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Abstract

Multimedia content now contribute to a huge amount of the Internet traffic due

to the popularity and availability of anytime anywhere Internet connection. Unlike

the circuit-switched telephone network – in which necessary resources are reserved

for communication between two parties at the time the connection is established,

a packet-switched network, like the Internet, only guarantees the reachability when

the connection between two parties is established. In other words, the end-to-end

delay and available bandwidth between two hosts depend on the amount of traffic

on the network. The communication paths between the participating hosts are also

determined by the routing policies and hence are not under control of the participating

hosts. Hence how to improve the performance of delivering multimedia content on

the Internet has become an interesting research topic.

In this dissertation, we consider the problem of delivering multimedia contents

using multicast wherein a group of participants are participating in the same com-

munication session. We assume the networks are flexible such that the end hosts can

specify the communication paths. A few examples of this type of networks are overlay

networks and IPv6 network with source routing support. This problem is addressed

from both routing and network traffic perspectives.

First, we assume a two-layer approach which includes a well-provisioned service

overlay network and the regular Internet. The participants in the multimedia group

communication can take the advantage of the service overlay network by connecting

to the nodes in the service overlay network through the Internet. We consider two

major assignment problems – Server and Client Assignment Problem (SCAP, Client-

Server model) and Client Assignment Problem (CAP, Peer-to-Peer model) as well as

xii



several variants of these problems. These problems are NP-hard and we have devel-

oped polynomial-time heuristic algorithms to assign the participants to appropriate

service nodes such that some real-time constraint(s) are satisfied and the number of

service nodes involved are minimal. Integer programming (IP) models for solving

these problems are also developed for performance evaluation purpose. Empirical

results show that the solution quality of the proposed algorithms compares favorably

with the optimal ones obtained from the execution of IP models, while keeping the

execution times significantly low.

We have also considered the Multi-stream Multi-source Multicast Routing Prob-

lem ( MMMRP). Given a network and a set of multicast sessions, each with one or

more sources and multiple destinations. The goal of MMMRP is to determine mul-

tiple multicast tree for these multicast sessions on the given network in such a way

that the overall residual bandwidth on the links that are shared among the trees is

maximized. We prove that MMMRP is NP-hard and apart from providing an IP

formulation, we have also provided a heuristic algorithm MMForests which runs in

polynomial-time. We compared and contrasted the performance of MMMRP with

known algorithms for the multicast tree packing problem. Our exhaustive empirical

evaluations show that our heuristic has a very low execution-time while achieving the

optimal residual bandwidth. In addition, our heuristic is very scalable as it is able

to produce results for networks with thousands of nodes, unlike the other ones which

are based on Steiner tree heuristics.
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Chapter 1

Introduction

Network Multimedia applications such as music streaming, video streaming or online

gaming, have become popular nowadays because of affordable broadband and mobile

networks. These applications now contribute to a huge amount of the Internet traffic.

For example, Netflix streaming accounted for about one third Internet traffic during

prime time in North America as of Fall 2011 [52]. Since the amount of multimedia

data is usually large, there are issues to be addressed when transmitting multimedia

data using the Internet. In this chapter, we provide an overview of the Internet,

communication models for network multimedia applications, and the issues that arise

when delivering multimedia content.

1.1 The Internet

The Internet is a packet-switched (or store-and-forward) network consisting of links

connecting nodes such as switches, routers and end hosts [47,53]. The data transmit-

ted from an end host s to another end host t is divided into smaller units (packets).

Each packet is sent from a node to another node and stored in the memory (buffer)

waiting to be forwarded to the next node (hop) until it reaches the destination t. Dur-

ing the transmission, the next hop for a packet is determined by the routing policies

of the network and hence it is possible multiple packets of a message from the same

source s to the same destination t could travel through different paths and arrive at

t out of order.

On the other hand, a circuit-switched network requires a setup stage before the

1



Table 1.1: A Comparison of Circuit-switched and Packet-switched Networks.

Item Circuit Switched Packet Switched
Call Setup Required Not Needed
Dedicated Physical Path Yes No
Each Packet Follows the Same Route Yes No
Packets Arrive in Order Yes No
Is a Switch Crash Fatal Yes No
Bandwidth Available Fixed Dynamic
Time of Possible Congestion At Setup Time On Every Packet
Potentially Wasted Bandwidth Yes No
Store-and-Forward Transmission No Yes
Transparency Yes No
Charging Duration Per Packlet

From [53]

transmission begins. A path between s and t is established and all the packets of a

message follow the same path. The major advantages and disadvantages of packet-

switched and circuit-switched networks are shown in Table1.1. In this dissertation,

we assume the network (Internet) is packet-switched.

1.2 Challenges

There are a number of challenges when transmitting data from one host to another on

the network. The fundamentals of transmitting data using the Internet are addressed

by communication protocols in the Internet protocol suite. IEEE 802 standards [34]

define standards of services and protocols for lower layers (from physical layer to data

link layer) and the higher layer protocols are developed by Internet Engineering Task

Force (IETF) [35]. However, there are issues that are not practically addressed in

these standards and protocols. For example, end-to-end Quality of Service (QoS) pro-

tocol and multicasting are defined but not widely deployed to the end users. There

exist alternative approaches to address these issues such as using overlay networks

(which will be discussed later). In this dissertation, we focus on two of the major met-

rics for measuring the Quality of Service: (a) network latency, which is the time taken

2



for a packet to travel from one node to another node and (b) bandwidth provisioning,

which guarantees sufficient bandwidth for communication between two nodes.

Network multimedia applications, such as online games or online video chat, are

sensitive to network latencies. Claypool et al. [19] have shown that user performance

in the games is directly related to network latency. Massively online game traffic

analysis by Chen et al. [10,11] also shows that online game players may stop playing

the game when the network latencies become too high. Hence, in order to have a

better Quality of Service, it is essential to control the end-to-end latency within a

desired bound. Note that this real-time requirement (desired bound) depends on the

type of the application. For example, Cisco Systems suggests that one-way latency

for Voice over IP should be no more than 150 milliseconds [18]. The requirement for

online games varies from 100 milliseconds to 1 second [19].

Network latency (or end-to-end delay) is the time to transmit 1-bit of data from

one node to another node. But usually, we measure it as the time to transmit a certain

amount of data, one packet for example. First, the packet needs to be pushed into

the medium and then travel to the destination . Generally, it consists of processing

delay, queueing delay, transmission delay and propagation delay. The time to push

the data into the medium is transmission delay and the time for the first bit to

arrive at the destination is the propagation delay. These two types of delays are

caused by the nature of using the medium to transmit data. On the other hand,

processing delay and queueing delay are caused by the computational task and the

number of packets queued in the buffer at the intermediate nodes (routers). There

are also higher level factors that contribute to the end-to-end latency between two

hosts, transmitting paths and network congestion for example. In this dissertation,

we attempt to address the latency issue from routing and network traffic perspectives.

Although we assume the use of overlay networks (defined in Section 1.4), which is

running at the application layer, the results can be applied to anywhere from the

3



network layer to application layer of the Internet Protocol suite.

Routing

Various factors affect routing on the Internet, such as political issues, commercial

issues or peering agreements between the networks. Ly et al. [43] conducted exper-

iments on the PlanetLab [48] and showed that the routing on the Internet is not

always optimal in terms of end-to-end latencies. This is the so called Triangle In-

equality Violation (TIV). Based on this fact, sometimes it is possible to reduce the

latency between two nodes on the Internet by one-hop detouring through a third

node [42]. In order to satisfy the real-time requirement between two end hosts, there

must exist path(s) satisfying this requirement in the underlying network. One of the

main contribution of this dissertation is the development of algorithms to find al-

ternative routing path(s) satisfying some given delay constraint(s) while keeping the

number of hops minimal. By reducing the number of hops, we also can (a) reduce the

total processing delay at the intermediate nodes on the path and (b) lower the rate

of packet dropping which results in retransmission. As a result, more simultaneous

session can be served by the same amount of resources.

Network Traffic

Since resources on a packet-switched network are shared, the amount of traffic flows

through the path between two hosts will impact the end-to-end delay between them.

The end-to-end delay also comes from the various delay sources we mentioned earlier.

When there is more traffic, although the sum of transmission delay and propagation

delay remains the same, other two types of delay could increase. Technically, trans-

mission delay does not increase. But an Internet path consists of several hops. If

there are other hosts transmitting data at each hop, an intermediate node has to wait

until the channel is clear before it can start pushing the data into the medium. Fur-

4



ther, more traffic will also cause the processing delay and queueing delay to increase

since there are more data needs to be processed at the intermediate nodes or routers.

Therefore, it is desirable to reduce the traffic on the congested links of the network.

Another main contribution of this dissertation is that we have developed algorithms

to route traffic of different sessions through the network to maximize the residual

bandwidth, which is the remaining bandwidth between two nodes. Hence the impact

of the network traffic on the end-to-end delays can be reduced.

1.3 Group Communication Models

Given a packed-switched network G = (V, E) where V = {vi|1 ≤ i ≤ n} is the set of

n vertices and E = {ej|1 ≤ j ≤ m} is the set of m edges. Each of the vertices could

be a router, a switch or an end host. Let C = {ck|1 ≤ k ≤ p} ⊂ V be the set of p

participants involved in the same network multimedia application session.

During the lifetime of the session, a global state needs to be maintained especially

for interactive applications. For example, when player A performs an action that

changes the state of an object in an online game session, player B from the same

session should also see the state change of this object. The communication model for

the network multimedia application session dictates the mechanisms how the states of

the session are maintained or synchronized. Generally, the communication model can

be classified into two main types: client-server (centralized) and peer-to-peer, which

are illustrated in Fig 1.1.

• Client-Server (Figure 1.1a): In the client-server (centralized) architecture, all

updates generated by the participants are sent to the central server first. Then

the central server computes the new state of the session and sends necessary

updates to all the participants. The nodes (vertices) and links (edges) involved

in the same session form a tree (or a star graph if we only consider the data

5
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Figure 1.1: (a) Client-Server Model and (b) Peer-to-Peer Model where S is the central
server for the client-server model, {P1, P2 · · ·P5} are the participants in the session.
The arrows show the direction of data flows.

flows) with the central server as the root. Most video streaming services and

massively multiplayer online games (MMOG) use this model.

• Peer-to-Peer (Figure 1.1a): In the peer-to-peer approach, there is no central

server. All the updates are exchanged between the participants directly and

the new state of the session is computed at each client. The nodes (vertices)

and links (edges) involved in the same session form a complete graph. Some

video/audio conferencing systems and Real-time Strategy (RTS) Games use this

architecture.

Both architectures require some synchronization mechanism to restore the order

of the events (updates), especially for a competitive environment like online games.

However, the peer-to-peer approach is less scalable due to the direct message exchange

between participants and requires more sophisticated synchronization methods to

maintain a persistent state due to lack of a central control [27]. There are also other

architectures proposed, such as multi-server or mirrored server models [20,30], which

are variations or hybrid of the two basic model described above.

Note that it is not necessary for the participants to keep sending updates during

the lifetime of a session. How often the participants send out their updates and how
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Figure 1.2: Multicast session with the source S and the destinations {C1, C2 . . . C8}.
(a) Simulating multicast with multiple unicasts. (b) Multicast with hardware (router)
and protocol support. (c) Underlying data flow of overlay multicasting.

large the updates are (in terms of packet sizes) depends on the application. For ap-

plications such as video/audio streaming, majority of the network traffic comes from

the central server (where the multimedia content is stored or generated) to the par-

ticipants. There are virtually no updates from the participants. On the other hand,

in applications such as video/audio conferencing, the amount of incoming/outgoing

multimedia data for each participant is huge and frequent.

1.4 Multicast and Overlay Networks

Multicast is an approach to reduce the network traffic to deliver the same data from a

single source to multiple destinations. With multicast, multiple unicast sessions that

share subpaths on the network can be combined with packet duplication and packet

aggregation. We use Figure 1.2 to illustrate the idea of multicast. Consider a source S

that needs to transmit data to the set of destinations {C1, C2 . . . C8}. {R1, R2 . . . R8}

are Internet routers.

Figure 1.2a shows how multicast can be simulated by using multiple unicast com-

munications. In this case, the same copy of data flows through the link (S, R4) for

8 times, once for each destination nodes. Hence the bandwidth of the link (S, R4)

becomes critical and could impact the performance of the system if this bandwidth

is not sufficient. In Figure 1.2b, multicast is supported at hardware and protocol
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level. Here the routers are capable of duplicating the packets and forwarding them to

the destinations. Bandwidth can be conserved since each packet only travels through

each communication link at most once. However, routers that support IP multicast

protocols such as IGMP (IPv4) [54] and MLD (IPv6) [55] are not widely deployed and

available to end users. An alternative approach called overlay multicast is proposed

to address this issue. Examples include Application Layer Multicasting (ALM) or

End System Multicast (ESM) [9,16,58].

In an overlay network, the nodes are end-hosts and links are the Internet paths

connecting them. By using an overlay network, the data can be sent to some of

the end hosts then these end hosts can duplicate the data and send the data to the

destinations. This is the so called overlay multicast and Figure 1.2c illustrates how

it works. Consider the subset of the destinations {C5, C6, C7}. If multiple unicasts

are used, S will send the three copies of the data through (S, R4) to deliver them

to {C5, C6, C7}. In the case that overlay multicast is used, S sends one copy of the

data to C6 first, then C6 uses two unicasts to deliver the data to C5 and C7. This

reduces the bandwidth usage on the link (S, R4) from 3 units to 1 unit. Similarly,

the same strategy can be applied to other subsets ({C8} and {C1, C2, C3, C4}) of the

destinations to conserve more bandwidth as shown in the same figure. The results in

a huge improvement over using multiple unicasts as in Figure 1.2a.

One drawback of using an overlay network in a multicast session can be illustrated

with the examples in Figure 1.3. Consider an end-host computer S used by a user with

residential Internet connection to participate in an interactive application session.

This computer connects to a series of routers (in some cases wireless) to access the

Internet router (R1) located at the Internet Service Provider (ISP), which is the entry

point to access the Internet and the content is distributed to other peers through this

router. The path from this participant node to the nearest Internet router suffers

from upstream bandwidth limitations when compared to available bandwidths on the
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Figure 1.3: Different approaches for multicast. (a) The underlying structure of the
network. S is the source, D1, D2, D3 are the destinations. S, D1, D2, D3 are end hosts.
R1 and R2 are their nearest Internet routers. (R1, R2) is an Internet path that may
consists of several Internet routers. (b) IP multicast. (c) Multiple unicasts. (d)
Overlay multicast.

Internet backbone. The problem is more acute when S is a multicasting node – here

the participant node has to duplicate every message it receives from its parent (equal

to the number of children in the multicasting tree) and each message will follow the

same bandwidth constrained path to the nearest Internet router. For instance, the

latest ADSL standard ITU G.992.5 Annex M (ADSL2+M) connection from S to R1

is 3.3 Mbit/s upstream (upload) vs 12 or 24 Mbit/s downstream (download). During

a group communication session, S needs to send multimedia content to D1, D2, D3.

When the network supports multicast protocol, only one copy of the contents flows

through the link (S → R1) (Figure 1.3b). In the case without multicast support

(Figure 1.3c), S has to use unicast to achieve the same objective, i.e., the same

content has to flow through (S → R1) for three times. Hence the upstream bandwidth

available to an end host is the bottleneck and the situation gets worse when the

number of children of this client or the data generation rate becomes larger. Figure

1.3d shows how overlay multicast can be used to lift this issue. However, the same

content flows through (D1 → R2) twice in this case and once through (R2 → D1).
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Figure 1.4: Two-Layer Approach

Service Overlay Networks

A service overlay network (SON) is an overlay network built on top of the Internet in

which the nodes are capable of performing application layer data forwarding with end-

to-end QoS support (on the overlay paths) [1, 8, 22]. Overlay multicast and packet

aggregation can also be implemented to conserve the bandwidth usage and results

in smaller congestion and latency. We assume the service overlay network is well-

provisioned, i.e., lower latency with higher bandwidth. The service nodes are hosted

at the ISPs in different regions for more consistent latencies and bandwidth. Because

the routing on the Internet is not always optimal in terms of latencies [43], sometimes

the latency is smaller for two nodes communicate via a third node than directly.

Hence it is also possible to deploy the service nodes at some strategic locations to

lower round trip time (RTT). A two-layer approach as shown in Figure 1.4 can also

be used to relieve the burden of overlay multicast (unicasts) from the end hosts as

follows. Each participant in an application session can connect to a service node

(gateway) in the SON and the service overlay network copies and forwards the data

to the destinations.
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1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. In the first half of this disserta-

tion (Chapter 2 and 3), we assume the two-layer approach and address the problem

of finding the paths with latency-related constraints for both Client-Server and Peer-

to-Peer communication models – Server and Clients Assignment Problem (SCAP)

using the Client-Server communication model in Chapter 2, followed by Client As-

signment Problem (CAP) using the Peer-to-Peer communication model in Chapter

3. We have developed algorithms and integer programming models for both these

problems. In the second half, we address the multi-stream multi-source multicas-

ting problem (MMMRP) covered in Chapter 4. In MMMRP, we assume multiple

concurrent multicast sessions in a given network and present a heuristic algorithm

MMForests as well as an integer programming model to coordinate the multicast ses-

sions in such a way that the overall residual bandwidth is maximal. Conclusions are

given in Chapter 5 along with the direction of future work.
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Chapter 2

Server and Clients Assignment Problem

2.1 Introduction

Network applications involving groups of users participating in a communication ses-

sion have become more popular today with the availability of anytime-anywhere net-

works. A few examples include Internet-based concerts, network video conferences,

virtual environments, online games, live video broadcasting. These applications can

be distinguished by the degree of interaction among the users (or clients) involved

in the same application session. For instance, Internet-based concerts or jamming

sessions have a high degree of interaction, wherein the musicians located at different

locations to join the network, play their instrument of choice while listening to others,

and create music as if they are all at the same location. Video or audio broadcasting

on the other hand has no interaction among its clients.

We have briefly discussed two major communication models – Client-Server (or

centralized) model and Peer-to-Peer model for group communication in Chapter 1.

In this chapter, we will address the problems using the Client-Server model.

Consider the p clients (or users) along with 1 central server involved in a client-

server (or centralized) type application session as shown in Figure 2.1a. The clients

in the same application session send their updates to the central server periodically.

