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Abstract

The quest for high thermal conductivity materials has lead to nano-composites

incorporating macromolecular materials with excellent thermal conductivity, such

as carbon nanotubes and graphene nano-ribbons, in a matrix of poorer thermal

conductivity. To minimize the interface thermal resistance the stiff, incorporated

materials can be chemically functionalized with various side chains, this however

may disrupt the overall thermal conductivity of the fillers. We report here an

efficient theoretical method using normal modes to calculate the thermal conduc-

tivity of such systems and show how the participation ratio of these modes can

be used to evaluate different choices for functionalization. We use this method

to examine how effective different organic chains improve the heat flux through a

graphene nano-sheet, also to identify the configuration of the functional groups

that best conduct heat to the macromolecule. To confirm the efficiency of our

model, we compare results from simulations including non-linear corrections to

results from the normal mode analysis conducted on identical systems. Finally,

we investigate the effect of space correlated noise on the overall results of opti-

mization.

xvi



Introduction

Structured composites attract enormous attention for several reasons, includ-

ing the promise to enhance the properties of the parent polymers (mechanical

properties, permeability, thermal and electrical conductivity, etc), while main-

taining the typical polymer light weight. Carbon-based nanocomposites (material

with fillers with at least one dimension less than 100 nm) promise multi-functional

properties, e.g., electrical and thermal conductivities in addition to enhanced me-

chanical strength. Increased effectiveness is expected for high-aspect ratio fillers,

such as carbon nanotubes, graphene sheets/ribbons.

The thermal conductivity of single wall carbon nanotubes (SWCNTs), fig.0.1,

at room temperature is about 6000 W/mK and that of multi-wall carbon nan-

otubes (MWCNTs) is about 3000 W/mK [7, 13, 4]. Graphene also displays a

number of remarkable properties including extremely high electron mobility (up

to ∼ 2× 105 cm2/V s [24, 6]), and extremely high thermal conductivity (ranging

from (4.84±0.44)×103 to (5.30±0.48)×103 Wm−1K−1)[2]. The thermal conduc-

tivity of single and few-layer graphene depends strongly on the size and thickness

of the flakes. A-side-by side comparison of some of the physical properties of

graphene and other materials is shown in tab.1.

The outstanding thermal performance of these composites suggests their use

in thermal management applications in electronics and optoelectronics [21, 39,

5, 11]. However, the incorporation of CNTs and graphene into polymers has

not produced high thermal conductivity composites because of the constituents’

interface thermal resistance. This “Kapitza resistance” occurs at the boundary

of two dissimilar materials [17, 18] and produces a temperature drop across the

interface that is proportional to the heat flux. The effect is large when the

two materials have a large difference in elasticity so that there is only a weak

1



Table 1: Physical properties

Mechanical properties

Young modulus Tensile strength
(TPa) (GPa)

SWCNT 1 - 5 13 - 53

MWCNT 0.2 - 0.95 11 - 150

Graphene 1 80

Stainless steel 0.186 - 0.214 0.38 - 1.55

Thermal properties

Thermal conductivity Phonon mean Speed of
(W/(m K)) free path (µm) sound (m/s)

SWCNT 6000 0.5 - 1.5 2× 104

MWCNT 3000 0.22 -

Graphene 4.84× 103 - 5.30× 103 0.775 1.5× 104

Stainless steel 401 - -

Electrical properties

Resistivity Mobility
Ω cm cm2 V −1 s−1

CNT 0.34 10−4 105

Graphene 10−6 2× 105

Stainless steel 7.2× 10−5 -

2



Figure 0.1: Conceptual diagram of single-walled carbon nanotube (SWCNT) (A) and
multiwalled carbon nanotube (MWCNT) (B) delivery systems showing typical dimen-
sions of length, width, and separation distance between graphene layers in MWCNTs
[28].

coupling of phonon modes at the interface. If this resistance could be minimized

then polymer composites could be used in radiators and other heat exchangers

replacing heavier, costlier metallic components.

To this end, in the graphene system, two strategies have been proposed. The

first is based on the fabrication of graphene strips with reduced lateral size,

(known as graphene nanoribbons (GNRs)[35]). GNRs with width(s) from several

tens of nanometers down to 2 nm have been fabricated either by plasma etching

[19] or by means of chemical treatment of graphite [20]. Alternatively, chemical

functionalization of graphene-based materials [38] is a promising strategy and

does not require aggressive ribbon width reduction. It may even enhance the me-

chanical strength of the composites because of the potential of these side groups to

bond to the matrix. In addition, functionalized graphene tends to aggregate less

than do nonfunctionalized graphene when dispersed in aqueous or organic solu-

tions fig.0.2. In spite of all these advantages, functionalization may induce severe

disruption of the otherwise good conducting properties of graphene. Optimizing

the thermal conduction to the graphene appears then to be a major challenge,

and constructing models to simulate the heat conduction to the graphene tend

3



to be helpful.

Figure 0.2: Representative simulation snapshots for GS of 54 carbon atoms in n-octane
at 300 K. Red and yellow spheres represent CH2 and CH3 groups of n-octane, respec-
tively. Visual inspection suggests that pristine GS (left) aggregate yielding pancake
stacks. When the GS are functionalized they remain well dispersed in n-octane after
120 ns of simulation (right) [9]

The interactions between a system of fewer degrees of freedom, such as a small

sheet of graphene, and a heat bath with many degrees of freedom such a bath

of polymers, can be simulated through molecular dynamics (MD). Alternatively,

the effect of the solvent can be approximated by the inclusion of a set of drag

and random terms in the particles equations of motion, the resulting dynamics is

known as Langevin dynamics, and their principal advantage over MD simulation

is the reduction in the time required for computation which eventually allows

one to perform longer simulations. Langevin dynamics will be used throughout

this thesis to analyze heat transport in carbon based materials and graphene in

particular. The origin of the drag force comes from the impulse produced by the

multiple collisions of the particle and the rest of the molecules in the fluid, in this

scenario some of the particle’s momentum is transferred to the fluid causing it to

slow down, also the extend to how the particle’s history affects its future motion.

The noise is a stochastic or random force, the properties of which are given only

in the average. This force is supposed to come from occasional impacts of the

particle and the molecules of the surrounding medium. It is then not surprising to

4



find that there is a fundamental relation between friction and noise. If the system

approaches equilibrium at long times, the fluctuation-dissipation theorem is used

to relate these forces to each other. Particularly, if the friction at any time t is

proportional to the velocity at the same time, the noise in the classical limit, is

delta-function correlated or ”white”. (”White” means that the Fourier transform

of the correlation function of the noise, or its spectral density, is independent of

frequency). The Langevin equations in this case are called ”Markovian”. This

is usually the case when the forces of impact between the particle and the rest

of the molecules of the fluid are varying extremely rapidly over the time of any

observation. Real problems however are often not Markovian, the friction at time

t can depend on the history of the velocity v(t′) for times t′ that are earlier than

t. That is, the friction may have a ’memory’. In this case, the friction coefficient

is replaced by a memory function K(t), sometimes called an aftereffect function.

Problems of this kind are called non-Markovian.

Classical molecular dynamics simulation and classical Langevin dynamics can

only produce classical results, the validity of which are justified at high tempera-

tures but doubtful in the low temperature limit. Recall that the Debye tempera-

ture for carbon based material such as graphene is high and temperatures of 300K

are considered low. Because of this, the heat capacity, thermal conductivity and

other properties are much less than their classical values. In situations such as

these, one can in fact restore, the classical Langevin dynamics by using quantum

heat baths derived from Bose-Einstein statistics, such treatment is known as a

classical approximation to the quantum Langevin equations. its advantage, over

its classical counterpart is that it predicts the expected behavior of the system at

low temperatures and produces the classical results at high temperatures. This

thesis is structured as follow

• Chapter 1: Langevin Equations

5



In this chapter, we derive the generalized Langevin equations for a system

interacting with two langevin heat baths. The heat baths are modeled

in this approach as infinite numbers of coupled harmonic oscillators. In

the first half of the analysis, we treat the oscillators in the heat baths as

classical particles that are canonically distributed according to Boltzmann

statistics. In the second half of the analysis the oscillators in the baths are

treated as quantum particles canonically distributed with respect to the

free oscillators Hamiltonian according to Bose-Einstein statistics.

• Chapter 2: Using Normal Modes to Calculate and Optimize Ther-

mal Conductivity in Functionalized Macromolecules

In this chapter we introduce a new technique to calculating thermal con-

ductivity of functionalized molecules in general and use graphene nano-

sheets as a case study. We show by linearizing the interatomic interactions,

and by numerically calculating the normal modes, that the total heat flux,

throughout the functionalized macromolecule is a function of the tempera-

ture difference of the hot and cold baths. Even more interestingly, we show

that we can control the heat transport throughout the system by varying

the functionalized chains.

• Chapter 3: Langevin Equations with Thermal Colored Noise

This chapter is an extension the analysis developed in chapter 2, where

now we include means to suppress high frequency modes through an expo-

nentially correlated noise. We incorporate quantum driving forces that are

temperature dependent to mimic the effect of Bose-Einstein suppression

of high energy modes. We also investigate ways to improve the thermal

conductivity to the graphene

• Chapter 4: Langevin Equations with Thermal Colored Noise, Nu-
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merical Solution

In this chapter we solve the classical Langevin equations numerically for a

system in contact with Langevin heat baths. The results of these technique

are used to foresee the extent to which the normal mode approach devel-

oped in chapters 2 and 3 is capable of predicting the best configurations to

optimizing heat throughout the the functionalized graphene.

• Chapter 5: Classical Langevin Equations with Time and Space

Correlated Noise

In this chapter we consider the dynamics of interacting particles which are

driven by correlated (not-independent) noise sources. We investigate the

effect of spatial correlations in the noise on the dynamical correlations in

the relative motion of the system particles.

• Chapter 6: Conclusions
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Chapter 1

Langevin Equations

1.1 Introduction

The interactions between a system of fewer degrees of freedom and a heat bath

with many degrees of freedom can be approximated in the system’s equations of

motion by the inclusion of apparently random and drag terms [40, 23, 8]. In this

chapter, we shall derive the generalized Langevin equations for a system described

by the Hamiltonian Hs interacting with two Langevin heat baths described by

the Hamiltonians HR and HL respectively as shown in fig.1.1. The heat baths

are modeled in this approach as infinite numbers of coupled harmonic oscillators.

The randomness in the interactions between the heat bath and system originates

from the unknown initial conditions of the oscillators in the bath. In the first half

of the derivation, we treat the oscillators in the heat baths as classical particles

that are canonically distributed according to Boltzmann statistics. In the second

half, the oscillators in the baths are treated as quantum particles canonically

distributed with respect to the free oscillators Hamiltonian according to Bose-

Einstein statistics.

Figure 1.1: Pictorial representation of a system described by the Hamiltonian Hs

interacting with two heat bath described by the Hamiltonian HL and HR.
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1.2 Development

Consider a system made of N particles the first and last of which interact with

two harmonic oscillator baths fig.1.1. The interactions among the particles in

the system are described by the potential U(qs1 , ....., qsN
) where qsi

refer to the

position of the ith particle in the system. If psi
is the momentum the ith particle

in the system, the Hamiltonian of the system is of the form

Hs =
N∑
1

p2
si

2msi

+ U(qs1 , ....., qsN
) (1.1)

In the independent oscillator model of the heat bath, the particle is surrounded

by a large (eventually infinite) number of heat bath particles, each attached to

it by a spring. The Hamiltonian of the left and right oscillator baths are of the

form

HR =

NR∑
1

p2
Ri

2mRi

+
1

2
mRi

ω2
Ri

(
qRi

− λRi

mRi
ω2

Ri

qs1

)2

(1.2)

HL =

NL∑
1

p2
Li

2mLi

+
1

2
mLi

ω2
Li

(
qLi

− λLi

mLi
ω2

Li

qsN

)2

(1.3)

where the pR1 , ....., pRNR
, pL1 , ....., pLNL

, qR1 , ....., qRNR
, qL1 , ....., qLNL

are respec-

tively the momenta and displacements of the oscillators in the right and left heat

baths, ωR1 , ....., ωRNR
, ωL1 , ....., ωLNL

, mR1 , ....., mRNR
, mL1 , ....., mLNL

are respec-

tively the oscillator frequencies and masses, and λR1 , ....., λRNR
, and λL1 , ....., λLNL

,

are respectively the coupling constants with the right and left heat baths.

The Hamiltonian of the entire system and baths is

H = Hs + HR + HL (1.4)
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Let us now focus on the heat baths. The equations of motion are

q̇Ri
=

pRi

mRi

ṗRi
= −mRi

ω2
Ri

(qRi
− λRi

mRi
ω2

Ri

qs1)

q̇Li
=

pLi

mLi

ṗLi
= −mLi

ω2
Li

(qLi
− λLi

mLi
ω2

Li

qsN
)

(1.5)

Introducing the vectors

~SbR
(t) =

(
qR1 , ..., qRNR

, pR1 , ..., pRNR

)

~SbL
(t) =

(
qL1 , ..., qLNL

, pL1 , ..., pLNL

)

~Ss(t) = (qs1 , ..., qsN
, ps1 , ..., psN

)

(1.6)

Eq.1.5 becomes of the form

~̇SbR
(t) =




0̃ M̃−1
R

−K̃R 0̃


 ~SbR

(t) +




0̃ 0̃

λ̃R

t
0̃


 · ~Ss(t)

~̇SbL
(t) =




0̃ M̃−1
L

−K̃L 0̃


 ~SbL

(t) +




0̃ 0̃

λ̃L

t
0̃


 · ~Ss(t)

(1.7)

where M̃−1 is a diagonal matrix with elements 1/mi. K̃ is also diagonal with

elements Kij = δijmiωi
2, λ̃Rij

= δi1λj, and λ̃Lij
= δiNλj, δij is the Kronecker

delta function

If we define
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Ã =




0̃ M̃−1

−K̃ 0̃




(1.8)

then the solution to eq.1.7 for each bath is of the form eq.1.9

~Sb(t) = exp(t Ã) · ~Sb(0) +

∫ t

0

dt′ exp((t− t′) Ã) ·




0̃ 0̃

λ̃t 0̃


 · ~Ss(t

′)
(1.9)

Integration by parts leads to another form, where we assumed that ~Ss(0) = 0

~Sb(t) = −Ã−1 ·




0̃ 0̃

λ̃t 0̃


 · ~Ss(t) + exp(t Ã) · ~Sb(0)+

∫ t

0

dt′ exp((t− t′) Ã) · Ã−1 ·




0̃ 0̃

λ̃t 0̃


 · d

dt

(
~Ss(t

′)
)

(1.10)

Now we turn our attention to the system. The equations of motion for the

system are

q̇si
=

psi

msi

ṗsi
= − ∂U

∂qsi

+ δi1

NR∑
j=1

λRj

(
qRj

− λRj

mRj
ω2

Rj

qsi

)
+ δiN

NL∑
j=1

λLj

(
qLj

− λLj

mLj
ω2

Lj

qsi

)

(1.11)
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which can also be expressed in the form

~̇Ss(t) = ~f(~Ss(t)) +




0̃ 0̃

λ̃R 0̃


 · ~SbR

(t)− η̃R · ~Ss(t) +




0̃ 0̃

λ̃L 0̃


 · ~SbL

(t)− η̃L · ~Ss(t)

(1.12)

where

~f(~Ss(t)) =

(
0, ...., 0,− ∂U

∂qs1

, .....,− ∂U

∂qsN

)

(1.13)

and

η̃R =




0̃ −M̃−1

δi1

NR∑
j=1

λ2
j

mj ω2
j

0̃




η̃L =




0̃ −M̃−1

δiN

NL∑
j=1

λ2
j

mj ω2
j

0̃




(1.14)

Substituting ~Sb with its expression from eq.1.10 leads to
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~̇Ss(t) = ~f(~Ss(t))−







0̃ 0̃

λ̃R 0̃


 · Ã−1

R ·




0̃ 0̃

λ̃R

t
0̃


 + η̃R


 · ~Ss(t)

+




0̃ 0̃

λ̃R 0̃


 · exp(t ÃR) · ~SbR

(0)+

∫ t

0

dt′




0̃ 0̃

λ̃R 0̃


 · exp((t− t′) ÃR) · Ã−1

R ·




0̃ 0̃

0̃ λ̃R

t


 · ~Ss(t

′)

−







0̃ 0̃

λ̃L 0̃


 · Ã−1

L ·




0̃ 0̃

λ̃L

t
0̃


 + η̃L


 · ~Ss(t)

+




0̃ 0̃

λ̃L 0̃


 · exp(t ÃL) · ~SbL

(0)+

∫ t

0

dt′




0̃ 0̃

λ̃L 0̃


 · exp((t− t′) ÃL) · Ã−1

L ·




0̃ 0̃

0̃ λ̃L

t


 · ~Ss(t

′)

(1.15)

The matrix elements of the second and fifth terms in eq.1.15 are all equal to zero,

accordingly the previous equation simplifies to
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~̇Ss(t) = ~f(~Ss(t)) +




0̃ 0̃

λ̃R 0̃


 · exp(t ÃR) · ~SbR

(0)+

∫ t

0

dt′




0̃ 0̃

λ̃R 0̃


 · exp((t− t′) ÃR) · Ã−1

R ·




0̃ 0̃

0̃ λ̃R

t


 · ~Ss(t

′)

+




0̃ 0̃

λ̃L 0̃


 · exp(t ÃL) · ~SbL

(0)+

∫ t

0

dt′




0̃ 0̃

λ̃L 0̃


 · exp((t− t′) ÃL) · Ã−1

L ·




0̃ 0̃

0̃ λ̃L

t


 · ~Ss(t

′)

(1.16)

This is the equation of motion for ~Ss(t), it is expressed in terms of its own

history from 0 to t and the bath variables enter only through their initial values.

1.2.1 Classical interpretation of the noise

If we assume that the bath particles act as classical particles, we can identify the

terms that acts as a noise source for each heat bath. We introduce the driving

forces for each bath as
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~FR(t) =




0̃ 0̃

λ̃t
R 0̃


 · exp(t ÃR) · ~SbR

(0)

~FL(t) =




0̃ 0̃

λ̃t
L 0̃


 · exp(t ÃL) · ~SbL

(0)

(1.17)

The forces defined in eq.1.17 depend explicitly on the initial positions and

momenta of the oscillators in the baths, interpreted here as classical particles.

These are not known, moreover, their number could be very large so that ex-

plicit specification of the initial conditions in the bath becomes impossible. One

solution would be to treat ~F (t) as a stochastic process. The properties of this

process can be obtained from the explicit expression for the random force since

the stochastic nature of the force originates from the unknown initial positions

and momenta of the particles in the bath. To this end, we consider an ensemble

of initial bath variables ~Sb(0) drawn at random from the Boltzmann distribution

eq.1.18:

P (~Sb(0)) =
e−βHbo

Z
(1.18)

where β =
1

kBT
, T is the temperature of the bath, kB is the Botltzmann constant,

and Hbo is the free Hamiltonian of the bath.

