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ABSTRACT

Although the first application of the ensemble Kalman filter (EnKF) as a tech-

nique for sequential assimilation of noisy measurements was to a numerical weather

prediction problem, remarkable research progress has been made in adapting this tech-

nique for application to data assimilation problems in reservoir engineering. Since its

first application to a fairly simple parameter estimation problem in petroleum engi-

neering less than a decade ago, the ensemble Kalman filter has been applied to fairly

complex sequential model calibration problems in reservoir engineering with remark-

able success. The reason for the rapid increase in the application of EnKF to data

assimilation problems in reservoir engineering is partly due to the ease of implement-

ing this technique; it is unnecessary to determine sensitivities from adjoint equations

and the correlations between the model parameters and predicted data are estimated

from the ensemble. Also the information from previously assimilated data are stored

within the ensemble of conditional models such that it is unnecessary to repeat the

history matching on previously assimilated data whenever new data are available for

assimilation.

Despite the encouraging performance of EnKF applied to sequential model calibra-

tion problems in reservoir engineering, the formulation of the ensemble Kalman filter

is based on some critical assumptions (linear forward model and Gaussian model

priors) that are generally not valid for reservoir engineering problems. The EnKF

performance is optimal if at each data assimilation timestep, the prior state vector

is linearly related to the predicted data and the distribution of the prior state vector

is multivariate Gaussian. The state vector in reservoir engineering applications con-

sists of the static model variables and the dynamic model variables, i.e., gridblock

xiii



pressures and saturations for a black oil model. Some potential issues with EnKF

applied to data assimilation problems in reservoir engineering include the following:

non-Gaussian dynamic and/or static model parameters in the state vector, nonlin-

ear model–data relationship, etc. Usually, the presence of severe nonlinearities is

resolved by iteration, which also resolves the problem of non-Gaussian dynamic vari-

ables. However, for history matching problems with complex non-Gaussian model

parameters, such as facies variables, vertical flow barriers, multimodal model vari-

ables, etc, the nonlinear effects are exacerbated and the performance of the EnKF in

adjusting the models to obtain predictions that match production data is significantly

degraded.

In this dissertation, I focus on history matching problems with non-Gaussian

model parameters for which the standard EnKF will perform very poorly without

modifications. I identify some of the difficulties in the application of the EnKF to the

problem of updating facies models to match both production measurements and facies

observations at the well locations and propose some modifications at the update step

that improve the overall performance of the ensemble Kalman filter. I also introduce

the concept of using pseudo-model variables for jointly updating the discrete facies

variables and the multimodal rock properties in a way that is consistent with the

EnKF updating scheme. The problem of updating reservoir models with vertical flow

barriers using EnKF is also addressed in this dissertation. Estimation of vertical flow

barriers is of practical importance in reservoir simulation studies as these flow barriers

influence recovery mechanisms, gravity drainage processes and the selection of optimal

well performance parameters. I outline three very efficient and fairly general methods

for parameterizing the vertical transmissibility barriers between reservoir zones so that

zonal communication can be shut off if production data indicate that there should

be no communication. The EnKF will generally perform very poorly in generating

conditional samples of the reservoir models if the posterior PDF is multimodal. I

xiv



introduce a two-stage ensemble Kalman filter technique for application to history

matching problems with multiple modes. I demonstrate the advantage of two-stage

EnKF technique on a fairly complex low-order reservoir model with non-Gaussian

model parameters and show that it converges to a better history match solution than

the standard EnKF.
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CHAPTER I

INTRODUCTION

History matching is an inverse estimation problem where parameters of a reservoir

model are adjusted so that predictions from the history matched model honor the field

measurements. The history matched model(s) are then used for future prediction of

the reservoir performance, which is necessary for reservoir development planning and

optimization. To assess the prediction risks and/or evaluate prediction uncertainty, it

is common to calibrate multiple reservoir models to field measurements and compute

various statistics from the ensemble of predicted data. Accurate quantification of

prediction uncertainty requires that the conditional PDF of the model be sampled

correctly. In general, the number of unknown model parameters in the reservoir

simulation model is large and the shape or form of the conditional PDF of the model

is usually not known.

The Bayesian approach provides a convenient framework for integrating dynamic

and static data with a prior PDF of the model to obtain a formal expression for

generating realizations of the model from a posterior PDF. Usually the process of

generating a conditional model from the posterior is recast as a nonlinear optimiza-

tion problem that seeks to minimize a misfit functional defined by the weighted sum

of squared errors between, (1) the noisy production measurements and the data pre-

dicted by the model, and (2) a conditional realization of the model parameters and an

unconditional realization of the model parameters. The prior (unconditional) model

parameters are the geologically consistent model variables estimated from the ini-

tial best-guess knowledge of the reservoir using information from cores, well logs,

outcrops, etc.

1



Two broad approaches have been used traditionally to obtain conditional realiza-

tions of the reservoir model by minimizing a misfit functional: (1) a gradient-based

approach, which uses formulations such as the Gauss-Newton method, quasi-Newton

method, steepest descent method, etc and (2) a non-gradient-based or derivative-free

approach such as simulated annealing, genetic algorithm, Markov chain Monte Carlo

(McMC), etc. Both approaches have their respective strengths and weaknesses. The

derivative-free approach does not require gradient computation but evaluates the ob-

jective function by making multiple simulation runs for different realizations of the

model parameters. This approach becomes prohibitively expensive for large-scale his-

tory matching applications. The gradient-based approach, on the other hand, requires

much fewer simulation runs but involves the computation of gradients, which can be

quite expensive. Methods for obtaining the gradients include numerical perturbation

and adjoint methods. The numerical perturbation method is fairly easy to implement

but becomes prohibitively expensive if the number of model parameters is large. The

adjoint method (Wu et al., 1999; Zhang and Reynolds, 2002) is a fairly efficient way

for computing gradients but is also rather inflexible (adjoint codes are simulator spe-

cific and are thus not portable) and in some instances requires an inordinate amount

of time to implement. Traditional implementation of both the gradient-based and

gradient-free approaches are nonrecursive, i.e., the optimization problem has to be

re-solved whenever new data are available, thereby making the methods unsuitable for

online data assimilation problems where data are continuously/intermittently avail-

able for updating the reservoir models.

Sequential data assimilation refers to a process where the parameters of a reser-

voir model are adjusted to match production data as they become available while

preserving the history of previously matched data. If an ensemble of reservoir models

are calibrated to production measurements at each data assimilation timestep, then a

discrete approximation of the posterior PDF conditional on all previously assimilated
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data is available at any data assimilation timestep. Various statistical inferences may

be obtained from the conditional models, which may be used for reservoir manage-

ment planning. The ensemble Kalman filter (EnKF) has recently been introduced

(Evensen, 1994; Houtekamer and Mitchell, 1998) as a data assimilation tool for con-

tinuous assimilation of atmospheric data in numerical weather prediction problems

(Anderson and Anderson, 1999; Hamill et al., 2000; Houtekamer and Mitchell, 2001).

The problem of data assimilation in petroleum engineering is in many respects similar

to the numerical weather prediction problem, i.e., both problems deal with large-scale,

nonlinear dynamical systems, but fundamental differences between both problems also

exist; these relate to initialization of the dynamic states, estimation of the static and

dynamic model parameters, accounting for model error, need for constraints on some

state variables, etc. Despite these difference, the ensemble Kalman filter has been

applied successfully, with modifications, to data assimilation problems in petroleum

engineering (Nævdal et al., 2002; Lorentzen et al., 2005; Gu and Oliver, 2005; Evensen

et al., 2007; Devegowda et al., 2007; Agbalaka and Oliver, 2008; Zhang and Oliver,

2009; Chen and Oliver, 2010).

The ensemble Kalman filter is a Monte-Carlo based approach to history match-

ing in which multiple geologically-based realizations of the reservoir are sequentially

calibrated to production measurements in lieu of a single model. Because multiple

realizations of the reservoir model are updated at each data assimilation timestep, a

suite of reservoir models that honor data is available at all times and it is thus pos-

sible to quantify uncertainty in the prediction of future reservoir performance from

the ensemble. If the number of measurements assimilated at each timestep is fairly

moderate (as is the case in this dissertation), the bulk of the cost in implementing

the EnKF technique is the simulation time required to run all the realizations of the

reservoir model.
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The optimal performance of the EnKF in generating conditional models that rep-

resent a correct sampling of the posterior PDF depends critically on two assumptions:

(1) the prior PDF of the model variables should be approximately Gaussian; and (2)

the relationship between the static models variables (e.g., porosity and permeability),

the dynamic model variables (e.g., gridblock pressures and saturations) and the pre-

dicted data should be approximately linear. When these assumptions are not strongly

violated, the EnKF approximately samples the posterior PDF correctly and provides

reasonable quantification of uncertainty (Gao et al., 2006). However, for cases where

these assumptions are violated, using the EnKF technique without modification will

result in suboptimal performance of the EnKF in sampling the conditional PDF of the

model (Gu and Oliver, 2007; Li and Reynolds, 2009) leading to poor history match

to data and poor estimation of the reservoir model parameters (Agbalaka and Oliver,

2010). Several approaches have been presented for dealing with nonlinearity in the

state variables for application to history matching. Since the gridblock pressures and

saturations are also updated when data are assimilated, the magnitude of the cor-

rection to the gridblock saturations is commonly used as a measure of the severity

of the nonlinear effects. At any data assimilation timestep with severe nonlinearity,

very large changes are made to the saturation field resulting in physically implausible

saturation values (Gu and Oliver, 2006; Agbalaka and Oliver, 2008). Similar obser-

vation of inconsistent updates to the compositions in a compositional reservoir model

has been reported by Phale and Oliver (2009). Gu and Oliver (2006) used a normal-

score transform of water saturation to avoid non-physical saturation but unrealistic

oscillations in water saturation values were still observed. Phale and Oliver (2009)

and Wang et al. (2009) independently used a constrained EnKF approach to enforce

physically plausible bounds on the state variables. Chen et al. (2009) updated an

approximately-Gaussian saturation arrival time in lieu of directly updating the water

saturation. The updated water saturation variables were obtained from the updated
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saturation arrival time using a nonlinear interpolation. In some other cases, the iter-

ative ensemble filters have been used to obtain consistent updates to both the static

and dynamic model variables when the problem is very nonlinear (Zupanski, 2005;

Gu and Oliver, 2007; Li and Reynolds, 2009).

In this dissertation, I focus on the problem where the second critical assumption

of the EnKF (complex non-Gaussian distributions of the model parameters) is not

honored and propose approaches for dealing with specific occurrences of this problem.

Recall that under this condition, the performance of the ensemble Kalman filter is

degraded leading to very poor match to data and very poor estimates of the model

parameters. Specifically, I consider the problems of EnKF applied to history matching

(1) reservoir facies models, (2) models with vertical flow barriers, and (3) model with

non-Gaussian model priors and multimodal posterior PDF.

All the facies models presented in this dissertation were obtained by truncating one

or more Gaussian random fields (GRFs) using the truncated pluriGaussian simula-

tion. The initial application of EnKF to the problem of history matching an ensemble

of 2D geological facies model, obtained by truncating two Gaussian random fields,

was reported in Liu and Oliver (2005b,a). Since then the work has been extended to

more complex and nonlinear 3D facies history matching problems by Agbalaka and

Oliver (2008) and Zhao et al. (2008). Apart from the truncated pluriGaussian ap-

proach, the level sets method for generating facies models have been combined with

EnKF for history matching (Moreno et al., 2008). Also, Sun et al. (2009a) and Sarma

and Chen (2009) applied EnKF to the problem of history matching facies models gen-

erated from multipoint geostatistics. Sun et al. (2009a) utilized a Gaussian mixture

model based approach for a single-phase flow problem in hydrology and Sarma and

Chen (2009) used a kernel-PCA based approach for a two-phase reservoir engineering

problem, although the history matching results of Sarma and Chen (2009) were very
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poor. The problem of obtaining conditional realizations of facies models from assimi-

lating production data using EnKF is very difficult. Some of these difficulties include:

(1) how to mitigate excessive loss in ensemble variability, (2) how to re-constrain the

predicted facies at the well locations if they do not match the facies observations

after assimilating production data, (3) how to update the multimodal petrophysical

properties of the facies, etc. To address these difficulties, I present and discuss ap-

proaches based respectively on (1) localizing the updates to the facies models when

facies data are assimilated, (2) decoupling the assimilation of dynamic production

measurements and static facies data at each assimilation timestep, and (3) using the

concept of pseudo-model variables for modeling the intra-facies properties when these

are uncertain, heterogenous and nonuniform. These approaches seem to work quite

well for the data assimilation problems presented in this dissertation.

I also present a general approach for coupling the EnKF technique with the prob-

lem of estimating the location of vertical flow barriers from assimilating production

data. By modeling the vertical transmissibility multipliers as flow barriers and param-

eterizing the transformed multipliers as Gaussian random variables, the distribution

of the vertical transmissibility barriers between zones can be estimated in a consistent

way using the EnKF. I discuss three alternative parameterizations of the vertical flow

barrier based on different representations of the probability of observing a transmis-

sive vs. impermeable barrier at each grid location.

Finally, I describe a novel two-stage EnKF technique that provides a practical

framework for applying the EnKF to history matching problems with multiple modes.

The proposed approach utilizes two sequential stages of EnKF to generate conditional

samples of the reservoir models around a mode of the posterior multimodal PDF in-

stead of the mean. The non-Gaussian model parameters in this case were transformed

using a shifted-sigmoid function. Throughout this dissertation, significant violation

of the EnKF linearity assumption is handled in one of two ways: (1) implementing
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a formulation of the iterative EnKF, the ensemble randomized maximum likelihood

filter (EnRMLF), proposed by Gu and Oliver (2007) or (2) rerunning the model from

time zero after assimilating data.

There are seven chapters in this dissertation. The Bayesian updating framework

is discussed briefly in Chapter 2 as well as formulations of the Kalman filter, the

extended Kalman filter and the ensemble Kalman filter. Chapter 3 describes several

techniques for extending the application of the standard EnKF to the problem of

obtaining conditional realizations of the facies models from assimilating production

data. The petrophysical properties in this case are assumed to be uniform, homoge-

nous and known. Chapter 4 extends the application of EnKF to the problem of

history matching geological facies to account for the uncertainty in the distribution

of the petrophysical properties. Because the distribution of petrophysical properties

is different in each facies, the probability density for petrophysical properties is mul-

timodal and the EnKF assumption of Gaussianity is not valid. The chapter describes

the idea behind using the pseudo-properties distribution in each facies class as a

proxy to the multimodal distribution of the actual petrophysical properties such that

consistent updates to both the petrophysical properties and the facies variables are

obtained using EnKF. Chapter 5 illustrates the application of EnKF to the problem

of estimating the spatial distribution of vertical transmissibility barriers from assim-

ilating production data. Chapter 6 introduces the two-stage EnKF for generating

conditional samples of the reservoir model for a low-order history matching problem

with multiple modes. The main conclusions are discussed in Chapter 7.
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CHAPTER II

BAYESIAN UPDATING, KALMAN FILTER

AND ENSEMBLE KALMAN FILTER

2.1 The Bayesian Updating Problem

In this section I summarize the important aspects of the Bayesian updating problem.

More detailed discussions may be found in Jazwinski (1970); Arulampalam et al.

(2002); Lewis et al. (2006).

In the Bayesian approach to estimating the parameters and/or state of a dynamical

system, the probability density function (PDF) of the system is estimated using the set

of all available information, which may include direct or indirect measurements of the

state. In an online estimation problem where measurements for updating the PDF

are sequentially available at discrete time intervals, a recursive Bayesian updating

approach is convenient. In this case, sequential sets of data are used to recursively

update the PDF whenever they are available without reprocessing previous data sets.

Recursive updating (filtering) consists fundamentally of two stages, namely: (1) a

prediction stage where the PDF is evolved from one measurement time to the next,

and (2) an update stage where newly available data are used to adjust the prediction

PDF.

Suppose yk ∈ Rny , denotes a state vector containing all the relevant information

needed to describe the dynamical system at time, tk. Suppose also that the evolution

of the state vector between two consecutive timesteps, tk−1 and tk, is governed by,

yk = ψk(yk−1, ωk), (2.1)

where ωk ∈ Rnω is an independent and identically distributed (iid) system noise
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that captures the errors in the model at time tk and ψk : Rny × Rnω → Rny is

possibly a nonlinear function of the state vector defining its evolution. A sequence of

measurements,

dobs,k = hk(yk−1, εk), (2.2)

is available at distinct time intervals where hk : Rny×nε → Rnd is possibly a nonlinear

function of the state vector that predicts data and εk ∈ Rnε is an i.i.d. measurement

noise. The updating problem may then be stated as follows: Given a sequence of

noisy measurements, Dobs,k = {dobs,1, dobs,2 . . . , dobs,k}, estimate the PDF of the state

vector, p(yk|Dobs,k), conditional on the set of all available measurements at time tk.

Conceptually, this PDF is obtained recursively from two stages involving a prediction

stage and a filtering stage.

Without loss of generality we suppose that the PDF, p(yk−1|Dobs,k−1), is available

at time, tk−1. Note that p(y0|Dobs,0) = p(y0) is the probability of the initial state

vector. The prediction stage uses the state vector evolution equation to obtain the

prior PDF of the state at time tk via the Chapman-Kolmogorov equation,

p(yk|Dobs,k−1) =

∫
p(yk|yk−1)p(yk−1|Dobs,k−1)dyk−1, (2.3)

where the fact that Eq. 2.1 defines a first-order Markov process has been used, i.e.,

current state vector only depends on the previous state vector. Eq. 2.3 is the one step

predictor probability density and p(yk|yk−1) is the one-step transition probability that

is uniquely determined by the properties of ωk, given the dynamics in Eq. 2.1. When

new measurements, dobs,k, are available at time tk, the prior PDF, p(yk|Dobs,k−1), from

Eq. 2.3 is updated using Bayes’ rule as,

p(yk|Dobs,k) =
p(Dobs,k)

p(Dobs,k−1)
p(dobs,k|yk)p(yk|Dobs,k−1), (2.4)

where p(dobs,k|yk) is the likelihood function defined by the measurement model (Eq. 2.2)

and Eq. 2.4 defines the filter probability density for generating conditional realiza-

tions of the state vector, yk, at timestep, tk. The filter probability density is then
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evolved to the next timestep, tk+1, when the next set of data, dobs,k+1, are used to

update the PDF and thus the cycle of prediction and filtering is repeated. Eqs. 2.3

and 2.4 form the basis for the optimal recursive Bayesian solution. Usually, there is

no closed form analytical solution to the recursive propagation of the PDFs and the

only recourse is to find approximate solutions (suboptimal filters such as the extended

Kalman filters, particle filters, etc) or in some instances, to impose fairly restrictive

assumptions to obtain exact analytical solutions (optimal filters such as the Kalman

filter and grid-based filter).

2.2 The Kalman Filter

The Kalman filter (Kalman, 1960; Kalman and Bucy, 1961) was first derived for solv-

ing state estimation problems in linear dynamical systems. It provides an analytically

tractable form of the optimal recursive Bayesian solution for updating multivariate

Gaussian PDFs of the state vector subject to the following assumptions:

1. The model error, ωk, is multivariate Gaussian with E[ωk] = 0 and E[ωkω
T
k ] =

Qk. E[·] is the expectation operator.

2. The measurement noise, εk, is also multivariate Gaussian with E[εk] = 0 and

E[εkε
T
k ] = CD,k.

3. ωk and εk are temporally uncorrelated, i.e., E[ωkω
T
k−1] = E[ωk−1ω

T
k ] = 0 and

E[εkε
T
k−1] = E[εk−1ε

T
k ] = 0. Also ωk and εk are uncorrelated (E[ωkε

T
k ] =

E[εkω
T
k ] = 0) at any data assimilation timestep, tk.

4. The dynamical model, ψk(yk−1, ωk) (Eq. 2.1), is linear in both the state vector,

yk−1, and the model error, ωk, such that the state evolution between consecutive

timesteps (tk−1 and tk) is given by,

yk = Ψkyk−1 + σk(yk−1)ωk, (2.5)
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where σ(yk−1) ∈ Rny×nω is a matrix that maps the model error, ωk, from Rnω

to Rny and Ψk is a state vector transition matrix that evolves the state vector

from time tk−1 to time tk.

5. The measurement model, hk(yk−1, εk), is linear in both the state vector, yk−1,

and the measurement noise, εk, such that,

dobs,k = Hkyk−1 + εk, (2.6)

where Hk is a measurement operator matrix that relates the state vector to

theoretical data.

If these assumptions hold, then the prior and posterior PDFs are both Gaussian

and it is sufficient to estimate the first two moments of the PDF to completely char-

acterize the distribution function at any time. The Gaussian PDFs for generating

realizations of the prior and posterior state vectors are given by,

p(yk|Dobs,k−1) = N (ŷk|k−1, Cy,k|k−1)

p(yk|Dobs,k) = N (ŷk|k, Cy,k|k),

(2.7)

where the subscripts k|k−1 and k|k denote the estimate at timestep tk conditional on

measurements at timesteps tk−1 and tk respectively. ŷ = E[y] denotes the expected

value of the vector y. ŷk|k−1 and Cy,k|k−1 in Eq. 2.7 are the mean and covariance of

the Gaussian PDF from the prediction stage estimated as,

ŷk|k−1 = Ψkŷk−1|k−1,

Cy,k|k−1 = σk(yk−1)Qk−1σ
T
k (yk−1) + ΨkCy,k−1|k−1ΨT

k .

(2.8)

Eq. 2.8 is an expression for the prediction stage of the Kalman filter. The conditional

mean, ŷk|k, and covariance, Cy,k|k, of the Gaussian PDF estimated from the filtering

stage is given explicitly by,

ŷk|k = ŷk|k−1 +Kk(dobs,k −Hkŷk|k−1)

Cy,k|k = (I −KkHk)Cy,k|k−1,

(2.9)

11



where

Sk = HkCy,k|k−1H
T
k + CD,k (2.10)

and

Kk = Cy,k|k−1H
T
k S
−1
k

(2.11)

are the covariance of the innovation term (dobs,k − Hkŷk|k−1) and the Kalman gain

matrix respectively. The Kalman filter is an optimal estimator subject to a Gaussian

prior and the condition that all the given assumptions are satisfied. However, appli-

cations of the method to problems in reservoir engineering have been limited because

some of the assumptions usually do not hold. Also, because of the need to explicitly

obtain, update and evolve the full covariance of the state vector at each update step,

use of the technique for large-scale data assimilation problems typical in petroleum

engineering is computationally very expensive. However, instances of the application

of the Kalman filter to estimation problems in petroleum engineering with very small

number of parameters have been reported in Mansure et al. (1999) and Corser et al.

(2000).

2.3 The Extended Kalman Filter

The extended Kalman filter (EKF) was derived to extend the applications of the

Kalman filter to nonlinear dynamical systems and nonlinear measurement models

with Gaussian additive noise respectively represented by,

yk = ψk(yk−1) + σk(yk−1)ωk (2.12)

and

dobs,k = hk(yk−1) + εk. (2.13)
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However, similar to the Kalman filter, EKF also assumes that the prior and posterior

PDFs are approximately Gaussian such that only the mean and covariance of the PDF

are updated and propagated at each timestep. Consequently, the expressions for the

PDFs at the prediction and filtering steps are essentially similar to the Kalman filter

expressions given in Eq. 2.7. However, because ψk(·) and hk(·) are nonlinear functions

of yk−1, expressions for the expected values of the state vector and the observations as

well as their respective covariances are generally not straightforward to obtain. In the

extended Kalman filter technique, the means are obtained by retaining only the first

two terms of the Taylor series expansions around the previous conditional estimate of

the mean state vector. The mean state vectors for the prediction and filtering stages

at any timestep, tk, are given respectively by,

ŷk|k−1 = E[ψk(yk−1|k−1, ωk)] ≈ ψk(ŷk−1|k−1) (2.14)

and

ŷk|k = E[hk(yk|k−1, εk)] ≈ ŷk|k−1 + K̂k(dobs,k − hk(ŷk|k−1)). (2.15)

K̂k is the Kalman gain obtained by linearizing about the most current estimate of the

conditional mean of the state vector, ŷk|k−1. Similarly, for propagating the covariance

matrix, a matrix of partial derivatives (the Jacobian) evaluated around the current

estimate of the mean state vector is first obtained from,

Ψ̂k = ∇yψk|ŷk−1|k−1

Ĥk = ∇yhk|ŷk|k−1
,

(2.16)

where |ŷk−1|k−1
and |ŷk|k−1

indicate the estimates of the mean state vector for evaluating

the Jacobian matrices, Ψ̂k and Ĥk respectively. For the EKF, the linearized estimates

of Ĥk, Ψ̂k and K̂k are used in lieu of Hk, Ψk and Kk in Eqs. 2.8–2.11 and the

prediction and filtering steps essentially proceeds the same way as in the Kalman

filter. The extended Kalman filter suffers from several disadvantages including filter
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divergence due to linearization, underestimation of the true covariance, etc. Also,

if the true PDF is non-Gaussian, then the Gaussian approximation in the EKF will

fail to describe the PDF well. Because the full covariance matrix is evaluated at

each prediction and filtering steps, the EKF cannot be applied to large scale reservoir

engineering and history matching problems. Although several modifications to the

extended Kalman filter for highly nonlinear and non-Gaussian problems have been

proposed such as the unscented Kalman filter (Julier and Uhlmann, 1997; Wan and

Van Der Merwe, 2000) and higher-order filters, these are generally not applicable

to petroleum engineering problems with large number of parameters. Examples of

EKF application to petroleum engineering with small number of parameters has been

reported in Eisenmann et al. (1994) and Liu et al. (2009).

2.4 The Ensemble Kalman Filter, EnKF

The ensemble Kalman filter (EnKF) is a Monte-Carlo approach to solving the Bayesian

updating problem presented in Eqs. 2.3–2.4. It was originally developed by Evensen

(1994) and Houtekamer and Mitchell (1998) for large scale data assimilation problems

in numerical weather prediction. The EnKF uses an ensemble of state vectors, Yk,

to represent the PDF of the dynamical system at any timestep, tk. Subject to the

Kalman filter assumptions and given a Gaussian prior PDF, the ensemble Kalman

filter converges asymptotically to the Kalman filter solution as the number of ensem-

ble members increases. The major differences between the EnKF and its precursors

(Kalman filter and EKF) are: (1) the full covariance matrix is not propagated explic-

itly between data assimilation timesteps. Rather a sample covariance matrix may be

approximated from the ensemble members making it suitable for high dimensional

problems; and (2) evaluation of the Jacobian matrix at each data assimilation is not

required. Efficient evaluation of the Jacobian matrix for nonlinear problems requires
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the derivation of adjoint equations that are fairly complex and also time consum-

ing. Additionally, the adjoint equations are not portable and have to be re-derived

once the dynamical model changes. Consequently, EnKF provides a computationally

more efficient approach to assimilating data for large-scale problems and has also

been shown to perform better than the extended Kalman filter for strongly nonlinear

problems (Zang and Malanotte-Rizzoli, 2003).

The basic idea of the ensemble Kalman filter is that Monte Carlo samples, i.e.,

realizations from the prior PDF, p(yk|Dobs,k−1), at time tk are used to approximate

the forecast/prediction distribution function. The evolution of the PDF (Eq. 2.3) is

approximated by evolving each ensemble member using the nonlinear forward model

(Eq. 2.12). The Monte-Carlo samples from the prediction/forecast step are then used

in the linear Kalman filter update equation to obtain a Monte Carlo approximation

of the posterior PDF, p(yk|Dobs,k). Hence, the assumption of a linear measurement

model and a Gaussian measurement distribution is also implicit in the EnKF formu-

lation. The EnKF is initialized by randomly sampling the initial PDF, p(y0), which is

assumed known and collecting the Monte Carlo samples in an ensemble of state vec-

tors, denoted by Y0 = [yT1 , y
T
2 , . . . , y

T
ne ]

T , where ne is the number of ensemble members

and yj denotes the jth ensemble member.

Since the ensemble Kalman filter was first introduced, it has been applied (with

some modifications) to various problems in numerical weather prediction (Houtekamer

and Mitchell, 2001; Hamill and Snyder, 2002; Evensen, 2003; Anderson et al., 2005;

Thomas et al., 2009; Sakov et al., 2010), ground water hydrology (Reichle et al.,

2002; Chen and Zhang, 2006; Franssen and Kinzelbach, 2009; Sun et al., 2009a,b;

Wang et al., 2009) and petroleum engineering (Nævdal et al., 2002; Gu and Oliver,

2005; Liu and Oliver, 2005b; Wen and Chen, 2007; Agbalaka and Oliver, 2008; Seiler

et al., 2009; Chen and Oliver, 2010).
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2.4.1 EnKF applied to data assimilation problems in reservoir engineer-
ing

For applications to reservoir engineering, the EnKF solves a combined parameter and

state estimation problem such that at the kth data assimilation timestep, the jth

state vector, yj,k, is expressed as,

yj,k =

[
mT
j,k fTk (mj,k) gTk (mj,k)

]T
, (2.17)

where m is the vector of static model parameters (usually the gridblock permeability

and porosity) that do not change between data assimilation timesteps but are updated

whenever data are assimilated, f(m) is the vector of state variables consisting of the

dynamic model parameters (typically gridblock pressures and saturations in a black

oil model) that evolve between data assimilation timesteps and define the state of

the reservoir model. Usually, the uncertainty in the dynamic variables is a function

of the uncertainty in the static model parameters and where applicable, uncertainty

in the specification of the initialization conditions such as the location of the initial

water-oil contact and/or gas-oil contact, etc. g(m) is the data predicted by m, which

may include the following measurements: bottomhole pressure data; water, oil or

liquid rate data; watercut data; etc. g(·) is commonly included in the state vector as a

diagnostic variable and terms such as CyH
T andHCyH

T that depend on the nonlinear

relationship between the model parameters and predicted data are approximated

efficiently from the ensemble.

Similar to the implementation of the Kalman filter and the extended Kalman filter,

the application of EnKF to data assimilation problems in reservoir engineering also

consists of two sequential steps: a prediction/forecast step and an update/analysis

step. The prediction step is given by,

ypj,k = ψk(y
u
j,k−1), (2.18)

where ypj,k ≡ yj,k|k−1, i.e., the state vector at time tk conditional on data up to time tk−1
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and yuj,k ≡ yj,k|k, i.e., the state vector at time tk conditional on data up to time tk. The

superscripts p and u stand respectively for predicted and updated. ψk(·) represents

a function (the reservoir simulator in this case) that solves the reservoir flow and

transport equations using the input state vector at tk−1 as the initial conditions and

outputs the predicted values of the dynamic model variables at time tk. Note that the

static model variables do not change between data assimilation timesteps such that

mu
j,k−1 = mp

j,k = ψk(m
u
j,k−1). However, the dynamic model variables are re-solved

during the forecast/prediction step and fk(m
p
j,k) = fk(m

u
j,k−1) = ψk[fk−1(mu

j,k−1)].

Note that for reservoir engineering applications the model error, ωk, at any timestep,

tk, is almost always neglected. Recently, Aanonsen (2009) discusses the possibility of

accounting explicitly for model error in reservoir engineering applications.

Following the prediction step, the analysis/update step modifies the ensemble of

state vectors to obtain filtered estimates of the state vectors that match the newly

available set of production data. Subsequently, the prediction run is repeated again

and this cycle of update and prediction is continued until all data are assimilated.

The expression for the update step is similar to the Kalman filter update equation

(Eq. 2.9) and the EnKF update to the jth state vector is given by,

yuj,k = ypj,k − C
p
Y,D,e,k (CD,D,k + CD,k)

−1 (dj,k − dobs,j,k)

= ypj,k − C
p
Y,e,kH

T
k

(
HkC

p
Y,e,kH

T
k + CD,k

)−1 (
Hky

p
j,k − dobs,j,k

)
= ypj,k −Ke,k(dj,k − dobs,j,k),

(2.19)

where Cp
Y,D,e,k = Cp

Y,e,kH
T
k is the ensemble approximation of the cross-covariance

between the state vector and the predicted data; Cp
Y,e,k is the state vector covariance

matrix approximated from the ensemble and Hk ∈ Rnd,k×ny,k is a matrix made up of

two submatrices that include an nd,k × (ny,k − nd,k) zero matrix and an nd,k × nd,k

identity matrix. ny,k and nd,k are respectively the dimension of the state vector and the

number of data assimilated at time tk. The product Hky
p
j,k extracts the predicted data

from the jth state vector, ypj,k, i.e., Hky
p
j,k = dj,k = gk(m

p
j,k). CD,D,k = HkC

p
Y,e,kH

T
k is
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the data covariance matrix estimated from the ensemble of predicted data and CD,k

is the measurement error covariance. Ke,k is the ensemble estimate of the Kalman

gain matrix. dobs,j,k is the perturbed noisy measurement expressed as,

dobs,j,k = dobs,k + εj,k. (2.20)

dobs,k is the noisy measurement at time tk and εj,k is the perturbation added to the

noisy measurement to obtain the perturbed noisy measurement assimilated by the

jth ensemble member. Burgers et al. (1998) showed that the addition of random

noise to the noisy measurements is necessary to ensure that the analysis variance

is correct. εj,k is a zero-mean Gaussian variable with E[εj,k, ε
T
j,k] = CD,k. Explicit

evaluation of the the full covariance matrix, Cp
Y,e,k, in Eq. 2.19 is unnecessary as the

dimension of the state vector is usually very large. Only the matrices Cp
Y,e,kH

T
k and

HkC
p
Y,e,kH

T
k are computed and the dimensions of these matrices are much lower than

the full covariance matrix, Cp
Y,e,k.