Then the central server computes and sends the new state of the session to the clients

in order for the clients to maintain a consistent view of the session. One way the

server can send data to each of the clients is via p unicast connections. Depending on

12
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Figure 2.1: (a) The logical data flow of multicasting in an application session. S is
the source and Cj’s are clients. (b) Same session using overlay multicast, where the
clients need to help multicasting. (c) The underlying data flow of previous example,
{R1, R2 · · ·R6} are IP routers. (d) Multicast using an SON, {R1, R2 · · ·R6} are service
nodes.

the application and the number of clients participating in this session, the server to

clients and clients to the server unicast connections could result in plenty of network

traffic, consuming bandwidth and increasing latency.

Although multicast can reduce network traffic by using packet duplication and

packet aggregation, IP multicast protocols such as IGMP (IPv4) [54] and MLD (IPv6)

[55] are not widely deployed and available to end users. A popular approach to address

this issue is to construct an overlay network and use overlay multicast [9,16,58]. In an

overlay network, the nodes are end-hosts and links are the Internet paths connecting

them. The example in Figure 2.1b shows the server and clients form a multicast tree

where the server S is the root of the tree and each link of the tree is an Internet

path connecting two nodes. The internal nodes in the tree behave like routers and
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simulate multicast by using multiple unicasts. Overlay multicast is flexible in the

sense that new protocols can be easily incorporated, but are less efficient because the

multicasting paths may involve overlapping Internet paths [26]. Example in Figure

2.1c shows that for the same data flows through the link between R2 and c3 for 4

times.

We have introduced the notion of service overlay networks (SONs) in Chapter 1,

which is an overlay network built on top of the Internet with bandwidth-provisioned

and end-to-end Quality-of-Service (QoS) support [1, 8, 22]. The nodes in a SON are

also capable of performing application layer data forwarding. Hence it can be an

approach to relieve the burden of end hosts (especially the server node) that perform

overlay multicasting as well as conserve the bandwidth on the network as following.

In an application session, each participant connects to a service node (we call it a

contact node) in a SON. When a node needs to multicast, it first sends the data to

its contact node. Then the contact node sends the data to other participants’ contact

nodes using the SON wherein application layer multicast can be used. As we can

observe, the node that performs multicasting only needs to send out one copy of data

using this two-layer approach, as shown in the example utilizing SON (Figure 2.1d).

Overlay multicast and packet aggregation can also be implemented to conserve the

bandwidth usage, which results in smaller congestion and latency.

However, building such a network is costly since the Overlay Network Opera-

tor needs to deploy the service nodes at different locations and purchase network

bandwidth to connect them under Service Level Agreements (SLAs) for bandwidth-

provisioning. Hence, one of the goals in this research is to reduce the number of nodes

utilized by an application session for the following two reasons. First, each overlay

path consists of several IP network links and reducing the number of nodes in the

multicasting tree has the benefit of reducing packet loss. As more number of nodes

participate in multicasting the probability of packet loss in the queues of the nodes
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increases and hence keeping the number of multicasting nodes smaller is beneficial.

Second, it is cheaper to increase the computational power for each node when com-

pared to the link cost. Less number of nodes used by an application results in less

bandwidth consumption and more sessions can be served.

In this research, we consider several variants of Server and Client Assignment

Problems (SCAP). The objective of SCAP is, to find a contact service node for each

of the participants (this is called an assignment) in a client-server application session

and then construct a multicasting tree satisfying some latency-related criteria. The

rest of this chapter is organized as follows. In Section 2.2 we provide the information

on the related work. Then system model and notations are described in Section 2.3.

Integer Programming (IP) formulations and our proposed algorithms are provided

along with problem formulations in Section 2.4. Performance evaluation is given in

Section 2.5 and conclusions are drawn in Section 2.6.

2.2 Related Work

Vik et al. [58] has provided a thorough and complete survey of diameter and degree

bounded Steiner tree heuristics. They have also evaluated these heuristics in terms

of their execution times as it relates to various network sizes. One way to use the

heuristics mentioned in [58] is to create a larger network consisting of the service nodes

and clients as nodes, and links from both the SON and each client to each service

nodes. But when we execute the heuristics on this larger graph, we not only increase

the execution time many folds, we might also end up with the situation wherein

the client node may be an internal node of the tree thereby taking the additional

responsibility of performing multicasting.

Lee et al. [40] proposed a well-provisioned network of mirrored servers for mas-

sively multiplayer online games (MMOG). A distributed algorithm called Zoom-In
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Zoom-Out (ZIZO) is proposed to reduce the number of contact servers used by a

game session in this research which has a similar goal of our research with three

major differences. First, ZIZO works for the mirrored server architecture, which is

Peer-to-Peer and we focus on the client-server architecture. Second, they try to mini-

mize only the number of contact nodes in the resulting network, not the total number

of nodes as in our work. Third, several variants of the problem are considered in our

research, which are not part of the work in [40] .

Service Overlay Networks (SONs) [8, 41, 56, 57] have recently emerged as an al-

ternative to the IP multicast since IP multicast is not widely available to end users.

Vieira et al. [57] assume that the end systems and service nodes are interconnected

by different Internet Service Providers (ISPs) where each link is associated with an

access cost. They present several heuristic algorithms to find a topology such that the

total cost of links is minimized and the resulting subgraph includes all end systems

and are connected.

We differentiate this research with the works on SONs referenced above in the

following aspects. First, we assume the topology of SON pre-determined with a fixed

routing mechanism between nodes. Second, instead of demand matrices, we consider

application sessions where groups of users are involved. Hence our goal is to assign

end hosts to service nodes (accessible through the Internet) such that certain QoS

constraints are satisfied. Third, we also require that the number of service nodes

involved is minimal. Fourth, we assume that multicast and packet aggregation are

supported by the SONs for bandwidth conservation.

2.3 System Model and Notations

We define the terminology, notations, system model and describe our problems in this

section.
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2.3.1 Service Overlay Networks (SONs)

We use G = (V, E) and delay function d() to denote the well-provisioned SON,

where V = {vi|1 ≤ i ≤ n} is the set of n service nodes (or service gateways) which

are capable of overlay multicast and E is the set of m links connecting them. We

use d(vi, vi′) to denote the latency between two nodes for vi, vi′ ∈ V and vi 6= vi′ .

When there is a direct link between (vi, vi′) ∈ E, d(vi, vi′) is the latency of this

link. Otherwise, d(vi, vi′) is the sum of the latencies of the links on the shortest path

between vi and vi′ .

The well-provisioned SON has lower latency and higher bandwidth than the In-

ternet. The service nodes are hosted at the Internet Service Providers in different

regions of the world for more consistent latencies and bandwidth. It is also possible

to strategically deploy the service nodes at some specific locations to lower round-trip

time (RTT) [43].
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Figure 2.2: Figure illustrating the trade-off between end-to-end latency and number
of services nodes involved.

Since the latencies on the SON are low, it is possible to reduce the number of

service nodes used by an application session and we illustrate this using Figure 2.2.

Let V1 be the contact node of s and the shortest path from V1 to V4 be V1 → V2 →

V3 → V4. The numbers on the link denote their latencies. Client c can communicate

with s by connecting to V4 with the latency 9 and 4 service nodes are used in this case.

Note that although V2 and V3 are not contact nodes, yet the traffic has to go through
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them for communication between s and c. When c is assigned to V1, there is only

one service node involved but with a higher latency of 12. The trade-off between the

latency and the number of service nodes involved makes the problem more interesting

when we consider the real-time requirements of any application session wherein data

flows from the central server can share the same subpaths.

2.3.2 Client-Server Application Session

A client-server application session includes a source of a data stream (or a central

server in the case of an interactive application) and a set of clients that will be

receiving the data (and/or sending updates to this source or server). We use s to

denote the data source or central server, C = {cj|1 ≤ j ≤ p} to denote the set of p

participating clients and d(h, vi) to denote the Internet latency between h ∈ {s} ∪ C

and vi ∈ V . An application session is denoted as D = (s, C, G). We also assume the

tree structure is used for client-server communication in a client-server application

session.

2.3.3 Assignment

Our goal is to construct a network for the application session (or group) {s}∪C using

the service overlay network G according to the following two requirements. First, each

of the group members needs to connect to a service node in G in order to utilize the

service overlay network. We call the service nodes that the server and clients connect

to as contact service nodes or contact nodes for short, we call the contact node of the

server s root service node. We will use aj, 1 ≤ j ≤ p, to denote the service node for

cj ∈ C and as for the root service node.

Second, we need to construct a multicasting tree T (within G) that spans the

contact nodes {a1, a2 · · · ap} with the root service node as as the root. Multicasting

tree T can be easily derived once an assignment is determined since the path between
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any pair of nodes in G is predefined (shortest path in our assumption). T is actually

the shortest path tree rooted at as that spans all aj’s, 1 ≤ j ≤ p. Hence finding a

good mapping from the participants to the service nodes is the key to finding a good

multicasting tree. We call this mapping an assignment and use A = {as, a1, a2, · · · ap}

to denote it, where as, a1, a2, · · · ap ∈ V are the contact nodes for s, c1, c2, · · · cn re-

spectively. Note that aj = aj′ if client cj and client cj′ are assigned to the same service

node.

Since multicasting tree T can be derived from the assignment A, the solution to

our problem can also be represented by the assignment A. We use TD(A) to denote

the shortest path tree (of G) derived from the assignment A for the application session

D, and |TD(A)| for the number of nodes in TD(A), which is also called the cardinality

of the assignment A.

2.3.4 Communication Model

The client-server communication of the application session D using the service overlay

network can be performed as follows. The server s can multicast data to all partic-

ipating clients by sending one copy of the data to the root service node as and the

rest of work is done by overlay multicast using the multicast tree TD(A). For inter-

active application sessions, the clients send updates to their contact nodes (through

the Internet) and the service nodes aggregate and forward the data to as through

the shortest path in G to as (overlay) and to s (Internet). The server uses this data,

performs computations if necessary, and sends the state update to the clients using

the method described earlier. The major advantage of this is that the burden of

multicasting is relieved from end hosts which usually have lower upstream bandwidth

and computational power.
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2.3.5 Delays (Latencies)

Usually, we use the end-to-end latency or synchronization delay to measure Quality-

of-Service (QoS) of the network connection between two end hosts. Similarly, we

measure the latency perceived by each client in an application session to evaluate the

QoS of the session. We define the latency for a client cj in an application session

D = (s, C, G) under an assignment A as the propagation delay from client cj to the

server s. The latency is denoted by ΛD(A, cj) = d(cj, aj) + d(aj, as) + d(s, as). This is

the sum of the propagation delays of the links from cj to aj, then to as and finally to

the server s under the assignment A. We further define the delay for the application

session D under the assignment A as the largest delay of the clients’ delays:

ΛD(A) = max ΛD(A, cj)

= max[d(cj, aj) + d(aj, as) + d(s, as)] ∀ cj ∈ C

2.3.6 Delay variation

The synchronization of application state among participating clients is important for

certain types of interactive applications such as video/audio conferencing or online

games. In these applications, ideally the clients should receive the update sent by the

server at approximately the same time for the sake of fairness. Rouskas et al. [51]

first defined the term delay variation as the difference between the maximum delay

and the minimum delay from any client to the server node. Approaches for solving

delay variation problems including finding alternative paths or packet buffering are

presented in [2, 50,51]. We adopt the definition for an application session as follows:

∆D(A) = max |ΛD(A, cj)− ΛD(A, cj′)| ∀ cj, cj′ ∈ C
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2.4 Problem Formulations and Algorithms

With multicasting on the well-provisioned service overlay network, the loads on partic-

ipants for an application layer multicast session are relieved and we also can achieve

goals such as lower latencies or serving more number of users. However, how the

servers and clients are assigned to the service nodes is critical to QoS. The assign-

ment depends on the requirements of the application.

In this chapter, we consider the problem that deals with network construction and

server and client assignment to support multimedia group communication sessions.

Given a well-provisioned service overlay network G = (V, E), server s, the set of clients

C and the latency function d() (for both G and from hosts to V ), we formulate several

variants of Server and Client Assignment Problems (SCAP) with different real-time

related constraints with the requirement number of service nodes involvement in the

resulting multicast tree TD(A) is minimum.

Consider the set of latency requirements Γ, there is a limited number of service

nodes that each client can connect to. How to coordinate these choices among the

clients to minimize the total number of service nodes involved in an application session

is a NP-hard problem, which can be proved by reduction from SetCover problem

[40]. We will show that SCAP-DMC problem is NP-hard later, the proof for other

problems are similar. We attempt to address this problem in this chapter. We provide

heuristic algorithms and integer programming (IP) models for solving some variants

of this problem, which are summarized in Table 2.1.

2.4.1 SCAP with Minimum Delay (SCAP-MD)

Most online interactive applications have their real-time requirements. In the first

variant of SCAP – SCAP-MD, our goal is to find an assignment A with the lowest

possible delay for a given application session D, i.e., that ΛD(A) is minimum. The
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Table 2.1: Summary of SCAP Problems and Corresponding Algorithms

Problem Problem Complexity Algorithm Algorithm Complexity
SCAP-MD Polynomial-time Solvable SCAP-MD-A† O(n2p)
SCAP-DMC NP-Hard SCAP-DMC-IP† Exponential

SCAP-DMC-H O(n3p)
SCAP-DV Polynomial-time Solvable SCAP-DV-A† O(n3p2)
SCAP-DVMC NP-Hard SCAP-DVMC-IP† Exponential

SCAP-DVMC-H O(n4p2)
SCAP-DVMC-IP-CHAIN† Exponential

† denotes the algorithm gives an optimal solution. ∗ n: number of application routers in the SON, p: number of clients.

number of service nodes involved is not a consideration in SCAP-MD and it can be

solved exactly within the polynomial-time using Algorithm SCAP-MD-A.

Algorithm SCAP-MD-A

Algorithm SCAP-MD-A is presented in Algorithm 1, in which we only show the key

ideas of the algorithm. The algorithm works as follows. For each service node r as

the root service node, we create an assignment A′ such that d(cj, vi)+d(vi, r)+d(s, r)

is smallest for each client cj ∈ C (and vi ∈ V ). Then we compare A′ and d′ with the

best known assignment A and its delay d. A and d are replaced if A′ has a smaller

delay. The assignment with smallest possible delay is returned by the algorithm. Line

4 can be done in O(pn) time and it is executed for n times. Hence the overall time

complexity of SCAP-MD-A is O(n2p).

2.4.2 SCAP with Delay Bound and Minimum Cardinality (SCAP-DMC)

In SCAP-DMC, we attempt to coordinate the paths from the clients to the server

and find the trade-off between the real-time requirement and number of service nodes

used in an application session. Let the real-time requirement for the given application

session be µ (the given delay bound), the goal is to find an assignment such that

ΛD(A) ≤ µ and |TD(A)| is minimum. In this section, we first show that SCAP-DMC
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Input: s, C, G = (V, E), d()
Output: assignment A

1 Create an empty assignment A;
2 d =∞;
3 foreach r ∈ V do

4 Create an assignment A′ by assigning each client cj to a service node vi such that
d(cj , vi) + d(vi, r) + d(s, r) is minimum;

5 d′ = ΛD(A′);
6 if d′ < d then

7 d = d′, A = A′;
8 end

9 end

10 return A

Algorithm 1: SCAP-MD-A

is NP-hard, then provide an Integer Programming formulation along with a heuristic

algorithm.

Theorem 1. SCAP-DMC is NP-hard.

Proof. Lee et al. [40] have shown minimum game server allocation problem is NP-

hard. A similar proof can be used to show the NP-hardness of SCAP-DMC, the

proof for other variants of SCAP are similar.

Set Covering Problem (SetCover)

Given a family of n finite sets {Vj} = {V1, V2, · · ·Vn}. The goal of SetCover is to

find a subfamily {Th} ⊆ {Vj} such that
⋃

Th =
⋃

Vj and the cardinality of {Th} is

minimum. The optimization version of set covering problem is known to be NP-hard.

SetCover ≤p SPD-CS

Here we show SetCover is polynomial-time reducible to a special case of SCAP-DMC.

For convenience, let the universe of SetCover be
⋃

Vj = {C1, C2, · · ·Cp}. First,

we construct a network with a dummy node r as the root and let the rest of the

nodes be v1, v2, · · · vn. This network is a star graph and the set of service nodes is

{r, v1, v2, · · · vn}. Now, we set the latencies of the edges from v1, v2, · · · vn to r with
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delays as 1. Let vj corresponds to Vj, 1 ≤ j ≤ n.

Next, we add p client nodes to the network: c1, c2, · · · cp and let ck corresponds to

Ck, 1 ≤ k ≤ p. There are edges between each ck and service node vj pair (recall that

the service nodes and clients form a complete bipartite graph). The delays will be

set as follows. First, we set the delay of (ck, r) to 3 for all ck. Then, if Ck ∈ Vj, the

delay between ck and vj is 1. Otherwise, it is set to 3. Finally, we add the server s to

the network with latency to r being 0 and 5 to other vj’s.

Now an instance of SCAP-DMC is constructed with the set of service nodes

{r, v1, v2, · · · vn}, the set of clients {c1, c2, · · · cp} and edges described earlier. The

delay bound is set to 2 which is the maximum allowance from a client to r in the

solution. The construction of this problem instance can be done in O(n + np).

In this instance, r will to be chosen as the root service node in the solution. The

set of service (vj’s) nodes chosen in an optimal solution of this SCAP-DMC problem

also gives the solution to the SetCover problem instance by simply mapping vj to Vj.

Hence SCAP-DMC is NP-hard.

Integer Programming Approach (Alg. SCAP-DMC-IP)

We use the strategy similar to Algorithm SCAP-MD-A that iterates through all ser-

vice nodes as the root service node r. In each iteration, the following IP model

(SCAP-DMC(r)) is used to find an assignment A that satisfies the delay bound µ

and |TD(A)| is minimal. The one that gives the fewest number of service nodes is

minimum. Model SCAP-DMC(r) is built as follows.

We define ai, which is a column vector of dimension n that represents the nodes

on the shortest path between a service node vi and the chosen root service node r.

An entry aii′ is equal to 1 if vi′ is on the path and 0 otherwise.

Define binary decision variables Yji that take the value 1 if client cj is assigned to

service node vi and 0 otherwise. Yji also represents the path selection from a client
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Model SCAP-DMC(r)

minimize
∑

vi∈V

Xi (2.1)

subject to:
∑

vi∈V

Yji = 1 ∀ cj ∈ C, ΛD(cj , vi, r) ≤ µ (2.2)

∑

cj∈C

∑

vi′ ∈V

ai′iYji′ ≤ pXi ∀ vi ∈ V (2.3)

Figure 2.3: Model SCAP-DMC(r)

cj to its contact node vi then follows the shortest path to the root node r and to s.

