

62 



struct anode { 

} ~ 

struct anode *alist~ 
short dnode~ 

struct stacker { 
char blockname[MAXIDLEN] 
} ~ 

struct stemplate { 
char blockname[MAXIDLEN]~ 
short decval~ /* declaration value */ 
short parent~ /* points to parent */ 
short item s~ /* items in block */ 
short stm s~ /* statements in block */ 
struct { -

char name[MAXIDLEN]~ 
struct { 

char name[MAXIDLEN]~ 
short val~ 

} entryvar[MAXSYM]~ /*array of entry variables */ 
} entry[MAXSYM] ~ 

struct { 
char name[MAXIDLEN]~ 

} symbol[MAXSYM]~ /*array of regular variables*/ 
} ~ 

struct distack { 
char id[MAXIDLEN] 
} ; 

%{ 
char templine[l33], temperrl[l33], 

temperr2[133], tempwarns[l33]~ 
char recentid[l33]~ 
int linenum, nerrs, nwarns~ 
int tnerrs, tnwarns~ 
%} 

rword [a-zA-Z]+ 
id [a-zA-Z]([a-zA-Z0-9]* ?[a-zA-Z0-9]+)* 
taskbody [tT][aA][sS][kK][ ][EB][oO][dD][yY] 
%% 

{rword} { addit()~ return(rw_lookup())~.} 

{taskbody} {addit()~ return(399)~ } 

63 

{id} { addit()~ strcpy(recentid,yytext)~ return(350)~ } 

"~" { addit()~ return(351)~ } 

">" { addit()~ return(352)~ } 



II ( II { addit(); return(353); } 

"=)II { addit(); return(354); } 

II 11 

' 
II • II . 

addit(); return(355); } 

{ addit(); return(356); } 

"·-" .- { addit(); return(357); } 

"*" { addit(); return{358); } 

n;n { addit{); return{359); } 

"+" { addit{); return{360); } 

"-" { addit{); return(361); } 

[0-9]+ { addit(); return(362); } 

II II . { addit(); return(363); } 

"0 { printit(); } 

[ ] + ·{ add it < ) ; } 

"--".* { addit<>; } 

%% 
static struct rwtable { 

char *rw name; 
int tok val; 
} rwtable[] = { 
abort 11 , 301, 
accept", 302, 
begin 11 , 303, 
body 11 , 304, 
delay", 305, 
do", 306, 
else", 307, 
end", 308, 
entry", 309, 
in", 310, 
integer", 311, 
is 11 , 312, 
null .. , 313, 
or", 314, 
out", 315, 
procedure .. , 316, 
put 11 , 317, 

"select .. , 318, 
"task", 319, 

64 



"terminate", 
"type", 
"when", 
} ; 

320, 
321, 
322,-

static int rw_lookup(){ 

int c; 
char temp£132]; 
struct rwtable *low = rwtable, 

*high = (rwtable-1 + 
sizeof(rwtable)/sizeof(rwtable{O])), 

*mid; 

lcase(temp,yytext); 
while <low<= high){ 

mid = low + (high-low)/2; 
if ((c = strcmp(mid->rw name, temp)) -- 0) 

return(mid->tok val); 
else if (c < 0) -

low = mid + 1; 
else 

high = mid - 1; 
} 
strcpy(recentid,yytext); 
return(350); 

} 
lcase(s,t) /* copy tolower(t) to s */ 

char s { ] , t [ ] ; { 

int i; 

i = 0; 
while( (s[i] = tolower(t[i])) != 1 1 ) 

i++; 
} 
warning () { 

strcat(temperrl,"-"); 
if (! nwarns) 

strcat(tempwarns, 
"Undecodable Character(s) Ignored"); 

strcat(templine,yytext); 
nwarns++; tnwarns++; 

} 
addit(){ 

} 

int i; 

strcat(templine,yytext); 
for(i=O; i< (strlen(yytext)); i++) 

strcat(temperrl," "); 