An assumption of Gaussianity in the prior model distribution and the measure-

ment distribution is implicit in the EnKF analysis step. Consequently, the EnKF

performance is suboptimal for highly nonlinear problems and as such iteration may

be necessary to obtain reasonable match to production measurements and update to

the model variables. This EnKF formulation requiring iteration is referred to as the

iterative EnKF (Gu and Oliver, 2007; Li and Reynolds, 2009). The iterative EnKF

essentially solves an optimization problem, using a Gauss-Newton formulation with

reduced step length, to obtain conditional realizations of the static model variables

from the PDF, p(m|dobs,k), at any required timestep, tk. The explicit form of the

PDF is given by,

p(m|dobs,k) = exp

[
1

2

(∥∥m−mpr|k−1

∥∥2

C−1
M

+ ‖g(m)− dobs,k‖2
C−1
D

)]
, (2.21)

where ‖A‖2
W = ATWA is the weighted norm of matrix A and mpr|k−1 is the prior

model conditional on production measurements up to time tk−1. Eq. 2.21 also assumes
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a prior Gaussian PDF and Gaussian measurement errors. Note that because the

measurement model is nonlinear, the posterior PDF need not be Gaussian. The

model that maximizes the conditional PDF of Eq. 2.21 is obtained by iteratively

solving the following expression,

ml+1 = βlmpr|k−1 + (1− βl)ml−βlCMGT
l

(
CD +GlCMG

T
l

)−1

[g(ml)− dobs,k −Gl(m
l −mpr|k−1)].

(2.22)

βl and Gl are respectively the step size and sensitivity matrix at the lth iteration. We

note from Eq. 2.22 that for the iterative EnKF only the static model variables are

updated in each iteration. The dynamic model variables and the predicted data are

obtained by rerunning the reservoir model from time zero using values of the updated

model parameters. This adds to the computational cost of the iterative EnKF.

The main difference between the various forms of the iterative EnKF presented

by Gu and Oliver (2007) and Li and Reynolds (2009) is in the computation of the

sensitivity matrix. Gu and Oliver (2007) approximate the sensitivity matrix from

the ensemble while Li and Reynolds (2009) compute the individual sensitivities of

the ensemble members and thus rely on solving the adjoint equations. Consequently,

the form of the iterative EnKF proposed by Gu and Oliver (2007), referred to as

the ensemble randomized maximum likelihood filter (EnRML), is computationally

less expensive. However, because the EnRML is based on a single average sensitivity

matrix, all the realizations move in a single descent direction and the distribution of

updated ensemble from this method will not approximate a multimodal PDF very

well. However, the iterative EnKF of Li and Reynolds (2009) that uses individual

sensitivity information from the ensemble members will generally perform better at

sampling multiple peaks of a multimodal conditional PDF. For some types of problem

having multiple local minima with one global minimum, the approach that uses a

single global average sensitivity is less likely to get stuck in a local minimum compared

to one that computes individual sensitivities.
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The iterative EnKF is computationally more expensive than the standard EnKF

and is thus not usually implemented at all data assimilation timesteps. It is only

implemented if the nonlinearity at any data assimilation timestep is significant. This

usually shows up as fairly large changes to the saturation variables during the EnKF

update stage. Consequently, the saturation change is monitored at each data assim-

ilation timestep and if the maximum saturation change in any grid cell exceeds a

predetermined threshold, the iterative EnKF is implemented. In this dissertation the

iterative EnKF of Gu and Oliver (2007) was utilized whenever necessary for the data

assimilation problems presented in Chapters 4 and 5. The thresholds in both chap-

ters ranged from 0.25 to 0.30. The average sensitivity matrix, G̃, from the EnRML

is evaluated as,

G̃ = ∆D(∆M)+, (2.23)

where ∆D and ∆M are respectively the matrices of the mean deviations of the

predicted data and model parameters; A+ denotes the pseudo-inverse of matrix A.
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CHAPTER III

LOCALIZATION AND SEQUENTIAL

CALIBRATION TO PRODUCTION AND

FACIES DATA

3.1 Background

The first application of the ensemble Kalman filter to the problem of conditioning

facies models, generated by truncating two Gaussian random fields, to production

data was by Liu and Oliver (2005b) and they showed that the EnKF converges to

a better history match solution compared to a gradient-based minimization method.

Since then the EnKF technique has been applied by several authors to facies history

matching problems of varying complexity (Agbalaka and Oliver, 2008; Moreno et al.,

2008; Zhao et al., 2008; Sun et al., 2009a; Lorentzen et al., 2009).

3.1.1 Issues with EnKF applied to facies

The problem of EnKF applied to history matching facies models is in general very

difficult. Most of the issues in EnKF implementation, related to history matching

applied to facies, are encountered during the analysis step. In this section we briefly

present and discuss four such issues and also identify three unsolved issues that are

addressed subsequently in this chapter.

3.1.1.1 Issue #1: Assimilating non-numerical facies data

The first issue involves the problem of handling non-numerical facies data at the

update step. This problem may be overcome by using a proxy, fp, to represent the

mismatch between the simulated facies and the facies observation (Liu and Oliver,
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2005b). The facies mismatch proxy is given by,

fp,i =

 0, fsim,i = fobs,i

1, fsim,i 6= fobs,i.
∀i : 1 ≤ i ≤ nfobs, (3.1)

where fp,i, fsim,i and fobs,i are respectively the facies mismatch proxy, the simulated

facies and the facies observation at the ith well location and nfobs is the number of

facies observations. This formulation also ensures that the contribution of each facies

mismatch term in updating the facies variables are weighted equally.

3.1.1.2 Issue #2: Enforcing the constraint on mismatched facies at the well
locations during data assimilation

The second issue deals with the possibility of destroying previously matched facies

at the well locations when production data are assimilated at any timestep. Liu and

Oliver (2005b) proposed a solution to this problem by implementing a facies matching

loop (for a 2D problem) where the production and facies data are simultaneously reas-

similated until the constraint on the facies mismatch observations at all well locations

are enforced. This approach seems to be effective if large changes are not made to

the dynamic model variables, i.e., the gridblock saturations and pressures. However,

the continuous iteration to enforce the facies mismatch constraint could potentially

result in significant changes to the state vectors such that the estimates of the static

model variables (the gridblock facies) will not be consistent with the updated dy-

namic model variables. To illustrate, Fig. 3.1 shows the saturation changes at each

data assimilation timesteps for the problem of EnKF applied to history matching of

geologic facies. The wells in the model are completed in a five-spot water injection

pattern. The injector is controlled primarily by a constant surface injection rate tar-

get with a secondary constraint on the maximum bottomhole pressure. Production

is at a constant reservoir volume rate with a secondary minimum bottomhole pres-

sure constraint. At each data assimilation timestep, the constraint on the mismatch

between the predicted facies and the observed facies is enforced, whenever necessary,
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using the iterative scheme of Liu and Oliver (2005b). Clearly, from the 6th to the

(a) Timestep 1. (b) Timestep 2. (c) Timestep 3. (d) Timestep 4.

(e) Timestep 5. (f) Timestep 6. (g) Timestep 7. (h) Timestep 8.

Figure 3.1: Change in saturation at the first eight data assimilation timesteps for
a randomly selected realization. The iterative enforcement scheme of Liu and Oliver
(2005b) was used to enforce facies mismatch constraint. Figs. 3.1(f)–3.1(h) show huge
and incorrect corrections to the saturation field.

8th data assimilation timesteps, very significant changes were made to the saturation

fields and the assumption of linearity fails to hold in this case. Also at the 8th data

assimilation timestep (Fig. 3.1(h)), it was difficult constrain the predicted well facies

in some of the ensemble members to match the facies observation using the iterative

scheme of Liu and Oliver (2005b). Furthermore, the continuous iteration to match

the facies and production data may result in incorrect weighting of the production

data relative to the prior model mismatch. To address the problem of large changes to

the saturation variables from continuous iteration, Liu and Oliver (2005b) suggested

limiting the number of iterations needed to enforce the constraint on facies mismatch

observations to 2 or 3 iterations and discarding the ensemble members that do not

match the facies observations thereafter. While this approach of eliminating the en-

semble members with mismatched facies at the well locations ensures that updates

to the state vectors are consistent, it exacerbates the problem of rank deficiency and
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sampling errors. For the history matching problem from which the example in Fig. 3.1

was obtained, more than 10 ensemble members that do not honor the facies observa-

tions had to be discarded at the eight data assimilation timestep (Fig. 3.1(h)) after

2–3 iterations. Clearly, it would be advantageous to develop method for iteratively

enforcing the facies constraints that does not reduce ensemble size.

3.1.1.3 Issue #3: Excessive loss in ensemble variability from assimilating pro-
duction data and facies data

Excessive reduction of variance seems to be a bigger problem with EnKF applied to

history matching geological facies than with EnKF applied to history matching Gaus-

sian random permeability and porosity fields. Consequently, the third issue deals with

the problem of severe loss in ensemble variability resulting in filter divergence. Filter

divergence refers to the situation where the error covariance matrix approximated

from the ensemble becomes very small leading to a filter gain that is also small. The

result is that subsequent observations will have little effect on the model estimate,

the final estimates of the model parameters will be different from the true parame-

ters and predictions from the final model will diverge. Two potential sources of filter

divergence are underestimation of forecast error covariance (due to sampling errors

or complete collapse in variability of the ensemble members) and overestimation of

the forecast error covariance due to long-range spurious correlation (Hamill et al.,

2001). Spurious correlation results from using finite ensemble size to approximate

the covariance matrix and as such the impact can be reduced by increasing the en-

semble size. Some of the techniques that have been used to ameliorate the tendency

towards variance deficiency (filter divergence) include the double EnKF (Houtekamer

and Mitchell, 1998) or inflation of the background error covariance (Anderson and

Anderson, 1999). A third approach, is the localization of the forecast error covari-

ance through a Schur product with a correlation function having compact support

(Houtekamer and Mitchell, 2001; Hamill et al., 2001). This product tends to reduce
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the spurious long-scale correlation that results in an ensemble with insufficient vari-

ance. Consequently, in this chapter we also investigate the use of localization with

facies to prevent collapse of the ensemble variance during data assimilation.

3.1.1.4 Issue #4: Choice of starting time for future prediction

The EnKF update of the state vector (comprising the static and dynamic model

variables) at each data assimilation timestep assumes that the predicted data are

linearly related to the state variables and the state variables are linearly related

to the model parameters. If this assumption is not strongly violated, the updates

to the static and dynamic model parameters are consistent. Consistency in this

case implies that the estimate of the dynamic model variables at the update step

is approximately the same as one would obtain by rerunning the simulation from

time zero to the current assimilation step using the most current estimates of the

static parameters. The goal of history matching is to obtain predictions from the

ensemble of calibrated models for reservoir management, planning and development.

For EnKF applied to history matching geological facies, the relationship between the

facies variables and data is so highly nonlinear that the final facies field does not

always honor early production data well. Consequently, the final estimates of the

dynamic variables may not be consistent with the final estimates of the static model

variables and future predictions may not always be correct without re-initializing the

dynamic model variables. Bases on the foregoing, we also evaluate, in this chapter,

whether a forecast from the final state is better than a forecast from time zero using

the final parameter fields.

3.1.1.5 Choice of ensemble size

The final issue investigated in this chapter is not specific only to EnKF applied to

facies but relates to the choice of suitable ensemble size for data assimilation. This

usually involves a tradeoff between additional computational expense versus adequate
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representation of the error statistics obtained from the ensemble. Consequently, the

impact of using three different ensemble sizes of 40, 120, and 240, on the history

matching results and the estimates of the model parameters is also presented.

3.2 Generating Facies Realizations Using Truncated

PluriGaussian Simulation

The truncated pluriGaussian method simulates the randomness of the facies distri-

bution by truncating two or more Gaussian random fields into separate regions repre-

senting the different facies types. This technique presents a practical tool for mapping

from a continuous state space to a discrete state space (indicators) and honors the

underlying covariances, cross-covariances and proportions of the facies. The trunca-

tion of multiple Gaussian random fields to obtain facies realizations was formalized

by Galli et al. (1994). Le Loc’h et al. (1994) showed various results of truncating bi-

Gaussian fields using rectangular partitions while varying the cross-correlation factor,

anisotropy and variogram type. An example of choosing more complex truncations

was also presented and discussed by the authors. Le Loc’h and Galli (1997) exam-

ined some practical issues associated with implementing the truncated pluriGaussian

method, which include structural analysis (truncation choice with thresholds estima-

tion and fitting of the indicator variogram) and conditional simulation of facies data.

They presented governing equations as well as examples for computing the thresholds

and variogram models and applied them to a conditional simulation problem. Xu

et al. (2006) presented a generalization of the pluriGaussian simulation method that

allows for the specification of complex facies contacts and transitions using a binary,

dynamic contact matrix. The truncated pluriGaussian method has also been used for

stochastic simulation of rock fractures (Dowd et al., 2007).

An attractive feature of the truncated pluriGaussian method is that the geostatis-

tical parameters for generating realizations of the facies model is completely specified
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by the covariance of the Gaussian functions and the truncation thresholds. The pro-

cess of generating realizations of the facies variables using the truncated pluriGaussian

simulation is initialized by generating, firstly, N different Gaussian random functions

(Yj, 1 ≤ j ≤ N) that are then transformed to corresponding facies variable by trun-

cation. Conceptually, the N Gaussian functions define a theoretical space with N

dimensions and a realization of the Gaussian random function, Y ∈ RN define a

point in an N -dimensional space. The facies variables may be regarded as labels that

are assigned to different parts of this space. Suppose that for an arbitrary location,

x, Di represents a partition of the N -dimensional Gaussian space labeled as Fi (facies

i) and Y(x) = [Y1(x) . . . YN(x)] is a row vector of N Gaussian functions. Then,

1Fi(x) = 1⇔ Y(x) ∈ Di, (3.2)

where 1Fi is an indicator function for facies i. The partition, Di, of the Gaussian

that corresponds to Fi is related to pFi(x), the proportion of Fi at point x, which is

usually assumed known. Note that pFi(x) also defines the probability of having Fi at

a spatial location, x, expressed as,

pFi(x) = P[facies at location x = Fi] = E[1Fi(x)]

= P[Y(x) ∈ Di] =
1√

2π|Σ|

∫
Di

exp

(
−1

2
yTΣ−1y

)
dy,

(3.3)

where P[·] defines the probability of the argument, E[·] is an expectation operator,

Σ is the covariance of the standard (zero-mean, unit-variance) N -variate Gaussian

distribution function and |Σ| is the determinant of Σ. Subject to some constraints,

Di and Σ may be determined from Eq. 3.3 for given values of pFi (Armstrong et al.,

2003).

While any arbitrary number (≥ 2) of Gaussian random fields can be used with

the pluriGaussian simulation, only two Gaussian fields are used in practice as this

is usually sufficient for generating facies models with desired contacts between the

different facies types in the model. For the case where only two Gaussian functions
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are truncated to obtain a facies variable, the truncation map is defined in a two-

dimensional space. The truncation map contains information on the proportions of

the different facies types in the model and the permissible transitions between the

different facies types. The truncation map is also known as the rock type rule, facies

transition map, truncation threshold map and threshold map. The most common

form of the truncation map is made up of thresholds that form rectangles, i.e., line

parallel to the major coordinate axes, although other nonconventional truncation

maps based on thresholds that form intersecting lines (Liu and Oliver, 2004, 2005b)

and thresholds that form intersecting ellipses (Zhao et al., 2008) have been used.

Depending on the shape and form of the thresholds in the truncation map, the

spatial configuration of the facies obtained by truncating the two Gaussian random

fields will be different. To illustrate, the two Gaussian random fields in Fig. 3.2 will

be truncated using three different truncation maps to obtain three facies maps with

different spatial configuration of the facies.

(a) Y1. (b) Y2.

Figure 3.2: Two Gaussian random fields, Y1 and Y2, truncated to obtain the facies
maps in Figs. 3.3(d)–3.3(f) using different truncation maps (Figs. 3.3(a)–3.3(c)).

Figures 3.3(a)–3.3(c) shows three different truncation maps, which differ by thresh-

old types. Figure 3.3(a) is an example of a conventional (rectangular) truncation

map obtained by partitioning the 2D Gaussian space into rectangles. By contrast,

Figs. 3.3(b)–3.3(c) are two examples of nonconventional truncation maps with thresh-

olds that respectively form intersecting lines (Liu and Oliver, 2004) and intersecting
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ellipse (Zhao et al., 2008). The intersecting lines thresholds consists of three inter-

secting lines that partition the 2D Gaussian space into a maximum of seven different

facies types. The elliptical truncation map uses two intersecting ellipses to partition

the 2D Gaussian space only into two facies. Three different Facies maps obtained

by truncating the two Gaussian random fields (Fig. 3.2) using the three different

truncation maps (Figs. 3.3(a)–3.3(c)) are shown in Figs. 3.3(d)–3.3(f). Note that

each facies map was obtained by using the truncation map immediately above it

to truncate the biGaussian fields. In this chapter, the facies maps were obtained by

truncating two Gaussian random fields using truncation maps made up of intersecting

lines thresholds. The method of moving averages (Oliver, 1995) was used to generate

realizations of the Gaussian random fields that are truncated to obtain initial facies

maps conditional on static facies observations at the well locations.

3.3 Simulation Model Description

The simulation model is a 3-layer facies model with five wells arranged in a 5-spot

waterflooding pattern and completed in all three layers of the model. There are

50× 50× 3 active grid blocks and the dimension of each gridblock is 30 ft × 30 ft ×

20 ft. Only two phases, oil and water, are present in the simulation model. The grid

locations of the five wells in the simulation model are shown in Table 3.1. The four

producers in the reservoir model are identified throughout as Prod1–Prod4.

Table 3.1: Grid coordinates of the different well locations

Coordinate Injector Prod1 Prod2 Prod3 Prod4
x 25 9 9 41 41
y 25 5 45 45 5

Three different types of geologic facies identified as facies 1, facies 2 and facies 3

(alternatively F1, F2 and F3) are present in the facies model. The petrophysical prop-

erties (porosity and horizontal permeability) in each facies are assumed to be uniform
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(a) Rectangular thresholds. (b) Intersecting line. (c) Elliptical thresholds.

(d) Facies map 1. (e) Facies map 2. (f) Facies map 3.

Figure 3.3: Realizations of the facies map showing the dependence of the spatial
configuration of the facies variables on the truncation map. The facies maps were
obtained by truncating the BiGaussian fields in Fig. 3.2 using the corresponding
truncation maps in row 1.
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and homogenous with no uncertainty. Only the location of the facies boundaries and

thus the spatial distribution of the facies variables are assumed to be uncertain such

that once the facies variables are determined, the porosity and permeability in the

facies are also determined. The values of the facies porosity and permeability used in

the model are presented in Table 3.2. Note that a kv/kh ratio of 0.2 was assumed for

all the facies class.

Table 3.2: Values of porosity and permeability in each facies.

Properties Facies 1 Facies 2 Facies 3
Permeability (mD) 274 55 632

Porosity 0.195 0.140 0.250

We note from Table 3.2 that facies 1–3 are respectively the medium, low and

high permeability facies. As previously noted, all the facies models were generated

by truncating two Gaussian random fields using a non-standard truncation map with

thresholds that comprises three intersecting lines similar to Fig. 3.3(b). Different

truncation maps corresponding to the three layers in the simulation model were used

for truncating the corresponding biGaussian random fields for generating the facies

maps. Furthermore, the expected values of the facies proportions are assumed to be

stationary, i.e., the same truncation map was used at each grid location in any layer

for truncating the Gaussian variables to obtain the corresponding facies variables.

Fifteen static measurements of the facies at the well locations in the reference model

are available for conditioning the prior models to facies observations. The facies

observations from the reference model are presented in Table 3.3. All the initial

realizations of the facies model were conditioned to these static measurements before

data assimilation.

Waterflooding commenced from the first day of production and continued for a

total period of 500 days. All the producers operated at a constant flowing bottomhole

pressure (BHP) constraint of 2500 pounds per square inch (psi). The injection rate
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Table 3.3: Facies observations at the different well locations

Layer Injector Prod1 Prod2 Prod3 Prod4
1 facies 3 facies 2 facies 2 facies 3 facies 1
2 facies 3 facies 1 facies 2 facies 2 facies 1
3 facies 3 facies 2 facies 1 facies 3 facies 1

was fixed at a fixed surface rate target of 7,500 stock tank barrels per day (STB/D)

with a secondary maximum BHP constraint of 7,000 psi.

The first set of data was assimilated at day 10 and thereafter, subsequent sets of

data were assimilated every ten days. The assimilated data were facies observations

at the well locations, bottomhole pressure (pbh) from the injector, water rate data

(qw) and liquid rate data (qL), both from each of the four producers. After water

breakthrough has been observed in all four producers, a total of 24 data (15 facies

observation, 1 bottomhole pressure datum, 4 liquid rate data and 4 water rate data)

were assimilated at each assimilation timestep. The last set of data was assimilated

at day 190. Ten days after assimilating the last set of data, a new well was drilled

at the gridblock with coordinates (46,25) to further evaluate the issue of the best

starting time for future prediction. Note that the facies at the grid location with the

new well is not conditioned to facies observation.

Variability in the ensemble of updated state and model variables is maintained

by the addition of random noise to the noisy production measurements to obtain an

ensemble of virtual/perturbed observations at each data assimilation timestep. The

random noise was sampled from a zero mean Gaussian probability density function

(PDF) with the following variances:(1) 9 psi2 for pbh, (2) 5 (STB/D)2 for qL and qw,

and (3) 10−6 for the facies data. Although facies data should have zero measurement

error, we assume a finite but negligible error by using a value of 10−6 for the variance

of the measurement error. This is necessary to ensure that the inverse of the data

mismatch covariance can be computed. Also the value of the error variance used is

small enough to have minimal effect on the inverse.
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The production measurements in this chapter are synthetic data obtained from

running a commercial black oil reservoir simulator forward in time using the reference

/ true facies model. The reference model is assumed known in this case even though it

is typically unknown in real applications. This assumption that the reference model is

known enables the evaluation of the performance of the EnKF technique in estimating

the model parameters. The reference facies maps are shown in Fig. 3.4.

(a) Layer 1. (b) Layer 2. (c) Layer 3.

Figure 3.4: Reference facies maps. The white color is the high permeability facies
(F3). The light and dark shades of gray are respectively the low (F2) and medium
(F1) permeability facies. The black dots are the well locations.

The shape of the relative permeability (rel-perm) curves used for all simulation

runs in this chapter is shown in Fig. 3.5. The same rel-perm curves were used in

generating the synthetic data from the reference models and also the predicted data

from the ensemble of facies models. Note that the rel-perm curves in Fig. 3.5 were

also used for the simulation runs discussed in Chapters 4–5.

An initial ensemble of 240 reservoir models was generated using the same geosta-

tistical parameters as the reference model. As noted earlier the initial realizations

were conditioned to the facies observations at the well locations. Three different en-

semble sizes of 40, 120, and 240 were used in this study and these were sampled from

this initial set of 240 reservoir models. Finally, because the facies variables are highly

non-Gaussian, they were not updated directly at the data assimilation timestep; the

Gaussian variables for truncation were updated in lieu of the facies variables.
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Figure 3.5: Relative permeability curves used in all the simulation models.

3.4 Case 1: Sequential Assimilation of Facies and

Production Data Without Localization

In this section, we propose an approach to iteratively enforce the constraints on fa-

cies mismatch observations when updates to the model variables from assimilating

production data have caused them to be violated. When data are conditionally inde-

pendent, the order of data assimilation is irrelevant if the correct posterior probability

distribution function (PDF) are computed from assimilation. For nonlinear and non-

Gaussian problems, however, EnKF provides an approximation to the correct PDF so

the order of data assimilation is important. What we propose is to decouple the as-

similation of production and facies data such that at any data assimilation timestep,

the production data are assimilated firstly and if the constraints on the facies mis-

match observation are violated in the updated ensemble, we iterate only on the facies

constraint. By only iterating on the facies observations, we avoid the problem of

improperly weighting the production data relative to the prior model mismatch. The

iterative enforcement of the facies constraint may, however, still result in very large

changes to the dynamic state variables as shown in Fig. 3.1. This problem may

be solved by reformulating the state vector whenever facies data are assimilated so

that only the facies variables are updated at this stage. Formally, when production

data are assimilated both static and dynamic model variables are updated and the
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ensemble of state vectors is defined by,

Y =


Y1

Y2

Θ

 =


Y1,1 Y1,2 . . . Y1,ne

Y2,1 Y2,2 . . . Y2,ne

Θ1 Θ2 . . . Θne

 , (3.4)

where Y is the ensemble of state vectors, Y1 and Y2 are the ensembles of the two

Gaussian random fields and Θ is the ensemble of dynamic model/state variables.

Assuming the prior assimilated production data have violated the constraint on the

facies, the ensemble of state vectors in Eq. 3.4 is reformulated by removing the up-

dated vectors of dynamic model variables, Θ, and the ensembles of the two Gaussian

random fields are iteratively updated from assimilating facies data until the constraint

on facies mismatch observations are enforced. The update equation for the iterative

enforcement step is given by,

Y l+1
f,i = Y l

f,i −K l
ff

l
p,i

= Y l
f,i − CY F (Cf + CFF )−1f lp,i,

(3.5)

where Yf,i is the ith state vector consisting of only the two GRFs, Kf is the Kalman

gain approximated from the ensemble, CY F is the cross covariance between the facies

mismatch proxy (Eq. 3.1) and the state vector, CFF and Cf are respectively the

covariance of the facies mismatch proxy and diagonal covariance of the noise in facies

measurement. l denotes the iteration index.

Although it may not be obvious from Eq. 3.5, a sequence of smooth corrections

(−K1
ff

1
p , . . . ,−K l

ff
l
p, . . .) are added iteratively to the GRFs until a match between

the predicted facies and the facies observations is obtained. A graphical illustration

of how the iterative re-enforcement step works is shown in Fig. 3.6 for a simple

1D model with 100 gridblocks. There are 3 different facies types (F1, F2 and F3)

obtained by truncating a single Gaussian random field. The iterative update to a

single realization of the GRF, out of 80, is presented. Each pair of the dotted blue

vertical lines corresponds to a grid location with facies observations and the length

35



of each pair is restricted to the Gaussian interval corresponding to the specific facies

type. The initial GRF has 2 grid locations (corresponding to gridblocks 24 and

99) where the Gaussian random variables are in the wrong intervals (Fig. 3.6(a)).

Figures 3.6(e)–3.6(g) show the sequence of smooth corrections applied to Gaussian

random field (Figs. 3.6(a)–3.6(c)) at each iteration to obtain Gaussian variables that

are in the correct intervals (Fig. 3.6(d)) that satisfy the constraint on the facies

mismatch observations. Note that for Gaussian variables in the correct interval, the

value of the correction term is nearly zero.

(a) Iteration l = 0 (b) Iteration l = 1 (c) Iteration l = 2 (d) Iteration l = 3

(e) Correction to Y0 (f) Correction to Y1 (g) Correction to Y2 (h) Correction to Y3

Figure 3.6: Simple 1D illustration of the iterative enforcement of the constraints on
facies mismatch observation. Top row is the evolution of the GRF and bottom row
is the sequence of smooth corrections added to the GRF to enforce constraints. Blue
circles (top row) are estimates of Gaussian variables at the observation locations (pair
of blue dotted vertical lines). The labels F1, F2, and F3 are facies types in different
intervals.

From the foregoing, after a match between the ensemble of the predicted facies at

the well locations and the facies observations is obtained, the updated estimates of

the facies maps (obtained by truncating the updated GRFs) and dynamic parameters

(gridblock pressures and saturations) are used for the next short-range forecast until

the next set of production data is available for assimilation. Based on our proposed

formulation, it is possible to iterate as many times as is necessary to enforce the con-

straints on facies mismatch observations without the problem of incorrect weighting
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1. Ensemble Forecast 2. Update ensemble by assimilating only dynamic  data (ΔD).

3. Reformulate state vectors. GRFs only.

4. Update reformulated ensemble to match static data (Fp). 7 Next ensemble forecast7.  Next ensemble forecast .

6. Reformulate state vectors to include the 
dynamic (Θ) and static (Y1 & Y2) variables . 

5.  Iterative update of only the GRFs (Y1
and Y2) to match facies observation. 

Figure 3.7: Flowchart for iteratively enforcing the constraints on facies mismatch
observations. CξD is the cross-covariance between model parameter ξ and predicted
data. CξF is the cross-covariance between model parameter ξ and the facies mismatch
proxy. ∆D is the ensemble of predicted data mismatch and Fp is the ensemble of
facies mismatch proxy. ‖A‖ is the norm of matrix A.
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of the assimilated production data relative to the prior model mismatch and without

inducing very large (incorrect) changes to the saturation and pressure fields (Fig. 3.1).

Figure 3.7 is a flowchart of the major implementation steps of the proposed iterative

enforcement of the constraints on facies mismatch observations.

For the problem of EnKF applied to history matching geological facies, excessive

loss in ensemble variability is generally a much bigger problem. The requirement

to iterate whenever the constraints on facies mismatch observations are violated will

also also exacerbate this problem. The EnKF implementation consists of short range

forecasts of simulated data between data assimilation timesteps. The spread in short-

range prediction of the ensemble is an indicator of model diversity and thus of the

variability between the ensemble members. While some reduction in prediction spread

is expected from conditioning the ensemble to data, excessive reduction is undesirable

as this will result in filter divergence since the ensemble variability will be too low.

Figure 3.8 shows the variability in ensemble prediction for three different types of data

at each data assimilation timestep for ensemble sizes of 40 (Figs. 3.8(a)–3.8(c)), 120

(Figs. 3.8(d)–3.8(f)) and 240 (Figs. 3.8(g)–3.8(i)). The prediction spread at each data

assimilation timestep is obtained by a forward simulation run (using a commercial

reservoir simulator) from the previous data assimilation timestep to the next data

assimilation timestep using the ensemble estimates of the static and dynamic model

variables from the previous timestep.

Before the first water breakthrough time (day 120) the ensemble size of 40 per-

formed fairly well in the short-range prediction match to measured data and the

measured data are generally contained in the ensemble prediction spread. The en-

semble of predicted BHP data for an ensemble size of 40 shows a consistent decrease

in ensemble variability with data assimilation and after day 120, the ensemble vari-

ability is so small that the facies models could not be adjusted to obtain short-range

prediction match to data for the remaining data assimilation timesteps (Fig. 3.8(a)).
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(a) ne = 40. Injector pbh. (b) ne = 40. Prod3 qw. (c) ne = 40. Prod4 qw.

(d) ne = 120. Injector pbh. (e) ne = 120. Prod3 qw. (f) ne = 120. Prod4 qw.

(g) ne = 240. Injector pbh. (h) ne = 240. Prod3 qw. (i) ne = 240. Prod4 qw.

Figure 3.8: Variability in short range predictions for the case without localization.
The red dots are the production measurements and the box-whisker plots are the
ensemble of short range forecasts from the previous data assimilation timestep. ne is
the ensemble size. Filter divergence occurred for the ensemble size of 40 (top row).
Predictions from ensemble sizes of 120 and 240 (middle and bottom rows respectively)
do not show evidence of filter divergence and match data better.
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Similar observation of the effect of too low ensemble variability is evident in the very

low spread in ensemble prediction and the lack of match to the qw data from pro-

ducers 3 and 4 for the same ensemble size (Figs. 3.8(b)–3.8(c)). By contrast, the

ensemble sizes of 120 (Figs. 3.8(d)–3.8(f)) and 240 (Figs. 3.8(g)–3.8(i)) show evidence

of sufficient ensemble variability for the entire data assimilation period and the filter

appears not to diverge for both ensemble sizes. Additionally, at each data assimila-

tion timestep the production data are contained in the short-range prediction spread

for both ensemble sizes.

At each update step, the forecast error covariance and the Kalman gain are ap-

proximated using statistics obtained from the ensemble members. If the ensemble

spread is overly underestimated, the ensemble approximations of these parameters

will be incorrect. Estimates of the facies boundaries and spatial distribution of the

facies variables at each data assimilation timestep are obtained by adjusting the val-

ues of the GRFs at the update step. The joint impact of assimilating both production

and facies data on the ensemble spread may be analyzed by examining the between-

ensemble variance of the model parameters at each data assimilation timestep. To

this end, the average ensemble variance of the two GRFs at each data assimilation

timestep (Eq. 3.6) is utilized and the value is obtained as,

Y =
1

2ng

2ng∑
i=1

[
1

ne − 1

ne∑
j=1

(Yi,j − Y i)
2

]
. (3.6)

Y is the average variance of the bi-Gaussian random fields from all three layers in

the model; i and j are respectively the gridblock and ensemble member indices; ne is

the number of ensemble members and ng = nxnynz is the total number of gridblocks

with nx, ny and nz being the number of gridblocks in the x−, y− and z− directions

respectively. Y i is the mean value of the GRF at the ith grid location. The factor of

2 in Eq. 3.6 accounts for the fact that there are two Gaussian random fields. The plot

of the time evolution of the average variance of the GRFs as a function of the three
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ensemble sizes is presented in Fig. 3.9(a). Figure 3.9(b) also shows the number of

iterations required to enforce the constraints on the mismatch to facies observations

at the well locations at each data assimilation timestep.

(a) Mean of GRF variances. (b) Facies mismatch iteration.

Figure 3.9: Time evolution of the GRFs’ mean variance and the number of iterations
for facies mismatch constraints enforcement. Case without localization. Fig. 3.9(a)
shows a reduction in ensemble variability for all ensemble sizes and a complete loss of
variability for the ensemble size of 40. Also, facies mismatch constraints were enforced
in less than 4 iterations if the filter does not diverge.

