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CoA; J) acetylphosphate and K) ribulose-5-phosphate/xylulose-5-phosphate isobar.

 ................................................................................................................................ 136 

FIGURE 28.  The proposed pathway for glucose oxidation and H2 production by 

Anaerobaculum hydrogeniformans including pyruvate decarboxylation.  Enzymes:  

1, phosphotransferase system; 2, phosphoglucoisomerase; 3, phosphofructokinase; 

4, fructose-1,6-bisphosphate aldolase; 5, triosephosphate isomerase; 6. 

glyceraldehyde-3-phosphate oxidoreductase; 7, phosphoglycerate mutase; 8, 2-

phosphoglycerate enolase; 9, pyruvate kinase; 10, pyruvate oxidoreductase; 11, 

phosphotransacetylase; 12, acetate kinase; 13, ferredoxin oxidizing hydrogenase.152	  
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Abstract 

A novel anaerobic, moderately thermophilic, NaCl-requiring fermentative 

bacterium, strain OS1T, was isolated from oil production water collected from 

Alaska, USA.  Cells were Gram-negative, non-motile, non-spore-forming rods (1.7-

2.7 x 0.4-0.5 µm).  The G+C content of the genomic DNA of strain OS1T was 46.6 

mol%.  The optimum temperature, pH and NaCl concentration for growth of strain 

OS1T were 55 °C, 7 and 10 g L-1, respectively.   The bacterium fermented D-

fructose, D-glucose, D-maltose, D-mannose, α-ketoglutarate, L-glutamate, 

malonate, pyruvate, L-tartrate, L-asparagine, Casamino acids, L-cysteine, L-

histidine, L-leucine, L-phenylalanine, L-serine, L-threonine, L-valine, inositol, 

inulin, tryptone and yeast extract.  When grown on D-glucose, 3.86 mol hydrogen 

and 1.4 mol acetate were produced per mol of substrate.  Thiosulfate, sulfur and L-

cystine were reduced to sulfide, and crotonate was reduced to butyrate with glucose 

as the electron donor.  16S rRNA gene sequence analysis indicated that strain OS1T 

was related to Anaerobaculum thermoterrenum (99.7 % similarity), a member of the 

phylum Synergistetes.  DNA-DNA hybridization for strain OS1T and A. 

thermoterrenum yielded a 68 % relatedness value.  Unlike A. thermoterrenum, strain 

OS1T fermented malonate, D-maltose, tryptone, L-leucine and L-phenylalanine, but 

not citrate, fumarate, lactate, L-malate, glycerol, pectin or starch.  The major cellular 

fatty acid of strain OS1T was iso-C15 : 0 (91 % of total).  Strain OS1T also had iso-C13 

: 0 3-OH (3 %), which was absent from A. thermoterrenum, and iso-C13 : 0 (2 %), 

which was absent from Anaerobaculum mobile.  On the basis of these results, strain 
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OS1T represents a novel species of the genus Anaerobaculum, for which the name 

Anaerobaculum hydrogeniformans sp. nov. is proposed.  The type strain is OS1T 

(=DSM 22491T =ATCC BAA-1850T).   
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Anaerobaculum hydrogeniformans sp. nov., a novel 

anaerobe that produces hydrogen from glucose 
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Introduction 

 The Synergistetes phylum of bacteria is an underrepresented phylogenetic The 

Synergistetes phylum of bacteria is an underrepresented phylogenetic cluster of 

Gram-negative anaerobic rod-shaped bacteria that are related to Synergistes jonesii 

(41).  Members of this group have been isolated from a variety of environments 

including anaerobic digesters (54, 138), the termite hindgut (81), subgingival plaque 

(74) and petroleum reservoirs (85, 117, 128).  The 11 validly described species in 

this group display diverse physiological properties, but all currently cultivated taxa 

catabolize amino acids (125).  It has been noted that these organisms, although 

underrepresented by cultivated taxa, are not uncultivable but are present at low cell 

numbers in microbial communities (27).  The genus Anaerobaculum, comprised of 

Anaerobaculum thermoterrenum (88) and Anaerobaculum mobile (68), is a member 

of the phylum Synergistetes, but their ability to catabolize amino acids has not been 

studied.  However, their capacity to produce hydrogen gas from sugars has been 

documented (68).   

 

 Increasing global demand for fossil fuel reserves and a need to decrease 

carbon dioxide emissions has driven research towards renewable, carbon-neutral 

energy sources.  Hydrogen has the potential to be a sustainable alternative to some 

fossil fuels.  It is a clean fuel that burns with no carbon dioxide emissions and can 

be easily converted to electricity by fuel cells (14).  Hydrogen has an energy yield of 

122 kJ/g, which is 2.75 times greater than that of hydrocarbon derived fuels (45).  
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Presently	  about 95 % of the worlds’ hydrogen is produced via steam reformation of 

natural gas, which does not lower net carbon dioxide emissions, and is resource and 

energy intensive (56).  The production of hydrogen from renewable resources such 

as biomass or waste materials is being explored as a sustainable global fuel source.  

“Dark-fermentative” bacteria can produce hydrogen from carbohydrates and other 

waste products (2, 32, 60) without the need for light input (75).  

 

C6H12O6  + 4H2O  Ò  4H2 + 2CH3COO- + 2HCO3
- + 4H+  (ΔG0’= -206.3 kJ/mol) 

 

The Gibbs’ free energy of formation was from Thauer et al. (113) and is 

essentially the same as in Kengen et al. (48).  Four hydrogens can be produced per 

glucose via this thermodynamically favorable reaction with acetate and carbon 

dioxide as additional products.  However, only a handful of organisms have been 

isolated which produce close to this amount of hydrogen, such as Acetomicrobium 

faecalis (136), A. mobile (68), Caldicellulosiruptor saccharolyticus (121), 

Thermotoga maritima (98) and Thermotoga elfii  (121).  An objective of the United 

States Department of Energy is exploration of novel biological catalysts that can 

produce four hydrogen per molecule of glucose (17).   

 

The hydrogen producing bacterium strain OS1T isolated from oil production 

water is described in this study. On the basis of phenotypic and genotypic evidence, 
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strain OS1T is proposed as a new species of the genus Anaerobaculum, as 

Anaerobaculum hydrogeniformans sp. nov.  The description of the genus is also 

emended to include the amino acids catabolized by the three species reported to 

date. Strain OS1T can produce almost four hydrogen molecules per molecule of 

glucose, which approaches the theoretical maximum via the aforementioned 

reaction.  It also has the ability to produce hydrogen from a variety of amino acids 

and other organic acids.     
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Materials and Methods 

Enrichment and isolation  
Strain OS1T was isolated from oil production water collected from Alaska, 

USA as part of a study of the microbiology of a North Slope oil facility (18).  Most 

probable number (MPN) enumerations of general heterotrophs were conducted at 50 

°C using anaerobic half- strength tryptic soy broth (TSB) (Difco) with 1 % NaCl 

and 100 % nitrogen gas phase (5).  The Hungate agar roll tube method was used for 

isolation (35).   

 

Phenotypic characterization 
Exponential phase cells grown on glucose were used for transmission 

electron microscopy.  Cells were fixed with 1 % glutaraldehyde, spread onto 

carbon-coated Formvar grids and stained with 0.5 % phosphotungstate (pH 7.0).  

Cells photographed using a JEOL JEM 2000 FX transmission electron microscope. 

Strain OS1T was regularly cultivated at 55 °C on anaerobic TSB plus 1 % NaCl. The 

temperature and NaCl range and optima were determined using TSB as the growth 

medium. Growth was measured spectrophotometrically at 600 nm using a 

Spectronic 20D (Thermo Spectronic).  

All substrates were added from sterile anaerobic stock solutions to a final 

concentration of 3 g l-1 before inoculation.  Glucose grown cells were used as the 

inoculum for substrate tests.   Growth and end product formation were compared to 
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substrate-unamended controls.  Chemicals used in this work were obtained from 

Sigma unless otherwise noted (Sigma-Aldrich).  Growth was measured 

spectrophotometrically at 600 nm (Spectronic 20D; Thermo Spectronic) (5). 

pH range and optima 
For determination of the pH range and optimum, TSB was amended with (10 

g l-1): HOMOPIPES, pH 4 and 5; MES, pH 6 and 6.5; TES, pH 7 and 7.5; TAPSO, 

pH 8; TAPS, pH 8.5; CAPSO, pH 9 and 9.5 (111).  The final pH was adjusted at 55 

°C. Growth was measured spectrophotometrically at 600 nm (Spectronic 20D; 

Thermo Spectronic). A mineral medium was developed for routine growth (l-1): 10 

ml mineral solution (111); 10 ml vitamin solution (111); 10 ml trace metal solution 

(111); 10 g NaCl; 2 g yeast extract (Difco); 3 g glucose.  The medium was buffered 

with 10 g TES at pH 7.5.  The medium was prepared using strict anaerobic 

technique under a final gas phase of 100 % nitrogen (5).	  

 

Alternate electron acceptor analysis 
 Nitrate reduction and sulfide production was measured using CHEMetrics 

test kits (CHEMetrics, Inc). Nitrate, cystine, sulfate, thiosulfate and sulfite were 

added to the medium from sterile stock solutions.  Elemental sulfur was added and 

sterilized as previously described (88).  Crotonate reduction was measured by HPLC 

using a Shimadzu LC-20AT with a SPD-20A UV/vis detector equipped with an 

Aminex HPX-87H ion exclusion column (Bio-Rad) using 0.002N H2SO4 as the 

mobile phase at a flow rate of 0.9 ml min-1.    
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Types strains used for comparison 
Anaerobaculum thermoterrenum DSM 13490T and Anaerobaculum mobile 

DSM 13181T were obtained from the DSMZ and used for controls in the 

characterization assays.  The basal medium used for routine growth of these two 

organisms was the same as the mineral medium described above.  Growth 

experiments were conducted in triplicate. 

 

Chemotaxonomic analysis 
Cellular fatty acid methyl ester (FAME) and polar lipid analysis was 

conducted on strain OS1T, A. thermoterrenum DSM 13490T and A. mobile DSM 

13181T.  Cells were grown at 55 °C on anaerobic TSB supplemented with 1 % NaCl 

containing a 100 % N2 gas phase.  FAME and polar lipid analysis was carried out by 

the Identification Service of the DSMZ and Dr. B.J. Tindall, DSMZ, Braunschweig, 

Germany. 

 

Genomic analysis 
Genomic DNA was isolated from strain OS1T using a modified method of 

the Marmur procedure (40).  The mol% G+C content of the genomic DNA was 

measured by HPLC as previously described (69), with previously described 

modifications (1).  16S rRNA gene sequencing was conducted using DNA as a 

template for PCR amplification using the universal primers 27f, 357f, 704f, 926f, 

907r and 1492r corresponding to the E. coli numbering system (40).  Sequencing of 
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the PCR products was performed by the Oklahoma Medical Research Foundation 

(Oklahoma City, OK).  Primer sequences were aligned using the Sequencher 

software suite (Gene Codes Corporation) that resulted in a 1,444-base contiguous 

DNA sequence.  The phylogenetic position of strain OS1T was assessed via 

maximum likelihood analysis using the ARB software suite (83).  A consensus tree 

was generated by bootstrapping at values greater than 90 % confidence limit (22) 

(FIGURE 2).  The topology and major branching points of the phylogenetic tree 

were conserved between neighbor-joining and maximum parsimony analyses in the 

ARB software suite (Ludwig et al., 2004) (data not shown). 

DNA-DNA reassociation analysis was necessary for taxonomic placement of 

strain OS1T and was conducted in the laboratory of Dr. Peter Schumann at the 

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) as 

described by De Ley et al. (15), with the modifications described by Escara & 

Hutton (20) and Huß et al. (36).  Analysis was performed using a model 2600 

spectrophotometer equipped with a model 2257-R thermoprogrammer and plotter 

(Gilford Instrument Laboratories).  Rates of renaturation were computed with the 

program TRANSFER.BAS (38). 

 

Pure and co-culture growth assays 
Both A. thermoterrenumT and A. mobileT have been shown to produce H2, 

acetate and carbon dioxide when grown in pure culture on glucose.  A. mobileT was 
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shown to grow syntrophically with a methanogen using glucose as the substrate 

(68).  Syntrophic studies were conducted using strain OS1T and the H2-oxidizing 

methanogen Methanothermobacter thermoautotrophicus DSM 1053T.  The 

syntrophic medium was the same mineral medium as described above, but 3 g 

NaHCO3 was added after the pH adjustment to pH 7.5.  All syntrophic and pure 

culture fermentation studies were carried out in 125 ml crimp sealed serum bottles 

with 10 ml of medium at 55 °C with glucose (3 g l-1) as the substrate.  Acetate was 

measured by a gas chromatograph (GC) equipped with a flame ionization detector 

on a Shimadzu GC 8A equipped with a 2 m glass column packed with an 80/120 

Carbopak B-DA/4% carbowax resin 20M (Supelco) with helium as the carrier gas at 

a flow rate of 35 ml min-1.  Methane, CO2 and H2 were measured with a Shimadzu 

GC-8A GC equipped with a thermal conductivity detector and a Porapak Q (2 m 

stainless steel) column (Alltech) using nitrogen as the carrier gas at a flow rate of 30 

ml min-1. 
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Results and Discussion 

Phenotypic analysis 
Strain OS1T was the dominant culturable heterotroph present in the 

production water at 2.3 cells/ml (MPN).  The dominant culturable H2 oxidizer, 

Methanothermobacter thermoautotrophicus, was present at the same cell density 

(18).  Colonies on anaerobic roll tubes were small, circular, smooth and yellowish in 

color. Cells were Gram-negative, non-flagellated, non-motile, non-spore-forming 

rods that were 1.7-2.7 x 0.4-0.5 µm in size and occurred singly (FIGURE 1).  Strain 

OS1T grew optimally at pH 7.5 (range pH 6-9).  Strain OS1T reduced elemental 

sulfur, thiosulfate and cystine to sulfide when grown in anaerobic TSB + 1 % NaCl.  

Nitrate, sulfite and sulfate reduction were not observed. Strain OS1T reduced 

crotonate to butyrate in the presence of glucose but not with crotonate alone.  Sulfur 

and thiosulfate reduction, as well as crotonate reduction in the presence of glucose, 

seems to be a universal phenotype of the genus Anaerobaculum (68, 88).     

 

Genotypic analysis 
16S rRNA gene analysis indicated that strain OS1T was a member of the 

genus 16S rRNA gene analysis indicated that strain OS1T was a member of the 

genus Anaerobaculum (FIGURE 1).  Anaerobaculum thermoterrenumT and 

Anaerobaculum mobileT are currently the other two described members of this 

genus (68, 88), which are members of the phylum Synergistes (34, 125).   The 16S 

rRNA gene of strain OS1T was 99.7 % similar to A. thermoterrenumT and 97.8 % 
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similar to A. mobileT.  It may not be surprising to find a close relative to A. 

thermoterrenumT in oil production water because this type strain was isolated from a 

similar environment (88).  Culture-independent surveys have shown the presence of 

Anaerobaculum strains in petroleum reservoirs (NCBI = GU357467 and EU573105) 

(25, 46), mining wastewater (NCBI = DQ256300) (26), a solid waste digestor 

(NCBI = EF559029) (61) and methanogenic reactors (NCBI = AB234001, 

FN563242, FN563270 and AB274508) (53, 91, 92).  A. mobile was isolated from an 

anaerobic wastewater treatment lagoon (68).  The above suggests that strains of 

Anaerobaculum may be present in many anaerobic environments, particularly 

thermophilic ones.  The G+C content of strain OS1T the genomic DNA was 46.6 

mol%, compared to A. thermoterrenumT (44 %) (88) and A. mobileT (51.5 %) (68). 

A DNA-DNA reassociation value of 68 ± 4 % (n = 2) was observed when 

strain OS1T was hybridized to A. thermoterrenumT, which is close but lower than 

the threshold value of 70 % for the definition of species (105), indicating that strain 

OS1T was a distinct species from A. thermoterrenumT. 

 

Biochemical characterization 
Phenotypic characteristics of strain OS1T are listed in the species description and in 

Table 1.  Several of these substrates were not tested in the original descriptions of A. 

thermoterrenumT (88) and  A. mobileT (68), nor was the ability to utilize amino acids as 

substrates, a characteristic of members of the phylum Synergistes (125).  The list of 
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substrates examined for the genus Anaerobaculum as well as a comparison of the 

phenotypes of A. thermoterrenumT, A. mobileT and strain OS1T is in Table 1.   

 As shown in Table 1, strain OS1T can be readily differentiated from the other 

species of Anaerobaculum by several phenotypic characteristics, such as the ability 

to utilize malonate, D-maltose and inulin, and the inability to catabolize L-malate, 

glycerol and starch.  Strain OS1T had an absolute requirement for NaCl for growth, 

which the other two species do not.  In addition, strain OS1T grew in medium 

containing up to 7 % NaCl, which is much higher than the maximum of 2 % and 1.5 

% observed for cultures of A. thermoterrenum (88) or A. mobile (68), respectively. 

 

Chemotaxonomic data 
The detailed fatty acid profiles for all three species are shown in Table 2.  

FAME analysis showed that all three species contained iso-C15:0 and iso-C11:0 fatty 

acids, with iso-C15:0 as the predominant fatty acid.  Strain OS1T contained both iso-

C13:0 and iso-C13:0 3OH, however, A. thermoterrenum DSM 13490T contained iso-C13:0 

and A. mobile DSM 13181T
 contained iso-C13:0 3OH fatty acids.  Polar lipid analysis 

results are summarized in Table 3.  Polar lipid analysis showed that all three species 

contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, 

phospholipids (PL1-PL3) and aminophospolipids (PN1-PN4).  Strain OS1T and A. 

thermoterrenum DSM 13490T were shown to contain the phospholipids PL4 and 

PL5 but these were undetected in A. mobile DSM 13181T.   
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Pure and co-culture growth data 
Results from the pure and co-culture work are presented in Table 4.  All 

three species of the genus Anaerobaculum produced close to four H2 per mol of 

glucose and 1 mol of methane per mol of glucose when grown syntrophically with a 

H2-oxidizing methanogen.  In pure culture, strain OS1T produced up to 3.1-4.5 H2 

mmol L-1
 culture using clarified raw sewage as the substrate (67).  
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FIGURE 1.  Transmission electron micrograph of negatively stained cells of 

Anaerobaculum hydrogeniformans sp. nov. strain OS1T.  Bar, 0.5 µm.   
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FIGURE 2.  Phylogenetic tree based on 16S rRNA gene sequence analysis for 

Anaerobaculum hydrogeniformans sp. nov. and other closely related 

microorganisms within the phylum Synergistes.  Identical branches were present in 

both phylogenetic consensus trees generated by the neighbour-joining, maximum 

likelihood and the maximum-parsimony algorithms.  Bootstrap values are expressed 

as a percentage of 1000 replications.  The bar represents 1 substitution per 10 

nucleotide positions.   
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Table 1.  Phenotypic comparison of A. hydrogeniformans strain OS1T, A. 

thermoterrenum (DSM 13490T) and A. mobile (DSM 13181T).  

 

All three species utilized the substrates D-fructose, D-glucose, pyruvate, L-tartrate, 

Casamino acids, L-asparagine, L-cysteine, L-histidine, L-serine, L-threonine and L-

valine.  All three species did not utilize D-arabinose, D-cellobiose, cellulose, D-

galactose, α-lactose, D-melibiose, D-raffinose, D-rhamnose, sucrose, D-xylose, 

dextrin, xylan, adonitol, acetate, butyrate, L-aspartate, L-glutamine, glycine, L-

lysine, L-methionine, L-proline, L-tryptophan and L-tyrosine. 

