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ABSTRACT

Let F be a characteristic zero differential field with an algebraically closed field of
constants C, E D K D F be no new constant extensions of F such that K is an
extension by antiderivatives of F, and let E contain antiderivatives vy, --- , 1, of
K. The antiderivatives vy, -- , 1, of K are called J-I-E antiderivatives if v, € K
satisfies certain conditions. We will provide a new proof for the Kolchin-Ostrowski
theorem and generalize this theorem for a tower of extensions by J-I-E antideriva-
tives and use this generalized version of the theorem to classify the finitely differ-
entially generated subfields of this tower. In the process, we will show that the
J-I-E antiderivatives are algebraically independent over the ground differential
field. An example of a J-I-E tower is the iterated antiderivative extensions of the
field of rational functions C(z) generated by iterated logarithms, closed at each
stage by all (translation) automorphisms. We analyze the algebraic and differ-
ential structure of these extensions. In particular, we show that the nth iterated
logarithms and their translates are algebraically independent over the field gener-
ated by all lower level iterated logarithms. Our analysis provides an algorithm for
determining the differential field generated by any rational expression in iterated

logarithms.

vil



Chapter 1

Introduction

All the fields considered in this thesis are of characteristic zero. If F is a field
and ' : F — F a linear map satisfying the condition (uv)’ = w'v + uv’ for all
u,v € F then we will call the map ’, a derivation of F. A differential field is
a field F with a derivation. If F is a differential field then one can easily see
that C := {c € F|¢’ = 0} is also a differential field. We will call C, the field
of constants of F. Let E and F be differential fields and let E O F. We say
that E is a differential field extension of F if the derivation of E restricted to F
is the derivation of F. A differential field extension E of F will be called a No
New Constants (NNC) extension of F if the field of constants of E and F are the
same.

Let E D F be a NNC extension. If ¢ € E and ' € F then we call ¢ an an-
tiderivative of an element (namely, t') of F, and if E = F(g;--- ,z,) for some
antiderivatives r1,--- ,1, € E of F then we will call E an extension of F by an-
tiderivatives. If ¢ € E and e—e/ € F then we call e an exponential of an integral of
an element (namely, e—;) of F, and if E = F(e; --- ,e,,) for some exponentials of

integrals e - - - , ¢, € E of F then we will call E an extension of F by exponentials



of integrals.

In chapter 2 we will give a new proof for the following well known theorem: Let
F be a differential field with an algebraically closed field of constants C and let
E D F be a NNC extension. Let r1,--- ,1r, € E, ¢1,--- ,¢,, € E where ;s are
antiderivatives (¢} € F) and e;’s are exponentials of integrals (E—/ € F). Then
i, ,Ln, €1, , ¢, are algebraically dependent over F only if there are ¢; € C,
not all zero, such that Y ", ¢;r; € F or there are n; € Z, not all zero, such that
[~ e;" € F. Thus the algebraic dependence of ry,--- L, €1, - , &, over F
becomes a non trivial linear dependence of g1, -« ,x, over F, or there is a non
trivial power product relation among ey, --- ,¢,, over F. This theorem is known
as the Kolchin-Ostrowski theorem and it appears as theorem 2.3 in this thesis.
A short note about the history of this theorem is also provided in the beginning
of chapter 2.

In section 2.3 and 2.4, we will give algorithms to compute the differential subfields
of extensions by antiderivatives and exponentials of integrals of F when such an
extension is purely transcendental over F. Moreover, when F can be realized
as the field of fractions of a polynomial ring over C that lives inside F then for
any given intermediate differential subfield of this extension, our algorithm also
computes the subgroup of differential automorphisms of our extension fixing that
given differential subfield.

In chapter 3, section 3.1, we produce a method for generating algebraically in-
dependent iterated antiderivatives of F when F has a proper antiderivative ex-
tension. We call this special tower of extensions by iterated antiderivatives, the
J-I-E tower. And, as an application, We will show that there is an infinite tower
of extensions by iterated antiderivatives of F that is not imbeddable in any finite

tower of Picard-Vessiot extensions of F. In section 3.2 we classify the finitely



differentially generated subfields of this tower. A J-I-E tower exist for any dif-
ferential field F that has a proper antiderivative extension and it may contain
non-elementary functions.

A tower of extensions by iterated logarithms is an example of J-I-E tower. For
a vector ¢:= (¢, ,¢,) € C", where C is an algebraically closed-characteristic
zero differential field with a trivial derivation, we call ¢[¢, n] := log(log(- - - log(x +
¢1)-+- + ¢u_1) + ¢,) an iterated logarithm of level n. In chapter 4, we give
meanings for these iterated logarithms and produce an algorithm to compute
the differential subfields of differential field extensions by iterated logarithms.
In the process, we will also show that the iterated logarithms are algebraically
independent over C(z), where z is an element whose derivative equals 1. In
Section 4.4 we will provide some examples of extensions by iterated logarithms
and show how our algorithm works. These examples should also be viewed as
examples for computing differential subfields of extensions by antiderivatives as

well since the algorithms for both the settings works in a similar fashion.

1.1 Picard-Vessiot Theory

Here we will recall some definitions and state several results from differential
Galois theory. Ome may find proofs for these results in [7]. Let (F,) be a
differential field with an algebraically closed field of constants C and let E be
any differential field extension of F. The differential Galois group G(E|F) is the
group of all differential automorphisms of E fixing every element of F, that is,
G(E|F) := {0 € Aut(E|F)|o(v') = o(u) Yu € E}. Sometimes we denote G(E|F)
by G without referring to ground differential field F and its extension E. Let L(y)

be a monic homogeneous linear differential operator of order n over a differential



field F. A differential field extension E D F is called a Picard-Vessiot(P-V)

extension of F for L(y) if the following conditions hold:

1. E is generated over F as a differential field by the set V' of solutions of
Lly) =0mE(E=F <V >)

2. E contains a full set of solutions of L(y) = 0 (there are y; € V,1 < i < n,

with the wronskian w(yy, - ,y,) # 0)
3. Every constant of E lies in F, that is, E is a NNC extension of F.

A Picard-Vessiot extension exists for a given monic homogeneous linear differen-
tial operator L(y) in the case that the field of constants C of F is algebraically
closed and it is unique up to differential automorphisms fixing F. If E is a P-V
extension of F then the set of all elements fixed by the differential Galois group
G(E|F) is F, that is, E¢ = {a € E | 0(a) = a for all ¢ € G} = F. The differen-
tial Galois group of a P-V extension is an algebraic matrix group over the field
of constants.

If E; is a Picard-Vessiot extension of F for 1 < ¢ < n then there is a Picard-
Vessiot extension E of F such that E O E; O F and E is the compositum of its
subfields E;.

There is a Fundamental theorem in this context. Let F be a differential field
with algebraically closed field of constants C, and let E O F be a P-V extension.
Then the differential Galois group of E over F is naturally an algebraic group

over C and there is a lattice inverting bijective correspondence between

{E D K D F | K is an intermediate differential field}



and

{H < G(E|F) | H is a Zariski closed subgroup of G(E|F)}

given by
K +— G(E|K) and H — E".

The intermediate field K is a P-V extension of F if and only if the subgroup
H = G(E|K) is normal in G; if it is, then

G(E|F)

G(E"|F) = o

Let GY(E|F) be the connected component of the identity in G(E|F), and let E°
be the corresponding intermediate field. Then E° is the algebraic closure of F
in E, E° is a finite Galois extension of F with Galois group %, and the
transcendence degree of E over E° is dim(G°(E|F)).

Analogous to the algebraic closure of a given field, we may define a Picard-Vessiot

closure of a given differential field F. The Picard-Vessiot closure F; of Fy := F

is a differential field extension of F{ such that
e F, is a union of Picard-Vessiot extensions of F|
e Every Picard-Vessiot extension of F has an isomorphic copy in F;.

The Picard-Vessiot closure F; of Fy need not be “closed”. That is, there are
linear homogeneous differential equations over F; whose solutions may not be in
F; (see theorem 3.7). This leads us to consider a chain of Picard-Vessiot closures

of Fy. A finite tower of Picard-Vessiot closures of F is a chain

FoCF, CF,C---CF,,



where Fy := F,n € N and F; is the Picard-Vessiot closure of F,_1, forall 1 <1 <
n. Finally we define the complete Picard-Vessiot closure F, of F as the union
U2 F;. The differential field F, is “closed”. If E is a normal differential subfield
of F then every automorphism of ¢ € G(E|F) extends to an automorphism ¢ €
G(F«|F) and every automorphism ® € G(F|F) also restricts to a ¢ € G(E|F).
We also note that the fixed field of G(F|F) is F. For details see [9].



Chapter 2

The Kolchin-Ostrowski Theorem

Let F be a differential field with an algebraically closed field of constants C.
Sometimes we will denote the field of constants C of F by Cg. Let us recall some

definitions from chapter 1.

Definition 2.1. Let E D F be a differential field extension of F. An element
r € E is called an antiderivative of an element of F if f' € F. A No New
Constant(NNC) extension E D F is called an extension by antiderivatives (or an
antiderivative extension) of F if for i = 1,2,--- ' n there exists r; € E such that

X; S F and E = F<x17;27"' 7?71)

Definition 2.2. Let E C F be a differential field extension of F. An element
¢ € E is called an exponential of an integral of an element of F if °—; ceF. A
NNC extension E D F is an extension by exponential of integrals of F if for

1=1,2,---,n there exists ¢; € E such that :—/ € Fand E=F(er, e, - ,¢,).
In this section we will prove the Kolchin-Ostrowski theorem, which states

Theorem 2.3. (Kolchin-Ostrowski) Let E D F be a NNC differential field exten-

sion and letgy, -+ ¥, € E, e1, -+ ¢, € E\{0} be such thaty; is an antiderivative

7



of an element F for each i (x, € F) and ¢; is an exponential of an integral of an el-

ement of F for each 1 (E—J € F). Then eithery, -+ ,tn,e1, -+ , ey are algebraically
J

independent over F or there exist (c1,--- ,¢,) € C"\ {0} such that >  cit; € F

or there exist (r1,-++ ,rm) € Z™ \ {0} such that H;n:l e;j cF.

In his paper [10], A. Ostrowski proves that a set of antiderivatives {g1,- -, r,} of
F is either algebraically independent over F or there are constants ¢; € C not all
zero such that )" | ¢;r; € F. In his setting, F is a differential field of meromorphic
functions and C = C, the field of complex numbers. Later, Ostrowski’s result
was generalized by Kolchin [6] to theorem 2.3. In their papers [4] and [11], J. Ax
and M. Rosenlicht also presented proofs of theorem 2.3. The proof we are going

to present is elementary and differ from the proofs listed above.

2.1 Algebraic Dependence of Antiderivatives

Theorem 2.4. Let E D F be a differential field extension and let ¢ € E be an

antiderivative. Then either ¢ is transcendental over F orx € F.

Proof. Let Cg denote the field of constants of F and suppose that r is algebraic

over F. Then there is a monic irreducible polynomial P(z) = >""  a;z" € F[z]

such that P(r) = 0. Note that (P(r))’ = 0, that is ¢ is a solution of the polynomial

Z(iaix' —a,_)z" " € Fla).
i=1
Since the degree of the above polynomial < n, it has to be the zero polynomial.

that is (r — b)’ = 0, where b := == € F. Observe that

n

In particular ny’ = a!,_,

r — b is algebraic over F (since r and b are algebraic) and therefore there is a

monic irreducible polynomial Q(z) = Y. biz* € Fla] such that Q(r — b) = 0.

8



Again taking the derivative of the equation Q(r — b) = 0, we note that r — b is a

solution of the polynomial

Z b, 2"t € Flz].
i=1

Since the degree of the above polynomial is < m, it has to be the zero polynomial.
Thus b; € Cg and therefore the polynomial Q(z) has coefficients in C. Since Cg
is algebraically closed and ¢ — b is a zero of Q(x) we obtain ¢ — b € Cg. Thus
r — b = c for some c € Cg and since b € F we then obtain r =b+c € F.

Note that we do not require the constants of F and E to be the same to prove this

theorem. The above theorem is also proved in [5], page 23 and [7], page 7. [

2.1.1 Galois Group

Let E O F be an extension by antiderivatives g1,--- ,r, € E\ C of F . That
is, E=F(ry, - ,tn), &, € Fand r; ¢ C for all 1 < i < n. Since E is a NNC
extension of F, the differential subfield E; = F(r;) of E is also a NNC extension

of F. Let f; :==r, € F and observe that

/

no__ Ji s
L= 7L
7

Thus g; is a solution of a second order linear homogeneous differential equation
over F. Moreover, if V; is the vector space spanned by the unity 1 € C and p;
over C then E; = F(V;)-the differential field generated by F and V;. The full
set of solutions of the differential equation Y” = fTIY’ is the vector space V.
Thus we see that E; is a Picard-Vessiot extension of F. Since a compositum of

Picard-Vessiot extensions is again a Picard-Vessiot extension(see [7], page 28-29),



E: =E; -E;---E, is also a Picard-Vessiot extension of F.

Assume that ¢; ¢ F for each i. If 0 € G(E;|F) then
o(t) = o) =o(fi) = fi=1x (2.1)

Thus o(g;)" = r;, which implies (a(;i) — }:i)/ = (0. Since E is a NNC extension
of F, there is a ¢;, € C such that o(r;) — t; = ¢, that is, o(r;) = ¥ + Cio-
On the other hand, for any ¢ € C, the automorphism o;. : E; — E; defined as
0ic(ti) =i+ cand o(f) = f for all f € F can be readily seen as a differential
automorphism. Thus G(E;|F) injects into (C,+) as an algebraic subgroup for
each i. Since (C,+) has no non trivial algebraic subgroups and since r; ¢ F,
from the fundamental theorem, we see that G(E;|F) ~ (C,+) and that the
extension E; of F has no intermediate differential subfields. Any automorphism
of E fixing F is completely determined by its action on ry, - - - , 1, and thus we have
amap o — (C1y, "+, Cno ), an algebraic group homomorphism from G to (C, +)".
This map is clearly injective. From this observation, we see that the differential
Galois group G(E|F) is isomorphic to an algebraic subgroup of (C,+)". Note
that G(E|F) could be a proper algebraic subgroup of (C,+)"; depending on
whether all the antiderivatives are algebraically independent over F or not. We
will discuss about the nature of the algebraic dependence of antiderivatives in
the next theorem.

We will do a similar analysis for the extensions by exponentials of integrals of F

in section 2.2.

Theorem 2.5. Let E D F be a NNC differential field extension and for 1 =
1,2,---,n let r; € E be antiderivatives of F. Then either t;’s are algebraically

independent over ¥ or there is a tuple (¢, -+, ¢,) € C"\{0} such that Y, | cix; €

10



F.

Proof 1. First we will present Kolchin’s proof. Observe that E = F(ry, 1o, - -+ , 1)
is a Picard-Vessiot extension of F and for every o € G(E|F) we see that o(z;) =
L + ¢iy. Thus, as noted earlier, G(E|F) imbeds into (C",+) as an algebraic
subgroup. Suppose that the r}s are algebraically dependent and say r; is algebraic
over F(za, 13, -+ ,n). We may also assume that g;’s¢ F for any i (otherwise there
is nothing to prove).
Since r; is an antiderivative of an element of F and p; is algebraic over F(ro, 3,
- ,In) from theorem 2.4 we obtain r; € F(ro, 13, ,1,) and thus G(E|F) —
(C™,+) is not a surjection. In particular, if o € G(E|F) fixes ga,- -+ , 1, then o

fixes g1 too. Therefore

G<E|F) = {(dl,dg, s ,dn) c Cn‘Li(dl,dz, s ,dn) = 0,1 <1 < t},

where L; is a linear homogeneous polynomial, which we sometimes call as linear

forms, over C for each i. Now for any 0 € G(E|F) and L € {L;|1 <i <t},

U(L(}:l:x% T axn)) = L(U(;l), O'(m)? T 7U(xn))

= Ly +di,xo+do, -+ 5 +dy)
= L(}tl?x%'” 7}:71) +L(d17d27”' 7dn)

= L(x1,22,+* ,kn) since L(dy, -+ ,d,) =0

and thus L(x1, 1o, - ,tn) € E®®F) From Galois theory we know that ECEF) =

F. Hence L(ry, 82, ) = 21y Gili € F for some ¢; € C. O

Proof 2. This proof does not require Galois theory. For every tuple (¢, -+ ,¢p)

11



€ C"\ {0} let us assume that >  ¢;r; ¢ F . Theorem 2.4 and our assumption
that Y | ¢;r; ¢ F guarantees us a nonempty algebraically independent subset S
of {r;|]1 <i < n} over F. We may assume that S = {r2,13, - ,&»}. Again from
theorem 2.4, we see that r; is transcendental over F(S) or r; € F(S). We will
show that the latter case is not possible and this will prove the theorem.