Figure 3.9(a) shows that the most significant reduction in ensemble variability oc-

curred after the first data assimilation timestep for all ensemble sizes with a reduction

of one-fifth, one-third and one-half of the ensemble variances for the ensemble sizes of

240, 120 and 40 respectively. This is indicative of the magnitude of the information

content from assimilating data at the first data assimilation timestep relative to the

high uncertainty in the initial models conditioned only to static facies data. Also, no

more than four iterations were required to constrain the facies mismatch observations

at the first data assimilation timestep (Fig. 3.9(b)) for all the ensemble sizes. The

ensemble size of 40 shows evidence of more pronounced loss in ensemble variability;

about 86% of the initial ensemble variability has been lost by the fifth data assim-

ilation timestep. By the 13th data assimilation timestep the ensemble variability is

virtually nonexistent such that irrespective of how may times one iterates, it is im-

possible to constrain the facies mismatch observations to honor the facies data at the

well locations (Fig. 3.9(b)). The ensemble sizes of 120 and 240 exhibit a more gradual
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reduction in variability with data assimilation. For the ensemble size of 120, there

is a sharp reduction in ensemble variance between the 10th and 11th assimilation

time. This illustrates the impact of sudden availability of new data on the ensemble

variability; at the 10th assimilation time, the first water rate data became available

for assimilation. This sudden reduction in variability is not as evident when the en-

semble size is increased to 240, reflecting the robustness of the larger ensemble sizes

to the assimilation of data with new information. At the end of the data assimilation

period, the initial average variance of the GRF has been reduced by 99.8%, 92.8%

and 78.6% respectively for ensemble sizes of 40, 120 and 240.

Figure 3.9(b) shows that for the ensemble sizes of 120 and 240, a maximum of

3 iterations was required to enforce the constraints on the facies mismatch observa-

tions at each timestep; a notable exception is at the first data assimilation timestep

where 4 iterations were required to enforce the constraints for the ensemble size of

240. Also, the number of iterations needed to enforce the constraints on the facies

mismatch observations appears to be a function of the ensemble size. It seems that

for larger ensemble sizes, the number of iterations required for constraint enforcement

is generally greater (Fig. 3.9(b)). This is related to the fact that as the ensemble size

increases, the number of ensemble members with facies mismatch at the well locations

also increases.

Figure 3.10 shows the evolution of the updates to a randomly selected realization of

the facies map from the ensemble size of 240. Evidently, as data were assimilated and

the facies boundaries adjusted, the realization of the facies maps in Fig. 3.10 appears

geologically plausible. All the well facies are well constrained at each timestep and

match the facies observations from the reference model (Fig. 3.4(b)). It is also evident

from Fig. 3.10 that as more data were assimilated, facies 3 (white shade) appears to be

eroded by facies 1 (dark gray shade) and both facies are subsequently eroded by facies

2 (light gray shade). Consequently, the facies maps appear to capture qualitatively
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some of the global features evident in layer 2 of reference model (Fig. 3.4(b)).

(a) Timestep 1. (b) Timestep 6. (c) Timestep 11. (d) Timestep 16.

Figure 3.10: Evolution of a randomly selected realization of a facies map from layer
2 for an ensemble size of 240. Results from case without localization. The facies
distribution becomes increasingly similar to the reference case (Fig. 3.4(b)) as data
are assimilated.

Three random realizations of the initial and final facies realizations from EnKF

with decoupled assimilation of production and facies data for the three ensemble sizes

are presented in Fig. 3.11. All the selected realizations from the ensemble size of 40

(column 2 of Fig. 3.11) are exactly alike due to the collapse in ensemble variability

noted earlier for this ensemble size. Compared to the ensemble size of 40, some

variability is still evident in the selected final realizations for the ensemble size of

120 and final realizations from the ensemble size of 240 exhibit the most variability.

Realizations of the initial facies map (column 1 in Fig. 3.11) and the final ensemble

from the ensemble size of 40 appear qualitatively very different from the reference

model. In general, the facies at the well locations in the final facies map for the

ensemble with 40 members do not match the facies observations. Qualitatively, the

ensemble sizes of 120 and 240 seems to acceptably reproduce the features in the

reference model and all the well facies in the ensemble final models match the facies

observations.

Recall that the initial facies maps were generated by truncating two Gaussian

random fields using a truncation map with three intersecting lines that form the

thresholds. Consequently, the facies proportions estimated from the initial ensemble
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(a) Initial. Ens #4. (b) ne = 40. Ens #4. (c) ne = 120. Ens #4. (d) ne = 240. Ens #4.

(e) Initial. Ens #15. (f) ne = 40. Ens #15. (g) ne = 120. Ens #15. (h) ne = 240. Ens #15.

(i) Initial. Ens #26. (j) ne = 40. Ens #26. (k) ne = 120. Ens #26. (l) ne = 240. Ens #26.

Figure 3.11: Three randomly selected realizations of the initial and final facies maps
from layer 2 for case without localization. ne is the ensemble size and Ens # is the
ensemble member number. Realizations from the ensemble size of 40 (column 2) are
exactly alike due to collapse in variability. By contrast, realizations from the ensemble
with 120 (column 3) and 240 (column 4) members exhibit higher variability and the
facies distribution are qualitatively very similar to the reference case (Fig. 3.4(b)).
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should be centered around the expected value of the proportions computed from the

truncation map. Usually, the expected proportions from the truncation maps are

different from the reference proportions due to the initial uncertainty in the static

data used in determining the thresholds. Consequently, as the the facies variables

are adjusted during history matching so that predictions from the facies maps match

measured data, the distribution of the facies proportions should approach the refer-

ence proportions. Figure 3.12 shows the initial (gray histograms) and final (green

histograms) distributions of the facies proportions in layer 2 for the three different

ensemble sizes. The red vertical line shows the value of the reference facies propor-

tions and the blue vertical line is the expected value of the facies proportion obtained

from the threshold map. In all instances in Fig. 3.12 the mean values of the ini-

tial facies proportions are generally centered about the expected facies proportions

from the truncation maps and do not match the reference facies proportions. With

the exception of facies 1 proportions, the distribution of the final facies proportions

(green bars) from the ensemble size of 40 (Figs. 3.12(a)–3.12(c)) do not match the

reference facies proportions. Histograms of the final proportions from the ensemble

sizes of 120 (Figs. 3.12(d)–3.12(f)) and 240 (Figs. 3.12(g)–3.12(i)) are generally better

at estimating the reference facies proportions.

A global measure of the performance of the EnKF with decoupled assimilation of

production and facies data is from the facies probability map for each facies type. To

obtain the facies probability maps, the probabilities of observing each facies at the

each grid location are estimated from the ensemble. Figure 3.13 shows the final facies

probability maps from layer 2 for facies 1 (top row), facies 2 (middle row) and facies 3

(bottom row) estimated from all three ensemble sizes. The reference facies indicator

maps are also shown for comparison. Probabilities of 0 and 1 correspond respectively

to the black and white regions of the maps and intermediate probabilities correspond

to regions with different shades of gray. The probability map for the ensemble size of
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(a) ne = 40. Facies 1 (b) ne = 40. Facies F2 (c) ne = 40. Facies 3.

(d) ne = 120. Facies 1. (e) ne = 120. Facies 2. (f) ne = 120. Facies 3.

(g) ne = 240. Facies 1. (h) ne = 240. Facies 2. (i) ne = 240. Facies 3.

Figure 3.12: Histograms of layer 2 facies proportions estimated from the initial and
final ensembles with 40 (top row), 120 (middle row) and 240 (bottom row) members
for the case without localization. The red and blue lines are respectively the reference
proportions and the expected proportions from the truncation map. The gray and
green histograms are respectively the initial and final proportions. The final estimates
of the facies proportions are generally better for the ensemble with 120 and 240
members.
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40 looks nothing like the reference indicator maps. Qualitatively, the maps from the

ensemble sizes of 120 and 240 seem to reproduce some of the global features in the

reference maps.

(a) Ref. F1. (b) ne = 40. F1. (c) ne = 120. F1. (d) ne = 240. F1.

(e) Ref. F2. (f) ne = 40. F2. (g) ne = 120. F2. (h) ne = 240. F2.

(i) Ref. F3. (j) ne = 40. F3. (k) ne = 120. F3. (l) ne = 240. F3.

Figure 3.13: Layer 2 reference indicator map (column 1) and final probability maps
for ensemble sizes of 40, 120 and 240 (columns 2–4 respectively). F1, F2 and F3
are facies 1–3 respectively. Black and white shades are probabilities of 0 and 1 re-
spectively, and gray shades are probabilities between 0 and 1. Qualitatively, the
probability maps from the ensemble with 120 and 240 members are generally better
than the ensemble with 40 members in reproducing features in the reference indicator
map. Results from case without localization.
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3.5 Case 2: Localizing the Updates to the Gaus-

sian Random Fields from Assimilating Facies

Data

The EnKF technique uses a limited number of realizations to generate a reduced

rank approximation to the model covariance matrix. Depending on the ensemble size

and the amount of data assimilated, the ensemble may lose all variability leading to

filter divergence; a situation where additional available observations for assimilation

are no longer honored during successive cycles of data assimilation. This situation

was observed in Case 1 for an ensemble size of 40 where a complete loss of ensemble

variability, after the 12th data assimilation timestep, led to divergence of the filter

performance. In general, the likelihood of having filter divergence decreases as the

ensemble size increases. Recall from Case 1 that the loss in ensemble variability at

the end of data assimilation was nearly 100% for an ensemble size of 40; 93% for an

ensemble size of 120 and 77% for an ensemble size of 240. We note that while the

ensemble sizes of 120 and 240 did not lose all variability, the reduction in ensemble

variability at the end of data assimilation was quite significant. In this section, we

investigate the possibility of ameliorating the problem of collapse in ensemble vari-

ability (observed in case 1) by localizing the adjustment to the bi-Gaussian random

fields during data assimilation through a Schur product of the Kalman gain with a

compactly supported fifth-order function. Recall that the bi-Gaussian random fields

are truncated to determine the facies distribution. In some instances, the Schur prod-

uct has been used to to filter the approximation of the forecast covariance at large

distance, and to increase the effective rank of the ensemble (Houtekamer and Mitchell,

2001). The Schur product, also known as the Hadamard product, is an element-wise

multiplication of two matrices A and B resulting in a third matrix C of the same

dimensions as A and B. The product of the elements of the matrices is given by,

ci,j = ai,jbi,j, (3.7)
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where pi,j denotes the element in the ith row and jth column of an arbitrary matrix

P . If Co defines the correlation matrix or filter, then the expression for the Kalman

gain at the analysis step is modified thusly:

KL = Co ◦Ke,

= Co ◦
[
CY D (CDD + CD)−1] . (3.8)

where KL and Ke are respectively the Kalman gain matrices with and without local-

ization. A ◦B represents the element-wise multiplication of matrices A and B.

We note from Eq. (3.8) that the Schur product in our application is applied to

the Kalman gain and not just the cross-correlation matrix, CY D. The element-wise

multiplication of the Kalman gain with an appropriately chosen correlation matrix,

Co, ensures that only a localized area of influence is updated. Recall that the Kalman

gain is an Ns × Nd matrix, where Ns is the dimension of the state vector and Nd is

the number of data at each timestep. Each column of the Kalman gain matrix cor-

responds to a single observation and the element-wise multiplication of each column

of the Kalman gain is centered at the corresponding observation location. The cor-

relation matrix, Co, takes a value of unity at the observation location and decreases

monotonically to zero beyond the region of influence governed by a predefined corre-

lation length. Mitchell et al. (2002) showed the importance of keeping the size of the

nonzero region large enough to include the region of true correlation to data. The

correlation function (Φ) used in constructing the correlation matrix is a fifth-order

compact function of Gaspari and Cohn (1999) defined as,

Φ(δ, L) =


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(3.9)

where L is the length scale of the correlation function and δ = ‖δkij‖ is the Euclidean

distance between any grid point (i, j) and an observation location, k.
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Following the formulation developed in the previous section for sequentially as-

similating the decoupled production and facies data, the Kalman gain is not localized

when production data are assimilated but a global update is made to the state vector

(Eq. 3.4) at this stage. During the iterative enforcement of the constraints on the

facies mismatch observations when only the facies data (or more precisely the facies

mismatch proxies defined in Eq. 3.1) are assimilated, the updates to the Gaussian

random fields are localized by the taking a Schur product of the Kalman gain and

correlation function on a layer-by-layer basis. Recall that during the iterative enforce-

ment of the constraints, the dynamic model variables are not included in the state

vector and are thus not localized. The length scale, L, used for the correlation func-

tion, Φ, was chosen such that the range of the correlation function is about the same

as the longest principal range of the covariance of the underlying Gaussian random

field. Also the same initial realizations of the facies model from Case 1 were also used

in the current case for history matching.

Plots of the variability in the short range ensemble predictions at each data as-

similation timestep for the three different ensemble sizes with localized Kalman gain

matrix are presented in Fig. 3.14. Figures 3.14(a)–3.14(c) show that for the case with

localization, sufficient prediction spread was maintained for the ensemble size of 40

at each data assimilation timestep and the production data were generally within the

spread of the ensemble prediction at each timestep. Although the spread appears

to be quite small at the latter data assimilation timesteps, the divergence of the fil-

ter, which was observed in Case 1 for the same ensemble size (Figs. 3.8(a)–3.8(c)) is

clearly mitigated in this case. The ensemble prediction spread for ensemble sizes of

120 and 240 seem to be generally sufficient for the cases with and without localization

and the measured data are contained within the spread of the short-range prediction.

Figure 3.15(a) shows the evolution of the mean variance of the GRFs for the

three different ensemble sizes in Case 2. Recall that in Case 1 the ensemble variance
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(a) ne = 40. Injector pbh. (b) ne = 40. Prod3 qw (c) ne = 40. Prod4 qw

(d) ne = 120. Injector pbh. (e) ne = 120. Prod3 qw (f) ne = 120. Prod4 qw

(g) ne = 240. Injector pbh. (h) ne = 240. Prod3 qw (i) ne = 240. Prod4 qw

Figure 3.14: Variability in short range predictions for the case with localization. The
box-and-whisker plots are the ensemble predictions and the red dots are production
measurements. ne is the ensemble size. The filter did not diverge for all ensemble
sizes and data are generally well matched.
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reduced respectively by 52%, 28% and 18% for ensemble sizes of 40, 120 and 240, after

assimilating the first set of data. For the current case, the corresponding reduction

in ensemble variability after assimilating the same set of data was significantly lower

with values of 15%, 6% and 4% respectively for ensemble sizes of 40, 120 and 240.

Similarly, at the end of history matching, the mean reduction in variance of the GRFs

for the three ensemble sizes (40, 120 and 240 in this order) were respectively 97.6%,

60% and 37.8% resulting in final ensemble variability that is significantly higher when

localization is used than when it is not. Also while the ensemble size of 40 lost all

variability after the 12th data assimilation timestep for the case without localization,

it appears that with localization during facies constraint enforcement, the collapse

in variability is significantly mitigated for the same ensemble size although the final

average variance appears to be quite low. Also the variability in the final ensemble

of with localization is about 7% greater than the variability in the final ensemble of

240 without localization.

(a) Mean of GRF variances. (b) Facies mismatch iteration.

Figure 3.15: Time evolution of the GRFs’ mean variance and the number of itera-
tions for facies constraint enforcement. Case with localization. With localization, pro-
nounced decrease in ensemble variability is mitigated. Less than 3 iterations needed
for facies mismatch enforcement at each timestep.

The maximum number of iterations needed to enforce the constraint on facies

mismatch observations at each data assimilation timestep is presented in Fig. 3.15(b).

Because localization was done on a layer-by-layer basis, the number of iterations
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required to enforce the constraints varied per layer. For all the ensemble sizes, no

more than three iterations were required for constraint enforcement any timestep

where it was necessary to assimilate facies data.

Three realizations of the final facies maps from layer 2 for the ensemble with 40

members are presented in Fig. 3.16. The initial facies maps for these realizations have

been presented in Fig. 3.11. The final facies maps shown in Fig. 3.16 are significantly

different from the initial maps reflecting the impact of data conditioning. The global

features in all the selected realizations are quite similar although each realization

also exhibits distinctive features not present in the other realizations. Compared to

the final realizations for the same ensemble size from Case 1 (Figs. 3.11(b), 3.11(f)

and 3.11(j)) the final realizations in this case seem, at least qualitatively, to better

reproduce the features in the reference facies model (Fig. 3.4(b)). Also, while it was

impossible to enforce constraints on facies mismatch observations for the case without

localization once the filter diverged, we note that with localization the simulated

facies at the well locations all match the facies observations. Finally, although sample

realization from the ensemble sizes of 120 and 240 are not shown in Fig. 3.16, the final

facies maps exhibited significantly higher variability compared to the case without

localization and the distributions of the facies variables in the final facies maps were

similar to those in the reference facies maps.

(a) Realization #4. (b) Realization #15. (c) Realization #26.

Figure 3.16: Final facies realizations from layer 2 for an ensemble size of 40 from
the case with localization. The final facies distribution better reproduce the reference
facies distribution and also match facies observations.
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The distributions of the initial (gray bars) and final (green bars) estimates of the

layer 2 facies proportions are presented in Fig. 3.17. The red and blue vertical lines

respectively show the values of the reference facies proportions and the expectation

of the facies proportions obtained from the threshold map. Of note is the significant

improvement in the performance of the ensemble with 40 members in estimating

the facies proportions (Figs. 3.17(a)–3.17(c)) compared to the performance of the

case without localization for the same ensemble size (Figs. 3.12(a)–3.12(c)). For all

the ensemble sizes in Case 2, the spread around the truth was reduced after data

assimilation and the distributions of the facies proportions were adjusted correctly

towards the reference values. Additionally, the facies proportions for the ensemble

sizes of 120 and 240 seem to be better distributed around the reference values for

Case 2 compared to Case 1.

3.6 Case 3: Starting Time for Future Predictions.

From Time Zero or From End of History Match-

ing Using Final Estimated State Variables

An important issue in history matching geological facies using EnKF is the choice

of correct starting time for future predictions after all data are assimilated. Two

possibilities are: (1) prediction from the end of data assimilation using the ensemble of

final gridblock pressures and saturations estimated from EnKF and (2) re-initializing

the gridblock pressures and saturations and predicting from time zero. To evaluate

the best starting point for future predictions, we compute the root mean square error

(RMSE) and the spread of the predicted data (injector BHP and water producing

rates from the four producers) averaged over the future prediction period of 310 days.

Additionally, we also examine the impact of the starting point for prediction on the

predictive performance of a new well (Prod5) drilled at grid location (46,25), which

began producing after the data assimilation period.
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(a) ne = 40. Facies 1. (b) ne = 40. Facies 2. (c) ne = 40. Facies 3.

(d) ne = 120. Facies 1. (e) ne = 120. Facies 2. (f) ne = 120. Facies 3.

(g) ne = 240. Facies 1. (h) ne = 240. Facies 2. (i) ne = 240. Facies 3.

Figure 3.17: Histograms of the initial (grey histograms) and final (green histograms)
estimates of the facies proportion from layer 2 for ensemble sizes of 40 (top row),
120 (middle row) and 240 (bottom row) from the case with localization. The red
line is the reference proportion and the blue line is the expected proportion from the
truncation map. With localization, final proportions from the ensemble size of 40
match the reference proportions better.
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The average RMSE and the average spread of the predicted data from the final

ensembles for the case without localization are presented in Fig. 3.18. We observe

from Fig. 3.18 that for the ensemble sizes of 120 (Figs. 3.18(b) and 3.18(e)) and 240

(Figs. 3.18(c) and 3.18(f)) respectively, the average prediction spread and RMSE from

rerunning the model from time zero or running from the end of data assimilation are

essentially equal. Also, for the same ensemble sizes, predicted data for the newly

drilled well (Prod5) appear not to be sensitive to the starting time for future predic-

tions. Under this condition, it is reasonable to predict using the final estimates of the

dynamic state variables from history matching instead of rerunning the model from

time zero. Because of filter divergence, which occurred when data were assimilated

using the ensemble size of 40, the predictive performance is dependent on the choice

of the starting time for future prediction (Figs. 3.18(a) and 3.18(d)).

(a) Ensemble size = 40. (b) Ensemble size = 120. (c) Ensemble size = 240.

(d) Ensemble size = 40. (e) Ensemble size = 120. (f) Ensemble size = 240.

Figure 3.18: Average RMSE (top row) and spread (bottom row) for future predic-
tions from time zero (green bars) and from end of data assimilation (yellow bars) for
the case without localization. P1–P5 are respectively producers 1–5. With the ex-
ception of the ensemble size of 40, comparable prediction performances are obtained
regardless of choice of starting time for future prediction.
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By contrast, it is evident from Fig. 3.19 that when the updates to the facies

variables are localized during data assimilation, the ensemble predictions from final

realization for all the ensemble sizes seem to depend strongly on the choice of starting

point for future prediction. Figures 3.18(a)–3.18(c) shows that the prediction spread

is severely underestimated if the predictions are obtained from running the simulation

from the end of data assimilation using the final estimated dynamic model variables.

Clearly, when localization is used, the final estimates of the dynamic state variables

from EnKF are not consistent with the final estimates of the static model parameters

and it is necessary to re-initialize the state variables to re-establish consistency by

rerunning from time zero.

(a) Ensemble size = 40. (b) Ensemble size = 120. (c) Ensemble size = 240.

(d) Ensemble size = 40. (e) Ensemble size = 120. (f) Ensemble size = 240.

Figure 3.19: Average RMSE (top row) and spread (bottom row) in future predic-
tions from time zero (green bars) and from end of data assimilation (yellow bars) for
the case with localization. P1–P5 are respectively producers 1–5. Final estimated
state variables are inconsistent with the final model parameter in this case resulting
in the strong dependence of predictive performance on the starting time for future
predictions.

Predictions of water rate data from Prod3 for the periods with history matched

and future data obtained by running the simulator from time zero using the final
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model parameters for the cases with (top row) and without (bottom row) localization

are presented in Fig. 3.20. The vertical line demarcates the end of history match-

ing and the red circles are predicted data from the reference model. The ensemble

predictions at each time with data is represented by a box-and-whisker plot. Lo-

calization seems to have improved the predictive performance of the ensemble size

of 40 (Figs. 3.20(d) and 3.20(a)) although the prediction spread appears to be too

low and the future predictions are also somewhat biased in this case. The predictive

performance of the ensemble sizes of 120 and 240 for the models with and without

localization are generally good and match the reference predictions acceptably well.

However, compared to the predictions from the models for the case with localization

the future predictions from the models for the case without localization appear to be

biased and the ensemble variability appears to be somewhat smaller.

(a) Ensemble size = 40. (b) Ensemble size = 120. (c) Ensemble size = 240.

(d) Ensemble size = 40. (e) Ensemble size = 120. (f) Ensemble size = 240.

Figure 3.20: qw data from Prod3 predicted from time zero for the cases with (top
row) and without (bottom row) localization. The vertical line demarcates the period
of pure prediction and the red dots are data. The box-and-whisker plots are the
ensemble predictions. Data match is generally better (less bias) with localization
(top row).

Figure 3.21 presents a comparison of the average root mean square prediction er-

ror and average prediction spread as a function of the different ensemble sizes. The
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average was taken over the ensemble of predicted data for the period after history

matching and all predictions were made from time zero. Predictions from the en-

semble without localization (Figs. 3.21(c)–3.21(d)) seem to depend on the ensemble

size. The estimates of the mean RMSE and mean spread in predicted data for the

ensemble sizes of 120 and 240 respectively appear to differ somewhat significantly.

However, for ensemble predictions from the case with localization, the values of the

mean RMSE and mean spread for the ensemble sizes of 120 and 240 are quite similar.

The prediction spread for the ensemble with 40 members (red bars) for both cases

(with and without localization) are significantly underestimated.

(a) Localization (b) Localization

(c) No Localization (d) No Localization

Figure 3.21: Comparative performance of different ensemble sizes in predicting “fu-
ture” data for the cases with (top row) and without (bottom row) localization. Predic-
tions are from time zero. Case without localization that shows a strong ensemble-size
dependence for ensemble sizes of 120 and 240. In all cases, an ensemble size of 40
appears to be too small.

3.7 Chapter Summary

Three issues related to the difficulty in applying the ensemble Kalman filter technique

to the problem of updating the distribution of facies variables to match production
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data were identified and investigated in this chapter. Specifically, I addressed the

problem of (1) how to iteratively constrain the simulated facies at the well locations

to honor the facies observations when a mismatch occurs from assimilating production

data, (2) how to mitigate the problem of rapid loss in ensemble variability for facies

history matching, and (3) determining the best starting time for future prediction.

I solved the first issue by implementing a sequential global assimilation technique

where the assimilation of production and facies data are decoupled and the production

data are assimilated firstly followed, if necessary, by the assimilation of the facies data.

Where it is necessary to assimilate the facies data, the state vector is reformulated

to include only the static model parameters, i.e., the GRFs that are truncated to

obtain the facies maps, avoiding large and incorrect updates to the state variables.

Although the quality of the results are sensitive to the ensemble size, sequential global

assimilation at each timestep seems to have solved the problems of improper weighting

of the production data relative to the prior model mismatch and inconsistent updates

to the state variables. On the other hand, repeated global updates to the model

variables from assimilating both facies and production data resulted in very fast

decrease in ensemble variability for all three ensemble sizes and a total loss in ensemble

variability for the smallest ensemble size of 40.

The issue of collapse in ensemble variance was the focus of my second investigation

in this chapter. Without localization, there is an increased tendency towards rank

deficiency particularly for small ensemble sizes. Localizing the adjustments to the

facies field when facies data are assimilated seems to mitigate the problem of variance

deficiency resulting in an overall improvement in the history matching and prediction

results that were obtained. When the ensemble size is small compared to the number

of independent data, the localized adjustment of the state vector is a very important

technique for mitigating loss of rank in the ensemble. Implementing a distance-based

localization of the facies adjustment appears to mitigate the problem of variance
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deficiency in the ensembles by ensuring that sufficient variability in the ensemble is

maintained throughout the data assimilation period.

For the issue on the best starting point for future predictions, it was observed

that when data are sequentially assimilated without localization, for a five-spot well

pattern with water breakthrough in all the wells, the results of predicting the fu-

ture reservoir performance using the final estimates of the dynamic variables as the

initial states are similar to predictions from time zero where the dynamic variables

are re-initialized. However, when the adjustments to the facies field are localized,

predicting from the final states are incorrect due to layer-by-layer discontinuity in the

distribution of the state variables, which results from using a layer-by-layer localiza-

tion scheme. Under this condition, it is better to re-initialize the state variables and

predict from time zero rather than use the final estimates of the state variables.

For the three ensemble sizes investigated, it appears that an ensemble size of 40 is

too small and resulted in the poorest match to data. With localization, the ensemble

size of 120 appears to be sufficiently large for the history matching problem discussed

in this chapter and the predictive performance obtained was fairly close to that of

the ensemble with 240 members.
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CHAPTER IV

UPDATING MULTIMODAL FACIES

PROPERTIES FROM ASSIMILATING

PRODUCTION DATA USING ENKF

4.1 Background

Currently published works on history matching geological facies (Hu et al., 2001;

Ravalec-Dupin et al., 2004; Liu and Oliver, 2005b; Hoffman and Caers, 2007; Agbal-

aka and Oliver, 2008; Moreno et al., 2008) typically assume that the petrophysical

properties of each facies are uniform and homogeneous facies with no associated un-

certainty such that the petrophysical properties were not estimated during history

matching. While this assumption is appealing from an ease of implementation and

methodology validation viewpoint, a more realistic approach will require a relaxation

of these assumptions to account for situations where (1) the distribution of the petro-

physical properties are nonuniform, heterogeneous and uncertain and also needs to

be updated when production data are assimilated. Because the distribution of petro-

physical properties is different in each facies, the probability density for petrophysical

properties is multimodal and the EnKF assumption that the model parameter distri-

bution is approximately multivariate Gaussian is not honored in this case.

Zhao et al. (2008) applied the EnKF to a facies history matching problem where

the petrophysical properties in each facies were uncertain but also uniform and ho-

mogeneous, i.e., each facies is characterized by a singe value of the permeability and

porosity. Because the facies properties were uniform, it was fairly straightforward

to generate prior realizations of these properties by sampling a multivariate normal
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distribution. The facies models they used were obtained by truncating two Gaussian

random fields using two non-standard truncation maps. Sarma and Chen (2009) con-

sidered the problem of directly updating the homogenous but uncertain permeability

in the facies. At each update step, the facies permeabilities were mapped to a kernel

space where the Gaussian assumption is approximately honored and consistent linear

updates can be made to the model parameters. They used channelized facies models

generated from a multipoint geostatistical technique. Based on their approach, the

discontinuity in permeability estimates were preserved in the final models but the

match to production data was quite poor.

This chapter focuses on the application of the EnKF to a history matching problem

where the petrophysical properties in the facies model are nonuniform, heterogeneous

and uncertain such that the PDF of petrophysical properties is multimodal. We

present a practical approach for updating both the facies boundaries and the multi-

modal properties to be consistent with the updated facies model. We then compare

the performance of the proposed method with the results based on two other stan-

dard approaches. In the first approach, only the petrophysical properties are directly

adjusted and in the second approach, the petrophysical are left at their initial values;

only the spatial distribution of the different facies variables is adjusted. Additionally,

we address a limitation of the approach to updating the facies model using proxies

for the facies mismatch observations, which first appeared in Liu and Oliver (2004)

and discuss modifications that make it somewhat more robust. We test our proposed

approach on facies models with nonstationary proportions and evaluate the perfor-

mance of the EnKF on variations in the nonstationarity of the facies proportions. All

facies models presented in this paper were generated by truncating a single Gaussian

field using a rectangular truncation map although our proposed approach extends

straightforwardly to facies models obtained by truncating more than one Gaussian

field or from using the level-sets method (Moreno et al., 2008).
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4.1.1 Brief overview of the truncated Gaussian simulation

The truncated Gaussian method is a geostatistical technique for generating a condi-

tional or unconditional realization of the reservoir facies model by truncating a single

Gaussian realization whose dimension is the same as the facies model. The origi-

nal application of this method was on a problem in mining engineering (Journel and

Isaaks, 1984). It was first applied to a reservoir engineering problem of modelling

fluvio-deltaic reservoirs by Matheron et al. (1987). As noted in Chapter 3, the values

of the thresholds in the truncation map depend on the spatial proportions of each

facies, Pfj , which are usually assumed known. For the truncated Gaussian simulation,

one only needs to evaluate,

si(u) =


−∞, i = 0

Φ−1
[∑i

j=1 Pfj(u)
]
, 0 < i < n

+∞, i = n,

(4.1)

Eq. 4.1 to obtain the thresholds; where Φ(·) is the standard normal cumulative dis-

tribution function, si(·) is the ith threshold and fj is the jth facies. The proportion

of fj at any point u is the probability of finding fj at that point. This is described

mathematically by,

Pfj(u) = E[1fj ] = p(sj−1(u) ≤ z(u) < sj(u))

= Φ(sj)− Φ(sj−1),

(4.2)

where p(·) evaluates the probability of its argument. When the facies proportions

are nonstationary, the values of the truncation thresholds are allowed to vary as a

function of location (Eq. 4.2). In general, varying the distance between sj−1(u) and

sj(u) also varies the probability of occurrence of facies j at location u. As discussed

in Chapter 3, the acceptance-rejection technique was used with the method of moving

averages (Oliver, 1995) to generate Gaussian realizations that are truncated to obtain

conditional facies models.
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4.2 Joint Updating of the Facies Boundaries and

Petrophysical Properties: Bayesian Formula-

tion

At any timestep, tk, the conditional PDF we are interested in sampling from is ex-

pressed as, p(fk,mk|Dk), where fk and mk are respectively the vectors of discrete

facies variables and static model variables comprising the uncertain petrophysical

properties. Define Dk = {dobs,k, . . . ,dobs,1} as a collection of measured data from

time t1 through to time tk. From Bayes theorem, the conditional PDF at time tk is

given by,

p(fk,mk|Dk) ∝ L(fk,mk|dobs,k)p(mk|fk,Dk−1)p(fk|Dk−1), (4.3)

where p(mk|fk,Dk−1) and p(fk|Dk−1) are respectively the prior conditional PDFs

of the facies variables and petrophysical properties and L(fk,mk|dobs,k) is the joint

likelihood of the facies variables and and petrophysical properties. For notational

convenience, Eq. 4.3 may be rewritten as,

p(f ,m|dobs) ∝ L(f ,m|dobs)p(m|f)p(f), (4.4)

where the time index in Eq. 4.4 has been suppressed for convenience. In general, the

prior PDFs and the likelihood are non Gaussian leading to a non-Gaussian conditional

PDF. Since manipulation of Gaussian PDFs is mathematically more tractable and

the formulation of the EnKF is predicated on the assumption of prior and posterior

PDFs that are approximately multivariate Gaussian, the goal is to substitute the non-

Gaussian PDFs of the facies variables and petrophysical properties with alternative

PDFs that are more nearly Gaussian. By using a suitably defined mapping function,

the data model part of the likelihood function can be formulated such that proxies

for the facies variables and petrophysical properties generated from the alternative

PDFs are subsequently mapped back to domains of the discrete facies variables and

multimodal facies properties for data prediction.
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Recall that the truncated Gaussian/pluriGaussian technique provides a framework

for obtaining a facies realization, f , from truncating a GRF, z, through the relation-

ship f = ϕ(z), where ϕ(·) represents any suitably defined truncation scheme. One

may then substitute the PDF of the facies model, p(f), with an alternative multivari-

ate Gaussian PDF, p(z), of the Gaussian random vector, z. To obtain a Gaussian

proxy to the PDF p(m|f) of m, we define a collection,

M =

[
(m1)T . . . (mj)T . . . (mnf )T

]T
, (4.5)

comprising vectors of pseudo-model variables (mj). Each pseudo-model vector, mj,

in Eq. 4.5 consists of petrophysical properties belonging only to facies j and nf defines

the number of facies. The pseudo-model vector is always written with a superscript,

which identifies the facies class to which it belongs. It is necessary to distinguish

between the vector of pseudo-model variables (mj ∈ RnM ) and the vector of actual

model variables (m ∈ RnM ). m is the vector of multimodal petrophysical proper-

ties that correspond to the facies model f , i.e., the petrophysical properties at any

grid location u is determined by the facies type at the same grid location. mj is a

vector of petrophysical properties corresponding to facies j. Note that in this case,

the petrophysical properties at all grid locations belongs to facies class j regardless

of the actual distribution of the different facies classes in the model, f . Based on

the foregoing, we replace the non-Gaussian prior PDF of the petrophysical proper-

ties (alternatively, the model variables), p(m|f), with a Gaussian prior PDF of the

pseudo-model variables, p(M). Consequently, the proxy to the posterior PDF may

be expressed be expressed as,

p(z,M|dobs) ∝ p(dobs|z,M)p(M|z)p(z), (4.6)

For uncorrelated Gaussian measurement noise, Eq. 4.6 may be expressed explicitly
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as,

p(z,M|dobs) ∝ exp

[
−0.5

(
‖z− zpr‖2

C−1
z

+ ‖M−Mpr|z‖2
C−1
M|z

+‖g̃(z,M)− dobs‖2
C−1
D

)]
,

(4.7)

where Cz and CM |z are respectively the covariances of the GRFs and the pseudo-

model variables, ‖A‖2
W is a weighted norm equal to ATWA and g̃(z,M) is a nonlin-

ear data model. Note that the subscript, (·|z), on the expressions for the mean and

covariance of the pseudo-model variables in Eq. 4.7 illustrates the conditional depen-

dence of the estimates of these parameters on z. For a posterior Gaussian PDF, the

vector, Ω = [zT MT ]T , that maximizes the conditional PDF in Eq. 4.7 is given by,

Ω = Ωpr −CΩGT
(
GCΩGT + CD

)−1
(g̃(z,M)− dobs) . (4.8)

If the conditional PDF is strongly non Gaussian, then the optimal vector, Ω, may be

obtained iteratively using Gauss-Newton with reduced step length as,

Ωl+1 = βlΩpr + (1− βl)Ωl − βlCΩGT
l

(
GlCΩGT

l + CD

)−1

(
g̃(z,M)− dobs −Gl(Ω

l −Ωpr)
)
,

(4.9)

where G is the sensitivity matrix, l is the iteration index, β is the step length and

CΩ is the covariance matrix for Ωpr with the subscript pr denoting prior. Observe

that for a Gaussian PDF, using the Gauss-Newton with full step length, β = 1, gives

an expression similar to Eq. 4.8.