* Data from (88); † Data from (68) 
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Characteristic Strain OS1 A. thermoterrenum A. mobile 
Growth rate (hr-1) 0.011 0.013 0.01 
Temperature range 
(optimum) (°C) 40-65 (55) 28-60 (55)* 35-65 (55-60)† 

pH range (optimum) 6.0-9.0 (7.0) 5.5-8.6 (7-7.6)* 5.4-8.7 (6.6-7.3)† 
NaCl range (optimum) 
(g/l) 0.8-70 (10) 0-20 (10)* 0-15 (0.08)† 
DNA G+C content 
(mol%) 46.6 44* 51.5† 

Motility - - + 

Growth on:    

 α-ketoglutarate + + - 

 Citrate - + - 

 Fumarate - + - 

 D-Gluconate - - + 

 L-Glutamate + + - 

 Lactate - + - 

 L-Malate - + + 

 Malonate + - - 

 D-Maltose + - - 

 D-Mannose + + - 

 Glycerol - + + 

 Inositol + + - 

 Tryptone + - + 

 L-Arginine - - + 

 L-Leucine + - + 

 L-Phenylalanine + - + 
 Inulin + - - 

 Pectin - + - 

 Starch - + + 
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Table 2.  Cellular fatty acid composition of A. hydrogeniformans strain OS1T, A. 

thermoterrenum DSM 13490T and A. mobile DSM 13181T.  Values are percentages 

of total identified fatty acids.   

ND, not detected.   

 

Fatty Acid OS1T A. thermoterrenum A. mobile 

iso-C11:0 4.43 12.98 20.74 

iso-C13:0  1.78 20.96 ND 

iso-C13:0 3OH  3.26 ND 8.53 

Iso-C15:0  90.53 66.06 70.73 
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Table 3.  Polar lipid composition of A. hydrogeniformans OS1T (1), A. 

thermoterrenum DSM 13490T (2) and A. mobile DSM 13181T (3). 

	  

ND,	  not	  detected	  

	  

Polar lipid 1 2 3 

Diphosphatidylglycerol + + + 

Phosphatidylglycerol + + + 

Phosphatidylethanolamine + + + 

Phospholipids    

PL1 + + + 

PL2 + + + 

PL3 + + + 

PL4 + + ND 

PL5 + + ND 

Aminophospolipids    

PN1 + + + 

PN2 + + + 

PN3 + + + 

PN4 + + + 
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Table 4.  Acetate, H2 and CH4 produced by strain OS1T, A. thermoterrenum DSM 

13490T and A. mobile DSM 13181T with glucose in pure and in co-culture with M. 

thermoautotrophicus DSM 1053T. 

	  

Data from this study and (68) (A. mobile). 

 

    Glucose consumed Fermentation products mmol L-1 

    (mmol L-1) H2 Acetate CH4 

Pure culture:     

  OS1T 14.1 47.2 19.7  

  A. thermoterrenum 7.9 36.4 13.8  

  A. mobile 7.5 29.8 15.1  

Co-culture:     

  OS1T 8.4  17.6 8.1 

  A. thermoterrenum 8.3  16.3 8.7 

  A. mobile 8.5  16.9 8.5 
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Conclusions 

Strain OS1T was isolated as the dominant culturable heterotrophic organism 

from an oil water separation unit in Alaska, USA.  16S rRNA gene analysis 

indicated that strain OS1T was a member of the genus Anaerobaculum in the 

phylum Synergistes.   The 16S rRNA gene of strain OS1T was too similar to A. 

thermoterrenumT to be classified as a novel species based solely on 16S rRNA gene 

analysis.  DNA-DNA hybridization analysis was very close to the 70 % cut-off 

value when strain OS1 was hybridized with A. thermoterrenumT.  However, when 

chemotaxonomic data from FAME analysis readily differentiated strain OS1T from 

both A. thermoterrenum and A. mobile.  Phenotypic characterization further 

supported the creation of a novel species for strain OS1T based on the substrate 

utilization profile strain OS1T exhibited when compared to A. thermoterrenum.  The 

most significant phenotypic characteristic of strain OS1T is that it requires NaCl for 

growth and both A. thermoterrenum and A. mobile do not, and strain OS1T is 

capable of growth in medium with up to 7 %, which is much higher than any 

reported value for the other two members of the genus.  On the basis of the 

genotypic differentiation and phenotypic data presented, both phenotypic and 

genotypic, strain OS1T is proposed to be a new species of the genus 

Anaerobaculum, for which the name Anaerobaculum hydrogeniformans sp. nov. is 

proposed.   
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Emended description of the genus Anaerobaculum Menes & Muxi, 2002 
	  

Chemoorganotrophic Gram-negative anaerobe.  Moderately thermophilic 

(28-65 °C) and halotolerant to halophilic (0-70 g L-1).  Straight to slightly curved 

rods.  Motile by means of a single flagellum or non-motile.  In complex media, 

some strains grow with a sheath-like material extending past the cell poles.  Spores 

not observed.  Ferments organic acids and a limited number of carbohydrates to 

acetate, hydrogen and carbon dioxide.  Peptone and yeast extract also fermented. 

Some amino acids (e.g. L-asparagine, L-cysteine, L-histidine, L-serine, L-threonine 

or L-valine) can be used as substrates.  Utilizes a range of electron acceptors:  

thiosulfate, sulfur and L-cystine are reduced to sulfide, and crotonate is reduced to 

butyrate.  Cellular fatty acid composition of species of Anaerobaculum includes iso-

C11 : 0 and iso-C15 : 0, and may or may not contain iso-C13 : 0 and/or iso-C13 : 0 3-OH.  

The polar lipid composition of the genus contains diphosphatidylglycerol, 

phosphatidylglycerol, phosphatidylethanolamine, phospholipids (PL1-PL3), 

aminophospholipids (PN1-PN3), and may or may not contain phospholipids PL4 

and PL5.  The DNA G+C content is 44-51.5 mol%. The type species is 

Anaerobaculum thermoterrenum. 
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Description of Anaerobaculum hydrogeniformans sp. nov. 
Anaerobaculum hydrogeniformans (hy.dro.ge.ni.for’mans. N.L. n. 

hydrogenum hydrogen; L. part. adj. formans forms; N.L. part. adj. 

hydrogeniformans producing hydrogen). 

Cells are 1.7-2.7 x 0.4-0.5 µm.  Growth occurs between 40 and 65 °C 

(optimum 55 °C), from pH 6 to 9 (optimum 7.0), and with 0.8 to 7 % NaCl 

(optimum 1 %).  The DNA G+C content is 46.6 mol%.  The cellular fatty acid 

composition of strain OS1T is iso-C15 : 0, iso-C11 : 0, iso-C13 : 0 3-OH and iso-C13 : 0.  

The polar lipids detected were diphodphatidylglycerol, phosphatidylglycerol, 

phosphatidylethanolamine, phospholipids (PL1-PL5) and aminophospholipids 

(PN1-PN4).  Cells reduce elemental sulfur, thiosulfate and L-cystine to sulfide using 

glucose as the electron donor.  Sulfate, sulfite or nitrate are not reduced.  Crotonate 

is reduced to butyrate when glucose is present.  Growth occurs on D-fructose, D-

glucose, D-maltose, D-mannose, α-ketoglutarate, L-glutamate, malonate, pyruvate, 

L-tartrate, L-asparagine, Casamino acids, L-cysteine, L-histidine, L-leucine, L-

phenylalanine, L-serine, L-threonine, L-valine, inositol, inulin, tryptone and yeast 

extract.  D-Arabinose, carboxymethylcellulose, cellulose, D-cellobiose, D-galactose, 

α-lactose, D-melibiose, D-raffinose, D-rhamnose, sucrose, D-xylose, acetate, 

butyrate, citrate, fumarate, D-gluconate, lactate, L-malate, oleate, succinate, L-

arginine, L-aspartate, L-glutamine, glycine, L-isoleucine, L-lysine, L-methionine, L-

proline, L-tryptophan, L-tyrosine, adonitol, glycerol, dextrin, gelatin, pectin, starch 

or xylan do not support growth.  The type strain is OS1T (=DSM 22491T =ATCC 
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BAA-1850T).  Strain OS1T was isolated from oil production water collected from 

Alaska, USA. 
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Abstract 

The production of hydrogen (H2) from brewery wastewater (BWW), sweet 

sorghum juice (SSJ), cheese whey wastewater (WW), raw sewage (RS) and 

anaerobic digestor sludge (AD) by Anaerobaculum hydrogeniformans was 

evaluated.  An optimal ratio of wastewater to mineral medium was obtained for all 

feedstocks and used for batch fermentations.  Clarified wastewaters resulted in 

higher H2 yields for BWW, AD, RS and WW.  The Rmax (13 ml H2 L-1 hr-1) for 

glucose grown cells and when clarified BWW (CBWW) (Rmax 9 ml H2 L-1 hr-1) was 

used as the carbon and nutrient source produced 955 ml H2 L-1 and 623 ml H2 L-1, 

respectively.  When A. hydrogeniformans was grown on CBWW or diluted CBWW 

(1:1), COD was reduced by 99 % and 75 %, respectively.  A. hydrogeniformans 

produced 264 ml H2 L-1 and reduced COD by 95% when grown on SSJ diluted 1:4 

with mineral medium, which corresponds to 10.3 ml H2 per g COD reduced.  Cells 

grown on clarified WW produced 174 ml H2 L-1 at a rate of 1.3 ml H2 hr-1 and 

reduced 87 % of the COD.  A. hydrogeniformans produced 166 ml H2 L-1 and 

reduced COD by 84 %  when grown on clarified RS.  These values are significantly 

higher than those reported for bacterial fermentations or microbial electrolytic cells.  

A. hydrogeniformans grown on AD produced 22.6 ml H2 L-1 at a rate of 0.8 ml H2 

hr-1 and reduced COD by 89 %.  This study shows that A. hydrogeniformans can be 

used to produce H2 from waste feedstocks while significantly reducing COD.  
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Introduction 

Worldwide energy needs have been increasing while fossil fuel reserves are 

decreasing.  This, in combination with concerns about the impact of carbon dioxide 

emissions on the environment, has spurred interest in the exploration of new 

sustainable energy sources that could supplement fossil fuels (45).  Proposed 

alternative energy sources include the production of renewable biodiesel, bioethanol 

and biobutanol.  Recently much attention has been paid to the use of H2 as a fuel for 

transport and electricity generation.   

 

Hydrogen is considered a clean source of energy, with water as the only end 

product of combustion.  Hydrogen can be produced from renewable raw materials 

and possesses an energy yield approximately 2.75 times greater than that of 

hydrocarbon derived fuels (4).  Presently, about 90 % of H2 is generated from fossil 

fuels by the reaction of natural gas or light oil fractions with steam at high 

temperatures, methods that are energy-intensive, expensive and unsustainable (72, 

126).  The production of H2 from organic wastewaters rather than fossil fuels offers 

a sustainable alternative H2 is produced or if the electrons are used in electrical 

circuits directly (107).  Fermentative H2 production (FHP) is a microbial process 

that emits less carbon dioxide than conventional thermo-chemical H2 production 

(23) and has great potential for H2 formation from organic wastestreams.   

Currently most of the FHP research being conducted on wastewaters is 

performed with mixed cultures derived from treated anaerobic digester sludge (29).  
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Most of this research, however, is irreproducible due to variation in seed inoculum 

and the conditions used for the enrichment of the H2-producing consortia (37).   

Here, we present the results from a pure culture, Anaerobaculum hydrogeniformans, 

which can utilize a variety of organic wastewaters for FHP.  A. hydrogeniformans is 

a moderate thermophile that produces almost 4 hydrogen molecules per molecule of 

glucose with carbon dioxide and acetate as the only other end-products (67).  This is 

the first report of a pure culture being used for biological H2 production and waste 

stream remediation for many of the wastewaters used in this study.    
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Materials and methods 

Culture and growth conditions: 
Anaerobaculum hydrogeniformans was grown in a mineral medium (MM) 

containing (L-1):  10 mL mineral solution (111), 10 mL vitamin solution (111), 10 

mL trace metal solution (111), 2 g yeast extract (Difco), 10 g TES (Research 

Organics) and 10 g NaCl.  The medium (pH 7.5) was prepared using strict anaerobic 

technique (5).  Cultures were grown at 55 °C and fed glucose (3 g L-1) added from a 

sterile anaerobic stock solution.  All chemicals were obtained from Sigma-Aldrich 

unless stated otherwise.    

 

Feedstocks: 
Anaerobic digester sludge (AD) and raw sewage (RS) were obtained from 

the Norman Wastewater Treatment Plant (Norman, OK).  The water treatment plant 

serves 82,000 citizens and processes an annual monthly average of 12 million G d-1.  

The pH of both the AD (pHinitial 6.9) and RS (pHinitial 6.9) was adjusted to 7.5 with 

NaOH and 1% NaCl was added to each.  Sterile anaerobic stock solutions were 

prepared and kept under 100 % N2 headspace in stoppered and crimp sealed 18 mm 

glass tubes (Bellco).  Brewer’s wastewater (BWW) was collected after primary 

fermentation and processed immediately upon receipt.  The BWW consisted of 

yeast cells, remaining nutrients and carbohydrates, coagulant and remnant 

particulates of the brewery process.  The BWW was acidified to a pH of 1 with HCl 

and autoclaved at 121 °C for 20 min to hydrolyze the yeast cells.  After autoclaving 
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the cooled hydrolyzed BWW was then pH adjusted to 7.5 with NaOH and 1% NaCl 

was added.  The resulting BWW was kept frozen at -20 °C until use.  Sweet 

sorghum has been gaining interest as an energy crop due to its ability to grow in 

subtropical and temperate climates and its high content of fermentable sugars 

(Antonopoulou t al. 2007).  The sweet sorghum juice (SSJ) was obtained from 

Oklahoma State University (Stillwater, OK) and prepared fresh for each assay by 

first adjusting the pH to 7.5 with NaOH and adding 1 % NaCl.  The SSJ was then 

made anaerobic by boiling and degassing with 100 % N2.  Cheese production 

wastewater (whey wastewater [WW]) was obtained from Christian Cheese Co. 

(Kingfisher, OK, USA).  WW was prepared fresh for each assay.  The unamended 

WW contained 3 % NaCl (George Christian, personal communication).  The pH 

was adjusted to 7.5 with NaOH and then made anaerobic by boiling and degassing 

with N2.  If specified, all feedstocks underwent a clarification process by 

centrifugation (10,000 x g for 45 min at 4 °C) following the adjustment of salinity 

and pH.  Feedstocks were prepared immediately after arrival to the laboratory.  

Optimization experiments occurred immediately following feedstock preparation.  

Feedstocks for batch fermentations were stored at -20 °C until needed. 

Optimization of growth parameters: 
It was reported that A. hydrogeniformans produced H2 from RS alone, but H2 

production could be elevated if RS was supplemented 1:1 with MM containing yeast 

extract (YE) (67).  A range finding experiment was constructed to elucidate the ratio 

of feedstock to MM for optimal H2 production.  The MM used for this experiment 
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was the same as described above with the YE removed to ascertain the feasibility of 

using each waste stream as both the carbon and nutrient source for A. 

hydrogeniformans.  In this experiment 100 % feedstock was tested without the 

addition of MM.  Alternatively, a 1:1 mixture of feedstock to MM was analyzed and 

serially diluted 1:1 to a final ratio of 1:16.   The experiment was conducted in 

triplicate at 55°C in 18 mm stoppered crimp-sealed tubes with 100 % N2 headspace 

using strict anaerobic technique.  This assay was conducted for both raw and 

clarified feedstocks.   

Batch fermentations: 
Batch fermentations were conducted using the optimized parameters from 

Section 2.3.  AD was chosen over CAD to eliminate pretreatment steps.  AD, 

clarified raw sewage (CRS), CBWW and clarified whey water (CWW) were all 

used undiluted as the substrate and nutrient source based on results discussed in 

Section 3.1.  CBWW was also diluted 1:1 and SSJ was diluted to 1:4 with MM.  All 

assays were conducted in 125 ml serum stoppered and crimp-sealed bottles 

(Wheaton).  Each bottle contained 20 ml of liquid and 100 % N2 at 0 psig.  Bottles 

were prepared using strict anaerobic technique.  Incubations were carried out at 55 

°C.  Hydrogen gas was measured as discussed in Section 2.5.  Rmax is defined as the 

maximum amount of H2 produced per liter culture per hour. 

Analytics:   
Hydrogen gas was quantified using a Shimadzu GC-8A gas chromatograph 

equipped with a thermal conductivity detector.  Gases were separated with a 50/80 
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mesh Porapak Q column (2 m x 1/8 in) (Sulpelco).  The inlet and detector were both 

set at 110 °C. Column temperature was held at 100 °C. Data was analyzed using a 

C-R8A Chromatopac Integrator (Shimadzu). Ultra-high purity N2 was used as the 

carrier gas.  A Fisher Accumet Basic pH Meter (Fisher Scientific) was used to 

measure pH.  Chemical oxygen demand (COD) was analyzed using Hach test kits 

for high range COD (Hach).  Glucose concentrations were quantified using the 

glucose-oxidase reaction with the PGO enzyme assay kit (Sigma).  Volatile fatty 

acids (VFAs) were quantified by HPLC using an ICS 3000 pump and AD-25 

absorbance detector set at 210 nm (DIONEX).  VFAs were separated using an 

Acclaim Organic Acid HPLC Column (Dionex) at 30 °C using a stepwise gradient 

consisting of 2 mM methanesulfonic acid (MSA) at a flow rate of 1.0 ml min-1 with 

increasing amounts of 100 % acetonitrile (gradient conducted at 1 ml min-1) to a 

final concentration of 60 % acetonitrile and 40 % MSA.  All chemicals used in this 

study were obtained from Sigma-Aldrich unless specified otherwise.  Initial glucose, 

COD and VFA profiles for feedstocks are shown in Table 5. 
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Table 5.  Feedstock characterization including initial COD (g L-1), glucose (g L-1) 

and fatty acid (mM) measurements of the clarified brewer wastewater (CBWW), 

dilute clarified brewer wastewater diluted (CBWW 1:1), clarified raw sewage 

(CRS), anaerobic digestor sludge (AD), sweet sorghum juice (SSJ), and clarified 

whey wastewater (CWW).  

 

 Glucose CBWW CBWW 
(1:1) CRS AD SSJ CWW 

COD (g/L) 10 83 35 2.0 9.0 27 12 

Glucose 
(g/L) 4.44 2.33 1.34 0.00 0.00 1.99 0.05 

Fatty acid 
(mM)        

Formate 10.8 185 113 0.0 3.40 2.70 77.6 

Acetate 6.30 10.0 5.80 4.3 2.20 2.80 0.0 

Propionate 51.6 29.2 12.2 0.0 1.70 91.8 92.2 

Butyrate 0.0 2.90 0.0 0.0 0.0 0.0 0.0 

Valerate 40.8 0.0 0.0 39.0 0.0 0.0 0.0 
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Results and Discussion 

Feedstock optimization:   
Results from the feedstock optimization assay can be seen in Table 6.  

Clarified brewer’s wastewater (CBWW) produced more H2 than brewer’s 

wastewater (BWW) alone.  When CBWW was diluted 1:1 with MM, H2 production 

showed a slight increase (564 ml H2
 L-1 and 647 ml H2

 L-1, respectively).  BWW and 

CBWW were the only feedstocks that allowed for the production of H2 at significant 

levels when diluted up to 1:16 and produced more H2 than any other feedstock 

tested.  A. hydrogeniformans could produce a substantial amount of H2 from the 

BWW alone with no dilution or clarification. 

Anaerobic digestor sludge (AD) grown cells produced 151 ml H2
 L-1.  

However, clarified anaerobic digestor (CAD) sludge produced more H2 (199 ml H2
 

L-1).  CRS grown cells produced more H2
 than RS (199 ml H2

 L-1 and 120 ml H2
 L-1, 

respectively).  CRS grown cells produced H2 at a dilution up to 1:8.  The amount of 

H2 produced in the RS and dilute RS was contradictory to previous data that 

reported H2 production at higher amounts when the RS was diluted (67).       

