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Abstract  

Humans have facilitated a spread of nonnative biota across the Earth. As 

nonnative species, their interactions with native species, their surrounding community, 

and their environment are novel, and thereby provide unique opportunities for studying 

community assembly and the maintenance of community diversity. The study of 

nonnative species is also important because some experience population explosions and 

spread rapidly throughout a new habitat and cause negative environmental and 

economic impacts. Such nonnative species are often referred to as invasive species.  

Freshwater systems are among the most impacted environments by invasive 

species because they are some of the most disturbed ecosystems on the planet. 

Disturbances to freshwater ecosystems include impoundments in riverine networks and 

increased anthropogenic nutrient pollution (i.e., cultural eutrophication). These 

disturbances facilitate the establishment and spread of invasive species by changing 

resource availability and altering species interactions, which creates openings for 

invasive species.  

Another result of these disturbances in freshwater ecosystems is the worldwide 

proliferation and establishment of harmful algal blooms (HABs). Harmful algae are 

planktonic microbes from multiple taxonomic groups that can produce toxins. Similar to 

invasive species, these species are infamous for being able to dominate their ecosystems 

at high densities and produce devastating ecosystem and economic effects. Much of the 

research on harmful algae ecology focuses on the prevention and control of bloom 

formation or toxin production, but fundamental questions of community ecology 
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regarding dispersal, distribution, and ultimately establishment of these microbial 

invasives have received little consideration.  

This lack of attention may be due to the fact that microbial species in general are 

neglected in the invasion ecology literature. Most concepts and hypotheses in invasion 

ecology have been derived from the study of macrobial multi-cellular organisms. That 

microbes have historically not been considered within the field of invasive ecology is at 

least partially explained by one of the prevailing hypotheses of microbial community 

ecology: “everything is everywhere, but, the environment selects.” This hypothesis 

suggests that dispersal is not limiting for microbes and thus microbes may not be 

invasive at all, but rather present in a given environment at low densities at any given 

time. One implication of this hypothesis for microbial invasion ecology is that our 

ability to discern a microbial invasion is limited by our ability to detect it. However, 

another implication of the “everything is everywhere, but, the environment selects” 

hypothesis is that the environment is the primary determinant of whether a given 

microbe is abundant enough to be detected (i.e., microbial establishment). Because 

relatively high detection limits (which are continually being reduced as molecular 

technology advances) and a lack of traditional taxonomy has severely limited the study 

of microbial invasives, there are numerous questions that need to be addressed in order 

to understand the factors governing invasion and successful establishment of microbial 

species.  

The harmful algal species, Prymnesium parvum provides an excellent 

opportunity for ecologists to gain insight into the factors responsible for the successful 

establishment of invasive microbes. Prymnesium parvum is a toxigenic protist in the 
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class Prymnesiophyceae. It was first characterized from marine systems, but has since 

invaded freshwater systems worldwide. It is notorious for its negative impacts on 

ecosystems, chief among them, the killing of fish. Fish affected by P. parvum toxins 

exhibit hemorrhaging of the gills, and P. parvum blooms typically cause massive fish 

kills. Prymnesium parvum blooms are also considered to be Ecosystem Disruptive Algal 

Blooms (EDABs) characterized by their adverse direct effects on fishes and herbivorous 

invertebrate grazers, as well as their indirect effects on nutrient and food web dynamics, 

which create feedbacks enabling bloom persistence. In North America, the first record 

of a P. parvum bloom is from a fish kill in 1985 in the Pecos River system of southern 

Texas, USA. During the subsequent two decades, P. parvum has expanded its range and 

bloomed and caused fish kills in reservoirs and rivers throughout much of the southern 

United States from California to Florida, and as far north as Wyoming and West 

Virginia. Numerous studies, in particular laboratory experiments, have been conducted 

into the autecology of P. parvum that suggest attributes that might make it a good 

invader, although many of these have not been put into a natural context. Similarly, 

much is known about the distribution of its blooms, although the factors responsible for 

invasion of a system and subsequent bloom development are not well understood and 

have not been directly addressed.  

 In 2004, P. parvum invaded and bloomed in Lake Texoma, OK-TX, USA 

causing a massive fish kill in many of the shallow areas of the reservoir. Including this 

first bloom, P. parvum has bloomed during winter in seven of the nine winters through 

2012. This created a unique opportunity for me to use P. parvum to investigate 

questions in invasion ecology using a microbial invader, specifically questions about 
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microbial establishment. In my dissertation, I address factors important to 

understanding the success of P. parvum invading new systems and the consequences of 

a P. parvum bloom on the fish community. In my first chapter, I modified a recently 

developed method for detecting P. parvum using quantitative polymerase chain reaction 

(qPCR) and tested its efficacy as an alternative to microscopy for P. parvum detection 

and enumeration in a long-term monitoring program in Lake Texoma. Abundance 

estimates of P. parvum were similar for both methods, but I detected P. parvum at 

multiple sites using qPCR where it previously had gone undetected by microscopy. 

Using qPCR, I substantially reduced processing time, increased detection limit and 

reduced error in P. parvum abundance estimates compared to microscopy. Thus, qPCR 

is an effective tool for detecting and monitoring P. parvum, particularly at pre-bloom 

densities, and should likewise prove useful in monitoring programs for the other HAB 

species for which qPCR methods have been developed. 

In chapter two, I sampled fish near and offshore over an annual cycle 

encompassing a P. parvum EDAB event in two coves (i.e., a bloom site and a reference 

site) of Lake Texoma. My objective was to document the processes of extirpation and 

recovery of a fish assemblage to the disturbance of an EDAB event. Prymnesium 

parvum bloomed in one cove from mid-December 2008 until May 2009, eliminating all 

fish during this period. Fish toxicity bioassays indicated no substantial differences in 

susceptibility across fish species to P. parvum toxins. Fish rapidly recolonized the 

bloom site in May 2009 after the P. parvum bloom diminished. Fish assemblages were 

resilient to the P. parvum EDAB, recovering to previous abundance, richness, and 

composition within six months. My results suggest that the reservoir-wide fish 
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metacommunity enabled a rapid recovery of local fish assemblages following a spatially 

heterogeneous EDAB event. 

In chapter three, I used a four-year data set from an ongoing monitoring program 

in Lake Texoma (OK-TX) to construct a predictive model relating P. parvum presence 

or absence to environmental parameters at a local scale. I then tested this model at the 

regional scale in conjunction with environmental sampling to predict presence and 

absence of P. parvum in the watershed of the Red River, one of two tributaries to Lake 

Texoma and a neighboring watershed, the Canadian River, as well as a few sites in the 

Arkansas River watershed. Based on three environmental factors, specific conductance, 

total nitrogen, and total nitrogen : total phosphorus ratio, my predictive model 

accurately classified P. parvum as present or absent in Lake Texoma for 74% of the 

samples. Applying this model to the adjacent watersheds also showed strong predictive 

power, correctly classifying 87% of the sites sampled within the Red River watershed 

and 81% of the sites sampled in the Canadian River watershed. Sites where the model 

predicted P. parvum but none was detected may be particularly vulnerable to P. parvum 

establishment and should be more closely monitored for future invasion success. 

Misclassifications by the model of sites in which P. parvum was detected suggests that 

dispersal has occurred, but that the environmental conditions were not conducive to 

population establishment. Indeed, at these sites, P. parvum abundances, when detected, 

were low. While this study cannot rule out dispersal limitation as a major factor 

involved in the biogeography of P. parvum, my results do indicate that the 

establishment and spread of this harmful algal species appears to be limited by 

environmental conditions in the invaded habitat. 
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In chapter four, I experimentally assessed the roles of community resistance and 

propagule pressure (i.e., the number of invaders entering a habitat or the frequency of 

invasions to a habitat) on the establishment success of P. parvum. One of the seminal 

hypotheses in the field of invasion ecology is that more diverse communities should be 

more resistant to invasion by exotic or non-native species. Similarly, propagule pressure  

is thought to facilitate an invasive species’ establishment success by increasing the 

ability of an invading population to absorb the challenges of its new environment. 

Propagule pressure and community resistance to invasion are predicted to interact to 

affect the probability of community invasion and species establishment in a new 

community. I show experimentally that regardless of community diversity, 

establishment success by the microbial invader, Prymnesium parvum in an 

environmentally-compatible habitat, is determined by propagule pressure.  

 Currently, there are two theoretical possibilities that might explain the rapid 

range expansion of P. parvum. One possibility is that P. parvum is an invasive species 

that has dispersed to and established in new ecosystems. The second possibility is that 

this range expansion is driven by changes in the environment, particularly relating to 

salinity as affected by climate change and water resource overexploitation, and that P. 

parvum has always been present in these systems (i.e., “everything is everywhere, but, 

the environment selects”). My dissertation adds to the literature by showing that indeed 

both dispersal and environmental selection can play a role in P. parvum establishment.  

The results from my dissertation are only a starting point for continuing to ask 

questions about the importance of dispersal and the environment to the outcomes of 

microbial invasion. Further investigation into the roles of environmental filtering, and 
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the possibility of prior presence of P. parvum should prove to be fruitful avenues of 

future research. Furthermore, understanding how the environment and P. parvum affect 

community composition should allow us to gain insight into how P. parvum interacts 

with other microbes. Ultimately, all of this information is important not only to our 

understanding of P. parvum specifically, but to our understanding of microbial 

invasions and harmful algal blooms, in general, and thus will contribute to our ability to 

mitigate the impacts of HABs and EDABs. 
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Chapter 1 – Incorporating molecular tools into routine HAB 

monitoring programs: using qPCR to track invasive Prymnesium 

 

Richard M. Zamor, 1Program in Ecology and Evolutionary Biology, Department of 

Zoology, and Plankton Ecology and Limnology Laboratory, Biological Station, 

University of Oklahoma, Norman, OK 

Karen L. Glenn, Plankton Ecology and Limnology Laboratory, Biological Station, 

University of Oklahoma, Norman, OK 

K. David Hambright, Program in Ecology and Evolutionary Biology, Department of 

Zoology, and Plankton Ecology and Limnology Laboratory, Biological Station, 

University of Oklahoma, Norman, OK 
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Keywords: Prymnesium parvum, qPCR, phytoplankton enumeration, sequence copy 
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Abstract 

Microscopy, a staple of monitoring programs for tracking the occurrence and abundance 

of harmful algal bloom (HAB) species, is time consuming and often characterized by 

high uncertainty. Alternate methods that allow rapid and accurate assessment of 

presence and abundance of HAB species are needed. For many HAB species, such as 

the toxigenic haptophyte, Prymnesium parvum, molecular methods including 
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quantitative real-time PCR (qPCR) have been developed with the suggestion that they 

should be useful for monitoring programs. However, this suggestion rarely has been put 

into action. In this study, we modified a recently developed method for detecting P. 

parvum using qPCR and tested its efficacy as an alternative to microscopy for P. 

parvum detection and enumeration in a long-term monitoring program in a recently 

invaded subtropical US reservoir. Abundance estimates of P. parvum were similar for 

both methods, but we detected P. parvum at multiple sites using qPCR where it 

previously had gone undetected by microscopy. Using qPCR, we substantially reduced 

processing time, increased detection limit and reduced error in P. parvum abundance 

estimates compared to microscopy. Thus, qPCR is an effective tool for detecting and 

monitoring P. parvum, particularly at pre-bloom densities, and should likewise prove 

useful in monitoring programs for the other HAB species for which qPCR methods 

have been developed. 

 

1. Introduction 

Methods for rapidly and accurately processing field samples to assess the 

presence of harmful algal bloom (HAB) species are vital to any monitoring program 

attempting to understand HAB species distributions within aquatic systems and 

networks, their dynamics within those systems, and ultimately preventing or mitigating 

their harmful affects (HARRNESS 2005). The capacity to detect the formation of 

blooms early in their development is particularly important if we hope to subvert their 

establishment. One such species, Prymnesium parvum, has invaded plankton 

communities in coastal and freshwater systems throughout the world, blooming and 
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killing fish and other organisms (Carter 1937, Edvardsen & Imai, 2006). Since its 

discovery as the agent responsible for fish kills in southwestern Texas in the 1980s, P. 

parvum has expanded its range dramatically, blooming and causing fish kills in 

Oklahoma and across the southern United States, from California to Florida (Hambright 

et al. 2010). 

Sampling for P. parvum typically involves obtaining a water sample, preserving 

it, and examining small subsamples under the microscope during which P. parvum cells 

are identified and counted. Microscopy can be time and labor intensive, especially if 

low error and detection limits are important. In many HAB monitoring programs that 

depend solely on microscopy, accuracy is often sacrificed for increased sample number, 

leading to conservatively high limits of detection and reduced capability for early 

detection, invasion status, or bloom initiation. Additionally, some HAB species are 

relatively small and fragile and can become distorted during preservation (Galluzzi et 

al. 2008), making their identification and detection even more difficult. Furthermore, 

enumeration of HAB species is often conducted amidst a diverse plankton assemblage, 

especially prior to bloom formation, making cells even more difficult to distinguish 

from other closely related taxa, thereby making highly trained personnel essential 

(Humbert et al. 2010). Although microscopy is commonly available in most 

laboratories, the above-mentioned factors render this method inefficient for accurate 

routine assessments of HABs. Because of these shortcomings, numerous molecular 

approaches have been developed for assessing HAB species (Humbert et al. 2010, IOC 

2010). Specifically for P. parvum, methods for identifying and quantifying specific 

small subunit rRNA genes, such as dot blot hybridization (Simon et al. 2000), flow 
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cytometry (Simon et al. 1997), and solid phase cytometry (Töbe et al 2006) have been 

developed. West et al. (2006) also have develop a method based on solid phase 

cytometry and monoclonal antibodies. While excellent data can be generated using any 

of these methods, they can be prohibitively expensive, especially in cases involving 

numerous samples or continuous on-site monitoring.  

Quantitative PCR (hereafter qPCR) is another molecular approach that has become a 

relatively common tool for monitoring HAB species (Humbert et al. 2010, IOC 2010; 

Martins and Vasconcelos 2011). Owing to factors such as fast processing times and 

relatively low cost of initial setup and consumables, qPCR provides a relatively 

inexpensive alternative for HAB species enumeration and monitoring (IOC 2010). 

Multiple qPCR methods have been devised for HAB species, including Pseudo-nitzchia 

(Fitzpatrick et al. 2010), numerous dinoflagellates (Bowers et al. 2000, Galluzzi et al. 

2004, Kavanagh 2010), various cyanobacteria (Koskenniemi et al. 2007, Al-Tebrineh et 

al. 2011), and P. parvum (Galluzzi et al. 2008, Manning and LaClaire 2010), but most 

of these methods have not been incorporated into routine monitoring programs. Since P. 

parvum invaded and bloomed in Lake Texoma, OK-TX in 2004, we have been 

monitoring its population dynamics using microscopy-based methods (Hambright et al. 