At any data assimilation timestep, tk, the data model, g̃(·) transforms the condi-

tional estimates of z and M from the previous data assimilation timestep, tk−1, to

obtain realizations of the facies variables and model variables (petrophysical proper-

ties) for predicting data. The facies realization is obtained by truncating z and the

conditional model variables (m) are obtained straightforwardly by using a mapping

given by,

m(u) =

nf∑
j=1

1fj(u) mj(u), (4.10)
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where m(u) is the value of the actual-model variable, m, at grid location u; 1fj(u)

is an indicator function that takes a value of 1 if facies j is present at location u

and a value of zero otherwise; mj(u) is the petrophysical property of the jth facies

class at grid location u. Because g̃(·) is nonlinear, the likelihood may be strongly non

Gaussian in which case it may be necessary to iterate.

4.2.1 Assimilating facies observations

The Bayesian updating scheme of Eq. 4.6 is based on assimilating only production

measurements at each timestep. When facies data are also available, the conditional

PDF is given by,

p(z,M|fobs,dobs) ∝ p(fobs,dobs|z,M)p(z,M)

∝ p(fobs|z,M)p(dobs|z,M)p(M, z)

∝ p(fobs|z)p(M, z|dobs),

(4.11)

where the result follow mostly from using the property of conditional independence.

Note that explicit expression for the PDF p(M, z|dobs) in Eq. 4.11 has been given

in Eq. 4.7. p(fobs|z) is equivalent to the likelihood of the GRF given the facies ob-

servations and the expression is potentially non-Gaussian. However, if we assume

a Gaussian measurement error reflecting the possibility of error in modeling facies

observations then the likelihood may be expressed as,

p(fobs|z) ∝ exp

[
−1

2
‖ϕ̃(z)− fobs‖2

C−1
f

]
= exp

[
−1

2
‖ϕ̃(z)− ftrue − εf‖2

C−1
f

]
, (4.12)

where ϕ̃(z) = fsim is the vector of simulated facies obtained by truncating the GRF

at the locations with facies observations, fobs is the “noisy” facies observation and

ftrue is the true facies observation. εf ∼ N(0,Cf ) is the facies measurement error

where ∼ N(µ,Σ) denotes a normally distributed random variables with mean µ and

covariance Σ. Cf is the diagonal covariance of facies measurement errors. In general,

the possibility of error in modeling facies observations is negligibly small and the
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diagonal elements of Cf are set to very small values. Note that this also ensures that

the simulated facies at the well locations will exactly match the facies observations

during optimization.

From the foregoing, the PDF for generating realizations of the GRFs conditional

on the facies observations is given by,

p(z|fobs) ∝ exp

[
−1

2

(
‖ϕ̃(z)− fobs‖2

C−1
D,f

+ ‖z− zpr‖2
C−1
z

)]
, (4.13)

and the expression for the GRF that maximizes the PDF is given by,

z(dobs,fobs) = z(dobs) −Cz(dobs)
GT

[
GCz(dobs)

GT + Cf

]−1

(ϕ̃(z)− fobs) . (4.14)

From the foregoing, the conditional facies model is obtained by truncating the con-

ditional GRF, i.e., f(dobs,fobs) = ϕ(z(dobs,fobs)). The subscript (dobs, fobs) identifies the

vector that has been conditioned to both production and facies data while the sub-

script (dobs) identifies the vector conditioned only to production data. G and Cz(dobs)

are respectively the sensitivity matrix and the covariance of the GRF.

Since facies observations and simulated facies data are nonnumeric, a meaningful

representation of the facies mismatch term in Eq. 4.14 may be obtained by replac-

ing the facies mismatch term (ϕ̃(z) − fobs) by a facies mismatch proxy (fp) defined

previously in Eq. 3.1. Consequently, Eq. 4.14 reduces to,

z(dobs,fobs) = z(dobs) −Cz(dobs)
GT

[
GCz(dobs)

GT + Cf

]−1

fp. (4.15)

Evaluating G in Eq. 4.15 is nontrivial as fp is not differentiable. Consequently

using a gradient-based optimization technique is mathematically intractable unless

an approximation to the facies proxy can be derived that is at least C1 continuous.

By contrast, Eq. 4.15 can be evaluated fairly easily using EnKF as the analytically

intractable terms, Cz(dobs)G
T and GCz(dobs)G

T , are approximated from the ensemble

without requiring explicit computation of the gradient.
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4.3 Framework for EnKF Applied to Facies with

Nonuniform and Heterogenous Petrophysical

Properties

Following the formulation discussed in section 4.2, an arbitrary state vector, yj, is

given by,

yj =

[
zT MT ST PT

]T
j

, (4.16)

where P and S are respectively the vectors of gridblock pressures and saturations.

For our purpose in this chapter, the vectors of pseudo-model variables, M, in Eq. 4.16

are defined explicitly as,

M =

[
ln kT1 . . . ln kTnf φT1 . . . φTnf

]T
, (4.17)

where ki and φi are respectively the vectors of permeability and porosity belonging

to facies i. From the state vector formulation of Eq. 4.16, the EnKF update step is

essentially carried out the standard way. Figure 4.1 illustrates the basic idea behind

the joint updating of the facies variables and multimodal petrophysical properties

using EnKF.

In our current implementation, since the data model g̃(z,M) may be strongly

nonlinear at some data assimilation timesteps, the maximum absolute change to the

saturation field at each update step is monitored and if it exceeds a predefined thresh-

old, an iterative form of the ensemble Kalman filter is implemented. The choice of

a threshold value to use is generally subjective but if it is set too low or too high

then one either has to iterate at every step (which is computationally very expensive

depending on the size of the problem) or not iterate at all even in the presence of

significant nonlinearity. For our purpose, a threshold of 0.25 was used at the first

four data assimilation timesteps and then 0.3 for the remaining data assimilation

timesteps. The iterative EnKF of Gu and Oliver (2007), the ensemble randomized

maximum likelihood (EnRML) filter, is implemented whenever iteration is required.
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1. Realizations of the Gaussian random variables are truncated to obtain the 
corresponding facies realization.

m~p(m|f)

Truncation map(z1,z2)~N(μZ,ΣZ) Facies map (f)(z1,z2) N(μZ,ΣZ)

BiGaussian field

M~N(μ Σ )

Γ(f,M)

2. Pseudo‐model vectors comprising the permeability 
distribution in each facies class are sampled are sampled 
from the conditional Gaussian density

M N(μM,ΣM)

m1 m2 m3

4. Nonlinear mapping of the Gaussian proxies 
gives the realization of the actual model 
variables used in the next short‐range forecast.

3. The more‐nearly Gaussian distributed GRFs and pseudo‐model variables are 
updated by EnKF when data are assimilated (Gaussian assumption is honored).

variables used in the next short range  forecast. 
Multimodal distribution of permeability is 
preserved

Figure 4.1: Joint updating of facies and petrophysical properties using EnKF.

Unlike a gradient-based optimization approach requiring explicit computation of

the local sensitivity to obtain the conditional model (Eqs. 4.8 and 4.9) the EnKF

technique updates the state vectors using a single global average estimate of the

model–data correlation; alternatively the EnRML uses a global average sensitivity.

The advantage of updating the pseudo-model variables using a global average sensi-

tivity stems from the observation that the update to each pseudo-model variable is

based potentially on two sources of information namely:

1. Local sensitivity and the spatial correlation between the model variables in each

pseudo-model vector such that members of the pseudo-model vector that are not

present in the simulation model (i.e., in the null space of the local sensitivity, G)

are also updated based on correlation with model variables whose sensitivities

are nonzero (Fig. 4.2).
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2. Global averaging feature of the EnKF “sensitivity matrix”. Due to the uncer-

tainty in the spatial distribution of the facies, it is reasonable to expect that

at any grid location, u, not conditioned to facies observation, all the facies

classes present in the model may be found in the ensemble of facies classes at u.

Consequently, the state vectors will provide information on local sensitivities of

the pseudo-model variables at location u corresponding to the different facies

classes. Each local sensitivity information is averaged over the sub-ensemble

with similar facies class to obtain a suite of average sensitivities to the different

pseudo-model variables corresponding to the different facies classes. As a result

all the pseudo-model variables are potentially updated at each data assimilation

timestep using the global average sensitivities from the sub-ensembles.

Pseudo-properties (with zero local sensitivity) that are correlated  
with the model variable at location (i j) with non-zero local

Local sensitivity to medium 
perm facies location (k, l).

with the model variable at location (i, j) with non-zero local 
sensitivity information are also updated.

Multimodal property field Permeability distribution 
in medium perm facies

Permeability distribution 
in high perm facies

Permeability distribution 
in low perm facies

Local sensitivity to high 
perm facies location (i, j) Pseudo-properties (with zero local sensitivity) that are correlated  

with the model variable at location (k, l) with non-zero local 
sensitivity information are also updatedsensitivity information are also updated.

Figure 4.2: Updating of pseudo-properties with zero sensitivity using model corre-
lation. The black circles are regions correlated with model variables having nonzero
sensitivities.

As discussed in section 3.4 after assimilating production data, it may be necessary

to also assimilate well facies data to obtain Gaussian variables that are in the correct

intervals of the corresponding well facies. In what follows, we extend the iterative

re-enforcement scheme reported in Liu and Oliver (2005b) and Agbalaka and Oliver

(2008) by proposing a solution to the problem where the solution can potentially get

stuck in a local minimum during the iterative enforcement of the constraints on facies
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mismatch observations. To this end, recall (Eq. 3.5) that the expression for iteratively

enforcing these constraints is given by,

zl+1 = zl −Kl
f f
l
p

= zl −Cl
zF (Cl

FF + Cf )
−1f lp,

(4.18)

where Kf is the Kalman gain, CzF and CFF are respectively the cross-covariance be-

tween the GRFs and the facies mismatch proxy and covariance of the facies mismatch

proxy. As noted earlier (Eq. 4.12), Cf is a diagonal covariance matrix of measurement

noise in facies data. A value of 10−4 is used throughout for the diagonal elements of

Cf . Our choice of σ2
f = 10−4 is ad hoc and was chosen simply because it satisfies

the requirement that the value of the noise variance be small enough to ensure an

exact match of the facies data. Additionally, because the diagonal elements of Cf

are nonzero, adding Cf to the potentially singular matrix CFF in Eq. 4.18 ensures

that the inverse can be evaluated. Note that we do not add stochastic errors to the

facies observations so this is different from a seemingly similar procedure discussed

in Jazwinski (1970, pp. 301–307) where the noise covariance of a dynamical system

is inflated and then added to the error covariance matrix of the dynamical system to

prevent filter divergence.

The expression for the Kalman gain, Kf , in Eq. 4.18 is an ensemble approximation

of the term,

Cz(dobs)
GT

[
GCz(dobs)

GT + Cf

]−1

, (4.19)

in Eq. 4.14. Because the EnKF approximately linearizes the problem over a broad

range of model variables, it is less likely to get stuck in local minima unlike a gradient-

based approach. However, since the facies mismatch proxies are assimilated at this

stage, the solution may sometimes get stuck in a local “minimum” particularly if all

the ensemble members have simulated facies that do not match the facies observation

at a specific well location. To illustrate, suppose that the ensemble of simulated facies

at the kth observation location do not match the corresponding facies observation,
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i.e., the facies mismatch proxy, fp,j(k) = 1, ∀j : 1 ≤ j ≤ ne, where fp,j(k) denotes

the facies mismatch proxy of the jth ensemble at the kth well location. The mean

of all the facies mismatch proxy at the kth, well location will be fp(k) = 1 and the

residual term fp,j(k) − fp(k) = 0 will be zero for all the ensemble members. It then

follows that irrespective of how many times one iterates using Eq. 4.18, it is impossible

to update the ensemble of Gaussian random fields to obtain values of the Gaussian

variables in the correct intervals corresponding to the observed facies at the kth

location. To overcome this restriction, we propose the addition of small perturbations

to the ensemble of facies mismatch proxies. These perturbations are unconditional

realizations of the pseudo-noise in the facies data, i.e., random samples from the

Gaussian distribution,N (0, σ2
f ). Define ξj ∼ N (0, σ2

f ) as the jth random perturbation

added to fp,j(k) and let ξ be the mean perturbation obtained by averaging over the ne

realizations of ξj. Then (fp,j(k) + ξj)− (fp(k) + ξ) = ξj − ξ represents the perturbed

residual term that reintroduces variability to the ensemble. Using this technique,

constraints to facies mismatch observation were re-constrained in less than 3 iterations

whenever all ensemble members have mismatched facies at a specific well location.

When the GRF that parameterizes the facies are updated using Eq. 4.18, care must

be taken to ensure that only parameters in localized regions with valid correlation to

the facies observations are adjusted. Agbalaka and Oliver (2008) defined a localized

region of influence through a Hadamard product of the Gaspari-Cohn correlation

function with the Kalman gain. In this work we utilized the distance dependent

localization function of Furrer and Bengtsson (2007) given by,

ρ(h) =
C(h)2ne

C(h)2ne + C(h)2 + C(0)2
(4.20)

where C(·) is any valid covariance function and h is the separation distance. The

spherical covariance function was used in this work and the localization range was

set at a value slightly larger than the maximum range of the Gaussian random field.

This ensured that regions with valid correlation to the Gaussian variables at the well

74



locations are also updated when facies data are assimilated.

An ensemble size of 100 was used in all the examples discussed in this chapter.

4.3.1 Algorithm for updating multimodal facies properties using EnKF

The basic steps for implementing our proposed approach is as follows:

1. Generate the initial ensemble of state vectors comprising

• realizations of Gaussian random fields (z) and

• realizations of pseudo-model variables (ln k and φ).

2. Truncate the ensemble of Gaussian random fields to obtain the corresponding

ensemble of facies maps. Conditional on the facies maps, generate ne realizations

of the actual (multimodal) model variables, m, from the ensemble of pseudo-

models using Eq. 4.10.

3. Run the reservoir simulator to the next data assimilation timestep for the ne

realizations of m.

4. Update the ensemble of state vectors using the EnKF standard update equation

.

5. Check whether the assumption of linearity has been violated. If the linear

assumption is still valid, go to step 6 else

(a) Include only M and z in the state vector and iteratively update the state

vector using the EnRML filter.

(b) At the end of each EnRML iteration ensure that the facies observations

are honored at the well locations as described in step 6.

6. Check the simulated facies at the well locations in all the ensemble members.

If some or all the realizations have well facies that do not match the facies
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observations, iteratively update the Gaussian random fields using Eq. 4.18 until

all facies observations are matched by the ensemble of simulated facies data.

7. If there are still data available for assimilation, go back to 2 else stop.

4.4 Reservoir Model Description

The reservoir model is a 1500 ft × 1500 ft × 60 ft, 3-layer model with only two phases

(oil and water) present. Each gridblock has a dimension of 30 ft × 30 ft × 20 ft and all

the grid blocks are active. There are 4 producers and 1 injector arranged in a 5-spot

waterflooding pattern with perforations in all three layers. The injector is controlled

primarily by a maximum surface injection rate with a secondary constraint on the

maximum bottomhole pressure. All the producers flow at the same constant flowing

bottomhole pressure. The gridblock locations of the wells in the model are presented

in Table 4.1.

Table 4.1: Grid coordinates of the well locations in the simulation model.

Coordinate Injector Producer 1 Producer 2 Producer 3 Producer 4
x 25 9 9 41 41
y 25 5 45 45 5

Three different types of geologic facies identified as high permeability sand (Facies

1 or F1), medium permeability sand (Facies 2 or F2) and low permeability sand (Fa-

cies 3 or F3) are present in all the layers. In all the facies maps, Facies 1 corresponds

to the dark gray shade, Facies 2 to the light gray shade and Facies 3 to the white

shade. There are 15 facies observations with 3 observations from each well. The

well positions are indicated by black dots on facies maps. The distribution of the

petrophysical properties in each facies differ markedly for different facies. The per-

meability is log-normally distributed and the porosity is normally distributed. The

vertical permeability is taken to be 20% of the horizontal permeability.

Production was for 400 days and data were assimilated every 20 days for 220 days.
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The remaining days in which production data were assimilated were used to assess

the predictive performance of the history matched models. Water injection started

from the first day of production and lasted through the period of production. The

wells with water breakthrough information during the data assimilation period were

producers 3 and 4 for Examples 1 and 2 and producers 1, 2 and 4 for Example 3.

At each data assimilation timestep, 9 production data were assimilated and included

the bottomhole pressure (pbh) from the injector, water production rates (qw) from the

four producers, and total liquid production rates (qL) also from the four producers.

The facies data were assimilated whenever it is necessary to enforce the constraint

on facies mismatch observation after assimilating production data. Note that the oil-

water relative permeability curves shown in Fig. 3.5 were also used in all the reservoir

simulation models presented in this chapter.

4.5 Description of Experiments

Unconditional realizations of pseudo-properties (ln k and φ) in each facies class were

generated using the sequential Gaussian simulation technique (Deutsch and Journel,

1998). An exponential variogram model was used and the variogram parameters

were assumed known. Values of the first two statistical moments characterizing the

distributions of the porosity and ln k for different facies are given in Table 4.2. The

performance of the proposed approach for joint updating of the pseudo-properties

and facies variables was tested on three synthetic problems designed with different

features of nonstationarity.

Table 4.2: Mean and standard deviation of ln k and φ for generating the pseudo-
properties in each facies class.

Permeability (ln k) Porosity (φ)
µk σk µφ σφ

Facies1 7.60 0.30 0.330 0.01
Facies2 5.86 0.30 0.230 0.01
Facies3 4.32 0.35 0.110 0.01

77



4.5.1 Example 1 description: Facies model with horizontal nonstationar-
ity

Nonstationarity is generally characterized by significant lateral change in facies pro-

portions in the reservoir within the area of interest. In truncated Gaussian simulation,

this is handled by using different proportions curves for different areas of the reservoir

model. Since the thresholds (Eq. 4.1) depend on the facies proportions, these too will

vary as a function of location. In Example 1, the nonstationarity in the facies pro-

portions is principally in the horizontal direction and the same proportions map was

used to compute the thresholds (Eq. 4.1) in all 3 layers. For generating realizations

of the facies models in Example 1, the trend in the facies proportions is assumed to

be primarily in the x-direction and a cross-section of the trend is shown in Fig. 4.3.

The directions of maximum and minimum continuity of the facies are respectively in

the NS- and EW-directions and the Gaussian field for truncation was generated with

a fairly long correlation length (about 20 gridblock sizes) in the NS-direction with

an anisotropic ratio of 2. The Gaussian random variables in the three layers of the

model are assumed to be vertically uncorrelated. The facies observations at the well

locations are the same in all layers and are presented in Table 4.3.

(a) Facies 1 Proportions (b) Facies 2 Proportions (c) Facies 3 Proportions

Figure 4.3: Cross section of the trends in facies proportions for Example 1.

Table 4.3: Facies observations at the well locations for all three layers in the reservoir
model for Examples 1 and 2.

Injector Producer 1 Producer 2 Producer 3 Producer 4
facies 2 facies 3 facies 3 facies 1 facies 1
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The reference facies permeability maps for this example are given in Fig. 4.4. Note

that the distribution of ln k in these maps are discontinuous at the boundaries of the

different facies types. In general, the warmer colors in each ln k correspond to high

values of permeability. The histograms of the ln k maps from Fig. 4.4 are presented

in Fig. 4.4.

(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 4.4: Reference ln k maps examples 1 and 2 showing the well locations as black
circles.

(a) Layer 1 (b) Layer 2 (c) Layer 3

(d) Layer 1 (e) Layer 2 (f) Layer 3

Figure 4.5: Reference ln k and φ histogram for examples 1 and 2. The distribution
of the petrophysical properties in each layer is clearly multimodal.
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4.5.2 Example 2 description: Impact of incorrect stationarity assumption

The second example examines the history match performance of the EnKF where

the realizations are generated with the wrong assumption of horizontal stationarity

when the reservoir unit (reference model) is laterally nonstationary. ssentially we

attempt to answer the following question: “Given that the reservoir unit of interest

is a realization from a nonstationary facies transition model, what is the effect on

history matching results if a stationary facies transition model is used for truncating

the GRFs to obtain the facies maps during history matching? This is a problem of

practical importance because, geological phenomena always have some degree of non-

stationarity and depending on the scale of investigation, the choice between stationary

vs. nonstationary models becomes subjective (Armstrong et al., 2003). The reference

model for this example is the same as Example 1 (Figs. 4.4 and 4.5). Realizations of

the facies model for Example 2 were generated by truncating a Gaussian field using

thresholds computed by assuming that the facies proportions are equal (≈ 0.33) and

the same at all grid locations. The initial facies realizations were conditioned on well

facies observations and the geostatistical parameters are the same as the reference

model. Figure 4.6 shows a randomly selected realization of the facies model gener-

ated based on the stationarity assumption. The permeability and porosity in this

example were also nonuniform and heterogeneous.

4.5.3 Example 3 description: Facies model with horizontal and vertical
nonstationarity

The third and final example investigates the history matching performance of the pro-

posed joint-updating approach for the case where the facies proportions are laterally

and vertically nonstationary. The initial facies realizations were generated conditional

on the well facies observations in Table 4.4 and the reference facies maps are shown

in Fig. 4.7.

80



(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 4.6: Initial facies field for a randomly selected realization from Example 2.
Facies proportions are assumed stationary.

Table 4.4: Well facies for Example 3

Layer Injector Producer 1 Producer 2 Producer 3 Producer 4
1 facies 2 facies 3 facies 3 facies 1 facies 1
2 facies 2 facies 1 facies 2 facies 3 facies 2
3 facies 2 facies 2 facies 1 facies 2 facies 3

(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 4.7: Facies distribution in the reference model for Example 3.
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4.6 Results and Discussions

In this section we evaluate the performance of the proposed approach for joint esti-

mation of the facies variables and the petrophysical properties of the facies on the

three history matching problems discussed in the preceding section. We also compare

the performance of our proposed approach with those from two alternative implemen-

tations of the ensemble Kalman filter for which (1) only the multimodal petrophys-

ical properties (ln k and φ) are adjusted directly; and (2) only the facies variables

(more specifically, the GRFs that parameterize the transformed facies variables) are

adjusted. Although both alternative approaches were tested on the two examples

discussed earlier, we only present and analyze results of their performance for Ex-

ample 1 as similar conclusions hold for Example 2. For convenience, the approach

based on adjusting only the petrophysical properties directly will be referred to as

the properties-only approach and the approach based on adjusting only the GRFs

that parameterize the transformed facies as the facies-only approach. Our proposed

implementation for joint updating of the facies variables and petrophysical properties

will be referred to as the pseudo-properties approach.

4.6.1 Results for Example 1

The predicted injector pbh data and producers’ qL data from the initial and final

ensembles are presented in Fig. 4.8. At each each timestep with production mea-

surement, a box-and-whisker plot of the ensemble prediction is shown. The base and

top of each box in the box-and-whisker plot correspond respectively the P10 and

P90 values of the predicted data. The horizontal line through the middle of each

box in the box-and-whisker plot is the P50 value. Outliers are indicated by aster-

isks and represent data values that are ≥ 1.5 times the interquantile range from the

edge of the box. The vertical line in the each plot in Fig. 4.8 demarcates the end

of the history matching period. The initial uncertainty in the estimate of the model
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(a) Initial Ensemble (b) Facies-only (c) Properties-only (d) pseudo-properties

(e) Initial Ensemble (f) Facies-only (g) Properties-only (h) pseudo-properties

(i) Initial Ensemble (j) Facies-only (k) Properties-only (l) pseudo-properties

(m) Initial Ensemble (n) Facies-only (o) Properties-only (p) pseudo-properties

(q) Initial Ensemble (r) Facies-only (s) Properties-only (t) pseudo-properties

Figure 4.8: Prediction of Injector BHP (top row) and liquid rate data from the four
producers (last four rows) from initial and final models for Example 1. Vertical line
demarcates the end of history matching period. Filled circles are production mea-
surements. The box-and-whisker plots are ensemble predictions. The filter diverged
for the facies-only approach (column 2) and the best matches to data were from the
properties-only approach (column 3) and the pseudo-properties approach (column 4).
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parameters shows as a substantial spread in predicted data (column 1 of Fig. 4.8).

The prediction result from the facies-only approach (column 2 of Fig. 4.8) shows that

merely adjusting the facies boundaries in this case results in complete loss of ensem-

ble variability leading to filter divergence, resulting in negligible prediction spread

and very poor match to production measurement. Filter divergence refers to the

situation where data are ignored during data assimilation due to loss of ensemble

variability leading to unrealistically high confidence in the model estimates each time

data are assimilated and too low weight on the assimilated data. Because only the

facies boundaries were adjusted at each timestep in this case, very large compensatory

updates were made to the Gaussian variables that parameterize the transformed fa-

cies variables leading to rapid collapse of the ensemble variance. From the foregoing,

accounting for the uncertainty in the estimates of the gridblock permeabilities and

porosities may be necessary for improving the predictability from the final models.

This is supported by the improvement in history matching results for the approaches

based on either adjusting only the petrophysical properties (column 3 of Fig. 4.8) or

explicitly updating both the petrophysical properties and facies boundaries (column

4 of Fig. 4.8). Both methods resulted in appreciable reduction in initial prediction

uncertainty. Additionally their capability in predicting “future” performance (right

of the vertical line) appears reasonable as the production measurements are contained

within the spread of the predicted and the ensemble prediction seems to match the

reference prediction quite well.

Quantitatively, the performance of the different approaches may be compared

by evaluating the root mean square deviation (equivalently, root mean square error,

RMSE) of the ensemble of predicted data from the measured data. We expect that

for mild departure from the assumptions of linearity and Gaussianity in the EnKF,

the magnitude of the RMSE should be about the same as the standard error of

measurement. The standard errors of measurements used in the examples were 10
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psi for injector pbh and 10 STB/D for both water and liquid rates. Before water

breakthrough, a standard error of measurement of 0.001 STB/D was used for the

water rate data. Table 4.5 shows the average RMSE taken over the history matching

period of 220 days. For comparison, the standard errors of measurement for the

different production data are presented in Row 1 of Table 4.5.

Table 4.5: Average RMSE of predicted data for the history matching period in
Example 1. Actual refers to the standard error of measurement.

Injector Prod1 Prod2 Prod3 Prod4
(psi) (STB/D) (STB/D) (STB/D) (STB/D)
pbh qL qw qL qw qL qw qL qw

1. Actual 10 10 0.001 10 0.001 10 10 10 10
2. Initial model 155 68 0.03 66 0.50 343 217 353 238
3. Facies-only 3576 131 0.020 150 0.020 2927 361 3311 60
4. Pseudo-properties 17 16 0.002 14 0.002 78 65 76 64
5. Properties-only 12 10 0.002 11 0.002 62 37 63 24

Row 2 in Table 4.5 shows that the average RMSE values from the initial ensemble

are much higher than corresponding values from the pseudo-properties (Row 4) and

the properties-only (Row 5) approaches respectively. For the properties-only and

pseudo-properties approaches, the average RMSE of the pbh data from the injector

and the rates data from producers 1 and 2 are about the same as the standard error

of measurement. However, the average RMSE for the predicted liquid and water rate

data from producers 3 and 4 are somewhat higher than the indicated by measurement

error. The facies-only approach had the worst match to data and in general the

RMSE values from the final ensemble in this case (Row 3) are significantly higher

than those from the initial ensemble and the final ensembles from the properties-only

and pseudo-properties approaches respectively.

It is apparent from Table 4.5 that the average RMS prediction errors from the

properties-only approach are lower than those from the pseudo-properties approach.

To test if the predictive performance of the properties-only is significantly differ-

ent from that of the pseudo-properties approach we utilized the modified Levene’s
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test (Levene, 1960) popularly referred to as the Brown–Forsythe test on equality of

variances (Brown and Forsythe, 1974). This test is known to be fairly robust to

non-Gaussian distributions. The null hypothesis (H0) is that the observed variability

in prediction errors from the properties-only and pseudo-properties approaches are

due to random variations, i.e., the data mismatch are not significantly different. The

Brown–Forsythe test statistic, W , is defined as,

W =
N − k
k − 1

∑k
i=1Ni(Zi − Z)2∑k

i=1

∑Ni
j=1(Zij − Zi)2

, (4.21)

where k is the number of methods being compared and is equal to 2 in this case, N

is the total number of (data mismatch) samples, Ni is the number of samples from

the ith method. Zij = ∆Dij − ∆̃Di with ∆Dij as the jth data mismatch in the ith

group and ∆̃Di as the median data mismatch in the ith group. Z is the mean of all

Zij and Zi is the mean of Zij from the ith group. The Brown-Forsythe test rejects

the hypothesis that the variances of the data mismatch from both methods are equal

if W > Fα,k−1,N−k; where Fα,k−1,N−k is the upper critical value of the F distribution

with k−1 and N −k degrees of freedom given a significance level of α.The test result

showed that (in the absence of additional information) at 5% level of significance

there is enough evidence to conclude that the variability in the data mismatch from

both approaches are significantly different. Consequently, the alternative hypothesis

is accepted and the properties–only approach is general better in matching production

data than the pseudo-properties approach.

Table 4.6 shows the within-ensemble spread of the predicted data from the ini-

tial and final models for the history matched period. The spread in production data

is generally a measure of the diversity in flow behavior. The prediction spread of

the initial ensemble (Row 1 in Table 4.6) is very high reflecting the presence of sig-

nificant diversity in the ensemble of initial model variables due uncertainty in the

prior estimates of the model parameters. Compared to the initial models, the predic-

tion spread of the pseudo-properties and properties-only approaches are significantly
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smaller. Also, the prediction spread from the pseudo-properties approach is gener-

ally higher than the prediction spread from the properties-only approach. Relative

to the magnitude of the average RMSE of predicted data for the facies-only (Row

3, Table 4.5), the prediction spread in this case is too low. Note that the very low

spread for the predicted qW data for producers 1 and 2 from the properties-only and

pseudo-properties approaches reflects the absence of water breakthrough data in these

wells.

Table 4.6: Spread in predicted data from the history matched period for Example 1.
Injector Prod1 Prod2 Prod3 Prod4

(psi) (STB/D) (STB/D) (STB/D) (STB/D)
pbh qL qw qL qw qL qw qL qw

1. Initial model 128 61 0.02 66 0.50 240 168 243 144
2. Facies-only 0 5 0.0007 5 0.0008 6 0 5 0
3. Pseudo-properties 16 13 0.002 12 0.002 68 52 68 41
4. Properties-only 11 9 0.001 8 0.001 50 32 50 23

The within-ensemble spread of the predicted data for the “future period” (period

after history matching) is presented in Table 4.7. It is evident that while the spread

in the history matched models from the pseudo-properties (Row 3) and properties-

only (Row 4) approaches are much lower than the prediction spread in the initial

models, they are in general higher than similar prediction spread from the history

matched period (Table 4.6). The spread of injector pbh data from both approaches

and Producer 3 qL data from the properties-only approach appears to be similar for

the periods before and after history matching. The future prediction results from the

pseudo-properties and properties-only approaches show that there is still a great deal

of diversity in the ensemble of final models. The future prediction spread for the facies-

only approach (Row 2) is very low as a result of the collapse in ensemble variability

during data assimilation and there is very little diversity in the final ensemble.
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Table 4.7: Spread in the predicted “future” data for Example 1.

Injector Prod1 Prod2 Prod3 Prod4
(psi) (STB/D) (STB/D) (STB/D) (STB/D)
pbh qL qw qL qw qL qw qL qw

Initial model 127 71 14 77 22 298 408 288 357
Pseudo-properties 15 46 12 34 6 60 97 72 163
Properties-only 11 47 13 31 7 50 73 60 143

4.6.2 Assessing the geologic plausibility of the history matched models

Figure 4.9 shows two randomly selected realizations of the initial and final ln k maps.

