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PREFACE 

A timins simulator for a static Sisnal P~ocessins 

GraPh Notation sraPh was develoPed for the Enhanced Modular 

Sisnal Processor, a data flow comPuter develoPed by Bell 

TelePhone Laboratories for the United States NavY. The user 

inPuts the sYstem confisuration and the toPoloSY of the 

To imPlement channels, a constant rate for each 

channel is read and the timins si~~lator uses this rate to 

detect inPut ~ueues over threshold. 

The outPut consists of the sYstem confisuration, ~ueue 

data information, Functional element-utilization, node exe-

cution information, and an oPtional timins diasram. This 

allows the user to simulate sraPhs For comParison or to 

simulate modifications to the sYstem and test the feasibil­

itY of the ProPosed modification. 

I wish to thank the Professors of the Computins and 

Information Sciences DePartment For their suPPort and 

encourasement durin~ mY stav at Oklahoma State UniversitY. 

In Particular, I wish to exPress mv sincere thanks to Doctor 
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thank her For lettins me make mY own mistak~s and then 

encourasins me to try asain and not sive uP. 
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CHAPTER I 

INTRODUCTION 

John von Neumann in 1946 introduced the concePt of a 

sequential, centralized control executins instructions and a 

linear memorY storins instructions, data, ~nd results. The 

von Neumann concePt has thrived in comPuter desisn since its 

introduction in 1946. Advances in semiconductor device 

technoloSY and look-ahead instruction decodins have Produced 

va~t imProvements in· sPeed of executiort. Future advanc~s in 

semiconductor device technoloSY are limited bv heat dissipa-

tion and basic PhYsical 1 aws, thus a new aPProach for 

increasins the sPeed of execution was necessarY. Orsaniza­

tional advances such as PiPelinins increase Performance, but 

imProvements are limited bY the sequential 

von Neumann concePt. 

ExPloitins Parallelism was seen as the solution to 

future imProvements in execution SPeed. The von Neumann 

machine with its incremental Prosr~m counter and with Par-

ti.a.l results beins Passed between instructions via a memorv 

cell made the sPecification~ of parallelism difficult. 

Methods to exPlore and extract Parallelism have Proved use­

ful and sisnificant. 
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Introduction to Data Flow 

In 1966, KarP and Miller <19) introduced the concePt of 

data flow. In the 1970's, Jack Dennis aPPlied the data flow 

concePt to the desi~n of comPuter architectures. Data flow 

is based on two Principles. asynchronY and functionalitY 

<16,17>. When aPPlied to data flow, asynchrony imPlies an 

instruction is executable when and onlY when all required 

inPuts are available. FunctionalitY imPlies all instruc-

tions are functions which. bv definition, necessitates an 

instruction execute without side effects. The first Princi-

Ple imPlies an instruction is tri~~ered at the earliest Pos-

sible moment in the execution of a Pro~ram, thus Parallelism 

is imPlicitlY denoted bv the data flow method. The second 

PrinciPle imPlies the Parallelism can be exPloited since the 

order of execution of oPerations is without side effects. 

Consequently, two enabled nodes can execute concurrentlY or 

in either order without affectin~ the final results of the 

task. 

To exPlain whY these two PrinCiPles are si~nificant, an 

introduction and exPlanation of data flow is necessarY. 

Data flow is ba~ed uPon the flow of data throu~h a Prosram 

in contrast to the von Neumann flow of control concePt. 

Data flow can be~t be exPlained bv the us~ of data flow 

Fi~ure 1 <APPendix A> Sives an examPle of a 

simPle data flow sraPh. To fire node 1 which means to 

execute the instruction at node 1, inPuts A and B must 

both be present on the arcs to node 1. If onlY inPut A 
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is Present or onlv inPut B, the node is not readY to fire. 

UPon the recePtion of a data token (data item or inPut) on 

both inPut A and inPut B, node 1 (and node 2 in the examPle) 

will execute if two Processors are available, else one or 

both will await an available Processor. I nter·med ia t•a 

results will be matched with other inPuts to the succeedin~ 

node until all tokens are available. The node wi 11 then 

fire. The Presence of the data or tokens causes the node to 

fire, unlike the von Neumann concePt where the existence of 

control, i.e. the Pro~ram counter, causes the node 

<instruction) to fire. UPon exec•Jtion of node 1. a.nd node 2, 

node 3 wjll be fired bY inPuts C and D. 

In the comPuter, data flow Pro~rams a.re denoted bY 

activitY temPlates. Fisure 2 ~ives the activitY temPlates 

for the data flow sraPh in Fisure 1. In a data flow manner, 

activitY temPlates are readY for execution uPon recePtion of 

all oPerands and the result is emPtY. Classical data. flow 

states that each inPut consists of a sin~le token and 

that each outPut consists of a sinSle token. ThtJS a. 

node cannot fire if the outPut has a token Present on the 

arc. Modifications to classical data flow allow multiPle 

inPuts and outPuts, but require token labelins to distin-

suish different instances of the inPuts and outPuts. 

Data flow lansuases and da. ta f lr)W architectures 

exPloit Parallelism. Computer data. flow la.n~ua.ses are in 

senera.l desisned to overcome three limitations to von Neu-

mann la.n~ua.ses. First is the comPlexitY of resolvins all 
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Parallelism in current serial lansuases. Second. side 

effects from Procedur·es, so to's, and multiPle assisnments 

<variables beins reassisned more than once) make exPloiting 

Parallelism difficult. Third~ serial lan~uases are diffi-

cult to verifY. Much research into structured Prosrams and 

Prosram verification has been d6ne to serial lansua~es. 

Data flow lansuases can use this research to incorPorate 

structurins and ease of verific~tion into the develoPins 

lansuases. 

Data Flow Architectures 

Data flow architectures are beins desisned to exPloit 

Parallelism, to utilize Lar~e Scale Intesration and Verv 

Larse Scale Intesration technolosies effectivelY. and to 

create an easier to Prosram machine. To exPloit Parallelism 

is actuallY a method to obtain hisher sPeeds which is the 

final Soal. Effective utilization of Larse Scale Intesration 

and VerY Larse Scale Intesration technolosies will imProve 

chiP caPacitY and will caPitalize on the cost effectiveness 

of larse numbers of a few tYPes of functional elements. The 

soal of the data flow architecture is a comPuter with hish 

Performance at an accePtable cost. that is ~lso reliable. 

Extensive research has been made into data flow 

lansuases and data flow architectures. Numerous data flow 

lansua~es have been develoPed such as V~l. ID, and LAU. 

These lansuases focus on imPlicitly exPressins Parallelism. 
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Similarly, extensive research has been made into data 

flow architecture. The Massachusetts Institute of Technol-

osv static data flow architecture ProPosed bv Dennis and 

Misunas (9) in 1975 is an examPle of a- rins-based data flow 

architecture. A PrototYPe of the ProPosed architecture has 

not vet been built, but the basic ideas have been us~d in 

Texas Instruments Data-Driven Processor, the Toulouse LAU 

svstem, and the Manchester Data Flow Processor <22). 

The Texas Instruments Data Driven Processor executes 

Fortran ProSram&. Each oPeration or node has a ~aximum of 

thirteen inPuts and thirteen outPuts. MemorY is local to a 

Pr·ocessor, th~s each node is assisned a processor. Results 

from node executions are transferred over the interconnection 

network to the E-bus. The Data-Driven Processor with four 

Processors has been built and tested, but was not commer-

ciallv exPloited. 

The Toulouse LAU Svstem, Texas Instruments Data-driven 

Processor, and the Manchester Data Flow Processor are all 

rinS-based data flow architectures. The Toulouse LAU Svstem 

has slobal memories, an execution unit of one to thirtv-two 

Proces&ors, a control unit, and an interface. Each no:•de has 

a maximum of two inPuts and several outPuts. A PrototYPe of 

the LAU Svstem with thirtv-two Processors has been built and 

tested. The Texas Instruments and Toulouse desisns ~re 

static architectures which allow onlv one instance of a 

node, while the Manchester Data Flow Processor is a dvnamic 

architecture with more than one instance of a node allowable . 
• 
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Each node has a token associated with the node distin-

quishins the node from other instance• of the node. 

tions have shown rins-based architectures have a bottleneck 

in the communication Paths (15~22~25~28>. 

The Utah Data-Driven Machine attempted to overcome this 

communication Path Problem with a tree structure and the 

Irvine Data Flow machine uses aN* N communication network 

<where N is the number of processinS element•> f•:rr· token 

P~ssins. The Utah Data-Driven Machine is an eisht leaf tree 

structure with the suPerior elements at the root and infe-

rior elements at the leav~s. The s•JPer i or 

schedules the work of inferior Processors in the tree struc­

ture. A workins PrototYPe of the machine is oPerational and 

beins evaluated. The Irvine data flow machine was desisned 

to exPloit VerY Larse Scale Inte~~ation and to Provide a 

hish-level~ hishlv concurrent Prosram orsanization <25>. 

Packet communication is over a N * N communication network 

for token Passin~ between Processins elements. 

Sisnal Processins and Data Flow 

These data flow machines and others Proved the feasi­

bilitY of data flow architectures. Simulations of desiYns 

showed bottlenecks that imPeded Potential e:x:ecut iCon SPeed 

imProvemer.ts. Usins information Sained bv simulations 

and/or re~ults from other data flow desisns, American Tele­

Phone and TelesraPh Bell Laboratories commenced research and 

desisn on a data flow architecture for sisnal or data Pro-
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cessins. In 1982, under contract to the United States Navv. 

American TelePhone and TeleSraPh Bell Laboratories channeled 

this research into the underlvins desi~n for the Enhanced 

Modular Sisnal Processor, the United States N~vv's next sen­

eration standard sisnal Processor (3). 

In research concurrent with research on the Enhanced 

Modular Sisnal Processor. the feasibilitY of executins sis­

nal Processins aPPlications to a data flow architecture was 

investisated bv a research srouP at Helsinki UniversitY of 

Technolosv, Helsinki <18>. Their simulation revealed disi-

tal si~nal Processins als~rithms are senerallY data value 

indePendent, i.e. the sequencins of oPerations in the also­

rithm is indePendent of the data values. Disital sisnal 

Processins aPPlications are rePresented bY block diasrams of 

hish-level sisnal Processins operations, e.s., F~st Fourier 

Transforms and bandwidth filterins. The~e blocks or hish-

level oPerations tYPicallY are free of side effects. data 

value indePendent, and of hish comPutational comPlexitY in 

terms of elementarY arithmetic operations. A continuous 

stream of source data beins Processed bY a rePeatedlY exe­

cuted fixed set of alsorithms is the scenario in a real-time 

disital sisnal Processir•S task. The architecture Hartimo. 

et al (18) ProPose, a Data Flow Sisnal Processor. is a 

dYnamic token labelinS architecture with Packet communica-

tion. The results of the simulation showed the Data Flow 

Sisnal Processor architecture can efficiently handle real­

time sisnal Processins aPPlications. 
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The obJective of this work is to desisn and imPlement a 

ti~ins simulator for the Enhanced Modular Sisnal Processor 

<EMSP>. A timins simul~tor imPlements the timins re~uired 

to execute a ~eries of instructions in contrast to a func­

tional simulator which imPlements the actual outPut result-

ins from the execution. Thus the EMSP timins simulator 

simulate& the timins to execute a Sisnal Pr·ocessins GraPh 

Notation <SPGN> static ~raPh. The OutPut for the simulator 

is the utilization factors for each functional element, the 

number of firinss (executions> for each node, the number of 

channel fi~in~s for each channel, and the state of the 

queues when the simulation ends. An oPtional outPut is a 

timins chart with oPcode identifiers for instructions. 

Simulation timins dePends on the execution time of Primi­

tive& <alsorithms) and the number of words in a data 

transfer on the Control Bus or the Data Tran~fer Network. 

The simulator handles these calculations bY usins formulas 

derived From the Primitive manual ·(13> and bY knowins the 

tr·ansfer rate and transfer Protocols on the Control Bus and 

the Data Transfer Network. The user can answer all inPut 

queries bY lookins at the SPGN sraph, the command Prosram. 

and the svstem confisuration for the EMSP. 

The followins chaPters more fullY exPlain the EMSP tim­

ins simulator. ChaPter II discusses SPGN and command Pro-

sram&. ChaPter III discusses the EMSP architecture. 

ChaPters IV sives the details of the desisn and imPlementa-
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tion of the EMSP timins simulator. ChaPter V ~oes throush a 

test ~imulation of a simPle sraPh on a sParse EMSP confi­

suration. ChaPter VI is a summarY and a discussion of 

future work. 

Reasons for Simulator 

Simulations of ProPosed com~uter architectures have 

become a valuable desisn tool. Simulators have evaluated 

the Performance of manY data flow architecture desisns. 

The~e simulators reveal desisn flaws and unexPected comPli­

cations. Simulations of data flow comPuters have Proved the 

fea~ibilitv of the data flow methodoloSY. 

The timins simulator for the Enhanced Modular Si~nal 

Proce~sor will be used ta evaluate the Enhanced Modular Sis­

nal Processor and anY future modifications to ~he Enhanced 

Modular Si~n&l Processor. Research into the effects of dif­

ferent memorY manasement schemes has been ProPosed. The 

timins simulator will be used a~ a tool in these evalua­

tions. Research into the effects of different sYstem confi­

surations will Provide useful information on the limits of 

the desisn. The effects of addins resources will reveal 

oPtimum confi~urations and functional element selections. 

Saturation Points for the sYstem will reveal feasibilitY 

information on the maximum utilization factors. The 

Enhanced Modular Sisnal Processor timins simulator will Pro­

vide an imPortant and useful tool in the evaluation of the 

Enhanced Modular Sisnal Processor and in the evaluation of 

ProPosed modifications. 



CHAPTER II 

ECOS METHODOLOGY 

The Enhanced Modular Si~nal Processor Common 0Fera-

tiona] SuPPort Software methodolosv was develoFed to buffer 

a si~nal Processin~ ensineer from the Frosrammin~ of a ~is­

nal Processins aPPlication and the architecture of the 

maahine executins the Pro~ram. After dealins with the pr·ob­

lems associateJ with the Advanced Sisnal Processor. the Navv 

realized a new methodolosv was needed to reduce develoFment 

and maintenance costs of aPPlication software.(2) The diffi­

culty in Prosrammins aPFlications led the NavY to FroFose A 

Common OPerational. SuPPort Software methodology. A Common 

OPerational SuPPort Software methodolosv CACOS> was written 

in a ~raPh notation that Paralleled the block diasram struc-

ture of a diSital sisnal Processins aFFlication. 

tions, or Primitives as theY are more commonlY called, are 

imPlementation dePendent. Thus the Disital Sisnal Process-

ins ensineer could SPecifY the Prosrams in a sraPh notation 

easilY translatable to A Common OPeration SuPPort Software 

methodolosv (2,11.29>. 

10 
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Sisnal Proc~ssins GraPh Notation 

An Enhanced Modular Sisnal Processor Common OPerational 

SuPPort Software methodolosv <ECOS> sraPh executes accordins 

to data flow PrinciPles. It does not adhere to classical 

data flow in two asPects (11). Classical data flow requires 

one token or data element Per arc. In contrast. ECOS renam*s 

the arcs as queues and allows multiPle instances of data 

elements per queue. Each node execution can require more 

than one data element Per queue. A threshold valu~ sPeci­

fies how manY element~ must exist on a queue before the node 

can e>~ecute. Each node execution also specifies an offset 

<number of data elements to skiP over> and a read amount 

<number of data elements to read) and a consume amount 

<number of data elements to consun.e>. After n•:.de e>~ec•Jtir:rn. 

the number of data elements written to the resPective r:rutPut 

~ueue<s> is determin*d bY the Primitive based on the inPut 

re.a.d amounts. A Common OPerational 

methodoloSY allows more than one instance of a nr:rde to 

execute at a time, but sives a warnins of po~sible indeter-

minacv if this PrinciPle is Practiced. ECOS 

differs from classical data flow in the nonsPecification of 

rtode execution. Each node rePresents a hiShl····· r:r:rmple:>:: r:ons-

Putation whose imPlementation is not sPecified in A Common 

OPeration a 1 SuPPort Software me tho do 1 oSY. Titus, the execu­

tion of a sinsle microProSrammed node instruction may exe­

cute in a traditional von Neumann method. 