2010). Beginning in 2008, we began monitoring P. parvum using a modified version of 

the qPCR method developed by Galluzzi et al. (2008). Here we show that not only can 

this method be used as a viable alternative to microscopy in a routine monitoring 

program, but that qPCR also offers a lower limit of detection and higher levels of 

accuracy than microscopy. 
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2. Materials and Methods 

2.1 Study Site 

Lake Texoma is an impoundment of the Red and Washita Rivers on the border 

of Oklahoma and Texas, USA. It was constructed in 1944 for flood control, hydropower 

generation and recreation. Prymnesium parvum first bloomed in Lake Texoma in the 

winter of 2003-2004, with large populations restricted to the Red River arm of the lake, 

and blooms to littoral areas (Hambright et al. 2010). A regular monitoring program has 

been maintained since 2005 and in Jan 2008 we began collecting samples for use in 

molecular assays of P. parvum using qPCR at eight littoral sites (L) and five pelagic 

sites (P), either on the Red River arm (L1, L2, L3, L4, P1, P2), the main body (L5, L6, 

P3, P4), or the Washita River arm (L7, L8, P5) of the lake (see Hambright et al. 2010 

for further site descriptions).  

 

2.2 qPCR Primer Redesign 

Methods for quantifying P. parvum via qPCR using primers targeting the 

ribosomal internal spacer transcribed (ITS2) region were developed by Galluzzi et al. 

(2008; PrymF, 5’-TGTCTGCCGTGGACTTAGTGCT-3’ and PrymR, 5’-

ATGGCACAACGACTTGGTAGG-3’). Galluzzi et al. (2008) did not report any 

aspecific amplicons or primer-dimers in their reactions, but we were unable to repeat 

their methods without formation of primer-dimers (which produced artificially high cell 

density estimates) using either P. parvum monocultures (UTEX strain LB 2797, UTEX 

Culture Collection, Colorado River, Texas, USA; maintained in our lab since 2006), 

natural lake samples, or culture isolates derived from Lake Texoma. Addition of bovine 
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serum albumin and manipulations of magnesium concentrations (Bustin and Nolan 

2004) failed to alleviate the problem. We deduced that the problem might have been 

caused by self-complementarity in the GGTAGG motif located on the 3' end of PrymR 

(Rychlik 1993). Therefore, we redesigned the PrymR primer by removing 3 bases from 

the 3' end (creating PrymR–3, 5’-ATGGCACAACGACTTGGT-3’) thereby removing 

the potential for the two guanosine doublets to contact and form hydrogen bonds 

(Hardin et al. 1991). We used Primer BLAST (Rozen and Skaletsky 2000) to check for 

target specificity in GenBank, EMBL, DDBJ, and PDB databases and tested the 

redesigned primer using varying concentrations of lake and culture samples. Our 

primers only produced matches to the ITS2 rRNA gene of P. parvum (GenBank 

accession numbers: P. parvum AM690999.1, P. parvum f. patelliferum AF289038.1, P. 

parvum FJ907460.1). The use of the PrymR–3 primer eliminated the appearance of 

primer-dimers (as determined by the melt curve analysis with a dissociation protocol at 

the end of each qPCR run) in all subsequent reactions. 

Robustness of the modified protocol was assessed using P. parvum strains from 

diverse geographic locations, including field samples and P. parvum cultures derived 

from Dunkard Creek, West Virginia-Pennsylvania, USA (UOBS-WANA 576); Lake 

Granbury (UOBS-Granbury-506, Texas, USA; Lake Diversion, Texas, USA (UOBS-

Diversion 504; Colorado River, Texas, USA (UTEX LB 2797); Florida, USA (UTEX 

LB 22837); and Norway (ppar 054, Bjerknes 28, Bognefiorden 28, and NIVA-3/89/3 

ES). Our method accurately identified P. parvum from all locations and cultures. 
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2.3 Standard Curve 

We constructed standard curves using linear plasmid DNA containing the cloned 

sequence targeted by the primers on the ITS2 region of P. parvum strain UTEX 

LB2797. We purified the plasmid DNA using the UltraClean Standard Mini Plasmid 

Prep Kit (MoBio Laboratories Inc.). This product was then digested with enzyme ScaI 

(Invitrogen) inside the ampicillin resistance gene and repurified in linear form using an 

UltraClean 15 DNA Purification Kit (MoBio Laboratories Inc.). We used linear plasmid 

DNA to avoid overestimation of gene and cell copy numbers that can result from 

supercoiling of circular plasmid DNA in the qPCR reaction (Hou et al. 2010). We 

quantified our linear plasmid using a high sensitivity Quant-iT dsDNA assay kit on a 

Qubit fluorometer (Invitrogen) and calculated plasmid copy concentration based on the 

average mass of one base pair. We constructed standard curves using 10-fold serial 

dilutions ranging from 2 to 2 $ 106 copies with three analytical replicates. Data from 

four independent standard curves with freshly made plasmid standards were used for 

standard curve calibration for lake samples and data from nine independent standard 

curves were used for standard curve calibration for culture samples. Different curves 

were used for quantification of the two sample types because different well factors were 

used in the determination of sample fluorescence for lake and culture samples during 

the qPCR reaction (persistent and dynamic well factors, respectively). A standard curve 

based on linear plasmid DNA and no-template negative controls were included in each 

run and baseline threshold was held constant between runs to ensure the consistency of 

standards and quantification between runs. 
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2.4 Microscope vs. qPCR and Error Comparison 

Samples for microscope counts were preserved using Lugol’s solution (1% final 

concentration) and counted within two days from collection (haemocytometer method 

minimum of six 1-µL subsamples; detection limit = ~333 ± 817 cells mL-1 (mean ± 

SD)) using a stereomicroscope with DIC Nomarsky illumination at 200$ magnification. 

Identification was confirmed at 400$ magnification. Although this detection limit 

generates values that individually are not statistically different from zero, our long-term 

monitoring program has revealed that such low values, when at multiple sites and times, 

are biologically significant. Furthermore, this method was used in order to maintain 

comparability with Texas Parks and Wildlife Department data for P. parvum in Lake 

Texoma during 2004-2006, and to allow timely assessment of P. parvum in thirteen 

lake samples weekly, as standard counts following sedimentation (Lund et al. 1958) 

would have greatly decreased sample throughput. For qPCR enumeration, we filtered 

100-1000 mL (depending on particulate load) of lake water through GF/F glass-fiber 

filters using gentle vacuum (< 0.17KPa) and then applied methods adapted from 

Countway and Caron (2006) for processing the material retained on the filter. The filters 

were folded twice and submerged in 2 mL of lysis buffer (100 mM Tris [pH 8], 40 mM 

EDTA [pH 8], 100 mM NaCl, 1% sodium dodecyl sulfate), 200 µL of 0.5-mm zirconia-

silica beads, in 15-mL Falcon tubes and stored at –20oC until processing. Frozen filters 

were thawed in a 70oC water bath for 5 min and lysed by bead beating on a vortexer set 

to the highest setting for 30 s. Heating and bead beating was repeated two additional 

times to ensure complete lysis. The crude lysates were then poured into sterile, 2-mL 

microcentrifuge tubes and stored at –20oC until they were analyzed with qPCR. All 
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samples were analyzed as crude lysates diluted 1:100 in qPCR reactions to remove 

inhibitory effects of lysis buffer, cellular contents, or other organismal DNA before 

adding them to qPCR reactions. 

For lake samples, we performed qPCR assays in a final volume of 25 µL 

containing 1$ SYBR Green PCR Mastermix (Applied Biosystems), 100 nM PrymF and 

PrymR-3 primers (Invitrogen), and 3µL of template from the diluted crude lysates. For 

each sample, we examined at least three replicate reactions using 96-well plates sealed 

with optical film B (BioRad) on an iQ5 real-time PCR detection system (BioRad) and 

analyzed using the associated iQ5 optical system software. Each reaction included an 

initial denaturation at 95°C for 4 min followed by 40 cycles at 95°C for 15 s and 60°C 

for 1 min (Galluzzi et al. 2008). Fluorescence within qPCR reactions for lake samples 

was determined using persistent well factors. Detections were considered significant for 

samples that produced a detectable signal in at least two replicates and the mean DNA 

quantity was significantly different from 0 (P ! 0.05).  

Because qPCR quantifies the number of copies of a targeted sequence and there 

are potentially multiple copies of that sequence in a cell, we needed to determine the 

copy number of the sequence that we targeted for a P. parvum cell before we could 

translate gene quantities into meaningful cell densities. To determine the mean sequence 

copy number per cell for lake samples, we conducted three independent experiments in 

which we created 24 independent samples from log-phase growth batch cultures, 

dilutions of those cultures, and dilutions of steady-state chemostat cultures from a strain 

of P. parvum isolated from Lake Texoma (site L2; UOBS-LebanonPool-249). Cultures 

were grown in batch and chemostat in modified COMBO medium (Kilham et al. 1998) 
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at N:P = 16:1 (800uM N : 50uM P), supplemented with 6 g Instant Ocean™ L-1, and 

maintained on a 12:12 light:dark cycle at 25ºC. Sample P. parvum abundances ranged 

from ~150 – 15,000 cells mL-1. We used low-cell densities to avoid inhibition of qPCR 

reactions due to excessive amounts of template DNA. Culture sample cell densities 

were determined via flow cytometry (BD-FACSCalibur) and culture samples were 

filtered and processed for qPCR as noted above for lake samples, except we used 200 

nM of PrymF and Prym R–3 primers to ensure that enough primer was present to bind 

to all of the available copies of target DNA. Fluorescence in qPCR reactions for culture 

samples was analyzed using dynamic well factors within separate runs. Copy number 

was then defined as the slope of simple linear regression of copies of the targeted ITS2 

sequence detected by qPCR versus P. parvum abundances detected using flow 

cytometry (SPSS v19). The copy number regression was forced through the origin, as 

copy number should directly correspond to cell number (Motulsky & Christopoulos 

2004). Although data were not normally distributed, data were not transformed to avoid 

transformational biases that can occur when returning data to its original format and 

because the primary goal of the analysis was to define the relationship (i.e., the slope) 

between cell number and gene copies.  

To assess the accuracy of the experimentally-determined copy number, we 

regressed P. parvum cell densities for lake samples determined microscopically with 

cell densities determined by translating lake sample sequence quantities determined via 

qPCR. Cell densities in lake samples were estimated by dividing the quantities of the 

targeted sequence in each sample by the number of sequence copies per cell obtained 

from the regression analysis described above (i.e., the slope). We limited our analysis to 
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samples from Jan. 2008 – Mar. 2011 in which P. parvum was detected using both 

methods, N = 177). Four samples with standardized residuals > 4$ standard deviations 

were removed. Three of these samples had substantially higher sequence copies than 

were found in any other sample and would correspond to P. parvum abundances much 

higher than have ever been reported in nature. The fourth sample had extremely low 

numbers of sequence copies for the number of cells detected microscopically. The 

regression of cell density from both methods was also forced through the origin, as cell 

density determined microscopically should directly correspond to cell densities 

determined via qPCR (Motulsky & Christopoulos 2004). We also plotted cell density 

estimates through time from both the microscope and qPCR to further compare the two 

methods. To estimate and compare the measurement error associated with our qPCR 

and microscopical methods we determined the coefficient of variation from the 

analytical replicates and subsamples for each lake sample that produced a significant 

cell density estimate by either qPCR or microscope count, respectively. These error 

estimates were plotted against the P. parvum cell densities produced from those 

measurements and we determined the relationship between cell density and error using 

simple curve fitting (SPSS v19).  

 

3. Results  

3.1 Standard Curve 

The four independent standard curves for quantifying lake samples based on 

fluorescence assessed with persistent well factors yielded a linear relationship between 

the threshold cycle (Ct) and the log10 of the starting quantity of linear plasmid ITS2 
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rDNA sequence (SQ), Ct = -3.64x 64(SQ) + 34.85, r2 = 0.99, efficiency = 0.88% 

(Figure 1a). The nine independent standard curves for quantifying culture samples from 

the copy number experiments based on fluorescence assessed with dynamic well factors 

yielded the relationship Ct = -3.39(SQ) + 32.45, r2 = 0.99, efficiency = 0.97% (Figure 

1b).  

 

3.2 Microscope vs. qPCR and Error Comparison 

The average number of copies of the targeted sequence of ITS2 rDNA per P. 

parvum cell based on samples from the strain isolated from Lake Texoma was 11.7 ± 

0.6 (slope ± SE) (Figure 2a). Quantities of the targeted sequence obtained through 

qPCR for the strain isolated from site L2 were also a good fit to cell densities obtained 

via flow cytometry (N = 24, Adj. r2 = 0.94, P < 0.001; Figure 2a). When converted to 

cell densities using this copy number, gene quantities obtained for lakes samples by 

qPCR were equivalent to cell density estimates determined microscopically (qPCR cell 

density = 1.1(microscope cell density; N = 177, Adj. r2 = 0.85, P < 0.001; Figure 2b).  

Overall, P. parvum abundance estimates by both qPCR and microscopy were 

similar at each of the 13 monitored sites through time (Figures 3 and 4). The highest 

abundances by either method were recorded during winter months at sites typically 

known to experience P. parvum blooms (e.g., L2, L3, P1; for detailed site locations see 

Figure 1 in Hambright et al. 2010). At other sites with mid-range abundances of P. 

parvum we also saw consistent results between qPCR and the microscope (e.g., L1, L4, 

L5, P2). The lowest cell density that we detected in the lake was 26 cells mL-1 (P3), 

increasing our practical detection limit nearly 13-fold over the detection limit of our 
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microscope method employing a haemocytometer (~333 cells mL-1). This increase in 

limit of detection was most evident in sites with the lowest P. parvum abundances, 

particularly those sites in which blooms have never been observed (e.g., L6, L7, L8, P3, 

P4, P5).  

Coefficient of variation plotted against mean P. parvum cell densities revealed 

similar power curve relationships for both qPCR (CV = 0.59(dens)-0.2; Adj. r2 = 0.26, P 

< 0.0001, N = 271) and microscopy (CV = 40.2(dens)-0.5; Adj. r2 = 0.90, P < 0.0001, N = 

187) with measurement error increasing with decreasing cell density (Fig. 5). However, 

the coefficients of variation for qPCR-determined P. parvum densities were generally 

much lower than those for the microscope method, rising to no more than 0.7 near the 

minimum level of detection. By contrast, coefficient of variation for the microscope 

method rose to 2.5 at its detection limit.  