65 



printit(){ 

printf("%3d %s0,++1inenum,temp1ine); 
strcpy(temp1ine,"">; 
if(nerrs I I nwarns) 

print£(" %sO,temperr1); 
if(nerrs){ 

nerrs = 0; 
print£(" *** $ERROR: %s0,'temperr2); } 

if(nwarns){ 
nwarns = 0; 
print£(" ** ... WARNING: %sO,tempwarns); 

strcpy(temperr1,"">; 
strcpy(temperr2,""); 
strcpy(tempwarns,"">; 

} 
%{ 
char recent2[133]; 
%} 

%token ABORT 301 
%token ACCEPT 302 
%token BEGIN 303 
%token BODY 304 
%token DELAY 305 
%token DO 306 
%token ELSE 307 
%token END 308 
%token ENTRY 309 
%token IN 310 
%token INTEGER 311 
%token IS 312 
%token ADANULL 313 
%token OR 314 
%token OUT 315 
%token PROCEDURE 316 
%token PUT 317 
%token SELECT 318 
%token TASK 319 
%token TERMINATE 320 
%token TYPE 321 
%token WHEN 322 

%token TASKBODY 399 

%token IDENTIFIER 350 
%token SCOLON 351 
%token RPAREN 352 
%token LPAREN 353 
%token POINTER 354 
%token COMMA 355 
%token COLON 356 
%token COLEQU 357 

66 

} 



%token MULTIPLY 358 • 
%token DIVIDE 359 
%token ADD 360 
%token SUBTRACT 361 
%token CONSTANT 362 
%token PERIOD 363 

%% 

compilation {insert("compilation")1} compilation_unit 

compilation_unit : library_unit 1 

library_unit : subprogram_body 1 

subprogram_body : 

. 
I 

subprogram specification 
IS {insert ("procedure••) 1} 

declarative part or not 
BEGIN {chkblks()1}- -

sequence of statements 
END end id or not SCOLON 
error 

subprogram specification : PROCEDURE IDENTIFIER 
{spush(recentid,0)1 insert("proc_id")1} 1 

declarative_part_or_not {insert("item s")1} 
declarative part 

I 1 . -

:·basic ~eclarative item 

67 

declarative_part 
declarative part basic declarative item 
later declarative item- -
declarative_part Iater_declarative_item . 

I 

basic declarative item 

. 
I 

{insert("var">1 insert("id s")1} 
identifier list COLON -
INTEGER 
{insert("constrained")1} SCOLON 

identifier list identifier list COMMA IDENTIFIER 
{st insert(recentid)1 insert("var id")1} 

I IDENTIFIER 
{st_insert(recentid)1 insert("var_id")1} . 

I 

later declarative item 

. 
I 

task specification 
task:=body 



task_specification {insert("task_decl");} TASK 
type or not 
IDENTIFIER {spush(recentid,l); 
insert("TASK var id");} 
ts or not SCOLON-{spop();} ; 

task_body TASKBODY IDENTIFIER {spush(recentid,2);} IS 
declarative part or not 

BEGIN {chkblks();} - -
sequence of statements 

END end id or not SCOLON {spop();} 

type_or_not TYPE 

ts or not IS 
entry declaration seq 

END end Td or not -. 
' 

end id or not 
-1 ; 

IDENTIFIER {sendtest(recentid);} 

id or not IDENTIFIER 

entry_declaration_seq entry declaration seq 
entry=declaration-
; 

entry_declaration {insert( "subprogram_decl");} 
ENTRY IDENTIFIER 
{addent(recentid); 
insert("entry id");} 
formal_part_or_not SCOLON 

formal part or not : formal_part - - - I ; 

forrnal_part : LPAREN parameter_specification RPAREN ; 

parameter_specification : entry id list COLON mode 
INTEGER-{insert("used name id");} 
I parameter_specification SCOLON 

mode 

entry id list COLON mode 
INTEGER-{insert("used_name_id");} 

IN {insert("in");} 
IN OUT {insert("in out");} 
OUT {insert("out")~} 

68 



entry id list : entry id list COMMA 
IDENTIFIER {st_insert(recentid); push(recentid);} 
I IDENTIFIER {st_insert(recentid); push(recentid);} 
; 

sequence_of_statements~or_not sequence_of_statements 

sequence_of_statements sequence_of statements statement 
statement 

statement 

. 
I 

null statement 
assignment statement 
delay statement 
entry-call statement 
abort-statement 
accept statement 
select-statement 
put_statement 

