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ABSTRACT 

This research presents a new discrete-event simulation model, the DOE_EVAC, that can 

(i) effectively simulate alternative modes of transportation during evacuations, (ii) 

support designs of experiments, thus, provide the users (e.g., emergency planners and 

traffic engineers) with means to investigate “what-if” scenarios with sound statistical 

analysis capabilities, and (iii) allow the users to build and execute these models without 

having to know complex simulation or coding languages. 

The contributions of this research are threefold. First, this research adopts designs 

of experiments to furnish users with statistical support to investigate “what-if” scenarios. 

Second, the DOE_EVAC model resolves existing issues of current simulation 

transportation evacuation modeling approaches by improving the initial system setup and 

supporting the stochastic traffic loading process. It allows users to implement and analyze 

various traffic management strategies, and is capable of rerouting traffic due to critical 

infrastructure failures during evacuation. DOE_EVAC also supports user-interruptions 

during simulation runs so that changes on the system can be executed. Finally, the 

DOE_EVAC model does not require the user to have any knowledge of specialized 

simulation or coding language as it relies only on four required (and one optional) data 

files supplied by the users to execute. A sample design of experiment is illustrated to 

show the multiple simulation run capabilities of the DOE_EVAC model and the ability of 

the DOE_EVAC to allow users to manipulate data that are typically inaccessible in 

existing evacuation models. 
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CHAPTER 1 

INTRODUCTION 

Attempts to develop large-scale simulation transportation evacuation systems to 

support emergency decision makers have been extensive over the last few decades 

(Sheffi, Mahmassani, & Powell, 1982; McLean, Moeller, Desrosiers, & Urbanik, 1983; 

Urbanik, Moeller, & Barnes, 1988; Hobeika & Kim, 1998; Hobeika, Kim, & Beckwith, 

1994; Hiramatsu, 1983; Han, 1990; Tufekci & Kisko, 1991; Rathi, 1994; Pidd, Silva, & 

Eglese, 1996; Wu et al., 2007). While these existing decision support systems are 

commendable, they fail to provide emergency authorities the means to analyze the impact 

large populations and transportation infrastructure have on disaster mitigation and 

evacuation strategies. Experimental designs cannot be and were not conducted to find 

critical factors that influence the output performance measures of the simulation models, 

hence, “what-if” investigations cannot be performed. 

Similarly, decisions in existing models are made on deterministic simulation 

approach and results; thus, they cannot reflect the uncertainties and the randomness 

occurring during real-life evacuation. Conclusions are drawn upon one observation; and 

no confidence intervals are offered to confirm the reliability of the final outputs/results. 

No conclusions should be drawn on a stochastic system when only one observation is 

available to study. 

Additionally, most existing models do not support real-time simulation. They run 

the simulation and update the traffic conditions of the evacuation at fixed-time intervals. 

This approach does not capture the system state when instantaneous events occur and 

does not skip over inactive periods of time. It is far less efficient than discrete-event 
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simulation in which the state of the system only changes when an event occurs at a real-

valued time point. 

In this research, a discrete-event simulation transportation evacuation model, 

DOE_EVAC, has been developed. The new model has the capability to effectively 

simulate alternative modes of transportation during evacuations. It also supports designs 

of experiments; thus, provide users (e.g., emergency planners and traffic engineers) with 

means to investigate “what-if” scenarios with robust statistical analysis capabilities. 

Finally, DOE_EVAC enables users to build and execute these models without having to 

know complex simulation or coding languages. The ultimate goal is to make parameters 

of interest readily accessible and easily changeable so that designs of experiments on 

these parameters can be performed; thus, provides users with the statistical support to 

identify the most important factors influencing time to evacuate. 

This research contributes a number of substantial improvements to large-scale 

simulation transportation evacuation modeling. First, “what-if” scenarios can finally be 

investigated owing to the implementation of designs of experiments. Second, the 

DOE_EVAC model has resolved the existing issues of current simulation transportation 

evacuation modeling approaches by improving the initial system setup and supporting the 

stochastic traffic loading process. Realistic and desirable features such as allowing users 

to implement and analyze various traffic management strategies, rerouting traffic due to 

critical infrastructure failures during evacuation, or user-interruptions and system 

modifications during simulation runs have also been incorporated. In addition, the 

DOE_EVAC relies on four required (and one optional) data files supplied by the users to 

execute, and does not require the user to have in-depth knowledge of specialized 
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simulation or coding languages. A sample design of experiment is illustrated to show the 

multiple simulation run capabilities of the DOE_EVAC model and the ability of the 

DOE_EVAC to allow users to manipulate data that are typically inaccessible in other 

evacuation models. 

The dissertation is outlined as follows: 

1. Chapter 2 presents the literature review of existing large-scale simulation 

transportation evacuation models. The content of this chapter has been 

published in a review article by Pham, Pittman, and Court (2008).  

2. Chapter 3 describes the DOE_EVAC model and its model logic.  

3. Chapter 4 provides the validation of DOE_EVAC’s behavior on a real-

world transportation network. 

4. Chapter 5 shows how to use DOE_EVAC’s supplied parameters of 

interest to perform designs of experiments and to draw statistically 

significant conclusions on the simulation model output.  

5. Chapter 6 contains the summary, highlights the contributions, and 

recommends some potential future research points. 
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CHAPTER 2 

LITERATURE REVIEW* 

Most early literature on large-scale simulation transportation evacuation models 

primarily deal with civil emergency defense scenarios such as nuclear power facility 

incidents. They are Network Evacuation I (Sheffi et al., 1982), Calculates Logical 

Evacuation and Response (McLean et al., 1983), Interactive Dynamic Network 

Evacuation developed by KLD Associates in 1984 (Urbanik et al., 1988), Mass 

Evacuation (Hobeika & Jamei, 1985; Hobeika & Kim, 1998), and Transportation 

Evacuation Decision Support System (Hobeika et al., 1994). 

 Other applications include Net Structure Analyzing System IV (Hiramatsu, 1983) 

for earthquake evacuation, Transportation Evacuation System (Han, 1990), Regional 

Evacuation Modeling System (Tufekci & Kisko, 1991), Oak Ridge Evacuation Modeling 

System (Rathi & Solanki, 1993; Rathi, 1994), Configurable Emergency Management and 

Planning System (Pidd et al., 1996), and Dynamic Discrete Disaster Decision Simulation 

System (Wu et al., 2007). 

The 11 existing evacuation models are now assessed via their three simulation 

approaches: macroscopic, microscopic and mesoscopic. The purpose of this review is to 

evaluate the modeling methodologies, identify the gaps and issues of these models, and 

show the pitfalls of current data analysis trends.  

 

 

 

                                                 
* Adopted from Pham, Pittman, & Court (2008) 
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2.1 Macroscopic Simulation 

Macroscopic simulation operates based on the deterministic relationships of 

aggregate speed/density and demand/capacity of the traffic stream. It does not track 

individual vehicles, but “considers platoons of vehicles and simulates traffic flow in brief 

time increments” (Jeannotte, Chandra, Alexiadis, & Skabardonis, 2004). Hence, 

macroscopic models require less computer memory and storage; and they are suitable for 

scenarios with large-scale networks and long time periods. However, this aggregate-flow 

characteristic adversely impacts the ability to analyze transportation improvements in 

detail. Further discussion of macroscopic model characteristics can be found in May 

(1990). 

Macroscopic simulation models include Network Evacuation I (Sheffi et al., 

1982), Net Structure Analyzing System IV (Hiramatsu, 1983), Mass Evacuation (Hobeika 

& Jamei, 1985; Hobeika & Kim, 1998), Transportation Evacuation System (Han, 1990), 

Regional Evacuation Modeling System (Tufekci & Kisko, 1991), and Transportation 

Evacuation Decision Support System (Hobeika et al., 1994). 

 

2.1.1 Network Evacuation 1 (NETVAC1) 

NETVAC1 (Sheffi et al., 1982) is a fixed time simulation model initially 

developed to estimate traffic patterns and network-evacuation clearance time on a road 

network surrounding nuclear power plant sites. The model is anchored in 

mathematical/analytical relationships among significant traffic variables such as flow, 

speed, density, and queue length. The route selection mechanism of NETVAC1, 

however, is dynamic by means of (i) driver’s choice of outbound link (turning 
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movements) while approaching intersections with respect to his/her prior knowledge of 

the network as well as a myopic view of forefront traffic conditions, and (ii) user-

specified priority at unsignalized intersections. 

The preference factors, PFk , and speeds Uk(t) of outbound links set up the 

probability of driver’s choice ( )tPj of link j over others links at time t: 

( ) ( )
( )∑ ⋅

⋅
=

k
kk

jj
j tUPF

tUPF
tP       (1) 

where k represents all outbound links including link j, PFj is preference factor of link j 

and Uj(t) is speed of link j. 

Unsignalized intersections are treated according to a priority scheme pertaining to 

either a primary or secondary approach. Vehicles from a secondary approach can be 

emitted into a primary approach if residual intersection capacity exists from the primary 

approach; otherwise, NETVAC1 allows small capacity for vehicles from the secondary 

approach to sneak into the primary approach. 

The NETVAC1 simulator includes the link pass which calculates the number of 

vehicles moving along the link; and the node pass which calculates flow from each 

inbound link to each outbound link at a given intersection. At each simulation interval, 

the node pass and the link pass are executed once for every node and link in the network. 

Note that the simulation interval is user-specified, but its maximum is strictly less than 

the minimum free flow link travel time. 

The vehicle average speed in the link pass process U(t) are obtained via the 

current density of moving vehicles K(t), the jam density per lane KJ and the free flow 

speed UF: 
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( ) ⎟
⎠
⎞

⎜
⎝
⎛ −⋅=

KJ
tKUFtU )(1      (2) 

This speed is then used to compute the link flow—the number of vehicles 

reaching the downstream node of the link and the excess vehicular capacity available for 

the next iteration. The flow transferred from inbound link i into outbound link j at a given 

intersection, Mij(t), is subjected to two constraints: total flow that can be moved out of 

link i, VIi(t), and total flow that can be moved into link j, VOj(t). 

( ) ( ) ( ) ( )
( ) ( )∑ ⋅

⋅⋅=

j
iji

j
ijiij tPtVI

tVO
tPtVItM      (3) 

where Pij(t) is the share of drivers coming from a given link i who choose to move into 

link j. Each Pij(t) can be calculated using Equation 1. 

At each simulation interval, the moving time at a given intersection is determined 

via (i) the “green time” of each incoming direction for the signalized intersection, or (ii) 

the “equivalent green time”, which is calculated as the fraction each incoming flow over 

the total incoming flows, for the unsignalized intersection. 

Despite of its dynamic route selection approach, several shortcomings remain in 

NETVAC1 that can diminish the integrity of the evacuation model. First, all vehicles 

simulated by NETVAC1 are assumed to simultaneously enter the network at the 

beginning of the evacuation. This loading pattern which is not a time-dependent loading 

pattern can ‘blow up’ the system with inflated congestion, queues, and so forth. Second, 

vehicles egress the affected area without consideration of their desired final destination. 

Finally, link preference factor must be determined by the users; thus, “introducing 

considerable subjectivity into the process” (Abkowitz & Meyer, 1996). 
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2.1.2 Net Structure Analyzing System IV (NESSY-IV) 

Application of the macroscopic simulation model NESSY-IV (Hiramatsu, 1983) 

is not limited to, but primarily associated with earthquake emergency. Population in 

NESSY-IV is classified into four groups (Office, Depart, Street and Subroad) due to their 

recent activities and can be evacuated via walk/foot, bus, car, or metro modes. 

NESSY-IV’s transportation network is modified so that the simulation model only 

needs to deal with nodes, not links. Each node in the network contains information on its 

node level, two level thresholds, inflow threshold, and modify type. The node level shows 

the current flow at the node; and the upper and lower level thresholds describe the 

maximum and minimum capacities of the node. If the node level is greater than the upper 

level threshold, the node is overflow; and if the node level is smaller than the lower level 

threshold, the node is underflow. The allowable increase of inflow within a unit of time is 

bound by the inflow threshold. The modify type determines how the node status is 

changed due to thru-traffic, for example type 0 associates with “no change”,  and type 1 

associates with “inflows to the node are cut if the node is overflow”. 

The network flow model works exclusively based on the relationship between 

adjacent nodes in the network including node preceding status, mass flow or information 

flow transfer, and node following status. The mass flow transfer from node A to node B 

at time i is calculated through two types of output functions: a linear type (Eq. 4) and a 

saturated type (Eq. 5). 

( ) ( ) ( )
( ) ( ) ( )⎩

⎨
⎧

+=+
−=+

piAiBiB
piAiAiA

*1
*1

     (4) 

( ) ( )
( ) ( )⎩

⎨
⎧

+=+
−=+

dviBiB
dviAiA

1
1

 in which 
( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

=

≥=

∑
∑

otherwise   *

 if                       

PiPiAdv

PiAiPdv
 (5) 
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where P(i) represents the threshold of flux from node A to node B and p is a rate of P to 

the total flow from node A. The information flow transfer from node A to node B at time 

i is computed as follows: 

( ) ( )
( ) ( ) ( )⎩

⎨
⎧

+=+
=+

piAiBiB
iAiA

*1
1

     (6) 

The network flow model of NESSY-IV is simple and does not include the traffic 

control and traffic management strategies as other evacuation models. Additionally, 

because of the generation of dummy nodes to adjust delay time between two nodes, 

significant computer storage is required. Thus, NESSY-IV is suitable for small area 

evacuations only. 

 

2.1.3 Mass Evacuation (MASSVAC) 

MASSVAC (Hobeika & Jamei, 1985; Hobeika & Kim, 1998) simulation model is 

designed for providing assessment and analysis of urban area evacuation plans. The 

MASSVAC construct contains three interrelated modules: 

1. Community and disaster type module delineates the geometric shape of the 

affected area, its neighborhood (urban or rural), and the characteristics of the 

disaster (natural or man-made). 

2. Population distribution module categorizes population into permanent and 

transient population. Population density of the permanent population, who 

dwells inside the affected area, is classified by age and household size. For the 

transient population who are traveling through the affected area, if the 

evacuation is long range—when people have a long time to evacuate—the 

transient population may be ordered to return home; and if evacuation time is 
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a short range, they may be directed to situ shelters. In this way, the population 

density and destinations can be obtained for the transient population. The 

vehicle utilization and transportation modes (auto, mass transit, etc.) are also 

clarified in this module. 

3. Network evacuation module includes detailed descriptions of highway 

network topology and traffic management strategies such as traveling 

restrictions (vehicles must emanate from origin to the closest exit without 

traveling on links toward the nuclear plant), shelter deficiency management 

(the user must specify additional shelters), intersection control, usages of 

reserved lanes for special vehicles (for example shoulder lanes for emergency 

management vehicles or HOV lanes for high occupancy vehicles) and 

contraflow implementation. 

The simulation clock time in MASSVAC is advanced by a finite simulation 

interval of 15 to 60 min. Once the simulation starts, vehicles enter the network following 

an S-shaped curve (Figure 1) of the logit-based function: 

( )
H)Z*(IDe

ion)n,DestinatTrip(OrigistinationOrigin, De
−−+

=
1

   TripCurrent   (7) 

where Z represents the slope of the logit curve, ID is the simulation interval, and H is the 

time at which half of the population is loaded. Basically, a portion of population at each 

origin is loaded onto the network in each simulation interval and the S-shaped curve 

shows the cumulative population loaded at particular time. It is obvious that the loading 

rates are the same at all origins. This loading pattern does not accurately capture the 

stochastic features of the evacuation departure process in which the departure time of 
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evacuees at each origin instantly varies and the loading rates are absolutely different 

among origins. 

 

Figure 1: Logit Curve (Hobeika & Kim, 1998) 

The Bureau of Public Roads (BPR) function (BPR 1964), 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

4

15.01
c

tt f
υ       (8) 

where tf is link free-flow travel time, υ is link volume and c is link capacity, is adopted to 

calculate travel times on each link: 

( )
( )⎪

⎪
⎩

⎪
⎪
⎨

⎧

>

≤≤

<

=

5.110,min

5.18,min

1

c if     t  t
c1 if       t  t

c if                        t

Time Travel

f

f

υ

υ

υ

   (9) 

MASSVAC facility is limited in handling unsignalized intersections as well as 

beyond-4-leg intersections. For signalized intersections, vehicular volume Qa discharged 

to outbound link (a) on major road 1 at the given intersection is calculated as follow: 

800,1*
21

1
QQ

Q
aQ

+
=       (10) 
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where Q1 and Q2 are critical volumes on major road 1 and minor road 2, respectively. The 

saturation flow rate is assumed to be 1,800 vehicles per hour. The vehicles then dissipate 

on the links following a regression model for mixed vehicles: 

( ) 2*75.0*3.74 DensityDensityQFlow −=     (11) 

where flow is the number of travel units (vehicles or passengers) traversing a given 

facility in a unit time (e.g., vehicles per hour) and density is the number of travel units 

traversing in a unit distance (e.g., vehicles/mile). 

MASSVAC 3.0 implements Dial’s probabilistic traffic assignment to handle 

evacuation route selection. MASSVAC 3.0 (1985) was updated to MASSVAC 4.0 (1998) 

to provide additional modeling features of the enhanced user equilibrium traffic 

assignment methodology. 

Advances in modeling population socioeconomic characteristics and traffic 

management strategies increase MASSVAC’s integrity and level of application. 

However, its brief touch on these subjects cannot exclusively demonstrate the evacuation 

process, which requires in-depth features and process analysis. Also, like most of the 

other macroscopic simulation models, MASSVAC is not a stochastic analysis tool. 

Randomization is not taken into consideration, thus the uncertainty that occurs during 

real-world evacuations cannot be demonstrated in MASSVAC. 

 

2.1.4 Transportation Evacuation System (TEVACS) 

At the core of TEVACS system (Han, 1990) is an enhanced version of the 

NETVAC1 simulation model, developed for different styles of transportation 

infrastructure. The distinctions between the two models are reflected in the vehicle usage 
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manner and the deployment of public evacuation routes and transport stations. Since the 

dominant transportation modes in TEVACS researched networks are public 

transportation and motorcycles, TEVACS deals with multiple types of vehicles (car, 

pick-up van, bus, truck, motorcycle and bicycle) rather than homogeneous types (vehicle) 

as in NETVAC1, and the origins in TEVACS include public transits or stations. Note that 

different attributes of multiple vehicles extremely affect traffic conditions as well as trip 

loading rates. Also, TEVACS’s improved features such as trip generation, GUI, traffic 

control and traffic management strategies provide a more useful tool for emergency 

management. However, TEVACS’s algorithms are the same as those of NETVAC1. So, 

it too suffers from the impractical traffic loading pattern and the unreasonable destination 

choice. 

 

2.1.5 Regional Evacuation Modeling System (REMS) 

REMS (Tufekci & Kisko, 1991) is a decision support system software mainly 

used for traffic emergency control and management. In order to achieve the objectives 

established for the system, the regular transportation network is modified to 

accommodate REMS’s designated network analysis as follows: 

1. First, to ensure the intolerance of link’s static capacity, a new node is placed 

in the middle of the link to split the link into two parts of which the front 

contains the link’s original characteristics and the back has the infinite static 

and dynamic capacities. The intersection node performance is then converted 

to link behavior by being duplicated and connected to each other via a 

“dummy” link. This “dummy” link contains the dynamic capacity of the 
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intersection and the traverse time of zero. The modified transportation 

network is called the Intersection Augmented Network (IAN). 

2. Second, a time unit is established as a benchmark of the time dimension to 

reveal the updated system state. All traffic variables, such as link travel time, 

capacity and flow rate, are converted to this time period. Consider expanding 

the network in T time periods, each node in the network is replicated T times 

and each copy of a node is connected to its next time copy. If there is a link 

between node A and node B in original network or IAN with link travel time 

of t time periods, the jth copy of A is connected to the (j+t)th copy of B until 

(j+t) is larger than T. Figure 2 illustrates the logic of this Time Expanded 

Network.  

The transportation network once modified can alleviate model complexity to 

handle time dimension, determine evacuation routes, and incorporate network 

adjustments, such as blocking links or closing intersections during the evacuation 

process. 

 
 

Figure 2: Time Expanded Network with t = 2 

REMS provides three different methodologies to calculate network clearing time: 

discrete event simulation, linear programming (LP) model and network flow model using 

dynamic network representation. All of these methods control the vehicle movements in 

an aggregate level. The LP model, which is actually a multiobjective optimization LP, 
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exploits the analytical user equilibrium assumptions to find the smallest network clearing 

time. The network flow model, on the other hand, applies the same dynamic loading rate 

as MASSVAC to estimate the number of vehicles entering the network at each time 

period and estimate the time minimizing flow pattern of the network for each Origin-

Destination (O-D) pair. The advantage of the dynamic model is in its capability to 

identify bottlenecks and to simply block roads or intersections just by removing 

unwanted copies of nodes and links. Note that no formulations or detail algorithms are 

provided for the LP and network flow model in the literature. 

The drawback of REMS’s LP and the network flow models is that both are 

heuristic methods, which only yield near optimal solutions. Also, the nature of the REMS 

modified transportation network can exceed the demand of computer storage; hence the 

software can only be used for analyzing small-scale transportation networks. 

 

2.1.6 Transportation Evacuation Decision Support System (TEDSS) 

Strongly based on the MASSVAC 3.0 approach, TEDSS (Hobeika et al., 1994) is 

a microcomputer software package to assist in the development of evacuation plans for 

the Surry and North Anna nuclear power stations in Virginia. TEDSS employs Dial’s 

algorithm (1971) to assign traffic, and estimate traffic bottlenecks as well as evacuation 

time. Except for its improved graphical user interface (GUI), and add-in socioeconomic 

characteristics (such as size of labor force, number of school attendees), features of 

TEDSS are the same as those of MASSVAC 3.0. Consequently, it too does not provide a 

stochastic environment for factor analysis to be performed. 
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2.2 Microscopic Simulation  

Microscopic simulation or micro-simulation models are perhaps the most applied 

dynamic traffic models nowadays. The core characteristic that makes microscopic 

simulation prevail over other simulation approaches is its ability to mimic the behavior of 

every individual vehicle entering the transportation system realistically. Microscopic 

simulation modeling can be used to analyze systems with the highest level of traffic 

details including disaggregate relations among vehicles and traffic control. The 

disadvantage of microscopic simulation is its excessive requirements of computer time 

and storage for running and calibrating the model. This constrains the size of analyzed 

transportation network as well as the possible number of simulation runs. Detail 

discussion of microscopic model characteristics can be found in May (1990). 

Generally, microscopic simulation approach consists of two different types: fixed-

time-interval simulation and discrete-event simulation. The fixed-time-interval simulation 

divides a simulation run into very small time intervals of seconds or sub-seconds. After 

each interval, all vehicles are determined for possible behavior and movements and then 

moved to a new position. The total required computation per link is proportional to the 

product of the number of time intervals and the number of vehicles that traverse through 

the link. This procedure is far less efficient than that of discrete-event simulation of 

which computation per link is only proportional to the number of vehicles that traverse 

through the link. The state of the system in discrete-event simulation only changes when 

an event occurs at a real-valued time point. For example, when a vehicle arriving into the 

system or a change of signal phase at a controlled intersection. 
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Reviewed microscopic simulation models include Calculates Logical Evacuation 

and Response (McLean et al., 1983), Configurable Emergency Management and 

Planning System (Pidd et al., 1996), and Dynamic Discrete Disaster Decision Simulation 

System (Wu et al., 2007). 

 

2.2.1 Calculates Logical Evacuation and Response (CLEAR)  

CLEAR (McLean et al., 1983) was developed for the U.S. Nuclear Regulatory 

Commission (NRC) to provide a means of simulating vehicle movements and estimating 

network clearing time during an evacuation due to a nuclear plant emergency. This 

microscopic simulation model analyzes individual vehicles on only the primary road 

network of the Emergency Planning Zone (EPZ) – the area surrounding the nuclear plant 

that is possibly contaminated by the incident. Three buffers of 2 miles, 5 miles and 10 

miles are generated in the vicinity of the nuclear plant. CLEAR then divides each buffer 

into 8 identical sectors by geographical direction: north, northeast, east, southeast, south, 

southwest, west and northwest. The roads eventually are divided into several road 

segments characterized by road attributes such as length, number of lanes, free flow 

speed, consecutive segments, and population density. Interacting road segments form an 

evacuation tree (highlighted in Figure 3), which can spread in multiple zones. 

Note some of the drawbacks to the model. The possible number of vehicles served 

by one road segment is proportional to the length of that road segment. In other words, 

the vehicles appear evenly spaced in road segments; and the longer the road segment, the 

more the possible number of loaded vehicles. By using a random number generator, 

vehicles are arbitrarily assigned starting positions and spaces along the segment. This 
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loading pattern does not indicate the actual starting positions for real situations. For 

example, when vehicle movement starts at the vehicle’s initial resting position (parking 

slot or drive way in front of the house). It is also time-constrained given that all vehicles 

must enter the network during the maximum allowable departure time (the sum of 

maximum notification time and maximum individual preparation time). 

 

Figure 3: Designation of Evacuation Trees (McLean et al., 1983) 

The movement of vehicles is driven by the traffic relationships between a road 

segment and its next road segment—called the link. These relationships—which are 

affected by loading rate, queuing system, vehicle capacity, vehicle density, and velocity 

of travel—are simple and transform in short increments of time (nearly 12 s). 

CLEAR has three types of queues: 

1. The random queue lists vehicles with a designated starting position. 

2. The loading queue lists loaded vehicles yet not moved. 

3. The back-up queue handles traffic jams based on link capacity and 

maximum allowable density (number of vehicles traversing on link). 

In every increment of time, the road segment is loaded and vehicles are replaced 

from the random queue to the loading queue of the corresponding road segment. 
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Whenever a vehicle is advanced from a road segment to a full link, the vehicle is placed 

in the back-up queue of that link. The total queue of each road segment chronologically 

lists vehicles from the loading queue and then the back-up queue. Vehicles can only be 

released from a queue when adequate space on the road segment is available. 

The velocity of movement on a road segment is affected by the density of traffic, 

which is altered in every vehicle movement: 

n
dlfV **

=       (12) 

where V—velocity of travel, f—free-flow rate, l—number of lanes, d—length of 

segment, and n—current link density. As long as the free flow presentation of the road 

segment exists, the travel speed is at its nominal value. Otherwise, it decreases linearly 

and traffic jams happen when it goes down to minimum speed of regular travel (15 mph). 

Vehicles, in that case, are added to the back-up queue. 

CLEAR operates intersections via relative vehicle densities—not signalized 

intersections, i.e. vehicles on road segment with higher densities are allowed to move to 

the next link prior to those from a lower density road segment. This approach is 

appropriate for intersections controlled by traffic officers who must have full information 

of vehicle densities along road segments. However, it eliminates the ability to handle 

traffic logic involving green/red time, stop signs, or conflict approaches and so forth. 

The advantages of CLEAR lies in its ability to direct traffic via a traffic 

management approach and to identify traffic difficulties while lessening computer 

memory requirements. Conversely, simplifying the assumptions for traffic handling 

diminishes model reliability and renders detailed modeling for large-scale transportation 

network inapplicable via CLEAR analysis. 
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2.2.2 Configurable Emergency Management and Planning System (CEMPS) 

Not yet a full evacuation model, CEMPS (Pidd et al., 1996) is a proposed 

prototype system which links a Geographic Information System (GIS) to discrete-event 

simulation models to provide an aid for evacuation planning management. A microscopic 

approach is applied to simulate individual vehicle movement on roads of which structures 

are built by making use of a C++ linked list mechanism. CEMPS also applies GIS to 

establish the database and initial conditions of the simulation model, and display facilities 

as the simulation runs. Even though CEMPS is proclaimed to be a feasible solution for 

spatial decision support system for emergency evacuation, further constructions of traffic 

control and traffic route selection are needed for a complete evaluation. However, very 

little literature is available on the system to date. 

 

2.2.3 Dynamic Discrete Disaster Decision Simulation System (D4S2) 

D4S2 (Wu et al., 2007) is an application evacuation model, which makes use of 

available software and techniques to implement specific evacuation strategies. This 

microscopic simulation model is induced by integrating geographic information system 

ArcGIS with the simulation software ARENA and Microsoft’s SQLServer database to 

simulate the evacuation process, the deployment of emergency resources, and the 

transport of casualties to safe facilities. Although D4S2 is still in its infancy stage, Wu et 

al. (2007) claim that the system when completed will be able to support emergency 

planning, training and research in simulation and optimization. Wu et al. (2007) also 

claim that the future system will be applicable for fifteen disaster event types and 
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features, such as identifying traffic bottlenecks and allowing damaged infrastructure to be 

inserted during model executions. 

 

2.3 Mesoscopic Simulation 

Mesoscopic simulation models contain characteristics of both microscopic models 

in terms of modeling individual vehicle behavior and macroscopic models in terms of 

aggregate presentation of traffic dynamics. The detail level of traffic operations in 

mesoscopic simulation model is still limited compared to that of microscopic simulation. 

As such, adopting this approach will reduce the fidelity of microscopic simulation tools. 

Nevertheless, mesoscopic simulation models have the ability to present large-scale 

networks with less network coding and computer storage requirements. 

Mesoscopic simulation models include Interactive Dynamic Network Evacuation 

developed by KLD Associates in 1984 (Urbanik et al., 1988), and Oak Ridge Evacuation 

Modeling System (Rathi & Solanki, 1993; Rathi, 1994). 

 

2.3.1 Interactive Dynamic Network Evacuation (I-DYNEV) 

Similar to CLEAR, the use of I-DYNEV was endorsed by the NRC to fulfill the 

requirement of providing an aid to evaluate plans in terms of their ability for safely 

evacuating populations away from a nuclear power plant should an incident occur. The 

core of I-DYNEV is TRAFLO, a system of models including a mesoscopic urban 

network model NETFLO, a macroscopic freeway model FREFLO, and an equilibrium 

traffic assignment model TRAFFIC. 
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NETFLO operates the evacuation process at three levels: (1) individual vehicles 

microscopically, (2) macroscopic groupings of vehicles (by flow statistical histograms), 

and (3) traffic flow in terms of traffic parameters (while FREFLO computes traffic as a 

function of flow rate, density and space-mean speed on freeway sections (Jaske, 1985)). 

The traffic assignment model TRAFFIC then generates turn movements/percentages 

from the O-D trip table at each intersection within the permitted time interval of the 

simulation model. 

I-DYNEV’s traffic loading rate is specified for each origin and this rate can be 

impacted due to traffic congestion. Vehicles cannot be discharged into a link if no space 

is available; thus, these vehicles are added into the link’s queue. “Under these conditions, 

queues will grow and extend upstream along a congested path” (Jaske, 1985). 

Even though I-DYVEV was widely used by the U.S. government, a benchmark 

study of I-DYNEV conducted for NRC indicates that the system “underestimates 

roadway capacity when the roadway does not have any congestion-induced capacity 

reduction” (Urbanik et al., 1988). Also, little information exists in the literature about 

validation and practicality of the model. 

 

2.3.2 Oak Ridge Evacuation Modeling System (OREMS) 

Developed to support the Federal Emergency Management Agency and U.S. 

Army for the Chemical Stockpile Emergency Preparedness Program, OREMS (Rathi & 

Solanki, 1993; Rathi, 1994) claims to exhibit advancement in evacuation modeling via an 

improved graphical user interface (GUI). The application-oriented software includes 

three major components: 
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1. The input data manager IEVAC handles the topology and characteristics of 

transportation network, traffic volumes (O-D matrix by transportation modes), 

and traffic controllers (intersection and lane control). Features such as driver 

performance characteristics are also added into the program. However, these 

features are simple and do not reflect the complexity of traffic and human 

behaviors during evacuation. 

2. The Fortran-based simulation analysis ESIM operates OREMS’s traffic flow 

simulation, trip distribution (destination selection), and traffic assignment 

models. The simulation and traffic assignment algorithms are the same as 

those in I-DYNEV. The trip distribution model emits evacuees via (i) pre-

specified destinations, (ii) the nearest destination in terms of distance or time 

regardless of initial traffic conditions, or (iii) the closest destination (also in 

terms of distance or time) but based on the traffic conditions at their departure 

time. Sets of pseudo-links and supernodes are added to the original network to 

form a supernetwork of which pseudo-links connect different destinations to 

the supernodes. 

3. The output display program SIMOD claims to show the input data and the 

output statistics produced by ESIM for every specific link, as well as an 

aggregate of the entire network. 

OREMS claims that its advances in GUI allow the user to perform data 

manipulation readily and visualize digital traffic conditions (including operational 

characteristics and bottleneck identification). To date OREMS has had limited 

application for real time large-scale evacuation modeling due to its simulation approach, 
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which constrains the modeling of “the route choice behavior of the drivers responding to 

different levels of traffic information” (Kwon & Pitt, 2005). 

 

2.4 Summary and Drawbacks 

Table 1 lists some of the common characteristics and desired features for 

simulation transportation evacuation model. Since CEMPS and D4S2 are under 

development, they are not included in the summary table.  Of the models reviewed, 

MASSVAC, TEDSS, TEVAC and OREMS have the most number of desired features. 

However, the following observations are also made: 

1. Most of the existing evacuation models follow a macroscopic simulation 

approach of which vehicles are treated in group and traffic flows are treated at 

an average level. This approach can diminish the complexity of analytical 

computation and computer storage requirements, but it will offset the 

elaborate characteristics of the evacuation progress. 

2.  Very little information exists on how to estimate the number of vehicles or 

people (rather than vehicles) entering the transportation network, which is 

especially vital to produce an accurate prediction of total evacuation time and 

traffic performance. Although population is classified in dissimilar groups, 

group handling is not specified in existing models. 

