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Abstract

A general approach to optimal nonlinear filtering can be described by a recursive

Bayesian approach. The key step in this approach is to determine the probability

density function of the state vector conditioned on available measurements. However,

an optimal solution to the Bayesian filtering problem can only be obtained exactly for

a small class of problems such as linear and Gaussian cases. Therefore, in practice,

approximate solutions, such as the extended Kalman filter, have been used.

An optimal nonlinear filtering in a recursive Bayesian approach is a two-step pro-

cess which consists of the prediction and the update process. In the update process,

the priori conditional state probability density function (PDF) from the prediction

process is updated through Bayes’ rule using measurements from sensors. The pre-

diction of conditional state PDF can be made by solving the Fokker-Planck equation

(FPE) that governs the time-evolution the conditional state PDF. However, it is ex-

tremely difficult to obtain an analytical solution of the Fokker-Planck equation with

the exception of a few special cases. So far this estimation method has not been

employed much in practice because of the high computational cost needed in solving

the FPE numerically. In this dissertation, methods to improve the efficiency of the

numerical method in solving the FPE are investigated to enhance the efficiency of

the nonlinear filtering.

Two finite difference methods, namely i) the explicit forward method and ii) the

alternating direction implicit (ADI) method, are used to solve the FPE numerically.

Although the explicit forward method is much simpler to implement, the ADI method

is preferred for its low computational cost. To reduce the computational cost further,

as the first contribution of the dissertation, a moving domain scheme is developed

ix



to reduce the domain of integration required for solving the Fokker-Planck equation

numerically. Simulation results show that the accuracy of the estimation is improved

as compared with the Extended Kalman Filter, and at the same time the computa-

tional cost is significantly lower with the proposed moving grid scheme than the case

without it.

Recently a nonlinear filtering algorithm using a direct quadrature method of mo-

ments was proposed, where the associated Fokker-Planck equation is solved efficiently

via discrete quadrature based on moment constraints. For some problems, however,

this approach showed the phenomenon similar to the “degeneracy” in a particle filter,

which is the concentration of weight on particular particles. The possible cause of

the phenomenon is that only the weights are updated through the modified Bayes’

rule. Therefore, in this dissertation, as another contribution, a new hybrid filter is

proposed where the measurement update equations in the extended or the unscented

Kalman filter are used along with the direct quadrature method of moments to solve

the FPE. In this way the “degeneracy” problem can be mitigated.

Then, new proposed filtering methods are applied to several challenging problems

such as i) the bearing-only tracking problem, ii) the relative orbit position estimation

problem, and iii) the orbit determination problem to demonstrate their advantages.

Simulation results indicate that the performance of the proposed filters are better than

existing nonlinear filtering methods, such as the Extended Kalman Filter especially

with less measurement updates.
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CHAPTER 1

Introduction

This chapter starts with a brief discussion of the importance of the state estimates

of a dynamical system from noisy measurements. Then, two major approaches in

the Bayesian recursive filter, which is the most commonly used optimal nonlinear

filtering method, are reviewed, and the nonlinear filtering via the solution of the

Fokker-Planck equation is presented. Finally, the contributions and the organization

of this dissertation are presented

1.1 Overview

The problem of finding the state of a system, i.e, what a system is doing, from

measurements corrupted by noise is called estimation or filtering [38]. Estimating the

state of a dynamical system is very important in engineering since it is necessary to

know what a system is doing in order to determine if the system is working properly

(monitoring), and to adjust the system to work in the desired manner (controlling).

For example, knowing the state of an earth observation satellite, which consists of the

position and the velocity of the satellite, is crucial to produce an image of the desired

part of the earth. This has been the subject of a considerable amount of research

ever since the time Gauss formulated the deterministic least-square technique for a

simplified orbit determination problem [26]. To date, many different techniques have

been developed and used in a wide variety of applications, such as tracking of a target,

ranging with sonar, determining the state of a satellite and an airplane, and estimating

the volatility of financial systems using stock market data, etc. [2, 38, 48, 49, 60].
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In a broad sense, general approaches to optimal nonlinear filtering can be depicted

by the Bayesian approach [3, 36, 67]. In the Baysian approach, one attempts to build

the posterior (updated) probability distribution function (PDF) of the state based on

the set of measurements and the prior (initial) PDF of the state. This is because the

PDF of the state contains all the statistical information about the state. Using this

approach, a filter in recursive form, which means that the received measurements are

processed sequentially, can be constructed. The Bayesian recursive filtering problem,

however, can be solved exactly only for a small class of problems due to the fact that

it requires infinite dimensional processes [71]. There are two approaches to nonlinear

Baysian filtering problem, which are the local approach and the global approach.

In the local approach the filtering problem is approximated so that it can be solved

exactly while the global approach attempts to solve the exact problem approximately.

This dissertation deals with the global approach of nonlinear filtering problem

based on direct numerical approximations of the optimal nonlinear filter. This can be

accomplished through the solution of the Fokker-Planck equation (FPE) in continuous-

discrete filtering problems, in which the dynamics are continuous and measurements

discrete [38]. Solving the FPE efficiently and accurately is the key to this approach

and the focus of the dissertation.

In next section, the details of the local and the global approach are discussed

including their advantage and disadvantage followed by the discussion of the nonlinear

filtering based on the FPE and the methods to solve the FPE.

1.2 Two Methodologies for Nonlinear Filtering Problems

Methodologies to solve nonlinear Baysian filtering problems can be categorized as i)

local approach and ii) global approach [5]. In the local approach, the prior (initial)

and the posterior (updated) PDF are approximated with a particular form, usually

Gaussian, while in the global approach the posterior density function is calculated
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without any explicit assumption about the distribution. So, the nonlinear filters

based on the local approach are usually numerically simple, but erroneous when the

assumption is violated while the nonlinear filters based on the global approach are

numerically complex and expensive, but more accurate than the filters based on the

local approach. The prime example of the local approach is the Extended Kalman

filter (EKF). The nonlinear system and/or measurement equations associated with

the EKF are linearized around the most recent estimation, and PDFs are assumed to

be Gaussian. As the EKF utilizes the linearized nonlinear dynamics and/or measure-

ment model achieved through Taylor series expansion around the latest estimation,

its performance heavily relies on the degree of nonlinearity [27]. Another example is

the Unscented Kalman Filter (UKF). The UKF is built on the nonlinear transforma-

tion called the unscented transformation (UT). The UT approximates the mean and

covariance of a probability distribution efficiently using a set of points called sigma

points. However, these filtering methods have shown the following drawbacks

• When the system and/or measurement models are highly nonlinear, the filter

can give a poor or even unstable performance as a consequence of the lineariza-

tion involved in the filtering algorithm.

• The derivation of the Jacobian, which is part of the linearization process, is not

a trivial task in many applications.

• Numerical evaluation of the Jacobian can be computationally intensive.

These drawbacks can be resolved by solving the nonlinear filtering problem using the

global approach which is more general framework of nonlinear filtering problem.

The global approach approximates the PDF directly. Therefore, the computa-

tional complexity of the global approach can be far greater than a local approach,

which has been the major limiting factor for the global approach. However, the en-

hancement of the performance coming from the global approach may outweigh the
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additional computational cost. The particle filter based on the sequential Monte

Carlo (SMC) methods [20, 31, 58, 66] is a good example of the global approach. The

sequential Monte Carlo filter can be described as a recursive filter based on Monte

Carlo simulation schemes with an importance sampling. This technique estimates a

distribution from samples generated from a different distribution other than the dis-

tribution of interest in order to solve online estimation and prediction problems [22].

The sequential Monte Carlo approach is known as bootstrap filtering [30], condensa-

tion algorithm [56], and particle filtering [14]. The flexible nature of the Monte Carlo

simulations makes these methods more adaptive [58]. There have been many modifi-

cations and improvements recently on particle filters [21]. However, there still exist

many problems related to the choice of a proposal distribution, a sampling mechanism

from the distribution, and high computational complexity.

1.3 Nonlinear Filtering with the Fokker-Planck Equation

Global approaches for nonlinear filtering are often based on direct numerical approx-

imations of the optimal nonlinear filter, which can be accomplished through the use

of numerical methods to solve Kushner equation or Zakai equation in the case of

continuous-continuous system models [12, 28, 37, 55], or the Fokker-Planck equation

in continuous-discrete system models for the state conditional PDF [15, 18, 38]. The

optimal estimates in the sense of the minimum mean square error (MMSE) or the

maximum likelihood can be constructed from the approximated posterior density.

The Fokker-Planck equation (FPE), which is also known as the Kolmogorov for-

ward equation, was first used by Adriaan Fokker [24] and Max Planck [62] to explain

the Brownian motion of particles in fluid. It describes the evolution of the transition

probability density of the Markov process produced by the Itô stochastic differential

equation (SDE) [38]. The filter based on the solution of the FPE will be able to

perform properly if the FPE is solved quickly and accurately. The analytical solution
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of the FPE is difficult to obtain with a few exceptions. Therefore, the evaluation of

the FPE between measurements usually has to be done numerically. This has pre-

vented the use of this nonlinear filtering algorithm until recent years. The focus of

the dissertation is to find an efficient solution to the nonlinear filtering problem by

improving the computational efficiency of the numerical solution of the FPE. This

has been achieved in two different ways. The first one is through the finite differ-

ence methods with moving domain, and the second one is by employing the direct

quadrature method of moments.

Solving the FPE was done using two distinct finite difference methods, namely i)

the explicit forward method and ii) the alternating direction implicit (ADI) method.

Although the explicit forward method is much simpler to implement, the ADI method

is preferred for its low computational cost. The computational cost of using any finite

difference method alone will still be very high as it is necessary to use a very large

computational domain because the PDF is a function defined over an infinite domain.

Consequently, in order to reduce the computational load, it is necessary to have a

method that would allow us to reduce the size of the domain without any compromise

in the solution accuracy [15, 48, 49]. As one of the contributions of this dissertation,

an adaptive moving domain will be described (in Chapter 3).

Even with adaptive grids, the computational cost of the finite difference based

numerical method can be still too high for the high dimensional system [16, 77,

78]. So, a new approximation approach based on the direct quadrature method of

moments (DQMOM) [6], along with Bayes’ formula was studied [75] for solving the

FPE based nonlinear filtering problems. Originally, the direct quadrature method of

moments was developed to solve the population balance [57]. This approach involves

a representation of the state conditional PDF in terms of a finite summation of the

Dirac delta functions, whose weights and locations (abscissas) are evolved under the

moment constraints and modified by Bayes’ rule for the measurement update. Using
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a small number of scalars (to describe to weights of Dirac delta functions), the method

is able to efficiently and accurately model the stochastic processes through a set of

algebraic ordinary differential equations (ODEs). The DQMOM approach could lead

to a significant reduction in computational cost, compared to finite difference (and

other equivalent) methods, especially for high dimensional problems.

Although the DQMOM approach seems promising, the DQMOM based nonlinear

filter with modified Bayes’ rule as the measurement update showed that the “degen-

eracy” phenomenon, similar to the one exists in a typical particle filter because in

this algorithm only the weight is updated and the abscissas remain the same [76]. As

a solution to this problem, a hybrid approach is used. In this approach, the PDE is

propagated through DQMOM algorithm to provide the predicted PDF, and the steps

borrowed from the EKF or the unscented Kalman Filter (UKF) perform the measure-

ment update to generate the posterior PDF. Using the UKF update equations offer

an additional benefit that it does not require the linearization of the measurement

equation.

1.4 Contribution

The purpose of this research is to investigate new efficient nonlinear estimation al-

gorithms such that the computational cost in solving the FPE can be substantially

reduced. The specific contributions are

• An efficient and simple adaptive moving domain is developed to reduce the com-

putational cost in solving the Fokker-Planck equation via the finite difference

approach.

• A form of the ADI method that can be applied to wide range of the nonlinear

dynamic problems has been derived.
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• Hybrid filtering algorithms are proposed to mitigate the “degeneracy” phe-

nomenon seen in the DQMOM based nonlinear filtering.

• The proposed filtering algorithms are successfully applied to selected problems

such as i) the bearing-only tracking problem, ii) the relative orbit position esti-

mation problem, and iii) the orbit determination problem.

1.5 Organization of the Dissertation

In Chapter 2, we provide a overview of the existing linear/nonlinear filtering meth-

ods. In this chapter, the most commonly used filtering methods such as the Ex-

tended Kalman filter (EKF) along with the Kalman filter, the unscented Kalman

filter (UKF), and the particle filter are reviewed. The advantages and drawbacks of

each filter are discussed.

In Chapter 3, the nonlinear filter via the numerical solution of the Fokker-Planck

equation is discussed. Brief introduction of the Fokker-Planck equation is presented

followed by the discussion of the finite difference methods in the derivation of the ADI

method and adaptive domain schemes. The direct quadrature method of moments is

introduced, and the update methods are discussed.

In chapter 4, the proposed nonlinear filtering algorithms with applications to the

spacecraft relative position estimation, the orbit determination, and the bearing-only

tracking problem are investigated, and numerical simulation results are presented.

The performance by these filters is compared with the Extended Kalman filter and

the Unscented Kalman filter.

Chapter 5 presents the summary of the dissertation and directions for future works

are discussed in the end.
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CHAPTER 2

Review of Estimation Theories

In this chapter, the most commonly used filtering methods started with Baysian

recursive filter are reviewed. For linear filtering methods, linear sequential estimation

and Kalman filter are reviewed. Especially, the Kalman filter will be derived through

the Fokker-Planck equation and the Bayes’ rule to show that the Kalman filter is

the special case of the filtering method based on the Fokker-Planck equation and the

Bayes’ rule. The Extended Kalman filter (EKF), the unscented Kalman filter (UKF),

and the particle filter are reviewed as nonlinear filtering methods. The advantages

and drawbacks of each filter are discussed.

2.1 Bayesian Recursive Filter

In a broad sense, general approaches to optimal nonlinear filtering can be depicted by

a recursive Bayesian approach[3, 36, 67]. In the Bayesian approach, the problem is

to find the posterior conditional probability density function (PDF) p(xk|Yk) where

xk , x(k) is the state vector of the system and Yk , [y0,y2, · · · ,yk]T is the history

of observations. This density function will encapsulate all the information about the

state vector xk which is contained in the measurement Yk and the prior distribution

of xk−1, which is the distribution before the measurement update. Once p(xk|Yk)

is found, the optimal estimate can be obtained by the conditional expectation of xk

given Yk

x̂k = E[xk|Yk] =
∫

xkp(xk|Yk)dxk (2.1)
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The posterior PDF for the state can be found by the Bayesian recursion relations

[36, 67] as

p(xk|Yk−1) =
∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (2.2)

and

p(xk|Yk) = Ckp(yk|xk)p(xk|Yk−1) (2.3)

where the normalizing constant Ck is

Ck =
(∫

p(yk|xk)p(xk|Yk−1)dxk

)−1

(2.4)

With further integration of Eq. (2.2) and Ck, Eq. (2.3) becomes

p(xk|Yk) =
p(xk|Yk−1)p(yk|xk)
p(yk|Yk−1)

(2.5)

Equation (2.5) is the Bayes’ formula showing that the posterior PDF for x with given

measurements y is directly proportional to the prior value of x multiplied by the

likelihood of the observation. The PDF p(yk|xk) is defined by the characteristics of the

sensor and usually can be assumed to have a Gaussian distribution. Equations (2.2)

and (2.3) form a two-step process or multi-stage estimation [36] to obtain the posterior

conditional PDF p(xk|Yk) [38]. The first step, Eq. (2.2) is to predict p(xk|Yk−1), and

the second step, Eq. (2.3) is to update it using the measurement yk followed by

integration of Eq. (3.5) to obtain the state estimation.