When sweet sorghum juice (SSJ) was used as a feedstock, H2 production 

was not detected until the SSJ was diluted 1:4 with MM.  This could be due to a 

compound present in raw SSJ that inhibited A. hydrogeniformans at higher 

concentrations.  Also, the need for additional MM could be explained by the 

relatively low amounts of phosphorus and nitrogen found in sweet sorghum extracts 

(3).  Cells grown on clarified sweet sorghum juice (CSSJ) did not yield H2 during 
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this assay.  A. hydrogeniformans did not produce significant H2 when grown on any 

dilution of whey waste water (WW).  However, clarified WW (CWW) could be 

used as a carbon and nutrient source for H2 production.  It should reiterated that 

Maune and Tanner used YE in the diluent for their study (67) and YE was left out of 

the MM in this study in order to ascertain if each feedstock could be used for both a 

carbon and nutrient source.  

 Results from this assay were used to determine ratios, if any, of feedstock to 

MM for batch fermentation studies.  AD was used for further analysis even though 

the CAD produced more H2.  AD was used to eliminate the pretreatment of CAD 

prior to use.  Undiluted CRS and CWW and the 1:4 dilution of SSJ with MM were 

used for subsequent experiments.  CBWW and CBWW 1:1 were assayed as 

potential feedstocks because A. hydrogeniformnans produced similar amount of H2 

from each.  A. hydrogeniformans was also grown on a MM with glucose as a 

positive control. Abiotic controls were used to ensure the sterility of the feedstocks 

during testing.  H2 production was not observed in any of the abiotic controls in this 

study.
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Table 6.  Amount of H2 gas produced (ml H2 L-1) as feedstocks were diluted with 

mineral medium.  Feedstocks were brewer wastewater (BWW), clarified brewer 

wastewater (CBWW), anaerobic digestor sludge (AD), clarified anaerobic digestor 

sludge (CAD), raw sewage (RS), clarified raw sewage (CRS), whey water (WW), 

clarified whey wastewater (CWW), sweet sorghum juice (SSJ) and clarified sweet 

sorghum juice (CSSJ). 

   Dilution of feedstock in mineral medium 

Feedstock 0 1:1 1:4 1:8 1:16 

BWW 447 388 145 139 51.0 

CBWW 564 647 436 318 108 

AD 151 39.0 0.00 0.00 0.00 

CAD 199 2.00 38.0 0.00 0.00 

RS 120 73.0 60.0 97.0 0.00 

CRS 199 156 169 107 0.00 

WW 0.00 14.0 26.0 0.00 0.00 

CWW 104 55.0 105 0.00 0.00 

SSJ 0.00 0.00 200 176 115 

CSSJ 0.00 0.00 0.00 0.00 0.00 
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Batch fermentations:   

Glucose vs. brewery wastewater:   
Results from this experimental setup are summarized in Table 7.  Glucose 

was used as a benchmark pure substrate for comparison to H2 production from 

wastewaters.  A. hydrogeniformans produced the most H2 when grown on glucose 

(FIGURE 1).  Glucose, CBWW and CBWW 1:1 grown cultures produced 955, 623 

and 625 ml H2
 L-1 respectively (FIGURE 4).  When A. hydrogeniformans was grown 

on CBWW and CBWW 1:1, COD was reduced by 99 % and 75 %, respectively.  

This is very promising because remediation of brewery wastewater is of particular 

concern (39).  If brewery wastewater is not treated and reacts with chlorine in a 

typical water treatment facility, carcinogenic substances can be created by 

halogenated disinfection by-products formed during the treatment process (89).  

This is the first attempt to treat brewery wastewater with a pure culture.  Brewery 

wastewater (101) and rice wine wastewater (139) have been remediated using seed 

sludge as the inoculum.  However, little has been reported about COD reduction in 

brewery wastewater.  From a remediation standpoint it can be concluded that A. 

hydrogeniformans can be used to significantly reduce COD in brewery wastewater.  

Stoichiometric conversion of substrates to H2 is also a valuable measurement 

in assessing fermentation performance.  CBWW and CBWW 1:1 contained 2.5 and 

1.3 g L-1 glucose, respectively (Table 7), and A. hydrogeniformans produced 4.2 and 

9.5 H2 per glucose when grown on CBWW 1:1 and CBWW, respectively.  While 

glucose grown cells approached the theoretical maximum of 4 H2 per mol of 

glucose consumed, A. hydrogeniformans produced or superseded this amount when 
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grown on CBWW 1:1 or CBWW.  This finding is likely due to the complex nature 

of the brewery wastewater and shows the efficacy of brewery wastewater as a 

potential feedstock for H2 production by A. hydrogeniformans, which is also 

confirmed by the removal of 99  % of the COD in the CBWW.   

Another	  valuable	  measurement	   in	  assessing	  fermentation	  performance	  

is	  the	  production	  of	  H2	  per	  reduction	  of	  COD.	  	  Due	  to	  the	  complex	  nature	  of	  all	  

feedstocks	  tested	  and	  the	  ability	  of	  A.	  hydrogeniformans	  to	  use	  substrates	  other	  

than	  glucose,	  H2	  production	  per	   gram	  COD	   reduced	   is	   reported	   in	   this	   study.	  	  	  

Glucose	   grown	   cultures	   of	  A.	   hydrogeniformans	   produced	   116	  ml	   H2	   g-‐1	   COD	  

reduced	  and	  produced	  the	  most	  H2	  g-‐1	  COD	  reduced	  than	  any	  other	   feedstock	  

tested.	  	  When	  grown	  in	  the	  CBWW	  and	  the	  CBWW	  diluted	  1:1	  6.68	  and	  26.4	  ml	  

H2	  g-‐1	  COD	  was	  produced	  respectively,	  suggesting	  that	  the	  addition	  of	  the	  MM	  

will	  increase	  the	  amount	  of	  product	  per	  g	  COD	  from	  brewery	  wastewater.	  

Sweet sorghum juice:   
Sweet sorghum is an “energy crop” that is gaining attention as a potential 

feedstock for renewable energy because of its high yield of biomass and fermentable 

sugars (12).  The constitutive composition of the plant is about 50 % sugars 

(glucose, xylose, cellulose and xylan) (3, 12), and therefore is a potential feedstock 

for H2 production.  When a mixed microbial community was used as inoculum with 

SSJ only 126 ml of H2 was produced (100).  Additionally, previous research showed 

that Caldicellulosiruptor saccharolyticus and Ruminococcus albus produced H2  
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Table 7.  A summary of the performance of Anaerobaculum hydrogeniformans 

when grown on glucose, clarified brewer wastewater (CBWW), clarified brewer 

wastewater diluted 1:1 (CBWW (1:1)), sweet sorghum juice (SSJ). clarified whey 

water (CWW), clarified raw sewage (CRS) and anaerobic digestor sludge (AD).   

	  

  ml H2 L-1 ml H2 g-1 COD Rmax (ml H2 L-1 hr-1) CODΔ (%) 

Glucose 955 116 13 85 

CBWW 623 6.68 9 99 

CBWW 
(1:1) 

625 26.4 9 75 

SSJ 264 10.3 1.6 95 

CWW 174 17.1 1.4 87 

CRS 166 91.2 1.3 84 

AD 22.6 2.81 -0.1 89 
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FIGURE 3.  Amount of H2 produced (ml H2 L-1) from cultures grown with mineral 

medium alone (¯), mineral medium and glucose (£), clarified brewer’s wastewater 

alone (r) and clarified brewer’s wastewater diluted 1:1 with minimal medium (-). 

Error bars represent standard deviations of replicate samples (n=4) 
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from SSJ at a rate of approximately 10 mmol L-1 h-1 (12) and 0.7 mmol L-1 h-1 (80), 

respectively.   

In this study, A. hydrogeniformans produced 0.22 mmol L-1 h-1.  This large 

discrepancy might be explained by the substrate utilization capacity of the different 

organisms.  C. saccharolyticus can grow on glucose, xylose, cellulose and sucrose 

(12) and R. albus is a cellulolytic species that can also grow on glucose, xylose and 

sucrose (Ntaikou et al., 2008).  A. hydrogeniformans, however, can only grow on 

glucose, but not xylose or sucrose.   

As noted above, a 1:4 dilution of sweet sorghum juice (SSJ) in MM was 

used for this experiment, which had an initial glucose concentration of 2.0 g L-1.  A. 

hydrogeniformans produced 264 ml H2 L-1 (FIGURE 4), corresponding to 10.3 ml 

H2 per g COD reduced (Table7). There was 1.99 g L-1 of glucose present initially 

and A. hydrogeniformans consumed about 1 g L-1 using SSJ as a feedstock, 

translating to 14.6 H2 glucose-1.  The amount of H2 produced per glucose consumed 

surpasses the theoretical yield of 12 H2 per glucose if glucose is totally oxidized to 

H2 and CO2 (113) and far surpasses the theoretical maximum of 4 H2 per mol of 

glucose if H2, CO2 and acetate are produced (113).  This suggests A. 

hydrogeniformans utilizes a carbon source other than glucose during the 

fermentation process as was observed during the CBWW fermentation.  The amount 

of fatty acids in the SSJ did not increase or decrease after fermentation with the 

exception of the accumulation of acetate.  Therefore A. hydrogeniformans did not 

use fatty acids as the source of carbon.  The substrate for H2 production has not been 
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determined.  The benefit of using A. hydrogeniformans is the reduction in COD of 

up to 95 %, which is much higher than the 20 % COD reduction previously reported 

(3), however, the H2 produced g-1 COD reduced was only 10.3.  

Cheese whey wastewater:   
The cheese manufacturing industry generates large amounts of concentrated 

wastewater characterized by high biological and chemical oxygen demand that can 

cause organic loading problems in local sewage treatment systems (16).  

Carbohydrates (e.g. lactose), proteins and fats are the main contributors to the 

organic load of these wastewaters (102).  The WW used in this study had a 

significantly lower COD (12 g L-1) than that of previously reported wastewater (69 

g L-1) (16).  When grown on crude cheese whey, Clostridium 

saccharoperbutylacetonicum yielded up to 7.89 mmol H2 g-1 lactose and removed 

97 % of the sugars (23).  There was a negligible amount of glucose present in the 

WW (0.06 g L-1) and A. hydrogeniformans does not grow on lactose (unpublished 

data), which suggests that the organism grew on proteins, amino acids and/or lipid 

components in the WW.  Most of the literature available on cheese wastewater 

remediation focuses on H2 production from lactose and not the other constitutive 

portions of the wastewater, such as using cultures of Clostridium 

saccharoperbutylacetonicum, which produced up to 7.89 mmol H2 g-1 (24).  A. 

hydrogeniformans produced H2 at a maximum rate of 174 ml h-1 (FIGURE 5) and 

produced 17 ml H2 g-1 COD reduced (Table 7).    Future studies could be conducted 

using H2-producing cocultures for total remediation of cheese wastewater. 
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FIGURE 4.  Amount of H2 produced (ml H2 L-1) from a time course study 

conducted with cultures of A. hydrogeniformans grown with minimal medium alone 

(¯) and sweet sorghum juice diluted 1:4 with minimal medium (SSJ) (£). 

Error bars represent standard deviations of replicate samples (n=4) 
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Domestic wastewater/raw sewage:   
Domestic wastewater or raw sewage is an abundant, ubiquitous renewable waste 

stream.  Surprisingly, limited research has been conducted on the fermentation of 

raw sewage.  Previously conducted studies used concentrated raw sewage (RS) as a 

feed stock (119).  The RS used in this study was first subjected to a clarification 

process (CRS).  A. hydrogeniformans produced 166 ml H2 L-1 (FIGURE 6) from RS 

and reduced COD by 84 %, which corresponded to 91.2 ml H2 g-1 COD reduced.  

Aside from glucose, RS was the best overall H2 producing feedstock per gram COD 

reduced.  These values are significantly higher that that reported for bacterial 

fermentations or microbial electrolytic cells in which mixed cultures were used as 

the inoculum (63, 119).  The pH of the CRS incubations was only reduced by 0.04 

during fermentation, which is similar to previous findings (119).  A. 

hydrogeniformans produced H2 from compound(s) other than glucose because 

glucose was not detected in the RS.  The VFA profile obtained for the RS grown 

cultures of A. hydrogeniformans was unchanged after growth with the exception of 

the accumulation of acetate.  Therefore, A. hydrogeniformans was not growing on 

glucose or VFAs, but some other compound(s) that has yet to be determined.  This 

is the first report of raw sewage being used for biological H2 production via 

fermentation by a pure culture. 

Anaerobic digestor sludge: 
Waste-activated sludge, or anaerobic digestor sludge, from a wastewater 

treatment plant contains high levels of organic matter making it a potential substrate 
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FIGURE 5.  Amount of H2 produced (ml H2 L-1) from a time course study 

conducted with cultures of A. hydrogeniformans grown with minimal medium alone 

(¯) and clarified cheese whey wastewater (CWW) (£). 

Error bars represent standard deviations of replicate samples (n=4) 
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for renewable H2 (129).  Anaerobic digestors act as the second stage of wastewater 

treatment in which microorganisms produce H2 and CO2 and, if properly 

maintained, the methanogenic population converts H2 and CO2 to CH4 (119).  There 

is limited data showing biohydrogen production from anaerobic digestor sludge 

(AD) using pure cultures.  A. hydrogeniformans produced 22.6 ml H2 L-1 (FIGURE 

7) at a rate of 0.8 ml H2 hr-1 and reduced COD by 89 % (Table 7).  Cultures grown 

on AD produced the lowest amount of H2 when compared to other waste feedstocks 

in this study (FIGURE 7).  The same can be said for the amount of H2 g-1 COD 

reduced (Table 7).   Batch fermentations yielded approximately half the H2 

produced during the initial feedstock optimization studies.  Freezing and thawing 

AD prior to the batch fermentation studies could have destroyed bioavailable 

compounds.  The pH of unbuffered AD increased from 7.5 to 8.4 during 

fermentation, which indicates that A. hydrogeniformans may have been growing on 

proteins and/or amino acids and producing ammonia.  A study conducted by Wang 

et al. showed H2 production rates as high as 0.6 mmol H2 g-1 COD for anaerobic 

digestor sludge using Clostridium bifermentans (129).  However, it was not reported 

if the pH of the reactor was controlled by addition of a buffer.   A. 

hydrogeniformans produced 0.12 mmol H2 g-1 COD reduced.  It should be noted that 

8.4 is the upper limit of the pH range of growth for A. hydrogeniformans (Chapter 

1). 
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FIGURE 6.  Amount of H2 produced (ml H2 L-1) from a time course study 

conducted with cultures of A. hydrogeniformans grown with minimal medium alone 

(¯) and clarified raw sewage (CRS) (£). 

Error bars represent standard deviations of replicate samples (n=4) 
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FIGURE 7.  Amount of H2 produced (ml H2 L-1) from a time course study 

conducted with cultures of A. hydrogeniformans grown with minimal medium alone 

(¯) and undiluted anaerobic digestor sludge (AD) (£). 

Error bars represent standard deviations of replicate samples (n=4) 
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Conclusions 

Biological H2 production by pure cultures of A. hydrogeniformans can be 

achieved from various renewable wastewaters as well as pure glucose.  A. 

hydrogeniformans produced close to the theoretical maximum of 4 H2 per molecule 

of glucose when grown in a mineral medium containing glucose.  Brewery 

wastewater seems to be the most promising waste feedstock because it can be used 

as both a carbon and nutrient source for cultures of A. hydrogeniformans and 

allowed for the production of H2 at the same rate as glucose grown cultures.  Sweet 

sorghum juice, cheese whey wastewater, raw sewage and anaerobic digestor sludge 

could all be used for the generation of H2 as well.  Anaerobic digestor sludge grown 

cultures of A. hydrogeniformans produced the least amount of H2.  As seen with the 

sweet sorghum juice, it is important to evaluate the proper ratio of nutrients and 

wastewater load when conducting studies with raw waste feedstocks.  This study, 

using pure cultures of A. hydrogeniformans, offers a waste-remediation, energy-

generating strategy for all feedstocks tested.  
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H2 production by Anaerobaculum hydrogeniformans 
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Abstract 

Anaerobaculum hydrogeniformans is a thermophilic bacterium that has 

potential for biological hydrogen (H2) production. Results from a 5 L fermentor trial 

showed there were limiting factors in the fermentation broth.  Only 50 % of the 

glucose was utilized before the culture of A. hydrogeniformans started to lyse.  The 

aim of this study was to determine the optimal fermentation conditions for A. 

hydrogeniformans and elucidate limiting factors during fermentation.  A. 

hydrogeniformans grew optimally and produced H2 from  0.2 M to 0.6 M, and 

tolerated up to 1.2 M NaCl, making it the most NaCl tolerant organism producing 

approximately 4 H2 per mole of glucose.  A. hydrogeniformans was able to grow in 

the presence of initial sodium/potassium acetate concentrations of 240 mM.  

However, growth was limited compared to the control.  Growth and H2 production 

was observed in the presence of a much higher concentration of the inorganic salts 

than that of the Na-acetate.  Therefore ionic strength was not responsible for the 

inhibition, but the presence of acetate.  Inhibition of total glucose oxidation was also 

affected by a decrease in the culture pH, where by pH adjustment with additional 

buffer or bicarbonate during growth resulted in total glucose oxidation.  Hydrogen 

removal from the headspace marginally increased glucose utilization and growth 

rates, but the total H2 production rate was raised from 17.4 mmol H2 L-1 min-1 to 39 

mmol H2 L-1 min-1 after the H2 was removed.  Glucose was not oxidized totally, in 

cultures with lowered H2 partial pressures, supporting the hypothesis that increasing 

H2 partial pressure is not the only limiting factor during fermentation.  Growth rate 
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and glucose utilization increased when the concentration of yeast extract was 

increased in the medium.  The increase in growth rate did not change the 

fermentation stoichiometry, but did increase the overall growth performance thus 

raising the volumetric H2 production rate by 50 %.   
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Introduction 

A hydrogen-based economy fueled by renewable sources including biomass, 

is getting increased attention.  Currently, approaches to large-scale hydrogen (H2) 

production include steam reforming of methane and coal gasification (115).  These 

methods use fossil fuels and contribute to an increase in global CO2 emissions.  

There have been many bacterial species capable of producing H2 from sugar 

substrates of biomass wastes (30, 33).  The current measure for the description of an 

optimal H2 producer is the amount of H2 produced per mole of substrate.  The 

theoretical maximum ratio of H2 produced per mole of glucose is 4, and is obtained 

when acetate is the sole end-product of fermentation (113).  A relatively small 

number of microorganisms approach this limit due to thermodynamic limitations 

and metabolic requirements (31, 73).  

The microorganisms that produce close to 4 H2 per mol of glucose are 

generally thermophilic species, such as members of the Thermotoga, 

Caldicellulosiruptor, Thermococcales and Pyrococcus (135) (Table 8).  Mesophilic 

bacteria, such as enterics and clostridia, can have relatively high H2 productivities 

under certain conditions, but usually only produce about 1-2 H2 per mol of glucose 

(11), unless genetic modifications are made, in which yields increased from about 

0.09 to 0.8 mol H2 per mol substrate (64).  Thermophilic microorganisms have been 

hypothesized to be potential prolific H2 producers, but they have not been studied to 

any extent from the perspective of genetic/metabolic engineering (11).  Research 

into the optimization of fermentation parameters such as nutrient availability, pH, 
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Table 8.  Various cultures grown on glucose under optimum temperatures, and the 

total H2 yield (mmol L-1) and H2 produced per mole of glucose.   

NR= not reported 

Organism 
Temp 
(°C) 

Mode of 
operation 

H2                 
(mmol L-1) 

Yield         
(H2 glucose-1) Reference 

Clostridium 
butyricum 30 Continuous 78-111 1.4-2.0 (47) 

Enterobacter 
aerogenes 37 Batch 50 0.56 (86) 

Anaerobaculum 
hydrogeniformans 55 Batch 90 4.0 This study 

Clostridium 
thermocellum 60 Continuous NR 1.6 (58) 

Thermotoga elfii 65 Batch 32 1.4 (42) 

Caldicellulosiruptor 
saccharolyticus 70 Batch 60 4.0 (43) 

Thermotoga 
neapolitana 77 Batch 45 3.9 (73) 

Thermotoga 
maritima 80 Batch 70 4.0 (98) 

Pyrococcus furiosus 100 Batch NR 3.5 (49) 
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substrate concentration and organic/inorganic end product inhibition have been 

conducted on some cultures and each can effect the overall performance of H2 

producing microorganisms (30, 77).   