3. Most of the evacuation models do not categorize transportation modes and 

even if they do, no modal split process is recorded. All vehicle types are 

treated in the same manner, even when they possess different attributes and 

characteristics. 
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4. Evacuees are not provided chances to select their destinations, except in 

OREMS. Currently, evacuees are assigned to destinations so that the trip 

assignment is optimized for minimal evacuation time. 

5. None of these models, except for TEDSS, investigate the initial conditions of 

the traffic network. Vehicles are loaded into an empty network, which is 

unrealistic. Only in TEDSS, daily normal traffic is assumed at the beginning 

of the simulation. 

6. All of the models load vehicles onto the network all at the beginning or 

following the cumulative S-shaped curve. As mentioned in Section 2.1.3, this 

loading pattern does not truly capture the stochastic features of the evacuees’ 

departure process. In reality, the evacuees can leave at any time and it is not 

necessary that a certain number of evacuees have to enter the network at a pre-

determined time. Therefore, it is possible that the loading rates are completely 

different among origins, and each origin has a unique loading rate. 

7. How to effectively implement intersection control and traffic management 

strategies during an evacuation is still a big challenge. Labor and lead time 

requirements are the biggest concerns such that implementation plans of these 

strategies are still under debate among many US state planning authorities 

(Wolshon et al., 2005). 

8. Most of the existing models lack user-friendly interfaces for data manipulation 

and output analysis. Consequently, processing large numbers of collected data 

and interpreting output data are difficult tasks—however, these tasks are 

critical for supporting decision analysis. 
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9. Risk assessment of infrastructure failure and network vulnerability has not 

been associated in existing models. Damage of critical structures such as 

bridges and tunnels will detrimentally impact the traffic flow and induce the 

possibility of human casualties and route closures. Additional research on how 

to include these factors in evacuation models is needed. 

10. No user-interrupted changes are allowed during the simulation process of 

these models. Once the simulation starts, users cannot interact with the 

running model other than stop it and start another run. In other words, there is 

no way for the user to specify a sudden incident such as a broken bridge or 

impose damage to the infrastructure during the simulation. 

11. Traffic conditions in reviewed models are analyzed and updated at fixed time 

intervals. This fixed time interval simulation does not capture the system state 

at instantaneous events such as traffic incidents, and does not skip over 

inactive periods of the time. Discrete-event simulation is a better choice for 

transportation evacuation modeling (see Section 2.2). 

12. A major problem with these models is the lack of realistic driver behavior and 

crowd analysis. Additional research and investigation of this subject is 

substantially required for future evacuation models. 

13. Last but not least, none of the models provide statistical validation of their 

modeling approaches. Conclusions are drawn upon one observation of a 

random process; and no confidence intervals are offered to prove the 

reliability of the final outputs/results. No designs of experiments are supported 

so that “what-if” analysis can be performed; and no statistical comparisons are 
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made to ensure the models are credible representations of the real-world 

systems. Furthermore, decisions in these models are made on deterministic 

(non-stochastic) simulation approaches and results. 

13 gaps and issues are addressed in the research approach. Point 12 is not 

included—it is outside the scope of this research and is reserved for future research. 
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Table 1: Features of Existing Large-scale Simulation Evacuation Models/Softwares 

Features   NETVAC1 NESSY-IV MASSVAC  TEVACS REMS TEDSS CLEAR I-DYNEV OREMS 
Simulation model type Macroscopic X X X X X X       
  Microscopic             X     
  Mesoscopic               X X 
Population characterized Age     X             
  Labor force           X       
  School attendee           X       
  Vehicle utilization           X       
  Household size     X     X       
  Dwelling     X             
Modes Auto X X X X X X X X X 
  Walk   X               
  Bus   X X X   X     X 
  Carpool                 X 
  Truck       X         X 
  Commercial vehicles     X             
  Mass Transit   X X             
  Motocycle       X           
  Bicycle       X           
Destination Selection          X 
Traffic initial conditions             X       
Traffic intersection control Approach/density 

priority  X           X      
  Turning %                 X 
  Unsignalized  X               X 
  Signal control X   X X   X   X X 
Traffic management  Lane closure            X       
 strategies Contraflow     X     X       
  Reserved lanes      X     X       
Loading pattern 

  
All at the 
beginning   Logit-based   

Logit-
based 

Logit-
based Fraction     

Infrastructure failure risk        X             
Identify traffic bottlenecks       X X X X   X X 
Driver behavior                   Simple 
Graphical network          X   X   X X 
Statistical Analysis and 
Designs of Experiments                     
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CHAPTER 3 

THE DOE_EVAC MODEL 

3.1 Research Goals and DOE_EVAC Capabilities 

The goals of this research are to develop a new discrete-event simulation model, 

the Designs of Experiments Evacuation (DOE_EVAC) model, that can (i) effectively 

simulate alternative modes of transportation during evacuations, (ii) support designs of 

experiments, thus, provide the users (e.g., emergency planners and traffic engineers) with 

means to investigate “what-if” scenarios with sound statistical analysis capabilities, and 

(iii) allow the users to build and execute these models without having to know complex 

simulation or coding language. 

The DOE_EVAC model will bridge the gaps of current simulation transportation 

evacuation modeling approaches by its ability to: 

• Treat alternative vehicle modes differently based on their characteristics 

(lengths). 

• Allow evacuees to select their own destinations, but also allow users to 

implement pre-defined evacuation routes. 

• Warm up the system in order to provide realistic initial conditions of the 

traffic network (avoid empty-and idle initial conditions). 

• Implement and analyze various traffic management strategies, for example 

intersection control (adjust green, red, and yellow time at intersections). 

• Reroute traffic if critical infrastructure is damaged. 

• Allow users to interrupt the simulation for the purpose of changing: 
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– Entity attributes such as vehicle capacity. 

– Traffic management strategies. 

DOE_EVAC also has capabilities of: 

• Supporting designs of experiments and confidence interval generation by its 

ability to perform multiple simulation runs and to obtain important traffic 

performance measures so that alternative plans/strategies can be analyzed to 

identify the “best” evacuation plan. None of today’s existing evacuation 

models have provided users with these capabilities. 

• Furnishing users with ease of use. That is users do not need to know any 

specialized computer language or data structure. Data is manipulated in table 

formats and there is no need to reformat data to run the model as in other 

evacuation models. In addition, DOE_EVAC has various flexibility in its 

input modeling capabilities so that the use of probability distributions and 

mathematical expressions can be incorporated. Users will now be able to alter 

parameters directly within the model at anytime without having to reload the 

data files. This capability does not exist in today’s other models. 

 

3.2 DOE_EVAC Model 

DOE-EVAC was developed using Visual Basic.Net (VB.Net) and consists of the 

model’s GUI, data accessing and processing, and Arena models and Arena outputs. The 

code is in Appendix D and this code is open source. Thus, users can change the code 

anytime to fit their own modeling purposes. They also have the capability of 

manipulating the Arena code if they are familiar with that software language. 
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DOE_EVAC can create simulation models in any version of Arena (13.0 is the 

newest version). There are no limits to the size of the investigated transportation network. 

However, the Arena professional or commercial version is needed to build and run large-

scale transportation network, and limits the execution of DOE_EVAC on personal 

computers.  

Figure 4 demonstrates the architecture of DOE_EVAC. The following sections – 

the user supplied data, the graphical user interface, the data processor – explain important 

components of the model. The programming code will be referred to frequently by 

phrases such as “from line i to line j” meaning that the reader may refer to the code from 

line i to line j found in Appendix D. 

 

3.2.1 User Supplied Data  

3.2.1.1 Data Sources for the Tables 

For the simulation transportation evacuation model presented, the following 

components are defined along with their corresponding data sources: 

1. Risk area is the geographical area that might be hit or affected by the disaster. The 

boundary between dangerous and safe regions has to be pre-specified and updated 

by the users, for example, the emergency planners. The risk area is usually 

identified by group of zip codes or traffic analysis zones (TAZ). For example, 

Figure 5 shows the possible affected area along the Houston Galveston Area 

Council (HGAC)’s coast (Houston TranStar, 2010). Should a hurricane hit the
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Figure 4: DOE_EVAC Architecture 
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Figure 5: Houston Hurricane Evacuation Route Map (Houston TranStar, 2010) 
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gulf coast, a list of the zip-zones considered part of the evacuation corridor are 

listed in the table to the right of the map and shaded according to their categories 

A, B, or C. 

2. Transportation infrastructure network is represented by a graph of nodes and 

links. Nodes are defined as joint traffic streams such as intersections, origins, 

destinations, upstream point of off-ramp, and downstream point of on-ramp. 

Links are the road segments connecting nodes. Links can be unidirectional or 

bidirectional. Note that a mesoscopic simulation approach is taken, so there is no 

need to investigate lanes separately since traffic flows are treated at the aggregate 

level. However, the number of lanes of each link must be specified in order to 

obtain the available capacity of link and to implement intersection control 

strategies. Here, the transportation network, including evacuation routes, are 

attainable via GIS shape files and maps. Figure 6 shows a street network of city 

within the Houston, Texas downtown in a GIS shape file as downloaded from the 

Tiger Line of U.S. Census Bureau (2009). Note that the nodes in Figure 6 are 

generated by using TransCAD (Caliper Corporation, 2005). Also, many counties, 

cities, and states now post their own data in the public domain. For example, the 

transit center locations and the TAZs of Houston Galveston Area Council 

(HGAC) can be downloaded from the HGAC database (2009).  

3. Origins and Destinations: The origins are the centroids of geographical units. 

Evacuees who have cars depart directly from origins; and ones who do not have 

cars first walk or bike to transit centers (or pick-up points specified by emergency 

planners), and then can transit out of the risk area. In addition, the centroid 
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Figure 6: Houston Downtown's Street Network 

connectors, which connect the centroids of geographical units to the 

transportation network, are not physical links. Thus, they should only be traversed 

once when vehicles are loaded onto the network. Locations of destinations must 

be assigned by users. They can be any points that lie outside the risk areas. 

Origins (source node) have to be different from destinations (target node). 

Different from traditional transportation model, since the evacuees choose 

their own destinations, there is no need to pre-define travel demands for each O-D 

pair in this approach. In other words, no O-D matrix is needed or generated. This 

advantage allows DOE_EVAC to accurately represent the real-world – evacuation 

managers usually can determine the locations of destinations, but they do not 

know who or how many evacuees will go to which destinations.  
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4. Populations at risk and vehicle utilization describes the spatial distribution of the 

population and vehicles in the risk area. Geographical units can be the census 

block, census track, zip codes, TAZ, sub-county-division, county, state, and 

nation. Low mobility populations (populations without auto) must be identified so 

that planners can provide sufficient means of public transportation. Some 

downloadable sources for populations and vehicle utilization are the online 

database of the American Fact Finder for the U.S. Census Bureau 

(http://www.factfinder.census.gov/) and the Census Transportation Planning 

Package (CTPP) (http://www.fhwa.dot.gov/ctpp/). Population data can also be 

obtained from local databases, for example the HGAC database (http://www.h-

gac.com/rds/gis/clearinghouse/default.aspx). Further discussion of data sources 

can be found in Section B.1 of Appendix B.  

At each origin i of the network, the total number of individual vehicles 

entering the network iN  can be estimated via trip production generation methods 

(see Section B.1 of Appendix B for a complete literature search). However, if 

other socioeconomic data are not available, the number of vehicles, iN , can be 

calculated by the number of available private vehicles, iNA , and the number of 

public transportation vehicles required, iNP . The model generates iNP based on the 

number of people who possess no vehicles iVEHNOPOP __ . Recall that the 

emergency planners are assumed to sufficiently provide public transportation to 

evacuees. Thus, the generation of required public transportation stops when all 

evacuees are served. In other words, the public means of transportation generating 

mechanism has to satisfy the following constrains where j stands for different 
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types of public transportation modes, ijNP  and ijCAPNP _  are the quantity and the 

capacity of transportation modes j.: 
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   (13) 

According to Wolshon et al. (2005), there are people who refuse to evacuate 

(e.g., elderly or ones who stay to protect their properties) and people who 

evacuate even though threats are not directly exposed to them. Thus, users 

themselves can assume a percentage of population who evacuate and recalculate 

the number of vehicles entering the network.  

5. Evacuee and authority emergency responses in terms of time determine the egress 

pattern or loading rate of evacuees over time. As mentioned above, the logit S-

shaped traffic loading rate cannot feature the stochastic characteristic of an 

evacuation. Furthermore, no existing data have been found for evacuation loading 

rate. Thus, statistical distributions can be explored by the user as possible traffic 

loading rates at each origin.  

6. Traffic management strategies control traffic during evacuation. 

a. Incidents due to infrastructure failures must be specified by users so that 

links’ characteristics can be modified to adapt those strategies. For 

example, if link A-B has space capacity of 30 vehicles with three lanes, 

but one lane is blocked till the end of the evacuation, then DOE_EVAC 

will modify the capacity of the link A-B to 20 vehicles (which is two 

thirds of the original capacity). Infrastructure failures such as broken 
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bridge or flooded streets usually take weeks, months, or even years to be 

repaired. Thus, in DOE_EVAC, once a link has an incident occurring on 

it, the link capacity is changed permanently. 

b. Two types of intersections are handled in the model: signalized and 

unsignalized intersections (such as an intersection with a stop sign). For 

signalized intersections, signal phases (green and yellow time) must be 

specified. Further discussion of traffic signal control can be found in 

Section 3.4.3. 

 

3.2.1.2 Tables and GIS Shapefiles 

DOE_EVAC accepts data inputted in table forms such as dBASE (.dbf), Excel 

(.xls) and Access (.mdb). Thus, no pre-defined data formats or structures are required to 

build and run DOE_EVAC, except the input data files must at least include some 

required fields with the exact field names (see below).  

There are only four tables needed: Nodes, Links, Vehicles, and People. The 

Incidents table as well as the Nodes GIS shapefile, and the Links GIS shapefile are 

optional. Note that the term “vehicle” represents the transportation modes and the term 

“people” represents pedestrians or any other type of evacuees that use paved streets or 

bicycle trails for their evacuation.  

In order to illustrate the data input modeling, a sample GIS network with two 

TAZs (1055 and 1061, which are corresponding with Origin 7405 and 7533, respectively) 

is selected from the Houston, TX (Figure 7). This network is used as an example 

throughout this context. The total population and available vehicles per TAZ were 
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downloaded from CTPP2000 Part 1 Table 47 and Table 74 (U. S. Department of 

Transportation, 2010).  

 

 

Figure 7: Example GIS Network 

Table 2 - Table 6 show the data files of this network that are necessary to run 

DOE_EVAC. All required data fields of these files are summarized and described in 

Table 7. The table can be used as a convenient check list for users to prepare the required 

data for generating the tables of DOE_EVAC. Note that the field DestDist (destination 

distribution at each origin) must be in the Nodes file, but its values can be null. If so, the 

model will automatically generate the destination distribution. 

Other required input parameters are the average public transportation (bus) 

capacity, the average public transportation length, the maximum time that people have to 

wait at transit centers before the bus can depart, and the minimum gap between vehicles 

in queues. The users will have opportunity to input and manipulate these data when they 

start running DOE_EVAC. 
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Table 2: Links 

 

Table 3: Nodes 

 

 
Table 4: Vehicles 

 

Table 5: People 
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Table 6:  Incidents 

 

Table 7: Required Data Fields 

Files Field Names Field Descriptions Field 
Types 

Values 

Nodes ID Node identification Integer  
 

Type Node type Integer 

0: Centroid 
1: Destination 
2: Transit Center 
3: Intersection 

 Green Green time for Type 3 Double 0: if unsignalized 
 Yellow Yellow time for Type 3 Double 0: if unsignalized 
 PeoTime Interarrival time of people for Type 0 String e.g., EXPO(0.01) 

(minutes) 
 VehTime Interarrival time of vehicles for Type 0 String e.g., EXPO(0.04) 

(minutes) 
 People Number of people without vehicle for 

Type 0 Integer  

 Vehicle Number of vehicles for Type 0 Integer  
 

DestDist 
Percentage of vehicle going to 
destinations, generated automatically if 
null or empty 

String e.g., 
DISC(0.5,1,1,2) 

Links ID Link identification Integer  
 Length Length Double  
 Dir Direction Integer 1: one-way 

2: two-way 
 FromID Topological starting node ID Integer  
 ToID Topological ending node ID Integer  
 ABLanes Number of lanes on forward topological 

direction Integer  

 BALanes Number of lanes on backward topological 
direction Integer  

 ABFlowTime Free-flow travel time on forward 
topological direction Double (minutes) 

 BAFlowTime Free-flow travel time on backward 
topological direction Double (minutes) 

 ABSpeed Value or probability distribution of speed 
on forward topological direction String (miles per hour) 

 BASpeed Value or probability distribution of speed 
on backward topological direction String (miles per hour) 

Vehicles Type Vehicle type String e.g., car, truck 
(on road) Length Vehicle length Double  
People (on 
pavement) Type Type String e.g., pedestrian, 

bicycle 
 Speed Value or probability distribution of speed String (miles per hour) 
Incidents FromNode Start node of link Integer  
(Optional) ToNode End node of link Integer  
 StartTime Start time  Double (minutes) 
 CapPercent Available capacity percentage  Double 0 to  100 
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3.2.2 Graphical User Interface 

The GUI or the main application of DOE_EVAC (Figure 8) is designed for the 

users’ ease of use. The File menu contains the Import Data menu item which allows 

users to input the data into the model. The Import Data window contains five dialogs to 

open five data files (Incidents file is optional) and to input four other required parameters 

(Figure 9). The method to import data will be described in section 3.2.3.  

 

 

Figure 8: Evacuation Model GUI 

Once the data from the tables are imported into the model, if the Nodes and Links 

GIS shapefiles are available, DOE_EVAC will display the GIS map docked in the main 

application (Figure 10). DOE_EVAC will ask the users if they would like to create an 

Arena model for the imported network. If the answer is “Yes”, the Arena application will 
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be opened and DOE_EVAC generates an Arena model for the network. Otherwise, the 

menu item Create Model under Simulation menu is enabled (initially, the menu items 

under Simulation and Analysis are disabled) and the users can later on create the Arena 

model. After the Arena model is generated, the menu item Export under the File menu is 

enabled to allow users the ability to access the Arena output files. Note that users can 

only use this menu item after running the Arena model. 

 

 

Figure 9: Import Data Window 
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Figure 10: GIS Network Window 

 

3.2.3 Data Processor 

When the Load Data command (on Import Data window) is issued, the model 

retrieves and processes the imported data (from line 479 to line 852 in Appendix D). The 

model first establishes connections to the data files (from line 813 to line 851). The 

required data to generate an Arena model then are selected from data files by using the 

structured query language (SQL). For example, the syntax to obtain link data is as follow: 

sql = "SELECT Length, Dir, FromID, ToID, ABLanes, BALanes, ABFlowTime, 

BAFlowTime, ABSpeed, BASpeed FROM " &  linksTable  & "" 
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The model stores each data type in one separated enumerable list of which each 

row contains an instance object of the corresponding data type. For instance, the origin 

nodes are stored in OriginList and each row of OriginList is an instance object of Node. 

All of the nodes and links are also added into a graph g to obtain a shortest path 

afterward. The open source library QuickGraph (Microsoft Corporation, 2010) was used 

to calculate the shortest paths in the network. The applied algorithm is Dijkstra’s shortest 

path algorithm (Dijkstra, 1959). The basic command to find shortest path is 

g.ShortestPathsDijkstra(edgeCost, source) where edgeCost contains travel costs (distance 

or flow time) on links and source is the source node.  

The MapWindow (Ames et al., 2010), a GIS open source library, was used to 

draw the transportation network. The code to generate GIS map is from line 2,741 to line 

2,792.  The stored data is now ready to create the Arena model.  

 

3.3 Execution Assumptions 

The following assumptions are made during the execution of the run: 

1. The disaster is eminent (e.g., hurricane). 

2. The geophysical risk or affected area is known at particular time. 

3. Evacuation routes and location of accessible destinations must be indicated 

prior to the evacuation. 

4. Advance warning is issued and evacuees have sufficient preparation time prior 

to the evacuation. 

5. Users (emergency planners) can access a high level of information (disaster, 

network…) 
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6. Evacuees know their destinations prior to the evacuation. 

7. Evacuees owning vehicles take as many vehicles as they own. 

8. Destinations have infinite capacity. 

9. Emergency planners provide enough means of public transportation for 

evacuees who do not have access to private vehicles. 

10. Non-vehicular evacuees who go to transit centers follow their designated 

paths and not “disturb” the other traffic flows. 

11. The initial condition of the simulation is normal daily traffic. 

12. Vehicles traveling inside the network are well behaved and follow all traffic 

rules. That is vehicles only traverse intersections under green traffic signals, 

and vehicles run at assigned speeds, and so forth. 

Assumption (11) can be relaxed so that various levels of the initial condition’s 

effects can be investigated. 

 

3.4 DOE_EVAC Model Logic 

DOE_EVAC has characteristics of microscopic models in terms of keeping track 

of individual vehicles. However, DOE_EVAC does not include the lane-changing 

behavior and the acceleration or deceleration of vehicles. Other than that it behaves 

similarly to that of a microscopic model while it still can simulate a large-scale 

transportation network as macroscopic models (i.e., it has lower computation and 

computer memories requirements). Figure 4 provides an overview of the DOE_EVAC 

model logic including the traffic loading approach and the traffic en route and operation 

control. 
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Walk/Bike to Closest 
Transit Center

Is the Entering 
Entity a Vehicle?Yes

Enough people to fill 
in public vehicles or if people 
have to wait more than max 

specified period?Yes

Route Vehicle Following 
Designated Shortest Path

Find Shortest Path in Term of Flow Time
from Origin/Transit Center/Incident Node to Destination

Terminate Simulation 
When All Entities Exit the System

Start Simulation

Traffic Incidents?

Modify Link’s 
Attributes 

Yes

For Rerouted 
Vehicles

Traffic En Route and 
Operation Control

Find Closest Transit Center

No

Traffic Loading 
Approach

No

Network Operations

Assign Vehicle Attributes 
and Destination

 

Figure 11: DOE_EVAC Model Logic 
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3.4.1 Traffic Generation 

Once the simulation starts, vehicles arrive to the network via origin nodes by 

following user-defined interarrival time expressions. The interarrival time truly is the 

inverse of the traffic loading rate. The loading process stops when all evacuees leave the 

origins. The traffic loading in the DOE_EVAC is very flexible; that is DOE_EVAC 

supports all types of expressions including mathematical expressions and probability 

distributions. Traffic managers/engineers can build their own complicated expressions of 

traffic loading and still can apply DOE_EVAC to run their applications. This ability 

makes DOE_EVAC more advanced than other simulation models of which traffic 

loading is a fixed process with limited allowable expressions.  

Table 8 summarizes available Arena’s probability distribution (Kelton, Sadowski, 

& Sturrock, 2007). Each distribution has one or more expressed ways. For instance, 

exponential distribution can be expressed as EXPONENTIAL(Mean) or EXPO(Mean). 

Descriptions of useful probability distributions can also be found in Law (2007) or 

Montgomery and Runger (2007).  

Table 8: Arena's Probabiliy Distributions 

Distribution Parameters Example 
Beta BETA Beta, Alpha BETA(2, 5) 
Continuous CONT CumP1, Val1,…, CumPn, Valn CONT(0.5, 1, 0.7, 2, 1, 3) 
Discrete DISC CumP1, Val1,…, CumPn, Valn DISC(0.5, 1, 0.7, 2, 1, 3) 
Erlang ERLA ExpMean, k ERLA(2, 3) 
Exponential EXPO Mean EXPO(2) 
Gamma GAMM Beta, Alpha GAMM(1, 2) 
Johnson JOHN Gamma, Delta, Lambda, Xi JOHN(1, 3, 2, 5) 
Lognormal LOGN LogMean, LogStd LOGN(3, 1) 
Normal NORM Mean, StdDev NORM(3, 1) 
Poisson POIS Mean POIS(5) 
Triangular TRIA Min, Mode, Max TRIA(2, 5, 7) 
Uniform UNIF Min, Max UNIF(4, 10) 
Weibull WEIB Beta, Alpha WEIB(2, 5) 
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Each vehicle entering the network is randomly assigned its vehicle type and 

destination. Users are able to modify the vehicle list and select multiple types of vehicles 

such as car, truck, and so forth. The vehicle length associated with the vehicle type is 

used to calculate the occupied spaces on a link and available spaces for incoming 

vehicles. The model randomly picks a destination for each vehicle from the destination 

list. The users also have the option to specify destinations such as shelters for the public 

transportation population. 

Recall that evacuees (“people” type) who use the paved streets or the bicycle 

trails to evacuate are assumed to travel on their designated lanes without disrupting 

vehicular traffic. They move according to an average speed determined and set by the 

users. 

 

3.4.2 Route Choice 

The questions now are what routes the vehicles follow and what traffic algorithm 

drives the route choice mechanism? The en-route assignment mechanism which is a set 

of behavioral rules is applied to determine drivers’ reactions during the evacuation. 

Whenever a vehicle n enters the network, a pre-trip route is selected from the set of 

current shortest routes (Cij) that connect the vehicle’s origin i to its destination j in terms 

of minimum travel time. Since it is possible that more than one route has the same travel 

time, a set of shortest routes is also possible. The behavioral rules for route choice are as 

follows: 

• If Cij contains only one route, vehicle n is assigned to follow that route.  
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• If Cij has more than one element, the route with the shortest distance is chosen 

to be vehicle n’s route. If a few elements have the same shortest distances, the 

route is randomly chosen from these elements. 

Even though each vehicle is assigned a destination, if the shortest path of a 

vehicle to a designated destination contains another destination in that path, the vehicle 

exits the network through the first destination it reaches.  

The route choice of walkers and bikers is practically the same as that of vehicles. 

Walkers and bikers from origin i follow the shortest path to the closest transit center or 

pick-up point in the vicinity of i. However, the shortest path, which is actually the 

shortest distance path, is calculated from the lengths of links connecting origin i to the 

designated transit center instead of the total travel time on the links. 

 

3.4.3 Network Operations 

Figure 12 shows the schematic of a link A-B (A is an upstream node and B is an 

downstream node). A link consists of two parts: the running part and the queue part. The 

queue part is only formed when the ingoing flow exceeds the outgoing flow at the 

downstream node. Thus, the boundary between these two parts varies over time. 

 

Figure 12: Link Diagram 
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In the previous mesoscopic simulation models, the travelling speed of vehicles 

)(kV on a link can be computed by various speed-density relationships (Del Castillo & 

Benitez, 1995; Burghout, 2004): 
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where k is the density on the current running part of the link, V(k) is the speed assigned to 
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The speed V(k) is then used to calculate the link travel time. Two problems of 

formulae (16) – (20) have been pointed out in Burghout (2004): “Firstly, the speed of 

traffic loaded at densities approaching jam density will be approaching 0,…, which 

would mean that link travel times would approach infinity. Secondly, at low densities, the 
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speed has been shown empirically not to depend on density, but to remain around freeV .” 

In other words, one cannot apply these formulae to simulate the extreme slow traffic such 

as queues during traffic jam and there is no need to apply these formulae when link’s 

density is low.  

Burghout (2004) and Burghout et al. (2006) proposed a new generalization speed-

density relationship to overcome those shortcomings: 
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where minV  is the minimum speed, maxk and mink  are the maximum and minimum 

densities where speed is still a function of density, a and b are the user-specified 

calibration parameters. As observed, the authors introduce two new parameters of 

minV and mink . minV  has to be positive to ensure the computation of link’s travel time. The 

new formulation, however, forces the vehicles in the network to always move during the 

simulation. This type of simulation does not represent the movement of vehicles in real 

situations. 

 Thus, in DOE_EVAC, the speed applied for each vehicle entering the running 

part of the link is not computed by following any speed-density relationships, but is a 

generalized speed, which can be in the form of a single value (e.g., free flow speed) or a 

generated value of a statistical distribution (see Table 8). Users can estimate the link 

speed via history data and apply it into their models. If the vehicle speed follows a 

distribution, each vehicle entering the link will be randomly assigned a speed bounded to 
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that distribution. The achieved speed is then used to calculate the time needed for the 

vehicle to reach the back of the queue or the incoming intersection if there is no queue 

ahead (Equation 20). This approach guarantees the natural variability of vehicle speeds as 

well as maintains the integrity of vehicle movement and queuing as in a real-world 

system. 

LinkV
t Link of Space Available
=     (20) 

When the queue begins to dissolve from the link’s downstream, the vehicles in 

queue move through the downstream node to the next link. The queue discipline is first-

in-first-out (FIFO). Figure 13 shows the schematic of node B with two incoming 

approaches (AB and EB) and two outgoing approaches (BD and BC). 

 

Figure 13: Node Diagram 

A vehicle can only enter its next link if the next link has sufficient space and the 

movement is possible, i.e. the intersection is clear for the movement. Since lanes are not 
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investigated separately as in a mesoscopic simulation model, the capacity of a link is the 

space capacity of the whole corresponding street segment. It equals the product of the 

link length and the number of lanes on that link. The space occupied by a vehicle 

includes vehicle length and the user-specified gap between vehicles. This parameter is 

used to estimate the occupied space on a link at an instant of time.  

Again, in previous mesoscopic models, the speed of the vehicle moving from the 

queue of link A-B to other links B-l (where l is node C, D, and E) via node B, BlAB−ω , can 

be calculated using the density upstream 
inBk , the density downstream l

outB
k , the flow 

upstream 
inBq , and the flow downstream l

outB
q  of node B (May, 1990): 

l
outin

l
outin

BB

BB
BlAB kk

qq

−

−
=−ω      (21) 

The moving time through node B then can be determined by dividing the 

intersection travel distance to BlAB−ω . This practice is only possible if one can obtain the 

intersection travel distance. However, the parameter is not always available. Thus, in 

DOE_EVAC, the required time for a vehicle moving through an intersection follows a 

user-specified statistical distribution or can be an average value estimated via history 

data. 

For a signalized intersection, the moving time through the intersection from each 

direction is limited to the green time of that direction. From each direction, three possible 

turning movements of vehicles from link A-B – going straight, turning right and turning 

left – are restricted by the available space of the corresponding downstream links and the 

exit time of the previous vehicles in queue. 
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Note the modeling intersection logic can be extended to accommodate more 

complicated intersection control mechanisms anytime without any difficulty. For now, 

the applied traffic signal control is a pre-timed signal control in which a signal cycle (a 

combination of signal phases for different approaches of through vehicles) follows a 

fixed order of signal phases with fixed interval time lengths (Orcutt, 1993). A signal 

phase in this model includes three intervals: green time, yellow time and red time. Recall 

that “people” are assumed to not interrupt the traffic. Thus, current intersection control 

avoids the pedestrian signal phase. “People” are assumed “protected” from oncoming 

vehicular traffic to prevent crossing conflicts.  

Figure 14 illustrates the possible turns at a four-leg single-lane intersection. Each 

coming approach to the intersection is reserved a separate signal phase. In other words, 

groups of “alike-color turns” move at the same time under the same signal phase. Also, 

the green time is the same for all approaches of a signalized intersection. Discussions on 

how to choose traffic signal green times can be found in Homburger, Hall, Loutzenheiser, 

and Reilly (1996). The DOE_EVAC model allows the users to specify which traffic 

signal green time they wish to incorporate. 

Merging conflict

Crossing conflict

Merging conflict

Crossing conflict

 
 

Figure 14: Four-Leg Single-Lane Intersection 
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For unsignalized intersections, priority is assigned for vehicles approaching 

earlier to the intersections. At unsignalized “T” intersections, vehicles from the secondary 

approach can be emitted into the primary approach if and only if there is sufficient space 

from the primary approach. 

 

3.5 Arena Model – An Output of the DOE_EVAC Model 

This section demonstrates how DOE_EVAC creates an Arena model for the 

example transportation network of Figure 7 and describes the simulation logic in Arena. 

It is included and detailed out for users for their understanding. However, note, users do 

not need to know the Arena and the DOE_EVAC’s GUI language. The utilized Arena 

operands are summarized in Appendix C and the code to create the Arena model is in the 

ArenaModel class (see Appendix D from line 853 to line 2,740.) 

The advantage of DOE_EVAC is that all data in the user supplied tables are 

imported into Arena under a variety of formats such as variables (listed in Variable 

module of Basic Process panel), expressions (in Expression module of Advanced Process 

panel) or as direct inputs. Thus, users can make changes to any of the Arena parameters 

directly within the Arena model to either update the data or test alternative scenarios. 

Current Arena parameters designated to allow designs of experiments are revealed in 

Table 9. 

The difference between the Arena variable and the Arena expression formats is 

that variable format only accepts single numeric values as parameters while the 

expression format accepts all types of expressions including probability distributions 

(e.g., 2 + Process Time, or EXPO(2). Thus, if users would like to change the variable  
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Table 9: Parameters Designated for Designs of Experiments 

Format Parameter Description 
Variable Public Transportation Size Maximum number of people can be transported 

by public transportation vehicle at each transit 
center. 

 Max Wait Time Maximum time people have to wait at transit 
centers before the bus departs. 

 Gap Minimum gap between two vehicles in queue 
 Vehicle Route Time Vehicle moving time through intersection 
 Green Time Green time at intersection 
 Warm Up Time To initialize network traffic condition 
Expression Speed Speed on link of Vehicle entities 
 People Speed Speed of People entities 
Direct Input Interarrival Time  Interarrival time at origin Create Module 

 

parameters to a distribution form, they must define the tested parameter as an expression 

parameter in the source code (the syntax is in Equation 22 and the code is from line 2,580 

to line 2,587) or in the Arena model (move parameters from Variable module to 

Expression module); and run the experiments directly in Arena.  

expression = expressionModule (Expression Name, Value)  (22) 

Each node in the network is associated with a station in Arena. There are four 

types of stations: origin, destination, transit center, and intersection. A link is modeled as 

a queue buffer of the downstream node station. For example, in Figure 13, Station B has 

two queue buffers AB and EB; and the capacity of the buffers are the available space 

capacities of link AB and EB. Link BC is the queue buffer of Station C and link BD is the 

queue buffer of Station D. Each queue buffer has a variable to keep track of its available 

capacity.  