 

4. Discussion 

We modified Galluzzi et al.’s (2008) qPCR method by deleting three bases from 

the 3’ end of the reverse primer and tested whether it could be used as an alternative to 

microscopy in our ongoing lake monitoring program. The modified method eliminated 

the occurrence of primer-dimers, was robust for multiple P. parvum strains from North 

America and Norway and provided similar cell densities in natural samples compared to 

those obtained by standard microscopical methods. Relative to microscopy, qPCR had a 

much lower detection limit with substantially lower error and time investment (see also 

Fitzpatrick et al. 2010). Furthermore, the copy number of the targeted ITS2 rDNA 

sequence for the strain isolated from Lake Texoma (11.7 ± 0.6) was consistent with 
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values obtained for the two different strains assessed by Galluzzi et al. (2008; Strain 

KAC 39, Norway: 10.0 ± 2.8 and Strain CCMP 708, Scotland: 15.6 ± 1.6). This 

consistency suggests that our method is also robust to natural variations that could 

potentially affect copy number including cell division and sex (sensu a haplo-diploid 

life cycle; Larsen and Edvardsen 1998), and genomic variability. Because PrymR–3 

lowered detection limit and removed the potential for self-complementarity and primer-

dimers during amplification, it may be more suitable for accurately quantifying the 

presence of P. parvum in natural samples than the original PrymR used by Galluzzi et 

al. (2008).  

The high levels of total suspended solids in Lake Texoma (Atkinson et al. 1999) 

limited the volume of water that we could filter through a GF/F filter, restricting the 

amount of algae that we were able to concentrate on a filter, and ultimately, our 

detection limit. For example, if we were to filter 200 mL of lake water, detection of an 

average of one sequence copy per reaction would translate to 28 cells mL-1, while the 

same detection after filtering 1L of lake water would translate to 6 cells mL-1 – a major 

increase in detection limit. However, our actual detection of 26 cells mL-1 at P3 (800mL 

filtered) and other similar findings of low cell densities by qPCR suggests that we have 

increased our detection limit by at least 13-fold from the detection limit of our 

haemocytometer and microscope method (26 cells mL-1 vs. 333 cells mL-1). Indeed, a 26 

cells mL-1 detection limit is comparable to the minimum limits of detection that can be 

obtained using the Ütermohl sedimentation method with extensive subsampling under 

an inverted microscope (Lund et al. 1958), which is even more time intensive than our 

haemocytometer method.    
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While the patterns of P. parvum cell densities based on qPCR were similar to 

those based on microscope enumeration, we were able to detect P. parvum on many 

occasions in which the detection limit of our microscopical methods precluded its 

detection (e.g., L6, L7, L8, P4, P5). As we approached these low cell densities, 

measurement error for both methods increased. However, measurement error in the 

qPCR samples was weakly explained by cell density (26% of the variance) suggesting 

that something other than cell density is a better predictor of measurement error using 

qPCR. Measurement error was also substantially lower for qPCR (180% lower at 

maximum values, i.e., CV = 1.8), which lends credence to values obtained using this 

method. In late 2009, numerous sites (L1, L2, L3, L4, L5, P1) showed increases in P. 

parvum abundances detected by qPCR that were consistent with bloom formation 

patterns in previous years, but that went undetected by the microscope even though cell 

densities were well above its detection limit (up to 50,000 cells mL-1). There are a few 

instances where P. parvum was detected by the microscope, but not by qPCR (e.g., L8 

Feb 2008 and Jan 2009). As pointed out above, such low values at the microscope 

detection limit (~333 ± 817 cells mL-1) are not statistically different from zero when 

considered individually. Given the vast improvement in detection limit using qPCR it is 

likely that those two instances are in fact due to microscope error (e.g., misidentification 

of a morphologically similar cell, etc.). The increase in detection limit, the reduction of 

measurement error, and the detections of P. parvum by qPCR that were not detected by 

microscopy suggest that using qPCR should increase the ability to detect P. parvum 

earlier during an invasion event or during bloom formation and that the enumeration by 
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the microscope-based haemocytometer method can miss early bloom formation even 

when abundances are above its detection limit.  

Since Galluzzi et al. (2008) developed the original qPCR method for assessing 

P. parvum densities using SYBR green, Manning and La Claire (2010) developed a new 

method incorporating multiplex methods and molecular beacons for qPCR using 4 

genomic DNA markers. Although this multiplex method is more technologically 

advanced it is hindered by a reduced reaction efficiency of the probes with increasing 

geographic and genetic distance. Hence the multiplex method would likely also be 

useful in lake monitoring programs, but would need to be optimized to a given system 

and ecotype. Because we targeted a more conserved genetic marker in the small subunit 

rDNA, our modified method seems to have avoided this limitation as the gene copy 

number for the targeted ITS2 region is consistent across 4 different strains and two 

continents and is able to detect successfully 14 different strains across 2 continents. 

Thus it appears that our modified Galluzzi et al. method may be more generally 

applicable in monitoring programs than multiplex methods. 

Because we assess P. parvum densities at 13 sites in the lake approximately 32 

times per year (up to 400 samples annually; Hambright et al. 2010), we have chosen to 

sacrifice detection limit for quantity of samples by using the haemocytometer-based 

microscopy method for enumeration. At approximately 15 minutes per subsample, and 

at least six subsamples per sample, monitoring P. parvum abundances via microscopy is 

a significant investment of time (~600 person-hours annually). Using qPCR, we can 

quantify P. parvum densities in 24 samples with triplicate replication every 3 hours. Of 

these three hours, only one hour is required for setting up the qPCR reactions, while 
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during the remaining time the machine is running unattended. Thus, we can count the 

same number of samples (with lower error and higher resolution, precision, and 

accuracy) for a given year in 8% of the time necessary with microscopy (~50 person-

hours).  

In conclusion, in this study we show that qPCR can be used successfully to 

assess and efficiently track P. parvum abundances in natural environmental samples. 

The method is specific, sensitive, and rapid. Since qPCR methods have been and are 

being developed for many HAB species, it is likely that similar methodology employing 

qPCR could be expanded in order to help shift the focus from a reactive stance dealing 

with the harmful effects of P. parvum and other HABs after they have bloomed to a 

more proactive stance aiding in the early detection of blooms or the invasion of new 

ecosystems. Specifically, detection of P. parvum with qPCR could prove useful if 

combined with routinely collected environmental data to predict P. parvum presence in 

new systems where it has previously gone undetected or in predicting which systems P. 

parvum might invade in the future. This would be particularly salient for newly forming 

monitoring programs for systems in which P. parvum has recently or is currently 

invading.   
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Figures 

 

Figure 1. Composite standard curve calibration of Prymnesium parvum qPCR 
method produced via dilutions of linear plasmid containing the ITS2 rDNA 
sequence using (a) persistent well factors for lake and (b) dynamic well factors for 
culture samples. 
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Figure 2. (a) Linear regression of P. parvum abundance (cells mL-1) obtained via 
flow cytometry and ITS2 rDNA (copies mL-1) obtained via qPCR for culture 
samples to copy number of the targeted sequence per cell. (b) Linear regression of 
log P. parvum abundance (cells mL-1) obtained via microscope counts and log P. 
parvum abundance (cells mL-1) converted from ITS2 rDNA quantities obtained via 
qPCR from Jan. 2008 – Mar. 2011 that detected P. parvum using both methods. 
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Figure 3. Comparison of P. parvum abundance estimates obtained via microscope 
(black line) and qPCR (red line) at littoral stations from Jan. 2008 – Nov. 2010 in 
Lake Texoma. See Hambright et al. (2010), for description of monitoring program 
and sampling station details. 
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Figure 4. Comparison of P. parvum abundance estimates obtained via microscope 
(black line) and qPCR (red line) at pelagic stations from Jan. 2008 – Nov. 2010 in 
Lake Texoma. See Hambright et al. (2010), for description of monitoring program 
and sampling station details. 
 

 

Figure 5. Error estimates (coefficient of variation) for measurements of P. parvum 
cell density using qPCR (red circles) and microscopy (black circles). 
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Abstract 

Disturbance of freshwater ecosystems through cultural eutrophication has resulted in an 

increased global occurrence of Harmful Algal Blooms (HABs). Ecosystem Disrupting 
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Algal Blooms (EDABs), as their name implies, are a subset of HABs that produce 

extensive disturbances across entire ecosystems. Prymnesium parvum is one such 

EDAB species that has invaded freshwater systems worldwide, causing massive fish 

kills and other negative effects. Fish kills frequently occur during HABs and EDABs, 

but there has been little study of long-term implications of these fish kills, nor of the 

resilience and recovery of fish assemblages following kills. We sampled fish near and 

offshore over an annual cycle encompassing a P. parvum EDAB event in two coves 

(i.e., a bloom site and a reference site) of a Southern Great Plains reservoir, Lake 

Texoma. Our objective was to document the processes of extirpation and recovery of a 

fish assemblage to the disturbance of an EDAB event. Prymnesium parvum bloomed in 

one cove from mid-December 2008 until May 2009, eliminating all fish during this 

period. Fish toxicity bioassays indicated no substantial differences in susceptibility 

across fish species to P. parvum toxins. Fish rapidly recolonized the bloom site in May 

2009 after the P. parvum bloom diminished. Fish assemblages were resilient to the P. 

parvum EDAB, recovering to previous abundance, richness, and composition within six 

months. Our results suggest that the reservoir-wide fish metacommunity enabled a rapid 

recovery of local fish assemblages following a spatially heterogeneous EDAB event. 

 

Introduction 

Ecological communities can be influenced profoundly by ecosystem 

disturbances and environmental perturbations (Hutchinson 1953, Connell 1978, White 

and Pickett 1985). Natural and anthropogenic disturbances can shape community 

structure by changing resource availability and creating opportunities that can be used 
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by newly arriving species or aggressive species within the disturbed community (White 

and Pickett 1985, Davis et al. 2000, Lockwood et al. 2007). Freshwater ecosystems 

have experienced extensive anthropogenic disturbances associated with increased 

nutrient availabilities (Smith 2003, Smith and Schindler 2009), which have caused an 

increased incidence of Harmful Algal Blooms (HABs) worldwide (Hallegraeff 1993, 

Smith 2003, Smith and Schindler 2009). Harmful algal blooms are proliferations of 

algae that cause deleterious effects on other organisms, often via the production of 

toxins (Hallegraff 1993, Landsberg 2002, Granéli and Turner 2006). The global 

frequency and severity of HABs has ignited interest in assessing their consequences for 

human and economic health (Granéli and Turner 2006). Moreover, a subset of HABs 

have been described as Ecosystem Disrupting Algal Blooms (EDABs) because the 

species involved not only respond to disturbances, such as increased nutrients, but also 

become a disturbance themselves by altering ecosystem structure and function (Sunda 

et al. 2006). 

Beyond the negative effects of HABs in general, EDABs are characterized by 

their adverse direct effects on fishes and herbivorous invertebrate grazers, and their 

indirect effects on nutrient and food web dynamics, which create feedbacks that can 

enable bloom persistence (Sunda et al. 2006). One such EDAB species is Prymnesium 

parvum (Carter 1937), a toxigenic marine haptophyte that has invaded freshwater 

systems worldwide causing widespread fish kills (Edvardsen and Imai 2006, Lutz-

Carrillo et al. 2010). In addition to causing fish kills, recent studies have revealed other 

substantial negative impacts on herbivorous zooplankton, including reduced 

survivorship, growth rates, and fecundities (Michaloudi et al. 2009, Remmel et al. 
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2011), primarily through the release of contact glycolipid toxins, which likely evolved 

to support heterotrophy (Henrikson et al. 2010, Remmel and Hambright 2012). 

Prymnesium parvum blooms also have substantial impacts on abundances and diversity 

of other unicellular eukaryotes and bacteria (Michaloudi et al. 2009, Jones et al. in 

prep). In North America, the first record of a P. parvum EDAB is from a fish kill in 

1985 in the Pecos River system of southern Texas, USA (James and De La Cruz 1989). 

During the subsequent two decades, P. parvum gradually expanded its range causing 

fish kills in reservoirs and rivers throughout much of the southern United States from 

California to Florida, and as far north as Wyoming and West Virginia (Roelke et al. 

2010, Hambright et al. 2010, Zamor et al. 2012).  

Although EDAB-related fish kills have been documented numerous times in the 

literature (reviewed in Landsberg 2002), fish are rarely integrated into analyses 

assessing bloom dynamics. Currently there is surprisingly little data on fish kills 

themselves (e.g., species affected and the extent of mortality). Thus, little is known of 

the longer-term response, e.g., the resilience and recovery, of fish assemblages to 

EDAB-related fish kills. Our goal here was to document the response of a fish 

assemblage to the disturbance of an EDAB event. We sampled fishes in two coves of a 

Southern Great Plains reservoir during a P. parvum EDAB: one cove experienced a P. 

parvum bloom, and has experienced previous recurrent P. parvum blooms; the other 

cove experienced P. parvum presence, but no blooms. Our study covered an annual 

cycle, including samples before, during, and after a bloom and provides insight into the 

extirpation and subsequent reassembly and recovery of a fish assemblage from the 

devastating effects of a P. parvum bloom.  
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Methods 

Study Site 

 Lake Texoma, constructed in 1944, was formed by the impoundment of the Red 

and Washita Rivers on the border of Oklahoma and Texas, USA (Fig.1). Its drainage 

basin encompasses 87,500 km2 and at normal lake elevation is the 12th largest reservoir 

in the USA. At least 50 species of fish inhabit Lake Texoma, including many 

recreationally important species (e.g., striped bass, Morone saxatilis (Walbaum); 

Matthews et al. 2004). Prymnesium parvum first bloomed in Lake Texoma in the winter 

of 2004 causing a massive fish kill in many of the shallow areas of the Red River arm of 

the reservoir (Hambright et al. 2010). Including this first bloom, P. parvum has 

bloomed during winter in seven of the nine winters through 2012, with the strongest 

blooms in Lebanon Pool (hereafter LP), a ~130-ha embayment formed by the 

confluence of Hauani Creek and Lake Texoma (Fig. 1). Extensive sedimentation by the 

Red River has blocked much of the mouth of LP, for which connectivity to Lake 

Texoma is usually maintained only through one or two narrow channels to the main 

reservoir body (Fig. 1) during normal to high water levels, but is often lost seasonally at 

low water levels, such as during winter and early spring (Fig. 2). Prymnesium parvum 

EDABs in Lake Texoma appear to be fueled by high nutrient concentrations and 

salinities when LP is disconnected from the reservoir due to low water levels 

(Hambright et al. 2010). However, blooms of P. parvum do not always produce fish 

kills (e.g., winter 2007-2008), and it is currently unclear what environmental conditions 

trigger increased P. parvum toxicity. The closest reservoir embayment upstream is 

~1050-ha Wilson Creek Cove (hereafter WCC; Fig. 1), which can also lose its 
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connection to the reservoir during seasonally low water levels (Fig. 1) and has similar 

water chemistry as LP; however, it has never experienced a toxic bloom or fish kill, 

although P. parvum is commonly present in WCC at low abundances during bloom 

periods (Hambright et al. 2010, Zamor et al. 2012; Fig. 2). We therefore focused on fish 

in LP as an affected assemblage while WCC served as a reference for unaffected 

assemblages.  