Suppose that p; € F(S) and let ¢ be the largest positive integer such that

t

Z citi € F(Sy),

=1

where ¢; € C,¢; =1 and S; := S\{;i|2 <<t}
Since |S| < oo and ¢t > 1, such a ¢ exist and since Y ., cr; ¢ F, S; # 0. In
particular, ¢ < n and thus 1,1 € S;. For notational convenience let ¢ := ;1. We

write

t
P
;cm = @

where P := Y77 ja;x’, Q == >0  bir', bs =1, a, # 0,a;,b; € K := F(S; \ {r})
and (P,Q) = 1. Differentiating the above equation, we get 2221 cr, = %
and thus

fQ*=PQ-PQ, (2.2)

where f = > ¢l If f = 0 then (3I_, cir;)’ = 0 and since E is a NNC
extension of F, Z';:l cri € C C F, a contradiction to our assumption that
22:1 citi € F. Thus f # 0. Now suppose that deg) > 1. From the above
equation we see that () divides P'Q) — P(Q)’, which implies () divides PQ)’" and since
(P,Q) =1, Q divides @’. Thus s =deg@ < deg@’. But then deg@’'=deg((st’ +

U, ) 4+ b1 +0)) < s—1, a contradiction. Thus deg@ = 0, that is Q € K.

12



Hence we may assume that 22:1 c;t; = P and note that

f=r. (2.3)

Case 1: deg(P) =0, that is P € K =F(5; \ {¢}).

Then 3'_ cit; = P € F(S, \ {r}). Since t = 1,41, we obtain 3771 cit; € F(S, \
{ti+1}), where ¢;41 := 0. This contradicts the maximality of t.

Case 2: deg(P) > 1

From equation 2.3 we see that

f=ap +(ray +a, )+ +ar +ap. (2:4)

Thus comparing the coefficients of t” we get a,. = 0, that is a, € C. Sincer—1 > 1

comparing the coefficients of "1, we get

ra.f +a,_; =0

/ —Qp_1\7
— = (=)
ra,
== . +c
ra,
—Gr—1

for some ¢; € C and thus r = + ¢ € K, a contradiction to the assumption

rar

that r is transcendental over K.

Case 3: degP =1

Finally if degP = 1 then P = a;x + ag = Zﬁzl c;t; and therefore taking the
derivative we have

ajr +ar +ap = f.
Thus comparing the coefficients, we obtain a] = 0 that is a; € C and a1’ +aj, = f.

13



Now letting c;r1 := —a; and substituting r;4; for r, we get Z:g CLi = ag €

K = F(S; \ {rt+1}) and this again contradicts the maximality of £. Hence the

theorem. u

2.2 Exponentials of Integrals

Here we will prove theorems analogous to theorems 2.4 and 2.5 for the exponential

of an integral setting.

Theorem 2.6. Let E D F be a differential field extension. If there is a e € E
such that e—; € F then either e is transcendental over F or there is an n € N such

that e™ € F.

Proof. Suppose that e is algebraic over F, e—; = feFandlet P(z) ="  az' €
F[z] be the monic irreducible polynomial of ¢e. Then P(¢) = 0 and therefore

(P(e)) = 0, which implies e is a solution of the polynomial

n—1

P =nfa" + Z(a; —ia;f)z" € Flz].

=0

Since P is the monic irreducible polynomial of e, we have nfP = P;. Thus
comparing the coefficients of nf P and P, we obtain nfay = a;, and since nfe" =
(e")’, we obtain (%)/ = 0 (P is irreducible so ay # 0). Note that ¢ and aq are
algebraic over F so % is also algebraic over F. Since (%)’ = 0, as in the proof of

theorem 2.4, we obtain % = c € Cg and thus ¢" =cag € F.

This theorem is also proved in [5], page 24 and [7], page 8. ]

Theorem 2.7. Let E D F be a NNC differential field extension and for i =

1,2,--- n let ¢, € E\ {0} be such that e—e’ € F. Then either ey, - e, are

14



algebraically independent or there exist (ki,--- ,k,) € Z" \ {0} such that the

power product [[}_, ¢¥ € F.

=1 "1

Proof. The proof of this theorem very much mimics the proof of theorem 2.5. Let
us assume that [, e/ ¢ F for any (ky,--- ,k,) € Z"\ {0}. Then from theorem
2.6 we see that there is a nonempty algebraically independent set S C {e;]1 <
i <n} and we may assume that S = {ey, -+ ,e,}. From theorem 2.6 we see that
cither e; is transcendental over F(S) or there is a k; € N such that ¢' € F(S).
We will show that the latter is not possible and this will prove the theorem.

Suppose that there is a k; € N such that ef' € F(S). Let t be the largest positive

integer such that the power product
t

[[e e F(s),

i=1

where k; € Z for 2 <i <tand S; = S\ {&;]2 < i < t}. Since [[_, ¥ ¢ F we

=1 "1

obtain S; # (. Indeed ¢;.; € S;. Let ¢ := ¢;y; and write

where P = Zizoaiei, Q = > " e, (PQ) =1b, =1, a # 0,a;,b; €

F(S;\ {e}). Differentiating the above equation, we get

([T = QQ2 Q’

15



Let f; := z—%, g:=% P= Zi:o a;e’ and Q = Y"1 bie’. Note that g, f; € F and

[4

t t t
k; :
(H ezz)/ = Z(ej )l H ¢;
=1 j=1 i1=1,i#j
t t
kj—1 ’
Yl T &
j=1 i=1,i#j
which implies
t t t
(L = okt I e (25)
i=1 i=1 i=1
!
and thus (g) = (25:1 k:jfj)g. Hence
t
QP' - PQ' = () _kif;) PQ. (2.6)
i=1
Since
QP — PQ' = ((a) + layg)e™ + - - - 4+ ajby)
— (magge™™™ 4+ - + aoby)
= (a) + (I — m)agg)e™™ + - + agbo — agby,
and

PQ = ale”m + (albm,l + Gl,1)€l+m71 + -+ aobo,

substituting in equation 2.6 we get

t
(a) + (I —m)ayg)e™™ + - + apby — agbl = (Z kif;)(ae™™
i—1

+ (albm_l + al_1)€l+m_1 + -+ (lobg).
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The LHS and RHS are polynomial in ¢ with coefficients in F(S; \ {e}). Since

E D F is a NNC extension and [/_, ¢/ ¢ F we have _!_, k; f; # 0 and therefore

zlz

both the LHS and RHS are of degree [ + m. Thus comparing the coefficients of

et we get

—m)ag = (Z ki fi)a
= aq = [(Z kifj) + (m —l)gla

We observe that

t+1
= _kif)a, (2.7)
i=1
where k; 1 :=m — [l and f;11 :=g.
We also know that Htfi e} is also a nonzero solution of the equation 2.7 and
therefore <$§ekl>/ = 0. Since E and F have the same field of constants, there
is an & € C\ {0} such that []1e" = aq;. Now a; € F(S; \ {e}) will imply

zlz

[T51 el € F(S, \ {er1}), a contradiction to the maximality of ¢. Hence the

=1 "1

theorem. []
The Kolchin-Ostrowski Theorem

Proof of theorem 2.3. Let us assume that gq,--- ,r,, ¢, -, ¢, are algebraically
dependent over F and also that ey, --- ,¢,, are algebraically independent over F.
(Note that if ey, - - - , e, are algebraically dependent over F we may apply theorem
2.7 to prove this theorem.) Let us prove that there are constants ¢; € C not all
zero such that Y " | ¢;r; € F.

It is clear from our assumption that ri,--- 1, is algebraically dependent over
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K := F(ey,---,¢,). Since p1,---,r, are antiderivatives of F they are also an-
tiderivatives of K and thus theorem 2.5 is applicable with K as the ground field.
Thus there are constants ¢; € C not all zero such that Z?:l cri € K. Let
S C {e1,-+, ey} be a minimal subset such that > . | ¢;r; € F(S) and for any
subset Sy of S, Y r | cir; & F(S1).

We claim that such a set S is the empty set and this will prove that > | ¢;r; € F.

Suppose not. Then there is a ¢ € S and we may write

n

=g, (2.8)

=1

where P,Q € F(S\ {e})[e], (P,Q) = 1 and @ a monic polynomial. Let f =
(>°F ,cir)'. Note that f € F and if f = 0 then (>, ¢r;) = 0 and since
the extensions are NNC, we see that Y "  ¢r; = a € C C F and we are done.
So we assume f # 0 and note that this condition also says that P # 0. Now

Differentiating the equation 2.8 we obtain
JQ*=PQ-Q'P. (2.9)

Hereafter one can complete the proof by precisely following the part of the proof
of theorem 2.5 that follows after equation 2.2. Here I will give an alternate
argument which is also applicable for the part of the proof of theorem 2.5 that
follows after equation 2.2.

Note that deg(P'Q — Q'P) < r + s and deg(fQ?) =degQ? = 2s.

Case 1: deg@) >degP.

In this case we see that r + s <degQ? = 2s. Since the leading coefficient f

of the LHS of 2.9 is nonzero, we obtain that e is algebraic over F(S \ {e}), a
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contradiction.

Case 2: deg@) <degP

Let e—; =geF, P=>" jai¢, a, #0, Q = > ;_,bie" and by = 1. Note that
P'Q—QP=(a —(r—s)ag)e ™ +---. If (a. —(r —s)a,g) # 0 then r + s =
deg(P'Q—Q'P) and since s < r, deg(Q?) = 2s < r+s, which implies ¢ is algebraic
over F(S \ {e}), a contradiction to our assumption that ¢;’s are algebraically

independent over F. Thus a/ — (r — s)a,g = 0, that is a, = (r — s)ga,. Note that

a, # 0 and since (¢"*) = (r — s)ge’ ® and r # s, we obtain (e;r‘Q’)/ = 0. Thus
there is a constant o € C\ {0} such that ¢"~° = aa, € F(S \ {e¢}) contradicting
the algebraic independency of ¢;’s over F.

Case 3: degP =deg()

Since degQ? = 2s, deg(P'Q — Q'P) < 2s and f # 0, we have f = a.. — (r —
s)ga, and this equation further reduces to f = a] since r = s. Now the facts
(>°F  cir)' = f and K is a NNC extension together will imply that Y ., c;r; =
a, 4+« for some ov € C. Thus Y, ¢;r; = a, +« € F(S\ {e}), a contradiction to
the minimality of S.

Thus S has to be the empty set and hence the theorem. O]

2.3 Extensions by Antiderivatives and by Expo-
nentials of Integrals

Let E D F be an extension by antiderivatives r1,--- ,x, of F. We know from
theorem 2.5 that the set of antiderivatives {g;|1 < i < n} is either algebraically
independent or there are constants ¢; € C not all zero such that Z?:l cr € F.

Also note that if r1,--- , 1, is algebraically dependent over F then we may chose
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a transcendence base S C {r1, -+ ,tn} of E over F and this makes E algebraic
over F(S). But then each r € {r1,--- ,r.} \ S becomes algebraic over F(.S) and
therefore from theorem 2.4 we obtain ¢ € F(.S) which implies E = F(.S). In other
words extensions by antiderivatives are purely transcendental. Thus, to study
an extension by antiderivatives gi,---,r, of F, we may very well assume that
I, &, are algebraically independent over F.

In this section we will prove the following theorem

Theorem 2.8. Let E = F(xy, -+ ,t,) be an extension by antiderivatives xy,- - ,tn

bid
Q}

P,Q € F[t1, -+ ,&n) and (P,Q) = 1. Then there is at € N and F — linear forms

of F and let x1,--- ,x, be algebraically independent over ¥. Letu € E and u =

D; € Spang{ri, - ,tn} for 1 <i <t such that

F(u) = F(D;|1 <i < t).

Moreover these linear forms D; can be explicitly computed from P and Q.

A much stronger result can be obtained using Galois theory and that is, if K is

an intermediate differential subfield of E|F then

K =F(L|l <i<t), (2.10)

where the linear forms are over C. That is L; € Spanc{z1--- ,tn}. This follows
immediately from the following three facts 1. The extension E D F is a P-
V extension with a differential Galois group (C,+)". 2. There is a bijective
correspondence between the algebraic subgroups of (C, +)" and the intermediate
differential subfields of E|F; see the fundamental theorem stated in chapter 1. 3.

The algebraic subgroups of (C,+)™ are solution sets of linear forms over C.
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Though we know the structure of intermediate differential subfields of E|F, it
is not clear how to obtain those linear forms for a given intermediate differ-
ential subfield. The theorem 2.8 shows that there is a way to figure out linear
forms(not over C but over F) for singly differentially generated subfields of E con-
taining F and since a finitely differentially generated subfield is a compositum
of singly differentially generated subfields of E containing F', we may generalize
the theorem 2.8 for any finitely differentially generated subfield of E contain-
ing F. We will prove a similar result for extensions by exponentials of integrals
and will also prove a similar structure theorem for NNC extensions of the form
F(ry, - ,tn,e1, -, en), where ¢ € F and Z—/ € Fand ry, -+ ,tn, 81, ¢, are
algebraically independent over F.

To prove theorem 2.8 we need some results about several variable polynomials

over a commutative ring with unity, which will be dealt in the following section.

2.3.1 Multivariable Taylor formula

Let R be an integral domain with Q C R and let R|yi, - - - , yn] be the polynomial
ring over n—indeterminates yy,- - ,y,. Let P := P(y1, -+ ,yn) € R[yl, C Yl
(ri,-++ ,m)€ R™ and denote P(yy + 71, ,yn + ) by P. Let 5 - denote the
standard partial derivation on the ring Ry, -+ ,y,]. From the Taylor series

expansion of P, we have

(2.11)

1
pP= P+Zn 2—2

Proposition 2.9. Let P € Ry, - ,yn] and for 1 <i <n let r; € R. Suppose

T4l
— 88y1

7

that P divides P := P(yi+7r1,--+ ,yn+71n). Then P = P and Yoy Z%HJ =0 for

every homogeneous component H; of total degree j of P. In particular H; = Hj
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for every j and S0 ;92 ay = 0.

Proof. Rewrite the equation 2.11 as

. " 9P
P—Pzzna 2,22%83/8% : (2.12)

7j=1 =1

If P € R then the proposition follows immediately. Assume that P has a mono-
mial whose total degree is > 1. Denote total degree by tdeg and observe that
when the operator i is applied to a monomial M of P, tdeg (g—M) =tdeg M —1.
Therefore Y 7 r; 24 a = 0, as cancellation may occur or tdeg(Z:Z (M 3y > =tdeg
M —1. Thus ), T%a =0or tdeg(zl ) rzgf) = tdeg P — 1. Before we prove
that >, ri 28 a = 0, we observe from our above discussion that the total degree
of the RHS of equation 2.12 is less than the total degree of P. Clearly, P divides
P implies P divides the LHS of equation 2.12 and therefore P divides the RHS

whose total degree is less than that of P. Thus RHS of 2.12 equals 0, that is

n

2‘ ZZTJ] a9, 3y -=0 (2.13)

and hence P = P.