Figure 15 – Figure 20 depicts the overall design structures for all types of nodes 

as well as traffic signal control at intersections. These structures will be described in the 

following sections. Note that the Arena module names end with the modeled node’s ID.
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Figure 15: An Origin Station 

 

Figure 16: A Destination Station 
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Figure 17: A Transit Center Station 

 

 

Figure 18: An Intersection Station - Incident on Incoming Link 
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Figure 19: An Intersection Station - More than One Incoming Approach 

 

Figure 20: An Intersection Station - One Incoming Approach 

 

 

Figure 21: A Traffic Signal Control at Signalized Intersection 
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At each origin, two Create modules are generated: one for the vehicle and one for 

the people. The code to generate the Create modules is from line 2,456 to line 2,469. 

Figure 22 shows the Arena modules used to generate arrivals of the People and the 

Vehicle entities at origin node 7533. The Max Arrivals are the user-supplied number of 

people without vehicles in the “Create People” module and the user-supplied number of 

vehicles in the “Create Vehicle” module. Once the number of generated entities reaches 

Max Arrivals, the create process stops. 

     

Figure 22: Arrivals 

Currently, the percentages of people and vehicle types are randomly generated by 

the software in the form of cumulative discrete distributions (line 2,589 to line 2,611). 

Figure 23 shows that 48% of the People are Pedestrian while 52% are Bicycle; and 50% 

of the Vehicle are Car, 20% are Truck, and 30% are SUV. However, if other data is 

available to the users, the users can change them directly in the model. Note that data is 

imported into the program and numbered in Arena following their natural orders as 

created/arranged in the data files. For example, the order of People entity in the People 

file is Pedestrian and Bicycle, while their indexes in Arena are 1 and 2, respectively.  



 

 62

     

     

Figure 23: Assign Types to People and Vehicle Entities 

More attributes are then assigned by the DOE_EVAC to the corresponding 

entities via Arena. Each People entity has an entity picture (attribute name: 

Entity.Picture), a closest transit center (Transit Center), and a travel time to the closest 

transit center (People Travel Time); while each Vehicle entity has an entity picture 

(Entity.Picture), a length (Vehicle Length), a destination (Vehicle Destination), and a 

sequence (Entity.Sequence) (from line 2,481 to line 2,543). Recall that the Vehicle 

Destination can be either specified by users (DestDist field in the Nodes table) or 

generated randomly by DOE_EVAC. Figure 24 shows that 35% of Vehicle entities go to 

destination 1777, 19% to destination 1782, 7% to destination 1776, and 39% to 

destination 1780.  

     

Figure 24: Vehicle Destination 
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DOE_EVAC keeps track of each Vehicle entity’s path via Arena’s Sequence 

module (from line 2,646 to line 2,685). Figure 25 displays the shortest path between 

origin 7533 and destination 1777 and reveals how the model routes vehicles to the next 

station. Whenever a Vehicle entity reaches a station (except destination station), the 

model searches for the entity’s Next Station (Entity.PlannedStation) in the assigned 

sequence and sends the entity to the new station under allowable conditions. The 

conditions consist of (i) sufficient space in the queue buffer of the next station and (ii) a 

green traffic light in entity’s moving direction for signalized stations. The entity is held in 

queue until those two conditions are satisfied (Figure 26). 

    
 

Figure 25: Vehicle Sequence and Route 

     

Figure 26: Vehicle Waiting to Move at Unsignalized and Signalized Stations 
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The People entities are then routed to the closest transit center (see line 2,710 to 

line 2,728 to see how to find closest transit center). At each transit center, the entity waits 

for a signal before it can be loaded onto a public transportation Bus entity. Each transit 

center has one unique signal and the value of the signal is the transit center ID. The signal 

is only released when the number of entities equals the public transportation capacity 

(Public Transportation Size) or when the last entity has to wait more than maximum 

allowable time (Max Wait Time). Syntax for the waiting condition at transit station 15931 

is “NQ (Hold People for Signal 15931.Queue) >= Public Transportation Size || (TNOW - 

People Arrival Time to Transit> Max Wait Time)” 

   

    

 

Figure 27: People Waiting for Public Transportation to Depart 

Whenever an entity enters an intersection station, the available capacity of the 

entered queue buffer is recalculated: 

Available Capacity from i to j = Available Capacity from i to j – Gap – Vehicle Length (23) 

The Vehicle entity continues moving to the end of the station with the moving 

(delay) time equal to the available capacity divided by the link speed and the numbers of 

lanes (Figure 28). It is because the vehicles are assumed to fill the link simultaneously 

across all lanes and front to back.  
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Figure 28: Vehicle Running on Link 

Vehicle entities then wait for clear conditions to move to the next station (Figure 

26). The traffic signal is generated for signalized intersections via the Create module 

(Figure 29). The signal phase length includes both green time and yellow time. Traffic 

signals at an intersection are stored in an array variable Traffic Signal, with each cell of 

the array representing the signal status of each incoming approach (from line 2,199 to 

line 2,359). For example, the three-leg intersection 1779 with only two incoming 

approaches (the third incoming approach starts from a destination 1782 and since no 

traffics can be generated from a destination, the approach is eliminated) has an array 

variable of size 2. Whenever one signal phase turns green (indicated by value 1) or 

yellow (0), all other signal phases become red (-1) (Figure 30). 

 

Figure 29: Create Traffic Signal 
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Figure 30: Manage Traffic Signals at Three-Leg Intersection 

At destinations, the People entities leave the Bus (Figure 31). All statistics such as 

the number of people and the vehicles that left the system, total evacuation time, and so 

forth are recorded via Record modules (from line 1,379 to line 1,464).  

 

Figure 31: People Get off Public Transportation 

Figure 32 presents the simulation run setup. The default terminating condition of 

evacuation model is when all people and vehicles egress the network. However, the users 

can terminate the simulation run at any time and view statistics such as how many 

people/vehicles are still in the network, how many public transportation vehicles have 

loaded, and so forth. The default number of replications is 20 (the minimum sample size 

for output data to be tested statistically). 
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Figure 32: Default Simulation Run Setup 

 

3.6 User Interruption 

The DOE_EVAC model supports user interruptions to the simulation via Arena’s 

Run Controller (Figure 33) so that changes of factors can be made to the input. For 

example, should the public transportation capacity change, the users can (1) temporarily 

suspend the simulation, (2) modify the capacity, and then, (3) continue the simulation run 

with the new capacity level. The Run Controller commands are found in Appendix C. 
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Figure 33: Arena's Run Controller 

3.7 Output  

The output data of the DOE_EVAC model are: 

1. Total evacuation time: represented by Total Evacuation Time. 

2. Total flow on each link (total number of vehicles): expressed as Total 

Flow (Node) to (Node). For example, Total Flow 1779 to 7404 indicates 

the total flow on the link of which the FromID is 1779 and the ToID is 

7404. 

3. Average flow on each link (vehicles/time unit): expressed as Average 

Flow (Node) to (Node), for example, Average Flow 1779 to 7404. The 

default time unit is minute, which is specified in Arena’s Run Setup Base 



 

 69

Time Unit (see Figure 32). The user can change the base time unit in Run 

Setup as needed. 

4. Average time in queue on each link (time unit): expressed as Queue 

Name.Queue.Wait Time, for example, Vehicles from 1779 Waiting to 

Traverse 7404.Queue.Wait Time. 

5. Number of vehicles and number of people arrive at each destination: 

expressed as Vehicles Out (Node) and People Out (Node), for example, 

Vehicles Out 1777 and People Out 1777.  

6. Total number of vehicles and people exit the network: represented by 

Total Vehicles Out and Total People Out, respectively. 

These output data are measures of effectiveness. The total evacuation time is the 

criteria to compare scenarios or evacuation plans. The flow and time in queue on links are 

used to determine link utilization and identify traffic congestion or bottlenecks on the 

network. The numbers of vehicles and people arriving at each destination can aid the 

emergency planners to prepare land facilities and services for evacuees. DOE_EVAC 

intentionally creates the Arena model that will generate the reports containing these 

output data at the end of the simulation runs. The DOE_EVAC output data can be found 

in the User-Specified and Queues reports. Figure 34 and Figure 35 illustrate a page of the 

User-Specified report and a page of Queues report, respectively that include DOE_EVAC 

output data. Other DOE_EVAC output data are found in Appendix E. The Queues report 

show the average, the maximum, and the minimum waiting time of each queue; and the 

half-width is the 95% confidence-interval half width of the observed values. 
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User Specified 

Evacuation Model Replications: 1

Replication 1 Time Units:Start Time: Stop Time:0.00  83.50 Minutes

Counter 

Count Value

People Out 1776  155.00

People Out 1777 16.0000

People Out 1780  160.00

People Out 1782 0

Total Flow 15930 to 7611 1.0000

Total Flow 15931 to 1781 16.0000

Total Flow 15932 to 7611 0

Total Flow 1778 to 1781 203.00

Total Flow 1778 to 7407  2,435.00
Total Flow 1778 to 7534 0

Total Flow 1779 to 7404  0

Total Flow 1779 to 7611  1,546.00

Total Flow 1781 to 1778  8.0000

Total Flow 1781 to 7535  211.00

Total Flow 7404 to 1779  1,725.00

Total Flow 7404 to 7534  0

Total Flow 7405 to 15932  0

Total Flow 7405 to 7404  179.00

Total Flow 7405 to 7406  333.00

Total Flow 7405 to 7407  203.00

Total Flow 7407 to 1778 203.00

Total Flow 7533 to 7532 622.00

Total Flow 7533 to 7534 3,973.00

Total Flow 7533 to 7535 3,190.00

Total Flow 7534 to 1778 2,427.00

Total Flow 7534 to 7404 1,546.00

Total Flow 7535 to 1781 0

Total Flow 7611 to 15932  1,547.00

Total Flow 7611 to 1779  0

Total People Out  331.00

Total Vehicles Out  8,500.00

Vehicles Out 1776  2,576.00

Model Filename: Page of2 8D:\My Documents\ACADEMIC\Dissertation\GIS Network Evacuation Model  

Figure 34: An Arena User Specified Report 
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Queues 

Evacuation Model Replications: 1

Replication 1 Time Units: Start Time: Stop Time:0.00  83.50 Minutes

Vehicles from 1779 Waiting to Traverse 7611.Queue 

Minimum MaximumHalf WidthAverageTime 

Waiting Time  0.4742  0  1.22550.053175234

Minimum MaximumHalf WidthAverageOther 

Number Waiting  8.7786  0  55.00001.53459

Vehicles from 1781 Waiting to Traverse 1778.Queue 

Minimum MaximumHalf WidthAverageTime 

Waiting Time  0.4819  0.0987  1.1379(Insufficient)

Minimum MaximumHalf WidthAverageOther 

Number Waiting  0.04617097  0  2.0000(Insufficient)

Vehicles from 1781 Waiting to Traverse 7535.Queue 

Minimum MaximumHalf WidthAverageTime 

Waiting Time  0.1382  0  0.6486(Insufficient)

Minimum MaximumHalf WidthAverageOther 

Number Waiting  0.3493  0  23.0000(Insufficient)

Vehicles from 7404 Waiting to Traverse 1779.Queue 

Minimum MaximumHalf WidthAverageTime 

Waiting Time  0.1355  0  0.69770.024820634

Minimum MaximumHalf WidthAverageOther 

Number Waiting  2.8001  0  36.00000.556010723

Model Filename: Page of6 21D:\My Documents\ACADEMIC\Dissertation\GIS Network Evacuation Model  

Figure 35: An Arena Queue Report 

For the user’s convenience, all output data of all replications of (1) and (2) are 

recorded into Arena output data files: TotalEvacuationTime.dat, and 
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Flow(Node)to(Node).dat (e.g., Flow1779to7404.dat). The TotalEvacuationTime.dat file 

contains n Total Evacuation Time for n simulation replications (one data point for each 

replication). The Flow(Node)to(Node).dat contains the vehicle count during the 

simulation run.  

Note that the Arena output data files can only be opened via Arena’s Output 

Analyzer. If the user would like access and manipulate the output data, the user must first 

export the Arena output files into usable files (e.g., .txt, .dax, etc.) via Arena Output 

Analyzer. The export function can be found via File → Data Files → Export; and the 

Output Analyzer export data window is shown below: 

 

Figure 36: Data Exported via Arena Output Analyzer 

If the user would like to obtain the vehicle count over each time unit period of the 

simulation run (e.g., each minute), DOE_EVAC can export the data of the usable 

Flow(Node)to(Node) files above to the desired data via Export menu item in File menu of 

DOE_EVAC. 
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CHAPTER 4 

MODEL VALIDATION 

4.1 Validation Methods 

One of the most difficult tasks facing a simulation analyst is whether the 

developed simulation model is valid. Unlike other computer programs, a simulation 

model is never absolutely validated since it is only an approximation to a real-world 

system. Validation can only be judged “relative to those measures of performance that 

will actually be used for decision making” (Law, 2007).  

Generally, a simulation model can be validated from three different perspectives – 

the modeler, the technical evaluator, and the ultimate user – via three questions (Pegden, 

Shannon, & Sadowski, 1995): 

• “Does the model adequately represent the real-world system (conceptual 

validity)? 

• Are the model-generated behavioral data characteristic of the real-world 

system’s behavioral data (operational validity)? 

• Does the simulation model’s ultimate user have confidence in the model’s 

results (believability)?”  

To answer these questions, a variety of validation tests (see Pegden et al., 1995) 

can be performed on the basis of continuous interactions among perspective users during 

the model development process. They are classified into three major categories: 

reasonableness tests (e.g., continuity, consistency, degeneracy, and absurd conditions), 

model structure and data tests (e.g., face validity, parameters and relationships, structural 

and boundary verification, and sensitivity analysis), and model behavior tests (e.g., 
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behavior comparison, symptom generation, behavior anomaly, and behavior prediction). 

In all of the above, the behavior comparison test is the most widely used test to study the 

model behavior in relation to the behavior of the referent system (Law, 2007); and it is 

applied in this research to compare the simulation output to the referent system output. 

The behavior comparison test is typically conducted via the confidence interval statistical 

procedure for two samples, which is described below. 

Let “1” represent the real-world system and “2” be the corresponding simulation 

model, where ( )ii nX  and ( )ii nS are the mean and the standard deviation of a parameter of 

interest (e.g., total evacuation time) of system i (i = 1, 2), in is the size of the data samples 

i, and f̂ is the estimated degrees of freedom. Then, 
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The 100(1-α)% two-sided confidence interval (C.I.) with α significance level for 

the difference between means is  
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where 
21,ˆ α−f

t  is the critical t value at f̂ degrees of freedom. 

If the confidence interval contains zero, the observed difference between the two 

systems is said to be not statistically significant at level α. Then, simulationist can 
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conclude that the simulation model is mimicking the behavior of the parameter of interest 

and the model is therefore, credible (validated). 

The simulationist can also conduct the behavior comparison test via an equivalent 

procedure – the hypothesis testing on the difference in means. The hypothesis test yields 

the same conclusions as those in the confidence interval statistical procedure 

(Montgomery & Runger, 2007). The null hypothesis for two samples in the hypothesis 

test is 210 : µµ =H . A t-statistic 0t  is used to test the hypothesis: 
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If 
21,ˆ021,ˆ αα −−

<<−
ff

ttt , the null hypothesis is not rejected and the difference 

between two systems is not statistically significant. Consequently, the model is validated. 

In the case that only one observed data point (usually the deemed “true” mean) 

exists for the real-world observation (typically, the true standard deviation does no exist), 

a 100(1-α)% two-sided C.I. with α significance level is obtained for the simulation 

output as: 

( ) ( )
n

nStnX
n

2

21,1 α−−
±     (28) 

where n is the number of simulation replications, 
21,1 α−−n

t  is the critical t value at (n-1) 

degrees of freedom, and ( )nX  and ( )nS are the mean and the standard deviation of n 

replications of the parameter of interest. If the confidence interval contains the real-

world’s observed mean, the C.I. it is said to “cover” the true mean at level α and the 

simulation model is considered validated and representative of the real-world system. 
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Again, the simulationist can use the hypothesis test to conduct the behavior 

comparison test for this case. The null hypothesis is 00 : µµ =H  and the t-statistic 0t  is: 

( )
nS

nX
t

/
0

0
µ−

=      (29) 

If 
21,10

21,1 αα −−−−
<<−

nn
ttt , the null hypothesis is not rejected. The simulation 

output mean is not statistically significant different from the true mean; and thus, the 

model can be considered a representative of the real-world system. 

 

4.2 Validation Methodology 

Since the DOE_EVAC model will be used to simulate various types and sizes of 

networks, the basic logic utilized in DOE_EVAC is validated against a smaller real-world 

system. Note that a larger network is a cluster of multiple smaller networks and these 

sub-networks are connected to each other smoothly (e.g., a destination node of a sub-

network A can be an origin node of a neighbor sub-network B). In addition, the required 

operational functions for the larger network are exactly the same as for its sub-networks 

(e.g., operations of nodes or intersection management). Thus, if the basic logic of 

DOE_EVAC can accurately simulate the logic of smaller networks, larger networks built 

on these validated smaller networks will also be valid. This approach is called piece-wise 

method (Kron, 1963; Chusanapiputt & Phoomvuthisarn, 2000). 

The essential steps to perform the basic model validation logic for the 

DOE_EVAC model are listed as follows: 

1. Collect data on the real-world system’s parameters of interest and control 

variables (i.e., the total evacuation time, the traffic flows, the number of 
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vehicles arriving to destinations from each origin, the intersection green and 

yellow time)  

2. Use the collected data (e.g., interarrival times at origin nodes) to identify the 

probability distributions for the DOE_EVAC model  by following four steps 

(Law, 2007): 

a. Test the data for independence (e.g., scatter plot, correlation plot, and 

run tests) 

b. Hypothesize the distribution family using its descriptive statistics  

(e.g., summary statistics of mean, standard deviation) and its shape 

(graphical representations such as histogram and box plots) 

c. Estimate the parameters for the distributions of (b) (e.g., maximum-

likelihood estimators) 

d. Test the fit (heuristic procedures such as P-P plot and Q-Q plot; 

goodness-of-fit tests such as Chi-Square test and Kolmogorov-

Smirnov test) 

3. Use the distributions of Step 2 as the input to calibrate the data files for the 

DOE_EVAC model 

4. Run the DOE_EVAC model to generate the Arena simulation model 

5. Run the simulation model for 20 replications and retrieve the Arena output 

data files 

6. Calculate the confidence intervals to compare the simulation output 

parameters with the referent observed data 
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4.3 Validated Network, DOE_EVAC Results, and Comparison 

No data on large-scale transportation evacuations can be found in the public 

domain. However, comparisons between the DOE_EVAC model’s output and congested 

real-world traffic data can be used to investigate model behavior. The University of 

Oklahoma’s campus corner (Figure 37) is chosen as the “real-world” system to validate 

the model’s behavior. The traffic on West Boyd Street (W. Boyd), between South 

University Boulevard (S. University) and Asp Avenue (Asp) is investigated. The 

comparative parameters of interest are the total “evacuation” time (time between the first 

arrival to the network and the last vehicle exiting from the network), the traffic flows on 

each link, and the number of vehicles leaving the network at each destination. 

 

Figure 37: Map of the University of Oklahoma Campus Corner 

For this system, the streets are represented or converted to the applicable network 

with nodes and links as shown in Figure 38. There are 7 origins (Nodes 1, 3, 5, 7, 9, 11, 

13), 7 destinations (Nodes 2, 4, 6, 8, 10, 12, 14), 3 intersections (Nodes 15, 16, 17 in 

which nodes 15 and 16 are signalized), and 0 transit center. 4 links inside the network are 

investigated. The link’s name consists of two nodes, for example link between node 15 

and node 17 has name of “15-17”. Other links act as dummy links since the vehicles were 

B
uchanan 
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only counted when they reached the intersections. However, the dummy links are 

necessary since the model requires that a node can only be of one type (either an origin, a 

destination, an intersection, or a transit center). Note that since there are parking slots 

along W. Boyd in the direction from Asp to S. University, and the vehicles can come in 

and out of the parking slots, all vehicles that parked were considered as “leaving” the 

network via node 10 and all vehicles that went out of the parking slots were considered 

arriving to the network via node 11.  

 

 

Figure 38: OU Campus Corner Network of Links and Nodes 

The validation methodology was applied as follows:  

Step 1: 

Traffic on W. Boyd between S. University and Asp was video-monitored during 

peak hours from 4pm to 6pm on June 22nd, 2010 when traffic is congested. Pedestrian 

traffic was negligible and not disruptive to the traffic flow (as assumed in the model). 

Incoming traffic data were collected every minute at each origin. The vehicles arriving 

during the observing period were traced until they exited the network; and the time the 

last traced vehicle exited the network was attained. 
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Step 2 and 3: 

The scatter plot of Xi versus Xi+1 were first drawn to test the independence of the 

obtained data at each origin. Figure 39 shows the scatter plot of number of arrivals per 

minute at origin 7. The plot verifies the independence of data since there is no obvious 

pattern appearing in the plot. The results are the same for the number of arrivals per 

minute at all other origins (i.e., independent).  
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Figure 39: Scatter Plot of Number of Arrivals per Minute at Origin 7 

The next steps are hypothesizing the family using shape, estimating the 

parameters, and testing the fit (see section 4.1). Here, the Arena Input Analyzer was used 

to fit the independent data into probability distributions. Refer to Arena’s probability 

distribution notations in Table 8. Table 10 exhibits the fitted probability distributions of 

the number of arrivals per minute at each origin node. These arrival processes (number of 

arrivals) were then used to obtain the interarrival times at the origins (Table 10). It is 

well-known that if an arrival process follows a Poisson distribution with rate λ, its 

corresponding arrival times (time between arrivals) is exponential with mean 1/λ.  
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Table 10: Arrival Processes and Interarrival Times at Origin Nodes 

Node Arrival Process
(min) 

Interarrival Time
(min) 

1 POISSON(12.5) EXPO(0.06) 
3 POISSON(0.9) EXPO(1.11) 
5 POISSON(2.8) EXPO(0.36) 
7 POISSON(14.5) EXPO(0.07) 
9 POISSON(2.9) EXPO(0.34) 

11 POISSON(0.01) EXPO(7) 
13 POISSON(4.5) EXPO(0.22) 

 

Each vehicle entering the network was traced in order to determine the percentage 

of vehicles going to each destination. Table 11 reveals the percentage of traffic going 

from each origin to each destination and these values are used to compute the destination 

distribution from each origin in Table 12. The last column of Table 11 contains the total 

number of vehicles entering the network from each origin during the entire observation 

period. These values and the values of Table 12 will be used as the number of “vehicle” 

in the Vehicle column and the destination distribution in the DestDist column of the 

Nodes table (see Table 14), respectively. 

Table 11: Traffic Percentages from Origin to Destination 

To Node 
From Node 2 4 6 8 10 12 14 Total 

1 1.29% 9.03% 72.90% 1.94% 4.52% 10.32% 0.00% 1782 
3 0.00% 11.11% 22.22% 0.00% 0.00% 44.44% 22.22% 103 
5 0.00% 0.00% 25.00% 28.57% 0.00% 0.00% 46.43% 322 
7 4.14% 7.59% 0.00% 4.14% 5.52% 2.07% 76.55% 1667 
9 0.00% 6.90% 68.97% 0.00% 3.45% 3.45% 17.24% 333 
11 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 11 
13 4.44% 4.44% 37.78% 0.00% 4.44% 0.00% 48.89% 517 
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 Table 12: Destination Distributions at Origin Nodes 

Node Cumulative Discrete Distribution 
1 DISC(0.01,1,0.1,2,0.83,3,0.85,4,0.9,5,1,6,1,7) 
3 DISC(0,1,0.11,2,0.33,3,0.33,4,0.33,5,0.78,6,1,7) 
5 DISC(0,1,0,2,0.25,3,0.54,4,0.54,5,0.54,6,1,7) 
7 DISC(0.04,1,0.12,2,0.12,3,0.16,4,0.21,5,0.23,6,1,7) 
9 DISC(0,1,0.07,2,0.76,3,0.76,4,0.79,5,0.83,6,1,7) 

11 DISC(0,1,0,2,0,3,0,4,0,5,0,6,1,7) 
13 DISC(0.04,1,0.09,2,0.47,3,0.47,4,0.51,5,0.51,6,1,7) 

 

During the observation period, the network was congested and vehicles ran much 

slower at (e.g., 10mph to 20mph). Thus, the link speed of 15mph was applied for all links 

(see Table 15).  

The signal phase for each direction on W. Boyd at both intersections 15 and 16 

are 43 s including green and yellow time (as in the model). The green time is 40 s and the 

yellow time is 3 s. There is one signalized left turn (left turn that has an arrow signal) at 

each intersection: from W. Boyd to Asp (South) and from W. Boyd to S. University 

(North); and both left turn times are 10 s. These values are used as the Green and Yellow 

time in the Nodes table (see Table 14). 

The means and the standard deviations of the link flows (vehicles per minute) are 

in Table 13. The flows were collected at the entrances of the links. The corresponding 

output values produced by DOE_EVAC will be compared to these link flows. 

Table 13: Link Flows (Vehicles per Minute) 

Link 15-17 17-16 16-17 17-15 
Mean 16.10 15.20 14.80 13.90 
Standard Deviation 5.04 4.76 3.33 3.70 

 

The time the last traced vehicle went out of the network (versus entering at 

4:00pm) is 2 hours 3.13 min (123.13 min).123.13 min represents the real-world system’s 
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observed or “true” total “evacuation” time; and its corresponding parameter in 

DOE_EVAC is Total Evacuation Time. The Total Evacuation Time is the parameter of 

interest produced by DOE_EVAC for comparing with the observed corresponding 

parameter, the true total “evacuation” time. If 123.13 min is contained within the 95% 

C.I. of the simulated Total Evacuation Time, DOE_EVAC will be statistically valid.  

Table 14 - Table 16 contain the calibrated data for the validated network. The 

tables are ready to be imported in DOE_EVAC to generate the Arena evacuation model. 

Note that since pedestrian is negligible, the People table is left blank. 

Table 14: DOE_EVAC Nodes Table of Validated Network 

 

Table 15: DOE_EVAC Links Table of Validated Network 
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Table 16: DOE_EVAC Vehicles Table of Validated Network 

 

 

Step 4: 

DOE_EVAC was run for the validated network. Figure 40 and Figure 41 show the 

GIS map and the Arena model of the validated network generated by DOE_EVAC, 

respectively.  

 

Figure 40: GIS Map of Validated Network 
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Figure 41: Arena Model of Validated Network 



 

 86

Step 5 and 6: 

The Arena model was run for 20 replications. Table 17 reveals the Total 

Evacuation Time for each simulation run and the 95% C.I.  for all 20 replications. The 

95% C.I. was calculated by following Equation 28. It is obvious that the 95% C.I., which 

ranges from 118.62 to 123.94, covers the true total “evacuation” time of 123.13. 

Table 17: Simulated Total Evacuation Time 

 

 

Given the real world’s observed (true) value for the mean link flow ( )nX  on link 

15-17 as 16.10 vehicles/min and its standard deviation ( )nS  as 5.04 vehicles/min (see 

Table 13), Table 18 presents the 95% C.I. of the difference between the real-world’s 

observed value (true value) of average link flow on link 15-17 and the simulated link 

flow (20 replications). The 95% C.I. was calculated following Equation 26. 19 out of 20 

Replication Total Evacuation Time 
1 126.94 
2 128.29 
3 118.49 
4 123.03 
5 119.85 
6 126.29 
7 115.28 
8 116.29 
9 120.03 

10 116.73 
11 118.73 
12 120.29 
13 117.59 
14 136.73 
15 122.29 
16 120.73 
17 123.73 
18 114.19 
19 113.42 
20 126.74 

Mean 121.28 
95% C.I. (118.62, 123.94) 
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(95%) of confidence intervals for the link 15-17 contain 0 (“True” in Coverage column). 

As expected, 95% of the observed difference between the real-world value of 

performance and the model output is not statistically significant.  

Table 18: 95% C.I. of Difference between True and Simulated Flows of Link 15-17 

j Run n ( )jj nX  ( )jj nS  ( ) ( )jj nXnX −  Confidence 
Interval Coverage 

1 Replication 1 123 15.04 5.98 1.06 1.06 ± 1.40 True 
2 Replication 2 113 16.40 6.05 -0.30 -0.30 ± 1.45 True 
3 Replication 3 118 15.52 6.66 0.58 0.58 ± 1.52 True 
4 Replication 4 114 16.18 4.84 -0.08 -0.08 ± 1.28 True 
5 Replication 5 119 15.24 6.54 0.86 0.86 ± 1.50 True 
6 Replication 6 107 17.37 4.99 -1.27 -1.27 ± 1.32 True 
7 Replication 7 113 16.13 4.86 -0.03 -0.03 ± 1.28 True 
8 Replication 8 109 16.67 4.10 -0.57 -0.57 ± 1.20 True 
9 Replication 9 109 16.78 5.26 -0.68 -0.68 ± 1.35 True 

10 Replication 10 116 15.83 6.31 0.27 0.27 ± 1.47 True 
11 Replication 11 118 15.58 6.14 0.52 0.52 ± 1.44 True 
12 Replication 12 115 15.75 5.40 0.35 0.35 ± 1.35 True 
13 Replication 13 113 16.35 5.86 -0.25 -0.25 ± 1.42 True 
14 Replication 14 136 13.38 7.46 2.72 2.72 ± 1.56 False 
15 Replication 15 105 17.38 5.04 -1.28 -1.28 ± 1.33 True 
16 Replication 16 120 15.53 7.25 0.57 0.57 ± 1.60 True 
17 Replication 17 120 14.97 6.22 1.13 1.13 ± 1.45 True 
18 Replication 18 113 16.42 5.05 -0.32 -0.32 ± 1.31 True 
19 Replication 19 110 16.66 4.05 -0.56 -0.56 ± 1.19 True 
20 Replication 20 119 15.32 5.62 0.78 0.78 ± 1.37 True 

 

Table 19 shows the 95% C.I. of the difference between the real-world’s observed 

(true) value of average link flows versus simulated link flows on link 17-16. The real-

world’s true values for link flow mean and standard deviation are 15.20 and 4.76 

vehicles/min, respectively (see Table 13). Similar to that of the link 15-17, 19 out of 20 

(95%) confidence intervals for the link 17-16 contain 0. Thus, 95% of the observed 
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difference between the real-world’s true value and the model output is not statistically 

significant.  