Binary decision variables Xi are defined to take the value 1 if service node vi is used in

the solution, 0 otherwise. The delay constraints in the IP models are imposed in the

preprocessing stage and hence do not appear in the IP model. Model SCAP-DMC(r)

is shown in Figure 2.3.

The objective function (2.1) measures the total number of service nodes used

(selected). Constraints (2.2) ensure that each client is assigned to exactly one service

node and delay bound µ is satisfied. Constraints (2.3) are used to make sure a service

node is set to selected when the path Yji is selected and it is on this path.

Algorithm SCAP-DMC-H

SCAP-DMC-H is a heuristic algorithm that also uses the same strategy as SCAP-

MD-A. It iterates through all possible root service nodes as the root service node.

Each iteration with the root service node r works as follows.

First we assign the clients to the root service node r if their delays (ΛD(cj, r, r))

are within the delay bound µ and mark r as used. Next step is to evaluate unused

service nodes that are neighbors of used service nodes and choose the one (v∗) that can

take the largest number of clients without violating µ. Then we assign possible clients

to v∗ and mark v∗ as used. By repeating this procedure, we will find a solution with
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r as the root service node if such solution exists. By comparing all the assignment

returned, we choose the one with fewest number of service nodes marked as used as

our heuristic solution. The overall complexity of algorithm SCAP-DMC-H is O(n3p),

which is presented in Algorithm 2.

Input: s, C, G = (V, E), d(), µ

Output: assignment A

1 Create an empty assignment A, n =∞;
2 foreach r ∈ V do

3 Create an empty assignment A′;
4 mark all service nodes as unused, not_done = false, found = true, d =∞;
5 foreach cj ∈ C do

6 if d(cj , r) + d(s, r) ≤ µ then

7 Assign cj to r in A′;
8 else

9 not_done = true, found = false;
10 end

11 end

12 mark r as used;
13 while not_done do

14 V ′ = unused neighbors of used service nodes, C ′ = unassigned clients;
15 Find the v∗ ∈ V that can take the most number of clients (n∗) without violating µ;
16 if n∗ 6= 0 then

17 Assign unassigned cj to v∗ in A′ if µ is not violated;
18 mark v∗ as used;
19 if all clients are assigned then

20 not_done = false, found = true;
21 end

22 else

23 not_done = false, found = false;
24 clear A′, d =∞;

25 end

26 end

27 n = cardinality of A′;
28 if n′ < n then

29 n = n′, A = A′;
30 end

31 end

32 return A

Algorithm 2: SCAP-DMC-H(s, C, G, µ)
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2.4.3 SCAP with Delay Bound and Minimum Delay Variation (SCAP-

DV)

In SCAP-DV, we consider delay variation minimization problem for an application

session such that ΛD(A) ≤ µ (delay bound) and ∆D(A) is minimum (delay variation).

SCAP-DV problems can be solved in polynomial time by using Algorithm SCAP-DV-

A. Note that if we relax the delay bound requirement, we may get a solution with a

tighter delay variation. We present Algorithm SCAP-DV-A (Algorithm 3) to solve

this problem. There is no requirement on the number of service nodes used.

Algorithm SCAP-DV-A

Algorithm SCAP-DV-A iterates through all possible service nodes as the root service

node r as our previous algorithms do (line 2 – 20). In each iteration, a modified

version of the Algorithm Chain [2] is used to find the assignment with minimal delay

variation. Each iteration works as follows.

First a list L which contains all the tuples (cj, vi, λ(j, i)) whose λ(j, i) = ΛD(cj, vi, r)

≤ µ (line 3 – 9) is created then sorted by λ(j, i) in non-descending order. We ignore r

in λ(j, i) since the context is clear. Each tuple represents a possible assignment for a

client and we apply Algorithm Chain [2] to find an assignment A such that the delay

variation is minimal. For convenience, we use Lk to denote the k-th element in L and

use (ĉk, v̂k, d̂k) to denote its content.

Before describing the following steps, here we define the term chain that will be

used in the explanation. A chain is a set of consecutive elements in L that starts with

Lh (head) and ends with Lt (tail) where h < t with the two conditions satisfied. (a)

each client must appear at least once, and (b) the client at the tail (ĉt) only appears

exactly once. A chain can be converted to an assignment with delay variation d̂t− d̂h

by assigning ĉh to v̂h and ĉt to v̂t and arbitrarily assigning other clients using the
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Input: s, C, G = (V, E), d(), µ

Output: Assignment A, delay variation dv

1 Create an empty assignment A, dv =∞;
2 foreach r ∈ V do

3 Create an empty list L;
4 foreach (cj , vi) pair do

5 λ(j, i) = d(cj , vi) + d(vi, r) + d(r, s);
6 if d(j, i) < µ then

7 Add the tuple (cj , vi, λ(j, i)) to L;
8 end

9 end

10 Sort L by λ(j, i) in non-descending order;
11 foreach Lh ∈ L do

12 Find a chain starts with Lh which ends at Lt;
13 if a chain is found then

14 if (d̂t − d̂h) < dv then

15 dv = d̂t − d̂h;
16 Create A from items Lh through Lt (and replace the old A);

17 end

18 end

19 end

20 end

21 return A, dv

Algorithm 3: SCAP-DV-A(r, s, C, G, µ)

tuples in the chain. Finding a chain starts with Lh as the head then by scanning from

Lh toward the end of L and stop when all the clients are visited. The last element

visited is the tail of the chain.

Next step (line 11 – 19) is to find all possible chains and compare their delay

variations. The one with smallest delay variation is minimum. The overall time

complexity of Algorithm SCAP-DV-A is O(n3p2).

2.4.4 SCAP with Delay & Delay Variation Bounds and Minimum Cardi-

nality (SCAP-DVMC)

We further extend SCAP-DV problem by relaxing the delay variation minimization

in SCAP-DVMC. Given a delay bound µ and a delay variation bound ν, the goal is

to find an assignment A satisfying the following requirements:

1. ΛD(A) ≤ µ (delay bound)
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Model SCAP-DVMC(r)

minimize
∑

vi∈V

Xi (2.4)

subject to:
∑

vi∈V

Yji = 1 ∀ cj ∈ C (2.5)

ΛD(cj , vi, r) ≤ µ
∑

cj∈C

∑

vi′ ∈V

ai′iYji′ ≤ pXi ∀ vi ∈ V (2.6)

[λ(j, i)− λ(j′, i′)](Yji + Yj′i′ − 1) ≤ ν ∀ cj , cj′ ∈ C (2.7)

cj < cj′

∀ vi, vi′ ∈ V

λ(j′, i′) ≤ λ(j, i) ≤ µ

Figure 2.4: Model SCAP-DVMC(r)

2. ∆D(A) ≤ ν (delay variation bound)

3. |TD(A)| is minimum (minimum cardinality)

We present two integer programming approaches (Algorithm SCAP-DVMC-IP,

Algorithm SCAP-DVMC-IP-CHAIN) and a heuristic algorithm (SCAP-DVMC-H)

for this problem.

Algorithm SCAP-DVMC-IP

Algorithm SCAP-DVMC-IP iterates through all possible service nodes as root service

node r and uses Model SCAP-DVMC(r) to find the optimal solution.

Similar to previous sections, we use λ(j, i) to denote the communication cost

(delay) and use column vector ai to represent the path. Binary decision variables Yji

and Xi are also the same as in Model SCAP-DMC(r). The model is shown in Figure

2.4:

The model is actually identical to Model SCAP-MC(r) except for the addition of

constraint set (2.7), which is used to enforce the delay variation (ν).
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Algorithm SCAP-DVMC-H

We developed a heuristic algorithm SCAP-DVMC-H (Algorithm 4) for SCAP-DVMC

which iterates through all possible service nodes as the root service node r (line 3 –

34) and to find the minimal of local minimals. Each iteration works as follows. The

list L is constructed and sorted as in Algorithm SCAP-DV-A (line 4). Next step is to

find all what we call non-left-extendable chains satisfying the delay variation bound ν

(line 5). We define a non-left-extendable chain as a chain starting with Lh and ending

with Lt such that there is no chain in L which starts with some Lh′ for h′ < h and

ends with Lt. Note that ĉt only appears in this chain once. Each non-left-extendable

chain is a candidate for our solution.

Now we are going to construct an assignment A′ from all the non-left-extendable

chains found individually and choose the assignment with minimum cardinality as

the local optimal solution (line 7 – 32). If the cardinality of a chain γ equals the

number of clients, then we can simply create an assignment based on γ (line 7 – 9).

Otherwise, we will create an assignment as follows.

We first assign ĉt to v̂t for the client at tail of the chain (line 12). Then we find

the set of all the service nodes V ′ on the shortest path from v̂t to the root service

node r (line 13), and assign client cj to vi ∈ V ′ if (cj, vi, λ(j, i)) appears in γ (line

14 – 18). By doing this, the cardinality does not increase since all the service nodes

on the shortest path from v̂t to r will be used during the communication. Then we

choose the service nodes in γ that can take the largest number of clients and assign

clients to it using the same method and repeat this until all clients are assigned (line

19 – 27). The tree induced by the assignment with minimal cardinality is chosen as

our final solution (line 39 – 41).

In Algorithm SCAP-DVMC-H, creating L is O(np) and sorting it takes O(np log(np))

time. Finding a chain starting with a particular element as its head takes at most
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Input: s, C, G = (V, E), d(), µ, ν

Output: Assignment A

1 Create an empty assignment A;
2 N =∞;
3 foreach r ∈ V do

4 Create and sort the list L by λ(j, i) in non-descending order;
5 Γ = set of all non-left-extendable chains satisfying ν;
6 foreach chain γ ∈ Γ do

7 if |γ| = |C| then

8 Create an assignment A′ from γ;
9 N ′ = |TD(A′)|;

10 else

11 h = head of γ, t = tail of γ;
12 Assign ĉt to v̂t in A′;
13 V ′ = set of service nodes on the path from v̂t to r;

14 foreach (ĉj , v̂j , d̂j) ∈ γ do

15 if v̂j ∈ V then

16 Assign ĉj to v̂t in A′;
17 end

18 end

19 while not all clients are assigned do

20 Find the service node vi appears in γ that can take the largest number of
clients;

21 V ′ = set of service nodes on the path from vi to r;

22 foreach (ĉj , v̂j , d̂j) ∈ γ do

23 if v̂j ∈ V then

24 Assign ĉj to v̂t in A′;
25 end

26 end

27 end

28 N ′ = |TD(A)|;

29 end

30 if N ′ < N then

31 A = A′, N = N ′;
32 end

33 end

34 end

35 return A

Algorithm 4: SCAP–DVMC-H(r, s, C, G, µ, ν)

31



O(np). The resulting complexity is O(n2p2) since the size of L is at most np. Identi-

fying non-left-extendable chains from the chains only needs a single pass through all

possible chains which takes O(np). Creating an assignment from a chain takes O(n2p)

(n service nodes and a chain is at most np long). Hence the complexity of each itera-

tion is O(n3p2) = O(n2p)×O(np) and the overall time complexity of SCAP-DVMC-A

is O(n4p2).

Algorithm SCAP-DVMC-IP-CHAIN

Two of the major disadvantages of Algorithm SCAP-DVMC-IP and Model SCAP-

DVMC(r) are (a) extreme long execution time and (b) huge memory consumption.

These are due to the huge search space created by the size of constraint set (2.7) in

Model SCAP-MC(r). The model ran out of 12 GB of memory easily when solving

larger instances (p ≥ 200, n = 30). Based on the fact the delay variation must be less

than ν in a feasible solution, we can effectively reduce the search space at the cost

of searching multiple smaller overlapped search spaces. The idea is to find all search

spaces such that the delay bound µ and delay variation bound ν are satisfied, then the

optimal in each smaller search space is found and the one with smallest cardinality

is optimum. We developed Algorithm SCAP-DVMC-IP-Chain (Algorithm 5) using

this idea wherein Model Chain-MC(r, L) is used to find the local optimal within each

small search space.

Similar to our previous algorithms, Algorithm DVMC-IP-Chain iterates through

all possible r as the root service node. Each iteration works as follows. First a list L

is constructed as done in Algorithm SCAP-DVMC-H (line 4). We use li = (ĉi, v̂i, d̂i)

to denote i-th element in L and let the size of L be q. Then for each (distinct) delay

value d̂h in L, we find all the elements in the list such that their delays are between

d̂h and d̂h + ν (line 6). We use Lh = [lh lt] to denote this sublist. If all clients are

covered in Lh, Model Chain-MC(r, l) is used to solve this subproblem with smaller
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search space (line 8 – 13). Otherwise, there’s no feasible from [lh lt]. Best known

assignment A is updated if the returned assignment A′ uses less number of service

nodes. This procedure is repeated until we reach the tail of L.

Input: s, C, G = (V, E), d(), µ, ν

Output: Assignment A

1 Create an empty assignment A;
2 n =∞;
3 foreach r ∈ V do

4 Create and sort the list L = {l1, l2, · · · lq} (|L| = q) by λ(j, i) in non-descending order;
5 for h = 1 to q do

6 Scan from lh until the largest t such that lt such that d̂t ≤ d̂h + ν;
7 Lh = [lh lt], the sublist of L from lh to lt;
8 if all the clients are covered in Lh then

9 A′, n′ = Model Chain-MC(r, Lh) ( assignment A′ and its cardinality n′);
10 if n′ < n then

11 A = A′, n = n′;
12 end

13 end

14 if t == q then

15 break;
16 end

17 while ˆdh+1 == d̂h do

18 h = h + 1;
19 end

20 end

21 end

22 return A

Algorithm 5: DVMC-IP-Chain( s, C, G, µ, ν)

Model Chain-MC(r, l) (which is shown in Figure 2.5) and Model SCAP-DMC(r)

only differ in the input. Model SCAP-DMC(r) constructs the constraints from the

application session D, but Model Chain-MC(r, l) constructs the constraints only from

Lh as follows. Recall that each element in [lh lt] consists of the tuples (cj, vk, λ(j, k)).

For any two tuples (cj, vk, λ(j, k)) and (cj′ , vk′ , λ(j′, k′)) in [lh lt], |λ(j, k))−λ(j′, k′)| ≤

ν. Hence we only add the binary decision variables Yji to the model if (cj, vi, λ(j, i))

in the model and they take the value 1 if client j is assigned to service node vi, 0

otherwise. Binary decision variables Xi are the same as defined in Model SCAP-

DMC(r).
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Model Chain-MC(r, l)

minimize
∑

vi∈V

Xi (2.8)

subject to:
∑

vi∈V

Yji = 1 ∀ cj ∈ C, ΛD(cj , vi, r) ≤ µ (2.9)

(cj , vi, dji) ∈ l
∑

cj∈C

∑

vi′ ∈V

ai′iYji′ ≤ pXi ∀ vi ∈ V, (cj , vi, dji) (2.10)

Figure 2.5: Model Chain-MC(r, l)

2.5 Performance Evaluation

In our experimental evaluation, 30 different networks are randomly generated for

each configuration listed in Table2.2 by using Tiers [7], a random Internet topology

generator. The latencies of the links in the SON are reduced to 70%, 80% or 90% to

represent the well-provisioned links. Since the links on SON have smaller latencies,

it is reasonable to multiply the minimum delay found by SCAP-MD-A by a factor

( 100%, 110% or 120%) as the delay bounds. The configurations are summarized in

Table 2.2.

Table 2.2: Network Generation Parameters in SCAP Experiments

Parameter Values
Size of SON 10, 20, 30, 40, 50
Num. of Clients 50, 80, 100, 200, 300, 400, 500
SON Delay Reduction 70%, 80%, 90%
Delay Bound Adjustment 100%, 110%, 120%

The algorithms are implemented using C/C++ with Gurobi Optimizer C++ li-

brary (Version 4.6.1) [31] using GNU C++ compiler. The experiments are done on

a 16-core Intel Xeon (E5520 at 2.27 GHz) machine with 12 GB of RAM installed

and running Ubuntu (3.0.0-12-generic kernel). Multithreading (up to 16 threads) is
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used when possible for parallel barrier in Gurobi solver. The algorithms compared

are shown in Table 2.1. We measure computational complexity (execution time) and

optimality (number of service nodes selected) in our experiments, and take the aver-

age from 30 instances for different network configurations. We only present part of

the results from the instances with 30 servers, 70% SON delay reduction and 110%

delay bound adjustment. The results for other configurations are similar.

2.5.1 SCAP-MD and SCAP-DMC

We first compare Algorithms SCAP-MD-A, SCAP-DMC-IP and SCAP-DMC-H in

Figure 2.6. We can observe that almost all service nodes are used in order to achieve

the lowest latency (SCAP-MD-A). On the other hand, the number of service nodes

selected in a solution can be significantly reduced when we are looking to satisfy a rea-

sonable delay bound instead of minimum delay. Algorithm SCAP-DMC-H performs

pretty well in terms of the number of service nodes selected in comparison to the

optimum from Algorithm SCAP-DMC-IP. Our heuristic is significantly faster than

Algorithm SCAP-DMC-IP. However, the average time to find optimal using Algo-

rithm SCAP-DMC-IP is only about 2.5 seconds for n = |V | = 30 and p = |C| = 500,

which is reasonable. It appears that our heuristic is more practical for solving large

scale instances.

2.5.2 SCAP-MD and SCAP-DV

We first use Algorithm SCAM-MD-A to find the lowest possible delay for an appli-

cation session and use this value as the delay bound µ for Algorithm SCAP-DV-A.

From Figure 2.7, we can observe that Algorithm SCAP-DV-A achieves the same de-

lay bound while reducing delay variation by about 4
5

(Figure 2.7a) with increased

execution time (Figure 2.7b). With n = 30, p = 500, the average execution time is

about 80 seconds and this may be reasonable for application sessions that will last
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Figure 2.6: Comparisons between SCAP-MD and SCAP-DMC algorithms, which
include SCAP-MD-A(MD-A), SCAP-DMC-IP (DMC-IP) and SCAP-DMC-H (DMC-
H). (a) Number of service nodes used. (b) Execution time.

for hours. But for larger instances, a faster algorithm is needed. We omit the figure

that shows the numbers of service nodes selected for these two algorithms since both

algorithms select about the same number of service nodes.