However, the equations (2.2) and (2.3) for the Bayesian recursive filtering can

only be solved exactly for a small class of problems such as the problems with the

linear Gaussian process for the system and measurement model. For such cases, the

famous Kalman filter is the optimal solution [44] since it gives the optimal solution in

the senses of minimum-mean-square-error (MMSE), maximum likelihood (ML), and

maximum a posteriori (MAP) [3, 36, 67]. However, most of problems in engineering
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are nonlinear and non-Gaussian, and the exact solution to the recursive Bayesian

filtering problem for nonlinear systems is intractable due to the fact that it requires

infinite dimensional processes [71].

2.2 Linear Filters

2.2.1 Linear Sequential Estimation

The linear least square method developed by Gauss [26] processes a set/batch of

measurements simultaneously to generate an estimate. However, in reality the mea-

surements come in as a stream instead of a batch. In this section, it is assumed that

the measurements are taken in a sequence so that the estimates are calculated by

utilizing all previous measurements and the current data [9]. The method presented

in this section can be found in Ref. [17]. Let’s consider the following two sets of

sequential measurement vectors and their corresponding measurement equations

y1 = H1x + v1, y1 = [y11, y11, · · · , y1m1
] ∈ R

m1×1 (2.6)

y2 = H2x + v2, y2 = [y21, y21, · · · , y2m2
] ∈ R

m2×1 (2.7)

where H1 ∈ R
m1×1 and H2 ∈ R

m2×1 are the linear mapping coefficient matrices. The

least-squares estimates x̂1 of the unknown x1 based on the first measurement subset

(Eq. (2.6)) is obtained by using the equation from the weighted least squares.

x̂1 =
(

HT1 W1H1

)−1
HT1 W1y1 (2.8)

where W1 is anm1×m1 symmetric, positive definite weighting matrix associated with

measurement y1. The measurement set y1 and y2 can be merged into one equation
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and used simultaneously to find the estimation of x2.

y = Hx + v (2.9)

where y = [y1 y2]T , H = [H1 H2]T , v = [v1 v2]T , and the merged weight matrix is

assume to be a block diagonal matrix of

W =









W1 0

0 W2









The optimal least square estimate based on the two measurements is obtained with

Eq. (2.8)

x̂ =
(

HTWH
)−1

HTWy (2.10)

By expanding the block diagonal matrix W, the equation (2.10) becomes

x̂2 =
[

HT1 W1H1 + HT2 W2H2

]−1 (

HT1 W1y1 + HT2 W2y2

)

(2.11)

However that is not very efficient approach because this procedure has to be repeated

with a new set of measurement, i.e., merging more measurements, to come up with the

new equation like Eq. (2.11) for x̂3. This problem can be solved by the sequential least

square method. The core of the sequential approach to the least square problem is to

make calculations for the new estimation by efficiently using the previous estimations

[17]. To achieve that the following variables are defined

P1 ,
[

HT1 W1H1

]−1
(2.12)

P2 ,
[

HT1 W1H1 + HT2 W2H2

]−1
(2.13)
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The relationship between P1 and P2 can be established as

P−1
2 = P−1

1 + HT2 W2H2 (2.14)

Using this relationship with equations (2.8) and (2.11), the optimal estimate x̂2 using

the previous estimate x̂1 can be written as

x̂2 = x̂1 + K2(y2 −H2x̂1) (2.15)

where the optimal gain K is K , P2H
T
2 W2.

These two equations can be generalized to form the recursive least-square estima-

tion which uses the kth estimate to calculate the (k + 1)th as

x̂k+1 = x̂k + Kk+1(yk+1 −Hk+1x̂k) (2.16)

where Kk+1 = Pk+1H
T
k+1Wk+1, and

P−1
k+1 = P−1

k + HTk+1Wk+1Hk+1 (2.17)

This update process is known as Kalman update process [45], and the gain Kk+1 is

called the Kalman gain matrix. Finding Pk+1 involves inverting the n×n matrix given

in Eq. (2.17), which is not always simple. This inversion can be removed using the

Sherman-Morrison-Woodbury matrix inversion lemma [29], and Eq. (2.17) becomes

Pk+1 = Pk −PkH
T
k+1

(

Hk+1PkH
T
k+1 + W−1

k+1

)−1
Hk+1Pk (2.18)

Now, the equation for the Kalman gain can be obtained by substituting the above

12



equation into Kk+1 = Pk+1H
T
k+1Wk+1, which yields

Kk+1 =
[

Pk −PkH
T
k+1

(

Hk+1PkH
T
k+1 + W−1

k+1

)−1
Hk+1Pk

]

HTk+1Wk+1

= PkH
T
k+1

[

I−
(

Hk+1PkH
T
k+1 + W−1

k+1

)−1
Hk+1PkH

T
k+1

]

Wk+1

(2.19)

By factoring
(

Hk+1PkH
T
k+1 + W−1

k+1

)−1
, Eq. (2.19) can be rewritten as

Kk+1 = PkH
T
k+1

(

Hk+1PkH
T
k+1 + W−1

k+1

)−1

×
[

Hk+1PkH
T
k+1 + W−1

k+1 −Hk+1PkH
T
k+1

]

Wk+1

(2.20)

Since the last term is the identity matrix, the Kalman gain can be written as

Kk+1 = PkH
T
k+1

(

Hk+1PkH
T
k+1 + W−1

k+1

)−1
(2.21)

and, the covariance update equation can be rearranged in terms of the new Kalman

gain equation as

Pk+1 = [I −Kk+1Hk+1] Pk (2.22)

The state estimation equation (Eq (2.16)) and above two update equations (Eq (2.21)

and Eq (2.22)) create the covariance recursion-form.

2.2.2 Kalman Filter

The Kalman filter has been the focus of extensive research since the publication of

Kalman’s famous paper [44]. The Kalman filter is a mathematical algorithm that gen-

erates an efficient recursive solution of the least-squares method. The filter can give

an estimate of the past, present, and also future states based on noisy measurements.

It produces the minimum variance estimate of the state based on statistical informa-

tion of the dynamic model and the measurement. The Kalman filter can be derived

in several different ways. In this section the Kalman filter will be derived based on
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the Fokker-Planck equation and the Bayes’ rule to show that the Kalman filter is the

special case of the filtering method that is the main topic of this dissertation [38].

Consider the linear Itô stochastic differential equation

dxt = F(t)xtdt+ G(t)dβt, t ≥ t0 (2.23)

where F(t) ∈ R
n×n is a linear state function, xt ∈ R

n×1 is the state vector, βt is

an Brownian motion process with E[βtβ
T
t ] = Q(t)dt, and G(t) ∈ R

n×m is a matrix

function. The discrete linear measurement yk taken at the discrete time instants tk

is

yk = Hkxk + vk, k = 1, 2, ... (2.24)

where Hk ∈ R
m×n is the measurement function, yk ∈ R

m×1 is the measurement

vector, and vk is a white Gaussian noise with N(0, Rk). For the given linear sys-

tem (Eq.(2.23)), the FPE that is responsible for propagation of the PDF between

measurements becomes

∂p

∂t
= −

n
∑

i=1

∂ [pFixi]

∂xi
+

1

2

n
∑

i=1

n
∑

j=1

∂2

[

p
(

GQGT
)

ij

]

∂xi∂xj

= −ptr(F)−
(

pTx
)

Fx +
1

2
tr(GQG

T )pxx

(2.25)

where px , ∂p
∂x

, pxx , ∂2p
∂x2 , and xi is the ith component of the state vector x. The char-

acteristic function of a random variable x is the Fourier transform of its probability

distribution function

ϕ(u, t) =
∫ ∞

−∞
eiu

Txp(x, t)dx (2.26)
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By substitute Eq.(2.25) into the time derivative of Eq.(2.26)

∂ϕ

∂t
=
∫ ∞

−∞
eiu

Tx ∂p

∂t
dx

= −ϕtr(F)−
∫

eiu
TxpTxFxdx +

1

2
tr(GQG

T )
∫

eiu
TxpTx pxxdx

= −ϕtr(F)− tr(F)
∫

xpTx e
iuTxdx +

1

2
tr(GQG

T )
∫

pxxe
iuTxdx

(2.27)

Assuming that p and its partial derivatives with respect to x vanish at∞, calculating

the integrals from above equation by part would yield

∂ϕ

∂t
= uTF

∂ϕ

∂u
− 1

2
ϕuTGQGTu (2.28)

Since the system is assumed to be the Gaussian process, its characteristic function is

known to be

ϕ(u, t) = exp

(

iuT x̂t −
1

2
uTPtu

)

(2.29)

Taking the derivatives of the characteristic function with respect to time and u will

give

∂ϕ

∂t
= ϕ

[

iuT
dx̂t

dt
− 1

2
uT
dPt
dt

u

]

∂ϕ

∂u
= ϕ [ix̂t −Ptu]

(2.30)

Substituting these equations into Eq.(2.28) gives

ϕiuT
dx̂t

dt
− 1

2
ϕuT
dPt
dt

u = ϕiuTFx̂t−
1

2
ϕuT

(

FPt + PtF
T
)

u− 1

2
ϕuTGQGTu (2.31)

By comparing the real and imaginary parts on both sides of the equation

ẋt = F(t)xt

Ṗt =
(

F(t)Pt + PtF
T (t)

)

−GQGT

(2.32)
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where ẋt , dx̂t
dt

and Ṗt , dPt
dt

. These differential equations are the prediction equa-

tions for continuous-discrete Kalman filter, and the solutions of the equations are the

prediction of the state x̂−k and the error covariance matrix P−k . The measurement

update equations can be found by identifying all three PDFs on the right side of

Bayes’ formula

p(x, tk|Ytk) =
p(yk|x)p(x, tk|Ytk−1

)

p(yk|Ytk−1
)

(2.33)

where Ytk−1
= [y1, . . . , yk−1] is the history of the measurements. Since the measure-

ment noise is assumed to be Gaussian, p(yk|xk) can be expressed simply as

p(yk|xk) =
1

(2π)n/2|R|1/2 e
{− 1

2
[yk−Hkxk]TR−1[yk−Hkxk]} (2.34)

From Eq. (2.34), the expectation of the measurement yk is E[yk|Ytk−1
] = Hkx̂k, and

the covariance can be calculated as

E
[

(

yk −E[yk|Ytk−1
]
) (

yk − E[yk|Ytk−1
]
)T |Ytk−1

]

= HkP
−
kHTk + Rk (2.35)

So the PDF of the measurement yk given Ytk−1
is simply

p(yk|Ytk−1
) ∼ N(Hkx̂k, HkP

−
kHTk + Rk) (2.36)

Since all the PDFs in Bayes’ formula are assumed to be Gaussian

p(x, tk|Ytk−1
) ∼ N(x̂−k , P−k ) (2.37)

By substituting equations (2.34), (2.36), and (2.37), Bayes’ formula becomes

p(x, tk|Ytk) =
|HP−H

T |1/2
(2π)n/2|R|1/2|P−|exp

{

−1

2
[∗]
}

(2.38)
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where

[∗] = (y−Hx)TR−1(y−Hx) + (x− x̂−)T
(

P−
)−1

(x− x̂−)

− (y−Hx̂−)T (HP−H
T

+ R)−1(y−Hx̂−)
(2.39)

All the subscripts and superscripts are omitted.

Since p(x, tk|Ytk) is assumed to be Gaussian, i.e., N(x̂+
k , P+

k ), the term [∗] must

be equal to

(x − x̂+)T
(

P+
)−1

(x− x̂+) (2.40)

Eq. (2.39) is rearranged to the form of the Eq. (2.40) as follows

[∗] = Γ T
[

HTR−1H + P−
−1
]

Γ (2.41)

where Γ =
[

x−
(

HTR−1H + P−
−1
)−1 (

HTR−1y + P−
−1

x̂−1
)

]

. By comparing Eq. (2.41)

with Eq. (2.40) the update equations can be obtained as

x̂+ =
(

HTR−1H + P−
−1
)−1 (

HTR−1y + P−
−1

x̂−
)

(2.42)

P+ = P−
−1

+ HTR−1H (2.43)

They are not in the form in which the Kalman filter update equations are normally

presented, and need to be reduced further. After matrix algebra Eq. (2.43) and

Eq. (2.42) can be rewritten [38] as

x̂+ = x̂− + P−HT
(

HP−HT + R
)−1 (

y−Hx̂−
)

(2.44)

P+ = P− −P−HT
[

HP−HT + R
]−1

HP− (2.45)

The measurement update of the Kalman filter performs a correction using the mea-

surement to estimate x̂+ and the covariance P+ [53]. The equation (2.45) shows
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that the update stage of the Kalman filter reduces the error covariance while it is

increased in the prediction stage [69]. This means that more measurements make the

estimation better. With the Kalman gain defined as K = P−HT
(

HP−HT + R
)−1

,

the Kalman filter update equations can be presented in familiar form

x̂+
k = x̂−k + Kk

(

yk −Hkx̂
−
k

)

P+
k = P−k −KkHkP

−
k

Kk = P−kHTk

(

HkP
−
kHTk + Rk

)−1

(2.46)

The predictor-corrector structure of the Bayesian estimation in the Kalman filter is

illustrated by Fig. 2.1.

Figure 2.1: Flow Chart of the Kalman Filter

2.3 Nonlinear Filters

As shown in previous section, there exists an exact optimal solution for the linear

filtering problem. However, most problems encountered in engineering are nonlinear

(in system dynamics and/or measurement). So various techniques has been developed
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for the nonlinear filtering problems, and some of them will be reviewed in this section.

2.3.1 Nonlinear Least Square Filter

The continuous form of the nonlinear stochastic equation for the system and the

discrete form of the measurement equation are

ẋt = f(xt, t) + wt (2.47)

yk = hk(xk) + vk (2.48)

where the system noise wt is a white Gaussian process wt ∼ N(0.Qt), and measure-

ment noise vk are a white Gaussian sequence, vk ∼ N(0.Rk). and they are assumed

to be independent each other. The description of the time function is simplified for

convenience, for example, xk , x (tk).

The nonlinear least square method is originally developed by Gaussian to deter-

mine planetary orbits [26]. The goal of this method is to find the estimation x̂ that

minimizes the sum square of the residual errors.

J =
1

2
eWeT (2.49)

where e = y− h(x). The measurement function hk(xk) can be linearized about the

estimation of the state x̂ by using the Taylor-series expansion as

h(xk) = h(x̂k) +
∂h

∂x

∣

∣

∣

∣

∣

∣

x=x̂

(xk − x̂k) + H.O.T (2.50)

The current estimates of the state x are assumed to be

xc = [x1c x2c · · ·xnc] (2.51)
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xc and the estimates x̂k are assumed to be related by the unknown set of corrections

∆x as

x̂k = xc + ∆x (2.52)

If the components of the corrections ∆x are sufficiently small, it may be possible

to solve for an approximation to the corrections and update xc with an improved

estimate of x̂k using the above equation. With this assumption, the function h(x̂k, k)

can be linearized about xc using a first-order Taylor series expansion as

h(x̂k) ≈ h(xc) +
∂h

∂x

∣

∣

∣

∣

∣

∣

x=xc

∆x (2.53)

The measurement residual after the correction can be linearly approximated as

∆y = yk − x̂k ≈ yk − hxc −H∆x = ∆yc −H∆x (2.54)

where H =
∂h

∂x

∣

∣

∣

∣

∣

∣

xc

, and ∆x = x̂k−xc. The approximation of the minimized weighted

sum square J , given by Eq. (2.49) can be defined with ∆yc as

Jp =
1

2
(∆yc −H∆x)T W (∆yc −H∆x) (2.55)

This is called the minimum sum of squares of the linearly predicted residuals, and

minimizing Jp is equivalent to minimizing J , which is the original goal. If the process

is convergent, ∆x calculated by minimizing Jp should decrease until the linearization,

given by Eq. (2.53) becomes a very good approximation of h(x̂k) The minimization

of Jp is basically same as solving the weighted least square problem. Therefore, it

should satisfy the following conditions from the weighted least square problem

▽∆xJp =
∂Jp
∂∆x

= HTWH∆x−HTW∆yc = 0 (2.56)
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▽2
∆xJp = HTWH > 0 (2.57)

Eq. (2.56) and Eq. (2.57) are the necessary and the sufficient condition, respectively.