Table 19: 95% C.I. of Difference between True and Simulated Flows of Link 17-16 

j Run n ( )jj nX  ( )jj nS  ( ) ( )jj nXnX −  Confidence 
Interval Coverage 

1 Replication 1 123 14.12 5.72 1.08 1.08 ± 1.34 True 
2 Replication 2 113 15.35 5.72 -0.15 -0.15 ± 1.37 True 
3 Replication 3 118 14.62 6.36 0.58 0.58 ± 1.44 True 
4 Replication 4 114 15.29 4.68 -0.09 -0.09 ± 1.22 True 
5 Replication 5 119 14.33 6.32 0.87 0.87 ± 1.43 True 
6 Replication 6 106 16.33 4.78 -1.13 -1.13 ± 1.26 True 
7 Replication 7 114 15.00 4.92 0.20 0.20 ± 1.25 True 
8 Replication 8 110 15.49 4.21 -0.29 -0.29 ± 1.17 True 
9 Replication 9 110 15.73 5.31 -0.53 -0.53 ± 1.32 True 

10 Replication 10 116 14.97 6.05 0.23 0.23 ± 1.41 True 
11 Replication 11 118 14.69 5.81 0.51 0.51 ± 1.36 True 
12 Replication 12 115 14.79 5.12 0.41 0.41 ± 1.28 True 
13 Replication 13 113 15.37 5.68 -0.17 -0.17 ± 1.36 True 
14 Replication 14 136 12.61 7.03 2.59 2.59 ± 1.47 False 
15 Replication 15 106 16.45 5.25 -1.25 -1.25 ± 1.33 True 
16 Replication 16 121 14.50 6.96 0.70 0.70 ± 1.52 True 
17 Replication 17 120 14.04 5.96 1.16 1.16 ± 1.38 True 
18 Replication 18 113 15.36 4.85 -0.16 -0.16 ± 1.25 True 
19 Replication 19 110 15.69 3.90 -0.49 -0.49 ± 1.13 True 
20 Replication 20 119 14.42 5.38 0.78 0.78 ± 1.30 True 

 

Table 21 and Table 22 reveal the 95% C.I. of the difference between the real-

world true value of average link flow versus simulated link flow on link 16-17 and 17-15, 

respectively. The mean and standard deviation of the true values are in Table 13. The 

model generates the link flows accurately with 100% (20 out of 20) confidence intervals 

containing 0 for both links. Thus, 100% of the observed difference between real-world 

value and the model output is not statistically significant. The validity of the model on 

generating traffic flow is confirmed. 
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Table 20: 95% C.I. of Difference between True and Simulated Flows of Link 16-17 

j Run n ( )jj nX  ( )jj nS  ( ) ( )jj nXnX −  Confidence 
Interval Coverage 

1 Replication 1 123 13.68 5.53 1.12 1.12 ± 1.16 True 
2 Replication 2 120 13.87 4.60 0.93 0.93 ± 1.03 True 
3 Replication 3 114 14.42 4.34 0.38 0.38 ± 1.01 True 
4 Replication 4 121 13.76 5.11 1.04 1.04 ± 1.10 True 
5 Replication 5 117 14.08 3.72 0.72 0.72 ± 0.91 True 
6 Replication 6 119 13.87 4.47 0.93 0.93 ± 1.01 True 
7 Replication 7 116 14.29 4.13 0.51 0.51 ± 0.97 True 
8 Replication 8 117 14.32 5.61 0.48 0.48 ± 1.19 True 
9 Replication 9 119 14.00 5.10 0.80 0.80 ± 1.10 True 
10 Replication 10 115 14.60 3.91 0.20 0.20 ± 0.94 True 
11 Replication 11 119 13.98 4.55 0.82 0.82 ± 1.02 True 
12 Replication 12 118 13.90 4.24 0.90 0.90 ± 0.98 True 
13 Replication 13 118 14.14 4.29 0.66 0.66 ± 0.99 True 
14 Replication 14 115 14.72 3.86 0.08 0.08 ± 0.93 True 
15 Replication 15 123 13.80 5.56 1.00 1.00 ± 1.16 True 
16 Replication 16 115 14.43 3.91 0.37 0.37 ± 0.94 True 
17 Replication 17 115 14.64 4.18 0.16 0.16 ± 0.98 True 
18 Replication 18 114 14.56 3.64 0.24 0.24 ± 0.90 True 
19 Replication 19 114 14.38 4.28 0.42 0.42 ± 1.00 True 
20 Replication 20 115 14.46 3.94 0.34 0.34 ± 0.94 True 

 

Table 21: 95% C.I. of Difference between True and Simulated Flows of Link 17-15 

j Run n ( )jj nX  ( )jj nS  ( ) ( )jj nXnX −  Confidence 
Interval Coverage 

1 Replication 1 124 12.90 5.29 1.00 1.00 ± 1.15 True 
2 Replication 2 123 12.85 4.88 1.05 1.05 ± 1.10 True 
3 Replication 3 114 13.61 4.00 0.29 0.29 ± 1.00 True 
4 Replication 4 122 12.84 4.99 1.06 1.06 ± 1.12 True 
5 Replication 5 118 13.32 3.71 0.58 0.58 ± 0.95 True 
6 Replication 6 123 12.82 4.86 1.08 1.08 ± 1.09 True 
7 Replication 7 116 13.62 4.08 0.28 0.28 ± 1.00 True 
8 Replication 8 117 13.68 5.22 0.22 0.22 ± 1.17 True 
9 Replication 9 119 13.38 4.90 0.52 0.52 ± 1.11 True 
10 Replication 10 115 13.72 3.47 0.18 0.18 ± 0.93 True 
11 Replication 11 119 13.32 4.32 0.58 0.58 ± 1.03 True 
12 Replication 12 121 12.93 4.34 0.97 0.97 ± 1.03 True 
13 Replication 13 118 13.46 4.02 0.44 0.44 ± 0.99 True 
14 Replication 14 115 14.07 3.64 -0.17 -0.17 ± 0.95 True 
15 Replication 15 123 13.05 5.06 0.85 0.85 ± 1.12 True 
16 Replication 16 115 13.70 4.00 0.20 0.20 ± 1.00 True 
17 Replication 17 115 14.06 3.97 -0.16 -0.16 ± 0.99 True 
18 Replication 18 114 13.75 3.21 0.15 0.15 ± 0.89 True 
19 Replication 19 114 13.69 4.14 0.21 0.21 ± 1.02 True 
20 Replication 20 115 13.73 3.65 0.17 0.17 ± 0.95 True 
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Table 22 displays the 95% C.I. (computed by following Equation 28) for the 

number of vehicles leaving each destination. It is obvious that all the confidence intervals 

contain the true value. Thus, the model simulates the numbers of vehicles leaving each 

destination correctly. 

Table 22: 95% C.I. for Number of Vehicles Leaving Each Destination 

Destination True Value Simulated Mean 95% C.I. 
2 111 103 103 ± 10 
4 339 347 347 ± 36 
6 1796 1802 1802 ± 64 
8 192 191 191 ± 21 

10 203 201 201 ± 10 
12 271 264 264 ± 42 
14 1740 1743 1743 ± 57 

 

All of the parameters of interest have passed their validity tests. In conclusion, the 

DOE_EVAC’s basic model logic is statistically valid. Based on the validation of the sub-

unit logic used to build network logic, the DOE_EVAC simulation models should 

accurately simulate larger networks. 
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CHAPTER 5 

DOE_EVAC FOR DESIGNS OF EXPERIMENTS 

Selecting which traffic parameters to control in evacuation planning and analysis 

is still a research area. Some traffic engineers and managers focus on how to control the 

green time and red time of traffic signals to allow the most vehicles to traverse through 

the intersections, but some concentrate on how to control evacuees’ departure time in 

each zone to minimize traffic congestion. However, to scientifically investigate which 

input traffic parameters are important and how they effect the output measures of 

performance, designs of experiments must be applied to come up with the most 

reasonable conclusions. The DOE_EVAC model is conveniently designed for planners to 

apply designs of experiments analysis by making important traffic parameters readily 

accessible and easy to change. This chapter demonstrates how users can use those traffic 

parameters to perform designs of experiments and to draw statistically significant 

conclusions on the model output. However, this chapter is not meant to be exhaustive and 

is only included to show an example of how a design of experiments can be performed 

using DOE_EVAC. 

 

5.1 Designs of Experiments in Simulation 

Basically, “the input parameters and structural assumptions composing a model 

are called factors, and the output performance measures are called responses” (Law, 

2007). The factors are changed decisively so that we may observe and identify the 

reasons for changes observed in the responses. The simulation is run at various values, or 

levels, of the factor.  
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Table 23 shows the design matrix for three tested factors. Each factor has two 

levels of interest (indicated as “–” and “+“). This type of design is a 2k factorial design. 

 
Table 23: Design Matrix for the 2k Factorial Design 

Factor Combination Factor 
(Design Point) 1 2 3 Response 

1 – – – R1 
2 – – + R2 
3 – + – R3 
4 – + + R4 
5 + – – R5 
6 + – + R6 
7 + + – R7 
8 + + + R8 

 

Two types of effect are obtained based on the responses: the main effect (measure 

the average change in the response due to change from “–“ level to “+” level of the 

factor) and the interaction effect (measure the average change in the response due to 

change from “–“ level to “+” level of a combination of factors). The main effect is 

computed as follow: 

12 −

−+ ∑∑ −
= k

ii

i

RR
e      (30) 

where k is the total number of factors, i is the factor index (i = 1, 2. …k) , iR+  are the 

values of responses associating with “+” level of factor i, and iR−  are the values of 

responses associated with “–” level of factor i. 

In order to calculate the interaction effect, one must first obtain the sign (“–“ or 

“+”) of crossed-responses of the factors of interest. Table 24 shows the sign of crossed-

responses attained for evaluating two-factor interaction effect. 
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The interaction effect is then evaluated for two factors, three factors, and then all 

the way up to k factors: 

( ) ( )

1

 ... x  x  ... x  x 

... 2 −

−+ ∑∑ −
= k

jiji

ij

RR
e     (31) 

Table 24: Crossed-Response Sign of Factors for the Interaction Effect Computation 

Factor Combination Factor 
(Design Point) 1 2 

Sign of  
Crossed-Response Response 

1 – – + R1 
2 – – + R2 
3 – + – R3 
4 – + – R4 
5 + – – R5 
6 + – – R6 
7 + + + R7 
8 + + + R8 

 

where k – total number of factors, i, j… – the factor index (i, j… = 1, 2. …k and i ≠j) , 

( ) ... x  x jiR+  – values of crossed-responses associating with “+” level of combination of 

factors i, j…, ( ) ... x  x jiR−  –  values of crossed-responses associating with “–” level of 

combination of factors i, j…. 

To find out whether the effects are statistically significant, the method of 

independent replications is applied for the expected response at each of the factor levels. 

Applying this method, multiple independent replications are generated for each factor 

combination. The multiple values of responses are then utilized to obtain multiple 

independent values of each effect (see Table 25).  

A 100(1-α)% two-sided confidence interval must be generated for each effect 

with α significance level (same as Equation 26): 

( ) ( )
n

nStnX
n

2

21,1 α−−
±     (32) 
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where n is the number of simulation replications, 
21,1 α−−n

t  is the critical t value at (n-1) 

degrees of freedom, and ( )nX  and ( )nS are the mean and the standard deviation of the 

investigated effect, respectively.  

Table 25: Multiple Replication Responses and Effects 

Factor Combination Factor Responses 

(Design Point) 1 2 3 1  n 

1 – – – 1
1R  … nR1  

2 – – + 1
2R  … nR2  

3 – + – 1
3R  … nR3  

4 – + + 1
4R  … nR4  

5 + – – 1
5R  … nR5  

6 + – + 1
6R  … nR6  

7 + + – 1
7R  … nR7  

8 + + + 1
8R  … nR8  

 Effect of Factor 1 1
1e  … ne1  

 Effect of Factor 2 1
2e  … ne2  

 Effect of Factor 3 1
3e  … ne3  

 Effect of Factor 1 & 2 1
12e  … ne12  

 Effect of Factor 1 & 3 1
13e  … ne13  

 Effect of Factor 2 & 3 1
23e  … ne23  

 Effect of Factor 1, 2, & 3 1
123e  … ne123  

 

If the confidence interval of a particular effect does not contain zero, the effect is 

statistically significant. In other words, a change in the factor(s) causing this effect 

absolutely generates a change in the output. For example, if the confidence interval of the 

main effect of factor 1 does not contain zero, this effect is statistically significant; and 

thus, a change in levels of factor 1 will significantly change the performance measures of 
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the output. Otherwise, there is no statistical evidence that the effect is actually present 

(Law, 2007). 

 

5.2 A DOE_EVAC Application – An Example of Design of Experiments  

This section demonstrates how the DOE_EVAC model supports the performance 

of designs of experiments. Again, the parameters available for designs of experiments are 

in Table 9. The GIS network example in Figure 7 is utilized again to investigate the 

traffic measures. The map is redisplayed here for convenience. 

 

 

Figure 42: Example GIS Network 

There are 2 origins, 2 transit centers, 4 destinations, 2 unsignalized intersections 

(node 7404 and 7534), and 7 signalized intersections. The total number of vehicles 

participating in the evacuation is 8,500 and the total number of people without vehicles is 

331. A pilot run is invoked to obtain the pilot Total Evacuation Time of the network to 
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roughly estimate the warm up time for the designs of experiments. The Total Evacuation 

Time of the pilot run is 1 hr 22 min (82 min).  

The following factors and their levels are chosen for the designs of experiments: 

1. Interarrival times at the origins: exponential distribution (–) versus interarrival 

time mean (+), which is a constant.Table 26 displays the interarrival time at 

the origins used for the designs of experiments demonstration. 

Table 26: Designs of Experiments Interarrival Time at Origins 

Levels Origin Exponential (–) Mean (+)
7533 People  EXPO(0.025) 0.025 
  Vehicles EXPO(0.03) 0.03 
7406 People  EXPO(0.04) 0.04 
  Vehicles EXPO(0.01) 0.01 

 

2. Warm up period: empty and idle (–) versus double of the pilot run time (+), 

which is 0 min versus 164 min, respectively. 

3. Green time management at intersection: 0.5 min (–) versus 1 min (+) 

Note that the loading rate at each origin is a stochastic parameter. In designs of 

experiments, the tendency of using deterministic values as “+” and “-“ values is 

extremely high since deterministic values are controllable by the analyst. However, there 

are situations that the values of factors follow probability distributions or time-dependent 

mathematical expressions. The developed model is advantageous in that it allows users to 

investigate both deterministic and stochastic factors. None of today’s evacuation models 

have this flexibility. 

The design matrix is in Table 27. 20 replications were run for each of 8 factor 

combinations (called scenarios). The output values of Total Evacuation Time were used 

as the response to compare among alternative scenarios. 
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Table 27: Designs of Experiments Design Matrix 

Factor 
Scenario 

Interarrival Time (1) Warm Up Time (2) Green Time (3) 
1 Exponential (–) 0 (–) 0.5 (–) 
2 Exponential (–) 0 (–) 1 (+) 
3 Exponential (–) 164 (+) 0.5 (–) 
4 Exponential (–) 164 (+) 1 (+) 
5 Mean (+) 0 (–) 0.5 (–) 
6 Mean (+) 0 (–) 1 (+) 
7 Mean (+) 164 (+) 0.5 (–) 
8 Mean (+) 164 (+) 1 (+) 

 

Table 28 reveals the 95% C.I. of the effects. As expected, all of the confidence 

intervals contain 0. It means the main effects and interaction effects among investigated 

factors are statistically significant. All three factors – the interarrival time, the simulation 

warm up time, and the intersection green time – affect the Total Evacuation Time; and 

they do interact with each other. It is suggested that the emergency planners must choose 

the traffic management strategies carefully in order to have a fast and safe evacuation. 

Table 28: 95% C.I. of Effects 

Effect Mean 95% C.I. 
Effect of Factor 1 -0.09 (-0.15, -0.02) 
Effect of Factor 2 0.15 (0.15, 0.15) 
Effect of Factor 3 0.43 (0.41, 0.45) 
Effect of Factor 1 and 2 -0.15 (-0.15, -0.15) 
Effect of Factor 1 and 3 0.13 (0.11, 0.14) 
Effect of Factor 2 and 3 -0.15 (-0.15, -0.15) 
Effect of Factor 1, 2, and 3 0.15 (0.15, 0.15) 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

 
6.1 Summary 

In this research, a stochastic simulation model, DOE_EVAC, has been developed. 

The new model provides the ability to (i) effectively simulate alternative modes of 

transportation during evacuations, (ii) support designs of experiments, thus, provide users 

(e.g., emergency planners and traffic engineers) with means to investigate “what-if” 

scenarios with sound statistical analysis capabilities, and (iii) allow the users to build and 

execute these models without having to know complex simulation or coding language.  

The DOE_EVAC model was developed using VB.Net and consists of the model’s 

GUI, data accessing and processing, and Arena models and Arena outputs. DOE_EVAC 

model logic follows a mesoscopic simulation logic. DOE_EVAC has characteristics of 

microscopic models in terms of keeping track of individual vehicles, except DOE_EVAC 

does not include the lane-changing behavior and the acceleration or deceleration of 

vehicles. Other than that, it behaves similarly to that of a microscopic model while it still 

can simulate a large-scale transportation network as macroscopic models (i.e., it has 

lower computation and computer memories requirements).  

The DOE_EVAC model is also a discrete-event simulation model in which each 

event occurs at a real-valued time point. The model skips inactive period and speeds up 

the simulation time, thus reduces waiting time to obtain results. This advantage enables 

users to anticipate emergency situations ahead of time and adjust the evacuation 

strategies effectively. 
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DOE_EVAC’s credibility and validity have been confirmed via the behavior 

comparison validation test. DOE_EVAC is now ready to create quality stochastic 

simulation models to support designs of experiments on transportation evacuation 

planning. 

 

6.2 Contributions 

The DOE_EVAC model bridges the gaps of current simulation transportation 

evacuation modeling approaches by the ability to: 

• Treat alternative vehicle modes differently based on their characteristics 

(lengths). 

• Allow evacuees to select their own destinations, while allowing users to 

implement pre-defined evacuation routes. 

• Warm up the system in order to provide realistic initial conditions of the 

traffic network (avoid empty-and idle initial conditions). 

• Implement and analyze various traffic management strategies, for example 

intersection control (adjust green, red, and yellow time at intersections). 

• Reroute traffic if critical infrastructure is damaged. 

• Allow users to interrupt the simulation for the purpose of changing: 

– Entity attributes such as vehicle capacity. 

– Traffic management strategies. 

DOE_EVAC is also capable of supporting designs of experiments and confidence 

interval generation by the ability to perform multiple simulation runs and obtain 

important traffic performance measures so that alternative plans/strategies can be 
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analyzed to identify the “best” evacuation plan. No existing evacuation model provides 

users with this capability. 

In addition, DOE_EVAC is user-friendly in developing transportation evacuation 

models. That is users do not need to know any specialized computer language or data 

structure in order to set up input data and run DOE_EVAC. Data is manipulated in table 

formats and there is no need to reformat data to run the model as in other evacuation 

models. Furthermore, the model has lots of flexibility in its input modeling so that the use 

of probability distributions and mathematical expressions can be incorporated. Finally, 

users have the ability to alter parameters anytime without having to reload the data files. 

 

6.3 Future Research 

Interests in transportation evacuation simulation have increased broadly over the 

last few decades. Even though DOE_EVAC has contributed significantly to this research 

and application area via its advanced features, there remain potential fields for future 

research:  

1. Allowing decision makers to route traffic based on decision trees (Winston, 

2003) generated via their own judgments. By applying this method, one will 

estimate the vehicle’s utility value of improved travel time when changing 

from one route to another based on the vehicle’s predefined utility function. 

The utility function is generated via the users’ objectives. For example, the 

users can set the utility of improving more than 60 minutes of travel time as 1, 

the utility of improving 0 minute travel time as 0, and so on. The users then 

specify the route choice’s behavioral rules, e.g. if the vehicle’s utility value of 
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improved travel time is greater than 0.3, the vehicle will switch to the new 

route. Even though this approach is quite subjective, it will be supportive for 

the emergency planner to assess the traffic conditions and thus, to provide 

evacuees with traffic commands to safely speed up the evacuation process. 

2. Investigating different incidents such as vehicles running out of gas (vehicular 

blocking). 

3. Implementing pedestrian traffic signal at intersections. 

4. Providing visual effects via traffic animation. 

5. Creating an algorithm to effectively update the vehicle shortest paths during 

evacuations. Currently, the only time DOE_EVAC recalculates the vehicle 

shortest paths is when a link is not available due to an infrastructure failure. 

Even though this approach is acceptable for congested traffic during 

evacuations when the traffic flow times do not fluctuate greatly, a new 

algorithm is needed to find shortest paths under varying traffic flow times. 

Note that generating shortest paths based on current flow time is a NP-hard 

problem. Thus, updating the vehicle shortest paths too frequently is ineffective 

and unnecessary.  
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APPENDIX A 

GLOSSARY  

Term Description 

A-B 
flow/direction/lanes 

Forward topological flow/direction/lanes between two nodes A 
and B of bidirectional road segment 

B-A 
flow/direction/lanes 

Backward topological flow/direction/lanes between two nodes 
A and B of bidirectional road segment 

Census block Smallest unit of geography used by US Census Bureau to 
tabulate population 

Census tract 
A unit of geography that coincides with city or town limits. 
Census tracts can be subdivided into census block groups or 
census blocks. 

Congestion  Occurs when travel demand is much greater than the capacity 
of the link or node, i.e. the traffic is at a complete standstill. 

Contraflow 
Reverse the direction of some inbound lanes to direct evacuees 
out of risk area. Contraflow increases the outbound capacity 
and improves the traffic flow. 

Density Number of travel units (vehicles or passengers) that traverse a 
given facility in a unit distance 

Designs of 
Experiments  

Methods to conduct experiments to investigate and draw valid 
conclusions on how a system or a process works 

Destination (D) The place to which evacuees travel. It is usually a geographical 
point located outside of risk area. 

Discrete-event 
simulation 

Simulation type in which state variables of the system change 
at discrete or countable points in time. 

Flow Number of travel units that traverse a given facility in a unit 
time 

Free flow speed The speed when there are no constraints placed on a vehicle by 
other vehicles on the link 

Geographic 
information system 
(GIS) 

Present real-world objects (such as roads or land use) with 
digital data. GIS provides users with graphical presentation, 
spatial analysis, and geographic database management. 

Link Unidirectional road segment connecting nodes. Each link has a 
starting node and an ending node. 

Node The jointing of traffic streams such as intersections, on/off 
ramps, origins, and destinations. 
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Term Description 

O-D matrix A table containing the travel demands (number of vehicles) 
from each Origin to each Destination of the network. 

Origin (O) Departure location of evacuees. It is usually the center of the 
geographical unit. 

Signal phase 
A group of intervals (green, red, and/or yellow) that is assigned 
to an independent traffic movement or combination of 
movements through a signalized intersection 

Traffic Analysis 
Zone (TAZ) 

A unit of geography specifically used in transportation 
planning. The size of a TAZ is usually less than 3000 people, 
but it can vary.  
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APPENDIX B 

TRANSPORTATION PLANNING APPLIED IN EVACUATION 

A classical urban transportation planning model includes four steps: trip 

generation, trip distribution, modal split, and traffic assignment. The results produced by 

this model are deterministic. Thus, application of urban transportation planning to 

simulation evacuation is extremely limited. The following sections represent the latest 

advanced urban transportation planning steps. 

 

B.1 Trip Generation 

The goal of trip generation is to estimate the number of trips deploying from 

origins (via trip production procedure) and the number of trips arriving to destinations 

(via trip attraction procedure) in each subarea of the transportation network, i.e. the traffic 

analysis zone (TAZ). Trip production procedures address the descriptions of the 

population distribution and socioeconomic characteristics, vehicle utilization, and land 

use across the origin nodes; while trip attraction procedures address the descriptions of 

the location and intensity of land use across the destination nodes. Some factors 

influencing trip generation include: personal characteristics (gender, age, income, and 

occupation), household characteristics (household size, vehicle availability, number of 

children and senior in the household, and total income), zonal characteristics (land use, 

residential density, and accessibility) and transportation network characteristics (level of 

service) (Caliper Corporation, 2005). Additional factors must be considered under 

evacuation conditions. For example, some people refuse to evacuate (to protect their 

properties) or some evacuate even though threats are not directly exposed to them. 
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Sources and approaches to obtain these data are enormous, but the most accurate 

and reliable data source is the (online) database of the U.S. Census Bureau 

(http://www.census.gov/). Data are now attainable via table and geographic information 

system (GIS) formats, which support graphical presentation, spatial analysis, and 

geographic database management. In addition, to providing a convenient analysis access 

for transportation specialists, the U.S. DOT maintains the Census Transportation 

Planning Package (CTPP) which associates census data with elaborate transportation 

analysis levels (from national to local level) at aggregate scale 

(http://www.fhwa.dot.gov/ctpp/). Other large data sources include the Public Use 

Microdata Sample (http://www.census.gov/acs/www/Products/PUMS/) in disaggregate 

scale and the National Personal/Household Transportation Survey 

(http://www.fhwa.dot.gov/policy/ohpi/nhts/index.htm). In case no data at local level are 

available, previous models of same or similar geographical area, or information provided 

by the National Cooperative Highway Research Program (NCHRP) Report 365, Travel 

Estimation Techniques for Urban Planning, can be applied (Barton-Aschman Associates 

& Cambridge Systematics, 1997). 

The challenge is how to extract the obtained data into usable trip productions and 

trip attractions. Conventional urban transportation planning specifies three primary 

methodologies to estimate trip productions from provided data: cross-classification, 

logistics regression and discrete choice (Caliper Corporation, 2005). 

• Cross-classification methods: Cross-classification methods separate 

populations into categories based on mixture of socioeconomic characteristics 

such as household size, number of available vehicles, income, occupation, and 
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so forth. Each category associates with one trip rate, which is estimated based 

on history/survey data. The previously achieved average values of the 

classification parameters of each TAZ in the study area then are empirically 

compared to those in cross-classification categories to obtain trip production 

for corresponding TAZ. 

• Logistics regression methods: History data are used to formulate a linear 

statistical relationship between population characteristics (independent 

variables) and number of possible trips (dependent variable). With y – 

dependent variable, xi – independent variables, and a, bi – variable 

coefficients, the regression model can be expressed as ∑+=
i

ii xbay . 

Population characteristics xi of each TAZ then are plugged in the regression 

model to generate number of trips y. 

• Discrete choice methods: Since users alternatively choose whether to make 

the trip or not, the binary logit of discrete choice methods can be employed to 

estimate average trip production. Binary logit methods assume that each 

alternative associates with a utility and the chosen is based on the importance 

of consequent utility. The probability that an individual user n decides to 

travel, i.e. choice 1, can be expressed as: 

)( 011
1)1(

nn xxn e
P −−+

= β  

where β is the vector of coefficients estimated by the model, nx1  is the vector 

of explanatory variables in person n’s utility of making the trip and nx0  is the 

vector of explanatory variables in person n’s utility of not making the trip. 
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Note that )( 01 nn xx −β is the relative utility function of making the trip; the 

higher the utility, the higher the probability that user will decide to travel. The 

disaggregate probabilities of individual users then are aggregated to derive the 

proportion of the population that chooses to travel. 

In order to apply conventional urban trip generation methodologies into 

evacuation conditions, past empirical evidence must be retrieved via surveys or 

emergency management observations/judgments under similar estimation and planning 

purposes. If no history data exists, one must be able to reasonably estimate trip rates by 

making the most of present on-hand data. Southworth (1991) proposes a rational 

approach by first calculating the average population assigned to an origin node at the 

starting time of evacuation based on populations at home, school, work, and special 

facilities such as hospitals, correctional facilities, large retail centers, and recreational 

centers. The vehicle utilization and driver availability then are collaborated with 

populations to find the number of vehicles or trips that will be loaded onto the network. 

In general, emergency planners can apply the same methodologies to estimate trip 

attractions. Since evacuees’ destinations, such as their relative’s houses, hotels, and so 

forth, are totally different from their daily trips of which collection data are available, it is 

difficult for the planners to predict evacuees’ final destinations and number of trips 

coming towards each TAZ. However, by providing evacuation routes and establishing 

situ-shelters, planners can somehow portion populations, guide evacuees to designated 

destinations and reasonably estimate the final trip attraction for each TAZ. 
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B.2 Trip Distribution 

The objective of trip distribution is to predict the spatial pattern of trips between 

origins and destinations. The most popular method to forecast the number of trips 

ijT traveling from origin i to destination j is a gravity model (Sheffi, 1985): 

• If the sum of trips produced by each origin is constrained to be equal 

forecasted total production for each origin: 

( )
( )∑

=

zzoneall
izz

ijj
iij dfA

dfA
PT

  

 

• If the sum of trips attracted to each destination is constrained to be equal 

forecasted total attraction for each destination: 

( )
( )∑

=

zzoneall
zjz

ijj
jij dfP

dfP
AT

  

 

where iP stands for the number of trips located at i, jA  are number of trips attracted to 

destination j, and ( )ijdf  is the function of travel cost between origin i and destination j. 

The function of travel cost, also called friction factor function, ( )ijdf  are best known 

under a negative exponential form ijcae .− of which a is a calibrated travel cost-decay 

parameter. It can be represented under matrix form, which contains travel cost for each i, 

j pair as well. 

Again, evacuation planners can significantly impact evacuees’ destination choices 

via well-publicized evacuation routes, shelters, and provided network guidance systems. 

The idea is that more and more personal route guidance systems such as GPS will tend to 

be used during the evacuation. Utilizing these systems for communicating to evacuees 
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possible evacuation routes will not only influence evacuees’ decisions, but also will 

generate a sequence of predictable traffic distributions as a result of that action. 

 

B.3 Modal Split 

Same as trip production, modal split or mode choice analysis estimates the 

number of trips emitting from origin nodes, except that modal split focuses on the 

separation of trips into different transportation modes. Typically, transportation modes 

are characterized by vehicle type, capacity, size, and speed. Despite driver’s behaviors, 

different transportation modes produce dissimilar traffic pattern including the occupation 

of spaces, possible accelerating speeds, fuel consumption, and so forth. Consequently, 

people’s choice of transportation modes will ultimately influence traffic conditions and 

total evacuation costs. 

Data sources for mode choice are quite the same as those for trip production. 

Since mode choice of an evacuee is based on his/her ability to access a means of 

transportation, data such as vehicle occupancy, household sizes or other socio-economic 

characteristics are quite valuable. 

During evacuation, there are two possible mode choices for evacuees. Obviously, 

people who own cars will tend to prefer to drive their own cars than to use public 

transportation for a good reason protecting their property. However, older cars are not 

always reliable; some people may choose to abandon their cars and take public 

transportation instead. People who have no or little access to personal transportation will 

have to use public/mass transportation. Hence, planners must estimate the vehicle 



 

 114

availability across affected zones and ensure the arrangement of public transportation to 

support evacuees. 

Methodologies such as cross-classification, logistics regression or discrete choice 

models can also be applied to extract data into utilizable mode trips. The most common 

methods for modal split are two choice models: multinomial logit (MNL) and nested logit 

(NL). The MNL model calculates the number of mode trips by finding the probability 

( )iPn  that a person n will choose alternative mode i (Ben-Akiva & Lerman, 1985): 

( ) ( )
∑
∈

===

n

jn

in

Cj

V

V

nn e
eiYprobiP  

where nY  stands for the value of the response variable for individual n, nC  is the set of 

alternatives in person n’s choice set and inV  is the measurable component of the utility of 

alternative i for individual n. Since the utility is not always known with certainty, the 

utility is treated as random variable. An independently and identically distributed Gumbel 

error term inε is added to inV  to obtain the random utility inU :  

ininin VU ε+=  

The probability ( )iPn  is reformed as follow:  

( ) ( )
∑
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µ

 

where µ is a positive scale parameter of the Gumbel distribution of inε . 

The NL model investigates the choice among alternatives that are categorized into 

different groups. The below figure illustrates an example of NL model structure. NL 
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structure can contain multiple levels. Each group at the lowest level can be considered as 

a ML model. 

 

The probabilities of the bottom elements are computed as the product of the 

conditional and marginal probabilities. For example, 

( ) ( ) ( )tionTransportaPublicPtionTransportaPublicBusPBusP _*_|=  

Note that the accessibility of evacuees to public transportation can require extra 

modes such as walk, bike, and drive. The planners have to take this fact into 

consideration during modeling process since usage of these modes can impact traffic 

conditions, for example walking evacuees with their belongings can pour into street and 

block flow of traffic. 

 

B.4 Traffic Assignment 

Established as a key element in traffic management, traffic assignment problem is 

defined as the allocation of the flows to transportation routes based on factors that impact 

route choice. Basically, the mission is to find the link flows given the transportation 

network, the link performance functions and the O-D trip rate matrix. The resulting flows 

are then used to evaluate the transportation network via a set of computed performance 

measures. The ultimate goal of traffic assignment is to stabilize the transportation system 

at an equilibrium point of travelers’ moving decisions and levels of congestion. 

Traffic assignment concept can be enclosed in some classifications: 

Truck 

Personal_Vehicles Public_Transportation 

SUV Light_Rail Bus 
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• Stochastic/Deterministic: Stochastic approach involves using random 

processes for the travelers’ route choice behavior while the deterministic 

approach does not. 

• Static/Dynamic: Static approach deals with steady-state O-D matrix, which is 

the result of fixed link flows and the independence of link operation to 

connected links. In contrast, time-dependent O-D matrix is utilized in dynamic 

approach, which is more realistic and certainly more complex. 

• Path-based/Link-based: Path-based algorithm allows travelers to select routes 

based on attributes of entire path. This process requires enumeration of all 

used paths and excessive computer cost. On the contrary, travelers choose the 

next link to travel on at each decision point in link-based models. However, 

link choice can be cyclic and travelers’ myopic behavior can direct to 

impractical choices (Toledo, Koutsopoulos, Ben-Akiva, & Jha, 2005). 

• Flow-based/Vehicle-based: Flow-based models update the network flows in 

fixed time interval. Vehicle-based models advance flows on a continuous 

time-line basis (Koohbanani, 2004). 

The most advanced and popular traffic assignment methods are user equilibrium 

and system optimum. These methods will be briefly reviewed in following section. 

Descriptions of other traffic assignment methods such as all-or-nothing, STOCH or 

Dial’s assignment, incremental assignment, and capacity restraint can be found in Sheffi 

(1985). 

The User Equilibrium (UE) assumes that all network users have perfect traffic 

information and their behaviors are identical. Furthermore, it assumes that users choose 
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routes via selfish tactic to minimize their own travel costs and they always make correct 

route choice decisions. The equilibrium criterion, proposed by Wardrop (1952), is 

satisfied when no individual users can unilaterally improve their travel time by using 

alternative paths. In other words, all utilized paths for users departing from the same 

origin to the same destination eventually generate the same minimum costs. UE problem 

can be solved by employing Frank-Wolfe’s convex combination algorithm (Frank and 

Wolfe, 1956) or its improved version PARTAN (LeBlanc, Helgason, & Boyce, 1985). 

The Stochastic User Equilibrium (SUE) is a generalization of the UE definition. It 

has the same philosophy as that of UE with respect to the optimized unique travel cost of 

each traveler. However, more enhanced and realistic than deterministic UE (which only 

exploits higher utilization routes and completely ignores lower utilization routes), SUE 

makes the most of both lower and higher utilization routes. In addition, SUE assumes that 

users have imperfect information about network paths and they perceive network 

attributes diversely. Equilibrium is reached when no individual user believes that he/she 

can improve travel time using alternative paths (Sheffi, 1985). SUE can be solved by 

applying the Method of Successive Averages (MSA) proposed by Daganzo and Sheffi 

(1977). This method guarantees a convergent solution. 

While UE and SUE take into consideration the benefit of individual users by 

minimizing their travel costs, these methods do not necessarily optimize the total travel 

cost in the system and they are “nonmonotonicity with respect to the network’s capacity” 

(Jahn, Möhring, Shulz, & Stier-Moses, 2005). Hence, although UE and SUE are the most 

preferred traffic assignment methods, one can alternatively opt to combine UE/SUE with 

System Optimum (SO). SO autonomously serves best to traffic managers since its target 
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is to minimize total travel cost in the system. It is well-known that a few users will 

experience excessive travel costs under SO traffic patterns in order to obtain global 

optimum. In other words, if those users change routes to reduce their unilateral travel 

costs, the total travel cost definitely increases and the system goes far away from global 

optimal state. The question here is how much sacrifice does a user agree to make? 