Hbo =
N∑
1

p2
i

2mi

+
1

2
miω

2
i q

2
i

(1.19)

The partition function Z is
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Z =

∫ (∏
i

dSbi

)
e−βHbo (1.20)

In this ensemble the mean of ~Sb(0) is

〈~Sb(0)〉 =

∫ (∏
i

dSbi

)
~Sb(0) e−βHbo

∫ (∏
i

dSbi

)
e−βHbo

= 0
(1.21)

The dispersion of ~Sb(0) can be found in a similar way 〈~Sb(0) · ~Sb(0)t〉, where

the superscript t stands for transpose. The component of ~Sb(0) · ~Sb(0)t are of the

form Sbi
(0)Sbj

(0) The average of which turns out to be of the form

〈Sbi
(0)Sbj

(0))〉 = δij
kBT

miω2
i

= kBTK−1
ij

(1.22)

which can also be written in a compact form as

〈~SbR
(0) · ~SbR

(0)t〉 = kBTRK̃−1
R

〈~SbL
(0) · ~SbL

(0)t〉 = kBTLK̃−1
L

(1.23)

From the above relations we derive the statistics of the noise
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〈~F (t)〉 = 0

〈~F (t)~F (t′)t〉 = 〈




0̃ 0̃

λ̃ 0̃


 · exp(t Ã) ·

(
~Sb(0) · ~Sb(0)t

)
· exp(t′ Ã)t ·




0̃ 0̃

λ̃ 0̃




t

〉

(1.24)

One can easily prove that

Ã =




0̃ Ĩ

−Ĩ 0


 ·

(
~Sb(0) · ~Sb(0)t

)−1

(1.25)

(
~Sb(0) · ~Sb(0)t

)
·


exp


t




0̃ Ĩ

−Ĩ 0


 ·

(
~Sb(0) · ~Sb(0)t

)−1







t

=

exp


−t




0̃ Ĩ

−Ĩ 0


 ·

(
~Sb(0) · ~Sb(0)t

)−1


 ·

(
~Sb(0) · ~Sb(0)t

) (1.26)

Substituting this in eq.1.24 bring the noise correlation to
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〈~F (t)~F (t′)t〉 = kBTR/L




0̃ 0̃

λ̃ 0̃


 · exp((t− t′) Ã) · 〈

(
~Sb(0) · ~Sb(0)t

)
〉 ·




0̃ 0̃

λ̃ 0̃




t

= kBTR/LL̃(t− t′)

(1.27)

where

L̃(t− t′) =




0̃ 0̃

λ̃ 0̃


 · exp((t− t′) Ã) · 〈

(
~Sb(0) · ~Sb(0)t

)
〉 ·




0̃ 0̃

λ̃ 0̃




t

(1.28)

or

L̃(t− t′) = −




0̃ 0̃

λ̃ 0̃


 · exp((t− t′) Ã) · Ã−1 ·




0̃ 0̃

0̃ λ̃t




(1.29)

Eq.1.29 is known as the memory function, it describes the effect of the history

of the particle on its future. Using this result, the equations of motion Eq.1.16

become the final Langevin equations for the system particles and expressed as
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~̇Ss(t) = ~f(~Ss(t)) +

∫ t

0

dt′ L̃R(t− t′) · ~Ss(t− t′)

+

∫ t

0

dt′ L̃L(t− t′) · ~Ss(t− t′) + ~FR(t) + ~FL(t)

(1.30)

Now by writing

exp((t) Ã) =
∑

n

tnÃn

n!
=

∑
n

t2nÃ2n

(2n)!
+

∑
n

t2n+1Ã2n+1

(2n + 1)!
(1.31)

The elements of Ã2n+1 are all off diagonal and do not contribute to the ex-

pression of L̃(t− t′). The elements of Ã2n are along the diagonal and contribute

to the expression of L̃(t− t′) as

L̃(t− t′) = δi,jδi,N+1

∑
j

λ2
Rj

mRi
ω2

Ri

cos(ωRj
t)

+δi,jδi,2N

∑
j

λ2
Lj

mLi
ω2

Li

cos(ωLj
t)

(1.32)

Which reduces for each bath to the from

K(t) =
∑

i

λi
2

miωi
2

cos(ωit)
(1.33)

If we treat the frequency distribution as continuous, then we can replace the

sum in eq.1.33 by an integral as in eq.1.34, and the memory function eq.1.33

becomes eq.1.35, where the oscillators are assumed to have unit mass.

∑
→ N

∫ +∞

0

g(ω) dω (1.34)
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K(t) =

∫ +∞

0

N λ2(ω)

ω2
g(ω) cos(ωt) dω

(1.35)

If now N λ2(ω) g(ω) ∝ ω2 for all frequencies then eq.1.35 becomes the Dirac

delta function eq.1.36 and the noise is white. This is usually the case when the

forces of impact between the particle and the rest of the molecules of the fluid

are varying extremely rapidly over the time of any observation.

K(t) ∝
∫ +∞

0

cos(ωt) dω ∝ δ(t)
(1.36)

If N λ2(ω) g(ω) ∝ ω2/(1 + τ 2 ω2) for all frequencies then eq.1.35 becomes an

exponentially decaying function of time eq.1.37 and the noise is colored.

K(t) ∝
∫ +∞

−0

1

1 + τ 2 ω2 cos(ωt) dω ∝ 1

τ
e−t/τ

(1.37)

1.2.2 Quantum mechanical interpretation of the noise

Due to a very high Debye temperature for carbon based materials [37], 300K

is considered a low temperature. Accordingly, the classical Langevin equations

developed in the previous section may not be suitable. It is however still possi-

ble to account for some of these effects if one decides to adopt a quasi-classical

approximation where the system is still treated classically, the noise however is

interpreted quantum mechanically. In this section we develop the quantum cor-

relation relation that will be used later in this quasi-classical approximation. To

this end, we introduce the noise sources for each bath as in eq.1.17.

In the quantum mechanical interpretation of the noise (eq.1.17) we assume

that the oscillators in the thermal heat bath are canonically distributed with
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respect to the free oscillator Hamiltonian according to Bose-Einstein statistics

[10]. The operators p̂bi
and q̂bi

satisfy the commutation relations eq.1.38.

[q̂bi
, p̂bj

] = i~δij [q̂bi
, q̂bj

] = [p̂bi
, p̂bj

] = 0
(1.38)

The expectation value of any operator F with respect to the canonical en-

semble at temperature T is defined by

< F >= Tr{Fe−βHo}/Tr{e−βHo}
(1.39)

where the trace operation (Tr) is in the space of the eigenfunctions of the free

oscillator Hamiltonian operator Ho

Ho =
1

2

∑
i

p̂2
bi

mi

+
1

2

∑
i

ω2
i q̂

2
bi

(1.40)

We introduce the operators

as =
p̂bs − iωsq̂bs√

2~ωs

a†s =
p̂bs + iωsq̂bs√

2~ωs

(1.41)

The commutation relation between these two operators follows from eq.1.38

as

[as, a
†
r] = δsr [as, ar] = [a†s, a

†
r] = 0

(1.42)

We can solve for q̂bs and p̂bs from the definitions in eq.1.41 as
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q̂bs = i

√
~

2ωs

(as − a†s)

p̂bs =

√
~ωs

2
(as + a†s)

(1.43)

Inserting these expressions in the Hamiltonian eq.1.40 and using the relations

eq.1.42 we get

Ho =
∑

s

~ωs(a
†
sas +

1

2
)

(1.44)

The operator a†sas is the number operator for the sth mode; its eigenvalues

are the nonnegative integers. The operator as is the step down (annihilation)

operator, and the operator a†s is the step-up (creation) operator; they have matrix

elements only between eigen-states of the number operator which differ by unity.

The expectation value of a†sar is of the form [10]

〈a†sar〉 = δsrTr{a†sare
−βHo}/Tr{e−βHo}

= δsr

∞∑
n=0

n exp[−~ωs

kT
(n +

1

2
)]

exp[−~ωs

kT
(n +

1

2
)]

=
δsr

exp[−~ωs

kT
(n +

1

2
)]− 1

=
1

2
δsr[coth(

~ωs

2kT
)− 1]

(1.45)

similarly
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〈a†sar〉 =
1

2
δsr[coth(

~ωs

2kT
) + 1]

(1.46)

From these results we obtain the following pair correlations

〈q̂bj
p̂bi
〉 = −〈p̂bi

q̂bj
〉 =

1

2
i~δij

〈q̂bj
q̂bi
〉 =

~
2ωi

δij coth(
~ωi

2kT
)

〈p̂bj
p̂bi
〉 =

~ωi

2
δij coth(

~ωi

2kT
)

(1.47)

Finally the noise correlation

〈~F (t)~F (t′)t〉 = 〈




0̃ 0̃

λ̃ 0̃


 · exp(t Ã) · [~Sb(0)]







0̃ 0̃

λ̃ 0̃


 · exp(t′ Ã) · [~Sb(0)]




t

〉

=




0̃ 0̃

λ̃ 0̃


 · exp(t Ã) · 〈[~Sb(0)] [~Sb(0)]t〉 · exp(t′ Ã)t ·




0̃ 0̃

λ̃ 0̃




t

(1.48)

The product ~F (t)~F (t′)t is not a Hermitian operator, consequently the noise

correlation cannot be interpreted properly in a classical dynamics. If we use the

symmetrized correlation obtained by interchanging t and t′ in eq.1.45 and then

take the transpose [36], the previous correlation becomes a Hermitian operator

of the form
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〈~F (t)~F (t′)t〉sym =
1

2




0̃ 0̃

λ̃ 0̃


 · exp(t Ã) · 〈[~Sb(0)] [~Sb(0)]t

+(~Sb(0)] [~Sb(0)]t)t〉 · exp(t′ Ã)t ·




0̃ 0̃

λ̃ 0̃




t (1.49)

The elements of 〈[~Sb(0)] [~Sb(0)]t +(~Sb(0)] [~Sb(0)]t)t〉 are diagonal and real. As

a matter of fact, each element is of the form 〈Sbi
(0) Sbj

(0) + Sbj
(0) Sbi

(0)〉, and

according to eq.1.47 all the off diagonal terms are zero.

Similarly using the identity

〈[~Sb(0)] [~Sb(0)]t + (~Sb(0)] [~Sb(0)]t)t〉 · [exp(t Ã)]t

= exp(−t Ã) · 〈[~Sb(0)] [~Sb(0)]t + (~Sb(0)] [~Sb(0)]t)t〉
(1.50)

eq.1.46 becomes

〈~F (t)~F (t′)t〉sym =
1

2




0̃ 0̃

λ̃ 0̃


 · exp((t− t′) Ã) · 〈[~Sb(0)] [~Sb(0)]t

+(~Sb(0)] [~Sb(0)]t)t〉 ·




0̃ 0̃

λ̃ 0̃




t (1.51)

or
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〈~F (t)~F (t′)t〉sym = δijδi,N+1
1

2

∑
s

λ2
s

~
ωs

coth

[
~ωs

2kT1

]
cos ωs(t− t′)

+δijδi,2N
1

2

∑
s

λ2
s

~
ωs

coth

[
~ωs

2kT2

]
cos ωs(t− t′)

(1.52)

If we let ~→ 0 then

lim
~→0

~ coth

[
~ωj

2kT

]
=

2kT

ωj (1.53)

and

〈~F (t)~F (t′)t〉sym = δijδi,N+1kTL

∑
s

λ2
s

ω2
Ls

cos ωLs(t− t′)+

δijδi,2NkTR

∑
s

λ2
Rs

ω2
Rs

cos ωRs(t− t′)
(1.54)

which is identical to the relations we obtained using the classical approach eq.1.32

where here we assume that the oscillators have unit mass.

If we treat the frequency distribution as continuous, then we can replace the

sum in eq.1.52 by an integral as in eq.1.34, and the correlation reduces to eq.1.55,

where we assume that the oscillators have unit mass.
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〈~F (t)~F (t′)t〉sym = δijδi,N+1
1

2

∫ ∞

0

dωLg(ωL)
~λ2

L(ωL)

ωL

coth

[
~ωL

2kTL

]
cos ωL(t− t′)+

δijδi,2N
1

2

∫ ∞

0

dωRg(ωR)
~λ2

R(ωR)

ωR

coth

[
~ωR

2kTR

]
cos ωR(t− t′)

(1.55)

1.3 Conclusion

In this chapter we derived the generalized Langevin equations (GLE) for a general

classical system in contact with two heat baths. At first we interpreted the noise

classically then quantum mechanically and we showed that the quantum noise

correlations reduce to their classical counterpart in the high temperature limit.

These equations will be used in later chapters to solve for the displacements and

momenta of the different particles in a variety of macromolecules and calculate

different system properties.

One may object that by only interpreting the noise quantum mechanically may

not produce the low temperature behavior of the system properties. However,

there is very little difference between a quantum and a linear classical system.

The dynamics are such that it smoothly crosses over to the classical regime [16].

This would be the case at low temperatures, where nonlinearity can be neglected,

and the system interactions can be linearized. The other advantage of this quasi-

classical approximation is that it converges to its classical counterpart in the

high temperature limit, where both the noise and the system can be analyzed

classically.

It is worth mention that most carbon based materials such as graphene and

carbon nanotubes have considerably high Debye temperature, even 300 K is con-

sidered low and the system stays linear even at these temperatures. Accordingly,
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the proposed dynamics can still reproduce the quantum results.
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Chapter 2

Using Normal Modes to Calculate and Optimize Thermal

Conductivity in Functionalized Macromolecules

2.1 Introduction

In this chapter we introduce a new technique to calculating thermal conductivity

of functionalized molecules in general and use graphene nano-sheets as a case

study. We show by linearizing the interatomic interactions, and by numerically

calculating the normal modes, that the total heat flux, throughout the functional-

ized macromolecule is a function of the temperature difference of the hot and cold

baths. Even more interestingly, we show that we can control the heat transport

throughout the system by varying the functionalized chains.

It may be objected that linearizing interactions dramatically changes the dy-

namics of the system. However, we are interested in determining the major

bottlenecks to thermal conductivity at the interface and these are present even

in the linear approximation. Non-linear corrections may alter the magnitude of

our results, but not the essential principles for optimization. This will be demon-

strated in chapter 4.

2.2 The Analytical Technique

2.2.1 Site Displacement

In this section, we shall develop the general Langevin formalism that we apply to

a specific system in section 2.3. We shall present this general case first and then

indicate briefly how the results will simplify for our special cases.

Consider a system made of N particles connected by springs. We will apply

a driving random force to the first and last particles. Each particle obeys the
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equation of motion:

mi Ẍi = −
∑

j

Kij Xj + (γi Ẋi + Fi(t))(δi,1 + δi,N) (2.1)

where mi, Xi,respectively are the mass and displacement of particle i, Kij is the

spring constant between particles i and j, γi the damping force given by Stokes’s

law, Fi(t) is the Langevin force on particle i, the overhead dot refers to time

derivative, and δij is the Kronecker delta function restricting the driving and

damping to the first and last particles.

We can write the set of N coupled differential equations as

M̃ ~̈X + Γ̃ ~̇X + K̃ ~X = ~F (t) (2.2)

where M̃ , Γ̃, K̃ are respectively the mass, damping and spring constants matrices

and ~F (t) is the random Langevin force vector.

The statistics of the Langevin sources are defined by:

< Fi(t) >= 0 (2.3)

< Fi(t1) Fj(t2) >= 2 γi kB Ti δijδ(t1 − t2) (2.4)

where Ti is the temperature of the source i, kB is the Boltzman constant, and

<> stands for temporal average.

Consider the homogeneous form of equation eq.2.2

M̃ ~̈X + Γ̃ ~̇X + K̃ ~X = 0 (2.5)

We search for a solution to eq.2.5 of the form ~X = ~a eλt, where ~a is independent
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of the time t. Plugging this solution in eq.2.5 gives.

M̃ λ2 ~a + λ Γ̃ ~a + K̃ ~a = 0 (2.6)

This is a quadratic eigenvalue problem for λ. To solve this eigenvalue problem

we introduce a second set of coefficients

~b = λ ~a (2.7)

and eq.2.6 becomes

λ M̃ ~b + Γ̃ ~b + K̃ ~a = 0 (2.8)

producing an eigenvalue equation of the form




0̃ 1̃

K̃ Γ̃







~a

~b


 = λ




1̃ 0̃

0̃ −M̃







~a

~b


 (2.9)

where 1̃ is the unity matrix. Thus we see that even in the presence of dissipation,

we can find normal, uncoupled modes for the system.

In general we generate complex eigenvalues λk and complex eigenvectors ~ak.

However, if λk and ~ak are solutions to the eigenvalue problem then their complex

conjugates λ∗k and ~a∗k are solutions as well. Let

λk = −ηk + iωk (2.10)

and

~ak = ~uk + i~vk (2.11)

then

~ak eλkt = (~uk + i~vk) e−ηkt+iωkt (2.12)
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is a solution to the homogenous equation of motion eq.2.5 and so is

~a∗ke
λ∗kt = (~uk − i~vk) e−ηkt−iωkt (2.13)

Thus we can define the real solutions χ
(1)
k (t) and χ

(2)
k (t) where

χ
(1)
k (t) = e−ηkt (~uk cos (ωkt)− ~vk sin (ωkt)) (2.14)

χ
(2)
k (t) = e−ηkt (~uk sin (ωkt) + ~vk cos (ωkt)) (2.15)

and from that the general solution to the homogenous problem is

~χ(t)hom =
∑

k

B
(1)
k χ

(1)
k (t) + B

(2)
k χ

(2)
k (t) (2.16)

where B
(1)
k and B

(2)
k are constants that depend on the boundary conditions.