null statement ADANULL SCOLON 

put_statement : PUT LPAREN IDENTIFIER 
{st_isit(recentid);} RPAREN SCOLON 

assignment_statement IDENTIFIER {st isit(recentid);} 
COLEQU expression SCOLON 

; 

expression expression ADD operand 
expression SUBTRACT operand 
factor 

factor 

operand 

. 
I 

; 

operand 
factor MULTIPLY operand 
factor DIVIDE operand 

IDENTIFIER {st_isit(recentid);} 
CONSTANT 
LPAREN expression RPAREN 

accept_statement ACCEPT IDENTIFIER 
ac formal part or not 
ac-stuff or not -
SCOLON 

69 



ac_formal_part_or_not ac_formal_part 

ac_formal_part : LPAREN ac parameter specification 
RPAREN-; -

ac parameter specification ac entry id list COLON mode 
- - INTEGER Tins~riC"~sed name id");} 

ac parameter specification-SCOLON 
ac-entry id list COLON mode 
INTEGER {insert("used_name_id");} 

ac entry id list : ac entry id list COMMA 
- IDENTIFIER {st-isit(recentid); push(recentid);} 

IDENTIFIER {st=isit(recentid); push(recentid);} 

ac stuff or not 

abort statement . 
I 

DO sequence_of statements END id or not 

ABORT task_abort_seq SCOLON 

task abort seq : task abort seq COMMA IDENTIFIER 
- - I IDENTIFIER -

delay_statement DELAY expression SCOLON 

entry_call_statement 

entry_name 

entry_name actual_parameter_part_or_not 
SCOLON 
i 

IDENTIFIER {strcpy(recent2,recentid);} 

70 

PERIOD IDENTIFIER {chkent(recent2,recentid);} 

actual_parameter_part_or_not actual_parameter_part 

actual_parameter_part : LPAREN expression RPAREN 

select statement 

i 

; 

selective wait 
conditional entry call 
timed_entry=call -

conditional_entry_call SELECT entry call statement 
sequence_of_statements_or_not 



timed_entry_call 

selective wait 

selmore or not 

elsemore or not 
i 

ELSE 
sequence_of_statements 

END SELECT SCOLON 

SELECT entry call statement 
sequence_of_statements_or_not 

OR 
delay_statement 

END SELECT SCOLON 

SELECT 
select alternative 

selmore or not 
elsemore or not 
END SELECT SCOLON 

selmore or not OR select alternative . 
I 

ELSE sequence_of_statements 

select alternative selective wait alternative 

selective wait alternative accept alternative 

I delay alternative 
terminate alternative 

i 

accept alternative : accept statement 
- sequence_of_statements_or_not 

delay alternative : delay statement 
-sequence_of_statements_or_not . 

I 

terminate alternative 

%% 

TERMINATE SCOLON 

71 



VITA 

Monty Dale Bates 

Candidate for the Degree of 

Master of Science 

Thesis: IMPLEMENTATION OF MINI-TASK: A LANGUAGE BASED ON 
ADA'S TASKING MODEL 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Ponca City, Oklahoma, June 20, 
1963, the son of Kenneth and Carlene Bates. 

Education: Graduated from Ponca City High School, 
Ponca City, Oklahoma, in May 1981. Attended 
Northern Oklahoma College from August, 1981 to 
December 1982. Received a Bachelor of Science 
degree in Computer Science from Oklahoma State 
University, July 1985. Completed the require
ments for a Master of Science degree in Computer 
Science at Oklahoma State University, December 
1987. 

Professional Experience: Programmer, Geography 
Department/NASA, Oklahoma State University, Sep
tember, 1985 to August 1986; Programmer, Horizon 
Insurance Agency, May 1986 to May 1987; Technical 
Writer, Department of Correspondence and Indepen
dent Study, Oklahoma State University, May 1984 
to May 1986; Programmer, Seminole Tribe of Flori
da, February 1986 to October, 1986; Graduate 
Teaching Assistant, Department of Computer Sci
ence, Oklahoma State University, February, 1984 
to May, 1987. 