Jahn et al. (2005) propose a route guidance called Constrained System Optimum 

(CSO) that “adopt a system-optimum approach, but honor the individual needs by 

imposing additional constraints to ensure that drivers are assigned to “acceptable” paths 

only”. CSO is in fact a compromise between UE and SO objectives. The idea is to 

enforce constraints on paths to bind the maximum travel cost for all users in the network. 

By restricting the unfairness - the ratio of the traverse time of the recommended path to 

that of the shortest path - to be smaller than a tolerance factor, CSO guarantees a close 

optimum to that of SO and also provides fairness (in terms of individual cost and limits) 

among network users as well. 

The notion of exploring the reconciliation between UE and SO has also been 

employed by Zhenlong and Xiaohua (2008). By introducing the concept of satisfactory 

degree, the authors apply game theory to assess different balance levels between UE and 

SO objectives. The only concern about this modeling as well as Jahn et al.’s modeling 

(2005) is that only static traffic flows are utilized to analyze the network performance. 

Even though Sheffi et al. (1982) indicates that the traffic flows may reach steady state 

during heavy congestion conditions such as evacuation, not considering dynamics flow in 

the model diminishes its realistic representation of the real-world evacuation process. 
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Static traffic assignment models deal with constant link flows, link traverse time 

and fixed O-D matrix over the planning duration (Koohbanani, 2004). However, since 

static traffic assignment ignores the fact that link travel time is flow dependent and link 

flow is time dependent, it is inadequate for modeling real-time applications. Applying 

dynamic traffic assignment can prevail over this issue; and dynamic traffic assignment 

has been one of the main topics of current traffic assignment research since a precise 

formulation has not been established yet. Few examples of research efforts include 

studying time dependent traffic assignment and formulate dynamic UE and SO under 

congestion by Peeta and Mahmassani (1995), or developing a simulation-based dynamic 

traffic assignment model by applying MSA for time-dependent path flows and space-time 

queuing approach by Mahut (Florian, 2005), and so forth. 
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APPENDIX C 

ARENA CONFIGURATIONS 

C.1 Operands 

Basic Process 

Module Operand Name Prompt Text Names of Module in Model 
Assign Name Name Assign Attributes 

Assignments Type Type Assign Available Capacity and 
Current Station 

  VName Variable Name Assign Green Light 
  Row Row Assign People 
  Column Column Assign People Arrival Time 
  AName Attribute Name Assign People Travel Time 
  TypeName Entity Type Assign Public Transportation 

  PicName Entity Picture Assign Public Transportation Batch 
Size 

  OtherName Other Assign Public Transportation 
Sequence 

  Value New Value Assign Traffic Signal 
      Assign Vehicle 
      Assign Vehicle Sequence 
      Calculate Available Capacity 
      Change Signal Light to Yellow 
Batch Name Name Group People 
  Type Type   
  Batch Size Batch Size   
  Save Criterion Save Criterion   
  Rule Rule   

  Representative 
Entity Type 

Representative 
Entity Type   

Create Name Name Create People 
  Entity Type Entity Type Create Traffic Signal 
  Interarrival Type Interarrival Type Create Vehicle 
  Expression Expression   
  Units Units   

  Batch Size  Entities per 
Arrival   

  Max Batches  Max Arrivals   
  First Create First Create   
Decide Name Name From Origin _ Is Entity Vehicle? 
  Type Type From Where to Here? 
  Percent True Percent True Traffic Phases? 
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Module Operand Name Prompt Text Names of Module in Model 
  If If   
  VNamed Named   
  Row Row   
  Column Column   
  ANamed Named   
  TypeNamed Named   
  Is Is   
  Value Value   
Conditions N Percent True Percent True   
  N If If   
  N VNamed Named   
  N Row Row   
  N Column Column   
  N ANamed Named   
  N TypeNamed Named   
  N Is Is   
  N Value Value   
Dispose Name Name Dispose Duplicate Entity 

  EntStats Record Entity 
Statistics Dispose Traffic Lights 

      Exit via Destination 
Record Name Name Destination Statistics 
  Type Type Number of People Out 
  Attribute Attribute Name Number of Vehicles Out 
  Value Value Record End Time 
  Counter Name Counter Name Record Flow from Station to Station 
  Tally Name Tally Name  
Separate Name Name Duplicate to Create Scan Entity 
  Type Type People Get off Public Transportation 

  Cost Percent Cost to 
Duplicates   

  Number # of Duplicates   
Set Name Name People Types 
  Type Type People Pictures 
 Member Picture Name Picture Name Vehicle Types 
  Entity Name Entity Type Vehicle Pictures 

Variable Name Name Available Capacity from Station to 
Station 

  Rows Rows Gap 
  Columns Columns Green Time 
Initial Values Initial Value Initial Value Max Wait Time 
    Public Transportation Batch Size 
    Public Transportation Size 
    Traffic Signal 
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Module Operand Name Prompt Text Names of Module in Model 
    Vehicle Route Time 
    Warm Up Time 
   Yellow Time 

 

Advanced Process 

Module Operand Name Prompt Text Names of Module in Model 
Advanced Set Name Name Destination Set 
  Type Set Type Public Transportation Sequences 
Members Queue Name Queue Name Vehicle Sequences 
  Other Other   
  Storage Name Storage Name   
Delay Name Name Green Light Progressing 

  ValueAdded Allocation Vehicle Running from Station to 
Station 

  DelayType Delay Time   
  Units Units   
Expression Name Name Hour To Minutes 
  Dim1 Rows Mile To Feet 
  Dim2 Columns People Shortest Route Time 
  Data Type Data Type People Speeds 
  IO Point I/O Point Speed from Station to Station 
  Usage Usage Vehicle Lengths 
  Description Description   
Expression 
Values Value Expression Value   

Hold Name Name Hold People for Signal 
  Type Type Scan for Condition 
  Value Wait for Value Vehicles Waiting to Move 
  Limit Limit Vehicles Waiting to Traverse 
  Condition Condition   
  QSG Queue Type   
  QSGInfinite Queue Type   
  QName Queue Name   
  QSet Set Name   
  QMem Set Index   
  QAttr Attribute   
  QExp Expression   

Signal Name Name Signal to Release Public 
Transportation 
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Module Operand Name Prompt Text Names of Module in Model 
  Value Signal Value   
  Limit Limit   
Statistics Name Name Simulation End Time 
  Type Type   
  Tally Tally Name   
  Tally Output File Tally Output File   
  Counter Counter Name   
  CLimit Limit   
  StartTime Start Time   
  StartTimeUnits Units   
  Duration Duration Time   
  DurationUnits Units   
  RepeatStatistics Repeat Statistics   

  CInit Initialization 
Option   

  CounterOutputFil
e 

Counter Output 
File   

  DExp Expression   
  DLabel Report Label   
  DOutputFile Output File   
  ValueState Frequency Type   
  FValue Expression   
  FRes Resource Name   
  FLabel Report Label   
  FOutputFile Output File   

Categories ValueRange Constant or 
Range   

  Value1 Value   
  Value2 High Value   
  Category Category Name   
  ExcInc Category Option   

 

Advanced Transfer 

Module Operand Name Prompt Text Names of Module in Model 
Route Name Name Route People from Origin 

  RouteTime Route Time Route Public Transportation from 
Transit Center 

  Units Units Route Vehicle from Origin 
  SG Destination Type Route Vehicle from Intersection 
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Module Operand Name Prompt Text Names of Module in Model 
  Station Station Name   
Sequence Name Name From Station to Station 

Steps Station Station Name   
Station Name Name Station 
  Statn Station Name   

 

C.2 Run Controller Commands 

General Commands 

ASSIGN CLEAR END 
EVENT GO  STEP 
QUIT SIGNAL   
SHOW     
 

Cancel Commands 

CANCEL BREAK  CANCEL INTERCEPT  
CANCEL TRACE BLOCKS CANCEL TRACE CONDITIONS  
CANCEL TRACE ENTITIES  CANCEL TRACE EXPRESSIONS 
CANCEL TRACE FILE  CANCEL TRACE TIMES  
CANCEL WATCH    
 

Set Commands 

SET BREAK  SET INTERCEPT  
SET MODEL  SET TRACE 
SET TRACE BLOCKS  SET TRACE CONDITIONS  
SET TRACE ENTITIES  SET TRACE EXPRESSIONS  
SET TRACE FILE  SET TRACE TIMES  
SET WATCH    
 

View Commands 

VIEW  VIEW BREAK  
VIEW CALENDAR  VIEW CONVEYORS  
VIEW ENTITY  VIEW INTERCEPT  
VIEW MODEL  VIEW QUEUE  
VIEW SOURCE  VIEW TRACE  
VIEW WATCH   
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APPENDIX D 

PROGRAMMING CODE 

Main.vb 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

'The main application of the model: control GUI 
 
Imports System 
 
Public Class Main 
 
    Private Sub mnuExit_Click(ByVal sender As Object, ByVal e As 
System.EventArgs) Handles mnuExit.Click 
        Me.Close() 
    End Sub 
 
    Private Sub mnuImportData_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles mnuImportData.Click 
        Dim open As New ImportDataForm 
        open.MdiParent = Me 
        open.Show() 
    End Sub 
 
    Private Sub mnuCreateModel_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles mnuCreateModel.Click 
        Dim model As ArenaModel 
        model = New ArenaModel 
    End Sub 
 
    Private Sub mnuDOE_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles mnuPAN.Click 
        Dim p As New Process() 
        p.StartInfo.FileName = 
Environment.GetFolderPath(Environment.SpecialFolder.ProgramFiles) & 
"\Rockwell Software\Arena 7.0\pan.exe" 
        p.Start() 
    End Sub 
 
    Private Sub mnuFlow_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles mnuFlow.Click 
 
    End Sub 
 
    Private Sub openFile_FileOk(ByVal sender As System.Object, ByVal e As 
System.ComponentModel.CancelEventArgs) Handles openFile.FileOk 
        Dim flowFilePath As String 
        With openFile 
            .Reset() 
            .Title = "Open File" 
            .Filter = "Dbase Files (*.dbf)|*.dbf|Excel Files 
(*.xls)|*.xls|Access Files (*.mdb)|*.mdb" 
            .Multiselect = False 
            If (.ShowDialog() = Windows.Forms.DialogResult.OK) Then 
                flowFilePath = .FileName 
            End If 
        End With 
    End Sub 
End Class 
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GlobalData.vb 

54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

'Global Data 
Imports QuickGraph 
 
Module GlobalData 
    Public Directory, IncidentsFileName, LinksFileName, 
LinksShapeFileName As String 
    Public NodesFileName, NodesShapeFileName, PeopleFileName, 
VehiclesFileName As String 
    Public Gap, MaxWaitTime, PublicTransportationLength As Double 
    Public PeopleCount, VehicleCount, PublicTransportationCapacity As 
Integer 
    Public DestinationList, IntersectionList, OriginList, TransitList As 
List(Of Node) 
    Public IncidentList As List(Of Incident) 
    Public IncidentStartTimeList As List(Of Double) 
    Public LinkList As List(Of Link) 
    Public PeopleList As List(Of People) 
    Public VehicleList As List(Of Vehicle) 
    Public Graph As IVertexAndEdgeListGraph(Of Integer, Edge(Of Integer)) 
    Public EdgeFlow, EdgeLength As Dictionary(Of String, Double) 
End Module 

 
Link.vb 

75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 

'This class is to create and get values of a link 
 
Public Class Link 
    Dim _Length As Double 
    Dim _FromNode, _ToNode, _Lanes As Integer 
    Dim _Speed As String 
 
    'Create an instance of a link 
    Public Sub New(ByVal length As Double, ByVal fromNode As Integer, 
ByVal toNode As Integer, ByVal lanes As Integer, ByVal speed As String) 
        _Length = length 
        _FromNode = fromNode 
        _ToNode = toNode 
        _Lanes = lanes 
        _Speed = speed 
    End Sub 
 
    Public Function getLength() As Double 
        Return _Length 
    End Function 
 
    'Return start node of link 
    Public Function getStartNode() As Integer 
        Return _FromNode 
    End Function 
 
    'Return number of AB lanes 
    Public Function getLanes() As Integer 
        Return _Lanes 
    End Function 
 
    'Return speed limit 
    Public Function getSpeed() As String 
        Return _Speed 
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109 
110 
111 
112 
113 
114 
115 

    End Function 
 
    'Return end node of link 
    Public Function getEndNode() As Integer 
        Return _ToNode 
    End Function 
End Class 

 
Node.vb 

116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 

' This class is to create and get values of a node 
 
Public Class Node 
    Dim _ID As Integer 
    Dim _Green As Double 
    Dim _Yellow As Double 
    Dim _PeoTime As String 
    Dim _VehTime As String 
    Dim _Peo As Integer 
    Dim _Veh As Integer 
    Dim _DestDist As String 
    Dim _IntersectionFrom As List(Of Link) 
    Dim _IntersectionTo As List(Of Link) 
    Dim _OriginTo As List(Of Link) 
    Dim _TransitTo As List(Of Link) 
 
    'Create an instance of an Origin node that has available destination 
distribution 
    Public Sub New(ByVal ID As Integer, ByVal peopleTime As String, 
ByVal vehicleTime As String, ByVal people As Integer, ByVal vehicle As 
Integer, ByVal destdist As String, ByVal toList As List(Of Link)) 
        _ID = ID 
        _PeoTime = peopleTime 
        _VehTime = vehicleTime 
        _Peo = people 
        _Veh = vehicle 
        _OriginTo = toList 
        _DestDist = destdist 
    End Sub 
 
    'Create an instance of an Origin node that does not have available 
destination distribution 
    Public Sub New(ByVal ID As Integer, ByVal peopleTime As String, 
ByVal vehicleTime As String, ByVal people As Integer, ByVal vehicle As 
Integer, ByVal toList As List(Of Link)) 
        _ID = ID 
        _PeoTime = peopleTime 
        _VehTime = vehicleTime 
        _Peo = people 
        _Veh = vehicle 
        _OriginTo = toList 
    End Sub 
 
    'Create an instance of Destination node 
    Public Sub New(ByVal ID As Integer) 
        _ID = ID 
    End Sub 
 
    'Create an instance of Transit Center node 
    Public Sub New(ByVal ID As Integer, ByVal toList As List(Of Link)) 
        _ID = ID 
        _TransitTo = toList 
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168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 

    End Sub 
 
    'Create an instance of an Intersection node 
    Public Sub New(ByVal ID As Integer, ByVal greenTime As Double, ByVal 
yellowTime As Double, ByVal fromList As List(Of Link), ByVal toList As 
List(Of Link)) 
        _ID = ID 
        _Green = greenTime 
        _Yellow = yellowTime 
        _IntersectionFrom = fromList 
        _IntersectionTo = toList 
    End Sub 
 
    'Return node ID 
    Public Function getID() As Integer 
        Return _ID 
    End Function 
 
    'Return green time of Intersection node 
    Public Function getGreen() As Double 
        Return _Green 
    End Function 
 
    'Return yellow time of Intersection node 
    Public Function getYellow() As Double 
        Return _Yellow 
    End Function 
 
    'Return traffic loading rate at Origin node 
    Public Function getPeopleTime() As String 
        Return _PeoTime 
    End Function 
 
    'Return traffic loading rate at Origin node 
    Public Function getVehicleTime() As String 
        Return _VehTime 
    End Function 
 
    'Return number of People at the Origin node 
    Public Function getPeople() As Integer 
        Return _Peo 
    End Function 
 
    'Return number of vehicles at the Origin node 
    Public Function getVehicles() As Integer 
        Return _Veh 
    End Function 
 
    'Return destination distribution 
    Public Function getDestinationDistribution() As String 
        Return _DestDist 
    End Function 
 
    'Return list of next intersections connected to this origin 
    Public Function getOriginTo() As List(Of Link) 
        Return _OriginTo 
    End Function 
 
    'Add value to the next intersections connected to this origin 
    Public Sub addOriginTo(ByVal toIntersection As Link) 
        _OriginTo.Add(toIntersection) 
    End Sub 
 



 

 130

231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 

    'Add value to the next intersections connected to this transit 
center 
    Public Sub addTransitTo(ByVal toIntersection As Link) 
        _TransitTo.Add(toIntersection) 
    End Sub 
 
    'Return list of next intersections connected to this transit center 
    Public Function getTransitTo() As List(Of Link) 
        Return _TransitTo 
    End Function 
 
    'Add value to the previous intersection list of this intersection 
    Public Sub addFromIntersection(ByVal fromIntersection As Link) 
        _IntersectionFrom.Add(fromIntersection) 
    End Sub 
 
    'Return list of previous intersections connected to this 
intersection 
    Public Function getFromIntersections() As List(Of Link) 
        Return _IntersectionFrom 
    End Function 
 
    'Add value to the next intersection list of this intersection 
    Public Sub addToIntersection(ByVal toIntersection As Link) 
        _IntersectionTo.Add(toIntersection) 
    End Sub 
 
    'Return list of next intersections connected to this intersection 
    Public Function getToIntersections() As List(Of Link) 
        Return _IntersectionTo 
    End Function 
 
End Class 

 
Vehicle.vb 

264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 

'This class is to create and get values of a vehicle 
 
Public Class Vehicle 
    Dim _Type As String 
    Dim _Length As Double 
 
    'Create an instance of a vehicle 
    Public Sub New(ByVal type As String, ByVal length As Double) 
        _Type = type 
        _Length = length 
    End Sub 
 
    'Return vehicle type 
    Public Function getVehicleType() As String 
        Return _Type 
    End Function 
 
    'Return vehicle length 
    Public Function getLength() As Double 
        Return _Length 
    End Function 
 
End Class 
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People.vb 

287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 

Public Class People 
    Dim _Type As String 
    Dim _Speed As Double 
 
    'Create an instance of a vehicle 
    Public Sub New(ByVal type As String, ByVal speed As Double) 
        _Type = type 
        _Speed = speed 
    End Sub 
 
    'Return vehicle type 
    Public Function getPeopleType() As String 
        Return _Type 
    End Function 
 
    'Return vehicle length 
    Public Function getSpeed() As Double 
        Return _Speed 
    End Function 
End Class 

 
Incident.vb 

307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 

Public Class Incident 
    Dim _ID As Integer 
    Dim _FromNode As Integer 
    Dim _ToNode As Integer 
    Dim _StartTime As Double 
    Dim _CapPercent As Integer 
 
    'Create an instance of an Incident 
    Public Sub New(ByVal ID As Integer, ByVal fromNode As Integer, ByVal 
toNode As Integer, ByVal startTime As Double, ByVal capacityPercentage 
As Double) 
        _ID = ID 
        _FromNode = fromNode 
        _ToNode = toNode 
        _StartTime = startTime 
        _CapPercent = capacityPercentage 
    End Sub 
 
    'Return incident ID 
    Public Function getID() As Integer 
        Return _ID 
    End Function 
 
    'Return incident start node 
    Public Function getFromNode() As Integer 
        Return _FromNode 
    End Function 
 
    'Return incident end node 
    Public Function getToNode() As Integer 
        Return _ToNode 
    End Function 
 
    'Return incident start time 
    Public Function getStartTime() As Double 
        Return _StartTime 
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343 
344 
345 
346 
347 
348 
349 
 

    End Function 
 
    'Return incident capacity percentage 
    Public Function getCapacityPercentage() As Double 
        Return _CapPercent 
    End Function 
End Class 
 

 
ImportDataForm.vb 

350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 

'User interface to import data 
 
Imports QuickGraph 
 
Public Class ImportDataForm 
    Private Sub btnBrowseNodesFile_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles btnBrowseNodesFile.Click 
        With openFile 
            .Reset() 
            .Title = "Open File" 
            .Filter = "Dbase Files (*.dbf)|*.dbf|Excel Files 
(*.xls)|*.xls|Access Files (*.mdb)|*.mdb" 
            .Multiselect = False 
            If (.ShowDialog() = Windows.Forms.DialogResult.OK) Then 
                txtNodesFile.Text = .FileName 
            End If 
        End With 
    End Sub 
 
    Private Sub btnBrowseLinksFile_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles btnBrowseLinksFile.Click 
        With openFile 
            .Reset() 
            .Title = "Open File" 
            .Filter = "Dbase Files (*.dbf)|*.dbf|Excel Files 
(*.xls)|*.xls|Access Files (*.mdb)|*.mdb" 
            .Multiselect = False 
            If (.ShowDialog() = Windows.Forms.DialogResult.OK) Then 
                txtLinksFile.Text = .FileName 
            End If 
        End With 
    End Sub 
 
    Private Sub btnBrowseVehiclesFile_Click(ByVal sender As 
System.Object, ByVal e As System.EventArgs) Handles 
btnBrowseVehiclesFile.Click 
        With openFile 
            .Reset() 
            .Title = "Open File" 
            .Filter = "Dbase Files (*.dbf)|*.dbf|Excel Files 
(*.xls)|*.xls|Access Files (*.mdb)|*.mdb" 
            .Multiselect = False 
            If (.ShowDialog() = Windows.Forms.DialogResult.OK) Then 
                txtVehiclesFile.Text = .FileName 
            End If 
        End With 
    End Sub 
 
    Private Sub btnBrowsePeople_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles btnBrowsePeople.Click 
        With openFile 
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401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 

            .Reset() 
            .Title = "Open File" 
            .Filter = "Dbase Files (*.dbf)|*.dbf|Excel Files 
(*.xls)|*.xls|Access Files (*.mdb)|*.mdb" 
            .Multiselect = False 
            If (.ShowDialog() = Windows.Forms.DialogResult.OK) Then 
                txtPeopleFile.Text = .FileName 
            End If 
        End With 
    End Sub 
 
    Private Sub btnBrowseIncidentsFile_Click(ByVal sender As 
System.Object, ByVal e As System.EventArgs) Handles 
btnBrowseIncidentsFile.Click 
        With openFile 
            .Reset() 
            .Title = "Open File" 
            .Filter = "Dbase Files (*.dbf)|*.dbf|Excel Files 
(*.xls)|*.xls|Access Files (*.mdb)|*.mdb" 
            .Multiselect = False 
            If (.ShowDialog() = Windows.Forms.DialogResult.OK) Then 
                txtIncidentsFile.Text = .FileName 
            End If 
        End With 
    End Sub 
 
    'Load data 
    Private Sub btnLoad_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btnLoad.Click 
        Dim result As DialogResult 
        Dim model As ArenaModel 
        Try 
            'Import Nodes, Links, Vehicles, People and Incidents files 
            If String.IsNullOrEmpty(txtIncidentsFile.Text) Then 
                ImportData.ReadFiles(txtNodesFile.Text, 
txtLinksFile.Text, txtVehiclesFile.Text, txtPeopleFile.Text) 
                IncidentStartTimeList = New List(Of Double) 
            Else 
                ImportData.ReadFiles(txtNodesFile.Text, 
txtLinksFile.Text, txtVehiclesFile.Text, txtPeopleFile.Text) 
                ImportData.ReadFiles(txtIncidentsFile.Text) 
            End If 
 
            ' Display GIS Map 
            If System.IO.File.Exists(NodesShapeFileName) AndAlso 
System.IO.File.Exists(LinksShapeFileName) Then 
                Dim gisMapForm As New GISMap() 
                gisMapForm.MdiParent = Me.MdiParent 
                gisMapForm.Dock() = DockStyle.Fill 
                gisMapForm.Show() 
            End If 
 
            PublicTransportationCapacity = 
Integer.Parse(txtPublicTransportCapacity.Text) 
            PublicTransportationLength = 
Double.Parse(txtPublicTransportationLength.Text) 
            MaxWaitTime = Double.Parse(txtMaxWaitTime.Text) 
            Gap = Double.Parse(txtGap.Text) 
            Directory = 
System.IO.Path.GetDirectoryName(txtNodesFile.Text) 
 
            result = MessageBox.Show(Me, "Would you like to create an 
Arena model?", "Create Arena Model", MessageBoxButtons.YesNo) 
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464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
 

            If result = DialogResult.Yes Then 
                model = New ArenaModel 
                Main.mnuExportData.Enabled = True 
                Me.Close() 
            Else 
                Main.mnuCreateModel.Enabled = True 
                Me.Close() 
            End If 
        Catch ex As Exception 
            MessageBox.Show(Me, ex.Message) 
            Console.WriteLine(ex.StackTrace) 
        End Try 
    End Sub 

 
End Class 

 
ImportData.vb 

479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 

'This class is to import data into the model. 
 
Imports System.Data 
Imports System.String 
Imports System.Collections.Generic 
Imports QuickGraph 
Imports QuickGraph.Algorithms 
 
Public Class ImportData 
    Const FILE_NAME_LENGTH As Integer = 8 
 
    Public Shared Function ReadFiles(ByVal nodesFilePath As String, 
ByVal linksFilePath As String, ByVal vehiclesFilePath As String, ByVal 
peopleFilePath As String) As Boolean 
        Const DIR_TWO_WAY As Integer = 2 
        Const ORIGIN_TYPE As Integer = 0 
        Const DESTINATION_TYPE As Integer = 1 
        Const TRANSIT_TYPE As Integer = 2 
        Dim nodesTable, linksTable, vehiclesTable, peopleTable, sql, key 
As String 
        Dim con As New Odbc.OdbcConnection 
        Dim g As AdjacencyGraph(Of Integer, Edge(Of Integer)) 
        Dim edge As Edge(Of Integer) 
        Dim length, abflow, baflow As Double 
        Dim startNode, endNode As Integer 
        Dim fromStation, toStation As Link 
        Dim cmd As Odbc.OdbcCommand 
        Dim reader As Odbc.OdbcDataReader 
 
        'Create Graph 
        Graph = New AdjacencyGraph(Of Integer, Edge(Of Integer)) 
        g = Graph 
        EdgeLength = New Dictionary(Of String, Double) 
        EdgeFlow = New Dictionary(Of String, Double) 
 
        '--------------------------------------------NODES--------------
----------------------------------- 
        'Establish connection to Nodes file 
        connectToFile(nodesFilePath, NodesFileName, "nodes", con) 
 
        'Nodes shapefile 
        NodesShapeFileName = 
System.IO.Path.ChangeExtension(NodesFileName, ".shp") 
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522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
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536 
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538 
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540 
541 
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547 
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559 
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575 
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        'Import Nodes file and create Nodes table 
        nodesTable = 
System.IO.Path.GetFileNameWithoutExtension(NodesFileName) 
        sql = "SELECT id, type, green, yellow, peotime, vehtime, people, 
vehicle, destdist FROM " & nodesTable & "" 
 
        'Add nodes into Graph 
        cmd = con.CreateCommand() 
        cmd.CommandType = CommandType.Text 
        cmd.CommandText = sql 
        reader = cmd.ExecuteReader() 
        PeopleCount = 0 
        VehicleCount = 0 
        OriginList = New List(Of Node) 
        DestinationList = New List(Of Node) 
        TransitList = New List(Of Node) 
        IntersectionList = New List(Of Node) 
        While reader.Read() 
            g.AddVertex(reader.GetInt32(0)) 
            If reader.GetInt32(1) = ORIGIN_TYPE Then 
                OriginList.Add(New Node(reader.GetInt32(0), 
reader.GetString(4), reader.GetString(5), reader.GetInt32(6), 
reader.GetInt32(7), reader.Item(8).ToString(), New List(Of Link))) 
                PeopleCount = PeopleCount + reader.GetInt32(6) 
                VehicleCount = VehicleCount + reader.GetInt32(7) 
            ElseIf reader.GetInt32(1) = DESTINATION_TYPE Then 
                DestinationList.Add(New Node(reader.GetInt32(0))) 
            ElseIf reader.GetInt32(1) = TRANSIT_TYPE Then 
                TransitList.Add(New Node(reader.GetInt32(0), New List(Of 
Link))) 
            Else 
                IntersectionList.Add(New Node(reader.GetInt32(0), 
reader.GetDouble(2), reader.GetDouble(3), New List(Of Link), New List(Of 
Link))) 
            End If 
        End While 
 
        reader.Close() 
        con.Close() 
 
        '--------------------------------------------LINKS--------------
----------------------------------- 
        'Establish connection to Links file 
        connectToFile(linksFilePath, LinksFileName, "links", con) 
 
        'Links shapefile 
        LinksShapeFileName = 
System.IO.Path.ChangeExtension(LinksFileName, ".shp") 
 
        ' Import Links file and create Links table 
        linksTable = 
System.IO.Path.GetFileNameWithoutExtension(LinksFileName) 
        sql = "SELECT Length, Dir, FromID, ToID, ABLanes, BALanes, 
ABFlowTime, BAFlowTime, ABSpeed, BASpeed FROM " & linksTable & "" 
 
        'Add links into Graph 
        cmd = con.CreateCommand() 
        cmd.CommandType = CommandType.Text 
        cmd.CommandText = sql 
        reader = cmd.ExecuteReader() 
        LinkList = New List(Of Link) 
        While reader.Read() 
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            length = reader.GetDouble(0) ' Initialize cost 
            startNode = reader.GetInt32(2) 
            endNode = reader.GetInt32(3) 
            abflow = reader.GetDouble(6) 
            baflow = reader.GetDouble(7) 
            fromStation = New Link(length, startNode, endNode, 
Integer.Parse(reader.GetDouble(4)), reader.GetString(8)) 
            toStation = New Link(length, endNode, startNode, 
Integer.Parse(reader.GetDouble(5)), reader.GetString(9)) 
 
            edge = New Edge(Of Integer)(startNode, endNode) 
            key = edge.ToString() 
            ' If links are duplicate, get the smaller cost 
            If (EdgeLength.ContainsKey(key)) Then 
                If (EdgeLength(key) > length) Then 
                    EdgeLength(key) = length 
                End If 
            Else 
                EdgeLength.Add(key, length) 
            End If 
 
            If (EdgeFlow.ContainsKey(key)) Then 
                If (EdgeFlow(key) > abflow) Then 
                    EdgeFlow(key) = abflow 
                End If 
            Else 
                EdgeFlow.Add(key, abflow) 
            End If 
 
            ' Insert edge 
            If g.ContainsEdge(startNode, endNode) = False Then 
                g.AddEdge(edge) 
                LinkList.Add(fromStation) 
            End If 
 
            If (Integer.Parse(reader.GetDouble(1)) = DIR_TWO_WAY) 
AndAlso startNode <> endNode Then 
                ' Insert reverse edge 
                edge = New Edge(Of Integer)(endNode, startNode) 
                key = edge.ToString() 
                If (EdgeLength.ContainsKey(key)) Then 
                    If (EdgeLength(key) > length) Then 
                        EdgeLength(key) = length 
                    End If 
                Else 
                    EdgeLength.Add(key, length) 
                End If 
 
                If (EdgeFlow.ContainsKey(key)) Then 
                    If (EdgeFlow(key) > baflow) Then 
                        EdgeFlow(key) = baflow 
                    End If 
                Else 
                    EdgeFlow.Add(key, baflow) 
                End If 
 
                If g.ContainsEdge(endNode, startNode) = False Then 
                    g.AddEdge(edge) 
                    LinkList.Add(toStation) 
                End If 
            End If 
 
            'Add previous and next stations to each intersection 
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            For Each intersection In IntersectionList 
                If intersection.getID() = fromStation.getStartNode() 
Then 
                    If isTransitCenter(toStation.getStartNode()) = False 
Then 
                        intersection.addToIntersection(toStation) 
                    End If 
                    If (Integer.Parse(reader.GetDouble(1)) = 
DIR_TWO_WAY) And isDestination(toStation.getStartNode()) = False Then 
                        intersection.addFromIntersection(toStation) 
                    End If 
                ElseIf intersection.getID() = toStation.getStartNode() 
Then 
                    If isDestination(fromStation.getStartNode()) = False 
Then 
                        intersection.addFromIntersection(fromStation) 
                    End If 
                    If (Integer.Parse(reader.GetDouble(1)) = 
DIR_TWO_WAY) And isTransitCenter(fromStation.getStartNode()) = False 
Then 
                        intersection.addToIntersection(fromStation) 
                    End If 
                End If 
            Next 
 
            'Add next stations to each origin 
            For Each origin In OriginList 
                If origin.getID() = fromStation.getStartNode() Then 
                    origin.addOriginTo(toStation) 
                End If 
            Next 
 
            'Add next stations to each transit center 
            For Each center In TransitList 
                If center.getID() = fromStation.getStartNode() Then 
                    center.addTransitTo(toStation) 
                End If 
            Next 
        End While 
 
        reader.Close() 
        con.Close() 
 
        '--------------------------------------------VEHICLES-----------
-------------------------------------- 
        'Establish connection to Vehicles file 
        connectToFile(vehiclesFilePath, VehiclesFileName, "vehicles", 
con) 
 
        'Import Vehicles file and create Vehicles table 
        vehiclesTable = 
System.IO.Path.GetFileNameWithoutExtension(VehiclesFileName) 
        sql = "SELECT type, length FROM " & vehiclesTable & "" 
 
        'Add vehicles into Vehicle list 
        cmd = con.CreateCommand() 
        cmd.CommandType = CommandType.Text 
        cmd.CommandText = sql 
        reader = cmd.ExecuteReader() 
        VehicleList = New List(Of Vehicle) 
        While reader.Read() 
            VehicleList.Add(New Vehicle(reader.GetString(0), 
reader.GetDouble(1))) 
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        End While 
        reader.Close() 
        con.Close() 
 
        '--------------------------------------------PEOPLE-------------
------------------------------------ 
        'Establish connection to People file 
        connectToFile(peopleFilePath, PeopleFileName, "people", con) 
 
        'Import Vehicles file and create Vehicles table 
        peopleTable = 
System.IO.Path.GetFileNameWithoutExtension(PeopleFileName) 
        sql = "SELECT type, speed FROM " & peopleTable & "" 
 