The solution to the driven problem of eq.2.2 is

~χ(t) = ~χ(t)hom +

∫ t

0

G̃(t, t′) ~F (t′)dt′ (2.17)

where G(t, t′) is the Green function solution to the differential equation

M̃
∂2G̃

∂t2
+ Γ̃

∂G̃

∂t
+ K̃G̃ = 1̃ δ(t− t′) (2.18)

Normally we need to specify the boundary conditions at t = 0. However we are

interested in the steady state solution to the problem so the initial conditions are

irrelevant. We can choose any initial condition that is convenient. In particular

we can choose ~χ(0) = 0 and ~̇χ(0) = 0. With these conditions, the homogeneous
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term is zero, and our steady state solution is:

~χ(t) =

∫ t

0

G̃(t, t′) ~F (t′)dt′ (2.19)

We look for for a solution to the Green function of the form

G̃(t, t′) =
(
C̃(1) χ̃(1)(t− t′) + C̃(2) χ̃(2)(t− t′)

)
η(t− t′) (2.20)

where C̃(1) and C̃(2) are matrices to be determined, η(t− t′) is the Heaviside step

function. and

χ̃
(1)
ij = (χ

(1)
i )j and χ̃

(2)
ij = (χ

(2)
i )j (2.21)

particularly, (χ
(α)
i )j is the jth component of the ith solution χ

(α)
i to the homoge-

neous equation of motion eq.2.5, and α ε {1, 2}.
We introduce the operator Ω̃ such that

Ω̃ = M̃
∂2

∂t2
+ Γ̃

∂

∂t
+ K̃ (2.22)

Eq.2.18 reduces to

Ω̃G̃ = 1̃ δ(t− t′) (2.23)
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inserting eq.2.20 in eq.2.23 produces:

Ω̃ G(t, t′) =

η(t− t′) Ω̃
[
C̃(1) χ̃(1)(t− t′) + C̃(2) χ̃(2)(t− t′)

]

+2M̃
∂

∂t

[
C̃(1) χ̃(1)(t− t′) + C̃(2) χ̃(2)(t− t′)

]
δ(t− t′)

+M̃
[
C̃(1) χ̃(1)(t− t′) + C̃(2) χ̃(2)(t− t′)

]
δ′(t− t′)

+Γ
[
C̃(1) χ̃(1)(t− t′) + C̃(2) χ̃(2)(t− t′)

]
δ(t− t′)

= 1̃ δ(t− t′)

(2.24)

At (t− t′ = 0) We want this to equal the identity matrix 1̃. This will happen

if

C̃(1) χ̃(1)(0) + C̃(2) χ̃(2)(0) = 0

(
C̃(1) ˜̇χ(1)

(0) + C̃(2) ˜̇χ(2)
(0)

)
ij

=
1

2
δijM̃

−1
ij

(2.25)

This is a set of 2 N2 variables C̃α
ij where α ε {1, 2} and 2 N2 separate equations.

This problem is solvable and the solution can be found numerically. Once these

coefficients are found the displacement of particles as a function of time can be

constructed out of the solution in eq.2.19.

2.2.2 Thermal Heat Flux

In this section we develop an expression of the thermal heat flux as a function

of the hot and cold bath temperatures using the steady state solution to the
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displacements found in section 2.2.1; eq.2.19. We will use the result derived in

appendix A.1; eq. (A7) as an expression of the heat flux jij between particles i

and j.

ajij =
∂Vij

∂xi

ẋi +
∂Vij

∂yi

ẏi +
∂Vij

∂zi

żi

−∂Vij

∂xj

ẋj − ∂Vij

∂yj

ẏj − ∂Vij

∂zj

żj

(2.26)

where

Vij =

(xi, yi, zi)




K3i−2,3j−2 K3i−2,3j−1 K3i−2,3j

K3i−1,3j−2 K3i−1,3j−1 K3i−1,3j

K3i,3j−2 K3i,3j−1 K3i,3j







xj

yj

zj




(2.27)

and (xi, yi, zi) and (xj, yj, zj) are the components of the displacements of particles

i and j respectively. The K’s are the elements of the K matrix involving the

displacements of particles i and j.

ajij = K3i−2,3j−2(xjẋi − xiẋj) + K3i−1,3j−1(yj ẏi − yiẏj)

+K3i,3j(zj żi − ziżj) + K3i−2,3j−1(yjẋi − xiẏj)

+K3i−1,3j−2(xj ẏi − yiẋj) + K3i−2,3j(zjẋi − xiżj)

+K3i,3j−2(xj żi − ziẋj) + K3i−1,3j(zj ẏi − yiżj)

+K3i,3j−1(yj żi − ziẏj)

(2.28)

Now that we have a working expression of the thermal heat flux jij, the next

step is to replace the site displacement and velocities, by the steady state solution

eq.2.19 and its time derivative. In fact all the terms in parentheses in eq.2.28 are
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of the form Iij = (~̇χ)3i−l(~χ)3j−s− (~̇χ)3j−s(~χ)3i−l, where (s, l) are integers between

1 and 3. Which is also expressed as.

I3i−l,3j−s =
∑
mn

∫ t

0

dt1

∫ t

0

dt2
˙̃
G3i−l,m(t− t1)G̃3j−s,n(t− t2)Fm(t1)Fn(t2)

−
∫ t

0

dt1

∫ t

0

dt2 G̃3i−l,m(t− t1)
˙̃
G3j−s,n(t− t2)Fm(t1)Fn(t2)

(2.29)

using eq.2.4, and noting that we are only applying a driving force to the first and

last particles. Eq.2.29 reduces to

I3i−l,3j−s =

2γNkTN

3∑
n=1

∫ t

0

dt1G̃3i−l,3N−n(t− t1)
˙̃
G3j−s,3N−n(t− t1)

−2γ1kT1

3∑
m=1

∫ t

0

dt1G̃3i−l,m(t− t1)
˙̃
G3j−s,m(t− t1)

(2.30)

and eq.2.28 becomes

jij =
3∑

l=1

3∑
s=1

K3i−l,3j−s

a
I3i−l,3j−s (2.31)

Let Sij and S ′ij be the coefficients of T1 and TN in eq.2.30

S ′ij = 2γNk

3∑
n=1

∫ t

0

dt1G̃i3N−n(t− t1)
˙̃
Gj3N−n(t− t1)

Sij = 2γ1k

3∑
m=1

∫ t

0

dt1G̃im(t− t1)
˙̃
Gjm(t− t1)

(2.32)
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Eq.2.31 reduces to

jij = TN

3∑

l=1

3∑
s=1

K3i−l,3j−s

a
S ′3i−l,3j−s−

T1

3∑

l=1

3∑
s=1

K3i−l,3j−s

a
S3i−l,3j−s

(2.33)

The coefficients of T1 and TN in eq.2.33 can be calculated numerically using

the expression of the Green functions found in section 2.2.1; eq.2.20. In principle

we can apply the Langevin driving force to any of the atoms in the system. In

order to estimate the thermal conductivity we choose to couple to atoms at the

furthest extremes of the chain. The rationale is that they are furthest from the

stiffer incorporated molecule and thus best connected to the fluctuating heat

bath.

The localized heat flux ji is the sum of all the individual contributions from

the sites j nearest to i:

ji =
∑

j

jij (2.34)

The total heat flux is the sum of the localized contribution

j =
∑

i

ji =
∑
ij

jij = Dh TN −Dc T1 (2.35)

where

Dh =
∑
ij

3∑

sl=1

K3i−l,3j−s

a
S ′3i−l,3j−s

Dc =
∑
ij

3∑

sl=1

K3i−l,3j−s

a
S3i−l,3j−s

(2.36)

We will numerically show in section 2.3 that the total heat flux j in eq.2.35
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is proportional to the temperature difference of the hot and cold baths (i.e.,

Dh = Dc).

2.2.3 Participation Ratio

In order to better understand how to optimize structures we find it useful to

calculate the participation ratio (P ) [25]. This quantity is commonly used in

electronic problems to describe the degree to which an electron is localized in

space [1]. The participation ratio is defined as

P =

(
n=N∑
n=1

ψn
2

)2

Ld

n=N∑
n=1

ψn
4

(2.37)

where N is the total number of modes, | ψ > is the eigenvector describing the

normal mode, L the system linear size and d is the Euclidean dimension of the

system, giving the total number of atoms Ld = N .

The participation ratio is in the order of 1 for extended modes and ≈ 1/N

for localized modes. The intuition is that systems with more low energy, high

participation ratio modes will be better at conducting heat.

2.3 Application

In this section we shall present the application of the results of section 2.2 for

two special cases, a one dimensional linear chain and a small two dimensional

functionalized sheet of graphene.

2.3.1 One Dimensional Chain

Consider a linear chain of N coupled atoms, the first and the last of which interact

with heat baths. The schematic diagram of this set up is drawn in Fig.2.1 for

N = 4. For simplicity Only nearest neighbor interactions will be considered and
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it is assumed that adjacent atoms are coupled with springs of spring constant K.

Let xl be the displacement of the lth particle. The hamiltonian of this system is

T-
T

+
T+

Figure 2.1: A pictorial representation of a linear chain of N = 4 mutually coupled
oscillators in interaction with two thermal reservoirs working at different temperatures.
Here T1 = T+ and TN = T−.

H =
∑

i

pi
2

2m
+

1

2
K(xi+1 − xi)

2
(2.38)

where m is the mass of the particles. We set m = a = 1, where a is the lattice

constant, and K = 1.

In this one dimensional case eq.2.26 and eq.2.30 reduce to:

jij =

(
K

a

)
(xjẋi − xiẋj) =

(
K

a

)
Iij (2.39)

where

Iij = 2γNkTN

∫ t

0

dt1G̃iN(t− t1)
˙̃
GjN(t− t1)

−2γ1kT1

∫ t

0

dt1G̃i1(t− t1)
˙̃
Gj1(t− t1)

(2.40)

The total heat flux is

j =
∑
ij

jij =

(
K

a

) ∑
ij

Iij = DhTN −DcT1 (2.41)

where
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Dh = 2γNk

(
K

a

) ∑
ij

∫ t

0

dt1G̃iN(t− t1)
˙̃
GjN(t− t1)

Dc = 2γ1k

(
K

a

) ∑
ij

∫ t

0

dt1G̃i1(t− t1)
˙̃
Gj1(t− t1)

(2.42)

Fig.2.2 is a plot of the coefficients of TN and T1 in eq.2.41 as a function of time

for a chain of 4 atoms. As illustrated these coefficients converge to the same value.

This means that in the steady state regime the total heat flux j is proportional to

the temperature difference of the hot and cold baths, the proportionality constant

is the thermal conductance of the chain λc and .

j = λc(TN − T1)
(2.43)
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Figure 2.2:
(
Dh = K

a

∑
ij S′ij

)
, and

(
Dc = K

a

∑
ij Sij

)
as a function of time (t) for a

chain of 4 atoms. As expected these factors converge to the same value, This means
that in the steady state regime the total heat flux j is proportional to the temperature
difference of the hot and cold baths.
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2.3.2 Two Dimensional Sheet of Graphene

In this application we consider a hexagonal sheet of graphene made of 36 carbon

atoms bonded together in a honeycomb structure. We attach two alkane chains

to opposite boundaries of the graphene sheet and to the heat baths as shown

in fig.2.3. The alkane chains are n-pentane. The Tersoff-Berner (TB) force field

[33, 34] is used to describe the interactions among the atoms in the graphene

sheet. The Nath, Escobedo, and Pablo revised (NERD) [15? ] potential is used

to describe the interactions in the chains and the bond between the chains and

the graphene.

We relax the system by minimizing the site potential in the functionalized

graphene sheet, this is done by using a multiobjective optimization technique[32].

Additional information about the (TB) and (NERD) force fields are found in

Appendix B.

T+

T-

Figure 2.3: A pictorial representation of a functionalized sheet of graphene. The
number of atoms in the graphene sheet is 36, The alkane chains are n-pentane. The
end of the chains interact with two thermal reservoirs working at different temperatures.
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The next step to solving the problem of heat conduction in the functionalized

graphene is to find the normal modes of the structure. At this point we assume

that the site displacements are very small and approximate the potential (E) by

a second order Taylor expansion around the sites equilibrium positions.

E =
1

2

∑
ij

∂2V

∂ζi ∂ζj

ζi ζj (2.44)

the second derivatives of the potential energy are the elements of the K̃ matrix

that was introduced in section 2.2

K̃ij =
∂2V

∂ζi ∂ζj

(2.45)

We then proceed as described in section 2.2 and solve for the Green function

and the particles displacement in the stationary regime. We numerically calculate

the heat flux from eqs.2.26, 2.30, 2.34, 2.35 as a function of the hot and cold bath

temperatures.

2.3.2.1 Numerical results of thermal heat flux in functionalized graphene

The total heat flux in the functionalized graphene sheet was numerically cal-

culated. Fig.2.4 represents the time evolution of the ratio of the hot and cold

temperature coefficients (Dh) and (Dc) in eq.2.35 and the thermal conductance

of the graphene (λg) calculated using the same technique by taking the chains

off the graphene and attaching two opposite sites to hot and cold baths. As ex-

pected, in the steady state regime these factors converge to the same value. This

confirms as in the previous case of linear chains that the heat flux is proportional

to the temperature difference of the hot and cold baths. The proportionality

constant is the thermal conductance of the functionalized grapehene.
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Figure 2.4: (a) Time evolution of (Dh/λg) and (Dc/λg) eq.2.42. As expected (Dh/λg)
and (Dc/λg) converge to the same value, This means that in the steady state regime
the total heat flux is proportional to the temperature difference of the hot and cold
baths.

2.3.2.2 Effect of changing the length of the chains on the thermal

conduction

In this section we shall use the technique just developed to investigate the effect of

changing the length of the chains on the thermal conduction of heat throughout

the functionalized graphene. Fig.2.5 summarizes the results of thermal conduc-

tance for chain lengths between N = 3 and N = 11. In each case we connect two

identical chains on opposite sides of the boundaries to the graphene sheet. The

opposite ends of each chain are connected to two heat baths at temperatures T+

and T−. Based on these results functionalized graphene with odd alkane chains

performs better in terms of thermal conductance than with even alkane chains.

For each type of chains, the thermal conductance increases with the chain length

for smaller alkane chains but then decreases with longer chains.

To understand the underlying causes of this results, we calculated the par-

ticipation ratio (P ) for each normal mode in each configuration. The extended

modes, the main contributor to the heat transport can be identified by their

higher participation ratios. In contrary low participation ratio modes contribute
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Figure 2.5: The ratio of the Thermal conductance of functionalized graphene λf to
the thermal conductance of graphene λg as a function of chain length.

less to the heat transport. Fig.2.6 is a pictorial representation of the site dis-

placements of a high and low participation ratio mode for the structure in fig.2.3,

note the larger magnitude of the site displacement, and the extent of the mode

with larger participation ratio. Fig.2.7 represents the total number of modes

with increasing participation ratio for configurations similar to the structure in

fig.2.3 with five, six, and eight chain sites (N = 5, 6, 8), note that the number of

extended modes with high participation ratios decreases with the increase in the

size of the chains. This is fairly noticeable for longer chains, and in fact explains

the longer chains smaller thermal conductance. Particularly for even and odd

chains as shown in fig.2.7(a) this pattern also include some of the low participa-

tion ratio modes. Odd chains perform better than even chains in conducting heat

because of their larger number of moderate and high participation ratio modes

contributing to the heat transport.

2.4 Conclusion

Improving heat transport in functionalized graphene is important to a large num-

ber of systems. In this chapter we have demonstrated an efficient and straightfor-

ward method for calculating the thermal heat flux. The results of this simulation
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(a)

(b)

Figure 2.6: Pictorial representation of a high participation ratio mode (P = 0.86) (a),
and a low participation ratio mode (P = 0.13).

can be used to design and test different configurations and to find the one that

conveys the largest amount of heat. As an application of this method We in-

vestigated the effect of changing the length of the chains on the overall thermal

conduction. The numerical results showed that odd alkane chains perform better

than even alkane chains. In addition, very long alkane chains deteriorate the

overall heat transport. This can be seen as the limit of simply embedding the

stiff material in a very soft, infinite matrix.

There are many ways this approach can be expanded. For ease of application

we chose to only drive the outermost ends of the functionalized chains. This can
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Figure 2.7: Number of modes with increasing participation ratios for functionalized
graphene configurations with five, six and eight chain sites.

easily be expanded to include driving many or all of the atoms in the system.

However, the Langevin approach assumes complete incoherence between all the

driving forces. This will not be true on an atomic level since the local phonon

environment will have some non-zero coherence length. The physical details of

the local environment and its coherence are interesting in their own right, but

should not profoundly change results found in this approach: systems in which

the external chains are well-coupled to the main structure will still have superior

thermal conductivity to those that do not.

A more critical problem in this approach is that is entirely classical. This in

part by design, since we produce systems of equations that are rapidly, and easily

soluble. However, the Langevin equation is well known to produce equipartition.[14]

This means that all modes, even those with extremely high frequency, will have
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a non-zero occupation. This probably results in an overestimate of the thermal

conductivity since some high participation modes may have too high an energy

to have any occupation at room temperature. Mathematically, this arises from

the assumption of a delta-function correlation in time for the driving forces, since

all frequencies must be included to have zero correlation time. Possible solutions

include using a more complicated set of driving forces that are explicitly quantum

mechanical,[31] and inserting a fictitious correlation time into the driving force

(Ornstein-Uhlenbeck noise) that is itself chosen to be temperature dependent to

mimic the effect of a Bose-Einstein suppression of high energy modes.
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Chapter 3

Normal Mode Analysis with Thermal Colored Noise

3.1 Introduction

In nature, white noise does not occur. It is an idealization used in our imperfect

description of real phenomena. A more adequate description would be based on

correlated noise[22, 8]. In this chapter we study the heat transport in carbon

based macromolecules using the generalized Langevin equations with memory

kernel and Gaussian colored noise. Traditionally the term ’colored noise’ is used

for noise source with a frequency-dependent power spectrum in analogy to the

spectrum of light. The interactions within the system are linearized and the

memory kernel is assumed exponentially decaying over time. This is in fact an

extension of the previous analysis developed in chapter.2, where now we include

means to suppress high frequency modes through the noise correlation time. In

addition, we can incorporate quantum driving forces that are temperature de-

pendent to mimic the effect of Bose-Einstein suppression of high energy modes.

We show that by branching the functional groups, and by optimizing the partic-

ipation ratios of the different modes, one can in fact identify the configuration of

the functional groups that best drive the heat to the macromolecule.

3.2 Analytical Technique

In this section, we shall develop the general Langevin formalism that we apply to

a specific system in section 3.3. We shall present this general case first and then

indicate briefly how the results will simplify for our special cases.

Consider a system made of N particles connected by springs. We will apply

a driving random Gaussian force to the first and last particles (thermal colored
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noise). Each particle obeys the equation of motion:

mi ẍi(t) = −
∑

j

Kij xj(t)+

(
−

∫ t

0

dt′K(t− t′) ẋi(t
′) + Fi(t)

)
(δi,1 +δi,N) (3.1)

where mi, xi,respectively are the mass and displacement of particle i, Kij is the

spring constant between particles i and j, Fi(t) is the Langevin force on particle i,

the overhead dot refers to time derivative, and δij is the Kronecker delta function

restricting the driving and damping to the first and last particles.

In solving the equations of motion eq.3.1 we consider two special cases. The

classical approximation, where the noise is determined classically from the un-

known initial positions and momenta of the particles in the bath according to

Botzmann statistics. The quantum mechanical approximation, where the noise

is interpreted quantum mechanically from the unknown initial positions and mo-

menta of the different quantum oscillators in the bath according to Bose-Einstein

statistics.

