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ABSTRACT 
 

This thesis, consisting of three chapters, develops and adapts several 

mathematical approaches in solving a series of questions of interdisciplinary research 

interests.   

In the first chapter, we design a new metric function for the verification of 

meteorological forecasts. The core question is to compare various  meteorological 

forecasts with the observation. To solve the problem, we propose a metric function to 

evaluate the difference between forecasts and observations. Moreover, a comparison 

method is introduced to compare across different forecasts and selects the optimal 

predictor that best matches with observations.  

In the second chapter, we create a nowcast of rotating storms in real-time 

based on the global properties of the storms. Advanced active contour method is utilized 

on storm images to capture unique characteristics of storms and novel modeling of 

rotating storm motion is employed to simulate movements of the storm. Real time 

images are used to verify that the prediction of the efficient forecast lines up with the 

actual route.  

In the third chapter, we develop an algorithm in data clustering and apply it to 

construct hierarchical diagrams. Using a newly devised algorithm, a set of points could 

be represented by just a single point. This algorithm is implemented in the construction 

of a new hierarchical tree. Computer-based experiments are conducted to demonstrate 

the difference between the new hierarchical clustering method and the previous method. 
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CHAPTER 1 
HAUSDORFF METRIC IN SPATIAL VERIFICATION 

 

In this chapter we introduce a new method to verify meteorological forecasts. 

The new method includes a metric function which provides evaluations of different 

forecasts. It is more resistant to perturbations and addresses specific problems raised by 

previous verification methods. We also discuss another scalar function, which does not 

satisfy positive property of a metric function but fulfills the other two properties. It is 

also applied to compare different forecast with the observation.  

1.1 Introduction 

The verification of high-resolution forecasts tend to have more significant 

position errors than the verification of short time high-resolution forecasts. The position 

errors could be so high that there is no overlap at all between observations and forecasts. 

Therefore, a method beyond simple pixel-to-pixel correspondence is needed to reward a 

forecast which has some correct prospects. In the absence of such a reward, the 

verification method will suffer from a "double-penalty" problem  (Gilleland et al., 2009; 

Ahijevych et al., 2009).  

To solve the problem of comparing forecasts with observations when 

significant displacement errors appear in the forecasts, several verification techniques 

have been introduced. Instead of computing errors by directly differencing two fields, in 

neighborhood approaches, a neighborhood around each grid point is searched in both 

fields and the statistical properties of the set of pixels in the neighborhoods such as 

mean value are compared. Pixel-to-pixel correspondence requirements can also be 
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avoided by comparing properties of the pixels in the entire domain of interest, as was 

done by Wernli et al. (2009). The resolution at which double penalty errors start to show 

up is an indirect measure of the position error although the errors may well not be due 

to location.  

One way to categorize these methods is to consider their purpose. They all 

intend to modify the image or the range of pixels so that pixel-to-pixel (or super-pixels 

to super-pixels) error measurements work. Despite the richness of the verification 

measures, it has been known that simple and intuitive scalar measures of performance 

are more efficient and easier to use. Our proposal, then, is to devise an intuitive scalar 

measure of model performance that can be computed without extensive preprocessing 

of model forecast fields. A distance metric is certainly intuitive — the "farther" away a 

forecast is from the observation field, the worse it is. It is also a scalar and has the 

benefit of naturally encompassing position errors in model forecasts. In this chapter we 

will devise a distance metric that can be used to gauge how close a forecast is to the 

observation. It should be noted that the metric introduced in this chapter is a distance, 

not a skill score. Unlike a skill score, the distance is not bounded — the larger the 

distance, the worse the forecast.  

It is important that verification measurements are metrics because in the 

absence of it being a metric, we may obtain unreasonable results when comparing two 

forecasts. The positivity property notes specifically that the distance between two 

objects is zero is equivalent to the fact that these two objects are identical. This is 

important because in a perfect forecast, the sets of pixels corresponding to the 
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observation and forecast fields will be identical and it is necessary to recognize a perfect 

forecast. 

The triangle inequality property is essential to carry out a fair measurement. 

For example, in the following scenario like this: Let O be the observation, F1 and F2 be 

two forecasts. If we measured that the distance between O and F1 is 100 units, and the 

distance between O and F2 is 10 units, we would say that F2 is a better forecast. 

However, if the verification measurement does not satisfy the triangle inequality 

property, we may find that the distance between F1 and F2 is 0.5 units or even less.  

Considering the expected variance in computed distances, we may not be convinced 

that F2 is really better since it is almost the same as F1 (the distance between them is 

almost zero). 

The symmetric property guarantees that every set has equal right to be fairly 

measured: the distance from set A to set B is always the same as the distance from set B 

to set A. 

 

1.2 A metric between two sets 

Although the definition of a metric seems intuitive, many reasonable measurements turn 

out to not be metrics especially when considering the model verification problem.   This 

is because it is non-trivial to define a distance between two sets of points that is a metric. 

Even though defining a metric between a point and a set of points is not difficult, it is a 

different situation when dealing with two sets of points.  
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1.2.1 Distance between a point and a set 

We take a look at the most intuitive measurement, the Euclidean metric. For 

two points ݔ ൌ ሺݔଵ, ݕ ,ଶሻݔ ൌ ሺݕଵ, ଶሻݕ ∈ Թ
ଶ , the Euclidean metric function is ݉ሺݔ,  ሻݕ

defined by: 

                             ݉ሺݔ, ሻݕ ൌ ඥሺݔଵ െ ଵሻݕ
ଶ ൅ ሺݔଶ െ ଶሻݕ

ଶ.                            

ሺ1.1ሻ 

This is shown in Figure 2.1b. Given the Euclidean metric between two points, 

we can define another metric, this time between any point ݔ ∈ Թଶ,and a set ܣ ⊂ Թଶ as: 

                                                           ݉ሺݔ, ሻܣ

ൌ min
௬∈஺

݉ሺݔ,  ሻ                                                  ሺ1.2ሻݕ

i.e. as the distance between the point x and the closest point to it in the set A (See Figure 

1.1a). It can be noted that metric ݉ሺݔ,  ሻ is overly sensitive. It is defined exclusively byܣ

the closest point and can therefore be unduly affected by noise in the data. Consider the 

scenario in Figure 1.1b where the forecast field has a single non-zero pixel close to the 

observations. Because this pixel is closest to the observations, all the ݉ሺݔ,  ሻ will beܣ

evaluated on the basis of this one point. We will look at distances between two sets of 

points in the next section. 
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 1.2.2 Hausdorff  distance between two sets 

In this section, we use the distance between a set of points and a single point 

to define the distance between two sets of points, which would be needed to find the 

distance between the pixels of the forecast and observed images. One possibility is to 

define it as the intuitively appealing maximum of all possible ݉ሺݔ,  :ሻܣ

                                                        ݀ሺܺ, ሻܣ

ൌ max
௫∈௑

݉ሺݔ,  ሻ                                                     ሺ1.3ሻܣ

This Euclidean distance between two sets turns out to not even be a metric 

function as it is not symmetric. In other words, ݀ሺܺ, ,ܣሻ can be different from ݀ሺܣ ܺሻ 

(See Figure  1.1c for an illustration). Using the minimum of all possible ݉ሺݔ,  ሻ doesܣ

not work either because it does not satisfy the positivity property. The sets A and X need 

to only overlap, not be identical, for the distance to be zero. 

Hausdorff metric gives a solution to this problem by applying the symmetric 

method: 

                               ݉ுሺܣ, ሻܤ ൌ maxሼ݀ሺܣ, ,ሻܤ ݀ሺܤ,                              .ሻሽܣ

ሺ1.4ሻ 

The mathematical definition of a metric space and Hausdorff metric is shown 

in the following: 
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Definition: A metric space is a set M in which a distance function ݀ is defined, with the 

following properties: 

(a) 0 ൑ ݀ሺݔ, ሻݕ ൏ ݕ ݀݊ܽ ݔ ݈݈ܽ ݎ݋݂  ∞ ∈ ,ݔሺ݀ (b)       .ܯ ሻݕ ൌ ݔ  ݂݅  ݕ݈݊݋  ݀݊ܽ   ݂݅ 0 ൌ

 .ݕ

(c) ݀ሺݔ, ሻݕ ൌ ݀ሺݕ, ݕ ݀݊ܽ ݔ ݈݈ܽ ݎ݋݂ ሻݔ ∈  .ܯ

(d) ݀ሺݔ, ሻݕ ൑ ݀ሺݔ, ሻݖ ൅ ݀ሺݖ, ,ݔ ݈݈ܽ ݎ݋ሻ݂ݕ ݖ ݀݊ܽ  ݕ ∈  .ܯ

Definition: Let ܤ ݀݊ܽ ܣ  be two non-empty subsets of a metric space ሺܯ, ݀ሻ . The 

Hausdorff distance between ܤ ݀݊ܽ ܣ is defined by: 

݉ுሺܣ, ሻܤ ൌ max ቊsup
୶஫୅

inf
୷∈୆

݀ሺx, yሻ , sup
୷஫୆

inf
୶∈୅

݀ሺx, yሻቋ. 

Since the sets we are discussing about are closed sets, the maximum and 

minimum could be used to substitute for ݌ݑݏ and ݂݅݊. 

It should be noted that when B includes only one point x, the distance from x 

to set A is different from the Hausdorff distance between x and set A: the former 

measures the point x to the closest point to it in set A, the latter measures x to the 

farthest point to it in set A. The maximum operation in the Hausdorff metric makes it 

very susceptible to noise. One possible way to address this, called the Partial Hausdorff 

Distance, is to use a percentile to replace the maximum. However, this is not a metric 

anymore, so most methods that are based on the Partial Hausdorff Distance are not 

metrics either. Baddeley (1992) replaced the maximum in the definition of the 

Hausdorff metric with an ܮ௣  norm and this was employed for model forecast 
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verification by Gilleland et al. (2008). Similar to the Hausdorff metric, such a metric 

may suffice when the objective is to compare objects that consist of contiguous sets of 

pixels i.e. if there will not be noisy pixels elsewhere in the image that have to be 

considered part of the distance computation. If these Hausdorff  type metrics are not 

preceded by a step of object identification or noise removal, they are always sensitive to 

noise. This is because of the property of Euclidean metric function ݉ሺݔ, ሻܣ , and 

Hausdorff type metrics are built on is itself problematic for spatial field verification, as 

opposed to verifying objects extracted from those fields. 