 

Fish Sampling 

We assessed the temporal effects of the P. parvum EDAB on fish by sampling 

nearshore and offshore fish assemblages in LP and WCC, before, during, and after a 

toxic bloom in LP. We sampled nearshore fish monthly from October 2008 – March 

2009 and during June, July, and October of 2009. At each sampling event, we collected 

nearshore fish by conducting four 25-m seine hauls (1.83m $ 4.57m seine, mesh = 

3.18mm) along four 100-m reaches of shoreline that were separated from one another 

by at least 100m (Fig. 1). We surveyed the same four 100-m reaches each month. 

Seined fish were pooled from the seine hauls within each 100-m survey and were 

immediately preserved in 10% formalin before returning to the lab for identification. 

We completed 16 seine hauls per sampling trip (four per 100-m survey) at each site 

regardless of the number of individuals collected (e.g., no fish during the P. parvum 

bloom at LP). In the lab we identified and measured individual fish (total length; TL) 

for up to 100 arbitrarily-selected individuals of each species from each reach. Following 

measurement, we counted any remaining individuals for species numbering over 100 

and then stored all fish in 50% isopropyl alcohol.  



33 

 We sampled offshore fish monthly from November 2008 – October 2009 using 

gill nets. At each cove in each month, we set two experimental gill nets for a single 

night. Nets were 61m $ 1.8m and composed of eight 7.6-m panels, with mesh ranging 

from 1.27cm – 10.16cm. Mesh size changed at each panel in 1.27-cm increments (i.e., 

panel 1 = 1.27-cm mesh, panel 2 = 2.54-cm mesh, etc.). A shallow net was set 

horizontally with the float line just below the surface, and a deep net was set 

horizontally, with the lead line along the bottom. Nets were set in the evenings between 

16:00 and 19:00 and retrieved the following day between 10:00 and 14:00. Fish were 

removed from nets, and weighed and measured (TL). 

 

Algae monitoring 

As part of a larger ongoing P. parvum monitoring project on Lake Texoma (see 

Hambright et al. 2010), densities of P. parvum were assessed monthly in both WCC and 

LP during the study period using microscope- and qPCR-based counts (Zamor et al. 

2012). Because qPCR offers better resolution of cell numbers with lower error rates 

(Zamor et al. 2012), qPCR results are reported in this paper. We defined blooms as any 

time P. parvum densities exceeded 10,000 cells mL-1, as densities above this level 

frequently result in fish kills (Roelke et al. 2010).  

 

Fish toxicity bioassays 

In order to test for the possibility of species-specific differences in susceptibility 

to P. parvum of Lake Texoma fish, we conducted P. parvum toxicity bioassays with 

four Lake Texoma fishes (striped bass, Morone saxatilis; inland silverside, Menidia 
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beryllina (Cope); gizzard shad, Dorosoma cepedianum (Lesueur)) and for reference, 

juvenile and adult fathead minnows (Pimephales promelas (Rafinesque)). Because there 

is little data available in the literature other than anecdotal evidence (see Rhodes and 

Hubbs 1992) that fish may differ in susceptibility to P. parvum toxins, we chose these 

species to represent the taxonomic and ecological breadth of fishes found in the lake 

(Matthews et al. 2004). Rather than using standard acute toxicity bioassays (USEPA 

2002), we measured time to death of lake fish relative to time to death in 10- to 14- day-

old fathead minnow larvae. This procedure allowed us to make useful inference 

regarding P. parvum toxicity to Lake Texoma fish without the high level of sacrifice 

required in standard LC50 bioassays. All fish in each bioassay were exposed to 

concentrations of laboratory-cultured P. parvum (for culturing methods see Zamor et al. 

2012) that exceeded a previously determined LC50 concentration for fathead minnow 

larvae by 50-150% (Hambright unpublished data) for 24 hours. Each experiment 

consisted of six test fish and six fathead minnow larvae, half of each received P. 

parvum, while half served as controls (except for two shad experiments in which two 

and four fish were used). All lake fish used in experiments were collected from the lake 

by shoreline seining (and presumably individuals younger than one year old) and 

allowed to acclimate to laboratory conditions for 48 hours prior to use in experiments. 

Adult fathead minnows were laboratory-reared individuals younger than one year old. 

Bioassays with lake fish and adult fathead minnows were conducted in one-gallon 

aerated jars containing three individuals per jar and separate jars for each species. 

Larval fathead minnow bioassays were conducted in 100-mL jars. Prymnesium parvum 

grown in 15 ppt salinity culture medium was added to half of the jars at final 
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concentrations of 200,000-400,000 cells mL-1, and the same volume of 15 ppt culture 

medium without P. parvum was added to the other half. The volume of culture used 

varied with culture density, and bioassay salinities ranged between 1 and 3 ppt. Time to 

death following the addition of P. parvum to jars was recorded for all individual fish in 

each experiment. Experiments without complete mortality of all fish exposed to P. 

parvum at the end of 24 hours were not used in data analysis to eliminate possible 

confounding by low-toxicity P. parvum cultures. Analyses of normality and relative 

species-susceptibility were conducted in R (R Development Core Team 2011). 

 

Data Analysis 

 We assessed the effects of the P. parvum EDAB on the temporal dynamics of 

fish communities by comparing total fish abundances, species richness, and assemblage 

structure in both coves before, during, and after the bloom. However, due to differences 

in sampling times and methods, we analyzed the seine and gill net data separately. 

 

Nearshore fish: Abundance and Species Richness 

 To assess variation in nearshore fish abundance between coves during the 

sampling period, we used repeated-measures ANOVA. The dependent variable was 

log10-transformed total fish abundance in each reach (n = 4), time (month) was the 

repeated measure, and between subjects effect was cove. Effect sizes of independent 

variables (time and cove) were assessed via partial !2. Species richness was similarly 

assessed over time in each cove using repeated measures ANOVA. However, because 

the number of individuals collected varied amongst reaches, we estimated species 
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richness in each reach through individual-based rarefaction (Hurlbert 1971) using the 

rarefy function in R (R Development Core Team 2011). Species richness in each reach 

was rarefied to 45 individuals (i.e., the smallest number of individuals collected 

amongst all reaches). ANOVA was conducted in PASW v. 18 (SPSS Inc. 2009) and 

assumptions of sphericity were met in both analyses. No fish were caught in LP during 

the bloom period (see Results below); therefore these three months were excluded from 

analyses.  

 

Offshore fish: Abundance and Species Richness 

 Two gill nets were set in each cove during a given month, and the fish removed 

from each were not tabulated separately, therefore we could not assess within-month 

variation in total fish abundance or species richness. Accordingly, we qualitatively 

investigated trends in total fish abundance and species richness. However, we did rarefy 

species richness in each month using eight individuals (i.e., the least number of 

individuals collected in a cove in one month) to control for the abundance of individuals 

captured between coves and amongst months.  

 

Fish Assemblage Structure 

We were interested primarily in assessing differences in assemblage structure at 

different spatial and temporal scales. Thus, we tested for differences in assemblage 

composition before and after the P. parvum EDAB between and within the two coves 

during the sampling period for the nearshore fish assemblage.  
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We used Nonmetric Multidimensional Scaling (NMDS) based on Bray-Curtis 

dissimilarities to assess fish assemblage structure for each 100-m survey in both coves, 

before (October – December 2008) and after the bloom (June, July, and October 2009). 

Data were log10(x + 1) transformed to reduce the effects of super-abundant species (e.g., 

Menidia beryllina). Similarly, only species that appeared in > 10% of collections were 

used in the analysis to avoid a skewing of the analysis by rare species. As in our 

analyses of abundance and richness, we removed the three months during the bloom 

(January-March 2009) because no fish were caught in LP (see Results below). 

Following NMDS ordinations, a multi-response permutation procedure (MRPP) using 

Euclidean distances and 10,000 permutations was used to assess if groups (i.e., before 

and after bloom within and between coves) exhibited significant clustering in the two-

dimensional NMDS space. Significant clustering was determined through comparisons 

of the expected and observed MRPP statistic ! (the overall weighted mean of within 

group means of the pairwise dissimilarities amongst sampling units). Significance of ! 

is assessed similarly to a p-value. Cut-off values for Significance of ! were adjusted 

using a Bonferroni correction for multiple comparisons (" = 0.0125). If MRPP 

indicated significant clustering of groups, indicator species analysis (ISA) with 10,000 

iterations was conducted and species with significant indicator values above 0.50 were 

determined to be driving group separation. All analyses were conducted in R unless 

otherwise stated (R Development Core Team 2011). We used the vegan package for 

NMDS and MRPP (Oskanen et al. 2012) and the package labdsv for ISA (Roberts 

2012).  
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Results 

 Prymnesium parvum cell densities above 10,000 cells mL-1 were first detected 

on 15 Dec 2008 in LP (25,000 cells mL-1), peaked on 10 Feb 2009 (253,000 cells mL-1) 

and remained above 10,000 cells mL-1 until 1 May 2009. Cell densities never reached 

10,000 cells mL-1 in WCC (Fig. 2). The decline in cell densities in late April-May 2009 

coincided with increases in the lake elevation following spring rains (Fig. 2). Using 

both sampling methods, a total of 35,660 fish representing 33 species were collected 

(see Table S1 in Supporting Information). 

 

Nearshore Fish: Abundance and Species Richness 

Most individuals, 33,385 fish, were collected in our nearshore samples, 

representing 22 and 25 species in LP and WCC, respectively. Fish were collected in 

both coves in October, November, and December 2008. From January – April 2009, 

fish were caught in WCC but not in LP (Fig. 2). Fish reappeared in the catch in LP 

during sampling in June 2009.  

Time had the strongest significant effect on total fish abundance (effect size = 

0.80), followed by cove (0.52), and their interaction (0.32; Table 1). Fish abundance 

was higher in LP than WCC before the bloom. However, abundances in both coves 

declined to equivalent levels in December. Following the EDAB, abundances increased 

in both coves and were greater than levels observed before the bloom by July. Fish 

abundance was slightly higher in WCC in June, but then returned to a similar pattern 

seen before the bloom as fish were more abundant in LP on the last two sampling dates 

(Fig. 3). 
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Variation in rarefied species richness was dependent on cove (effect size = 

0.96), followed by time (0.88) and their interaction (0.79) (Table 1). As with 

abundance, species richness was higher in LP than in WCC prior to December. 

However, in December richness was slightly higher in WCC. Following the EDAB, 

species richness returned to similar levels as observed before the bloom in LP, but 

increased substantially in WCC in June and July before returning to pre-bloom levels in 

October (Fig. 3). 

 

Offshore Fish: Abundance and Species Richness 

 A total of 2,275 fish were collected in our offshore samples with 17 species 

caught in LP and 18 species caught in WCC. As with the nearshore fish assemblage, 

fish were collected in both coves in October, November, and December 2008, but from 

January – April 2009, fish were only caught in WCC. However, both total fish 

abundance and species richness rebounded rapidly in LP starting in May 2009. Offshore 

fishes qualitatively demonstrated dynamics similar to nearshore fishes for total fish 

abundance over the sampling period. However, no noticeable quantitative differences in 

rarefied species richness between the two coves were evident from June-October 2009 

(Fig. 3). 

 

Nearshore Fish: Assemblage Structure 

 A stable NMDS ordination was obtained for the nearshore fish assemblage 

(stress = 15.5%; Fig. 4). The nearshore fish assemblage within sites was different before 

and after the bloom in WCC (MRPP, significance of ! = 0.0001), but not in LP (MRPP, 
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significance of ! = 0.0451; Bonferroni adjusted " = 0.0125; Table 2). Mosquitofish 

(Gambusia affinis (Baird and Girard)) were indicative of the before-bloom assemblage 

in WCC, but a new suite of species, primarily consisting of species that can obtain 

larger body sizes, were indicative of the after-bloom assemblage, including: threadfin 

shad (Dorosoma petenense (Gunther)) and gizzard shad, smallmouth buffalo (Ictiobus 

bubalus (Rafinesque)), striped bass and white bass (Morone chrysops (Rafinesque)), 

white crappie (Pomoxis annularis (Rafinesque)), and carp (Cyprinus carpio (Linnaeus)) 

(Table 3).  

Between site comparisons indicated that the nearshore fish assemblage was 

different between LP and WCC before the bloom (MRPP, significance of ! = 0.0002), 

but not after the bloom (MRPP, significance of ! = 0.0797; Table 2). Similar to the 

within site comparison, mosquitofish were also indicative of the before-bloom 

assemblage in WCC when compared to LP, while inland silverside, threadfin shad, and 

red shiner (Cyprinella lutrensis (Baird and Girard)) were indicators of the before-bloom 

assemblage in LP (Table 3). 

 

Fish toxicity bioassays 

We examined toxicity in first-year striped bass (Number of experiments (N) = 8, 

number of test fish (n) = 24, 2.84 ± 1.25g; wet weight ± SD), gizzard shad (N = 8, n = 

21, 3.02 ± 2.56g) and inland silversides (N = 9, n = 27, 0.85 ± 0.55g), and similarly-

sized adult fathead minnows (N = 7, n = 21, 2.74 ± 1.09g). Because all larger fish 

survived longer than 10- to 14-d-old fathead minnow larvae, there is an indication that 

fish size affects toxicity. On average, relative susceptibilities for the four species tested 
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were similar, with death occurring in ~5-7$ the amount of time required for fathead 

minnow larvae (Fig. 5). Results indicate that for the species tested, there is little 

difference in the relative susceptibilities of these fishes to P. parvum (Kruskal-Wallis, 

#2 = 3.317, df = 3, p = 0.345).  

   

Discussion 

Harmful Algal Blooms have received increased societal attention primarily 

because of their negative anthropocentric impacts. These impacts range from aesthetic 

concerns including beach fouling and discolored or distasteful water to severe 

consequences including damage of fisheries or recreational resources, or even human 

fatality. These negative impacts are primarily known for marine and coastal systems, 

while freshwater HABs and their impacts have received far less attention. Research on 

freshwater HABs has primarily focused on cyanobacteria and their aesthetic impacts. 

Recently however (mid-1980s), the EDAB-forming species, P. parvum, has become a 

source of concern for scientists and resource managers of freshwater bodies of the 

southern United States, where it is now known as a notorious fish killer.  

For nearly three decades, blooms of P. parvum and their impacts have been 

discussed in terms of fish loss, including numbers, biomass, and dollars (Southard et al. 