3.2.1 Classical noise

In this section, we shall solve the generalized equations of motion in the classical

approximation. From the results developed in chapter 1, the noise term (F (t)) is

related to the memory kernel by the fluctuation-dissipation theorem eq.3.2

〈Fi(t)Fj(t
′)〉 = δijkBTK(t− t′) (3.2)

Particularly, for exponentially correlated noise, also known as Ornstein Uh-

lenbeck (O-U) noise, the random Gaussian force F(t) has a finite correlation time

τ .
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〈Fi(t)〉 = 0

〈Fi(t) Fj(t
′)〉 = 2

γi

τ
δijkBTe−|t−t′|/τ

(3.3)

Notice from fig.3.1 that as τ → 0 e−|t−t′|/τ approximates a delta function

and the correlation function in eq.3.3 reduces to 2γi δijkBTδ(t − t′) and thus

we recover the white-noise of eq.2.4. In practice approximate values of (γ) and

(τ) appropriate for each medium can be determined from molecular dynamics

simulations on a single particle Appendix.C.

-1.0 -0.5 0.5 1.0 x
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Figure 3.1: e−|t|/τ as a function of t for different values of the parameter τ . The solid
line (τ = 0.04), the dashed line (τ = 0.1)

Starting with the equation of motion and including the exponentially decaying

kernel

mi ẍi(t) = −
∑

j

Kij xj(t) +

(
−

∫ t

0

dt′
γi

τ
e−|t−t′|/τ ẋi(t

′) + Fi(t)

)
(δi,1 + δi,N)

(3.4)

We can easily extend the space of variables to a four dimensional space. The

fourth variable yi(t) is the damping force such that
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yi(t) =
γi

τ

∫ t

0

dt′e−|t−t′|/τ ẋi(t
′) (3.5)

our equations of motion eq.3.4 become:

ẋi =
pi(t)

mi

ṗi(t) = −
∑

j

Kij xj(t) + [−yi(t) + Fi(t)] (δi,1 + δi,N)

ẏi(t) = −1

τ
yi(t) +

γi

miτ
pi(t)

Ḟi(t) = −1

τ
Fi(t) +

√
2γikBTi

τ
Γi(t)

(3.6)

where the last equation describes O-U noise with the correlation function eq.3.3,

and Γi(t) is a Gaussian white noise, with

〈Γi(t)Γj(t
′)〉 = δijδ(t− t′) (3.7)

This four equations can be reduced to a set of three equations if we introduce

the variable Yi(t) = Fi(t)− yi(t)

ẋi =
pi(t)

mi

ṗi(t) = −
∑

j

Kij xj(t) + Yi(t)(δi,1 + δi,N)

Ẏi(t) = −1

τ
Yi(t)− γi

miτ
pi(t) +

√
2γikBTi

τ
Γi(t)

(3.8)
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This problem however, can be simplified even further if we introduce a new

vector ~S such as

~S = (x1, .......xN , p1, .....pN , Y1, 0....., 0, YN) (3.9)

The previous equations (eq.3.8) can be written in the form

~̇S = Ã · ~S + ~Γ (3.10)

where ~Γ = (0, ....., 0, 0, ......., 0,
√

2γ1kB T
τ

Γ1, 0, .....,
√

2γNkBT
τ

ΓN), Ã, Λ̃ and R̃ are

defined as:

Ã =




0̃ M̃−1 0̃

−K̃ 0̃ R̃

0̃ −Λ̃ · M̃−1/τ −R̃/τ




(3.11)

where

Λ̃ =




γ1 0 ... 0

0 0 ... 0

0 0 ... γN




R̃ =




1 0 ... 0

0 0 ... 0

0 0 ... 1




(3.12)

The differential equation eq.3.10 can be transformed into a simple eigenvalue

problem where the general solution can be formulated using an adequate Green

function. The following are the steps to getting this solution.

If θ̃ is the matrix of right (column) eigenvectors of the matrix Ã, we first

transform ~S with the rotation matrix θ̃ such that ~S = θ̃ ~X. Replacing ~S with its

new expression in eq.3.10 gives
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θ̃ ~̇X = Ã θ̃ ~X + ~Γ (3.13)

which can be transformed to

~̇X = (θ̃−1Ãθ̃) · ~X + θ̃−1~Γ (3.14)

If (θ̃−1 Ã θ̃) is diagonal the previous problem reduces to a first order differential

equation for the components of ~X of the form

Ẋi = aiXi + (θ̃−1~Γ)i (3.15)

where ai is the ith eigenvalue of the matrix Ã. The solution to this equation is

known and is of the form:

Xi(t) = eait

(∫ t

0

dτ1!e
−aiτ1 (θ̃−1~Γ)i + Xio

)
(3.16)

If we take ~S(t = 0) = 0 then Xio = 0 and eq.3.16 reduces to

Xi(t) = eait

(∫ t

0

dτ1 e−aiτ1 (θ̃−1~Γ)i(τ1)

)
(3.17)

We can return to the original variables ~S from ~S = θ̃ ~X. This results in

Si(t) =
∑

k

θ̃ikXk(t) =
∑

k

θ̃ike
akt

(∫ t

0

dτ1 e−akτ1 (θ̃−1~Γ)k(τ1)

)
(3.18)

where

(θ̃−1~Γ)k = θ̃−1
k,2N+1Γ2N+1 + θ̃−1

k,3NΓ3N (3.19)

and
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Si(t) =
∑

k

θ̃ikθ̃
−1
k,2N+1 eakt

∫ t

0

dτ1 e−akτ1 Γ2N+1(τ1)+

∑

k

θ̃ikθ̃
−1
k,3N eakt

∫ t

0

dτ1 e−akτ1Γ3N(τ1)

(3.20)

The actual motion however is the real part of this complex solution Sr
i(t) =

(Si(t) + S∗i(t))/2. The momentum and displacement are of the form

〈Si(t1)Sj(t2)〉 =
3N∑

k,n=1

θ̃ik θ̃jn θ̃−1
k,2N+1 θ̃−1

n,2N+1 e(akt1+ant2)

(∫ t1

0

dτ1

∫ t2

0

dτ2 e−(akτ1+anτ2) δ(τ1 − τ2)

)

(
2γ2N+1kB

τ 2
TL

)

+
3N∑

k,n=1

θ̃ik θ̃jn θ̃−1
k,3N θ̃−1

n,3N e(akt1+ant2)

(∫ t1

0

dτ1

∫ t2

0

dτ2 e−(akτ1+anτ2) δ(τ1 − τ2)

)

(
2γ3NkB

τ 2
TR

)

(3.21)

or

〈Si(t1)Sj(t2)〉 =
3N∑

k,n=1

θ̃ik θ̃jn θ̃−1
k,2N+1 θ̃−1

n,2N+1 e(akt1+ant2)

(∫ min (t1,t2)

0

dτ1 e−(ak+an)τ1

)(
2γ2N+1kB

τ 2
TL

)

+
3N∑

k,n=1

θ̃ik θ̃jn θ̃−1
k,3N θ̃−1

n,3N e(akt1+ant2)

(∫ min (t1,t2)

0

dτ1 e−(ak+an)τ1

) (
2γ3NkB

τ 2
TR

)

(3.22)
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The above result can be extended to include additional driven sites as

〈Si(t1)Sj(t2)〉 =

3N∑

k,n=1

(∑
α

θ̃ik θ̃jn θ̃−1
k,α θ̃−1

n,α

)
e(akt1+ant2)

(∫ min (t1,t2)

0

dτ1 e−(ak+an)τ1

) (
2γαkB

τ 2
TL

)

+
3N∑

k,n=1

(∑

β

θ̃ik θ̃jn θ̃−1
k,β θ̃−1

n,β

)
e(akt1+ant2)

(∫ min (t1,t2)

0

dτ1 e−(ak+an)τ1

) (
2γβkB

τ 2
TR

)

(3.23)

where α runs over the sites in contact with the hot bath and β runs over the sites

in contact with the cold bath.

3.2.2 Quantum noise

In this section we shall solve the modified Langevin equations in the quasi-classical

approximation. Starting with the equations of motion eq.3.1 with the quantum

noise correlation derived in chapter 1 eq.3.24

〈~Fi(t)~Fj(t
′)t〉sym = δij

γi

π

∫ ∞

0

dω
ω

1 + τ 2ω2
~ coth

[
~ω
2kT

]
cos ω(t− t′) (3.24)

We introduce a new vector ~S ′ such as

~S ′ = (x1, .......xN , p1, .....pN , y1, 0....., 0, yN) (3.25)

The equations of motion can be transformed into
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ẋi =
pi(t)

mi

ṗi(t) = −
∑

j

Kij xj(t) + [−yi(t) + Fi(t)] (δi,1 + δi,N)

ẏi(t) = −1

τ
yi(t) +

γi

miτ
pi(t)

(3.26)

or

~̇ ′
S = Ã′ · ~S ′ + ~Π (3.27)

where

Ã′ =




0̃ M̃−1 0̃

−K̃ 0̃ −R̃

0̃ Λ̃ · M̃−1/τ −R̃/τ




(3.28)

and

~Π = (0, ....., 0, F1, 0, .....0, FN , 0, ......., 0, ) (3.29)

The solution to the equations of motion eq.3.27 follow the same steps of

sec.3.2.1 and are of the form

Si(t) =
∑

k

θ̃′ikeakt

(∫ t

0

dτ1 e−akτ1 (θ̃′
−1~Π)k(τ1)

)
(3.30)

where

(θ̃′
−1~Π)k = θ̃′

−1

k,N+1ΠN+1 + θ̃′
−1

k,2NΠ2N (3.31)
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and θ̃′ is is the matrix of right (column) eigenvectors of the matrix Ã′, and ai its

ith eigenvalue.

Si(t) =
∑

k

θ̃ikθ̃
−1
k,N+1 eakt

∫ t

0

dτ1 e−akτ1 ΠN+1(τ1)+

∑

k

θ̃ikθ̃
−1
k,2N eakt

∫ t

0

dτ1 e−akτ1Π2N(τ1)

(3.32)

The momentum and position correlations can be obtained as

〈Si(t1)Sj(t2)〉 =
3N∑

k,n=1

θ̃ik θ̃jn θ̃−1
k,N+1 θ̃−1

n,N+1 e(akt1+ant2)

(∫ t1

0

dτ1

∫ t2

0

dτ2 e−(akτ1+anτ2) < ΠN+1(τ1)ΠN+1(τ2) >

)

+
3N∑

k,n=1

θ̃ik θ̃jn θ̃−1
k,2N θ̃−1

n,2N e(akt1+ant2)

(∫ t1

0

dτ1

∫ t2

0

dτ2 e−(akτ1+anτ2) < Π2N(τ1)Π2N(τ2) >

)

(3.33)

or
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〈Si(t1)Sj(t2)〉 =
3N∑

k,n=1

θ̃ik θ̃jn θ̃−1
k,N+1 θ̃−1

n,N+1 e(akt1+ant2)γN+1

π

∫ ∞

0

dω
ω

1 + τ 2ω2
~ coth

[
~ω

2kTL

]

(∫ t1

0

dτ1

∫ t2

0

dτ2 e−(akτ1+anτ2) cos ω(τ1 − τ2)

)

+
3N∑

k,n=1

θ̃ik θ̃jn θ̃−1
k,2N θ̃−1

n,2N e(akt1+ant2)γ2N

π

∫ ∞

0

dω
ω

1 + τ 2ω2
~ coth

[
~ω

2kTR

]

(∫ t1

0

dτ1

∫ t2

0

dτ2 e−(akτ1+anτ2) cos ω(τ1 − τ2)

)

(3.34)

The above result can be extended to include additional driven sites as

〈Si(t1)Sj(t2)〉 =
3N∑

k,n=1

(∑
α

γα

π
θ̃ik θ̃jn θ̃−1

k,α θ̃−1
n,α

)
e(akt1+ant2)

∫ ∞

0

dω
ω

1 + τ 2ω2
~ coth

[
~ω

2kTL

]

(∫ t1

0

dτ1

∫ t2

0

dτ2 e−(akτ1+anτ2) cos ω(τ1 − τ2)

)

+
3N∑

k,n=1

(∑

β

γβ

π
θ̃ik θ̃jn θ̃−1

k,β θ̃−1
n,β

)
e(akt1+ant2)

∫ ∞

0

dω
ω

1 + τ 2ω2
~ coth

[
~ω

2kTR

]

(∫ t1

0

dτ1

∫ t2

0

dτ2 e−(akτ1+anτ2) cos ω(τ1 − τ2)

)

(3.35)

where α runs over the sites in contact with the hot bath and β runs over the sites
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in contact with the cold bath.

3.3 Application

In this section we shall present the application of the results of section 3.2 for a

one dimensional linear chain and a small sheet of functionalized graphene.

3.3.1 One dimensional linear chain

Consider a linear chain of N coupled atoms, the first and the last of which interact

with thermal heat baths. A schematic diagram of this set up is drawn in fig.3.2

for N = 6. For simplicity only nearest neighbor interactions will be considered

and it is assumed that adjacent atoms are coupled with springs of spring constant

K. Let xl be the displacement of the lth particle. The Hamiltonian of this system

is eq.3.36.

H =
∑

i

pi
2

2mi

+
1

2
K(xi+1 − xi)

2
(3.36)

where mi is the mass of particle i. We set mi = a = 1, where a is the lattice

constant, and K = 1.

T+T-

Figure 3.2: A pictorial representation of a linear chain of N = 6 mutually coupled
oscillators in interaction with two thermal reservoirs working at different temperatures.
Here TH = T+ and TC = T−.

3.3.1.1 Heat flux: Classical noise

Using the result of eq.3.23 and the definition in appendix A.2 we numerically

calculate the coefficients of the hot and cold heat bath temperatures, namely Dh
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and Dc respectively according to eq.3.37. Fig.3.3 is a plot of these coefficients as a

function of time for a chain of 6 atoms. As illustrated these coefficients converge

to identical but opposite values. This means that in the steady state regime the

total heat flux j is proportional to the temperature difference of the hot (TH)

and cold (TC) baths, the proportionality constant is the thermal conductance of

the chain λc

j = Dh TR + Dc TL = λc(TH − TC)
(3.37)
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Figure 3.3: (Dh), and (Dc) as a function of time (t) for a chain of 6 atoms with the
correlation time τ = 0.5 (

√
k/m). As expected these factors converge to the same but

opposite values.

3.3.1.2 Heat flux: Quantum noise

Using the result of eqs.3.35 and the definition in appendix A.2, we numerically

calculate the thermal conductance according to eq.3.38. Fig.3.4 is a plot of this

property as a function of the temperature for the chain in fig.3.2. As expected, the

thermal conductance increases with temperature to ultimately meet its classical

value at T > θD ≈ 2
√
~/(kτ), where k and ~ are respectively the Boltzmann and
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Plank constants

D = lim
TH→TC

j

TH − TC

=
∂j

∂T (3.38)
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Figure 3.4: Thermal conductance versus temperature for a chain of 6 atoms with the
correlation time τ = 0.5 (

√
k/m). As expected increases with temperature to final

reach its classical limit.

3.3.1.3 Heat capacity of the chain

To check the reliability of this analysis we calculated the heat capacity as a

function of temperature according to the definition in appendix .A.4. As shown

in fig.3.5 the heat capacity of the linear chain in fig.3.2 increases with temperature

to finally meet its expected classical counterpart for T > θD ≈ 2
√
~/(kτ).

3.3.2 Two dimensional Sheet of Graphene

In this application we consider a hexagonal sheet of graphene made of 54 carbon

atoms bonded together in a honeycomb structure. We attach six alkane chains

to opposite boundaries of the graphene sheet and to the heat baths as shown in
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Figure 3.5: Heat capacity (Cv) as a function of temperature of the linear 1D chain of
coupled harmonic oscillators of size N=6, where k is the Boltzmann constant, and ~ is
Planck constant.

fig.3.6. The alkane chains are n-pentane. The Tersoff-Berner (TB) force field is

used to describe the interactions among the atoms in the graphene sheet. The

Nath, Escobedo, and Pablo revised (NERD) potential is used to describe the

interactions in the chains and the bond between the chains and the graphene.

3.3.2.1 Heat flux

Following the steps of sec.3.3.1.2 we numerically calculated the ratio of thermal

conductance of the functionalized graphene configuration shown in fig.3.6 and

that of graphene without side chains, as a function of temperature. Fig.3.12 is

a representation of this characteristic. As indicated the thermal conductance

increases with temperature, and converges to its maximum classical values for

T > θD ≈ 2
√
~/(kτ).
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Figure 3.6: A pictorial representation of a functionalized sheet of graphene. The
number of atoms in the graphene sheet is 54, The alkane chains are n-pentane. The
end of the chains interact with two thermal reservoirs working at temperatures T+ and
T−.

3.3.3 Improving the thermal conductivity of functionalized graphene

In the quest to improving the thermal conductivity to the graphene, we suggest

the following:

• Modifying the length of the chains, since this can improve the stiffness of

the functional groups, possibly increasing the number of sites in contact

with the source of heat which may lead to larger thermal conductivities.

• Branching the chains which may increase the number of sites in contact

with the heat baths, eventually the stiffness of the functional groups, and

possibly the heat flux.

• Modifying the chains, by identifying a chain configuration that better couple

to the graphene.
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Figure 3.7: Ratio of the thermal conductance of the functionalized graphene config-
uration and that of pristine graphene as a function of temperature, where k is the
Boltzmann constant, and ~ is Planck constant.

Our main goal in this section is to identify the best configuration of the

functional groups that will ultimately convey the largest amount of heat to the

graphene. We proceed this quest in the classical approximation since improving

the thermal conductivity in this regime will also be reflected at low temperatures.

3.3.3.1 Effect of changing the length of the chains on the thermal

conduction

In this section we shall use the technique developed in this chapter to investigate

the effect of changing the length of the chains on the thermal conduction of heat

throughout the functionalized graphene. Fig.3.8 summarizes the classical results

of thermal conductance for configurations similar to the one in fig.3.6 with five,

six, seven and eight sites (N = 5, 6, 7, 8). Based on these results, an increase

in the number of sites in contact with the source of heat for any chain length

will improve the thermal conductance throughout the macromolecule. This can

be seen as the limit of simply linking several current of heat to a single junction.