Fisure 3 (APPendix A> shows ~ s~mPle Enh~nced Modular 

Sisnal Processor Common 0Per~tional SuPPort Software metho-

dolosv sr~Ph. Node 2 and node 3 can execute concurrentlY or 

in either order ~fter the execution of node 1. The Enhanced 

Modul~r Sisn~l Processor Common 0Per~tion~l SuPPort Softw~re 

methodolosv sraPh is translated to Sisnal Processins GraPh 

Not~tion in Fisure 4 <APPendix A>. Sisn~l Processins GraPh 

Notation denotes a static SraPh or sr~Ph realization which 

is comPiled into a load module. 

Jhe Enhanced Modular Sisnal Processor executes the ECOS 

methodolosv. The EMSP suPPorts ECOS Primitives of a hiSh 

comPutational comPlexitY to reflect one or more blocks of ~ 

disital sisnal Processins sr~Ph. The oPer~tions ~re 

microPro~rammed, machine indePendent, and executed bY 

sinsle-thread, control flow ~rchitectures <12>, while ACOS 

is machine indePendent and follows a d~ta flow methodolosv . 

. The Enh~nced Modul~r Sisnal Processor ~dheres to the Princi-

Ple of one instance of a Sr~Ph node inst~nce. 

Command Prosram 

To manase sraPhs, Comm~nd Prosrams were developed. 

Comm~nd Prosr~ms, which ~re ~PPlication dePendent, control 

sraPh execution and interaction. Command Prosrams are writ-

ten in a Hish Order L~nsuase such as ADA and use a set of 

Procedure c~lls (Command Prosram Sisnal Processin~ GraPh 

Notation>. A command Prosr~m creates and controls a sraPh 

realization into an executins sraPh instance. More than one 



instance of a realization is accePtable. with each instance 

beins created and manaSed bv a Command Prosram. Command 

Prosram instructions are listed in Fisure 5 <APPendix A>. 



CHAPTER III 

ENHANCED MODULAR SIGNAL PROCESSOR 

The Enhanced Modular Si~nal Processor is a distributed 

control, multiProcessor architecture desisned to imPlement 

Enhanced Modular Signal Processor Common OPerational SuPPort 

Software methodology <2>. Under contract to the United 

States Navy, American TelePhone and Tele~raPh Bell Labora­

tories is designing the Enhanced Modular Signal Processor as 

the Navv/s next generation standard signal processor (3). 

IndePendent modules or functional elem~nts Partition the 

task~ of control, memorY mana~ement, node schedulin~, 

inPut/outPut, and node execution. This modular architecture 

was chosen to meet design criteria related to throughput, 

reliability, modularity, and ProgrammabilitY. ThroughPut is 

imProved by the selection of the data flow methodology, th~ 

selection of a crossbar switch to handle multiPle data Paths 

in Parallel, a token Passing control bus, and a seParated 

svstem control. The data flow methodology was cho~en 

because it naturallY exPloits the inherent Paralleli~m of 

signal Processing aPPlications and because of the asYnchronY 

and functionality of signal Proce~sin~ ~raPh nodes. Relia-

bilitY is handled bY constant self monitoring bv functional 

elements, by backuP critical functional elements, and an 

14 
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error recoverY mechanism. The modular structure of the 

Enhanced Modular Sisnal Processor allows the addition of 

Global Memories and Processors to incre~se memorY manasement 

or processins Power. The criteria Pertainins to Prosramma­

bilitY were met bY imPlementins the Enhanced Modular Sisnal 

Processor Common OPerational SuPPort Software methodoloSY. 

Each module of the Enhanced Modular Sisnal Processor 

can execute concurrentlY with other modules. each module 

executins a different function of the sraPh instance<s>. 

Each module tYP~ has its own oPeratinS sYstem functions and 

each Enhanced Modular Sisnal Processor function executes 

asvnchronous.lv. Parallel Processins amons the Arithmetic 

Processors was selected to meet the requirement of a 

throu~hPut r~te of over a billion operations Per second 

and the abilitY to UPSrade the system bY a factor of sixteen 

from the minimum confisuration. The Enhanced Modular Sisnal 

Processor sYstem architecture is shown in Fisure 6 (APPendix 

A>. 

Arithmetic Processor 

The Arithmetic Processors execute the node instruction 

(Primitive>. a microPro~rammed realization of a hishlY com-

PutationallY comPlex sisnal Processins alsorithm. e.s., Fast 

Fourier Transform. Finite ImPulse ResPonse/Infinite ImPulse 

ResPonse filters. beamformers. The Arithmetic Processors are 

a sin~le-thread. control flow architecture desiSned to effi­

cientlY execute vector multiPlY and add oPerations. which 



are characteristic of si~nal Processin~ al~orithms. Each 

Arithmetic Processor oPerates asYnchronouslY and indePen-

dentlv of other Arithmetic Processors. A sched•J 1 ed n•::.de 

arrives at the Arithmetic Processor in the form of an 

instruction stream and node setuP besins. After accePtins 

the instruction stream and decodin~ the oPerands, the Arith­

metic Processor requests all inPut queues and inPut ~raPh 

variables from Global Memorie~. The Arithmetic Processor 

accePts the queues and ~raPh variables from the Global 

Memories and stores the data alon~ with the instruction 

. stream in the node e>{e-cution and control 1 oca 1 m~morY. IJP•::.n 

recePtion of all inPuts, the node is l'eadv to enter the e>~e­

cution Phase where the node Primitive is executed in the 

Arithmetic Processor. UPon comPletion of the execution 

Phase, the node enters the breakdown Phase. Breakd•::.wn 

includes the sendins of Write Queue and Write GraPh Variable 

instructions for all outPut queues and sraPh variables and 

the sendins of a Consume Queue instruction to the Global 

MemorY for all inPut queues. Queues are not consumed until 

the breakdown Phase because of fa.u 1 t tc•l erance. If a fault 

occurs durins the execution of a. node. the :Sched•J 1 er· 

reschedules the node on a. different Processor and the queue 

will not have been corruPted in Global MemorY. 

The Arithmetic Processor has seParate arithmetic and 

control units and can SUPPort three nodes. one in each of 

the three Pha~es: setup, execution. and breakdown. Tlri s 

abilitY increases throu~hPut and allows overla.PPins or PiPe-

1inins of node executions. When a. node comPletes the &etuP 
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Phase. the Arithmetic Processor issues a Request for 

Instruction Stream to notifY the Scheduler that the Proces­

sor is· readY for another instruction. 

Command Pr-o51r·am F'rocessor 

The Command Pro51ram Processor •:•:.mmand 

Pro51rams. handles err-or detection and recoverv. initiali-

zation. communication with external devices. and testin51 and 

debu!:!sin51. The Command Pro51r-am Processor executes command 

Pro51rams which start and stoP 51raPhs. start and stoP inPut 

a.nd output, lin~ and unlink inPut and ·outPut queue~. and 

create queues and 51raPh instances. The Command Pro51ram Pro-

ce~&or does not ParticiPate in 51raPh execution. 

Pro51ram Processor can resPond to the failure of functional 

elements bY reconfi51urin51 the Enhanced Modular Si51nal Pro-

cessor to remove the element in a 51raceful sYstem de51rada-

tion. SYstem initialization is handled bY the Command Pro-

sram Processor and the Command Prosram Processor communi­

cates with each functional element at sYstem initialization 

to verify its abilitY to respond. Testin51 and debu5151ins 

instructions a.re Provided bY the Command Pro~ram Proces~or 

durins the verification stases. 

Control Bus 

The Control Bus Provides a communication Path between 

functional elements for control messa~es. The Contr·ol B•Js 

uses a token Passins technique of arbitration. Messases are 

tran&ferred on the Control Bus accordins to the followins 



Procedure. Each functional el~ment uPon comPletins 

1.-. C• 

transmission on the Control Bus besins assertins the Count 

Clock line <14>. See Fisure 7 <APPendix A>. Each Por·t 

(functional element~ are located on Ports> increments its 

internal counter value uPon receivins the Count Clock Tine 

clock Pulse. If the internal counter value matches the 

functional element~s unique count value and has a messase to 

tr~nsmit, the functional element a~serts StoP Clock and 

Places the destination Port identification word on the Con-

trol Bus. The destination Port resPonds with a Transmit 

Successful <or Transmit Failure if a ParitY error occurs) 

and the transmission of the control messase commences. To 

Provide synchronization, when the functional element assert-

ins the Count Clock re~ches the end of the scan cYcle, it 

asserts Reset Clock and all functional elements reset their 

internal count value. 

The Control Bus Provides bidirectional communication 

between all functional elements. Messases Passed on the 

Control Bus are short comPared to messases Passed on the 

Data Transfer Network and are mainlY control and status 

information. The Control Bus transf~rs messases over an -=·­·-· 
bvte data Path asYnchronouslY at a maximum data rate of 4.61 

mesabvtes Per second <14>. 

Data Transfer Network 

To avoid the bottleneck caused bv data Path contention 

cited in manv Previous data flow comPuters. a Data Transfer 
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Network was desi~ned with one or two two bY two, f (IIJ r· b··,·· 

f•::.ur, eisht bY eist.t, and/or sixteen bY sixteen cro•sbar 

switches. UP to N <N bY N switch) unidirectional communica­

tion Paths maY be connected in Parallel, Provided each 

switch inPut and switch outPut Port is unique with a maximum 

seven mesabYtes Per second data transfer rate Per Path. To 

increase the number of functional elements that can be con-

fisured, each switch inPut has a four to one multiPlexer 

called a concentrator and each switch outPut has a one to 

four demultiPlexer called a distributor. Enhanced Modular 

Sisnal Processor sPecifications do not allow Processor to 

Processor communication or memorY to memorY communication 

over the Data Transfer Network. Consequently, a maximum of 

sixty-four processor~ is allowable and a maximum of sixtY­

four Schedulers and Global Memories is Possible for a dual 

Data Transfer Network confisuration with two sixteen bv six­

teen switches. 

Two levels of Data Transfer Network arbitration occur 

•:oncurrent 1 Y. Arbitration on each co~centrator follows a 

first com~ first served scheme if the concentrator is not 

busY. If the concentrator is servicins a transf~r request, 

UPon comPletion of the transfer, the concentrator passes 

control to the next element requestins a transfer. Con-

nected data transfers on the Data Transfer Network cannot be 

i nterr·uP"i:ed, thus if a requested destination is busy with 

another data transfer, the concentrator will lose its turn 
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in the arbitration scheme. The concentrator th~n attemPts 

to service anY other Pending requests. Each Data Transfer 

Network follows a token Passing method of arbitration. Each 

concentrator has a time slot and during its allotted time. 

it will connect a data Path. if a data transfer request is 

Pending on the concentrator and if the destination distribu­

tor is free. 

Global Memory 

T~e Global MemorY stores. imPlements. and manages 

instruction streams. queues. and graPh variabl~s. The Glo-

bal Memory imPlements the creation of nodes. queues, and 

sraPh variables when sraPh instances are created. The Glo-

bal MemorY Provides dYnamic memorY management, for 

allocating and deallocating memory as queues are written and 

consumed. The Global MemorY maintains queue informa~ion 

including threshold, dYnamic number of data elements. and 

the size of data elements to perform dynamic memorY man~ge­

ment and automatic threshold detection. EverY time a queue 

is consumed or written, the Global MemorY automaticallY 

checks queue thre~hold and caPacitY information and rePorts 

any queue events to the Scheduler. 

InPut/OutPut Processor 

The InPut/OutPut Processor Performs, as its name 

imPlies, all tasks SUPPorting the inPut and outPut of data. 

The PrinciPles of OPeration for the Enhanced Modular Sisnal 
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Processor manual ( 14) lists the followins tasks for the 

InPut/OutPut Processor. 

1. To ~erform sisnal inPut/outPut. the InPut/Output 

Processor imPlements the Process link between 

the external world and the Enhanced t'lodu 1 ar· 

Sisnal Processor executins sraPh. 

2. To handle manv sisnal data channels with different 

characteristics. the InPut /O•JtPut 

SUPPOrts concurrent execution of multiPle 

inPut/outPut Processes with multi-taskins. 

3. To achieve data band1.11idth red•Jction. the 

InPut/OutPut Processor handles front-end sisnal 

Process ins. 

4. To SUPPort data transfer and control functions. 

5. 

the InPut/OutPut Processor handles inter-functional 

element communication. 

To Perform InPut/OutPut Processor tasks. the 

InPut/OutPut Processor manases all its internal 

resources. 

Scheduler 

The Scheduler is the functional element in the Enhanced 

Modular Sisnal Proce~sor resPonsible for imPlementinS the 

data flow methodolosv. To schedule nodes in a data flow 

methodolosv. the Scheduler maintains four data bases storins 

queue. node and Processor information. The Queue to Node 

MaP stores the node identification number for the inPut and 
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outPut nodes for each queue. The Node Characteristic Table 

contains the number of inPut queues, tvPe of Processor 

required for execution <e. s., Arithmetic 

InPut/OutPut Processor), the identific~tion of the Global 

Memorv containins the node's instruction stream, and the 

rtumber of conditions, a dvrta.mic count of the inPut queues 

vet to So over threshold (2). The Free Functional Element 

list ma.inta.ins ~list of free Processors a.vaila.ble for Pro-

cessins nodes. The Readv Node List consists of all nodes 

tha.t a.re eliSible for execution, but for ~hich no aPProPri-

a.te Processor is a.va.ila.ble. 

When- the Scheduler receives a. Queue Over Threshold, 

Queue over Ca.pacitv, etc., messa.se from a Global Memorv, the 

Scheduler searches the Queue to Node Ma.P for the outP.tJt 

node's node identification number. Usins the outPut node's 

node identification number, the Scheduler decrements the 

node's Number of Conditions in the Node Characteristic Table 

for a. Queue Over Threshold messase. When the Number of Con-

ditions reaches zero, the node is scheduled bY sending a 

Send Instruction Stream to the Global MemorY containins the 

instruction stream <listed in the Node Characteristic Table) 

if ~n aPProPriate Processor is free, other~ise the node is 

Placed on the Rea.dv Node List to a~ait a free Processor. If 

the node is Placed on the ReadY Node List, it ~ill be 

scheduled ~hen a.n aPProPriate Processor sends a Ready For 

Instruction Stream to the Scheduler. Clther~i se, the 

Scheduler ~ill resPond to the Ready For Instruction Stream 
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bv Placins the Processor~s identification number on the Free 

Element List. 



CHAPTER IV 

ENHANCED MODULAR SIGNAL PROCESSOR 

TIMING SIMULATOR 

In chaPter I, the motivation behind desisnins the 

Enhanced Modular Sisnal Processor <EMSP> timins simulator 

was stated: to Provide an imPortant and useful tool in the 

evaluation of the EMSP and in the evaluation of ProPosed 

modifications. Simulation is an ~ccePted Practice in the 

evaluation of the Performance of ProPosed desisns. Simula­

tion can estimate Performance ~s well as test ProPosed 

modifications. This chaPter describes the imPlementation of 

the EMSP timins simulator. 

The EMSP timinS simulator was written in a modular Pro­

cedural stvle in C lansuase on a Perkin Elmer 3230. Fisure 

8 <APPendix A> sives the hierarchy chart for the EMSP timins 

simulator. The modular Procedural stvle was selected to 

imProve readability, maintainability, and modifiabilitY. 