1.3 Verification metric 

In this section, we introduce an easily computable metric that has been 

devised specifically for the model verification problem. Rather than consider a generic 

pair of binary images, we recognize that, in model verification, there is an observation 

field which is quite special and a set of forecast fields each of which has to be evaluated. 

Our metric will use the observation field as a reference field so as to come up with a 

measure that is (a) a metric, and so can be used to rank forecasts, (b) able to evaluate 

between two sets and does not require pixel-to-pixel correspondence.  

The metric can be computed directly from the images. It is not necessary to 

filter, warp, window, identify objects or fit parameters to the images. It should be noted 

that our metric is defined on sets of pixels and, so, it requires a threshold to be specified. 

Pixels with a data value greater than the threshold will be considered part of the set and 

those with a data value less than the threshold will be considered outside the set, thus 

images are converted into binary images first .When we show the results of our 

technique ,we will demonstrate the results on a variety of thresholds. 
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Let O be the set consisting of pixels in the observation field that are above a 

specified threshold. Let A, B be sets consisting of pixels in forecast fields. The 

verification metric that we propose is as follows. 

 

1.3.1 Definition of verification metric 

Definition: The verification metric between two sets A and B is defined by 

,ܣ௩ሺݎݐ݁݉           ሻܤ ≔ ,ܣை௏ሺݐݏଵ݀݅ߣ ሻܤ ൅ ,ܣ஽௏ሺݐݏଶ݀݅ߣ                             ሻܤ

ሺ1.5ሻ 

i.e. a weighted sum of two distances that are defined below. The overlap-based distance 

 :ை௏ is defined byݐݏ݅݀

,ܣை௏ሺݐݏ݅݀                                           ሻܤ

ൌ ඨ෍෍ሺܽ௜௝ െ ܾ௜௝ሻ
ଶ

∀௝∀௜

                                         ሺ1.6ሻ 

where ܽ௜௝, ܾ௜௝ are characteristic functions of sets A, B, respectively. i.e. ܽ௜௝ is 1 if the 

pixel ሺ݅, ݆ሻ is in the set A, ܽ௜௝  is 0 if the pixel ሺ݅, ݆ሻis not in the set A. ܾ௜௝  is defined 

similarly.  

Next, we introduce the observation distance. The observation distance ݀݅ݐݏ௢௕ 

is the average distance of every observation point to a forecast field: 
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,௢௕ሺܱݐݏ݅݀                      ሻܣ ൌ

ە
ۖ
۔

ۖ
ۓ 1

ܰሺܱሻ
෍ ݉ሺ݋௜, ሻ   ݂݅   ܰሺܱሻܣ ∙ ܰሺܣሻ ് 0

ேሺைሻ

௜ୀଵ

0   ݂݅   ܰሺܱሻ ൌ 0  ܽ݊݀    ܰሺܣሻ ൌ 0            
                                               ݁ݏ݅ݓݎ݄݁ݐ݋      ܦ

              ሺ1.7ሻ 

where ݉ሺ݋௜,  ௜ are the pixels in݋ ,ሻ is the Euclidean metric function of Equation (1.2)ܣ

the observation field, ܰሺܱሻ, ܰሺܣሻ  are the number of pixels in the sets O and A, 

respectively, i.e. the number of pixels in the corresponding images that are above the 

threshold. The number D in the definition of ݀݅ݐݏ௢௕  is a number larger than the 

maximum possible distance. One possible choice is the length of the diagonal of the 

grids being compared. This upper limit value of ݀݅ݐݏ௢௕  will be reached if the 

observation field or the forecast field is an empty set. 

The above distance is used to compute the observation based displacement 

  :஽௏ between the sets A and B asݐݏ݅݀

,ܣ஽௏ሺݐݏ݅݀                                   ሻܤ

ൌ ,௢௕ሺܱݐݏ݅݀| ሻܣ െ ,௢௕ሺܱݐݏ݅݀  ሻ|.                                ሺ1.8ሻܤ

The relative weights of the two component distances (of Equation (1.6) and 

(1.8)) in the verification metric are quite subjective.  We use ߣଵ ൌ ଶߣ ൌ
ଵ

ଶ
 throughout 

this chapter for simplicity. 

Different weights could be chosen depending on whether overlap error is 

more or less important than displacement. As defined, the units of the measurement are 

in pixels. It can be converted into a real world distance by multiplying by the 

appropriate pixel dimensions.  



10 
 

 

1.3.2 Simplified form of verification metric 

Since this metric will mainly be used for verification, one of the terms in 

,௢௕ሺܱݐݏ݅݀ ஽௏ drops away (sinceݐݏ݅݀ ܱሻ ൌ 0), leaving:  

,௏ሺܱݎݐ݁݉                                   :ሻܣ

ൌ   ,ை௏ሺܱݐݏ݅݀ ଵߣ ሻܣ ൅ ,௢௕ሺܱݐݏଶ݀݅ߣ  ሻ.                        ሺ1.9ሻܣ

Other than to prove the triangle inequality, when we will  need the more 

general form, this simplified definition with ߣଵ ൌ ଶߣ ൌ
ଵ

ଶ
  is what we will term the 

verification metric. 

The observation file O plays a special role in ݀݅ݐݏ஽௏  (See Equation (1.8)). 

The distance between any two fields A and B is computed as the sum of the distances 

between each of those fields and O. In other words, the observation field is the 

reference field against which forecasts are compared as far as their displacement is 

compared. The overlap between forecasts, on the other hand, is compared directly from 

the  two fields (See Equation (1.6)). If we are comparing a forecast field to an 

observation field, one of the terms in ݀݅ݐݏ஽௏ is zero and both comparisons take place on 

an image-to-image level. 

Further ݀݅ݐݏ஽௏  does not penalize overforecasts. For example, consider the 

scenario in Figure 1.1c. For every point in the observation, there is a point in the 

forecast field that exactly matches. Therefore, ݀݅ݐݏை௕ is zero, leading to a zero ݀݅ݐݏ஽௏.  

Thus, one way of thinking about the overlap term ݀݅ݐݏை௏  is as the penalty for over 
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forecasts. On the other hand, ݀݅ݐݏை௏ is based on strict pixel-to-pixel correspondence and 

is, therefore, insensitive to position errors — the scenarios in Figure 1.1 d and e have 

the same ݀݅ݐݏை௏ but the ݀݅ݐݏ஽௏ of Figure 1.1 e is larger, leading to a larger value in the 

verification metric. In this view, ݀݅ݐݏ஽௏  provides the position-error sensitivity to the 

verification metric.  

It should be noted that the verification metric is a distance and not a bounded 

skill score. The larger the images being compared, the larger the maximum distance can 

be. The images being compared should be of the same size and resolution. In practice, 

this can be achieved by cropping or sub sampling the larger or more detailed image to 

meet the dimensions and resolution of the smaller, coarser image.  

It should also be noted that the metric is extremely sensitive to the 

observation field, because distances are defined by using the observation as the 

reference field. This is because the verification metric is designed to compare two 

forecasts given the same observation. The verification metric should not be used to 

compare two forecasts at two different times — a forecast 100 km displaced from the 

observation might be acceptable when there are only a few observations, but may not be 

acceptable when the entire domain is full of observations. 

1.4  Comparison method 

It is worth mentioning another method of calculating the distance between 

two sets of points. Even though this method does not satisfy the positive property of a 

metric, it does satisfy the symmetric property and triangle inequality. Thus, when we 
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have multiple forecasts, this method could be used to calculate their distances to the 

observations and the results could be compared to find the best forecast.  

Definition: For  two given sets A and B in a metric space ሺܯ, ݀ሻ , suppose the points in 

them are listed as ܽଵ, ܽଶ, ܽଷ, … , ܽ௜, … , ܽ௠ ∈ ,ܣ  ܾଵ, ܾଶ, ܾଷ, … , ௝ܾ, … , ܾ௡ ∈ ,ܤ  the 

comparison distance between A and B is defined as following:  

                                             distୡ୭୫୮ሺA, Bሻ

ൌ
1

݉݊
∙ ෍෍݀ሺܽ௜, ௝ܾሻ

௝ୀ௡

௝ୀଵ

௜ୀ௠

௜ୀଵ

                                ሺ1.10ሻ 

It should be noted that when using the comparison method on two sets, both 

of the sets should be on the same field, which means they have the same coordinate 

system. This is because we rely on the coordinates of the points to calculate the distance 

between points.  

When A and B are the same set with more than one point, ݀ሺܽ௜, ௝ܾሻ is not 

necessarily equal to zero because there are different points in the sets. This will lead to a 

positive value of distୡ୭୫୮ሺA, Bሻ, which means the distance between two identical sets is 

greater than zero. Even though, the comparison distance does not satisfy the positive 

property of a metric, it satisfies the trigonometric inequality and the symmetric property 

as shown in the following proof. 

Proof: Given three sets A, B and C and their corresponded points 

ܽଵ, ܽଶ, ܽଷ, … , ܽ௜, … , ܽ௠ ∈ ,ܣ   ܾଵ, ܾଶ, ܾଷ, …  , ௝ܾ , …  , ܾ௡ ∈ ܤ ,  ܿଵ, ܿଶ, ܿଷ, … , ܿ௞, … , ܿ௟ ∈  .ܥ

Since the distance between points is a metric, it satisfies the trigonometric inequality: 
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݀൫ܽ௜, ௝ܾ൯ ൅ ݀൫ ௝ܾ, ܿ௞൯ ൒ ݀ሺܽ௜, ܿ௞ሻ 

where ܽ௜ ∈ ௝ܾ ,ܣ ∈ ௞ܿ ,ܤ ∈ ݅ ,ܥ ൌ 1,2, . . . , ݉, ݆ ൌ 1,2, . . . , ݊, ݇ ൌ 1,2, . . . , ݈. 