From the necessary condition in Eq. (2.56), the correction ∆x is obtained as

∆x =
(

HTWH
)−1

HTW∆yc (2.58)

An initial guess of the current estimates xc has to be made to begin the algorithm, and

this process must be iterated until the very good approximation of h(x̂k) is reached,

i.e., ∆x becomes near zero. A stopping condition can be made using the cost function

J as

δJ =
|Ji − Ji−1|
Ji

<
ε

‖W‖ (2.59)

where i is the iteration number and ε is a small number selected by user. The

procedure will be iterated until the condition is met. However, it may have difficulty

to converge when the H matrix has rank deficiency.

2.3.2 Extended Kalman Filter

The extended Kalman filter (EKF) delivers the minimum variance estimate of the

state based on statistical information of the dynamic model and measurements. It

employs the Kalman filter algorithm by linearizing nonlinear system dynamic models

and/or nonlinear measurement models about the most recent estimate [27, 59]. The

equations for the system (Eq. (2.47)) and the measurement (Eq. (2.48)) presented in

previous section are also used here.

The EKF is based on the Taylor series expansion of the nonlinear systems and/or

measurement equations about the current estimated value x̂k. Thus, the prediction

of the state estimation and covariance are done by [27]

x̂−k = f(x̂+
k−1) (2.60)
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Ṗt = Φk−1PtΦ
T
k−1 + Qt (2.61)

where Φk ≈ ∂f(xt)/∂x|xt=x̂+

k−1

is the Jacobian matrix of the nonlinear system model

f(·) evaluated around the current state. The update equations for the state and the

covariance are

x̂+
k = x̂−k + Kk

[

yk − hk(x̂
−
k )
]

(2.62)

P+
k = [I−KkHk]P

−
k (2.63)

where Hk ≈ ∂hk/∂x
∣

∣

x=x̂−
k

is the Jacobian matrix of the nonlinear measurement model

hk(·) evaluated about the predicted state x = x̂−k , and the Kalman gain is found by

Kk = P−kHTk [HkP
−
kHTk + Rk]

−1 (2.64)

If a large uncertainty is involved in the estimation the above error covariance update

equation can lead to filter instability due to the inversion of the error covariance on

the right side of Eq. (2.63). This can be avoided using the Joseph form of the error

covariance update equation [13]

P+
k = [I−KkHk]P

−
k [I−KkHk]

T + KkRkK
T
k (2.65)

The EKF assumes the state distribution as Gaussian, and the state has gone through

the first-order linearization of the nonlinear functions. These have been pointed out

as the sources of the large errors in the true mean and covariance [5, 32, 35, 40]. In

the next section, a new approach for approximating the mean and covariance without

the first-order linearization of nonlinear functions will be discussed.
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Figure 2.2: Flow Chart of the Extended Kalman Filter

2.3.3 Unscented Kalman Filter

The most popular estimator for nonlinear system is probably the extended Kalman

filter [33]. The Extended Kalman filter employs the Kalman filter algorithm by lin-

earizing the nonlinear system dynamic and/or measurement models, which makes the

concept of the EKF straightforward but causes the following drawbacks [40, 43].

• When the system and/or observation models are highly non-linear, the extended

Kalman filter can give a poor performance as a consequence of the linearization.

• The derivation of the Jacobian is not a trivial task in many applications.

• Numerical evaluation of the Jacobian can be computationally intensive.

In the UKF, the nonlinear transformation of a random variable is done through the

unscented transformation (UT). The result is the filter that can capture the true

mean and covariance more accurately. In addition, this technique removes the need

to calculate Jacobian, which can be a difficult task for complex functions.

The unscented transformation is a method for calculating the statistics of a ran-

dom variable, which undergoes a nonlinear transformation. It is built on the idea
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that it is easier to approximate a probability distribution than an arbitrary nonlinear

function [42, 43]. The UT utilizes a set of points called sigma points to represent the

mean and the covariance accurately up to the second order of the Taylor series ex-

pansion for an arbitrary nonlinear function [41]. Although this method seems similar

to Monte Carlo-type methods, there is a big difference in the basic principle. Unlike

Monte Carlo-type methods the UT selects the samples, i.e., sigma points, based on

mean and covariance by a specific deterministic algorithm.[40]. There are several

different kinds of UT techniques available, depending on how the sigma points are

chosen and how many of them are used [32, 39]. In this section the scaled unscented

transformation (SUT) [42] and the UKF based on the SUT will be presented [35, 42].

A comparison between the UT and the linearization approach is shown in Fig. 2.3.

The upper figure shows the mean and covariance obtained from the UT, whereas the

lower figure shows the results from a linearization approach.

Scaled Unscented Transformation

Considering the propagation of a random variable x with a mean value of x̄ and a

covariance matrix of Pxx through a nonlinear function y = f(x). To calculate the

statistics of y, a new matrix X that consists of (2n+ 1) weighted sigma vectors Xi is

formed according to the following

X0 = x̄

Xi = x̄ +
(

√

(n + λ) Pxx

)

i
i = 1, . . . , n

Xi = x̄−
(

√

(n+ λ) Pxx

)

i−n
i = n+ 1, . . . , 2n

(2.66)

These sigma points are propagated through the nonlinear function

Yi = f(Xi) i = 0, . . . , 2n (2.67)

24



The estimated mean and covariance of y are approximated using a weighted sample

mean and covariance of the posterior sigma points, respectively as

ȳ ≈
2n
∑

i=0

Wmi Yi (2.68)

Pyy ≈
2n
∑

i=0

W ci (Yi − ȳ)(Yi − ȳ)T (2.69)

The associated scalar weights Wmi and W ci are calculated as

Wm0 =
λ

n+ λ

W c0 =
λ

n+ λ
+
(

1− α2 + β
)

Wmi =W ci =
1

2 (n+ λ)
i = 1, 2 · · ·2n

(2.70)

where λ = α2(n+ κ)− n is a scaling parameter. The constant α control the distance

between the sigma points and the mean x̄, which is well illustrated in Refs. [32, 42],

and is usually chosen to be a small positive number (e.g. 1 ≤ α ≤ 10−4). The

constant κ is another scaling parameter that provides an extra degree of freedom to

fine tune the higher order moments of the approximation, and κ = 3 − n is usually

used [35]. When κ = 0, the first sigma point X0 is effectively excluded [32]. β is the

third parameter that incorporates further higher order effects by adding the weight

on the zeroth sigma point of the calculation of the covariance, and β = 2 is optimal

for Gaussian distributions [35, 42].

Unscented Kalman Filter

The UKF is a straightforward extension of the UT to the recursive estimation. The

UKF is derived for discrete-time nonlinear equations presented as

xk+1 = f(xk,wk, k) (2.71)
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Figure 2.3: Illustration of the Unscented Transformation

yk = h(xk,vk, k) (2.72)

where xk ∈ R
n×1 is the state vector and yk ∈ R

m×1 is the measurement vector at time

k. wk ∈ R
q×1 is a process noise vector and vk ∈ R

r×1 is the additive measurement

noise vector, and they are assumed to be N(0,Qk) and N(0,Rk), respectively. The

original state vector is redefined as an augmented state vector along with process noise

variables as xak =
[

xTk vTk wTk

]T
. An augmented covariance matrix is constructed as

Pak =

















Pk Pxwk Pxvk

(Pxwk )T Qk Pwvk

(Pxvk )T (Pwvk )T Rk

















(2.73)

where Pxwk and Pxvk are the correlation between the error in the state estimation and

the process noise and the error between the state estimation and the measurement

noise, and Pwvk is the correlation between the process noise and the measurement

noise, which are all zero for most systems. The sigma points of the augmented state
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vector can be found by Eq. (2.66), and the number of sigma points for the augmented

state vector is 2(n+m+ q) + 1 , L+ 1. The state propagation, the predicted state

vector and its predicted covariance can be obtained by applying the scaled unscented

transformations and following the EKF algorithm as

X ai,k+1 = f(X ai,k, k) (2.74)

x̂−k+1 =
2L
∑

i=0

Wmi X ai,k+1 (2.75)

P−k+1 =
2L
∑

i=0

W ci
(

X ai,k+1 − x̂−k+1

) (

X ai,k+1 − x̂−k+1

)T
(2.76)

The predicted measurement and its predicted covariance are also calculated as

Yi,k+1 = h(X ai,k+1, k + 1) (2.77)

ŷ−k+1 =
2L
∑

i=0

Wmi Yi,k+1 (2.78)

P
yy
k+1 =

2L
∑

i=0

W ci
(

Yi,k+1 − ŷ−k+1

) (

Yi,k+1 − ŷ−k+1

)T
(2.79)

The Kalman gain is Kk+1 = P
xy
k+1P

yy
k+1 where the cross covariance can be determined

by

P
xy
k+1 =

2L
∑

i=0

W ci
(

X ai,k+1 − x̂−k+1

) (

Yi,k+1 − ŷ−k+1

)T
(2.80)

Finally, the estimation of the state and the error covariance are given as

x̂+
k+1 = x̂−k+1 +Kk+1(yk+1 − ŷk+1) (2.81)

P+
k = P−k −Kk+1P

yy
k+1K

T
k+1 (2.82)

No explicit calculation of the Jacobian and/or Hessian matrix is needed to implement

this algorithm, and the formulation is ideally suited for parallel computation since
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the propagations can be performed in parallel. Note that the process model and

the measurement model is in a more general form than those in previous section.

In many cases, the process and the measurement noise are purely additive. With

purely additive noise the computational complexity of the UKF can be reduced by

not augmenting the state vector and the error covariance with the noise and a set

of equations without augmentation is presented in Ref. [35], which is claimed to

produce the same result as the augmented equations presented in this section. The

comparison study of the augmented and the non-augmented approach has been done

and found that it is necessary to meet certain condition, i.e. κ = 3− n, for these two

approaches to become equivalent [74].

Figure 2.4: Flow Chart of the Unscented Kalman Filter
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2.3.4 Particle Filter

The basic idea of Sequential Monte Carlo (SMC) in the form of important sampling

was introduced in statistics in the 1950s [34], but was mostly overlooked and ignored

due to the lack of computer power and the degeneration of the particle over time.

The major breakthrough of the SMC method was the development of the resam-

pling technique that solved the degeneration problem [31]. Since then, the interest in

this method has dramatically increased [22] generating many improvements of par-

ticle filters. SMC techniques achieve the filtering based on a set of weighted point

mass (or “particle”) of the state variables. The particles and their corresponding

weights are combined to represent the posterior PDF. After a certain number of re-

cursive steps most of the weights of particles will become negligible, i.e., close to zero.

This is the degeneracy phenomenon. To prevent this phenomenon, the particle with

smaller weights will be removed and those with larger weights multiplied based on

some kind of evolution process. Therefore, the implementation of the particle filter

consists of three important steps; 1) generation of particles, 2) computation of the

particle weights, and 3) resampling. The theory of particle filtering is presented in a

brief manner without proofs. More details and an investigation of particle filters are

available in Ref. [65].

Sequential Important Sampling

Consider the nonlinear state space model

xk+1 = f(xk,wk) (2.83)

yk = hk(xk) + vk (2.84)
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where xk ∈ R
n×1 is the state vector and yk ∈ R

m×1 is the measurement vector at time

k. wk ∈ R
q×1 is a process noise vector and vk ∈ R

r×1 is the additive measurement

noise vector, and they are assumed to be N(0,Qk) and N(0,Rk), respectively. If

the system is Markovian, which means p(xi|xi−1) = p(xi|xi−1, · · · ,x0), then the state

PDF and the measurement PDF can be expressed as

p(Xk) = p(x0)
k
∏

i=1

p(xi|xi−1) (2.85)

and

p(Yk|Xk) =
k
∏

i=0

p(yi|xi) (2.86)

where Xk = [x0,x1, . . . ,xk] and Yk = [y0,y1, . . . ,yk]. The posterior PDF in terms

of p(Xk|Xk,Yk−1), p(yk|xk), and p(xk|xk−1) can be expressed in form of a recursive

equation.

p(Xk|Yk) =
p(yk|Xk,Yk−1)p(Xk|Yk−1)

p(yk|Yk−1)

=
p(yk|Xk,Yk−1)p(xk|Xk−1,Yk−1)p(Xk|Yk−1)

p(yk|Yk−1)

=
p(yk|xk)p(xk|xk−1)

p(yk|Yk−1)
p(Xk−1|Yk−1)

∝ p(yk|xk)p(xk|xk−1)p(Xk−1|Yk−1)

(2.87)

The posterior PDF p(xk|Yk) from above equation can be approximated using a large

number of samples, i.e., particles.

p̂(Xk|Yk) =
1

N

N
∑

i=1

δ
(

Xk −Xik

)

(2.88)

where {Xik}Ni=1 is the samples selected form the posterior, and δ(Xk) is the Dirac

delta function. Since the samples are collected from the posterior itself, the weights

are equal, and their sum is one. However, the samples cannot be drawn from the
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posterior since it is unknown for most cases. Instead, the samples are drawn from a

known PDF q(Xk|Yk) called importance density, and the weights can be presented

in the following relation

wik ∝
p(Xik|Yk)
q(Xik|Yk)

=
p(yk|x1

k)p(x
i
k|xik−1)p(X

i
k−1|Yk−1)

q(xik|Xik−1,Yk)q(X
i
k−1|Yk−1)

(2.89)

and

wik = wik−1

p(yk|x1
k)p(x

i
k|xik−1)

q(xik|Xik−1,Yk)
(2.90)

where q(xik|Xik−1,Yk)q(X
i
k−1|Yk−1) is from the factorization of q(Xik|Yk) If the im-

portance density is chosen such that q(xik|Xik−1,Yk) = q(xik|xik−1,Yk), the weight

becomes

wik = wik−1

p(yk|x1
k)p(x

i
k|xik−1)

q(xik|xik−1,Yk)
(2.91)

and

p̂(xk|Yk) =
N
∑

i=1

wikδ
(

xk − xik

)

(2.92)

The estimation of x and the covariance can be obtained by the following integral

x̂+
k =

∫

xkp̂(xk|Yk)dxk =
∫

xk

N
∑

i=1

wikδdxk

=
N
∑

i=1

wikx
i
k

(2.93)

and

P+
k =

∫

(

xk − x̂+
k

) (

xk − x̂+
k

)T
p̂(xk|Yk)dxk

=
N
∑

i=1

wik
(

xik − x̂+
k

) (

xik − x̂+
k

)T
(2.94)
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2.3.5 Resampling

The sample are drawn from the importance density function though it is ideal that the

samples are collected from the posterior PDF it self. It has been shown [21] that the

variance of the importance weights can only increase over time with the importance

density function. The variance increase has a damaging effect on the accuracy of the

filter and leads to the problem known as the degeneracy phenomena. This means

that after a certain number of recursive processes, most of the particles will have very

small weights, and it is not avoidable. This was the major hurdle in the development

of the particle filter. The effective sample size Neff as a measure of degeneracy of an

algorithm was introduced [47] as

N̂eff =
1

N
∑

i=1

(wik)
2

(2.95)

If all weights are uniform, i.e., wik = 1
N

, the effective sample size will be N while

N̂eff = 1 if all but one particle have zero weights. This is an indicator of how well the

particles are concentrated in the area that contributes more to the approximation of

p̂(xk|Yk). A lower threshold can be set, so when the N̂eff falls below the threshold,

N new samples can be selected, i.e. resampling. Resampling removes the samples

with low weights and increases the number of samples with high weights by drawing

the new samples form the estimated posterior and the weight are set to be 1/N . After

resampling, the samples are not independent any more since part of samples are the

copies of the same sample. Therefore, the number of resamplings should be kept at

aminimum.
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2.3.6 Resampling Methods

The basic idea of resampling is to eliminate particles with small weights and to con-

centrate on particle with large weights. The simplest resampling method would be

a direct approach implementing the resampling that generates N independent and

identically distributed (i.i.d.) random variables from the uniform distribution, sorts

them in ascending order and compares them with the cumulative sum of normalized

weights [65]. First,calculate the thresholds using a cumulative sum of the normalized

weights in any order. Then, for each index i

1. Draw a uniform random number ui based on the uniform distribution.

2. Use a search algorithm (binary search) to locate the position of ui within the

thresholds

3. Set the resampled index according to the index of the location of ui

The idea of the random resampling algorithm is simple, but it is computationally inef-

ficient due to the fact that the best sorting algorithm has a complexity of O(NlogN).