Let P = Zj:o H;, where H; is the homogenous component of total degree j of

P. Again we observe that if > | Z%HJ # 0 then the total degree of > | 188[;
=j5—1
Now consider the homogeneous component Hy. We know that the ZZ 1T %Zk

= 0 or the total degree of > 7" | r; G-k aH’“ is k — 1. Now we will show that he latter

cannot happen. Since
n

OP & 8Hl
Ti— =
Songy =3 Yn

i=1 v i=1
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we may rewrite equation 2.13 and obtain

" 9H, i 6Hl 1
- : — 2.14
;7’ lz(;zl 221'1 rjayay’ ( )

Since the total degree of the RHS is < k& — 2 we conclude that the total degree

of LHS can not be k — 1. Thus ln%H’“ = 0. Note that Y " 17“1%1{’“ =0
implies Y " =1 Yo 1T ay 8’; = 0 and so on... Therefore from equation 2.11 we
get Hk = Hk
Now noting

n n k=1 n n

o O°H,
2D g =) D D T
7j=1 i=1 aay =0 j=1 =1 aay

and Y, ik 8Hk = 0, we may rewrite equation 2.14 and obtain

_Z k—1 Zozlrl l—|—2';lel zga a;
i j i=

By comparing the total degrees of the LHS and RHS, we conclude that > |

Tzagk L =0 and thus H,_; = Hk 1. Similarly we can show that Z 1 Ti a 91 —

for every j. From this equation it is easy to see that H; = H; for each i and that

n oP __
> i1 Tigy,, =0 O

Proposition 2.10. For every homogeneous polynomial P € Ry, - - ,yn| there

is a set {D;|1 < j < t} of linear forms over R such that P = P for some

(r1i,-++ ,rn) € R™ if and only if (ri,--- ,r,) € R™ is a solution of the system
{D;j]1 <j<t}.
Proof. Suppose that P = P for some (rq,--- ,7,) € R" then from proposition
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2.9 we see that
" 9P

By grouping all the monomials, we could rewrite Y, rz-g—; as

t
ZDj(rh U 7rn)ij7
j=1

where {D;|1 < j <t} is a system of linear forms over R and X*“7 represents a

n oP

primitive monomial that appears in ) )", Tigy: Thus equation 2.15 becomes

t
> Di(ry, )Xy, =0
j=1

and clearly P satisfies equation 2.15 if and only if the the tuple (rq,---, r,) € R"

satisfies the system {D;|1 < j <t}. O

Proposition 2.11. Let R := Clxy, - - - , 2] be a polynomial ring and let D(yy, - -,
Yn) be a linear form over the ring R with variables yy,- -+ ,y,. Then there is a sys-
tem {L;} of linear forms over C such that D(cy,- -+ ,¢,) =0 for (¢i--- ,¢,) € C"

if and only if (¢1--- ,¢,) € C" is a solution of the system {L,}

Proof. By viewing the polynomial D(y, -+ ,y,) € R[y1, - , yn] as a polynomial
over the ring Clyi,--- ,y,| with variables zy,--- ,z,,, we obtain vectors w; :=
(Wi, - - Wjm) € W™ where W := N U {0} and linear forms L;(y1, - ,yn) €

spanc{zi, -+ , T} such that

. . o . . Wi Wi . . oy .
where X, is the primitive monomial 7”" - - - z/™. Since primitive monomials are
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linearly independent over constants, we see that D(cy, - -+, ¢,) = 0 if and only if

(c1,- -+, ¢y) is a solution of the system {L;|1 < j <t} of linear forms over C. [

Proof of theorem 2.8. Let G := G(E|F) and let H < G be the group of all au-
tomorphisms that fixes F(u). Since ¢(T) = T'(r1 + c1,- -+ ,In + Cne) for any

polynomial " € F[ry, -+ ,1,] and ¢ € G, we observe that G keeps the ring

Flri, - , ¢, invariant.
For any 0 = (¢15, "+ , Cno) € H we have o(u) = u, that is
o(P) P
o(@Q) Q
and thus
o(P)Q =o(Q)P. (2.16)

Since (P, Q) = 1, from equation 2.16 we see that P divides o(P) and @ divides

U(Q) Note that U(P) = P(Fl +6107 T axn_‘_cna) and U(Q) = Q(Fl +Claa e 7?n+

¢no) and therefore from proposition 2.9 we obtain

o(P)=P and (@) = Q. (2.17)

Thus every automorphism that fixes u also fixes P and ) and therefore from
fundamental theorem F(P, Q) = F(u). If both P,Q € F then G fixes u and thus
F(u) = F. Let us assume P ¢ F and consider ¢(P) = P(r1 + c14, - ,In + Cno)
for € G. Now apply propositions 2.9 and 2.10 with R := F to get linear forms
{Ai|1 <i<s} C Spang{ri--- ,rn} such that A;(cig, -, cnp) = 0 iff ¢(P) = P,
where ¢ € G. We also see that such A;’s are fixed by all ¢ € G that fixes P
and vice versa. Therefore from the fundamental theorem we conclude that F(P)

=F(4;|]1 <i<s)CF(u). Similarly if @ ¢ F then one can find these linear forms
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for @ say {B;]1 <i <t} C Spang{r1--- ,r.} such that F(Q) = F(B;|1 <i <)
C F(u). Now u = 5 e F(Di1 <i<r), where {D;|]1 <i<r}={A4]1l<i<s}
U{B;|l < ¢ < t}. On the other hand, both the fields F(4;|1 < i < s) and

F(B;|1 < i <t) are subfields of F(u). Thus we see that

Flu) = F(Di|1 < i < t).

]
Remark 2.12. (Algorithm)
Let F(gy, - ,r,) be an extension by antiderivatives gi,---,r, of F and as-
sume that r1,--- ,r, are algebraically independent over F. Let u = g, P.Q e

Flri,--- ,r.] and (P, Q) = 1. To compute the differential field F(u) we do the
following;:

1. Observe from equation 2.17 that o(u) = w if and only if o(P) = P and
o(@Q) = @

2. To find all linear forms corresponding to P = P(xr + ¢y, -+ , &, + ¢,) and
Q=Q(+ci, - ,tn+ cy) we perform steps 2a, 2b and 2c.

2a. From proposition 2.9, we see that P = P(x + ¢, -+ ,tn + ¢,) if and only if

and similarly Q@ = Q(x + ¢1, -+ ,¥n + ¢,) if and only if
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2b. We rewrite the above equations as

t
ZAj(Cla T acn)ij =0
j=1

and
Z Bj(cla e 7CTL)YOJj - 07
j=1
where {A;|1 < j <t} C Spang{ri, - ¥} is a system of linear forms over F and

X“i represents a primitive monomial that appearsin ) | Tig_@i and {B;|1 < j <

s} C Spang{gi,--- ,r,} is a system of linear forms over F and Y’ represents a

primitive monomial that appears in ., cig—ﬁ.

2c. Observe that the displayed equations from 2b holds if and only if A;(c,
c,¢,) = 0forall 1 < j < tand Bj(cr,--+, ¢,) =0forall <j <s.

Thus o(u) = w if and only if ¢ := (c15, "+ ,Cno) is a solution of the system

(D1 <i<r}={4]1<i<s}U{B]l1<i<t}).

3. Thus the algebraic subgroup of all automorphisms of G that fixes u also fixes

{D;|1 < j < r} and vice versa. Therefore from the fundamental theorem we

conclude that F(u) equals the differential field F(D;|1 < j <r).

4. Finally, if F is a fraction field of a polynomial ring R := Clzy, -,z C F

then from proposition 2.11 we see that each of the D;’s can be reduced to a finite

set of linear forms Lj;;, 1 <1i < m; over C and thus F(u) = F(D,|1 < j <r) =

2.4 Extensions by Exponentials of Integrals

Let F be a differential field with an algebraically closed field of constants C. Let

E D F be an extension by exponentials of integrals e;,--- ,¢, of F and G the
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group of all differential automorphisms of E over F. Since f; := E—; € F, ¢; satisfies

the first order linear homogeneous differential equation ¢, = f;e;. For any o € G,

o(e;) = fio(e;) and thus (@)’ = 0. Since E is a NNC extension of F, there

is a ¢;, € C\ {0} such that U(:i) = ¢ip. Thus o(¢;) = ci¢;. Also note that the
action of o on the elements ¢; completely determines the automorphism o. For

any ¢,0 € G,

P(o(e;)) = d(Cioei) = CigCioti = CioCigei = 0(P(e;)). (2.18)

Thus G is a commutative group and also the map o — (¢, ,Cpe) is an
injective algebraic group homomorphism from G to (C\ {0}, x)™.

If E = F(e), e—; € F then G is an algebraic subgroup of (C \ {0}, x). Thus if
G is non trivial then it has to be a finite subgroup of (C\ {0}, x). Note that
G could be a finite subgroup of (C \ {0}, x); for example, let F = C(x) and let

E = F({/x), n > 2. Then we have the equation
n / 1 n
(Vo) = —3/e.
na

Thus E is an extension by an exponential of an integral {/x of F. Clearly /z ¢

F(therefore G is not the trivial group) and for any automorphism o € G

J(%) :CU%
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In fact one can also show that G is the group of nth roots of unity (follows from
the fact that the ordinary Galois group and the differential Galois group are the
same if the extension E of F is finite).

Let 90 := {J]/_, ™

=1 "1

m; € Z*}, the set of all power products of {e;]1 < i < n}.

We will now prove the following theorem

Theorem 2.13. Let E = F(ey, -+ ,¢,) be an extension of F by exponentials of
integrals eq,--- ,e, of F and let ey, --- ,e, are algebraically independent over F.
Let u = g, P,Q € Fley, -+ ,e,] and (P,Q) = 1. Then there are power products

p; €M, 1< 5 <t such that

F(u) =F(p1,- -, p1)-

Moreover, we may explicitly compute the power products p; from P and Q.

Proof. Let G := G(E|F) and let H < G be the group of all automorphisms of
G that fixes u. So, for o € H we have o(u) = u and therefore o(P)Q = o(Q)P.
Thus P divides o(P)Q and since (P,Q) = 1, P divides o(P) and similarly Q
divides 0(Q).

We may assume either P or @) is not in F; otherwise the differential field F(u) =

F. Assume that P ¢ F and write

P = meimi7 (2.19)
=1

where m; are primitive monomials and f,, € F. Note that

U(P) = Z flmmi(clou e 7Cna>mi
i=1
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and since ¢;, € C\ {0}, m;(c1p,-++ , o) # 0. Thus P and o(P) have the same
number terms and every monomial that appears in P also appears in ¢(P) and
vice versa. But P divides o(P) and therefore there is a d, € F such that o(P) =
d,P. In fact m;(cs1,- - , Con) = d, for all 7 since m; are linearly independent over
F. Thus d, € C\ {0}.

This shows that m&l is fixed by every ¢ € H. Thus, from fundamental theorem,
we obtain C(u) D F(:[1 < < r). Since @ also divides ¢(Q), writing @ =
Y71 gn;1; similar to equation 2.19, we conclude that there is a e, € C\ {0} such

that 0(Q) = ¢,Q. Since o(5) = §, we have d, = ¢, and thus o fixes ;. Thus

C(u) D F(;2]1 < j <t). Now we have

C(u>3F(ﬁ,ﬁy1gz‘gr,1gg’§s).

m; My

On the other hand we could write

P D it Jmir

Uu=-==r . 1w
Q Zj:lgnjgjl

for all 1 <4,j <r. Hence from fundamental theorem it follows that

F(u) = F(py,--- ,py),

where {py,- -, p} = {5, Z1 <i <1 <j <s} O

7m1

Now we will prove a theorem which is a combination of theorems 2.8 and 2.13. The
following theorem also contains a procedure to compute the differential subfields

of extensions by antiderivatives and exponentials of integrals.

Theorem 2.14. Let E C F be a NNC extension and let E = F(ry, -+ ,tn,
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61+ ,&y), where t; € F, - € F and xy,--- ,tn,e1-- , ey are algebraically inde-
pendent over F. Let uw € E and suppose that u = —, where P,Q € Flry, -+ ,tn,
e1--- ,em) and (P,Q) = 1. Then fori=1,2,---,t and j = 1,2,---s there are
F— linear forms 0; over the set {r;|1 < i < n} and power products p; over the

set {e;]1 < i <m} such that
F(u) =F(0;,p;]1 <i<t,1<j<5s).

Moreover these forms can be explicitly computed from the polynomials P and Q).

Proof. Let u # 0 and u = g € Flry, - ,tn,e1-+ , e, (P,Q) = 1. Rewrite
P and @ as polynomials over the ring Flry, -+ ,zr,][e1--- ,en]. That is P =
Z?:o A, My, Q = 22:0 b1, where Gy, by, € Flp1,-++ ,1,) and ay, and by, are

non zero. Now divide through P and @ by an,. Thus we obtain

aml
P Zz 0 amk

u = (2.20)

Q Zz 0 a,mZ n;
and now the polynomials P, () becomes polynomials over the ring Kley, - -, ¢,,],
where K := F(ry,- -+ ,1r,). Hereafter we will call Zz 0 aﬂmz as P and ZZ 0 f"’ n;

as Q. Note that P and @ are relatively prime in the ring Kley, -+, e,].
We observe that E O F is a P-V extension and let G be the group of differential
automorphisms of E D F. Thus there is a subgroup H < G such that F(u) is the

fixed field of H. Let o € H. Then o(u) = u and therefore we obtain

7(P)Q = o(Q)P. (2.21)

Since (P, Q) =1 1in K[ey, - ,¢,], P divides o(P) and @ divides o(Q).
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We observe that

U(P> - Z O(ami)mi@loy ce 7Cm0)mi7

i=0 U(amk>
~ (bn,)
UQ: i Ni(Cios " 5 Cmo )W
( ) o U(amk) ( 1 )
and that Z((sm)) € K since K is a normal extension of F, and m;(c1,, -+, Cmo) € C.
mr

Therefore o(P),o(Q) € Kley, -+ , ¢,

; . bn, b ‘ ‘
Z:;) =Im g(R) = R U(m_k> = m&k and a(mﬁk) =5

From the facts that P divides o(P),

Claim: o(

Qmy, ’ Qmy, am,

a o (am,)
P = —m; and o(P) = m;(clq, s Cmo )My,
i=o m W ; o () ( )
we see 0(P) = my(Cig, -+, Cmo) P. Since m; are linearly independent over K, for
each i, we have
O-<a/m7;) _ mk<cldu e 7cm0) %
U(amk) mi(clm T 7Cma) Ay,
Observe that ay,, € Flr; -+ ,1,] and now replace Zmi by g"”, where oy, = a;i,
M m; i
Gi = (Um;s O, ) and By, = %. Thus we have
(), = DI 00) 5 (222)
mi<clo> T 7cma)

mk(clo'a"' 7cma)

ey € €, we have an, divides o(am,) and

Clearly (oum,;, Om;) = 1 and since
B, divides o (B, ). Apply proposition 2.9 and obtain o(auy,) = @m,, 0(Om,) = B,

and thus from equation 2.22 we have

mi(cla'a e 7cm0')
mk(clav T 7cma>

= 1.
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From this equation it is clear that

oDy = M (2.23)
my my
Since g(z::) — ZT‘“Z', we have O'(Z:;) = Z:; for each 7. The claims a(i:;) = ;L;

and o(2:) = 2L follows similarly.

my my
We may apply theorem 2.8 for each ay, and [y, and obtain F— linear forms
over {r1, - ,tn,} so that the differential fields F(ay,) and F(Gny,) equals the
field generated by their corresponding linear forms. Thus we have linear forms

{Di1,- -+, Dy,} such that

O,
F< >:F<O‘m¢'7ﬁm¢'>:F(Dilv"' 7Diti)'
B,
Note that Zmi = Zm" and therefore
mj mr
A,
F< > :F(le 7Diti>-
U,
Similarly we can obtain linear forms {Ejy,--- , Ejs;} so that
bn,
F<a > = F(Ejla 7EJ’8;‘>'
my,

Let {041 <@ <t} ={Du, -, D, } U{Ej,- -, Ejs; }, {p1, - s} = {my|]1 <

i < k}U{n;|1 <j <} and p; := my. Then writing

ST
=0 amk myg

TEL
=0 amk mg
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we immediately see that

o(u) =u < o(0;) :ai’g(ﬂ) _ b

P1 p1

Hence the theorem.
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Chapter 3

Tower of Extensions by

Antiderivatives

Let F be a differential field with an algebraically closed field of Constants C
and let F, be a complete Picard-Vessiot closure of F (every homogeneous linear
differential equation over F, has a full set of solutions in F, and it has C as its
field of constants and F, is minimal with respect to these properties). All the
differential fields under consideration are subfields of F.