Data Structures 

Data structures excePt for static data structures local 

to Procedures· are centrallY defined in a header file. 

Structures were declared for sraPh execution instructions, 

functional elements, nodes, channels, and queues. GraPh 

24 
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execution instructions are Placed on the event list, readv 

list, Control Bu& request table. and the Data Transfer 

request table. A SraPh execution instruction is Placed on 

the event list if the functional element receivins the 

instruction is busY or if the instruction has an event 

occurrence time sreater than the simulated clock time. 

GraPh execution instructions are Placed on the Control Bus 

request table or the data transfer request table, if the 

sender functional element is reques~ins action from the 

receiver func~ional element. The functional element struc-

ture records the EMSP sYstem configuration for each elemeMt, 

utilization, and request activitY. 

The node data structure, queue data structure, and 

channel data structure record sraPh topology, static setuP 

information. and dYnamic information Pertaining to number of 

data elements on a queue. For each inPut and output to a 

node, the node structure records ~hether it is a ~raPh 

instantiation Parameter, a graPh variable, or a queue. The 

value of e~ch ~raPh instantiation Parameter and SraPh vari­

able is stored and the global memorY functional element 

identification number and element size is stored for each 

Sraph variable and queue in the node data structure. The 

queue data structure maintains all node execution Parameters 

and caPacitY information for each queue. Channel data rate 

information is kePt in the channel data structure. Conse-

between all the structures, the toPology of the 

~raPh and the Parameters of the static graPh are defined. 
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Dvnamic caPacitY of the queues and the dvnamic state of the 

EMSP are maintained bv the data structure elements of the 

execution instructions. functional elements. and 

queues. 

Instructions 

Two tvpes of instructions are defined for the EMSP. 

GraPh execution instructions are used to imPlement the data 

flow methodolo~v. execution instructions are 

tr-ansferred between functional elements on the Control Bus 

or the Data Transfer Network. These 1nstructions Pertain to 

node schedulin~ and include requestin~ queues or ~raPh vari­

ables bv the Processor. writin~ or consumin~ queues bv a 

Processor. sendin~ instruction streams. etc. Fisure 9 

<APPendix A> shows the ~raPh execution process of 

scheduled node. 

tion instruction. 

Each instruction listed is a SraPh execu­

but this is not an inclusive list. 

Numerous SraPh execution parameters deal with initializa-

tion. bootins. error detection and handlin~. 

SraFh modifications. 

or dvnamic 

A steP-bv-steP exPlanation of Fisure 9 <APPendix A) 

will clarifY how the EMSP imPlements the data flow methodol­

osv. Althoush Fi~ure 9 <APPendix A> is the sraPh execution 

Process of a sin~le scheduled node. each node follow~ this 

execution Process. Processins for one node besins with an 

InPut/Output Processor or an Arithmetic Processor writins to 

a queue over the Data Transfer Network to a Global Memorv. 

If the queue soes over threshold <a threshold sPecified in 
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the inPut ~raPh), a Queue Over Threshold messase is sent to 

the Scheduler over the Control Bus. If all inPut queues for 

the node are over threshold and an aPProPriate Processor is 

free, the Scheduler sends a Send Instruction Stream over the 

Control Bus to the Glob~l MemorY storins the Instruction 

Stream. The Global Me~QrY locates the Instruction Stream 

and sends the Instruction Stream to the Processor sPecified 

in the Send Instruction Stream. After AccePtinS the 

Instruction Stream, the Arithmetic Processor requests all 

inPut queues and SraPh variables bv sendins a Request Queue 

for each inPut queue or ~ Request Gr~Ph Variable for each 

input Sr·aph variable to the Global MemorY over the Control 

Bus. After all queues and sraPh variabl~s are accePted bv 

the Arithmetic Processor with AccePt Queue and AccePt GraPh 

Variable instructions, the Processor sends a ReadY For 

Instruction Stream to the Scheduler over the Control Bus and 

commences Primitive or node execution. Upon comPletion of 

the Primitive execution, the Processor writes all outPut 

queues and ~raph variables bY sendins the Write Queue and 

Write GraPh Variable instructions over the Data Transfer 

Network. If the Global MemorY detects a Queue Over Thres-

hold or CaPacitY as the queue is written, the Global Memorv 

sends a Queue Over Threshold or CaPacitY instruction to 

the Scheduler and a new node maY be scheduled. After all 

outPuts are written, the Processor commences consumins all 

inPut queues bv issuins the Consume Queue instruction over 

the Control Bus to the Global Memory. If a queue is over 

threshold after consumPtion. a Queue Over Threshold messase 
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is ~ent to the Global MemorY or if the queue ~oes under 

threshold, a Queue Under Threshold messase is sent to the 

Global MemorY. 

In Fisure 9 <APPendix A>, one steP of the SraPh execu­

tion has requests for sraPh variables and queues as inPut 

and writins sraPh variables and writins and consumins queues 

as outPut to an Arithmetic Processor. This is the Primitive 

execution Phase where the sisnal Processins aPPlication 

alsorithms sPecified bY th~ Sisnal Processins GraPh Notation 

sraph nodes are executed. These Primitives or arithmetic 

Processor instructions are arithmetic and/or losical calcu­

lations that maY be hiShlY comPutationallY comPlex sisnal 

Processins alsorithms such as Fast Fourier Transforms or 

Infinite ImPulse ResPonses. or simPle vector loSical func-

tions. The Primitives are executed bY a von Neumann sequen­

tial. centralized control Arithmetic Processor. A comPlete 

lis~ of the Primitives are Siven in APPendix B. 

Initialization 

Initialization consists of definins all variables in 

the functional element structures to null conditions, to 

nullifYins all node Pointers. to settins the time to zero. 

nullifvins all channel information. and initializins all 

request lists to emPtY. The instruction list. the Control 

Bus list. and the Data Transfer Network list must be ini­

tialized to emPtY lists before inPut to the sYstem creates 

initial instructions. Initialization of the lists and the 

TIME variable are necessarY for ProPer Prosram execution. 
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but other initialization was done as a PrecautionarY measure 

to insure a valid known initial state of the simulator. 

InPut 

After initialization, inPuts are read from two inPut 

files whose names are interactivelY entered. The first file 

contains the static ~raPh's toPolo~Y. For each node, the 

inPuts must be entered in the followin~ order. First, the 

node's unique identification number must be read and the 

node's Primitive mnemonic (APPendix B>. The simulator uses 

the mnemonic to locate the Primiti~e in a table and to ~et 

information about the Primitive's inPuts, outputs, and tim­

in~ requirements. The simulator next reads the tvPe <~raPh 

variable. ~raPh instantiation Parameter, or queue> for each 

inPut. If the inPut is a ~raPh variable, the ~raPh variable 

identification number is read. If the inPut is a queue, the 

queue identification number, the threshold, 

read node execution Parameters are read. 

consume. and 

If one of the 

Primitive.inPuts is a familv of queues, a -1 must be entered 

to si~nal the end of the familY. After the inPuts for the 

node are ~ead, the outPuts are read. The simulator reads 

the tYPe <sraPh variable or queue> of outPut and the 

outPut's identification number. If the variable is a queue. 

the valve amount is read. If one of the Primitive outPuts 

is a familY of queues, a -1 mu~t be entered to si~nal the 

end of the familY. The information in this inPut file com­

PletelY sPecifies the static ~raPh or ~raPh realization. 
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To identify the EMSP system and a more dynamic sraph, a 

second file of information is necessarY. This file contains 

outPut Parameters, the sYstem confisuration, channel in for~ 

mation, and variable information. The simulator first reads 

the maximum number of time units the simulator is to simu-

late and whether the user Prefers a timins chart. Next the 

simulator defines the SYstem confisuration bY readins the 

number of Data Transfer Networks and the switch size of each 

Data Transfer Network. and the functional element informa-

tion. Each functional element has the followins .ordered 

inPut: functional element identificati~n number. tYPe of 

functional element <Arithmetic P~ocessor. Scheduler. etc.), 

Data Transf~r Network of the concentrator, concentrator 

number, element of concentrator, Data Transfer Network of 

distributor. distributor number. and element of distributor. 

A -1 as the functional element identification number is used 

to sisnal the end of functional element information. 

Next ch~nnel information is read. Channel information 

is used to fullY define the queu~s that are inPut or outPut 

to the SraPh. The simulator reads the followins ordered 

channel information: channel identification number, channel 

Priority, channel rate. the queue attached to the channel. 

th~ functional element identification number of the 

InPut/Output Pr·ocessor. and whether the channel is an inPut 

or outPut channel. A -1 as the channel identification 

number is used to end the channel information. 
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Finally, the simulator reads the node's Global memorY 

identification number. variable values. and queue caPacitY 

i n f 1) r mat i 0:1 n • F1)r each node, the s im•J 1 a tor reads the i den-

tification number of the Global MemorY storins the instruc-

ti1)n stream. SequentiallY for each inPut excePt for the 

queue the variable value is read, and except for the sraPh 

instantiation Parameter the Global MemorY identification 

number is read. and for each inPut queue. the queue caPacitY 

is read. SequentiallY for each outPut. the Global MemorY is 

read. If the outPut is a queue attached to an outPut chan­

ne 1 <sink>, the capacitY of th~ que•Je and the thresho 1 d is 

read after the Global MemorY identification number since the 

this information is normallY read when the node at the head 

of the queue is read. If the outPut is of tYPe queue and 

not a sink queue. the caPacitY is read after the Global 

MemorY identification number. 

OutPut 

OutPut for the EMSP timins simulator consists of a 

title. a system confisuration chart. a utilization factor 

for each functional element. a total time to execute a sraPh 

<or a maximum time), and an oPtional steP-bY-steP runtime 

utilization sraPh, node execution information, channel 

cution information. and queue information. The confiS•Jra-

tion chart echoes the inPut confisurati6n and will be useful 

to verifY the input confisuration and as a reference 

when doins comPar·ison studies. After the confisuration 

chart. the tocal time to execute the static sraPh is 
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maximum execution time sPecified. Utilization factors will 

be used to evaluate the Enhanced Modular Sisnal Processor 

and anY ProPosed modifications. The number of firinss Per 

node is in a table Sivin!l the node identification 

numbe~. the node oPcode. and the number of times the node 

was fired. The oPtional steP-bY-steP runtime utilization 

SraPh is a timin!l chart for the Enhanced Modular Si!lnal 

Processor and is oPtional because of the lar!le quantitY of 

the outPut and the severe desradation to the Performance of 

the sim•Jlator. Node, channel, and information 

!lives the number of the times the node or channel was 

scheduled and the number of elements on the queue at the 

time the simulation stoPs. 

Functional Element Conflict Resolution 

The EMSP PrinciPles of OPeration Manual <14) does not 

fullY define the hardware imPlementation of the Control Bus 

or the Data Tr~nsfer Network. The manual states the Control 

Bus allocates timins slots based on an internal count value 

which is a function of the functional element's identifica-

t ion n•Jmber. The function relatin!l the identification 

number to the timin~ slot and the method of arbitration 

resolution are unpublished. Consequently, a decision was 

made to allocate timin~ slots from 0 to the maximum Possible 

number of functional elements in a linear order on the simu­

lator. 



The manual <14) states the Data Transfer Network simul­

taneouslY creates data Paths between functional elements, 

resolves concentrator element conflicts. and resolves con-

centrator conflicts. Since the method of conflict resolu-

tion was not fullY defined with start UP conditions. it was 

decided to select arbitrarilY the lowest numbered element of 

a concentrator and the lowest numbered concentrator. Con-

flict resolution and Data Transfer Network oPerations follow 

the method stated in ChaPter III. 

Main Pro!iram 

The main Pro~ram either directlY or indirectlY calls 

a 1 1 Procedures and handles the actual time schedulin!i. 

Before startins the timins simulation. the main Pro~ram 

calls the initialization Procedure. and the inPut Pro­

cedures. Th~n. it calls the outPut Procedures to Print a 

title to describe the simulation and the simulated sYstem 

confisuration for future reference. To start the sraph, the 

main Pro!iram initializes the time to zero and calculates the 

firins times of all source nodes. The main Prosram then 

enters a loop that executes the event Processins of the 

functional elements, the Control Bus, and the Data Transfer 

Network. Instructions are scheduled accordins to an event 

list. Events or instructions are Placed on a sinslv-linked 

list in ascending order of the execution time. The Data 

Tr·ansfer Network and . Con tro 1 Bus are not event 

scheduled because the Enhanced Modular Sisnal Processor Per-
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forms arbitration resolution everY time unit concurrentlY 

with instruction execution. After the looP maximum time has 

exceeded or no further instructions are executable. the main 

Prosram Prints utilization factors and a comPlete list of 

the number of times each node or channel was scheduled. and 

queue execution information. 

SuPPort Procedures 

A number ~f Procedures are necessarY for sortins. 

search ins, calculatins execution information. and creatins 

dYnamic memorY allocation. These suPPort Procedures are 

invisible to the user and are mentioned onlY for the PUrPose 

of fullY definins the simulator. Because of the frequencY 

of accessins elements of the channel, node. and queue 

arrays, it is feasible to order these arraYs. Quick sorts 

are used to sort the nodes and channels. A linear inser­

tion method is used to order the queues since before each 

insertion. the queue arraY is searched for the queue. 

BinarY searches were chosen to take advantase of the sorted 

arraYs. Procedures to calculate the timins for node execu-

tion. to calculate the size of variables, and to calculate 

the Produce amount for queues were Placed in seParate Pro­

cedures to imProve readabilitY and modifiabilitY. 
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Arithmetic Processor 

Since the Arithmetic Processor can handle three nodes 

simultaneously, e~ch Arithmetic Processor required more than 

the timins variable in the functional element data struc-

ture. The timins variable in the functional element data 

structure is used for the node or nodes in setuP or break­

down mode. A seParate timins v~riable is required for the 

node in each Arithmetic Processor in the execution mode. To 

handle the requirement of onlY one node in setuP mode, the 

A~ithmetic Processor sends a Readv for Instruction Stream 

when a node has comPleted setuP mode. To handle onlY one 

node in execution mode, the execution node timins is checked 

for the sPecified Arithmetic Processor and if a node is in 

execution mode, the execution time is increased bY the exe­

cution time of the node comPletins setuP mode. 

Arithmetic Processors imPlement all instructions neces­

sarY to execute a Primitive. The Primitive execution time 

is calculated when the dvnamic node information is read 

and is stored in the node information. The Arithmetic Pro­

cessor handles AccePt Instruction Stream instructions and 

then senerates the aPProPriate Request Queue and Request 

GraPh Variable instructions. After all inPuts for a Primi­

tive have been accePted with AccePt Queue and AccePt GraPh 

Variable instructions. the Primitive enters the execution 

mode. Durins breakdown mode, the Arithmetic Processor sen-

erates Write GraPh Variable or Write Queue instructions to 

all outPut variables and Consume Queue instructions to ~11 

inPut queues. 
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Control Bus/Data Transfer Network 

The Procedures to handle the simulation of the Control 

Bus and the simulation of the Data Transfer Network are verY 

similar. The Procedures beSin with a looP that traverses 

the linked list of waitins re~uests and Places the re~uests 

in the aPProPriate element of an arraY ordered bY functional 

element identification number <Control Bus> or concentrator 

confisuration <Data Transfer Network>. This looP Places all 

re~uests on the re~uest arraY for future schedulins. 

Next, another looP handles the timins for attemPtins 

the data transfer ·or makins the data transfer. It checks 

the re~uest arraY and if an instruction is waitins to be 

scheduled it attemPts to schedul~ or schedules the re~uest. 

The Data Transfer Network Procedure checks the status of the 

destination distributor. If the distributor is busy, the 

Procedure imPlements the timins for an attemPted transfer, 

otherwise the Procedure imPlements the timins for the data 

transfer. Schedulins follows the methodoloSY discussed in 

ChaPter II. 