We observe that some features from the initial model are clearly present in some of

the final models (see bottom row of Fig. 4.9 where a patch of high permeability facies

centered at grid location (12,20) is evident in the final models from the properties-

only and pseudo-properties approaches). Similarly, new features from assimilating

production data are also present in the final maps (an obvious example is the high

permeability sand body in Fig. 4.9(d), running vertically from the top to the middle

of the map). The two history matched realizations from the facies-only approach (sec-

ond column) are very different from the initial maps and appear to have petrophysical

property distribution from predominantly two facies types: the high permeability fa-

cies and the low permeability facies. The petrophysical property distribution from

the medium permeability facies is clearly not present. Also the predicted facies at

the well locations are generally incorrect and do not match the facies observations.

Clearly, both realizations from the facies-only approach are not geologically plausible

realizations. The final ln k maps obtained by adjusting only the petrophysical prop-

erties of the different facies (third column in Fig. 4.9) appear to be much smoother

than the initial maps and perhaps too smooth for realizations from a facies model.

The final ln k maps from the properties-only approach are not nearly as discontinuous

as one would have expected for properties maps from a facies model. The ln k maps

from the pseudo-properties approach are clearly discontinuous (column 4 in Fig. 4.9)

and are consistent with properties from an underlying facies map.
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(a) Initial. (b) Facies-only. (c) Properties-only. (d) Pseudo-prop.

(e) Initial. (f) Facies-only. (g) Properties-only. (h) Pseudo-prop.

Figure 4.9: Random realizations of Layer 2 ln k maps from initial and final ensembles
for Example 1. Back circles are well locations. The final ln k maps from the facies-only
approach (column 2) are from only two facies classes (in contrast with three classes
in the initial model (column 1)) and are thus geologically implausible. ln k maps
from the properties-only approach (column 3) are too smooth for properties from a
facies model. The ln k maps from the pseudo-properties approach are consistent with
properties from a facies model.
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Figure 4.10 shows the global histograms of the initial and final distributions of

the petrophysical properties in Layer 2 of the facies model obtained from all ne re-

alizations. Judging by the trimodality of the initial histograms (Figs. 4.10(a) and

4.10(e)) and the final histograms from the pseudo-properties approach (Figs. 4.10(d)

and 4.10(h)) it appears, at least qualitatively, that the respective realizations from

each group (initial and pseudo-properties) might have come from the same parent

distribution as the reference model (Figs. 4.5(b) and 4.5(e)). Conversely, the his-

tograms of final ln k and φ realizations from the facies-only (Figs. 4.10(b) and 4.10(f))

and properties-only (Figs. 4.10(c) and 4.10(g)) approaches seem to be samples from

parent population distributions that are respectively bimodal and unimodal. Both

histograms are qualitatively very different from the initial and reference histograms.

(a) Initial. (b) Facies-only. (c) Properties-only. (d) Pseudo-properties.

(e) Initial. (f) Facies-only. (g) Properties-only. (h) Pseudo-properties.

Figure 4.10: ln k (top row) and porosity (bottom row) histograms from layer 2
of Example 1. The facies-only and properties-only approaches respectively have bi-
modal and unimodal histograms that differ significantly from the initial and reference
histograms. Histograms from the pseudo-properties approach are consistent (multi-
modality) with the initial and reference histograms.

Geologic plausibility of the final ln k and φ was assessed by testing the hypothesis

that the ln k and φ histograms from the reference model and from the different ap-

proaches respectively are samples from the same parent population. Because only the

properties-only and pseudo-properties approaches matched production data, we limit
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this test to the final realizations from both approaches only. Popular tests for compar-

ing two histograms include the χ2-test of homogeneity (Cramer, 1946, pp. 445–450)

and the Kolmogorov-Smirnov test. The results from these tests, however, cannot be

applied to spatially-correlated variables. Cerioli (2002) and Olea and Pawlowsky-

Glahn (2008) have recently presented possible modifications of these standard tests

for variables that are spatially correlated. For our purpose however, we formulated a

rather simple test for comparing the ln k (or φ) histograms using the proportions of

ln k (or φ) values that occur in five selected intervals of the histograms corresponding

to 3 peaks and 2 troughs (valleys). Only the test applied to the ln k histogram is

presented here since the underlying process and the final results are the similar for φ

histograms. Figure 4.11 shows the selected intervals of the ln k histograms.

(a) Layer1 (b) Layer2 (c) Layer3

Figure 4.11: Selected intervals from reference ln k histograms for computing ln k pro-
portions in each interval. Intervals are numbered 1–5 from left to right and correspond
either to a peak or a trough.

The parent distribution of the ln k proportions in each interval of Fig. 4.11 was

approximated from 5000 random realizations of ln k that were generated using known

geostatistical properties (Fig. 4.12). Using a two-tailed t-test with unequal variances,

we determined if the interval means of the ln k proportions from the properties-only

and pseudo-properties approaches were statistically different from those of the parent

distribution. Although the theory of the t-test is based on normally distributed

samples, it is known to work rather well for non-normal distributions (Jensen et al.,
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(a) Layer 1. I1. (b) Layer 1. I2. (c) Layer 1. I3. (d) Layer 1. I4. (e) Layer 1. I5.

(f) Layer 2. I1. (g) Layer 2. I2. (h) Layer 2. I3. (i) Layer 2. I4. (j) Layer 2. I5.

(k) Layer 3. I1. (l) Layer 3. I2. (m) Layer 3. I3. (n) Layer 3. I4. (o) Layer 3. I5.

Figure 4.12: Parent histograms of ln k proportions in the five selected intervals in
Fig. 4.11. I1–I5 are intervals 1–5 respectively.

2000). The t statistic is given by,

tIj =

 Xp −Xs√
σ̂2
p

Np

+
σ̂2
s

Ns


Ij

, (4.22)

where the subscripts p and s identify the estimates from the parent and the sample

(ensemble of final models) populations respectively. Ij denotes the jth interval; X

is the mean of the proportions; N is the population size and σ̂2 is the estimated

variance. Because the variances computed from the parent and sample populations

are expected to be unequal, the degree of freedom (DF) for the t-test was computed

from the Welch-Satterthwaite equation (Satterthwaite, 1946) as,

DF =

(
σ̂2
p

Np

+
σ̂2
s

Ns

)2

σ̂4
p

N2
p (Np − 1)

+
σ̂4
s

N2
s (Ns − 1)

. (4.23)

Based on the foregoing, the null hypothesis (Eq. 4.24) for the t-test is that the means

of the proportions of ln k from all the intervals obtained from the parent distribution
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and the final models from the properties-only and the pseudo-properties approaches

respectively are not statistically different.

H0 : ∩
j

(
Xp = Xs

)
Ij

= ∩
j
H0(Ij). (4.24)

If the null hypothesis is falsified in any interval, then the alternative hypothesis is

accepted. Tables 4.8 and 4.9 show the results of the test applied to the final ensemble

of ln k maps from the pseudo-properties and properties-only approaches using a sig-

nificance level of 0.05. The test results shows that at 0.05 level of significance, there is

Table 4.8: Results of hypothesis testing for the pseudo-properties approach.

Layer H0(I1) H0(I2) H0(I3) H0(I4) H0(I5) H0

1 Accept Accept Accept Accept Accept Accept
2 Accept Accept Accept Accept Accept Accept
3 Accept Accept Accept Accept Accept Accept

no significant evidence against the conclusion that the final ln k histograms from the

pseudo-properties approach are from the same parent distribution as the reference ln k

histograms. Conversely, at the same level of significance, there is enough evidence to

conclude that the final ln k histograms from the properties-only approach may have

come from a different parent distribution than the reference ln k histograms. These

Table 4.9: Results of hypothesis testing for the properties-only approach.

Layer H0(I1) H0(I2) H0(I3) H0(I4) H0(I5) H0

1 Accept Reject Reject Reject Accept Reject
2 Reject Reject Accept Reject Accept Reject
3 Reject Reject Accept Reject Accept Reject

conclusions agree with earlier qualitative observation where realizations of ln k maps

from the properties-only approach seemed much smoother than one would expect for

properties from a facies model. Similar qualitative observation on smoothness of the

final ln k realizations obtained by directly adjusting the multimodal permeability field

using EnKF has also been reported elsewhere (Sarma and Chen, 2009).
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Clearly, while the properties-only approach matched data fairly well, the final

estimates of the petrophysical properties are not geologically plausible. The smooth-

ness in the final ln k realizations from the properties-only approach results from the

EnKF technique seeking and using a Gaussian approximation to the multimodal PDF

of ln k during the update step. Because the facies-only approach suffered from fil-

ter divergence, the final ln k (Fig. 4.10(b)) and φ (not shown) fields are geologically

implausible and the worst matches to production measurements were obtained for

this approach. It is noteworthy that the facies-only approach has been utilized suc-

cessfully by a number of researchers (Liu and Oliver, 2005b; Agbalaka and Oliver,

2008; Moreno et al., 2008) for the specific case where there is no uncertainty in the

petrophysical properties. By using the pseudo-properties approach, it is possible to

account for both levels of uncertainty, i.e., uncertainty in the facies boundaries and

in the petrophysical properties and adjusting these uncertain variables in a consis-

tent way during history matching resulted in geologically plausible history matched

models and reasonable match to data.

Figure 4.13 shows four randomly selected initial and final realizations of the facies

model for the pseudo-properties approach. Evidently, some features from the prior

models are preserved in the final models and additional features not present in the

prior models are observable in the final models reflecting the impact of data condi-

tioning. In additional the realizations of the facies maps in this case appears to be

geologically plausible realizations as there is no evidence of history matching artifact

in the final realizations.

Estimates of the trend in the facies proportions from the reference, initial and

final models (from the pseudo-properties approach) are presented in Fig. 4.14. All

the estimates are in general very similar to the analytical trends presented earlier in

Fig. 4.3. Notably, the estimated proportions from the initial models are quite close

to the reference proportions such that the facies proportions were not significantly
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(a) Initial Model #1 (b) Initial Model #2 (c) Initial Model #3 (d) Initial Model #4

(e) Final Model #1 (f) Final Model #2 (g) Final Model #3 (h) Final Model #4

Figure 4.13: Initial (top row) and final (bottom row) Layer 1 facies maps from the
pseudo-properties approach in Example 1. Given the features in the initial facies
maps, the final facies maps are geologically plausible realizations.

adjusted during history matching for the current example as seen in final estimates

of the trend in the facies proportions.

(a) Facies 1 (b) Facies 2 (c) Facies 3

Figure 4.14: Trend in the estimated facies proportions from the reference model,
initial and final models (from the pseudo-properties approach) for Example 1. The
initial and final estimates of the facies proportions match the reference proportions
quite well in this case.

Table 4.10 presents the estimated probability of correct classification of the dif-

ferent facies types at each grid location for the initial and final facies models, i.e.,

P (Fsim = i|Fref = i); where Fsim is the simulated or predicted facies, Fref is the ref-

erence facies and i denotes the ith facies type. The initial probability of correct facies

classification is somewhat high consistent with the observations in Fig 4.14 that the
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initial estimates of the nonstationary proportions were fairly close to the reference

values. In Example 2, we present a rather extreme case where we start with very

poor initial estimates of the facies proportions. For the current example, the prob-

abilities of correct classification of the different facies types after data assimilation

were marginally better than the initial probabilities.

Table 4.10: Probability of correct classification of each facies conditional on the
facies in the reference model for Example 1. Fsim is the simulated facies and Fref is
to the reference facies.

P (Fsim = 1|Fref = 1) P (Fsim = 2|Fref = 2) P (Fsim = 3|Fref = 3)

Initial Final Initial Final Initial Final

0.72 0.73 0.60 0.61 0.77 0.78

4.6.3 Results for Example 2

In this section we focus on the history matching results from data assimilation using

the pseudo-properties approach. Figures 4.15 and 4.16 respectively show the pre-

dictions of the qL and qw data for producers 1–4 from the ensemble of initial and

final models. The impact of starting with an incorrect facies proportion model shows

up as significantly higher initial prediction uncertainty (Figs. 4.15(a)–4.15(d) and

Figs. 4.16(a)–4.16(d)) compared to the initial prediction uncertainty from Example

1 (Figs. 4.8(e), 4.8(i), 4.8(m) and 4.8(q)) where the nonstationarity in the facies pro-

portions was accounted for. After assimilating data, there is considerable reduction

in prediction uncertainty both for history matched period (≤ 220 days) and the “fu-

ture” prediction period (> 220 days). Even though the initial models in the current

example were generated by wrongly assuming stationarity of the facies proportions,

the history match to production measurements are quite good.
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(a) Producer 1 (b) Producer 2 (c) Producer 3 (d) Producer 4

(e) Producer 1 (f) Producer 2 (g) Producer 3 (h) Producer 4

Figure 4.15: Predicted liquid rate data (qL) from the initial (top row) and final
(bottom row) ensembles for Example 2. The vertical line demarcates the end of
history matching. The red circles are production measurements and the box-and-
whisker plots are ensemble predictions. The match to production data is quite good
and data are contained within the future prediction spread of the ensemble.

(a) Producer 1 (b) Producer 2 (c) Producer 3 (d) Producer 4

(e) Producer 1 (f) Producer 2 (g) Producer 3 (h) Producer 4

Figure 4.16: Predicted water rate data (qw) from the initial (top row) and final
(bottom row) ensembles for Example 2. The vertical line demarcates the end of
history matching. The red circles are the production measurements and the box-
and-whisker plots are ensemble predictions. Fairly good match to Prod 1–3 qw data.
Although the match to Prod4 qw data is somewhat biased, there is a significant
improvement over the initial prediction.
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4.6.3.1 Updated geological parameters

Figure 4.17 shows four randomly selected realizations of the initial and final estimates

of the ln k maps. The permeability distributions from both the initial and final models

are discontinuous, consistent with petrophysical properties distribution from a facies

model. However, unlike the reference model where a EW trend in the property field

is evident for this layer (Fig. 4.4(c)), there is no clear trend in the four realizations of

the initial model (Figs. 4.17(a)–4.17(d)). This reflects the impact of the underlying

assumption of stationarity on the distribution of the petrophysical properties in the

initial realizations of the facies model.

(a) Initial Model #1 (b) Initial Model #2 (c) Initial Model #3 (d) Initial Model #4

(e) Final Model #1 (f) Final Model #2 (g) Final Model #3 (h) Final Model #4

Figure 4.17: Realizations of initial (top row) and final (bottom row) ln k maps from
layer 3 in Example 2. The distribution of the ln k values in the final model shows
both features from data conditioning and from the initial models.

After assimilating data, the final realizations seem to capture the connectivity of

the high permeability sand (NE-SE region of the map) between producers 3 and 4

(Figs. 4.17(e)–4.17(h)) observed in the reference model (Fig. 4.4(c)). Producers 1

and 2 did not have water breakthrough data during the period of data assimilation

so there is relatively little information on the inter-well connectivity between both
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wells and the injector. This may partly account for the reason why the inter-well

permeability distribution in the NW–SW region of the maps from the final models

appears somewhat similar to the distribution in the initial models.

Estimates of the trend in the expected facies proportions from the reference, initial

and final models are presented in Fig. 4.18. Recall that the expected facies proportions

in our current example are stationary and equal to 1
3

for all 3 facies in the model.

It appears that even though stationary proportions maps were used to compute the

thresholds for generating the initial facies maps, the initial estimate of the facies

proportions seem to have inherited some weak trends from using the same long-range

correlation as the reference model. However, the initial trends are clearly different

from the reference trends and in general, represent a poor approximation to the

expected facies proportions. After assimilating data, the expected facies proportions

estimated from the final ensemble match the reference proportions quite well.

(a) Facies 1 (b) Facies 2 (c) Facies 3

Figure 4.18: Nonstationary facies proportions from the reference model (diamonds),
ensemble of initial (squares) and final models (circles) from Example 2. The initial
estimates do not match the reference proportions but the final estimates do.

Table 4.11 shows the ensemble estimate of the probability of correct classification

of the facies conditional on the facies in the reference model. The estimated probabil-

ities are generally better after data assimilation compared to the initial probabilities.

4.6.4 Results for Example 3

Figures 4.19 and 4.20 show the performance of the initial and final models in pre-

dicting the qL and qw data respectively for the current example. Using the proposed
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Table 4.11: Probability of correct facies classification conditional on the facies
present in the reference model for Example 2. Fsim represents the simulated facies
and Fref refers to the facies in the reference model.

P (Fsim = 1|Fref = 1) P (Fsim = 2|Fref = 2) P (Fsim = 3|Fref = 3)

Initial Final Initial Final Initial Final

0.61 0.66 0.53 0.55 0.66 0.73

approach based on updating the more-nearly Gaussian pseudo-properties in each fa-

cies, reasonable matches to the water and liquid rate data were obtained for this

example. The estimated water breakthrough times predicted by the final models are

significantly better than predictions from the initial models. The initial uncertainties

in predicted data were reduced considerably after data assimilation and predictions

of future production data by the final models match the reference predictions fairly

well.

(a) Initial. Producer 1 (b) Initial. Producer 2 (c) Initial. Producer 3 (d) Initial. Producer 4

(e) Final. Producer 1 (f) Final. Producer 2 (g) Final. Producer 3 (h) Final. Producer 4

Figure 4.19: Liquid production rate data predicted by the initial (top row) and final
(bottom row) ensemble for Example 3. The vertical line demarcates the end of history
matching. The filled circles are production measurements and the box-and-whisker
plots are the ensemble predictions. The matches to qL data is quite good for the
history matched and pure prediction periods.

Four randomly selected realizations of the initial and final ln k maps for layer 2

are presented in Fig. 4.21. For comparison, the reference ln k map for the same layer
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(a) Initial. Producer 1 (b) Initial. Producer 2 (c) Initial. Producer 3 (d) Initial. Producer 4

(e) Final. Producer 1 (f) Final. Producer 2 (g) Final. Producer 3 (h) Final. Producer 4

Figure 4.20: Water production rate data (qw) predicted by the initial (top row) and
final (bottom row) ensemble for Example 3. The vertical line demarcates the end
of history matching. The filled circles are production measurements and the box-
and-whisker plots are the ensemble predictions. Fairly good matches to data for the
history matched and pure prediction periods.

is presented also (Fig. 4.21(a)). Realizations of the final ln k maps in Fig. 4.21 appear

to qualitatively reproduce some of the features present in the reference ln k map such

as the high permeability sand body observed in the left region of the map and the

low permeability sand body in the right region of the map.

4.7 Chapter Summary

In this chapter, I have considered the problem of jointly updating the multimodal

petrophysical properties and the discrete facies variables from assimilating produc-

tion and facies data using EnKF. I presented an approach, which updates the more

nearly-Gaussian pseudo-properties in each facies class in lieu of the multimodal petro-

physical properties. Furthermore a straightforward mapping scheme was introduced

for obtaining the updated petrophysical properties from the pseudo-properties. Using

the pseudo-properties approach, consistent updates to the multimodal permeability

and porosity as well as the GRFs that parameterize the transformed facies variables

are obtained at each data assimilation timestep. Comparison of the results from the
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(a) Reference map.

(b) Initial. Ens#1. (c) Initial. Ens#2. (d) Initial. Ens#3. (e) Initial. Ens#4.

(f) Final. Ens#1. (g) Final. Ens#2. (h) Final. Ens#3. (i) Final. Ens#4.

Figure 4.21: Four randomly selected realizations of layer 2 ln k maps from the initial
and final models for Example 3.
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pseudo-properties approach with those from two other approaches based on adjusting

only the facies boundaries or directly updating the multimodal petrophysical proper-

ties showed the pseudo-properties approach to be better in obtaining both acceptable

history matching results and final history matched models that are geologically plau-

sible.

I also addressed, in this chapter, the problem of getting stuck in a local minimum

during the iterative enforcement of the constraints on the facies mismatch observa-

tions previously discussed in Chapter 3. This situation occurs when the ensemble

of predicted facies class at a specific measurement location do not match the facies

observation resulting in the absence of variability in the ensemble of facies proxies at

the measurement location. It appears that by adding random perturbations to the

ensemble of facies proxies, the required variability is re-introduced and the predicted

well facies can be constrained to match the facies observations during the iterative

enforcement step.

The pseudo-properties approach for estimating multimodal facies properties using

EnKF was tested on three sample problems with different assumptions of nonstation-

arity. For the specific example where the initial models were generated incorrectly

using a stationary proportions map, the final estimate of the expected facies pro-

portions reproduced and matched the trend in the reference proportions quite well.

This seems to indicate that if the correlation lengths and direction of anisotropy are

correctly specified, then the assumption of stationarity or nonstationarity for facies

estimation from history matching may be unimportant.
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CHAPTER V

PARAMETERIZATION OF VERTICAL

TRANSMISSIBILITY BARRIERS FOR

HISTORY MATCHING USING ENKF

5.1 Background

Permeability anisotropy results in subsurface flow direction that is generally different

from the direction of the pressure gradient. Of importance in reservoir simulation

model development is the knowledge of the horizontal anisotropy (alternatively, az-

imuthal anisotropy) and vertical anisotropy (commonly expressed as a ratio, kv/kh;

where kv is the vertical permeability and kh, the horizontal permeability). Field

measurements generally show that horizontal permeability is often several orders of

magnitude higher than the vertical permeability (Prats, 1972; Martin and Cooper,

1984; Auzerais et al., 1990; Ehlig-Economides et al., 1990; Ayan et al., 1994). The pro-

nounced vertical anisotropy results from deposition of non-reservoir materials (shales,

silts, cemented bands and stylolites) and from crossbedding (Prats, 1972; Lake, 1988;

Auzerais et al., 1990; Anderson et al., 1994). In most fields, the kv/kh ratio is less

than or equal to 1.

Accounting for vertical anisotropy in flow simulation studies is critical as it sig-

nificantly impacts recovery mechanisms, choice of design for various EOR processes,

decision on completions and well control strategies, and selection of optimal well

performance parameters (Harpole, 1980; Lord and Collins, 1989; Ehlig-Economides

et al., 1990; Tillman and Pittman, 1994; Ayan et al., 1994; Shin and Choe, 2009).

Consequently, information (from well logs, cores, outcrops, etc) on the occurrence
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and distribution of vertical transmissibility barriers are utilized in building the initial

reservoir model. However, as noted by Haldorsen et al. (1987), considerable uncer-

tainties related to the parameters of these flow barriers still exist even after utilizing

different sources of information in building the simulation model. These initial un-

certainties are reduced by further calibrating the model to production data; a process

known as history matching. Figure 5.1 illustrates the impact of vertical flow barrier

distribution on recovery efficiency.

Figure 5.1: Impact of vertical flow barriers on subsurface flow and recovery efficiency.
Ayan et al. (1994).

The ensemble Kalman filter will perform poorly in calibrating reservoir models to

match production data if only the log-Gaussian vertical and horizontal permeabili-

ties are adjusted during history matching to account for the effect of impermeable

barriers on fluid flow. This is due to the limiting behavior typical of log-normal vari-

ables where it is difficult to attain the vertical permeability values that are small

enough to eliminate communication between zones. Consequently, the presence of

transmissibility barriers have to be accounted for explicitly and a suitable Gaussian

parameterization of the transformed non-Gaussian (vertical) transmissibility barrier

is needed to satisfy the EnKF assumption of Gaussianity at each data assimilation

timestep.

In this chapter we consider three alternative parameterizations of the vertical
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transmissibility barriers that improves the EnKF performance in estimating the spa-

tial distribution of the vertical flow barriers from assimilating production data. Using

a fairly complex synthetic test problem, we show that compared to the case where

only the vertical permeabilities are adjusted to account for the effect of vertical flow

barriers, these parameterization techniques result in better history matching results

and more reasonable estimates of the model parameters. Throughout, the ensem-

ble randomized maximum likelihood filter is used to assimilate data at any timestep

where the maximum saturation change by the EnKF is ≥ 0.3.

5.2 Simulation Model Description

The reference model is a two-layer, two-phase, black oil, reservoir model with 50 ×

50× 2 active gridblocks, each of dimension 50 ft × 50 ft × 20 ft. The phases present

in the reservoir model are oil and water respectively. There are four producers and

one injector arranged in a five-spot water injection pattern. Throughout, the injector

will be referenced as Inj1 and the four producers respectively as Prod1, Prod2, Prod3

and Prod4. There are two reservoir zones/layers and all the wells are completed

(perforated) across both zones. Additionally, each completed interval is operated

independently giving a total of 10 producing intervals from which individual produc-

tion measurements are obtained and different production constraints and/or targets

are enforced. A schematic representation of a typical dual zone completion with

independent production from each zone is shown in Fig. 5.2.

To distinguish between producing intervals, the top and bottom intervals/zones

will be referred to respectively as ZoneA and ZoneB. Additionally, when necessary,

the letter for each zone will be appended to the well names to identify the different

producing intervals, e.g., Prod4A and Prod4B will refer respectively to the upper and

lower producing intervals of Prod4. The grid coordinates of the wells in the simulation

model are given in Table 5.1.
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Figure 5.2: Schematic of a dual zone well completion.

Table 5.1: Grid coordinates of the well locations in the simulation model.

Coordinate Inj1 Prod1 Prod2 Prod3 Prod4
x-coordinate 25 9 9 41 41
y-coordinate 25 9 41 41 9

The porosity (φ) and horizontal permeability (kh) fields in the model are laterally

correlated but are vertically uncorrelated. The geostatistical properties for generating

both fields are presented in Table 5.2. An exponential covariance model was assumed

for both kh and φ.

Table 5.2: Geostatistical properties for generating the petrophysical properties.

Anis. Anis. Mean Std. Dev.
Zone Range Ratio Angle kh φ kh φ

1 700 ft 1 0◦ 5.75 0.23 0.75 0.02
2 1000 ft 2 45◦ 5.75 0.23 0.75 0.02

The reference porosity and permeability fields were generated using the sequential

Gaussian simulation technique and the kh maps for ZoneA and ZoneB are shown in

Figs. 5.3(a) and 5.3(b). The reference vertical permeability field, kv, was obtained

by element-wise multiplication of the horizontal permeability field by a correlated

random Gaussian field with a mean of 0.18 and a standard deviation of 0.01. The

reference distribution of the vertical flow barriers presented in Fig. 5.3(c) shows that

the impermeable barrier is discontinuous between Prod2 and the other four wells but
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is continuous among these four wells. The gray and white shades are respectively

regions with and without impermeable barriers. The black dots are the well locations

and the letters “P” and “I” respectively identify the four producers and the injector.

(a) ZoneA – kh (b) ZoneB – kh (c) Vertical flow barrier

Figure 5.3: Reference maps of horizontal permeability (kh) and vertical flow barriers
(gray shades are regions with no-flow barriers).

Water injection began on the first day of production and continued throughout

the 545 days of production. After 515 days of production, Prod3 and Prod4 were

shut in for 15 days and static bottomhole pressure (BHP) measurements, pbh, were

obtained from both wells. Following the shut-in period, both wells were returned

to production for the remaining period of production. Figure 5.4 shows the BHP

responses for Inj1, Prod3 and Prod4 in the reference model for two cases namely:

(1) case with impermeable flow barriers (Figs. 5.4(a)–5.4(c)) using the vertical flow

barrier configuration of Fig. 5.3(c) , and (2) case without impermeable flow barriers

(Figs. 5.4(d)–5.4(f)). Clearly, the flowing and static zonal pressure differences are

generally higher for the model with the impermeable barrier. In Prod4, the average

static zonal pressure differences over the 15-day shut-in period are respectively 55

psi and 8 psi for the models with and without vertical flow barriers (Figs. 5.4(c) and

5.4(f)). The location of Prod3 is somewhat close to the region with zonal communi-

cation leading to a smaller static zonal pressure difference in this well compared to

Prod4, which is further away from the region with zonal communication.
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(a) pbh Prediction. Inj1. (b) pbh Prediction. Prod3. (c) pbh Prediction. Prod4.

(d) pbh Prediction. Inj1. (e) pbh Prediction. Prod3. (f) pbh Prediction. Prod4.

Figure 5.4: Effect of vertical flow barriers on zonal bottomhole pressure (pbh) differ-
ence. Predictions in top and bottom rows are respectively from same reservoir model
with and without zonal flow barriers.

Prod1 and Prod2 were operated at constant bottomhole pressures while Prod3 and

Prod4 were operated at a constant liquid rate target, qL, with a secondary constraint

of 500 psi on the minimum bottomhole pressure. Values of the operating targets for

the producers are presented in Table 5.3. The injection rate was controlled by the

reservoir voidage rates of the surrounding pattern of four producers. Essentially, a

quarter of the reservoir voidage from each of the four producers in any zone is replaced

by water injected in the same zone. A maximum BHP of 7500 psi was used as the

secondary constraint for the injector. Finally, during the shut-in period, the liquid

rate targets for Prod3 and Prod4 were set respectively to 10−6 STB/D instead of

0 STB/D. This was necessary to obtain values of shut-in bottomhole pressure data

from the simulator. Note that after the shut-in phase both producers were returned

to their pre-shut-in rate targets presented in Table 5.3.
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Table 5.3: Production targets and constraints for Prod1–Prod4. For the shut-in
period Prod3 and Prod4 rate targets were reduced to 10−6 STB/D.

pbh Constraint (psi) qL Target (STB/D)
Interval Prod1 Prod2 Prod3 Prod4
ZoneA 1500 1000 150 300
ZoneB 1000 1000 500 500

5.3 Parameterization of Vertical Transmissibility

Barriers

In reservoir simulation models, flow between adjacent gridblocks is controlled by the

transmissibility values at the gridblock boundaries. The vertical transmissibility,

Tlz
k± 1

2

, for any fluid phase, l, between an arbitrary gridblock (i, j, k), and its neigh-

boring gridblock (i, j, k ± 1), in the z direction is defined by (Ertekin et al., 2001),

Tlz
k± 1

2

= Gk± 1
2

(
krl
µlBl

)
k± 1

2

, (5.1)

where G is the geometrical factor; krl, µl and Bl are respectively the relative perme-

ability, viscosity and formation volume factor of phase l. Note that depending on the

phase, Eq. 5.1 may be expanded to include other saturation and pressure dependent

terms like gas solubility, oil gravity etc. Note also that the gridblock subscripts i

and j in Eq. 5.1 have been suppressed for notational convenience. For block-centered

rectangular grid, the geometrical factor is defined as,

Gk± 1
2

= β
2(Azkkzk)(Azk±1

kzk±1
)

Azkkzk∆zk±1 + Azk±1
kzk±1

∆zk
TMz

k± 1
2

=

(
2Azβ

∆z

)(
kzkkzk±1

kzk + kzk±1

)
TMz

k± 1
2

,

(5.2)

where β is an appropriate conversion factor, Az is the cross-sectional area normal to

the z direction, ∆z is the grid thickness, kz = kv is the vertical permeability (alter-

natively the permeability in the z direction), and TMz is the vertical transmissibility

multiplier. The first equality in Eq. 5.2 is the more general expression for the ge-

ometric factor and the second equality is specific to the case where the z-direction
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cross-sectional area and the thickness of adjacent gridblocks (with grid indices k and

k± 1 respectively) are equal, such as is the case in the simulation model used for the

experiments presented in this chapter.

A commonly used approach by reservoir engineers is to model the effect of par-

tial or complete restriction of flow from one gridblock to the neighbor by using a

transmissibility multiplier that takes values between 0 and 1. Flow between adjacent

gridblocks may be prevented by setting the transmissibility multiplier at the grid-

block interface to zero. Consequently, the vertical transmissibility multiplier, TMz,

was selected as the variable for parameterization during history matching to account

for the impact of impermeable barriers on fluid flow. For grid locations with imper-

meable barriers, TMz is set to zero thus sealing communication between zones. For

any region where there is no vertical barrier to flow, the TMz values will be set to one

and vertical permeability values estimated from the EnKF will be used to determine

the vertical transmissibilities in the region. There are two useful conditions that any

suitable parameterization of TMz must satisfy:

1. The variables should be approximately Gaussian so that the use of the covari-

ance for update is appropriate.

2. The variables should have a meaningful geologic interpretation. The problem of

parameterizing TMz may be recast as a dual problem of parameterization a sand-

shale sequence where the observation of shale at any location corresponds to

TMz = 0 and the observation of sand, to TMz = 1. Hence any parameterization

used should satisfy the geostatistical properties of a geologically meaningful

sand-shale distribution.

To this end, the transformed vertical transmissibility multipliers are parameterized

as correlated, zero mean, Gaussian random variables with unit variance. A Gaussian

covariance model was also assumed. The geostatistical properties used for generating
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realizations of the Gaussian random field (GRF) are presented in Table 5.4. For our

purpose the method of moving averages (Oliver, 1995) was used for generating un-

conditional realizations of the GRF although other suitable methods for generating

correlated multivariate Gaussian fields, such as the sequential Gaussian simulation

technique (SGSIM), are equally appropriate. To map the continuous Gaussian field

back to the discrete field of transmissibility multipliers two different but related non-

linear functions were considered: the unit step function and a specific form of the

sigmoid function.

Table 5.4: Geostatistical properties for generating realizations of the Gaussian ran-
dom fields, which parameterize the transformed vertical transmissibility multipliers.

Range (ft) Angle (deg.) Anis. Ratio Variance Mean
1200 0.0 1.0 1.0 0.0

The unit step function, H(·), is a nonlinear discontinuous function which takes

values of either 0 or 1 (Eq. 5.3). The input value at which the function changes value

is the threshold value. Gaussian variables less than the threshold value are mapped

to a TMz value of zero and vice versa. For our purpose, the unit step function is

assumed to be “positive from the right”, i.e., the function take a value of one at the

threshold. The unit step function is defined as,

TMz(i, j) = H(yi,j, βi,j) =

 1, yi,j ≥ βi,j;

0, yi,j < βi,j,
(5.3)

where yi,j, βi,j and TMz(i, j) are respectively the Gaussian variable, threshold value

and the transmissibility multiplier at grid location, (i, j).