2.5.3 SCAP-DVMC

Figure 2.8 presents the results of solving SCAP-DVMC using different approaches,

the algorithms included are Algorithm SCAP-DVMC-IP, Algorithm SCAP-DVMC-
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Figure 2.7: Comparison of SCAP-MD-A (MD-A) and SCAP-DV-A (DV-A) algo-
rithms. (a) Delay variations. (b) Execution time.

H and Algorithm SCAP-DVMC-IP-Chain. Here we use Algorithm SCAP-MD-A to

find best possible delay for an application session and multiply it by 1.1 as the delay

bound µ. Delay variation bound ν is set to µ
3
. Both Algorithms SCAP-DVMC-IP and

SCAP-DVMC-IP-Chain give optimal solutions in terms of the number of service nodes

used. Algorithm SCAP-DVMC-H gives the results that are close to optimal (Figure

2.8a). We can also observe from Figure 2.8b that the execution time is improved by a

large amount from SCAP-DVMC-IP to SCAP-DVMC-IP-Chain. On the other hand,

our heuristic SCAP-DVMC-H has significantly shorter execution time than both of
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Figure 2.8: Comparisons of SCAP-DVMC algorithms: SCAP-DVMC-IP (DVMC-IP),
SCAP-DVMC-H (DVMC-H) and SCAP-DVMC-IP-Chain (IP-CHAIN). (a) Number
of service nodes used, optimal is obtained by SCAP-DVMC-IP-CHAIN. (b) Execution
time.

them. Although it does not show clearly in the figure, SCAP-DVMC-H takes about

60 seconds (average) for the problems with n = 30, p = 500. Note that Algorithm

SCAP-DVMC-IP creates a huge model and it can only solve a subset of the problems

with p = 200, 300 (n = 30) before it runs out of 12 GB RAM. It is not able to solve

larger problems (for p = 400, 500).
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2.6 Summary

In this chapter, we have considered Server and Client Assignment problem (SCAP)

using a service overlay network (SON) to improve the performance of application ses-

sion where a group of users are involved. We presented several algorithms to balance

the user experience and resource usage for several variants which include SCAP-MD,

SCAP-DMC, SCAP-DV and SCAP-DVMC. The contributions and results of this

research are summarized as follows.

• We provided exact algorithms for SCAP-MD and SCAP-DV which are polynomial-

time solvable

• SCAP-DMC and SCAP-DVMC are NP-hard and we presented algorithms us-

ing Integer Programming (for finding optimal solution) and heuristic algorithms

(for finding approximation).

• We exploited the problem structure of SCAP-DVMC and provided an alterna-

tive algorithm using Integer Programming that significantly reduces the execu-

tion time.

• The quality of our heuristic algorithms are good (compared to optimal). They

run in a short amount of time and are suitable for large scale instances.

• Integer Programming approach takes significantly longer time to find the opti-

mal solutions.

The material presented in this chapter also appears in [13, 14] wherein a similar

problem – Server Selection Problem in which the server is chosen from one of the

service nodes. The results of Server Selection Problem are presented in Appendix A.
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Chapter 3

Clients Assignment Problem

3.1 Introduction

We have addressed the group communication using the client-server architecture in

Chapter 2. In this chapter, we propose to construct and use a peer-to-peer (P2P)

overlay network for group communication among clients involving multimedia data.

Similar to the two-layer architecture in Chapter 2, the communicating clients connect

to appropriate nodes (also called service nodes) that forms a P2P network. The

service nodes are responsible for distributing the multimedia content to other service

nodes using this P2P network, and eventually to the clients that connect to it.

There has been a number of research papers on the design of P2P networks for

group communication [4,29,32,46,58]. The use of overlay networks can be witnessed

by the successful file-sharing services such as Bit-Torrent [5], Napster [45], Gnutella

[61], eDonkey [60], and others. However, the inability of the Internet routers to

fully-support multicasting and related communication resulted in the development

of algorithms for the design of overlay networks and protocols to carry content on

them [23]. Examples of overlay multicast include Application Layer Multicasting

(ALM) and End System Multicast (ESM) [9,16,58]. In an overlay network, the nodes

are end hosts and links are the Internet paths connecting them. Each node has the

ability to multicast to its neighbors by using multiple unicasts to conserve the network

bandwidth.

Duan et al. [22] first proposed the notion of Service Overlay Networks (SONs) as
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a design mechanism to bring about value-added Internet services by placing service

nodes (gateways) at strategic locations on the Internet. These service nodes are pro-

grammable with the ability to offer a wide-variety of end-to-end Quality-of-Service

(QoS) guarantees [1, 8, 22]. The service nodes are connected by the path of Internet

routers forming an overlay network and they can incorporate the overlay multicast

functionality. Bandwidth can be provisioned on the links along the path between

any two service nodes. This overlay network of service nodes with well-provided

bandwidths becomes an important resource for many delay-sensitive multimedia ap-

plications such as game playing, video conferencing, and others.

Most group communication proposals on P2P networks consider each participant

(or client) as a peer node. The participant node usually connects to a series of routers

(in some cases through wireless routers) to access the Internet router. The content

travels through a series of routers to reach other peers. The path from the participant

node(s) to the nearest Internet backbone router(s) suffers from bandwidth limitations

when compared to available bandwidths on the Internet backbone. The problem is

more acute when a participant node is a multicasting node – here the participant

node has to duplicate every message it receives from its parent (equal to the number

of children in the multicasting tree) and each message will follow the same bandwidth

constrained path to the nearest Internet router. The above has been illustrated and

discussed in Chapter 1.

To overcome some of issues above, the multicasting responsibilities can be handed

over to the service nodes which send the messages to the other service nodes and

to the clients that are connected to it. Given a SON, a set of clients (that are

significantly larger than the number of nodes in the SON), and delays from each

client to each of the nodes in the SON, our goal is select for each client a node in

SON (contact node) that the client should connect to while satisfying a variety of

desirable properties. The contact nodes and other service nodes on the SON that act
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as intermediate routers communicate with each other in a P2P fashion. We illustrate

this two-layer approach in Fig. 3.1a. Fig. ?? illustrates how the multimedia content

can be delivered from c5 to other clients. Note that there may be other service nodes

along the path between the two contact nodes that are not by themselves contact

nodes. For example, although there is a logical data flow path between v2 and v3, the

actual data flow goes through v5 as shown in Fig. 3.1c. However, there is only one

copy of data is sent from v3 to v2 when multicasting is used.

The contact nodes determined as part of this research are not only based on

satisfying one or more the properties below, but are also chosen in such a way that

the total number of nodes required to establish the P2P communication is minimal.

Some of the desirable properties include:

a. Delay: In a group communication set up, we would like to keep end-to-end delay

between pairs of participants to a minimum or bounded by a desired delay.

b. Delay Variation: It is undesirable or even in some applications unfair for certain

participants to receive messages early while others receive it late. Hence a

desirable property would be to keep the variations in delay among pairs of

participants to a minimum or bounded.

We have developed IP models (interesting in its own right) and polynomial-time

heuristics for several variants of the overall goal stated above. The IP models are used

to examine the quality of the solutions that our heuristics produce. The rest of this

chapter is organized as follows. In section 3.2, we provide additional information on

some related works. System model and notations are described in more detail in sec-

tion 3.3. Section 3.4 gives the problem formulation along with corresponding Integer

Programming (IP) formulations and proposed algorithms. Performance evaluation is

presented in section 3.5 and conclusions are summarized in section 3.6.
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Figure 3.1: Two-layer approach for peer-to-peer communication using a SON (a)
An assignment for participants {c1, c2 . . . c5} and the P2P network formed by service
nodes {v1, v2, v3, v4}. Intermediate nodes are not shown in the figure. The links
shown by dashed lines between the service nodes represent logical data flows and
the numbers denote the delays of thm. The delay for this assignment is 7 and delay
variation is 4. (b) A different assignment with a higher delay of 8 but a lower delay
variation of 3. (c) Distributing multimedia content from c5 to other clients.
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3.2 Related Work

Lee et al. [40] proposed a well-provisioned network of mirrored servers for massively

multiplayer online games (MMOG). A distributed algorithm called Zoom-In Zoom-

Out (ZIZO) is proposed to reduce the number of contact nodes used by a game

session. ZIZO works for the mirrored server architecture, which is similar to the P2P

model in our assumption. There are two major differences between work of Lee et

al. [40] and our research. First, they try to minimize only the number of contact

nodes in the resulting network, not the the total number of nodes involved in the P2P

communication as in our work. Second, several variants of the problem (bounded

delay and delay variation) are considered in our research, which are not part of the

work in [40] .

3.3 System Model and Notations

We define the terminologies, notations, system model that are used to describe our

problems in this section.

3.3.1 Service Overlay Networks (SONs)

We use the same notations from Chapter 2 to denote the well-provisioned service

overlay network – G = (V, E) and delay function d(), where V = {vi|1 ≤ i ≤ n} is

the set of n service nodes which are capable of overlay multicast and E is the set of m

links connecting them. We also use d(vi, vi′) to denote the latency between vi, vi′ ∈ V

and vi 6= vi′ . Other details and properties are described in Chapter 2.

3.3.2 Application Session

An interactive application session is denoted as D = (C, G), which consists of a

group of p participants (or clients) C = {cj|1 ≤ j ≤ p}. Each participating client
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has access to any service node in V through the Internet. We use d(cj, vi) to denote

the Internet latency between cj ∈ C and vi ∈ V . During an application session, each

client periodically generates updates, which are delivered to all other clients in the

same application session.

3.3.3 Assignments

As we briefly mentioned earlier in Section 3.1 and Figure 3.1, the participants need to

connect to the service nodes in order to utilize the service overlay network. We call

the service nodes that the participants connect to as contact service nodes (or simply

contact nodes) and the mapping from the clients to the contact nodes an assignment.

We use A = {a1, a2, · · · ap} to denote an assignment where a1, a2, · · · ap ∈ V are the

contact nodes for c1, c2, · · · cn, respectively. Note that aj = aj′ if client cj and client

cj′ are assigned to the same contact node.

A communication subnetwork of G for the application session D can be derived

from an assignment A and we use HD(A) to denote it.

3.3.4 Delays (Latencies)

End-to-end network delay (latency) is usually used to measure the Quality-of-Service

(QoS) of the network. We use ΛD,A(cj, cj′) to denote the delay between participants

cj and cj′ under the assignment A for application session D = (C, G). ΛD,A(cj, cj′)

is the sum of the delays of the links from cj to aj (through the Internet), then from

aj to aj′ (within SON) and from aj′ to cj′ (again, through the Internet). We further

define the delay for an application session D under the assignment A as the largest

end-to-end delay between any two clients:
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ΛD(A) = max ΛD,A(cj, cj′)

= max[d(cj, aj) + d(aj, aj′) + d(cj′ , aj′)] ∀ cj, cj′ ∈ C, cj 6= cj′

3.3.5 Delay variation

The synchronization of application state among participating clients is important for

certain types of interactive applications such as video/audio conferencing or online

games. For these types of applications, ideally the packet sent by one participant

should arrive at other participants at approximately the same time to address fairness.

Rouskas et al. [51] first defined the term delay variation in the context of client-server

communication. The delay variation was defined as the difference between maximum

and minimum delays from any client to the server node. Approaches for solving delay

variation problems including finding alternative paths or packet buffering and some of

these results are presented in [2, 50, 51]. We extend this definition of delay variation

for an application session using the peer-to-peer model as the difference between

maximum and minimum end-to-end delays betweeen pairs of clients as follows:

∆D(A) = max |ΛD,A(cj, cj′)− ΛD,A(dj, dj′)| ∀ cj, cj′ , dj, dj′ ∈ C, cj 6= cj′ , dj 6= dj′

3.4 Problem Formulations and Algorithms

Given a well-provisioned service overlay network G = (V, E), the set of participants

C, latency function d() (for G and from C×V ), we consider two variants of the Client

Assignment Problem (CAP).
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• CAP with Delay Bound and Minimum Cardinality (CAP-DMC): In this prob-

lem, our goal is to find an assignment A along with the induced subgraph such

that the following requirements are satisfied:

a. The given delay bound µ is satisfied (ΛD(A) ≤ µ).

b. The size of the induced subgraph (|HD(A)|) is minimum.

• CAP with Delay Bound and Delay Variation Reduction (CAP-DVR): In this

problem, we aim to refine the assignment A by CAP-DMC-H to find a new

assignment A′ while the following requirements are satisfied:

a. The delay bound is satisfied (ΛD(A) ≤ µ).

b. A′ has less delay variation (∆D(A′) < ∆D(A)), or ideally ∆D(A′) is mini-

mum.

c. The size of the induced subgraph does not increase (|HD(A′)| ≤ |HD(A)|).

In this section, we provide nontrivial integer programming (IP) models for CAP-

DMC and heuristic algorithms for both CAP-DMC and CAP-DVR.

3.4.1 CAP with Delay Bound and Minimum Cardinality (CAP-DMC)

CAP-DMC problem is NP-hard and can be proved by reduction from set covering

problem as the Server Allocation Problem [40]. We provide two different IP models

(Model CAP-DMC-A and Model CAP-DMC-B) and a heuristic algorithm for CAP-

DMC in this section.

Model CAP-DMC-A

We introduce the following notations to better describe the Model CAP-DMC-A. Let

K = {(cj, vi, vi′ , cj′)| cj, cj′ ∈ C, cj > cj′ , vi, vi′ ∈ V } be the set of all possible tuples

representing the connecting paths between participants cj and cj′ , for which we define
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Model CAP-DMC-A

minimize
∑

vi∈V

Xi (3.1)

subject to:
∑

vi∈V

Yji = 1 ∀ cj ∈ C (3.2)

∑

k∈Kji

Zk = (p− 1)Yji ∀ cj ∈ C, vi ∈ V (3.3)

∑

k∈K

Zkaki ≤ p(p− 1)Xi ∀ vi ∈ V (3.4)

Figure 3.2: Model CAP-DMC-A

dk as the delay value for k ∈ K. A tuple k ∈ K specifies a participant cj, connected

to a service node vi, which in turn is connected to another participant cj′ via contact

node vi′ . Let ak be a column vector of dimension n that represents the service nodes

on a path connecting two service nodes in k. An entry aki′ is 1 if server vi′ is on path

k, 0 otherwise. Further, we define Kji ⊂ K such that paths k ∈ Kji start with cj

with contact node vi.

We use decision variables Yji and Xi to represent the assignment of cj to service

node vi, and selection of service node vi (if it is used), respectively. In addition, we

define binary variables Zk that take the value 1 if path k is selected, meaning that the

path between two participants is decided, and 0 otherwise. We impose the maximum

delay constraint implicitly in a preprocessing stage and hence it does not appear in

the model. If for any k ∈ K dk > µ, then we eliminate the corresponding Zk from

the formulation. The complete IP formulation for problem CAP-DMC is presented

in Figure 3.2.

The objective (3.1) is to minimize the total number of service nodes that are

needed to accommodate a given P2P network. Each participant has to be assigned to

exactly one service node, as described in (3.2). If cj is assigned to vi, then we have to

select as many paths as there are remaining clients (p− 1) that start with cj, vi, thus
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ensuring full client-to-client connectivity (3.3). Constraints (3.4) ensure that path k

cannot be selected, unless all servers that are on k are also selected.

Model CAP-DMC-B

In model CAP-DMC-A, we explicitly capture all possible paths between any pair

of clients using all possible contact nodes. This approach, in effect, creates a large

number of decision variables – one for each path, O(p2n2) total. It also removes the

need to explicitly impose delay constraints, because only those paths that are within

the delay bound are retained as input to the model.

An alternative approach is to identify the participant with the largest delay as-

signed to each of the contact nodes, then measure and control the delay of the paths

between all such participants. This would ensure that all other participants connect-

ing through the same pair of contact nodes will have equal or less amount of delay

(thus satisfying delay constraints implicitly), by virtue of the fact that communication

between any pair of service nodes always takes place on the same shortest path.

Based on this observation, we present an alternative formulation that has a less

number of decision variables, but more constraints. Here we define dii′ as the delay

between two service nodes vi, vi′ (through the shortest path). Further we define aii′

as a column vector of dimension n that represents a path of connected servers. An

entry aii′i′′ is 1 if server vi′′ is on the path from server vi to vi′ , 0 otherwise.

We retain decision variables Yji and Xi as in Model CAP-DMC-A. We redefine

path selection variables Zii′ to take value 1 if both vi and vi′ are selected as contact

nodes, thereby selecting the path in between, and 0 otherwise. The paths between

vi, vi′ such that dii′ > µ are identified in preprocessing and related Zii′ variables are

removed from the formulation. In addition, we define Fi a continuous valued non-

negative variable that measures the largest delay among all clients that are assigned

to vi, and Qi a binary variable that takes the value 1 if vi serves as a contact node.
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Model CAP-DMC-B

minimize
∑

vi∈V

Xi (3.5)

subject to:
∑

vi∈V

Yji = 1 ∀ j ∈ C (3.6)

∑

cj∈C

Yji ≤ pQi ∀ vi ∈ V (3.7)

Zii′ ≥ Qi + Qi′ − 1 ∀ vi, vi′ ∈ V (3.8)
∑

vi,vi′ ∈S,vi′ >vi

aii′i′′Zii′ ≤ p(p− 1)Xi′′ ∀ vi′′ ∈ V (3.9)

Fi ≥ djiYji ∀ vi ∈ V, cj ∈ C (3.10)

Yji + Yj′i ≤ 1 ∀ vi ∈ V, cj , cj′ ∈ C (3.11)

dji + dj′i > µ

Qi + Qi′ − 1 ≤ 0 ∀ vi, vi′ ∈ V, vi′ > vi (3.12)

dii′ > µ

Fi + dii′Yii′ + Fi′ ≤ µ ∀ vi, vi′ ∈ V, vi′ > vi (3.13)

dii′ < µ

Figure 3.3: Model CAP-DMC-B

Next, we present the alternative formulation in Figure 3.3.

The objective (3.5) is to minimize the total number of service nodes that are

needed to accommodate a given P2P network. Constraints (3.6) and (3.7) are the

same as in model CAP-DMC-A. Constraints (3.8) ensure that when a pair of service

nodes vi, and vi′ are selected as contact nodes, the path in between them is also

selected. Constraints (3.9) are similar to (3.4) in the previous model and serve the

same purpose. The rest of the constraints, (3.10) − (3.13), are the ones that are extra

in this formulation (compared to the previous one), and collectively they impose the

delay constraints between all pairs of participants. In (3.10), at each service node,

the largest delay from all assigned participants is measured. In (3.11), same service

node assignments that violate the delay bound are eliminated. Constraints (3.12)

ensure that any two contact nodes whose connecting path in between violates the
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delay bound are not both selected. Finally, constraints (3.13) measure the largest

delay path in between every pair of contact nodes and enforces the delay bound.