Nutrient availability and substrate concentration have proven to be crucial 

factors in fermentation performance of thermophilic H2 producers.  Ferchichi et al. 

(24) showed that an increase in both H2 production rate and yield of H2 per mol of 

glucose could be raised dramatically in cultures of Clostridium 

saccharoperbutylacetonicum with yeast extract supplementation.  An increase in 

rate of H2 production was also seen in cultures of C. saccharolyticum and 

Thermotoga elfii when yeast extract or casamino acid concentrations were increased 

(121).  Initial substrate concentration can influence fermentation performance. 

Cultures of C. saccharoperbutylacetonicum responded with a 33 % increase in yield 

of H2 per glucose and a 130 % increase in H2 production rate when the initial 

glucose concentration was doubled (24).   

Controlling the pH of the fermentation medium contributes to the rate of H2 

production and substrate utilization.  Addition of a extra buffer or bicarbonate 

allowed cultures of Thermotoga neapolitana to utilize all of the glucose in the 

medium and subsequently produce more H2.  However, the yield of H2 per mol of 

glucose was unchanged (73).  Acetate inhibits the growth of many microorganisms 

(55), and it may act as an physiological uncoupler of growth when in both the 

undissociated or dissociated form (7, 130).  van Neil et al. (122) showed that C. 
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saccharolyticus exhibited Na-acetate inhibition to the same extent as inorganic salts 

such as NaCl and concluded that the ionic strength of the Na-acetate was the 

inhibitory agent and not necessarily the concentration of acetic acid in the medium 

Sensitivity to H2 partial pressures (PH2) seems to be one of the most common 

traits among H2 evolving microorganisms.  An increase in PH2 can result in the 

production of alternate reduced end products, changing the fermentation 

stoichiometry (11).  In order to overcome this obstacle, researchers have developed 

methods such as negative headspace pressure (65), gas sparging (70, 78) and gas 

stripping (52, 134) methods to increase overall H2 production.  The use of total 

pressure reduction in a bioreactor by vacuum has proven to be a useful (65), but this 

increased the risk of contamination (50) and energy required to maintain an 

underpressurized system.   Nitrogen sparging has been used in many studies and has 

shown to be beneficial in lowering the PH2 enough to increase the yield of H2 per 

mol of substrate (77).  The use of CO2 stripping has also been used to significantly 

increase H2 yields by lowering PH2 in mixed cultures (52), but a major drawback in 

using CO2 as a stripping gas is the formation of bicarbonate, which is accompanied 

by acidification of the medium and increased osmotic pressures (134).  Wilquist et 

al. (134) used this method on cultures C. saccharolyticus that tolerated NaCl up to 

440-425 mM but with negative effects due to inhibitory solute concentrations that 

rose to around 0.25 osm/kg H2O.  It has been hypotesized that cultures of T. 

neapolitana or P. furiosus would be better suited for CO2 sparging because they can 

tolerate solute concentrations of 0.46 M (0.92 osm/kg H2O) (11) and 0.5 M (1 
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osm/kg H2O) (90) respectively (135), however this hypothesis has yet to be tested.  

If a culture is capable of withstanding high concentrations of solutes, then CO2 

stripping may be a viable technique for lowering the PH2.    

A novel thermophilic organism under consideration for biological hydrogen 

production is Anaerobaculum hydrogeniformans (our paper).  A. hydrogeniformans 

is a rod-shaped, gram-negative bacterium that grows optimally at 50-55 °C, and can 

oxidize glucose to H2, acetate and CO2 in a ratio close to the theoretical maximum 

(our paper) and produce hydrogen from renewable waste streams such as raw 

sewage (67).  The goal of this work was to determine various limiting factors, such 

as nutrients, solute concentration, acetate tolerance, and hydrogen inhibition during 

the fermentation of glucose.  By elucidating the limiting factors in fermentation 

conditions when using A. hydrogeniformans it is possible to develop a targeted 

approach to fermentor/process design and medium optimization for future large-

scale studies.    
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Materials and methods 

Culture and medium 
Anaerobaculum hydrogeniformans strain OS1 (DSM 22491T) was grown in 

a mineral medium containing (L-1):  10 mL mineral solution (111), 10 mL vitamin 

solution (111), 10 mL trace metal solution (111), 1 g yeast extract (Difco), 10 g TES 

(Research Organics) and 10 g NaCl.  The medium (pH 7.5) was prepared using 

strict anaerobic technique (5) and contained an initial headspace of 100 % N2.  

Cultures were grown at 55 °C and fed glucose added from a sterile anaerobic stock 

solution to a final concentration of about 22 mM unless otherwise stated.   

 

5 L batch fermentation 
 A. hydrogeniformans was grown in a 5 L BioFlo 110 fermentor (New 

Brunswick Scientific) with a working volume of 3 L.  The medium used for the 

fermentation was the same as described above.  6 g L-1 of glucose was used as the 

carbon and energy source and added from a sterile anaerobic stock to the 

fermentation vessel after autoclaving.  The pH of the fermentation broth was not 

adjusted during growth.  pH measurements were taken using a gel filled pH probe 

(New Brunswick Scientific), and pH data was collected using the AFS-

Biocommand bioprocessing software suite version 2.6 (New Brunswick Scientific). 

A heating blanket and cooling finger connected to an external water supply 

controlled the vessel temperature.   100 % N2 was sparged in the fermentor using the 

sparging tubing supplied with the fermentor (New Brunswick Scientific) to ensure 
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positive pressure was maintained.  Headspace gas was released through an exhaust 

port that was connected to a 5 mL glass luer lock syringe filled with glass wool and 

retrofitted with a tubing connector.  Gas samples were collected by flushing the 

headspace out gas into 10 ml stoppered and crimp sealed serum bottles (Wheaton).  

A vent needle was placed in the stopper and the gas was allowed to flush for 

approximately 5 min to ensure sample uniformity.  Liquid samples were taken out 

of the sample port, which was fitted with a one-way luer lock stopcock.  The 

collection tubing was flushed with 5 ml of fermentation broth before samples were 

collected to ensure sample uniformity.  Optical density, H2 and acetic acid 

concentrations were quantified for each time point.  The amount of H2 produced was 

calculated by correlating the % H2 measured in the 10 ml stoppered bottle to the 

amount of headspace in the fermentation vessel. 

 

Growth conditions 
Unless otherwise stated, cultures were grown in 125 mL stoppered and 

crimp-sealed bottles, using 20 mL of medium was the working volume for all 

conditions tested.  Control cultures consisted of the medium described in section 

2.1.  Oxygen tolerance was tested by the addition of O2 into the headspace from a 

sterile stock to final gas phase concentrations of 10, 20, 50 and 70 µmol L-1.  The 

effect of NaCl or KCl was examined a minimum inhibitory concentration (MIC) 

assay by the addition of 0, 0.09, 0.17, 0.32, 0.51, 0.68, 0.86, 1.2 and 1.54 M NaCl or 

KCl in the medium described in section 2.1.  10 ml of medium was anoxically 
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prepared and placed in 18 mm stoppered and crimp-sealed tubes containing a 100 % 

N2 gas phase for the MIC assay.  Cultures were allowed to incubate for 14 days at 

55 °C after which time cultures growth and H2 production was quantified.  A time 

course experiment was conducted in which the minimum, mid-point and maximum 

concentration of NaCl was supplemented in the medium (0.2, 0.6 and 1.2 M, 

respectively).  Inhibition by sodium acetate was first quantified by means of an MIC 

assay in which initial concentrations of 0, 8, 17, 50, 83, 167, 250 and 333 mM Na-

acetate was added prior to inoculation.  The MIC assay was conducted in the same 

medium, tubes, gas phase, temperature and time used in the NaCl MIC assay.  After 

14 days of incubation H2 and growth was quantified.  The MIC results led a time 

course assay in which either 0 or 240 mM Na or K-acetate was added from a sterile 

anoxic stock prior to inoculation.  During the time course experiment H2, growth 

and glucose utilization was quantified.  The inhibition of glucose oxidation due to 

lowering of the pH was tested by the addition of 1 ml 1.5 × TES buffer solution (pH 

7.5) or the addition of 1 ml 1 M NaHCO3 from sterile stock solutions at 74 hrs.  To 

test the effect of low H2 partial pressures H2 was evacuated and exchanged with 100 

% N2 after 74 hr of growth.  Yeast extract additions were conducted prior to 

inoculation to a final concentration of 0, 2 or 8 g L-1.   

 

Analytical methods 
Growth was monitored using a Beckman DU series 600 Spectrophotometer 

(Beckman) set to a wavelength of 600 nm.  Glucose concentrations were quantified 
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using the glucose-oxidase reaction with the PGO Enzyme assay kit (Sigma).  

Acetate was quantified using a Shimadzu GC-8A equipped with a flame ionization 

detector (Shimadzu).  Compounds were separated with a glass column (2 m x 5 m) 

packed with 80/120 mesh carbopack with 4 % carbowax (Supelco).  The inlet and 

detector were both set to 200 °C.  The column temperature was held at 155 °C.  

Ultra high purity He was used as the carrier gas.  Headspace pressure was quantified 

by the use of a digital pressure gauge (Cole-Parmer).  Hydrogen was quantified with 

a Shimadzu 8A gas chromatograph equipped with a thermal conductivity detector.  

Gasses were separated with a stainless steel column (2 m x 1/8 in) packed with a 

50/80 mesh Porapak Q (Supelco).   The inlet and detector were bet at 110 °C and the 

column temperature was held at 100 °C.  Data was analyzed using a C-R8A 

Chromatopac Integrator (Shimadzu).  All chemicals used in this study were obtained 

from Sigma-Aldrich unless otherwise specified.  All gas measurements were made 

at STP.    

 

Data analysis 
Maximum H2 production, glucose utilization and growth rates were 

calculated during the exponential growth phase of A. hydrogeniformans from 50 to 

96 hrs.  The overall volumetric productivity of H2 production was calculated as the 

total H2 produced (mmol L-1) over the time span of the entire experimental set as 

previously described (73). Total glucose oxidized, H2 produced and final yield of 

mol H2 mol glucose-1 were calculated after experimental sets were completed.   
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Results and Discussion 

5 L batch fermentation 
 The results from the 5 L fermentor run are summarized in FIGURE 8.  

Growth, glucose oxidation and product formation started by the first time point (24 

hr).  Hydrogen production remained constant at 8 mmol L-1 by 48 hrs until the 

completion of the experiment. Actual total H2 produced could not be quantified 

because the flow rate of the N2 into the reactor was not measured before starting the 

reactor. However, it is possible to qualitatively see that H2 was being produced at 

about the same rate N2 was being added to the reactor, as evident by the steady H2 

measured in the exhaust.   There was a steady decrease in glucose concentration 

throughout the experiment, which was accompanied by an increase in acetate 

concentration in the fermentation medium.  Throughout the experiment about 2 mol 

acetate was produced per mol of glucose, which is indicative of the fermentation 

stoichiometry previously described for A. hydrogeniformans (Chapter 1).  Although 

glucose was steadily oxidized throughout the experiment, only half of the glucose 

was consumed by A. hydrogeniformans and a decrease in cell density was observed 

prior to total glucose oxidation.  This could have been due to a drop in pH as a result 

of acetic acid accumulation, which dropped below the known pH range for growth 

of A. hydrogeniformans (FIGURE 9).  Another possible explanation for the decrease 

in cell numbers could have been due to nutrient limitation.  Whatever the cause, the 

observation that there are limitations that need to be determined to ensure optimal 

cell growth and product recovery needs to be addressed. 
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FIGURE 8.  Acetate (mmol) (¡), H2 (mmol) (¨), glucose (mmol) (¯) and optical 

density (600 nm) (r) quantified from the 5 L batch fermentation experiment using 

glucose as the substrate for the H2 producing anaerobe A. hydrogeniformans. 

 

*H2 measurements were made from the exhaust flow from the fermentor, however 

the flow rate of the exhaust was not quantified, thus after 48 hr H2was being 

produced at the same rate as the exhaust.
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FIGURE 9.  pH measurements taken during the batch fermentation of glucose in a 

5 L reactor.   
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Fermentation parameter optimization 

Overall productivity and H2 yield per mol glucose 
The overall productivity of H2 production (QH2) remained steady in most 

conditions tested (0.489 ± 0.038 mmol L-1 hr-1).  There was an increase in the 

overall productivity when the conditions for growth proved to be more favorable, 

such as increasing the yeast extract in the culture medium from 2 g L-1 to 8 g L-1 

(0.950 ± .001 mmol L-1 hr-1).  Increasing the initial glucose from 3 g L-1 to 6 g L-1 

(0.747 ± 0.009 mmol L-1 hr-1) or 9 g L-1 (0.785 ± 0.006 mmol L-1 hr-1) also increased 

the QH2.  In conditions that exhibited cell inhibition, such as growth in the presence 

of 7 % NaCl (0.168 ± .001 mmol L-1 hr-1), initial concentrations of 240 mM Na-

acetate (0.326 ± 0.002 mmol L-1 hr-1) or 240 mM K-acetate (0.325 ± 0.023 mmol L-1 

hr-1) the QH2 was decreased.  The QH2
 for calculated for A. hydrogeniformans, under 

the control conditions established in the Material and Methods section, was about 

half of that reported for T. neapolitana (73).  However when conditions were more 

favorable the overall QH2
 was higher than that reported for T. neapolitana (73).  In 

all conditions tested in this study A. hydrogeniformans produced close to the 

theoretical maximum of 4 mol H2 per mol glucose.  Table 9 shows the yields 

observed under the various conditions tested.   When cultures did not have high 

growth, glucose utilization or H2 production, A. hydrogeniformans still produced 

3.17 ± 0.12 mol H2 per mol glucose and a maximum of 3.99 ± 0.05 mol H2 per mol 

glucose. These data are indicative of the range of conditions that A. 

hydrogeniformans can be cultured in without significantly altering the fermentation 

stoichiometry.      
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Effect of controlled pH, H2 partial pressure, initial glucose and nutrients 
Glucose remaining after growth ceased under most of the conditions tested 

led to the assumption that glucose oxidation was inhibited in cultures of A. 

hydrogeniformans.  Experimental sets were created in which pH, H2 partial pressure 

and nutrient limitations were tested to elucidate the limiting factors.  Inhibition from 

lowering of the pH was tested by pH adjustment experiments, of which growth and 

H2 results are shown in FIGURE 10.  These assays were conducted by an injection 

of 1 ml anoxic 1.5× TES buffer (pH 7.5) or 1 ml of 1 M NaHCO3 at 74 hrs of 

growth.  Both methods of adjusting the pH influenced the amount of glucose 

consumed and subsequent H2 production.  When the pH was adjusted all available 

glucose was consumed in roughly in 44 hrs (FIGURE 10) and there was an increase 

in the amount of total H2 produced (86.25 ± 0.06 mmol H2 L-1 for the buffer 

addition; 85.52 ± 0.03 mmol H2 L-1 for the NaHCO3 addition) when compared to the 

unamended control (73.69 ± 3.9 mmol H2 L-1). There was also an increase in 

glucose oxidation and growth rate (Table 9).  After the assay was terminated pH 

measurements were made to verify that the pH of the medium was altered.  The pH 

for the control cultures was 6.25 ± 0.02 where the pH for the 1.5× buffer was 6.98 ± 

0.01 and 7.12 ± 0.01 for the NaHCO3 injected cultures.   This allowed for the 

generation of more cell mass as well as an increase in H2 production (Table 9).  

Munro et al. (73) made a similar observation in which cultures of T. neapolitana 

were tested in the same fashion and described increased glucose oxidation and H2 

production.  However, the yield of H2 per glucose was unchanged.  Similar results 

are reported here in that controlling of the pH did not result in a higher yield 
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Table 9.  Maximum H2 production rate (MaxH2) during exponential growth phase 

(mmol L-1 hr-1), overall volumetric H2 productivity spanning the time frame of 

entire experiment (QH2) (mmol L-1 hr-1), glucose utilization rate (mmol L-1 hr-1), 

growth rate (min-1), final yield of H2 (mmol L-1), initial concentration of glucose in 

the culture medium (mmol L-1), total glucose utilized (mmol L-1) and yield of H2 per 

glucose (mol mol-1) under all conditions tested for Anaerobaculum 

hydrogeniformans.   

 

Control cultures were unamended and grown in the conditions and medium 

described in the materials and methods with 3 g L-1 glucose, 2 g L-1 yeast extract 

and 1 % NaCl.  Hydrogen was allowed to accumulate in the headspace and the pH 

was not adjusted. 

 

ND = not determined  
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 Max 
H2 

QH2 
 

Glucose 
utilization 

rate 

Growth 
rate 

Final 
H2 

Initial 
glucose 

Glucose 
consumed Yield 

Control 
0.89 

± 
0.01 

0.452 
± 

0.003 

0.149 
± 

0.01 

1.26 
± 

0.42 

73.69 
± 

3.9 

17.71 
± 

0.32 

16.65 
± 

0.36 

3.76 
± 

0.20 
3.5 % 
NaCl 

1.04 
± 

0.05 

0.443 
± 

0.002 

0.159 
± 

0.06 

1.68 
± 

0.60 

71.08 
± 

6.2 

22.80 
± 

0.26 

16.33 
± 

0.25 

3.36 
± 

0.52 
7. 0 % 
NaCl 

0.087 
± 

0.02 

0.168 
± 

0.001 

0.029 
± 

0.01 

0.54 
± 

0.06 

27.95 
± 

2.4 

22.78 
± 

0.30 

8.22 
± 

0.46 

3.44 
± 

0.06 
8 g L-1 
yeast 

extract 

1.20 
± 

0.01 

0.950 
± 

0.001 

0.280 
± 

0.06 

2.31 
± 

0.54 

87.20 
± 

1.2 

22.80 
± 

0.01 

22.80 
± 

0.01 

3.99 
± 

0.05 

H2 
removed ND ND 

1.79 
± 

0.02 

1.88 
± 

0.12 
ND 

23.56 
± 

0.29 

18.08 
± 

1.22 
ND 

Plus 1.5 
× buffer 

at 74 min 

0.987 
± 

0.01 

0.520 
± 

0.010 

0.308 
± 

0.02 

1.67 
± 

0.02 

86.25 
± 

0.06 

22.74 
± 

1.70 

22.74 
± 

1.70 

3.75 
± 

0.12 

Plus 1 ml 
1 M 

NaHCO3 
at 74 min 

0.994 
± 

0.01 

0.509 
± 

0.010 

0.285 
± 

0.01 

1.32 
± 

0.18 

85.52 
± 

0.03 

22.68 
± 

1.01 

22.68 
± 

1.01 

3.77 
± 

0.09 

6 g L-1 
glucose 

1.101 
± 

0.01 

0.747 
± 

0.009 

0.216 
± 

0.02 

1.40 
± 

0.12 

71.67 
± 

1.23 

34.48 
± 

0.84 

18.13 
± 

0.08 

3.85 
± 

0.12 
9 g L-1 
glucose 

1.30 
± 

0.02 

0.785 
± 

0.006 

0.366 
± 

0.03 

1.43 
± 

0.05 

75.37 
± 

0.95 

65.36 
± 

0.22 

18.53 
± 

0.10 

3.89 
± 

0.09 
240 mM 

initial 
Na-

acetate 

0.357 
± 

0.07 

0.326 
± 

0.002 

0.191 
± 

0.03 

0.99 
± 

0.30 

38.58 
± 

2.53 

22.73 
± 

0.36 

11.73 
± 

0.46 

3.17 
± 

0.12 

240 mM 
initial K-
acetate 

0.503 
± 

0.02 

0.325 
± 

0.023 

0.077 
± 

0.02 

0.88 
± 

0.30 

38.04 
± 

2.77 

22.56 
± 

0.25 

10.64 
± 

0.86 

3.58 
± 

0.03 
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of H2 per glucose (3.75 ± 0.12 in buffer added, 3.77 ± 0.09 in NaHCO3 added; 3.76 ± 

0.20 in unamended), however, it did show that the controlling of pH in fermentations 

using A. hydrogeniformans is a critical component, as observed previously in studies with 

T. neapolitana (73). 

Hydrogen partial pressure (PH2) plays a significant role in the generation of H2 by 

hydrogenic microorganisms (59, 77, 122).  Cultures of A. hydrogeniformans were 

assayed to see if PH2 effected growth and glucose oxidation.  When H2 was removed from 

the headspace glucose utilization and growth increased in pre H2 removal vs. post H2 

removal (FIGURE 11). Not all of the glucose was utilized in the H2 evacuated cultures, 

supporting the hypothesis that there are other limiting factors in fermentations.  The H2 

production rate prior to H2 removal was 1.19 mmol H2 L-1 min-1, after which the 

production rate increased to 2.70 mmol H2 L-1 min-1.  This data is promising in that the 

rate in which H2 is produced can be significantly increased by the removal of H2 during 

fermentation.  