An algorithm based on order statistics [14, 64] can be implemented with a complexity

of O(N). There other efficient (in terms of reducing variation) resampling methods

such as stratified sampling, residual sampling [54], systematic resampling [46], etc.

The detail description of the each method is omitted since the theory described in

this chapter is only to be considered as a brief description of how particle filters work
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CHAPTER 3

Nonlinear Filtering via Numerical Solution of Fokker-Planck

Equation

In this chapter, a direct numerical approximation to the optimal nonlinear filter

is investigated. The exact nonlinear filter for systems with continuous nonlinear

dynamics and discrete nonlinear measurements consists of two equations (Fig. 3.1)

[38]. A partial differential equation called the Fokker-Planck equation (FPE) [24, 62]

describes how the conditional density evolves between measurements, and Bayes’

formula describes how the conditional density is modified using measurements. In

Daum’s paper [19] where the characteristics of difference types of nonlinear filtering

were described, he points out that the state estimation of this type of algorithm can

be optimal if designed carefully.

Figure 3.1: Nonlinear Estimation via FPE
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3.1 Fokker-Planck Equation and Nonlinear Filtering

The Itô equation describes how the states and their probability densities of a dynamic

system evolve in time. For the state xt ∈ R
n×1, the Itô stochastic differential equation

is

dxt = f(xt, t)dt+ G(xt, t)dβt, t ≥ t0 (3.1)

where f(t) ∈ R
n×1 is a dynamic model, xt ∈ R

n×1 is the state vector, βt is an m-

vector Brownian motion process with E[βtβ
T
t ] = Q(t)dt, and G(t) ∈ R

n×m is a matrix

function. In the Itô equation, f models the deterministic part of the dynamics while

G represents the random part of the dynamics. The discrete nonlinear measurement

yk taken at discrete time instants tk is

yk = h(xtk , tk) + vk, k = 1, 2, ... and tk+1 > tk ≥ t0 (3.2)

where hk ∈ R
m×1 is a measurement model, yk ∈ R

m×1 is the measurement vector,

and vk is a white Gaussian noise with N(0, Rk).

Assuming apriori information p(x, t0|Yt0) = p(xt0) is given and Yt = [y0,y1, . . . ,yk]

is the set of measurements taken up to time tk, the solution of the filtering problem

p(x, t|Yt) can be determined by the following theorem by Jazwinski [38].

Theorem. Suppose the prior density p(x, t) for Eq. (3.1) exists and is once continu-

ously differentiable with respect to t and twice with respect to x. Let h be continuous

in both arguments and bounded for each tk wp 1. Then between measurements, i.e.,

tk ≤ t < tk+1, the conditional density p(x, t|Yt) satisfies Fokker-Planck/Kolmogorov’s

forward equation.

When a measurement is made at tk, the conditional density satisfies the difference

equation

p(x, tk|Ytk) =
p(x, tk|Ytk−1

)p(yk|x)
∫

p(ξ|Ytk−1
)p(yt|ξ)dξ

(3.3)
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where p(yk|x) is given by

p(yk|x) =
1

(2π)m/2|Rk|1/2
e

{

− 1

2 [yk−h(x,tk)]TR−1

k [yk−h(x,tk)]
}

(3.4)

Prediction p(x, tk|Ytk−1
) is accomplished via Fokker-Planck/Kolmogorov’s forward equa-

tion.

Once p(x, tk|Ytk) is obtained, the optimal estimate in the sense of minimum mean

square error (MMSE) can be obtained by the conditional expectation of xk given Yk

x̂k = E[x|Yk] =
∫

xp(x, tk|Ytk)dx (3.5)

The Fokker-Planck equation (FPE), which is also known as the Kolmogorov for-

ward equation, is first used by Fokker [24] and Planck [24] to explain the Brownian

motion of particles. The equation can explain the behavior of a dynamic system that

depicts the characteristic of the Brownian motion. Stochastic systems can be modeled

as an n-dimensional Itô stochastic differential equation (SDE), given by Eq. (3.1). If

the process described by the SDE is a Markovian process, the probability density

function characterizing this process is governed by the Fokker-Planck equation.

∂p

∂t
= −

n
∑

i=1

∂ [pfi]

∂xi
+

1

2

n
∑

i=1

n
∑

j=1

∂2

[

p
(

GQGT
)

ij

]

∂xi∂xj
(3.6)

where p is the conditional probability density function p
(

x, t|Yk
)

. The FPE is a

partial differential equation describing the time evolution of the probability density

function of the Markov process governed by the Itô SDE. The equation is often called

the equation of the motion of the probability density. The first term on the right

side of the FPE is called the drift term, responsible for the evolution of the state of

the system. The second term is the diffusion, responsible for the statistical evolution

of the system. The equation becomes the equation of deterministic process if the
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diffusion term is neglected.

For the filter based on the solution of the FPE to work properly, solving the FPE

quickly and accurately is very crucial. The analytical solution of FPE is difficult

to be obtained with a few exceptions. Therefore the evaluation of FPE between

measurements usually has to be done numerically. This has prevented the utilization

of the nonlinear filtering based on the solution of FPE until recent years. Due to

the complexity in finding analytical solutions and the usefulness of FPE in modern

physics, quite a few numerical schemes have been developed [10, 25] such as the

finite difference method [23], path-integral method[1], cell-mapping method [63], the

method based on distributed approximating functional [81], and the finite element

method [50, 51]

3.2 Filter Based on the Finite Difference Methods

3.2.1 Explicit Forward Method

Since it is difficult to solve Eq. (3.6) analytically, use of a numerical method is mostly

unavoidable as mentioned earlier. First, both the MacCormack method [4] and a

simple explicit finite difference method with central differencing in space were tried.

Then, it was determined to use the explicit finite difference method for its speed and

simplicity.

∂p (x, t)

∂t

∣

∣

∣

∣

∣

t=ti

=
p (x, ti)− p (x, ti−1)

∆t

∂p (x, t)

∂X

∣

∣

∣

∣

∣

t=ti−1

=
p
(

xj+1, ti−1

)

− p
(

xj−1, ti−1

)

2∆x

∂2p (x, t)

∂X2

∣

∣

∣

∣

∣

t=ti−1

=
p
(

xj+1, ti−1

)

− 2p
(

xj , ti−1

)

+ p
(

Xj−1, ti−1

)

∆x2

(3.7)
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where ∆t = ti − ti−1, i = 1, 2 . . . and ∆x = xj − xj−1, j = 1, 2 . . . is grid spacing

When the central differencing is applied to Eq. (3.6), it can be seen that spacial

oscillations are generated at both the leading and trailing edges of the PDF. It turns

out that all central differencing schemes for solving the advective equation suffer from

a similar problem as shown in Fig. 3.2(a) To suppress the oscillations as shown in

Fig. 3.2(b), upwind differencing scheme [4, 70] was employed for all of the first order

spatial derivative terms as

∂p (X, t)

∂X

∣

∣

∣

∣

∣

t=ti−1

= a



























p
(

xj+1, ti−1

)

− p
(

xj , ti−1

)

∆x
, a ≥ 0

p
(

xj , ti−1

)

− p
(

xj−1, ti−1

)

∆x
, a < 0

(3.8)

The accuracies of the central differencing method are O
(

∆x2,∆y2,∆z2
)

, and the

(a) Central differencing scheme (b) Upwind differencing schems

Figure 3.2: Central differencing vs. Upwind differencing

accuracies of the upwind differencing and the explicit forward differencing in time

are O (∆x,∆y,∆z) and O (∆t) respectively. So the overall accuracy of the numerical

approximation is O (∆x,∆y,∆z,∆t). For this explicit finite difference scheme to be
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stable, it was found that the following inequality must be satisfied [4].

0 < ∆t

(

1

∆x2
1

+
1

∆x2
2

· · ·
)

<
1

2
(3.9)

where ∆x1,∆x2, . . . are the grid size in different directions. The boundary conditions

are assumed to satisfy the homogeneous Dirichlet conditions [15] that the boundary

values are kept at zero since a PDF decays exponentially and the domain is large

enough that the probability density at the boundary is close to zero.

Because of the stability condition presented above, the time step has to be very

small for the problem that requires very small grid spacing. This can cause a signifi-

cant rise in the computational cost for even low dimensional problems, and calls for

the implicit method that is unconditionally stable.

3.2.2 Alternating Direction Implicit Method

In explicit methods the unknown states at a later time can be found based on the

known current states as shown by Eq. (3.7). For implicit methods, the states of a

system at a later time are defined by a set of coupled equations. So, either a matrix

inversion or iterative technique is required to obtain the states of a system. The main

advantage of implicit methods is that it allows a larger time step, which in turns can

lead to a faster without compromising accuracy [80]. The matrix inversion involved

in the implicit method is computationally intensive because it is involved with the

banded matrix that requires substantial amount of computer time. The alternating

directional implicit (ADI) method is an implicit method for parabolic and elliptic

partial differential equations. The major advantage of the ADI method compared with

other implicit methods is that since it involves only tri-diagonal systems, the matrix

inversion can be achieved efficiently using Thomas’ algorithm [70]. For many dynamic
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problems the associated Fokker-Planck equation can be written in the following form

∂p

∂t
=
M
∑

n=1

[

an
∂p

∂αn
+ bn

∂p

∂α̇n
+
Qn
2

∂2p

∂α̇2
n

]

, n = 1, 2, . . . , N/2 (3.10)

where an and bn could be constants and/or polynomial of α and/or α̇, N is the size

of the state vector. The operators in the ADI method are:

Ai = ai
∂

∂αi
, i = 1, 2, . . . , N/2 (3.11)

and

Aj = bj
∂

∂α̇j
+
Qj
2

∂2

∂α̇2
j

, j = i = 1, 2, . . . , N/2 (3.12)

With these operators, equation (3.10) can be rewritten as

∂p

∂t
=
N
∑

k=1

Akp (3.13)

where the index for the operators is k = 1, . . . , N . After discretizing Eq. (3.13) in

time but not in space using the implicit Euler scheme the equation becomes as

pt+1 − pt
∆t

=
N
∑

k=1

Akp
t+1 (3.14)

Rearranging the terms in Eq. (3.14) leads to



I−∆t
N
∑

k=1

Ak



 pt+1 = pt (3.15)

By inverting



I−∆t
N
∑

k=1

Ak



, pt+1 can be obtained, but the direct inversion of



I−∆t
N
∑

k=1

Ak



 can be computationally expensive. This inversion process can be
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simplified by using the following identity [70]

N
∏

k=1

(I±∆tAk) ∼= I±∆t
N
∑

k=1

Ak + ∆t2
∑

k<l

AkAl (3.16)

By neglecting the high order term, ∆t2
∑

k<l
AkAl, Eq. (3.15) can be written as

N
∏

k=1

(I−∆tAk) p
t+1 = pt or pt+1 =

N
∏

k=1

(I−∆tAk)
−1 pt (3.17)

So, the ADI scheme for a general N-order system is

pt+
k
N = (I−∆tAk)

−1 pt+
k−1

N k = 1 . . .N (3.18)

The discretization in space is done with an up-wind differencing for the first order

spatial derivatives and the central differencing scheme for the second order terms

Akp
t+ k−1

N = ai
∂pt+

k−1

N

∂αi
=
ai

∆αi























(

p
t+
k−1

N

i+1 − pt+
k−1

N

i

)

ai ≥ 0
(

p
t+
k−1

N

i − pt+
k−1

N

i−1

)

ai < 0
(3.19)

Akp
t+ k−1

N = ai
∂pt+

k−1

N

∂αi
=
ai

∆αi























(

p
t+
k−1

N

i+1 − pt+
k−1

N

i

)

ai ≥ 0
(

p
t+
k−1

N

i − pt+
k−1

N

i−1

)

ai < 0
(3.20)

After discretizing in space (I−∆tAk) becomes a tridiagonal matrix and can be in-

verted very quickly using Thomas’ algorithm [70]. The operators in the form of
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Eq. (3.19) with boundary conditions of pi1 and pimax can be rewritten as when ai ≥ 0
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(3.21)

where M = 1 + ai
∆t

∆αi
and N = −ai

∆t

∆αi
.

When ai < 0
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(3.22)

where L = ai
∆t

∆αi
and M = 1− ai

∆t

∆αi
. When ai ≥ 0 and ai < 0 the operators in

the form of Eq. (3.20) with boundary conditions of pj1 and pjmax can be rewritten as

42



Eq. (3.23) and Eq. (3.24) accordingly
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where L =
Qj∆t

2∆α̇2
j

, M = 1 + bj
∆t

∆α̇j
+
Qj∆t
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(3.24)

where L = bj
∆t

∆α̇j
− Qj∆t

∆α̇2
j

, M = 1− bj
∆t

∆α̇j
+
Qj∆t

∆α̇2
j

and N =
Qj∆t

2∆α̇2
j

. As mentioned

before, all the matrix inversions in Eq. (3.21) through Eq. (3.24) involve only tri-

diagonal matrices.

3.2.3 Moving Domain

Solving the FPE numerically could be computationally prohibitive even for a low

dimension system due to the fact that a PDF is a function defined over an infinite

domain even with the fast numerical method such as the ADI. A large domain is

used to make sure that the majority of the PDF is covered throughout numerical
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propagation [15]. However, this approach will cause the numerical solver to spend

substantial time in the part of domain that carries not much useful information to

the solution of the FPE. Consequently, it is essential to truncate the size of the

domain properly without sacrificing the accuracy. The size of the truncated domain

should be large enough to contain the entire PDF and sufficiently small so that the

computational effort would not be wasted on the part of the domain that dose not

contribute much [15] as illustrated as in the Fig. 3.3. As the PDF evolves along with

Figure 3.3: The Size of the Domain is too Big

the system dynamics, the optimal domain for the current time can lose its optimality

as PDF evolves to the next time step. The figure 3.4 provides the illustration of

this problem. In the figure, the domain is optimal for the PDF at t0 but it clearly

loses its optimality at tn as most of its right side of the PDF drifted to the outside

of the domain. Challa and Bar-Shalom [15] developed a moving domain scheme

that adaptively calculates the size and the location of the domain in a recursive

manner using Chebyshev’s inequality combined with the moment evolution equation

[15]. This method predicts the future domain at each measurement update. The

union of the current domain and the predicted domain becomes the domain for the

next propagation. The advantage of Challa’s method comes from the Chebyshev’s

inequality theory which allows the size of the domain to be adaptively truncated

at each measurement update. In Musick’s work [48, 49], after each measurement
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Figure 3.4: The drift of the PDF from time t0 to tntime

the domain with a fixed size is adjusted based on the estimation so that the PDF

is located at the near center of the domain [48, 49]. However if the size of the

PDF becomes much smaller than it is at the beginning, the computational effort will

be wasted on the part of domain with little contribution as shown in the Fig. 3.3.

The common aspect of both methods is that they do not adjust the domain during

the evaluation of the FPE. The adjustment happens only after each measurement

update. If the domain can be adjusted continuously during the numerical evaluation

of the FPE based on the movement of the PDF, the size of the domain can be even

smaller. This method of continuously adjusting the domain is developed and used

here to reduce the computational load. Figure 3.5 illustrates the basic idea of the

domain adjustment scheme used in this dissertation. Note that the domain size in

the Fig. 3.5(b) is smaller than the domain used in other methods as shown in the

Fig. 3.5(a). In Fig. 3.5(a), the domain has to cover the whole possible PDF range

between measurement updates, whereas in the Fig. 3.5(b), the domain only needs to

cover the possible PDF range between each time step instead of the measurement

update. Tracking the movement of the PDF is achieved by taking advantage of the

fact that the PDF studied here is not a multimodal distribution. Since the state

PDF has only one peak, the movement of the PDF was followed by comparing the
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(a) The drift of the PDF from the center of the domain in ∆t and the domain
needs to cover the whole range between the measurement updates

(b) The drift of the PDF from the center of the domain in ∆t and the domain
is adjusted during the FPE propagation between measurement updates. The
necessary domain size is smaller than one in Fig.3.5(a)

Figure 3.5: Drift of PDF

location of the peak of the PDF and the center of the domain as it is in Fig. 3.5(a).