Algorithm CAP-DMC-H

We have developed a heuristic algorithm called SPD-CS-H(r) for the server selection

problem using client-server model in [13], which is presented in Procedure SPD-CS-H.

Procedure SPD-CS-H is used to find an assignment such that the delay from any client

cj to r is bound by µ̄ while keeping the number of service nodes involved minimal. It

works as follows. It starts with a service node r and the tree T only consists of r. It

assigns the clients to this tree T without violating the delay constraint µ̄. If all the

clients are assigned, we have found an assignment. Otherwise, we choose a service

node s that is a neighbor of T (a neighbor of some node in T ) such that s can serve

as a contact node for a maximum number of unassigned clients without violating µ̄.

Now the node s is added to T and more clients are assigned. The above process is

repeated until all clients are assigned or all service nodes are in T .

The desired peer-to-peer communication subnetwork of CAP-DMC problem can

be found by using SPD-CS-H(r) by setting µ̄ to µ
2

based on the following fact. Suppose

we have an assignment A with the central server s ∈ V given by SPD-CS-H(r) such

that the maximum delay between a client cj and s through cj’s contact node aj

is bounded by µ
2
. Let cj 6= cj′ be any two clients with contact nodes aj, aj′ in A,

respectively. Then d(cj, aj)+d(aj, s)+d(cj′ , sj′)+d(sj′, s) ≤ µ. If the communication

between cj, cj′ is done in a peer-to-peer manner, then d(cj, cj′) = d(cj, aj)+d(aj, aj′)+

d(cj′ , sj′). There are two cases, s lies on one of the shortest paths between aj and aj′

or not. In either case, d(cj, aj)+d(aj, aj′)+d(cj′, sj′) ≤ d(cj, aj)+d(aj, s)+d(aj′ , s)+

d(cj′ , aj′) ≤ µ. Hence A can be converted to a solution for CAP-DMC instance with

the same delay bound µ.
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Input: G = (V, E), C, latency function d(), delay bound µ, root r

Output: assignment A

1 T = {r},not_done = false, found = true;
2 foreach cj ∈ C do

3 if d(cj , r) < µ then

4 Assign cj to r;
5 else

6 not_done = true, found = false;
7 end

8 end

9 Mark r as used;
10 while not_done do

11 s = NULL, nmax = 0;
12 V ′ = neighbors of service nodes in T ;
13 foreach vi ∈ V ′ do

14 n = number of clients can be assigned to vi;
15 if n > nmax then

16 s = vi, nmax = n;
17 end

18 end

19 Mark s as used;
20 foreach unassigned client cj ∈ C do

21 if d(cj , s) + ds(s, r) < µ then

22 Assign cj to s;
23 end

24 end

25 if all clients are assigned then

26 found = true, not_done = false;
27 end

28 if all service nodes are used & found = false then

29 found = false, not_done = false;
30 A = φ, n = 0;

31 end

32 end

33 return A

Procedure SPD-CS-H(r)
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Input: G = (V, E), C, latency function d(), delay bound µ

Output: subnetwork H, assignment A

1 A = SPD-CS-H(G, C, d(), µ
2

, v1);
2 Find the induced subgraph HD(A);
3 foreach vi ∈ V − {v1} do

4 A′ = SPD-CS-H(G = (V, E), C, d(), µ
2

, vi);
5 Find the induced subgraph HD(A′);
6 if |HD(A)| > |HD(A′)| then

7 A = A′;
8 end

9 end

10 V ′ = contact nodes used in A;
11 H = subgraph of G derived from A;
12 return H, A

Algorithm 6: CAP-DMC-H

Algorithm 6 is designed for CAP-DMC based on Procedure SPD-CS-H(r). First

we use SPD-CS-H(r) to find an assignment A. Then we derive the subgraph H

from A, which is the communication subgraph used by the application session. The

complexity of the SPDCS-H(r) algorithm is O(n2p), deriving the subgraph H can be

done in O(n3). The above steps are performed n times, hence the overall complexity

of this algorithm is O(n3p) with n < p.

Zoom-In Zoom-Out Algorithm (ZIZO)

ZIZO algorithm by Lee et al. [40] is a heuristic for the mirrored server architecture, in

which the underlying communication is the peer-to-peer model. Hence it can be used

to solve CAP-DMC problem with a slight modification. The ZIZO algorithm first

allocates the clients to the nearest servers (service nodes, in our term) and migrates

them toward the core server s∗ (that minimizes the longest shortest distance to all the

clients) to reduce the number of servers used. Example shown in Fig 3.4 illustrates

the existence of an assignment with the delay bound µ = 16. However, ZIZO fails to

find a solution in this example for µ = 18. The initial assignment gives the minimal

delay of 19 and the ZIZO algorithm stops. Our algorithm finds the solution with

delay bound 16. Note that we consider all nodes used by an application session but
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Lee et al. [40] consider only the number of contact nodes.

4

1

v2

v3

c1 c2

c3

4

16 6

12

4

13

7

1714

5

v

(a)

5
2

v3

c1 c2

c3
6

4

7v

(b)

Figure 3.4: (a) An example shows that ZIZO fails to find a solution with µ = 18
where v1, v2, v3 are servers (service nodes) and c1, c2, c3 are clients. (b) A shortest
path tree rooted at v3 has the depth of 9 which gives the delay bound µ = 18. Our
heuristic will find a solution with the delay 16 if we set the delay bound parameter
to 18.

3.4.2 CAP with Delay Bound and Delay Variation Reduction (CAP-

DVR)

We developed Algorithm CAP-DVR-H to refine an assignment A for a CAP-DMC

problem. For the new assignment A′, (a) the delay variation is reduced (∆D(A′) <

∆D(A)) and (b) the number of service nodes used is no more than A( |HD(A′)| ≤

|HD(A)|. Note that although we do not provide an IP model for CAP-DVR, The

two IP models for CAP-DMC presented earlier can be used for CAP-DVR by only

considering the nodes in the induced subgraph.

Algorithm CAP-DVR-H

To reduce the delay variation, we use a reassignment approach that modifies current

assignment A by decreasing the maximum delay or increasing the minimum delay

in A. However, the delay variation is not necessary reduced since all the latencies

corresponding to this participant have changed after the reassignment because of the

P2P communication model.
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Input: G = (V, E), C, latency function d(), assignment A, delay bound µ

Output: h, d, dv, Γ
1 Create the set of service nodes involved in A as S′;
2 Construct and sort the list L by the delay values in non-decreasing order;
3 done = false;
4 while !done do

5 Let cj , cj′ , d be the two participants and the delay value of the first element in L;
6 (A′, L′) = Reassign(cj , G, C, d(), µ, A, S′, L);
7 if A′! = φ then

8 A = A′, L = L′;
9 else

10 (A′, L′) = Reassign(cj′ , G, C, d(), µ, A, S′, L);
11 if A′! = φ then

12 A = A′, L = L′;
13 else

14 done = true;
15 end

16 end

17 end

18 done = false;
19 while !done do

20 Let cj , cj′ , d be the two participants and the delay value of the last element in L;
21 (A′, L′) = Reassign(cj , G, C, d(), µ, A, S′, L);
22 if A′! = φ then

23 A = A′, L = L′;
24 else

25 (A′, L′) = Reassign(cj′ , G, C, d(), µ, A, S′, L);
26 if A′! = φ then

27 A = A′, L = L′;
28 else

29 done = true;
30 end

31 end

32 end

33 return dv(L), A

Algorithm 7: CAP-DVR-H
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Algorithm CAP-DVR-H (Algorithm 7) is based on this reassignment approach

and works as follows. For a given assignment A, we find the set of service nodes

involved in the assignment S ′. A list L sorted by di,i′ (in non-decreasing order) which

contains the set of tuples (cj, cj′ , dA
j,j′) is created, where dA

j,j′ is the delay between cj, cj′

under A. The delay variation of L is the difference between the delays of the first and

the last elements.

The algorithm goes through in two phases. In the first phase (line 4 – 17), the

goal is to reduce the delay variation by increasing the smallest delay in the list L.

This is done by reassigning one of the two clients cj, cj′ at the beginning of L to

service nodes in S ′. We use Procedure Reassign() to reassign cj, get a new assignment

A′ and a new list L′ with a smaller delay variation if it exists. In the case such an

assignment is found, A and L are replaced by A′ and L′, respectively. This procedure

is repeated until no improvements can be made. We next use Procedure Reassign()

to find a new assignment by reassigning the second client cj′ . If reassignment can be

made to improve the delay variation, we go back to the beginning of the first phase

with the new assignment and list. Otherwise, we move forward to the second phase.

The second phase (line 19 – 32) is similar to the first phase, but instead of reassigning

the clients at the beginning of L, the clients at the end of L are reassigned to reduce

the largest delay.

The set of used service nodes S ′ and L constructed in lines 1–2 can be done in

O(n2) given the all-pair shortest path between servers. A single iteration in the first

loop (lines 4 – 17) is dominated by Procedure Reassign() which can be done in O(pn2).

The second loop from lines 19 – 32 also takes O(pn2) time for a single iteration. Let

us denote delay variation of the given assignment as Dv, assume only integer values

are involved. These two loops are executed at most Dv times which could not be

determined before L was constructed. However, Dv is also bounded by µ, which

is considered to be a constant. Hence the algorithm has pseudo-polynomial time
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Input: cj , G, C, delay function d(), µ, A, S′, L

Output: new assignment A′, new list L′

1 A′ = A, L′ = L;
2 foreach vk ∈ S′ do

3 Create assignment A′′ by reassigning cj to vk;
4 Construct the new list L′′ from A′′;
5 if dv(L′′) < dv(L′) and d(L′′) ≤ µ then

6 A′ = A′′, L′ = L′′;
7 reassigned = true;

8 end

9 end

10 if ! reassigned then

11 A′ = φ, L′ = φ;
12 end

13 return A′, L′

Procedure Reassign(c, G, C, B, µ, A, S ′, L)

complexity of O(pn2). In our experiments, the first loop (phase) is only executed a

few times (< 10) and the second phase even fewer times.

3.5 Performance Evaluation

We used Tiers [7] to generate Internet-like graphs to evaluate our algorithms. For

each different graph size configuration (summarized in TABLE 3.1), we generated 30

instances of input and calculated the average as the result. The latencies of the links

are reduced to 70% to represent the well-provisioned service overlay network. For

each instance of the input, the minimum possible delay Γ for a given session is found

and then multiplied by a factor f ∈ {1.0, 1.1, 1.2} to represent the different real-time

requirement for different application types.

The algorithms are implemented in C/C++ with Gurobi Optimizer 4.5 C++

library [31] for solving the integer programming models. The experiments are done

on a 16-core Intel Xeon (E5520 at 2.27 GHz) machine with 12 GB of RAM running

Ubuntu (2.6.28-11-generic kernel). Multithreading (up to 16 threads) is used when

possible for parallel barrier in Gurobi solver.

For the problem CAP-DMC, we compared the performance of different algorithms
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Table 3.1: Network Generation Parameters in CAP Experiments

Parameter Values
Size of SON (n) 10, 20, 30, 40, 50
Num. of Clients (p) 50, 80, 100, 200, 300, 400
SON Delay Reduction 70%, 80%, 90%
Delay Bound Adjustment (µ) 100%, 110%, 120%

in terms of number of service nodes selected and execution time. For the problem

CAP-DVR, we compare the amount of reduction on the delay variation and the

execution time of the algorithm. We only show the results of the networks with

50 servers with delay bound 1.1, results of other configurations are similar. Note

that integer programming approach takes longer to find the solutions for larger delay

bound since there are many more possible choices.

3.5.1 CAP-DMC

We compared 4 different approaches which include (a) Nearest: assign the clients to

their nearest contact node (b) CAP-DMC-H: our heuristic algorithm (c) IP: Model

CAP-DMC-B and (d) ZIZO: from Lee et al. [40]. Due to the NP-hardness of the

problem, we were not able to use IP approach to find the optimal solutions within

an acceptable amount of time. Hence we limit the execution time of the solver for

each instance to 1 hour and compare the results found (if any) with our heuristic.

Although we provided two IP models, we observed that Model CAP-DMC-B gives

better results within the time limit and we used it in all comparisons.

• Optimality: Figure 3.5a shows the number of service nodes selected by different

algorithms. Our heuristic CAP-DMC-H is able to find the solutions that are

close to the solutions given by Model CAP-DMC-B. When the number of clients

is greater than 300, our heuristic found better solutions than Model CAP-DMC-

B. The figure also shows ZIZO does not perform as good as CAP-DMC-H. Note
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that in some instances, integer programming approach was not able to find the

solutions within the time limit.

• Time Complexity: The execution time of different algorithms are shown in

Figure 3.5b. Model CAP-DMC-B was not able to find the optimal solutions

for the input size greater than 200 clients although Gurobi solver utilizes all 16

cores when solving the instances. We also observe that in most cases, Model

CAP-DMC-B spent a certain amount of time to find a solution and then used

an enormous amount of time (hours to days) to verify its optimality during our

pilot study. We further compared the execution time of CAP-DMC-H and ZIZO

in Figure 3.5c and the results show that CAP-DMC-H has shorter execution

time.

3.5.2 CAP-DVR

We evaluated the performance of CAP-DVR-H algorithm (Algorithm 7) as follows.

For each of the instances, CAP-DMC-H algorithm was first used to solve the instance.

Then CAP-DVR-H is used to reduce the delay variation of the solution. The results

are shown in Figure 3.6.

• Delay Reduction: From Figure 3.6a, we can observe that the delay variation

values range from 80% – 90% of the delay bound µ for the initial solution.

After we applied CAP-DVR-H algorithm, the values drop to about 50%, which

is about a 30% – 40% improvement.

• Execution Time: Figure 3.6b shows the execution time of CAP-DVR-H al-

gorithm (and CAP-DMC-H algorithm). Although the algorithm has psuedo-

polynomial time complexity of O(pn2), it still takes about 90 seconds for in-

stances with 400 clients. The figure also shows that the execution time is poly-

nomial in the number of participants.
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Figure 3.5: Results of CAP-DMC (50 servers, Bound = 1.1 ): (a) Optimality (b)
Execution time of algorithms with different number of clients (c) Execution time of
Nearest, CAP-DMC-H and ZIZO.
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• Delay: We are also interested in the maximum delay values for each solution

before and after applying CAP-DVR-H algorithm. The delay values (in terms

of % of delay bound µ) are shown in Figure 3.6c and we can observe that the

delay value increases and approaches µ after CAP-DVR-H algorithm is applied

(about 10% increase). However the delay bound is still satisfied.

3.6 Summary

In this chapter, we have considered Client Assignment problem (CAP) using a ser-

vice overlay network (SON) to improve the network performance of application ses-

sion where a group of participants are involved. Two different versions of CAP are

addressed in this chapter which include CAP with delay bound and minimal cardi-

nality (CAP-DMC) and CAP with delay bound and delay reduction (CAP-DVR).

We presented two nontrivial integer programming models and a heuristic algorithm

(CAP-DMC-H) for CAP-DMC. For CAP-DVR, we presented a heuristic algorithm

(CAP-DVR-H) to reduce the delay variation. Experiments were conducted to evalu-

ate different algorithms, the results are summarized as follows.

• The number of service nodes selected by CAP-DMC-H algorithm is close to

the solutions found by using integer programming approach which we ran for a

maximum time of one hour (Model CAP-DMC-B). On the other hand, ZIZO [40]

found solutions that use more than twice of the service nodes in comparison with

the solution found by the CAP-DMC-H algorithm.

• CAP-DMC-H also has faster execution time than both the integer programming

approach and ZIZO [40].

• CAP-DVR can efficiently reduce the delay variation of any solution by about

30% to 40% of the given delay bound µ. This is done at the cost of increasing
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Figure 3.6: Results of CAP-DVR (50 servers, Bound = 1.1 ): (a) Delay variation
reduction by CAP-DVR (b) Execution time (c) New delay values after CAP-DVR-H
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of maximum delay of a solution while still keeping it within the delay bound µ.

The material presented in this chapter also appears in [13,14] wherein the Server

Selection Problem is considered.
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Chapter 4

Multi-stream Multi-source Multicast Routing

4.1 Introduction

Multicasting is an efficient way to deliver the multimedia contents or large files from a

single source to multiple destinations. It can be performed at the network layer taking

into account the Internet routers that support Internet Group Management Protocol

(IGMP) in IPv4 [54] or Multicast Listener Discovery (MLD) in IPv6 [55]. However,

IGMP and MLD are not widely available to end users. An alternative approach called

Application layer multicasting [3,9,16,58] is done using the concept of overlay network

where the nodes are the end-hosts and the links are paths formed by Internet routers.

Application layer multicasting is very flexible in the sense that newer protocols can

be easily incorporated at the end-hosts, but are less efficient because the multicasting

paths may sometimes involve overlapping Internet paths [26]. Multicast backbone

(Mbone) [24] uses IP tunneling to connect “multicast islands” and allow end users to

access it.

There has been a plethora of research activity dealing with the construction of

multicasting trees that satisfy various constraints. For example, the problem of con-

structing a single source serving a single multimedia stream wherein minimum delay

is desired can be solved efficiently by constructing a single source shortest path tree

and pruning subtrees that do not have a destination node. In cases where the de-

lay bound, delay variation bound, node degree bound, and others are desired the

multicasting tree construction problems have been shown to be NP-hard [2, 58].
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There has also been a growing interest in building multiple multicast trees. Castro

et al. [9] developed SplitStream where they split the source stream into k stripes

and multicast them using disjoint multicast trees, i.e, the trees do not share common

interior nodes. The destinations (or subscribers) then obtain each stripe from different

trees. S. Birrer et al. [4] address the issue of bandwidth, especially it being the

bottleneck as we move closer to the root (or source). They do this by building fat-

trees for multicasting, wherein the outgoing links near the root have higher bandwidth

compared to links that are further away from the root.