        'Add vehicles into Vehicle list 
        cmd = con.CreateCommand() 
        cmd.CommandType = CommandType.Text 
        cmd.CommandText = sql 
        reader = cmd.ExecuteReader() 
        PeopleList = New List(Of People) 
        While reader.Read() 
            PeopleList.Add(New People(reader.GetString(0), 
reader.GetString(1))) 
        End While 
        reader.Close() 
        con.Close() 
    End Function 
 
    '--------------------------------------------INCIDENTS--------------
----------------------------------- 
    Public Shared Function ReadFiles(ByVal incidentsFilePath As String) 
As Boolean 
        Dim incidentsTable, sql As String 
        Dim con As New Odbc.OdbcConnection 
        Dim cmd As Odbc.OdbcCommand 
        Dim reader As Odbc.OdbcDataReader 
 
        connectToFile(incidentsFilePath, IncidentsFileName, "incident", 
con) 
 
        'Import Incidents file and create Incidents table 
        incidentsTable = 
System.IO.Path.GetFileNameWithoutExtension(IncidentsFileName) 
        sql = "SELECT id, fromnode, tonode, starttime, cappercent FROM " 
& incidentsTable & "" 
 
        'Add incidents into Incident List 
        cmd = con.CreateCommand() 
        cmd.CommandType = CommandType.Text 
        cmd.CommandText = sql 
        reader = cmd.ExecuteReader() 
        IncidentList = New List(Of Incident) 
        IncidentStartTimeList = New List(Of Double) 
        While reader.Read() 
            IncidentList.Add(New Incident(reader.GetInt32(0), 
reader.GetInt32(1), reader.GetInt32(2), reader.GetDouble(3), 
reader.GetDouble(4))) 
        End While 
        reader.Close() 
        con.Close() 
 
        'Incident start time list 
        If String.IsNullOrEmpty(incidentsFilePath) = False And 
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IncidentList IsNot Nothing Then 
            'Sort Incident list based on start time 
            IncidentList.Sort(Function(incident1 As Incident, incident2 
As Incident) 
incident1.getStartTime().CompareTo(incident2.getStartTime())) 
            For Each incidentEvent In IncidentList 
                If 
IncidentStartTimeList.Contains(incidentEvent.getStartTime()) = False 
Then 
                    
IncidentStartTimeList.Add(incidentEvent.getStartTime()) 
                End If 
            Next 
        End If 
 
        'Incident file must contain at least one incident 
        If IncidentStartTimeList.ElementAt(0) <= 0 Then 
            MessageBox.Show("Incident start time must be positive") 
            Exit Function 
        End If 
    End Function 
 
    'Check if a node is destination 
    Public Shared Function isDestination(ByVal id As Integer) As Boolean 
        For Each destination In DestinationList 
            If destination.getID() = id Then 
                Return True 
            End If 
        Next 
    End Function 
 
    'Check if a node is transit center 
    Public Shared Function isTransitCenter(ByVal id As Integer) As 
Boolean 
        For Each transit In TransitList 
            If transit.getID() = id Then 
                Return True 
            End If 
        Next 
    End Function 
 
    Public Shared Sub connectToFile(ByVal filepath As String, ByRef 
fileName As String, ByVal newFileName As String, ByRef con As 
Odbc.OdbcConnection) 
        Dim path, extension As String 
 
        'Establish connection to file 
        path = System.IO.Path.GetDirectoryName(filepath) 
        extension = System.IO.Path.GetExtension(filepath) 
 
        'Connection path based on file type/extension 
        If extension.ToLower() = ".dbf" Then 
            con.ConnectionString = "Driver={Microsoft dBASE Driver 
(*.dbf)};DriverID=277;Dbq=" & path & ";" 
        Else 
            con.ConnectionString = 
"PROVIDER=Microsoft.Jet.OLEDB.4.0;Data Source =" & path & "" 
        End If 
 
        con.Open() 
 
        'Check file name length to be recognized by Microsoft dBASE 
driver 
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        'If length > 8, copy to the new file name 
        If System.IO.Path.GetFileNameWithoutExtension(filepath).Length > 
FILE_NAME_LENGTH Then 
            fileName = path & "\" & newFileName & 
System.IO.Path.GetExtension(filepath) 
            If System.IO.File.Exists(fileName) = False Then 
                System.IO.File.Copy(filepath, fileName) 
            Else 
                System.IO.File.Delete(fileName) 
                System.IO.File.Copy(filepath, fileName) 
            End If 
        Else 
            fileName = filepath 
        End If 
    End Sub 
End Class 
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'This class create evacuation model in Arena 
 
Imports System.Collections.Generic 
Imports QuickGraph 
Imports QuickGraph.Algorithms 
 
Public Class ArenaModel 
    Public Shared model As Arena.Model 
    Dim incidentGraph As AdjacencyGraph(Of Integer, Edge(Of Integer)) = 
Graph 
    Dim closestTransitCenter As Integer 
    Dim shortestDistance As Double 
    Dim nextStation As String = "Next Station" 
    Dim transitStation As String = "Transit Station" 
    Dim getPathByFlow, getPathByLength As TryFunc(Of Integer, 
IEnumerable(Of Edge(Of Integer))) 
 
    Public Sub New() 
        Const X_INCREMENT As Integer = 750 
        Const Y_INCREMENT As Integer = 500 
        Const X_AFTER_DECIDE As Double = 1.25 
        Const GREEN_SIGNAL As Integer = 1 
        Const YELLOW_SIGNAL As Integer = 0 
        Const RED_SIGNAL As Integer = -1 
        Const CONVERT_MILE_TO_FEET As Integer = 5280 
        Const HOUR_TO_MINUTES As Integer = 60 
        Const PERCENTAGE As Double = 100 
 
        Dim app As New Arena.Application() 
 
        Dim assign, assignPeople, assignVehicle, assignPeople2, 
assignVehicle2, assignIn, assignOut As Arena.Module 
        Dim batch, createPeople, createVehicle, createSignal As 
Arena.Module 
        Dim decide, decideFromIntersections, decidePeople, decideSignal, 
decideVehicle, delay, dispose, expression, hold, hold2 As Arena.Module 
        Dim record, routePeople, routeTime, routeVehicle, scan, 
separate, signal, station As Arena.Module 
        Dim setPeopleType, setPeoplePicture, setPeopleSpeed, 
setPeopleTransit As Arena.Module 
        Dim setVehicleType, setVehiclePicture, setVehicleLength, 
setDestination, statistic As Arena.Module 
        Dim variable, variablePublicTransportationSize, 
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variablePublicTransportationWaitTime, variableSignal, vehicleGap As 
Arena.Module 
        Dim x, xSignal, xIntersection, xAssign, xAssign2, xAssignIn, 
xScan, y, ySignal, yIntersection, people, startTimeCount, vehicles As 
Integer 
        Dim assignIndex, batchSizeIndex, fromIntersectionCount, 
intersectionIncidentStartTimeCount, toIntersectionCount As Integer 
        Dim nodeID, startNode, endNode As Integer 
        Dim start, PeopleTypeDistList(PeopleList.Count - 1), 
maxVehicleSize As Double 
        Dim vehicleModeDistList(VehicleList.Count - 1), 
vehicleDestinationDistList(DestinationList.Count - 1) As Double 
        Dim PeopleTypeDist, vehicleDestinationDist, vehicleTypeDist, 
condition, stopConditionVehicle As String 
        Dim rand As New Random() 
        Dim fromLink, toLink As Link 
        Dim currentIncident As Incident 
        Dim currentIncidentEdge As Edge(Of Integer) 
        Dim incidentStartNodes As List(Of Integer) 
        Dim intersectionIncidentStartTimeList As List(Of Double) 
        Dim intersectionTime As Double = 0.01 'minute 
        Dim replications As Integer = 20 
        Dim warmUp As Double = 720 
 
        model = app.Models.Add() 
 
        '======================================= MODEL GLOBAL PARAMETERS 
======================================= 
        startTimeCount = IncidentStartTimeList.Count 
 
        If PeopleCount > 0 Then 
            'Generate sets of People mode, People picture and People 
speed 
            setPeopleType = model.Modules.Create("BasicProcess", "Set", 
0, 0) 
            setPeopleType.Data("Name") = "People Types" 
            setPeopleType.Data("Type") = "Entity Type" 
            setPeoplePicture = model.Modules.Create("BasicProcess", 
"Set", 0, 0) 
            setPeoplePicture.Data("Name") = "People Pictures" 
            setPeoplePicture.Data("Type") = "Entity Picture" 
            setPeopleSpeed = model.Modules.Create("AdvancedProcess", 
"Expression", 0, 0) 
            setPeopleSpeed.Data("Name") = "People Speeds" 
            setPeopleSpeed.Data("Dim1") = PeopleList.Count 
            For i = 0 To PeopleList.Count - 1 
                setPeopleType.Data("Entity Name(" & i + 1 & ")") = 
PeopleList.Item(i).getPeopleType() 
                setPeoplePicture.Data("Picture Name(" & i + 1 & ")") = 
"Picture.Man" 
                setPeopleSpeed.Data("Value(" & i + 1 & ")") = 
PeopleList.Item(i).getSpeed() 
            Next 
            setPeopleType.UpdateShapes() 
            setPeoplePicture.UpdateShapes() 
            setPeopleSpeed.UpdateShapes() 
        End If 
 
        'Generate sets of vehicle mode, vehicle picture and vehicle 
length 
        stopConditionVehicle = "" 
        maxVehicleSize = 0 
        setVehicleType = model.Modules.Create("BasicProcess", "Set", 0, 
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0) 
        setVehicleType.Data("Name") = "Vehicle Types" 
        setVehicleType.Data("Type") = "Entity Type" 
        setVehiclePicture = model.Modules.Create("BasicProcess", "Set", 
0, 0) 
        setVehiclePicture.Data("Name") = "Vehicle Pictures" 
        setVehiclePicture.Data("Type") = "Entity Picture" 
        setVehicleLength = model.Modules.Create("AdvancedProcess", 
"Expression", 0, 0) 
        setVehicleLength.Data("Name") = "Vehicle Lengths" 
        setVehicleLength.Data("Dim1") = VehicleList.Count 
        For i = 0 To VehicleList.Count - 1 
            setVehicleType.Data("Entity Name(" & i + 1 & ")") = 
VehicleList.Item(i).getVehicleType() 
            setVehiclePicture.Data("Picture Name(" & i + 1 & ")") = 
"Picture.Truck" 
            setVehicleLength.Data("Value(" & i + 1 & ")") = 
VehicleList.Item(i).getLength() 
            stopConditionVehicle = stopConditionVehicle & "EntitiesOut("
& setVehicleType.Data("Entity Name(" & i + 1 & ")") & ")+" 
            If maxVehicleSize < setVehicleLength.Data("Value(" & i + 1 & 
")") Then 
                maxVehicleSize = setVehicleLength.Data("Value(" & i + 1 
& ")") 
            End If 
        Next 
        stopConditionVehicle = 
stopConditionVehicle.Remove(stopConditionVehicle.Length - 1) 
        stopConditionVehicle = stopConditionVehicle & "==" & 
VehicleCount 
        setVehicleType.UpdateShapes() 
        setVehiclePicture.UpdateShapes() 
        setVehicleLength.UpdateShapes() 
 
        'Generate destination Set 
        setDestination = model.Modules.Create("AdvancedProcess", 
"Advanced Set", 0, 0) 
        setDestination.Data("Name") = "Destination Set" 
        setDestination.Data("Type") = "Other" 
        For i = 0 To DestinationList.Count - 1 
            setDestination.Data("Other(" & i + 1 & ")") = "Station " & 
DestinationList.Item(i).getID() 
        Next 
        setDestination.UpdateShapes() 
 
        If TransitList.Count > 0 Then 
            'Generate public transportation capacity Variable 
            variablePublicTransportationSize = variableModule("Public 
Transportation Size", PublicTransportationCapacity) 
 
            'Generate maximum allowable time for public transportation 
to wait for People 
            variablePublicTransportationWaitTime = variableModule("Max 
Wait Time", MaxWaitTime) 
        End If 
 
        'Generate gap between vehicles 
        vehicleGap = variableModule("Gap", Gap) 
 
        'Generate vehicle's moving time through an intersection 
        routeTime = variableModule("Vehicle Route Time", 
intersectionTime) 
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        'Capacity (length), speed, and flow counter of links 
        For i = 0 To LinkList.Count - 1 
            startNode = LinkList.ElementAt(i).getStartNode() 
            endNode = LinkList.ElementAt(i).getEndNode() 
            variable = variableModule("Available Capacity from " & 
startNode & " to " & endNode, Math.Max(LinkList.ElementAt(i).getLength() 
* LinkList.ElementAt(i).getLanes() * CONVERT_MILE_TO_FEET, 
maxVehicleSize + Gap)) 
            expression = expressionModule("Speed from " & startNode & " 
to " & endNode, LinkList.ElementAt(i).getSpeed()) 
        Next 
 
        'Expression CONVERT_MILE_TO_FEET, HOUR_TO_MINUTES 
        expression = expressionModule("Mile To Feet", 
CONVERT_MILE_TO_FEET) 
        expression = expressionModule("Hour To Minutes", 
HOUR_TO_MINUTES) 
 
        'Create output file of total evacuation time 
        statistic = model.Modules.Create("AdvancedProcess", "Statistic", 
0, 0) 
        statistic.Data("Name") = "Total Evacuation Time" 
        statistic.Data("Type") = "Output" 
        statistic.Data("DExp") = "TMAX(End Time)" 
        statistic.Data("DOutputFile") = "TotalEvacuationTime.dat" 
        statistic.UpdateShapes() 
 
        '============================================= SETUP MODEL RUN 
==================================== 
        'Setup warm up period 
        variable = variableModule("Warm Up Time", warmUp) 
        model.WarmUpPeriod = "Warm Up Time" 
        model.WarmUpPeriodTimeUnits = smTimeUnits.smMinutes 
 
        'Setup base time unit 
        model.BaseTimeUnits = smTimeUnits.smMinutes 
 
        'Setup termination condition 
        If PeopleCount <> 0 AndAlso VehicleCount <> 0 Then 
            model.TerminatingCondition = "NC(Total People Out)==" & 
PeopleCount & "&& NC(Total Vehicles Out)==" & VehicleCount 
        ElseIf PeopleCount = 0 Then 
            model.TerminatingCondition = "NC(Total Vehicles Out)==" & 
VehicleCount 
        Else 
            model.TerminatingCondition = "NC(Total People Out)==" & 
PeopleCount 
        End If 
 
        'Setup number of replications 
        model.NumberOfReplications = replications 
 
        '=============================================== ORIGIN 
=========================================== 
        y = 0 
 
        For Each origin In OriginList 
            x = 0 
            nodeID = origin.getID() 
            people = origin.getPeople() 
            vehicles = origin.getVehicles() 
 
            If people <> 0 Then 
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                'People type empirical discrete distribution 
                PeopleTypeDist = 
cumulativeDiscreteDistribution(PeopleTypeDistList) 
                'Create People  
                createPeople = createModule("Create People " & nodeID, 
"People", x, y, origin.getPeople(), origin.getPeopleTime()) 
            End If 
 
            If vehicles <> 0 Then 
                'Vehicle mode empirical discrete distribution 
                vehicleTypeDist = 
cumulativeDiscreteDistribution(vehicleModeDistList) 
 
                'Sequence sets from all origins to all destinations 
                setVehicleSequences(nodeID, "", "Vehicle Sequences", 
"From") 
 
                'Vehicle destination empirical discrete distribution 
                If 
String.IsNullOrEmpty(origin.getDestinationDistribution()) = False Then 
                    vehicleDestinationDist = 
origin.getDestinationDistribution() 
                Else 
                    vehicleDestinationDist = 
vehicleDestinationDiscreteDistribution() 
                End If 
 
                'Create Vehicle  
                If people <> 0 Then 
                    createVehicle = createModule("Create Vehicle " & 
nodeID, "Vehicle", x, y + Y_INCREMENT, origin.getVehicles(), 
origin.getVehicleTime()) 
                Else 
                    createVehicle = createModule("Create Vehicle " & 
nodeID, "Vehicle", x, y, origin.getVehicles(), origin.getVehicleTime()) 
                End If 
            End If 
 
            'Origin Station  
            x += X_INCREMENT 
            station = stationModule("Station " & nodeID, x, y) 
 
            x += X_INCREMENT 
            If people <> 0 And vehicles <> 0 Then 
                'Decision Block to separate People and Vehicle to 
different Station 
                decide = model.Modules.Create("BasicProcess", "Decide", 
x, y) 
                decide.Data("Name") = "From Origin " & nodeID & " _ Is 
Entity Vehicle?" 
                decide.Data("Type") = "2-way by Condition" 
                decide.Data("If") = "Entity Type" 
                decide.Data("TypeNamed") = "People" 
                decide.UpdateShapes() 
 
                'Assign People attributes 
                x += X_AFTER_DECIDE * X_INCREMENT 
            End If 
 
            xAssign = x 
 
            If people <> 0 Then 
                assignPeople = assignOriginPeopleModule(nodeID, x, y, 
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PeopleTypeDist) 
 
                x += X_INCREMENT 
                If startTimeCount > 0 Then 
                    'Decide vehicle sequence based on current simulation 
time 
                    decidePeople = model.Modules.Create("BasicProcess", 
"Decide", x, y) 
                    decidePeople.Data("Name") = "Which People Travel 
Time " & nodeID & "?" 
                    decidePeople.Data("Type") = "N-way by Condition" 
                    x += X_AFTER_DECIDE * X_INCREMENT 
                    xAssign2 = x 
                End If 
 
                'Find shortest distance to closest transit center 
                findClosestTransitCenter(nodeID) 
 
                'Assign vehicle sequence 
                assignPeople2 = model.Modules.Create("BasicProcess", 
"Assign", x, y + Y_INCREMENT * startTimeCount) 
                assignPeople2.Data("Name") = "Assign People Travel Time 
" & nodeID 
                assignPeople2.Data("Type(1)") = "Attribute" 
                assignPeople2.Data("AName(1)") = "People Travel Time" 
                assignPeople2.Data("Value(1)") = "People Shortest Route 
Time " & nodeID & "(People Type)" 
                assignPeople2.Data("Type(2)") = "Attribute" 
                assignPeople2.Data("AName(2)") = transitStation 
                assignPeople2.Data("Value(2)") = "Station " & 
closestTransitCenter 
                assignPeople2.UpdateShapes() 
 
                'People Route Time 
                setPeopleTransit = 
model.Modules.Create("AdvancedProcess", "Expression", 0, 0) 
                setPeopleTransit.Data("Name") = "People Shortest Route 
Time " & nodeID 
                setPeopleTransit.Data("Dim1") = PeopleList.Count 
                For i = 1 To PeopleList.Count 
                    setPeopleTransit.Data("Value(" & i & ")") = 
shortestDistance & "/ People Speeds(" & i & ") * Hour to Minutes" 
                Next 
                setPeopleTransit.UpdateShapes() 
 
                'Route People from Origin station  
                routePeople = routePeopleModule("Route People from 
Origin " & nodeID, x + X_INCREMENT, y, "People Travel Time", 
transitStation) 
 
                'If there are incidents, assign new People shortest 
route time 
                If startTimeCount > 0 Then 
                    For i = 0 To startTimeCount - 1 
                        start = IncidentStartTimeList.ElementAt(i) 
 
                        'Decide vehicle sequence based on current 
simulation time 
                        decidePeople.Data("N Percent True(" & i + 1 & 
")") = "50" 
                        decidePeople.Data("N If(" & i + 1 & ")") = 
"Expression" 
                        If i = startTimeCount - 1 Then 
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                            decidePeople.Data("N Value(" & i + 1 & ")") 
= "TNOW >= " & start 
                        Else 
                            decidePeople.Data("N Value(" & i + 1 & ")") 
= "(TNOW >= " & start & ")&& (TNOW < " & 
IncidentStartTimeList.ElementAtOrDefault(i + 1) & ")" 
                        End If 
 
                        'Assign vehicle sequence 
                        x = xAssign2 
                        assignPeople2 = 
model.Modules.Create("BasicProcess", "Assign", x, y) 
                        assignPeople2.Data("Name") = "Assign People 
Travel Time " & nodeID & " Start Time " & start 
                        assignPeople2.Data("Type(1)") = "Attribute" 
                        assignPeople2.Data("AName(1)") = "People Travel 
Time" 
                        assignPeople2.Data("Value(1)") = "People 
Shortest Route Time " & nodeID & " Start Time " & start & "(People 
Type)" 
                        assignPeople2.Data("Type(2)") = "Attribute" 
                        assignPeople2.Data("AName(2)") = transitStation 
                        assignPeople2.Data("Value(2)") = "People Closest 
Transit Station " & nodeID & " Start Time " & start 
                        assignPeople2.UpdateShapes() 
 
                        model.Connections.Create(decidePeople, 
assignPeople2) 
                        model.Connections.Create(assignPeople2, 
routePeople) 
                        y += Y_INCREMENT 
                    Next 
                    decidePeople.UpdateShapes() 
                End If 
 
                model.Connections.Create(createPeople, station) 
            End If 
 
            If vehicles <> 0 Then 
                'Assign Vehicle attributes 
                If people <> 0 Then 
                    y += Y_INCREMENT 
                End If 
                x = xAssign 
                assignVehicle = assignOriginVehicleModule(nodeID, x, y, 
vehicleTypeDist, vehicleDestinationDist) 
 
                x += X_INCREMENT 
                If startTimeCount > 0 Then 
                    'Decide vehicle sequence based on current simulation 
time 
                    decideVehicle = model.Modules.Create("BasicProcess", 
"Decide", x, y) 
                    decideVehicle.Data("Name") = "Which Vehicle Sequence 
" & nodeID & "?" 
                    decideVehicle.Data("Type") = "N-way by Condition" 
                    x += X_AFTER_DECIDE * X_INCREMENT 
                    xAssign2 = x 
                End If 
 
                'Assign vehicle sequence 
                assignVehicle2 = model.Modules.Create("BasicProcess", 
"Assign", x, y + Y_INCREMENT * startTimeCount) 
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                assignVehicle2.Data("Name") = "Assign Vehicle Sequence "
& nodeID 
                assignVehicle2.Data("Type(1)") = "Attribute" 
                assignVehicle2.Data("AName(1)") = "Entity.Sequence" 
                assignVehicle2.Data("Value(1)") = "Vehicle Sequences " & 
nodeID & "(Vehicle Destination)" 
                assignVehicle2.Data("Type(2)") = "Attribute" 
                assignVehicle2.Data("AName(2)") = nextStation 
                assignVehicle2.Data("Value(2)") = 
"Entity.PlannedStation" 
                assignVehicle2.UpdateShapes() 
 
                'VEHICLE WAITS FOR SIGNALS TO TRAVERSE ORIGIN 
                x += X_INCREMENT 
                hold = model.Modules.Create("AdvancedProcess", "Hold", 
x, y) 
                hold.Data("Name") = "Vehicles Waiting to Move from " & 
origin.getID() 
                hold.Data("Type") = "Scan for Condition" 
                condition = "" 
                For j = 0 To origin.getOriginTo.Count - 1 
                    toLink = origin.getOriginTo.ElementAt(j) 
                    If ImportData.isDestination(toLink.getStartNode()) 
Then 
                        condition = condition & "(" & nextStation & "== 
Station " & toLink.getStartNode() & ")||" 
                    Else 
                        condition = condition & "(" & nextStation & "== 
Station " & toLink.getStartNode() & ")&&(Available Capacity from " & 
nodeID & " to " & toLink.getStartNode() & ">= Vehicle Length + " & 
vehicleGap.Data("Name") & ")||" 
                    End If 
                Next 
                condition = condition.Remove(condition.Length - 2) 
                hold.Data("Condition") = condition 
                hold.UpdateShapes() 
 
                'Route Vehicle from Origin station  
                x += X_INCREMENT 
                routeVehicle = routeVehicleModule("Route Vehicle from 
Origin " & nodeID, x, y, 0) 
                xIntersection = x + X_INCREMENT 
 
                If startTimeCount > 0 Then 
                    For i = 0 To startTimeCount - 1 
                        start = IncidentStartTimeList.ElementAt(i) 
 
                        'Decide vehicle sequence based on current 
simulation time 
                        decideVehicle.Data("N Percent True(" & i + 1 & 
")") = "50" 
                        decideVehicle.Data("N If(" & i + 1 & ")") = 
"Expression" 
                        If i = startTimeCount - 1 Then 
                            decideVehicle.Data("N Value(" & i + 1 & ")") 
= "TNOW >= " & start 
                        Else 
                            decideVehicle.Data("N Value(" & i + 1 & ")") 
= "(TNOW >= " & start & ")&& (TNOW < " & 
IncidentStartTimeList.ElementAtOrDefault(i + 1) & ")" 
                        End If 
 
                        'Assign vehicle sequence 
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                        x = xAssign2 
                        assignVehicle2 = 
model.Modules.Create("BasicProcess", "Assign", x, y) 
                        assignVehicle2.Data("Name") = "Assign Vehicle 
Sequence " & nodeID & " Start Time " & start 
                        assignVehicle2.Data("Type(1)") = "Attribute" 
                        assignVehicle2.Data("AName(1)") = 
"Entity.Sequence" 
                        assignVehicle2.Data("Value(1)") = "Rerouted 
Vehicle Sequences " & nodeID & " Start Time " & start & "(Vehicle 
Destination)" 
                        assignVehicle2.Data("Type(2)") = "Attribute" 
                        assignVehicle2.Data("AName(2)") = nextStation 
                        assignVehicle2.Data("Value(2)") = 
"Entity.PlannedStation" 
                        assignVehicle2.UpdateShapes() 
 
                        model.Connections.Create(decideVehicle, 
assignVehicle2) 
                        model.Connections.Create(assignVehicle2, hold) 
                        y += Y_INCREMENT 
                    Next 
                    decideVehicle.UpdateShapes() 
                End If 
 
                If people <> 0 AndAlso vehicles <> 0 Then 
                    model.Connections.Create(decide, assignVehicle) 
                End If 
            End If 
            y += Y_INCREMENT 
        Next 
 
        '============================================== DESTINATION 
=========================================== 
 
        For Each destination In DestinationList 
            x = 0 
            nodeID = destination.getID() 
 
            'Destination station 
            station = stationModule("Station " & nodeID, x, y) 
 
            'Record destination statistics 
            x += X_INCREMENT 
            record = model.Modules.Create("BasicProcess", "Record", x, 
y) 
            record.Data("Name") = "Destination " & nodeID & " 
Statistics" 
            record.Data("Type") = "Entity Statistics" 
            record.UpdateShapes() 
 
            If TransitList.Count <> 0 Then 
                'Split entities 
                x += X_INCREMENT 
                separate = model.Modules.Create("BasicProcess", 
"Separate", x, y) 
                separate.Data("Name") = "People Get off Public 
Transportation " & nodeID 
                separate.Data("Type") = "Split Existing Batch" 
                separate.Data("Member Attributes") = "Retain Original 
Entity Values" 
                separate.UpdateShapes() 
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                'Record People out for each destination 
                x += X_INCREMENT 
                record = model.Modules.Create("BasicProcess", "Record", 
x, y) 
                record.Data("Name") = "Number of People Out " & nodeID 
                record.Data("Type") = "Count" 
                condition = "" 
                For i = 0 To PeopleList.Count - 1 
                    condition = condition & "Entity.Type == " & 
PeopleList.ElementAt(i).getPeopleType() & "||" 
                Next 
                condition = condition.Remove(condition.Length - 2) 
                record.Data("Value") = condition 
                record.Data("Counter Name") = "People Out " & nodeID 
                record.UpdateShapes() 
 
                'Record total number of People out  
                x += X_INCREMENT 
                record = model.Modules.Create("BasicProcess", "Record", 
x, y) 
                record.Data("Name") = "Total Number of People Out " & 
nodeID 
                record.Data("Type") = "Count" 
                record.Data("Value") = condition 
                record.Data("Counter Name") = "Total People Out" 
                record.UpdateShapes() 
 
            End If 
 
            'Record Vehicle out for each destination 
            x += X_INCREMENT 
            record = model.Modules.Create("BasicProcess", "Record", x, 
y) 
            record.Data("Name") = "Number of Vehicles Out " & nodeID 
            record.Data("Type") = "Count" 
            condition = "" 
            For i = 0 To VehicleList.Count - 1 
                condition = condition & "Entity.Type == " & 
VehicleList.ElementAt(i).getVehicleType() & "||" 
            Next 
            condition = condition.Remove(condition.Length - 2) 
            record.Data("Value") = condition 
            record.Data("Counter Name") = "Vehicles Out " & nodeID 
            record.UpdateShapes() 
 
            'Record Vehicle out 
            x += X_INCREMENT 
            record = model.Modules.Create("BasicProcess", "Record", x, 
y) 
            record.Data("Name") = "Total Number of Vehicles Out " & 
nodeID 
            record.Data("Type") = "Count" 
            record.Data("Value") = condition 
            record.Data("Counter Name") = "Total Vehicles Out" 
            record.UpdateShapes() 
 
            'Record end time 
            x += X_INCREMENT 
            record = model.Modules.Create("BasicProcess", "Record", x, 
y) 
            record.Data("Name") = "Record End Time " & nodeID 
            record.Data("Type") = "Expression" 
            record.Data("Value") = "TNOW" 
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            record.Data("Tally Name") = "End Time" 
            record.UpdateShapes() 
 
            'Dispose entities 
            x += X_INCREMENT 
            dispose = model.Modules.Create("BasicProcess", "Dispose", x, 
y) 
            dispose.Data("Name") = "Exit via Destination " & nodeID 
            dispose.UpdateShapes() 
 
            y += Y_INCREMENT 
        Next 
 
        '============================================== TRANSIT CENTER 
========================================== 
        If TransitList.Count > 0 Then 
            batchSizeIndex = 0 
            variable = model.Modules.Create("BasicProcess", "Variable", 
0, 0) 
            variable.Data("Name") = "Public Transportation Batch Size" 
            variable.Data("Rows") = TransitList.Count 
            For Each center In TransitList 
                x = 0 
                nodeID = center.getID() 
                batchSizeIndex += 1 
 
                'Generate public transportation capacity Variable 
                variable.Data("Initial Value(" & batchSizeIndex & ")") = 
PublicTransportationCapacity 
 
                'Sequence sets from all transit centers to all 
destinations 
                setVehicleSequences(nodeID, "", "Public Transportation 
Sequences", "From") 
 
                'Vehicle destination empirical discrete distribution 
                vehicleDestinationDist = 
cumulativeDiscreteDistribution(vehicleDestinationDistList) 
 
                'Transit Center station 
                station = stationModule("Station " & nodeID, x, y) 
 
                'Assign arrival time to transit center 
                x += X_INCREMENT 
                assign = model.Modules.Create("BasicProcess", "Assign", 
x, y) 
                assign.Data("Name") = "Assign People Arrival Time " & 
nodeID 
                assign.Data("Type") = "Attribute" 
                assign.Data("AName") = "People Arrival Time to Transit" 
                assign.Data("Value") = "TNOW" 
                assign.UpdateShapes() 
 
                'Create duplicate entities to scan the condition to 
release public transportation 
                x += X_INCREMENT 
                separate = model.Modules.Create("BasicProcess", 
"Separate", x, y) 
                separate.Data("Name") = "Duplicate to Create Scan Entity 
" & nodeID 
                separate.Data("Cost") = "0" 
                separate.UpdateShapes() 
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                'Hold People until the public transportation is filled 
or until the last person is hold more than maximum allowable time 
                x += X_INCREMENT 
                xScan = x 
                hold = model.Modules.Create("AdvancedProcess", "Hold", 
x, y) 
                hold.Data("Name") = "Hold People for Signal " & nodeID 
                hold.Data("Type") = "Wait for Signal" 
                hold.Data("Value") = nodeID 
                hold.UpdateShapes() 
 
                'Group People Module to load People on public 
transportation  
                x += X_INCREMENT 
                batch = model.Modules.Create("BasicProcess", "Batch", x, 
y) 
                batch.Data("Name") = "Group People " & nodeID 
                batch.Data("Type") = "Temporary" 
                batch.Data("Batch Size") = variable.Data("Name") & "(" & 
batchSizeIndex & ")" 
                batch.UpdateShapes() 
 
                'Assign public transportation attributes  
                x += X_INCREMENT 
                assignVehicle = model.Modules.Create("BasicProcess", 
"Assign", x, y) 
                assignVehicle.Data("Name") = "Assign Public 
Transportation " & nodeID 
                assignVehicle.Data("Type(1)") = "Entity Type" 
                assignVehicle.Data("TypeName(1)") = "Bus" 
                assignVehicle.Data("Type(2)") = "Entity Picture" 
                assignVehicle.Data("PicName(2)") = "Picture.Van" 
                assignVehicle.Data("Type(3)") = "Attribute" 
                assignVehicle.Data("AName(3)") = "Vehicle Length" 
                assignVehicle.Data("Value(3)") = 
PublicTransportationLength 
                assignVehicle.Data("Type(4)") = "Attribute" 
                assignVehicle.Data("AName(4)") = "Vehicle Destination" 
                assignVehicle.Data("Value(4)") = vehicleDestinationDist 
                assignVehicle.Data("Type(5)") = "Attribute" 
                assignVehicle.Data("AName(5)") = "Destination" 
                assignVehicle.Data("Value(5)") = "Destination 
Set(Vehicle Destination)" 
                assignVehicle.Data("Type(6)") = "Attribute" 
                assignVehicle.Data("AName(6)") = "Previous Station" 
                assignVehicle.Data("Value(6)") = "Entity.Station" 
                assignVehicle.UpdateShapes() 
 
                x += X_INCREMENT 
                If startTimeCount > 0 Then 
                    'Decide vehicle sequence based on current simulation 
time 
                    decideVehicle = model.Modules.Create("BasicProcess", 
"Decide", x, y) 
                    decideVehicle.Data("Name") = "Which Vehicle Sequence 
" & nodeID & "?" 
                    decideVehicle.Data("Type") = "N-way by Condition" 
                    x += X_AFTER_DECIDE * X_INCREMENT 
                    xAssign2 = x 
                End If 
 