Nitrogen, namely from yeast extract, in the medium has been noted to have an 

effect on the production of H2 (24, 98, 121).  Increasing the concentration of yeast extract 

did not alter the fermentation performance of C. saccharolyticus or Thermotoga elfii 

(121), even though yeast extract is required for the growth of T. elfii (87, 121).  A. 

hydrogeniformans also requires yeast extract for growth.   Increasing the concentration 

from 2 g L-1 to 8 g L-1 increased all of the factors tested (Table 9).  However, the increase 

in growth rate did not change the H2 yield, which agrees with the study on T. elfii and C. 

saccharolyticus, but did increase the growth rate, increasing the volumetric H2 production 

rate by 50 %.  
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FIGURE 10.  Glucose concentration in pH unamended control (¯) and pH adjusted 

cultures of A. hydrogeniformans with either 1.5 × buffer (pH 7.5) (£) or 1 ml addition of 

anoxic 1 M NaHCO3 (r) after 74 hr of growth.   

Error bars represent standard deviation of replicate cultures (n=3). 
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FIGURE 11.  Time course of growth and glucose utilization by A. hydrogeniformans 

when H2 was evacuated at 74 hrs and the unamended control; (r) glucose concentration 

in control cultures; (�) glucose concentration in H2 evacuated cultures; (¯) growth in 

control cultures; (£) growth in H2 evacuated cultures.  

Error bars represent standard deviation of replicate cultures (n=3).  
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Initial glucose concentration has been noted to play a large role in the 

fermentation performance of various microorganisms.  Ferchichi et al. (24) showed that 

cultures of Clostridium saccharoperbutylacetonicum responded with a 33 % increase in 

yield of H2 per glucose and a 130 % increase in H2 production rate when initial glucose 

concentrations were raised from 20 g L-1 to 40 g L-1.  A similar trend was observed in 

cultures of T. maritima and T. neapolitana (79).  A. hydrogeniformans was grown with an 

initial concentrations of either 17, 34 and 65 mM glucose.  There was an increase of 37 % 

and 28 % in glucose utilization rates when the 34 and 65 mM glucose grown cultures 

compared to that of the 17 mM control respectively.  Interestingly, the 34 and 65 mM 

glucose grown cultures oxidized roughly the same amount of glucose (18.13 ± 0.08 in the 

34 mM; 18.53 ± 0.50 in the 65 mM); where as the 17 mM glucose grown cultures only 

oxidized 16.65 ± 0.36 mM.  The reason for this is not yet known, but the increase in 

growth rate might suggest that glucose concentration could play a role in the uptake of 

glucose by A. hydrogeniformans.  The total amount of H2 produced in the 17, 34 and 65 

mM glucose grown cultures was about the same in all three conditions (Table 9).  This 

could have been due to nutrient availability, culture pH or H2 accumulation during 

fermentation.   

 

Inhibition by NaCl or KCl 
The ability to withstand high solute concentrations within a fermenting system 

increases the options for H2 removal from the system by CO2 stripping (70, 134).  

Another benefit of this technology after the H2 is separated is the production of a 100 % 

CO2 gas phase, allowing for an inexpensive treatment process that will sequester any CO2 
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emission from the fermentation process (120).  CO2 stripping is not without it’s 

disadvantages.  With the addition of CO2 as the stripping gas, bicarbonates are produced 

in the culture medium, which increases the solute concentration, which can lead to 

culture inhibition and even cell lysis (134).  The thermophile Caldicellulosiruptor 

saccharolyticus can only tolerate salt concentrations up to 0.4-0.425 M (122) which was 

not enough to withstand the solute concentration CO2 stripping introduced (134).  The 

hyperthermophiles T. neapolitana and Pyrococcus furiosus can grow in the presence of 

0.46 M NaCl and 0.5 M NaCl respectively (11, 90), which lead to the hypothesis that 

both T. neapolitana and/or P. furiosus could be tolerant to high enough solute 

concentrations that CO2 stripping may be a viable technique for controlling PH2 during 

fermentations (135). The minimum inhibitory concentration (MIC) assay of NaCl 

conducted with A. hydrogeniformans showed growth and H2 production from a range of 

0.09 to 1.2 M (FIGURE 14), making it the highest known NaCl tolerant organism that 

still produces approximately 4 H2 per mole of glucose (135).  The optimum NaCl 

concentration for A. hydrogeniformans ranges from 0.2 to 0.6 M NaCl (FIGURE 14).  

The H2 production rate, final amount of H2 produced, glucose consumed and yield of H2 

glucose-1 were all very similar when A. hydrogeniformans was grown in 0.2 or 0.6 M 

NaCl (FIGURE 15).  Potassium chloride was also tested in the same concentrations, 

however, neither growth nor H2 were detected, meaning that NaCl is a required mineral 

for growing A. hydrogeniformans.  These data are significant in that, by withstanding 

high solute concentrations, gas stripping with CO2 may become an optional technique 

employed for controlling H2 partial pressures during large-scale fermentations.  
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FIGURE 12.  Growth of A. hydrogeniformans with 0 g L-1 (¯), 2 g L-1 (£) and 8 g L-1 

(r) yeast extract using glucose as the substrate. 

Error bars represent standard deviation of replicate cultures (n=3). 
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FIGURE 13.  Growth measured by optical density at 600 nm when cultures of A. 

hydrogeniformans were grown with initial glucose concentrations of 3 g L-1 (¯), 6 g L-1 

(£) and 9 g L-1 (r). 
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Inhibition by sodium or potassium acetate 
The inhibition of thermophilic growth by acidic end products has tested previously and 

shown to be a valid concern (122, 133).  Sensitivity of organic fermentation products 

investigated in C. saccharolyticus (122), described a critical inhibitor concentration of 

sodium acetate (192 mM) and potassium acetate (206 mM).  van Neil et al. (122) 

concluded that the inhibition was due to ionic inhibition by sodium and not because of 

critical acetic acid concentrations (122), which has also been described in other cultures 

(130).  A. hydrogeniformans was able to grow in the presence of initial sodium/potassium 

acetate concentrations up to 240 mM (FIGURE 17).  However, H2 production, glucose 

utilization and growth rates as well as total H2 produced and glucose oxidation were all 

significantly lower than culture grown without an acetate addition (Table 9).  However, 

as stated above, A. hydrogeniformans can tolerate 600 mM NaCl without inhibiting 

growth.  Thus, the concentration of acetate is the key component not the sodium or 

potassium ion.  This result could pose a problem in large-scale fermentations.  However, 

to reach acetate concentrations of up to 240 mM or higher, A. hydrogeniformans would 

have to consume at least 120 mM of glucose.  By using a continuous fermentation system 

critical acetate concentrations should be easily regulated.   
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FIGURE 14.  Result of the initial NaCl minimum inhibitory concentration assay using 

cultures of Anaerobaculum hydrogeniformans taken after 14 days of incubation in which 

% H2 detected in the headspace (bars) and growth quantified by optical density at 600 nm 

(n) are shown. 

Error bars represent standard deviation of replicate cultures (n=3) 
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FIGURE 15.  H2 (a) and glucose (b) concentration produced by cultures of A. 

hydrogeniformans with an initial salt concentration of 0.2 (¯), 0.6 (£) and 1.2 (r) M 

NaCl. 

Error bars represent standard deviation of replicate cultures (n=3). 
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Aerotolerance  
Microaerobic metabolism in T. neapolitana, another 4 H2 producing 

microorganism, has been both observed (124) and contradicted in the literature.  The 

study conducted by van Ooteghem et al. (124) showed an increase in H2 production and 

yield in microaerobic conditions by means of an alternate physiological pathway.  This 

finding was not reproducible in subsequent studies where the use of a microaerobic 

pathway was questioned (19, 73).  A. hydrogeniformans is routinely grown in anaerobic 

medium without the addition of a reducing agent.  The effect of O2 on cultures of A. 

hydrogeniformans was conducted to test the hypothesis of microaerobic metabolism.  A. 

hydrogeniformans was able to tolerate O2 concentrations in the gas phase up to 50 µmol 

L-1.  The addition of O2 did not alter the fermentation stoichiometry (Table 10), but it did 

lower the total amount of glucose utilized until inhibiting O2 concentrations were reached 

and growth ceased.  These results agree with the latter studies conducted on T. 

neapolitana (19, 73), which showed the addition of O2 did not increase the H2 to glucose 

ratio in cultures of T. neapolitana, which is evidence against an alternate microaerophilic 

physiological pathway of glucose oxidation. 
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FIGURE 16.  Result of the initial Na-acetate minimum inhibitory concentration assay 

using cultures of Anaerobaculum hydrogeniformans taken after 14 days of incubation in 

which % H2 detected in the headspace (bars) and growth quantified by optical density at 

600 nm (n) are shown. 

Error bars represent standard deviation of replicate cultures (n=3) 
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Table 10.  Effect of initial O2 additions on glucose consumption, hydrogen and acetate 

production for cultures by A. hydrogeniformans. 

 

O2 

(µmol L-1) 

Glucose consumed 

(mmol L-1) 

H2 

(mmol L-1) 

Acetate 

(mmol L-1) 

0 9.1 34.6 18.2 

10 8.5 31.7 15.7 

20 6.0 22.2 12.0 

50 6.0 22.5 10.3 

70 0.0 0.33 0.00 
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Conclusions 

A. hydrogeniformans is a potential biological catalyst for H2 production because it 

not only produced 4 mol H2 per mol of glucose, but it does so at the lowest temperature 

reported to date (Table 1), which aids in the technical feasibility of biological H2.  Under 

various conditions in this work the yield of H2 per glucose remained above 3 and was 

often the thermodynamic limit of 4.  The preliminary 5 L batch fermentation run showed 

that glucose was not totally oxidized by the time A. hydrogeniformans reached the 

stationary and death phase of the culture cycle.  The oxidation of glucose by A. 

hydrogeniformans was shown to be dependent on various factors during fermentation, 

first being PH2, as seen with many other H2 producing microorganisms.  If the H2 partial 

pressure is kept low then growth and substrate utilization rates were increase when 

compared to unamended cultures.  Removal of H2 can be achieved by multiple techniques 

such as sparging with N2 or gas stripping with CO2, which may have detrimental effects.  

From this research it can be hypothesized that ionic solute concentrations have little 

effect on the growth of A. hydrogeniformans until molar amounts of NaCl are reached, 

which allows alternate methods of controlling PH2.  This work suggests that a continuous 

fermentation system would be the most optimal for H2 evolution using A. 

hydrogeniformans as the biological catalyst.  This hypothesis was reached by the 

observation that acetate concentrations in the fermentation broth can inhibit both growth 

and H2 production, which could be an issue because acetate is the major organic acid end 

product.  Nutrient limitation and/or pH play a role in the growth of A. hydrogeniformans.  

These data provide key insights into fermentor and medium design for large-scale 

fermentations using A. hydrogeniformans for the production of H2.  Future work 
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concentrating on H2 production with A. hydrogeniformans as a biological catalyst should 

focus on continuous control of pH and product removal with the goal of maximizing 

substrate utilization and H2 production.   
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Chapter 4 

 

 

The use of a novel eubacterial glyceraldehyde-3-phosphate 

oxidoreductase during the fermentation of glucose to acetate, 

CO2 and H2 by the anaerobic eubacterium Anaerobaculum 

hydrogeniformans 
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Abstract 

Anaerobaculum hydrogeniformans is an anaerobic organism that grows optimally 

at 55 °C and is capable of producing up to the thermodynamic maximum of 4 H2 per 

glucose.  The aim of this study was to elucidate the pathway A. hydrogeniformans utilizes 

for the oxidation of glucose to acetate, H2 and CO2.  Enzyme activities for 

phosphoglucose isomerase (1548 nmol min-1 mg protein-1), phosphofructokinase (87 

nmol min-1 mg protein-1), fructose-1,6-bisphosphate aldolase (296 nmol min-1 mg protein-

1), 2-phosphoglycerate enolase (314 nmol min-1 mg protein-1) and pyruvate kinase (79 

nmol min-1 mg protein-1) were all detected when assaying for enzyme activity using cell 

free extracts of A. hydrogeniformans, suggesting the presence of the Embden-Meyerhof-

Parnas pathway of glycolysis.  Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

was not be detected in A. hydrogeniformans using NAD+ or NADP+ as electron 

acceptors.  However enzyme activity for a glyceraldehyde-3-phosphate oxidoreductase 

was detected (41 nmol min-1 mg protein-1).  The oxidation of pyruvate to acetate is 

accomplished by a pyruvate:oxidoreductase (2150 mmol min-1 mg protein-1), 

phosphotransacetylase (785 nmol min-1 mg protein-1) and acetate kinase (1270 nmol min-

1 mg protein-1).  There was no detectable activity of pyruvate dehydrogenase under the 

assay condition examined in this work.  Labeling of the C-1 and C-3 of glucose showed 

the production of CO2 from the 3-C of glucose and the incorporation of the C-1 of 

glucose into the methyl position of acetate, which is indicative of the Embden Meyerhof 

pathway and further confirmed by the detection of key metabolites from glucose grown 

cultures of A. hydrogeniformans.  This is the first report of an eubacterial species that 

oxidizes glucose to acetate, H2 and CO2 via a ferredoxin dependent pathway, such as that 
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previously thought to only be present in hyperthermophilic archaeal species.  This is also 

the first report of any microorganism that possesses the activity of both NADH/NADPH 

and ferredoxin oxidizing soluble hydrogenases.  A. hydrogeniformans also possessed a 

membrane bound ferredoxin dependent hydrogenase (61 nmol min-1 mg protein-1).   
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Introduction 

Anaerobaculum hydrogeniformans is an obligate anaerobic thermophilic 

eubacterium with an optimum growth temperature of around 55 °C (Chapter 1).  The 

organism, isolated from oil production water from Alaska, USA, is a member of the 

division Synergistetes (41).  Previous studies have shown that A. hydrogeniformans can 

withstand high H2 partial pressures and produces close to the theoretical maximum of 4 

H2 per molecule of glucose (67) at 55 °C via the following reaction, which was described 

by Thauer et al. (113): 

 

C6H12O6  + 4H2O  Ò  4H2 + 2CH3COO- + 2HCO3
- + 4H+  (ΔG0’= -206.3 kJ/mol) 

 

To date, A. hydrogeniformans is the only organism described that can produce 4 mol H2 

per mol glucose below the temperature of 65 °C (48).  Physiological characterization of 

the central metabolic pathway of A. hydrogeniformans should elucidate how this 

anaerobe is capable of producing H2 up to 0.2 atm (Chapter 3).   

Since the classification of living organisms into the three domains of life (137), 

there have been numerous comparative studies that have shown that many of the features 

observed in archaeal species are in fact variations of previously established themes found 

in eubacterial or eukaryotic species (118).  Central metabolic processes have been one of 

the major comparatively studied phenotypes between member of the Archaea and the 

Bacteria.  To date there have been three major glycolytic pathways for the oxidation of 

glucose to pyruvate, albeit with variations on a theme.  These are the Embden Meyerhof 
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Parnas pathway (EM), the Entner-Doudoroff pathway (ED) and the Pentose Phosphate 

Pathway (PPP).  All three of these pathways can be elucidated with the detection of 

enzyme activities and by using stable isotope labeling at the 1 and 3 carbon positions of 

glucose (99).  FIGURES 17, 18 and 19 show variations of how 13C-glucose can be used 

to elucidate which pathway of glycolysis is being used.   If the EM pathway is used for 

central carbon metabolism the C-1 of glucose will be incorportated into the methyl 

position of acetate and the C-3 of glucose will be released as CO2.  If the ED pathway is 

being used the C-1 of glucose will be released as CO2 and the C-3 of glucose will be 

incorporated into the methyl position of acetate.  Finally, if the PPP is being used the C-1 

of glucose will be released as CO2 and the C-3 will be incorporated into the carboxyl 

position of acetate.   

The fermentation of glucose can lead to the evolution of H2 gas.  There are a 

number of isolates, both mesophilic and thermophilic, which have been shown to produce 

H2 from the oxidation of glucose via the EM pathway with a very distinct set of enzymes 

that carry out the pathway.  There are two distinct enzymatic steps, the oxidation of 

glyceraldehyde-3-phosphate (GAP) and pyruvate, which dictate the thermodynamic 

constraints on the amount of H2 that can be produced.   Enteric bacteria, such as 

Escherichia coli, use a NAD+ dependent glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) and a pyruvate:formate lyase (11).  The described thermophilic eubacterial 

species use the same GAPDH as the enterics.  However they use a pyruvate ferredoxin 

oxidoreductase (POR) for the oxidation of pyruvate (11).  The final variation on the EM 

pathway is the substitution of a glyceraldehyde-3-phosphate oxidoreductase (GAPOR) 

for the GAPDH and the use of the POR pyruvate decarboxylation.  No matter what 
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central metabolic pathway is being utilized, there is a finite amount of H2 that can be 

produced until the production of H2 becomes thermodynamically unfavorable (48).   

The need to maintain low H2 partial pressures can best be explained when looking 

at the H2 forming reactions.  During glycolysis, reducing equivalents are produced in the 

form of NADH (from the oxidation of glycaraldehyde-3-phosphate [GAP] by GAP 

dehydrogenase) and also in the form of reduced ferredoxin (ferredoxin dependent 

oxidation of pyruvate by pyruvate:ferredoxin oxidoreductase).  At the midpoint the redox 

potential of the couples NAD+/NADH and ferredoxinox/ferredoxinred are -320 mV and -

398 mV, respectively (113).  Thermodynamically, the H2 evolving reactions using 

NADH or ferredoxin dependent hydrogenases are distinct from one and other and 

described by the following reactions calculated by Kengen et al. (48): 

NADH  +  H+   Ò NAD+  +  H2     (ΔG0’= 18.1 kJ/reaction) 

2 Ferredoxinred
  +  2 H+ Ò 2 Ferredoxinox +  H2   (ΔG0’= 3.1 kJ/reaction) 

As noted in the above reaction the use of ferredoxin for the production of H2 is a more 

favorable reaction. 

Within a H2 evolving system, electron carriers need to be recycled on a continual basis 

for catabolism to proceed.  In Thermotoga maritima (98) and Caldicellulosiruptor 

saccharolyticus (135), this is accomplished by the production of alternative reduced end 

products such as lactate and/or ethanol which recycle the intercellular NAD+ and NADH.  

The thermodynamics of the NAD+/NADH ratio and the oxidized ferredoxin/reduced 

ferredoxin have been shown to be more favorable as temperature increases (ΔG0 = ΔH-

TΔS0) (108).  Kengen et al. (48) showed theoretically at 25 °C a system comprised of 
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ferredoxin and not NADH was favorable at H2 partial pressures of 0.1 atm and favorable 

at 1 atm at 50-70 °C, while the use of NADH only becomes favorable at H2 partial 

pressures of 0.0005 atm at 25 °C and 0.001 atm for 50-70 °C.  To date the only 

microorganisms that possess a system comprised of ferredoxin mediated reactions, such 

as glyceraldehyde-3-phosphate:oxidoreductase (GAPOR) and POR, are 

hyperthermophilic archaeal species (44, 48, 118). 