One approach to solving the multi-stream multi-source problem is to build mul-

ticasting trees for each stream and combine the multicast trees. This approach may

not always produce a result (or one that is desirable). For example, say we have a

source s and a destination t and there are two video streams needed to be sent from

s to t and each consume 1 unit of bandwidth. If we solve the problem for each of

the streams individually, we may get two edge-joint paths which consume 2 units of

the bandwidth on the common edges. A better solution with less congestion could be

two edge-disjoint paths from s to t which results in 1 unit of the bandwidth usage.

Several papers have addressed these issues for different scenarios such as minimum

interference routing between source-destination pairs in multi-protocol label switched

(MPLS) networks [28,36] or multicasting group packing [12,39,59].

In this chapter, we consider the problem of delivering multiple multimedia streams

to their destinations taking into consideration that each stream can originate from

one or more sources. Our goal is to develop algorithms to reduce the congestion on the

communication links and increase their residual bandwidths. The rest of this chapter

is organized as follows. Several relevant research works are reviewed in Section 4.2. In

Section 4.3, we introduce the notations, define Multi-stream Multi-source Multicast

Routing Problem MMMRP, and prove the NP-hardness of this problem. Integer

programming (IP) formulations are then provided in Section 4.4 and the heuristic
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algorithms based on widest path algorithm is presented in Section 4.5. Performance

evaluation and results are presented in Section 4.6 with conclusions drawn in Section

4.7.

4.2 Related Works

There have been a number of techniques for creating multiple multicasting trees that

optimize various resources. For example, there have been several works that try to

reduce the number of nodes that participate in the multicasting trees [58]. A number

of researchers have developed techniques to minimize the total resources consumed

by all multicast trees [59], and others that try to reduce the number of shared links

among the multiple trees [12, 39]. There are also approaches that combine many

constraints such as the number of nodes, total bandwidth, and bandwidth constraints

on links [12,39,59].

The minimum interference routing problem is discussed in [28,36]. Kar et al. [36]

considered the problem of routing data between source-destination pairs in MPLS

networks. Data from the source is routed to destinations using one more more edge-

disjoint paths. Figueiredo et al. [28] later developed an algorithm which improved its

computation time.

Chen et al. [12] considered the multicast tree packing problem wherein groups

of participants communicate with other participants within the same group. Each

group uses a multicast tree for many-to-many multicasting as illustrated in Figure

4.1. The goal of multicast packing problem is to minimize the maximum congestion

(the number of times a link is shared) among the communication links while keeping

the size of each multicast tree within a bound. Chen et al. [12] developed IP models

together with a heuristics algorithm called TreePacking. Their solution methodology

involves solving multiple Steiner tree problems individually and then improving the
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Figure 4.1: (a) Using a multicasting tree for many-to-many communication among
{P1, P2 · · ·P5}. (b) P2 as the source. (c) P5 as the source.

solution by reconstructing the trees that use the most congested link(s).

The problems considered in [12] assume that each multicast tree requires the same

amount of bandwidth, in other words all multimedia streams served require the same

bandwidth. Lee and Cho [39] considered the same problem in which the bandwidth

consumption are all different and provided an algorithm called MMTA. Wang et

al. [59] address the similar problem but with a different objective wherein they aim to

reduce the total cost of the multicast trees (cost on the communication links) while

satisfying the bandwidth constraints of the communication links.

The research works mentioned above assume that the multicast sessions consume

constant bandwidth during their lifetime. Ravindran et al. [49] considers the prob-

lem of changes to the bandwidth that can occur at various points in a multimedia

streaming environment and provide technique to find routing paths.

The main difference between the problem addressed in this chapter and the work

in [12, 39, 59] is that our work considers the case in which each multicast session

has one or more sources that can provide the data stream. The multicast trees

that are constructed in [12, 39, 59] are used for group communication and there is

no requirement to take into consideration source nodes. That is, each member in

the group performs peer-to-peer communication with others in the group. Existing

solutions [12,39,59] are not suitable for the problem under consideration based on the

following reasons. First, the existing solutions use Steiner tree heuristics to reduce
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the number of participating nodes. If we relax the number of nodes constraint and

focus on just the bandwidth related constraints, it may be possible to find better

solutions that maximize minimal residual bandwidth. Second, we cannot remove the

Steiner tree construction parts from the existing heuristics as they are their core.

Third, in order to apply the existing solutions mentioned above, we have to for each

stream, treat the sources and destinations as a group. Since no distinction between

sources and destinations are made, the algorithm may unnecessarily try to optimize

bandwidth related constraints between source nodes.

The heuristics proposed in [12, 39, 59] involve construction of Steiner trees which

is an expensive computation (since they all try to minimize the number of nodes in

the solution). The proposed solution in this chapter does not involve Steiner trees

and hence shown to be very scalable. We have shown that heuristic produces very

good results in few seconds on networks whose sizes are in thousands.

4.3 Problem Definition

In this section, we introduce the notations for Multi-stream Multi-source Multicast

Routing Problem (MMMRP), define and model the problem, then summarize the

variants of problems similar to MMMRP (see Table 4.1).

4.3.1 Notations

Let G = (V, E) be an undirected graph representing the communication network,

where V = {vi|1 ≤ i ≤ n} is the set of n nodes and E = {ej|1 ≤ j ≤ m} is the

set of m communication links connecting them. We use cj to denote the capacity

(bandwidth) of link ej. For convenience, we use Ai to denote the set of neighbor(s)

of node vi in G and assume each vi has the capability to multicast to its neighbors.

Assume there are r data streams supplied and requested by some of the nodes in
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V . Let W = {wk| 1 ≤ k ≤ r} be the set of r distinct data streams and bk be the

bandwidth requirement of data stream wk. We use Sk to denote the set of source

nodes that can supply data stream wk and Dk for the set of nodes that demands data

stream wk. Let |Sk| and |Dk| be the cardinality of Sk and Dk, respectively. Note that

|Sk| ≥ 1, |Dk| ≥ 1, 1 ≤ k ≤ r. We denote δk = (wk, Sk, Dk) as a multicast session or

multicast group and δk = (wk, sk, Dk) for a multicast session when there is only one

source sk in Sk.

4.3.2 Multi-stream Multi-source Multicast Routing Problem

The Multi-stream Multi-source Multicast Routing Problem (MMMRP) can be formu-

lated using the notations introduced earlier as follows. Given a network G = (V, E),

a set of data streams W = {wk| 1 ≤ k ≤ r}, and for each stream wk the set of nodes

Sk ⊂ V that can supply wk ∈W and the set of nodes Dk ⊂ V that demands wk ∈W .

The goal of MMMRP is to find a multicast forest Fk for each data stream wk to

deliver wk from any of the sources in Sk to their destinations in Dk such that the

minimum residual bandwidth (cj −
∑ej∈Fk

k=1···r bk, 1 ≤ j ≤ m) is maximum.

A multicast forest Fk is defined as the set of |Sk| trees satisfying the following

conditions.

• For any tree tk
i ∈ Fk, it is rooted at a node in Sk.

• For any two trees tk
i 6= tk

j ∈ Fk, they do not share any link or nodes. That is,

when a single stream is supplied by two or more sources, the trees from each of

these sources do not share links.

• Every node in Dk is in exactly one tree in Fk.
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Table 4.1: Problems Similar to MMMRP

(For Each Session/Group)
Num. of Num. of Num. of

Item Sessions Sources Destinations Problem Description
1. 1 1 1 Shortest Path Problem [21]

Widest Path Problem [33]
2. 1 N/A > 1 Steiner Tree Problem [6,58]

(Group size) ∗ The tree has minimum cost
3. r 1 1 Minimum Interference

Routing Problem [28,36]
∗ A flow is split into multiple
integral flows
r ≥ 1

4. 1 1 > 1 SplitStream [9]
∗ A stream is split into multiple
chunks

5. r N/A > 1 Multicast Tree Packing
(Group size) [4, 12,39,49,59]

∗ With tree size constraint
r ≥ 1

6. r > 1 > 1 MMMRP (this chapter and [15])
r ≥ 1

Lower bound for a special case

When the links are homogenous (in terms of available bandwidth), the problem is

equivalent to minimizing the maximum bandwidth consumption among the links. If

we also assume that all the data streams consume the same unit bandwidth, a loose

upper bound for the maximum bandwidth consumption is |W | = r and a loose lower

bound is max⌈ |W̄i|
deg(vi)

⌉, ∀ vi ∈ V . |W̄i| is the total number of data streams vi supplies

or demands, deg(vi) is the degree of vi in G.

4.3.3 Similar Problems

We have reviewed several related works in Section 4.2, and we summarize these prob-

lems in this section and Table 4.1 along with MMMRP.

1. A single stream with a single source and a single destination. The problem is

well-known as the shortest path problem, which can be solved using Dijkstra’s
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algorithm [21]. As far as residual bandwidth is concerned, a modified version

of Dijkstra’s algorithm can be used to solve the problem.

2. A single multicast group with multiple participants. This is similar to previous

works where in the problem is modeled as Steiner tree problems [6, 58] when

the total cost of the tree and/or the diameter of the tree are considered.

3. Multiple streams with a single source and a single destination for each session.

This is the minimum interference routing problem addressed in [28,36].

4. A single stream with a single source and multiple destinations. This is the

problem addressed by SplitStream [9] where the stream can be divided into

multiple chunks and delivered to the destinations using different multicast trees.

This is a special case of 6 below where each stream has a single source and each

session has the same source and destinations.

5. Multiple multicast tree packing. This is addressed in [4,12,39,49,59] where the

members of each group use the same multicast tree for communication. The

total cost of the tree is considered in the problem.

6. Multi-stream Multi-source Multicast Routing Problem. This is the problem we

are addressing in this research, where multiple streams coexist and each stream

can have multiple sources and multiple destinations.

As we mentioned previously, 5 and 6 have the same optimal value when (a) the

tree cost constraint is relaxed in 5 and (b) there is only one source for each session in

6. For convenience, we call this special version of 5 and 6 as Simple MTP and Simple

MMMRP, respectively. Here we briefly define these two problems and show the proof

of this claim.

Given a network G = (V, E) as described earlier and a set of sessions ∆ = {δk =

(wk, sk, Dk)| 1 ≤ k ≤ r}. The goal of Simple MMMRP is to find a multicast tree t̂k
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rooted at sk for each session δk such that the minimal residual bandwidth is maximum.

Also, let each multicast group be λk = {sk} ∪ Dk, 1 ≤ k ≤ r. The objective of the

corresponding Simple MTP is to find a multicast tree t̄k for each group λk such that

the minimal residual bandwidth is maximum.

Theorem 2. Simple MMMRP and Simple MTP have the same optimal value.

Proof. It is possible that a Simple MMMRP has more than one optimal solutions with

the same objective value X. Similarly, Simple MTP also has more than one optimal

solutions that give the same objective value Y . Let one of the the optimal solutions

of a Simple MMMRP instance that gives X be T̂ = {t̂∗
k|1 ≤ k ≤ l}. Clearly each

t̂∗
k spans {sk} ∪ Dk which is also the multicast group λk. Hence T̂ is also a feasible

solution of the corresponding Simple MTP instance and Y ≤ X.

Similarly, let one of the optimal solutions of a Simple MTP instance that gives the

optimal objective value Y be T̄ = {t̄∗
k|1 ≤ k ≤ l}. Since each t̄∗

k spans λk = {sk}∪Dk,

we can simply re-orient each t̄∗
k such that sk is the root. Hence T̄ is also a feasible

solution of the corresponding Simple MMMRP instance and X ≤ Y .

From above, we can conclude X = Y .

4.3.4 NP-Hardness of MMMRP

The multicast tree packing problems discussed in [12, 39, 59] are NP-hard because

solutions for the multicast tree packing problems are answer to Steiner tree problems.

Here we show that MMMRP is NP-hard even without the tree cost constraints.

Theorem 3. MMMRP is NP-hard.

Proof. Consider the multi-commodity integral flow problem which is shown to be

NP-complete by Karp [37]. Note that Even et al. [25] also show that it is true even

if the number of commodities is 2. We will show that multi-commodity integral flow

problem is polynomial-time reducible to MMMRP.
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Given a graph G = (V, E) with its capacity function c : E → N where N

is the set of nonnegative integers. We are also given commodity source-terminal

pairs {(s1, t1), (s2, t2) · · · (sk, tk)} and nonnegative-integer requirements of these pairs

{R1, R2 · · ·Rk}. We use ev to denote the edges that have one end point at v ∈ V .

The multi-commodity integral flow problem is to determine whether there exist the

flow functions {f1, f2 · · · fk} from E → N such that

• The capacity constraint c(e) for each edge e is satisfied.

• The total outgoing flow equals the total incoming flow for each commodity i at

each v ∈ V − si, ti.

• The net incoming flow for each commodity i at ti is greater than Ri.

Now we will construct an instance of MMMRP from the multi-commodity integral

flow problem as follows. Consider each commodity i with the requirement Ri. Since

Ri is an integer, we can divide i into Ri unit flows and create Ri source-terminal pairs

{(si,1, ti,1), (si,2, ti,2) · · · (si,Ri
, ti,Ri

)}. This is actually an instance of MMMRP where

each session has 1 source and 1 destination with 1 unit bandwidth requirement. The

conversion can be done in
k∑

i=1

|Ri| time. Hence multi-commodity integral flow problem

≤P MMMRP and the later is NP-hard.

4.4 Integer Programming Formulations

One of the important properties of the classic transshipment problems or network flow

problems is the total supply equals the total demand for the nodes [17]. However, a

data packet can be duplicated at any intermediate nodes that support multicasting.

Hence the linear programming models for solving classic network problems cannot

be used directly to solve MMMRP. Here we will treat the problem as a network flow

73



Model MMMRP

Maximize Z
Subject to:

∑

vi∈Sk

∑

vi′ ∈Ai

Xii′k = |Dk| ∀ wk ∈ W (4.1)

∑

vi′ ∈Ai

Xi′ik − 1 =
∑

vi′ ∈Ai

Xii′k ∀ wk ∈ W, vi ∈ Dk (4.2)

∑

vi′ ∈Ai

Xii′k =
∑

vi′ ∈Ai

Xi′ik ∀ wk ∈ W, vi ∈ V,

vi /∈ Sk, vi /∈ Dk (4.3)

Xii′k ≤ cFii′k ∀ wk ∈ W,

vi ∈ V, vi′ ∈ Ai (4.4)
∑

vi′ ∈Ai

Fi′ik = 0 ∀ wk ∈ W, vi ∈ Sk (4.5)

∑

vi′ ∈Ai

Fi′ik ≤ 1 ∀ wk ∈ W

vi ∈ V, vi /∈ Sk (4.6)

cj −
∑

wk∈W

[bk · (Fii′k + Fi′ik)] ≥ Z ∀ (vi, v′

i) = ej ∈ E (4.7)

Figure 4.2: Model MMMRP

problem, but add some additional decision variables and constraints to incorporate

multicasting in this problem. The following decision variables are defined to be used

in Model MMMRP.

• Xii′k: non-negative integer variables that represent the total number of wk’s

flow from the edge (vi, v′
i) when treated as a network flow problem.

• Fii′k: binary variables that take the value 1 if Xii′k is positive, 0 when Xii′k is

0. This also represents if wk flows through the edge vi to v′
i in MMMRP.

• Z: A non-negative integer variable for measuring the minimum residual band-

width among the links, which is also the objective function.

We define a constant c, an integer, greater than or equal to max |Dk| ∀ wk ∈W .

The model is presented in Figure 4.2.
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The objective function Z measures the maximum residual bandwidth among the

links. Constraints (4.1) to (4.3) are as used in the classic network flow problems.

Constraints (4.1) ensure the copies a data stream wk sent out by its source nodes equal

the number of requests. On the other hand, constraints (4.2) enforce the property

that the number of copies of incoming data stream wk is exactly 1 more than that

of outgoing copies at a node that demands wk. Constraints (4.3) assures for each

intermediate node vi, the number of outgoing and incoming copies of wk are the

same. Constraints (4.4) are used to determine if a data stream wk flows from vi to

v′
i. If there is at least one copy of wk that flows from vi to v′

i, Fii′k is set to 1 by this

constraint, 0 otherwise. We use constraints (4.5) and (4.6) to remove the cycles based

on the following two observations: (i) there should not be any incoming data stream

wk from any neighbor of vi if vi ∈ Sk (Constraints (4.5)) and (ii) there should be at

most 1 neighbor of vi supplying data stream wk to vi if vi /∈ S (Constraints (4.6)).

Constraints (4.7) measure the residual bandwidth on each link using Z. When Z is

less than 0 the instance is infeasible.

4.5 Algorithm MMForests

We present a heuristic algorithm MMforests based on widest-path algorithm for MMMRP

in Algorithm 8.

The idea of MMforests is as follows. First, we set the capacity cj of each commu-

nication link ej to |W | (the number of data streams), which is the loose upper bound

(line 2). In the case of maximizing the minimum residual bandwidth, capacities are

set to the given values. Then for each of the data streams wi, we construct a multicast

forest fi that spans the destination set Di (line 5, 10) and each tree is rooted at one

of the source nodes in Si. The trees in fi do not have nodes or edges in common.

Then we update the residual bandwidth by subtracting 1 from cj if ej is in fi, and
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Input: G = (V, E), data stream set W , sources and destinations of each stream wk: {Sk},
{Dk}.

Output: Set of multicast forests F

1 F = φ;
2 Set the capacity {cj} of each ej ∈ E to r (|W | = r );
3 C = {cj};
4 G′ = (V, E, C);
5 Forest f1 = DijkstraForest(G′, S1, D1);
6 foreach ej ∈ f1 do

7 cj = cj − 1;
8 end

9 foreach wi ∈W − {w1} do

10 Forest fi = WPForest(G′, Si, Di);
11 foreach ej ∈ fi do

12 cj = cj − 1;
13 end

14 end

15 F = {fi};
16 return F

Algorithm 8: MMForests Algorithm

repeat this until all data streams are processed (line 6 – 8, 11 – 13).

Each multicast forest is constructed using Widest-Path Forest Algorithm (Algo-

rithm 10) which is based on the widest path tree algorithm (Algorithm 9, a modified

version of Dijkstra’s algorithm [21]) except the original Dijkstra’s algorithm is used

for the first data stream. Widest-Path Forest Algorithm works as follows.