A differential field E is called a tower of extension by antiderivatives (or an
extension by iterated antiderivatives) of F if there are differential fields E;, 0 <

1 < n such that

and E; is an extension by antiderivatives of E; ; for each 1 <i < n.

Theorem 3.1. Let M D F be differential fields and let
E=E,DE, 1D---DE; DE;:=F
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be a tower of extensions by antiderivatives. Then u € E is algebraic over M only

if u e M.

Proof. We will use an induction on n to prove this theorem. Consider the tower

M-E=M-E,OM-E, ;2---ODM-E; O M.

Clearly, the above tower is a tower of extension by antiderivatives. Suppose that
u € E is algebraic over M.

Observe that v € M - E and assume that if u € M - E,_; then u € M(this
is our induction hypothesis). Clearly, M - E is a Picard-Vessiot (extension by
antiderivatives)extension of M-E,,_; and the differential Galois G(M-E|M-E,,_;)
is isomorphic to (C, +)™ for some m € N. Note that u is algebraic over M - E,,_;
since M-E,,_; D M. We also observe that the index [M-E,,_(u), M-E,_4] < oc.
Then from the fundamental theorem we should have a finite algebraic subgroup of
GM-EM-E, ;)= (C,+)™" fixing M- E,_(u). Since the only finite algebraic
subgroup of (C,+)™ is the trivial group, we obtain M - E,_(u) = M - E,,_;
and thus u € M - E,,_;. Now we apply our induction hypothesis to prove the

theorem. []

Note that we require M only to be a differential subfield of F,. We note a
corollary of the above theorem here; if E O M D K D F are differentials fields and
E is a tower of extension by antiderivatives of F' then M is purely transcendental

over K.
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3.1 Generating Algebraically Independent An-
tiderivatives

Proposition 3.2. Let F(ry,---, 1) D F be an extension by antiderivatives
1,4 of F oand suppose that t1,--- ,1; are algebraically independent over F.
If R € Flr1,--- ,u] is an irreducible polynomial then the polynomials R and R’

are relatively prime.

Proof. Let R € F[r1,--- ,x] be an irreducible polynomial. Suppose that R’ and
R are not relatively prime. Then R, being irreducible, has to divide R’. Observe
that the total degree of R’ is < the total degree of R and since R divides R’, the

total degree of R equals the total degree of R'. Thus
R ={R

for some f € F. Let G be the differential Galois group of F(xy, -, 1) over
F and let 0 € G. We observe that o(r;) = s; + ¢i, Civ € C and therefore
o(R) = R(x1 + €10, 81 + €1p). We also observe that R’ = fR implies o(R) =
¢ R for some ¢, € C* see section 2.4. Then R divides o(R) and thus from
proposition 2.9 we obtain ¢(R) = R. Thus every automorphism of G has to fix
R and since F(ry,--- ,1;) is a Picard-Vessiot extension of F, we obtain R € F, a

contradiction. O

Theorem 3.3. Let F(ry, -+ , 1) D F be an extension by antiderivatives ty,- - ,
of F. Let S,T € Flgy,- - ,t,] be relatively prime polynomials and assume that T
has an irreducible factor R € Flxy,--- 1| such that R* does not divide T. Then

there is noy € F(r1,--- 1) such that v’ = %
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Proof. Suppose that there is a y € F(gy,---,1;) such that v’ = % There are

relatively prime polynomials P, @ € F[ry,- -, ] such that y = g. Thus taking

the derivative we arrive at
Q*S=T(P'Q—-Q'P). (3.1)

Note that R is an irreducible factor of T and therefore from the above equation
R divides Q?S. Since S and T are relatively prime, R has to divides Q?, which
implies R divides (). Let n be the largest integer so that R" divides ). Then
R divides Q? and again from the above displayed equation, R™*! divides
T(P'Q — Q'P). Note that R divides T but R? does not and thus R™ divides
P'Q — Q' P. Since R" divides ), and P and Q are relatively prime, we obtain
R™ divides @'. Let H € F[r;---,x5]| be a polynomial such that Q@ = R"H.
Note that R and H are relatively prime polynomials. Then R™ divides Q' =
nR"'R'H + R"H’, which implies R divides R, which contradicts proposition

3.2. [l

Let E D F be differential fields and let r1,--- ,5; € E be algebraically independent

antiderivatives of F.

Definition 3.4. An antiderivativey € F of F(zy,--- ,1;) is called an Irreducible-

explicit(I-E)antiderivative if y’ = CAB, where A, B,C € Flry,---,ul, (A, B) =

(B,C) = (C,A) =1 and C is an irreducible polynomial.
We also note from proposition 3.3 that such a y & F(zy,--- ,1).
_Ai

C:B;?

where Cz,A,L,B,L € F[?l? s ,}Zl],(Ai, Bl) :(BZ,CZ) :(C’L;Az) = 1, and Satisfying

Definition 3.5. For each i =1,2,--- ;m let v; € U be an antiderivative of

the following conditions;
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Cl: C; is an irreducible polynomial, C; 1 C; if ¢ # j and C; {1 B; for any

1<ij<m.

C2: for every 1 < i < m there is an element r¢, € {r1, - ,5} such that the

.1 9C 0A; _0B; _
partial P # (0 and bre. ~ ore. 0.

We call vy,---,19, a J-I-E(Joint-Irreducible-Explicit) antiderivatives of F(ry,
-+, 11). We call the differential field F(vny,--- , 0, £1,- - , 1), a 2-tower J-I-E

extension of F.

The following theorem shows any set of antiderivatives yy,- -+ , 9, of F(x1, -+ , 1),
p, = %, becomes algebraically independent over F(gy, - ,1;) once it satisfies
C1 (see theorem 3.6) and thus J-I-E antiderivatives of F(z1,--- ,1;) are alge-

braically independent F(x1,- -« ,1).

Theorem 3.6. Let E D F be differential fields, rv,--- ,1; € E be antiderivatives
of F and assume that x1,--- ,x; are algebraically independent over ¥. For each
i=1,--- ,mlet A;, B;,C; € Flry, -, 1], (A, B;) = (A;,Cy) = (B, C;) =1 be
polynomials satisfying the following condition

Cl: C; is an irreducible polynomial, C; 1 C; if i # j and C; { B; for any

1<i,j<m.

Let 91, 9, € Fo be antiderivatives of ¥ (x1, -+ ,1) with v, = C?éi' Then

D1, ,Om are algebraically independent over F(ry, -+ ,11).

Proof. Suppose that yi,--- v, are algebraically dependent over F(ri, - ,1;).
Then Kolchin-Ostrowski theorem guarantees constants aq,--- , ¢, € C, not all
zero, such that > 7" a;n; € F(ry, -+ ,1). Assume that oy # 0.

First we note that if ", a;n; € C then > ", ai% = 0 and now writing
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ZZL2 al% = g: F7G € F[?h e apl]v we obtain

Ay F

“eB TG
— OélA1G = —FCBy.

Since A; # 0, we obtain F' # 0 and thus we may assume F and G are relatively
prime polynomials. Clearly, C divides A;G and since A; and C] are relatively

prime, C; divides G. On the other hand " = L implies G divides

1= 2alCB

[1:2, C;B;, which implies C; divides [[;~, C;B; contradicting the condition C1.

Thus 21" ain; € Fry, - ,1) \ C.

Let P,@Q € F[ry,- -+ , 1] be relatively prime polynomials such that

< P

Let S,T € F[r1, -+ ,x] be polynomials such that % = <§>/ = Z;nlaZCB We

know that " a;9; ¢ C and therefore S # 0 and thus we may assume S and
T are relatively prime. Since oy # 0, we see that C; divides T. And, T" divides
H;’;l C;B; and that C;, B; satisfies condition C1 implies C? does not divide 7.

Thus P,@,S and T satisfies the hypothesis of theorem 3.3. But, taking the

P)/

derivative of equation 3.2 we obtain (5 = %, which contradicts theorem 3.3. [

Theorem 3.7. Let E O F be a NNC extension. If there is any € E\F such that

¢’ € F then for anyn € N and distinct o, - -+ , o, € C, the elementsy; € Fo such

that v, = ”La are algebraically independent over F(r). Moreover, the differential

field F(9q,1), where v, = HLa and o € C is not imbeddable in any Picard-Vessiot

extension of F.
Proof. The algebraic independency of y;’s follows immediatedly for theorem 3.6.
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Suppose that there is an o € C such that E D F(p,,r) O F for some Picard-
Vessiot extension E of F. Note that F(x) is a Picard-Vessiot sub-extension of E D
F with differential Galois group G(F(r)|F) « (C,+), and every automorphism
of F(r) fixing F lifts to an automorphism of E over F. In particular, there is an

automorphism o € G(E|F) such that o(r) = ¢+ ¢ for some ¢ # 0. Observing that

, 1
Ua_z:—i-oz
7 ! 1
r+a-+ic

and that o € G(E|F), we obtain H, := 0'(,) € E. Since a +ic are distinct for
1=1,2,---,m, the elements 9., Yor2c, - - - € E are algebraically independent
over F'. Thus we obtain a contradiction to the fact that a Picard-Vessiot extension

has a finite transcendence degree over. O

Remark 3.8. Thus if E D F are differential fields such that r € E\ F and ¢/ € F
then the differential field F(y,, 1), v, = HLa and a € C is not imbeddable in any
Picard-Vessiot extension of F and thus y, ¢ F;. We may apply the above theorem
again for the element vy, with F; as the ground field. Then for any 33 € F, such
that 3; = %%6, B € C, we obtain that the differential field Fi(35,9,) is not
imbeddable in any Picard-Vessiot extension of F; and thus 35 ¢ Fo. A repeated
application of the theorem proves the following: If F is a differential field that

has a proper extension by antiderivatives then for given any n, F, has proper

extensions by antiderivatives.
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3.2 Differential Subfields of J-I-E Tower

In the next section we will prove a structure theorem for the differential subfields
of a certain tower of extensions by antiderivatives, namely J-I-E extensions. These
towers are made by adjoining J-I-E antiderivatives.

As usual, let C be an algebraically closed-characteristic zero field, F be a dif-
ferential field with field of constants C and let F, be a complete Picard-Vessiot

closure with C as its field of constants.

3.2.1 Automorphisms of J-I-E towers

Let 911, -+, 91, be algebraically independent antiderivatives of F and for i =

1,2k, let E; := E; 1(0;1,9i2,  ,9n,), where Eg := F and for i > 2

nd for h
o By @ d for eac

9i1, V2, - -+, Din, are [-E antiderivatives of E;_;, that is, U;j =
2 <i<kandforall 1 <j<nmn,; Ay, Bi;,Cij € Eialvi11, -+ ,9i—1n, ,] are
polynomials such that (A;;, B;;) = (Bij, Cij) = (A;j, Cij) = 1 and satisfying con-
ditions C1 and C2. Let I; := {n;;|1 < j < n;}, Ay := Spanc U_; I;, Ay = {0}

and E := E;. We will also recall the conditions C1 and C2 here

C1: Cj; is an irreducible polynomial for each i, j. For every i, Cjs 1 Cj; (that is,

they are non associates)if s # ¢t and Cjs 1 By for any 1 < s,t < n,.

C2: for every 1 < j < n; there is an element y¢,; € {Mi=11,- -+ ,Di—1n,_, } such

that the partial 6;2-; # 0 and 04y _ 0By _ .

e, . at)cl.]. _at)cij

V)

Definition 3.9. We call

E=E,.DE;, 1D ---DE;DE; DEy:=F (33)

42



a tower of extensions by J-I-E antiderivatives. Note that E; is an ordinary an-

tiderivative extension of F.

Let G := G(F|F), the group of all differential automorphisms of the complete
Picard-Vessiot closure F,, of F. We will show that the group of differential
automorphisms G(E|F) is isomorphic to the additive group (C, +)° for some § <
tr.d E|F. Moreover, the action of G(E|F) on E is given by o(;;) = 9 + Cijo,
cijo € C.

Lemma 3.10. For any 0 € G, and t > 2 the elements of I;, namely, Y1, 0,
“o O, are J-I-E antiderivatives of the differential field E,_1(c(E;_1)), which is

the compositum of differential fields E;_y and o(E;_1).

Proof. We observe that E;_1(0(Ey)) = E;_1(U{_,0(1;)) and since o(y1;) = v1; +
Cjoy, By_1(o(h)) = Eyq. For 2 < s < t—1, let I C o(l;) be a tran-
scendence base of the differential field E;_;(0(E;)) over E;_1(c(Es_1)). Note
that o(I,) consists of antiderivatives of E; ;(0(Es_1)) and that E; ;(c(Es_1))
(0(1s)) = Ey_1(0(Eg)). Thus, E;_1(0(Eg)) is an extension by antiderivatives of
E; 1(c(Es_1)) and therefore, E; ;(0(Es_1))(I7) = E;_1(0(Ey)) for each 1 < s <
t—1.

Thus E,_1(0(E;1)) = E,1(UZ1I7). Since E; 1 = B o911, D 1n, ),
Ve 11, " ,Di_1n,, are algebraically independent over E, s(because they are J-I-
E antiderivatives) and the set U'Z]I¢ is algebraically independent over E,_;, we
obtain that v;_11,--- ,9;_1n, , are algebraically independent over E, o(UZ117).
Also note that

Ei 5(UZ1I7) = Eyo0(Eio) (1] )

and that the elements of I7 | are antiderivatives of E; o0 (E;_5). Thus E;_o(U!Z{1I7)

is a differential field which is also a fraction field of the polynomial ring E;_o[U!Z1I7].
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We will now show that 9,1,9:92, -, 9, are J-I-E antiderivatives of the com-
positum E;_; o(E;_1). Since 941,912, , 0, are J-I-E antiderivatives of E;_j,
there are polynomials A;_1;, Bi—1j, Ci—1j € Ey_o[94-11,9¢-12, -, Yi—1n, .| such
that (Ai1;, Bi—1j) = (Bi—15, Ci—1j) = (Ai—1j, Ci—1;) = 1 and satisfying conditions
C1 and C2. We observe that all the above conditions on A;_y;, By—1; and Cy_y;
holds in the polynomial ring B, »[U=] I, 9, 11, Yi—12, - > D1, ] as well and

therefore by “Gauss’ lemma” these conditions hold in the ring

Et—2(U§;iIf)[Ut—11> Di1,2: > Demtmys]-

Thus 941,92, -+ , e, become J-I-E antiderivatives of the field

Et—Q(UE;%Ian De11, Ve—1,2," " ;Ut—l,nt,l) = Et—la(Et—l)-

]

Theorem 3.11. Let M be a differential subfield of Fo, 11, -+ ,1; € Fo be alge-
braically independent antiderivatives of M and for v = 1,2,--- ;m let ©; € F
be J-I-E antiderivatives of M(x1,--- ,x1) ( that is, v, = Bj?é"L; where A;, B; and
C; satisfies conditions (A;, B;) =(B;,C;) =(A;,C;) = 1, C1 and C2). Suppose

that there is a subgroup H of G, of differential automorphisms fixing M and an
element s == > 7 o;n; € M(91,- -+, 0, L1, -+, 1), @; € C such that for every
o €M, o(s) € M(by, - , O, X1, -+ ,%1). Then every o € H fizes A;, B; and C;

whenever «; # 0, that is o(v;) = v; + ¢y, for some ¢, € C. In particular, for

every o € H there is a ¢y := $(C14, "+ ,C1s) € C such that o(s) = s+ ¢,.

Proof. If H is the trivial group then the proof is trivial. Assume that H is a

nontrivial group. Since ¢, € M, M(ry,- -, ) is an extension by antiderivatives
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of M and thus the differential field M(zy, - -« , ;) is preserved by H. In particular

J(Cf_‘é_) € M(x1, -+ ,5). Then M(pq, -+ ,0m, k1, -+, &) has m+1 antiderivatives
> @io(9i), 91, 9, of M(xy, - -+, 1) and therefore the antiderivatives has to
be algebraically dependent over M(xy,- -+ ,z;). Now from the Kolchin-Ostrowski

theorem we have constants 7v;, 1 <7 < m + 1 not all zero such that

D i+ Ymrr Y @io(0) € M(@r, -+ 1) (3.4)
=1 =1

Note that if 9,11 = 0 then v;’s become algebraically dependent over M(zy, - -+ ,1;),
which is not true. so 7,41 # 0 and thus we may assume 7,,;1 = 1(dividing
through the equation 3.4 by Y41)-

First we will show that o(C;) = C; for all 0 € H whenever o # 0. Then we will
use this to show that H indeed fixes A; as well as B; whenever «; # 0.