InPut/OutPut Processor 

To allow for flexibilitY with inPut and output, the 

InPut/OutPut Processor desisn specifications were kePt at a 

minimum. The InPut/OutPut Processor handles a minimal 

number of instructions. The EMSP desisn sPecifications 

allow for InPut/OutPut Processors to execute a variable 

number of channel instructions simultaneouslY. EMSP imPle-
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ment~tions to-date have restricted th~ InPut/OutPut Proces-

sor to executins onlv one channel instruction at a time and 

this is the aPProach of the EMSP timins simulator. 

The InPut/OutPut Proces&or issues itself an Execute 

Node instruction ~hen an inPut channel soes over threshold. 

The InPut/OutPut Processor sends a Write Queue to the Glo-

bal MemorY storins the queue. An Execute Instruction Stream 

instruction writes to an outPut channel and has a set time 

associated with the instruction. The other two instructions 

the InPut/OutPut Processor imPlements of siSnificance to a 

static sraPh are Continue Node Data Transfer and SusPend 

Node Data Transfer. SusPend Node Data Transfer susPends a 

channel until a Continue Node Data Transfer reverses the 

susPension. 

Global Memory 

To imPlement the timins for Glob~l MemorY oPerations. a 
I 

Global MemorY Procedure was desisned in the timins simula-

tor. A Global MemorY executins an instruction cannot be 

interruPted. Therefore, uPon receivins an instruction. the 

Global MemorY Procedure first checks if the Global Memory is 

free and if not. rePlaces the instruction on the event list 

with a future event time. 

The Global MemorY handles requests for instructions. 

and sraPh variables. The timins to execute these 

requests is a function of the number of words in the node 

instruction stream, queue, or sraPh variable. The Global 

Memory Procedure after calculatins the timins Places the 
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AccePt Instruction, AccePt Queue, or AccePt GraPh Variable 

instruction on the Data Transfer Network. The Global MemorY 

Procedure handles Write Queue and Consume Queue instructions 

bY uPdatin~ the queue number of data items and sendin~ anY 

aPProPriate Queue Over CaPacity, Queue Under CaPacity, Queue 

Over Threshold, and/or Queue Under Threshold instructions 

over the Control Bus to the Scheduler. 

Scheduler 

The Scheduler procedure handles the timinS si~ulation 

for the Scheduler functional element. The Scheduler can 

execute onlY one instruction at a time. If the Scheduler is 

busY when an instruction on the event list is readY to be 

scheduled, the instruction must be returned to the event 

list with a time equivalent to the Scheduler's next free 

time. 

A brief exPlanation of a few of the Scheduler's 

instructions are included as an overview. To handle Queue 

Over CaPacitY instructions, the Scheduler Procedure uPdates 

the queue's status and if the queue is attached to an inPut 

channel. sends a SusPend Node Data Transfer instruction to 

the channel. For an internal or source queue, a Queue Over 

Threshold instruction causes the Scheduler to decrement the 

number of conditions variable <if the number of conditions 

was not Previously decremented for the queue) for the node 

at the queue's head. 

and the node or channel 

If the number of conditions is zero 

is not susPended, the Scheduler 

attemPts to schedule the node. If the free Processor list 
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has an ~v~ilable Processor. the node is scheduled bY sendins 

a Send . Instruction Stream instruction to the Global MemorY 

storins the instruction. If a Processor is not available,· 

the instruction is Placed on a readY list to await a free 

Processor. If the queue is a sink queue. the Queue Over 

Threshold instruction is handled bv verifvinS the channel is 

nol susPended and sendins an Execute Instruction Stream 

instruction to the InPut/OutPut Processor. A Queue Under 

CaPacitY instruction chanses the status of the queue and 

node, and. if the node's number of conditions is zero. the 

node is scheduled or Placed on the readY list. A Ready for 

Instruction Stream instruction is imPlemented bY schedulins 

a waitin~ node if available or bv Placin~ the Processor's 

functional element identification number on the free Proces-

sor list. 



CHAPTER V 

TEST SIMULATION 

A samPle sraPh consistins of three nodes executins on a 

five functional element system <two Global Memories) was 

selected as an examPle for further discussion. APPendix C 

sives the comPlete details of the EMSP confisuration for the 

simulation and the sraph·to be simulated. After initializa-

tion. the simulator requests the maximum number of 

microseconds the user desires to simulate. whether the user 

d~sires to enter debus mode wher~ an oPtional timins chart 

is Printed, and the names of the two inPut files. The first 

inPut file contains the sraPh toPoloSY and can be easilY 

translated from a Sisnal Processins GraPh Notation Prosram. 

When queried about threshold, read. consume. and offset 

amounts, a nesative number imPlies the node execution Param­

eter is dePendent on a Previous inPut Parameter. For exam-

Pl~. if the threshold for Parameter two. a queue, is 

equivalent to N. Parameter one. a nesative one would be 

inPut for the threshold for Parameter two. This interdePen­

dencY is verY common and this method was chosen as a quick 

and easy method for the user to remember and follow. APPen­

dix D sives the querY s~ssion for the inPut of the sraPh in 
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APPendix C. Comments are contained within delimiters /*COM-

MENT*/ and user inPuts are contained within delimiters 

*inPut* for ease of readinS. 

InPut file two contains the sYstem confisuration and 

~11 sraPh information besides toPoloSY ~file one>. The sys-

tem confisuration Procedure reads inPut file two for func-

tional element identification numbers. functional element 

tYPe <Arithmetic Processor, Global Memory, etc.), and D~ta 

Transfer Network confisuration of the element's concentrator 

and distributor <APPendix C>. The channel identification 

number. channel Priority, channel rate. InPut/OutPut Proces-

sor, and channel tYPe <InPut or OutPut> for each channel is 

read bv the channel Procedure. Next. the read values Pro-

cedure. after orderins the nodes bY node identification 

number, reads the identification numbers of the Global 

Memory storinS the node~. sr~Ph variables, and queues. All 

values for sraPh instantiation Parameters and sr~Ph vari-

ables and all other Pertinent information are read. APPen-

dix E Sives the comPlete querY session for the sraPh in 

APPendix C. The interested reader will find the session 

well documented ~nd self-exPlanatorY. 

OutPut for the simulation consists of a table of the 

EMSP sYstem confisuration. functional element utilization 

information, node execution information, channel execution 

information. and queue execution information. The svstem 

confisuration table echoes the svstem confisuration inPut bY 
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the user. The function element utilization information 

sives the utilization factors for each functional element. 

Utilization is calculated as the number of time units the 

functional element was busY divided bY the number of time 

units the simulation simulated. This method of utilization 

calculation was modified for the Arithmetic Processor to 

handle the Arithmetic Processor's abilitY to execute a node 

and set uP a node simultaneouslY. The utilization for the 

Arithmetic Processor calculates busy time as the time the 

element was executins setuP or breakdown instructions Plus 

the time executins the instruction. Thus an Arithmetic Pro­

cessor could have a Possible two hundred Percent utiliza-

tion. The node execution information Sives the number of 

node firinss for each node, the oPcode for the node, and the 

node identification number. Channel execution information 

sives the channel identification number and the number of 

channel firinss. Queue execution information sives the 

queue identification number, the number of data items on the 

queue at the end of the simulation, ~nd the nodes or chan­

nels at the head and tail of each queue. APPendix F sives 

the test simulation for the inPuts sPecified in APPendix B. 

APPendix c, and APPendix D. APPendix G sives a comPlete 

listins of the test simulation with the oPtional timins 

chart. The timins chart is documented and instructions Sive 

the exact time units to the nearest one hundredth of a time 

unit <divide the time in the instruction comment bv one hun­

dred). 



CHAPTER VI 

CONCLU:~ IONS 

The Enhanced Modular Sisnal Processor timins 

simulator simulates the timins for a static ~raPh durins the 

sraPh execution Process. ·Nodes are scheduled usins a modi­

fied data flpw methodoloSY which allows multiPle elements on 

a data inPut. A scheduled node follows the sraPh execution 

Process shown in Fisure 9 (APP~ndix A>. InPuts to the sys-

tem consist of interactivelY enterins the names of two inPut 

files and the sPecified inPut files. OutPut consists of the 

sYstem confisuration, an oPtional timins chart. functional 

element utilization. node and channel execution information. 

and queue information. 

Fi~ure 10 (APPendix A> sives a comPlete list of the 

Primitives that could not be executed. Six of the Primi­

tives (the ones with a star in Fisure 10 <APPendix A>> were 

unexecutable because theY had more than seven inPuts. A 

fixed lensth oPcode data table was chosen for quick searches 

and ea~e of modification, a desisn decision was made to 

allow onlY seven inPuts to s~ve storase. If the OPCOde data 

table had allowed twelve inPuts. the above six primitives 

would have been SUPPorted, but at a cost of five extra bvtes 

Per Primitive. 
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would have been supported, but at a cost of five extra bytes 

Per Primitive. 

The other nine unexecutable Primitives had inPut or 

outPut queues whose len~th were dePendent on a node's execu­

tion. Since the Primitives were not executed, the len~th of 

the queues was unknown and the timin~ for Read Queue and 

Write Queue instructions could not be calculated. 

Future Work 

The EMSP does not simulate a dYnamic ~raPh where inPut 

variables and channels can be dynam~callY chan~ed durin~ 

~raPh execution. One reason for not simulatin~ a dYnamic 

~raPh is the hu~e amount of overhead and bookkeepin~ neces­

sarY to handle a dynamic ~raPh. A second reason is the dif­

ficultY in sPecifyin~ the timin~ for dYnamic.instructions. 

The third reason is the timin~ associated with dYnamic 

actions to the ~raPh execution Processin~ instructions are 

~enerallY in ratios exceedin~ 1000 to 1. But the maJor rea­

son for simulatin~ static ~raPhs is the lack of a thorou~h 

understandin~ of the effects on the ~raPh of a dYnamic sYs­

tem. Usin~ the st~tic EMSP timin~ simulator and information 

~athered from test simulations, a more thorou~h understand­

in~ of the EMSP can be obtained. Usin~ this understanding 

and by obtainin~ more information from the EMSP desi~ner~, 

i.e. Bell TelePhone L~boratories, a dvnamic EMSP simulator 

could be desi~ned to Perform more thorou~h analYsis of the 

EMSP data flow comPuter. 
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FORMULA, E = (A + B) * (A - B) 

Figure 1. Simple Data Flow Graph. 
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Figure 2. Data Flow Activity Template for Figure 1. 
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Figure J. An Enhanced Modular Signal 
Processor Common Operational Support 
Software Methodology Sample Graph. 
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/.t3RAPH < F I GURE3 
GIP = N:INT 
I NPUTQ = t:;lLIEUE 1 : CF I XEJ:t 
OUTPUTQ = QUELIE4, 

QUEUES: F I XEI:t > 
I. I. 
/.QUEUE<QUELIE2,QUEUE3:FIXEJ:t> 
I. I. 
/.NOJ:tE<Nl 

PRIMITIVE = VOC_LOG 
PRIM-IN = QUEUE! THRESHOLO = N 

REAJ:t = N 
OFFSET = 0 
CONSUME = N 

PRIM_OLJT = t:;'.!UEUE2, G'JUEUE3 ) 
I. I. 
/.NOJ:tE<N2 

PRIMITIVE = VOR_SQR 
PRIM-IN = QUEUE2 THRESHOLD = N 

READ = N 
OFFSET = 0 
CONSUME = N 

PRit1_0UT = QUEUE4> 
I./. 
/.NODE<N3 

PRIMITIVE = VOR_ACOS 
PRit-1-IN = QUEUE3 THRESHOLD = N 

READ = N 
OFFSET = 0 
CONSUI"1E = N 

PRIM-OUT = t:;".~UEUES> 
I./. 
/.ENDGRAPH 

Fi~ure 4. Si~nal Processin~ 

GraPh Notation of Fi~ure 3. 



COMt'IAND 

SF' AWN 
ABORT 
START 
STOP 
INITIO 
START It) 
STOPIO 
CREATEQ 
I:tESTROYQ 
INITG! 
FLLISHQ 
CONNECTt:;".t 

DISCONNECTQ 

ADDDATA 
WAITDATA 
CREATEGV 
DESTROYGV 
READGV 
WRITEGV 
UNLINK 
LINK 
REIN IT 

RESUME 

Fisure 5. 

DESCRIPTION 

Create a. Process 
Abort a. Process 
Start a. Process 
StoP a Process 
Link queue to channel 
Start or resume a channel 
StoP a. channel 
Create a qeJeue 
DestroY a. queue 
Initialize a queue 
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Remove a.ll elements from a. queue 
Connect a. queue to Command 

Prosra.m 
Disconnect a queue from 

a Command Prosra.m 
Add da.ta elements to a queue 
Wa.it for da.ta. on a. queue 
Create a sraPh variable 
DestroY a. sra.Ph va.ria.ble 
Rea.d a ~raPh variable 
Write a. sra.Ph va.ria.ble 
Unlink a queue 
Link a. queue 
Reinitia.lize all queues and 

Sra.Ph va.ria.bles 
Resume a Process 

List of Command Prosra.m Instructions 
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Figure 6. Enhanced Modular Signal Processor System Architecture. 
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oun oc C t Cl k (CCLK) 

Data Clock (DCLK) 
Command Transmit Successful (TS) 
Program 

Processor Data Bus (CBD) 
SBIT Parity (PAR} 

-
Stop Clock ( SCLK) 
Transmit Failure 
Reset Count (RC) 

I ' 

\ ____ ,..-----11 
v 

Control Bus 
' 

~~ 
.; 

' 

Functional Functional 
Element· Element 

Figure 7• Control Bus Interface. 



main<> 
initC > 
reoi:l.d-nodes<> 
read_confis<> 
read_i•::.P( > 
r-ead-values() 
outPut-title() 
•::.utPut_conf i !I<> 
start-iop( > 
CBUS< > 
DTNC > 
AP<> 
13M<> 
IOPC > 
::tCH < > 
OtJtPtJt_uti 1 () 
•::.utPut_chan < > 
o•JtP•Jt_que•Jes < > 

read_nodes<> 
create_node() 
a,p_opcode<> 
sort<> 

read_confili() 
schinit<> 

read-ioP() 
!iet_queue<> 
create_queue<> 

read_ val tJes < > 
cal-size() 
•:al_Produce < > 
cal_ time< > 

CBUSC > 
delete_list<> 
insert-list<> 

DTN< > 
delete_lis.t<> 
inser-t_lisc<> 

AP<> 
create_instruct<> 
set_channe 1 C ) 
Set_node() 
delete_1istC> 
insert_list<> 

13M<> 
set_channe1<> 
create-instruct<> 
set_node < > 
insert-list<> 
delete-list<> 

IOP< > 
create_instruct<> 
set_channe 1 < > 
set_node < > 
insert_list<> 
delete_list<> 

SCHC > 
create_instruct<> 

· set_char.ne 1 < > 
set_node < > 
insert-list<> 
delete_li::jt() 

aP-OPCode() 
search<> 
read_queue<> 
oread_queue<> 

read_queue() 
liet_qtJeue < > 
create_queue<> 

oread_queue<> 
set_que•Je < > 
create_queue<> 

Fisure 8. Timin!i Simulator HierarchY Chart. 
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IOP 
AP 

WQ 

~I SCH 

QOT RQ/RGV SIS AIS AQ/AGV 
.----_!_----, 

GM SCH 

WQ - Write Queue 
WGV - Write Graph Variable 
QOT - Quete over Threshold 
SIS - Send Instruction Stream 
AIS - Accept Instruction Stream 
RQ - Read Queue 
RGV - Read Graph Variable 
AQ - Accept Queue 
AGV - Accept Graph Variable 
CQ - Consume Queue 

GM 

RFIS - Ready for Instruction Stream 

AP 

SCH 

··SIS 

AP - Arithmetic Processor 
GM - Global Memory 
IOP - Input/Output Processor 
SCH - Scheduler 

Figure 9. Graph Execution Process. 
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MNEMONIC 

FIR-RNS 

CDt·LRFIR 

BFR....;FREQ 
BFR-FREQB 
BFR-GEA 
BFR_GEAB 
BFR_TIME 
SSP_BEPR 

SSP_CONV 
SSP_FROD 
SSP_INDX 
SSP-PKDT 
SSP_PKPK 
SSP_STAT 

PRit1ITIVE 

Finite ImPulse Response 
Filter<ComPlex. N Stase> 

Finite ImPulse ResPonse 
Filter<Real. N Sta~e> 

ComPlex Demodulation and FIR 
Filter <Real. Fixed Freq.) 