By taking a summation on both sides with respect to ݅, ݆ and ݇, we have:  

෍෍෍݀൫ܽ௜, ௝ܾ൯

௟

௞ୀଵ

௡

௝ୀଵ

௠

௜ୀଵ

൅෍෍෍݀൫ ௝ܾ, ܿ௞൯

௟

௞ୀଵ

௡

௝ୀଵ

௠

௜ୀଵ

൒෍෍෍݀ሺܽ௜, ܿ௞ሻ

௟

௞ୀଵ

௡

௝ୀଵ

௠

௜ୀଵ

 

which is the same as:  

݈ ∙෍෍݀൫ܽ௜, ௝ܾ൯

௡

௝ୀଵ

௠

௜ୀଵ

൅ ݉ ∙෍෍݀൫ ௝ܾ, ܿ௞൯

௟

௞ୀଵ

௡

௝ୀଵ

൒ ݊ ∙෍෍݀ሺܽ௜, ܿ௞ሻ

௟

௞ୀଵ

௠

௜ୀଵ

 

dividing ݈ ∙ ݉ ∙ ݊ on both sides of the inequality, we have: 

1

݉݊
∙෍෍݀൫ܽ௜, ௝ܾ൯

௡

௝ୀଵ

௠

௜ୀଵ

൅
1

݈݊
∙෍෍݀൫ ௝ܾ, ܿ௞൯

௟

௞ୀଵ

௡

௝ୀଵ

൒
1

݈݉
∙෍෍݀ሺܽ௜, ܿ௞ሻ

௟

௞ୀଵ

௠

௜ୀଵ

 

which is equivalent to:  

                                    ݀൫ܽ௜, ௝ܾ൯ ൅ ݀൫ ௝ܾ, ܿ௞൯ ൒ ݀ሺܽ௜, ܿ௞ሻ                                                

The symmetric property of comparison distance could be derived instantly 

from the symmetric property of Euclidean distance.              

∎ 

Since the comparison method satisfies the trigonometric inequality, it could be 

used to compare the distances between different forecasts and the observation, the best 

forecast would have the smallest distance using comparison method. In the mean time, 



14 
 

the comparison method uses the average of all the distances between every possible 

different pairs of points, it decreases the influence of perturbations and noises and 

supplies a relatively stable algorithm to calculate the distance between forecasts and 

observations. 

 

1.5  Experiments 

We computed the verification metric and comparison distance on a geometric 

and on a perturbed dataset from a verification method inter-comparison project 

(Gilleland et al., 2009; Ahijevych et al., 2009) that was established to improve the 

understanding of the characteristics of various spatial forecast verification methods. To 

enable reasonable inter-comparison, the verification methods were carried out on 

synthetic and real fields with known errors. The methods were also applied to real 

model forecasts from an experiment conducted by Kain et al. (2008). The results of the 

verification metric and comparison distance on the different datasets that were created 

by the inter-comparison project are presented below. 

1.5.1  Geometric cases 

The "geometric" were defined on a 601×501 grid and were mapped to a 

601×501 subsection of the NCEP storage grid 240. The geometric cases illustrate three 

types of error: 1) displacement, 2) frequency, and 3) aspect ratio. The images are shown 

in Figure 1.2. The description of the results are given in Table 1.1. 
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Because both verification metric and comparison distance are defined on 

binary images, the fields are filtered with threshold at zero i.e. pixels with a value above 

zero are assumed to be part of the object and pixels in the "white" background are 

assumed to be outside it. In particular, this means that even though the objects have two 

intensity levels, they are treated as a single intensity level. 

The steps to compute the verification metric for forecast1 are delineated in the 

following. First, the observation field  and forecast field (forecast1) are both under 

threshold of zero. Thus, there are two binary images. The first image consists of pixels 

whose value is 1 within the ellipse of observation and 0 outside. The second image is 

similar, except that the ellipse corresponds to the points in forecast1. From these two 

binary images, the verification metric needs to be computed using Equation (1.9). The 

second step, then, is to compute ݀݅ݐݏை௏, defined in Equation (1.6). ܽ௜௝ is 1 within the 

first ellipse while ܾ௜௝ is 1 within the second ellipse. If the ellipses had overlapped, the 

difference ܽ௜௝െܾ௜௝ would have been zero at points of overlap. Here, however, the 

ellipses do not overlap. Thus, the difference has a magnitude of 1 where either ܽ௜௝ or ܾ௜௝ 

is 1. Therefore, ݀݅ݐݏை௏  is equal to the square root of twice the size of the ellipse 

measured in pixels. The third step is to compute ݀݅ݐݏ௢௕ using Equation (1.7). Both the 

observation and the forecast have some valid points, so the answer is not simply the 

length of the diagonal of the grids being compared. Instead, the Euclidean distance from 

every observation point to the closest point in the forecast field needs to be computed. 

For every point within the ellipse in the observation, we need to find the closest point in 

forecast1. It should be noted that we will find the closest point, not the corresponding 

point. Because forecast1 consists of the ellipse displaced  right, the closest points will 
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all consist of points on the leftmost boundary of the ellipse in forecast1. For the points 

on the left boundary of the ellipse in the observation, ݉ை஺ will be 50 units, the known 

displacement. For points inside the ellipse and on the right boundary of the ellipse in the 

observation, this distance will be less, as it is always the distance to the left. The 

average of these distances over all the points in the ellipse of the forecast is ݀݅ݐݏை௕. The 

final step is to average ݀݅ݐݏை௏ and ݀݅ݐݏை௕. This is the verification distance for forecast1.  

In this case, the verification metric penalizes the highly displaced forecast2 

the most and the over forecast of forecast5 nearly as much, demonstrating the impact of 

 ை௏ respectively. As would be expected, the forecast exhibiting a smallݐݏ݅݀ ஽௏ andݐݏ݅݀

displacement (forecast1) is declared the best and the value of ݉݁ݎݐ௏ (46 pixels) is close 

to the known displacement of 50 pixels. The over forecast in forecast3 and rotation in 

forecast4 receive intermediate scores. It should be noted that ݉݁ݎݐ௏  lies in the range of 

0, and so there is no way to specify the threshold beyond which a forecast is bad. A 

forecast that exhibits a 50-pixel displacement may be considered bad for some 

applications, tolerable for others and very useful in some cases. Comparing these results 

with that of Keil and Craig  (2009) and Davis et al. (2006), we suggest that our ranking 

(01, 04, 03, 05, 02) is more understandable than that of either Keil and Craig (2009) (01, 

02, 05, 04, 03) or of Davis et al. (2006) (04, 03, 05, 02, 01). Note that our ranking 

places the slightly displaced figure in forecast1 highest whereas the method of Davis et 

al. (2006) favors the much larger over forecast in forecast4 because it happens to 

overlap slightly with the observation.  

To calculate the comparison distance, we find the points whose values are 

equal to one and their corresponded coordinates in the matrix after applying the 
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threshold. For each point in the observation and forecast, their distance is calculated 

using the Euclidean formula (Equation 1.1). The average of all distances demonstrates 

the comparison distance between the observation and forecasts. From the results, it 

could be seen that the comparison method does not satisfy the positive property of a 

metric, because the distance from observation to itself is not zero. However, the 

comparison method provides an alternative way to compare different forecasts. The 

smaller the distance means the better the forecast.   

1.5.2  Perturbed cases 

The "perturbed" set of cases from the Inter-comparison Project (Ahijevych et 

al., 2009) consists of observed data from the 2005 NSSL/SPC Spring Experiment 

described in Kain et al. (2008). The observed data are subjected to various 

transformations such as shifting the entire image by a known number of pixels or 

multiplying the pixel value by a known amount. The observation and forecasts are 

shown in Figure 1.3. The results of verification are shown in Table 1.2.  

We also analyze observed data and model that runs from the 2005 NSSL/SPC 

Spring Experiment described in Kain et al. (2008) and use for inter-comparisons by 

Gilleland et al. (2009). The observed data from May 14, 2005 are compared with 24 

hour forecasts of 1 hour rainfall accumulation carried out on May 13, 2005.  

The observations and model forecasts (from the CAPS, NCAR and NCEP 

models) are shown in Figures 1.4 and 1.5. The images cover the lower 48 states of the 

United States. The NCEP model forecast is produced at the National Centers for 

Environmental Prediction (NCEP) using a Weather Research and Forecasting (WRF) 
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model whose core is a Nonhydrostatic Mesoscale Model (Janjic et al., 2005) with a 4.5 

km grid spacing and 35 vertical levels. The NCAR model forecast was produced at the 

National Center for Atmospheric Research using the Advanced Research WRF (ARW; 

Skamarock et al., 2005) core with a 4 km grid spacing and 35 vertical levels. The CAPS 

is produced at the Center for Analysis and Prediction of Storms at the University of 

Oklahoma (also using the ARW core) with a 2 km grid spacing and 51 vertical levels. 

All three forecast systems use initial and lateral boundary conditions from the North 

American Mesocale Model (Rogers et al., 2009). The observations are from the Stage II 

rainfall accumulation dataset produced by NCEP (Baldwin and Mitchell, 1998). 

Since the verification metric depends on the threshold used to evaluate the 

image, we show the impact of filter the image by illustrating the images at two 

thresholds. The results of the verification are shown in Tables 1.4 and 1.5.  

 

 

1.6  Discussion and Summary 

It should be pointed out that the verification metric introduced in this chapter 

emphasizes the location error at the expense of fine structures in the forecast since the 

initial step, of converting the fields to binary by applying a threshold, treats all pixels 

above the threshold identically regardless of how much above the threshold the pixel's 

value is. It is possible to use a graph to derive the variation of the metric by threshold 

and compute a scalar metric such as the area under the curve to obtain a simple scalar 
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metric that takes into account all the pixel values. For simplicity of analysis, however, 

we concentrate on a single threshold in all the experiments. 

In this chapter we suggest that by using metrics for spatial verification, it is 

possible to use a simple scalar number to capture the goodness of a forecast even if 

there is no pixel-to-pixel correspondence. Further, we devise a verification metric 

(Equation (1.9)) and show that it was suitable for verifying model forecasts. In the end, 

we give a comparison model to compare the distances from different forecast to the 

observation. This model is efficient when we need to choose the best forecast out from 

various forecasts.   
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Figure 1.1 Schematic plots of observation and forecast fields of different scenarios. 
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    Figure 1.2 Verification metric for the geometric cases.  
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Figure 1.3 Verification metric for perturbed images from Ahijevych et al. (2009) with 
threshold at 0 mm. 
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Figure 1.4 Verification metric for 24 hour precipitation forecasts valid for May 14, 2005 
against the observations on that day with threshold at 0mm. 
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Figure 1.5 Verification metric for 24 hour precipitation forecasts valid for May 14, 2005 
against the observations on that day with threshold at 20mm. 
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Data Set ݉݁ݎݐ௏ distୡ୭୫୮ 

Observation 0 45  

Forecast1 46 80  

Forecast2 120 157  

Forecast3 98 132  

Forecast4 84 110  

Forecast5 112 138  
Table 1.1 Verification metric and Comparison distance of geometric images.  