2010). Surprisingly, few studies have quantified the recovery of fish assemblages 

following the disturbance caused by the invasion, establishment, and proliferation of P. 

parvum populations. As seen in numerous other inland systems worldwide that have 

experienced P. parvum blooms, Lake Texoma experienced a near lake-wide fish kill in 

2004, and annually since then local fish kills in isolated coves and backwaters 



42 

(Edvardsen and Paasche 1998, Hambright et al. 2010). Since the initial 2004 fish kill, 

most kill events have been limited to the northern and western shores of Lake Texoma 

on the Red River arm of the reservoir (Hambright et al. 2010). The winter of 2008-2009 

was no different. Prymnesium parvum bloomed in LP, reaching densities of up to 

232,000 cells mL-1 by 10 Feb 2009. Although there were few dead fish observed 

washed up on the shore, toxicity tests conducted within 1 hour of sampling using water 

from LP was highly toxic to juvenile fathead minnows, producing complete mortality of 

three fish within one hour. Intensive seine and gill net sampling confirmed the fish kill 

as the 2008-09 bloom of P. parvum in Lake Texoma severely reduced abundances and 

species richness of both near and offshore fish assemblages at the bloom site (LP), 

while the fish assemblages in the reference cove (WCC) showed typical seasonal 

variation in abundance and richness throughout the sampling period.  

Recovery of fish assemblages following EDABs appears to be dependent on 

spatial heterogeneity of EDAB effects coupled with connectivity to source populations. 

Although the P. parvum EDAB resulted in an apparent complete kill in LP, fish 

assemblages quickly recovered once the bloom subsided. The reappearance of fish in 

LP coincided with increased spring rains, water level, and the reconnection of LP and 

WCC to the main reservoir body. Connectivity and flooding can be instrumental in 

maintaining fish assemblages as fish can colonize isolated or disturbed habitats when 

high water removes barriers to movement (Franssen et al. 2006). Generally, fish in 

connected freshwater systems (rivers and reservoirs) demonstrate high resilience and 

rapid recovery to both natural and anthropogenic disturbances (Olmstead and Cloutman 

1974, Matthews 1986, Peterson and Bayley 1993, Matthews and Marsh-Matthews 
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2003). In systems in which spatial heterogeneity in environmental conditions and fish 

assemblages can be extreme, such as was observed in the Pecos River, TX, system, 

recovery can be delayed substantially (up to 18 months) as nearby habitats and their 

resident assemblages, which serve as sources of initial immigrants, can be quite 

different from the habitat that recently experienced a fish kill (Rhodes and Hubbs 1992). 

However, in our study, with little spatial variation in fish assemblages, but substantial 

variation in EDAB events across coves, there are many refuge populations that can 

serve as sources of new immigrants following an EDAB event. Thus a reservoir-wide, 

homogeneous fish metacommunity (sensu Leibold 2004) enabled a rapid recovery of 

local fish assemblages following a spatially heterogeneous EDAB event. We suspect 

that the main channel and other nearby tributaries and coves provided a refuge from 

complete extirpation of the fish metacommunity, as well as a source of emigration for 

re-establishing the fish assemblage following the P. parvum bloom once connectivity 

was reestablished.  

Because P. parvum EDABs affected the fish assemblages in LP in previous 

winters (2003-04 through 2007-08), it is unclear whether the fish assemblages 

recovered to their original composition before the first P. parvum bloom in the winter of 

2003-04. Hence, the LP fish assemblage could potentially always be composed of new 

immigrants and their offspring following blooms. Both near and offshore fish 

assemblages in Lake Texoma are relatively stable across years, likely due to their 

depauperate species richness and dynamic environment created by highly fluctuating 

water levels (Gelwick and Matthews 1990, Gido et al. 2000, Matthews et al. 2004, 

Eggleton et al. 2005). However, the fish assemblages in LP and WCC were different 
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from each other before the bloom and the assemblage in WCC after the EDAB was 

different from its composition before the EDAB. We suspect the differences relate to 

previous blooms and a general reset following floods. In 2007, the lake experienced a 

century flood, with lake levels averaging 194.5 m amsl (conservation pool = 188.1 m 

amsl) in July and likely resetting all assemblages (Gelwick and Matthews 1990, Gido et 

al. 2000, Matthews et al. 2004). Though not as dramatic as the 2007 rains and flooding, 

the water levels rose rapidly in spring 2009, averaging 190.1 m amsl during May (Fig. 

2), completely flooding all backwaters and coves, and likely resetting the assemblages 

as in 2007. Indeed, length-frequency distributions for two nearshore fish species 

common in both coves before and after the bloom (inland silverside and emerald shiner 

(Notropis atherinoides (Rafinesque))), suggest that young-of-year (YOY) individuals 

colonized both coves similarly after the bloom and grew during the following months 

(e.g., Fig. S1, S2). During the winter of 2007-2008, P. parvum developed a major 

bloom in LP with smaller blooms downstream, but not in WCC. Unlike 2007 and 2009, 

the water level in spring 2008 barely topped the conservation pool level, averaging 

188.9 m amsl in April. Hence in 2008 prior to the bloom, the assemblages in LP and 

WCC were different as a result of local effects and cove-specific differences (e.g., the 

prior fish kill in LP) and that can cause differences in the structure of littoral 

assemblages in Lake Texoma (Gido et al. 2002).  

Our study is consistent with these previous findings from Lake Texoma and 

from other studies examining fish responses to disturbance. However, it is unique 

because, to our knowledge, it is the only study to document recovery of fish 

assemblages to an EDAB in a reservoir. It provides a mechanism for the maintenance of 
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this stability in terms of patch-dynamics and mass-effects following a stochastic 

extinction and an influx of individuals from the reservoir fish metacommunity (Leibold 

2004) during periods of high connectivity due to high water levels associated with 

spring rains which overwhelmed any local effects that caused differences in cove fish 

assemblages before the bloom. Hence, our results suggest that the general fish 

community structure is rather resilient to localized P. parvum EDABs when connected 

to viable source populations. However, situations in which an entire lake or reservoir is 

affected by a bloom merit further study as a lack of nearby source populations could 

translate into long-term, and potentially dire, consequences to fish assemblages. Little is 

known about the chronic effects of repeated EDABs on fish assemblages, both in terms 

of repeated exposure to toxins and the effect of repeated exhaustive fish kills. In 

extremely disturbed ecosystems that experience chronic blooms, we might expect to 

find lower species diversity and a community made up of opportunistic (colonizing) 

individuals (Connell, 1978). Indeed, Lake Texoma, like many other aquatic ecosystems 

of the Southern Great Plains, is well known for its relatively high levels of disturbance 

(Matthews 1988, Dodds et al. 2004), and relatively low-diversity assemblages (but not 

necessarily low richness (Gido et al. 2000, Eggleton et al. 2005)). Hence, investigations 

into chronic effects of blooms on fish assemblages would be particularly useful in 

systems where the fauna is not “pre-adapted” to disturbances. Finally, because the rapid 

loss and then recovery of fishes in response to EDABs could produce significant 

feedbacks in both grazer and nutrient dynamics that are characteristic of EDABs, we 

suggest that assessment of both fish and connectivity beyond the cursory mention of 
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their occurrence should be included when studying EDABs and their implications in 

affected ecosystems. 
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Tables 

 

Table 1. Results from two repeated measures ANOVA with fish abundance (log10-
transformed) and rarified species richness as dependent variables. Degrees of 
freedom are represented by df (Hypothesis, Error). Effect sizes of independent 
variables (time and cove) were assessed via partial !2. 
 

Dependent Source df p Effect size 

Abundance Time 5,30 <0.001 0.795 

 Cove 1,6  0.042 0.524 

 Time " Cove 5,30  0.032 0.321 

     

Richness Time 5,30 <0.001 0.884 

 Cove 1,6 <0.001 0.961 

  Time " Cove 5,30 <0.001 0.785 
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Table 2. Results from multiple response permutation procedure (MRPP) 
comparing before bloom and after bloom nearshore fish assemblages within sites 
and before bloom and after bloom assemblages between sites. Significance of ! is 
equivalent to a p-value. Significance of ! is adjusted using a Bonferroni correction 
for multiple comparisons (" = 0.0125). 
 

MRPP results    

Comparison Expected ! Observed ! Significance 

of !  

(" = 0.0125) 

Within Sites    

Before bloom LP vs. after bloom LP 0.4825 0.4608  0.0451 

Before bloom WCC vs. after bloom WCC 0.6454 0.3998 <0.0001 

    

Between sites    

Before bloom LP vs. before bloom WCC 0.4154 0.3183  0.0002 

After bloom LP vs. after bloom WCC 0.5680 0.5422  0.0797 
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Table 3. Results from indicator species analysis (ISA). The indicator value (IV) 
and the associated P-value indicate species that contributed to discriminating 
between before bloom and after bloom assemblages within or between sites. 
 

ISA results    

Comparison Species IV p 

Within Sites – WCC    

Before bloom  Gambusia affinis 0.8174 0.0001 

After bloom Dorosoma petenense 0.8597 0.0003 

After bloom Dorosoma cepedianum 0.7218 0.0009 

After bloom Ictiobus bubalus 0.6667 0.0010 

After bloom Morone saxatilis 0.6667 0.0012 

After bloom Notropis atherinoides 0.6554 0.0232 

After bloom Pomoxis annularis 0.6365 0.0028 

After bloom Morone chrysops 0.5833 0.0043 

After bloom Menidia beryllina 0.5496 0.0010 

After bloom Cyprinnus carpio 0.5000 0.0143 

    

Between Sites – Before bloom    

LP Menidia beryllina 0.7310 0.0008 

LP Cyprinella lutrensis 0.7209 0.0233 

LP Dorosoma petenense 0.5556 0.0218 

WCC Gambusia affinis 0.9367 0.0001 
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Figures  

 

Figure 1. Map of Lebanon Pool and Wilson Creek Cove collection sites in the Red 
River arm of Lake Texoma on the border of OK-TX, USA. Black bars indicate 
reaches of beach sampled during nearshore and offshore collections at each site. 
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Figure 2. Average lake elevation (top panel) and P. parvum cell densities (bottom 
panel) during the study period.  
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Figure 3. Fish abundance and rarefied species richness in nearshore (left two 
panels) and offshore samples (right two panels). Abundances are log10(x +1) 
transformed for ease of comparison. 
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Figure 4. Results of NMDS of the nearshore fish assemblage. Ordinations of the 
single NMDS are presented as four subsets to allow visualization of comparisons of 
before bloom and after bloom nearshore fish assemblages within sites (top two 
panels) and before bloom and after bloom assemblages between sites (bottom two 
panels). 
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Figure 5. Susceptibility of common Lake Texoma fishes to P. parvum in terms of 
time to death relative to fathead minnow larvae. 
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Supporting Information 

Table S1. Species and total number of individuals collected in each cove by sample 
type over the entire sampling period. 
 

 Lebanon Pool Wilson Creek Cove 

Species Nearshore Offshore Nearshore Offshore 
Menidia beryllina  17416 - 10440 - 
Dorosoma petenense 822 138 865 119 
Notropis atherinoides 505 - 885 - 
Cyprinella lutrensis 462 - 44 - 
Gambusia affinis 60 - 628 - 
Ictiobus bubalus 60 52 426 23 
Dorosoma cepedianum 34 430 280 689 
Cyprinus carpio 21 3 28 20 
Pimephales vigilax 17 - 2 - 
Notropis potteri 16 - 58 - 
Lepomis megalotis 15 - 2 - 
Morone saxatilis 12 78 26 13 
Macrhybopsis hyostoma 10 - - - 
Morone chrysops 7 36 36 25 
Lepomis macrochirus 3 - 50 - 
Cyprinella venusta 2 - - - 
Pomoxis annularis 2 40 53 81 
Ctenopharyngodon idella 1 - - 2 
Lepomis humilis 1 - 40 - 
Lepomis microlophus 1 - - - 
Hybognathus placitus - - 43 - 
Ictalurus furcatus - 12 9 16 
Ictalurus punctatus - 33 1 85 
Lepomis gulosus - - 1 - 
Notropis stramineus - - 1 - 
Aplodinotus grunniens - 116 - 72 
Atractosteus spatula - 2 - 5 
Carpiodes carpio - 8 - 5 
Hiodon alosoides - 0 - 3 
Ictiobus cyprinellus - 15 - 3 
Lepisosteus oculatus - 10 - 14 
Lepisosteus osseus - 41 - 25 
Lepisosteus platostomus - 25 - 36 
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Figure S1. Length-frequency histogram of inland silverside (Menidia beryllina) 
collected in both coves throughout the study period. 
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Figure S2. Length-frequency histogram of emerald shiner (Notropis atherinoides) 
collected in both coves throughout the study period. 
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Abstract 

All invasive species must successfully invade and establish before they can spread. 

Early detection is key to limiting the spread of invasives, but can be particularly 

difficult for invasive microbes. The microbiologist's credo 'Everything is everywhere, 

but, the environment selects,' infers that microbes are continuously being introduced to 

a system with establishment being dependent on environmental conditions. Therefore, 

environmental factors should be instrumental in predicting invasion success and 

establishment for microbial invaders. Prymnesium parvum, a toxigenic marine 

unicellular eukaryote, has invaded many freshwater systems throughout the southern 

and southwestern US. Like many invading species, P. parvum invasions often result in 
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population explosions (i.e., blooms) in invaded systems. These blooms disrupt the 

structure and function of the entire system by causing massive fish kills and altering 

nutrient and food web dynamics. Using a 4-year data set from our ongoing monitoring 

program in Lake Texoma (OK-TX) we constructed a predictive model relating P. 

parvum presence or absence to environmental parameters at a local scale. We then 

tested this model at the regional scale in conjunction with environmental sampling to 

predict presence and absence of P. parvum in the watershed of the Red River, one of 

two tributaries to Lake Texoma and a neighboring watershed, the Canadian River, as 

well as a few sites in the Arkansas River watershed. 

Based on three environmental factors, specific conductance, total nitrogen, and 

total nitrogen : total phosphorus ratio, our predictive model accurately classified P. 

parvum as present or absent in Lake Texoma for 74% of the samples. Applying this 

model to the adjacent watersheds also showed strong predictive power, correctly 

classifying 87% of the sites sampled within the Red River watershed and 81% of the 

sites sampled in the Canadian River watershed. Sites where the model predicted P. 

parvum but none was detected may be particularly vulnerable to P. parvum 

establishment and should be more closely monitored for future invasion success. 

Misclassifications by the model of sites in which P. parvum was detected suggests that 

dispersal has occurred but that the environmental conditions were not conducive to 

population establishment. Indeed, at these sites, P. parvum abundances, when detected, 

were very low. While we cannot rule out dispersal limitation as a major factor involved 

in the biogeography of P. parvum, our results do indicate that the establishment and 
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spread of this harmful algal species appears to be limited by environmental conditions 

in the invaded habitat.  