Frequency Domain Beamformer 
FrequencY Domain Beamform <B> 
Prester and AdaPtive Beamform 
Prester and AdaPtive Beamform 
Time Domain Beamform 
Bearin~ Estimate Pre-Proce~s 

Real 
Conversion 
FrequencY Determination 
Peak Index 
Peak Detect 
Peak Pick 
Period Statistic~ 

Fi~ure 10. List of Primitives 
Not ImPlemented. 
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QUEUEl QUEUEJ 

QUEUE2 

. . 

QUEUE5 

Figure 11. Test Case Topology. 
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-../ n. r...:. ~- v .::; \ ... .l .c' 

'v'RC_t··1UL 
\/CC_Il\iF' 
\/CC_.SADD 
\/C:C __ SDI!.../ 
'/CC_St1UL 

'.../ C C ··-'·./C• I 'v' 

'.../ (-:, ~: ··- \/ t~1Ll L 
·-./C C~_!...l'St...JE. 

\/LL_C~~: 

F R I i'·1 IT I 'v'E 

Vector Arc-cosine 
'· . .)ectc~:r· A·r·c-·::;:in~~ 

Vector Arc-tangent 
Vector Arc-tan(Y,X> 
Vector One's Complement 
\/r:f!cto-r· Ct:JSine 
Vector Exponential 
'-..Jecto·r"· Inde>::in·::~ 

t/ector' Lo·:;3ar·· i 1: hrr. 
Real Vector Magnitude 
'...-'c? c i: cJ 1·' 1'1o du.l us 
~--./ 1? C t CJ ·r-· j.J 1? g .:Et t (:? 

Vector Arithmetic ShiFt b~: Bi~E 
t../,:::..·cto·(· Sine 
'-..ie~.::tc;r-· :3q_U.Z1.Y~e 

Vectar Square Root 
'·/·:::- c t t.:llr. p, r •:::J Ll ffl en 1: 
Vector Argument (B)· 

Complex Vector Conjugate 
Complex Vector Exponential 
Complex Vector Logarithm 
Complex Vector Magnitude 
Rectangular to Polar Conversion 
Polar to Rectangular --·--· ... --- .... .: -···--c._.u I I \i l;;~ r· ':::i .L 1_1 l l 

Vector Logical 'AND' Mask 
Vector Logical Shift by S Bits 
Vector Logical 'OR' 
Vector Logical 'Exclusive OR' 
Real Vector Inner Product 
Vector-Scalar Add 
Vector-Scalar Divide 
Vector-Scalar Divide CBl 
Vector-Scalar Multipl~ 
Real Vector-Vector Add 
Real Vector-Vector Divide 
Real Vector-Vector Multipl~ 
Real Vector-Vector Multipls (BJ 
Real Vector-Vector Subtract 
Real-Complex Vector Add 
Real-Complex Vector Divide 
Real-Complex Vector Multiply 
Complex Vector Inner Product 
Complex Vector-Scalar Add 
Complex Vector-Scalar Divide 
Complex Vector-Scalar Multipl~ 
Complex Vector-Vector Add 
Carr.plex Vector-Vector Divide 
Complex Vector-Vector Multiply 
Complex Vector-Vector Subtract 
Vector Logical 'AND' 
Vecto~ Logical 'OR' 



t·10R_3X3I 
t10R_ TPSE 
t'lOR_ TRCE 
t-10C-3X3I 
t10C_ TPSE 
1"10C_ TRCE 
t'lRR_MUL 
MCC_MUL 
\l Ct·1_ CTHS 
'v'CI"I_MI'"1X 
'v'CM_SORT 
1/CM_ THRS 
VCM_WDl.JC 
DMC BF1Fl 
DMC_CTOR 
Dt·1C_FAFX 
Dt'IC_FX~.F 

Dt-1C_FXFA 
Dr1C_RTOC 
DFC_CCAT 
DFC_CCATB 
DFC CNRME. 
DFC CREPE. 
DFC_SEP 
DFC_SEPB 
DFC_DSD 
DFC_DYNR 
DFC_MTC 
DFC_MTCB 
DFC_r'lTR 
DFC_MTRB 
DFC_PACh 
DFC_RCAT 
DFC_RDMUX 
DFC_REQ 
DFC_RMUX 
DFC_RNRMB 
DFC RREP 
DFC_RSEP 
DFC._SRF' 
DFC_SRP:E. 
DFC_UPAh 
DCP_AVGl 

DCP_A'--/GN 

DCP_CPWR 
D_CP _CSt1G 
DCP _CSMGJ:. 
DCP_CYTG 
DCP __ Er;t)l 

Real Matrix Inverse t3X3l 
Real Matrix Transpose 
Real Matrix Trace 
Complex Matrix In~erse <JX3' 
Complex Matrix Transpose 
Complex Matrix Trace 
Real Matrix Multiply 
Complex Matrix Multiply 
\/e1= t~::}r~ Cornp.~.·r"·e .::t n d Th r-· e~=-h C_! J. :::! 
Vector Maximum/Minimum 
Vector Straight Select1on ~c'·' 
1..-'ectc.·(· Th·(·(::::shcl ,:j 
Vector Window Containm2n~ 
BFP to Fixed Conversion CFi 
Complex to Real Conversion 

._,) ·--' 

F :i. >:: f~ d t:~~ r~- ·r-. .3. ~ t o F i >:: :~72 d 1·.,.·1 ::: d :?:? ~:: :::.:.:: n \/ ::? ·;·~ ·:::- i. , .. 
Fixed to Block Floating 0 o1nt Ccnv2~~: 

Fixed to Fixed Array Convers~on 
Real to Complex Conversion 
Vector Concatenate 
Block Floating Point Concaten2~e 0 

Complex Block Normalization ~El 

Complex Replicate CB) 
Com p 1 e::-:: Se par·.;::~ t •::?. 

Complex Separate (B) 
Data Scaling and Display 
D~namic Range Check 
Mu 1 t i 1::;.1 ~ T C 
MLI 11: i p 1 ~ T c ( B ) 
t'lLtl t i p 1 ~ T R 
Mt_tl t. i p J. ~ T R ( I:~ ) 
Data Bit Pack 
Vector Concatenate 
Vector Demultiplex 
Req_uant i ::-::\-1: ion 
'-.lee -!:or~ Mu l t :L p 1 .::~::-:: 
Real Block Normal1zat1on 
Real Replic.::··.te 
PE~.:.<l. 1 :3epc-\·f'.:7~. te 

Selectable Replicate 
Selectable Replicat2 lB) 

Da t.:.. Bit Un p.:.-..ck 
Linear Averaging Filter. Si~slo 

A\/ e ·r-· a. ·~~ (-? 

Linear Averaging File~s 
Multiple Averages 

Power <Complex Input) 
Complex SPectral Magnitude 
Complex Spectral Magnitude \bl 

c:~-.:i c 1 e Tt·· i q ·~e·r·· 

Exponential Averaging Filt2r 1 



I)C.P _FR(~~~J:B 
DCP_Lir·..rT 
DCP _U·1R 
DC P _r~.11·~1E 
:DCF _C~ I i-·-~T 
LiCP _F I t-~T 
f.)(:;p_:3TI 
L)CP_ZFIL 
DCP._ZFILE· 
L=CP_ZFILC 
I)CP _ZF I L(:B 

FFT _CCE. 
FFT _CR:E~ 
FFT _R:2C:B 

FFT RB2CB 

FFT_RBCB 

FFT _RCf. 
I I R_C llt.l 

IIR_C11 

IIR_C21 

IIR_C22 

IIR_R10 

IIrLR11 

I I R_R21 

I I i-~_R22 

FIR_C2S 

FIP_Ct·~S 

FIR_RlS 

FIR_R2S 

F I R,_MJ-.IS 

Exponential Ave~aging Fi!ter, 
Multiple Averages 

Frequency Weighting 
Frequencw Weighting (Bl 
Linear Interpolation 
Local Mean Removal 
Noise Mean Estimation 
Quadratic Interpolat1on 
Running Integration 
Short Term Integration 
Ze·r"'t::J F i 11 
Z•::?l"·r.J Fill (B) 
Zero Fill Complex 
Zero Fill Complex !Bl 
Complex Block to Complex 

:E~lcrck r-F1. 
Comple>=: Bl·~cf..: ·to 

:P.lDck FFT 

r-, __ .. ·t 
r'=.~-:.:.-t .. L 

Complex to Comolex Bleck FFT 
Gomplex to Real Block FFT 
Two Real to Complex 

:B 1 cJc!.a.: Ft=-r 
Two Real Block to Com~:ex 

Block FFT 
Real b.:> Cc•rftP l•::?>=: 

Block FFT 
Real to Complex Block FFT 
Infinite Impulse Filter­

Camp 1 e::<, 1 Pi..':. l (f.? 

Infinite Impulse Filter­
CoiTtJ::;le::-::, l i::Jole, 1 Z~2ro 

Infinite Impulse Filter­
Comple:=<j 2 Poles, 1 z,~,?·r-·:::. 

Infinite Impulse Filter­
Complex, 2 Poles, 2 Zer~~s 

Infinite Impulse Filter­
Real j 1 Pol•=-

Infinite Impulse Filter­
Real, 1 Pole, 1 Zer'C 

Infinite Impulse Filte~-
Rea l , 2 F' Cj l (-:2 -~~ , 1 Z (2 ·r-· C! 

Infinite Impulse Filter­
Real, 2 Poles~ 2 Zeroes 

Finite Impulse Response 
Filter(Complex, One Stagel 

Finite Impulse Response 
Filter<Complex, Two Stage) 

Finite Impulse Response 
FilterCComplexj N Stage) 

Finite Impul3e Response 
Filter(Real, One Stage) 

Finite Impulse Response 
Filter<Feal. Two Stage) 

Finite Impulse Response 
F :i. 1 t E··:--· ( Rt?..:J.l ; I\! S t .a·~ e) 



CI>t··i_ CFF 

cr>t1_F.:\/F 

BFR_FRE(~ 

:t\FR_FREi~B 

:BFR_<.:iE/~ 

:3SP _BEPCB 

SSP_BIN 
SSP_ COI\1\/ 

SSP_DNS 
:3SP _DOP 
SSP_FROD 
SSP_INDX 
SSF:: _U~P 
SSF'_(Jf"··.J()F 
:;::.:3 P _ P~<i:)T 
SSP_Ph:F'h: 
::;sp_p:JL1 
:3SP _SELF 
S:3P _S~r<E 
:::::::;p _:3Tr.~T 
:~:3P .. _Z:CR:3 

Complex Demodulation 
(Complex, Fixed Fr?o. 

Complex Demodulation 
(Complex, Variable Freq. 

Complex Demodulation 
(Real, Fixed Freq.) 

:c 
r:::.=_ .. 

Complex Demodulation and~·~ Filt~r 
CReal, Fixed Freq.) 

Complex Demodulation 
CReal1 Variable Freq. l 

Frequenc~ Domain Beamformer 
Frequenc~ Domain Beamform !B> 
Prester and Adaptive Beamfor~ 
Prester and Adapti~e Beamform 
Time Domain Beamform 

Bearing Estimate Pre-proc2ss 

CcJrn t=·l e::< ( :B ;; 
Bearing Estimate Pre-p0ocess 

Real 
B•?ar' i ng Smooth 
Bin Detecti.:::m 
Con -...;t::rs i t.:ln 

Difar Coherent Detection 
D i ·F-at' r.,Ju.ll :::>teet"· 
Doppler Compensate 
Frequency Determination 
Peak In de::< 
Linec..H' Peal..: Pich 
On/Off St . .ui. tch 
Pe~d.; Detect 
Pe.:.~i...: Pic:.: 
Pul~:5•:? Dt::?b::?ction 
Self Noise Removal 
~::pr.:;l .. ~i2 3Ltpp·r·E:ss 

Period Statistics 
Zero Crossing Detect 
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Et1SP CONFIGURATION FOR SIMULATION 

FEll) TYPE CONCENTRATOR DISTRIBUTOR 
DTN CON ELEMENT DTN DIS ELEMENT 

1 SC:H 0 5 0 1 3 .-. 
..:0 

2 13M 1 6 1 0 6 2 
:3 AP (I 7 :2 1 5 1 
4 IOP 1 3 3 0 4 (l 

5 GM 0 15 3 1 7 :2 

"''•Je•Jeid he.:i.d_n •:• de t.:i.il_node threshold consume r·ead size 
1 1 1 5 5 5 1 
2 3 1 5 5 5 1 
:3 2 :2 10 10 l(l 1 
4 3 2 9 9 9 1 
5 3 3 2 2 2 1 

queueid GM tYPe da.-l:a_i tems Produce caPacitY 
1 2 2 0 5 100 
2 2 (I 0 5 30 
:3 5 2 (I 10 :20 
4 2 0 0 10 40 
5 2 1 0 2 15 

nodeid oPcode num_inPuts NOC GM firin!is exec_ time 
1 14 1 1 2 0 285 
2 28 1 1 5 0 1000 
3 25 2 .-, .... 2 0 600 

nodeid tYPe size liilrl value 
1 GV 1 2 5 I* INPUT *I 
1 QUEUE 5 2 0 I* INPUT *I 
1 QUEUE 5 :2 0 I* OUTPUT *I 

nodeid tYPe size !im va l•Je 
2 GV 1 5 10 I* INPUT *I 
2 QUEUE 10 5 0 I* INPUT *I 
2 QUEUE 10 2 0 I* OUTPUT *I 

nc•de i d tYPe si~e !im value 
3 GV 1 .-. ..::. 2 I* INPUT *I 
3 QUEUE 2 2 0 I* INPUT *I 
3 t:;-~UEUE 2 2 0 I* INPUT *I 
3 QUEUE 2 2 0 I* OUTPUT *I 
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INPUT the node identification number I* NODE 1 *I 
and answer all queries about the node 
InPut -1 to quit when asked the node id * 1* 
INPUT oPcode mnemonic for AP instruction *VOR_SQR* 
G I P -4, t:3V -:3, OR QUEI,JE -5 
INPUT GraPh Variable Identification Number 
GIP -4, GV -3, OR QUEUE -5 
INPUT queue id. Answer all questions 
about the queue. /*INPUT: QUEUE 1*/ * 1* 
INPUT threshold. I* DePendent on GV value*/ *-1* 
INPUT consume amount. *-1* 
INPUT read amount. *-1* 
GV -3 or· l:;'.IUEUE -5 I *OUTPUT: QUEUE 2* I *-5* 
INPUT queue id. Answer all questions 
ab•::.•J·i: the queue. 
INPUT valve amount for outPut queue. 

* 2* 
*-1* 

I* NODE 2 *I 
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INPUT the node id and answer all queries about the node. 
InPut -1 to quit when asked the node id * 2* 
INPUT oPcode mnemonic for AP instruction *VOR_ACOS* 
GIP--4, GV -3, OR QUEUE -5 *-3* 
INPUT GraPh Variable Identification Number * 2* 
(~I P -4, f3V -3, OR QUEUE -5 *-5* 
INPUT queue id. Answer all questions 
about the queue. /*INPUT: QUEUE 3*/ 
INPUT threshold. I* DePendent of GV value*/ 
INPUT consume amount. 
INPUT read amount. 
GV -3 or G'lUEUE -5 I *OUTPUT: QUEUE 4* I 
INPUT queue id. Answer all questions 
ab•)Ut the queue. 
INPUT valve amount for outPut queue. 