 

Data Set ݉݁ݎݐ௏,0 mm distୡ୭୫୮ 

Observation 0 78  

Forecast1 80.0 162  

Forecast2 91.8 180  

Forecast3 103.6 185  

Forecast4 116.6 192  

Forecast5 131.7 231  

Forecast6 103.6 165  

Forecast7 103.3 172  
Table 1.2 Verification metric and Comparison distance of perturbed images from 
Ahijevych et al. (2009) when considered at  thresholds of 0 mm.  

 

Data Set ݉݁ݎݐ௏, 20 mm distୡ୭୫୮ 

Observation 0 57 

Forecast1 18.5 81  

Forecast2 20.9 89 

Forecast3 24.7 95 

Forecast4 33.7 110 

Forecast5 53.8 128 

Forecast6 29.6 126 

Forecast7 24.3 117 
Table 1.3 Verification metric and Comparison distance of perturbed images from 
Ahijevych et al. (2009) when considered at  thresholds of 20 mm. 
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Data Set ݉݁ݎݐ௏ distୡ୭୫୮ 

Observation 0 128  

CAPS  Forecast 106.5 217  

NCAR Forecast 105.0 226  

NCEP  Forecast 114.9 231  
Table 1.4 Verification metric and Comparison distance of forecasts in May 15 2005 with 
threshold at 0mm.  

 

Data Set ݉݁ݎݐ௏ distୡ୭୫୮ 

Observation 0 112  

CAPS  Forecast 46.8 241  

NCAR Forecast 47.5 238  

NCEP  Forecast 53.8 262  
Table 1.5 Verification metric and Comparison distance of forecasts in May 15 2005 with 
threshold at 20mm.  
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CHAPTER 2 
                                    Forecasting Rotating Storms 

 

In this chapter we introduce a systematical method for tracking both the 

translation and the rotation of tropical storms (such as hurricanes and typhoons) based 

on remotely sensed images. In our approach, we first obtain certain global properties of 

given images based on a new designed active contour method. From these global 

properties, we derive the rotation angle as well as the translation of the center for the 

movement of the object.  

 

2.1 Introduction 

In this chapter, we propose a new approach to determine the translation and 

rotation of tropical storms, such as hurricanes and typhoons. 

Over short time periods, weather forecasts are based on statistical properties 

and over long time periods, they are based on numerical models. The change-over in 

skill occurs at 3-6 hours depending on the weather phenomenon: usually under 3 hours, 

statistical models outperform and over 6 hours, numerical models outperform. A key 

component in statistical weather prediction systems, known as "nowcasting" systems, is 

the ability to track a storm from remotely sensed images (radar or satellite) so as to 

study trends in various properties of the storm and to extrapolate the storm location in 

the future. Storm tracking, accordingly, has been studied extensively, see, e.g. Dixon et. 

al (1993), Johnson et. al (1998), Tuttle and Gall (1999) and Lakshmanan et. al (2003). A 

pattern matching approach is used to determine the velocity of a storm and to then 
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extrapolate the storm position. Corresponding patterns in successive images are 

identified and used to determine storm attributes in order to create a machine 

intelligence model of storm behavior (Lakshmanan et. al 2008).  

Tropical storms such as hurricanes and cyclones rotate about their centers 

while also exhibiting a translation of position. For successful nowcasting of tropical 

storms, it is necessary to be able to capture the rotational aspects of this movement. 

Otherwise, rain bands on the periphery of the cyclone will correspond to the wrong 

location in the previous image causing statistical properties of the rain band to be wrong.    

Figure 2.1 (a) shows hurricane Ike on Sep. 13, 2008 as it makes landfall near 

Houston around 02.30 UTC. An hour and a half later, the rain band has rotated about 20 

degrees and is now directly over the city (Figure 2.1 (b)). The nowcasting problem is to 

capture both the slow motion towards the northwest of the entire hurricane and the fast 

rotation of the rain band on the shore. To date, nowcasting systems have been able to 

capture either one or the other but not both. Even methods such as Tuttle and Gall (1999) 

that aim to capture the winds of the hurricane are not useful for nowcasting at the 

timescale (1.5 hours) that is needed because the winds at the rain band section that 

would be estimated at 02.30 UTC would be eastward and a straight-forward linear 

extrapolation will put the rain band further east, not north. What is needed is to capture 

the rotation of the storm. Larger-scale methods tend to capture the movement of just the 

eye of the hurricane and capture the northwest movement, but not the smaller-scale 

rotation which is essential to a better nowcast of hurricanes. Nowcasting techniques so 

far have limited themselves to identifying the gross movement, ignoring the rotation. 

One of the major reasons is due to the technical difficulty in estimating the center of 
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location and angle of rotation from frames of remotely sensed images. 

In this chapter we introduce a systematically novel approach to address the 

problem. Our mathematical approach is capable of tracking rotating objects efficiently. 

One of our key observations is that the rotation angle of a rigid motion does not depend 

on the choice of coordinate systems (which might be viewed as an intrinsic property of 

the storm). This enables us to design a novel mathematical approach to compute the 

angle. The location of the center shall follow easily from the angle of the rotation. In 

this chapter, we shall describe our approach in details.  We apply our method to track 

synthetic rotating motions, as well as to track a real hurricane for radar images. 

Our approach consists of two key steps. First of all we need to obtain various 

intrinsic characteristics of an image (may not necessary be the edges in the image) at a 

given time. Here we shall use active contour methods with a new energy functional. In 

the past decade, the active contour method has been widely used in image processing, in 

particular in medical image analysis, though it has not been widely used for weather 

forecasting. In our new energy functional we introduce certain parameters motivated by 

the structure of storms in radar images. These adjustable parameters play essential role 

in our design of computing angular motion. In the second step, we develop an algorithm 

which can automatically extract the rotating angle and center from those characteristics 

obtained in the first step. 

 

2.2 Intrinsic characteristics of  objects  

Intrinsic characteristics of a storm, in term of a radar or satellite image, could 

include the boundary of the storm, the locations of maximal intensity, or other data 
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involving derivative or even higher order derivatives of the remotely sensed variables. 

To find the edge or other intrinsic characteristic of the image, we shall use the modern 

active contour method which based on certain global properties of the image. In M. Zhu 

and P. Zhang (2009), a new energy functional is introduced for radar image 

segmentation. The advantage of the new functional comparing with other functional for 

active contour, in particular for radar image with noise, was also discussed in M. Zhu 

and P. Zhang (2009). Here  the same functional to capture the essential characteristics of 

a storm is used. 

 

2.2.1 Review of active contour method 

Active contour is the procedure that we use to deform a given curve so that a 

given functional of the curve will achieve its local minimal value. This method is 

widely used recently in computer vision in seeking the edges or contours of given 

images. See, for example, Mumford and Shah(1989), Kass, Witkin and 

Terzopoulos(1988) , Caselles, Kimmel and Sapiro(1997), and Chan and Vese(2001). 

Let ݑ଴ሺݔ, :ሻݕ Ω →  Թ be the gray level function of a given image. If ݑ଴  is 

smooth, then the edge of the image consists of those points ሺx, yሻ , where |ݑ׏଴|  is 

relatively large. 

The geometric contour aiming to detect edge automatically is based on the 

size of |ݑ׏଴| . Let ܥሺݏሻ: ሾ0. ሿܮ → Թଶ  be a closed curve, where ݏ  is its arc length 

parameter. One can introduce an edge-detecting function ݃:Թ → Թ so that ݃ሺݖሻ → 0 

as ݖ → ∞. A typical example of such function is given by  

                                                  gሺzሻ ൌ
ଵ

ଵା୸మ
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ሺ2.1ሻ 

One can define the energy functional of  ܥ by  

ሻܥଵሺܫ                                                      

≔ න ݃ሺ
௅

଴

 ሺ2.2ሻ                                         .ݏሻሻ|ሻ݀ݏሺܥ଴ሺݑ׏|

In order to find the edge of image ݑ଴, one can compute the local minimal for ܫଵ (the 

geometric active contour model (1997)):  

ଵሺ݁݀݃݁ሻܫ                                         ൌ ݅݊ ஼݂  ܫଵሺܥሻ                                              

ሺ2.3ሻ 

There are other models in seeking the edge of a given image. For example, the 

snake model (V. Lakshmanan, 2003) is to introduce, for a parameterized curve 

:ሻ݌ሺܥ ሾ0,1ሿ → Թଶ, the following energy functional:  

ሻܥଶሺܫ                  ൌ න ሻ|ଶ݌ᇱሺܥ|
ଵ

଴

݌݀ ൅ නߚ |ሻ݌ᇱᇱሺܥ|
ଵ

଴

݌݀

െ නߣ |ሻሻ݌ሺܥ଴ሺݑ׏|
ଶ

ଵ

଴

 ሺ2.4ሻ           .݌݀

where ߙ, ,ߚ  are all positive parameters. The first two terms represent the internal ߣ

energy of the image, which usually are used to smooth the curve; The third term 

represents the external energy, serving as the indicator for edge. The edge of the image 

then can be found by minimizing ܫଶ:  

ଶሺ݁݀݃݁ሻܫ                                                            

ൌ inf
஼
 ሻ.                                                    ሺ2.5ሻܥଶሺܫ

 When the given image ݑ଴ሺݔ,  ሻ is not smooth, the edge of the image is notݕ

well defined based on the derivative of the gray level function. Intuitively, one way to 
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determine the edge of a non smooth image is to identify the boundary of different 

groups. To identify such boundary, one can use Chan-Vese energy (Chan  and  Vese, 

2001):  