Suppose that there is a p € H and an ¢,1 < ¢ < m such that a; # 0 and
p(C;) # C;. For convenience, let us assume that ¢ = 1. The automorphism p
acts on the ring My, - - -, ] by sending r; — r; + ¢;, and if p is nontrivial then
clearly p has an infinite order. Thus we have p(Cy) = Ci(xr1 + cip, -+ , 0 + Cip)-
From proposition 2.9 we see that C divides p(Cy) only if C; = p(C}) and thus
p(Cy) and C) are not associates (over M). In fact, for any i,5 € NU {0}, i # 7,
the elements p'(C}) and p’/(C}) are non-associates. Since every polynomial in
M|ry, - -+ , ;] has finitely many (non-associate) irreducibles and p*(C}) is also an

irreducible for each ¢ € N, there is a 7 € N such that
P (C1) BBy --- By,

We also note that p/(Cy) 1 p?(B;) for any 1 < j < m and p’(C}) 1 p?(C;) for any
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i # 1; otherwise C1|Bj, or C1|C; for some i # 1 and in either case, contradicts

the condition C1. Thus

p'(Cy) does not divide B ﬁ Bip’ (B)p’ (Cy). (3.5)

=2

The equation 3.4 is true for all ¢ € H and thus there are polynomials A, B €
Mgy, -+, 1]

m e ) A

> i+ Y i (n) = B

i=1 i=1

Let S,T € Mgy, - -+ , 1] be relatively prime polynomials such that
P (A1) — A - PA) S

and let F;G € M|y, - - ,1] be relatively prime polynomials such that

F A - P (A)
G 2CE T & Cp By &0
Note that
G divides By || Bip’(Bi)p’ (C:) (3.8)
=2
Suppose that S = 0. Then
N PA)  _F
p(Cp(B) G
= a1/ (A)G = p’(C1)p' (B F. (3.9)

Since A; is a non zero polynomial, so is p’(A;) and thus a; # 0 implies F' # 0.
From equation 3.9 we obtain p’(C}) divides G and now equation 3.8 contradicts

equation 3.5.
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Thus S # 0. Substituting equation 3.7 in equation 3.6 we obtain

P F_S
PC)P(B) G T
(a1’ (A1)G = p(C1)p? (B1)F) T = SGp? (Ch)p’ (By). (3.10)

From the above equation 3.10 we obtain p/(C}) divides ajp’(A;)GT. Again
equations 3.8 and 3.5 guarantees p/(C}) does not divide G and clearly p?(C})
does not divide p?(A;). Therefore p?(C}) divides T, which implies that p’(C))
is an irreducible factor of T. Thus we have produced polynomials A, B, S,T €
M[zy, - -+ ,ts] contradicting theorem 3.3. Hence o(C;) = C; for all o € H.

Now we will show that H fixes A; and B; for every 1.

Assume that a; # 0 and pick a 0 € H. Note that o(C;) = Cy and that o is
an automorphism, therefore Cy # o(C;) for any j # 1. If P € M[ry,--- , 5] is a
polynomial and C divides o(P) then c~!(C}) divides P. But o(C}) = C implies

o 1C] = C) and therefore C; divides P. Hence we note that

C; does not divide B; H Bio(B;)o(Cy). (3.11)

1=2

Take the derivative of equation 3.4 to obtain

" Az = O'(AZ) Al O'(Al)
2 —_— . — / o /
b (ZQ VB T 22 ey T e TN eemy | TP 4B

(3.12)
Let F,G € M[ty,- -, be relatively prime polynomials such that
- A o(4) F
i 24 _ L 3.13
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and let S, T € M|z, - ,1;] be relatively prime polynomials such that

M1 A + oy o(Ay)
ClBl 010(31)

F S

— == 14
+ o7 (3.14)
Note that (4)' = £ and that

G divides ﬁBia(Bi)a(Ci). (3.15)

=2

We rewrite equation 3.14 as
TG ('ylAla(Bl) -+ @10(141)31) + TFClO'(Bl)Bl = SGC’la(Bl)Bl (316)

Again, we will split our into two cases; S # 0 and S = 0. In both the cases,
we will show that Cy divides v1A10(B1) + aj0(A;)B;. Assume for a moment
that we proved C} divides y1 A10(By) +a10(A;)B;. Then from C2 we have r¢, €
{r1, -+, 1} such that gx% # 0 and % :g;% = 0. Since o(g;) = r;+¢;, for some
¢ie € C, 0 is an automorphism of the ring M[{xr1,- - , 1} \ {tc, }] and therefore
yA10(By) +aio(A) By € M[{x1, -, 1} \ {re, }]. Thus C; divides v, A;0(By) +
a0 (Ay) By implies v, A10(By) + ayo(A1)By = 0, that is, o (%) = _3_112_1' Then
A; divides o(A;) and B; divides o(B;) and therefore from proposition 2.9 we
obtain o(A;) = Ay and o(B;) = B;.

Let us show that C; divides v A10(B1) + ayo(Aq)By.

Case S # 0:

From equation 3.16 we observe that C; divides T'G (v A10(By) + aio(A1)By)
and from equations 3.15 and 3.11 that C; does not divide G and therefore C;
has to divide T'(y, A10(B1) +ay0(Ay)By). If €y divides T then the polynomials

A,B,;S,T € Mgy, -, 1] contradicts theorem 3.3. Thus C; divides v1 A10(By) +

48



0[10'<A1)Bl.

Case S = 0: From equation 3.16 we have

G (’}/11410'(31> + ()610'(141)31) = —FC’la(Bl)Bl.

As noted earlier, C does not divide G and thus C divides v, A10(B;)+ai0(A;1)By.
Thus we see that for every o € H, o(4;) = A;, 0(B;) = By and ¢(C;) = C; and

therefore
A, A;
r_ i o i
00l =7 (G5 ) = G
Since y;, = %, we obtain o(y;) = 1; + ¢;, for some ¢;, € C. Clearly, for every
o €H, o(s) = s+ ¢, where ¢, :=5(¢15,-+ , 1) € C. O

Before we classify the differential subfields of a general J-I-E tower we will first

work with a two step tower.

Theorem 3.12. Let F(zy, -+ ,5) D F be an extension by algebraically inde-
pendent antiderivatives ty,--- ,5 of F. Let vy,--- 9, be J-I-E antiderivatives
of F(xr1, -+ ,1). Then every differential subfield of F(1,- -, 0m, T, ,Lm) 1S
of the form F(S,T), where S and T are finite subsets of spanc{vi, -, Om,

T, L) and spanc{ri, -+ ,tm} respectively.

Proof. Let E :=F(91, -+ , 9,801, - ,4), L:=F(ry,--- ,5y) and ED K D F be
an intermediate differential field. Note that L is an extension by antiderivatives
of Fand L D KNL D F is an intermediate subfield. Thus there is a finite set
T C spanc{r1, - ,u}, algebraically independent over F such that KNL = F(T).
Let T C {r1, - ,1} be a transcendence base of L over F(T). We observe that

F(T,T) =L, |T|+|T| =, and T is algebraically independent over K; otherwise,
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T becomes algebraically dependent over K N L = F(T) which contradicts the
choice of T.

Thus K(z1,---,11) = K(T). We observe that E D K(T) D L and that E is
a (Picard-Vessiot) extension by antiderivatives of L. Thus there is a finite set
S* C spanc{yi, - ,9m} such that K(T) = L(S*). We may also assume that S*
is algebraically independent over L. Since K(T) is a (Picard-Vessiot) extension

by antiderivatives of K, for every s € S¥ and p € G := G(K(T)|K), the element

p(s) € K(T). Thus p(s) € E for every p € G and for every s € S*.

We have _
L — K(T)
| |
F— K

where are arrows are inclusions. Thus there is a natural injective map ¢ :
G(K(T)|K)—G(L|F) of algebraic groups such that p(z;) = ¢(p)(x;) for all p €
G(K(T)|K), and there is an algebraic subgroup H of G(L|F) such that the image
#(G(K(T)|K)) = H. Note that the action of p on r; completely determines p for
all p € G(K(T)|K).

Thus o(s) € E for every 0 € H and for every s € S*. Now from theorem
3.11 we obtain o(s) = s + ¢, for all 0 € H, ¢, € C. Thus s € L¥ and in
particular o(s') = &' for all o € H. Since p(r;) = ¢(p)(x;) for all p € G and ¢ is
surjective, p(s') = &' for every p € G and therefore s’ € K& = K. Then s € K(T)
is an antiderivative of F and therefore the set T U {s} has to be algebraically
dependent over K. From The Kolchin-Ostrowski theorem, there is an element
t, € spancT such that s + t, € K. We also observe that s € K and s’ € L
and therefore s € F(T). Now we let S := {5 + ti|s € S*} and observe that

K D F(S,T) D F(T) D F. Let S C {1, -+ ,9,} be a transcendence base of E
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over K(T) = L(S*). Then [S| + |S#| = m and in particular L(SUS*) = E

We know that
tr.d E|F = tr.d E|K + tr.d K|F(S,T) + tr.d F(S,T)|F (3.17)

tr.dE|K = [S| + |T| and tr.d F(S,T)|F = |S| + |T|. Note that |S| = |S*| and
that |S| + |T| + |S* + |T| = tr.d E[F = [ +m. Thus tr.d E|F = [S| + [T
+|S|+|T| = tr.d E|K+tr.d F(S,T)|F and therefore from equation 3.17 we obtain
tr.d K|F(S,T) = 0. Thus K is algebraic over F(S, T). Now letting M := F(S, T)

and applying theorem 3.12; we obtain K = F(S,T). H

Theorem 3.13. [f there is an s = Z;il Q05 + Zf;i Z;L;l Q0 S At \ At—l
for some 1 <t < k and a subgroup H of G(Fy|F) such that for every o € H,
o(s) € E; = E then o(9;;) = 0ij + cijo for every o € H provided the coefficient

a;j of 9i; 1n § is nonzero.

Proof. We will use an induction on ¢ to prove this theorem.
t = 1: Then s is a linear combination of antiderivatives 911, -+ ,91,, of F. There-

fore for every 0 € G(F|F) we have

by = o(vy;) = o(viy)".

Since F, and F has the same field of constants, there is a ¢, € C such that
a(91j) = 91j + Cjo-
Assume that our theorem is true for ¢t — 1.

t > 2: For

t—1 n;

Z Ct]Ut] + Z Z Cz]Uzga

i=1 j=1
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where ay; # 0 for some j, suppose that o(s) € E. Then

nt t—1 n;
a(s) = cyolny) + Y > cjo(ny) €E (3.18)
j=1 i=1 j=1
nt t—1 n,
= Y cyo(n;) € E(0(E)); since > > cjjo(ny) € o(Br)  (3.19)
j=1 i=1 j=1

Suppose that for i > t+1, o(s) € E;(0(E;—1)). Then note that E;(c(E;_;)) is an
extension by algebraically independent antiderivatives v;1, - - - , i, of E;_1(0(E;—1)).
Also note that o(s) is an antiderivative of o(E;_1) and therefore an antiderivative
of E;(6(E;_1)). Thus there are constants g, ;; € C, 1 < j < n; not all zero

such that

aioa(s) + Z Q05 € Ez’—l(O—(Et—l))-

j=1
But, if o;; # 0 for some 1 < j < n,; then from the above equation and from the

facts that o(s) € o(E;) and o(E;_;) C o(E;) we have
Zaz’jt)ij € Ei1(0(E))
=1
and since t < i — 1, E; C E;_1, which implies
> iy € Eii(0(Ei1)),
j=1

a contradiction to theorem...

Thus o(s) € E(o(E;_1)) implies o(s) € E;(c(E;_1)). Let M := E;_s(c(E;_2)).
We know that I;,_; = {011, - ,Di—1, , is algebraically independent over M.
Now let I7 ; C o(I;—1) be a transcendence base of E;_(c(E;_1)) over M([;_;).

Then M(-Zt—lu]f_l) = Et—l(U(Et—l)) and Et<0'(Et_1)) = M([taIt—lylg_l)- Thus

92



we have the following tower of antiderivatives
M(Ii, Ii—q, I7 ) D M(Le—q, I7 1) D M.

We also know that I; consists of J-I-E antiderivatives of M([;_1,I7 ;). Now
applying lemma 3.11 we obtain that o(y;) = v + ¢j, for every o € H. Also

note that o(n:;) = v;; + ¢y implies

ne ne ng
U(E i) = E oy + E Qi Cjo-
j=1 j=1 j=1
Thus

o(s) e E

- 0'(5) — Zatjntj cE
j=1

t—1 ng

= > ayee+o() > i) €E

=1 i=1 j=1
t—1 n,

— O'(Z Z&ijljij> € E.
i=1 j=1

Now we apply our induction hypothesis to the sum Zf: > ity Qijhij to prove

our theorem.

Corollary 3.14. The group of differential automorphisms of E over F is a sub-
group of (C,+)", where n = tr.d(E|F).

From theorem we observe that if o(y;;) € E then o(y;;) = 9;; + ¢;j, for some

¢ijo € C. Thus G(E|F) is a subgroup of (C, +)". O
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Now we will prove a generalization of the Ostrowski theorem for a tower of ex-

tensions by J-I-E antiderivatives.

Theorem 3.15. Generalized Ostrowski Theorem
Let E;;, D K D F be an intermediate differential field and let T; C I; be subsets

such that T; is a set of antiderivatives ofK(Ué;llTj) foreach1 <i<k. If Ué?:lTj

1s algebraically dependent over K then there is a nonzero element in K N Ag.

Proof. Suppose that UleTi is algebraically dependent over K. Then there is a ¢
such that T; is algebraically dependent over K(Uj;llT]) Then by The Kolchin-
Ostrowski theorem, there is a non zero t, € K(U;;llT]) N A;. Let H;_; be
the group of all differential automorphisms of K(U'Z3T;)(T,—1) over K(U/Z3T)).
Note that for every o € H; 4, o(y) € K(U;;%Tj)(Tt_l) C E, for every y €
K(U?jTj)(Tt_l) and that there is a subgroup of G, whose restriction upon the
field K(U?;QIT]-)(Tt,l) is the group H;_;, see [9]. Thus we may apply theorem
3.13 and obtain that o(t;) = t; + ay,, for some ay, € C. This shows us that
t, € K(U/Z3T;)(T,—1) is an antiderivative of K(U'_3T}) and therefore the set
{t;} UT;_; is algebraically dependent over K(UE;%TJ), observe that t; ¢ Uz;llT]
Again by the Kolchin-ostrowski theorem there is a t;_; € A;_; and a constant

Cyt—1, Where t,_; or ¢, 41 is nonzero such that
4+t e K(UZ2T)NA
Cot—1t + 41 ( =1 %) t—1-

Now a repeated application of thereom 3.13 and the Kolchin-Ostrowski theorem

will prove the existence of a nonzero element in K N A;. ]

Theorem 3.16. For every differential subfield K of E := Ey, the field generated
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by F and Sy, := K N Ay equals the differential field K. That is

K = F(S}).

Moreover K itself is a tower of extensions by antiderivatives, namely

K =F(Sk) D F(Sk-1) D F(Sk—2) D --- DF(51) O F,

where S; == S N A;.

Proof. We will use an induction on & to prove this theorem. k£ = 1. Here E := E;
is an extension by antiderivatives of F' and therefore from theorem 2.8 our desired
result follows immediately

k > 2: Assume that for any differential subfield of E;_; our theorem is true. Let

S; := KN A; and note that S; D S;_; and the following containments

EDKDF(S,) 2F. (3.20)

We will first show that F(S) is a differential field. Applying our induction hy-
pothesis to the differential field (F(S})) C Ex_1, where S, = {y’|y € S;} we obtain
that (F(S))) = F(T'), where T' = (F(S])) N A;_1. Also note that (F(S})) C K and
therefore

Thus F(S;) 2 F(T') and since S; C F(T') and F(T) is a differential field, F(S;) is
also a differential field. Hence F(Sk) is a differential field and
F(Sk) D F(Sk-1) D F(Sk—2) D--- D F(51) O F,
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is a tower of extension by antiderivatives.