                'Assign vehicle sequence 
                assignVehicle2 = model.Modules.Create("BasicProcess", 
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"Assign", x, y + Y_INCREMENT * startTimeCount) 
                assignVehicle2.Data("Name") = "Assign Public 
Transportation Sequence " & nodeID 
                assignVehicle2.Data("Type(1)") = "Attribute" 
                assignVehicle2.Data("AName(1)") = "Entity.Sequence" 
                assignVehicle2.Data("Value(1)") = "Public Transportation 
Sequences " & nodeID & "(Vehicle Destination)" 
                assignVehicle2.Data("Type(2)") = "Attribute" 
                assignVehicle2.Data("AName(2)") = nextStation 
                assignVehicle2.Data("Value(2)") = 
"Entity.PlannedStation" 
                assignVehicle2.UpdateShapes() 
 
                'VEHICLE WAITS FOR SIGNALS TO TRAVERSE ORIGIN 
                x += X_INCREMENT 
                hold2 = model.Modules.Create("AdvancedProcess", "Hold", 
x, y) 
                hold2.Data("Name") = "Vehicles Waiting to Move from " & 
center.getID() 
                hold2.Data("Type") = "Scan for Condition" 
                condition = "" 
                For j = 0 To center.getTransitTo.Count - 1 
                    toLink = center.getTransitTo.ElementAt(j) 
                    If ImportData.isDestination(toLink.getStartNode()) 
Then 
                        condition = condition & "(" & nextStation & "== 
Station " & toLink.getStartNode() & ")||" 
                    Else 
                        condition = condition & "(" & nextStation & "== 
Station " & toLink.getStartNode() & ")&&(Available Capacity from " & 
nodeID & " to " & toLink.getStartNode() & ">= Vehicle Length + " & 
vehicleGap.Data("Name") & ")||" 
                    End If 
                Next 
                condition = condition.Remove(condition.Length - 2) 
                hold2.Data("Condition") = condition 
                hold2.UpdateShapes() 
 
                'Route Vehicle from Transit Center station  
                x += X_INCREMENT 
                routeVehicle = routeVehicleModule("Route Public 
Transportation from Transit Center " & nodeID, x, y, 
routeTime.Data("Name")) 
                xIntersection = x + X_INCREMENT 
 
                If startTimeCount > 0 Then 
                    For i = 0 To startTimeCount - 1 
                        start = IncidentStartTimeList.ElementAt(i) 
 
                        'Decide vehicle sequence based on current 
simulation time 
                        decideVehicle.Data("N Percent True(" & i + 1 & 
")") = "50" 
                        decideVehicle.Data("N If(" & i + 1 & ")") = 
"Expression" 
                        If i = startTimeCount - 1 Then 
                            decideVehicle.Data("N Value(" & i + 1 & ")") 
= "TNOW >= " & start 
                        Else 
                            decideVehicle.Data("N Value(" & i + 1 & ")") 
= "(TNOW >= " & start & ")&& (TNOW < " & 
IncidentStartTimeList.ElementAtOrDefault(i + 1) & ")" 
                        End If 
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                        'Assign vehicle sequence 
                        x = xAssign2 
                        assignVehicle2 = 
model.Modules.Create("BasicProcess", "Assign", x, y) 
                        assignVehicle2.Data("Name") = "Assign Public 
Transportation Sequence " & nodeID & " Start Time " & start 
                        assignVehicle2.Data("Type(1)") = "Attribute" 
                        assignVehicle2.Data("AName(1)") = 
"Entity.Sequence" 
                        assignVehicle2.Data("Value(1)") = "Rerouted 
Public Transportation Sequences " & nodeID & " Start Time " & start & 
"(Vehicle Destination)" 
                        assignVehicle2.Data("Type(2)") = "Attribute" 
                        assignVehicle2.Data("AName(2)") = nextStation 
                        assignVehicle2.Data("Value(2)") = 
"Entity.PlannedStation" 
                        assignVehicle2.UpdateShapes() 
 
                        model.Connections.Create(decideVehicle, 
assignVehicle2) 
                        model.Connections.Create(assignVehicle2, hold2) 
                        y += Y_INCREMENT 
                    Next 
                    decideVehicle.UpdateShapes() 
                End If 
 
                'Scan if number of waiting in Hold area exceeds the 
public transportation capacity or if the last People has to wait more 
than maximum allowable time 
                x = xScan 
                y = y + Y_INCREMENT 
                scan = model.Modules.Create("AdvancedProcess", "Hold", 
x, y) 
                scan.Data("Name") = "Scan for Condition " & nodeID 
                scan.Data("Type") = "Scan for Condition" 
                scan.Data("Condition") = "NQ(" & hold.Data("Name") & 
".Queue) >= " & variablePublicTransportationSize.Data("Name") & "  ||  ( 
TNOW - " & assign.Data("AName(1)") & "> " & 
variablePublicTransportationWaitTime.Data("Name") & " )" 
                scan.UpdateShapes() 
 
                'Assign number of People can get onto one public 
transportation 
                x += X_INCREMENT 
                assign = model.Modules.Create("BasicProcess", "Assign", 
x, y) 
                assign.Data("Name") = "Assign Public Transportation 
Batch Size " & nodeID 
                assign.Data("Type") = "Other" 
                assign.Data("OtherName") = variable.Data("Name") & "(" & 
batchSizeIndex & ")" 
                assign.Data("Value") = "MN(NQ(" & hold.Data("Name") & 
".Queue)," & variablePublicTransportationSize.Data("Name") & ")" 
                assign.UpdateShapes() 
 
                'Signal to release public transportation 
                x += X_INCREMENT 
                signal = model.Modules.Create("AdvancedProcess", 
"Signal", x, y) 
                signal.Data("Name") = "Signal to Release Public 
Transportation " & nodeID 
                signal.Data("Value") = nodeID 
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                signal.Data("Limit") = variable.Data("Name") & "(" & 
batchSizeIndex & ")" 
                signal.UpdateShapes() 
 
                'Dispose duplicate entity  
                x += X_INCREMENT 
                dispose = model.Modules.Create("BasicProcess", 
"Dispose", x, y) 
                dispose.Data("Name") = "Dispose Duplicate Entity " & 
nodeID 
                dispose.UpdateShapes() 
 
                model.Connections.Create(separate, scan) 
 
                y += Y_INCREMENT 
            Next 
        End If 
 
 
        '============================================== INTERSECTION 
=========================================== 
        y = 0 
        For Each intersection In IntersectionList 
            x = xIntersection 
            nodeID = intersection.getID() 
            fromIntersectionCount = 
intersection.getFromIntersections.Count 
            toIntersectionCount = intersection.getToIntersections.Count 
 
            'If this intersection is start node of incident(s), create a 
list of incident start time involving this intersection 
            If IncidentList IsNot Nothing Then 
                intersectionIncidentStartTimeList = New List(Of Double) 
                For Each incidentEvent In IncidentList 
                    If incidentEvent.getFromNode() = nodeID AndAlso 
intersectionIncidentStartTimeList.Contains(incidentEvent.getStartTime()) 
= False Then 
                        
intersectionIncidentStartTimeList.Add(incidentEvent.getStartTime()) 
                    End If 
                Next 
                intersectionIncidentStartTimeCount = 
intersectionIncidentStartTimeList.Count 
            Else 
                intersectionIncidentStartTimeCount = 0 
            End If 
 
            'Coordinate of the next intersection station in Arena 
            yIntersection = y + Y_INCREMENT * 
Math.Max(intersectionIncidentStartTimeCount + 1, fromIntersectionCount) 
 
            'Intersection station 
            station = stationModule("Station " & nodeID, x, y) 
 
            x += X_INCREMENT 
            If intersectionIncidentStartTimeCount > 0 Then 
                'Decide vehicle sequence based on current simulation 
time 
                decideVehicle = model.Modules.Create("BasicProcess", 
"Decide", x, y) 
                decideVehicle.Data("Name") = "Which Vehicle Sequence " & 
nodeID & "?" 
                decideVehicle.Data("Type") = "N-way by Condition" 
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                x += X_AFTER_DECIDE * X_INCREMENT 
                xAssign = x 
            End If 
 
            'Obtain entity's next station 
            assign = model.Modules.Create("BasicProcess", "Assign", x, y 
+ Y_INCREMENT * intersectionIncidentStartTimeCount) 
            assign.Data("Name") = "Assign Attributes " & nodeID 
            assign.Data("Type(1)") = "Attribute" 
            assign.Data("AName(1)") = "Arrival Time " & nodeID 
            assign.Data("Value(1)") = "TNOW" 
            assign.Data("Type(2)") = "Attribute" 
            assign.Data("AName(2)") = nextStation 
            assign.Data("Value(2)") = "Entity.PlannedStation" 
            assign.UpdateShapes() 
 
            x += X_INCREMENT 
            If fromIntersectionCount > 1 Then 
                'Decide which entities from which previous intersections
                decideFromIntersections = 
model.Modules.Create("BasicProcess", "Decide", x, y) 
                decideFromIntersections.Data("Name") = "From Where to " 
& nodeID & "?" 
                decideFromIntersections.Data("Type") = "N-way by 
Condition" 
                x += X_AFTER_DECIDE * X_INCREMENT 
                xAssignIn = x 
            End If 
 
            'Compute available space/length to trigger the signal for 
vehicle entering link 
            fromLink = 
intersection.getFromIntersections.ElementAt(fromIntersectionCount - 1) 
            startNode = fromLink.getStartNode() 
            assignIn = model.Modules.Create("BasicProcess", "Assign", x, 
y + Y_INCREMENT * (fromIntersectionCount - 1)) 
            assignIn.Data("Name") = "Calculate Available Capacity " & 
startNode & " to " & nodeID 
            assignIn.Data("Type") = "Variable" 
            assignIn.Data("VName") = "Available Capacity from " & 
startNode & " to " & nodeID 
            assignIn.Data("Value") = "Available Capacity from " & 
startNode & " to " & nodeID & " - " & vehicleGap.Data("Name") & " - 
Vehicle Length" 
            assignIn.UpdateShapes() 
 
            'Compute time needed for vehicle to reach downstream 
            x += X_INCREMENT 
            delay = model.Modules.Create("AdvancedProcess", "Delay", x, 
y + Y_INCREMENT * (fromIntersectionCount - 1)) 
            delay.Data("Name") = "Vehicle Running from " & startNode & " 
to " & nodeID 
            delay.Data("DelayType") = "Available Capacity from " & 
startNode & " to " & nodeID & "/ (Speed from " & fromLink.getStartNode() 
& " to " & nodeID & "* Mile to Feet / Hour to Minutes *" & 
fromLink.getLanes() & ")" 
            delay.Data("Units") = "Minutes" 
            delay.UpdateShapes() 
 
            'VEHICLE WAITS FOR SIGNALS TO TRAVERSE INTERSECTION 
            x += X_INCREMENT 
            hold = model.Modules.Create("AdvancedProcess", "Hold", x, y 
+ Y_INCREMENT * (fromIntersectionCount - 1)) 
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            hold.Data("Name") = "Vehicles from " & startNode & " Waiting 
to Traverse " & nodeID 
            hold.Data("Type") = "Scan for Condition" 
            condition = "" 
            If intersection.getGreen() <> 0 AndAlso 
fromIntersectionCount > 1 Then 
                'Generate signal phases 
                variableSignal = model.Modules.Create("BasicProcess", 
"Variable", 0, 0) 
                variableSignal.Data("Name") = "Traffic Signal " & nodeID
                variableSignal.Data("Rows") = fromIntersectionCount 
                For j = 1 To fromIntersectionCount 
                    variableSignal.Data("Initial Value(" & j & ")") = 
RED_SIGNAL 
                Next 
 
                'Scan condition 
                condition = "(" & variableSignal.Data("Name") & "(" & 
fromIntersectionCount & ")==" & GREEN_SIGNAL & ")&&(" 
                For j = 0 To intersection.getToIntersections.Count - 1 
                    toLink = 
intersection.getToIntersections.ElementAt(j) 
                    If ImportData.isDestination(toLink.getStartNode()) 
Then 
                        condition = condition & "(" & nextStation & "== 
Station " & toLink.getStartNode() & ")||" 
                    Else 
                        condition = condition & "(" & nextStation & "== 
Station " & toLink.getStartNode() & ")&&(Available Capacity from " & 
nodeID & " to " & toLink.getStartNode() & ">= Vehicle Length + " & 
vehicleGap.Data("Name") & ")||" 
                    End If 
                Next 
                condition = condition.Remove(condition.Length - 2) 
                condition = condition & ")" 
            Else 
                For j = 0 To intersection.getToIntersections.Count - 1 
                    toLink = 
intersection.getToIntersections.ElementAt(j) 
                    If ImportData.isDestination(toLink.getStartNode()) 
Then 
                        condition = condition & "(" & nextStation & "== 
Station " & toLink.getStartNode() & ")||" 
                    Else 
                        condition = condition & "(" & nextStation & "== 
Station " & toLink.getStartNode() & ")&&(Available Capacity from " & 
nodeID & " to " & toLink.getStartNode() & ">= Vehicle Length + " & 
vehicleGap.Data("Name") & ")||" 
                    End If 
                Next 
                condition = condition.Remove(condition.Length - 2) 
            End If 
            hold.Data("Condition") = condition 
            hold.UpdateShapes() 
 
            'Recalculate available space/length when vehicle leaves link
            x += X_INCREMENT 
            assignOut = model.Modules.Create("BasicProcess", "Assign", 
x, y + Y_INCREMENT * (fromIntersectionCount - 1)) 
            assignOut.Data("Name") = "Assign Available Capacity and 
Current Station " & startNode & " to " & nodeID 
            assignOut.Data("Type(1)") = "Variable" 
            assignOut.Data("VName(1)") = "Available Capacity from " & 
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startNode & " to " & nodeID 
            assignOut.Data("Value(1)") = "Available Capacity from " & 
startNode & " to " & nodeID & " + " & vehicleGap.Data("Name") & " + 
Vehicle Length" 
            assignOut.Data("Type(2)") = "Attribute" 
            assignOut.Data("AName(2)") = "Previous Station" 
            assignOut.Data("Value(2)") = "Entity.Station" 
            assignOut.UpdateShapes() 
 
            'Record Total Flow on each link 
            x += X_INCREMENT 
            record = model.Modules.Create("BasicProcess", "Record", x, y 
+ Y_INCREMENT * (fromIntersectionCount - 1)) 
            record.Data("Name") = "Total Flow " & startNode & " to " & 
nodeID 
            record.Data("Type") = "Count" 
            record.Data("Value") = "1" 
            record.UpdateShapes() 
 
            'Create output file of flow counter at each link 
            statistic = model.Modules.Create("AdvancedProcess", 
"Statistic", 0, 0) 
            statistic.Data("Name") = "Flow " & startNode & " to " & 
nodeID 
            statistic.Data("Type") = "Counter" 
            statistic.Data("Counter") = "Total Flow " & startNode & " to 
" & nodeID 
            statistic.Data("CounterOutputFile") = "Flow" & startNode & 
"to" & nodeID & ".dat" 
            statistic.UpdateShapes() 
 
            'Create output file of average flow on each link 
            statistic = model.Modules.Create("AdvancedProcess", 
"Statistic", 0, 0) 
            statistic.Data("Name") = "Average Flow " & startNode & " to 
" & nodeID 
            statistic.Data("Type") = "Output" 
            statistic.Data("DExp") = "NC(Total Flow " & startNode & " to 
" & nodeID & ")/TMAX(End Time)" 
            statistic.UpdateShapes() 
 
            'Route Vehicle out of Intersection 
            x += X_INCREMENT 
            routeVehicle = routeVehicleModule("Route Vehicle from 
Intersection " & nodeID, x, y, routeTime.Data("Name")) 
            xSignal = x + X_INCREMENT 
            ySignal = y 
 
            'Create output file of queue time at each link 
            'statistic = model.Modules.Create("AdvancedProcess", 
"Statistic", 0, 0) 
            'statistic.Data("Name") = "Queue " & startNode & " to " & 
nodeID 
            'statistic.Data("Type") = "Time-Persistent" 
            'statistic.Data("DExp") = "TAVG(Vehicles from " & startNode 
& " Waiting to Traverse " & nodeID & ".Queue.WaitingTime)" 
            'statistic.Data("CounterOutputFile") = "Queue" & startNode & 
"to" & nodeID & ".dat" 
            'statistic.UpdateShapes() 
 
            If intersectionIncidentStartTimeCount > 0 Then 
                For i = 0 To intersectionIncidentStartTimeCount - 1 
                    start = 
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intersectionIncidentStartTimeList.ElementAt(i) 
                    'Decide vehicle sequence based on current simulation 
time 
                    decideVehicle.Data("N Percent True(" & i + 1 & ")") 
= "50" 
                    decideVehicle.Data("N If(" & i + 1 & ")") = 
"Expression" 
                    If i = intersectionIncidentStartTimeCount - 1 Then 
                        decideVehicle.Data("N Value(" & i + 1 & ")") = 
"TNOW >= " & start 
                    Else 
                        decideVehicle.Data("N Value(" & i + 1 & ")") = 
"(TNOW >= " & start & ")&& (TNOW < " & 
intersectionIncidentStartTimeList.ElementAtOrDefault(i + 1) & ")" 
                    End If 
 
                    'Assign vehicle sequence 
                    x = xAssign 
                    assign = model.Modules.Create("BasicProcess", 
"Assign", x, y) 
                    assign.Data("Name") = "Assign Vehicle Sequence " & 
nodeID & " Start Time " & start 
                    assign.Data("Type(1)") = "Attribute" 
                    assign.Data("AName(1)") = "Arrival Time " & nodeID 
                    assign.Data("Value(1)") = "TNOW" 
                    assign.Data("Type(2)") = "Attribute" 
                    assign.Data("AName(2)") = "Entity.Jobstep" 
                    assign.Data("Value(2)") = "0" 
                    assign.Data("Type(3)") = "Attribute" 
                    assign.Data("AName(3)") = "Entity.Sequence" 
                    assign.Data("Value(3)") = "Rerouted Vehicle 
Sequences " & nodeID & " Start Time " & start & "(Vehicle Destination)" 
                    assign.Data("Type(4)") = "Attribute" 
                    assign.Data("AName(4)") = nextStation 
                    assign.Data("Value(4)") = "Entity.PlannedStation" 
                    assignIndex = 4 
                    For j = 0 To IncidentList.Count - 1 
                        currentIncident = IncidentList.ElementAt(j) 
                        If currentIncident.getStartTime() = start 
AndAlso currentIncident.getFromNode() = nodeID AndAlso 
currentIncident.getCapacityPercentage <> 0 Then 
                            assign.Data("Type(" & assignIndex & ")") = 
"Variable" 
                            assign.Data("VName(" & assignIndex & ")") = 
"Available Capacity from " & nodeID & " to " & 
currentIncident.getToNode() 
                            assign.Data("Value(" & assignIndex & ")") = 
"Available Capacity from " & nodeID & " to " & 
currentIncident.getToNode() & " * " & 
(currentIncident.getCapacityPercentage() / PERCENTAGE) 
                            assignIndex += 1 
                        End If 
                    Next 
                    assign.UpdateShapes() 
 
                    model.Connections.Create(decideVehicle, assign) 
                    model.Connections.Create(assign, 
decideFromIntersections) 
                    y += Y_INCREMENT 
                Next 
                decideVehicle.UpdateShapes() 
            End If 
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            y = ySignal 
            If fromIntersectionCount > 1 Then 
                For i = 0 To fromIntersectionCount - 2 
                    fromLink = 
intersection.getFromIntersections.ElementAt(i) 
                    startNode = fromLink.getStartNode() 
                    decideFromIntersections.Data("N Percent True(" & i + 
1 & ")") = "50" 
                    decideFromIntersections.Data("N If(" & i + 1 & ")") 
= "Attribute" 
                    decideFromIntersections.Data("N ANamed(" & i + 1 & 
")") = "Previous Station" 
                    decideFromIntersections.Data("N Is(" & i + 1 & ")") 
= "==" 
                    decideFromIntersections.Data("N Value(" & i + 1 & 
")") = "Station " & startNode 
 
                    'Compute available space/length to trigger the 
signal for vehicle entering link 
                    x = xAssignIn 
                    assignIn = model.Modules.Create("BasicProcess", 
"Assign", x, y) 
                    assignIn.Data("Name") = "Calculate Available 
Capacity " & startNode & " to " & nodeID 
                    assignIn.Data("Type") = "Variable" 
                    assignIn.Data("VName") = "Available Capacity from " 
& startNode & " to " & nodeID 
                    assignIn.Data("Value") = "Available Capacity from " 
& startNode & " to " & nodeID & " - " & vehicleGap.Data("Name") & " - 
Vehicle Length" 
                    assignIn.UpdateShapes() 
 
                    'Compute time needed for vehicle to reach downstream
                    x += X_INCREMENT 
                    delay = model.Modules.Create("AdvancedProcess", 
"Delay", x, y) 
                    delay.Data("Name") = "Vehicle Running from " & 
startNode & " to " & nodeID 
                    delay.Data("DelayType") = "Available Capacity from "
& startNode & " to " & nodeID & "/ (Speed from " & 
fromLink.getStartNode() & " to " & nodeID & "* Mile to Feet / Hour to 
Minutes *" & fromLink.getLanes() & ")" 
                    delay.Data("Units") = "Minutes" 
                    delay.UpdateShapes() 
 
                    'VEHICLE WAITS FOR SIGNALS TO TRAVERSE INTERSECTION 
                    x += X_INCREMENT 
                    hold = model.Modules.Create("AdvancedProcess", 
"Hold", x, y) 
                    hold.Data("Name") = "Vehicles from " & startNode & " 
Waiting to Traverse " & nodeID 
                    hold.Data("Type") = "Scan for Condition" 
                    condition = "" 
                    If intersection.getGreen() <> 0 Then 
                        'Scan condition 
                        condition = "(" & variableSignal.Data("Name") & 
"(" & i + 1 & ")==" & GREEN_SIGNAL & ")&&(" 
                        For j = 0 To 
intersection.getToIntersections.Count - 1 
                            toLink = 
intersection.getToIntersections.ElementAt(j) 
                            If 
ImportData.isDestination(toLink.getStartNode()) Then 
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                                condition = condition & "(" & 
nextStation & "== Station " & toLink.getStartNode() & ")||" 
                            Else 
                                condition = condition & "(" & 
nextStation & "== Station " & toLink.getStartNode() & ")&&(Available 
Capacity from " & nodeID & " to " & toLink.getStartNode() & ">= Vehicle 
Length + " & vehicleGap.Data("Name") & ")||" 
                            End If 
                        Next 
                        condition = condition.Remove(condition.Length - 
2) 
                        condition = condition & ")" 
                    Else 
                        For j = 0 To 
intersection.getToIntersections.Count - 1 
                            toLink = 
intersection.getToIntersections.ElementAt(j) 
                            If 
ImportData.isDestination(toLink.getStartNode()) Then 
                                condition = condition & "(" & 
nextStation & "== Station " & toLink.getStartNode() & ")||" 
                            Else 
                                condition = condition & "(" & 
nextStation & "== Station " & toLink.getStartNode() & ")&&(Available 
Capacity from " & nodeID & " to " & toLink.getStartNode() & ">= Vehicle 
Length + " & vehicleGap.Data("Name") & ")||" 
                            End If 
                        Next 
                        condition = condition.Remove(condition.Length - 
2) 
                    End If 
                    hold.Data("Condition") = condition 
                    hold.UpdateShapes() 
 
                    'Recalculate available space/length when vehicle 
leaves link 
                    x += X_INCREMENT 
                    assignOut = model.Modules.Create("BasicProcess", 
"Assign", x, y) 
                    assignOut.Data("Name") = "Assign Available Capacity 
and Current Station " & startNode & " to " & nodeID 
                    assignOut.Data("Type(1)") = "Variable" 
                    assignOut.Data("VName(1)") = "Available Capacity 
from " & startNode & " to " & nodeID 
                    assignOut.Data("Value(1)") = "Available Capacity 
from " & startNode & " to " & nodeID & " + " & vehicleGap.Data("Name") & 
" + Vehicle Length" 
                    assignOut.Data("Type(2)") = "Attribute" 
                    assignOut.Data("AName(2)") = "Previous Station" 
                    assignOut.Data("Value(2)") = "Entity.Station" 
                    assignOut.UpdateShapes() 
 
                    'Record time in station 
                    x += X_INCREMENT 
                    record = model.Modules.Create("BasicProcess", 
"Record", x, y) 
                    record.Data("Name") = "Total Flow " & startNode & " 
to " & nodeID 
                    record.Data("Type") = "Count" 
                    record.Data("Value") = "1" 
                    record.UpdateShapes() 
 
                    'Create output file of flow counter at each link 
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                    statistic = model.Modules.Create("AdvancedProcess", 
"Statistic", 0, 0) 
                    statistic.Data("Name") = "Flow " & startNode & " to 
" & nodeID 
                    statistic.Data("Type") = "Counter" 
                    statistic.Data("Counter") = "Total Flow " & 
startNode & " to " & nodeID 
                    statistic.Data("CounterOutputFile") = "Flow" & 
startNode & "to" & nodeID & ".dat" 
                    statistic.UpdateShapes() 
 
                    'Create output file of average flow on each link 
                    statistic = model.Modules.Create("AdvancedProcess", 
"Statistic", 0, 0) 
                    statistic.Data("Name") = "Average Flow " & startNode 
& " to " & nodeID 
                    statistic.Data("Type") = "Output" 
                    statistic.Data("DExp") = "NC(Total Flow " & 
startNode & " to " & nodeID & ")/TMAX(End Time)" 
                    statistic.UpdateShapes() 
 
                    model.Connections.Create(decideFromIntersections, 
assignIn) 
                    model.Connections.Create(record, routeVehicle) 
 
                    y += Y_INCREMENT 
 
                    'Create output file of queue time at each link 
                    'statistic = model.Modules.Create("AdvancedProcess", 
"Statistic", 0, 0) 
                    'statistic.Data("Name") = "Queue " & startNode & " 
to " & nodeID 
                    'statistic.Data("Type") = "Time-Persistent" 
                    'statistic.Data("DExp") = "TAVG(Vehicles from " & 
startNode & " Waiting to Traverse " & nodeID & ".Queue.WaitingTime)" 
                    'statistic.Data("CounterOutputFile") = "Queue" & 
startNode & "to" & nodeID & ".dat" 
                    'statistic.UpdateShapes() 
                Next 
                decideFromIntersections.UpdateShapes() 
 
            End If 
 
            If intersection.getGreen() <> 0 And fromIntersectionCount > 
1 Then 
 
                variable = variableModule("Green Time " & nodeID, 
intersection.getGreen()) 
                variable = variableModule("Yellow Time " & nodeID, 
intersection.getYellow()) 
 
                'Create traffic signal 
                createSignal = model.Modules.Create("BasicProcess", 
"Create", xSignal, ySignal) 
                createSignal.Data("Name") = "Create Traffic Signal " & 
nodeID 
                createSignal.Data("Entity Type") = "Green Light " & 
nodeID 
                createSignal.Data("Interarrival Type") = "Expression" 
                createSignal.Data("Expression") = "Green Time " & nodeID 
& " + Yellow Time " & nodeID 
                createSignal.Data("Units") = "Minutes" 
                createSignal.UpdateShapes() 
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                'Assign Entity Green Light picture 
                xSignal += X_INCREMENT 
                assignIn = model.Modules.Create("BasicProcess", 
"Assign", xSignal, ySignal) 
                assignIn.Data("Name") = "Assign Green Light " & nodeID 
                assignIn.Data("Type") = "Entity Picture" 
                assignIn.Data("PicName") = "Picture.Green Ball" 
                assignIn.UpdateShapes() 
 
                'Separate signal phases 
                xSignal += X_INCREMENT 
                decideSignal = model.Modules.Create("BasicProcess", 
"Decide", xSignal, ySignal) 
                decideSignal.Data("Name") = "Traffic Phases " & nodeID & 
" ?" 
                decideSignal.Data("Type") = "N-way by Condition" 
 
                'Assign signal phases 
                xSignal += X_AFTER_DECIDE * X_INCREMENT 
                xAssign = xSignal 
                assign = model.Modules.Create("BasicProcess", "Assign", 
xSignal, ySignal + Y_INCREMENT * (fromIntersectionCount - 1)) 
                assign.Data("Name") = "Assign Traffic Signal " & nodeID 
& " from " & 
intersection.getFromIntersections.ElementAt(fromIntersectionCount - 
1).getStartNode() 
                assign.Data("Type(1)") = "Other" 
                assign.Data("OtherName(1)") = 
variableSignal.Data("Name") & "(" & fromIntersectionCount & ")" 
                assign.Data("Value(1)") = GREEN_SIGNAL 
                assign.Data("Type(2)") = "Other" 
                assign.Data("OtherName(2)") = 
variableSignal.Data("Name") & "(MOD(EntitiesIn(" & 
createSignal.Data("Entity Type") & ")-1," & fromIntersectionCount & "))"
                assign.Data("Value(2)") = RED_SIGNAL 
                assign.UpdateShapes() 
 
                'Pass through green time 
                xSignal += X_INCREMENT 
                delay = model.Modules.Create("AdvancedProcess", "Delay", 
xSignal, ySignal + Y_INCREMENT * (fromIntersectionCount - 1)) 
                delay.Data("Name") = "Green Light " & nodeID & " 
Progressing from " & 
intersection.getFromIntersections.ElementAt(fromIntersectionCount - 
1).getStartNode() 
                delay.Data("DelayType") = "Green Time " & nodeID 
                delay.Data("Units") = "Minutes" 
                delay.UpdateShapes() 
 
                'Change signal light to yellow 
                xSignal += X_INCREMENT 
                assignOut = model.Modules.Create("BasicProcess", 
"Assign", xSignal, ySignal + Y_INCREMENT * (fromIntersectionCount - 1)) 
                assignOut.Data("Name") = "Change Signal Light to Yellow 
" & nodeID & " from " & 
intersection.getFromIntersections.ElementAt(fromIntersectionCount - 
1).getStartNode() 
                assignOut.Data("Type(1)") = "Other" 
                assignOut.Data("OtherName(1)") = 
variableSignal.Data("Name") & "(" & fromIntersectionCount & ")" 
                assignOut.Data("Value(1)") = YELLOW_SIGNAL 
                assignOut.Data("Type(2)") = "Entity Picture" 
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                assignOut.Data("PicName(2)") = "Picture.Yellow Ball" 
                assignOut.UpdateShapes() 
 
                'Dispose green light entities 
                xSignal += X_INCREMENT 
                dispose = model.Modules.Create("BasicProcess", 
"Dispose", xSignal, ySignal) 
                dispose.Data("Name") = "Dispose Traffic Lights " & 
nodeID 
                dispose.UpdateShapes() 
 
                For i = 0 To fromIntersectionCount - 2 
                    decideSignal.Data("N Percent True(" & i + 1 & ")") = 
"50" 
                    decideSignal.Data("N If(" & i + 1 & ")") = 
"Expression" 
                    decideSignal.Data("N Value(" & i + 1 & ")") = 
"MOD(EntitiesIn(" & createSignal.Data("Entity Type") & ")," & 
fromIntersectionCount & ")==" & i + 1 
 
                    'Assign signal phases 
                    xSignal = xAssign 
                    assign = model.Modules.Create("BasicProcess", 
"Assign", xSignal, ySignal) 
                    assign.Data("Name") = "Assign Traffic Signal " & 
nodeID & " from " & 
intersection.getFromIntersections.ElementAt(i).getStartNode() 
                    assign.Data("Type(1)") = "Other" 
                    assign.Data("OtherName(1)") = 
variableSignal.Data("Name") & "(" & i + 1 & ")" 
                    assign.Data("Value(1)") = GREEN_SIGNAL 
                    assign.Data("Type(2)") = "Other" 
                    assign.Data("OtherName(2)") = 
variableSignal.Data("Name") & "((MOD(EntitiesIn(" & 
createSignal.Data("Entity Type") & ")-1," & fromIntersectionCount & 
")==0)*" & fromIntersectionCount & " + MOD(EntitiesIn(" & 
createSignal.Data("Entity Type") & ")-1," & fromIntersectionCount & "))"
                    assign.Data("Value(2)") = RED_SIGNAL 
                    assign.UpdateShapes() 
 
                    'Pass through green time 
                    xSignal += X_INCREMENT 
                    delay = model.Modules.Create("AdvancedProcess", 
"Delay", xSignal, ySignal) 
                    delay.Data("Name") = "Green Light " & nodeID & " 
Progressing from " & 
intersection.getFromIntersections.ElementAt(i).getStartNode() 
                    delay.Data("DelayType") = "Green Time " & nodeID 
                    delay.Data("Units") = "Minutes" 
                    delay.UpdateShapes() 
 
                    'Change signal light to yellow 
                    xSignal += X_INCREMENT 
                    assignOut = model.Modules.Create("BasicProcess", 
"Assign", xSignal, ySignal) 
                    assignOut.Data("Name") = "Change Signal Light to 
Yellow " & nodeID & " from " & 
intersection.getFromIntersections.ElementAt(i).getStartNode() 
                    assignOut.Data("Type(1)") = "Other" 
                    assignOut.Data("OtherName(1)") = 
variableSignal.Data("Name") & "(" & i + 1 & ")" 
                    assignOut.Data("Value(1)") = YELLOW_SIGNAL 
                    assignOut.Data("Type(2)") = "Entity Picture" 