In addition, odd chains overall perform better than even chains when the same
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conditions are applied. To understand the underlying causes of these results we

calculated the average temperature profile (T =< 3/2m v2 >) between the hot

and cold baths. Fig.3.9 represents the steady state temperature of each site of the

graphene configuration shown in fig.3.8, the vertical lines represent the normalized

values of the site temperatures. Notice the large temperature gap from the hot

chains (left) to the colder graphene (middle). The interfacial thermal resistance

(Kapitza resistance) between the soft chains and the stiff graphene is responsible

for this finite temperature discontinuity. The vibrational modes of the chains

can only weakly couple to the one of the graphene which makes it harder for the

heat to flow through and eventually explain the smaller conductance compared

to the graphene. In addition, The average temperature gap was calculated for

configurations similar to the one in fig.3.6 with five, six, seven and eight sites (N

= 5, 6, 7, 8), the results are reported in table.3.1, the temperature gap confirms

the patten seen in fig.3.8 the larger the temperature gap the smaller the thermal

conductance. We also calculated the participation ratios of the different modes

for chain lengths N=5, and N=6. Fig.3.10 displays the total number of normal

modes with increasing participation ratio. The graphene configuration with N=5

has more moderate to high participation ratio modes (extended modes) than the

one with N=6, which reinforces the close connection between participation ratio

and coupling of phonon modes between graphene and chains.

3.3.3.2 Effect of branching the chains on the thermal conduction

In this section we investigate the effect of branching the chains on the thermal

conduction of heat to the graphene. We consider the functionalized graphene

configurations shown in fig.3.4, we then change the length and the branching

sites, and calculate the thermal conductance of each configuration in the clas-

sical regime. Tables.3.2 and 3.3 represent the ratio of the thermal conductance

of the double and triple branched chains configurations 3.11(b) and 3.11(c) with
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Figure 3.8: The ratio of the Thermal conductances of functionalized graphene λf and
graphene λg as a function of chain length N . (solid disk): heating one site, (solid
triagle): heating two sites, (empty square): heating three sites, (solid square): heating
four sites.

respect to the non-branched configuration 3.11(a) for a graphene sheets of 54 and

96 atoms respectively. According to these results, increasing the number of sites

in contact with the source of heat by branching the functional groups, does im-

prove the overall thermal conduction throughout the macromolecule. Branching

the functional groups however, does not improve the coupling to the graphene,

as illustrated in figs.3.12 and 3.13, the number of extended modes (modes with

moderate to larger participation ratios) decreases with the branching of the func-

tional groups. The larger thermal conductance is attributed to the additional

heated sites which can be seen as the limit of simply linking several current of

heat to a single junction.

3.3.3.3 Effect of changing the chains site masses and strength of their

interactions

In several occasions throughout this thesis, we confirmed the close connection

between the extended modes (modes with moderate to high participation ratios)

and the conduction of heat, we arrived at the persisting conclusion that improving
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>

k T+

Figure 3.9: Ratio of the average temperature profile (T =< m v2 >) between the hot
and cold baths and kT+ for the graphene configuration in fig.3.8, k is the Boltzmann
constant, T+ is the temperature of the heat bath.

the participation ratios of the different modes will in fact enhance the thermal

properties of the macromolecule. In the rest of this section, we allow the site

masses and strength of the interactions in the chains to vary and we seek the

chain configuration that maximizes the participation ratios of the different nor-

mal modes. Since all the different modes and their participation ratios depend

on the same variables, namely the site masses and strength of the interactions,

maximizing the participation ratio of one mode often does not simultaneously

maximize the participation ratios of the other modes, and there is usually no

unique optimal solution. Our goal however is to extract a trend or trends that

lead to maximizing the heat flux to the graphene. We proceed in our quest with

a goal programming strategy where we seek to minimize the weighted sum of the

deviation of the participation ratios from the goal value of 1 for the graphene

configuration shown in fig.3.14. Specifically, the constrained minimization prob-

lem in eq.3.39 is to be solved. We assume the chains are identical. To simplify

the analysis, we start with the parameters of the alkanes and we seek to adjust

the site masses and strength of their interactions. The weights are taken to be
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Figure 3.10: Number of normal modes versus participation ratio (PR). (solid triangle):
functionalized graphene with chains of length (N=6), (empty square): functionalized
graphene with chains of length (N=5).

the participation ratios of the different modes in the alkane configuration.

Min
∑

wi(1− PRi)
+ (3.39)

the (+) stands for the positive part of the real number. The weights reflect the

relative importance, and normalize the deviation to take into account the relative

scales and units.

The optimization was done over wide range of intervals, and for chain lengths

N=5 and N=7. In each interval we record the characteristics of the different

variations and compare it to the same characteristics from other intervals. Over-

all the pattern seemed to hold among all the different intervals. According to

these results, one can improve the coupling to the graphene and therefore the

overall conduction of heat by using stiffer but not heavy chains. Heavier chains

do not couple as well as lighter chains. As an application to these results, we

consider perfluorinated alkanes[29]. While the molecular groups are heavier than

the alkanes, these chains are known for their larger stiffness, particularly their

torsional strength fig.3.15. This example is taken to show that, even though, the
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N
∆T

kB(T+ − T−)

5 0.608

6 0.714

7 0.627

8 0.701

Table 3.1: Ratio of the temperature drop across the chain graphene interface kB(T+−
T−) as a function of chain length (N). kB is the Boltzmann constant, T+ and T− are
respectively the temperatures of the hot and cold heat bath.

chains are stiff, which makes them a good candidate for improving the thermal

conduction throughout the functionalized graphene, they are heavy which makes

it harder for these functional groups to thermally couple to the graphene. To

confirm this conclusion, we calculated the thermal conductance of functionalized

graphene configurations similar to the one in fig.3.14 with side chains of lengths

N = 5 and N = 6, then compare it to identical configurations with alkanes.

These results confirm the results of optimization.

3.4 Conclusion

In this chapter we investigated heat transport in macromolecules and graphene

in particular using Langevin dynamics with colored and quantum mechanical

noise. The results of this analysis where used to identify the configuration of

the functional groups that best conduct heat to the graphene. It was shown that

stiffer but lighter chains couple better to the graphene and produce higher thermal

conductivities. In addition, branching the functional groups overall improves the

thermal conduction, this however is attributed to the additional heating sites due

to branching and not to the better coupling of phonon modes between the chains
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Chain size Br@ Brsize #SPC
λb54

λnb54

λb96

λnb96

5 2 3 1 1.11 1.11

- - - 2 1.04 1.10

- - - 3 1.03 1.06

6 2 4 1 1.14 1.03

- - - 2 1.07 0.96

- - - 3 1.07 0.96

6 3 3 1 1.25 1.44

- - - 2 1.27 1.26

- - - 3 1.24 1.24

7 2 5 1 1.04 1.13

- - - 2 1.03 0.92

- - - 3 0.94 0.87

7 3 5 1 1.02 1.17

- - - 2 1.10 1.08

- - - 3 1.01 0.99

Table 3.2: Configuration (b): Ratio of thermal conductance of branched λb and
unbranched functional groups, λnb. Br@(branched at), Brsize (branched size), #SPC
(number of sites per chain). The subscripts 54 and 96 refer to the size of the graphene
sheet

.
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Chain size Br@ Brsize #SPC
λb54

λnb54

λb96

λnb96

5 2 3 1 1.41 1.17

- - - 2 1.34 1.23

- - - 3 1.29 1.06

6 2 4 1 1.71 1.38

- - - 2 1.59 1.16

- - - 3 1.58 1.15

6 3 3 1 1.94 1.31

- - - 2 1.92 1.26

- - - 3 1.74 1.19

7 2 5 1 1.33 1.09

- - - 2 1.40 0.97

- - - 3 1.31 0.92

7 3 5 1 1.49 1.37

- - 2 1.54 1.15

- - 3 1.46 1.07

Table 3.3: Configuration (c): Ratio of thermal conductance of branched and λb and
unbranched functional groups λnb. Br@(branched at), Brsize (branched size), #SPC
(number of sites per chain). The subscripts 54 and 96 refer to the size of the graphene
sheet

.
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N λf/λs

5 0.294

6 0.290

Table 3.4: Ratio of the thermal conductances of functionalized graphene with fluo-
rinated alkanes (λf ) and that of functionalized graphene with alkanes with the same
chain length (λs).

and graphene.

In this approach however, we considered linear interactions only, we assumed,

since the Debye temperature of most carbon based materials including graphene

is high that the effect of the non linear corrections is low and will not have

major impact on the general results of optimization. Possible ways to extend this

approach is to include the non linear corrections and check the consistency of these

results. This requires solving the generalized Langevin equation numerically and

will be discussed in chapter 4.

We used time correlated noises with no spatial dependence in the entire analy-

sis. This is not quite realistic since the local phonon environment may have some

non-zero coherence length of the same order as the mean phonon wavelemgth, a

more realistic description should be based on random noises that are correlated

in space and time. This will be discussed in chapter 5.

Finally, it was recently reported [9] that by functionalizing graphene, it is

possible to prevent the agglomeration of these flakes in polymer solutions, and

guarantee stable dispersion of graphene fillers. These oils are frequently used in

the industry and analyzing the thermal properties of the functionalized graphene-

oil system may lead to the design of enhanced lubricants for extreme applications

such as heat conductive lubricants. The Langevin equations can be modified

to account for the effect of the surrounding medium. This is can be accom-
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plished by modeling the particle medium interactions by an average dissipative

field that manifest through additional damping coefficients which in average can

be extracted from Stokes law for the medium.
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(a) (b)

(c)

Figure 3.11: Pictorial representation of a branched and unbranched sheets of graphene.
The number of atoms in the graphene sheet is 54. The end of the chains interact with
two thermal reservoirs working at different temperatures.
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Figure 3.12: Number of normal modes versus participation ratio (PR). (solid triangle):
non branched N=5 (fig.3.11(a)), (empty square): double branched N=5 (fig.3.11(b)).
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Figure 3.13: Number of normal modes versus participation ratio (PR). (solid triangle):
not branched N=5 (fig.3.11(a)), (empty square): triple branched N=5 (fig.3.11(c)).

T+

T-

Figure 3.14: Pictorial representation of a graphene sheet of 54 carbon atoms function-
alized with two organic chains of size N = 6.
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Figure 3.15: Quantum optimized structure of perfluorohexane. The dark spheres
represent the carbon atoms, the green sphere are the fluorine atoms. The helical C-C-
C-C twist angle of 16.8o corresponds to a dihedral angle of 163.2o and to a projected
1-5 27o [30].
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Chapter 4

Classical Langevin Equations with Thermal Colored Noise,

Numerical Solution

4.1 Introduction

The process of thermal energy transfer is a random process. The energy does

not simply enter one end of the specimen and proceed ballistically to the other

end, but diffuses through the specimen, suffering frequent collisions, geometrical

scattering and scattering by other phonons. In this chapter we shall develop the

background to numerically solving the generalized classical Langevin equations

for a system of interacting particles in contact with heat baths using a fourth

order Runge-Kutta Method[12, 27]. The results of this numerical technique will

be used to calculate some of the thermal properties of the system and to foresee

the extent to which the normal mode approach used in the previous analysis is

capable of predicting the best configurations to optimizing heat throughout the

system.

4.2 Development

In this section we shall develop the steps to numerically solving eq.4.1 with the

correlation eq.4.2 using a fourth order power expansion in time of the displace-

ment. We first present the steps to this numerical solution and then apply it in

sec.4.4 to a linear chain, small pristine graphene sheet and a small functionalized

graphene sheet.

mi ẍi(t) = −∂U

∂xi

+

(
−

∫ t

0

dt′K(t− t′) ẋi(t
′) + Fi(t)

)
(δi,1 + δi,N) (4.1)
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〈Fi(t)〉 = 0

〈Fi(t) Fj(t
′)〉 =

γi

τ
δijkBTe−|t−t′|/τ

(4.2)

where U is the interaction potential among all the different sites in the system,

mi, xi,respectively are the mass and displacement of particle i, γi is a damping

coefficient, Fi(t) is the Langevin force on particle i, the overhead dot refers to

time derivative, and δij is the Kronecker delta function restricting the driving

and damping to the first and last particles.

We follow the steps outlined in chapter.4 and introduce the variable in eq.3.5,

then eq.4.1 becomes of the form

ẋi =
pi(t)

mi

ṗi(t) = −∂U

∂xi

+ [−yi(t) + Fi(t)] (δi,1 + δi,N)

ẏi(t) = −1

τ
yi(t) +

γi

miτ
pi(t)

Ḟi(t) = −1

τ
Fi(t) +

√
2γikBTi

τ
Γi(t)

(4.3)

where the last equation describes O-U noise, and Γi(t) is a Gaussian white noise,

with correlation

〈Γi(t)〉 = 0

〈Γi(t)Γj(t
′)〉 = δijδ(t− t′)

(4.4)

These four equations can be reduced to a set of three equations eq.4.5 if we

introduce the variable Yi(t) = Fi(t)− yi(t)
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ẋi =
pi(t)

mi

ṗi(t) = −∂U

∂xi

+ Yi(t)(δi,1 + δi,N)

Ẏi(t) = −1

τ
Yi(t)− γi

miτ
pi(t) +

√
2γikBTi

τ
Γi(t)

(4.5)

Eq.4.5 can be put in a vector form eq.4.6, where f(~S) is a function of the

component of ~S eqs.4.7, 4.8, and 4.9.

~̇S = f(~S) + Γ(t)
(4.6)

~S =




xi

pi

Yi (δi,1 + δi,N)

.




(4.7)

f(~S) =




Si+N

mi

− ∂U

∂Si−N

+ Si+N (δi,N+1 + δi,2N)

[−1

τ
Si(t)− γi−2N

τmi−2N

Si−N(t)] (δi,2N+1 + δi,3N)

.




(4.8)
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~Γ =




0

0

√
2γikB Ti

τ
Γi (δi,2N+1 + δi,3N)

.




(4.9)

The problem reduces to knowing how to solve a set of equations of the form

eq.4.6 which can be done through a basic expansion in time of fi(~S). We proceed

as follow:

We break eq.4.6 into its respective components then integrate between t and

t + ∆t to solve ~S(t + ∆t), where ∆t is a short time step

Ṡi(t) = fi(~S(t)) + Γi(t) i = 1, ..., 3N (4.10)

∫ ∆t

0

Ṡi(t + x)dx = Si(t + ∆t)− Si(t) =

∫ ∆t

0

fi(~S(t + x))dx+

(δi,2N+1 + δi,3N)

√
2γ1kB Ti

τ

∫ ∆t

0

Γi (t + x)dx i = 1, ..., 3N (4.11)

The value of Si(t+∆t) depends on Si(t), and the behavior of fi and Γi in the

neighborhood of ~S(t + ∆t). That is, the behavior fi and Γi in the neighborhood

of ~S(t+∆t) can shed some light on the nature of the solution at ~S(t+∆t). This is

the fundamental basis for one of the successful and widely used one-step methods

known as the Runge-Kutta method. The Runge-Kutta method is also one of the

few methods in numerical analysis that does not rely directly on polynomial
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approximation. The basic method assumes that the solution ~S(t + ∆t) can be

represented by a power series with reference to ∆t. This can be achieved by

expanding each component of ~f(~S) in a Taylor series around ~S(t + ∆t).

fi(~S(t + ∆t)) = fi(~S(t)) +
∂

∂Sk

fi(~S(t)) [Sk(t + ∆t)− Sk(t)]+

1

2

(
∂2

∂Sj ∂Sk

fi(~S(t))

)
[Sk(t + ∆t)− Sk(t)][Sj(t + ∆t)− Sj(t)] + ....

(4.12)

To keep track of the order of each derivative, we introduce the following

notation

fi(S(t)) = fi

∂

∂Sj

fi(~S(t)) = fi,j

∂2

∂Sj ∂Sk

fi(~S(t)) = fi,jk

∂3

∂Sj ∂Sk ∂Sm

fi(~S(t)) = fi,jkm

∂4

∂Sj ∂Sk ∂Sm ∂Sl

fi(~S(t)) = fi,jkml

δSi(x) = Si(t + x)− Si(t)

(4.13)

If a sum over repeated indices is assumed
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Si(t + ∆t)− Si(t) =

∫ ∆t

0

[fi + fi,k δSk +
1

2
fi,jk δSk δSj +

1

6
fi,jkm δSk δSj δSm+

1

24
fi,jkml δSk δSj δSm δSl + ....] dx + (δi,2N+1 + δi,3N)

√
2γ1kB Ti

τ

∫ ∆t

0

Γi (t + x)dx

i = 1, ..., 3N

(4.14)

To expand consistently and produce a Taylor approximation of fourth order

in ∆t of ~S(t+∆t) one must keep in mind that

∫ ∆t

o

Γ(s)ds is O(∆t1/2), that is the

lowest order in the expansion. As a matter of fact if we introduce the stochastic

Gaussian variable | Z1,i | as in eq.4.15, with average and standard deviation as

calculated in eq.4.16, it is clear from that point that (Z1,i) is of order O(∆t1/2).