,ܥଷሺܫ      ܿଵ, ܿଶሻ ≔ න ଴ݑ| െ ܿଵ|
ଶ

௜௡௦௜ௗ௘ሺ஼ሻ

 ݕ݀ݔ݀ ൅ න ଴ݑ| െ ܿଶ|
ଶ

௢௨௧௦௜ௗ௘ሺ஼ሻ

                      ݕ݀ݔ݀

൅ ߤ ∙ ൫݈݄݁݊݃ݐሺܥሻ൯ ൅ ߥ

∙ ቀܽ݁ݎܣ൫݅݊݁݀݅ݏሺܥሻ൯ቁ.                                         ሺ2.6ሻ 

where ܿଵ, ܿଶ are constants to be adjusted in iteration, ߤ and ߥ are fixed parameter. The 

last two terms are smoothing terms. The edge is again sought by 

minimizing ܫଷሺܥ, ܿଵ, ܿଶሻ:  

,ଷሺ݁݀݃݁ܫ                                     ܿଵ.∗, ܿଶ.∗ሻ ൌ inf
஼,௖భ,௖మ

,ܥଷሺܫ ܿଵ, ܿଶሻ.                                       ሺ2.7ሻ 

  

2.2.2   Numerical implementation via level set method 

To automatically detect the edge via an iteration scheme, one can introduce a 

family of curves ܥሺ݌, :ሻݐ ሾ0,1ሿ ൈ ሾ0,∞ሻ → Թଶ and the deformation path. Numerically, 

such iteration can be realized via the powerful level set method of Osher and 

Sethian(1988). For example, level set method can be used for Chan-Vese model as 

follows. We introduce the Heaviside function and its derivative  

      Hሺzሻ ൌ

൜
ݖ    ݂݅         1 ൒ 0,
ݖ    ݂݅         0 ൏ 0,

ሻݖሺߜ                ൌ
ௗ

ௗ௭
ሻ.                                     ሺ2.8ሻݖሺܪ                        

Embedding ܥሺ݌, ሻݐ  as a nodal line of a smooth function  Φሺݔ, ,ݕ ሻݐ : 

ܥ ൌ ሼሺݔ, ,ݕ ,ݔሻ:Φሺݐ ,ݕ ሻݐ ൌ 0ሽ,  we then can re-write the energy functional ܫଷሺܥ, ܿଵ, ܿଶሻ 
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as  

,ଷሺΦܬ cଵ, cଶሻ

ൌ න ଴ݑ| െ ܿଵ|
ଶ

ஐ

,൫Φሺxܪ yሻ൯݀ݕ݀ݔ  ൅ න ଴ݑ| െ ܿଶ|
ଶሺ1 െ ,൫Φሺxܪ yሻ൯ሻ

ஐ

ݕ݀ݔ݀

൅ නߤ ,ݔ൫Φሺߜ ,ݔΦሺ׏|ሻ൯ݕ |ሻݕ
ஐ

ݕ݀ݔ݀

൅ ߥ  න ,ݔ൫Φሺܪ ሻ൯ݕ
ஐ

 ሺ2.9ሻ                                                                             .ݕ݀ݔ݀

For fixed Φ, minimizing ܬଷሺΦ, cଵ, cଶሻ with respect to c୧ yields:                                   

                                                      ൜
cଵሺΦሻ ൌ averageሺu଴ሻ   in   ሼΦ ൒ 0ሽ

cଶሺΦሻ ൌ averageሺu଴ሻ   in   ሼΦ ൏ 0ሽ
                              ሺ2.10ሻ

Once cଵ and cଶ are fixed, we minimize Jଷ via deforming Φ along the gradient direction 

of energy functional: 

ە
ۖ
۔

ۖ
ۓ
߲Φ

ݐ߲
ൌ ߤሺΦሻሼߜ ∙ ݒ݅݀ ൬

Φ׏

|Φ׏|
൰ െ ߥ െ ሺݑ଴ െ ܿଵሺΦሻሻ

ଶ ൅ ሺݑ଴ െ ܿଶሺΦሻሻ
ଶሽ   in  Ω ൈ ሺ0,∞ሻ       

Φሺx, y, 0ሻ ൌ Φ଴ሺx, yሻ    in    Ω                                                                                               ሺ2.11ሻ

ሺΦሻߜ

|Φ׏|

߲Φ

߲݊
ൌ Ω߲  ݊݋   0 ൈ ሺ0,∞ሻ                                                                                                       

 

where the initial data Φ଴ሺx, yሻ is chosen as a signed distance function to a given initial 

curve Cሺp, 0ሻ. 

 In Zhu and Zhang (2009), a new model for radar image segmentation was 

introduced in order to remove meteorological noise (radar noise, insect noise, etc.). That 

model is based on the observation that biological echoes usually have relatively low 

intensity to severe storms, and radar signals for storm are usually uniform in certain 

region. They consider the following modified Chan-Vese functional:  
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,ܥସሺܫ ܿሻ ≔ න ଴ݑ| െ ߙ ∙ ଶ|ܯ

௜௡௦௜ௗ௘ሺ஼ሻ

 ݕ݀ݔ݀ ൅ න ଴ݑ| െ ܿ|ଶ

௢௨௧௦௜ௗ௘ሺ஼ሻ

                           ݕ݀ݔ݀

൅ ߤ    ∙ ൫݈݄݁݊݃ݐሺܥሻ൯ ൅ ߥ ∙ ቀܽ݁ݎܣ൫݅݊݁݀݅ݏሺܥሻ൯ቁ                                  ሺ2.12ሻ 

where ܯ ൌ ܿ ,ሻݔ଴ሺݑ௫∈ஐݔܽ݉  is a constant to be adjusted in iteration, ߙ ߤ ,  and ߥ  are 

adjustable parameters. For a reasonable chosen parameter ߙ, it is shown in Zhu and 

Zhang (2009) that Model (2.12) is more robust than Chan and Vese’s model for radar 

image segmentation. In next section we will show another important role parameter ߙ 

will play in computing the rotation angle of a rigid motion. 

Again, we can implement above model via level set method as follows. 

Embedding ܥሺ݌ሻ as a nodal line of a smooth function Φሺݔ, ܥ :ሻݕ ൌ ሼሺݔ, ,ݔሻ:Φሺݕ ሻݕ ൌ

0ሽsuch that Φሺݔ, ሻݕ ൐ 0 insider the curve and Φሺݔ, ሻݕ ൏ 0 outsider the curve, we can 

re-write the energy functional Iସሺܥ, ܿሻ as 

Jସሺܥ, ܿሻ ൌ න ଴ݑ| െ ߙ ∙ ଶ|ܯ

ఆ

,ݔ൫Φሺܪ  ݕ݀ݔሻ൯݀ݕ

൅ න ଴ݑ| െ ܿ|ଶሺ1 െ ,ݔ൫Φሺܪ ሻ൯ሻݕ
ఆ

   ݕ݀ݔ݀

൅ නߤ δ൫Φሺx, yሻ൯|׏Φሺx, yሻ|
ஐ

dxdy

൅  νන H൫Φሺx, yሻ൯
ஐ

dxdy.            ሺ2.13ሻ 

where ܪሺ∙ሻ is the Heaviside function defined in Section 2.2.1. For fixed Φ, minimizing 

JସሺΦ, ܿሻ with respect to c yields  

                          ܿሺΦሻ ൌ averageሺu଴ሻ in   ሼΦ ൏ 0ሽ.                                   

(2.14ሻ 
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To derive the first variation of the functional, we consider slightly regularized 

version of functions ܪఌ and ܪఌ
ᇱ ൌ ఌܪఌ such thatߜ ∈ ܥ

ஶ൫Ω൯, ఌܪ ⟶ ఌߜ and ܪ ⟶  and ,ߜ

the modified functional:  

Jସ,கሺΦ, ܿሻ ൌ න ଴ݑ| െ ߙ ∙ ଶ|ܯ

ఆ

,ݔఌ൫Φሺܪ ݕ݀ݔሻ൯݀ݕ

൅ න ଴ݑ| െ ܿሺΦሻ|ଶሺ1 െ ,ݔఌ൫Φሺܪ ሻ൯ሻݕ
ఆ

ݕ݀ݔ݀

൅ නߤ ,ఌ൫Φሺxߜ yሻ൯|׏Φሺx, yሻ|
ஐ

dxdy

൅  νන ,ఌ൫Φሺxܪ yሻ൯
ஐ

dxdy.        ሺ2.15ሻ 

We can compute its first variation:  

൏ ,ସ,ఌܬ ߜ ߰ ൐ 

ൌ  න ሺݑ଴ െ ߙ ∙ ሻଶܯ

ఆ

,ݔఌ൫Φሺߜ ݕ݀ݔሻ൯߰݀ݕ െ න ሺݑ଴ െ ܿሺΦሻሻଶߜఌ൫Φሺݔ, ሻ൯߰ݕ
ఆ

ݕ݀ݔ݀

൅ නߤ ,ఌ൫Φሺxߜ yሻ൯
Φ׏

,Φሺx׏| yሻ|ஐ

߰׏ ൅ ఌߜ
ᇱ൫Φሺx, yሻ൯|׏Φሺx, yሻ|߰dxdy

൅  νන ,ఌ൫Φሺxߜ yሻ൯߰
ஐ

dxdy.                                                                       ሺ2.16ሻ 

Thus we can minimize ܬସ,ఌ  via deforming Φ along the gradient direction of 

   :ସ,ఌܬ

ە
ۖ
۔

ۖ
ۓ
∂Φ

ݐ߲
ൌ ఌሺΦሻሼμߜ ∙ div ൬

Φ׏

|Φ׏|
൰ െ ν െ ሺu଴ െ ߙ ∙ ሻଶܯ ൅ ሺu଴ െ cሺΦሻሻଶሽ  in  ሺ0,∞ሻ ൈ Ω,         

Φሺݔ, ,ݕ 0ሻ ൌ Φ଴ሺݔ, ሻ    ݅݊    Ω                                                                                           ሺ2.17ሻݕ

ఌሺΦሻߜ

|Φ׏|

∂Φ

∂n
ൌ 0               on    ∂Ω                                                                                                        

 

In practice, one can choose  
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ሻݔఌሺܪ                         ൌ
1

2
൬1 ൅

2

ߨ
∙ arctan ቀ

ݔ

߳
ቁ൰ , ሻݔఌሺߜ   ݏݑ݄ݐ

ൌ
1

ߨ
∙

ߝ

߳ଶ ൅ ଶݔ
.              ሺ2.18ሻ 

We use the above deformation on a synthetic image. Figure 2.2 (a) and (b) are 

two original images; Figure 2.3(a), (b) are the characteristics obtained via (2.17) for 

ߙ ൌ 0.5.  After we adjust ߙ ൌ 1, we obtain other two characteristics Figure 2.3(c) and 

(d) for the Figure 2.2(a), (b), respectively. More details are given in Experiment 1 below. 