Let S; C I; be a transcendence base of E; over the differential field E; 1(.S;).

Since E; is purely transcendental over E; ; it is also purely transcendental over

E;_1(S;) too and therefore E;_1(S;,S;) = E;. We note that F(S;,5;) = E,

F(S,,51,5,) = Ei(S,59) = Ey and in general we have F(S,)(U'_,S;) = E,.

Since K D F(S;) we have

E=K(UL,S) DK(UZ'S) D - DK(S,S) DK(S) DK DF(S,) O F
(3.21)

We know that U!_,S; is algebraically independent over F(S;). Since S; = KN A,

we obtain from theorem 3.15 that U!_,S; is algebraically independent over K.

Now from equation 3.21 we obtain

e

trd(E[F) =) [5)]+ trd(K|F(Sy)) + tr.d(F(S)|F). (3.22)

i=1

On the other hand we have
E = F(S)(UL,5) D F(S) O F

and thus
k

trd(B|F) =Y |Si| + tr.d(F(S;)|F) (3.23)

i=1
From equation 3.22 and 3.23 we obtain tr.d (K|F(Sy)) = 0, that is, K is algebraic
over F(Si). Now from theorem 3.1 we obtain K = F(S). O
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3.2.2 Example

Let C := C denote the complex numbers, C, the complete Picard-Vessiot closure
of C, z € C, be an element whose derivative is 1, tan~' 2 € C4, be an element

such that
1
1+ 22

(tan ' ) =
and let tan~!(tan"! ) € C., be an element such that

1
(1+ (tan~'2)2)(1 + 22)°

(tan~"(tan~" x))/ =

We will use theorem 3.16 to compute the differential field M := C(tan™!(tan™'(x)

)). First we observe that (tan™'(z)) = 175 = 55—y and thus tan™' =z is

an I-E (J-I-E) antiderivative of C(z). We also observe that tan™!(tan™'(x)) is
an I-E (J-I-E) antiderivative of C(z,tan""(z)) (note that (tan~'(tan"'(z)))" =

1
(1+(tan—1 z)2) (1422)

). Thus z,tan"!(z), tan"!(tan~!(z)) are algebraically indepen-

dent over C. Also from theorem 3.16 we see that there should be a linear combi-

1
(1+(tan—1 2)2)(1422)

€ M). Thus by differentiating ¢; tan™! x+cyx, we see that MNC(z) 2 C and thus

nation of the form c; tan™! z + ¢y, where ¢; is non zero (since

again by theorem 3.16, x € M. Therefore tan~!(x) € M since ¢, tan™!' z + cow €

M. Hence

M := C(tan '(tan"' 2)) = C(tan" ' (tan' ), tan ' z, x).

We observe that

57



and since (tan™!z)" = 1+H there is a ¢ € C such that

1 1
tan 'z = Q—iln(x —1i) — Q—Z_ln(x +1i)+c.

Also note that

1 1 1 1 1 /
Lo e — - A . A e — - 11 ‘ .
22_( n(22, n(z —1) 5 n(z+i)+c—1i) (H(Qi n(r —1) 5 n(z+14) +c+1))
_ 1 1 1

2+ 1\ sIn(z—i)— s In(z+i)+c—i 5In(z—i)— 3 In(z+1i)+c+i

1
(1+ (tan~'2)?)(22 + 1)

1
(1+ (tan~'z)?)(z2 + 1)

and since (tan~!(tan"'z)) = , there is a constant d € C

such that
tan!(tan"!(x)) = i(ln(l In(z —14) — l In(z +i) 4+ ¢ — 1)
21 24 2%
1 1 | |
_ (ln(2_i In(x — i) — X In(z +14) +c+1)) +d.
Hence
tan—l(tan—l fL‘) € C(x, Y1, Y2, z),

where

1 1 , 1 . ,
z.—2—i<ln(2—iln(3c—z)—2—Z_ln(x+z)—|—c—z)
~In( (e — i) — oI )+ e+ 0))
HQZ n\r 7 2 n\r 1 C 7

y1 =In(x — 1)

Yo :=1n(z +1).
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Clearly

C(tan'(tan ' 7)) = C(z, %(yl — Ya), T).

Remark 3.17. The J-I-E extensions may have non-elementary functions. For

example; if a; € C are distinct constants for ¢ = 1,--- ,n then the elements

n, = [ m are J-I-E antiderivatives of the differential field C(x,ln(x —

a1), - ,In(z — a,)) with y} := C?éi where A, :=1, B; := 1 and C; := In(x — a;).
These p;’s are non-elementary functions, see [3]. From theorem 3.6 we see that
these ,’s are algebraically independent over C(z,In(z —a;), -+ ,In(z —a,)) and
from theorem 3.16 we see that any differential field K such that C(z,In(z —
a;), ;1 <i <n) 2K D C is of the form C(5), where S C spanc{z,In(z —
a;), ;|1 <i < n}isafinite set. Moreover C(5) itself is a tower of (Picard-Vessiot)

extensions by antiderivatives.
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Chapter 4

Extensions by Iterated

Logarithms

In this chapter we will provide an example of a J-I-E tower namely, the exten-
sions by iterated logarithms. Though many of the results for iterated logarithms
setting can be deduced from the J-I-E tower setting from section 3.2, we will still
prove those results here separately and this will help us in writing an algorithm
for computing the finitely differentially generated subfields of the extensions by

iterated logarithms.

4.1 TIterated Logarithms

Let C be an algebraically closed-characteristic zero differential field with a trivial
derivation and letC,, be the complete Picard-Vessiot closure of C. Let [[0,0] €

C« be an element such that '[0,0] = 1. We will often denote [[0, 0] by . Given
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¢=(c1, -+ ,cy) € C" let [¢,n] € Cy be an element such that

—

[/[C TL] _ [,[W<5)7n — 1]
N @11 6@

(4.1)

where 9, : C* — C is the map ¥,(ci, - ,¢,) = ¢, and 7 : C* — C"! is the
map
ey, e yen) = (c1, -+ ,Cn1), whenn > 1;

7(c) =0, when n = 1.

Whenever we write [[¢,n], it is understood that ¢ € C™. We observe that for

c=(c)eC

. (@), 0]
e = @ 0 @
"0, 0]
[[0,0] + ¢
1
[[0,0] + ¢

Thus for ¢ € C, the element [[¢, 1] can be seen as the element In(z + ¢). Sim-
ilarly for ¢ = (¢1,---,¢,) € C", the element [[¢,n] can be seen as the element
In(In(- - (In(x +c1) +c2) -+ + euo1) + Cn).

For1 <k <n-—1,let 7% : C* — C"* be the map 7%(c1, -+ ,¢,) = (c1, -, Cni)
and let 7" : C" — C := {0} be the zero map. For 1 < k < n let ¢, : C* — C
be the map ¥ (cy, -+ ,¢,) = cx. Under these notations, we can rewrite equation

4.1 as

n—1

=1 1 1
= (@ mroraee) Fea e 2

1=

This above equation is obtained simply by clearing the derivative that appears
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in the numerator of the RHS of the equation 4.1. Note that

1
([m(e),n —1] :H (7 +1(@),n — (i + 1)] + Yni(7(E)

=1

(4.3)

Definition 4.1. When n € N we will call [[¢,n] an n'* level iterated logarithm
or simply an iterated logarithm, without specifying its level.
We note that [[0, 0], whose derivative equals 1, is not an iterated logarithm under

our definition. Hereafter we will call [[0, 0] as x.

More notations

Let Ag := {z}, A, := {l[¢,n]|¢ € C"} and A, = U2 A; and let £y = C(Ay),
£, = C(UL,A;) and £, = C(Ay). Note that £y, £, and £, are differential
fields(follows from equation 4.9).

Let ¢ € C". We define 7*([[¢,n] := [[7%(¢),n — k] whenever k < n. Note that
7"(I[¢,n]) = 1[0,0] = z. When k > n we define 7*(I[¢,n]) := z and 7*(z) == z
for any k& € N. Now we may also define 7%(S) for a non empty set S C A, as
7 (9) = {7*(y)|y € S}. Thus

if y € A, then (y) € A1, ™(y) € Ay, -+, ™ (y) =z € Ao. (4.4)

We also see that if E C A is a finite set, then there is an n € N such that 7" (F) =
{z}. Given a nonempty set ¥ C A, it is not necessary that C(FE) is a differential
field. For example C(I[0,1]), that is the field C(In(z)) is not a differential field.
whereas, C(In(z), z) = C(I[0, 1], 7(I[0,1]) = z) is a differential field. (note that
x ¢ C(In(z)); in fact x and In(z) are algebraically independent over C. We will
later show that any collection of iterated logarithms is algebraically independent

over C(:C)) More in general we have the following propositions.
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Proposition 4.2. Let [[¢,n] € Ay be an iterated logarithm. Then

C([[a n]? [[7(5)771 - 1]’ [[77-2(@771 - 2]7 U 7[[71-”(5)’0] = l‘),

15 a differential field

Proof. We will use an induction on n to prove our proposition.

n = 1. Note that Il¢c,1] = == and 2/ = 1. Therefore C(I[c,1],z) is also a

differential field. We recall that if ¥ € C™ then 7" (%) = 0 and therefore [[7" (), n—

n] = [[0,0] = x. Let us assume for any v € C" that C(l[¢,n], [[7(¥),n — 1],
-, x) is a differential field and let ¢ € C™"!. From our induction hypothesis, we

know that F := C(l[x(¢),n — 1], [[7%(¢),n — 2],- -+, x] is a differential field since
7(¢) € C"!. Thus

o V@ 1]
T @ @
Hence F(I[¢, n]) = C(l[¢,n], ([7(¢),n — 1],--- ,z) is a differential field. O

Proposition 4.3. Let E C Ay be a finite set of iterated logarithms. Then

C(E,n(E),n*(E),--- ,x)

i1s a differential field

Proof. It E = () then C(E,n(E),n*(E),---,z) = C(x) which is a differential
field and we are done. Let £ = {y;|1 < j < s}. We know from proposition
4.2 that K; = C(y;,m(y;), -+ ,7"(y;) = z) is a differential field and since
C(E,w(E),7*(E),--- ,x) is a compositum of differential fields K;, we see that

C(E,n(E),m*(E),--- ,x) is also a differential field. O
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Definition 4.4. For £ C A, we will call the field C(F) an extension by iterated
logarithms if E contains at least one iterated logarithm, that is, if £ has an
element from A, other than x. And, we will call the differential field C(E,

7(E),7m*(E),--- ,x) as the Container Differential Field|CDF] for the set E.

4.2 The Two Towers and a Structure Theorem

for £,

Let E C Ay be a finite non empty set. Then there is a minimal n € N such that
7" (E) = {x}. Once this minimal n is chosen, it is clear that E contains at least
one element from A,, and no elements from A; for any ¢« > n. Hereafter we will
use the symbol € to denote U 7'(E), where n satisfies the above minimality
condition. Thus C(E, 7(E),7?(E),--- ,x), the container differential field of E is
the field C(€&). Note that 7(&) C & and let T; := A; N € for all 1 <7 < n. Then
the T;’s are disjoint and partitions & in such a way that each 7} contains iterated
logarithms only from level 7. Clearly £ C &, and ¢ may contain more elements
than E, but those elements that are in € but not in F has to come from U A,;.
Thus T, := A, N & = A, N E. Also we observe that C(€) is a differential field

and it contains C(E).

Definition 4.5. We will call this partition Tg,T4,--- ,7T, of & as the levelled

partition of €.
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We observe that

7n(T;) = m(A; N €)

N

CTi .

Thus 7(7;) C T;—4 for all 1 < i < mn. We also note that Ty = {x} since E' is non
empty. We will use this partition of € to prove that the iterated logarithms are
algebraically independent over C(z) and this will be done in section 4.3.

Now we will construct a tower of Picard-Vessiot extensions by antiderivatives
(iterated logarithms) to reach C(€&) from C using this leveled partition of €.
(Note that this tower is not imbeddable in the Picard-Vessiot closure of C.)
The construction of this tower is obvious. Let Ky := C(Ty) = C(z) and let
K, := K;_(T;) for all i € N. That is K; = C(U;_,T}) for 0 < i < n. Clearly K
is an extension by antiderivatives of C. Also, for y € T}, 7(y) € Uj_{ T} for all
i,j € N and in fact, 7/(y) = x for all j > i. Now from equation 4.9 we see that
y € K;_; and thus K; is also an extension by antiderivatives of K;_;. Therefore

we have a tower of P-V extensions by antiderivatives namely

C(QE):K”DKn_lD"'DK1DK()DC. (45)

We will call this the levelled partition tower of C(€).

There is another useful way of dividing the set & = U ;7*(F). Let

P=E\U.7(E).
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We claim that U 7/(P) = €. Before we prove this claim, we note that P N
7(P) =0 for all i, 1 < i < n and this statement immediately follows from the
definition of P. We also note that P C E.

Now we will use an induction argument to show that Ul 7*(P) = €. First we
observe that € = U ,(A; N &). From the choice of n it is clear that A, N E # (.
From equation 4.4 we see that for every y € A, N E, y ¢ U' 7'(E). Thus
A, N E C P and therefore A, N E C P C Uyzowi(P). Assume that there is a
k < n such that for any i, k < i < n, A;NE C U 7w (P). We will show that
A1 NEC UL ' (P). Let y € Ay_1 NE. If y € P, we are done. So, we suppose
that y ¢ P. Then y € U™, 7'(E) and therefore there is a 2 € F and a j € N such
that 7/(z) = y. Clearly such a z € U"_,A; N E. That is, z has to be a higher
level iterated logarithm than y is (see equation 4.4). Now from our induction
hypothesis we obtain z € U"_,7*(P) and since U_,7*(P) is invariant under 7, we

obtain y € U™_y7*(P). Thus U 7' (P) = €.
Definition 4.6. We will call the set P C E as the m—base of €.

We may also construct a tower of Picard-Vessiot extension by antiderivatives(by
iterated logarithms) to reach C(€) by defining P; := P;_; (7" *(P)) for 1 < i < n,
where Py := C(z). Then P; = C(Ui_yn"7(P)) for 0 <i < n and clearly, P; is

a differential field. Thus we see that

c¢)=pP,DoP, 1, D---D2P;,DP;DC. (4.6)

We will call the above tower as the m—tower of C(&).
We observe that P C Ul,A; and therefore 7(P) C Uy A;, 72(P) C Ul-;A; and

in general 7/ (P) C UP—JA;. Thus "9 (P) C U/_yA; and from this fact we also
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obtain U m" ™/ (P) C U,A; for any m,0 < m < n. Since Uj_ym'(P) = €,

U ™ (P) C U AN €

= UiZo T

and thus U™ 7"~/ (P) C U™ T;. This shows that P, C K,, for every 0 < m < n.
Nonetheless the inequality could be strict and we will now provide an example
for the same.

Let C := C and let £ = {In(In(z + e) + 5), In(In(z)), In(z),In(z + 1)}. In our
notation, the set F = {l[t}, 2], l[th, 2], [[U5, 1], l[U4, 1]}, where ¢} = (exp,5), U =
(0,0), U3 = (0) and U4 = (1). Then we immediately see that 7(In(In(z + exp) +
5)) = In(x + ¢), #*(In(In(z + exp) + 5)) = w(In(z + €))= z, 7(In(In(z))) = In(x),
©2(In(In(x))) = x, 7(In(In(z + 1))) = In(x + 1), 7(In(z + 1)) = z and 7(z) = .
Thus the set € = {In(In(z + e) + 5), In(In(x)), In(z), In(z + 1), In(z + €), x}.

Let us obtain the levelled partition of . The set Ty = €NAg = {z}, T1 = AiNE =
{In(z),In(z+1),In(z+e)} and the set To = ENAy = {In(In(x)), In(In(z+e)+5)}.

Therefore the levelled partition tower would be

C(¢) > C(In(x),In(z + 1),In(z +¢€),z) D C(z) D C.