In Fig. 3.5, ∆t is the time step size for the FPE propagation. If the distance between

the center of the domain and the peak of the PDF is larger than a pre-defined value,

during the numerical evaluation along the time, the domain is adjusted such that the

peak of the PDF is located at the desired location on the domain, i.e., the center of

the domain (Fig.3.5(b)). As compared with the methods in Challa and Bar-Shalom

[15] and Musick et al. [48, 49], since the domain can be adjusted during the FPE

propagation, the domain size is much smaller than the case where the adjustment is
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only taken after each measurement update. To illustrate the effect of the proposed

moving domain scheme, let’s suppose the domain, in each step of the propagation

between two measurements, needs to have 10 grids in each direction to adequately

accommodate the PDF. Then, the total numbers of evaluations needed for 2, 4 and

6 dimensional system are 102, 104 and 106 iterations correspondingly. Suppose the

domain in each step is only decreased by 10% (or by one grid) through translating

the domain during the evaluation of the FPE, the total numbers of iterations needed

for 2, 4 and 6 dimensional system are 81, 6561 and 531441 iterations, which are 19%,

34% and 47% less than the original domain.

3.2.4 Measurement Update for Finite Difference Filter

If the measurements are conditioned only on the state of the system, Bayes’ formula

is used to update the conditional probability density function p(x, tk|Yk−1) which is

the solution of the FPE to obtain p(x, tk|Yk).

p(x, tk|Ytk) =
p(x, tk|Ytk−1

)p(yk|x)
∫

p(ξ|Ytk−1
)p(yt|ξ)dξ

(3.25)

Equations (3.6) and (3.25) represent the predictor and corrector equations for the

exact optimal nonlinear filtering. The PDF p(yk|x) is defined by the characteristics

of the sensor and is usually assumed to have a Gaussian distribution as

p(yk|x) =
1

(2π)m/2|R|1/2 e
{− 1

2
[yk−h(xk)]TR−1[yk−h(xk)]} (3.26)

Now the estimation of the each state can be made by calculating the following integral

x̂i (t) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
xip

(

x, tk|Yk
)

n
∏

j=1

dxi i = 1, 2, . . . , n (3.27)
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This produces the optimal estimate in the sense of MMSE that minimizes the mean

square error given by

Ji =
1

2
E[(x̂i − xi)2] i = 1, 2, . . . , n (3.28)

3.3 Filter based on the Direct Quadrature Method Of Mo-

ments

3.3.1 Direct Quadrature Moments Of Method

The DQMOM method, originally investigated by Marchisio and Fox for the popu-

lation balance problem [57] and further developed for solution of the Fokker-Planck

equation [6, 7], is illustrated in terms of nonlinear filtering [75]. First, let us define the

state conditional PDF as a summation of a multi-dimensional Dirac delta function

p(xt|Yk) =
N
∑

α=1

wα
Ns
∏

j=1

δ[xj − 〈xj〉α] (3.29)

where wα, α = 1, ..., N is the corresponding weight for node α, and 〈xj〉α, j = 1, ..., Ns

is the property vector of node α called “abscissas” N and Ns are the number of nodes

used in the PDF representation and the size of the state vector. In this representation,

there are total N(Ns + 1) unknown variables which will be solved through moment

constraints. The weights and abscissas will be computed by substituting Eq. (3.29)

into Eq. (3.6), then the left hand side (LHS) of Eq. (3.6) becomes

∂p

∂t
=
∂

∂t
{
N
∑

α=1

wα
Ns
∏

j=1

δ[xj − 〈xj〉α]}

=
N
∑

α=1











∂wα
∂t











Ns
∏

j=1

δ[xj − 〈xj〉α]−
N
∑

α=1

wα
Ns
∑

j=1

Ns
∏

k=1,k 6=j

δ[xj − 〈xj〉α]
∂δjα
∂〈xj〉α

∂〈xj〉α
∂t

=
N
∑

α=1

Ns
∏

j=1

δjα











∂wα
∂t











−
N
∑

α=1

Ns
∑

j=1

Ns
∏

k=1,k 6=j

wαδkαδ
′

jα

∂〈xj〉α
∂t

(3.30)
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where δjα = δ[xj − 〈xj〉α] and δ
′

jα = ∂δjα/∂〈xj〉α. If the weighted abscissas ζjα =

wα〈xj〉α is introduced, after some manipulations, Eq. (3.30) can be rewritten as

∂p

∂t
=
N
∑

α





Ns
∏

j=1

δjα











∂wα
∂t











+
N
∑

j=1

Ns
∏

k=1,k 6=j

〈xj〉αδkαδ
′

jα

∂wα
∂t



−
N
∑

α=1

Ns
∑

j=1

Ns
∏

k=1,k 6=j

δkαδ
′

jα

∂ζjα
∂t

(3.31)

Notice that wα, ζjα, and δjα are functions of only time, thus

dp

dt
=
N
∑

α





Ns
∏

j=1

δjα











dwα
dt











+
N
∑

j=1

Ns
∏

k=1,k 6=j

〈xj〉αδkαδ
′

jα

dwα
dt



−
N
∑

α=1

Ns
∑

j=1

Ns
∏

k=1,k 6=j

δkαδ
′

jα

dζjα
dt

(3.32)

Let us define

dwα/dt = aα, α = 1, . . . , N and dζjα/dt = bjα, j = 1, . . . , Ns;α = 1, . . . , N (3.33)

Eq. (3.32) can be further simplified as

dp

dt
=
N
∑

α





Ns
∏

j=1

δjα +
N
∑

j=1

Ns
∏

k=1,k 6=j

〈xj〉αδkαδ
′

jα



 aα −
N
∑

α=1





Ns
∑

j=1

Ns
∏

k=1,k 6=j

δkαδ
′

jα



 bjα (3.34)

Now let the right hand side(RHS) of the FPE (Eq. (3.6)) defined to be

Sx(x) =
n
∑

i=1

∂[pfi]

∂xi
+

1

2

n
∑

i=1

n
∑

j=1

∂2[p(GQGT)ij]

∂xi∂xj
(3.35)

The Eq. (3.35) can be written in terms of the multi-variable Dirac delta function as

Sx(x) =
N
∑

α=1

















Ns
∏

j=1

δjα

















aα +
N
∑

α=1

Ns
∑

j=1

Ns
∏

k=1,k 6=j

〈xj〉αδkαδ′jαaα −
N
∑

α=1





Ns
∑

j=1

Ns
∏

k=1,k¬j

δkαδ
′
jα



 bjα

(3.36)

There are total N(1 +Ns) parameters in Eq. (3.36) need to be found to construct the

conditional PDE p(xt|Yk): aα, α = 1, . . . , N and bjα, j = 1, . . . , Ns, α = 1, . . . , N .

In general, DQMOM method applies an independent set of moments that user wish
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to control to construct N(1 +Ns) a differential algebraic equations (DAEs).

Given the following three Dirac delta function properties

∫ +∞

−∞
xkδ(x− 〈x〉α)dx = 〈x〉kα (3.37)

∫ +∞

−∞
xkδ
′(x− 〈x〉α)dx = −k〈x〉k−1

α (3.38)

and
∫ +∞

−∞
xkδ
′′(x− 〈x〉α)dx = k(k − 1)〈x〉k−2

α (3.39)

The k1, k2, . . . , kNs moment of the Eq. (3.36) can be derived as followed

∫ +∞

−∞
· · ·

∫ +∞

−∞
xk1

1 · · ·xNsNs





N
∑

α

Ns
∏

j=1

δjαaα





Ns
∏

I=1

dxI

+
∫ +∞

−∞
· · ·

∫ +∞

−∞
xk1

1 · · ·xNsNs





N
∑

α

Ns
∑

j=1

Ns
∏

k=1k¬j

〈xj〉αδkαδ′jαaα




Ns
∏

I=1

dxI (3.40)

−
∫ +∞

−∞
· · ·

∫ +∞

−∞
xk1

1 · · ·xNsNs







N
∑

α





Ns
∑

j=1

Ns
∏

k=1k¬j

δkαδ
′
jα



 bjα







Ns
∏

I=1

dxI

=
∫ +∞

−∞
· · ·

∫ +∞

−∞
xk1

1 · · ·xNsNs
[

Sx(x)
]

Ns
∏

I=1

dxI

The first term in the LHS of Eq. (3.40)

∫ +∞

−∞
· · ·

∫ +∞

−∞
xk1

1 · · ·xNsNs





N
∑

α

Ns
∏

j=1

δjαaα





Ns
∏

I=1

dxI

=
N
∑

α=1

aα

∫ +∞

−∞
· · ·

∫ +∞

−∞
xk1

1 · · ·xNsNs(δ1αδ2α · · · δNsα)dx1 · · · dxNs (3.41)

=
N
∑

α=1





Ns
∏

j=1

〈xj〉


 aα

50



where as the second term in the LHS of Eq. (3.40) is derived to be

∫ +∞

−∞
· · ·

∫ +∞

−∞
xk1

1 · · ·xNsNs





N
∑

α

Ns
∑

j=1

Ns
∏

k=1k¬j

〈xj〉αδkαδ′jαaα




Ns
∏

I=1

dxI

=
N
∑

α=1

aα
Ns
∑

j=1

∫ +∞

−∞







Ns
∏

m=1,m6=j

xkmm

Ns
∏

k=1,k 6=j

δkα

[

∫ +∞

−∞
x
kj
j 〈xj〉αδ′jαdxj

]

Ns
∏

I=1,I 6=j

dxI







=
N
∑

α=1

aα
Ns
∑

j=1

[

(−kj)〈xj〉kjα
]

∫ +∞

−∞







Ns
∏

m=1,m6=j

xkmm

Ns
∏

k=1,k 6=j

δkα
Ns
∏

I=1,I 6=j

dxI







(3.42)

= −
N
∑

α=1

















Ns
∑

j=1

kj
Ns
∏

k=1

〈xk〉kkα

















aα

In the same way, the third term of the LHS of Eq. (3.40) can be written as

−
N
∑

α=1

Ns
∑

j=1

bjα

∫ +∞

−∞
xk1

1 · · ·x
kNs
Ns δ

′
jα

















Ns
∏

k=1,k 6=j

δkα

















dx1 . . . dxNs (3.43)

=
N
∑

α=1

Ns
∑

j=1

kj〈xj〉k−1
α

Ns
∏

k=1,k 6=j

〈xj〉kαbjα (3.44)

The k1, . . . , kNs moment of the RHS of Eq. (3.40) is derived to be

Sk1,...,kNs
=

∫ +∞

−∞
· · ·

∫ +∞

−∞
xk1

1 · · ·x
kNs
Ns

[

Sx(x)
]

dx1 . . . dxNs

= −
Ns
∑

i=1

∫ +∞

−∞
xk1

1 · · ·xNsNs
[

∂pfi
∂xi

]

dx1 . . . dxNs (3.45)

+
∫ +∞

−∞
xk1

1 · · ·x
kNs
Ns





1

2

Ns
∑

i=1

Ns
∑

j=1

∂2[p(GQGT)ij]

∂xi∂xj



 dx1 . . . dxNs

= S
1

k1,...,kNs
+ S

2

k1,...,kNs
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where

S
1

k1,...,kNs
= −

Ns
∑

i=1

∫ +∞

−∞
xk1

1 · · ·xNsNs
[

∂pfi
∂xi

]

dx1 . . . dxNs

= −
Ns
∑

i=1

∫ +∞

−∞
xk1

1 · · ·xNsNs
∂

∂xi



fi(x)
N
∑

α

wα(t)
Ns
∏

j=1

δjα



 dx1 . . . dxNs (3.46)

=
Ns
∑

i=1

N
∑

α=1

kiwα(t)〈x1〉k1

α · · · 〈xi−1〉ki−1

α 〈xi〉kiα 〈xi+1〉ki+1

α · · · 〈xNs〉kNsα fi(〈x1〉α, . . . 〈xNs〉α

When i 6= j, S
2

k1,...,kNs
is derived as

S
2
k1,...,kNs

=
∫ +∞

−∞
xk1

1 · · ·x
kNs
Ns





1

2

Ns
∑

i=1

Ns
∑

j=1

∂2[p(GQGT)ij]

∂xi∂xj



 dx1 . . . dxNs

=
Ns
∑

i=1

Ns
∑

j=1

∫ +∞

−∞
xk1

1 · · ·x
kNs
Ns

[

∂2p[D(x)]ij
∂xi∂xj

]

(3.47)

=
Ns
∑

i=1

Ns
∑

j=1

N
∑

α=1

wαkikj





Ns
∏

k=1

〈xk〉kkα



 /〈xi〉α〈xj〉α[D(x)]ij|〈x1〉α,...,〈xNs 〉α

where as when i = j,S
2
k1,...,kNs

is derived as,

S
2
k1,...,kNs

=
∫ +∞

−∞
xk1

1 · · ·x
kNs
Ns

∂2p[D(x)]ii
∂x2
i

dx1 . . . dxNs (3.48)

=
N
∑

α=1

wαki(ki − 1)





Ns
∏

k=1

〈xk〉kkα



 /〈xi〉2α[D(x)]ij|〈x1〉α,...,〈xNs〉α

Notice that D(x) = (1/2)GQGT . Thus, the N(1 + Ns) DAEs can be constructed

using a set of independent moments constraints k1, . . . , kNs as

Sk1,...,kNs
=
N
∑

α=1























1−
Ns
∑

j=1

kj

















Ns
∏

k=1

〈xk〉kkα





 aα +
N
∑

α=1

Ns
∑

j=1

kj〈xj〉kj−1
α

Ns
∏

k=1,k 6=j

〈xk〉kkα bjα(3.49)

For example, if the number of states is Ns=2 and the number of nodes used in the

multi-dimensional Dirac delta function is N=2, there will be N(1 +Ns)=6 unknown

parameters in Eq. (3.49). In order solve these six DAEs, the following six moments
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constraints, (k1, k2) = (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2) can be applied such that

there are enough equations for solving aα, α = 1, 2 and bjα, j = 1, 2; α = 1, 2

explicitly. Typically, the precision of the estimation and the computational cost will

be higher when the number of nodes increases. The selected moment constraint

k1, k2, . . . , kNs will guarantee the PDF approximated by the Eq. (3.29) has exact

value for this moment of the PDF. For typical estimation problem, the accuracy of

the first moment (e.g. minimum mean-square estimate (MMSE) estimates of any

state variables or functions of state variables φ(x) can be obtained) is automatically

guaranteed. For simplicity, Eq. (3.49) can be rewritten in a matrix form as

Aµ = s (3.50)

where the unknown parameters are

µ = [a1, a2, . . . , an, b11, b12, . . . , b1N , . . . , bNs1, bNs2, . . . , bNsN ]T ∈ R
N(1+Ns)×1 (3.51)

and matrix A can be derived from Eq. (3.49) as a nonlinear function of the abscissas.

The moment constraints are

s = [S0,...,0, S1,...,0, . . .] ∈ R
N(1+Ns)×1 (3.52)

The FPE, apartial differential equation, is reduced to a differential algebraic equation

which is much easier to calculate.