 

Introduction  

Recently, the need to address microbial invaders has been brought to the attention of the 

field invasion ecology (Litchman 2010). Indeed, a recent list of the most damaging 

invasive species in the US released by the US Department of Agriculture included two 

microbes (Phytophthora ramorum –water molds responsible for Sudden Oak Death, and 

Candidatus liberibacter asciatus – bacteria responsible for Citrus Greening disease; 

USDA 2013). Because knowledge about microbial invaders is limited, it should be 

informative to look to concepts derived in macrobial systems when trying to interpret 

microbial invasions. Macrobial invasion models typically involve understanding 

transport, establishment, spread, and most importantly impact of invasive species 

(Lockwood et al. 2007). Implicit within these models is that an anthropogenic 

component is involved with many of these aspects, especially transport and impact 

perception. However, applying these invasion models to microbes is not straight-

forward within the context of general microbiological knowledge and understanding – 

captured in the infamous credo of microbiology, “Everything is everywhere, but, the 

environment selects,” first postulated by Baas Becking in 1934 (DeWit and Bouvier 

2006). “Everything is everywhere,” suggests that either all microbes are always 

established in any given habitat or, perhaps more appropriately, that any given microbe 

could be in or could be transported to any given habitat at any given time (de Wit and 

Bouvier 2006). The apparent ubiquity in microbial taxonomic distributions (Finlay 



67 

2002, Sogin et al. 2006, Gibbons et al. 2013) highlights the difficulty in understanding 

transport and dispersal for microbial species because most microbes are passive 

dispersers and could be transported by any number of other vectors besides humans. 

Although it may be possible to estimate of how many invasive microbes are being 

transported by human vectors it would be supremely difficult to assess most other 

potential vectors. This difficulty in estimating transport and dispersal for microbes 

suggests that current macrobial invasion models may not be sufficient for characterizing 

the early stages of invasion for microbes. 

However, even if microbes are “everywhere” this may not matter for invasion 

ecologists, as we are ultimately concerned with avoiding or mitigating impact 

(Lockwood et al. 2007), and microbial impacts are often only perceived as harmful once 

a species has reached high abundance i.e., blooms. Blooms are often controlled by 

environmental conditions (i.e., “the environment selects”), which determine what 

species reach bloom densities and subsequently have negative impacts (e.g., 

cyanobacteria; Smith and Schindler 2009). Additionally, environmental selection, 

beyond just determining impacts will also control the ability of the microbial invader to 

spread by determining the number of propagules available for dispersal to other 

habitats, by limiting source population densities (Martiny et al. 2006, Lockwood et al. 

2007, Hanson and Martiny 2010). Hence, if we are to begin to understand microbial 

invasions we need to focus on what environmental conditions allow that invader to 

become successful and cause perceptible harmful impacts. 

 One potential microbial invader that is receiving increased attention, both in the 

literature and from the general public, is the toxigenic eukaryote, Prymnesium parvum, 
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a.k.a. golden algae. Prymnesium parvum was originally classified from marine systems 

(Carter 1913), but over the past ~25 years has started appearing as blooms in freshwater 

ecosystems in southern North America causing massive fish kills (Roelke et al. 2010). 

Its blooms have been a particular problem in Oklahoma and Texas, where P. parvum 

has appeared to follow a northern trend of range expansion from its first discovery in 

North America in the Pecos River drainage in southern Texas (1985; James and De La 

Cruz 1989) to the Red (2001) and Canadian River basins (2003) of northern Texas and 

Oklahoma during this period (Hambright et al. 2010). We sought to address the 

question of how environmental conditions affect the distribution of a potential microbial 

invader, by testing if we could predict the distribution of P. parvum at a local scale 

based on environmental parameters. In turn, we hypothesized that if we could predict 

the distribution of P. parvum at a local scale based on environmental parameters, then 

similar environmental selection should be happening at the regional scale, with the 

same parameters proving to be good predictors of P. parvum presence or absence.   

 

Methods 

Study Sites and Site Monitoring 

 To assess the hypothesis that P. parvum presence is predictable by 

environmental factors at the local scale, we created a model using discriminant function 

analysis (DFA; see Data analysis for details) using data from our ongoing monitoring 

program on Lake Texoma, an impoundment of the Red and Washita Rivers on the 

border of Oklahoma and Texas, USA. We have maintained a regular monitoring 

program on the lake since 2005, assessing physical and nutrient parameters of the lake 
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as well as P. parvum abundances via microscopy at eight littoral sites and five pelagic 

sites throughout the lake (see Hambright et al. 2010 for monitoring details). We have 

also incorporated molecular monitoring of P. parvum via qPCR since 2008 (Zamor et 

al. 2012).  

To assess the applicability of this model and thus the predictability of P. parvum 

presence by environmental factors at the regional scale, we sampled 62 sites in the Red 

River Basin located on the southern border of Oklahoma and Texas in the winter and 

early spring of 2008 (25 January – 01 March). Sites were sampled during this period 

because P. parvum is known to bloom during these seasons in freshwater locations 

throughout the region (Hambright et al 2010, Roelke et al. 2010). Site locations ranged 

from Greenbelt Reservoir in the Texas Panhandle (34.9981, -100.90662) to Clear Lake 

in Southeastern Oklahoma (33.69316, -94.63592; Figure 1). Similarly in the early 

spring of 2009 (08 April – 10 April) we sampled 24 sites within the South Canadian 

River Basin from Lake Meredith in the Texas Panhandle (35.70699, -101.55546) to its 

confluence with the Arkansas River at Robert S. Kerr Reservoir near the Oklahoma – 

Arkansas border (35.4008, -94.96812; Figure 1). We also sampled 2 sites on Lake 

Keystone, the impoundment at the confluence of the Arkansas (36.23486, -96.36239) 

and Cimarron Rivers (36.18546, -96.29608; Figure 1). Lake and reservoir sites ranged 

in surface area from <0.002 km2 cattle ponds and oxbows to 360 km2 reservoirs.  

At each site, we measured physical parameters, nutrients, and took samples for 

P. parvum using the same protocols as for littoral sampling in Hambright et al. (2010) 

and in Zamor et al. (2012). In brief, physical parameters were sampled in situ by wading 

1-5 m offshore and collecting ~20 L of water in a bucket in which we measured 
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temperature, dissolved oxygen, specific conductance, pH, and redox using a Hydrolab 

DS5 sonde. Water samples for nutrient analyses were collected in two 250-mL Nalgene 

bottles and preserved on ice until we returned to the lab where we froze 50 ml of whole 

water and 50 ml of GFF-filtered water until processing. We processed these samples for 

total (whole water samples) and dissolved (filtered samples) phosphorus and nitrogen 

digested in acid (P) and alkaline (N) persulfate at 120ºC for 1 h via flow injection auto 

analysis (Lachat Quikchem 8500 FIA).  

We also collected 1-L water samples in Nalgene bottles for analysis of P. 

parvum presence via qPCR and transported them on ice until processing them in the lab. 

With these, we filtered 50 mL – 1000 mL (typically 350mL) onto GF/F filters using 

gentle vacuum (< 0.17KPa). The volume of sample filtered depended on the amount of 

sediment and other particulates present in the water samples. Filters were then folded 

and placed into 15-mL plastic Falcon tubes containing 2 mL of lysis buffer (100 mM 

Tris [pH 8], 40 mM EDTA [pH 8], 100 mM NaCl, 1% sodium dodecyl sulfate) and 200 

µL of 0.5-mm zirconia-silica beads. Samples were then heated in a hot water bath (5 

min, 70°C) and vortexed at the highest setting for 30 s. This process was repeated a total 

of three times to create crude lysates. Crude lysates were then transferred into sterile 2-

mL microcentrifuge tubes and stored at –20°C until we analyzed them with qPCR. We 

examined each sample with at least triplicate analytical replicate qPCR reactions in 96-

well plates sealed with optical film B (BioRad) using an iQ5 real-time PCR detection 

system (BioRad) and analyzed using the associated iQ5 optical system software (see 

Zamor et al. 2012, for further qPCR reaction methods and details).  



71 

Data Analysis 

 We examined the utility of environmental parameters to predict P. parvum 

presence within Lake Texoma using discriminant function analysis (DFA). Prymnesium 

parvum abundance was measured microscopically and by qPCR analysis, which offers a 

more accurate and lower detection limit (Zamor et al. 2012). We constructed the 

discriminant function using environmental data (specific conductance, µS cm-1; 

chlorophyll-a, µg L-1; total and total dissolved phosphorus, TP and TDP, µg L-1; total 

and total dissolved nitrogen, TN and TDN, mg L-1; and TN:TP and TDN:TDP, mM) 

from the Lake Texoma monitoring project from Jan 2008 through Apr 2012 (n = 631). 

Temperature, dissolved oxygen, pH, and redox were excluded because samples were 

taken at different times of day, which can greatly affect these parameters.  

Neither the raw data nor log10(x + 1) transformed data were multivariate normal 

(tested using a generalization of the Shapiro-Wilk test for normality using the 

“mvtnormtest” package v. 0.1-9 (Slawomir 2012) in R v. 2.15.3 (R Development Core 

Team 2013)), so multivariate outliers (n=208) were removed from the data set after 

their identification using the “pcout” function based in the “mvoutlier” package v. 1.9.9 

(Filzmoser and Gschwander 2013) in R. Removing outliers did not improve normality, 

however DFA was still deemed appropriate due to this test’s robustness against 

violations of this assumption as long as violations of this assumption are not due to 

outliers (Tabachnick and Fidell 2007). Hence, we used the raw data with outliers 

removed to classify P. parvum presence at the local scale. Linear DFA was then 

conducted in PASW v. 19 (IBM Corp. 2010) based on equal probabilities of the 

remaining 423 samples using stepwise variable selection to account for effects of 
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colinearity of variables. Stepwise variable selection was based on Wilks-Lambda with 

an F value of 3.84 required for entry and 2.71 required for removal. Separate covariance 

matrices were used during classification to account for heterogeneity of variance-

covariance matrices between groups (Box’s M, F=11.731, p <0.0001). Following 

classification, DFA predictions for each sample were categorized as percent correctly or 

incorrectly predicted for the entire model and for P. parvum presence and absence. 

After this model was constructed using the local scale Lake Texoma data, we applied its 

classification function to the regional scale data taken from the Red River and other 

river watersheds. 

 

Results 

One significant discriminant function was produced from the local scale (i.e.,Lake 

Texoma) data (F3, 419 = 50.529, p < 0.0001), based on the environmental parameters 

specific conductance (Fremove = 109.827), TN:TP (Fremove = 26.363), and TN (Fremove = 

6.482). Site classification scores (C) used to predict P. parvum presence or absence, 

were determined from the following classification function: 

! 

C = 0.0018(SpCond) " .0428(TN :TP) "1.0255(TN) " 0.9542 

Classification scores at group centroids were -0.5736 for P. parvum absence and 0.626 

for P. parvum presence resulting in a cut score of 0.0524, above which P. parvum 

presence was predicted. This function correctly classified 74.2% of samples in Lake 

Texoma (Table 1). Within groups this function correctly classified 79.9% of samples 

where P. parvum was absent and 64.8% of samples where P. parvum was present. Sites 

classified as having P. parvum showed higher specific conductance (present 1900 ± 
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522; absent 1448 ± 535; median ± IQR), higher TN (present 0.75 ± 0.32; absent 0.71 ± 

0.30), and lower TN:TP (present 25.9 ± 13.9; absent 33.3 ± 18.2). In Lake Texoma 

during the 4-year sampling period, P. parvum was detected at least once at each 

sampling site throughout the lake. False negatives (i.e., misclassifications of sites where 

P. parvum was detected, but that were classified as not present) (n = 61) occurred 

primarily in sites where P. parvum abundances were low (i.e., 70% of these 

misclassifications were from detections of < 1000 cells mL-1 and an additional 18% 

were below what is considered typical bloom levels of 10,000 cells mL-1; Roelke et al. 

2010). 

 Using this local model at the regional scale produced a similarly accurate 

classification of sites: 87.1% of sites in the Red River and 81.8% of sites in the 

Canadian and Arkansas River were correctly classified based on the environmental 

parameters specific conductance, TN, and TN:TP (Table 1). Of the 62 sampled sites 

within the Red River watershed, we detected P. parvum at 12 sites. These sites were 

primarily located in southwestern region of the watershed. We also detected P. parvum 

in North Lake, OK (33.6761, -95.0545) located near the eastern edge of the sampling 

area. Within the Red River watershed, 88.0% of sites where P. parvum was detected 

were correctly classified, and 83.3% of sites where P. parvum was not detected were 

correctly classified. As seen at the local scale, the 2 false negatives (North Lake and 

Lake Wichita, TX) occurred primarily in sites where P. parvum abundances were low. 

In the Canadian and Arkansas River watersheds, we detected P. parvum at 4 

sites. These 4 sites were located in the westernmost edge of the sampling area 

originating at a known bloom site: the Lake Meredith spillway. The remaining 3 



74 

detections were downstream from Lake Meredith. Sites within the Canadian Arkansas 

River watersheds were also well classified with 75.0% and 81.8% of sites where P. 

parvum was present or absent were correctly classified, respectively. As previously, in 

the sole misclassification of a site where P. parvum was found abundance was low. 

 

Discussion 

Prymnesium parvum was first detected in Lake Texoma in 2004 when it caused a near 

lake-wide fish kill. It has since bloomed in 8 of the last 10 years causing fish kills in 

isolated coves and backwaters (Hambright et al 2010, Zamor et al. in review). These 

blooms occur primarily in the Red River arm of the reservoir and have been previously 

correlated with high levels of specific conductance and low N:P ratios (Hambright et al. 

2010). However, P. parvum has been detected at all reservoir sites via qPCR, 

suggesting that dispersal does indeed occur throughout the reservoir. This, in 

conjunction with the correlation of blooms and environmental parameters, suggests that 

environmental factors at least partially determine where P. parvum can bloom and thus 

determines the potential for P. parvum to have an impact large enough to draw 

anthropogenic attention.  

We tested this hypothesis at the local and regional scale using a discriminant 

function analysis, which was able to accurately classify sites at the local level based on 

the environmental parameters specific conductance, TN:TP, and TN and was able to 

accurately predict sites where P. parvum was present or absent at the regional scale. 

Sites classified as having P. parvum showed higher specific conductance, higher TN, 

and lower TN:TP, supporting the previous findings that P. parvum favors higher 
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conductivities and lower TN:TP ratios. Additionally, that higher specific conductance 

and TN would favor P. parvum presence is logical due to its marine origin, where 

nitrogen is a common limiting nutrient (Howarth 1988) and conductivities are much 

higher than in freshwater. Low N:P ratios are also thought to cause increased toxicity in 

P. parvum (Granéli and Johansson 2003, Hambright et al. unpublished data) and thus 

would theoretically favor P. parvum as well (Remmel and Hambright 2012).  

Because the classification function produced through the DFA analysis is 

accurate in predicting P. parvum presence at the regional scale it should be a useful tool 

for resource managers and scientists for focusing monitoring or prevention efforts. 