Here, we report the characterization of a glycolytic pathway and enzyme system 

previously thought to be only used by species in the archaeal domain (118).  We also 

report the use of a dual hydrogenase system consisting of cytosolic hydrogenases 

dependent on both NADH and ferredoxin. In the present study, A. hydrogeniformans was 

subjected to enzyme activity, 13C-glucose, 14C-glucose and metabolite detection studies.  

The derived pathway of glucose oxidation by A. hydrogeniformans only uses ferredoxin, 

similar to that described for the hyperthermophilic archaeon P. furiosus (118), and not the 

NAD(P)H/ferredoxin system used by other hydrogenic eubacteria, such as T. maritima 

(98) and C. saccharolyticus (135). 	  	  
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FIGURE 17.  The enzyme and labeling pattern resulting from the use of the Embden-

Meyerhof-Parnas pathway of glycolysis when cells are grown on 1-13C-glucose and 3-

13C-glucose. 
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FIGURE 18.  The enzyme and labeling pattern resulting from the use of the Entner-

Doudoroff pathway of glucose oxidation when cells are grown on 1-13C-glucose and 3-

13C-glucose. 
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FIGURE 19.  The enzyme and labeling pattern resulting from growth on 1-13C-glucose 

and 3-13C-glucose using the Pentose Phosphate Pathway of glucose oxidation. 
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Materials and methods 

Bacteria and growth conditions 
 A. hydrogeniformans strain OS1T was routinely cultivated on the medium 

previously described (Chapter 1) using glucose as the carbon and energy source and 

grown at 55 °C.  Lactococcus lactis DSM 20481and Leuconostoc mesenteroides DSM 

20343T were obtained from the DSMZ.  L. lactis was grown on TSB (Difco) and grown 

at 38 °C.  L. mesenteroides was grown on TSB at 30 °C.   

 

Cell free extract preparation 
 

Cells in late log phase were harvested by centrifugation (6,000 x g, 30 min and 4 

°C) and washed once with 100 mM 3-(N-morpholino)propanesulfonic acid (MOPS) pH 

7.2 with 1 mM dithiothreitol (DTT). Cell pellets were frozen in liquid nitrogen or used 

immediately to prepare cell-free extracts. Cell pellets were resuspended in 100 mM 

MOPS pH 7.2 with 1 mM DTT and disrupted using a French press at 83 MPa.  The lysate 

was centrifuged (20,700 x g, 10 min, 10°C) and dispensed to cryovials for storage in 

liquid nitrogen or used immediately for enzyme assays.  Small, interfering molecules 

were removed by passing the extract over a Sephadex G-25 column. 

Membrane and cytosolic preparation were prepared by ultracentrifugation of cell-

free extracts (100,000 x g, 60 min, 10°C). The pellet was washed once with 100 mM 

MOPS pH 7.2 with 1 mM DTT and resuspended in the same buffer.  Membrane 

preparations were assayed for fructose-1,6-bisphosphate aldolase to check for 

contamination with cytosolic proteins. 



	   100	  

 

Air was excluded during all steps and only anoxically-prepared, reduced solutions were 

used. 

 

Enzyme assays 
Unless otherwise indicated, activities were determined at 50 °C in N2-flushed 

septum-sealed quartz cuvettes.  Solutions were prepared anoxically by boiling and 

cooling under 100 % N2. Additions were made using N2-flushed syringes.  Specific 

activities were determined over the range where activity was linear with protein 

concentration.  Minus substrate and boiled cell-free extract controls were conducted for 

each assay.  Assays following the loss or production of NAD or NADP were measured at 

340 nm (E= 6.22 x 103 M-1 cm-1).   Assays containing methyl viologen or benzyl viologen 

were measured at 578 nm using extinction coefficients of 9780 and 8650 M-1 cm-1, 

respectively.  Buffer pH was set at 50 °C or using the appropriate ∆pKa/°C to compensate 

for the difference between ambient temperature and assay temperature pH. 

 

Hexokinase (HK)  
Hexokinase activity was assayed by following ATP- or ADP-dependent formation 

of glucose-6-phophate coupled to the glucose-6-phosphate dehydrogenase-catalyzed 

reduction of NADP.  Activity was measured in a 1 ml mixture containing 100 mM Tris-

HCl (pH 8), 1mM DTT, 10 mM glucose, 0.3 mM NADP, 2 U glucose-6-phosphate 

dehydrogenase (G6P-DH), and 2 mM ATP or ADP (98).  
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Glucose: PEP phosphotransferase 
Glucose: PEP phosphotransferase activity was assayed in a 100 mM Tris buffer 

(pH 7.4) containing 1 mM DTT, 10 mM MgCl2, 1 mM NADP, 15 mM glucose, 10 mM 

phosphoenolpyruvate (PEP), and 3 U G6P-DH in 1 ml.  Cell-free extracts and membrane 

preparations were assayed (57). 

 

Phosphofructokinase 
Phosphofructokinase activity was measured by enzymatically coupling the 

fructose-1,6-bisphosphate produced  to NADH oxidation using fructose-1,6-bisphosphate 

(FBP) aldolase, triosephosphate isomerase (TIM), and glycerophosphate dehydrogenase.  

The 2 ml assays contained 100 mM MOPS (pH 7.2), 1 mM DTT, 10 mM MgCl2, 5 mM 

fructose-6-phosphate, 0.3 mM NADH, 6 U aldolase, 8 U TIM, and 2 U glycerophosphate 

dehydrogenase. This assay was conducted as previously described by Selig et al. (99).  

However it was modified by the use of MOPS instead of Tris buffer.   

 

Fructose-6-phosphate (F6P) phosphokinase 
F6P phosphokinase activity was assayed in a modification of (110) that contained 

100 mM MOPS pH 7.2, 2 mM F6P, 25 mM potassium phosphate, 80 µM CoA, 2 mM 

NAD, 6 mM malate (disodium salt), 2 mM DTT, 2.8 U citrate synthase, and 55 U malate 

dehydrogenase. 

 



	   102	  

Fructose-1,6-bisphosphate (FBP) aldolase 
FBP aldolase activity was measured by enzymatically coupling the 

glyceraldehyde-3-phosphate and dihydroxyacetone phosphate produced to NADH 

oxidation using TIM and glycerophosphate dehydrogenase.  Two ml assays contained 

100 mM MOPS (pH 7.2), 1 mM DTT, 10 mM MgCl2, 5 mM fructose-1,6-bisphosphate, 

300 µM NADH, 8 U TIM, and 2 U glycerophosphate dehydrogenase. 

 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
GAPDH activity was measured by following the glyceraldehyde-3-phosphate -

dependent reduction of NAD or NADP.  The 2 ml reaction mixture contained 100 mM 

MOPS pH 7.2, 1 mM DTT, 20 mM fructose-1,6-bisphosphate, 20 mM potassium 

phosphate, 300 µM NAD or NADP, and 1.8 U aldolase.  

 

Glyceraldehyde-3-phosphate oxidoreductase (GAPOR) 
GAPOR activity was determined by measuring the glyceraldehyde -3-phosphate -

dependent reduction of methyl viologen.  The assays contained, 2 mM methyl viologen, 

in a 100 mM HEPES (N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) pH 8.0.  

Assays were also performed in 20 mM potassium phosphate pH 8.0. 

 

Glyceraldehyde dehydrogenase (GADH) 
GADH activity was measured by following the glyceraldehyde-dependent 

reduction of NAD or NADP.  The 2 ml reaction mixture contained 100 mM MOPS pH 

7.2, 1 mM DTT, 25 mM glyceraldehyde, and 300 µM NAD or NADP. 
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Glyceraldehyde oxidoreductase (GAOR) 
 GAOR activity was determined by measuring the glyceraldehyde-dependent 

reduction of methyl viologen.  The assays contained 25 mM glyceraldehyde and 2 mM 

methyl viologen.  

 

Pyruvate kinase (PK) 
PK activity was determined by coupling the pyruvate produced from PEP to 

NADH oxidation using lactate dehydrogenase (LDH).  The 2 ml assay contained 100 mM 

MOPS, 1 mM DTT, 5 mM MgCl2, 2 mM ADP, 400 µM NADH, 2 mM PEP, and 6 U 

LDH.  This assay was modified from the original publication by Schäfer and Schönheit 

(95) by changing the amount of ADP used from 5 mM to 2 mM.  

 

Pyruvate dehydrogenase (PDH) 
PDH activity was measured by following the pyruvate-dependent reduction of 

NAD or NADP.  The reaction mixture contained 100 mM MOPS pH 7.2, 1 mM DTT, 1 

mM sodium pyruvate, 100 µM coenzyme A (CoA), and 300 µM NAD or NADP (96).  

 

Pyruvate:ferredoxin oxidoreductase (POR) 
POR activity was assayed in a mixture containing 100 mM MOPS pH 7.2, 1 mM 

DTT, 1 mM sodium pyruvate, 100 µM CoA, and 2 mM methyl viologen (96). 
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Glucose oxidoreductase (GOR) 
GOR activity was determined by measuring the glucose-dependent reduction of 

methyl viologen.  The assays contained 25 mM glucose, 1 mM DTT, and 2 mM methyl 

viologen in 100 mM MOPS pH 7.2. 

 

Glucose dehydrogenase 
Glucose dehydrogenase activity was examined using three methods. The glucose-

dependent reduction of NAD(P) was followed in a reaction mixture containing 100 mM 

MOPS pH 7.2, 1 mM DTT, 50 mM glucose, and 300 µM NAD or NADP.  The second 

method followed the reduction of DCPIP (2,6-dichlorophenolindophenol) at 600 nm. 

This reaction mixture contained 100 mM MOPS pH 7.2, 50 mM glucose, 50 µM DCPIP, 

and 1 mM PMS (phenazine methosulfate).  The third method followed the reaction in the 

reverse direction from gluconate to glucose using a fixed time assay. Ten mM gluconate 

and 0.8 mM NADH or NADPH were added to 100 mM MOPS pH 7.2 and incubated at 

55 °C for 50 min.  The amount of glucose formed was measured using the PGO enzymes 

(glucose oxidase/peroxidase) to quantitate glucose (Sigma Technical Bulletin, product 

number P7119). 

 

NAD(P)H: methyl viologen oxidoreductase  
NAD(P)H: methyl viologen oxidoreductase activity was determined by following 

the reduction of methyl viologen (2 mM) at 589 nm in  the presence of  2 mM NADH or 

NADPH in a 100 mM MOPS pH 7.2 buffer containing 1 mM DTT. 
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Gluconate dehydratase  
Gluconate dehydratase assays were created, in which the activity was coupled to 

the endogenous 2-keto-3-deoxygluconate (KDG) aldolase (if present) and the methyl 

viologen- reducing glyceraldehyde oxidoreductase to the dehydration of gluconate.  The 

assay contained 100 mM MOPS pH 7.2, 1 mM DTT, 25 mM potassium gluconate, and 2 

mM methyl viologen.  Gluconate dehydratase activity was also assessed in a 2-ml volume 

containing 100 mM MOPS pH 7.2, 1 mM DTT, 5 mM gluconate 300 µM NADH, and 4 

U of lactate dehydrogenase. 

 

2-phosphoglycerate enolase 
The activity for 2-phosphoglycerate enolase was determined by coupling the PEP 

formed to the oxidation of NADH by pyruvate kinase and lactate dehydrogenase.  The 2 

ml assay contained 100 mM MOPS pH 7.2, 1 mM DTT, 10 mM MgCl2, 2 mM ADP, 

300 µM NADH, 2 mM 2-phosphoglycerate, 6 U pyruvate kinase, and 9 U lactate 

dehydrogenase. 

 

Glycerate kinase  
Glycerate kinase activity was determined by coupling the PEP formed to the 

oxidation of NADH by 2-phosphoglycerate enolase, pyruvate kinase and lactate 

dehydrogenase..  The 2 ml assay contained 100 mM MOPS pH 7.2, 1 mM DTT, 10 mM 

MgCl2, 2 mM ADP, 300 µM NADH, 2 mM D,L-glycerate, 10 U enolase, 6 U pyruvate 

kinase, and  9 U lactate dehydrogenase.  
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6-Phosphogluconate dehydrogenase 
The activity of 6-phosphogluconate dehydrogenase was measured by following 

the 6-phosphogluconate -dependent reduction of NAD or NADP.  The 2 ml reaction 

mixture contained 100 mM MOPS pH 7.2, 1 mM DTT, 5 mM 6-phosphogluconate, and 

300 µM NAD or NADP. 

 

Transaldolase and transketolase  
Transaldolase and transketolase were assayed in an 800 µl reaction mix 

containing 100 mM MOPS pH 7.2, 0.2 mM NADH, 2 U glycerophosphate 

dehydrogenase, 20 U TIM, and 0.6 mM erythrose-4-phosphate. The transaldolase assay 

also contained 0.6 mM fructose-6-phosphate and the transketolase assay also contained 

D-xylulose-5-phosphate and 0.25 mM thiamine pyrophosphate. This method was altered 

from the previous description (66) by the use of MOPS buffer instead of a TEA buffer. 

 

Glucose-6-phosphate dehydrogenase /oxidoreductase 
The assay for glucose-6-phosphate dehydrogenase contained 100 mM MOPS pH 

7.2, 0.3 mM NAD or NADP, and 5 mM glucose-6-phosphate. The assay for glucose-6-

phosphate  oxidoreductase contained 100 mM MOPS pH 7.2, 1 mM DTT, 2 mM methyl 

viologen, and 5 mM glucose-6-phosphate. 
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Pyruvate:formate lyase  
Pyruvate:formate lyase was assayed in a modification of (110) containing 100 

mM MOPS pH 7.2, 20 mM sodium pyruvate, 80 µM CoA, 2 mM NAD, 6 mM malate 

(disodium salt), 2 mM DTT, 2.8 U citrate synthase, and 55 U malate dehydrogenase. 

 

Phosphoglucose isomerase  
Phosphoglucose isomerase was determined in a 1-ml assay containing 100 mM 

MOPS pH 7.2, 5 mM F6P, 0.3 mM NADP, and 1 U G6P-DH by the modification of the 

hexokinase assay previously described.  

 

Other oxidoreductases 
Oxidoreductase activity was determined using formate, 6-phosphogluconate, 

gluconate, glucose, and glucose-6-phosphate as substrates.  Assays were performed in a 

100 mM HEPES buffer pH 8.0 containing 1 mM DTT and 5 mM substrate.  Assays were 

conducted using both methyl viologen and benzyl viologen in 3 mM concentrations. 

 

Gluconate and 2-ketogluconate kinases  
Gluconate and 2-ketogluconate kinases were determined in reaction mixtures 

containing 50 mM TAPS (N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid) 

pH 8, 10 mM MgCl2, 2.5 mM PEP, 0.3 mM NADH, 2 mM ATP or ADP, 5 U lactate 

dehydrogenase, and 4 U pyruvate kinase in 1 ml.  Assays contained 10 mM gluconate or 

2- ketogluconate. 
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2-keto-3-deoxygluconate (KDPG) aldolase  
 KDPG aldolase was measured using the assay of Skoza and Mohos (103) and 

Gottschalk and Bender (28) as modified by Buchanan (10).  Cell-free extracts were added 

to 50 mM MOPS pH7.2 containing 5 mM gluconate or 5 mM D,L-glyceraldehyde and 5 

mM sodium pyruvate (reverse direction) and incubated at 55 °C for 10 min.  One 

hundred µl samples were removed and stopped by adding 10 µl of a 12% TCA (w/v) 

solution followed by centrifugation (16,000 x g, 5 min) to remove precipitated proteins.  

Fifty µl of the supernatant was oxidized with 125 µl of 25 mM periodic acid in 0.25 M 

H2SO4. After 10 min at room temperature 250 µl of 2 % sodium arsenite in 0.5 M HCl 

was added to terminate oxidation. One ml of 0.3 % (w/v) thiobarbituic acid was added 

and developed by heating for 10 min at 100 °C.  A sample was removed, added to an 

equal volume of DMSO (dimethyl sulfoxide), and read at 549 nm.  The extinction 

coefficient for the chromophore was 6.78 x 104 M-1 cm-1. 

 

Acetyl-CoA synthases (ACS) and adenylate kinase 
Activities for ACS (AMP-forming), ACS (ADP-forming), and adenylate kinase 

were determined aerobically in a 100 mM TEA buffer (pH 7.5) containing 10 mM 

MgCl2, 375 µM NADH, 1 mM PEP, 2.2 U pyruvate kinase, and 2.8 U lactate 

dehydrogenase. The assay for ACS (AMP-forming) also contained 480 µM CoA, 5 mM 

ATP and 2.8 U myokinase. The activity for ACS (ADP-forming) was determined using 

the same components but with the omission of myokinase. The adenylate kinase assay 

also contained 2 mM ATP and 2 mM AMP. 
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Phosphotransacetylase (PTA) 
PTA activity was determined by the arsenolysis method of Stadtman (106) 

combined with the hydroxymate assay.  The reaction mix (333 µl) contained the 

following: 10 mM Tris pH 8, 6 mM acetyl phosphate, 100 mM cysteine, 1 mM CoA, and 

cell-free extract. After a 10 min incubation at 37 °C sodium arsenate was added to 50 

mM to start the reaction.  Tubes were incubated for an additional 45 min at 37 °C and 

then diluted 1:1 with 2 M hydroxylamine neutralized with potassium hydroxide.  The 

reaction was stopped by the addition of trichloroacetic acid (5 % final concentration) 

after 5 min incubation at 37 °C.  The volume was brought to 1.5 ml by the addition of 2.5 

% FeCl3 in 2 M HCl, and centrifuged at 16,000 x g for 5 min.  Tubes were read at 540 nm 

against a water blank. A standard curve was constructed for acetyl phosphate using the 

same assay conditions. Assays lacking CoA and acetyl phosphate, or containing boiled 

cell-free extracts were performed as controls. 

 

Acetate kinase (AK) 
Acetate kinase was determined by a modification of the assay of Bowmann et al. 

(8) based on that of Lipmann and Tuttle (62).  Potassium acetate was substituted for 

sodium acetate and succinate was omitted.  The assay contained in a 300 µl volume: 50 

mM Tris-HCl pH 8.3, 10 mM ATP, 10 mM MgCl2, 0.5 M hydroxylamine (neutralized to 

pH 7 with potassium hydroxide), and 20 mM potassium acetate.  Assays were performed 

using 5 different protein concentrations (0 to 30 µl of cell-free extract).  For each protein 

concentration, minus ATP, minus acetate, and boiled cell-free extract controls were done. 
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The reaction mixture was incubated at 37 °C for 5 min and stopped by the addition of 450 

µl of ferric reagent (10 % FeCl3, 3 % trichloroacetic acid, in 0.7 N HCl).  The tubes were 

centrifuged for 5 min at 13,000 x g to remove precipitation before reading at 535 nm. The 

molar extinction coefficient for acetyl phosphate under these conditions is 594 M-1 cm-1.  

Activities were calculated by subtracting the background rates of the minus ATP, and 

minus acetate controls. 

 

Hexulose-6-phosphate synthase (HPS) and 6-phosphohexuloisomerase (PHI) 
 The combined activity of HPS and PHI were assayed by the production of 

formaldehyde from fructose-6-phosphate.  The assay was conducted as previously 

described by Orita et al. (84).  Briefly the assay was carried out in 50 mM MOPS buffer 

pH 8.0, with 10 mM dithiothreitol, 25 mM MgCl2 and 200 mM fructose-6-phosphate.  

The reaction was carried out in 10 ml anoxic, stoppered and crimp-sealed vials, incubated 

at 55 °C and the reaction was initiated by the addition of cell-free extracts of A. 

hydrogeniformans.  Formaldehyde was quantified using the Nash reagent (76) and also 

by the HPLC method described by Summers (109). 