3.3.2 Update Schemes for the DQMOM based Nonlinear Filters

Update based on Bayes’ Formula

Once the weights and abscissas in the predictor PDF are found through the DQMOM

propagation, the updated conditional PDF can be found using the new measurement
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yk+1 made at the time instant k + 1. Substitute Eq. (3.29) into Eq. (3.25), the

DQMOM based Bayes’ equation can be derived as following: (1) the updated weights

are

wα(t, Yk+1) =
wα(t, Yk)p

(

yk+1| 〈x1〉α , ..., 〈xNs〉α
)

N
∑

α=1
wα(t, Yk)p

(

yk+1| 〈x1〉α , ..., 〈xNs〉α
)

, α = 1, ..., N (3.53)

and (2) the abscissas are unchanged as

〈

xj
〉

α
(t, Yk+1) =

〈

xj
〉

α
(t, Yk)), α = 1, ..., N, j = 1, ..., Ns (3.54)

With this update method the “degeneracy” phenomenon, similar to the one exists in a

typical particle filter, appears because in this algorithm only the weight is updated and

the abscissas remain the same [76]. The un-updated abscissas might be propagated

into the tail of the PDF where no significant statistical meaning is carried. Thus the

effect of measurement update is limited and the filter struggles to correct errors that

are too large to be fixed by the weight update only. In next two sections, the update

mechanisms employed to mitigate the “degeneracy” phenomenon.

Update through the Extended Kalman Filter

The prediction of the states x̂− = [x̂−i ]i=1,...,Ns and the error covariance matrix P− =

[P−ij ]i=1,...,Ns,j=1,...,Ns at time step tk are calculated from the abscissas and weights

propagated through the DQMOM as

x̂−i =
N
∑

α=1

wα〈xi〉α i = 1, . . . , Ns (3.55)

and

P−ij =





N
∑

α=1

wα〈xi〉α〈xj〉α


− x̂−i x̂−j (3.56)
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The updated Kalman gain Kk at the time step tk is given by

Kk = P−kHTk [HkP
−
kHTk + R]−1 (3.57)

where the linearized measurement model is given by Hk = ∂h
∂x
|x=x̂−

k
. The estimation

of the state and the estimated error covariance are updated as

x̂+
k = x̂−k + Kk(yk − ŷk) (3.58)

and

P+
k = [I−KkHk]P

−
k (3.59)

After the measurement update, the abscissas are re-sampled to match the updated

mean and covariance.

Filter smugness

The filter smugness means the error covariance matrix Pk becomes very small, which

results in the very small gain. Under this situation the filter becomes believing that

the states are well known, and refuses to incorporate the new information from the

measurements [72]. The problem is particularly drastic if the noise inputs to the

system and measurement noise are small [38]. Examination of the estimation algo-

rithm shows that, as Pk becomes very small, the filter becomes less sensitive to the

measurements from the sensor, and the estimate will fail to correct errors or diverge.

Several solutions have been devised to deal with this problem [11, 38, 72], and they

can be categorized into two different approaches, adaptive and non-adaptive. In this

work a non-adaptive approach is employed to keeping the gain becoming too small.

Instead of using the covariance P−k from DQMOM, a fixed P̄ is used. Thus, the new
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equations for Kalman gain is

Kk = P̄HTk [HkP̄HTk + R]−1 (3.60)

Appropriate fixed covariance P̄ can be found/designed through extensive simulation

[38].

Update through the Unscented Kalman Filter

As demonstrated in the previous section, in the EKF update, a linearized model is

required for the measurement. To eliminate the need for linearization of the measure-

ment model, here the unscented transformation is used. The unscented Kalman filter

uses 2Ns + 1 scalar weights Wmj and W cJ for the mean and covariance respectively,

which are calculated as

Wm0 =
λ

n + λ

W c0 =
λ

n + λ
+
(

1− α2 + β
)

Wmi =W ci =
1

2 (Ns + λ)
i = 1, 2 · · ·2Ns

(3.61)

where λ = α2(Ns+κ)−Ns is a scaling parameter. The significance of the parameters

α, β and κ can be found in [73]. The update stage of the DQMOM-UKF implemen-

tation consists of the following steps. First the prediction of the states x̂−k and the

covariance P−k are coming from the DQMOM. The sigma point vector at this time

step is constructed by

X =

[

x̂−k x̂−k +
(

√

(Ns + λ) P−k

)

i
x̂−k −

(

√

(Ns + λ) P−k

)

i+Ns

]

(3.62)

where i = 1, · · · , Ns The predicted measurement is ŷk =
2Ns
∑

i=0
Wmi Yi where Yi = h (Xi)

i = 1, 2 · · ·2Ns + 1 where h is nonlinear measurement function. The innovation
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covariance Pxy and the cross covariance Pxy are

Pyy =
2Ns
∑

i=0

W ci (Yi − ŷk) (Yi − ŷk)
T

Pxy =
2Ns
∑

i=0

W ci
(

Xi − x̂−k

)

(Yi − ŷk)
T

(3.63)

The Kalman gain is Kk = PxyP
−1
yy . The estimation of the state and the estimated

error covariance are given as

x̂+
k = x̂−k +Kk(yk − ŷk) (3.64)

P+
k = P−k −KkPyyKTk (3.65)

The measurement dynamics is linearized with a first-order Taylor series expansion

about the current state estimate for EKF while unscented transformation (UT) is

employed for UKF. The UT in UKF is as accurate as a second-order Taylor series

expansion. Comparison of measurement process between EKF and UKF are well

illustrated in reference [68].

3.4 Summary of the Chapter

The focus of this research is to investigate innovative nonlinear estimation algorithms

by improving the computational efficiency associated with solving the FPE substan-

tially. This purpose has been achieved by two different ways. First one is through the

use of a finite different method. Regarding the finite difference method, an efficient

and simple adaptive moving domain that can be applied to both the explicit method

and the ADI method is developed to increase the computational efficiency in solving

the FDE. However, the combination of ADI method and the moving domain is not

enough for the high dimensional problem such as the orbit determination problem.
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So, the more efficient method, DQMOM, is employed as the second method to solve

the FPE. The DQMOM converts the FPE into algebraic differential equations, which

makes finding the solution very efficient. Based on the DQMOM, a hybrid filtering

algorithm is formed by employing the update equations from the EKF and the UKF

to mitigate the “degeneracy” phenomenon observed when the update equation based

on Bayes’ formula is used.
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CHAPTER 4

Applications of the Nonlinear Filtering Algorithms

The proposed nonlinear filtering algorithms are applied to three different applications,

i) the spacecraft relative position estimation, ii) the orbit determination problem,

and iii) the bearing-only tracking problem. The numerical simulation results are pre-

sented. The filtering algorithm based on the ADI method with the moving domain is

applied to the relative orbit determination problem, and the DQMOM based filtering

method is applied to the bearing-only tracking and the orbit determination problem.

The performance of the filters is compared with existing nonlinear filtering method

such as the extended Kalman filter.

All of the simulations in this chapter were done using in a workstation with the

Intel® 2.33 GHz Xeon processor and coded with MatLab®.

4.1 Relative Orbit Determination

The nonlinear filtering via the solution of the FPE is applied to the relative position

problem. The FPE is evaluated using the ADI method with the moving domain.

4.1.1 Relative Orbit Dynamics

The relative motion of spacecraft in a formation flying mission can be described by

the Hill’s equation given by Eq. (4.1) if the leader is in a near circular orbit, and the

distance between the leader and the follower satellite is small [72]. The mean motion

of the leader orbit is n =
√

µ/r3l , where µ is the Earth gravitational parameter and

rl is the orbit radius of the leader satellite. The in-plane, x-y direction, and the
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out-of-plane, z direction, motions are decoupled as
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∆
= F + f (4.1)

Assuming that the process noise (may come from the differential drag and differen-

tial J2) is Brownian with a diffusion matrix G and an autocorrelation matrix Q as

following

G =









O3×3 O3×3

O3×3 I3×3









andQ =









O3×3 O3×3

O3×3 σ3×3









(4.2)

where the matrix σ is the diagonal matrix whose diagonal members are
[

σ2
ẋ, σ

2
ẏ , σ

2
ż

]

.

Then, according to Eq. (3.6), the drift term can be derived as

−
6
∑

i=1

∂ [pFi]

∂xi
= −

(

∂p

∂x
ẋ+
∂p

∂y
ẏ +
∂p

∂z
ż +

(

2nẏ + 3n2x
) ∂p

∂ẋ
− 2nẋ

∂p

∂ẏ
− n2z

∂p

∂ż

)

(4.3)

whereas the diffusion term is

1

2

6
∑

i=1

6
∑

j=1

∂2

[

p
(

GQGT
)

ij

]

∂xi∂xj
=
σ2
ẋ

2

∂2p

∂ẋ2
+
σ2
ẏ

2

∂2p

∂ẏ2
+
σ2
ż

2

∂2p

∂ż2
(4.4)

Hence, the resulting FPE for Hill’s equations becomes
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∂p

∂t
= −

(

∂p

∂x
ẋ+
∂p

∂y
ẏ +
∂p

∂z
ż

)

−
(

2nẏ + 3n2x
) ∂p

∂ẋ

+ 2nẋ
∂p

∂ẏ
+ n2z

∂p

∂ż
+
σ2
ẋ

2

∂2p

∂ẋ2
+
σ2
ẏ

2

∂2p

∂ẏ2
+
σ2
ż

2

∂2p

∂ż2
(4.5)

4.1.2 ADI method Setup

The operators for the ADI method are

A1 = a1
∂

∂x
, A2 = a2

∂

∂y
, A3 = a3

∂

∂z
(4.6)

and

A4 = a4
∂

∂ẋ
+
Qα
2

∂2

∂ẋ2
, A4 = a5

∂

∂ẏ
+
Qα
2

∂2

∂ẏ2
, A5 = a6

∂

∂ż
+
Qα
2

∂2

∂ż2
(4.7)

where a1 = −ẋ, a2 = −ẏ, a3 = −ż, a4 = −
(

2nẏ + 3n2x
)

, a5 = 2nẋ, and a6 = n2z,

respectively. So, the ADI scheme for a general 6-order system is

pt+
k
6 = (I−∆tAk)

−1 pt+
k−1

6 k = 1 . . . 6 (4.8)

As shown in Chapter 2, after discretizing in space (I−∆tAk) becomes a tridi-

agonal matrix and can be inverted very quickly using Thomas’ algorithm [70]. The

operators in the form of Eq. (4.8) with boundary conditions of pi1 and pimax can be
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rewritten as when ai ≥ 0
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(4.9)

where M = 1 + ai
∆t

∆αi
and N = −ai

∆t

∆αi
.

When ai < 0
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where L = ai
∆t

∆αi
and M = 1− ai

∆t

∆αi
. When ai ≥ 0 and ai < 0 the operators in

the form of Eq. (4.8) with boundary conditions of pj1 and pjmax can be rewritten as
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Eq. (4.11) and Eq. (4.12) accordingly
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(4.12)

where L = bj
∆t

∆α̇j
− Qj∆t

∆α̇2
j

, M = 1− bj
∆t

∆α̇j
+
Qj∆t

∆α̇2
j

and N =
Qj∆t

2∆α̇2
j

. As mentioned

before, all the matrix inversions in Eq. (4.9) through Eq. (4.12) involve only tri-

diagonal matrices.

4.1.3 Measurement PDF

The measurement for the relative orbit determination problem is assumed to be the

range between spacecrafts (Eq. 4.13), the azimuth angle (Eq. 4.14), and the elevation

angle (Eq. 4.15).
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r =
√

x2 + y2 + z2 (4.13)

θ = tan−1
(

y

x

)

(4.14)

φ = sin−1

(

z√
x2 + y2 + z2

)

= sin−1
(

z

r

)

(4.15)

The probabilistic information via the measurement is captured by Eq. (3.26). The

resulting PDF is the Gaussian PDF as the function of the measurements r, θ, and

φ. To implement the Gaussian PDF in Bayes’ formula Eq. (3.25), it is necessary to

perform the transformation of the random variable to obtain the Gaussian PDF as

function of x, y and z [38].

p
(

y| x, y, z) = p
(

y| r, θ, φ) |J (x, y, z)| (4.16)

where |J (x, y, z)| is the Jacobian determinant of the measurement functions, and the

Jacobian determinant of the measurement functions is

|J (x, y, z)| =
√
x2 + y2

√
x2 + y2 + z2 (x2 + y2 + z2)

(4.17)

Eq. (4.16) becomes

p
(

y|x, y, z) = p
(

y| r, θ, φ)
√
x2 + y2

√
x2 + y2 + z2 (x2 + y2 + z2)

(4.18)

Therefore, the measurement PDF, required for the Bayes’ formula (Eq. (3.25)) can

be acquired by evaluating the Eq. (4.18) for all values of ẋ, ẏ and ż
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4.1.4 Partitioning Measurement PDF

Even with the help from the proposed adaptive moving domain technique and the

ADI method, solving the FPE numerically is still too expensive due to the curse of

dimensionality [18]. Luckily, the Hill’s equation has decoupled in-plane and the out-

of-plane motions. Therefore, the conditional state PDF in Bayes’ formula, p(x|Y) =

p(x, y, z, ẋ, ẏ, ż|Y) can be partitioned into disjoint PDFs as p(x, y, ẋ, ẏ|Y) and p(z, ż|Y).

Consequently, these PDFs can be evaluated separately. Thus, the computational cost

can be reduced even further. However, the measurements are functions of both the

in-plane and the out-of-plane coordinates. So the following assumption has to be

made for this problem

p
(

x1,x2 |Y (tk−1)
) ≈ p (x1 |Y (tk−1)

)

p
(

x2 |Y (tk−1)
)

(4.19)

where x1 = [x, y, ẋ, ẏ]T is the states of the in-plane motion, xx = [z, ż]T is the states

of the out-of-plane motion. Therefore, the Bayes’ formula becomes

p
(

xk|Yk−1

)

=
p
(

x1 |Yk−1

)

p
(

x2 |Yk−1

)

p
(

yk|xk
)

∫

p
(

ξ|Yk−1

)

p
(

yk| ξ
)

dξ
(4.20)

The difference between the true conditional PDF and the approximated one can be

calculated as

∆ε = p
(

x1,x2 |Yk−1

)− p (x1 |Yk−1

)

p
(

x2 |Yk−1

)

(4.21)

If Eq. (4.19) is a suitable assumption for this problem, ∆ε given in Eq. (4.21) should

be small. Specifically, the estimation results from two estimators. One uses the whole

PDF, p(x1,x2|Yk−1 and the other uses the partitioned PDFs, p(x1|Y) and p(x2|Y).

Under the same simulation conditions, there should not be any significant difference

in their estimation accuracy. Here, a comparison is made in terms of the root mean

square errors (RMSEs) between these two estimators. Only the comparison for the
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Figure 4.1: Comparison of Estimations

coordinate has been illustrated as shown in Fig. 4.1(a)-4.1(b) which is generated using

the same condition that will be used in numerical simulation and result section to be

described later; however note that similar results have been achieved for the other

coordinates.

It is shown in Fig. 4.1(b) that the difference is on the order of 10−3, which is well

below the order of the RMSE (10−1-10−2). This comparison was conducted for several

different cases and similar results were obtained. This shows that the effect of on the

quality of estimation is not significant and it is safe to assume that Eq. (4.19) is valid

for the relative orbit position estimation problem. However, a similar comparison is

encouraged to be performed such that the partition is valid for any specific problems.

In terms of the computational time, the case using the whole PDF in the estima-

tion requires approximately 47 seconds while that of the partitioned PDF is 3 seconds.

Therefore, the computational cost when whole PDF is using is about sixteen times

higher. Therefore, balancing between accuracy (not much compromise) and speed,

the partitioned PDF method will be used in this paper.
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4.1.5 Simulation Setup

Two satellites are assumed in the simulated formation flying mission. The orbit

parameters for the leader satellite are the semi-major axis a = 6978 km, eccentricity

e = 0, inclination i = 97.8o, argument of periapsis ω = 97.8o, longitude of the

ascending node Ω = 100.7o, and true anomaly f = 100.7o. The follower orbit is

designed to satisfy Eq. (4.22) in order to achieve a bounded motion centered around

the leader satellite location [72]

ẏ0 = −2nx0 and y0 =
2ẋ0

n
(4.22)

where x0 = 86.52 m and ẋ0 = 0.5336 m/s are the initial relative position and the ve-

locity in the local vertical coordinate, and y0 and ẏ0 are the initial relative position and

the velocity in local horizontal coordinate. The initial relative position and the veloc-

ity in the out-of-plane coordinate are z0 = 92.65 m and ẋ0 = 0.3003 m/s The initial

relative distance between two satellites is about 1 km. The process noise is assumed

to be a Gaussian with a zero mean and a power spectral density of (10−3 m/s)2 The

measurement noise in the relative distance is assumed to be zero mean white Gaus-

sian with variance of (0.1 m)2, and the measurement noise in both the azimuth angle

and the elevation angle are assumed to be zero mean white Gaussian with variance of

(10 arcsecond)2. Measurement update frequency is 1 Hz. 1000 seconds are simulated.