Although producing accurate predictions of P. parvum presence is desirable, 

misclassifications by the model offer useful information, both in terms of general theory 

and for management. A false positive (i.e., a prediction of P. parvum presence in which 

none is detected) indicates that the environment at a site may be conducive to invasion 

and establishment by P. parvum, and thus it should be monitored for future invasion 

success. In the Red River watershed, false positives were typically located near other 

sites where P. parvum was detected and false positives exhibited either high specific 

conductance, TN, or low TN:TP values. Since the time of our sampling P. parvum has 

bloomed in one of these sites, Altus-Lugert Reservoir (34.94001, -99.28574; Lehrman, 

B., Greer County, OK Game Warden, personal communication). Similarly in the 

Canadian and Arkansas River watersheds, the 4 false positives were located in sites 

adjacent to the 3 sites where P. parvum was present and that were downstream from a 

known bloom site. Since the time of our sampling blooms of P. parvum have formed in 

two of these sites, both in the main body of Lake Meredith and its outflow 
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(VanLandeghem, M. M., Texas Tech University, personal communication). False 

negatives are also useful in that they suggest that dispersal has occurred, but that the 

environment is not conducive to population establishment. For example, we detected P. 

parvum in North Lake, which is far removed from any of the other sites where P. 

parvum was detected in the Red River watershed, but it was found in low abundance. A 

parallel situation exists in Lake Marvin in the Canadian River watershed. Indeed, for the 

majority of false negatives at both the local and regional scale P. parvum abundances 

were low, suggesting that environmental conditions are playing a role in determining 

the ability of this microbial invader to impact a system. Further, evidence that dispersal 

is occurring for this microbial invader is provided by the three detections in the 

Canadian River watershed that were downstream from a known source population.  

Our results suggest that “everything is everywhere, but, the environment selects” 

is important in understanding how microbial invaders are introduced, established and 

ultimately cause perceptible impacts. In a typical, macrobial model of invasion, 

transport and introduction are two hurdles that an invasive species must pass through in 

order to establish a population (Lockwood et al. 2007). Our results suggest that 

dispersal is important for microbial invaders. Indeed, studies have addressed 

“Everything is everywhere” with some showing evidence of dispersal limitation 

(Martiny et al. 2006, Telford et al. 2006, Ramette and Tiedje 2007). However, the 

distributions of microbes as defined in all of these studies are constrained by detection 

limits, which makes “Everything is everywhere” currently impossible to reject as a null 

hypothesis (Foissner 2006). Our inability to reject the potential for everything to be 

everywhere is further illustrated by the concept of the microbial rare biosphere (i.e., the 
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vast number of microbial taxa present in extremely low abundances in natural 

assemblages; Sogin et al. 2006) and the presence of dormant microbial seed banks 

(Lennon & Jones 2011, Gibbons et al. 2013). Despite intense sampling efforts in these 

and other similar studies, they were still unable to estimate the full extent of the 

phylogenetic diversity present in a given habitat. However, it has been suggested that 

this limitation may be overcome within three years with continued technological 

advancement in high-throughput genetic sequencing (Gibbons et al. 2013). It is simply 

not currently possible to sample enough to determine the true microbial diversity of a 

given assemblage, and as such, we cannot conclude a given species (such as a microbial 

invader) is absent from the system. These limits to our detection are indeed important 

when viewed from larger scale. For example, if we were to scale up from one cell of a 

given microbial invader going undetected in a gram of soil or a milliliter of water, it 

would be equivalent to one million undetected cells in a cubic meter of either medium 

(Fierer and Lennon 2011). However, it is certainly possible to get a coarse estimate of 

the dispersal of a microbial invader. Currently the best that we can definitively state is 

that if we detect a species in a habitat we can conclude that it is capable of dispersing 

there. However, given their ability to passively disperse, persist at low levels, form 

resting cysts, and our evidence from two watersheds showing dispersal of P. parvum of 

roughly 300-km from known bloom sites suggests that these barriers may not be as 

difficult to pass for microbes.  

Hence, we propose a more specified model for microbial species that removes 

the hurdle of transport and incorporates the principles of “everything is everywhere, but 

the environment selects” into the model by accounting for abundance and its resulting 
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impacts (Figure 3).  In this model because of “everything is everywhere” introduction 

and establishment are equivalent, but, “the environment selects” ultimately determines 

impact and spread. Introduction and establishment are equivalent because microbial 

invaders could be continuously dispersing to a given habitat (as indicated from the 

qPCR detections that make up our local data and regional data),or could always be 

established at low levels potentially through a persistent microbial seed bank (Lennon 

and Jones 2011, Gibbons et al. 2013). Regardless of which of these alternatives is true, 

“the environment selects” will govern impact by determining which species are able to 

bloom. Generally, environmental filtering has been shown to be important in 

differences in detected diversity for microbes (Horner-Devine et al. 2004, Fierer and 

Jackson 2006). If environmental conditions allow a given microbe to bloom, and to thus 

reduce diversity, many ecosystem functions can be impacted and ecosystem stability is 

potentially reduced (Tilman 1996, Balser and Firestone 2005, Sunda et al. 2006, Bissett 

et al. 2010). This impact is important when considering that the vast diversity seen in 

microbial communities is thought to provide functional redundancy and ecosystem 

stability (Caron and Countway 2009).  

Interestingly however, the alternatives of continuous dispersal or always 

established have different implications for how the environment will affect spread. In 

the case of continuous dispersal the environment will control the number and 

availability of surplus propagules that are passively dispersed to new environments. 

However, if it is the case that microbes are always established then changes in 

environmental conditions will determine where established microbes reach population 

abundances that can be detected as well.  
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In conclusion, our classification model shows that the presence of a microbial 

invader is governed by environmental selection. As such we suggest in our qualitative 

model that environmental selection govern impact of microbial invaders. Since in most 

cases microbial ecologists are still fairly limited in our ability to determine dispersal, 

even as detection technologies are becoming more accessible, we should look for 

instances where suspected invasive microbes are having discernable impacts when 

trying to test theories of invasion ecology. We also suggest that environmental selection 

will ultimately be more important in determining where we are able to more 

consistently detect and predict future invasions and impacts.  
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Tables 

Table 1. Classification of P. parvum presence based on environmental 
parametersa,b,c 
 

 
Predicted (DFA) 

 

 

 Present Absent Total 
Present  103 (64.8%) 56 (35.2%) 159 Lake Texoma 
Absent 53 (16.3%) 211 (79.9%) 264 
Present  10 (83.3%) 2 (16.7%) 12 Red River 
Absent 6 (12.0%) 44 (88.0%) 50 
Present  3 (75.0%) 1 (25.0%) 4 

 
 

Observed 
(qPCR) 

Canadian & 
Arkansas River Absent 4 (18.2%) 18 (81.8%) 22 

a. 74.2% of Lake Texoma samples correctly classified. 
b. 87.1% of Red River sites correctly classified 
c. 80.8% of Canadian River & Arkansas River sites correctly classified 
 



85 

Figures 

Figure 1. Map of collection sites in Red River watershed (black circles) and 
Canadian, Arkansas, and Cimarron River watersheds (grey circles). 
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Figure 2. Map of collection sites in Red and Canadian, Arkansas, and Cimarron 
River watersheds where P. parvum was detected correctly classified by the DFA 
analysis as present (yellow circles) or absent (blue circles). Misclassifications are 
displayed as their predicted color encircled with a colored ring associated with the 
actual detection of P. parvum at a given site (yellow – present; blue – absent). 

predicted absent 
predicted present not detected 

detected 
Correct Classifications Misclassifications 
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Figure 3. Invasion process model depicting stages of a microbial invasion, 
including effects of abundance on perceived impacts. 
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One of the seminal hypotheses in the field of invasion ecology is that more diverse 

communities should be more resistant to invasion by exotic or non-native species1,2. 

Similarly, propagule pressure (i.e., the number of invaders entering a habitat or 

the frequency of invasions to a habitat) is thought to facilitate an invasive species’ 

establishment success by increasing the ability of an invading population to absorb 

the challenges of its new environment3. Propagule pressure and community 

resistance to invasion are predicted to interact to affect the probability of 

community invasion and species establishment in a new community4. Our general 

understanding of these factors in invasion ecology is derived from the study of 

multi-cellular organisms, but it is unknown how these factors might affect the 

establishment success of microbial invaders4. Here we show experimentally that 



89 

regardless of community diversity, establishment success by the microbial invader, 

Prymnesium parvum in an environmentally-compatible habitat, is determined by 

propagule pressure.  

Based on ecological niche theory in which organisms are thought to occupy an 

n-dimensional resource space5, more diverse communities should use existing resources 

more extensively and thereby limit the resources available for an invading species. 

Hence, the idea that disturbance facilitates the establishment of invaders by reducing 

resistance is widely accepted3, as disturbances that eliminate one or more species from a 

habitat should lead to increased resource availability. Some disturbances, such as 

nutrient pollution, can increase resource availability directly. In either case, 

disturbances favor species with fast growth and reproductive rates (e.g., r-selected 

species)6-8 and tend to lead to simplified communities which pose reduced resistance to 

invasion by exotic species. Dispersal, and more specifically, a component of dispersal, 

propagule pressure, has also emerged recently as a significant predictor of establishment 

success by an invading species9,10.. Together, community resistance and propagule 

pressure interact to affect establishment success of an invading species in a new 

community11. In theory, all communities are inherently invasible, with diverse 

communities with high resistance to invasion simply requiring higher propagule 

pressure in order to be successfully invaded. 

Our general understanding in invasion ecology is derived predominantly from 

the study of multi-cellular organisms. Thus, it is unknown how factors such as 

community resistance and propagule pressure will impact the establishment success of 

microbial invaders4. Moreover, it is not even known whether the concepts of dispersal 
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limitation and propagule pressure even apply to microbial communities. The infamous 

credo of microbiologists, “everything is everywhere, but, the environment selects” 

posits that microbial species are or have the capacity to be ubiquitously distributed or 

they are continuously invading new habitats, but that the environment determines which 

microbes are at densities high enough to be detected12,13. Evidence generated through 

the study of biogeographic patterns in microbes suggests processes beyond 

environmental filtering, such as community assembly and dispersal limitation, are 

important determinants of microbial community composition14-15. However, tests of the 

underlying factors (e.g., community resistance and propagule pressure) thought to be 

driving biogeographic patterns are needed.  

Here, we tested the hypotheses that reduced community resistance and increased 

propagule pressure will increase the establishment success of a microbial invader, 

Prymnesium parvum, in experimental freshwater microbial communities. In the past 

three decades, P. parvum, a harmful algal bloom species, has spread from marine 

coastal environments into freshwater systems throughout the southern half of the United 

States causing fish kills wherever it blooms16.  

Eighteen experimental mesocosms contained a mixed freshwater microbial 

assemblage taken from three sites within an invaded waterbody (Lake Texoma, 

Oklahoma and Texas, USA). These sites consistently differ in P. parvum abundances 

(the primary bloom site, 10-200 $ 103 cells mL-1; a medium abundance site, %10 $ 103 

cells mL-1; and zero to low abundance site, 0-0.5 $ 103 cells mL-1). Salinity was 

manipulated in all bottles to simulate conditions in natural systems when P. parvum is 

known to bloom (2.3ppt). Temperature was also maintained at 15°C to simulate 
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conditions of late winter – early spring when P. parvum typically blooms in freshwater 

systems17. Community resistance to invasion was manipulated in half of the mesocosms 

by supplementing nitrogen and phosphorus levels to facilitate an algal bloom and 

reduce community diversity. Microbial diversity was monitored using a 

pyrosequencing-based metagenomics approach. After seven days, P. parvum was added 

to both high and low diversity communities at three concentrations simulating three 

levels of propagule pressure. Establishment success by P. parvum was assessed three 

and seven days after P. parvum additions.  

Nutrient additions produced the desired bloom and community simplification 

after the 7-day incubation, with increased chlorophyll concentrations (Fig. 1) and 

reduced eukaryotic diversity (Fig. 1) in mesocosms receiving nutrient additions. This 

effect was maintained throughout the experiment, as diversity for eukaryotes remained 

lower in mesocosms that received nutrients (Fig. 1). However, both eukaryotic richness 

(Fig. 1) and bacterial diversity and richness were unaffected by nutrient additions (Fig 

S1). Both eukaryotic and bacterial diversity and richness at the end of the experiment 

were unaffected by P. parvum additions (Fig. S2). 

Prymnesium parvum establishment success was unaffected by diversity of the 

receiving eukaryote community, but was directly proportional to propagule pressure 

(Fig. 2, Table 1). Following addition of the highest propagule pressure (1.3 $ 107 cells; 

6,400 cells mL-1 mesocosm concentration), P. parvum maintained viable populations 

after seven days. In the medium propagule treatment (1.3 $ 106 cells; 640 cells mL-1 

mesocosm concentration), P. parvum was still present in some mesocosms at very low 

densities after seven days, but would have likely disappeared given more time. In the 
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low propagule pressure treatment (1.3 $ 105 cells; 64 cells mL-1 mesocosm 

concentration), P. parvum was detected in some mesocosms on day 3 but by day 7 had 

become undetectable. Hence, high propagule pressure overwhelmed any effects of 

reduced resistance (e.g., increased resources or reduced diversity).  

Our results suggest that eukaryotic microbial diversity doesn’t affect invasion 

success by an eukaryotic microbial species in a system that is otherwise 

environmentally favorable. Similar results have been seen in understory forest 

communities as propagule pressure from a mixed invasive assemblage taken from 

similar environments overwhelmed any effects of ecological resistance18. Although 

other experimental studies on multi-cellular organisms have shown that at the 

neighborhood scale resistance conferred by diversity has a negative effect on 

establishment19, results from larger scales field studies indicate positive relationships 

between richness and invasibility20-22. This larger scale effect has been attributed to 

factors that can covary with species diversity such as habitat diversity20 or even 

propagule pressure22. Hence, in our study it is a possibility that we were unable to 

sample diversity at a scale small enough to detect neighborhood-scale resistance effects. 

However, another possibility is that by controlling other environmental factors (e.g., 

temperature and salinity) in order to directly manipulate resistance in terms of resources 

and diversity we also altered interactions between the native community and P. parvum, 

as abiotic conditions have been shown to effect species interactions in macrobial 

communities19,23. This may explain how P. parvum was able to overcome the effects of 

increased diversity. By changing salinity and temperature we may also have created 

more habitat diversity and thus niche space for P. parvum that it was able to use despite 
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the fact that theoretically fewer resources were available. Furthermore, we examined the 

processes of propagule pressure and resistance in a eutrophic – hyper-eutrophic system. 

Even though our manipulation of nutrients changed diversity and thus theoretically 

resistance, this environment might be characterized as low resistance due to the high 

availability of resources prior to manipulation.  