The unit step function is non-differentiable at the threshold. Where differentia-

bility of the nonlinear transform function is important, a smooth approximation of

the unit step function, a sigmoid function, may be used and the form of the sigmoid

function used in this study is given by,

TMz(i, j) = ϕ(yi,j, βi,j) =
1

2

[
1 + Φ

(
yi,j − βi,j

10−6

)]
, (5.4)
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where ϕ(·) is the specific form of sigmoid function used and Φ(·) is the standard error

function. As the denominator of the input to the standard error function approaches

zero, the TMz values from both function are asymptotically equal. Figure 5.5 shows

the unit step and sigmoid functions. Note that unlike the unit step function the

sigmoid function is continuous for values in the interval, 0± ε, where ε is a small but

finite real-valued number.

Transmissive BarrierTransmissive Barrier

ThresholdThreshold

Impermeable BarrierImpermeable Barrier

Unit Step Function (Non‐differentiable) Sigmoid Function (Differentiable)

Figure 5.5: Plots of the unit step and sigmoid functions showing the relationship
between the Gaussian variables and transmissibility multipliers.

The threshold determines the probability of finding either an impermeable flow

barrier (TMz = 0) or transmissive barrier (TMz = 1) at any grid location. From

Eqs. 5.3 and 5.4 (see Fig. 5.5 also) it is evident that as the threshold value (βi,j)

increases, the probability that a randomly sampled Gaussian variable is mapped to

TMz = 0 also increases and vice versa. Consequently, we consider three possible

specifications of the threshold values representing varying degrees of uncertainties in

the prior probability of obtaining either an impermeable barrier or a transmissive

barrier at each grid location.

1. Constant/uniform threshold: This corresponds to a complete lack of knowledge

and the prior probabilities are spatially uniform and constant and equal to a

value of one-half at all grid locations; equivalently, the thresholds in all grid

locations are assigned a value of zero. Also the thresholds are not adjusted

during history matching. Throughout, the results related to realizations of
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the reservoir model with vertical transmissibility barriers obtained by using a

uniform threshold will be referenced as Barrier1.

2. Nonuniform and uncertain threshold: The prior probabilities are considered

uncertain and allowed to vary spatially, i.e., the probability of finding a trans-

missive or impermeable barrier changes with grid location. This is modeled by

allowing the threshold, βi,j, to vary with grid locations. Because the thresholds

are uncertain, they are included as parameters to be estimated during history

matching. Initial realizations of the threshold maps are modeled as correlated

Gaussian random fields with the same geostatistical properties specified in Ta-

ble 5.4. Three randomly selected unconditional realizations of the initial thresh-

old maps for this case are shown in Fig. 5.6. Results from simulation models

with vertical transmissibility barriers based on thresholds that are nonuniform

and uncertain will be referenced as Barrier2.

3. Kriged threshold: In this case, we assume that soft data in the form of proba-

bilities of observing an impermeable barrier at the well locations are available.

The values used in our current study is presented in Table 5.5. The soft data are

kriged to obtain a smooth probability map (Fig. 5.7(a)), which is then trans-

formed to the corresponding threshold map (Fig. 5.7(b)) using a probit/quantile

function defined as,

βi,j = Γ(pi,j) =
√

2erf−1(2pi,j − 1), pi,j ∈ (0, 1), (5.5)

where Γ(·) is the probit function and pi,j is the estimated probability value at

gridlock (i, j). Expectedly, the initial probability map obtained from kriging the

soft data (Fig. 5.7(a)) captured some of the global features in the reference TMz

map (Fig. 5.3(c)) such as the low probability of an impermeable barrier in the

NW region of the model and an increasing probability of an impermeable flow

barrier as one moves in the SE direction. The thresholds in the threshold map
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in this case are not adjusted during history matching and the same threshold

map is used with Eq. 5.3 or Eq. 5.4 to obtain TMz maps from realizations of the

GRFs. Results obtained from using this representation of the threshold will be

identified by the nomenclature, Barrier3.

(a) Realization 1. (b) Realization 2. (c) Realization 3.

Figure 5.6: Unconditional realizations of the initial threshold maps. Dark and light
shades are respectively low and high probabilities of an impermeable barrier.

Table 5.5: Probability of observing an impermeable barrier at the well locations.

Inj Prod1 Prod2 Prod3 Prod4
0.85 0.85 0.15 0.85 0.85

(a) Kriged probability map. (b) Thresholds from probability
map.

Figure 5.7: Probability and threshold maps from the Kriged threshold approach.
Threshold map (column 2) obtained by inverting the kriged probability map using
Eq. 5.5.
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Figure 5.8 shows some realizations of the vertical transmissibility multipliers ob-

tained by using the unit step function and the 3 different representations of threshold

values. Because these realizations are not conditioned to hard data, the transmis-

sibility multipliers at the wells locations do not necessarily match the values in the

reference TMz map (Fig. 5.3(c)).

(a) Constant threshold. (b) Nonuniform threshold. (c) Kriged threshold.

(d) Constant threshold. (e) Nonuniform threshold. (f) Kriged threshold.

Figure 5.8: Initial realizations of the vertical transmissibility barrier maps from
using a unit step function and different threshold representations to transform the
underlying GRFs. The white and gray shades correspond to regions with transmissive
and impermeable barriers respectively.

Figure 5.9 shows the maps of the expected initial probabilities of observing a trans-

missive barrier at each grid location. The maps were obtained by averaging over one

hundred realizations of the TMz maps generated by transforming the corresponding

GRFs using a unit step function and the three representations of the thresholds. The
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maps of expected initial probability corresponding to Barrier1 (Fig. 5.9(a)) and Bar-

rier2 (Fig. 5.9(b)) show that, on the average, the occurrence of either an impermeable

or transmissive barrier is equally probable at any grid location. This is not surprising

as the initial realizations of the TMz maps are not conditioned to any type of data

and the expectation of the nonuniform thresholds for Barrier2 should be equal to the

uniform threshold for Barrier1. As expected, the ensemble approximation of the ex-

pected initial probability map corresponding to the kriged thresholds (Fig. 5.9(c)) is

qualitatively similar to kriged probability map (Fig. 5.7(a)) from which the threshold

map for Barrier3 was obtained. Although not shown here, using either the unit step

(a) Constant threshold. (b) Nonuniform threshold. (c) Kriged threshold.

Figure 5.9: Initial ensemble approximation of the expected probabilities of observing
a transmissive barrier at a grid location. Probabilities from the constant and nonuni-
form thresholds are noninformative (≈ 0.5) while those from the kriged thresholds
approximately honor regions with transmissive vs. impermeable barriers in the refer-
ence model fairly well.

or the form of the sigmoid function given in Eq. 5.4 to transform the initial realiza-

tions of the GRFs results in qualitatively similar maps of the vertical transmissibility

barriers.
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5.4 Data Assimilation Parameters

An ensemble size of 100 was utilized for the current data assimilation problem and

each state vector, yj is given by,

yj =

[
ln kTh ln kTv ΥT pT sT dTsim

]T
, (5.6)

where ln kh and ln kv are respectively vectors of the log-transformed horizontal and

vertical permeabilities; vectors p and s are the gridblock pressures and saturations

respectively; dsim is the vector of simulated data comprising the bottomhole pressure

data (pbh) from Inj1, Prod3 and Prod4; liquid producing rate data (qL) from Prod1

and Prod2; and water producing rate data (qw) from all the producers. Υ is a vector

consisting of the GRFs used to parameterize the transformed vertical transmissibility

multipliers and where applicable also includes the uncertain threshold values for the

nonuniform threshold approach. Note that for EnKF without vertical flow barriers,

the vertical transmissibility multiplier is not parameterized and the vector, Υ, in

Eq. 5.6 is excluded from the state vector.

Production data were assimilated 15 times during the 545 days of production.

The first and second sets of data were assimilated respectively at the 10th and 50th

day of production. Subsequently, data were assimilated at 50-day intervals until the

start of the shut-in period at day 500. During the shut-in phase (days 501–515) data

were assimilated more frequently corresponding to seven day intervals of 501, 508

and 515 days. At each data assimilation timestep, a total of 18 production data were

assimilated including, 6 bottomhole pressure data, 4 liquid rate data and 8 water

producing rate data. The standard error of measurements in the bottomhole pressure

and rate (qL and qw) data were respectively 10 psi and 10 STB/D. However, before

water breakthrough a standard error of measurement of 10−3 STB/D was used for

the water rate data. The measurement errors were assumed to be independent and

identically distributed zero-mean Gaussian errors.
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Uncertainty in the estimate of the porosity field is neglected in the investigation

presented in this chapter as it has little impact on vertical communication between

reservoir zones. As a result, the porosity values for all the models in the initial

ensemble were set to the reference porosity values. The horizontal permeability fields

are log-normally distributed with a mean of 5.75 and a standard deviation of 0.75.

The geostatistical parameters used to generate the reference permeability model were

also used to generate the initial realizations of the horizontal permeability (Table 5.2).

The vertical and horizontal permeabilities are assumed to be very weakly corre-

lated. This condition on the weakness of the correlation between kv and kh is necessary

for history matching problems with vertical transmissibility barriers as it ensures that

the final kh distribution remains geologically plausible. Recall that EnKF without

parameterization of the vertical transmissibility adjusts the kv values to account for

the impact of vertical flow barriers on subsurface flow. Some types of data (such

as shut-in BHP data) are roughly sensitive to only kv in the vicinity of the well. If

the correlation between kv and kh is strong, then adjusting the kv field to match the

shut-in BHP data, for example, will also force an incorrect adjustment to the kh field.

To illustrate, Fig. 5.10 shows the initial (gray) and final (green) histograms of ln kh

field from history matching a two-layer reservoir model with vertical transmissibility

barrier using EnKF without parameterization of the vertical transmissibility. The

vertical and horizontal permeability fields are correlated in this example (the corre-

lation coefficient is about 0.2) and we note that the bimodal distribution of the final

ln kh field is much different from the initial distribution.

Consequently, realizations of the vertical permeability maps were obtained by

first generating maps of the kv/kh ratio using the SGSIM technique and performing

element-wise multiplication of the horizontal permeability fields with the correspond-

ing kv/kh ratio maps. The geostatistical parameters (range, angle and anisotropic
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(a) Layer 1. (b) Layer 2.

Figure 5.10: Impact of strong correlation between kv and kh on the final (history
matched) distribution of the ln kh values from EnKF without parameterization. The
initial histograms (gray bars) are clearly Gaussian while the final distributions are
bimodal (green bars).

ratio) used for the SGSIM are presented in Table 5.2. The kv/kh variables are as-

sumed to be log-normally distributed with (natural-log) mean of -5.17 and standard

deviation of 1.15. An upper threshold of 1.0 was imposed on the simulated values

of the kv/kh ratio. Scatterplots of the initial kv vs. kh values for the two layers

in the reservoir model illustrate the weak correlation between both model variables

(Fig. 5.11).

(a) ZoneA. (b) ZoneB.

Figure 5.11: Scatter plots of kv vs. kh showing the very weak correlation between kv
and kh.

5.5 Algorithm for History Matching with Param-

eterization of the Vertical Transmissibility

In this section we present a brief summary of the steps in implementing EnKF with

parameterization of the vertical transmissibility barriers for history matching reservoir
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models with vertical flow barriers.

1. Generate an initial ensemble of ne state vectors. Each state vector contains the

vertical and horizontal permeabilities, the Gaussian random field used to pa-

rameterize the transformed vertical transmissibility multipliers and the spatially

varying thresholds for the case where these are treated as uncertain.

2. Transform the vector of Gaussian variables to the corresponding vector of verti-

cal transmissibility multipliers using either Eq. 5.3 or Eq. 5.4 depending on the

choice of the nonlinear function that maps variables from the Gaussian domain

to the multiplier (TMz) domain.

3. Using the kv, kh and TMz fields as inputs to the reservoir simulator, run the

simulation for the ne state vectors until the next data assimilation timestep.

4. Update the ensemble of state vectors (including the Gaussian representation of

the TMz field and the uncertain thresholds where applicable) to match produc-

tion data.

5. Check if the correction to the state vector by the EnKF (Step 4) is within the

range for which linearization is appropriate. If the assumption of linearity is

violated, reinforce the consistency between the updated model parameters and

the dynamic variables using the EnRML filter.

6. If more data are available for assimilation, return to step 2, else, end history

matching.
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5.6 Analysis of Results

In this section, we present the history matching performance of the EnKF with four

different configurations of the vertical flow barriers namely: (1) No Barrier, (2) Bar-

rier1 (constant/uniform thresholds), (2) Barrier2 (nonuniform and uncertain thresh-

olds), and (3) Barrier3 (kriged thresholds). For convenience, our analysis of the

history matching performance will focus primarily on flow results from Prod4 as the

impact of the uncertainty in the distribution of the impermeable barriers on history

matching is most significant for this well. Additionally, due to similarity of the history

matching results using either the unit step (Eq. 5.3) or the sigmoid function (Eq. 5.4)

to transform the Gaussian variables to transmissibility multipliers, our discussion in

this section will focus primarily on the results from using the unit step function. Note

that the same initial realizations of kv and kh were used in all the approaches, with

and without explicit parameterization of the transmissibility multiplier.

5.6.1 Matching the flowing and static bottomhole pressure data

The predicted bottomhole pressure data at Prod4 by the ensemble of initial (top row)

and final (bottom row) models for the cases with and without explicit parameteriza-

tion of the vertical flow barriers are presented in Figs. 5.12–5.13. The vertical lines

in the prediction plots corresponding to the final ensemble (bottom rows of Figs. 5.12

and 5.13) demarcates the period with history matched data and the period of pure

prediction. Throughout, the red curves are the ensemble predictions, the blue dots to

the left of the green vertical line are the noisy data and the blue dots to the right of

the green vertical line are predictions from the reference model. The error bars on the

production data are three standard deviations of the standard error of measurements.

Predictions were made by rerunning the simulator from time zero using the ensemble

of initial or history matched models. The prediction of the initial BHP profile for

the different barrier configurations (No Barrier, Barrier1, Barrier2 and Barrier3) are
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fairly similar with very high prediction uncertainty. Note that none of the barrier

configurations in the initial realizations is conditioned to static well data. After as-

similating production data, the prediction uncertainty is reduced considerably and

with the exception of a slight bias in the match to early time BHP data for Prod4B

by the EnKF without parameterization of the vertical transmissibility (Fig. 5.13(e)),

the predicted flowing BHP for the history matched period generally show a reasonable

match to data for both producing intervals of Prod4.

(a) No Barrier. (b) Barrier1. (c) Barrier2. (d) Barrier3.

(e) No Barrier. (f) Barrier1. (g) Barrier2. (h) Barrier3.

Figure 5.12: Predicted BHP data for Prod4A from the ensemble of initial (top row)
and final (bottom row) models. The green vertical line demarcates the start of pure
prediction period (bottom row). Blue dots are data and error bars are three standard
deviations of the measurement error. The prediction of future data for EnKF with
barriers generally match the reference prediction better than EnKF without barrier.

A useful measure of the history match quality is the ability of the final mod-

els to reasonably predict future data. Prediction of future BHP data for Prod4A

(Fig. 5.12) seems quite reasonable for all cases although the results corresponding to

the No Barrier and Barrier3 cases appear to be somewhat biased. For Prod4B, the

predicted BHP data for the period after history matching from the EnKF without pa-

rameterization of the vertical transmissibility failed to match the reference prediction

(Fig. 5.13(e)). Future predictions of Prod4B BHP data from EnKF with param-

eterization of the vertical transmissibility are generally better than EnKF without
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(a) No Barrier. (b) Barrier1. (c) Barrier2. (d) Barrier3.

(e) No Barrier. (f) Barrier1. (g) Barrier2. (h) Barrier3.

Figure 5.13: Predicted BHP data for Prod4B from the initial (top row) and final
(bottom row) ensembles. The green vertical line demarcates the start of pure pre-
diction period (bottom row). Blue dots are data and error bars are three standard
deviations of the measurement error. Although the match to measurement for the
history matching period was fair for EnKF without barriers, the future predictions
are generally poor and do not match the reference prediction.

parameterization of the vertical transmissibility and match the reference prediction

fairly well (Figs. 5.13(f)–5.13(h)). Although the predictions from Barrier1 in this case

appears to be slightly biased (Fig. 5.13(f)), the trend in the ensemble predictions is

similar to the reference prediction trend.

The flowing bottomhole pressure (pwf ) is generally sensitive to the presence of

impermeable flow barriers in a reservoir. History matching, however, is such an ill-

posed problem that the pwf data can be generally well matched by adjusting the values

of the log-normal kv and kh fields without accounting explicitly for the impermeable

barriers. We have seen that the flowing bottomhole pressure data for top (Fig. 5.12(e))

and bottom (Fig. 5.13(e)) producing intervals of Prod4 were matched fairly well by

the EnKF without parameterization of the vertical transmissibility. By contrast, the

static zonal pressure is strongly sensitive to the values of the vertical transmissibility

and thus to the presence or absence of impermeable flow barriers. Adjusting only the

log-normal kv and kh fields is generally insufficient in obtaining a match to static zonal

pressure data. We had observed from Fig. 5.4 that the static zonal pressure difference
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in a well is higher for regions with impermeable vertical flow barriers compared to

regions with zonal communication.

Figure 5.14 shows the predicted shut-in zonal BHP data for EnKF with and with-

out parameterization of the vertical transmissibility barrier. The blue dots in the

figure are the assimilated BHP data and the error bars are 3 standard deviations of

the measurement error. The top and bottom rows of Fig. 5.14 correspond respectively

to the top and bottom producing intervals of Prod4. The first column in Fig. 5.14

is the shut-in BHP data predicted by EnKF without vertical flow barriers and it is

evident that the individual static BHP data are poorly matched. The shut-in pressure

in ZoneA is underpredicted (Fig. 5.14(a)) and the shut-in BHP in ZoneB is overpre-

dicted (Fig. 5.14(e)). This results from the pressure equilibration between both zones

due the inability of EnKF without vertical flow barriers to eliminate zonal communi-

cation from adjusting only the log-Gaussian kh and kv during history matching. The

predicted static BHP data from EnKF with parameterization of the vertical trans-

missibility (Figs. 5.14(b)–5.14(d) and Figs. 5.14(f)–5.14(h)) match the shut-in BHP

data fairly well resulting in qualitatively better history matched solution compared

to EnKF without parameterization of the vertical transmissibility.

During the shut-in period, static BHP measurements were assimilated at Prod3

and Prod4 in intervals corresponding to days 501, 508 and 515. To evaluate the per-

formance of the four cases in matching the zonal BHP difference at the shut-in phase,

the difference in the static zonal BHP at day 508 was computed for all the realiza-

tions and the histograms of the zonal BHP differences for all the cases are presented

in Fig. 5.15. The gray and green bars are respectively predictions from the initial and

final models. The red vertical line is the zonal BHP difference computed from the

zonal BHP measurements assimilated at day 508. Note that the shut-in zonal BHP

difference was not assimilated during history matching. The dashed lines delineate

three standard deviations of the error propagated from estimating the shut-in zonal
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(a) No Barrier. (b) Barrier1. (c) Barrier2. (d) Barrier3.

(e) No Barrier. (f) Barrier1. (g) Barrier2. (h) Barrier3.

Figure 5.14: Prediction of shut-in BHP data from the top (top row) and bottom
(bottom row) producing intervals of Prod4. Blue dots are historical data and error
bars are three standard deviations of measurement error. The shut-in BHP data are
poorly matched by EnKF with no barriers.

BHP difference from noisy measurements. We note that the observation error for

the shut-in period is somewhat higher than one would normally use for shut-in BHP

data. Figure 5.15(a) shows that Virtually all the initial models from the case with

no barriers underpredicted the difference in shut-in BHP between top and bottom

zones of Prod4 and are mostly outside three standard deviations of the measurement

error. Similarly, some of the initial models for the cases with barriers also underpre-

dicted the shut-in zonal BHP difference although a few of the initial predictions are

within the range of uncertainty of the static zonal BHP difference computed from

data (Figs. 5.15(b)–5.15(d)). Although it is not obvious from Fig. 5.15(d), the range

of uncertainty in the initial prediction of the zonal BHP difference from Barrier3 is

considerably higher than the initial predictions from the other barrier configurations

with values as high as 400 psi.

For EnKF with no barriers, there is no improvement in the final predictions of

the zonal BHP difference at day 508 compared to the initial predictions, although a

reduction in the final prediction uncertainty was observed (Fig. 5.15(a)). Also, none

of predictions from the final ensemble members matched the static zonal pressure
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(a) No Barrier. (b) Barrier1. (c) Barrier2. (d) Barrier3.

Figure 5.15: Histogram of Prod4 shut-in zonal BHP difference predicted by the
ensemble at day 508. The gray and green bars correspond respectively to the initial
and final ensembles. The solid red vertical line is the reference zonal BHP difference
the dashed lines are 3 standard deviations of the propagated error. Matches to the
reference values are generally better when vertical flow barriers are parameterized
than when they are not.

difference computed from data. By contrast, all three representations of the thresholds

(Barrier1–Barrier3) from EnKF with barriers generally show an improvement in final

predictions of the shut-in zonal BHP difference compared to the initial predictions.

Additionally, the final predictions of the shut-in zonal BHP difference from EnKF

with barriers match the measured shut-in zonal BHP difference better than EnKF

without vertical flow barriers.

The root mean square errors of the shut-in zonal BHP difference at day 508

from Prod4 for all the cases are summarized in Table 5.6. The magnitude of the

initial RMSE for all the cases are about the same except Barrier3, whose value is

about twice the maximum RMSE of the three remaining cases. This is a result of

some TMz realizations for Barrier3 having impermeable barriers with fairly significant

lateral continuity resulting in much higher difference in the values of the individual

shut-in pressures between zones. The initial and final RMSE of the static zonal

BHP difference predicted by EnKF without vertical flow barriers have equal RMSE

reflecting the difficulty in obtaining a good match to the individual shut-in zonal

BHP data in this case. The final RMSE for Barrier1 is the lowest and is about the

same magnitude as the propagated error from using noisy measurements of the static

BHP data to obtain the expression for the static zonal pressure difference. The final
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RMSE values of Barrier2 and Barrier3 are somewhat higher than the magnitude of

the propagated error. In general the EnKF with barriers match the reference static

zonal BHP difference better than EnKF without vertical flow barriers.

Table 5.6: Average RMSE of the shut-in BHP difference for Prod4.

No Barrier Barrier1 Barrier2 Barrier3
(psi) (psi) (psi) (psi)

Initial Models 47 41 41 87
Final Models 47 14 34 28

5.6.2 Prediction of water producing rate data

Because the vertical transmissibility barrier is not parameterized for EnKF with no

barriers, the uncertainty in the distribution of impermeable barriers is ignored during

history matching. When the uncertainty in a model parameter is unaccounted for,

compensatory updates are made to other model parameters resulting in fairly large

(and sometimes unrealistic) corrections to these model parameters and final estimates

of the model variables are incorrect. This may show up as a lack of acceptable match

to data that are sensitive to the values of the incorrectly adjusted model variables.

The water production rate data (alternatively, the water cut data) in a well are

generally sensitive to the average value of the model properties (kv and kh in this

case) between the injector and the producing well and also to the spatial distribution

of the vertical flow barriers. If the estimates of these properties are incorrect, then

the prediction of the water rate data will also be incorrect.

Figures 5.16 and 5.17 shows the water rate prediction from ensembles correspond-

ing to the cases with and without vertical flow barriers. The water rate data from

the top (Fig. 5.16(e)) and bottom (Fig. 5.17(e)) producing intervals of Prod4 pre-

dicted by the ensemble of final models from EnKF with no barriers for the period

with production measurements (left of the vertical line) failed to give a reasonable

match to production data. Also the future water rate predictions from both zones
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are clearly biased and the reference model predictions are outside the spread of the

ensemble predictions. Water rate predictions (for both periods of history matching

and pure prediction) from the final ensemble appear to be generally better when ver-

tical flow barriers are explicitly represented than when they are not. For the history

matching period, the predictions from the EnKF with parameterization of the ver-

tical transmissibility seem to match the water rate data reasonably well for Prod4A

and Prod4B (Figs. 5.16(f)–5.16(h) and Figs. 5.17(f)–5.17(h)) although Barrier1 ap-

pears to be somewhat biased in water rate prediction for Prod4B. The future water

rate prediction for the EnKF with barriers seem fairly reasonable and the reference

predictions are for the most part contained within the spread of the ensemble.

(a) No Barrier. (b) Barrier1. (c) Barrier2. (d) Barrier3.

(e) No Barrier. (f) Barrier1. (g) Barrier2. (h) Barrier3.

Figure 5.16: Predicted qw data for Prod4A from the initial (top row) and final
(bottom row) ensembles. The green vertical line demarcates the pure prediction
period. Predictions from EnKF with no barrier are clearly very biased and do not
match data very well. Predictions are generally better if the vertical flow barriers are
accounted for.

Histograms of the predicted water breakthrough times at Prod4 obtained from

the initial (gray bars) and final (green bars) models for all four cases are presented

in Fig. 5.18. Recall that the breakthrough time was not assimilated during history

matching, so the predicted breakthrough time from the reference model is shown by

the red vertical line. The top and bottom rows of Fig. 5.18 correspond respectively to
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(a) No Barrier. (b) Barrier1. (c) Barrier2. (d) Barrier3.

(e) No Barrier. (f) Barrier1. (g) Barrier2. (h) Barrier3.

Figure 5.17: Predicted qw data for Prod4B from the initial (top row) and final
(bottom row) ensembles. The green vertical line demarcates the pure prediction
period. Compared to EnKF with no barriers, prediction of water rate data is generally
better for EnKF with barriers.

predicted breakthrough times at Prod4A and Prod4B. In all cases, the breakthrough

times predicted by the ensemble of initial models exhibit a high degree of variability

due to the significant initial uncertainty. The variability is generally reduced after

assimilating production data. For the cases with barriers (Figs. 5.18(b)–5.18(d)), the

final predictions of breakthrough times for Prod4A are closely distributed around

the reference breakthrough time. For Prod4B, the predicted breakthrough time from

the ensemble of final models with barrier parameterization are generally better than

the initial predictions and match the reference values fairly well. Barrier2 seems to

best match the reference prediction of the water breakthrough times in both zones.

For EnKF without vertical flow barriers, the predictions of the water breakthrough

times from the final models (Figs. 5.18(a) and 5.18(e)) were unable to match the

breakthrough times predicted by the reference model.

To quantitatively assess the EnKF performance, with and without parameteriza-

tion of the vertical transmissibility, in predicting the water breakthrough time, the

RMSE of the breakthrough time predictions from the final ensemble is computed

for Prod4A (Table 5.7) and Prod4B (Table5.8). Results for both zones show that
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(a) No Barrier. (b) Barrier1. (c) Barrier2. (d) Barrier3.

(e) No Barrier. (f) Barrier1. (g) Barrier2. (h) Barrier3.

Figure 5.18: Histograms of predicted water breakthrough times from the top (first
row) and bottom (second row) intervals of Prod4. The gray and green bars are
from the initial and final ensembles. The red line is the reference value. Results are
generally better if the uncertainty in vertical flow barrier is accounted for.

the final RMSE for the EnKF with barriers is generally lower than the final RMSE

for EnKF without vertical flow barriers. Barrier1–Barrier3 have comparable RMSE

values for predicted water breakthrough times in Prod4A (Table 5.7). However, for

predicted water breakthrough times in Prod4B (Table 5.8), Barrier2 has the smallest

RMSE compared to Barrier1 and Barrier3.

Table 5.7: RMSE of predicted water breakthrough time at Prod4A.

No Barrier Barrier1 Barrier2 Barrier3
(days) (days) (days) (days)

Initial Models 140 171 172 197
Final Models 78 17 23 21

Table 5.8: RMSE of predicted water breakthrough time at Prod4B.

No Barrier Barrier1 Barrier2 Barrier3
(days) (days) (days) (days)

Initial Models 136 135 140 140
Final Models 108 76 28 83
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5.6.3 History match performance in matching other production data

Figure 5.19 shows the performance of the final ensemble from EnKF with no barriers

(column 1) and EnKF with barriers (columns 2–3) in obtaining reasonable predictions

of the following data for the period with production measurements and the period of

pure prediction: (1) BHP data from the Inj1 (Figs. 5.19(a)–5.19(d) and Figs. 5.19(e)–

5.19(h)), (2) BHP data from Prod3 (Figs. 5.19(i)–5.19(l) and Figs. 5.19(m)–5.19(p))

and (3) liquid rate data from Prod1 (Figs. 5.19(q)–5.19(t) and Figs. 5.19(u)–5.19(x)).

The captions P1–P4 in Fig. 5.19 denotes Prod1–Prod4 and I1 denotes Inj1. The error

bars are three standard deviations of the measurement noise. Consistent with obser-

vation in the previous sections, Fig. 5.19 shows that the match to data is generally

better for the EnKF with barriers compared to EnKF with no barriers.

5.6.4 History matching performance from using a Sigmoid function

So far we have presented and discussed the history matching results based on using the

unit step function to transform the Gaussian variables to transmissibility multipliers.

For completeness we present some of the results from using a smooth approximation

to the unit step function (Eq. 5.4) for transforming the Gaussian variables to trans-

missibility multipliers. For convenience, only the results from using threshold values

that are spatially varying and also uncertain (Barrier2) are presented.

Figures 5.20(a)–5.20(b) show the prediction of the shut-in zonal BHP data and

Figs. 5.20(c)–5.20(d) show the predicted water rate data for Prod4A and Prod4B.

The history matching results in this case seem to match data reasonably well and

the prediction of future data also seems reasonable (Fig. 5.20(c)–5.20(d)). Addi-

tionally, compared to similar results based on the unit step function (Figs. 5.14(c),

5.14(g), 5.16(g) and 5.17(g)), both approaches gave qualitatively similar predictive

performance.
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(a) No Barrier. I1A pbh. (b) Barrier1. I1A pbh. (c) Barrier2. I1A pbh. (d) Barrier3. I1A pbh.

(e) No Barrier. I1B pbh. (f) Barrier1. I1B pbh. (g) Barrier2. I1B pbh. (h) Barrier3. I1B pbh.

(i) No Barrier. P3A pbh. (j) Barrier1. P3A pbh. (k) Barrier2. P3A pbh. (l) Barrier3. P3A pbh.

(m) No Barrier. P3B pbh. (n) Barrier1. P3B pbh. (o) Barrier2. P3B pbh. (p) Barrier3. P3B pbh.

(q) No Barrier. P1A qL. (r) Barrier1. P1A qL. (s) Barrier2. P1A qL. (t) Barrier3. P1A qL.

(u) No Barrier. P1B qL. (v) Barrier1. P1B qL. (w) Barrier2. P1B qL. (x) Barrier3. P1B qL.

Figure 5.19: Final ensemble predictions of pbh and qL data for EnKF with and
without barriers. “I” denotes the injector and “P” denotes a producer. The green
vertical line demarcates the pure prediction period.
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(a) Prod4A pbh. (b) Prod4B pbh. (c) Prod4A qw. (d) Prod4B qw.

Figure 5.20: History matching performance from using a sigmoid function and
threshold values that vary spatially. The results are qualitatively very similar to
those obtained by using the unit step function.

5.6.5 Updated geologic models

Two randomly selected realizations of the final vertical transmissibility multipliers,

each from the three different barrier configurations for EnKF with parameterization

of the vertical transmissibility, are presented in Fig. 5.21. The well locations are indi-

cated by black dots and the well names are shown next to the dots with “P” denoting

a producer and “I”, an injector. The white and gray shades correspond to transmissi-

bility multiplier values of one and zero respectively. The realizations of the final TMz

maps (Fig. 5.21) are markedly different from the corresponding initial realizations

(Fig. 5.8), reflecting the impact of data conditioning. Additionally, depending on the

threshold representation used, the final estimate of the TMz map for the same realiza-

tion is somewhat dissimilar. Nonetheless, compared to the realizations of the initial

TMz maps, all the final maps appear to acceptably reproduce the major features in

the reference TMz map (Fig. 5.3(c)). Some obvious features that are reproduced in

all the final realizations include the presence of a transmissive barrier (TMz = 1) in

the top left region and an impermeable barrier (TMz = 0) in southern region of the

model and between Prod1 and Prod4.

It does seem from the foregoing that the global features in the updated field of

vertical transmissibility multipliers (barrier) using EnKF with parameterization of the

vertical transmissibility are qualitatively similar to those in the reference model. It is

difficult, however, to generalize this conclusion based on inference made from only two
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(a) Barrier1. (b) Barrier2. (c) Barrier3.

(d) Barrier1. (e) Barrier2. (f) Barrier3.

Figure 5.21: Conditional realizations of the vertical transmissibility barriers obtained
by transforming the GRFs using the unit step function. Global features from the
reference map (Fig. 5.3(c)) are reproduced in the TMz realizations.
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randomly selected realizations out of an ensemble of one hundred final realizations.

Consequently, the mean TMz maps obtained from the ensemble of final TMz maps are

presented in Fig. 5.22 for the three cases from EnKF with parameterization of the

vertical transmissibility. Each mean TMz map gives the ensemble approximation of

the probability of finding a permeable barrier at each grid location. If the computed

mean at any grid location is presented by TMz, then values of decreasing TMz will

correspond to an increasing probability of finding an impermeable barrier and vice-

versa.

(a) Uniform thresholds. (b) Nonuniform thresholds. (c) Kriged thresholds.

Figure 5.22: Expected probability of observing a transmissive barrier at each grid
location approximated from the final ensemble. The blue and red colors correspond
respectively to values of 0 and 1. The final maps are very different from the initial
probability maps (Fig. 5.9) and regions of high vs. low probabilities generally agree
with the reference barrier distributions (Fig. 5.3(c)).