 

Formate dehydrogenase (FDH) 
Formate dehydrogenase was assayed in 50 mM TAPS pH 8, 10 mM MgCl2, 10 

mM sodium formate, and 5 mM NAD or NADP. 
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Hydrogenase 
Hydrogenase and the ability to reduce NAD+ or NADP+ with H2 were measured 

using cell-free extracts, membrane preparations, and the cytosolic fraction.  The 

hydrogenase assay contained 3 mM methyl viologen in 100 mM HEPES pH 8. NAD or 

NADP reduction was followed in a reaction mixture containing 100 mM HEPES pH 8 

and 5 mM NAD or NADP.  The reactions were started by the addition of 70 kPa H2. 

 

Labeling experiments 

14C-glucose experiments 
 To examine the fate of the first position of glucose during glucose oxidation by A. 

hydrogeniformans 14C-1-glucose was added to 20 ml cultures in 125 ml serum bottles.  

The medium used in this experiment was the same as described above.  16 mmol glucose 

was added as the substrate and supplemented with 22.2 x 106 dpm of 14C-1-glucose once 

glucose oxidation was observed by the PGO enzyme assay (Sigma).  Samples were taken 

once there was no more detectable glucose in the medium.  Before samples were 

collected 1 ml of 6 N HCl was added to the bottles to ensure all of the carbonates were 

removed from solution.  Radioactivity was monitored using a liquid scintillation counter 

(LS 1701; Beckman) using the Ultima-Flo AT (Packard) scintillation cocktail.  Total 

radioactivity in the gas phase was conducted as described by Tanner et al. (112).  Briefly, 

the radioactivity was determined by the absorption of 1 ml of headspace gas (collected 

with a syringe equipped with a mininert valve) into a 100 µl of 0.2 N NaOH solution that 

was then subject to liquid scintillation counting.  Liquid samples were also collected and 

subjected to scintillation counting.  One ml of culture medium was added to 9 ml of 

scintillation cocktail and read by liquid scintillation counting.   Radioactivity of the CO2 
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was calculated as the difference between the radioactivity in the gas sample and that 

absorbed into the base.  A flow chart of the radiolabeled protocol can be seen in FIGURE 

20. 

13C-glucose analysis 
13C-1-glucose and 13C-3-glucose were purchased from Cambridge Isotope 

Laboratories.  13C-bicarbonate, 13C-1-acetate and 13C-2-acetate were purchased from 

Sigma-Aldrich.   Anaerobic stock solutions were made for each stable isotope and added 

to the medium after autoclaving.  The mineral medium previously described was used as 

the growth medium using the labeled glucose as the carbon source, when looking for 

labeled products, and unlabeled glucose in the presence of labeled bicarbonate and both 

positions of acetate when looking for exchange reactions.   

Headspace gases were analyzed by GC-mass spectrometry (GC-MS) with an 

Agilent 7890 gas chromatograph (Agilent Technologies, Lexington, MA) equipped with 

an Agilent 5975C mass spectra detector (MSD) (Agilent Technologies) and a 27 m 320 

um x 20 um column PoraPlotQ column (Agilent Technologies).  The oven temperature 

was initially held at 50 °C for 8 min and then raised at a rate of 30 °C/min to 220 °C.  

Ions corresponding to mass units of 44 and 45 amu were monitored throughout analysis.   

Liquid samples were also analyzed by nuclear magnetic resonance (NMR).  

Cultures were centrifuged at 4 °C for 30 min at 6,000 x g to remove cell material.  The 

culture supernatant was then treated with the appropriate amount of Chelex resin 

(BioRad), as per the manufacturer’s suggestion, for 1 hr at 23 °C to remove any 
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FIGURE 20.  Depiction of the methods used after growth was observed and glucose was 

oxidized in cultures of A. hydrogeniformans, L. lactis and L. mesenteroides for the 14C-1-

glucose assay.  
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remaning metals.  The samples were then freeze dried by lyophylization and resuspended 

in 1 ml of D2O, and held at 4 °C until analysis could be completed.    

13C NMR using a UNITY INOVA 400 MHz spectrometer at a frequency of 

100.529 MHz using a broadband probe.  Spectra were collected at 23.5 °C using a single 

pulse experiment with pulse width (7.35 ms), a delay time of 10 s, an acquisition time of 

1.30 s, a spectral width of 24125.5 Hz, and 256 acquisitions.  A long delay time was 

employed to ensure adequate relaxation of carboxylic acid and carbonyl carbon nuclei.   

Chemical shifts were calibrated by the addition of the internal standard, sodium 3-

trimethylsilylpropionate-2,2,3,3-d4 (TSP-d4) (MSD Isotropic Products), that produces a 

reference signal at 0 ppm. 

To ensure there was no exchange reactions taking place during fermentation and 

the acetate label was correct, A. hydrogeniformans was grown in the presence of 13C-

bicarbonate, 13C-1-acetate or 13C-2-acetate with either a 100 % N2 or N2:CO2 (80:20) 

headspace.  Each of liquid samples subjected to 13C NMR were prepared and analyzed as 

stated above.  When N2:CO2 was used as the gas phase 0.3 g L-1 sodium bicarbonate was 

added after pH adjusting to balance out any acidification due to CO2 formation of 

carbonic acid. 

	  

Metabolite analysis:	  
 A. hydrogeniformans was grown with the aforementioned medium using glucose 

as the substrate at a concentration of 3 g L-1.  Time points were taken at time zero and 

subsequently as glucose was 1/3, 2/3 and totally oxidized.  Glucose loss was monitored 
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by the PGO enzyme assay (Sigma).  At each of the time points the samples were rapidly 

cooled in an ice water bath to stop metabolic activity.  The cells and culture medium were 

separated by centrifugation (6,000 x g, 20 min, 4 °C).  And frozen at -80 °C until 

analysis.   

The metabolic platforms used in this study were the same as previously described 

(21, 82).  Briefly, the platform consisted of three independent analyses: ultrahigh 

performance liquid chromatography/tandem mass spectroscopy (UHLC/MS/MS) that 

was optimized for basic chemical species, UHLC/MS/MS that was optimized for acidic 

chemical species, and gas chromatography/mass spectroscopy (GC/MS).  The major 

components of the process including the extraction protocol, analysis and metabolite 

identification were done as previously described (131).	  
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Results 

Enzyme Assays 

Glycolytic enzymes of A. hydrogeniformans 
 Enzyme data points to the EM pathway of glycolysis (Table 11).  Enzyme 

activities for phosphoglucose isomerase (1548 nmol min-1 mg protein-1), 

phosphofructokinase (87 nmol min-1 mg protein-1), fructose-1,6-bisphosphate aldolase 

(296 nmol min-1 mg protein-1), 2-phosphoglycerate enolase (314 nmol min-1 mg protein-1) 

and pyruvate kinase (79 nmol min-1 mg protein-1) were all detected when assaying for 

enzyme activity using cell free extracts of A. hydrogeniformans.  Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was not be detected in A. hydrogeniformans using 

NAD+ or NADP+ as electron acceptors.  

   

 

Pentose Phosphate Pathway 
Low levels of 6-phosphogluconate dehydrogenase (14 nmol min-1 mg protein-1 

with NAD+, 15 nmol min-1 mg protein-1 with NADP+), transketolase (18 nmol min-1 mg 

protein-1), and transaldolase (19 nmol min-1 mg protein-1) activities of the pentose 

phosphate pathway were detected.  Glucose-6-phosphate dehydrogenase (using NAD+, 

NADP+, or methyl viologen as electron acceptor) or 6-phosphogluconolactonase 

activities were not detected (oxidative branch enzymes of the PPP).  These results suggest 

that A. hydrogeniformans does not have all of the enzymes for the oxidative portion of 

the PPP, but it does have the enzymes of the non-oxidative branch.   
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Non-phosporylated ED (nED) 
The use of the nED pathway was tested in cell free extracts of A. 

hydrogeniformans by assaying glucose oxidoreductase, glucose dehydrogenase, 

glyceraldehyde oxidoreductase and glyceraldehyde dehydrogenase.  The presence of 

glyceraldehyde oxidoreductase (GAOR) (413 nmol min-1 mg protein-1) and low levels of 

glucose dehydrogenase (14 nmol min-1 mg protein-1 and 13 nmol min-1 mg protein-1 with 

NAD+ and NADP+ as respective electron acceptors) suggested the potential use of the 

nED path for glucose oxidation.  However, no pyruvate or glyceraldehyde production 

from gluconate was detected.  

 

Pyruvate decarboxylation 
 Cell free extracts of A. hydrogeniformans showed activity for pyruvate: 

ferredoxin oxidoreductase (2150 nmol min-1mg-1), phosphotransacetylase (758 nmol min-

1 mg-1) and acetate kinase (1270 nmol min-1mg-1) (Table 11).  There was no detectable 

activity found under the assay conditions stated above for pyruvate dehydrogenase using 

NAD+ or NADP+ (Table 11).  Activity for pyruvate:formate lyase was not detected, nor 

was formate dehydrogenase.  

 

Hydrogenase 
	   Table	  13	  shows	  the	  enzymatic	  activities	  of	  hydrogenases	  that	  were	  found	  in	  

the	   membrane	   fraction	   as	   well	   as	   the	   soluble	   fraction	   of	   cell	   free	   extracts	   of	   A.	  

hydrogeniformans.	   	   Enzyme	   activity	   for	   a	  membrane	   bound	   ferredoxin	   dependent	  

hydrogenase	   was	   observed.	   	   The	   soluble	   fraction	   of	   cell	   free	   extracts	   displayed	  
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activity	  for	  ferredoxin,	  NADH	  and	  NADPH	  hydrogenases.	   	  There	  was	  no	  observable	  

NAD(P)H	  hydrogenase	  activity	  in	  the	  membrane	  fraction.	  	  	  

	  

Other enzyme activities 
Alcohol dehydrogenase using ethanol as electron donor and NADP+ as electron 

acceptor (38 nmol min-1 mg protein-1), NADH:methyl viologen oxidoreductase (305 

nmol min-1 mg protein-1), NADPH:methyl viologen oxidoreductase (568 nmol min-1 mg 

protein-1) and 2-ketogluconate kinase (39 nmol min-1 mg protein-1) were also detected.   

The following enzyme activities could not be detected in cell free extracts of A. 

hydrogeniformans using the assay conditions described:  hexokinase, glucose:PEP 

phosphotransferase, glucose dehydrogenase, glucose-6-phosphate dehydrogenase, 

gluconate dehydratase, gluconate kinase and adenylate kinase.   

	  

Labeling experiments 

Spectra of the medium alone 
	   NMR analysis of the growth medium without the addition of labeled glucose or 

cells of A. hydrogeniformans was conducted.  As seen in FIGURE 21, NMR spectra 

showed there were four signals present at 39.5, 52.7, 62.3 and 64.7.  Subsequent analysis 

defined these peaks as belonging to the buffer TES used in the culture medium.   The 

peaks were used as a scalar for peak intensity because they were present in all samples. 
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Table 11.  Specific activities, electron donor/acceptor and evidence of gene products 

from the draft genome of enzymes involved in glucose oxidation to acetate, CO2 and H2 

in cell extracts of Anaerobaculum hydrogeniformans compared between the Embden-

Meyerhoff-Parnas Pathway, Pentose Phosphate Pathway, Entner-Doudoroff Pathway and 

Pyruvate Decarboxylation Pathway.   

N/A = not assayed 

	  

Pathway/Enzyme Genome 
annotation 

Donor/Acceptor Activity 
(nmol min-1 mg-1) 

Embden Meyerhof Parnas    

Hexokinase - ATP - 

  ADP - 

PTS system + ATP - 

 + ADP - 

Phosphoglucose isomerase +  148 

Phosphofructokinase + ATP 87 

Fructose-1,6-bisphosphate 
aldolase +  296 

Triosephosphate isomerase +  N/A 

Glyceraldehyde-3-phosphate 
oxidoreductase + Benzyl viologen 41 

Glyceraldehyde-3-phosphate 
dehydrogenase + NAD+ - 

   NADP+ - 

Phosphoglycerate mutase +  N/A 

2-phosphoglycerate enolase +  314 

Pyruvate kinase +  79 

     

Pentose Phosphate    
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Glucose-6-phosphate 
dehydrogenase + NAD+ - 

6-phosphogluconolactonase -  - 

6-phosphogluconate 
dehydrogenase - NAD+ 14 

  - NADP+ 15 

Pentose-5-phosphate 
isomerase +  N/A 

Pentose-5-phosphate 
epimerase +  N/A 

Transketolase +  18 

Transaldolase +  19 

     

Entner-Doudoroff    

2-keto-3-deoxy-6-
phosphogluconate aldolase +  - 

     

Pyruvate decarboxylation    

Pyruvate:ferredoxin 
oxidoreductase + Methyl viologen 2150 

Pyruvate dehydrogenase + NAD+ - 

  + NADP+ - 

Phosphotransacetylase +  785 

Acetate Kinase +  1270 
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Table 12.  Comparison the various specific activities (nmol min-1 mg-1) and electron 

acceptors used to elucidate oxidoreductase and dehydrogenase activities on glucose-

grown cell free extracts of A. hydrogeniformans. 

Enzyme Acceptor Specific activity 
(nmol min-1 mg-1) 

Glyceraldehyde-3-
phosphate oxidoreductase Benzyl viologen 41 

Glyceraldehyde-3-
phosphate dehydrogenase NAD+ - 

 NADP+ - 
Glyceraldehyde 
oxidoreductase Benzyl Viologen 413 

Glyceraldehyde 
dehydrogenase NAD+ - 

 NADP+ - 
Pyruvate:ferredoxin 
oxidoreductase Benzyl viologen 2150 

Pyruvate dehydrogenase NAD+ - 
 NADP+ - 
NADH:methyl viologen 
oxidoreductase Methyl viologen 305 

NADPH:methyl viologen 
oxidoreductase Methyl viologen 568 
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Table 13.  Hydrogenase activity of cytosolic and membrane fractions of A. 

hydrogeniformans. 

 
* BV=benzyl viologen 

 
  µmol min-1 mg protein-1 
  cytosolic membrane 
      
BV* reduction by H2 13.4 0.061 
      
NAD reduction by H2 0.383 0 
      
NADP reduction by H2 0.228 0 
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13C-C1 labeled glucose standard spectra 
A purity check of the 13C-1 glucose dissolved in the media used in the 

experiments was evaluated by NMR.  Two very prominent signals are detected at 93.71 

and 97.41 ppm, corresponding to the C1-labeled carbons of a-pyranose (93.8 ppm) and b-

pyranose (97.4 ppm) respectively (9) 

 

13C-C3 labeled glucose standard spectra 
A purity check of the 13C-3 glucose dissolved in the media used in the 

experiments was evaluated by NMR.  Two very prominent signals are detected at 74.63 

and 77.51 ppm, corresponding to the C3-labeled carbons of a-pyranose (74.5 ppm) and b-

pyranose (77.5 ppm) respectively (9). 

 

13C-C1 labeled glucose experiment spectra 
The 13C-1 glucose experiment spectra displayed two very large and prominent 

signals at 18.9 and 26.2 ppm, resulting from 13C labeled products (FIGURE 22).  These 

two signals were much more intense than the four signals produced by the media.  Table 

14 lists these two signals and the numerous additional signals present at much lower 

intensity.  Of these less intense signals, two signals of equal intensity at 21.07 and 176.49 

ppm correspond to the methyl carbon and the carboxylic carbon, respectively, of acetate.  

The equal intensity of these two signals of acetate suggests that both carbon atoms are 

equally labeled with 13C, either from natural abundance or the 13C labeled glucose. 
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Numerous small signals were observed between 10 and 37 ppm that correspond to 

saturated carbon atoms: methyl, methylene, methine and quaternary carbons.  Due to the 

very low intensity of these signals relative to the two large signals, it is presumed that 

their 13C isotope composition results from natural abundance.   

 

13C-C3 labeled glucose samples 

FIGURE 23 shows the NMR spectra of the 13C-3-glucose grown cultures of A. 

hydrogeniformans.  One noticeable difference from the C1-labeled glucose experiment 

spectra is the lack of the numerous small signals between 10 and 37 ppm; this region is 

devoid of such small signals in the C3-labeled glucose experiment spectra.  However, the 

C3-labeled glucose experiment spectra show carboxylic acid signals (178.88 ppm) of 

greater intensity than displayed in the C1-labeled glucose experiment spectra.  If the 

medium peaks are used as a scalar, the peak intensities were much smaller in the 13C-3-

glucose grown cultures as compared to the 13C-1-glucose grown cultures. 

 

13C-C1 labeled acetate with N2 headspace  
The four media signals described above were present.  Also present was a signal, 

similar in intensity to the media signals, at ~ 181 ppm resulting from the 13C labeled C1 

carbon of acetate.  The decreased signal intensity illustrates that this C13 labeled acetate 

is being consumed.  Another signal, similar in intensity to the media signals, appeared at 

~ 51 ppm.  This may be due to 13C labeled methanol.  Methanol in D2O has a C-13 NMR 

signal at 49.5 ppm, so the observed 51 ppm seems a bit high.  However the solution pH 

can cause slight shifts in alcohol chemical shifts (Mark Nanny, personal communication).  

Methanol was not detected by GC-FID.  A third signal is observed at ~ 16.7 ppm which 
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may result from the C2 carbon of ethanol (in D2O, the C-2 carbon of ethanol is at 17.6 

ppm).  Ethanol has been detected in spent fermentation broth, however, at very low 

concentrations.  A very, very small signal was observed around 24 ppm and probably 

results from 13C labeled C2 carbon of acetate.  13C labeled C1 acetate is clearly detected, 

although in much lower concentration than the starting amount.  Possible formation of 

13C labeled methanol and 13C labeled ethanol with the label at the C2 position, which is 

confirmed by alcohol quantification by GC-FID. 

 

13C-C1 labeled acetate with N2:CO2 headspace and unlabeled bicarbonate 
All four media signals describe above were observed.  A peak with similar intensity 

to the media signals was observed at 181.9 ppm from C13 labeled C1 acetate.  Also 

observed was a prominent signal (approximately 10 to 15x larger than the media signals) 

at 50.8 ppm which may be 13C labeled methanol.  Two smaller signals were observed at 

24.0 ppm and 16.7 ppm, the initial being 13C labeled C2 carbon of acetate and the later 

possibly the C2 carbon of ethanol. 

 

13C-C2 labeled acetate with N2 headspace 

 All four media signals described above were observed.  Two prominent signals 

(approximately 5 to 10x greater in intensity than the media signals) were observed at 23.6 

ppm and 16.8 ppm.  The first signal is unreacted 13C labeled C2 carbon acetate and the 

later signal at 16.8 ppm is probably the 13C labeled C2 carbon of ethanol. 
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FIGURE 21.  NMR spectra of medium prior to inoculation and 13C-glucose addition.  

These four medium peaks were present in all NMR spectra recorded.  The peak 

associated with 0.000 ppm is from the addition of the internal standard sodium 3-

trimethylsilylpropionate-2,2,3,3-d4 (TSP-d4).  Spectral analysis conducted by Dr. Mark 

Nanny. 
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FIGURE 22. NMR spectra of 13C-1-glucose grown A. hydrogeniformans.  Peaks are 

labeled according to functional group annotation conducted by Dr. Mark Nanny. 
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FIGURE 23. NMR spectra of 13C-1-glucose grown A. hydrogeniformans.  Peaks are 

labeled according to functional group annotation conducted by Dr. Mark Nanny. 
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13C-C2 labeled acetate with N2:CO2 headspace + unlabeled bicarbonate   
All four media signals were observed.  At much greater intensity (20 to 50x) than 

these media signals, two signals at 24.1 ppm and 16.8 ppm were observed.  As previously 

mentioned, these signals result from the 13C label of the C2 carbon in acetate and 

probably the 13C labeled C2 carbon of ethanol.   Very, very small signals were observed 

at 20.9 ppm, 50.9 ppm, 176.2 ppm, and 181.9 ppm.  The 50.9 ppm and 181.9 ppm signals 

are probably trace amounts of 13C labeled methanol and 13C labeled C1 acetate.   