*-1* 
*-1* 
*-1* 
*-5* 

INPUT the node id and answer all queries about thenode. 
InPut -1 to quit when asked the node id * 3* 
INPUT oPcode mnemonic for AP instruction *VOR_ATN2* 
GIP -4, GV -3, OR QUEUE -5 *-3* 
INPUT GraPh Variable Identification Numb~r * 3* 
GIP -4, GV -3, OR QUEUE -5 /*INPUT: QUEUE 2*/ *-5* 
INPUT queue id. Answer all questions 
about the queue. 
INPUT threshold. I* Threshold constant value*/ 
INPUT consume amount. 
INPUT read amount. 
GIP -4, GV -3, OR QUEUE -5 /*INPUT: QUEUE 4*/ 
INPUT queue id. Answer all questions 
about the queue. 
INPUT threshold. 
INPUT consume amount. 
INPUT read amount. 
GV -3 or QUEUE -5 /*OUTPUT: QUEUE 5*/ 
INPUT queue id. Answer all questions 
about the queue. 
INPUT valve amount for outPut queue. 

* 2* 
* 5* 
* 5* 
* 5* 
*-5* 



I* NO MORE NODES SO INPUT -1*/ 
INPUT the node id and answer all queries about thenode. 
InPut -1 to quit when asked the node id *-1* 
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I* INPUT SYSTEM CONFIGURATION *I 
HOW MANY DTN~s, DATA TRANSFER NETWORKS, 1 or 2 
INPUT switch size for DTNCOJ 
INPUT ~witch size for DTN[1J 

I* Scheduler with FEID of 1 *I 
InPut Function~l Element ID for each element. 

INPUT -1 TO QUIT ••••••••• 
INPUT tvPe of Functional element. AP = 0 
, CPP = 4, GM = 1, IOP = 3, SCH = 2 
INPUT which DTN concentrator is on. 0 or 1 
INPUT which concentr~tor on DTN 
INPUT which element on concentrator 
INPUT which DTN distributor is on. 0 or 1 
INPUT which distributor on DTN 
INPUT which element on distributor 

I* GLOBAL MEMORY with FEID 2 *' 
InPut Functional Element ID for each element. 

INPUT -1 TO QUIT ••••••••• 
INPUT tYPe of Functional element. AP = 0 
, CPP = 4, GM = 1, IOP = 3, SCH = 2 
INPUT which DTN concentrator is on, 0 or 1 
INPUT which concentrator on DTN 
INPUT which element on concentrator 
INPUT which DTN distributor is on. 0 or 1 
INPUT which distributor on DTN 
INPUT wt.ich element on distributor 

I* ARITHMETIC PROCESSOR with FEID 3*/ 
InPut Functional Element ID for each element. 

INPUT -1 TO QUIT ••••••••• 
INPUT tYPe of Functional element. AP = 0 

* 2* 
*16* 
* 8* 

, CPP = 4, GM = 1, IOP = 3, SCH = 2 * 0* 
INPUT which DTN concentrator is on. 0 or 1 * 0* 
INPUT which concentrator on DTN * 7* 
INPUT which element on concentrator * 2* 
INPUT which DTN distributor is on, 0 or 1 * 1* 
INPUT which distributor on DTN * 5* 
INPUT which element on distributor * 1* 

I* INPUT/OUTPUT PROCESSOR with FEID 4*/ 
InPut Functional Element ID for each element. 

INPUT -1 TO QUIT ••••••••• 
INPUT tvPe of Functional element. AP = 0 
, CPP = 4, GM = 1, IOP = 3, SCH = 2 
INPUT which DTN concentrator is on. 0 or 1 
INPUT which concentrator on DTN 
INPUT which element on concentrator 
INPUT which DTN distributor is on, 0 or 1 
INPUT which distributor on DTN 
INPUT which element on distributor 

I* GLOBAL MEMORY with FEID 5 *I 
InPut Functional Element ID for each element. 

INPUT -1 TO QUIT ••••••••• 
INPUT tYPe of Functional element, AP = 0 
, CPP = 4, GM = 1, IOP = 3, SCH = 2 
INPUT which DTN concentr~tor is on. 0 or 1 

* 3* 
* 1* 
* 3* 
* 3* 
* 0* 
* 4* 
* 0* 
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INPUT which concentrator on DTN 
INPUT which element on concentrator 
INPUT which DTN distributor is on. 0 or 1 
INPUT which distributor on DTN 
INPUT which element on distributor 

I* NO MORE FUNCTIONAL ELEMENTS SO -1*/ 
InPut Functional Element ID for each element. 

INPUT -1 TO QUIT ••••••••• 

I* INPUT CHANNEL INFORMATION *I 
I* CHANNEL 1 ATTACHED TO QUEUE 1*/ 

*15* 
* 3* 
* 1* 
* 7* 
* 2* 
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INPUT channel id. InPut -1 tb quit. 
abr:••Jt 
INPUT 
INPUT 
INPUT 
INPIJT 

the dH~onrte 1. 
PrioritY of channel. 

Answer a 11 questions 
* 1* 
* 1* 

channel rate of inPut 
id of queue channel is attached. 

* 50000* 
* 1* 

id of FEID of IOP, Functional element id 
of InPut OutPut Processor. 

INPUT 2 or OUTPUT 1 Channel 
I* CHANNEL 2 ATTACHED TO QUEUE 3*/ 

INPUT channel id. InPut -1 -to quit. Answer all 
questions about the channel. * 2* 
INPUT Prioritv of channel. * 2* 
INPUT channel rate of inPut * 100000* 
INPUT id of queue channel is attached. * 3* 
INPUT id of FEID of IOP, Functional element id 
of InPut OutPut Processor. 

INPUT 2 or OUTPUT 1 Channel 
I* CHANNEL 3 ATTACHED TO QUEUE 5*/ 

INPUT channe 1 i d. InPut -1 to -.u it. Answer all 
questions about the channel. * 3* 

* 3* 
* 300000* 

INPUT PrioritY of channel. 
INPUT channel rate of inPut 
INPUT id of queue channel ls attached. 
INPUT id of FEID of IOP, Functional element id 
of InPut OutPut Processor. 

INPUT 2 or OUTPUT 1 Channel * 1* 
I* NO MORE CHANNELS SO INPUT -1*/ 

INPUT channel id. InPut -1 to quit. Answer all 
·questions about the channel. * -1* 

I* INPUT NODE INFORMATION THAT IS DYNAMIC*/ 
I* NODE 1*/ 

NOTE: Most inPut queues and sraPh variables are 
located in same Glob~l MemorY as Node InstructionStream 

INPUT GM of GRAPH VARIABLE 
INPUT value of GV 
INPUT Gt·1 of QUEUE 
INPUT capacitY. 

I* NODE 2*/ 

* 2* 
* 5* 
* 2* 

*100* 

NOTE: Most inPut queues and ~raPh variables are 
located in same Global MemorY as Node InstructionStream 



INPUT GM of GRAPH VARIABLE 
INPUT value of GV 
INPUT GM of QUEUE 
INPUT r:aPacitY. 

I* NODE 3*1 

* 5* 
*10* 
* 5* 
*20* 

NOTE: Most inPut queues and sraPh variables are 
located in same Global Memorv as Node In$tructionStream 

INPUT GM of GRAPH VARIABLE 
INPUT value of GV 
INPUT GM r:•f QUEUE 
INPUT caPacitv. 
INPUT GM of QUEUE 
INPUT caPacitY. 

I* Since outPut queue 5 is attached to a channel 
I* extra information must be sathered about the 
I* queue at this time, i.e. the caPacitY and 
I* thre$hold. 

INPUT GM of QUEUE 
INPUT ca.Pacitv. 
INPUT- threshr:•l d. 

* 2* 
* 2* 
* 2* 
*30* 
* 2* 
*40* 
*I 
*I 
*I 
*I 
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TIMING SIMULATOR FOR THE 
ENHANCED MODULAR SIGNAL PROCESSOR 

EMSP CONFIGURATION FOR SIMULATION 

FEID TYPE CON CENT R.C:; TOR D I s·r!=t I J:·,l .. _.iT()Fi: 
DTN CON ELEI'1ENT DTN 

0 s ..... < lt.J ' 
1 •:J 1 

,..,. 
'.;.".) 

0 
..., --- < .. .l 

·I 3 '""! :·::. 
.l ·-.J ;:.J 4- IUP 
0 1 r.:: -~ < 

...J ~ J. 5 

FUNCTIONAL ELEMENT UTILIZATION 

FEID 

1 

2 

....,. . ..;) 

it-

5 

T'r'PE 

SCH 

GM 

AP 

IOP 

TOTAL TIME = 1000. 

NODE EXECUTION INFORMATION 

l'·-JODE ID t)PC{):DE 

1 14 2 
2 28 2 
..:.· 25 1 

CHANNEL EXECUTION INFORMATION 

43 

4-0 

30 

.-. 
L 

14 

CHANI'·JEL F If;~ I N(:i:3 
1 

.; ,., 
l.\U 

~C.) I s El_El'iEr··.~T 

··-' 

·= 
--~ 

.[.~ 



._j 

QUEUE EXECUTION INFORMATION 

QUEUE ID 

1 35 
s 

10 
1 1 

~J 

. ...) 
·; 
J. 

1 

T;~ I L ;·.IC•:C.E 

·I 
.i. 

1 

-.7 -~.· 
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FEID TYPE 

TIMING SIMULATOR FOR THE 
ENHANCED MODULAR SIGNAL PROCESSOR 

EMSP CONFIGURATION FOR SIMULATION 

CONCENTRATOR DISTRIBUTOR 
DTN CON ELEMENT DTN DIS ELEt'IENT 

1 SCH 0 5 
2 GM 1 6 
3 AP (l 7 
4 IOP 1 :3 
5 GM 0 15 

T I t·1 I NG CHART FOR EMSP GRAPH 

TIME 
0 

99 

1 ... , 
.;;; 4 5 

(l 1 ~: 
.-, 
..:,. 

1 0 6 2 
2 1 5 1 
3 0 4 0 
3 1 7 .-, 

..::. 

I* TWO GRAPH PROCESS INSTRUCTS FIRE AT SAME TIME ONE IS *I 
I* RESCHEDULED FOR TIME 103. INSTRUCT 30 IS EXN SO *I 
I* A CHANNEL HAS GONE OVER THRESHOLD AND FIRED. *I 
INSTRUCT oPcode 30, time 10000, receiver 4, sender 4, node 1 
CALLING IOPP 
INSTRUCT oPcode 
CALLING IOPP 

100 
101 
102 

I* RESCHEDULED 
INSTRUCT opcode 
CALLING IOPP 

103 
104 
105 

I* EXN INSTRUCT 
INSTRUCT OPCode 
CALLING GM 

106 2 
107 2 
108 2 

30, time 10000, receiver 4, 

4 
4 
4 

INSTRUCT EXN IS NOW EXECUTED 
:30, time 10300. receiver· 4, 

4 
4 
4 

TRIGGERED A WRITE QUEUE TO 
64, time 105:34, receiver 2. 

sender 4, node :2 

AS IOF' I.-. ..::0 FREE*/ 
sender 4, node 2 

t;~UEUE 1 *I 
sender· 4, n•:•d~ 1 

I* EXN INSTUCTION TRIGGERED A WRITE QUEUE TO QUEUE 3 *I 
INSTRUCT opcode 64, time 10892, receiver 5, sender 4, node 2 
CALLING GM 

109 2 5 
110 2 5 
111 2 5 
112 2 5 



113 
114 
115 
116 
117 
118 
11';'1 
120 
121 
122 
123 
124 
1·")~ 4-..1 

126 
127 
128 
129 
130 

:::o 

2 5 
2 5 
2 5 
2 5 
2 5 
2 5 

5 
5 
5 
5 

I* QUEUE 1 HAS GCtNE OVER THRESHOLD. WRITE QUEUE INSTRUCT *I 
I·* TRIGGERED A QUEUE OVER THRESHOLD INSTRUCT. *I 
INSTRUCT oPcode 42, time 13040, receiver 1, sender 2, node 1 
CALLING SCH 

131 1 
1:32 1 
133 1 
134 1 
135 1 

I* QUEUE 3 HAS GONE OVER THRESHOLD. WRITE t~UELIE INSTRUCT* I 
I* TRIGGERED A QUEUE OVER THRESHOLD INSTRUCT BUT *I 
I* SCHEDULER IS BUSY SO RESCHEDULE> *I 
INSTRUCT oPcode 42, time 13536, receiver 1, sender 5, node 2 
CALLING SCH 

136 1 
137 1 
138 1 
139 1 
140 1 
141 1 
142 1 
143 1 
144 1 
145 1 
146 1 
147 1 
148 1 
149 1 
150 1 

I* RESCHEitULED QUEUE OVER THRESHOLD INSTRUCT FOR QUEUE :3* I 
INSTRUCT OPcode 42, time 15040, receiver 1, sender 5, node 2 
CALLING SCH 

151 1 
152 1 
15:3 1 
154 1 



155 1 
156 1 
157 1 
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I* SEND INSTRUCT STREAM INSTRUCTION TRIGGERED BY QUEUE 1*/ 
I* GOING OVER THRESHOLD. NODE 1 IS FIRING. *I 
INSTRUCT OPcode 53, time 15747~ receiver 2, sender 1. node 1 
CALL I NG Gt·l 

158 1 2 
15';> 1 2 
160 1 2 
161 1 2 
162 1 2 
163 1 2 
164 1 2 
165 1 2 
166 1 2 
167 1 2 
168 1 2 
16'7 1 2 
170 1 2. 
171 
172 
173 
174 

I* ACCEPT INSTRUCT STREAM SENT BY GLOBAL t"iEMEORY TO *I 
I* ARITHMETIC PROCESSOR. *I 
INSTRUCT oPcode 3, time 17430, receiver 3, &ender 2. node 1 
CALLING AP 

'* 

175 3 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
18:3 
18'7 
1·;;ro 
191 
1';>2 
193 
1'~4 

195 
196 
197 
1•;>::: 
1'?9 
REQUEST 

3 
3 
3 
3 

GRAPH VARIABLE FROM GLOBAL MEMORY FOR NODE 1 *I 



I* SENT BY ARITMETIC PROCESSOR. 
INSTRUCT opcode 47, time 19918. receiver 2. sender 3, 
CALLING Gt'l 
I* CHANNEL 1 HAS FIRED AGAIN AND CHANNEL 2. CHANNEL 2 
I* BLOCKED AGAIN AND RESCHEDULED. OPCODE 30 IS EXN. 
INSTRUCT opcode 30. time 20000, receiver 4, sender 4, 
CALLING IOPP 
INSTRUCT opcode 30. time 20000, receiver 4, sender 4, 
CALLING IOPP 

200 2 4 
201 2 4 
202 2 4 

:32 

node 2 

I* RESCHEDULED CHANNEL 2 EXN or EXECUTE NODE INSTRUCT *I 
INSTRUCT oPcode 30, time 20300, receiver 4, sender 4. node 2 
CALL I NG I (IPP 

203 2 4 
204 2 4 

I* WRITE QUEUE TRIGGERED ON G'JUEUE 1 BY CHANNEL FIRING. *I 
I~ MUST BE RESCHEDULED BECAUSE OF PREVIOUS REQUEST GV. *I 
INSTRUCT opcode 64, time 20482, receiver 2, sender 4, node 1 
CALLING GM 

205 2 4 
206 2 
207 2 
208 2 
209 2 

I* WRITE QUEUE TRIGGERED ON QUEUE :.;: BY CHANNEL FIRING. *I 
INSTRUCT oPcode 64, time 20902, receiver 5, sender 4, node 2 
CALLING GM 

210 2 5 
211 2 5 

I* RESCHEDULED WRITE QUEUE ON QUEUE 1 *I 
INSTRUCT opcode 64, time 21129, receiver 2. sender 4. node 1 
CALLING GM 

212 2 5 
213 2 5 

I* GLOBAL 1'1EMORY SENDING ACCEPT GRAPH VARIABLE INSTRUCT *I 
I* TO ARITHMETIC PROCESSOR FOR NODE 1. *I 
INSTRUCT opcode 2, time 21392, receiver 3, sender 2, node 1 
CALLING AP 

214 2 3 5 
215 2 3 5 
216 2 .-, 

.j 5 
217 2 3 5 
218 2 3 5 
219 2 3 5 
220 2 3 5 
221 2 3 5 
222 .-, 

" 3 5 
I* REQUEST QUEUE SENT TO GLOBAL MEMEORY FROM ARITHMETIC *I 
I* PROCESSOR FOR NODE 1. RESCHEDULED. *I 
INSTRUCT OPCOde 50. time 22269, receiver 2. sender 3, node 1 
CALLING GM 

.............. 
~""'-..:;) 2 3 



I* RESCHEDULE REQUEST QUEUE. *I 
INSTRUCT oPcode 50, time 22384, receiver 2, sender 3, node 1 
CALLING GM 

:224 2 3 
225 2 .... 