Zi,1(∆t) =

√
2γikBTi

τ

∫ ∆t

0

Γi(t + x)dx (4.15)

〈Zi,1(∆t)〈=
√

2γikBTi

τ

∫ ∆t

0

〈Γi(t + x)〉dx = 0

〈Z2
i,1(∆t)〉 =

2γikBTi

τ 2

∫ ∆t

0

∫ ∆t

0

〈Γi(t + x)Γi(t + s)〉dx ds

=
2γikBTi

τ 2

∫ ∆t

0

∫ ∆t

0

δ(x− s)dx ds =

√
2γikBTi

τ

∫ ∆t

0

ds =
2γikBTi

τ 2
∆t

(4.16)

The lowest order in the expansion eq.4.19 is then of order O(∆t1/2) and defined

as
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δS
1/2
i (∆t) =

∫ ∆t

0

Γi(t + x) dx = (δi,2N+1 + δi,3N) Zi,1(∆t) + O(∆t) (4.17)

Next we insert this result in the previous expansion eq.4.10 to get the next

order eq.4.18

δS1
i (∆t) =

∫ ∆t

0

fi dx = fi ∆t + O(∆t3/2) (4.18)

The next order in the expansion is eq.4.19

δS
3/2
i (∆t) =

∫ ∆t

0

fi,k δS
1/2
k (x) dx + O(∆t2)

= fi,k (δk,2N+1 + δk,3N)
∫ ∆t

0
Zk,1(x) dx + O(∆t2)

= (δk,2N+1 + δk,3N) fi,k Zk,2(∆t) + O(∆t2)

= (δi,N+1 − 1

τ
δi,2N+1) Z2N+1,2(∆t) + (δi,2N − 1

τ
δi,3N) Z3N,2(∆t) + O(∆t2)

(4.19)

where

∫ ∆t

0

Zk,1(x) dx = Zk,2(∆t) (4.20)

Similarly

δS2
i (∆t) =

1

2
fi,k fk ∆t2 + O(∆t5/2) (4.21)
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δS
5/2
i (∆t) = (δj,2N+1 + δj,3N) fi,k fk,j Zj,3(∆t) + O(∆t3)

= fi,k fk,2N+1 Z2N+1,3(∆t) + fi,k fk,3N Z3N,3(∆t) + O(∆t3)

= (fi,N+1 − 1

τ
fi,2N+1) Z2N+1,3(∆t)+

(fi,2N − 1

τ
fi,3N) Z3N,3(∆t) + O(∆t3)

= (δi,1 − γ

m τ
δi,2N+1 − 1

τ
(δi,N+1 − 1

τ
δi,2N+1)) Z2N+1,3(∆t)+

(δi,N − γ

m τ
δi,3N − 1

τ
(δi,2N − γ

m τ
δi,3N)) Z3N,3(∆t) + O(∆t3)

(4.22)

where

∫ ∆t

0

Zj,2(x) dx = Zj,3(∆t) (4.23)

and

δS3
i (∆t) =

1

6
[fi,k fk,j fj + fi,jk fj fk] ∆t3 + O(∆t7/2) (4.24)
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δS
7/2
i (∆t) = (δm,2N+1 + δm,3N) fi,k fk,j fj,m Zm,4 + O(∆t4)

= fi,k fk,j fj,2N+1 Z2N+1,4 + fi,k fk,j fj,3N Z3N,4 + O(∆t4)

= fi,k fk,j (δj,N+1 − 1

τ
δj,2N+1) Z2N+1,4+

fi,k fk,j (δj,2N − 1

τ
δj,3N) Z3N,4 + O(∆t4)

= [fi,1 − γ

m τ
(δi,N+1 − 1

τ
δi,2N+1)− 1

τ
(δi,1 − γ

m τ
δi,2N+1 − 1

τ
(δi,N+1−

1

τ
δi,2N+1))]Z2N+1,4(∆t)+

[fi,N − γ

m τ
(δi,2N − 1

τ
δi,3N)− 1

τ
(δi,N − γ

m τ
δi,3N−

1

τ
(δi,2N − 1

τ
δi,3N))]Z3N,4(∆t)

(4.25)

where

∫ ∆t

0

Zm,3(x) dx = Zm,4(∆t) (4.26)

Finally

δS4
i (∆t) =

1

24
[fi,k fk,j fj,mfm+fi,jkm fj fk fm+fi,k fk,jm fj fm+6 fi,kj fk,m fj fm] ∆t4 +O(∆t9/2)

(4.27)

From this fourth order expansion one can write the solution to eq.4.5 as the
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sum of a deterministic term Sidet
(t + ∆t) and a random term Siran(t + ∆t), such

that

Si(t + ∆t) = Si(t) + Sidet
(t + ∆t) + Siran(t + ∆t) (4.28)

and

Sidet
(t + ∆t) = δS1

i (∆t) + δS2
i (∆t) + δS3

i (∆t) + δS4
i (∆t) (4.29)

Siran(t + ∆t) = δS
1/2
i (∆t) + δS

3/2
i (∆t) + δS

5/2
i (∆t) + δS

7/2
i (∆t) (4.30)

All the Zi,k up to the fourth order (k = 4) are Gaussian random variables,

with the covariant matrix eq.4.31

τ 2

2γikBTi

< Zi,n(∆t) Zi,m(∆t) >=




∆t
1

2
∆t2

1

3!
∆t3

1

4!
∆t4

1

2
∆t2

1

3
∆t3

3

4!
∆t4

4

5!
∆t5

1

3!
∆t3

3

4!
∆t4

6

5!
∆t5

10

6!
∆t6

1

4!
∆t4

4

5!
∆t5

10

6!
∆t6

20

7!
∆t7




(4.31)

for example
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< Zi,1(h) Zi,2(h) >=

∫ h

0

dy

∫ y

0

dγ

∫ h

0

dx < Γi(t + γ) Γ(t + x) >=

2γikBTi

τ 2

∫ h

0

dy

∫ y

0

dγ

∫ h

0

dx δ(γ − x) =

∫ h

0

dy

∫ y

0

dγ =

∫ h

0

y dy =
1

2
h2

(4.32)

The rest of the elements of matrix eq.4.31 are calculated in a similar way.

Using the covariance matrix eq.4.31 one constructs the random variables Zi,k

as linear combinations of four independent Gaussian variables: xi , yi , ui, wi,

where each of these variable has zero average and variance
√

∆t. Using the Gram

Schmidt process

xi = Zi,1

∆t

2
√

3
yi = Zi,2 − < Zi,2 xi >

< xi xi >
xi = Zi,2 − 1

2
∆t xi

∆t2√
3

ui = Zi,3 − < Zi,3 xi >

< xi xi >
xi − < Zi,3 yi >

< yi yi >
yi = Zi,3 − 1

3!
∆t2 xi − 2

√
3

4!
∆t2 yi

∆t3

120
√

7
wi = Zi,4 − < Zi,4 xi >

< xi xi >
xi − < Zi,4 yi >

< yi yi >
yi − < Zi,4 ui >

< ui ui >
ui

= Zi,4 − 1

4!
∆t3 xi −

√
3

40
∆t3 yi − 1

24
√

5
∆t3 ui

(4.33)

Which can also be expressed in the form of
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Zi,1 =

√
2γikBTi

τ
xi

Zi,2 =

√
2γikBTi

τ
∆t [

1

2
xi +

1

2
√

3
yi]

Zi,3 =

√
2γikBTi

τ
∆t2[

1

3!
xi +

2
√

3

4!
yi +

1√
6
ui]

Zi,4 =

√
2γikBTi

τ
∆t3[

1

4!
xi +

√
3

40
yi +

1

24
√

5
ui +

1

120
√

7
wi]

(4.34)

It is important to note that one does not have to use the Taylor expansion

for the deterministic part of the solution. Any fourth-order procedure will give

the needed accuracy. By using the fourth-order Runge-Kutta algorithm [26] for

the deterministic propagation and adding the random forces as given in eq.4.30,

one has a fourth-order algorithm which will depend only on the first derivatives

of the function (f(~S)).

4.3 Program structure diagram

In this section we shall outline the program structure diagram used to implement

the technique developed in sec.4.2.

• Generating the random variables (xi , yi , ui, wi). For each coordinate

(i), in each run (r), for each random variable, populate as many random

numbers as the number of steps of the ongoing simulation (the numbers

must be extracted from a random distribution of average zero and standard

deviation (σ =
√

∆t)),

• Calculating the deterministic solution (Sidet
(t + ∆t)). For each coordinate
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(i), in each step (t+∆t), calculate the deterministic solution (Sidet
(t+∆t))

using a forth order RungeKutta algorithm.

• Calculating the random solution (Siran(t+∆t)). For each coordinate (i), in

each step (t + ∆t), calculate the random solution (Siran(t + ∆t)) according

to eq.4.30

• Add the deterministic and random solution to find the solution to eq.4.10

at (t + ∆t)

• Calculate heat flux and average kinetic energy

• Loop over the number of steps (∆t)

• Average over the total number of runs

4.4 Application

In this section we shall apply the technique developed in sec.4.2 to numerically

solve for the displacements and momenta as a function of time for a one dimen-

sional linear chain, a small pristine graphene sheet and different configurations of

functionalized sheets of graphene. The results of these simulations will be used

to calculate some of the thermal properties of the system.

4.4.1 One dimensional linear chain; Classical approximation

Consider a linear chain of N coupled atoms, the first and the last of which interact

with thermal heat baths, a schematic diagram of this set up is drawn in Fig.4.1

for N = 6. For simplicity only nearest neighbor interactions will be considered

and it is assumed that adjacent atoms are coupled with springs of spring constant

k. Let xl be the displacement of the lth particle. The Hamiltonian of this system

is
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H =
∑

i

pi
2

2m
+

1

2
k(xi+1 − xi)

2
(4.35)

where m is the mass of the particles. We set m = a = 1, where a is the lattice

constant, and k = 1.

T+T-

Figure 4.1: A pictorial representation of a linear chain of N = 6 mutually coupled
oscillators in interaction with two thermal reservoirs working at different temperatures.
Here T1 = T+ and TN = T−.

The simulation was conducted over 200 runs at a time step of ∆t = 0.01

in units of
√

k/m, the curves in fig.4.2 represent the average heat flux across

the different sections of the chain < Ji >= (1/2) k < (xi+1 − xi)(ẋi+1 + ẋii) >.

This result is compared to the analytical solution developed in a previous chapter

illustrated in fig.4.3. Both the numerical simulation and the analytical solution

produce identical results.

4.4.2 Two Dimensional Sheet of Pristine Graphene

In this application we consider a hexagonal sheet of pristine graphene made of 54

carbon atoms bonded together in a honeycomb structure, three sites on each side

of the graphene sheet are in contact with heat baths at respective temperatures

of kBT+ = 0.07 (eV ) and kBT− = 0.06 (eV ), a schematic diagram of this set up

is drawn in Fig4.4. We conducted our simulation over 800 runs at a time step of

(∆t = 5 10−3 ns) for a total number of steps equal to 20000. We calculated the

heat flux at every step according to the result in appendix.A.2 and then averaged

over the total number of runs. Fig.4.5 is a representation of the result of this

simulation. In the steady state regime, the heat flux throughout the graphene
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Figure 4.2: Numerical results of heat Flux Ji = (1/2)k(xi+1 − xi)(ẋi+1 + ẋii) for a
linear chain of N = 6 mutually coupled oscillators in interaction with two thermal
reservoirs working at different temperatures (kBT− = 1 (Ka2) and T+ = 2 (Ka2)),
(τ = 0.1

√
K/m). The curves represent the heat flux across the different sections of

the chain

converges to a value that is roughly 30% smaller than the one calculated using

the normal mode analysis outlined in chapter 3. The normal mode analysis which

assumes that heat flows ballistically from one site to another and by ignoring all

phonon scattering overestimates the amount of heat flowing through the system

Non-linear interaction are responsible for 30% reduction in heat flux.

4.4.3 Two Dimensional Sheet of functionalized graphene

In this application we consider a hexagonal sheet of pristine graphene made of 54

carbon atoms bonded together in a honeycomb structure. We attach six alkane

chains to opposite boundaries of the graphene sheet and to two different heat

baths as shown in fig.4.6 for n-pentene (N = 5). We change the length of the

chains from N = 5 to N = 7, and then simulate the thermal heat flux and the

velocity autocorrelations throughout the macromolecule. Fig.4.6 represents the

time variation of the ratio of the average net heat flux throughout the function-

alized graphene configuration shown in fig.4.6 and that of the same configuration
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Figure 4.3: Analytical results of heat Flux Ji = (1/2)k(xi+1 − xi)(ẋi+1 + ẋii) for a
linear chain of N = 6 mutually coupled oscillators in interaction with two thermal
reservoirs working at different temperatures ((kBT− = 1 (Ka2) and T+ = 2 (Ka2)),
(τ = 0.1

√
K/m).

calculated using normal mode analysis. The steady state flux is about 30% to

40% lower, this can be interpreted as the result of the difference in elasticity

between chains and graphene, and the extent to which phonons are scattered by

other phonons. As a matter of fact, the time variation of the average temper-

atures T = 〈m v2〉 on both side of the graphene/alkane interface is reported in

fig.4.7, notice the large temperature jump from the alkanes to the graphene. The

vibrational modes of the soft alkanes can hardly couple to the phonons of the

stiff graphene. A profile of the average temperature across the graphene is also

reported in fig to illustrate the temperature gradient across the macromolecule.

The steady state average temperature difference across the interface ∆T =

∆〈m v2〉 on the side in contact with the hot bath was calculated for configurations

identical to the one in fig.4.6, with side chains of length ranging from N = 5 to

N = 7, the results are reported in Tab.4.1. The temperature difference increases

with the chain length and is even larger for even chains compared to odd chains.

Odd chains by far couple better to the graphene, a result that conforms to the
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Figure 4.4: A pictorial representation pristine graphene. The number of atoms in the
graphene sheet is 54.

normal mode analysis.

N
∆〈m v2〉

kBT+

5 0.453

6 0.602

7 0.492

Table 4.1: Ratio of the average kinetic energy 〈m v2〉 and kBT+ as a function of chain
length (N), kB is the Boltzmann constant, T+ is the temperatures of the hot bath.

4.5 Conclusion

In this chapter we developed the steps to solving the generalized classical Langevin

equations for a system of interacting particles in contact with heat baths using

a forth order Runge Kutta Method. The results of this technique were used

to simulate the heat flux through the system and the temperature drop across

the interface between two regions of the system of different degrees of elasticity.

We tested this method on a linear chains of particles connected by springs and
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Figure 4.5: Time variation of the ratio of the numerical average heat flux (Jnum)
throughout the graphene configuration shown in fig.4.4 and the heat flux of pristine
graphene from the normal mode analysis (Jnm). (kBT+ = 0.008 (eV ) and kBT− =
0.007 (eV )), (τ = 0.50) and (γ = 1).

the results were identical to the analytical solution. We then applied this tech-

nique to a small sheet of functionalized graphene, and compared its results to

the normal mode analysis described in chapter 3 for an identical system. It was

shown that the temperature difference and thus the interface resistance at the

alkane/graphene interface varied with the length of the side chains are qualita-

tively identical for the simulation and normal mode analysis, the numerical values

are however off by at least 30%. Non-linear corrections altered the magnitude of

our results, but not the general behavior of the system.

There are several ways this technique can be expanded, for ease of application

we chose classical noise with no space dependence. This can be expanded to

those systems where the random driving forces are quantum mechanical and

have characteristic correlation length comparable to the distance between system

particles.
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Figure 4.6: A pictorial representation of a functionalized sheet of graphene. The
number of atoms in the graphene sheet is 54, The alkane chains are n-pentane. The
end of the chains interact with two thermal reservoirs working at different temperatures
T+ and T−.
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Figure 4.7: Time variation of the ratio of the numerical average heat flux (Jnum)
throughout the graphene configuration shown in fig.4.6 and the heat flux of the same
configuration calculated from the normal mode analysis (Jnm). (kBTh = 0.008 (eV )
and kBTc = 0.007 (eV )), (τ = 0.50) and (γ = 1).
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Figure 4.8: Ratio of the time variation of the average temperature T = 〈m v2〉 across
the alkanes/graphene interface and kB Th.
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Chapter 5

Classical Langevin Equations with Time and Space Corre-

lated Noise

5.1 Introduction

Colored noise, even though more realistic and adequate at mimicking the effect

of a heat bath on a single particle, may not be suitable for systems of two or more

interacting particles. This is because the origin of the drag and random stochastic

forces is the same for all particles involved. The fluctuation-dissipation theorem

relating these forces should also account for their spatial dependence, and the

extent to which the noise on one site may affected the noise on other sites. In

this chapter we consider the dynamics of interacting particles which are driven by

correlated (not-independent) noise sources. We investigate the effect of spatial

correlations in the noise on the dynamical correlations in the relative motion

of the particles. As an application we compare results of heat flux with space

correlated noises versus colored noises.

5.2 Development

Consider a system made of N particles, 2p of which interact with two identi-

cal heat baths of respective temperatures TR and TL as shown in fig.5.1 The

interactions among the particles in the system are described by the potential

U(qs1 , ....., qsN
) where qsi

refer to the position of the ith particle in the system.

If psi
is the momentum the ith particle in the system, the corresponding system

Hamiltonian is of the form

Hs =
N∑
1

p2
si

2msi

+ U(qs1 , ....., qsN
) (5.1)
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In this analysis we model each bath as a collection of an infinite number of non

interacting particles each attached to the system by a spring. The Hamiltonians

of the left (HL) and right (HR) oscillator baths are

HR =

NR∑
i=1

p2
Ri

2mRi

+

NR∑
i=1

p∑
j=1

1

2
mRi

ω2
Rij

(
qRi

− λRij

mRi
ω2

Rij

qsj

)2

(5.2)

HL =

NL∑
1

p2
Li

2mLi

+

NR∑
i=1

p∑
j=1

1

2
mLi

ω2
Lij

(
qLi

− λLij

mLi
ω2

Lij

qsj

)2

(5.3)

where the pRi
, pLj

, qRi
, qLj

are respectively the momenta and displacements of the

oscillators in the right and left heat baths. ωRij
, ωLij

, mRi
, mLj

are respectively

the oscillator frequencies and masses. λRij
, λLij

are the coupling constants

Figure 5.1: Pictorial representation of the system described by the Hamiltonian Hs

where p sites on each side interact with two heat bath described by the Hamiltonian
HL and HR.