For comparison, the same setup is applied to the EKF.

Three cases with different measurement update frequencies are simulated. When

the measurement is updated at every 1 second (1 Hz), the setup for the ADI method

shown in Table 4.1 is used.

The simulation setup when the measurement updates are at every 5 seconds (0.2

Hz) and 10 seconds (0.1 Hz) are presented in Table 4.2. The size of the domain for less

measurement update case is increased noticeably in x, y, and z since the time between
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Table 4.1: Grid and domain size used for the case of 1 Hz measurement update
x (m) y (m) z (m) ẋ (m/s) ẏ (m/s) ż (m/s)

Grid size 0.12 0.1 0.07 0.02 0.02 0.02
Domain size 2.16 1.8 1.12 0.24 0.24 0.24

Table 4.2: Grid and domain size setup for the cases of 0.1 and 0.2 Hz measurement
updates

x (m) y (m) z (m) ẋ (m/s) ẏ (m/s) ż (m/s)

Grid size 0.3 0.2 0.2 0.02 0.02 0.02
Domain size 7.2 4.0 4.0 0.24 0.24 0.24

measurement updates longer, thus it requires larger space for PDF to propagate.

The initial PDF for the FPE can be obtained using Eq. (4.18) in each direction

based on the statistical characteristics of the sensor. Figure 4.2 shows an initial PDF

of the in-plane motion (a and b) and the out-of-plane motion (c). It can be seen that

the initial appearances of the PDFs from the x, y, and z directions are Gaussian since

the sensor noise is Gaussian white noise while they look like an uniform distribution

from other directions due to the absence of the sensor measurement.

The initial PDFs are evolved using FPE and the evolved PDFs are illustrated in

Figure 4.3. The shape of the PDFs in ẋ, ẏ, and ż directions are transformed from the

initial uniform distribution to the Gaussian-like distribution.

4.1.6 Simulation Results

The results of the forty Monte Carlo simulations are presented in this section. The

root mean square error (RMSE) of the position estimation in the x direction for

different measurement update frequencies is shown in Fig. 4.4. Three methods, EKF,

nonlinear filtering with the ADI method with the moving domain (denoted as ‘ADI

FPE’), and nonlinear filtering with the conventional explicit method with the moving

domain (denoted as ‘EXP FPE’)) are compared here. It can be seen that the FPE
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(a) PDF in x(m) and ẋ(m/s) coordinate (b) PDF in x(m) and ẋ(m/s) coordinate

(c) PDF in x(m) and ẋ(m/s) coordinate

Figure 4.2: Initila PDFs

based nonlinear filer performs similarly to that of the EKF when the measurement

update is frequent (e.g. 1 Hz). However, as the measurement update frequency

decreases, the performance of the EKF degrades whereas those of the ADI method

are consistent. The same conclusion can be made for the other two directions (y and

z) and the simulation plots are neglected here.

Table 4.3 indicates that the average RMSE of the EKF increases (although still

acceptable) while the average RMSE of the estimator using the ADI method is in-

sensitive to the less frequent update.

The root mean square error (RMSE) of the velocity estimation in each direction

is presented in Fig. 4.5 when the measurement is updated at 0.2 Hz. It can be seen in

69



(a) PDF in x(m) and ẋ(m/s) coordinate (b) PDF in x(m) and ẋ(m/s) coordinate

(c) PDF in x(m) and ẋ(m/s) coordinate

Figure 4.3: Evolved PDFs

these figures that the performance in the velocity estimation is very similar for both

EKF and ADI methods. A similar argument can be made for the other two cases and

the plots are neglected here.

Although in general the computational cost for the ADI method is still intensive as

compared with the EKF as shown in Table 4.4, it is found that this method is nearly

five times faster than the conventional explicit method with a better performance as

shown in Table 4.3. Furthermore, it is known that in general, the execution speed

of the program coded with MATLAB® is much slower than the one in C. Therefore,

the real time realization of this work could be possible with the ADI method in

conjunction with the adaptive moving domain technique which decreases the size of
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Figure 4.4: Root mean square errors in x direction

the necessary domain and the partition of PDF which lowers the problem dimension.

The accuracy of the estimation method used in this dissertation is limited by the

accuracy of the numerical method. For example, the accuracies of the ADI method

and the explicit method are only O(∆t) and O(∆x). A higher accuracy, O(∆t2) in

time, can be achieved by using the D’Yaknove scheme [70] instead of the implicit

Euler method. There also exists an up-wind scheme with an accuracy of O(∆x2), but

the computational cost will be much higher [80].
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Table 4.3: Average RMSE (in m)

Update delay (s) Direction EKF EXP FPE ADI FPE

1
x 0.04 0.035 0.025
y 0.03 0.03 0.03
z 0.02 0.02 0.02

5
x 0.042 0.04 0.025
y 0.055 0.045 0.03
z 0.03 0.022 0.02

10
x 0.043 0.04 0.025
y 0.058 0.035 0.03
z 0.04 0.02 0.02

4.2 Bearing-only Tracking

In this section, a standard bearing only tracking problem is used to demonstrate the

effects of the modified DQMOM nonlinear filtering technique. The performance will

be compared among the EKF, UKF, DQMOM-EKF, and DQMOM-UKF techniques.

4.2.1 Dynamics and Measurement

A simplified version of the passive bearing only tracking problem is adopted from

[8, 68] as the example. The motion of the sensor platform is governed by xp = 4t and

yp = 20 , whereas the motion of the target is governed by

dx(t)

dt
=
d

dt


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

w(t) (4.23)

Table 4.4: Computational cost (in seconds)

Update delays (s) EKF EXP FPE ADI FPE

1 1×10−5 11 3
5 2×10−5 43 8.3
10 1×10−5 80 14.6
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Figure 4.5: Root mean square errors in velocity estimation

where the initial condition of the target is x(t0) = [80, 1]T , and the process noise is a

Gaussian with a zero mean and a covariance of Q = 10−2. The measurement model

is given by

y(tk) = tan−1 yp(tk)

x1(tk)− xp(tk)
+ v(tk) (4.24)

where the sensor noise v(tk) is assumed to have a zero mean with a variance of

R = (4o)2.

4.2.2 Simulation Setup

500 Monte Carlo simulation runs are used to compare the performance achieved from

the EKF, UKF, DQMOM-EKF and DQMOM-UKF filters. The random number
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generation was reseeded with clock to ensure there is no correlation between the

runs. The filters are set to make the estimation in each second regardless of the

measurement update frequency. Two different measurement frequencies, 1Hz and 0.2

Hz are used to see the performance of the filters when the measurement is absent

for a significant duration. The detail information regarding the UKF and the EKF

setup can be found from Ref. [8], and the moment constraints for DQMOM, given in

Eq. (3.49) are selected to be

k1 = [0 0 1 0 1 2 3 2 1 0 1 4]

k2 = [0 1 0 2 1 0 0 1 2 3 4 1]
(4.25)

4.2.3 Simulation Results

The next two simulations are used to compare the performance achieved through dif-

ferent nonlinear filtering techniques. First the measurement update and the estima-

tion frequent are set to 1 Hz. Results are presented in Fig. 4.6. The DQMOM-EKF

and the DQMOM-UKF perform as good as EKF in terms of the rate of conver-

gence and accuracy in the position estimation. However, the advantage in position

estimation of the DQMOM-EKF and the DQMOM-EKF can be seen from the root-

mean-square-error (RMSE) performance as demonstrated in Fig. 4.6(c). As shown in

Fig. 4.6(b), the performances of all the filters are similar in the velocity estimation.

Fig. 4.6(b) shows that the RMSE of both the DQMOM-UKF and the DQMOM-EKF

are comparable to the filter that they borrowed the update mechanism.

For the second simulation, the measurement update rate is reduced to 0.2 Hz

while the filter is still making estimates at the rate of 1Hz. Regarding the estimation

of position, the DQMOM-UKF approach shows the best performance in terms of the

rate of convergence and accuracy. The result obtained using both the DQMOM-EKF

approach and the EKF are similar. The RMSE in the position estimation from both
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Figure 4.6: Estimation comparison with a measurement update frequency of 1Hz
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Figure 4.7: Estimation comparison with a measurement update frequency of 0.2Hz

the DQMOM-EKF and the DQMOM-UKF approach are better than those obtained

from the EKF and UKF (Fig.4.7(c)). For the velocity estimation, the DQMOM-EKF

is showing the best result while in the performance of the RMSE these two DQMOM

filters works better than the UKF and EKF in terms of convergence speed.

The computational time for running the 50-second simulation for each of the

filters are list in Table 4.5. In addition to the case we mentioned before, the case

with 0.5 Hz update rate has been considered. The proposed filtering algorithms are

slower than EKF and UKF but are much faster than the finite difference method. It is

worthwhile to notice that the same kind of simulations could take up to a minute with

finite difference type methods, such as the Alternative Directional Implicit method
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Table 4.5: Computational cost (in seconds)

Update delays (s) EKF UKF DQMOM-EKF DQMOM-UKF

1 0.015 0.58 4.15 4.20
5 0.015 0.60 4.22 4.20
10 0.014 0.58 4.13 4.25

with adoptive moving domain scheme. Also base on the data shown in the table,

it can be found that the computational cost for 50 seconds estimation is only 4.2

seconds, which is fast enough for real-time estimation.

4.3 Orbit Determination

4.3.1 Keplerian equation of motion

The equations of motion that governs the motion of a satellite in a low earth orbit is

[72]:

r̈ = − µ
r3
r + aG + aD (4.26)

where µ and r = [x, y, z]T are the gravitational parameter and the position vector,

respectively. The scalar r is the magnitude of r, i.e., r =
√
x2 + y2 + z2, and aaaD

represents the drag due the earth atmosphere and is proportional to the atmospheric

density ρ and the square of the velocity relative to the atmosphere.

aD = − 1

2Bc
ρv2rel and Bc =

ms
CdA
. (4.27)

where Bc is ballistic coefficient, and ms, Cd, and A are the mass of a satellite, the drag

coefficient, and the projected area of a satellite normal to its flight path, respectively.

The earth is not a spherically symmetric body but bulged at the equator, and is

also generally asymmetric. As a result, the gravitational field around the earth is not

isometric. The aG is the perturbation due to this uneven gravitational field. In this
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work, aD and aG are considered as a part of process noise to the system. So, the

nominal process equation used in this work is

r̈ = − µ
r3
r +wt (4.28)

where wt is a white Gaussian noise process with E[wtwTτ ] = Qtδ(t− τ)

4.3.2 Fokker-Planck equation of the Keplerian equation

The state-space form of the Keplerian equation of motion with process noise is
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ẏ

ż
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where wt is white Gaussian noise process with E[wtwTτ ] = Qtδ(t− τ)

The corresponding Fokker-Planck equation can be found by substituting Eq. (4.29)

into Eq. (3.6) as

∂p

∂t
=−

(

∂p

∂x
ẋ+
∂p

∂y
ẏ +
∂p

∂z
ż

)

+
µ

r3

(

∂p

∂ẋ
x+
∂p

∂ẏ
y +
∂p

∂ż
z

)

+
Q4

2

∂2p

∂ẋ2
+
Q5

2

∂2p

∂ẏ2
+
Q6

2

∂2p

∂ż2

(4.30)

where Qi, i = 4, 5, 6 are the last three diagonal members of [GQGT ] from Eq. (3.6)
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4.3.3 Measurement Model

As shown in Fig. 4.8, the inertial position vector of a satellite, r = [x y z]T can be

written as the sum of the range vector and the radar site position vector [72] as

ρ = r −Rs (4.31)

where RRRs is the position of the sensor, and ρρρ = [ρe, ρe, ρn]T is the position vector of a

satellite relative to the local/sensor coordinate (the Topocentric-Horizon coordinate)

as

ρ = ρuû+ ρeê+ ρnn̂ (4.32)

wherein the subscriptions, u, e, and n stand for “zenith”, “east”, and “north”, re-

spectively. For the sensor position vector RRRs, it is advisable to account for the precise

Figure 4.8: Geometry of Earth observation of a satellite

shape of the Earth to avoid large errors [72]. RRRs in the geocentric inertia coordi-

nate accounted for the Earth’s equatorial bulge and its magnitude can be found from

Ref. [61] as

RRRs = rδ cos θI + rδ sin θJ + rkK and ||RRRs|| =
√

r2δ + r2k (4.33)
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where r is the magnitude of the position vector r, θ is the sidereal time at the sensor

location (local sidereal time), and rδ and rk can be calculated using

rδ =







R⊕
√

1− e2⊕ sin λ
+H





 cos λ and rk =







R⊕(1− e2⊕)
√

1− e2⊕ sin λ
+H





 sin λ (4.34)

where λ is the geodesic latitude of the sensor location, and R⊕ = 6378.1363km and

e⊕ = 0.081819221456 are the mean equatorial radius of the Earth and the eccentricity

of the Earth, respectively. H is the local elevation above the sea level.

The local sidereal time θ is the angle between the x-axis of the geocentric-equatorial

coordinate (vernal equinox direction) and the longitude of the sensor location on the

Earth as shown in Fig. 4.8, which can be expressed as the sum of the Greenwich

sidereal time and the geographical longitude of the location.

θ = θGMT + φ (4.35)

where θGMT is the Greenwich sidereal time which is the angle between the Greenwich

Meridian and the x-axis of the geocentric-equatorial coordinate, and φ is the geo-

graphical longitude of the sensor location. There are two different ways to calculate

the local sidereal time (LST). The details regarding these methods are can be found

in Appendix A.

The position vector ρ in the inertial coordinate frame is given by

ρ(I) =

















x− ||RRRs|| cosλ cos θ

y − ||RRRs|| cosλ sin θ

z − ||RRRs|| sinλ










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



(4.36)

The conversion from the inertial to the Topocentric-Horizon coordinate is given by
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the following rotation matrix
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So the sensor position vector in the Topocentric-Horizon coordinate can be presented

in terms of the components of the position vector r as

ρ =
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The measurements are range, azimuth and elevation. The range ρ can be found

from

‖ρ‖ =
√

ρ2u + ρ2e + ρ2n (4.39)

The azimuth and elevation angles are

az = tan−1

(

ρe
ρn

)

el = tan−1







ρu
√

ρ2e + ρ2n





 (4.40)

The measurement model for the filter can be written in vector form as

H =


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(4.41)

To be applied to the EKF measurement update equations, this needs to be linearized,

and the linearization can be done by calculating Jacobian of the measurement model

H by
∂H

∂x
=

[

∂H

∂r

∂H

∂ṙ

]

=

[

∂H

∂r
03×3

]

(4.42)
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where x = [x y z ẋ ẏ ż] is the state vector from Eq. (4.29), and
∂H

∂r
can be calculated

using the chain rule
∂H

∂r
=
∂H

∂ρ

∂ρ

∂ρ(I)

∂ρ(I)

∂r
(4.43)

Since r = [x y z]T and Eq. (4.36), the last term of the partial derivative is
∂ρ(I)

∂r
= I.