We shall address in next section the reason that we need to obtain two different 

characteristics for the same image. We need to point out that when we implement the 

algorithm, the standard re-initialization procedure is also used, see, e.g. Chan and 

Vese(2001).  

 

2.3 Rigid Motion Tracking 

Let ܫሺݔሻ: Ω ⊂ Թଶ ⟶ Թା  be the initial image of an object we are tracking. 

After a fixed time, the object moves and the image is represented by its gray level 

function ܫଵሺݔሻ in the same coordinate system. We assume the motion of the object is 

rigid. Then, if we write ܫଵሺݔሻ ൌ ܶሺܫሺݔሻሻ , the transformation ܶ  consists of only a 

translation and a rotation with respect to a fixed point in the plane. Namely, for any 

x ∈ Թଶ,  

ݔܶ                         ൌ ݔሺܣ െ ܿሻ ൅ ݀ ൌ ݔሺܣ െ                                         ,ሻݏ

ሺ2.19ሻ 

where  



37 
 

ሻߠሺܣ                                   ൌ ൬
cos ߠ

െ sin ߠ

   sin ߠ

   cos ߠ
൰ , ݏ ൌ ܿ െ ଵ݀ିܣ

≔ ൬
ଵݏ
ଶݏ
൰.                        ሺ2.20ሻ 

It is clear that the rotation angle ߠ  does not depend on the center of the 

rotation, and the translation. In other words, we can always describe a rigid motion by a 

rotation (with respect to any point) with a fixed unique angle and a translation (the 

translation certainly depends on the choice of rotating center). See Figure 2.4 (a), a 

simple rotation; (b) a rotation plus a translation. Therefore, in order to track a rigid 

motion of an object, we shall first find the rotation angle, and then compute the 

translation of the motion after we choose the center of the rotation. Theoretically, the 

rotating angle can be computed based on the following simplified two-point rotating 

model.  

Assume that Pଵሺxଵ, yଵሻ, Pଶሺxଶ, yଶሻ, are two points in the first image ܫሺݔሻ. After 

a rigid motion, these two points move to point Qଵሺuଵ, vଵሻ  and point Qଶሺuଶ, vଶሻ  

respectively. That is Qଵ ൌ TሺPଵሻ, Qଶ ൌ TሺPଶሻ are the two corresponding points in the 

second image ሻݔଵሺܫ  . Then the rotation angle ߠ∗  from vector X ൌ PଵPଶ  to vector Y ൌ

QଵQଶ can be computed as  

∗ߠ                                                                   

ൌ ଵିݏ݋ܿ
X ⋅ Y

|X| ⋅ |Y|
.                                             ሺ2.21ሻ 

 Here, we certainly assume that both vectors X, Y are not trivial. Thus the 

rotation operator ܣ∗ ≔  ሻ is known. If we further assume that the motion of the∗ߠሺܣ

object is only a rotation around a center ܵ, then we can compute the rotating center by  

         S ൌ ሺܣ∗ െ ݅݀ሻିଵ ⋅ ሺܣ∗Pଵ െ Qଵሻ, S  ݎ݋ ൌ ሺܣ∗ െ ݅݀ሻିଵ ⋅ ሺܣ∗Pଶ െ Qଶሻ         ሺ2.22ሻ 
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If we view the motion is a rotation with respect to a given center 2Rc , then 

the translation (or called the displacement of the center) ݀ ∈ Թ can be computed as  

                  ݀ ൌ Qଵ െ ሺPଵ∗ܣ െ cሻ, ݀  ݎ݋ ൌ Qଶ െ ሺPଶ∗ܣ െ cሻ.                   

ሺ2.23ሻ 

In practice, it is very difficult to identify four points Pଵ, Pଶ, Qଵ, Qଶ in two real 

images such that Q୧ ൌ TP୧ for 1,2=i . In order to do so, we need to introduce certain 

particular characteristics for an image. 

Definition (Center of mass):  Let ݂ሺݔ, ሻ: Ωݕ ൌ ሺa, bሻ ൈ ሺc, dሻ ⟶ Թା  be a gray level 

function for a given image. Its center of massሺݔ௖,   ௖ሻ  is defined byݕ

௖ݔ                                     ൌ
׬ ,ݔሺ݂ݔ ݕ݀ݔሻ݀ݕ
ஐ

׬ ݕ݀ݔ݀
ஐ

௖ݕ    , ൌ
׬ ,ݔሺ݂ݕ ݕ݀ݔሻ݀ݕ
ஐ

׬ ݕ݀ݔ݀
ஐ

                     ሺ2.24ሻ 

Definition (2.24) does not work very well for a generic image. For instance, it 

is sensitive to noise perturbation, even to the size of the domain. In applications, we can 

first simplify the image so that the gray image is a step function, and then compute the 

center. The simplification of an image can be realized via the active contour method 

which we discuss in previous section. See, e.g. Figure 2.3 (a) and (b). For convenience, 

the center of mass for the simplified image will be called an induced center of mass of 

the original image. 

To use our two-point rotating model to compute the rotating angle, we need to 

find another induced center of mass for the given image. This can be again realized via 

our active contour method by choosing a different parameter ߙ  as being showed in 

Figure 2.3 (c) and (d). 

Once we have two intrinsic induced centers of mass for each image, say, 
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Pଵ, Pଶ for the first one, Qଵ, Qଶ for the second one. We then have two vectors: X ൌ PଵPଶ 

and Y ൌ QଵQଶ . Thus we can compute the rotation angle by (2.21), and the rotation 

center by (2.22). Here we see another advantage of using simplified image to compute 

the angle: even the background of the simplified images is changed, thus the 

denominators in (2.21) will change proportionally, but not the numerators, hence we 

obtain the same angle for the rotation. 

 

2.4 Experiments 

We first try a synthetic still image. We choose ߤ ൌ 1 and ݒ ൌ 0 in experiment 1. 

Experiment 1. Figure 2.2(a) is an image whose gray level function is given by:  

                ݂ሺݔ, ሻݕ ൌ ቐ

1   ݂݅  ሺݔ െ 100ሻଶ ൅ ሺݕ െ 40ሻଶ ൏ 4
ଵ

ଶ
  ݂݅  ሺݔ െ 100ሻଶ ൅ ሺݕ െ 60ሻଶ ൏ 4

                                      ݁ݏ݅ݓݎ݄݁ݐ݋    0

                        

ሺ2.25ሻ

 The gray level function for Figure 2.2(b) is given by:  

                ݃ሺݔ, ሻݕ ൌ ቐ

1   ݂݅  ሺݔ െ 60ሻଶ ൅ ሺݕ െ 100ሻଶ ൏ 4
ଵ

ଶ
  ݂݅  ሺݔ െ 80ሻଶ ൅ ሺݕ െ 100ሻଶ ൏ 4

                                      ݁ݏ݅ݓݎ݄݁ݐ݋    0

                       

ሺ2.26ሻ 

First of all, using (2.17) for ߙ ൌ 0.5  we obtain the first characteristics of 

images: Figure 2.3(a) and Figure 2.3(b). Using (2.17) for ߙ ൌ 1 we obtain the second 

characteristics of images: Figure 2.3(c) and Figure 2.3(d). Applying (2.24) to Figure 

2.3(a) and (b), we obtain the first induced centers for Figure 2.2(a) and (b): Pଵ ൌ

ሺ100.5,50.5ሻ,  Pଶ ൌ ሺ70.0,100.5ሻ, Applying (2.24) to Figure 2.3(c) and (d), we obtain 
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the second induced centers for Figure 2.2(a) and (b): Qଵ ൌ ሺ100.5,40.5ሻ , Qଶ ൌ

ሺ60.5,40.5ሻ. Using (2.21) we estimate the rotating angle is 90° degree. 

If we view the motion as one simple rotation (as indicated in Figure 2.4(a)), 

we can find its rotation center by (2.22): S ൌ ሺ110.5,90.5ሻ. 

If we view the motion as one rotation with respect to a given point ሺ100,50ሻ 

and a translation (as indicated in Figure 2.4(b)), we can find the translation: d ൌ

ሺെ30,50ሻ. 

Next, we apply our method to track rotating motions. 

 

Experiment 2. We apply our method to track a synthetic rotating motion, see Figure 

2.5(a). This is a rigid motion of an object, which rotates   degree and then shifts the 

center along a given curve (in this case, the curve is a part of circle) with fixed rate m 

units in x  direction. Ten images are put together in Figure 2.5 (b). The solid line in 

Figure 2.6 shows the simulation centers and the motion centers we capture using our 

algorithm. Figure 2.7 shows the forecast centers of rotation after we extrapolate from 

the motion centers and the rotating angles. There are two methods to using extrapolation: 

we can link previous two simulation centers and applying a linear extrapolation, then 

applying a rotation using the angle we obtained. This method yields forecast1 centers. 

Another method is: we link the motion center and the current simulation center, then 

rotate the line segment with respect to the motion center by the obtained rotating angle 

and to obtain forecast2 center. The motion centers as well as the rotating angles are 

given in Table 2.1.  
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Experiment 3.  Our last experiment is to track a real hurricane:  hurricane Bill 2009. 

The satellite images of Bill from 02AM, August 17 to 08AM, August 19 are given in 

Figure 2.8. The characteristics of these images are given in Figure 2.9 and Figure 2.10. 

The trajectory of the storm is labeled by green line and our computation yields the 

forecast path (we use linear extrapolation plus the rotating angle for nowcasting) labeled 

by blue boxes in Figure 2.11.  The motion centers as well as the rotating angles from 

UT 1702 to UT 2002 are given in Table 2.2. The result indicates that the satellite 

images can be used to roughly track the path of the hurricane, as well as the rotating 

angles.  