We first construct the single source widest paths for each of the sources (line 2 –

4). Then we find the path from each of the destinations to one of the sources (line 5

– 22) as follows. For each of the destinations dj, we set dj as the current node. There

will be a “widest-path” from the current node to each of the sources. We then find

the widest among them and the next node on this path (line 8 – 15). Then we add

the edge from current node to next node to the f and set the next node as the current

node (line 16, 17). We repeat this procedure until one of the sources is reached then

continue for next dj. The resulting graph will be a forest where each tree is rooted

at one of the source nodes and there is no overlapping of nodes or edges among the

trees.
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Input: G = (V, E, C), source s

Output: Widest Path Tree t

1 U = V ;
2 foreach v ∈ V do

3 cap[v] = 0;
4 prev[v] = 0;

5 end

6 cap[s] =∞;
7 while U is not empty do

8 u = vertex in U with largest capacity;
9 remove u from U ;

10 if cap[u] == 0 then

11 return NULL;
12 end

13 foreach neighbor v of u do

14 alt = min(cap[u], capacitybetween(u, v));
15 if alt > cap[v] then

16 cap[v] = alt;
17 prev[v] = u;

18 end

19 end

20 end

21 Construct the tree t from previous;
22 return t

Algorithm 9: Widest Path Tree Algorithm

Input: G = (V, E, C), S = {s1, s2 · · · }, D = {d1, d2 · · · }.
Output: Multicast forest f

1 f = φ;
2 foreach source si ∈ S do

3 Tree ti = WidestPathTree(G, si);
4 end

5 foreach dj ∈ D do

6 current_node = dj ;
7 while true do

8 next_node = next node on the widest path from current_node to s1 in t1;
9 next_width = the bottleneck bandwidth from current_node to s1 in t1;

10 foreach si ∈ S − {s1} do

11 if the bottleneck bandwidth from dj to si in t1 > next_width then

12 next_node = next node on the widest path from dj to si in ti;
13 next_width = the bottleneck bandwidth from dj to si in ti;

14 end

15 end

16 Add (current_node, next_node) to f ;
17 currentnode = nextnode;
18 if next_node ∈ S then

19 break;
20 end

21 end

22 end

23 return f

Algorithm 10: Widest-Path Forest (WPForest) Algorithm
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Figure 4.3: Widest Path Selection.

The reason that we do not directly construct a path from each dj to one of the

sources but instead we build the path step by step is explained using Figure 4.3.

Suppose we are constructing the widest path from d to one of the source nodes (s, t).

We will choose the one that is wider (say to s) and determine the next node on the

path which is v in the example. If we keep going from v to s all the way, we may miss

some “wider” paths if (d, v) is the bottleneck. In this case, two paths d← v ← · · · ← s

and d← v ← · · · ← t have the same residual capacities. But our goal is to try to use

the link with higher capacities, and hence we need to make a decision again at each

node and so on.

Complexity of MMForests

First we consider the complexity of WPForest. The complexity of Dijkstra’s algorithm

is O(m +n log n), where m is the number of edges and n is the number of nodes. The

loop from line 5 to 22 runs in O(n · |Dk||Sk|) time for each data stream wk; hence,

the overall complexity is max(O(m + n log n), O(n · |Dk||Sk|)). WPForest is called r

(total number of data streams/sessions) times in MMForests and hence the overall

complexity of MMForests is O(rn2) when m > n, |Dk| is bound by n and |Sk| is

bound by a small constant that is much less than n.
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Table 4.2: Network Generation Parameters in MMMRP Experiments

Exp. n m r p Note
1 200 2n, 3n 20, 40, 60, 80, 100 30 †

2 200 2n, 3n 40 10, 20, 30, 40, 50 †

3 40, 80, 120, 160, 200 2n, 3n 40 30 †

4 200 2n, 3n 40 10, 20, 30, 40, 50 ‡

5 200 2n, 3n 40 30 † ⋄

6 200, 500, 1000, 2000, 4000 2n, 3n 40 30 † ⋄

n: num. of nodes, m: num. of edges, r: num. of sessions, p: num. of participants
†: unit bandwidth ‡: various bandwidth, equally distributed
⋄: multiple sources

4.6 Performance Evaluation

We conducted experiments to evaluate the performance of different algorithms in

terms of execution time and optimality (minimal residual bandwidth). For these

experiments, first we used BRITE [44] to generate the underlying network G = (V, E)

based on Waxman’s probability model. Our experiments used a variety of values, for

number of nodes n ∈ {40, 80, 120, 160, 200} and number of edges m = {2n, 3n}. Here

we only show the results with m = 3n due to space limitations but the results for m =

2n are similar. We also generate input instances with n ∈ {200, 500, 1000, 2000, 4000}

for the purpose of evaluating the speed of our algorithm MMForests. For each of the

instance, we randomly generate r sessions with p participants. The parameters used

in the experiments are summarized in Table 4.2. We assume a homogenous network,

in which the available bandwidths for the links are identical. Hence instead of showing

the minimum residual bandwidths, the maximum bandwidth usages are show in the

results. The results of 30 network instances of each input configuration are averaged

and compared.

The algorithms from [12] and [39] are compared with MMForests Algorithm and

Model MMMRP. These algorithms are summarized in Table 4.3. The core ideas be-

hind Chen’s algorithm [12], modified Chen’s algorithm [39], MMTA [39] are similar.
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Table 4.3: Algorithm Compared in Different MMMRP Experiments

Experiment Algorithm Notation Description
1, 2, 3 IP IP600 Model MMMRP, best feasible

IPLB Model MMMRP, lower bound
MMForests MMForests Algorithm 10
Chen’s Algorithm Chen [12]
Modified Chen’s mChen [39]
MMTA MMTA [39]

4 IP IP600 Model MMMRP, best feasible
IPLB Model MMMRP, lower bound

MMForests MMForests-VBS Sorted by bandwidth
MMForests MMForests Unsorted
MMForests MMForests-VBRF Sorted with refining
MMTA MMTA-VBAG Alternative gain [39]
MMTA MMTA-VBHBF Highest bandwidth first [39]

5 IP IP600 Model MMMRP, best feasible
IPLB Model MMMRP, lower bound

MMForests MMForests Algorithm 10
6 MMForests MMForests Algorithm 10

†Algorithms not cited are from this chapter.

First, each multicast session is solved individually as a Steiner Tree Problem. Link

congestions are computed and the most congested link is identified. Second, a group

using this link is selected and the corresponding multicast tree is reconstructed with-

out using this link. The newly added links should have more residual bandwidth than

the minimal residual bandwidth before reconstruction. The algorithms stop when no

such group exists.

There are two approaches used for tree reconstruction. The first approach is used

in Chen’s algorithm [12] and MMTA [39]. Here the most congested link is removed

from the tree and a path connecting these two components whose residual bandwidth

is more than the minimal is inserted. The second approach is used in modified Chen’s

algorithm [39] wherein the links with residual bandwidth less than minimal residual

bandwidth plus the bandwidth of the group are removed. A new multicast tree is

constructed from the resulting graph. Both approaches guarantee an improvement if

the tree is reconstructed, i.e., the newly added links have more residual bandwidth
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than the minimal residual bandwidth. Solving Steiner tree problems is NP-hard and

we use the well-known heuristic KMB [38] in Chen’s algorithm instead of solving it

exactly using Integer Programming. KMB is also used in the original MMTA. Note

that we do not include the algorithms from [59] because they are designed to minimize

the total costs of all trees.

These algorithms are implemented in C/C++ and compiled using g++ 4.4.6 with

Gurobi Optimizer [31] 5.0.1 C++ Library for solving the IP model. The workstation

used in the experiments is an Intel Xeon (E5520 at 2.27 GHz) machine with 12

GB of RAM running Linux kernel 3.0.0-16. Multithreading (up to 16 threads) is

used (when applicable) for parallel barrier in Gurobi Optimizer while the rest of

the algorithms only utilize a single thread. Finding an optimal solution to a problem

instance using Integer Programming may take a long period of time (hours to days) for

large instances due to the NP-hardness of the problem, hence we limit the execution

time of the solver to 600 seconds and obtain best known solution (IP600) and best

available lower bound on solution (IPLB). IPLB is obtained from the solver when

solving the IP model. Although we do not know how close IPLB is to the optimal,

but if the gap between IP600 and IPLB is small, then IP600 is close to optimal.

Comparing IP600 and IPLB gives us an idea of the optimal solution and hence allows

us to compare it with our heuristic. In experiments 1, 2, 3, 5 and 6 we assume that

each session consumes the same unit bandwidth. The bandwidth consumption varies

in experiment 4 and each session can have multiple sources in experiments 5 and 6.

Note that we assume each link has the same available bandwidth, we simply show the

maximum bandwidth usage instead of minimum residual bandwidth in the figures.

4.6.1 Experiment 1: Number of Sessions

In experiment 1, our goal is to evaluate the impact of the number of simultaneous

multicast sessions and the results are shown in Figure 4.4. The numbers of sessions
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Figure 4.4: Experiment 1 Results: (a) Bandwidth Usage. (b) Execution Time.

are 20, 40, 60, 80, 100 while other parameters are fixed as shown in Table 4.2. As we

can observe from Figure 4.4a, Integer Programming approach (IP600) can only find

good solutions (in terms of bandwidth usage) for instances with fewer simultaneous

sessions (20, 40) due to the 600-second time limit. All other algorithms can efficiently

find good solutions, and MMTA [39] gives best result overall and the solutions from

Chen’s algorithm (Chen) [12] use largest amount of bandwidth. The performance

of MMForests is about half-way between MMTA [39] and Chen’s algorithm [12] and

approximately the same as modified Chen’s algorithm (mChen) [39]. Note that the

bandwidth usage grows linearly with the number of sessions.
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Due to the NP-hardness of the problem, the average execution times of the IP

approach are close to 600 seconds (except for 20 sessions) and we omit it from Figure

4.4b. MMForests algorithm is the fastest among algorithms while MMTA is the

slowest.

4.6.2 Experiment 2: Size of Sessions
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Figure 4.5: Experiment 2 Results: (a) Bandwidth Usage. (b) Execution Time.

In this experiment, we varied the size (number of participating nodes) of each

session while keeping other parameters the same. The results (Figure 4.5) are similar

to experiment 1. The bandwidth usage grows as the size increases. MMTA [39]
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takes significantly longer time but provides the best results among all algorithms.

Interestingly, while the execution time of MMTA increases linearly with the size of

the session, the execution times of MMForests algorithm, Chen’s algorithm [12] and

modified Chen’s algorithm [39] are not affected by the size of the session. MMForests

algorithm only takes a few milliseconds while providing reasonably good solutions in

terms of bandwidth usage.

4.6.3 Experiment 3: Size of the Network
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Figure 4.6: Experiment 3 Results: (a) Bandwidth Usage. (b) Execution Time.

We evaluated the effect of the network size in experiment 3. From Figure 4.6, we
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can observe the following facts. First, the bandwidth usage decreases as the network

size becomes larger. This is due to the fact that there are more alternative paths

to choose in a larger network. Second, the execution times of Chen’s algorithm [12],

modified Chen’s algorithm [39], and MMTA [39] are polynomial in the network size.

Among the algorithms, MMTA [39] grows much faster than the other two. The

execution time of MMForests Algorithm is also polynomial in the network size but it

grows at a more gentle rate in comparison to other algorithms.

4.6.4 Experiment 4: Sessions with Various Bandwidths

In experiment 4, we assume that each the sessions could have different bandwidth

consumption. Two types of bandwidth models are tested. In Case 1, each session

may consume 1, 2 or 3 unit(s) of bandwidth, which are randomly, equally distributed

in the 30 sessions of the same input instance. In Case 2, the possible bandwidths are

1, 4 or 9 unit(s). Note that 1, 4 or 9 represent the ratios for NTSC, HD 720, and

HD 1080 resolutions. The algorithms we compared include variants of MMForests

algorithm and MMTA [39]. In the first variant MMForests-VBS, we first sort the

various sessions in the descending order of their bandwidth requirement and then

run the MMForests algorithm. The second variant MMForests-VBRF uses the same

strategy as MMForests-VBS but performs refinement by using the tree reconstruction

technique used in Chen’s algorithm. Two variants of MMTA [39] are also considered.

In MMTA-VBAG, a session with largest alternative gain (the one that can increase the

most residual bandwidth) is chosen for reconstruction. On the other hand, the variant

MMTA-VBHBF chooses the session that consumes the most bandwidth. The results

are shown in Figure 4.7 and Figure 4.8 and they are similar for both Case 1 and Case 2.

From Figure 4.8a and 4.7a, we can observe that the bandwidth usages in MMForests-

VBS, MMForests-VBRF and MMTA-VBHBF are similar, while bandwidth usage of

MMForests-VBUS is a little bit higher and that of MMTA-VBAG is the highest.
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Figure 4.7: Experiment 4 Results – Case 1: (a) Bandwidth Usage. (b) Execution
Time.

On the other hand, three variants of MMForests algorithm have similar execution

time and two variants of MMTA take significantly longer time to solve the problem.

MMTA-VBHBF has the longest execution time among all algorithms.

4.6.5 Experiment 5: Sessions with Multiple Sources

In experiment 5, we evaluated and compare the performance of MMForests algorithm

and the IP solution for MMMRP with multiple sources. While controlling other

factors, the number of sources for each session is varied from 1 to 5 and the results
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Figure 4.8: Experiment 4 Results – Case 2: (a) Bandwidth Usage. (b) Execution
Time.

are shown in Figure 4.9. We can observe from Figure 4.9a, that the average bandwidth

usages are not affected by the number of sources for each session. This could imply

that there are some links that are critical in the network. The congestion can be

improved by increasing the available bandwidth on those links.

4.6.6 Experiment 6: Scalability of MMForests

We tested the scalability of our MMForests algorithm in experiment 6 with large input

instances in terms of number of nodes. The number and size of sessions are fixed at 40
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Figure 4.9: Experiment 5 Results: (a) Bandwidth Usage. (b) Execution Time.

and 30, respectively. There are 5 sources for each session. We manipulated the size of

the network from 200 to 4000 and the results are shown in Figure 4.10. The execution

time of MMForests algorithm is polynomial in the network size which is consistent

with our complexity analysis. From Figure 4.10, we can observe MMForests algorithm

can solve the problem with 2000 nodes (and 6000 edges) within 5 seconds. For 4000

nodes and 12000 edges, it takes about 18 seconds.
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Figure 4.10: Experiment 6 Results: (a) Bandwidth Usage. (b) Execution Time.

4.7 Summary

In this chapter, we defined Multi-stream Multi-source Multicast Routing Problem

(MMMRP), which is a generalized version of many multicast streaming problems

and prove that MMMRP is NP-hard. We compare our solution methods with other

similar ones in the literatures and show that MMMRP and multicast tree packing

problem have the same optimal value if the following conditions holds: (a) there is

only one source for each data stream and (b) the tree size constraint is relaxed in

multicast tree packing problem.
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We proposed MMForests algorithm for solving MMMRP and evaluated it empir-

ically. The performance and the results are summarized as follows.

• In experiments 1, 2, 3, we first compare MMForests algorithm with Integer Pro-

gramming approach and algorithms for multicast tree packing problems in the

case of single-source MMMRP. The results show that MMForests algorithm per-

forms well in terms of optimality and uses very short execution time for various

input instances.

• In experiments 4 and 5, we consider the case of MMMRP with multiple sources

which is not studied in the literatures. MMMForests algorithm performs pretty

well in terms of optimality and execution time. The results also show MMM-

Forests algorithm is capable of solving large input instances due to its low

computational complexity.

• The initial solutions from the algorithms we compared in this chapter can be

further improved in the tree reconstruction step. However, the improvement is

not much when a similar tree reconstruction algorithm is included in MMForests

algorithm.

• The results from experiment 6 suggest that the locations of the sources play an

important role on bandwidth usages (or residual bandwidths) of the links.

MMForests is also an online algorithm, which makes it applicable for solving

real world problems such as multimedia content distribution. A challenging research

topic continuing this work is to use a similar model in multi-commodity integral flow

problem in which the flows can be separated into smaller integral flows. This will

help us utilize the network bandwidth more efficiently. Another topic of future study

is the choices of the source locations. Although this is similar to facility location

problem, the ability of duplicating data at the nodes will make it more interesting.
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We also performed evaluation with a different input generation model in our pre-

liminary research, which can be applied to different applications. Details can be found

in Appendix B. The material presented in this chapter and Appendix B also appears

in [15].
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we addressed several Quality-of-Service (QoS) related multimedia

content delivery issues using multicast in packet-switching networks.

First, we considered two NP-hard problems – Server and Clients Assignment

Problem (SCAP, Chapter 2) and Client Assignment Problem (CAP, Chapter 3),

wherein a two-layer architecture is assumed. The two-layer architecture consists of

the Internet and a well-provisioned Service Overlay Network (SON) that is capable

of multicasting. The participants (clients and the server for the client-server model,

clients for the peer-to-peer model) of an application session are the Internet nodes

with access to the nodes in the SON (through the Internet paths). The application

then can take the advantage of the well-provisioned SON to reduce the end-to-end

latencies and conserve the bandwidth (using multicast). Given a service overlay net-

work with n nodes and p participants, we have developed algorithms to assign the

participants to the service nodes in such way that the number of the service nodes

involved is minimized while satisfying various criteria. These results are summarized

below.

• Server and Clients Assignment Problem (Client-Server Model):

a. Minimum Delay (SCAP-MD): In this problem we give a polynomial time

algorithm to find an assignment of the server and clients to service nodes

such that the maximum delay among clients is minimized.
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b. Delay Bound and Minimum Cardinality (SCAP-DMC): In this problem

we find an assignment of the server and clients to service nodes such that

the number of service nodes used is minimized and the maximum delay

among clients is bounded by a given value. This is an NP-hard problem.

Here we give an Integer Programming (IP) model solution that uses ex-

ponential time, and a heuristic algorithm with complexity O(n3p) to find

the assignment. A somewhat related problem was addressed in [40] that

attempted to minimize the number of contact servers. The performance of

our algorithm compares favorably with the optimal solution found using

the IP formulation.

c. Delay bound and Minimum Delay Variation (SCAP-DV): In this problem

we find an assignment of the server and clients to service nodes such that

the maximum delay is bounded by a given value with the condition that

the variation in the delays experienced by different clients is minimized.

For this problem we give an algorithm that finds the assignment in O(n3p2)

time, where n is the number of service nodes and p is the number of clients.

d. Delay bound, Delay Variation bound, and Minimum Cardinality (SCAP-

DVMC): In this problem we want to find an assignment requiring minimum

number of service nodes with a given bound on delay and a given bound on

delay variation. This problem is shown to be NP-hard. We give an IP for

this problem that takes exponential time to find the solution. To further

reduce time for finding the exact solution we give another IP formulation in

which the search space is sub-divided into overlapping search sub-spaces.