.:> 

226 2 3 
227 2 3 

'* QUEUE OVER THRESHOLD ONE QUEUE 3 IN RESF'ONSE TO 

'* QUEUE BECAUSE OF CHANNEL FIRING. 
WRITE *I 

*' 5, node 2 INSTRUCT OPCOde 42. time 22751. receiver 1' sender· 
CALLING SCH 

228 1 2 3 
229 1 2 3 
230 1 2 ..... .;;. 

231 1 2 3 
232 1 2 3 
233 1 2 3 
234 1 :2 3 
235 1 2 
236 1 2 
237 1 
238 
23';;o 

I* GLOBAL MEMORY SENDING ACCEPT QUEUE INSTRUCT TO *I 
I* ARITHMETIC PROCESSSOR. *I 
INSTRUCT oPcode 4, time 23926, receiver 3, ~ender 2. node 1 
CALLING AP 

240 3 
241 3 
242 3 
243 3 
244 3 
245 3 
246 3 
247 3 
:248 3 
249 3 

'* QUEUE OVER THRESHOLD. 

'* WRITE QUEUE 
INSTRUCT OPCOde 42. time 
CALLING SCH 

250 1 3 
251 1 3 
252 1 3 
253 1 .... 

..:• 
254 1 3 
255 1 3 
256 1 3 
257 1 ~: 

258 1 .... 
.:) 

259 1 '=' ·-· 
260 
261 
262 
263 

QUEUE 1 OVER BECAUSE OF *I 

*' 24955, receiver 1. sender 2. node 1 



264 
265 
266 
267 
268 

84 

I* NODE 1 HAS COMPLETED EXECUTION AND IS WRITING QUEUE 2*/ 
I* NOTE ALL WRITE G'~IJEUES EXCEPT TO OUTPUT QUEUES GIVE *I 
I* THE NODE IDENTIFICATION NUMBER OF THE HEAD NODE TO *I 
I* THE QUEUE. *I 
INSTRUCT oPcode 64, time 26824, receiver 2. sender 3, node 3 
CALLING GM 

269 2 
270 2 
271 2 
272 2 

I* NODE 1 HAS COMPLETED SO ARITHMETIC PROCESSOR IS READY*/ 
I* FOR NEXT INSTRUCT SO READY FOR INSTRUCTION STREAM *I 
INSTRUCT oPcode 45, time 27215, receiver 1, sender 3, node 1 
CALLING SCH 

273 1 .-, ..... 
274 1 2 
275 1 2 
276 1 2 
277 1 2 
278 1 2 
279 1 2 
280 1 2 
281 1 
2?2 1 
283 1 
284 1 
285 1 
286 1 
287 1 
288 1 
289 1 
2';'10 
291 
292 
293 
294 

I* UPON RECEPTION OF THE READY FOR INSTRUCT STREAM, NODE *I 
I* 2 WHICH WAS WAITING ON THE READY LIST IN THE SCHEDULER*/ 
I* IS SCHEDULED WITH A SEND INSTRUCT STREAM. *I 
INSTRUCT oPcode 53, time 29454, receiver 5, sender 1, node 2 
CALLING Gt-1 

295 
296 
297 
298 

5 

5 
299 5 

I* QUEUE 2 HAS GONE AVER THRESHOLD WITH THE WRITE QUEUE *I 
I* TRIGGERED BY THE EXECUTION OF NODE 1. *I 
INSTRUCT oPcode 42, time 29922, receiver 1. sender ;:;::, node 3 



:35 

CALLING SCH 
I* CHANNEL 1 AND 2 HAVE FIRED AGAIN. CONFLICT AGAIN AND *I 
I* RESCHEDULED. *I 
INSTRUCT oPcode 30, time 30000, receiver 4, sender 4, node 1 
CALLING IOPP 
INSTRUCT opcode 30, time 30000, receiver 4, sender 4, node 2 
CALLING IOPP 

300 1 4 5 
301 1 4 5 
302 1 4 5 

INSTRUCT oPcode 30, time 30300, ~eceiver 4, sender 4, node 2 
CALLING IOPP 

303 1 4 5 
304 1 4 5 

I* NODE 1./s FIRING HAS TRIGGERED A CONSUME QUEUE INSTRUCT*/ 
I* ONE QUEUE 1 ATTACHED TO NOt•E 1. *I 
INSTRUCT oPcode 72, time 30432, receiver 2. sender 3, node 1 
CALLING GM 
I***** NOTE THE PARALLELISM ON THE FUNCTIONAL ELEMTENTS*****I 

305 1 2 4 5 
I* WRITE QUEUE FOR QUEUE 1 TRIGGERED BY CHANNEL.RESCHEDULED*/ 
INSTRUCT opcode 64, time 30506, receiver 2, sender 4, node 1 
CALLING GM 

306 1 2 5 
307 1 2 5 
308 1 2 
30':i) 1 2 

I* WRITE QUEUE FOR QUEUE 3 TRIGGERED BY CHANNEL 2. *I 
INSTRUCT oPcode 64, time 30926, receiver 5, sender 4, node 2 
CALLING GM 

310 2 5 
311 2 5 
312 2 5 

I* GLOBAL MEMORY SENDING ACCEPT INSTRUCT STREAM TO *I 
I* ARITHMETIC PROCESSOR FOR NODE 2. *I 
INSTRUCT oPcode 3, time 31206, receiver 3, sender 5, node 2 
CALLING AP 

313 2 3 5 
314 2 3 5 
315 2 3 5 
316 2 3 5 

I* REPORT NODE DONE WAS ADDED TO NOTIFY THE SCHEDULER A *I 
I* NODE HAD FINISHED. EMSP DOES NOT ALLOW TWO INSTANCES *I 
I* OF THE SAI'1E NODE. OPCODE IS ONLY FOR SU1ULATOR ANti NOT*/ 
I* A INSTRUCT ON ENSP SO IT TAKES NO TIME. *I 
INSTRUCT OPcode -4, time 31632, receiver 1, sender 2, node 1 
CALLING SCH 
I* RESCHEDULED WRITE l:;lUEUE FOR NODE 1 *I 
INSTRUCT oPcode 64, time 31632, receiver 2, sender 4, node 1 
CALLING GM 

317 2 3 5 
318 2 5 
319 2 5 
320 2 5 



:=:t:.. 

321 ·~ ..!.. 5 
:322 2 5 
323 2 
324 2 
325 2 
326 2 

I* QUEUE OVER THRESHOLD FOR QUEUE 1 *' 
INSTRUCT oPcod~ 42, time 32664, receiver 1, sender 2, node 1 
CALLING SCH 

327 1 2 
328 1 2 
329 1 
330 1 
:331 1 
332 1 

I* REQUEST GRAPH VARIABLE. NODE 2. *I 
INSTRUCT oPcode 47, time 33237, receiver 5, sender 3, node 2 
CALLING GM 

333 1 5 
334 1 5 
335 1 5 
336 1 5 
337 1 5 

I* QUEUE 3 HAS GONE OVER CAPAC I TV. GLOBAL MEI'10RY 
I* QUEUE OVER CAPACITY MESSAGE TO SCHEDULER. 
I* RESCHEDULED. 
INSTRUCT oPcode 41, time 33719, receiver 1. sender 
CALLING SCH 

338 1 5 
339 1 5 
340 1 5 
341 1 5 
342 1 5 
343 1 5 
344 1 5 
345 1 
346 1 

SENT 

5. 

I* RESCHEDULED QUEUE OVER CAPACITY INSTRUCT. *I 

*' 

*' *' node 2 

INSTRUCT oPcode 41. time 34664, receiver 1. sender 5. node 2 
CALLING SCH 
I* ACCEPT INSTRUCT STREAt'l TO ARITHMETIC PROCESSOR FOR* I 
I* NODE 2 FROM GLOBAL MEMORY. *I 
INSTRUCT oPcode 2, time 34692, receiver 3, ~ender 5. node 2 
CALLING AP 

347 1 3 
348 1 3 
349 1 3 
350 1 3 
351 1 3 
352 1 3 
35~: 1 3 
354 1 8l 
:355 1 3 
356 1 :3 



357 1 :3 
358 1 3 
35·~ 1 :::: 

I* QUEUE OVER THRESHOLD INSTRUCT FOR NODE 1. 
I* RESCHEDULED. 
INSTRUCT oPcode 42. time 35923. receiver 1. s~nder 2, node 1 
CALLING SCH 

. 360 1 3 
361 1 3 

I* RESCHEDULED QUEUE OVER THRESHOLD. 
INSTRUCT oPcode 42, time 36164, receiver 1, sender 2, nod~ 1 
CALLING SCH 

~:62 1 3 
363 1 3 
364 1 :::: 

I* REQUEST QUEUE FOR NODE 2 FOR QUEUE 3. 
INSTRUCT oPcode 50, time 36496. receiver 5. sender 3. node 2 
CALLING Gt1 

365 1 3 5 
366 1 3 5 
367 1 3 5 
368 1 5 
369 1 5 

I* QUEUE OVER THRESHOLD FOR QUEUE 3. RESCHEDULED. 
INSTRUCT oPcode 42. time 36978. receiver 1. sender 5, node 2 
CALLING SCH 

370 1 
371 1 

I* RESCHEDULED 
INSTRUCT oPcoo.Je 
CALLING SCH 

372 1 
373 1 
374 1 
375 1 
376 1 
377 1 
378 1 
37'~ 1 
380 1 
381 1 
:382 
383 
384 

5 
5 

QUEUE OVER THRESHOLD FOR QUEUE 3. *I 
42. time 37164. receiver 1. sender 5. node 2 

5 
5 
5 
5 
5 
5 
5 

I* ACCEPT QUEUE FOR QUEUE 3 AND NODE 2. *I 
INSTRUCT oPcode 4, time 38416. receiver 3, sender 5. node 2 
CALLING AP 

385 
386 
387 
388 

3 
3 
3 

3 

3 



:38 

I* QUEUE OVER CAPACITY INSTRUCT ON A CHANNEL REQUIRES*/ 
I* A SNDT OR STOP NODE DATA TRANSFER MESSAGE TO BE SENT *I 
I* TO THE INPUT/OUTPUT PROCESSOR. *I 
INSTRUCT opcode 71, time 39168, receiver 4, sender 1, node 2 
CALLING IOPP 
ERROR CHANNEL 2 HAS OVERRAN 

4 
I~UEUE 3 

392 
393 
394 
395 
396 
397 
398 
399 

'* SAME 

3 
3 
3 
3 
3 

~ ._. 

3 

4 
4 

OLD CHANNEL FIRINGS. 
INSTRUCT opcode 30, time 40000, 
CALLING IOPP 
INSTRUCT opcode 30, tim~ 40000, 
CALLING IOPP 

400 3 4 
401 3 4 
402 3 4 

receiver 4, 

receiver 4, 

sender· 4, *' node 1 

I* CHANNEL 2 .HAS BEEN STOPPED SO NO TIME NECESSARY FOR EXN*/ 
INSTRUCT oPcode 30, time 40300, receiver 4, sender 4, node 2 
CALLING IOPP 

403 
404 

3 
3 

405 3 
/* CHANNEL FIRING TRIGGERED A WRITE QUEUE ON QUEUE 1 *I 
INSTRUCT oPcode 64, time 40502, receiver 2, sender 4, node 1 
CALLING GM 

406 2 
407 2 
408 2 
409 2 
410 2 
411 2 
412 2 
413 2 
414 2 

I* NODE 2 HAS COMPLETED SET UP MODE IN ARITHMETIC PROCESSOR*/ 
I* SO SENDS READY FOR INSTRUCT STREAM <RFIS> TO *I 
/* SCHEDULER. *I 
INSTRUCT oPcode 45, time 41442, receiver 1. send~r 3, node 2 
CALLING SCH 

415 1 
416 1 
417 1 
418 1 
41'7 1 

2 

.-. ...:. 

/* RFIS FROM INPUT/OUTPUT PROCESSOR WHEN CHANNEL STOPPED. *I 
INSTRUCT oPcode 45, time 41910, receiver 1, sender 4, node 2 
CALLING SCH 

420 1 



421 1 
422 1 
423 1 
424 1 
425. 1 
426 1 
427 1 
428 1 
429 1 
430 1 
431 1 

I* RFIS RESCHEDULED AT TH1E 420. 
INSTRUCT oPcode 45, time 43142, receiver 1, sender 4, node 2 
CALLING SCH 
I* WRITE QUEUE TRIGGERED BY EXECUTION OF NODE 3. *I 
INSTRUCT oPcode 64, time 43162, receiver 2, sender 3, node 3 
CALL I NG CiM 

4:32 1 2 
43:3 1 2 
434 1 2 
435 1 2 
436 1 2 
437 1 2 
438 1 2 
439 1 2 
440 1 2 
441 1 2 

I* SEND INSTRUCT STREAM TRIGGERED BY RFIS 
INSTRUCT oPcode 53, time 44135, receiver 2, sender 1, node 1 
CALLING GM 

442 1 2 
443 1 2 
444 1 2 

INSTRUCT oPcode 53, time 44472, receiver 2, sender 1, node 1 
CALLING GM 

445 1 2 
446 1 2 

I* QUELIE OVER THRESHOLD TRIGGERED BY CHANNEL FIRING AND *I 
*I 

receiver 1, sender 2. node 1 
I* WRITE QUEUE. 
INSTRUCT oPcode 42, time 44603, 
CALLING SCH 

447 1 2 
448 1 2 

INSTRUCT opcode 42, time 44842, receiver 1. sender 2. node 1 
CALLING SCH 

449 1 2 
450 1 2 
451 1 2 

I* CONSU~1E QUEUE TRIGGERED BY EXECUTION OF NODE 2. 
INSTRUCT oPcode 72, time 45113, receiver 5, sender 3, node 2 
CALLING GM 

452 1 
453 1 
454 1 

2 
2 
2 

5 

5 



455 
456 
457 
458 

1 
1 
1 
1 

2 
2 
2 

5 
5 
5 
5 

459 5 
460 5 
461 5 

I* ACCEPT INSTRUCT STREAM FOR NODE 1. *I 

90 

INSTRUCT oPcode 3, time 46102, receiver 3, sender 2, node 1 
CALLING AF' 

462 3 5 
463 3 5 

I* SUF'ERF I C I AL REF'ORT NODE DONE FOR NODE 2. *I 
INSTRUCT oPcode -4, time 46313, receiver 1, sender 5, node 2 
CALLING SCH 

464 3 
465 3 
466 3 
467 
468 
469 
470 
471 
472 
473 

I* QUEUE OVER THRESHOLD FOR NODE 3 AND QUEUE 2 or 4. *I 
INSTRUCT oPcode 42, time 47345, receiver 1, sender 2, node 3 
CALLING SCH 

474 1 
475 1 
476 1 
477 1 
478 1 
479 1 

I* REQLIEST GRAPH VARIABLE FOR NODE 1 • *I 
INSTRUCT oPcode 47, time 47918, receiv~r 2, sender 3, node 1 
CALL I NG Gt-1 

480 1 2 
481 1 2 
482 1 2 
483 1 2 

I* QUEUE OVER THRESHOLD FOR NODE 2 AND QUEUE 3. *I 
INSTRUCT opcode 42, time 48400, receiver 1. sender 5, node 2 
CALLING 

484 
485 
486 
487 
488 
489 
4'3)0 
491 
4'3)2 
49:3 

SCH 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 
2 



91 

I* RESCHEDULED FROM T I 1'1E 484. 
INSTRUCT oPcode 42, time 49345, receiver 1, sender 5, node 2 
CALLING SCH 

494 1 
I* ACCEPT GRAPH VARIABLE. *I 
INSTRUCT oPcode·2, time 49476. receiver 3, sender 2, node 1 
CALLING AP 

495 1 3 
496 1 3 
497 1 3 
498 1 3 
499 1 3 

I* CHANNEL 1 FIRED. EXECUTE NODE <EXN>. *I 
INSTRUCT OPCOde :30. 
CALLING IOPP 

500 1 3 
501 1 3 
502 1 3 
503 1 3 
504 1 3 
505 1 '? .... 