The Hamiltonian of the entire system and baths is

H = Hs + HR + HL (5.4)

The equations of motion of the heat bath particles are
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q̇Ri
=

pRi

mRi

ṗRi
= −

p∑
j=1

mRi
ω2

Rij
(qRi

− λRij

mRi
ω2

Rij

qsj
)

q̇Li
=

pLi

mLi

ṗLi
= −

p∑
j=1

mLi
ω2

Lij
(qLi

− λLij

mLi
ω2

Lji

qsj
)

(5.5)

Eqs.5.5 can be transformed into a simplified vector equations eq.5.7 by intro-

ducing the following vectors

~SbR
(t) =

(
qR1 , ..., qRNR

, pR1 , ..., pRNR

)

~SbL
(t) =

(
qL1 , ..., qLNL

, pL1 , ..., pLNL

)

~Ss(t) = (qs1 , ..., qsN
, ps1 , ..., psN

)

(5.6)

~̇SbR
(t) =




0̃ M̃−1
R

−K̃R 0̃


 ~SbR

(t) +




0̃ 0̃

λ̃R

t
0̃


 · ~Ss(t)

~̇SbL
(t) =




0̃ M̃−1
L

−K̃L 0̃


 ~SbL

(t) +




0̃ 0̃

λ̃L

t
0̃


 · ~Ss(t)

(5.7)

where and M̃−1 is a diagonal matrix with elements M̃−1
ij − δij/mi, K̃ is also diag-

onal with elements Kij = δijmi

p∑

k

ωik
2, and δij is the Kronecker delta function

Take
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Ã =




0̃ M̃−1

−K̃ 0̃




(5.8)

The solution to eq.5.7 for each bath is of the form

~Sb(t) = exp(t Ã) · ~Sb(0) +

∫ t

0

dt′ exp((t− t′) Ã) ·




0̃ 0̃

λ̃t 0̃


 · ~Ss(t

′)
(5.9)

An integration by parts leads to the form:

~Sb(t) = −Ã−1 ·




0̃ 0̃

λ̃t 0̃


 · ~Ss(t) + exp(t Ã) · [~Sb(0) + Ã−1 ·




0̃ 0̃

λ̃t 0̃


 · ~Ss(0)]+

∫ t

0

dt′ exp((t− t′) Ã) · Ã−1 ·




0̃ 0̃

λ̃t 0̃


 · d

dt

(
~Ss(t

′)
)

(5.10)

Assuming ~Ss(0) = 0, eq.5.10 becomes

~Sb(t) = −Ã−1 ·




0̃ 0̃

λ̃t 0̃


 · ~Ss(t) + exp(t Ã) · ~Sb(0)+

∫ t

0

dt′ exp((t− t′) Ã) · Ã−1 ·




0̃ 0̃

λ̃t 0̃


 · d

dt

(
~Ss(t

′)
)

(5.11)
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Now we turn our attention to the system. The equations of motion of the

system particles are of the form

q̇si
=

psi

msi

ṗsi
= − ∂U

∂qsi

+

NR∑
j=1

λRji

(
qRj

− λRji

mRj
ω2

Rji

qsi

)
+

NL∑
j=1

λLji

(
qLj

− λLji

mLj
ω2

Lji

qsi

)

(5.12)

Eq.5.12 can be transformed into a more compact form as

~̇Ss(t) = ~f(~Ss(t)) +




0̃ 0̃

λ̃R 0̃


 · ~SbR

(t)− η̃R · ~Ss(t) +




0̃ 0̃

λ̃L 0̃


 · ~SbL

(t)− η̃L · ~Ss(t)

(5.13)

where

~f(~Ss(t)) =

(
0, ...., 0,− ∂U

∂qs1

, .....,− ∂U

∂qsN

)

(5.14)

and

η̃ =




0̃ −M̃−1

δij

N∑

k=1

λ2
ki

mk ω2
ki

0̃




(5.15)

Substituting ~Sb by its expression from eq.5.11 gives
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~̇Ss(t) = ~f(~Ss(t))−







0̃ 0̃

λ̃R 0̃


 · Ã−1

R ·




0̃ 0̃

λ̃R

t
0̃


 + η̃R


 · ~Ss(t)

+




0̃ 0̃

λ̃R 0̃


 · exp(t ÃR) · ~SbR

(0)+

∫ t

0

dt′




0̃ 0̃

λ̃R 0̃


 · exp((t− t′) ÃR) · Ã−1

R ·




0̃ 0̃

0̃ λ̃R

t


 · ~Ss(t

′)

−







0̃ 0̃

λ̃L 0̃


 · Ã−1

L ·




0̃ 0̃

λ̃L

t
0̃


 + η̃L


 · ~Ss(t)

+




0̃ 0̃

λ̃L 0̃


 · exp(t ÃL) · ~SbL

(0)+

∫ t

0

dt′




0̃ 0̃

λ̃L 0̃


 · exp((t− t′) ÃL) · Ã−1

L ·




0̃ 0̃

0̃ λ̃L

t


 · ~Ss(t

′)

(5.16)

This is the equation of motion for ~Ss(t), expressed in terms of its own history

from 0 to t and the bath variables enter only through their initial values.

We introduce the stochastic Gaussian force as

~F (t) =




0̃ 0̃

λ̃R 0̃


 · exp(t ÃR) · ~Sb(0) (5.17)

We assume that at t = 0, the bath particles initial positions and momenta
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are distributed according to the canonical distribution eq.5.19[10], where β =

(kBT )−0.5, Hb is the bath particles energy at t = 0, and (det) stands for deter-

minant.

Hb =
N∑

i=1

p2
i

2mi

+
N∑

i=1

N∑
j=1

qi(0)

(
p∑

s=1

1

2
miω

2
isδij

)
qj(0)

(5.18)

P (~Sb(0)) =

(
2π

β

)N

det(K̃)−1/2 e−βHb (5.19)

The expectation value of any function F is

〈F 〉 =

∫
d~q(0) d~p(0) F P (~Sb(0)) (5.20)

Accordingly we have the following relations

〈~Sb(0)〉 = 0

〈pi(0) pj(0)〉 = kBT Mij δij

〈pi(0) qj(0)〉 = 0

〈qi(0) qj(0)〉 = kBT K̃−1
ij

(5.21)

which can be transformed into a simpler form as

〈~Sb(0) · ~Sb(0)t〉 = kBT




K̃−1 0

0 M̃


 (5.22)

From these relations we derive the statistics of the noise eq.5.17
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〈~F (t)〉 = 0

〈~F (t)~F (t′)t〉 = 〈




0̃ 0̃

λ̃R 0̃


 · exp(t Ã) ·

(
~Sb(0) · ~Sb(0)t

)
· exp(t′ Ã)t ·




0̃ 0̃

λ̃R 0̃




t

〉

(5.23)

one can easily prove that

Ã =




0̃ Ĩ

−Ĩ 0


 ·

(
~Sb(0) · ~Sb(0)t

)−1

(5.24)

and that

(
~Sb(0)~Sb(0)t

)
·


exp


t




0̃ Ĩ

−Ĩ 0


 ·

(
~Sb(0) · ~Sb(0)t

)−1







t

=

exp


−t




0̃ Ĩ

−Ĩ 0


 ·

(
~Sb(0) · ~Sb(0)t

)−1


 ·

(
~Sb(0) · ~Sb(0)t

) (5.25)

Consequently
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〈~F (t)~F (t′)t〉 = kBTR/L




0̃ 0̃

λ̃R 0̃


 · exp((t− t′) Ã) · 〈

(
~Sb(0) · ~Sb(0)t

)
〉 ·




0̃ 0̃

λ̃R 0̃




t

= kBTR/LL̃(t− t′)

(5.26)

where

L̃(t− t′) =




0̃ 0̃

λ̃R 0̃


 · exp((t− t′) Ã) · 〈

(
~Sb(0) · ~Sb(0)t

)
〉 ·




0̃ 0̃

λ̃R 0̃




t

(5.27)

Knowing that one can write

〈
(

~Sb(0) · ~Sb(0)t
)
〉 = Ã−1 ·




0̃ Ĩ

−Ĩ 0


 (5.28)

Eq.5.27 becomes

L̃(t− t′) = −




0̃ 0̃

λ̃L 0̃


 · exp((t− t′) ÃL) · Ã−1

L ·




0̃ 0̃

0̃ λ̃L

t




(5.29)

By writing

exp((t) Ã) =
∑

n

tnÃn

n!
=

∑
n

t2nÃ2n

(2n)!
+

∑
n

t2n+1Ã2n+1

(2n + 1)!
(5.30)
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on can check that the elements of Ã2n+1 are all off diagonal, accordingly they do

not contribute to L̃(t− t′), and eq.5.29 simplifies to .

L̃(t− t′) = −




0̃ 0̃

λ̃L 0̃


 · exp((t− t′) ÃL) ·




0̃ −K̃−1 · λ̃t

0̃ 0̃




(5.31)

the elements of which are of the form

L̃ij(t− t′) =
N∑

k=1

λik λjk

cos







√√√√
p∑

l=1

ω2
kl


 (t− t′)




mk

p∑

l=1

ω2
kl

(5.32)

Assuming all the mk to be the identical among the bath particles, and ωkl to

be the same for all l′s and equal to ωk, eq.5.32 becomes

L̃ij(t− t′) =
N∑

k=1

λik λjk
cos(

√
p ωk (t− t′))

mk(
√

p ωk)
2

(5.33)

If we treat the frequency distribution as continuous, then we can replace the

sum in the previous equation by an integral eq.5.34 and eq.5.33 becomes

∑
→ N

∫ +∞

0

g(ω) dω (5.34)

L̃ij(t) =

∫ +∞

0

N λi(ω) λj(ω)

p m(ω) ω2
g(ω) cos(

√
p ωt) dω

(5.35)

If now N λi(ω) λj(ω) g(ω)/m(ω) ∝ ω2 for all frequencies then eq.5.35 becomes
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the Dirac delta function eq.5.36 and the noise is white.

L̃ij(t) ∝
∫ +∞

0

cos(
√

p ωt) dω ∝ δ(t)
(5.36)

If N λi(ω) λj(ω) g(ω)/m(ω) ∝ ω2/(1 + p τ 2 ω2) for all frequencies then

eq.5.35 becomes an exponentially decaying function of time eq.5.37 and the noise

is colored.

L̃ij(t) ∝
∫ +∞

0

1

1 + p τ 2 ω2

cos(
√

p ωt)

p
dω ∝ 1

τp3/2
e−t/τ

(5.37)

The second and fifth terms in eq.5.16 which can be taught of as additional

coupling between the system parameters due to the presence of the noise can be

simplified according to
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C̃ =







0̃ 0̃

λ̃R 0̃


 · Ã−1

R ·




0̃ 0̃

λ̃R

t
0̃


 + η̃R




=




0̃ −M̃−1

δij

N∑

k=1

λ2
ki

mk ω2
ki

0̃


−




0̃ 0̃

λ̃ · K̃−1 · λ̃t 0̃




=




0̃ −M̃−1

δij

N∑

k=1

λ2
ki

mk ω2
ki

−
N∑

k=1




λ̃ik λ̃t
kj

mk

p∑
s=1

ω2
ks




0̃




=




0̃ −M̃−1

δij

N∑

k=1

λ2
ki

mk ω2
ki

−
N∑

k=1

(
λ̃ik λ̃jk

mk p ω2
ki

)
0̃




(5.38)

If the number of oscillators in the bath is infinite then the previous equations

becomes

C̃ =




0̃ −M̃−1

δij

∫ ∞

0

N λ2

m ω2
g(ω) dω − Sij

∫ ∞

0

N λ2

m p ω2
g(ω) dω 0̃


 (5.39)

where Sij = 1 if i and j are in contact with the heat bath, otherwise Sij = 0.

If N λ2(ω) g(ω)/m(ω) ∝ ω2/(1 + p τ 2 ω2) for all frequencies then eq.5.39

becomes
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C̃ =




0̃ −M̃−1

δij

∫ ∞

0

1

(1 + p τ 2 ω2)
dω − Sij

p

∫ ∞

0

1

(1 + p τ 2 ω2)
dω 0̃




(5.40)

or

C̃ =




0̃ −M̃−1

Ẽ 0̃


 (5.41)

where

Ẽ =

(
π δij

2 τ
√

p
− π Sij

2 τp3/2

)
(5.42)

5.2.1 Solving Langevin equations with spatial correlated noise

In this section, we shall solve the generalized Langevin equations with space and

time correlated noise

msi
q̈si

(t) = −
∑

j

Kij qsj
(t)−

∑
j

Ẽij qsj
−

∑
j

S̃ij

∫ t

0

dt′L̃ij(t− t′) q̇sj(t
′) + Fi(t)

(5.43)

where S̃ij = 1 if i and j are in contact with the same heat bath and zero if not.

The noise term (Fi(t)) is related to the memory kernel by the fluctuation-

dissipation theorem

〈Fi(t)Fj(t
′)〉 = S̃ijkBT L̃ij(t− t′) (5.44)

Particularly, for exponentially correlated noise, also known as Ornstein Uh-

lenbeck noise
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〈Fi(t)〉 = 0

〈Fi(t) Fj(t
′)〉 =

γij

τ p3/2
S̃ijkBTe−|t−t′|/τ

(5.45)

and the equations of motion eq.5.43 become

msi
q̈si

(t) = −
∑

j

Kij qsj
(t)−

∑
j

Ẽij qsj
−

∑
j

S̃ij

p3/2

∫ t

0

dt′
γij

τ
e−|t−t′|/τ q̇sj(t

′)+Fi(t)

(5.46)

We introduce a new variable yj(t) such that

yj(t) =
1

τ

∫ t

0

dt′e−|t−t′|/τ q̇sj(t
′) (5.47)

our equations of motion eq.5.46 become:

q̇si
=

psi
(t)

mi

ṗsi
(t) = −

∑
j

Kij qsj
(t)−

∑
j

Ẽij qsj
−

∑
j

γij
S̃ij

p3/2
yj(t) + Fi(t)

ẏi(t) = −1

τ
yi(t) +

1

τ msi

psi
(t)

(5.48)

This set of equations can be put in a more compact form if one introduces a

new vector ~S such that

~S = (qs1 , .......qsN
, ps1 , .....psN

, y1, ....., yN) (5.49)

~̇S = D̃.~S + ~Π (5.50)
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where

D̃ =




0̃ M̃−1 0̃

−K̃ − Ẽ 0̃ −Λ̃

0̃ M̃−1 · R̃/τ −R̃/τ




(5.51)

~Π = (0, ....., 0, 0, F1(t), ....., FN(t), 0, ......., 0) (5.52)

and R̃ is a diagonal matrix with Rii = 1 only if site i is in contact with the heat

bath, and Λ̃ij =
γij

p3/2 S̃ij

If θ̃ is the matrix of right (column) eigenvectors of the matrix D̃, we first

transform ~S with the rotation matrix θ̃ such that ~S = θ̃ ~X. Replacing ~S with its

new expression in eq.5.50 gives

θ̃ ~̇X = Ãθ̃ ~X + ~Π (5.53)

which can be transformed to

~̇X = (θ̃−1Ãθ̃) · ~X + θ̃−1~Π (5.54)

If (θ̃−1Ãθ̃) is diagonal, the previous problem reduces to a first order differential

equation for the components of ~X of the form

Ẋi = ai Xi + (θ̃−1~Π)i (5.55)

where ai is the ith eigenvalue of matrix (D̃) . The solution to this equation is of

the form

Xi(t) = eai t

(∫ t

0

dτ1 e−ai τ1 (θ̃−1~Π)i + Xio

)
(5.56)

if we take ~S(t = 0) = 0 then Xio = 0 and eq.5.56 reduces to
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Xi(t) = eai t

(∫ t

0

dτ1 e−ai τ1 (θ̃−1~Π)i(τ1)

)
(5.57)

We can return to the original variables ~S from ~S = θ̃ ~X. This results in

Si(t) =
∑

k

θ̃ikXk(t) =
∑

k

θ̃ike
ak t

(∫ t

0

dτ1 e−ak τ1 (θ̃−1~Π)k(τ1)

)
(5.58)

The position and momentum correlations can be deduced accordingly

〈Si(t1)Sj(t2)〉 =
∑

ks

θ̃ik θ̃jse
ak t1+as t2

∫ t1

0

∫ t2

0

dτ1 dτ2 e−ak τ1−as τ2

〈(θ̃−1~Π)k(τ1) (θ̃−1~Π)s(τ2)〉

=
∑

ks

θ̃ik θ̃jse
ak t1+as t2

∫ t1

0

∫ t2

0

dτ1 dτ2 e−ak τ1−as τ2
∑

lm

θ̃−1
kl θ̃−1

sm 〈~Πl(τ1) (~Π)m(τ2)〉

(5.59)

or

〈Si(t1)Sj(t2)〉 =
kBTc

τ

∑

ks

∑

lm

θ̃ik θ̃jsθ̃
−1
kl θ̃−1

sm Λ̃lmeak t1+as t2

∫ t1

0

∫ t2

0

dx1 dx2 e−ak x1−as x2 e−|x1−x2|/τ+

kBTh

τ

∑

ks

∑

lm

θ̃ik θ̃jsθ̃
−1
kl θ̃−1

sm Λ̃lmeak t1+as t2

∫ t1

0

∫ t2

0

dx1 dx2 e−ak x1−as x2 e−|x1−x2|/τ

(5.60)
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In the steady state regime the above correlations converge to

〈Si Sj〉 =
kBTc

τ

∑

ks

∑

lm

θ̃ik θ̃jsθ̃
−1
kl θ̃−1

sm Λ̃lm

(
ak + as − 2/τ

(ak + as)(ak − 1/τ)(as − 1/τ)

)
+

kBTh

τ

∑

ks

∑

lm

θ̃ik θ̃jsθ̃
−1
kl θ̃−1

sm Λ̃lm

(
ak + as − 2/τ

(ak + as)(ak − 1/τ)(as − 1/τ)

)

(5.61)

where Th and Tc are respectively the temperatures of the hot and cold baths.

5.3 Application

In this section we shall present the application of the results of section 5.2 for a

one dimensional linear chain and a small sheet of functionalized graphene.

5.3.1 One dimensional linear chain

Consider a linear chain of N coupled atoms, We allow some of the sites on both

ends to interact with two different heat baths. A schematic diagram of this set up

is drawn in Fig.5.2 for N = 6. For simplicity only nearest neighbor interactions

will be considered and it is assumed that adjacent atoms are coupled with springs

of spring constant K. The hamiltonian of this system is

H =
∑

i

pi
2

2m
+

1

2
K(xi+1 − xi)

2
(5.62)

where m is the mass of the particles. We set m = a = 1, where a is the lattice

constant, and K = 1.
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T+T-

Figure 5.2: A pictorial representation of a linear chain of six (N = 6) mutually coupled
oscillators interacting with two thermal reservoirs working at different temperatures.
Here TR = T+ and TL = T−.

Using the results developed in the previous section and the definition of heat

flux in Appendix.A.3, we calculated the ratio of the thermal conductance of

the chain with spatial noise (λs) when the spatial correlation with the nearest

neighbor and that of the same chain with colored noise (λt), the number of sites

in contact with each heat bath was changed from p = 1 to p = 3 and was

chosen to be identical for each bath. As illustrated in fig.5.3, the overall thermal

conduction throughout the chain increased. The noise correlation manifest as

additional coupling (Ẽij) between the system particles independent from the

system’s internal interactions. This additional coupling is responsible for the

improved thermal conductance.

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

p

Λ
s

Λ
t

Figure 5.3: ratio of the thermal conductance of the chain with spatial noise (λs) and
the thermal conductance of the same chain with colored noise (λt) as a function of the
number sites in contact with each heat bath (p).
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5.3.2 Two dimensional Sheet of functionalized Graphene

In this application we consider the functionalized sheet of graphene shown in

fig.5.4. The hexagonal sheet is made of 54 carbon atoms bonded together in

a honeycomb structure. The chains are alkanes covalently bonded to opposite

boundaries of the graphene and to two heat baths at respective temperatures T+

and T−. The alkane chains are n-pentane. The Tersoff-Berner (TB) force field is

used to describe the interactions among the atoms in the graphene sheet. The

Nath, Escobedo, and Pablo revised (NERD) potential is used to describe the

interactions in the chains and the bond between the chains and the graphene.

We assume the characteristic length of the noise to be of the same order as the

distance between adjacent sites, so that there is correlation with the nearest site

in contact with the same heat bath. We use the method outlined in the previous

section and calculate the thermal conductance of the functionalized graphene

with (λs) and without (λt) space correlation when the last two sites of each chain

are heated for size chains ranging from N = 5 to N = 7. Fig.5.5 represents the

ratio of both conductances (λs/λt), as illustrated, the thermal conductance has

improved, in addition, the graphene configuration with n-hexane experienced by

far the largest increase among the selected configurations. We also investigated

the effect the space correlation in the noise have on the performance of odd and

even chains. As illustrated in fig.5.6, the additional coupling between the heated

sites due to this correlation compensated for the difference in stiffness between

these chains and the thermal conductance is decreasing with increasing length, a

result that can be interpreted as the limit of simply embedding the stiff material

in a very soft, long matrix.
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T+

T+

T+

T-

T-

T-

Figure 5.4: A pictorial representation of a functionalized sheet of graphene. The
number of atoms in the graphene sheet is 54, The alkane chains are n-pentane. The
end of the chains interact with two thermal reservoirs working at different temperatures
T+ and T−.