Compared to the initial TMz maps for Barrier1 and Barrier2 (Figs. 5.9(a)–5.9(b))

that were essentially non-informative (the initial TMz values at all the grid locations

were ≈ 0.5) the final TMz maps (Figs. 5.22(a)–5.22(b)) are clearly more informative

having distinct regions with very high and very low probabilities of permeable or

impermeable barriers. The mean map of the final transmissibility multipliers for Bar-

rier3 (Fig. 5.22(c)) is also quite different from the initial informative map (Fig. 5.9(c))

that was conditioned to soft data. Note that the soft data reflects the uncertainty in

observing either a transmissive or impermeable barrier at any well location. Unlike

136



the initial probability maps, the final probability maps of the distribution of vertical

flow barriers seem to acceptably represent the probabilistic distribution of the large

scale barrier features in the reference TMz map (Fig. 5.3(c)).

In contrast to the EnKF with barriers, only the log-normal vertical permeability

fields were updated by the EnKF without vertical flow barriers to account for the

effect of impermeable barriers on fluid flow. To assess the ability of EnKF with-

out vertical flow barriers to estimate the locations with impermeable barriers, we

computed the vertical transmissibility at each grid location (Eq. 5.1) using the fi-

nal estimate of vertical permeability for all the realizations and obtained an average

vertical transmissibility map thereafter (Fig. 5.23(a)). For convenience we neglected

both the phase-dependent and constant terms in evaluating the gridblock transmis-

sibilities. For better visualization of the gridblock transmissibility values in the map,

the natural log values of the average transmissibility were plotted. For comparison,

the reference (natural-log) transmissibility map is also presented (Fig. 5.23(b)). Zero

transmissibility values in the reference map were set to the minimum average value in

the final log-transformed transmissibility map (Fig. 5.23(a)) for EnKF without ver-

tical flow barriers. Clearly, the final estimate of the average transmissibility map for

EnKF with no barrier (Fig. 5.23(a)) looks nothing like the reference transmissibility

map (Fig. 5.23(b)).

As previously noted, one may expect that the updates to the model variables by

EnKF with no barrier could potentially be incorrect since the uncertainty in the dis-

tribution of the vertical flow barriers was not accounted for during history matching.

Figure 5.24 shows the final estimates of the mean kh fields from EnKF with and with-

out parameterization of the vertical flow barriers. Compared to the final estimates of

the mean kh field for ZoneA (Figs. 5.24(b)–5.24(d)) and ZoneB (Figs. 5.24(f)–5.24(h))

from EnKF with parameterizations of the vertical transmissibility barrier, the corre-

sponding estimates from EnKF without parameterization (Figs. 5.24(a) and 5.24(e))
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(a) EnKF with no barriers. (b) Reference.

Figure 5.23: Reference transmissibilities and average transmissibilities from without
parameterization of vertical flow barriers plotted on a natural-log scale. The estimate
of the average transmissibility is clearly very different from the reference values.

show evidence of extreme values of kh. These extreme values reflect the effect of

compensatory updates to the horizontal permeability field during history matching.

Note that the top row of Fig. 5.24 show the mean kh maps for ZoneA and the bot-

tom row show the mean kh maps for ZoneB. Although not shown here, the initial

mean maps of kh for both zones are essentially featureless with the kh values approx-

imately equal to the prior mean value of 5.75. The final mean kh maps from ZoneA

(Figs. 5.24(b)–5.24(d)) and ZoneB (Figs. 5.24(f)–5.24(h)) estimated from the EnKF

with parameterization of the vertical transmissibility are qualitatively similar to the

reference kh maps (Fig. 5.3(a)–5.3(b)). The spatial distribution of the high vs low

horizontal permeability values generally follow the spatial patterns in the reference

model.

5.7 Chapter Summary

For reservoirs with impermeable flow barriers, incorporating the uncertainty in the

representation of vertical transmissibility barriers is important for reservoir flow simu-

lation and for reliable prediction of reservoir performance. In the standard implemen-

tation of the EnKF technique, the log-normal vertical permeability of the gridblocks

are usually adjusted to account for the influence of vertical transmissibility barriers
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(a) No Barrier. (b) Barrier1. (c) Barrier2. (d) Barrier3.

(e) No Barrier. (f) Barrier1. (g) Barrier2. (h) Barrier3.

Figure 5.24: Estimates of the final mean permeability distribution for ZoneA (top
row) and ZoneB (bottom row). EnKF with no barriers shows evidence of extreme kh
values arising from compensatory updates to the kh field from inadequate parameter-
ization.

on history matching results. In general the history matching results based on ad-

justing the kv values will only be correct for reservoirs without sealing barriers. We

have shown that in the presence of an impermeable barrier, EnKF without parame-

terization of the vertical transmissibility barrier fails to match data and also makes

incorrect, compensatory changes to the model parameters.

In this chapter, we presented three approaches, which allow for the uncertainty

in the distribution of the vertical transmissibility barrier to be incorporated in a

consistent way in the ensemble Kalman filter routine. The approaches are based

on parameterizing the transformed vertical transmissibility multipliers as correlated

Gaussian random variables. Transformation of the Gaussian variables to transmis-

sibility multipliers was achieved using either the unit step function or a form of the

sigmoid function. Based on this parameterization, impermeable barriers are obtained

by setting the multiplier value to zero and transmissive barriers are obtained by set-

ting the multiplier to a value of one. Vertical flow at grid locations with transmissive
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barriers is controlled by vertical permeabilities estimated by EnKF.

Using three different specifications of the prior probability of randomly sampling

either an impermeable or permeable barrier at each grid location, different parameter-

izations of the vertical transmissibility was obtained. The first was a non-informative

specification of prior probabilities such that the occurrence of a permeable or imper-

meable barrier at each grid location is equally probable. The second specification

considered the threshold value to be uncertain and also a function of location. The

third specification was based on using soft information on the uncertainty of the bar-

rier types at the well location to obtain a kriged map of prior probabilities in all

grid locations. The EnKF based on all three cases were generally better at history

matching production data and obtaining consistent estimates of the model parameters

compared to EnKF without parameterization of the vertical transmissibility.

Based on the results presented here, it is difficult to conclude whether any one

of the three approaches to parameterizing the vertical flow barrier is better without

further experimentation. However, it does seem that there is no advantage in con-

ditioning the prior probability of impermeable vs. permeable barrier to soft data at

the well locations if the geostatistical parameters of the Gaussian random field are

correctly specified.

140



CHAPTER VI

TWO-STAGE ENKF FOR HISTORY

MATCHING WITH MULTIPLE MODES

6.1 Background

The Bayesian approach provides a convenient framework for integrating dynamic and

static data with the prior model PDF to obtain a formal expression for the conditional

model PDF. The randomized maximum likelihood (Oliver et al., 1996) has often

been used to generate realizations of the conditional reservoir model, representing an

approximate sampling of the posterior PDF. The prior PDF, in this case, is assumed to

be Gaussian but the relationship between the model variables and predicted data may

be nonlinear. For linear problems with prior Gaussian PDF, the EnKF is equivalent

to the randomized maximum likelihood (RML) as the number of ensemble members

(realizations of the reservoir models) become very large (Zafari and Reynolds, 2007).

Consequently for these types of problems, the EnKF correctly samples the posterior

PDF of the conditional models. The method has also been shown to perform quite

well on nonlinear reservoir characterization problems with Gaussian priors (Gu and

Oliver, 2005; Lorentzen et al., 2005; Gao et al., 2006). Gao et al. (2006) showed

that for the well known PUNQ-S3 problem (Floris et al., 2001), the EnKF gave

similar characterization of prediction uncertainty as the RML method. Considering

that the RML method is computationally more expensive, requiring computation of

the gradient or the sensitivity matrix and a large number of iterations to generate a

single conditional model, the EnKF performance was indeed encouraging. For history

matching problems with multimodal conditional PDF, the history matched models
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from the EnKF do not represent a correct sampling of the multimodal PDF (Zafari

and Reynolds, 2007) and use of an iterative EnKF with explicit computation of the

sensitivity matrix (Li and Reynolds, 2009) is necessary to generate an approximate

sampling of the posterior PDF. Because of the need to evaluate sensitivities and the

requirement to iterate, the iterative EnKF is computationally more expensive than

the standard EnKF.

Usually, model priors that are non-Gaussian have to be transformed to satisfy

the EnKF Gaussianity assumption. A number of examples in literature include the

following: (1) parameterizing transformed transmissibility multipliers as Gaussian

(Evensen et al., 2007; Seiler et al., 2009); (2) representing vertical transmissibility

barriers as Gaussian random fields (Agbalaka and Oliver, 2010); (3) parameterization

of transformed facies variables as Gaussian variables using the truncated pluriGaus-

sian technique (Liu and Oliver, 2005b; Agbalaka and Oliver, 2008; Zhao et al., 2008)

or the level sets method (Moreno et al., 2008; Lorentzen et al., 2009); (4) estimat-

ing multimodal inter-facies properties using the “pseudo-model” approach to ensure

that the Gaussian assumption is approximately honored at each data assimilation

timestep (Agbalaka and Oliver, 2009). Sun et al. (2009a) combined the local ensem-

ble transform filter (Bishop et al., 2001; Ott et al., 2004; Hunt et al., 2007) with a

Gaussian mixture model (GMM) clustering technique similar to the cluster EnKF

(Smith, 2007) to obtain a consistent update to the multimodal permeability field

using the deterministic EnKF (Sakov and Oke, 2008).

In this chapter we consider the problem of using the ensemble Kalman filter for

history matching a low-order reservoir model with multiple modes. Because the EnKF

uses only the mean and the covariance to update model and state variables, the

technique fails to give an acceptable history matching solution to the multimodal

history matching problem presented in this paper. By including a second-stage EnKF,

in which the history matching process is initialized by sampling around a conditional
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mode of the posterior PDF, the history matching results and the conditional estimates

of the model variables were generally improved. All the primary model variables in the

reservoir model are non-Gaussian so to ensure consistency with the EnKF assumption

of Gaussianity, the transformed model variables were parameterized as independent

and identically distributed zero-mean Gaussian random variables with unit variance.

By utilizing various forms of the shifted sigmoid function in which the domain is the

span of the Gaussian values and the range space is a bounded space of the actual

model variables, consistent mapping to and from the actual model space is achieved.

To ensure that members of the initial ensemble were as diverse as possible, initial

sampling was done using low-discrepancy sequence sampling, specifically, the shuffled

Halton sequence sampling.

6.2 The Two-Stage Ensemble Kalman Filter, TEnKF

When new data are available for assimilation, the EnKF technique updates the model

variables by finding the optimal (weighted) least squares estimate that best approx-

imates the linear relationship between the state vector and the measured data. The

EnKF technique is optimal if (1) the probability distribution of the prior state vec-

tors is approximately multivariate Gaussian; and (2) the relationship between the

state vector and predicted data is approximately linear (Gaussian likelihood). If any

or both of these assumptions fail to hold, the posterior PDF of the models/state

vectors will be non-Gaussian and the EnKF reduces to a “best linear-in-the observa-

tions” updating technique (Wikle and Berliner, 2007) leading to a suboptimal EnKF

performance irrespective of the ensemble size.

A simplified schematic representation of the EnKF update scheme is presented in

Figs. 6.1(a)–6.1(c). The model-data relationship (d = g(m)) in this case is nonlinear

(blue curve) and the posterior PDF of the model (p(m)) is non-Gaussian and mul-

timodal. The dotted horizontal line, which runs through all the plots is the datum
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(dobs) predicted by the true model (mtrue). The true model is generally not observ-

able, only the response from the model may be observed. The axes D and M may be

regarded respectively as the vector spaces of the data and model. During the EnKF

update step, the Kalman gain is computed by finding the best-linear fit to the cloud of

points formed by the state vector and the corresponding predicted data (Fig. 6.1(a)).

Because of the nonlinear model-data relationship the linearized approximation from

the ensemble is a very poor representation of relationship. Once determined, the

Kalman gain provides the optimum, linear-in-the observations, direction of change to

the model variables required to match the observed data, dobs (Fig. 6.1(b)). Because

the true relationship between model variables and predicted data is nonlinear in this

case, the update to the models will be incorrect and forecasts from the updated model

variables will generally not match the observed data very well (Fig. 6.1(c)). Also note

that some of the models that were initially close to mtrue are adjusted further away

from the truth after the update step and the final ensemble will generally represent

a poor sampling of the posterior PDF.

The idea behind the two-stage EnKF is to implement a version of the standard

EnKF, which utilizes the best-linear-in-the-observations properties of the standard

EnKF to obtain an acceptable history match solution. The technique consists of two-

sequential stages namely: (1) a first-stage EnKF, which essentially implements the

standard EnKF (Figs. 6.1(a)–6.1(c)), and (2) a second-stage EnKF, which is analo-

gous to a localized randomized maximum likelihood filter. The goal of the second-

stage EnKF is to obtain an improvement to the history matching results from the

first-stage EnKF by regenerating realizations of the model variables that are sampled

close to one of the modes of the conditional PDF. The resampled model variables

are the initial ensemble for the second-stage EnKF. The first step (Fig. 6.1(d)) in

the second-stage EnKF is to select a best model, ms, from the first-stage EnKF that
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(a) First-stage EnKF. Step 1. (b) First-stage EnKF. Step 2. (c) First-stage EnKF. Step 3.

(d) Second-stage EnKF. Step 1. (e) Second-stage EnKF. Step 2. (f) Second-stage EnKF. Step 3.

Figure 6.1: Simplified schematic representation of the first- (top row) and second-
stage (bottom row) EnKF. The blue curve is the nonlinear data model. dobs is the
measured data and p(m) is the multimodal posterior PDF. mtrue is the reference/true
model, which is usually unknown.

satisfies the following condition,

argmin
ms

f(ms) := {ms | ∀mi : f(mi) ≥ f(ms); 1 ≤ i ≤ ne}, (6.1)

where

f(m) = (g(m)− dobs,∗)
TC−1

D (g(m)− dobs,∗),

evaluates the data mismatch magnitude, g(m) is the predicted data by the model

m and dobs,∗ is the perturbed noisy measurement assimilated by m∗ during his-

tory matching. The selected model, ms, represents the ensemble approximation of

the maximum a posteriori probability (MAP) estimate from the first-stage EnKF

(Fig. 6.1(d)). The approximate MAP estimate, ms, is used as the mean of a multi-

variate Gaussian PDF (N (ms,CM,s)) for regenerating the ensemble of model variables

for the second-stage EnKF (Fig. 6.1(e)). This process is essentially a randomization

about the approximate MAP for generating realizations of the reservoir model. Note

that for resampling realizations of the low-order reservoir model used in this paper,
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the covariance matrix (CM,s ) was specified to ensure that the resampled realizations

are in a local region around the ensemble approximation of the MAP. Further details

on how the covariance matrix was specified for the current problem are presented in

section 6.6. By generating initial realizations for the second-stage EnKF around a

MAP estimate approximated from the ensemble, the probability that the linearized

model-data relationship will approximately honor the true relationship in the neigh-

borhood of the MAP is increased (Fig. 6.1(e)). Consequently, predictions from the

updated models after assimilating data will potentially match data very well and

all the ensemble members will be valid samples from the multimodal posterior PDF

(Fig. 6.1(f)) even though they may not sample the complete PDF correctly.

We note, based on the foregoing, that predictions from the ensemble of final

models from the second-stage EnKF may not quantify the full prediction uncertainty

but remark that the goal is primarily to obtain acceptable matches to production

measurements, which may be used to quantify some local uncertainty. Later, we

present discussions in section 6.10 on the possibility of improving the ability of TEnKF

to better approximate the prediction uncertainty by regenerating the initial reservoir

models around several modes instead of a single mode. There are three noteworthy

implications of generating initial realizations that are fairly close to the ensemble

approximation of the MAP (Eq. 6.1) for initializing the second-stage EnKF.

1. The range of adjustments to the model variables at the update steps are further

constrained such that linear updates make sense.

2. The relationship between the resampled models and the simulated response

from the models can reasonably be approximated as linear in the neighborhood

of the ensemble approximation of the MAP estimate.

3. The optimality conditions for the EnKF update step are approximately honored.

146



6.3 Simulation Model Description

The simulation model is a two-phase (oil and water) black oil model with two layers;

Layer1 is the top layer and Layer2, the bottom layer. Two wells, an injector and a

producer, are completed in both layers and are located diagonally across each other

(Fig. 6.2(a)). Water injection is controlled by a constant surface rate target of 3000

STB/D and production is at a constant bottomhole pressure (BHP) constraint of 500

psi. There are two non-structural faults (Fault1 and Fault2) each about one-third the

length of the model and transverse the model in an east-west direction (Fig. 6.2(b)).

Fault1 is closest to the injector and Fault2, to the producer. Two different environ-

ments of deposition (EODs) are present in model (Fig. 6.2(c)) and include a high

permeability channel (EOD2 or channel-axis) embedded in a low permeability back-

ground (EOD1 or channel-margin). The channel-axis trends roughly in a north-south

direction and consists of two mirror-image structures, which are displaced laterally

and vertically to form an x-shaped profile (Fig. 6.2(d)). There is a small area of

overlap between the channels axes in both layers, located roughly at the center of the

model, which provides a continuous fluid conduit for injected water from the injector

to the producer. The top and bottom completions of the injector are respectively

in the channel-axis and channel-margin while for the producer, the converse holds.

Also, both faults in the model cut through parts of the channel-axes in both layers

but more so in Layer2 where almost the entire channel-axis width is transverse by the

faults. There is no structural uncertainty associated with the spatial configuration

and locations of the EODs and the faults in the model.

Production lasted for 9990 days and water injection started from the first day of

production. Measurements of bottomhole pressure at the injector, water production

rate (qw) and oil production rate (qo) at the producer were taken every ninety days

and the production history is presented in Fig. 6.3. The production history shows a

steady oil production rate ≈ 3000 STB/D in the first 2700 days of production. This
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(a) Reservoir units. (b) Faults. (c) EODs. (d) Channel-axis struc-
ture.

Figure 6.2: Reservoir simulation model showing the different features that are
present.

(a) BHP. (b) Oil rate. (c) Water rate.

Figure 6.3: Predictions from the reference model showing the predicted BHP data
from the injector and the predicted oil and water rate data from the producer.

was followed by a steady decline over a period of 630 days to a rate ≈ 2700 STB/D

and then a 540-day increase to a constant oil production rate of 2900 STB/D until the

water breakthrough time. Following the water breakthrough time, a consistent and

steady decline in oil rate is evident (Fig. 6.3(b)). The start of the short decline in oil

production rate coincides with the start of a steady increase in the injector bottom-

hole pressure, which continued throughout the 9990 days of production (Fig. 6.3(a)).

The increase in the injector BHP is a response to the water front arrival at Fault2

(Fig. 6.2(b)) which constitutes a transmissibility barrier. Since the injector was op-

erated at a constant surface injection rate, an increase in injector BHP was necessary

to force some of the injected water through the low permeability fault barrier and

the rest to migrate laterally from the channel-axis in Layer2 to the low permeability

channel-margin in the same layer. Note that this was also responsible for the decline

and subsequent increase in the oil flow rate history.
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6.3.1 Specification of the uncertain model parameters

The model parameters that were estimated during history matching include:

1. Vertical transmissibility multipliers at the interfaces of the EODs namely: EOD1–

EOD1, EOD1–EOD2 and EOD2–EOD2. Throughout the terms vertical trans-

missibility and connection transmissibility will be used interchangeably.

2. Fault transmissibility multipliers for Fault1 and Fault2. Only one transmissi-

bility multiplier is used for each fault.

3. Porosity (φ) and permeabilities (kv and kh) of the two EODs. The petrophysical

properties are assumed uniform in each EOD.

In formulating the history matching problem, it was assumed that empirical geologically-

based relationships between the petrophysical properties (φ, kv and kh) and the net-

to-gross in the EODs are available (Fig. 6.4). By making this assumption, the history

matching problem becomes somewhat more realistic but also a bit more difficult and

nonlinear. Throughout the form of the empirical relationships between the petro-

physical properties and the NTG values as presented in Fig. 6.4 will be referred to as

an NTG-Table. Given any NTG value, the corresponding values of kh, kv and φ may

be determined from the NTG-Table in Fig. 6.4(a).

(a) NTG-Table (b) Uncertainty range.

Figure 6.4: Empirical relationship between petrophysical properties and net-to-gross
(NTG). Range of uncertainty in EOD NTG is also shown (Fig. 6.4(b)).
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The uncertainty in the porosity values of the EODs are assumed implicit in the

uncertainty of the NTG values in each EOD. Essentially once the NTG values of the

EODs are determined from history matching, the corresponding porosities may be

obtained from NTG-Table. By contrast, the uncertainty in the kh and kv values of

the EODs are implicit not only in the uncertainty of the NTG value but also in the

uncertainty of the left ordinate values in the NTG-Table (Fig. 6.4(a)). Essentially,

for any fixed estimate of the NTG value, the corresponding kh and kv values in the

NTG-Table are correct up to an unknown multiplicative constant. The NTG-Tables

in Fig. 6.4 correspond to the case with a multiplicative constant equal to 1. Note that

applying a constant multiplier to the kh and kv values in the NTG-Table does not

change the functional relationship between the permeabilities and the NTG values.

Throughout the unknown multiplicative constant will be referred to as a permeability

multiplier.

The net-to-gross in the channel-axis (EOD2) will be higher than the net-to-gross

in the channel-margin (EOD1) and this is reflected in the range of uncertainty of

the NTG values in both EODs (yellow boxes in Fig. 6.4(b)). For each EOD, the

same permeability multiplier is used to scale the corresponding kh and kv values

(different permeability multipliers are used for both EODs). We note that while it

is a fairly common practice to adjust the uncertain kh, kv and φ values directly to

obtain a match to data, we chose not to do so here as it may violate the empirical

relationships in the NTG-Table. The parameters that are adjusted during history

matching to obtain estimates of kh, kv and φ are the NTG values and the multipliers

of kh and kv in the EODs. Unrealistic changes to the model variables during history

matching are avoided by imposing plausible bounds on the range of the uncertain

parameter (Table 6.1). Also initial best guess values for all the model variables are

assumed to be available. In all, a total of 11 model parameters were estimated during

history matching.
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Table 6.1: Bounds on the initial model uncertainty.

Uncertain model parameters Min. Best Guess Max.
1 Fault1 transmissibility multiplier 0.0001 0.1 1.0
2 Fault2 transmissibility multiplier 0.0001 0.1 1.0
3 Connection transmissibility (EOD1–EOD1) 0.0001 0.01 0.1
4 Connection transmissibility (EOD1–EOD2) 0.0001 0.05 0.1
5 Connection transmissibility (EOD2–EOD2) 0.1 0.1 1.0
6 EOD1 net-to-gross ratio. Layer1 0.1 0.2 0.4
7 EOD2 net-to-gross ratio. Layer1 0.7 0.8 0.9
8 EOD1 net-to-gross ratio. Layer2 0.1 0.2 0.4
9 EOD2 Net-to-Gross Ratio. Layer2 0.7 0.8 0.9
10 Permeability multiplier. EOD1 0.5 1.0 2.0
11 Permeability multiplier. EOD2 0.5 1.0 2.0

6.4 Gaussian Parameterization of the Transformed

Model Variables

The optimality of the updates to the model variables (state vector) by the EnKF is

predicated on an assumption that the prior ensemble of state vectors at each data

assimilation timestep are approximately multivariate Gaussian. If this assumption is

violated, the history match adjustment at each update step may be incorrect lead-

ing to sub-optimal performance of EnKF in estimating reservoir models that match

data. Clearly the distribution of the uncertain model parameters that are adjusted at

each data assimilation time are non-Gaussian (Table 6.1). Consequently, a suitable

transform function is required that will map the non-Gaussian model variables to a

Gaussian space during the analysis / update step and map the Gaussian variables

back after updating to the actual model space for the prediction run to the next

assimilation timestep. It is necessary that this transform function satisfy at least two

conditions:

1. The mapping/transform from the model space to the Gaussian space and back

must be unique.

2. The unbounded changes made to the Gaussian variables at the update step

should preserve the geologic bounds in Table 6.1 when back transformed to the
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actual model space.

For this purpose, the shifted-sigmoid function (Eq. 6.2) was formulated as the trans-

form function of choice.

ϕ(y) = ξ

[
1 + erf

(
y − β√

α

)]
+ η (6.2)

y is a Gaussian random variable; ϕ(y) is the model variable in the actual space

corresponding to the variable, y, in the Gaussian space; erf(·) is the standard error

function; ξ is a range parameter; β is a location parameter; α is the scale parameter

and η is a positive shift parameter. The parameters of the shifted-sigmoid function

were chosen such that

1. the lower and upper bounds on the model variables were mapped to Gaussian

that were respectively ≤ -2.5 and ≥ 2.5 standard deviations from the mean of

the standard normal PDF;

2. the (transformed) best-Guess model values were set equal to the median/mean

of the standard normal PDF.

Consequently, the problem of choosing the parameters of the shifted-sigmoid function

that will satisfy the bounds and the best guess values specified in Table 6.1 reduces

to an equivalent problem of solving a nonlinear regression problem.

6.5 Low Discrepancy Sequence Sampling

Update to the state vector at each data assimilation time step is based (in part) on

the statistics computed from finite number of ensemble members. Since the statistics

are obtained from a finite-sized ensemble, they are usually subject to sampling errors.

Increasing the ensemble size will mitigate the effect of sampling errors but also in-

crease the computational cost of history matching, thus reducing the overall efficiency
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of the process. Another approach for mitigating the sampling error is to generate ini-

tial samples that span a significant portion of the model space. Quasi Monte-Carlo

methods generally use deterministic sequences known as low discrepancy sequences

that are in some sense well distributed over the integration space (Niederreiter, 1992).

To this end we utilized a low discrepancy sequence sampling scheme to generate the

initial realizations of the model.

Discrepancy is a measure of how uniformly random points are distributed in space.

Formally, suppose Q is a k-dimensional sub-rectangle contained in a k-dimensional

unit cube, Ik, with sides parallel to the coordinate axes. If v(Q) denotes the volume

of Q, then the discrepancy of a sequence of N points, {x1, . . . , xj, . . . , xn}, is given

as,

DN = sup
Q∈Ik

∣∣∣∣# of points in Q

N
− v(Q)

∣∣∣∣ . (6.3)

Well known low discrepancy sequences include Halton sequences (Halton, 1960),

Hammersley sequences (Hammersley, 1960), Sobol sequences (Sobol, 1967), Faure

sequences (Faure, 1982), Niederreiter sequences (Niederreiter, 1992), etc. The basic

idea behind generating samples using sequences that are of low discrepancy is to uni-

formly sample the multidimensional cumulative distribution function of the model

variables. The Halton sequence is one of the best known low discrepancy sequences

and for our purpose, the vectors of Gaussian random variables used to parameterize

the transformed model variables were generated using the Halton sequence sampling

A Halton point in a k-dimensional unit cube is given by the sequence,

Hk(n) =(ϕR1(n), ϕR2(n), . . . , ϕRk(n))

n = 1, 2, . . . , N ;

(6.4)

where R1, R2, . . . , Rk are the first k prime numbers and ϕR(n) is the inverse radix

number of an arbitrary integer n. To define the form of the inverse radix number,

suppose that n and R are two arbitrary integers, then n can be written in radix-R
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notation as

n ≡ nmnm−1 . . . n2n1n0

= n0 + n1R + n2R
2 + · · ·+ nmR

m,

(6.5)

where

m = [logR n] =

[
lnn

lnR

]
, (6.6)

and the square brackets denote the integral part. The inverse radix number (ϕR(n))

is a unique fraction between 0 and 1 obtained by reversing the order of the digits in

n around the decimal point and given explicitly by,

ϕR(n) = 0.n0n1n2 . . . nm

= n0R
−1 + n1R

−2 + n2R
−3 + . . .+ nmR

−m−1.

(6.7)

To illustrate, suppose we wish to generate the first five Halton points in a unit

square in R2. The first dimension of the Halton sequence will be based on the first

prime number, R1 = 2, and the second dimension on the second prime number,

R2 = 3. The specific steps for generating the first four Halton points in 2D is presented

in Table 6.2. Note that the sequence of 1D Halton points based on the prime number

Table 6.2: Generating the first four Halton points in two dimensions.

Dimension 1. R1=2 Dimension 2. R2=3.

n B2 Inverse Radix No. B3 Inverse Radix No.

1 1 0.100 = 1
2 + 0

22 + 0
23 = 1

2 1 0.100 = 1
3 + 0

32 + 0
33 = 1

3

2 10 0.010 = 0
2 + 1

22 + 0
23 = 1

4 2 0.200 = 2
3 + 0

32 + 0
33 = 2

3

3 11 0.110 = 1
2 + 1

22 + 0
23 = 3

4 10 0.010 = 0
3 + 1

32 + 0
33 = 1

9

4 100 0.001 = 0
2 + 0

22 + 1
23 = 1

8 11 0.110 = 1
3 + 1

32 + 0
33 = 4

9

2 is the well known van der Corput sequence (van der Corput, 1935). If we paired up

the four Halton sequence of points from Table 6.2, we obtain a sequence of four points

in a unit square given by: (1
2
, 1

3
), (1

4
, 2

3
), (3

4
, 1

9
), (1

8
, 4

9
). An arbitrary multidimensional

154



Halton sequence is generated the same way as presented in Table 6.2. If nm =

11 denotes the number of uncertain model variables and ne denotes the number

of ensemble members, then the standard Halton sequence of length ne on an nm-

dimensional unit cube, Ψnm,ne , is given by,

Ψnm,ne =

[
Hnm(1) Hnm(2) . . . Hnm(ne)

]
. (6.8)

Each additional multidimensional Halton point may be obtained recursively using

the Von Neumann Kakutani transformation, which makes the process of generat-

ing additional sample points fairly efficient. Transformation of the multidimensional

sample points from the unit cube, of dimension nm, to the multivariate standard nor-

mally distributed points is achieved straightforwardly through the standard integral

transform,

znm,ne = Φ−1(Ψnm,ne), (6.9)

where Φ is the standard normal CDF and znm,ne is the ensemble of Gaussian random

vectors used to parameterize the vector of transformed model variables. Figure 6.5

compares the distribution of the first 100 Halton points in 2D with 100 randomly

sampled Monte Carlo points. It also shows the corresponding multivariate Gaussian

points obtained by transforming the random points in the unit square using Eq. 6.9

for nm = 2. Clearly the Halton points (Fig. 6.5(c)) generally sample the 2D unit

cube more uniformly than the pseudo-random points (Fig. 6.5(a)) resulting in better

distributed Gaussian points (Fig. 6.5(d)).

6.6 Specification of the History Matching Param-

eters

An ensemble size of 100 was chosen for the history matching problem presented in

this paper. Data were assimilated eleven times over the entire production period

corresponding to days 90, 1080, 2160, 2880, 3330, 3780, 5580, 5850, 6300, 8100 and
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(a) 2D random points. (b) 2D Gaussian points. (c) 2D Halton points. (d) 2D Gaussian points

Figure 6.5: Generation of 100 random points in 2D using random Monte Carlo sam-
pling (first two columns) and Halton sequence sampling (last two columns). Columns
1 and 3 are random points in a 2D unit cube. Columns 2 and 4 are bivariate Gaussian
points obtained by transforming random points from the 2D unit cube using Eq. 6.9.

9900. Three types of production measurements (injector BHP, producer water and

oil rates) were assimilated at each data assimilation timestep. The standard error of

measurement for the different data were 10 psi for the BHP data and 10 STB/D for

the rate data. Before water breakthrough occurred in the producer a standard error

of measurement of 10−3 STB/D was used for the water rate data. This ensured that

the water rate data assimilated before the breakthrough time were matched exactly

by all the ensemble members.

In our implementation of the EnKF, we chose not to include the dynamic variables

in the state vector. Consequently, the state vector of is given by,

yi =

[
mT

i g(mi)
T

]T
, (6.10)

where m is the vector of Gaussian random variables that parameterize the trans-

formed model parameters presented in Table 6.1. Consequently, at the end of each

data assimilation timestep, the dynamic variables were re-initialized and the models

were reran from time zero using the updated parameters to obtain the ensemble of

predicted data at the next data assimilation timestep.

For the first-stage EnKF, the prior model variables were sampled from a zero-

mean multivariate Gaussian PDF having a covariance matrix equal to an nm × nm

identity matrix. Recall that nm is the number of uncertain model variables, which is
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equal to eleven in this case. For the second-stage EnKF, the values of the diagonal

covariance matrix, CM,s, of the Gaussian PDF for regenerating the initial ensemble

members were chosen to ensure that the resampled models were close to the MAP

estimate approximated from the final ensemble of the first-stage EnKF. This was

achieved by setting the diagonal elements of the covariance matrix (the variances) to

fairly small values. Note that if the variances are set to too small values then the filter

may diverge (Maybeck, 1979) during history matching. Filter divergence refers to the

situation where available data are progressively ignored due to too small variability

in the ensemble. From the results of limited experiments on reasonable choices of

model variance necessary to mitigate variance deficiency in the second-stage EnKF,

we observed that setting the variances to 0.25 seems to work quite well in obtaining

very reasonable match to data.

6.7 History Matching Results from the First-Stage

EnKF

The predictions of the injector BHP and the producer oil and water rate data by the

initial (Figs. 6.6(a)–6.6(c)) and final (Figs. 6.6(d)–6.6(f)) ensemble of model variables

from the first-stage EnKF (standard EnKF) are presented in Fig. 6.6. The predictions

were obtained by re-initializing the dynamic model variables and rerunning the simu-

lation from time zero using the initial and final estimated of the models. Predictions

from the ensemble of initial models exhibit a high degree of variability reflecting the

high uncertainty in the initial estimates of the model variables. Some of the initial

models predicted maximum BHP values (Fig. 6.6(a)) as high as 9200 psi and as low as

709 psi even though the maximum BHP predicted by the reference model was about

2400 psi. Interestingly, virtually all the initial models failed to predict the decline in

the oil production rate, predicted by the reference model, starting from day 2700 and

reaching a minimum value of 2700 STB/D after 630 days from the start of decline
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(Fig. 6.6(b)). Only one of the initial models predicted a period of steep decline and

increase in oil rate, which occurred before the time predicted by the reference model

and the minimum oil rate for the period predicted by this model was much lower than

the reference prediction.