 

13C labeled bicarbonate with N2 headspace  
All four media signals are present.  Four small signals (approximately one tenth the 

media signals): 16.8 ppm which could be the 13C labeled C2 carbon of ethanol; 24.0 ppm 

which is probably the 13C labeled C2 carbon of acetate; 51.0 ppm which could be from 

13C labeled methanol; and 176.3 ppm which is an unidentified carboxylic acid (which 

was observed in sample set 4). 

 

13C labeled carbonate with N2:CO2 headspace 
These samples were identical to samples from the 13C labeled bicarbonate with N2 

headspace except the signal at 176 ppm was barely observable.  

 

13C-GC-MS analysis 
 Cultures of A. hydrogeniformans grown with [1-13C]-D-glucose or [3-13C]-D-

glucose were subjected to GC-MS analysis.  Cell grown with [13C-1]-D-glucose showed 

an acetate peak corresponding to a one mass unit shift.  This conflicts with earlier studies 
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using 13C-NMR in which a labeled carboxyl position was detected when cells were 

grown on [3-13C]-D-glucose.  However, the peaks observed in the NMR spectra were not 

much more substantial than the peaks resulting from the medium blank.  This shows that 

NMR is more sensitive to the detection of 13C labeled product when compared to GC-MS 

and was only used as a qualitative tool for metabolite detection (Mark Nanny, personal 

communication).  There were no labeled intermediates were detected on cells grown on 

[3-13C]-D-glucose.    

 

13C-CO2 GC-MS analysis 
 Headspace 13C-CO2 produced from either 13C-1 or 13C-3 glucose-grown cultures 

of A. hydrogeniformans were analyzed by GC-MS, in which ion 44 was monitored for the 

presence or absence of a labeled CO2.  When A. hydrogeniformans was grown with [1-

13C]-D-glucose no 13C-CO2 was detected by monitoring ion 44 (FIGURE 24).  When 

grown with [3-13C]-D-glucose, A. hydrogeniformans produced about 30 % 13C-CO2 in the 

headspace (FIGURE 25).  Theoretically there should have been 50 % 13C-CO2 in the 

headspace.  The CO2 could have been trapped as carbonates or incorporated into other 

compounds. 

14C-CO2 analysis 
Cultures grown with 1-14C-D-glucose had only small amounts of radio labeled CO2 in the 

headspace after near depletion of glucose.  Control cultures of Lactococcus lactis (a 

homofermentative lactic acid bacterium) and Leuconostoc mesenteriodes (a 

heterofermentative lactic acid bacterium) were used to ensure the method of CO2 trapping 

was effective.  A homofermentative lactic acid bacterium only produced lactic acid as an 
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FIGURE 24. GC-MS profile of 13C-1 glucose grown cultures of A. hydrogeniformans. 
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FIGURE 25. GC-MS profile of 13C-3 glucose grown cultures of A. hydrogeniformans. 
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end-product, thus would not produce CO2 from the C-1 of glucose so the label would 

remain in the culture medium.  A heterofermentative lactic acid bacterium, however, 

produces lactic acid and CO2 as the products of fermentation.  CO2 is produced from the 

C-1 of glucose, thus making it a good positive control.   Over 95 % of the label remained 

in the liquid phase after acidified cultures of A. hydrogeniformans were analyzed by 

liquid scintillation counting (Table 14), further supporting the 13C-CO2 data.  Both 

control cultures and the medium control performed as expected (Table 14).  

 

Metabolite screening 
Metabolites were screened for glucose grown cultures of A. hydrogeniformans 

and time points were taken as glucose was depleted.  FIGURE 26 shows how the data 

was qualified by Metabolon and fitted into Box and Whiskers plots.  This form of data 

analysis was used to determine if the metabolites were present in all three of the time 

points.  FIGURE 27 shows the metabolites detected during the time course experiment.  
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Table 14.  % 14C observed from the liquid and gas phase and total % 14C recovery that 

resulted from 14C-1-glucose grown cultures of A. hydrogeniformans, L. lactis, L. 

mesenteriodes and an uninoculated control.   

  
Liquid phase 

(% 
14
C) 

Gas phase 
(% 

14
C) 

Recovery 
(%) 

Medium 94.1 1.1 95.2 

A. hydrogeniformans 94.4 4.3 98.7 

L. lactis 96.2 3.4 99.6 

L. mesenteroides 16.7 101.6 118.3 
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FIGURE 26:  An example of the metabolite ribose as qualified by Metabolon using a 

Box and Whiskers plot for data interpretation, which is based on the scaled intensity 

value. 
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FIGURE 27.  Data compiled from glycolytic intermediate metabolite detection 

(presented in Box and Whiskers plots) by Metabolon Inc.  All metabolites reported were 

detected from the extraction procedure carried out on cell material and are labeled 

accordingly: A) glucose; B) glucose-6-phosphate; C) fructose-6-phosphate; D) fructose-

1,6-bisphosphate/glucose-1,6-bisphosphate isobar; E) dihydroxyacetone phosphate; F) 3-

phosphoglycerate, G) 2-phosphoglycerate; H) pyruvate; I) acetyl-CoA; J) 

acetylphosphate and K) ribulose-5-phosphate/xylulose-5-phosphate isobar. 

	  

Data from the metabolites were collected from three distinct time points in which A. 

hydrogeniformans oxidized 1/3 (T1), 2/3 (T2) and all (T3) of the initial glucose added to 

the medium. 

 

Metabolite abundance is reported as a scaled intensity value, which is described in the 

materials and methods.  
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C) 

 

D) 

 

fructose-6-phosphate
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E) 

 

F) 
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G) 

 

H) 

 

2-phosphoglycerate
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I) 

 

J) 
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K) 
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Discussion 

Entner-Doudoroff Pathway 
The use of the traditional phosphorylated-Endtner-Doudoroff (ED) pathway of 

glycoclysis was assessed by assaying enzyme activities in cell free extracts of A. 

hydrogeniformans.  The key enzymes of the ED pathway, glucose-6-phosphate 

dehydrogenase and KDPG aldolase, were not detected under the assay conditions 

established in this study.  Hence, the traditional ED pathway is not used by A. 

hydrogeniformans for central carbon metabolism.  However, other modifications of the 

ED pathway have been described in the literature and could be used by A. 

hydrogeniformans, such as the nonphosphorylated ED (nED) pathway (97). 

The nED pathway is characterized as having nonphosphorylated intermediates 

prior to the metabolite 2-keto-3-deoxygluconate.  Gluconate is dehydrated to 2-keto-3-

deoxygluconate by gluconate dehydratase, and the 2-keto-3-deoxygluconate is further 

phosphorylated by a saecial kinase to form KDPG (132).  It was originally thought that 

glucose oxidation by P. furiosus was done so by a modified or nED pathway (97) and this 

has been shown in other thermophilic archaeal species, such as Sulfolobus acidocaldarius 

(13) and Thermoplasma acidophila (99). This was first hypothesized because cell free 

extracts of P. furiosus possessed activity for a glucose oxidoreductase that converted 

glucose to gluconate (49).  The gluconate was oxidized further to pyruvate in the 

nonphosphorylated forms of the intermediates (49).  There were detectable activities of 

glyceraldehyde oxidoreductase (GAOR) (413 nmol min-1 mg protein-1) and low levels of 

glucose dehydrogenase (14 nmol min-1 mg protein-1 and 13 nmol min-1 mg protein-1 with 

NAD+ and NADP+ as respective electron acceptors) in cell free extracts of A. 
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hydrogeniformans.  There was no detectable gluconate dehydratase activity and KDPG 

aldolase.  The use of gluconate dehydratase is by A. hydrogeniformans unlikely.  Glucose 

oxidoreductase and glyceraldehyde dehydrogenase were also assayed.  However no 

activity was detected in this study.   

Another function of the GAOR was described in a modification of the traditional 

Embden Meyerhof (EM) pathway in which fructose-1-phosphate was cleaved by 

fructose-1-phosphate aldolase to produce dihydroxyacetone phosphate and 

glyceraldehyde.  The glyceraldehyde was then converted to glycerate by GAOR, which 

could then be transformed to 2-phosphoglycerate by glycerate kinase and enter the later 

portion of the EM pathway (97).  The use of this pathway by A. hydrogeniformans is 

unlikely because no glycerate kinase activity was observed under the conditions tested. 

Key metabolites of the ED pathway, such as 6-phosphogluconate dehydrogenase 

or 2-keto-3-deoxy-6-phosphogluconate (KDPG) were not detected.  The lack of 

metabolites is not surprising because there was no measurable KDPG aldolase activity, 

which is a key enzyme of the ED pathway (99).  Labeling studies with 13C-1 and 13C-3 

glucose as the substrate for A. hydrogeniformans did not show the C-1 of glucose 

incorporated in CO2 or the C-3 of glucose in the methyl position of acetate, which is 

indicative of the ED and nED pathways (99).   

 

Pentose Phosphate Pathway 
The potential use of the Pentose Phosphate Pathway (PPP) by A. 

hydrogeniformans was addressed by conducting enzyme assays looking at both the 



	   145	  

oxidative and nonoxidative branches of the PPP.  In order for the PPP to be considered 

for central carbon metabolism both branches of the PPP need to be active.  Enzyme 

assays showed that A. hydrogeniformans lacked activity for glucose-6-phosphate 

dehydrogenase and suggest that A. hydrogeniformans does not have all of the enzymes 

for the oxidative portion of the PPP, but it does have the enzymes of the nonoxidative 

branch.  This could be indicative of the use of the PPP for the generation of pentoses for 

DNA synthesis similar to that reported for E. coli (93)  and T. maratima (123). 

If the PPP is used for central carbon metabolism, then the C-1 of glucose is 

converted to CO2 and the C-3 will be incorporated into the carboxyl position of acetate 

(99).  NMR analysis did show some incorporation of the C-3 of glucose into the carboxyl 

position of acetate, but the signal intensity was much lower than that observed in the 

methyl position of acetate from C-1 glucose grown cultures.  Additionally, there was no 

labeled CO2 from the C-1 of glucose.  If the PPP is being used as the dominant central 

metabolic process there would have been detectable levels of labeled CO2 from the C-1 of 

glucose.  Thus, the possible use of the nonoxidative branch of the PPP for production of 

biosynthetic intermediates was assessed by metabolite analysis.  

The nonoxidative branch intermediates ribulose-5-phosphate and xylulose-5-

phosphate were detected throughout the time course metabolite screening.  No 

metabolites corresponding to the oxidative portion of the PPP were detected.     This 

supports the labeling data, in that the nonoxidative portion of the PPP is being used, 

however it is more than likely for fatty acid biosynthesis and/or nucleotide biosynthesis 

similar to that observed in cultures of T. maratima (123).  
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Embden-Meyerhoff Pathway 
Activities were detected for all enzymes of the EM pathway except for 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) using NAD+ or NADP+ as 

electron acceptors.  In eubacteria and eukarya, the oxidation of glyceraledehyde-3-

phosphate (GAP) is catalyzed by the two-step conversion of GAP to 3-phosophoglycerate 

by the use of GAPDH and a 3-phsophoglycerate kinase (118).  The use of a GAPDH has 

been described in T. maritima (98) and Caldicellulosiruptor saccharolyticus (116), which 

also produce 4 H2 per glucose using the EM pathway.  However, the glycolytic 

conversion of GAP in the hyperthermophilic archaeon Pyrococcus furiosus is performed 

by a phosphate-independent glycerladehyde-3-phosphate oxidoreductase (GAPOR) (71, 

118).  Selig et al. (99) showed the activity of GAPOR from various other thermophilic 

archaeal species such as Desulfurococcus amylolyticus, Thermococcus celer and 

Thermococcus litoralis.  Selig et al. (99) also confirmed that these species used the EM 

pathway of glycolysis for the oxidation of glucose to pyruvate.  Cell free extracts of A. 

hydrogeniformans did exhibit activity for a phosphate-independent and ferredoxin-

dependent GAPOR using benzyl viologen as an electron acceptor.  This is the first report 

of GAPOR activity observed in a eubacterial species, which nullifies the previous 

hypothesis that the use of GAPOR is a physiological characteristic of archaea exclusively 

(118). 

The use of the EM pathway for central carbon metabolism was further supported 

by 13C NMR and metabolite analysis data.  NMR analysis of C-1 and C-3 glucose grown 

cultures of A. hydrogeniformans showed the incorporation of the C-1 into the methyl 

position of acetate and CO2 produced from the C-3 position of glucose, which is a 

labeling pattern specific to the EM pathway (99).  
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Metabolites corresponding to the EM pathway were all detected with the 

exception of glyceraldehyde-3-phosphate and 1,3-bisphosphoglycerate.  Glyceraldehyde-

3-phosphate has been shown to be an unstable metabolite (71), which makes its detection 

difficult.  The use of a modified EM pathway using GAPOR was shown to not produce 

1,3-bisphosphoglycerate when Mukund and Adams (71) assayed cultures of P. furiosus, 

but GAPOR directly oxidized glyceraldehyde-3-phosphate to 3-phosphoglucerate.  This 

further supports the hypothesis that A. hydrogeniformans is using GAPOR in a fashion 

similar to that of P. furiosus.   

In looking at all of the data collected from this study it can be concluded that A. 

hydrogeniformans utilizes the EM pathway for glucose oxidation with a substitution of 

the traditional eubacterial GAPDH for a GAPOR.  The use of a modified EM pathway 

has been confirmed by labeling, metabolite and genome analysis.  The pathway seems to 

be identical to that used by the archaeon P. furiosus (118).  This is the first description of 

this modified EM pathway in a eubacterial species.   

 

Pyruvate decarboxylation 
Activities for pyruvate:ferredoxin oxidoreductase (POR), phosphotransacetylase  

and acetate kinase were detected in cell free extracts of A. hydrogeniformans.  These 

results are similar to that found in cell free extracts of P. furiosus (94, 96), T. maratima 

(6) and C. saccharolyticus (135), which all use a three enzyme system of pyruvate 

decarboxylation.  Draft genome annotation of A. hydrogeniformans showed there were 

gene products for both the pyruvate:ferredoxin oxidoreductase and the pyruvate 

dehydrogenase.  However enzyme activity for pyruvate dehydrogenase was not detected 

in cell free extracts of A. hydrogeniformans.  There was also no annotations for either the 
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pyruvate:formate lyase or formate dehydrogenase, which are enzymes used for pyruvate 

decarboxylation in mesophilic species such as enterics and E. coli (51, 110, 114).  The 

genomic data is supported by the lack of enzymatic activity of those two enzyme in the 

conditions established in this study.  

 

Hydrogenases 
Hydrogenases are oxygen-sensitive enzymes found in all three domains of life 

that are central to cellular H2 formation and can be reversed for H2 utilization. These 

enzymes contain complex metal cofactors and typically consist of multiple subunits (11).  

The hydrogenases of most 4 H2 producing microorganisms remain unstudied (11).   The 

description of a membrane-bound, ferredoxin-dependant hydrogenase has been described 

for T. tengcongensis, and may act as a proton pump to generate a proton motive force 

(104).  The same hydrogenase has been observed in the genome of C. saccharolyticus 

(116), but its functionality has yet to be tested.  A soluble NADH dependent hydrogenase 

has been described in T. maritima (127), and the gene sequence of a soluble NADH 

dependent hydrogenase has been detected in the genome of C. saccharolyticus (116).  It 

is thought to regenerate reducing equivalence by the production of H2 (116).  A soluble 

ferredoxin dependent hydrogenase has been described for the archaeon Thermococcus 

kodakaraensis (44), but has yet to be reported in other microorganisms. NAD(P)H and 

ferredoxin dependent soluble hydrogenase and a solely ferredoxin dependent membrane 

bound hydrogenase activities were found in cell free extracts of A. hydrogeniformans.  T. 

maritima, has a bifurcating hydrogenase system that uses NADPH (produced from 

glyceraldehyde-3-phosphate dehydrogenase) and ferredoxin (produced form pyruvate 

oxidoreductase) to synergistically produce H2 from a bifurcating hydrogenase.  The 
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detection of both NAD(P)H and ferredoxin hydrogenases in cultures of A. 

hydrogeniformans correlates to the T. maritime system, but there was no detection of 

glyceraldehyde-3-phosphate dehydrogenase.  Thus a bifurcating system in A. 

hydrogeniformans is unlikely.   
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Conclusions	  

 In collating the enzyme data, glucose labeled studies and metabolite profile of 

Anaerobaculum hydrogeniformans it can be concluded that it uses the modified Embden 

Meyerhof (EM) pathway of glycolysis (FIGURE 28).  The use of this modified EM 

pathway has only been detected in archael species.  The lack of enzyme activity for the 

traditional eubacterial glyceraldehyde-3-phosphate dehydrogenase further supports the 

presence of the modified EM pathway.  To the author’s knowledge this is the first report 

of the use of a GAPOR enzyme in a eubacterial species.   

This conclusion is supported by the results observed in the metabolite profile for 

glucose grown cells of A. hydrogeniformans.  1,3-bisphosphoglycerate was not detected 

during analysis, which a key intermediate of the traditional EM pathway.  This would 

only be possible if this intermediate is skipped during the oxidation of glyceraldehyde-3-

phospate to 3-phosphoglycerate, which is similar to that observed in P. furiosus.  None of 

the intermediates for the Entner-Doudoroff (ED) pathway were detected during 

metabolite analysis and only a fraction of the enzymes found in the Pentose Phosphate 

pathway (PPP) were detected.   This data supports the conclusion that A. 

hydrogeniformans is using the PPP to maintain certain metabolic precursors needed for 

other metabolic pathways such as pyrimidine synthesis.  	  

The EM pathway was the only one that had detectable enzyme activities of all the 

steps in the pathway.  The lack of enzymes needed for the oxidative branch of the PPP 

rules out its use in central carbon metabolism.  Also the lack of activity for the KDPG 

aldolase negates the use of the ED pathway. 	  
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The use of the EM pathway is supported further by the labeled glucose studies.  

The detection of 13C-CO2 from the 3 carbon of glucose is only indicative of the EM 

pathway.  The NMR results did show acetate labeled in the methyl group from the C-1 of 

glucose (FIGURE 25)..  This finding needs to be duplicated and the identity of the 

compound will need to be elucidated in future studies.  	  

Pyruvate decarboxylation is conducted by a 3 enzyme process, in which 

pyruvate:ferredoxin oxidoreductase (POR) is the initial step.  The use of POR is well 

documented in eubacterial species that are substantially divergent taxonomically.  Aside 

from P. furiosus, this is the first report of a glycolytic pathway totally dependent upon a 

ferredoxin system and that does not rely on NAD+ or NADP+.  The use of this system 

explains how A. hydrogeniformans can produce H2 at such high concentrations at 55 °C 

when compared to P. furiosus grown at 90 °C.  Thermodynamically this gives A. 

hydrogeniformans an advantage when it comes to the production of H2 because the 

reaction does not become limited by the lower redox potential of NADH or NADPH 

versus that of ferredoxin.  	  

 A. hydrogeniformans has at least two active hydrogenase systems in the cytosol.  

One that functions by means of NADH or NADPH and one that is ferredoxin dependent.  

Membrane analysis provides evidence for the use of a membrane bound ferredoxin 

dependent hydrogenase system.  It has yet to be tested if A. hydrogeniformans can 

generate ATP by producing H2, as has been seen in P. furiosus or if A. hydrogeniformans 

possesses a bifurcating hydrogenase system like that of T. maritma, but this will be tested 

in future research.	  
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FIGURE 28.  The proposed pathway for glucose oxidation and H2 production by 

Anaerobaculum hydrogeniformans including pyruvate decarboxylation.  Enzymes:  1, 

phosphotransferase system; 2, phosphoglucoisomerase; 3, phosphofructokinase; 4, 

fructose-1,6-bisphosphate aldolase; 5, triosephosphate isomerase; 6. glyceraldehyde-3-

phosphate oxidoreductase; 7, phosphoglycerate mutase; 8, 2-phosphoglycerate enolase; 9, 

pyruvate kinase; 10, pyruvate oxidoreductase; 11, phosphotransacetylase; 12, acetate 

kinase; 13, ferredoxin oxidizing hydrogenase.  

(* indicates intermediates that were detected during metabolite screening)   
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