In Lake Texoma, (Oklahoma and Texas, USA) (i.e., where we obtained our 

microbial communities) blooms of P. parvum have occurred in most winters since 

2003-2004, but only in the western Red River arm of the reservoir17. Even though 

downstream transport serves as a passive dispersal agent and propagule pressure is 

likely to be high given that bloom densities can approach 2 $ 105 cells mL-1, P. parvum 

has not successfully established populations (defined as recurring winter blooms) 

beyond Buncombe Creek24. Contrary to our experimental results, this pattern supports 

the hypothesis that environmental conditions are more important than propagule 

pressure in Lake Texoma. Moreover, this latter hypothesis was further supported by a 

landscape-scale survey for P. parvum across the Red River and Canadian River 

watersheds in Oklahoma and north Texas. Although P. parvum blooms occur upstream 

in both systems, and dispersal rates downstream are presumably high, P. parvum was 

only detected in sites with elevated salinities (i.e., with specific conductance >1900 µS 

cm-1)25. Thus while the latter half of the ‘everything is everywhere, but, the environment 

selects’ hypothesis is supported by our field data, the experimental results presented 

here suggest that dispersal may be a critical component of microbial biogeography. 
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Methods & Methods Summary 

Experimental mesocosms (n=18) contained a mixed freshwater microbial 

assemblage taken from three sites in Lake Texoma (L2, L4, and L6[17,24]). Resistance 

was manipulated in half of the mesocosms by adding nitrogen and phosphorus to levels 

known to facilitate P. parvum blooms (low resistance = 199µg L-1 P, 1.25 mg L-1 N; 

high resistance = 69 µg L-1 P, 0.79 mg L-1 N17) and allowing the communities to 

incubate for 7 days. Prymnesium parvum was added to the communities from cultures at 

three different levels of propagule pressure. Establishment success was assessed 3 days 

after propagule additions and again at the termination of the experiment (7 days) using a 

microscope and hemacytometer.  

Effectiveness of the nutrient addition at manipulating microbial community 

diversity (i.e., diversity determined by inverse Simpson diversity index, richness 

determined by Catchall26) was assessed at the addition of P. parvum propagule pressure 

treatments and at the end of the experiment using high-throughput sequencing of the 

v6[27] and v9[28] hypervariable regions of the 16S and 18S rRNA genes for the bacterial 

and eukaryotic communities respectively. Operational taxonomic units (OTUs) were 

defined at a 3% sequence dissimilarity cutoff and classified based on the SILVA rRNA 

database29. All sequence processing, alignments, calling OTUs, and diversity estimation 

was conducted in the open source software package ‘mothur’ v.1.27.0[30]. All mesocosm 

sequence data were subsampled to the lowest number of sequences obtained for any 

mesocosm prior to estimations of diversity and richness. Effects of nutrients on 

diversity and richness at Day 0 were only assessed in high nutrient/low propagule 

pressure, low nutrient/low propagule pressure, and low nutrient/zero propagule pressure 
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control treatment combinations. Comparisons of all mesocosms were not made at this 

time point because were unable to sequence the community for all mesocosms. In-vivo 

measurements of chlorophyll-a were also taken at Day 0 and Day 7 using a TD 700 

bench-top fluorometer.  

All statistical analyses including appropriate tests of normality and variance 

were conducted in R31. All comparisons of the eukaryotic and bacterial community are 

analyzed separately. Fixed effects of day, nutrient treatment, propagule pressure 

treatment, the interaction of day and nutrient treatments, and the random effect of 

mesocosm identity on diversity and richness were compared using linear mixed effects 

models and the R package “nlme.”32 Post-hoc t-tests were conducted when any 

significant effects of nutrient treatment was detected. Comparisons of chlorophyll-a 

between nutrient treatments and day-7 and day-14 of the experiment were also 

conducted using a linear mixed effects model comparing fixed effects of nutrients, the 

repeated measure, their interaction, and the random effect of mesocosm identity. Post-

hoc t-tests were also conducted for chlorophyll when any significant effects of nutrient 

treatment were detected. A generalized mixed effects model with a lognormal Poisson 

distribution33 was fitted to the P. parvum establishment data and then likelihood ratio 

tests using Chi-square were used to compare fixed effects of nutrients, propagule 

pressure treatments, the repeated measure, the random effect of mesocosm identity, and 

the interaction between nutrients and propagule pressure. This model was chosen 

because the dataset was not normally distributed and suffered from overdispersion. Due 

to limitations of degrees of freedom we were unable to test interactions between the 

repeated measure and nutrients or propagule pressure, or the interaction of all three 
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terms. We used Tukey’s test for post-hoc tests for comparing the different propagule 

pressure treatments.  
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Figures 

Figure 1. Effects of nutrient addition on the eukaryotic community. Chlorophyll-a 
(top panel) was increased in the high nutrient treatment (linear mixed effects 
model, F-nutrients1,16 = 1102.21, p < 0.001) at both the addition of P. parvum 
propagule pressure treatments (Day 0: Welch’s t-test, t1,7=25.66, p<0.0001) and at 
the end of the experiment (Day 7: Welch’s t-test, t1,7=25.12, p<0.0001). Eukaryotic 
diversity (middle panel; inverse Simpson diversity index) was decreased in high 
nutrient treatments (linear mixed effects model, F-nutrients1,16 = 35.78, p < 0.0001; 
Day 0: student’s t-test, t1,7=5.91, p<0.001) and this effect was maintained 
throughout the experiment (Day 7: student’s t-test, t1,7=3.25, p=0.004). Nutrients 
did not have an effect on rarified eukaryotic OTU richness (bottom panel; 
Catchall; linear mixed effects model, F-nutrients1,16 = 0.24, p = 0.63). However, 
chlorophyll (F-day1,16 = 1102.21, p < 0.0001), diversity (F-day1,7 = 164.45, p < 
0.0001), and richness (F-day1,7 = 91.53, p < 0.0001) all declined by the end of the 
experiment. 
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Figure 2. Establishment of P. parvum throughout the experiment. Stars depict Day 
1 inoculations. Different propagule pressure treatments are depicted by different 
colored circles (High – red, Medium – blue, and Low – white). Results show a 
significant of effect of propagule pressure on establishment success (Generalized 
Linear Mixed Model, #2 Likelihood Ratio Test of fixed effects (df=2), p <0.0001). 
High propagule pressure treatments showed significantly greater establishment 
than either medium or low propagule pressure treatments (Tukey post-hoc, both p 
<0.0001). Time of sampling (GLMM, #2 LRT, (df=1), p = 0.20), nutrients (GLMM, 
#2 LRT (df=1), p = 0.08), and the interaction of nutrients and propagule pressure 
(GLMM, #2 LRT (df=1), p = 0.27) had no effects on establishment. 
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Supplementary Information 

 
Figure S1. Figure 1. Effects of nutrient addition on the bacterial community. 
Bacterial diversity (top panel; inverse Simpson diversity index) was unaffected by 
nutrient additions (linear mixed effects model, F-nutrients1,16 = 1.13, p = 0.30). 
Nutrients did not have an effect on rarified bacterial OTU richness (bottom panel; 
Catchall; linear mixed effects model, F-nutrients1,16 = 0.02, p = 0.88). However, 
bacterial diversity (F-Day1,7 = 16.18, p = 0.005) and richness (F-Day1,7 = 6.91, p = 
0.03) did decline throughout the experiment.
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Post Script 

The first recorded bloom of Prymnesium parvum in fresh water occurred in the 

Workum See, Holland in 1920. However, it was not until it bloomed in the majority of 

aquaculture ponds in Israel in the late 1940s that it began to gain serious attention from 

the scientific community. Since that time P. parvum is known to have bloomed on every 

continent except for Antarctica. In North America the first documented bloom of a P. 

parvum occurred in 1985 in the Pecos River, TX, USA (although it may have been there 

since the 1960s). From there it steadily migrated north arriving in the Red River, OK, 

USA in 2000 and Lake Meredith in the Texas panhandle (USA) and the Canadian 

River, TX in 2003. Since these blooms, its range has rapidly expanded in the past 

decade causing fish kills in reservoirs and rivers throughout much of the southern 

United States from California to Florida, and as far north as Wyoming and West 

Virginia. Hence, worldwide research on P. parvum has spanned 9 decades (6 of which 

were intensive) and intensive research within North America has spanned the past 3 

decades.  

However, the majority of this research has focused on either autecological 

characteristics of P. parvum and the formation of its toxins, or on documentation of 

bloom occurrence. Little research has addressed questions relating to what might 

explain why this species has been so successful at expanding its range. There are two 

theoretical possibilities that might explain the rapid range expansion of P. parvum. One 

possibility is that P. parvum is an invasive species that has dispersed to and established 

in new ecosystems. The second possibility is that this range expansion is driven by 

changes in the environment driven by factors such as climate change or overexploitation 
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of water resources and that P. parvum has always been present in these systems (i.e., 

“everything is everywhere, but, the environment selects”). The hypothesis “everything 

is everywhere, but, the environment selects” is firmly rooted within microbial 

community ecology and indeed gradients in environmental characteristics have been 

shown to be correlated with differences in microbial community composition (e.g., pH 

and soil microbes). However, biogeographic patterns unrelated to environmental 

parameters have also been observed, which suggest that dispersal is important to the 

establishment of microbial species in new environments. What makes addressing these 

possibilities using the species P. parvum more interesting is that there is a need 

generally for investigations of microbial invasive species and that P. parvum has such 

dramatic negative effects because it is a harmful algal bloom species. In my 

dissertation, I show that indeed both dispersal and environmental selection can play a 

role in P. parvum establishment. Specifically, results obtained from field data suggest 

that environmental selection is a primary determinant of where P. parvum is detected. 

However, experimental results show that in environments that favor P. parvum, the size 

of the invading population can determine whether P. parvum is able to establish or not.    

Future research that would further tease apart factors important to dispersal 

versus environmental filtering would be to repeat the experiment from Chapter 4 

without the additions of salt or the manipulations towards colder temperatures. Because 

we added salt and manipulated temperature we controlled for the environment so that 

we could specifically test for factors important to understanding dispersal and 

ultimately affecting establishment. In essence, the previous research was attempting to 

address the “everything is everywhere” component of the “everything is everywhere, 
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but, the environment selects” hypothesis. By removing these environmental controls 

this experiment would also test for the importance of environmental filtering in 

determining invasion success. In this scenario I would expect that P. parvum would be 

less capable of invading mesocosms given our field data presented in Chapter 3, which 

suggests that the environment is a strong predictor of where P. parvum is detected. 

However, if P. parvum were capable of establishing in these mesocosms, with less 

favorable environmental conditions, then I would expect that establishment success 

would be highest in the highest propagule pressure treatments as demonstrated in 

Chapter 4.  

Another way to address the possibility of “everything is everywhere” directly 

using P. parvum would be to test if P. parvum has always been present in Lake Texoma 

and other systems that have had blooms of P. parvum. It has been suggested that P. 

parvum has the ability to form resting cysts. Therefore, it is possible that these cysts 

could exist in the sediments of lakes where P. parvum has previously established. Using 

a combination of sediment cores taken from the bottoms these lakes and the qPCR 

method from Chapter 1, one could attempt to detect P. parvum in dated slices to 

determine P. parvum presence, thus directly testing “everything is everywhere”. Any 

detections of P. parvum in years previous to its first bloom would suggest that indeed P. 

parvum has always been present in the system, just not at easily detectable levels. A 

further step would be to compare environmental conditions at the time of these 

detections to the current environment, which, if different, would increase the evidence 

that indeed environmental filtering is controlling bloom establishment. Any differences 

in environment would also provide a mechanism showing that indeed the environment 
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has changed in such a way that has favored P. parvum and that this may be occurring in 

other affected systems.  

 Although investigating the interplay of dispersal and environmental filtering is 

interesting it is not the only fascinating aspect of community and invasion ecology that 

could be addressed using P. parvum or that is addressed by my dissertation. In Chapter 

4 of my dissertation I ask the question “does increased resistance by the community 

have a negative effect on the establishment of the microbial invader Prymnesium 

parvum?” In this research I manipulated the microbial community by adding nutrients, 

which caused a phytoplankton bloom in the experimental mesocosms. This bloom 

resulted in changes in the eukaryotic diversity and taxonomic evenness. This change in 

diversity has numerous implications for community ecology, primarily that interactions 

between taxa, and thus the competitive arena within the mesocosms, was potentially 

altered. Understanding changes in species interactions (i.e., competition) strikes at the 

heart of community ecology and has been shown to be important in determining 

community composition in both multi-cellular organisms and microbes. For example, 

the idea of invasion resistance is built upon niche theory in that more diverse 

communities will either use more resources or use them more efficiently, and depending 

on the degree of use, will exclude invaders. Furthermore, community composition is 

thought to be important for ecosystem functioning. Thus, the fact that eukaryotic 

diversity in the mesocosms changed is interesting because how community composition 

was affected by the manipulations (both the addition of nutrients and the addition of an 

invader) allows us to investigate how these taxa might be interacting and the importance 

of the environment in determining outcomes of those interactions.  
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The next question for this research is “How did the microbial community change 

with the additions of nutrients and with the addition of P. parvum?” Theoretically, I 

should be able to make predictions about which taxa might be affected by these 

manipulations. For example, in the eukaryotic community one might expect diatoms to 

increase as they are often among the first phytoplankton species to increase during 

spring phytoplankton blooms. They are also potentially less edible by micro-predators 

such as ciliates that were present in the experiment, or even P. parvum (a known 

mixotroph), due to their siliceous cell wall. Because the raw values for bacterial 

diversity and richness appeared to be unchanged by the manipulation it would be 

interesting to investigate if community membership also remained unchanged. The 

theoretical importance of the microbial rare biosphere (i.e., the presence of numerous 

taxa at very low abundances) is thought to be that it maintains the functionality of the 

microbial community even though community membership can change with a given 

environmental change and this may be potentially occurring in the bacterial community.  

An interesting follow-up to this analysis would be to sequence the microbial 

communities using the DNA samples taken from various sites throughout the state from 

Chapter 3. These communities could be compared within one another and with 

community data from Lake Texoma to determine if communities shift in a similar way 

in response to the presence of P. parvum. This comparison could also provide insight 

into the importance of environment (i.e., the competitive arena) in determining 

freshwater microbial community composition.  

In conclusion, the results from my dissertation are only a starting point for 

asking questions about the importance of dispersal and the environment to the outcomes 
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of microbial invasion. Further investigation into the roles of environmental filtering, 

and the potential for the prior presence of P. parvum should prove to be fruitful avenues 

of future research. Furthermore, understanding how the environment and P. parvum 

affect community composition should allow us to gain insight into how P. parvum 

interacts with other microbes. Ultimately, all of this information is important not only to 

our understanding of P. parvum specifically, but to our understanding of microbial 

invasions and harmful algal blooms as a whole, and thus our ability to mitigate their 

impacts. 

 