The second term can be written as

∂ρ

∂ρ(I)
=
∂ρ(I)CCC

∂ρ(I)
=
∂CCC

∂ρ(I)
ρ(I) +

∂ρ(I)

∂ρ(I)
CCC = CCC (4.44)

So the linearized measurement model is
∂H
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=
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∂ρ
CCC can be written as
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(4.45)

4.3.4 Numerical Simulation Setup

The satellite under consideration has the following orbit parameters: a = 6778.136 km,

e = 1.0× 10−5, i = 51.6◦, ω = 30o, and Ω = 25◦. The J2 and drag perturbation (aG

and aD from Eq. (4.26)) are considered as the noise to the system. The location

of the sensor is chosen to be the Eglin Air Force Base with 30.2316◦ latitude and

86.2147◦ west longitude. The measurement errors are assumed to be Gaussian ran-

dom processes with zero means and variances of σrange = 25.0 m, σazimuth = 0.015◦,
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and σelevation = 0.015◦, respectively.

The true initial values of the state vector are set to be x0 = 4011.5713 km,

y0 = 4702.6493 km, z0 = 3238.3582 km, ẋ0 = −5.653084 km/s, ẏ0 = 1.5401902 km/s,

and ż0 = 4.7765408 km/s. For the filter, the initial values are obtained using the

Herrick-Gibbs method [52], and they are x̂0 = 3931.3399 km, ŷ0 = 4608.5963 km,

ẑ0 = 3173.5911 km, ˆ̇x0 = −5.540022 km/s, ˆ̇y0 = 1.5093864 km/s, and ˆ̇z0 =

4.6810100 km/s.

As stated above, the acceleration due to J2, which is approximately 10−5 km/s2

at the low earth orbit is considered as the noise to the system. So the process noise

covariance matrix Q(t) is set to be diag([0 0 0 10−10 10−1010−10])

The simulation of the Keplerian dynamic through the DQMOM is done using

canonical unit instead of the standard SI unit [61], which means (4.28) is nondi-

mensionalized for a better numerical stability. The initial position is used as the

distance unit (DU). The velocity unit (VU) is set by
√

µ/DU, so the time unit (TU)

is naturally equal to DU/VU. The measurement update was done in SI unit. The

Keplerian equation in canonical unit has the same form as it in SI unit (the details

are in Appendix B).

The number of the nodes used for this study was two, and the moment constraints

are chosen so that the the first three moments of the PDF were preserved.

k1 = [0100000 2000001] k2 = [0010000 0200000]

k3 = [0001000 0020001] k4 = [0000100 0002000]

k5 = [0000010 0000201] k6 = [0000001 0000020]

(4.46)

The details regarding how to set the moment constraints can be found from Ref. [75].
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4.3.5 Simulation Results

Simulations are executed with two different measurement update frequencies, 1Hz

and 0.05Hz, and the result from both the DQMOM-EKF and EKF are presented.

The figures are the root mean square errors (RMSE) of the position and the velocity

estimation produced by Monte Carlo simulation of 30 runs. When the measure-

ment update is frequent (1Hz), as shown in both Fig. 4.9(a) and Fig. 4.10(a), The

DQMOM-EKF performs better in terms of quicker convergence in velocity estimation

and better estimation accuracy in both position and velocity estimation. When the
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Figure 4.9: Absolute magnitude of position RMSE with different measurement update
delay

time between measurement update is increased to twenty seconds (0.05Hz update

frequency), the DQMOM-EKF shows quicker convergence and better estimation ac-

curacy in both position and velocity estimation than the EKF as shown in both Fig.

4.9(b) and Fig. 4.10(b). Unlike the position RMSE curve shown in Fig.4.9(b), the

velocity RMSE curve is smooth and not zigzagged. This is the result of using a fixed

error covariance matrix.

Notice that it takes roughly 70 seconds in CPU time to finish the 200-second

simulation for the DQMOM-EKF method, while the EKF did it in only 0.65 seconds.

However, as comparing with other numerical approaches used in nonlinear filtering
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Figure 4.10: Absolute magnitude of velocity RMSE with different measurement up-
date delay

design, such as in [16, 77, 79], the computational cost is dramatically reduced and

very close to the real-time estimation.

4.4 Summary of the Chapter

The ADI method is applied to a relative orbital position estimation problem. The de-

coupled nature of Hill’s equations allowed us to solve the FPE as two low dimensional

problems instead of one high dimensional problem. This helps to reduce computa-

tional cost further. The moving domain scheme that translates the domain during

the numerical evaluation of FPE results in the reduction of computational time while

preserving the accuracy of the estimation. The performance of the proposed method

is compared with an EKF and an explicit method. The advantages of the method

are: (1) as the measurement update rate decreases, the ADI based nonlinear filter

methodology performs better than the EKF in terms of estimation accuracy and con-

sistency; (2) the computational cost of the ADI is only 1/5 of the explicit method

without compromise in accuracy.

The proposed hybrid filtering method is tested with a simple Bearing-only track-

ing problem under different measurement update rates, and the measurement update
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mechanism of the EKF and UKF are used and test for their performances. Simula-

tion results demonstrate better performances of the hybrid filter as compared with

the standard Kalman filter for both frequent and sparse measurement update in terms

of the estimate accuracy and convergence rate. When the measurement update rate

is 1Hz it has been shown that the estimation of the proposed nonlinear filters have

a better accuracy than those obtained from the EKF/UKF. With less frequent mea-

surement updates rates (0.2 Hz) Overall the DQMOM-EKF is the best performer.
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CHAPTER 5

Summary and Future Work

5.1 Summary

Since the late 1960s, the extended Kalman filter (EKF) has been used in many en-

gineering fields that require an estimation of the state. However, the disadvantages

associated with the EKF (especially for the system with high nonlinearities) have led

many researchers to look for more accurate nonlinear filtering algorithms as alterna-

tives to the EKF. Such efforts have led to algorithmic improvements in the EKF and

development of new filtering methods such as the unscented Kalman filter (UKF)

and the particle filter. However, these filtering methods have shown the following

drawbacks

• When the system and/or measurement models are highly nonlinear, the filter

can give a poor or even unstable performance as a consequence of the lineariza-

tion involved in the filtering algorithm.

• The derivation of the Jacobian, which is part of the linearization process, is not

a trivial task in many applications.

• Numerical evaluation of the Jacobian can be computationally intensive.

• High computational cost and memory use.

The goal of this dissertation is to address these drawbacks by solving the nonlinear

filtering problem in more general framework.
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In this dissertation, the existing filtering algorithms from the sequential linear least

square filters to the particle filters are reviewed. For the Kalman filter, it is shown

that it is the special case of the general filtering algorithm using the Fokker-Planck

equation (FPE) and Bayes’ rule for the linear system with the Gaussian process.

The UKF is based on the unscented transformation in which a collection of sigma

points are used to represent the mean and covariance of random variables undergoing

nonlinear transformation efficiently, and it successfully mitigates problems involved

with Jacobian calculation in the EKF. For general nonlinear and/or non-Gaussian

filtering problems, the sequential Monte Carlo method is reviewed. The sequential

Monte Carlo can be loosely defined as a simulation-based method that uses a Monte

Carlo simulation scheme in order to solve on-line estimation and prediction problems.

The flexible nature of the Monte Carlo simulations gives the particle filter better

adaptability for more complex systems.

The focus of the dissertation is to find an efficient solution of the nonlinear filtering

problem by improving the computational efficiency of the numerical solution of the

FPE. This has been achieved by two different ways. The first one is through the

finite difference methods with moving domain, and the second one is by employing

the DQMOM.

To improve the finite difference method, an efficient and simple adaptive moving

domain that can be applied to both the explicit and the alternating direction implicit

(ADI) methods is developed to enhance the computational efficiency in solving the

FPE. Unlike other moving domain schemes that adjust the domain only after each

measurement update, the proposed moving domain scheme allows the modification

of the domain in the middle of the numerical evaluation of the FPE. This reduced

the size of the domain a lot and consequently increases in computational efficiency

while preserving the accuracy. At the same time, a form of the ADI method has been

derived through the implicit Euler method and the up-wind differencing scheme so
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that it can be applied to many of the nonlinear dynamic problems without further

derivation.

It was found that the use of the ADI method with the moving domain approach

is still not fast enough for high dimensional problems. So, a more efficient numerical

method, called DQMOM, is used to solve the FPE. The DQMOM converts the FPE,

i.e., a partial differential equation, into a set of algebraic differential equations. How-

ever, when the update equation derived according to Bayes’ formula is used together

with DQMOM the “degeneracy” phenomenon, similar to the one found in a particle

filter, is observed. To mitigate this problem, hybrid filtering algorithms are formed

by employing the update equations from the EKF and the UKF. In addition, a fixed

error covariance matrix is used for the gain calculation to prevent the filter smugness

that happened in the orbit determination problem.

The proposed filtering algorithms are successfully applied to the selected nonlinear

filtering problems: i) the bearing-only tracking problem, ii) the relative orbit position

estimation, and iii) the orbit determination.

The ADI method with the proposed moving domain is applied to a relative orbital

position estimation problem. The decoupled nature of Hill’s equation allows us to

solve the FPE as two low dimensional problems instead of one high dimensional

problem, which further reduces the computational cost. The performance of the

proposed method is compared with the EKF and the explicit method. The advantages

of the method are: (1) as the measurement update rate decreases, the ADI based

nonlinear filter methodology performs better than the EKF in terms of the estimation

accuracy and consistency; (2) the computational cost of the ADI method is only 1/5

of the explicit method.

The proposed hybrid filtering method is tested with a simple bearing-only tracking

problem under different measurement update rates. Simulation results demonstrate

better performances as compared with those of the standard Kalman filter for both
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frequent and sparse measurement updates. When the measurement update rate is

1Hz, it has been shown that the estimation of the proposed nonlinear filters have a

better accuracy than those obtained from the EKF/UKF. With less frequent mea-

surement update rates, i.e., 0.2 Hz, the combination of DQMOM and the update of

the EKF demonstrated the best overall performance.

A nonlinear filtering algorithm utilizing the DQMOM and the EKF measurement

update is used to obtain accurate and efficient orbit estimation. In addition, a fixed

error covariance matrix is used for the gain calculation to prevent the filter becoming

smug. A nondimensionalized system equation is used for the DQMOM to achieve a

more stable propagation of the conditional PDF. Simulation results indicate that the

performances of the hybrid filter based on the DQMOM and the EKF update is supe-

rior to the standard extended Kalman filter for both frequent and sparse measurement

updates in terms of estimate accuracy and convergence rate. The advantages of the

proposed nonlinear filtering algorithm show its potential to be suitable for efficient

real-time satellite orbit determination.

5.2 Future Work

The general form of the ADI method has been developed through the implicit Euler

method and the up-wind differencing scheme. The accuracy of the estimation is

limited by the accuracy of the chosen numerical method. A higher accuracy, O(∆t2)

in time, can be achieved by using D’Yaknove scheme instead of the implicit Euler

method used in this dissertation which is accurate only up to O(∆t). The up-wind

scheme in this dissertation has accuracy of O(∆x) while there exists an up-wind

scheme with O(∆x2). However, it will make the implementation of the filter very

complicated. However, by employing the numerical method with a second order

accuracy the accuracy of the estimations should be improved.

The size of the adaptive moving domain does not change with respect to the size
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of the PDF. So, the computation time is wasted on the part of the domain that

does not contribute much on the solution if the initial PDF is much larger than the

evolved one. The combination of the moving domain method in this work and the

Chebyshev’s inequality theory may produce better results since this will allow the

method for this work to adaptively change the size of the domain.

The “degeneracy” problem presented in the filter based on the DQMOM and

Bayes’ rule approach was primarily resolved by constructing a hybrid filtering algo-

rithm using the update equations from the EKF and the UKF. Even though this

approach demonstrated its effectiveness, it is limiting the potential of the DQMOM.

Since the cause of the phenomenon is might be that the update equation based on

Bayes’ rule updates only the weights, it is desirable to develop the update method

based on Bayes’ rule that can update not only weight but also abscissas simultane-

ously. Since it will mitigate the problem without borrowing the update equations

from other filtering methods, the performance of the DQMOM based nonlinear filter

might be better.
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APPENDIX A

Calculation of the Local Sidereal Time

The local sidereal time is the angle between the x-axis of the geocentric-equatorial

coordinate (vernal equinox direction) and the longitude of the sensor location on the

Earth. It is the sum of the Greenwich sidereal time which is the angle between the

Greenwich Meridian and the x-axis of the geocentric-equatorial coordinate and the

geographical longitude of the location.

θ = θGMT + φ (A.1)

where θGMT is the Greenwich sidereal time and φ is the geographical longitude of the

sensor location.

There are two different ways to calculate the local sidereal time (LST). The first

method requires knowing the Greenwich sidereal time (GST) at the beginning of the

particular year (θGMT0
) in UT1 that can be found from Astronomical Almanac [61, 72]

where UT1 is the universal time in solar seconds. Once the θGMT0
of particular year

(January 1, 0 hour, 0 minute, 0 second) is found, the LST can be found by

θ = θGMT0
+ 1.002737909350795× 2π ×D + φ (A.2)

where D is the total elapsed time in solar days from θGMT0
, e.g. D for Jan 31 is 30.

θ found from this equation is in radian.

The second method requires calculating θGMT0
and is a little more complex. The

first step is to find the Julian date (JD) of the time in UT1. JD is the Julian day
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numbers for the date of interest for the epoch J2000 that also can be found from the

Astronomical Almanac and is simply the integer part of the JD, i.e., the JD at 0 h 0

min 0 s of the day. It is computed by

JD = (367× yr)− INT



















7
{

yr + INT
(

mo+9
12
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}

4
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

+ INT

(

275mo

9

)

+ d

+ 1721013.5 +
( s60

+min)
60

+ h

24

(A.3)

where yr, mo, d, h, min, and s are full digit year, month, day, hour, minute, second

accordingly and INT means real truncation. This equation is valid for the time

period from March 1, 1900 to February 28, 2100. The second step is finding the

Julian century of the Julian date by

T =
JD − 2451545.0

36525
(A.4)

With this the Greenwich sidereal time is

θGMT = 67310.548.31s +

(

876600h
3600s

1h
+ 8640184.812866s

)

T

+ 0.093104T 2 − 6.2× 10−6T 3

(A.5)

The superscripts, s and h denote seconds and hours in angular measure not in time.

θGMT from this calculation is in second which is 240th of degree. After converting it

in degree the LST is θ = θGMT + φ (degree) where φ is the geographical longitude

that east is taken to be positive.
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APPENDIX B

Nondimensionalization of the Kepler Equation

The simulation of the Keplerian dynamic through the DQMOM is done using canon-

ical unit instead of the standard SI unit [61], which means Eq. (B.1) is nondimen-

sionalized for a better numerical stability.

r̈ =
dvvv

dt
= − µ
r3
r (B.1)

The radius of the initial position is used as the distance unit r = r0, and the time

unit is naturally equal to t = r/v where v is the velocity unit defined by v =
√

µ/r.

With these canonical units, the position, the velocity, the time, and the gravitational

parameter can be redefined as

r = r̂r v = v̂v t = t̂t = t̂
r

v
µ = µ̂v2r (B.2)

where r̂, v̂, t̂ and µ̂ are the nondimesional position, the velocity, the time and the

gravitational parameter, respectively.

The nondimensional form of the Eq. (B.1) is

¨̂r =
dv̂

dt̂
=
d

dtv
r

(

v

v

)

=
r

v





dv

dt

(

1

v

)

+
d

dt

(

1

v

)

v



 (B.3)

Since v is constant,
d

dt

(

1

v

)

= 0, it becomes

¨̂r =
dv

dt

(

r

v2

)

= − µ
r3
r

(

r

v2

)

(B.4)
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By replacing the gravitational parameter µ and r, using above definition, it can be

rewritten as

¨̂r =
dv

dt

(

r

v2

)

= − µ̂v
2r

r3
r̂r

(

r

v2

)

= − µ̂
r3
r̂r3 (B.5)

Finally, using r3 = r̂3r3, Eq. (B.1) can be written in complete nondimensional form

as

¨̂r = − µ̂
r̂3
r̂ (B.6)

The Keplerian equation in canonical unit has the same form as it in SI unit.
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