 

2.5 Conclusions 

In this chapter, we propose a global approach to extract certain essential 

characteristics of given images based on active contour method. The obtained 

characteristics are used to classify a rigid motion, in particular, a rigid motion with 

rotation. Discussion on other motions will be addressed in future work. 

There are certain limitations for our approach, even though they do not hurt 

its novelty. For instance, the choice of   and other parameters in (2.17) sometimes are 

essential in obtaining the characteristics of images. In fact, it is not too difficult to 

understand that we cannot obtain Figure 2.3(a) and (b) if ߙ is chosen to be larger than 

0.5  (for example, ߙ ൌ 0.8). On the other hand, the experiments show that we cannot 

obtain Figure 2.3(a) and (b) even we choose ߙ ൌ 0.5 but with large ߤ (for example, 

ߤ ൌ 2 ). The choice of these parameters for real problems may rely on certain 

experiences. In fact, one can certainly modify our energy functional further for proper 
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applications. Further, it is certainly possible to find better methods to catch the essential 

characteristics (which may not be the edges) of an image. This naturally becomes 

another challenging question in our further study. 

Besides interesting applications of our method to nowcasting system of 

tropical storms, there are also many mathematical questions needed to be addressed in 

the future. For example, the global existence of flow equation, the uniqueness of the 

limit, the convergent speed of the flow, and the stability of the flow, are all interesting 

and nontrivial questions.   
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 Figure 2.1 Nowcasting the translation and rotation. (a) Initial landing of hurricane Ike, 
  Sept. 13, 2008; (b) One and half hours later image. 

 

 
Figure 2.2  Synthetic images. (a) Original image; (b) Image after motion 
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Figure 2.3  Two characteristics. (a) First characteristic for Figure 3.2(a); (b) First 
characteristic for Figure 3.2(b); (c) Second characteristic for Figure 3.2(a), (d) Second 
characteristic for Figure 3.2(b). 
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Figure 2.4 Two descriptions of one rigid motions. (a) A simple rotation; (b) A 
translation after rotation. 
 

 

 

    

                              

Figure 2.5 A synthetic rotating motion. (a) Synthetic rotating motion: the first moment 
and the last moment; (b) Ten moments of the motion in one chart.      
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Figure 2.6 Motion centers VS rotating centers. 
 

 

 

   

Figure 2.7 Forecasting via extrapolation. 
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Figure 2.8 Hurricane Bill approaches Florida coast, August 17-19, 2009 
 

 

 

Figure 2.9 First characteristics of images, where ߙ ൌ 0.9 
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Figure 2.10 Second characteristics of images, where ߙ ൌ 0.7 
 

      

Figure 2.11  Tracking Storm Bill. The observed path comes from 
http://www.nhc.noaa.gov/2009atlan.shtml.  Storm eyes VS centers of motion.  The two 
nowcasting centers follow from two formulas in (2.22). 

 

(a)2009.08.17.06:30 (b)2009.08.17.07:00 (c)2009.08.17.07:30 (d)2009.08.17.08:00

(e)2009.08.17.08:30 (f)2009.08.17.09.00 (g)2009.08.17.09:30 (h)2009.08.17.10:00

(i)2009.08.17.10:30 (j)2009.08.17.11:30 (k)2009.08.17.12:00 (l)2009.08.17.12:30
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Position  Motion center1 Motion center Angle 

1 (198.8864,388.3416) (200.5,388.2728) 4.88 

2 (203.4712,388.7125) (201.5,388.9712) 5.19 

3 (218.3488,375.2252) (215.3025,375.895) 4.65 

4 (223.9468,391.9682) (225.6064,391.4468) 5.43 

5 (227.3262,381.7578) (228.8984,381.1016) 5.00 

6 (231.2535,371.1436) (231.9965,370.7553) 4.87 

7 (236.1746,383.6634) (233.8603,385.1397) 5.01 

8 (246.4136,377.4045) (247.2037,376.7963) 5.10 

9 (249.1863,369.2876) (252.3137,366.415) 4.86 

10 (259.1863,366.2876) (256.3137,369.415) 4.86 

Table 2.1 Motion centers and rotating angles 

 

 

 

Table 2.2 Rotating angle for storm Bill. 
  

Time 1702 1708 1714 1720 1802 1808 1814

Rotating angle 9.087668 9.643614 14.33013 6.851278 11.9749 17.34119 10.70173

Time 1814 1820 1902 1908 1914 1920 2002

Rotating angle 10.70173 9.476946 2.7636 19.95497 9.770217 7.0175 5.788656
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CHAPTER 3 

3-BRANCH HIERARCHICAL CLUSTERING 
 
3.1 Introduction to Hierarchical Clustering 

Hierarchical clustering is a method to sort a set of points into groups that each 

group is considered to have similar points. To achieve that, a hierarchical tree is built 

with all the points as leaves, and points that are similar with each other have the same 

root. The current methods mostly build two-branch hierarchical trees, where each root 

has two branches. Bottom-up technique is the most common way to implement the 

algorithm. We start with two closest points, create a cluster by combining these two 

points. Then, by substituting the new cluster with one point, the set of points are 

modified and there is one point less than the original set. The process goes on until we 

only have one point left in the set. There are a couple of questions in the building 

process. The first question is how to represent the new cluster generated by two close 

points. One solution for the question is to use the midpoint as a representative, whose 

coordinates are defined by the average of coordinates of the points. As we will see in 

later discussion, when dealing with multiple points, the position of midpoints tend be 

sensitive to noises. Another question with the two-branch hierarchical tree is that the 

system itself is not stable when adding or removing points from the set. In this chapter, 

we design a new algorithm about how to represent a group of points with one point and 

apply it to the construction of alternative hierarchical trees. 

 

3.2 Fermat Point 

In this section, we review the previous methods of representing a group of 
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points with one point and introduce a new candidate. The new point has the property of 

being stable when disturbed by perturbation and including information from every point 

in the set.  

 

3.2.1 Two ways of representing a set of points 

When dealing with a set of points, there are situations where only one point is 

required to summarize the characteristics of the set. How to identify the point from the 

set is an interesting problem in data analysis. Because every point in the set should have 

the same degree of importance, we could not use any one particular  point from the set. 

Instead, we need to define a point which is contributed by every other point in the set. 

There are generally two popular ways to define the representing point: Mean and 

Median. 

Definition: Given a set of points ܽଵ, ܽଶ, ܽଷ, …  , ܽ௠ ∈ Թ௡,  their corresponded 

coordinates are 

ሺݔଵଵ, ,ଵଶݔ ,ଵଷݔ … , ,ଶଵݔଵ௡ሻ,   ሺݔ ,ଶଶݔ ,ଶଷݔ … , ,ଷଵݔଶ௡ሻ,   ሺݔ ,ଷଶݔ ,ଷଷݔ … ,     ,  …   ,ଷ௡ሻݔ

ሺݔ௠ଵ, ,௠ଶݔ ,௠ଷݔ … ,   :௠௡ሻ. The Mean Point of the set is defined byݔ

଴ݔ ൌ ሺ
ଵଵݔ ൅ ଶଵݔ ൅ ଷଵݔ ൅ ⋯൅ ௠ଵݔ

݉
,
ଵଶݔ ൅ ଶଶݔ ൅ ଷଶݔ ൅ ⋯൅ ௠ଶݔ

݉
,  

                         
ଵଷݔ ൅ ଶଷݔ ൅ ଷଷݔ ൅ ⋯൅ ௠ଷݔ

݉
,… ,

ଵ௡ݔ ൅ ଶ௡ݔ ൅ ଷ௡ݔ ൅⋯൅ ௠௡ݔ

݉
ሻ               ሺ3.1ሻ 

Definition: Given a set of points ܽଵ, ܽଶ, ܽଷ, …  , ܽ௠ ∈ Թ௡,  their corresponded 

coordinates are 

ሺݔଵଵ, ,ଵଶݔ ,ଵଷݔ … , ,ଶଵݔଵ௡ሻ,   ሺݔ ,ଶଶݔ ,ଶଷݔ … , ,ଷଵݔଶ௡ሻ,   ሺݔ ,ଷଶݔ ,ଷଷݔ … ,                 ,  …   ,ଷ௡ሻݔ

ሺݔ௠ଵ, ,௠ଶݔ ,௠ଷݔ … ,  ௠௡ሻ. The ݇th coordinate of the Median Point is defined by theݔ
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median of the sequence ሼݔଵ௞, ,ଶ௞ݔ ,ଷ௞ݔ … , ݇ ,௠௞ሽݔ ൌ 1,2,3, … , ݊. 

We will prove that the Mean Point of the set minimizes of summation of ܮଶ 

distance, which means that from the Mean Point, when we add all the distance between 

Mean Point and points of the set in ܮଶ form, we have the smallest summation. The 

mathematical proof is in the following section.  

The Euclidean distance between two n-dimension points 

ܽଵ ሺݔଵଵ, ,ଵଶݔ ,ଵଷݔ … , ,ଶଵݔଵ௡ሻ, ܽଶሺݔ ,ଶଶݔ ,ଶଷݔ … ,   :ଶ௡ሻ is defined byݔ

݀ሺܽଵ, ܽଶሻ

ൌ ඥሺݔଵଵ െ ଶଵሻݔ
ଶ ൅ ሺݔଵଶ െ ଶଶሻݔ

ଶ ൅ ሺݔଵଷ െ ଶଷሻݔ
ଶ ൅ ⋯൅ ሺݔଵ௡ െ ଶ௡ሻݔ

ଶ.     ሺ3.2ሻ 

From ܽ௢ ሺݔଵ, ,ଶݔ ,ଷݔ … , ௡ሻݔ ∈ Թ
௡, the ܮଶ total distance for the set ܣ is:  

݂ሺܽ଴, ሻܣ ൌ ඩ෍݀ሺܽ଴, ܽ௜ሻ
ଶ

௠

௜ୀଵ

 

If ݂ሺܽ଴,   :ሻ is the minimum, we haveܣ

߲݂

௞ݔ߲
ሺܽ଴, ሻܣ ൌ 0, ݇ ൌ 1,2,3,… , ݊.  