Note that the 7—base P of € is given by P = E \ UL ,7(E). Since UL 7' (E)
= {In(xz + ¢),In(z),z} we see that P = {In(In(x + e) + 5), In(In(x)),In(x + 1)}.

Thus the m—partition tower of C(€) is

C(¢) O C(In(x),In(x +e),z) D C(x) D C.

Therefore, if we assume that the iterated logarithms are algebraically independent
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over C(z) then In(z + 1) ¢ C(In(z),In(x + e),z) and thus the two towers are
distinct.

Structure theorem for £,: Here we will assume that the iterated logarithms
are algebraically independent over C(z). That is, the set A, is algebraically
independent over C. A proof for this fact is provided in section 4.3, theorem
4.13. Thus £ is the field of fractions of the polynomial ring C[A]. For y € Ay
let a% denote the standard partial derivation on the polynomial ring C[A].

Let u € £, \ £,-1. Then there is a finite non empty set S C U ,A; such that
u = g, P,Q € C[S] and (P,Q) = 1(that is the G.C.D of P and @ in the
polynomial ring C[S] is 1 ). It is conceivable that some of the elements of S may

not be necessary to express u. So, we define a set F, as
oP Q)

Definition 4.7. The set E, is called the set of all essential elements of u

We observe that v € C(E,) and that if u € C(S) for some set S C A then
E, C S. Sometimes we drop the suffix v and simply write £ instead of F,. Since
C[As] is a polynomial ring (over a field), the set F, is unique. The following

theorem proves the uniqueness of F,.

Theorem 4.8. (Uniqueness of E,) Let u € £ and let E, be a set of essential
elements of u. Then u € C(S) for some S C Ay only if E, C S and thus the set

E, is unique for a given u.

Proof. Let S C Ay and let u € C(S). Then

A
- %, (4.8)



for some A, B € C[S] and P,Q € C[E,], where (P,Q) = 1. Since (P,Q) = 1,
from the above equation it is clear that P divides A and @ divides B in the
polynomial ring C[S U E,,|. Thus there are R, T € C[S U E,| such that PR = A
and QT = B. Note that if y € F, then %—1; # 0 or % # 0. Suppose that there is
ay € F, such that %—1; # 0. Consider the equation PR = A. Then deg,(P) > 1
and note that PR = A implies deg, (P) +deg,(R) = deg,(A). Thus deg,(A) > 1.
Hence y € S. Similarly if % # 0 and %—5 = 0, we may use the equation QT = B

to show that y € S and thus E, C S. n
The following corollary is a direct consequence of the above theorem.

Corollary 4.9. Let S C Ay be any nonempty set and for 1 < j < s lety; € Ay
be distinct. Then for any constants a; € C* such that Y 7°_ ajy; € C(S), the

element y; € S for each j.

Proof. Suppose that there are a; € C* and such that ) °_, a;y; € C(S). Since
a; € C*, the essential elements of ijl a;y; is the set £ := {y;|1 < j < s}. Now

from theorem 4.8 we obtain &£ C S. O

Now we will state the structure theorem for singly generated differential subfields

of £,.

Theorem 4.10. Let u € £, \ £,-1, E the essential elements of u and C(€)
the container differential field of E. Let P C E be the m— base of €. Then the
differential field

C(u) = C(S,7(P),x*(P),-+ ,x),

where S is a finite nonempty subset of spancP. Moreover for every y € P, S

contains at least one linear combination in which y appears nontrivially.
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The above structure theorem is proved in subsection 4.3.2. There we will also
generalize this theorem to finitely generated differential subfields of £, and give

an algorithm to find the set S and P that appears in the above structure theorem.

Remark 4.11. Given a u € A, there is a set finite £ C U} jA; and we may also
choose a minimal n such that the above inclusion holds. Then C(u) becomes a
subfield of the container differential field C(€) of E. The field C(€) is an ele-
mentary extension of C. The above stated theorem(and its generalized version)
shows that every differential subfield of C(€&), more in general, a finitely differen-
tially generated subfields of £, has to be a generalized elementary extension of a
special form. For a definition of elementary and generalized elementary extension
and results related to our theorem in a more general context, one may refer to

the following papers [12], [13] and [14].

4.3 Algebraic Independence of Iterated
logarithms

Here we will show that the set A, is algebraically independent over C. For
1 = 1,2,---,n let ¢; € C be distinct constants. By choosing C; := = + ¢,
A; = B; = 1, we see that C(z,l[¢y, 1], -+ , [y, 1]), where & := (¢;) is an extension
by J-I-E antiderivatives of C(z) and thus [[¢}, 1], ,[[c,, 1] are algebraically
independent over C(z). Assume that every finite subset of A;_1, t > 2 consists of

J-I-E antiderivatives of C(U?;%Aj). For ¢t =1,2,--- ;nlet & := (c14, 2, Cti)
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€ C"\ {0} be distinct vectors. Note that

e B n—1 1 1
e, t] = (91_[1 (1), n — (j+ 1)] + ¢n_j(ﬂj(5i))> ([7(&), t — 1] + ¢u(G)

(4.9)
and therefore choosing A; = 1, B; := [[7/11(&), t—(j+1)]+¢i—; (77 () and C; :=
([7(G),t — 1] + (&) we see that C(U'ZgA;, [[é1, 1], -+ ,1[G,,t]) is an extension
by J-I-E antiderivatives of C(U;;%)Aj) and thus A, is algebraically independent
over C(U/Z{A;). Now we will give a proof for the algebraic independence of the

iterated logarithms without appealing to results from section3.2.

Lemma 4.12. Let S,_1 C A,_1 be a finite set of antiderivatives of a differ-
ential field ¥ and let S, C A, be such that ©(S,) C S,_1. Suppose that S, 1

1s algebraically independent over F. Then S, is algebraically independent over

F(S,_1).

Proof. Note that F(S,,_1) is a differential field and since 7 (S,) C S,_1, from
equations 4.1 and 4.3 it is clear that F(S,_1)(S,) is also a differential field.
Let S, = {l[c;,n]|]1 < i < s}, & = (c14,C0, -+ ,Cni) and Suppose that S, is
algebraically dependent over F(S,_1). Then by theorem 2.3 there are constants
a(¢;) € C not all zero such that Y7 | a(c)l[c,n] € F(S,—1). We may assume
that a(¢) # 0 and rewrite the sum as X + ZJ L o(b;)([b;, n] where {b;} C {&}
is the set of all vectors such that W(bj) =7m(c1) = (c11,C1, + ,Cp—11) and X =
Yoi_a(@)c, n] — ZJ 1 oz(g )[[l;j, n]. We may order the set {gj} so that by = &,.
Let K = F(S,1 \ {{[r(éi),n — 1]}) and let X + Y\_, a(b;)l[b;,n] = &, where
P,Q € K[l[r(¢1),n —1]], (P,Q) =1 and @ a monic polynomial. Then

t

, ab)l[x(¢),n—1] QP —PQ'
X+Z () n—1]+c]n)_ o
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Let f := 4 [71(51)’ n—l] and let g = Z;:l ﬁ, where F' and G are obtained
B jn

by clearing the denominator of the sum Z§=1 ﬁ Note that (F,G) = 1.
3 in

Now we have

QGX' + fF) = GQP' ~ PQ). (4.10)

From the definition of X, it is clear that X = Z;zl a(a;)l[d;, n] where {d;} C {c;}
is the set of all vectors such that m(a@;) # 7(¢;). Therefore X’ € K. Thus equation
4.10 is a polynomial in [[7(¢7), n—1] over the field K. Let y := [[7(¢}), n—1]+cyp.
Since y divides G and (F,G) = 1, y does not divide F'. Thus y does not divide
GX' + fF and therefore from 4.10 y divides Q2. Hence y divides Q. Let [ € N
be the greatest positive integer such that ' divides Q. Then y?* divides Q>
and therefore ! divides %, which implies y'™! divides G(QP" — PQ’). Since
y divides G and y? does not divide G, y' divides QP' — PQ'. But y' divides
Q and therefore 3! divides PQ’. Since (P,Q) = 1, we see that y' divides Q'
Write Q = y'H and consider Q' = ly'~'y/'H + y'H'. Note that y' divides @’
implies ' divides ly'~'y'H and since y' € K, y divides H. Thus y'*! divides Q,

contradicting the maximality of [. O]

Theorem 4.13. Let E C A, be a nonempty finite set. Then E is algebraically

independent over C.

Proof. As usual, let € := U 7"(E) where n is the least positive integer such
that £ C U A; and let {T;|0 < i < n} be the levelled partition of €. As
we noted earlier 7(7;) C T;_1, T, # 0 and 7™(T,,) = {z} = Ty. Clearly, Tj is
algebraically independent over C (see theorem 2.4) and since 7(77) C Tp, from
lemma 4.12 we get T} is algebraically independent over C(71j). Since m(T;) C T;_1,
a repeated application of lemma 4.12 will show us that € = U}_,Tj is algebraically

independent over C. Since FF C &, E is also algebraically independent over C. [
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4.3.1 Normality of £, and Some Consequences

Let C4 be the complete Picard-Vessiot closure of C and let ® € G(C|C). Let
(v;)ien be a sequence in C and let ¥, := (vy, -+ ,v,) for all n € N (the vector

U1 = (v1)). Thus in our notation () = v,,—1. We observe that ®(z) = z+aq for

. o 5 /
some ag € C. Since '[t7, 1] = ﬁ we see that ®(I[t7,1]) = ¢’(I;+v1 = Ha;ﬂl
= l'[®(v)), 1], where ®(v;) := (v1) + (). Since any two antiderivatives differ by
a constant, ®(([v1,1]) = [®(7h), 1] + aas,), for some agy) € C. Assume that

®(1[T—1,n — 1])

([®(Vh-1),n — 1] + as,_,) where ®(T,_1) = (v1 + o, v2 +

Qa(5)s s Un—1 T+ Qa(s,_,)) and e, ;) € C. Since

[,[?7n,1, n — 1]

[/ _)na = ’
[t 7] ([Up—1,n — 1] 4+ vy,
we see that
U[D(T,—1),n —1
([P (Th-1),n — 1] + v, + Qa@,_1)
= ['[®(¢,),n]
where ®(v,) = (v1 + @, V2 + Qa@,), s Un + Qa(5,_,)). Since any two antideriva-

tives differ by a constant, we obtain

@ (1[5, n]) = (D(5,), ] + aagr,y (4.11)

for some ag,) € C.

From equation4.11, we see that for every ® € G(C,|C),

®(A;) C A+ C (4.12)
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for all 2 € N. Thus £,, is a normal differential subfield of C,.

Remark 4.14. Let ® € G(L«|C) and for n € NU {0} let
®(1[th,, n]) = [T, n] + Q)
with ag(s,) € C*. Then from the above discussion, we see that for any m < n
® (1[T, m]) = [T, m].
For any m >n and k € N
@k([[ﬁ’m, m]) = ([®*(7,,), m] + Ak (7,,)

where ®F(¥,) = (1, ,Un, Vg1 + kg -+ v + kaf ). Since af # 0,
O(T,,) # DI(v,,) when i # j. Thus [®(T,,), m] # [[®(1,,), m] for any i # j
and for any m > n. Hence the set {[[t,,, m], [[®/(7,,), m]|i € N} is algebraically

independent over C for any m > n(follows from theorem 4.13).

Now we will prove a theorem which will help us to prove the structure theorem

for the differential subfields of £,,.

Theorem 4.15. Let ¥ be a differential field finitely generated over its constants
C, E be a Picard-Vessiot extension of F, and let F C E C £. If Z;Zl a;y; € E
for some a; € C\ {0}, y; € U2 A; and s € N then ©'(y;) € F for all i € N and

thus y; € F.

Proof. Let there be y; € U2 A; and a; € C* such that Zj‘:1 a;y; € E. Note
that E is finitely generated over F and F is finitely generated over C and thus

E is finitely generated over C. Let uq,--- ,u; € E such that C(uy, - ,u) = E,

74



E.,, be the set of essential elements of u;, and let S := U!_ | E, U{y;|1 <j < s}.

From the definition of S' it is quite clear that we have the following containments

Since £, and E are normal differential subfields of the complete Picard-Vessiot
closure F, of F, every automorphism ¢ € G(E|F) extends to an automorphism
¢ € G(L£,|F) and every automorphism ® € G(£,|F) restricts to an automor-
phism ¢ € G(E|F).

Let & € G(£,|F). Since E is a normal differential subfield of £,|F, ®(E) C E

and therefore

> a;0%(y;) € E. (4.14)
j=1
Let y; = [[Ujm,, m;], where Ujn,, = (vj1, -+, Ujm, ). Then ®F(y;) = ([F(Tjp,, ), my]+

QP () where gk )€ C. Therefore

Vim

Dl (Fm,) ml + Y aj0an,, ) € B
P =1

and thus

> al[ @8 (Tjm, ), m;] € B C C(S).
j=1

Now from corollary 4.9 we see that
[[cbk(ﬁjmj)a mj] €5

for every j, k € N. For a fixed j, consider the set T := {{[Tjm,, m;], [ 2F (T}, ), m;]

|k € N}. From the action of ® on ¥}y, it is clear that if ®(Tjm,) # Tjm, then T
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is infinite. But 71" cannot be infinite because it sits inside the finite set S. Hence
®(Ujim,;) = Ujm, and therefore
(I)([[ﬁjmw m]]) = [[(I)(ﬁjmj)? mj] + aq)(?'}'jmj)

= Tjm,, mj] + ag,, -

Now from the remark 4.14 it follows that ®(7*(y;)) = 7*(y;) for all ¢ € N. This

shows that 7'(y;) € &5 ") = F. O

4.3.2 Differential Subfields of A

In this section we will classify the finitely generated differential subfields of £,,.
First we will point out an interesting property that every differential subfield
F # C of A, possesses, which is that z € F and this result is a consequence of

the structure theorem.

Proposition 4.16. Let u € £, \ £,_1,n € N, E be the set of essential elements
of u, € := Ul_(m"(E) and let {T;]0 < i < n} be the levelled partition of €. Then

u is not algebraic over C(Ui_oT}) for any 0 <i <n — 1.

Proof. Let u = g, P,Q € C(€\ {y})y], where y € T,. The levelled partition
of € is constructed in such a way that T}, # () and T,, C E. Since E consists of
essential elements of v and y € E, u ¢ F := C(€\ {y}). Let K, := C(U_,S;)
for each 4,1 <i<m—1. Then K; CF. Sincey e Fandy ¢ F, E=F(y) is a
Picard-Vessiot extension of F with a differential Galois group G := (C, +). Note
that G has no non trivial algebraic subgroups(in particular no nontrivial finite
subgroups). Since F(u) 2 F, F(u) = E, which implies u is not algebraic over F.

Thus w is not algebraic over K; for any 0 <7 <n — 1. O
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Thus we have just shown that if

C(@):KRDKn_lD"'DKlDKQDC.

is the levelled partition tower of &, where € := U;L:()Wi(E) and £ is the set of
essential elements of an element v € £, \ £, 1 then u is not algebraic over K;
forany 0 <i<n—1.

Note that if u € C(x) then C(u) = C or C(z) depending whether u is a constant
or not. Thus if F is a differential subfield(need not be finitely generated) of C(x)
then F = C(z) or C depending whether F contains a nonconstant or not. Thus

it is enough to state the structure theorem only for elements in u € £, \ £,_1.

Theorem 4.17. Let u € £, \ £,-1, E the essential elements of u and C(€)
the container differential field of E. Let P C E be the m— base of €. Then the
differential field

C(u) = C(S,7(P),7*(P),-+ , @),

where S s a finite nonempty subset of spancP. Moreover, for every y € P, S

contains at least one linear combination in which y appears nontrivially.