5.4 Conclusion

In this chapter we investigated the effect of spatial correlation in the noise on

the dynamical behavior of a system of interacting particles in contact with a heat

bath. The noise which represent the effect of many degrees of freedom may have a

characteristic length comparable to the distance between the system particles, as

a result the noise in one site may affect the noise in other sites. It was shown that

the additional correlations manifest as additional coupling and damping constants

between the system particles. As an application we investigated the effect this

correlation could possibly have on the heat flux throughout a linear chain and a

sheet of functionalized graphene. It was shown that the additional coupling due

to the noise spatial dependence improved the overall thermal conduction of heat

throughout the system. In addition to the energy from the random stochastic

force, some of the energy lost due to momentum exchange, is recovered because
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Figure 5.5: Ratio of the thermal conductance of functionalized graphene with space
correlated noise λs and colored noise λt for size chains from N = 5 to N = 7. The last
two sites of each chain are in contact with heat baths.
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Figure 5.6: The ratio of the Thermal conductances of functionalized graphene λ and
that of graphene λg as a function of chain length N . (solid square): heating one site,
(solid triagle): heating two sites

of the additional coupling between system particles, this explains the improved

thermal conduction.

We are developing simple models to be used in optimizing thermal conductiv-

ity, models that do not attempt to simulate the full dynamics of a molecules in a

matrix. This method allows us to include correlation effects in the heat bath. It

is not clear how much correlation we must include to best optimize real physical

systems.
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Chapter 6

Conclusion

Our first major result was the derivation of the generalized Langevin equations

for a system interacting with heat baths in both the classical and quasi-classical

approximations. We modeled the bath as an infinite ensemble of weakly inter-

acting particles, and assumed the coupling between each particle of the system

and the rest of the particles in the bath to be linear. We showed that the effect

of the bath particles can be summarized into a set of drag and random stochastic

forces that are related through the fluctuation-dissipation theorem.

Our second major result is the use of the system’s normal modes as a tool to

differentiate between the thermal efficiency of a variety of system configurations.

We assumed the bath noise to be white then calculated the thermal conductance

of the system and showed the close connection between the heat flux and the

participation ratios of the different normal modes. We applied this technique

to a graphene nanosheet functionalized with side chains of different sizes and

showed that alkanes with odd number of sites perform better than those with

even number of sites.

White noise assumes that the thermal fluctuations occur at a time scale that

is much shorter than that of the system particles. This however is never ex-

actly realized, and the time scales of both the system and fluctuations must be

taken into account. Our third major result was the use of colored noise to ana-

lyze the heat transport throughout functionalized macromolecules in general and

graphene nano-sheets as a case study. The close relation between the partic-

ipation ratios of the normal modes and the thermal conduction allowed us to

differentiate between several choices of functionalization and to identify the one

that best conduct heat to the graphene. It was shown that stiffer but lighter
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chains strongly couples to the graphene and produce higher thermal conductivi-

ties. Branching the functional groups may enhance the thermal conduction but

not the coupling to the graphene.

We ignored non-linear correction up to this point and assumed the lattice

interactions to be purely harmonic. We were interested in determining the major

bottlenecks to thermal conductivity at the interface, and of course these are

present even in the linear approximation. The question however was weather or

not these Non-linear corrections alter the principles of optimization. Our fourth

major result was to check the correspondence between the normal mode approach

and the actual behavior of the system. To this end we simulated the average net

heat flux and the temperature difference at the interface for several graphene

configurations. We concluded that Non-linear corrections do alter the magnitude

of the results, but not the essential principles for optimization.

Colored noise takes into account the time scales of both the system and bath,

but assumes spatial independence of thermal fluctuations. Our fifth major result

was to investigate the effects of spatial correlations in the noise on the dynam-

ical behavior of a system of interacting particles in general and a nano-sheet of

functionalized graphene as a case study. Because colored noises are completely

uncorrelated the thermal conduction is minimal. Including spatial dependence in

the noise reinforces the coupling between the system particles and enhances the

overall thermal conductivity.

We obviously have not addressed all the relevant aspects pertaining to heat

transport in functionalized macromolecules. We chose to develop simple models

to help optimize thermal conductivity, models that do not attempt to simulate

the full dynamics of a molecules in a matrix. There are many ways this approach

can be expanded. For ease of application we chose to only functionalize the

edges of a single graphene sheet. This can be expanded to include various forms

118



of functionalization including multi-wall and multi-sheet systems. Moreover, to

improve our predictions we need to include more accurate spatial correlations that

pertain to a given medium. Finally, with improved predictions, we can go a step

further and design real molecule interfaces that improve coupling and minimize

interfacial resistance.
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Appendix A

Thermal Properties

A.1 Flux: White Noise

The goals of this section is to give a definition of the heat flux in terms of quan-

tities we can calculate. The heat flux ~j(~r, t) at time t in the spatial position ~r is

nothing but the energy current, implicitly defined by the continuity equation.

dh(~r, t)

dt
+∇ ·~j = 0 (A.1)

Where h(~r, t) is the energy density.

With reference to an ensemble of interacting particles, we can write the mi-

croscopic energy density as the sum of the isolated contributions located in the

instantaneous position of each particle.

h(~r, t) =
∑

i

hi δ(~r − ~ri) (A.2)

Where δ(~r) is the Dirac distribution and

hi(~r, t) =
p2

i

2mi

+
1

2

∑

j 6=i

Vij (A.3)

is the energy contribution of the ith particle. The first term correspond to the

kinetic energy. The last term amounts to half of the potential energy of the

pairwise interactions with the neighboring particles to avoid double counting. In

a similar way we can write the heat flux as the sum of the localized contributions.

~j(~r, t) =
∑

i

~ji δ(~r − ~ri) (A.4)
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the problem amounts therefore to give a definition of the local heat flux ji(~r, t).

In the limit of small oscillations around the equilibrium position, density

fluctuation can be neglected and hi(~r, t) is proportional to the energy density.

The time derivative of hi(~r, t) is

dhi(~r, t)

dt
= −1

2

∑

j 6=i

(
∂Vij

∂xi

ẋi +
∂Vij

∂yi

ẏi +
∂Vij

∂zi

żi

)
+

1

2

∑

j 6=i

(
∂Vij

∂xj

ẋj +
∂Vij

∂yj

ẏj +
∂Vij

∂zj

żj

) (A.5)

This equation can in turn be written as

dhi

dt
= −

∑
j

jij

a
(A.6)

where a is the distance to the nearest neighbor. The local heat flux jij is such

that

ajij =
∂Vij

∂xi

ẋi +
∂Vij

∂yi

ẏi +
∂Vij

∂zi

żi

−∂Vij

∂xj

ẋj − ∂Vij

∂yj

ẏj − ∂Vij

∂zj

żj

(A.7)

The total heat flux j is the sum of all the isolated contributions located in the

instantaneous positions of each particle in the system

j =
∑
ij

jij (A.8)

A.2 Flux: Colored Noise

The heat flux through a system of interacting particles in the steady state can be

computed in several equivalent ways one in fact is demonstrated in appendix.A.1.

In the next analysis however we use a simpler expression that we extract from

the time derivative of the system’s total energy. Starting with eq.3.1 we multiply

both sides by ẋi
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mi ẍiẋi = −∂U

∂xi

ẋi +

(
−ẋi

∫ t

0

dt′Ki(t
′)ẋ(t− t′) + Fi(t)ẋi

)
(δi,1 + δi,N) (A.9)

Summing over all i’s we get

dE

dt
=

d

dt

(
1

2

∑
i

mi ẋi
2 + U [x(t)]

)
= −

∑
i

ẋi(t)yi(t) (δi,1 + δi,N)

+
∑

i

Fi(t)ẋi(t) (δi,1 + δi,N)

=
∑

i

(Fi(t)− yi(t))ẋi(t) δi,1 +
∑

i

(Fi(t)− yi(t))ẋi(t) δi,N

(A.10)

We identify the first term in eq.A.10 as the heat flux from the hot bath (Jh)

and the second term in the same equation as the one delivered to the cold heat

bath (Jc).

Jh =
∑

i

(Fi(t)− yi(t))ẋi(t) δi,1

Jc =
∑

i

(Fi(t)− yi(t))ẋi(t) δi,N

(A.11)

A.3 Flux: Space/Time Correlated Noise

In this section we shall derive an expression for the heat flux for the space/time

correlated noise. Starting with eq.3.1 we multiply both sides by ẋi

msi
q̈si

(t) = − ∂U

∂qsi

q̇si
−

∑
j

Ẽij qsj
q̇si
−

∑
j

S̃ij γij yj q̇si
+ Fi(t) q̇si

(A.12)
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where S̃ij = 1 if i and j are in contact with the same heat bath and zero if not.

Summing over all i’s we get

dE

dt
=

d

dt

(
1

2

∑
i

mi q̇2
si

+ U [qs(t)]

)
= −

∑
ij

Ẽij qsj
q̇si
−

∑
ij

S̃ij γij yj q̇si
+

∑
i

Fi(t) q̇si

(A.13)

In average

<
dE

dt
>= −

∑
ij

S̃ij γij

msi

< yj psi
> +

∑
i

1

msi

< Fi(t) psi
>

(A.14)

We identify the sum in eq.A.14 where (ij) in contact with the hot bath as the

average heat flux from the hot bath (Jh). similarly for (ij) in contact with the

cold bath as the one delivered to the cold heat bath (Jc).

Jh =
hot∑
ij

S̃ij γij

msi

< yj psi
> +

hot∑
i

1

msi

< Fi(t) psi
>

Jc =
cold∑
ij

S̃ij γij

msi

< yj psi
> +

cold∑
i

1

msi

< Fi(t) psi
>

(A.15)

In the steady state regime, the averages in the first two sum take an expression

similar to. The last term however can be expanded as follow

< Ssi
(t) Fi(t1) >=

∑

kl

θ̃ik θ̃−1
kl eak t

(∫ t

0

dτ1 e−ak τ1 < ~Πl(τ1) Fi(t1) >

)

(A.16)

Knowing that
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< Fi(t)Fj(t
′) >= S̃ijkBTL̃ij(t− t′) (A.17)

eq.A.16 simplifies in the steady state regime to

< Ssi
(t) Fi(t1) >= kBT

∑

kl

θ̃ik θ̃−1
kl S̃li

(
γli

1− τ ak

)
(A.18)

A.4 Heat Capacity

The heat capacity of the macromolecule can be calculated from the steady state

average total energy of the system. We assume that the heat baths are identical

and at the same temperature (T ).

Cv =
∂ < E >

∂T
= lim

t→∞
∂ < E(t) >

∂T

= lim
t→∞

∂

∂T

(
<

∑
i

p2
i (t)

2mi

+
1

2

∑
ij

Kijxi(t)xj(t) >

)

= lim
t→∞

∑
i

1

2mi

∂

∂T
(< pi(t)pi(t) >) + lim

t→∞
1

2

∑
ij

Kij
∂

∂T
(< xi(t)xj(t) >)

= lim
t→∞

2N∑
i=N+1

1

2mi

∂

∂T
(< Si(t)Si(t) >) + lim

t→∞
1

2

N∑
ij=1

Kij
∂

∂T
(< Si(t)Sj(t) >)

(A.19)

The terms inside the sums are temperature dependent, consequently the cal-

culated specific heat will depend on temperature.
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Appendix B

Force Field

B.1 The Tersoff-Brenner potential

The Tersoff-brenner (TB)[33, 34] potential was employed to describe the interac-

tions among the atoms in the graphene sheet. In the TB force field, the potential

energy is modeled as a sum of pair like interactions, where the coefficient of

the attractive term in the pair like potential depends on the local environment,

yielding an effective many-body potential.

The interatomic potential is taken to have the form

E =
∑

i

Ei =
1

2

∑

i 6=j

V ij

Vij = fc(rij) [fR(rij) + bij fA(rij)]

(B.1)

here E is the total energy of the system, which is decomposed into a site

energy Ei and a bond energy Vij. The indices i and j run over the atoms of the

system, and rij is the distance from atom i to atom j.

The function fR represent a repulsive pair potential which includes the or-

thogonalization energy when atomic wave functions overlap, and fA represents

an attractive pair potential associated with bonding. The extra term fc is merely

a smooth cutoff function, to limit the range of the potential, since for many appli-

cations like the one we are running short ranged functions permit a tremendous

reduction in computational effort.

The function bij represents a measure of the bond order. All these functions
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are taken to be of the following form:

fR(rij) = A exp(−λ rij)

fA(rij) = B exp(−µ rij)

bij = (1 + βn ζn
ij)
−1/2n

ζij =
∑

k 6=i,j

fc(rij) g(θijk) exp[λ3
3 (rij − rik)

3]

g(θ) = 1 +
c2

d2
− c2

[d2 + (h− cos(θ))2]

(B.2)

where θijk is the bond angle between bond ij and ik. The cutoff function is taken

to be a step down function so to include only the first and next nearest neighbors

to each site.

Parameters and more details necessary to implement the TB force field are

listed in Table B.1

B.2 The NERD potential

A united atom representation of the alkanes is adopted throughout this work.

The alkanes considered were n-pentane, n-heptane, and n-nonane. Within the

united atom description, an n-alkane molecule is described as a flexible linear

chain of methylene (CH2) pseudo atoms terminating at both ends with methyl

(CH3) pseudo atoms. The parameters were taken from the NERD force field [15?

, 29]. In this simulation we ignore the potential due to interactions between sites,

which are separated by more than three bonds as well as interactions between sites

that belong to different molecules. A complete listing of all of the intermolecular

potential parameters for saturated alkanes in the NERD force field is given in
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Table B.1: TB parameters for Carbon

A(eV) 1.3936× 103

B(eV) 3.467× 102

λ(Å−1) 3.4879

µ(Å−1) 2.2119

β 1.5724× 10−7

n 7.2751× 10−1

c 3.8049× 104

d 4.384× 100

h −5.7058× 10−1

R(Å) 1.95

S(Å) 0.15
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Table.B.2.

The potential in the branched alkane chains is divided between bond stretch-

ing potential Ur, bond bending potential Uθ and a torsional potential Uφ where

Ur =
1

2
kr (r − ro)

2

Uθ =
1

2
kθ (θ − θo)

2

(B.3)

and ro and θo denote the equilibrium bond length and bond angle, respectively.

Uφ = Vo + V1 (1 + cos(φ)) + V2 (1− cos(2 φ)) + V3 (1 + cos(3 φ)) (B.4)
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Table B.2: Intramolecular potential energy parameters

Bond stretching potential:
beq(Å) kr/kB (K/Å

2)
CHx − CHy 1.54 96500

Bond bending potential:
θ0(

o) kθ/kB (K)
CHx − (CH2)− CHy 114.0 62500
CHx − (CH)− CHy 109.47 62500
CHx − (C)− CHy 109.47 62500

Torsional potential:
(K) Vo/kB V1/kB V2/kB V3/kB

CHx − CH2 − CH2 − CHy 0 355.04 -68.19 791.32
CHx − CH2 − CH − CHy 1416.3 398.3 139.12 -901.2
CHx − CH − CH − CHy 0 0 0 1635.7
CHx − CHz − C − CHy 0 0 0 1635.7

B.3 Force Field for perfluoralkanes molecules

A united atom representation of the perfluoralkanes is adopted throughout this

work. Within the united atom description, an n-perfluoralkanes molecule is de-

scribed as a flexible linear chain of (CF2) pseudo atoms terminating at both ends

with (CF3) pseudo atoms. The parameters were taken from Dreiding force field

[15? ]. In this simulation we ignore the potential due to interactions between

sites, which are separated by more than three bonds as well as interactions be-

tween sites that belong to different molecules. A complete listing of all of the

intermolecular potential parameters for saturated perfluoralkanes in is given in

Table. B.3.

The potential in the branched alkane chains is divided between bond stretch-

ing potential Ur, bond bending potential Uθ and a torsional potential Uφ where
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Ur =
1

2
kr (r − ro)

2

Uθ =
1

2
kθ (θ − θo)

2

(B.5)

and ro and θo denote the equilibrium bond length and bond angle, respectively.

Uφ = Vo +V1 (1+cos(φ))+V2 (1−cos(2 φ))+V3 (1+cos(3 φ))+V4 (1−cos(4 φ))

(B.6)

Table B.3: Intramolecular potential energy parameters

Bond stretching potential:
beq(Å) kr/kB (K/Å

2)
CFx − CFy 1.54 96500

Bond bending potential:
θ0(

o) kθ/kB (K)
CFx − (CF2)− CFy 114.0 62500

Torsional potential:
(K) Vo/kB V1/kB V2/kB V3/kB V4/kB

CFx − CF2 − CF2 − CFx 0 1666.25 247.60 -349.26 -532.94
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Appendix C

Estimating the noise parameters

The eligibility of our normal mode analysis and the use of Langevin dynamics

to estimate the thermal conduction and by that identifying the graphene con-

figuration that best optimize the heat transport, rests on the evaluation of the

noise parameters that best describe the type of heat bath. There is however, a

simple method to identifying these parameters. In this section we outline the

major steps of this technique.

Start with one of the molecules of the chain isolated from the rest of the chain,

but held by a harmonic potential of spring constant k strong enough to hold the

molecule in place while surrounded by the molecules of the medium. We assume

the hot and cold bath to be identical but at different temperatures. We start

with the particle at a temperature ∆T above the heat bath temperature. The

heat will then expand from the particle to the rest of the molecules in the heat

bath. In the langevin dynamics, the trajectory of the particle obeys the equation

of motion:

mi ẍ(t) = −k x(t)−
∫ t

0

dt′K(t−t′) ẋ(t′)+F (t) = −
∫ t

0

dt′ (K(t− t′) + k) ẋ(t′)+F (t)

(C.1)

where m, x,respectively are the mass and displacement of the particle, F (t)

is the Langevin force on the particle, the overhead dot refers to time derivative.

In the classical limit, the noise term (F (t)) is related to the memory kernel

by the fluctuation-dissipation theorem

< F (t)F (t′) >= kBTK(t− t′) (C.2)
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By multiplying both sides of the previous equation by pT (0), and taking an

ensemble average, the previous equation reduces to

∂C(t)

∂t
= −

∫ t

0

dt′
K(t− t′) + k

m
C(t′) (C.3)

where C(t) =< p(t)pT (0) >, the momentum autocorrelation function.

The idea is to use data from molecular dynamics (MD) simulations to calculate

C(t), then solve the previous equation for K(t). As a matter of fact the integral

equation eq.C.3 is known in the literature as Volterra Integral Equations of the

Second Kind and can be solved for the memory kernel K(t)[3].
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