(a) Initial BHP prediction. (b) Initial qo prediction. (c) Initial qw prediction.

(d) Final BHP prediction. (e) Final qo prediction. (f) Final qw prediction.

Figure 6.6: Predictions from the initial (top row) and final (bottom row) ensembles
from the first-stage EnKF. Reference predictions are shown as blue dots. Although
initial prediction uncertainty was reduced after data assimilation, the match to data
was generally poor.

Compared to the initial ensemble, predictions from the final ensemble generally

match the reference predictions better reflecting the impact of assimilating production

data on the quality of history matching results (Figs. 6.6(d)–6.6(f)). Because the

uncertainty in the estimates of the initial model variables was reduced by assimilating

data, the prediction spread from the final models is considerably smaller than the

initial prediction spread. However, the variability in the predicted BHP data from

the final ensemble is still quite high for the history matching results to be considered

acceptable (Fig. 6.6(d)). Additionally, the match to the small dip in oil production

data between days 2700–4000 in the reference model (Fig. 6.6(e)) is poor.
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6.7.1 Estimation of the model parameters from the first-stage EnKF

At each data assimilation time-step, the Gaussian variables used to parameterize the

transformed model variables are updated and the actual model variables are used

for the forecast step after back transforming the updated Gaussian variables using

Eq. 6.2. Consequently, updates to the transformed model parameters at each data

assimilation timestep satisfy the EnKF assumption of Gaussianity. The distribution

of the initial (gray histograms) and final (green histograms) estimates of the model

variables are shown in Figs. 6.7–6.10. The reference value in each plot is shown by the

red vertical line. We note from Table 6.1 that the range of values of the transmissibility

multipliers has several orders of magnitude variation. The transmissibility multipliers

of Fault1, Fault2 and the EOD connections exhibit up to five orders of magnitude

variation ranging from 10−4 to 1.0. Consequently, the the natural log transformed

values of the transmissibility multipliers are plotted in Figs. 6.7 and 6.10 instead of the

actual values for better visualization of the full range of model variables distribution.

Figure 6.7 shows the distribution of the initial (gray bars) and final (green bars)

estimates of fault transmissibility multipliers. The final estimate of Fault2 transmis-

sibility multiplier matches the reference value quite well and the initial uncertainty is

considerably reduced after data assimilation. By contrast, the initial and final uncer-

tainty in estimates of Fault1 transmissibility multiplier are essentially equal. Recall

that of the two faults, Fault1 is closer to the injector and intersects only a small

region of the channel-axis in the top layer (Fig. 6.2(b)). The flow of water from the

injector to the producer through the channel-axis is not influenced significantly by

the presence of Fault1. None of the data (BHP, qo or qw) is very sensitive to the

values of Fault1 transmissibility.

The first-stage EnKF performed quite well in estimating the permeability multi-

pliers for both EODs and the initial estimates of the multipliers were adjusted towards

the reference values after data assimilation (Fig. 6.8). However, the final estimates of

159



(a) Fault1. (b) Fault2.

Figure 6.7: Initial (gray) and final (green) estimates of the fault transmissibility
multipliers on a natural log scale. The red vertical line corresponds to the reference
value. Results are from the first-stage EnKF.

(a) EOD1. (b) EOD2.

Figure 6.8: Initial (gray) and final (green) estimates of the EOD permeability mul-
tipliers. The red vertical line is the reference value. Results from first-stage EnKF

(a) Layer1. EOD1. (b) Layer1. EOD2. (c) Layer2. EOD1. (d) Layer2. EOD2.

Figure 6.9: Initial (gray) and final (green) estimates of EOD net-to-gross values from
first-stage EnKF. The red vertical line is the reference net-to-gross.
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the NTG values of the EODs appear not to match the reference values (red vertical

lines) well (Fig. 6.9). Further discussions on this lack of match to production observa-

tion are presented in the next section. Recall that the porosity is determined from the

NTG estimate and the permeabilities from the estimates of the NTG values and per-

meability multipliers. If these estimates are incorrect, then the final estimates of kh,

kv and φ will also be incorrect. The distributions of the final connection transmissibil-

ity multipliers for EOD1–EOD1 (Fig. 6.10(a)) and EOD1–EOD2 (Fig. 6.10(b)) show

evidence of data conditioning but the range of uncertainty in the final histograms

are essentially the same as the initial histograms. However, the final estimates of the

connection transmissibility multiplier for EOD2–EOD2 (Fig. 6.10(c)) seem reasonably

close to the reference value.

(a) EOD1–EOD1. (b) EOD1–EOD2. (c) EOD2–EOD2.

Figure 6.10: Initial (gray) and final (green) estimates of the connection transmissi-
bility multipliers from first-stage EnKF shown on a natural-log scale. The red vertical
line is the reference value.

6.7.2 Estimation of the saturation profile from the first-stage EnKF

The uncertainty in the spatial distribution of the final estimates of the dynamic model

variables (gridblock pressures and saturation) are implicit in the uncertainty of the

estimates of the static model variables (gridblock porosities and permeabilities). If

the final estimates of the static model parameters from the ensemble are far from

the reference model, then the distribution of the dynamic variables predicted by the

ensemble will be different from the reference distribution. Consequently, the average

saturation distribution predicted by the final model variables provides an additional
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measure of the history match quality. The reference oil saturation distributions in

Layer1 and Layer2 at the end of 9990 days of production are presented in Fig. 6.11.

The warm colors correspond to high oil saturation (low water saturation) and the

cold colors to low oil saturation (high water saturation). Two modes of flow can be

observed from the reference saturation map; predominantly through the channel in

Layer1 (Fig. 6.11(a)) and spreading outside the channel in Layer2 (Fig. 6.11(b)). The

channel-confined flow in the top layer results from the permeability contrast between

the channel-axis and channel-margin permeabilities. Compared to the top layer, the

permeability contrast between the channel-axis and channel-margin permeabilities in

the bottom layer is smaller resulting in higher transmissibility between the EODs in

the bottom layer. This combined with the very low value of Fault2 transmissibility

multiplier results in the spreading flow in the bottom layer.

(a) Layer1. (b) Layer2.

Figure 6.11: Reference oil saturation distribution at day 9990.

Sensitivity studies showed that we can get a gross match of rates if one layer has

channel flow and the other layer has spreading flow. It seems not to matter which

layer is spreading and which is channel flow as long as one of each is obtained in

both layers. Note that the channel vs. spreading flow in any of the layers is governed

primarily by the horizontal permeability contrasts between the EODs and secondarily

by the (vertical) connection transmissibilities of the EODs. For fixed values of the
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permeability multipliers and transmissibility multipliers, the channel and spreading

flows will correspond respectively to EODs with low and high NTG values. The

reference NTG values for EOD1/EOD2 are respectively 0.15/0.75 for Layer1 and

0.30/0.90 for Layer2 resulting respectively in channel flow in Layer1 and spreading

flow in Layer2 (Fig. 6.11).

Even though fairly good estimates of the permeability multipliers were obtained

from the first-stage EnKF (Fig. 6.8), the non-uniqueness in the estimate of the NTG

values in the EODs for both layers (Fig. 6.9) were not well resolved by the first-stage

EnKF. The final estimates of the NTG values for EOD1 in Layer1 and EOD1 in

Layer2 appears to have converged to one of the local minimum, i.e., high NTG value

≈ 0.3 for EOD1 in Layer1 and low NTG value ≈ 0.15 for EOD2 in Layer2. Note

that this is exactly the converse of the case in the reference model. However, the final

estimates of the NTG values for EOD2 in both layers did not converge to any value

and essentially span the range of initial uncertainty of the models. Examination of

the final ensemble-average saturation at the end of the first-stage EnKF (Fig. 6.12)

indicates that the models in the ensemble show both flow behaviors (channel flow vs.

spreading flow) in both layers.

(a) Initial. Layer1. (b) Initial. Layer2. (c) Final. Layer1. (d) Final. Layer2.

Figure 6.12: Distribution of mean oil saturation predicted by the initial and final
ensembles from the first-stage EnKF after 9990 days of production.
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6.8 History Matching Results from the Second-

Stage EnKF

The second stage in the two-stage EnKF is initialized by selecting, from the ensemble

of history matched models from the first-stage EnKF, a model with the best match to

production data (Eq. 6.1). The ensemble of predicted data from the final models of the

first-stage EnKF are shown in Figs. 6.6(d)–6.6(f) and the corresponding predictions

from the selected best model are shown in Fig. 6.13. The red and blue dots in

Fig. 6.13 are respectively predictions from the reference model and the selected best

model. Note that the predictions from some other ensemble members were equally

as good as the selected best model and any one of these models could have been

selected. The BHP data predicted by the selected model do not match the reference

BHP prediction well (Fig. 6.13(a)). Predictions of the oil rate data (Fig. 6.13(b))

and the water rate data (Fig. 6.13(b)) by the selected model match the reference

predictions reasonably well. However, the characteristic dip in oil production rate

predicted by the reference model between days 2700–4000 was not matched by the

predicted oil rate data from the selected model.

(a) BHP prediction. (b) qo prediction. (c) qw prediction.

Figure 6.13: Data predictions by selected best model from first-stage EnKF.

Realizations of the reservoir model for the second-stage EnKF were obtained by

randomization around the selected best model. Note that the best model is not

included explicitly in the resampled ensemble of state vectors but was used as the

mean of the multivariate Gaussian PDF for resampling. Recall that the multivariate

Gaussian PDF for resampling has a diagonal covariance matrix with variances of 0.25,
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which are much lower than the variances of 1.0 for the first-stage EnKF.

(a) Initial BHP prediction. (b) Initial qo prediction. (c) Initial qw prediction.

(d) Final BHP prediction. (e) Final qo prediction. (f) Final qw prediction.

Figure 6.14: Initial (top row) and final (bottom row) ensemble predictions from the
second-stage EnKF. Reference predictions are shown as blue dots.

Predictions of the BHP, oil rate and water rate data from the regenerated ini-

tial ensemble for the second-stage EnKF are shown in Figs. 6.14(a)–6.14(c). The

nonlinearity of the history matching problem is clearly evident in the predictive per-

formance of the regenerated ensemble of initial models. The predicted oil rate data

(Fig. 6.14(b)) and water rate data (Fig. 6.14(c)) from the initial ensemble are evidently

very biased even though the initial ensemble members were obtained by perturbing

around the best model. Note that the oil and water rate data predicted by the best

model did not show such bias and matched the reference predictions of oil and water

rate data fairly well (Figs. 6.13(b)–6.13(c)). The predicted BHP data from the initial

models show two distinct clusters in prediction profiles. The first cluster failed to

predict the consistent increase in BHP data from day 2700 and predicted a constant

BHP data after 2700 days of production. The second cluster is marked by a very

rapid increase in predicted BHP data from day 2700 to values significantly higher

than the maximum reference BHP data.

Compared to the initial model, predictions from the ensemble of history matched

165



models (Figs. 6.14(d)–6.14(f)) were significantly better and matched the reference

data quite well. All the final ensemble members also matched the dip in oil production

rate predicted by the reference model quite well (Fig. 6.14(e)). Compared to the

first stage EnKF (standard EnKF) the performance of the second-stage EnKF is

qualitatively better at matching the reference data.

6.8.1 Estimation of the model parameters from the second-stage EnKF

Histograms of the initial (gray bars) and final (green bars) estimates of the uncertain

model variables are presented in Figs. 6.15–6.18. The reference model values are in-

dicated by red vertical lines. Note that for plots of transmissibility multipliers, the

natural-log values are plotted in lieu of the actual values for legibility. Histograms of

the fault transmissibility multipliers from the initial and final ensemble are presented

in Fig. 6.15. As previously noted, because production data are fairly insensitive to

values of Fault1 transmissibility multiplier, these appear not to have been adjusted

very much during history matching and the distribution of the initial and final esti-

mates are qualitatively very similar (Fig. 6.15(a)). By contrast, estimates of Fault2

transmissibility multiplier improved considerably after conditioning to production

data compared to the initial unconditional estimates.

(a) Fault1. (b) Fault2.

Figure 6.15: Initial (gray) and final (green) estimates of fault transmissibility mul-
tipliers from second-stage EnKF. The red vertical line is the reference value.

Figures 6.16 and 6.17 respectively show the initial and final estimates of the per-

meability multipliers and the NTG values in the different EODs. The initial estimates
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of the permeability multipliers for EOD1 and EOD2 were fairly good and the distri-

butions of both initial permeability multipliers were generally close to the reference

values. However, the conditional estimates of the permeability multiplier for EOD2

underestimate the reference value (Fig. 6.16(b)) after history matching. In our sen-

sitivity studies, we noted that the pressure behavior depends non-uniquely on three

factors: NTG values in the EODs, permeability multipliers and Fault2 transmissi-

bility multiplier. For example at a given NTG value, similar pressure behavior was

obtained for specific combinations of low values of Fault2 transmissibility multipliers

(in the range of 0.0025–0.01) and the permeability multiplier for EOD2. At a fixed

fault transmissibility, increasing net-to-gross gives almost the same change in pres-

sure behavior as increasing the permeability multiplier. The inference is that there are

many local minima that result from interactions between the effects of net-to-gross,

permeability multiplier, and Fault2 transmissibility. We believe that this is why the

permeability multiplier for EOD2 and the NTG in Layer1-EOD2 did not converge to

the reference values. The history match process has found a local minimum. With

the exception of the connection transmissibility multiplier for EOD1–EOD1, the fi-

nal estimates of the connection transmissibility multipliers are generally close to the

reference values. Considering the quality of history match and the absence of ap-

preciable reduction in the spread of the final values of the EOD1–EOD1 connection

transmissibility multiplier (Figs. 6.18(a)), it seems that none of the data was very

sensitive to values of this model parameter.

6.8.2 Estimation of the saturation profile from the second-stage EnKF

The average oil saturation in Layer1 and Layer2 after 9990 days of production ob-

tained by averaging the predicted oil saturation maps from the initial and final ensem-

ble of reservoir models are presented in Fig. 6.19. The initial maps of the average oil
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(a) EOD1. (b) EOD2.

Figure 6.16: Initial (gray) and final (green) estimates of permeability multipliers
from second-stage EnKF. The red vertical line is the reference value.

(a) Layer1. EOD1. (b) Layer1 EOD2. (c) Layer2. EOD1. (d) Layer2. EOD2.

Figure 6.17: Initial (gray) and final (green) estimates of EOD net-to-gross from
second-stage EnKF. The red vertical line shows the reference value.

(a) EOD1–EOD1. (b) EOD1–EOD2. (c) EOD2–EOD2.

Figure 6.18: Initial (gray) and final (green) estimates of connection transmissibility
multipliers from second-stage EnKF shown on a natural-log scale. The reference value
is shown by the red vertical line.
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saturation in Layer1 (Fig. 6.19(a)) and Layer2 (Fig. 6.19(b)) reflect the initial uncer-

tainty in the model estimates and are qualitatively very different from the saturation

distribution in the reference model (Fig. 6.11). The initial maps exhibit on the aver-

age both channel and spreading flows in each layer of the initial models. The average

saturation maps (Figs. 6.19(c)–6.19(d)) obtained from the final ensemble have con-

verged to one of the local minimum, i.e., channel flow in Layer1 and spreading flow in

layer2. The ensemble average of the final saturation distribution appear qualitatively

very similar to the reference saturation maps.

(a) Initial. Layer1. (b) Initial. Layer2. (c) Final. Layer1. (d) Final. Layer2.

Figure 6.19: Mean oil saturation predicted by the initial (regenerated) and final en-
semble of model variables from the second-stage EnKF after 9990 days of production.

6.9 Comparison of the History Match Performances

of the First-Stage and Second-Stage EnKF

Table 6.3 shows the root mean square error (RMSE) of the predicted data for the his-

tory matched period from the initial and final ensembles of the first-stage and second-

stage EnKF. The RMSE provides a quantitative measure of the history match quality

and the values presented in Table 6.3 were obtained by averaging over predicted data

at the data assimilation timesteps. Rows 1 and 2 in Table 6.3 are the RMSE of

predicted data from the initial ensembles of the first-stage and second-stage EnKF

respectively. Interestingly, predictions from the initial ensemble of the second-stage

EnKF have higher RMSE values compared to the first-stage EnKF. This is somewhat
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surprising considering that the initial realizations of the second-stage EnKF were gen-

erated by adding random perturbations to the ensemble approximation of the MAP

estimate from the first-stage EnKF. However, after assimilating production data, the

second-stage EnKF gave a significantly better match to data and the RMSE from the

second-stage EnKF are about 2–3 times smaller than the RMSE from the first-stage

EnKF.

Table 6.3: Average RMSE of predicted data from the first- and second-stage EnKF.

BHP Oil Rate Water Rate
(psi) (STB/D) (STB/D)

1. First-stage EnKF. Initial ensemble. 745 398 584
2. Second-stage EnKF. Initial ensemble. 1787 623 831
3. First-stage EnKF. Final ensemble. 151 120 148
4. Second-stage EnKF. Final ensemble. 47 55 69

The final ensemble of model variables from the first-stage EnKF gave fairly good

estimates of the Fault2 transmissibility multipliers (Fig. 6.7), permeability multipliers

(Fig. 6.8) and the EOD2–EOD2 connection transmissibility multiplier (Fig. 6.10(c)).

Also the NTG in EOD1 for both layers converged to one of the local minima. How-

ever, because the final NTG in EOD2 layers 1–2 and the EOD1–EOD2 connection

transmissibility multiplier were not consistent with other parameters, the history

match quality from the first-stage EnKF was poor (Table 6.3) and the average sat-

uration maps at the end of the production period were qualitatively very different

from the reference saturation maps. After implementing the second-stage EnKF, the

final estimates of the NTG in Layer2-EOD2 and the EOD1–EOD2 connection trans-

missibility multiplier improved considerably and match the reference values better

(Figs. 6.18(b) and 6.17(d)). Although, the the permeability multiplier for EOD2 and

the NTG in EOD2 of Layer1 converged to a local minimum, the history match quality

was considerably better after implementing the second-stage EnKF.

As noted earlier, the distribution of the gridblock pressures and saturation will

generally depend on the history matched estimates of the static model variables.
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Because the final estimates of the model variables from the second-stage EnKF are

better constrained, the ensemble-average of the final saturation maps clearly showed

the channel and spreading flow respectively in Layer1 and Layer2 that are also present

in the reference saturation field. By contrast the first-stage EnKF failed to converge

to either one of the two local minima (with respect to the interchangeability of the

layer exhibiting spreading vs. channel flow) and exhibited both types of flow in each

layer.

6.10 Discussions

The computational cost of implementing the two-stage EnKF is about twice the cost

of the standard EnKF. Compared to the iterative ensemble Kalman filter, however, it

is computationally less expensive although some of the iterative EnKF with individual

gradient computation using adjoint formulation will perform better at sampling the

different modes in the posterior PDF. The overall computational cost of the TEnKF

may be reduced by minimizing the number of data assimilation timesteps required in

the first-stage history matching. This may be achieved by carefully selecting the data

assimilation timesteps with significant information content; for the history matching

problem investigated in this paper, this may include timesteps with (1) water break-

through data, (2) the minimum oil production rate during the dip period, (3) the

oil rate datum just before the dip period, etc. Reducing the computational cost by

preselecting the data assimilation timesteps in the first-stage EnKF is very important

for applications to large scale history matching problems. It is not possible to pre-

scribe a general process for identifying performance features that need to matched at

the first- and second-stage EnKF as this will usually depend on a good understand-

ing of the reservoir geology, preprocessing of the data to identify “unusual” data

points, informed judgement of the reservoir engineer, etc. We note, however, that

the water breakthrough data should be matched whenever available as it contains
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valuable information on the average inter-well properties. For the history matching

problem presented in this paper, recognizing the oil production dip as an important

performance feature to match helped constrain the history matching problem better

(particularly for the second-stage EnKF). It is noteworthy that in some cases pro-

duction data may not be accurate enough to identify some important performance

features (the features may be masked by noise in the data) and this may ultimately

affect the overall history match quality.

The initial samples of the second-stage EnKF were generated around one of the

modes of the posterior conditional PDF using an estimate of the MAP approximated

from the final ensemble of the first-stage EnKF. Consequently the quantification of the

uncertainty in predicted data for future periods will be underestimated. Conceptually,

the future prediction uncertainty may be improved by using multiple ensembles of the

initial realizations for the second stage EnKF obtained by sampling around several

approximations of the MAP estimate from the final ensemble of the first-stage EnKF,

where possible. This may be achieved by using any suitable clustering algorithm

(expectation maximization, kernel methods, etc) to group the conditional models

from first-stage EnKF and then selecting the best model from each cluster based

on the goodness of match to production data. Multiple ensembles may then be

obtained by resampling a Gaussian PDF centered at each of the MAP estimates

approximated from the ensemble. Data assimilation using each ensemble of state

vectors may be done in parallel and predictions from the different ensembles used to

better quantify future uncertainty and also to compute various statistics for assessing

future performance. For practical implementation, the size of each ensemble may

have to be reduced and localization will be required to increase the effective rank

of ensemble estimates and also reduce sampling errors. Localization has been used

in reservoir engineering to improve history matching results (Agbalaka and Oliver,

2008; Chen and Oliver, 2010; Devegowda et al., 2007). Zhang and Oliver (2010)
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discusses a particularly efficient form of localization based on a bootstrap version of

the hierarchical filter (Anderson, 2007) that allows fairly small ensemble sizes to be

used for data assimilation problems in reservoir engineering with reasonable results.

6.11 Chapter Summary

In this paper I have presented an approach to generating acceptable history match-

ing results for problems with multiple modes using the two-stage ensemble Kalman

filter. The first stage is an implementation of the standard EnKF and the updates

to the model variables are made about the conditional mean of the Gaussian PDF

approximating the multimodal model PDF. The second-stage EnKF regenerates the

realizations of the model variables about the conditional mode approximated from

the final ensemble of the first-stage EnKF. By generating updates about the condi-

tional mode at each assimilation timestep, the updates to the model variables were

generally better constrained resulting in a significantly improved match to production

data compared to the standard EnKF from the first stage implementation.

To obtain Gaussian parameterizations of the transformed model variables, I uti-

lized a shifted-sigmoid function. The parameters of the shifted-sigmoid function were

chosen to ensure that the geologic bounds were honored when the updated Gaussian

variables are back transformed to the actual model variables. Also parameterizing

the transformed model variables as Gaussian random variables ensured that the as-

sumption of Gaussianity during the EnKF update step is honored.

Because of the size of the problem, I utilized quasi-Monte Carlo sampling based

on low discrepancy sequences to generate the initial ensemble of model variables. The

goal is to generate initial models that are sufficiently diverse and also increase the

possibility of some of the models converging to one of the modes of the posterior PDF

from the first stage EnKF.
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CHAPTER VII

CONCLUSIONS

The focus of this dissertation is on the application of the ensemble Kalman filter

to history matching problems with complex, non-Gaussian model parameters. Such

problems require a modified formulation of the EnKF update step and/or some form of

Gaussian parameterization of the non-Gaussian model variables to honor the Gaussian

assumption at each update step.

For the problem of EnKF applied to facies, I identified and addressed several

difficulties in the implementations related to: (1) assimilating the static facies data

and dynamic production data in a consistent way and (2) mitigating excessive loss in

ensemble variability, which usually requires very large ensemble size. I also analyzed

the problem of the best starting point for future prediction after data assimilation.

I showed that by decoupling the assimilation of production and facies data and as-

similating firstly the production data and secondly the facies data, it is possible to

prevent large changes to the pressure and saturation fields. Based on this “decou-

pling” approach, updated dynamic variables that are consistent with the estimates of

the model parameters are obtained and the problem of destroying previously matched

facies observation while iterating to reenforce the constraint on facies observation is

also avoided. I also showed that by localizing the updates to the facies variables

when facies data are assimilated, excessive loss in ensemble variability is significantly

mitigated. Furthermore, results from localization showed that an ensemble size on

the order of 100 seemed sufficient for the history matching problem investigated.

The difficulty of jointly updating the discrete facies variables and the multimodal

permeabilities and porosities was also addressed in this dissertation. I introduced an
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approach based on the use of pseudo-model variables that allowed the multimodal

permeabilities and porosities to be updated in a consistent way within the EnKF

framework. By using pseudo-model variables, a Gaussian approximation to the mul-

timodal model variables are updated in lieu of the actual model variables. A nonlinear

mapping is then used to obtain realizations of the multimodal model variables from

the ensemble of pseudo-model variables for the prediction run. In contrast to the

results from using EnKF to directly update the multimodal permeability and poros-

ity, where the final estimates of the petrophysical properties were too smooth for

properties from a facies model, the final ensemble of petrophysical properties from

the pseudo-properties approach remained geologically plausible at the end of data

assimilation. Also, the history matching results from the pseudo-properties approach

were good.

I also investigated the EnKF performance in estimating the distribution of vertical

flow barriers in a reservoir model with flow barriers where zonal communication exists

in some areas of the reservoir but not in others. I showed that the EnKF performed

poorly in matching production data and in the prediction of future production when

only the log-Gaussian horizontal and vertical permeabilities are updated to account

for the effect of vertical transmissibility barrier on fluid flow. Also the history matched

model variables were poorly estimated as incorrect and compensatory changes were

made to correct for the fact that the uncertainty in vertical flow barriers were not

accounted for. I described a representation of the vertical flow barriers using vertical

transmissibility multipliers, which were parameterized as spatially correlated Gaus-

sian random variables after transformation. Three alternative parameterizations of

the vertical transmissibility multipliers were used to obtain different vertical flow bar-

rier configurations and significant improvement in history matching results and the

estimates of the model parameters was observed.

A two-stage EnKF was introduced for application to history matching problems
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with multiple modes and non-Gaussian model parameters. The method is based on

implementing two sequential stages of the standard EnKF. Following the first stage,

the initial ensemble of reservoir models was regenerated by resampling about the

maximum a posteriori model obtained from the final ensemble from the first-stage

EnKF. For both stages of the ensemble Kalman filter, a slightly modified form of

the EnKF was used—the dynamic model variables were not updated at each data

assimilation timestep but were obtained by rerunning the simulator from time zero

using the updated model parameters. Results of the two-stage EnKF showed a better-

converged history match solution compared to results from the standard EnKF.
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s), Acta Arithmetica, 41, 337–351, 1982.

Floris, F. J. T., M. D. Bush, M. Cuypers, F. Roggero, and A.-R. Syversveen, Meth-
ods for quantifying the uncertainty of production forecasts: A comparative study,
Petroleum Geoscience, 7, 87–96, 2001.

Franssen, H. J. H. and W. Kinzelbach, Ensemble Kalman filtering versus sequential
self-calibration for inverse modelling of dynamic groundwater flow systems, Journal
of Hydrology, 365(3–4), 261–274, 2009.

Furrer, R. and T. Bengtsson, Estimation of high-dimensional prior and posterior
covariance matrices in Kalman filter variants, J. Multivar. Anal., 98(2), 227–255,
2007.

Galli, A., H. Beucher, G. Le Loc’h, B. Doligez, and H. Group, The pros and cons of
the truncated Gaussian method, in Geostatistical Simulations, pp. 217–233, Kluwer
Academic, Dordrecht, 1994.

Gao, G., M. Zafari, and A. C. Reynolds, Quantifying uncertainty for the PUNQ-S3
problem in a Bayesian setting with RML and EnKF, SPE Journal, 11(4), 506–515,
2006.

Gaspari, G. and S. E. Cohn, Construction of correlation functions in two and three
dimensions, Quarterly Journal of the Royal Meteorological Society, 125(554), 723–
757, 1999.

Gu, Y. and D. S. Oliver, History matching of the PUNQ-S3 reservoir model using the
ensemble Kalman filter, SPE Journal, 10(2), 51–65, 2005.

Gu, Y. and D. S. Oliver, The ensemble Kalman filter for continuous updating of
reservoir simulation models, Journal of Energy Resources Technology, 128(1), 79–
87, 2006.

179



Gu, Y. and D. S. Oliver, An iterative ensemble Kalman filter for multiphase fluid flow
data assimilation, SPE Journal, 12(4), 438–446, 2007.

Haldorsen, H. H., D. M.Chang, and S. H.Begg, Discontinuous vertical permeability
barriers: a challenge to engineers and geologists, in North sea oil and gas reservoirs,
(edited by J. Kleppe), pp. 127–151, Norwegian Institute of Technology, Graham and
Trotman, Trondheim, Norway, 1987.

Halton, J. H., On the efficiency of certain quasi-random sequences of points in eval-
uating multi-dimensional integrals, Numerische Mathematik, 2, 84–90, 1960.

Hamill, T. M. and C. Snyder, Using improved background-error covariances from
an ensemble Kalman filter for adaptive observations, Monthly Weather Review,
130(6), 1552–1572, 2002.

Hamill, T. M., C. Snyder, D. P. Baumhefner, Z. Toth, and S. L. Mullen, Ensemble
forecasting in the short to medium range: Report from a workshop, Bull. Amer.
Meteor. Soc., 81, 2653–2664, 2000.

Hamill, T. M., J. S. Whitaker, and C. Snyder, Distance-dependent filtering of back-
ground error covariance estimates in an ensemble Kalman filter, Monthly Weather
Review, 129(11), 2776–2790, 2001.

Hammersley, J. M., Monte Carlo methods for solving multivariable problems, Annals
of the New York Academy of Sciences, 86, 844–874, 1960, numerical Properties of
Functions of More Than One Independent Variable.

Harpole, K. J., Improved reservoir characterization: A key to future reservoir man-
agement for the West Seminole San Andres Unit, Journal of Petroleum Technology,
32(11), 2009–2019, 1980.

Hoffman, T. B. and J. Caers, History matching by jointly perturbing local facies
proportions and their spatial distribution: Application to a North Sea reservoir,
JPSE, 57, 257–272, 2007.

Houtekamer, P. L. and H. L. Mitchell, Data assimilation using an ensemble Kalman
filter technique, Monthly Weather Review, 126(3), 796–811, 1998.

Houtekamer, P. L. and H. L. Mitchell, A sequential ensemble Kalman filter for atmo-
spheric data assimilation, Monthly Weather Review, 129(1), 123–137, 2001.

Hu, L. Y., M. L. Ravalec, and G. Blanc, Gradual deformation and iterative calibration
of truncated Gaussian simulations, Petroleum Geoscience, 7, 25–30, 2001.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, Efficient data assimilation for spa-
tiotemporal chaos: A local ensemble transform Kalman filter, Physica D: Nonlinear
Phenomena, 230(1–2), 112–126, 2007.

180



Jazwinski, A. H., Stochastic Processes and Filtering Theory, Academic Press, New
York, 1970.

Jensen, J. L., P. W. Corbett, L. W. Lake, and D. J. Goggin, Statistics for Petroleum
Engineers and Geoscientists, Handbook of Petroleum Exploration ans Production
2, second edn., Elsevier Science Ltd, 2000.

Journel, A. G. and E. H. Isaaks, Conditional indicator simulation: Application to
a Saskatchewan uranium deposit, Journal of Petroleum Science and Engineering,
16(7), 685–718, 1984.

Julier, S. J. and J. K. Uhlmann, A new extension of the Kalman filter to nonlinear
systems, 3, 26, 1997.

Kalman, R. E., A new approach to linear filtering and prediction problems, Transac-
tions of the ASME, Journal of Basic Engineering, 82, 35–45, 1960.

Kalman, R. E. and R. Bucy, New results in linear prediction and filtering theory,
Trans. AMSE J. Basic Eng, pp. 95–108, 1961.

Lake, L. W., The origins of anisotropy, Journal of Petroleum Technology, 40(4), 395–
396, 1988.

Le Loc’h, G., H. Beucher, A. Galli, B. Doligez, and H. Group, Improvement in the
truncated Gaussian method: Combining several Gaussian Functions, in Proceedings
of ECMOR IV, Fourth European Conference on the Mathematics of Oil Recovery,
1994.

Le Loc’h, G. and A. Galli, Truncated plurigaussian method: Theoretical and practical
points of view, in Geostatistics Wollongong ’96, (edited by E. Y. Baafi and N. A.
Schofield), vol. 1, pp. 211–222, Kluwer Academic, 1997.

Levene, H., Robust tests for equality of variances, In Contributions to Probability and
Statistics: Essays in Honor of Harold Hotelling, pp. 278–292, 1960.

Lewis, J. M., S. Lakshmivarahan, and S. Dhall, Dynamic Data Assimilation: A Least
Squares Approach, vol. 104 of Encyclopedia of Mathematics and Application, Cam-
bridge University Press, 2006.

Li, G. and A. C. Reynolds, Iterative ensemble Kalman filters for data assimilation,
SPE Journal, 14(3), 496–505, 2009.

Liu, F., J. M. Mendel, and A. M. Nejad, Forecasting injector/producer relationships
from production and injection rates using an extended Kalman filter (SPE 110520-
pa), SPE Journal, 14(4), 653–664, 2009.

Liu, N. and D. S. Oliver, Automatic history matching of geologic facies, SPE Journal,
9(4), 188–195, 2004.

181



Liu, N. and D. S. Oliver, Critical evaluation of the ensemble Kalman filter on history
matching of geologic facies, SPE Reservoir Evaluation & Engineering, 8(6), 470–
477, 2005a.

Liu, N. and D. S. Oliver, Ensemble Kalman filter for automatic history matching of
geologic facies, Journal of Petroleum Science and Engineering, 47(3–4), 147–161,
2005b.

Lord, M. E. and R. E. Collins, Effects of crossbedding on well performance
(SPE 19587), in Proceedings of the 64th SPE Annual Technical Conference and
Exhibition, San Antonio, TX, 1989.

Lorentzen, R. J., K. M. Flornes, and G. Nævdal, History matching channelized reser-
voirs using the ensemble Kalman filter, in International Petroleum Technology Con-
ference, Doha, 2009.
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