Proof. For i > 1 let P,_; denote the differential field C(7(P), 7i*1(P), -+, z)
and let P,_;(u) be the differential field generated by P,_; and u. Note that
C(¢) =P, = C(P,n(P),m*(P)--- ,x) is a Picard-Vessiot extension of P, ; =
C(n(P),7*(P), - ,z) with Galois group G := (C,+)™. Note that the tran-
scendence degree of C(€) = P, over P, is |P| since P N7/ (P) = ( for any
1 < j < n and therefore m = |P|. Clearly P,_;(u) is an intermediate differential
field. Since u € £, \ £,_1, we see that P,,_;(u) # P,,_1. Let H < G be the group

of all automorphisms that fixes P,,_; and let {L;(z1, -+ ,z,)|1 < i <t} be the
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system of polynomials for which H is the set of solutions. Then it is easy to see

that

Pn—1<u> = Pn—l(Li(yh te 7ym))7 (415)
where y; € P. Note that L;(y1,- - ,ym) € Pp_1 and thus P,_1(L;(v1, - -+, Um))
is a differential field.
Let D; be the set of essential elements of L;(y1,+ -+ , Ym). Then from equation 4.15

u € C(U), where U = (Ul_,D;) U (UL 7(E)). Since F is the essential elements
of u, we obtain P C E C U. Now, PN (U7 (F)) = 0 will imply P C U'_,D;.
Hence for every y; € P there is an L;(y1, - -+, ym) such that the coefficient of y;
is nonzero. Let us denote the set {L;(y1, -+ ,ym)|l <i <t} by S.

Since P,,_; is a Picard-Vessiot extension of P,,_,, we see that P,,_;(u) is a Picard-
Vessiot extension of P,,_o(u). Also, L;(y1,- -+ ,Yym) € P, for each i. Thus from
theorem 4.15 we see that for each y; € P, n(y;) € P,_2(u) and thus n(P) C
P, _2(u). This shows that P,,_1(u) = P,_o(u). Since P,_»(u) is a Picard-Vessiot
extension of P,_3(u), again applying theorem 4.15 we see that 72(P) C P,,_3(u)
and therefore P,,_o(u) = P, _3(u). Thus P,,_1(u) = P, _o(u) = P,,_3(u). Assume
that P,,_;_1)(u) = P,_;(u). Then 7~1(P) C P,_;(u) and therefore applying
theorem 4.15 to the Picard-Vessiot extension P, _;(u)| Pn_41)(u), we see that
7' (P) C Pp_(i41)(w). This shows us that P,,_;(u) = P,,_+1)(u). Thus the above
induction argument shows

P, 1(u) = C{u) (4.16)

and therefore from equation 4.15 we obtain

C(u) = C(S,x(P),x*(P), - ),
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where S = {Li(y1, - ,ym)|1 <1 <t} C spancP. O

As we noted earlier, ¢ = U 7'(P) and therefore P C FE implies 7(E) C

U 7w (P). Thus U7 (P) = U7 (E) and hence we also have

Clu) = C(S,(E), m*(E), - ,x).

Remark 4.18. From theorem 4.17 we also see that, if u € £, \ £,_1 and F the

set, of essential elements of u then

In particular, if u € £5 \ C then z € C(u).

Now we will generalize theorem 4.17 to any finitely generated differential subfield

of £,.

Theorem 4.19. Let K := C{uy, -+ ,uy) be a finitely differentially generated
subfield of £,\ £,-1 and let E := U™ | E;, where E; is the set of essential elements
of u;. For each i, let n; € N be minimal such that E; C U?;OAj and let P; C E;
be the m—base of €; := U;L;OWj(Ei). Then there are finite sets S; C spancP; such
that

K = C(S,n(P),n*(P),--- ,x),

where § = U, S; and P = U2, 'P;,. Moreover, for everyy € P, S contains at

least one linear combination in which y appears nontrivially.

Proof. Since K is a compositum of singly generated differential fields, the proof

follows from theorem 4.17. ]
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Theorem 4.20. Every finitely generated differential subfield of £+ is singly gen-

erated.

Proof. Let K be a finitely generated differential subfield of £, \ £,_1. Then from

theorem 4.19 there are sets S and P such that
K= C(S,?T(P),?TQ<P), cee L T).

Let S = {Li]l <i<m},u=>7, 2L E:= C(P,n(P),x*(P), - ,x) and
let F := C(n(P),7*(P),---,x). We see that E|F is a Picard-Vessiot exten-
sion(antiderivative extension), and since L; € spancP we obtain L, € F and
thus K is an intermediate Picard-Vessiot sub-extension of E|F. Consider the
Picard-Vessiot extension K|F. Since F(S)=K is an antiderivative extension of F

and u € K, we see that for any & € G(K|F)

D(u) = zn:xicp(/:i)
i=1
i=1
= z”: 2 L; + z”: et
i=1 i=1
=u-+ z": cixi,
i=1

where ¢; € C. Thus if ® fixes u, we obtain Y, | ¢;z* = 0 and therefore ® has to

be the identity. Thus F(u) = K. Consider

dy 2 Oy

=1
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We observe from theorem 4.19 that for y € P there is an ¢ such that %Ly" # 0, and

we also recall that P U {z} is algebraically independent over C. Thus g—Z # 0 for
any y € P and we also obtain that £ := P U {z} is the set of essential elements
of u. It can be easily seen that the m—base of € := U j7'(F) is again P and
therefore applying theorem 4.17, we see that 7(P),7%*(P),--- ,x C C(u). Thus
F C C(u) and therefore K = F(u) = C(u) and we are done. O

An Algorithm to Compute the Differential field C(u)

Theorem 4.21. Let u € £, \ £,-1 and let P,Q € C[E], where E is the set of
essential elements of u, (P,Q) = 1 and u = g. Then the set S and P from

theorem 4.17 can be computed from P and ().

Proof. Since P = E \ U™ ,7'(E), we see that the set P can be computed once
the set E of essential elements is known. From equation 4.16 we see that
7(P),72(P)---7"(P) = {z}C C(u). That is P,,_; C C{u) and thus C(u) is an
intermediate differential field of the Picard-Vessiot extension C(€)|P,_;. That
1s

C(€) 2 Clu) > P,_,. (4.18)

Also note that C(€) is an extension by antiderivatives of P,_; and that C(¢&) =
P, 1(P) and PNP,_; = 0 since € is algebraically independent over C. Thus
C(¢)|P,_; is a pure transcendental extension of transcendence degree |P|. Now

we may apply theorem 2.8 to obtain the set S. Thus from equation 4.16, we see

that C(u) = P,_1(S). O

Algorithm: Write out two polynomial expressions, say A, B, over C with ele-

ments from A, as indeterminates. The following steps will find the differential

81



field C(u), where u = %, in the form of a finitely generated field expressed in

theorem 4.17.

Step 0 First we form a finite set S by picking elements from A, that appear in
the expression of A or B. Then compute the set E of essential elements of
u. That is, find the set
0Q

E::{yES‘g—j%Oora—y#O}.

Also find the set P = E\ U 7(E), where n is the least positive integer

such that 7"(E) = {z} and let € := U 7' (E).

Step 1 From equation 4.18, we obtain P,,_; C C(u). In particular 7(P), 7%(P)
—-m™(P) = {x} C C(u). Since C(€) is an antiderivative extension of P,,_1,
we obtain that C(u) is an intermediate differential subfield of the Picard-

Vessiot extension C(€&) of P,,_;.

Step 2 We replace A, B by some P,Q € C[E] such that (P,Q) = 1. This can
be done in two ways. We may use MATHEMATICA 5.2 and compute the
GCD of A, B and divide A, B by the GCD to get P,() such that % = g

and GCD of P, is 1. In case, when MATHEMATICA 5.2 fails to compute

the GCD, we way compute the Grobner basis [1] for the Ideal < A, B >
generated over C[S] and use Gaydar’s formula [2] to compute the GC'D and
then use the multivariable division algorithm [1] to find out P, @ such that

%:gand GCD of P,Q is 1.

Thus we note that finding a relatively prime polynomials for a given pair
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of polynomial from C[A,] is a finite process.

Now we have u =

L P.QeClE]and (P,Q) =1.

Step 3 Write P and @ as polynomials over R := C[x(P), n%(P),--,x| with
elements of P as variables. Then P,,_; becomes the fraction field of R.
Note that C(€&)|P,_; is a Picard-Vessiot extension( by antiderivatives)
of transcendence degree p := |P| and thus if ¢ € G(€|K) then o(P) =
P(y1 + 1oy, Yp + o) and 0(Q) = Q(y1 + dio, - -+, Yp + dps) Where ¢;q,

djr € C and y; € P. Also from theorem 2.8, we see that o(u) = w if and

only if 0(P) = P and 0(Q) = Q.

Step 4 From proposition 2.9 we obtain that if o fixes P and () then it fixes each
of the homogeneous components of P and ) and from this fact (following
the proof of proposition 2.9) we obtain linear forms over R such that the
field generated by P,_; and the linear forms equals the field C(u). Thus,
we compute a system of linear forms {D;} over R such that o(P) = P and

0(Q) = Q if and only if D;(ci5,- - , ) = 0.

Step 5 Since R is a polynomial ring, using proposition 2.11, we could compute
a system of linear forms {L;} over C from the system {D,} such that the

set of solutions of L; and D; over CP are the same.
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Step 6 Finally, from theorem 4.17 we see that the field
C(u) = C(S,n(P),m*(P), - ,x),

where S = {L;(y1,--- ,yp)|yi € P}.

4.4 Examples

In this section we will apply our algorithm to compute the differential fields
generated by an element of £, and C. Also we assume C := C, the field of
complex numbers.

Example 1 Consider the field £, and Let

~ 52%In(z + 1) + In(z + €) + 272% In(z + V/2)

3 S 21.
In(z) + z(In(z 4+ 2) — 17In(z + 3))

u

Step 0 Let A := 52%In(x 4+ 1) + In(x + €) + 272% In(x + v/2) and B := In(x) +
z(In(z + 2) — 17In(z + 3))2. We observe that u € C(S5), where S =
{z,In(x),In(x + 1),In(z + 2),In(z + 3),In(z + €),In(z + v/2)}. We easily
see that the essential elements E equals the set S. The set € = Uj_,7(F)
and in this case, we see that € = E. The m—base of P of € is the set

P = {In(z), In(z + 1), In(z + 2),log(x + 3),In(z + ), In(z + v/2)}.

Step 1 Since u € £, we have n = 1 and thus C(€) D C(u) D Py = C(z). The
differential field C(€) is an antiderivative extension of C(z) and therefore
C(u) is an intermediate differential subfield of the Picard-Vessiot extension

C(€) of C(x).
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Step 2 We note that A and B are relatively prime and thus we may choose
P:=Aand Q :=B.

Step 3 We rewrite P and @) as polynomials over R := C[z]. Then P =
23(5In(z + 1) + 27In(z + v2)) + In(z + €) and @ = In(z) + z(In(z +
2) — 17In(z + 3))2. Let y; = In(z + 1), yo := In(x + v/2), y3 := In(x + ¢),
ys = In(x), y5 = In(z + 2) and ys := In(x + 3). We observe that if
o € G(C(€)|Py), then o(y;) = y; + ¢, for each y; € P and we also observe
that for any o € G(C(€)|C(z)), o(u) = w if and only if o(P) = P and
0(Q) = Q.

Step 4 Note that P is a homogeneous polynomial of total degree 1 over C[z]. If

o fixes P then

o(P)=P

3
< Zcigg_P =0
=1

7

— ? (5010 + 27020) + ¢z, = 0.

Let Dy := 2*(5y1 +27y2) +y3. Then we see that for any o € G(C(€)|C(z)),

o(Dy) = Dy if and only if 2? (5010— + 27020) + 3, = 0.

If o fixes () then o fixes the homogeneous components of () and thus o fixes
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ya == In(z) and z(y5 — 17y6)2. Now

o(x(ys — 17ys)?) = z(y5 — 17ye)”
=2,

<~ ZL’(C5U — 17060)(3;5 — 17y6) =0

Z

< ¢5, — 17c6, = 0.

Let Dy :=ys — 17ys. Then for any o € G(C(€&)|C(z)), o(D2) = Dy if and

only if ¢5, — 17¢g, = 0.

Step 5 Note that 2% (5¢1, + 27ca,) + c3, = 0 if and only if ¢z, = 0 and 5¢;14 +
27co, = 0. That is, o fixes P if and only if it fixes y3 and 5y; + 27y,. We

also observe that the linear form Ds is already over C.

Thus we have proved that for any o € G(C(€&)|C(z)), o fixes u if and only

if o fixes x, y3, Y4, Dy1 + 27yo and y5; — 17ys.

Step 6

C(u) = C(z,In(z+4e), In(x), 5 In(z+1)+27 In(z+v2), In(z+2)—171In(z+3))

O
Example 2

Let v == In(In(In(z — 4) + 2) + 3), 42 == In(In(z + ) + V3), y3 := In(z + 2),
ys :=In(In(z+3)+3), y5 := In(z+V5), ys := In(z+5+1), yr := In(In(In(z) +1))
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and let

Y In(z +14)?In(z — i) (y1 — y3)° + 2° In(z) (Y2 — y5)? c el
In(In(x) +4)%(ys — y7)” + xIn(x — )3 In(In(z — i) + 2)?(ys — ya)'? ’

We will apply the algorithm to compute the differential field generated by C and

u.

Step 0 Let A :=In(z+14)?In(z—14)(y1 —y3)° + 2% In(z)(y2 — y5)?, B := In(In(x) +
i)*(ys —yr)"+aIn(z—i)* n(In(z — i) +2)*(ye —ya)'* and S == {y1, 92, ys, va,
Ys, Yo, Y7, In(x — 1), In(x + 4), In(In(z) + 7),In(z), z, In(In(x — i) + 2)}. We
observe that the set of essential elements F of u equals the set S. Since
7(E) = {In(z+3), In(In(z) +i), In(In(z —i) +2), In(z+i) }, 7*(E) := {In(z—
i), x,In(z)} and 7*(E) = {x}, we see that € = UL 7'(F) = EU{In(z+3)}.
Then the m—base P of FE is the set E\ U7 (E) = {y1, 92, - ,yr}-

Step 1 We know that U_,7*(P) = {In(z — i), In(In(z — i) + 2),In(z + i), In(z +
1), In(In(z)+4),1In(z), 2} and that P, = C(UL, 7*(P)) C C(u). Thus C(u)
is an intermediate subfield of the Picard-Vessiot extension(antiderivative

extension) P3 := C(€) of Py. Also note that P3 = Pa(y1, 90, ,y7).

Step 2 One can easily see that A and B are relatively prime and thus choose

P:=Aand Q :=B.

Step 3 The polynomials P and () are already presented as polynomials over
the field C(UL,7(P)) with y1,92,-- - ,y7 as variables. We note that if
o € G(C(€)|P3), then o(y;) = y; + ¢, for each y; € P and we also observe
that for any o € G(C(€&)|P3) such that o(u) = u then P divides o(P) and
@ divides ¢(@). Then from proposition 2.9 we have o(u) = u if and only if
o(P)= P and 0(Q) = Q.
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Step 4 Let 0 = (c14,- -+ ,¢70) € G(C(€)|P3) be an automorphism such that
o(u) = u. Then o(P) = P and ¢(Q) = @ and now we shall use proposition
2.9 to compute the linear forms. Note that o fixes u if and only if it
fixes Hg := In(x + i)*In(z — i)(y1 — y3)°, He = 23In(x)(y2 — y5)* His =
rln(z — i)3In(In(x — 7) + 2)*(ys — va)'? and Hy = In(In(z))*(ys — y7)"-
Thus ZZ:1 cw%—Z: = 0 for 7 = 6,8,9 and 18, which gives us the following

equations

In(z +i)*In(z — i)(c1e — c35) = 0,
23 In(z)(c2e — C55) = 0,
In(In(x) +i)*(cso — c10) = 0,

zIn(z —i)* In(In(z — i) + 2)*(c6o — C40) = 0.
We also observe that the Py—linear forms of the field C(u) are H;, j = 6, 8,9
and 16. That is C<U> = PQ(H6, Hg, Hg, ng).

Step 5 From the above displayed equations, it is clear that o(u) = w if and only

if 1o — 3, =0, Cog — 55 =0, 56 — 7, = 0 and ¢, — 46 = 0.

Step 6

Clu) =C(In(z — i), In(z + ), In(In(z) + 1), In(z + %), In(z), z.

In(In(z — ) + 2), 91 — Y3, Y2 — Y5, Y6 — Y4, Y5 — Y7)-
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