 

 164

2345 
2346 
2347 
2348 
2349 
2350 
2351 
2352 
2353 
2354 
2355 
2356 
2357 
2358 
2359 
2360 
2361 
2362 
2363 
2364 
2365 
2366 
2367 
2368 
2369 
2370 
2371 
2372 
2373 
2374 
2375 
2376 
2377 
2378 
2379 
2380 
2381 
2382 
2383 
2384 
2385 
2386 
2387 
2388 
2389 
2390 
2391 
2392 
2393 
2394 
2395 
2396 
2397 
2398 
2399 
2400 
2401 
2402 
2403 
2404 
2405 
2406 
2407 

                    assignOut.Data("PicName(2)") = "Picture.Yellow Ball"
                    assignOut.UpdateShapes() 
 
                    model.Connections.Create(decideSignal, assign) 
                    model.Connections.Create(assignOut, dispose) 
 
                    ySignal += Y_INCREMENT 
                Next 
                decideSignal.UpdateShapes() 
            End If 
 
            'Locate the coordinate of next intersection station module 
in Arena 
            y = yIntersection 
        Next 
 
        '==================================================== INCIDENT 
================================================= 
        If startTimeCount > 0 Then 
            'Process group of incidents having same start time 
            For Each startTime In IncidentStartTimeList 
                incidentStartNodes = New List(Of Integer) 
                For i = 0 To IncidentList.Count - 1 
                    currentIncident = IncidentList.ElementAt(i) 
                    'Modify the graph and/or flow of incident link 
                    If currentIncident.getStartTime() = startTime Then 
                        If 
incidentStartNodes.Contains(currentIncident.getFromNode()) = False Then 
                            
incidentStartNodes.Add(currentIncident.getFromNode()) 
                        End If 
 
                        'Find incident link on graph 
                        currentIncidentEdge = 
incidentGraph.Edges.FirstOrDefault(Function(qe As QuickGraph.Edge(Of 
Integer)) qe.Source = currentIncident.getFromNode() AndAlso qe.Target = 
currentIncident.getToNode()) 
                        If (currentIncident.getCapacityPercentage()) = 0 
AndAlso (currentIncidentEdge IsNot Nothing) Then 
                            
incidentGraph.RemoveEdge(currentIncidentEdge) 
                            
EdgeFlow.Remove(currentIncidentEdge.ToString()) 
                            
EdgeLength.Remove(currentIncidentEdge.ToString()) 
                        Else 
                            
EdgeFlow.Item(currentIncidentEdge.ToString()) = 
EdgeFlow.Item(currentIncidentEdge.ToString()) / 
(currentIncident.getCapacityPercentage() / PERCENTAGE) 
 
                        End If 
                    End If 
                Next 
 
                'New sequence sets from incident start node to all 
destinations 
                For Each incidentStartNode In incidentStartNodes 
                    setVehicleSequences(incidentStartNode, "Start Time "
& startTime, "Rerouted Vehicle Sequences", "Rerouted from") 
                Next 
 
                For Each origin In OriginList 
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                    nodeID = origin.getID() 
 
                    'New vehicle sequence sets from all origins to all 
destinations 
                    If incidentStartNodes.Contains(nodeID) = False Then 
                        setVehicleSequences(nodeID, "Start Time " & 
startTime, "Rerouted Vehicle Sequences", "Rerouted from") 
                    End If 
 
                    'Find closest Transit Center  
                    findClosestTransitCenter(nodeID) 
 
                    'Generate People route time to Transit Center under 
incidents 
                    setPeopleTransit = 
model.Modules.Create("AdvancedProcess", "Expression", 0, 0) 
                    setPeopleTransit.Data("Name") = "People Shortest 
Route Time " & nodeID & " Start Time " & startTime 
                    setPeopleTransit.Data("Dim1") = PeopleList.Count 
                    For i = 1 To PeopleList.Count 
                        setPeopleTransit.Data("Value(" & i & ")") = 
shortestDistance & "/ People Speeds(" & i & ") * Hour to Minutes" 
                    Next 
                    setPeopleTransit.UpdateShapes() 
 
                    'Generate closest Transit Center  
                    setPeopleTransit = 
model.Modules.Create("AdvancedProcess", "Expression", 0, 0) 
                    setPeopleTransit.Data("Name") = "People Closest 
Transit Station " & nodeID & " Start Time " & startTime 
                    setPeopleTransit.Data("Value") = "Station " & 
closestTransitCenter 
                    setPeopleTransit.UpdateShapes() 
                Next 
 
                'New sequence sets from all transit centers to all 
destinations 
                For Each center In TransitList 
                    nodeID = center.getID() 
                    If incidentStartNodes.Contains(nodeID) = False Then 
                        setVehicleSequences(nodeID, "Start Time " & 
startTime, "Rerouted Public Transportation Sequences", "Rerouted from") 
                    End If 
                Next 
            Next 
        End If 
    End Sub 
 
    'Create Module 
    Private Function createModule(ByVal name As String, ByVal type As 
String, ByVal x As Integer, ByVal y As Integer, ByVal max As Double, 
ByVal rate As String) As Arena.Module 
        createModule = model.Modules.Create("BasicProcess", "Create", x, 
y) 
        createModule.Data("Name") = name 
        createModule.Data("Entity Type") = type 
        createModule.Data("Interarrival Type") = "Expression" 
        createModule.Data("Expression") = rate 
        createModule.Data("Units") = "Minutes" 
        createModule.Data("Max Batches") = max 
        createModule.UpdateShapes() 
    End Function 
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    'Station Module 
    Private Function stationModule(ByVal name As String, ByVal x As 
Integer, ByVal y As Integer) As Arena.Module 
        stationModule = model.Modules.Create("AdvancedTransfer", 
"Station", x, y) 
        stationModule.Data("Name") = name 
        stationModule.Data("Statn") = name 
        stationModule.UpdateShapes() 
    End Function 
 
    'Assign People attributes Module 
    Private Function assignOriginPeopleModule(ByVal nodeID As Integer, 
ByVal x As Integer, ByVal y As Integer, ByVal distribution As String) As
Arena.Module 
        assignOriginPeopleModule = model.Modules.Create("BasicProcess", 
"Assign", x, y) 
        assignOriginPeopleModule.Data("Name") = "Assign People " & 
nodeID 
        assignOriginPeopleModule.Data("Type(1)") = "Attribute" 
        assignOriginPeopleModule.Data("AName(1)") = "People Type" 
        assignOriginPeopleModule.Data("Value(1)") = distribution 
        assignOriginPeopleModule.Data("Type(2)") = "Attribute" 
        assignOriginPeopleModule.Data("AName(2)") = "Entity.Type" 
        assignOriginPeopleModule.Data("Value(2)") = "People Types(" & 
assignOriginPeopleModule.Data("AName(1)") & ")" 
        assignOriginPeopleModule.Data("Type(3)") = "Attribute" 
        assignOriginPeopleModule.Data("AName(3)") = "Entity.Picture" 
        assignOriginPeopleModule.Data("Value(3)") = "People Pictures(" & 
assignOriginPeopleModule.Data("AName(1)") & ")" 
        assignOriginPeopleModule.UpdateShapes() 
    End Function 
 
    'Assign vehicle attributes Module 
    Private Function assignOriginVehicleModule(ByVal nodeID As Integer, 
ByVal x As Integer, ByVal y As Integer, ByVal modeDistribution As 
String, ByVal destinationDistribution As String) As Arena.Module 
        assignOriginVehicleModule = model.Modules.Create("BasicProcess", 
"Assign", x, y) 
        assignOriginVehicleModule.Data("Name") = "Assign Vehicle " & 
nodeID 
        assignOriginVehicleModule.Data("Type(1)") = "Attribute" 
        assignOriginVehicleModule.Data("AName(1)") = "Vehicle Mode" 
        assignOriginVehicleModule.Data("Value(1)") = modeDistribution 
        assignOriginVehicleModule.Data("Type(2)") = "Attribute" 
        assignOriginVehicleModule.Data("AName(2)") = "Entity.Type" 
        assignOriginVehicleModule.Data("Value(2)") = "Vehicle 
Types(Vehicle Mode)" 
        assignOriginVehicleModule.Data("Type(3)") = "Attribute" 
        assignOriginVehicleModule.Data("AName(3)") = "Vehicle Length" 
        assignOriginVehicleModule.Data("Value(3)") = "Vehicle 
Lengths(Vehicle Mode)" 
        assignOriginVehicleModule.Data("Type(4)") = "Attribute" 
        assignOriginVehicleModule.Data("AName(4)") = "Entity.Picture" 
        assignOriginVehicleModule.Data("Value(4)") = "Vehicle 
Pictures(Vehicle Mode)" 
        assignOriginVehicleModule.Data("Type(5)") = "Attribute" 
        assignOriginVehicleModule.Data("AName(5)") = "Vehicle 
Destination" 
        assignOriginVehicleModule.Data("Value(5)") = 
destinationDistribution 
        assignOriginVehicleModule.Data("Type(6)") = "Attribute" 
        assignOriginVehicleModule.Data("AName(6)") = "Destination" 
        assignOriginVehicleModule.Data("Value(6)") = "Destination 
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Set(Vehicle Destination)" 
        assignOriginVehicleModule.Data("Type(7)") = "Attribute" 
        assignOriginVehicleModule.Data("AName(7)") = "Previous Station" 
        assignOriginVehicleModule.Data("Value(7)") = "Entity.Station" 
        assignOriginVehicleModule.Data("Type(8)") = "Attribute" 
        assignOriginVehicleModule.Data("AName(8)") = "Arrival Time " & 
nodeID 
        assignOriginVehicleModule.Data("Value(8)") = "TNOW" 
        assignOriginVehicleModule.UpdateShapes() 
    End Function 
 
    'Route Module 
    Private Function routeVehicleModule(ByVal name As String, ByVal x As
Integer, ByVal y As Integer, ByVal routeTime As String) As Arena.Module 
        routeVehicleModule = model.Modules.Create("AdvancedTransfer", 
"Route", x, y) 
        routeVehicleModule.Data("Name") = name 
        routeVehicleModule.Data("RouteTime") = routeTime 
        routeVehicleModule.Data("Units") = "Minutes" 
        routeVehicleModule.Data("SG") = "Sequential" 
        routeVehicleModule.UpdateShapes() 
    End Function 
 
    'Route People Module 
    Private Function routePeopleModule(ByVal name As String, ByVal x As 
Integer, ByVal y As Integer, ByVal routeTime As String, ByVal 
stationName As String) As Arena.Module 
        routePeopleModule = model.Modules.Create("AdvancedTransfer", 
"Route", x, y) 
        routePeopleModule.Data("Name") = name 
        routePeopleModule.Data("RouteTime") = routeTime 
        routePeopleModule.Data("Units") = "Minutes" 
        routePeopleModule.Data("SG") = "Attribute" 
        routePeopleModule.Data("Attr") = stationName 
        routePeopleModule.UpdateShapes() 
    End Function 
 
    'Single value Variable Module 
    Private Function variableModule(ByVal name As String, ByVal 
initialValue As Double) As Arena.Module 
        variableModule = model.Modules.Create("BasicProcess", 
"Variable", 0, 0) 
        variableModule.Data("Name") = name 
        variableModule.Data("Initial Value") = initialValue 
    End Function 
 
    'Single value Expression Module 
    Private Function expressionModule(ByVal name As String, ByVal value 
As Double) As Arena.Module 
        expressionModule = model.Modules.Create("AdvancedProcess", 
"Expression", 0, 0) 
        expressionModule.Data("Name") = name 
        expressionModule.Data("Value") = value 
    End Function 
 
    'Create empirical discrete distribution 
    Private Function cumulativeDiscreteDistribution(ByVal typeList() As 
Double) As String 
        Dim total, cumulative As Double 
        Dim rand As New Random 
        total = 0 
        cumulative = 0 
        'Assign a random probability number for each vehicle 
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        For i = 0 To typeList.Length - 1 
            typeList(i) = Math.Round(rand.NextDouble(), 2) 
            total = total + typeList(i) 
        Next 
        cumulativeDiscreteDistribution = "DISC(" 
        'Write discrete DISC() function that can be used in Arena 
        For i = 0 To typeList.Length - 2 
            cumulative = cumulative + Math.Floor(typeList(i) / total * 
100) / 100 
            cumulativeDiscreteDistribution = 
cumulativeDiscreteDistribution & cumulative & "," & i + 1 & "," 
        Next 
        cumulativeDiscreteDistribution = cumulativeDiscreteDistribution 
& "1," & typeList.Length & ")" 
    End Function 
 
    'Create empirical discrete distribution of destination. If there is 
no path between origin and one destination, 
    'probability that vehicle is sent to that destination is 0. 
    Private Function vehicleDestinationDiscreteDistribution() As String 
        Dim probabilityList(DestinationList.Count - 1) As Double 
        Dim total, cumulative As Double 
        Dim rand As New Random 
        Dim pathByFlow As IEnumerable(Of Edge(Of Integer)) 
        total = 0 
        cumulative = 0 
        'Assign a random probability number for each vehicle 
        For i = 0 To probabilityList.Length - 1 
            If getPathByFlow(DestinationList.ElementAt(i).getID(), 
pathByFlow) Then 
                probabilityList(i) = Math.Round(rand.NextDouble(), 2) 
            Else 
                probabilityList(i) = 0 
            End If 
            total = total + probabilityList(i) 
        Next 
        vehicleDestinationDiscreteDistribution = "DISC(" 
        'Write discrete DISC() function that can be used in Arena 
        For i = 0 To probabilityList.Length - 2 
            cumulative = cumulative + Math.Floor(probabilityList(i) / 
total * 100) / 100 
            vehicleDestinationDiscreteDistribution = 
vehicleDestinationDiscreteDistribution & cumulative & "," & i + 1 & "," 
        Next 
        vehicleDestinationDiscreteDistribution = 
vehicleDestinationDiscreteDistribution & "1," & probabilityList.Length & 
")" 
    End Function 
 
    'Create vehicle sequences 
    Private Sub setVehicleSequences(ByVal nodeID As Integer, ByVal time 
As String, ByVal sequenceSetName As String, ByVal sequenceName As 
String) 
        Dim setSequence, sequence As Arena.Module 
        Dim path As List(Of Integer) 
        Dim destination As Integer 
        Dim pathByFlow As IEnumerable(Of Edge(Of Integer)) 
        getPathByFlow = findShortestPath(Graph, AddressOf getEdgeFlow, 
nodeID) 
 
        setSequence = model.Modules.Create("AdvancedProcess", "Advanced 
Set", 0, 0) 
        setSequence.Data("Name") = sequenceSetName & " " & nodeID & " " 
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& time 
        setSequence.Data("Type") = "Other" 
        For i = 0 To DestinationList.Count - 1 
            path = New List(Of Integer) 
            destination = DestinationList.Item(i).getID() 
            setSequence.Data("Other(" & i + 1 & ")") = sequenceName & " 
" & nodeID & " to " & destination & " " & time 
            sequence = model.Modules.Create("AdvancedTransfer", 
"Sequence", 0, 0) 
            sequence.Data("Name") = setSequence.Data("Other(" & i + 1 & 
")") 
            If getPathByFlow(destination, pathByFlow) Then 
                For Each edge In pathByFlow 
                    path.Add(edge.Target) 
                Next 
            Else 
                path.Add(destination) 
            End If 
            For j = 0 To path.Count - 1 
                sequence.Data("Station(" & j + 1 & ")") = "Station " & 
path(j) 
            Next 
            sequence.UpdateShapes() 
        Next 
        setSequence.UpdateShapes() 
    End Sub 
 
    'Find shortest path  
    Private Function findShortestPath(ByVal g As 
IVertexAndEdgeListGraph(Of Integer, Edge(Of Integer)), ByVal edgeCost As
Func(Of Edge(Of Integer), Double), ByVal source As Integer) As 
TryFunc(Of Integer, IEnumerable(Of Edge(Of Integer))) 
        Return g.ShortestPathsDijkstra(edgeCost, source) 
    End Function 
 
    'Find shortest distance between two nodes 
    Public Function findShortestDistance(ByVal pathByLength As 
IEnumerable(Of Edge(Of Integer))) As Double 
        Try 
            findShortestDistance = 0 
            For Each edge In pathByLength 
                findShortestDistance += EdgeLength(edge.ToString()) 
            Next 
            Return findShortestDistance 
        Catch ex As Exception 
            Console.WriteLine(ex.StackTrace) 
            MessageBox.Show(ex.Message) 
        End Try 
    End Function 
 
    'Find closest Transit Center  
    Private Function findClosestTransitCenter(ByVal nodeID As Integer) 
As Boolean 
        Dim pathByLength As IEnumerable(Of Edge(Of Integer)) 
        Dim nextShortestDistance As Double 
        getPathByLength = findShortestPath(Graph, AddressOf 
getEdgeLength, nodeID) 
        shortestDistance = 999999 
        For Each center In TransitList 
            If getPathByLength(center.getID(), pathByLength) Then 
                nextShortestDistance = 
findShortestDistance(pathByLength) 
                If shortestDistance > nextShortestDistance Then 
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                    shortestDistance = nextShortestDistance 
                    closestTransitCenter = center.getID() 
                End If 
            End If 
        Next 
    End Function 
 
    'Get length value of each link 
    Private Function getEdgeLength(ByVal e As Edge(Of Integer)) As 
Double 
        Return EdgeLength(e.ToString()) 
    End Function 
 
    'Get flow value of each link 
    Private Function getEdgeFlow(ByVal e As Edge(Of Integer)) As Double 
        Return EdgeFlow(e.ToString()) 
    End Function 
End Class 
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Imports MapWinGIS 
 
Public Class GISMap 
 
    Dim axMap As AxMapWinGIS.AxMap 
    Private Sub GISMap_Load(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles MyBase.Load 
        Dim shp As MapWinGIS.Shapefile 
        Dim linksLayerHandle As Integer 
        Dim nodesLayerHandle As Integer 
        Dim label As String 
        Dim label_x, label_y As Double 
 
        'Add ActiveX Control 
        axMap = New AxMapWinGIS.AxMap() 
        Me.Controls.Add(axMap) 
        axMap.Dock = DockStyle.Fill 
        axMap.RemoveAllLayers() 
 
        Try 
            shp = New MapWinGIS.Shapefile() 
            shp.Open(LinksShapeFileName) 
            linksLayerHandle = axMap.AddLayer(shp, True) 
 
            shp = New MapWinGIS.Shapefile() 
            shp.Open(NodesShapeFileName) 
            nodesLayerHandle = axMap.AddLayer(shp, True) 
 
            axMap.ZoomToMaxExtents() 
            axMap.set_ShapeLayerPointType(nodesLayerHandle, 
tkPointType.ptCircle) 
            axMap.set_ShapeLayerPointColor(nodesLayerHandle, 
System.Drawing.ColorTranslator.ToOle(System.Drawing.Color.Red)) 
            axMap.set_ShapeLayerLineColor(linksLayerHandle, 
System.Drawing.ColorTranslator.ToOle(System.Drawing.Color.Black)) 
            axMap.set_ShapeLayerPointSize(nodesLayerHandle, 10) 
 
            For i As Integer = 0 To shp.NumShapes - 1 
                label = shp.CellValue(0, i).ToString() 
                label_x = shp.QuickExtents(i).xMin 
                label_y = shp.QuickExtents(i).yMin 
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                axMap.AddLabel(nodesLayerHandle, label, 
System.Drawing.ColorTranslator.ToOle(System.Drawing.Color.Black), 
label_x, label_y, MapWinGIS.tkHJustification.hjRight) 
            Next 
        Catch ex As Exception 
            MessageBox.Show(Me, ex.Message, "GIS", 
MessageBoxButtons.OK, MessageBoxIcon.Error) 
        End Try 
 
    End Sub 
End Class 
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'Count the traffic flow per time unit. Time unit has lower bound and 
upper bound, e.g., [0, 1) 
 
Public Class Counter 
    Implements IComparable 
 
    Public LowerBound As Double 
 
    Public UpperBound As Double 
    Public Count As Integer = 0 
 
    Public Sub New() 
 
    End Sub 
 
    Public Sub New(ByVal LowerBound As Double, ByVal UpperBound As 
Double) 
        Me.LowerBound = LowerBound 
        Me.UpperBound = UpperBound 
    End Sub 
 
    Public Function IsInRange(ByVal value As Double) As Boolean 
        Return (value >= LowerBound) AndAlso (value < UpperBound) 
    End Function 
 
    Public Shared Function GetCounter(ByVal value As Double) As Counter 
        Dim cnt As New Counter() 
        cnt.LowerBound = Math.Floor(value) 
        cnt.UpperBound = cnt.LowerBound + 1 
        cnt.Count = 0 
        Return cnt 
    End Function 
 
    Public Shared Function GetCounter(ByVal counterList As List(Of 
Counter), ByVal value As Double) As Counter 
        For Each c As Counter In counterList 
            If c.IsInRange(value) Then 
                Return c 
            End If 
        Next 
        Return Nothing 
    End Function 
 
    Public Function CompareTo(ByVal obj As Object) As Integer 
Implements System.IComparable.CompareTo 
        Dim c2 As Counter = obj 
        If (Me.LowerBound = c2.LowerBound AndAlso Me.UpperBound = 
c2.UpperBound) Then 
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            Return 0 
        ElseIf (Me.LowerBound < c2.LowerBound) Then 
            Return -1 
        Else 
            Return 1 
        End If 
    End Function 
End Class 
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'User interface to import data 
 
Public Class ExportDataForm 
    Private Sub btnBrowseRepInput_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles btnBrowseRepInput.Click 
        openInput.Filter = "All Files|*.*" 
        If (openInput.ShowDialog() = Windows.Forms.DialogResult.OK) 
Then 
            txtRepInput.Text = openInput.FileName 
        End If 
    End Sub 
 
    Private Sub btnBrowseRepOutput_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles btnBrowseRepOutput.Click 
        saveOutput.Filter = "All Files|*.*" 
        If (saveOutput.ShowDialog() = Windows.Forms.DialogResult.OK) 
Then 
            txtRepOutput.Text = saveOutput.FileName 
        End If 
    End Sub 
 
    Private Sub btnRunRepTest_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles btnRunRepTest.Click 
        Dim repList As List(Of Replication) = 
ReplicationHelper.ReadFromFile(txtRepInput.Text) 
        ReplicationHelper.WriteToTextFile(repList, txtRepOutput.Text) 
        MessageBox.Show(Me, "File " & txtRepInput.Text & " is exported 
successfully to " & txtRepOutput.Text) 
    End Sub 
End Class 
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'Manage flow data for each simulation replication 
 
Imports System.Text 
 
Public Class Replication 
    Public ReplicationNumber As Integer 
    Public Data As New List(Of Double) 
 
    Public Function InsertData(ByVal dataLine As String) As Boolean 
        If (dataLine.StartsWith("-")) Then 
            ' End of Replication 
            ' Parse the replication number 
            ReplicationNumber = Math.Abs(Double.Parse(dataLine.Split(" 
")(0))) 
            Return False 
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        End If 
        ' Extract the first value 
        Dim value As String = dataLine.Split(" ")(0) 
        ' Insert that value into the list 
        Me.Data.Add(Double.Parse(value)) 
        ' Return true to indicate that this is not the end of 
Replication 
        Return True 
    End Function 
 
    Public Function GetHistogram(ByVal maxValue As Double) As List(Of 
Counter) 
        maxValue = Data.Max() 
        Dim hist As New List(Of Counter) 
        For i As Integer = 0 To Math.Floor(maxValue) 
            hist.Add(New Counter(i, i + 1)) 
        Next 
        If (Data IsNot Nothing) Then 
            For Each value As Double In Data 
                Dim c As Counter = Counter.GetCounter(hist, value) 
                If (c Is Nothing) Then 
                    c = Counter.GetCounter(value) 
                    c.Count = 1 
                    hist.Add(c) 
                Else 
                    c.Count += 1 
                End If 
            Next 
        End If 
        hist.Sort() 
        Return hist 
    End Function 
 
    Public Function GetHistogramAsFormattedString(ByVal maxValue As 
Double) 
        Dim s As New StringBuilder() 
        ' Histogram 
        Dim hist As List(Of Counter) = GetHistogram(maxValue) 
        ' Replication Number 
        s.Append("Rep").Append(ReplicationNumber) 
        ' Append histogram info 
        For Each c As Counter In hist 
            s.Append(vbTab).Append(c.Count) 
        Next 
        Return s.ToString() 
    End Function 
End Class 
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'Read and write traffic flow per time unit 
 
Imports System.IO 
 
Public Class ReplicationHelper 
    Public Shared Function ReadFromFile(ByVal filePath As String) As 
List(Of Replication) 
        Dim repList As New List(Of Replication) 
        Using sr As New StreamReader(filePath) 
            Dim line As String 
            Dim lineCount As Long = 0 
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            Dim rep As New Replication() 
            ' Read lines from the file until the end of 
            ' the file is reached. 
            Do 
                line = sr.ReadLine() 
                lineCount += 1 
                ' Ignore first 5 lines 
                If Not (line Is Nothing Or lineCount < 5) Then 
                    ' Insert into current replication 
                    If Not (rep.InsertData(line)) Then 
                        ' End of current replication 
                        ' insert into the list 
                        ' and create a new replication 
                        repList.Add(rep) 
                        rep = New Replication() 
                    End If 
                End If 
            Loop Until line Is Nothing 
        End Using 
        Return repList 
    End Function 
 
    Public Shared Sub WriteToTextFile(ByVal repList As List(Of 
Replication), ByVal filePath As String) 
        Using outfile As New StreamWriter(filePath) 
            ' Maximum value 
            Dim maxValue As Double = Double.MinValue 
            For Each rep As Replication In repList 
                If (maxValue < rep.Data.Max()) Then 
                    maxValue = rep.Data.Max() 
                End If 
            Next 
            ' Header 
            'outfile.Write("Rep#") 
            'For i As Integer = 0 To Math.Floor(maxValue) 
            'outfile.Write(vbTab) 
            'outfile.Write("[" & i & ", " & (i + 1) & ")") 
            'Next 
            For Each rep As Replication In repList 
                outfile.WriteLine() 
                
outfile.Write(rep.GetHistogramAsFormattedString(maxValue)) 
            Next 
        End Using 
    End Sub 
End Class 
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APPENDIX E 

OUTPUT REPORTS 

User Specified 

Evacuation Model Replications: 1

Replication 1 Time Units:Start Time: Stop Time:0.00  83.50 Minutes

Counter 

Count Value

People Out 1776  155.00

People Out 1777 16.0000

People Out 1780  160.00

People Out 1782 0

Total Flow 15930 to 7611 1.0000

Total Flow 15931 to 1781 16.0000

Total Flow 15932 to 7611 0

Total Flow 1778 to 1781 203.00

Total Flow 1778 to 7407  2,435.00
Total Flow 1778 to 7534 0

Total Flow 1779 to 7404  0

Total Flow 1779 to 7611  1,546.00

Total Flow 1781 to 1778  8.0000

Total Flow 1781 to 7535  211.00

Total Flow 7404 to 1779  1,725.00

Total Flow 7404 to 7534  0

Total Flow 7405 to 15932  0

Total Flow 7405 to 7404  179.00

Total Flow 7405 to 7406  333.00

Total Flow 7405 to 7407  203.00

Total Flow 7407 to 1778 203.00

Total Flow 7533 to 7532 622.00

Total Flow 7533 to 7534 3,973.00

Total Flow 7533 to 7535 3,190.00

Total Flow 7534 to 1778 2,427.00

Total Flow 7534 to 7404 1,546.00

Total Flow 7535 to 1781 0

Total Flow 7611 to 15932  1,547.00

Total Flow 7611 to 1779  0

Total People Out  331.00

Total Vehicles Out  8,500.00

Vehicles Out 1776  2,576.00  
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User Specified 

Evacuation Model Replications: 1

Replication 1 Time Units:Start Time: Stop Time:0.00  83.50 Minutes

Counter 

Vehicles Out 1777  1,730.00

Vehicles Out 1780  3,393.00

Vehicles Out 1782  801.00

Output 

Output Value

Average Flow 15930 to 7611  0.01197546

Average Flow 15931 to 1781 0.1916

Average Flow 15932 to 7611  0

Average Flow 1778 to 1781 2.4310

Average Flow 1778 to 7407 29.1602

Average Flow 1778 to 7534 0

Average Flow 1779 to 7404 0

Average Flow 1779 to 7611 18.5141

Average Flow 1781 to 1778  0.0958
Average Flow 1781 to 7535 2.5268

Average Flow 7404 to 1779  20.6577

Average Flow 7404 to 7534  0

Average Flow 7405 to 15932  0

Average Flow 7405 to 7404  2.1436

Average Flow 7405 to 7406  3.9878

Average Flow 7405 to 7407  2.4310

Average Flow 7407 to 1778  2.4310

Average Flow 7533 to 7532  7.4487

Average Flow 7533 to 7534  47.5785

Average Flow 7533 to 7535  38.2017

Average Flow 7534 to 1778 29.0644

Average Flow 7534 to 7404 18.5141

Average Flow 7535 to 1781 0

Average Flow 7611 to 15932 18.5260

Average Flow 7611 to 1779 0

Total Evacuation Time 83.5041
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Queues 

Evacuation Model Replications: 1

Replication 1 Time Units:Start Time: Stop Time:0.00 83.50 Minutes

Queue Detail Summary 

Time 

Waiting Time
Group People 15930.Queue 0.00
Group People 15931.Queue 0.00
Hold People for Signal 15930.Queue 57.07
Hold People for Signal 15931.Queue 2.20
Scan for Condition 15930.Queue 60.00
Scan for Condition 15931.Queue 55.94
Vehicles from 15930 Waiting to Traverse 7611.Queue 1.26
Vehicles from 15931 Waiting to Traverse 1781.Queue 0.61
Vehicles from 1778 Waiting to Traverse 1781.Queue 0.50
Vehicles from 1778 Waiting to Traverse 7407.Queue 0.21
Vehicles from 1779 Waiting to Traverse 7611.Queue 0.47
Vehicles from 1781 Waiting to Traverse 1778.Queue 0.48
Vehicles from 1781 Waiting to Traverse 7535.Queue 0.14
Vehicles from 7404 Waiting to Traverse 1779.Queue 0.14
Vehicles from 7405 Waiting to Traverse 7404.Queue 0.00
Vehicles from 7405 Waiting to Traverse 7406.Queue 0.00
Vehicles from 7405 Waiting to Traverse 7407.Queue 0.19
Vehicles from 7407 Waiting to Traverse 1778.Queue 0.39
Vehicles from 7533 Waiting to Traverse 7532.Queue 0.00
Vehicles from 7533 Waiting to Traverse 7534.Queue 0.00
Vehicles from 7533 Waiting to Traverse 7535.Queue 0.20
Vehicles from 7534 Waiting to Traverse 1778.Queue 0.34
Vehicles from 7534 Waiting to Traverse 7404.Queue 0.00
Vehicles from 7611 Waiting to Traverse 15932.Queue 0.17
Vehicles Waiting to Move from 15930.Queue 0.00
Vehicles Waiting to Move from 15931.Queue 0.00
Vehicles Waiting to Move from 7405.Queue 0.00
Vehicles Waiting to Move from 7533.Queue 0.00
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Queues 

Evacuation Model Replications: 1

Replication 1 Time Units:Start Time: Stop Time:0.00 83.50 Minutes

Other 

Number Waiting
Group People 15930.Queue 0.00
Group People 15931.Queue 0.00
Hold People for Signal 15930.Queue 10.93
Hold People for Signal 15931.Queue 8.29
Scan for Condition 15930.Queue 11.40
Scan for Condition 15931.Queue 204.05
Vehicles from 15930 Waiting to Traverse 7611.Queue 0.02
Vehicles from 15931 Waiting to Traverse 1781.Queue 0.12
Vehicles from 15932 Waiting to Traverse 7611.Queue 0.00
Vehicles from 1778 Waiting to Traverse 1781.Queue 1.20
Vehicles from 1778 Waiting to Traverse 7407.Queue 6.11
Vehicles from 1778 Waiting to Traverse 7534.Queue 0.00
Vehicles from 1779 Waiting to Traverse 7404.Queue 0.00
Vehicles from 1779 Waiting to Traverse 7611.Queue 8.78
Vehicles from 1781 Waiting to Traverse 1778.Queue 0.05
Vehicles from 1781 Waiting to Traverse 7535.Queue 0.35
Vehicles from 7404 Waiting to Traverse 1779.Queue 2.80
Vehicles from 7404 Waiting to Traverse 7534.Queue 0.00
Vehicles from 7405 Waiting to Traverse 15932.Queue 0.00
Vehicles from 7405 Waiting to Traverse 7404.Queue 0.00
Vehicles from 7405 Waiting to Traverse 7406.Queue 0.00
Vehicles from 7405 Waiting to Traverse 7407.Queue 0.45
Vehicles from 7407 Waiting to Traverse 1778.Queue 0.94
Vehicles from 7533 Waiting to Traverse 7532.Queue 0.00
Vehicles from 7533 Waiting to Traverse 7534.Queue 0.01
Vehicles from 7533 Waiting to Traverse 7535.Queue 7.55
Vehicles from 7534 Waiting to Traverse 1778.Queue 9.84
Vehicles from 7534 Waiting to Traverse 7404.Queue 0.00
Vehicles from 7535 Waiting to Traverse 1781.Queue 0.00
Vehicles from 7611 Waiting to Traverse 15932.Queue 3.17
Vehicles from 7611 Waiting to Traverse 1779.Queue 0.00
Vehicles Waiting to Move from 15930.Queue 0.00
Vehicles Waiting to Move from 15931.Queue 0.00
Vehicles Waiting to Move from 7405.Queue 0.00
Vehicles Waiting to Move from 7533.Queue 0.00

 