Though there are multiple search spaces in this case, this formulation takes

much less time than the first one because the size of the individual search

spaces is small. A heuristic algorithm with a time complexity of O(n4p2)

is also given. The performance of this algorithm compares favorably with
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the optimal solution found using the IP formulations.

• Client Assignment Problem (Peer-to-Peer Model):

a. Delay Bound and Minimum Cardinality (CAP-DMC): In this problem we

find an assignment of clients to service nodes such that the number of ser-

vice nodes used is minimized while keeping the maximum delay between

any pair of clients bounded by a given value. This is an NP-hard problem.

Here we give an Integer Programming (IP) model solution that uses ex-

ponential time, and a heuristic algorithm with complexity O(n2p) to find

the assignment. A similar problem was addressed in [40] that attempted

to minimize the number of contact servers using the ZIZO algorithm. We

have modified ZIZO to also take into account the intermediate nodes. The

performance of our algorithm compares favorably with the optimal solution

found using both the IP formulation and ZIZO.

b. Delay Bound and Delay Variation Reduction (CAP-DVR): In this prob-

lem we find an assignment of the clients to service nodes such that the

maximum delay is bounded by a given value with the condition that the

variation in the delays experienced by different pairs of clients is minimized.

For this problem, we first solve it by using the algorithm we developed for

CAP-DMC, then reduce the delay variation by reassigning the clients. We

give an algorithm with pseudo polynomial time complexity of O(n2p) that

can effectively reduce the delay variation by 30% – 40% of the delay bound.

In the second part of this dissertation (Chapter 4), we attempt to address the

Multi-stream Multi-source Multicast Routing Problem (MMMRP). Given a network

with bandwidth-constrained links and multiple multicast sessions each with one or

more sources and multiple destinations. The goal of MMMRP is to find a way to

route the data from the source(s) to the destinations using multicast such that the
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overall residual bandwidth is maximized. We have proved that MMMRP is a gener-

alization of many multicast streaming problems. We have also proved it is NP-hard.

We developed a heuristic algorithm called MMForests which is based on Dijkstra’s

algorithm that runs in O(rmn) time and can solve MMMRP both online and offline.

A nontrivial Integer Programming formulation (Model MMMRP) for this problem

is also developed for the purpose of performance evaluation. Experimental results

show that our algorithm has the performance similar to best known algorithm in

terms of the overall residual bandwidth. Our algorithm also takes less execution time

and hence is more scalable, less than 20 seconds for a network with 4000 nodes for

example.

5.2 Future Work

In this dissertation, we have considered (a) Server and Clients Assignment Problem

(SCAP)/Client Assignment Problem(CAP) with various real-time requirements and

(b) Multi-stream Multi-source Multicast Routing Problem (MMMRP) with band-

width constraints independently. A direction to extend the work in this dissertation

is to consider SCAP/CAP with multiple concurrent sessions in which the overall

bandwidth usage in the service overlay network needs to be minimized. In practice,

it would be a good idea to use tunneling in such two-layer architectures so that the

application sessions are transparent to the end users. Protocols need to be developed

to handle this and the routing since source routing is not efficient due to the fact that

the routing information is embedded within the packets.
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Appendix A

Server Selection Problem

A.1 Introduction

We addressed Server Selection Problem for both Client-Server and Peer-to-Peer ar-

chitectures (SSP-CS, SSP-P2P) in [13, 14]. SSP-CS is similar to Server and Client

Assignment Problem (SCAP) in Chapter 2. Two problems only differ from each other

in the way the server node is modeled. In SCAP, the server node is an end host out-

side the service overlay network and our goal is to find the contact service node for

it. On the other hand, we assume the service nodes are also capable of acting as a

game server in SSP-CS and the server node is selected from one of the service nodes.

Although the models of two problems are slightly different, the approaches for solving

them are similar. Hence we present the algorithms and integer programming models

for the variants of SSP-CS in this appendix. Note that SSP-P2P is identical to Client

Assignment Problem (CAP) discussed in Chapter 3 and hence is not included in this

appendix.

A.2 System Model and Notations

Although we use different terminology for describing SSP-CS in [13,14], here we will

use the notations from Chapter 2 for consistency. We use G = (V, E) for the well-

provisioned service overlay network, C for the set of clients involved in the same

game session and the delay function d() as defined in Chapter 2. We use D = (C, G)

for the game session. The goal of SSP-CS is to find an assignment A that maps
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each client cj in C to a service node aj in V and a server node r in V such that

some requirements are satisfied. Similar to SCAP, the client-server architecture used

in SSP-CS is represented as a tree TD(A, r) with root r being the server. We use

|TD(A, r)| to denote the cardinality of TD(A, r), which is the number of service nodes

in the tree. We define the delay (latency) of a client under the assignment A as

ΛD(A, cj) = d(cj, aj) + d(aj, r). The delay of an application session D under the

assignment A as

ΛD(A) = max ΛD(A, cj)

= max[d(cj, aj) + d(aj, r)] ∀ cj ∈ C

Similarly, we define the delay variation of an application session D under the assign-

ment A is

∆D(A) = max |ΛD(A, cj)− ΛD(A, cj′)| ∀ cj, cj′ ∈ C

A.3 Server Selection Problem for Client-Server Architecture

(SSP-CS)

We consider two variants of SSP-CS – SSP-CS with Delay Constraint (SPD-CS) and

SSP-CS with Delay Constraints and Delay Variation Reduction (SPDVR-CS).

A.3.1 Server Selection Problem for Client-Server Architecture with De-

lay Constraint (SPD-CS)

The goal of SPD-CS is to find a central server r along with an assignment A that

maps each client to its contact node such that the following two requirements are

satisfied:
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Model SPD-CS(r)

minimize
∑

vi∈V

Xi (A.1)

subject to:
∑

vi∈V

Yji = 1 ∀ cj ∈ C (A.2)

∑

cj∈C

Yji ≤ mXi ∀ vi ∈ S (A.3)

∑

vi′ ∈S,vi′ 6=vi

Xi′ai′i ≤ nXi ∀ vi ∈ S (A.4)

Figure A.1: Model SPD-CS(r)

a. The maximum delay is less than µ ( ΛD(A) ≤ µ).

b. The number of service nodes in the tree TD(A, r) is minimum (|TD(A, r)|).

Here we provide an integer programming formulation and a heuristic algorithm

for solving SPD-CS.

Integer Programming Formulation

We use the same strategy as in Chapter 2 to solve the SPD-CS problem. We iterate

through all service nodes as the server r, and use Model SPD-CS(r) to find the optimal

solution when using r. The one with minimum number of service nodes is optimum.

Model SPD-CS(r) is similar to SCAP-DMC but simpler. We define ai as a column

vector of dimension n that represents the path from vi to r. An entry aii′ is equal to 1

if service node vi′ is on the path and 0 otherwise. We define binary decision variables

Yji that take the value 1 if client cj is assigned to service node vi and 0 otherwise.

Similarly, binary decision variables Xi are defined and take the value 1 if service node

vi is selected in the solution, 0 otherwise. The delay constraints are imposed in the

preprocessing stage. The formulation is presented in Figure A.1.

The objective function (A.1) measures the total number of service nodes that we
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have to turn on. Constraints (A.2) ensure that each client is assigned to exactly one

contact node. The remaining two constraints make sure that a service node is selected

if it is a contact node (A.3), or it is on the shortest path from another contact node

to the server r (A.4).

The total delay associated with an assignment can easily be calculated as described

previously. Therefore in a preprocessing stage we identify and set to 0 the Yji variables

that violate the delay constraint. Hence we do not have any explicit delay constraints.

Algorithm SPD-CS-H

Algorithm SPDCS-H is a heuristic algorithm that uses a greedy strategy while keep-

ing the number of servers selected to a minimal. It iterates through all possible

service nodes as the server r and uses Procedure SPD-CS-H(in Chapter 3) to find an

assignment. The assignment with the smallest cardinality is returned as the solution.

We omit Algorithm SPDCS-H here due to its similarity to other algorithms. The

complexity of SPDCS-H is O(n2p) for n < p.

A.3.2 Server Selection Problem for Client-Server Architecture with De-

lay Variation Reduction (SPDVR-CS)

Given an assignment A satisfying the delay constraint µ, the goal of SPDVR-CS is

to find a new assignment A′ using the same set of service nodes in A such that the

delay is less than µ and the delay variation is minimal. Note that since A′ ⊆ A,

the number of service nodes used in the new network is no more than the original

solution. In fact, the approaches for solving SCAP-DVMC including the IP models

and Algorithm SCAP-DVMC-H can be used for solving this problem by setting a

dummy server whose latencies to all the service nodes are 0. Hence we omit these

approaches in this section.
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A.4 Performance Evaluation

Tiers [7] is used to generate Internet-like graphs for evaluations of our algorithms.

Graphs of different sizes are generated with 30 instances for each configuration and

the results are averaged for each configuraton. The latencies of the links on the service

overlay network are reduced to 70% to represent the well-provisioned network. For

each instance, the minimum possible delay Γ for a given session is found. Then

Γ is multiplied by a factor f ∈ {1.0, 1.1, 1.2} to represent the different real-time

requirement for different game types.

The algorithms are implemented using C/C++. Gurobi Optimizer 4.5 C++ li-

brary [31] is used to implement the IP models. The evaluation is done on a 16-core

Intel Xeon (E5520 at 2.27 GHz) machine with 12 GB of RAM installed running

Ubuntu (2.6.28-11-generic kernel) . Multithreading (up to 16 threads) is used when

possible for parallel barrier in Gurobi solver.

A.4.1 SPD-CS

• Optimality: We first compare the size of the service overlay network (number

of servers selected) in the solutions, Figure A.2a shows our heuristic is able

to find the solutions where the number of servers selected is close to optimal

given by integer programming approach (Model SPD-CS(r)). We also have an

interesting finding that when the number of participating clients is greater than

a particular value (150 in this case), the number of servers selected converges.

This probably implies that we only need a certain number of server nodes to

satisfy the realtime requirement by choosing the locations of the server nodes

properly. Note that in Nearest, clients are assigned to the servers (service nodes)

closest to them.

• Time Complexity: Results show the execution time of the algorithms increases
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with the size of input (Figure A.2b through A.2d). The number of clients is fixed

at 400 in Figure A.2b while the number of servers is fixed at 50 for Figure A.2c

and A.2d. We can observe that the execution time increases exponentially with

the number of servers and it increases linearly with the number of clients. We

also attempted to increase the number of the clients (number of available servers

is fixed at 50) to check the limitation of our heuristic and integer programming

formulation in terms of execution time. The result shows that IP approach

takes more than 5 minutes to solve the network of 10000 clients while our

heuristic only takes less than 1 second (Figure A.2c). It is easy to see that

our heuristic runs in linear time (Figure A.2b). The quality of the solutions

(in terms of number of server selected) is similar to previous results. We also

found that because of the properties of the integer programming model (Model

SPD-CS(r)), the solver only utilizes 1 core when solving the problems.

A.4.2 SPDVR-CS

We compare the improvement on delay variation after the modified Algorithm SCAP-

DVMC-H is applied. Modified Algorithm SCAP-DVMC-H significantly reduces the

delay variation of the assignments. The result of the networks with 25 service nodes,

f = 1.3 is shown in Figure A.3a while other configurations give similar results. We

also compared the change on latencies after applying the algorithm. Interestingly, we

found that the algorithm does not only reduce the delay variation, but it also reduces

the latencies by a small amount (Fig A.3b). Similar results are observed for other

input data sets. The material presented in this appendix appears in [13,14].
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Figure A.2: Results of SPD-CS: (a) Optimality (b) Execution time for 400 clients with
different sizes of server network (c) Execution time for different number of clients (50
servers) (d) The growth of execution time for the heuristic.
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Figure A.3: Results for SPD-DVR-CS: (a) Delay variations before and after applying
modified Algorithm SCAP-DVMC-H (25 servers, f = 1.3). (b) Delay before and after
applying modified Algorithm SCAP-DVMC-H (25 servers, f = 1.3).
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Appendix B

Preliminary Results of MMMRP

B.1 Network Generation and Experimental Setup

In the preliminary research, we assume each node collects data from several radars.

Under this assumption each node can provide several data streams and there are

groups of nodes that demand these data streams. We generate 30 random instances

for each different configuration using the parameters in TABLE B.1 with the average

node degree of 3. We assume a homogenous network, in which each source node

supplies the same number of data streams, each destination node requests the same

number of data streams and each data stream is supplied by the same number of

source nodes. For simplicity, we assume that a node can be either a source node or a

destination node but not both.

Table B.1: Network Generation Parameters in Preliminary MMMRP Exps

Name Description
N Number of nodes
NS Number of source nodes
NS

W Number of data streams supplied by a source node
ND Number of destination nodes
ND

W Number of data streams requested by a destination node
NW Number of data streams
NW

S Number of source nodes that supply a data stream
(NW

S = NS ·N
S
W /N)

We evaluate the impact of different parameters and compare the performance of

Model MMMRP with our heuristic MMForests. MMForests and Model MMMRP are
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implemented in C++ with Gurobi Optimizer [31] (version 4.6) C++ Library for the

IP model. The environment for running the experiments are the same as in Chapter

4 – an Intel Xeon (E5520 at 2.27 GHz) machine with 12 GB of RAM running Linux

kernel 3.0.0-16. Multithreading (up to 16 threads) is used when possible for parallel

barrier in Gurobi optimizer, MMForests algorithm only uses a single thread. Note

that finding an optimal solution using the IP model may take a long period of time

(hours to days) for large instances. Hence we limit the running time of the solver to

180 seconds and obtain best known solution (IP180) and best available lower bound on

solution (BestLB). BestLB is obtained from the solver during solving the IP model.

If the gap between IP180 and BestLB is small, IP180 is close to optimal. This gives

us an idea about the optimal solution and allows us to compare it with our heuristic.

We compare (a) maximum bandwidth usage (in terms of the number of data streams)

among the links and (b) execution time for both approaches in the experiments. The

result figures show the average of 30 instances of each network configuration. Note

that in the results of execution time, the unit for IP180 is in seconds and MMForests

is in milliseconds.

B.2 Experimental Results

B.2.1 Size of the Network (N)

For network size (N) from 100 to 500 and keep other parameters the same (NS =

10, ND = 40, NS
W = 8, ND

W = 20, NW
S = 2), The results (Figure B.1) show that IP180

and BestLB are very close, which implies IP180 is close to optimal for the network

size up to 500 nodes. The maximum bandwidth used given by from MMForest is a

little more than that given by IP180 but with very short running time (≤ 150ms)

comparing to more than 100 seconds for IP180. One thing that surprised us is that

BestLB does not decrease much as the network size increases, this may imply the
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Figure B.1: Impact of the number of nodes in the network (NS = 10, ND = 40, NW =
40, NS

W = 8, ND
W = 20, NW

S = 2). (a) Bandwidth usage. (b) Execution time (Notice
that IP180 is in seconds and WPForests is in milliseconds).

bottleneck in the network is implicitly affected by the average degree of the nodes.

B.2.2 Number of Source Nodes for a Data Stream (NW
S )

We varied the number of sources per data stream (NW
S ) while keeping other param-

eters the same (N = 400, NS = 10, ND = 40, NW = 40, ND
W = 20). Note that NS

W

is also affected by NW
S . NS

W are set to 4, 8, 12, 16 with resulting NW
S as 1, 2, 3, 4 re-

spectively. The results (Figure B.2) shows the maximum bandwidth usage does not
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Figure B.2: Impact of the number of sources per data stream. (a) Maximum band-
width usage among links. (b) Execution time.

decrease much as NW
S increases. Our heuristic can quickly find solutions that are close

to optimal. We also observe that the execution time for both approaches increases as

NW
S increases.

B.2.3 Number of Data Streams (NW )

We experiment with the effect of total number of data streams (NW = 40, 80, 160, 200)

keeping other parameters the same (N = 100, NS = 10, ND = 80, NW = 40, NS
W =

8, ND
W = 20). We find that the solver starts failing to find a good feasible solution
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Figure B.3: Impact of the total number of data streams. (a) Maximum bandwidth
usage among links. (b) Execution time.

(and a good BestLB) as the number of data streams increases. As the gaps between

the best solution found by IP180 and the BestLB value become large, especially for

NW = 160, 200. This information is less meaningful to us. From Figure B.3, we can

see that MMForests performs well when NW = 40. We also believe that the optimal

value also increases when NW increases. If our assumption holds, we have confidence

that MMForests finds good solutions because the slope of MMForests in Figure B.3a

is small. Note that in Figure B.3a, BestLB decreases because the solver could not to

improve it much (from 0) when problem sizes get larger.
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Figure B.4: Impact of the number of data streams requested per destination. (a)
Maximum bandwidth usage among links. (b) Execution time.

B.2.4 Number of Data Streams Requested per Destination

Figure B.4 shows the results of varying the number of data streams requested by each

of the destinations (ND
W = 20, 40, 60). Other parameters are N = 100, NS = 10, ND =

40, NW = 80, NS
W = 16, NW

S = 2. Gurobi uses more than 150 seconds in average to

find good solutions in all cases while the solutions found by MMForest is comparable

with the solver (Figure B.4a). MMForest has fast execution time as in other results.
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Figure B.5: Impact of total number destination nodes. (a) Maximum bandwidth
usage among links. (b) Execution time.

B.2.5 Total Number of Destination Nodes

In this experiment, we change the number of destinations (ND = 40, 80, 120, 160, 200).

Other parameters are kept the same N = 400, NS = 10, NW = 40, NS
W = 8, ND

W = 20.

Model MMMRP hits its limitation for ND = 120, 160, 200 but still can provide some

meaningful BestLB values. Our heuristic algorithm MMForests finds good solutions

(compared to BestLB’s) by using a little more than 100 milliseconds. The result

(Figure B.5) also shows ND only slightly affects the execution time of MMForests.
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B.3 Summary

In this preliminary research, our experimental results show that MMMForests finds

good multicast forests in terms of maximizing residual bandwidths while being ef-

ficient in execution time. The results also show that the execution time increases

significantly in proportion to the size of the network, number of source nodes per

data stream, and total number of data streams. It does not increase proportional to

the number of data streams requested per destination and total number of destina-

tions. Experimental results also indicate that the structure of the network (degree

of the nodes) has impact on the optimal objective value (maximum bandwidth usage

among the links). The purpose of this research is to improve multimedia streaming

service. The material presented in this appendix appears in [15].
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