Which is:  

߲

௞ݔ߲
ඩ෍݀ሺܽ଴, ܽ௜ሻ

ଶ

௠

௜ୀଵ

ൌ 0, ݇ ൌ 1,2,3, … , ݊.  

1

2ඥ∑ ݀ሺܽ଴, ܽ௜ሻ
ଶ௠

௜ୀଵ

߲

௞ݔ߲
෍݀ሺܽ଴, ܽ௜ሻ

ଶ

௠

௜ୀଵ

ൌ 0, ݇ ൌ 1,2,3, … , ݊. 

෍
߲

௞ݔ߲

௠

௜ୀଵ

݀ሺܽ଴, ܽ௜ሻ
ଶ ൌ 0, ݇ ൌ 1,2,3, … , ݊.  
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෍
߲

௞ݔ߲
෍ሺݔ௝ െ ௜௝ሻݔ

ଶ

௡

௝ୀଵ

௠

௜ୀଵ

ൌ 0, ݇ ൌ 1,2,3, … , ݊.  

෍2ሺݔ௞ െ ௜௞ሻݔ

௠

௜ୀଵ

ൌ 0, ݇ ൌ 1,2,3,… , ݊. 

Therefore, by solving for ݔ௞, ݇ ൌ 1,2,3,… , ݊, we have:  

௞ݔ                                        ൌ
௞ଵݔ ൅ ௞ଶݔ ൅ ௞ଷݔ ൅ ⋯൅ ௞௠ݔ

݉
,   ݇

ൌ 1,2,3, … , ݊.                 ሺ3.3ሻ 

That is the consistent with the definition of Mean Point and proves that Mean Point 

minimizes the ܮଶ summation. 

From the definition of Median Point, we could see that every coordinate of 

the Median Point only depends on the corresponded coordinate of points in the set. It 

lacks the ability of treating the points as a whole system, instead, the points are split into 

independent parts. Therefore, the Median Point is hardly convincing to be a good 

candidate to represent the whole set. 

 

3.2.2 Fermat Point 

It could be seen that every coordinate of the points appears directly in the 

formula of the Mean Point, that means noises could affect the position of Mean Point 

straightforwardly. To decrease the disturbance of noises, we modify the definition of 

Mean Point by using ܮଵ summation instead, to get the Fermat Point. Now we try to find 

a point that minimizes the  ܮଵ total distance of set ܣ, which is:  

݃ሺܽ଴, ሻܣ ൌ෍݀ሺܽ଴, ܽ௜ሻ

௠

௜ୀଵ

. 
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We start from partial derivative of ݃ with respect to ݔ௞: 

߲݃

௞ݔ߲
ሺܽ଴, ሻܣ ൌ 0, ݇ ൌ 1,2,3,… , ݊.  

߲

௞ݔ߲
෍݀ሺܽ଴, ܽ௜ሻ

௠

௜ୀଵ

ൌ 0, ݇ ൌ 1,2,3, …  , ݊. 

෍
߲

௞ݔ߲
ඩ෍ሺݔ௝ െ ௜௝ሻݔ

ଶ

௡

௝ୀଵ

௠

௜ୀଵ

ൌ 0, ݇ ൌ 1,2,3,… , ݊. 

෍
௞ݔ െ ௜௞ݔ

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ

௠

௜ୀଵ

ൌ 0, ݇ ൌ 1,2,3, … , ݊. 

෍
௞ݔ

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ

௠

௜ୀଵ

ൌ෍
௜௞ݔ

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ

௠

௜ୀଵ

, ݇ ൌ 1,2,3,… , ݊. 

௞ݔ                              ൌ

∑
௜௞ݔ

ට∑ ሺݔ௝ െ ௜௝ሻଶݔ
௡
௝ୀଵ

௠
௜ୀଵ

∑
1

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ

௠
௜ୀଵ

,   ݇ ൌ 1,2,3, … , ݊.                            ሺ3.4ሻ 

Definition: Given a set of points ܽଵ, ܽଶ, ܽଷ, …  , ܽ௠ ∈ Թ௡,  their corresponded 

coordinates are 

ሺݔଵଵ, ,ଵଶݔ ,ଵଷݔ … , ,ଶଵݔଵ௡ሻ,   ሺݔ ,ଶଶݔ ,ଶଷݔ … , ,ଷଵݔଶ௡ሻ,   ሺݔ ,ଷଶݔ ,ଷଷݔ … ,                 ,  …   ,ଷ௡ሻݔ

ሺݔ௠ଵ, ,௠ଶݔ ,௠ଷݔ … ,   :௠௡ሻ. The Fermat Point of the set is defined byݔ

ܽ଴ ൌ

ۉ

ۈ
ۈ
ۇ

∑
௜ଵݔ

ට∑ ሺݔ௝ െ ௜௝ሻଶݔ
௡
௝ୀଵ

௠
௜ୀଵ

∑
1

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ

௠
௜ୀଵ

,

∑
௜ଶݔ

ට∑ ሺݔ௝ െ ௜௝ሻଶݔ
௡
௝ୀଵ

௠
௜ୀଵ

∑
1

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ

௠
௜ୀଵ

,  
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∑
௜ଷݔ

ට∑ ሺݔ௝ െ ௜௝ሻଶݔ
௡
௝ୀଵ

௠
௜ୀଵ

∑
1

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ

௠
௜ୀଵ

, … ,

∑
௜௡ݔ

ට∑ ሺݔ௝ െ ௜௝ሻଶݔ
௡
௝ୀଵ

௠
௜ୀଵ

∑
1

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ

௠
௜ୀଵ

ی

ۋ
ۋ
ۊ

                 ሺ3.5ሻ 

We use iteration to find the Fermat Point from the above definition. From the 

definition above it could be seen that the denominators might be zeros during the 

iteration process. To avoid the situation of having a zero denominator, in the process of 

iteration, a small modification is made by adding a nonzero positive number ߝ. The 

following formula is used:  

ܽ଴ ൌ

ۉ

ۈ
ۈ
ۇ

∑
௜ଵݔ

ට∑ ሺݔ௝ െ ௜௝ሻଶݔ
௡
௝ୀଵ ൅ ߝ

௠
௜ୀଵ

∑
1

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ ൅ ߝ

௠
௜ୀଵ

,

∑
௜ଶݔ

ට∑ ሺݔ௝ െ ௜௝ሻଶݔ
௡
௝ୀଵ ൅ ߝ

௠
௜ୀଵ

∑
1

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ ൅ ߝ

௠
௜ୀଵ

,  

                                      

∑
௜ଷݔ

ට∑ ሺݔ௝ െ ௜௝ሻଶݔ
௡
௝ୀଵ ൅ ߝ

௠
௜ୀଵ

∑
1

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ ൅ ߝ

௠
௜ୀଵ

, … ,

∑
௜௡ݔ

ට∑ ሺݔ௝ െ ௜௝ሻଶݔ
௡
௝ୀଵ ൅ ߝ

௠
௜ୀଵ

∑
1

ට∑ ሺݔ௝ െ ௜௝ሻݔ
ଶ௡

௝ୀଵ ൅ ߝ

௠
௜ୀଵ

ی

ۋ
ۋ
ۊ

                 ሺ3.6ሻ 

The Mean Point is a good candidate as the initial value for ܽ଴ . The 

convergence of the iteration to find ܽ଴ is proven by Weiszfield (Weiszfeld, E., 1937), 

Kuhn(Kuhn, H, 1973) and Vardi and Zhang (Vardi, Y., Zhang, 2000). 

In Section 3.4, through experiments,  we will find that the Fermat Point is 

more consistent than the Mean Point when dealing with disturbance, and noises will 

now affect the position of Fermat Point to a insignificant degree. Thus, the Fermat Point 

could be used to be a efficient candidate to represent a group of points. Using the 

Fermat Point, we develop a new technique for hierarchical clustering, as shown in 
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Section 3.3.  

 

3.3 3-branch Hierarchical Tree 

In the creation of an 2-branch hierarchical tree for a set of points, we need to 

combine two points and generate a new point which will represent the existing two. The 

Mean Point is used in the case of creating 2-branch hierarchical tree. Since the Mean 

Point is easily disturbed by noises, when creating 3-branch hierarchical trees, we need a 

new way to represent three points. The Fermat Point is thus introduced in this section. 

Through the experiment in Section 3.4, we find that the Fermat Point is more stable 

than the Mean Point when dealing with noises.  

For a given set of points, to construct a 3-branch hierarchical tree, we find the 

group of three points that has the smallest distance, and use the Fermat Point of the 

group as a new point to replace those three points. The distance we use here is the 

summation of the distances between the Fermat Point and each point in the group. In 

each step, we represent three points using one point, by reiterating the process, the 

number of points in the set is decreasing by 2 every time. The iteration stops when there 

are less than four points left in the set, as shown in Figure 3.1. 

 

3.4 Experiments 

3.4.1 Mean Point and Fermat Point 

In this experiment, we use a set with three points as an example. The points in 

the set form a close group, as shown in Figure 3.1. The difference between the Mean 

Point and Fermat Point is relatively small. Both are good candidates to represent the 
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group. After an outlier point is added to the group far on the top, the Mean Point and 

Fermat Point are calculated again and the results are shown in Figure 3.2. It could be 

seen clearly that the Mean Point is affected significantly while the Fermat Point stays at 

the same spot. Now, to use the Mean point as a representative for the group seems much 

less convincing, because it consists of too much information from one outlier and 

ignores the impact of the majority of the set. Meanwhile, Fermat Point remains a good 

candidate when noises are disturbing the data. 

3.4.2 3-Branch Hierarchical Tree 

In this section, the newly devised algorithm is put into application. We 

construct a 2-branch hierarchical tree and a 3-branch hierarchical tree for a set of 20 

points. In Figure 3.3, we display the points on the 2-dimension plane. Figure 3.4 shows 

the 2-branch hierarchical tree and Figure 3.5 shows the 3-branch hierarchical tree for 

the set. By comparing the new 3-branch diagram with the 2-branch tree, we could see 

that it is much easier to distinguish the clusters of points in the 3-branch tree. 
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Figure 3.1 Mean Point and Fermat Point of three points 
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Figure 3.2 The disturbance of a noise point on Mean Point and Fermat Point 
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Figure 3.3 20 points on the plane   
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Figure 3.4 The 2-branch diagram  
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Figure 3.5 The 3-branch diagram   
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