I* WRITE QUEUE FOR 
INSTRUCT oPcode 64. 
CALLING GM 

506 1 2 3 
507 1 2 3 

I* REQUEST QUEUE. 
INSTRUCT OPCOde so. 
CALLING GM 

508 1 2 3 
509 1 2 3 
510 1 2 3 
511 1 2 3 
51:2 1 2 3 
513 1 2 3 
514 2 3 
515 2 
516 2 
517 2 

time 50000, receiver 4, sender 4, node 1 

4 
4 
4 

QUEUE 1 *I 
time 50512, receiv~r 2. sender 4, node 1 

*' time 507:23. receiver 2. sender 3, node 1 

I* RESCHEDULED FROM TIME 508. *I 
INSTRUCT oPcode 50, time 51767, receiver 2. sender 3, node 1 
CALL I NG Gt-1 

518 2 
51 s-1 2 
520 2 
521 2 
522 2 
5'::1.-, 

.:;...:0 2 
524 2 
525 2 
526 2 
527 2 
528 2 
529 .-, 

~ 



·;-2 

I* QUEUE OVER THRESHOLD FOR l:;liJEUE 1. *I 
INSTRUCT OPCOde 42. time 52955. re•:eiver 1' sender .... 

"""' node 1 
CALLING SCH 

530 1 2 
531 1 
532 1 
533 1 

I* ACCEPT l:;lUEUE. *I 
INSTRUCT OPCOde 4. time 53368. receiver 3. sender :2, node 1 
CALLING AP 

534 1 3 
535 1 3 
536 1 3 
537 1 3 
538 1 3 
539 1 3 
540 3 
541 3 
542 3 
543 3 
544 3 
545 3 
546 3 
547 3 
548 3 
549 3 
550 3 
551 3 
552 3 
553 3 
554 3 
555 
556 
557 
558 
559 
560 
561 
562 

I* WRITE QUEUE TRIGGERED BY EXECLITION OF NODE 1 *I 
INSTRUCT oPcode 64. tim~ 56238. receiver 2. sender :3, node --:. ._. 

CALLING GM 
563 2 
564 2 
565 2 
566 2 
567 2 
568 2 
569 2 
570 2 

I* RFIS TRIGGERED BY COMPLETION OF THE EXECUTION. OF NODE 1*1 
INSTRUCT oPcode 45, time 57007, receiver 1, sender 3, node 1 
CALLING SCH 

571 1 2 



572 
57~: 

574 
575 
576 
577 
578 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
s·~2 

1 2 
1 2 
1 2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

I* SEND INSTRUCT STREAM FCIR NODE 3 TRIGGERED BY RF IS. *I 
INSTRUCT oPcode 53, time 59246, receiver 2, sender 1, node 3 
CALLING GM 

5'?3 2 
594 2 
595 2 
596 2 
597 2 

I* QOT ON QUEUE 
INSTRUCT OPCOde 
CALLING SCH 

5'?8 1 2 
599 1 2 

I* EXN *I 
INSTRUCT opcode 
CALLING IOPP 

600 1 
601 1 
602 1 

2 
2 

2 OR 4 TRIGGERED BY NODE 1 EXECUTION *I 
42, time 59714, receiver 1. sender 2. node 3 

30. time 60000, 

4 
4 
4 

receiver 4, sender 4, node 1 

I* CONSUME QUEUE 1 TRIGGERED BY NODE 1 EXECUTION *I 
INSTRUCT opcode 72, time 60224, receiver 2, sender 3, node 1 
CALLING GM 

603 1 2 
604 1 2 
605 1 2 

I* WRITE QUEUE 1 TRIGGERED BY EXN. *I 
INSTRUCT oPcode 64, time 60508, receiver 2, sender 4, node 1 
CALL I NG Gl'1 
I* CCINSUME G!UEUE WAS RESCHEDULEI:I FROM T I t1E 603 *I 
INSTRUCT opcode 72, time 60589, receiver 2. sender 3, node 1 
CALLING GM 
I* WRITE QUEUE TIME RESCHEDULED AGAIN *I 
INSTRUCT oPcode 64, time 60~89, receiver 2, sender 4, node 1 



CALLING Gt1 
606 1 2 
607 1 2 
608 2 
609 2 

I* ACCEPT INSTRUCT STREAM SENT TO AP FROM GM FOR *I 
I* NODE 3*/ 

'?4 

INSTRUCT oPcode 3, time 60998, receiver 3, sender 2. node 3 
CALLING AP 

610 2 3 
611 2 3 
612 2 3 
61:3 2 ~: 

614 2 3 
615 2 .-, 

,:I 

616 2 
617 .-, ... 

I* SLIPERF I C I AL REPORT NODE *I 
INSTRUCT oPcode -4, time 61789, receiver 1, sender 2. node 1 

CALLING SCH 
I* WRITE QUEUE FOR EXN FINALLY NOT RESCHEDULED BUT·*; 

I* EXECUTED. *I 
INSTRUCT oPcode 64, time 61789, receiver 2, sender 4, node 1 

CALLING GM 
618 2 
619 2 
620 2 
621 2 
622 2 
623 2 
624 2 

I* QUEUE OVER THRESHOLD FOR CONSUME QUEUE *I 
INSTRUCT opcode 42, time 62456, receiver 1, sender 2, node 1 

CALLING SCH 
625 1 2 
626 1 2 
627 1 2 
628 1 2 
629 1 2 
630 1 2 

I* REQUEST GRAPH VARIABLE. SAME INSTRUCT BUT IT *I 
I* RGV GAVE IN ON PART OF A TH1E UNIT AND WAS 
I* RESCHEDULED LATER IN THE Tit-1E UNIT. 
INSTRUCT oPcode 47, time 63029, receiver 2, sender 3, node 3 

CALLING GM 
INSTRUCT opcode 47, time 63044. receiver 2. sender 3, node 3 

CALL I NG Gj\1 
631 1 
632 1 
633 1 
634 1 
635 1 
636 1 
637 1 

2 
2 
'"J .... 
2 
2 
2 
2 



638 
639 
640 
641 
642 
643 
644 
645 

1 
1 
1 
1 
1 
1 
1 

2 .... 
.;:;. 

2 
2 
2 

95 

VARIABLE. NODE 3 TRYING TO EXECUTE *I I* ACCEPT GRAPH 
INSTRUCT oPcode 2, 
CALLING AP 

time 64554, receiver 3, sender 2, node 3 

646 
647 
648 
64';> 
650 
651 

3 
3 
3 .-. ..:· 
3 
3 

652 3 
I* QOT FOR WRITE QUEUE *I 
INSTRUCT opcode 42, tim~ 65261, receiver 1, ~ender 2. node 1 
CALL I NG SCH · 

653 1 3 
654 1 3 
655 1 3 
656 1 3 
657 1 3 
658 1 3 

I* REQUEST QUEUE FROM AP TO GM FOR NODE 3*1 
INSTRUCT oPcode so, time 65834, receiver 2, sender 3, node 3 
CALLINC; GM 

659 1 
660 1 
661 1 
662 1 
663 
664 
665 
666 
667 
66:3 
669 
670 
671 
672 
673 
674 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 

3 
3 
3 
3 
3 

FROM GM TO AP FOR NODE 3*/ I* ACCEPT QUEUE 
INSTRUCT OPcode 4, 
CALLING AP 

675 
676 
677 
678 
679 

.-, 

.:} 

3 
3 
3 

time 67424, receiver 3, sertder 2, node 3 



6:30 3 
681 3 

I* REQUEST QUEUE FROM AP TO GM FOR NODE 3 *I 
I* NOTE NODE 3 HAS TWO INPUT QUEUES (2 & 4) *I 
INSTRUCT oPcode 50, time 68185, receiver 2. ~ender 3, 
CALLING 131'1 

682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
6';"15 
696 
697 
698 

2 
2 
2 
.-, .... 
2 
2 
2 
2 
2 
2 
2 
2 

'=' ..... 
3 
2: 
3 
~: 
.-, 
.;:;o 
.... 
·-· .-, 
-=-
'=' ·-· .-. 
-=-
3 
3 

I* ACCEPT QUEUE 4 FROM GM TO AP FOR NODE 3*/ 

96 

node :::: 

INSTRUCT oPcode 4, time 69846. receiver 3. sender 2, node 3 
CALLING AP 

699 3 
I* CHANNEL 1 FIRED AGAIN *I 
INSTRUCT oPcode 30, time 70000. receiver 4. ~ender 4, node 1 
CALLING IOPP 

700 3 4 
701 3 4 
702 3 4 
703 3 
704 3 
705 3 

I* CHANNEL 1 FIRED AND IS WRITING TO QUEUE 1 *I 
INSTRUCT oPcode 
CALLING GM 

706 2 
707 2 
708 .-, ..:.. 
709 .-.. 

..:.. 

710 .-, 
..:.. 

711 2 
712 2 
713 2 
714 2 
715 2 
716 2 
717 2 
71E: 2 
719 
720 

64. 

3 .... ._, 

3 
'=' ._, 

3 

.-, 
-=-
3 
3 

3 

.-, 
-=-

time 70546, receiver 2, sender 4, node 1 



- -----

721 
72:2 
723 
724 
725 
726 
727 

'?7 

I* NODE 3 COMPLETED EXECUTION AND IS WRITING QUEUE 5*1 
INSTRUCT oPcode 64, time 72758, receiver 2, sender 3, node 3 
CALLING GM 

728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 

2 
2 
~ . ...:. 
2 
2 
2 

2 
2 
2 
2 

739 2 
740 

I* QOT FOR EXN AND WRITE QUEUE*/ 
INSTRUCT oPcode 42, time 74001, receiver 1, sender 2, node 1 
CALLING SCH 

. 741 1 
742 1 
743 1 
744 1 

I* READY FOR INSTRUCT STREAt1 SINCE AP FIN I SHED *I 
I* SET UP MODE *I 
INSTRUCT oPcode 45, time 74469, receiver 1, sender 3, node 3 
CALLING SCH 

745 1 
746 1 
747 1 
748 1 
749 1 
750 1 

I* WAS RESCHEDULED FROI'1 T I t1E 7 45 *I 
INSTRUCT oPcode 45, time 75001, receiver 1, sender 3, node 3 
CALLING SCH 

751 1 
752 1 
753 1 
754 1 
755 1 
756 1 
757 1 
758 1 
759 1 
760 1 
761 1 



762 1 
763 1 
764 1 
765 1 
766 1 
767 1 

I* SEND INSTRUCT STREAM. NODE 2 JUST FIRED *I 
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INSTRUCT oPcode 53, time 76708, receiver 5, sender 1, node 2 
CALLING GM 

768 5 
769 5 
770 5 
771 5 

I* QOT BUT CHANNEL IS BUSY -- QUEUE 5 and EXECUTE NODE 3 *I 
INSTRUCT oPcode 42, time 77176, receiv~r 1, sender 2, node 3 
CALLING SCH 

772 
773 
774 

5 
5 
5 

775 5 
776 5 

I* CONSUME QUEUE EXECUTE NODE 3*/ 
INSTRUCT oPcode 72, time 77686, receiver 2, sender 3, node 3 
CALLING GM 

777 2 5 
778 2 5 
779 2 5 
780 2 5 
781 2 
782 2 
783 2 
784 2 
785 2 

'* ACCEPT INSTRUCT STREAM FOR NODE 2 FROM GM5 TO AP *I 
INSTRUCT opcode 3. time 78554, receiver 3, sender 5, node 2 
CALLING AP 

786 
787 
788 
78';'1 
790 
791 
792 
79~: 

794 
795 
796 
797 
798 
799 

2 3 
2 3 
2 3 

.-, 

.,:1 

3 

I* EXECUTE INSTRUCT STREAM. QUEUE 5 OR CHANNEL 3 *I 
I* IS BEING WRITTEN *I 
INSTRUCT oPcode 24, time 79904, receiver 4, sender 1, node 3 
CALLING IOPP 



I* EXN FOR NODE 1 AND t:;lUEUE 1 *I 
INSTRUCT oPcode 30, time 80000, receiver 4, sender 4, node 1 
CALLING IOPP 

800 4 
801 4 
802 4 

I* REQUEST QUEUE FOR WRITING TO CHANNEL 3 *1. 
INSTRUCT oPcode SO, time 90204, receiver 2, sender 4, node 3 
CALLING GM 
I* PREEMPTED BY EIS AND NOW EXECUTINT EXN *I 
INSTRUCT oPcode 30. time 80204, receiver 4, sender 4, node 1 
CALLING IOPP 

803 2 4 
I* QOT *I 
INSTRUCT oPcode 42, time 80372, receiver 1, sender 2, node 3 
CALLING SCH 

804 1 2 4 
80S 1 2 4 
806 1 2 
807 1 2 
808 1 2 

I* WRITE QUEUE FOR QUEUE 1 TRIGGERED BY EXN. RESCHEDULED *I 
INSTRUCT oPcode 64, time 80864, receiver 2, sender· 4, r..:Hie 1 
CALLING GM 
I* RESCHEDULED *I 
INSTRUCT oPcode 72, time 80882, receiver 2, sender 3, node 3 
CALL I NG Gj\1 

809 1 2 
:310 1 2 
811 1 2 
812 1 2 
813 1 2 
814 2 

I* RESCHEDULED WRITE QUEUE FOR EXN AND QUEUE 1*1 
INSTRUCT oPcode 64, time 81426, receiver 2, sender 4, node 1 
CALLING GM 
I* RESCHEDULED AGAIN *I 
INSTRUCT oPcode 72, time 81426, receiver 2, sender 3, node 3 
CALLING GM 

815 2 
816 2 
817 2 

I* ACCEPT QUEUE FROM GM TO IOP. OUTPUT CHANNEL 3 *I 
I* TRIGGERED. *I 
INSTRUCT ope ode 4. time 81774. receiver 4, sender 2, node ~= 

CALLING IOPP 
818 2 4 
81'7 2 4 
820 2 4 
821 2 4 
C•~.-, 

~·~~ 2 4 
823 2 4 
824 2 4 
825 2 4 



-- - -- ---------- - - -----

100 

826 2 4 
I* CONSUME QUEUE 4. NODE 2 COMPLETED EXECUTION *' 
INSTRUCT oPcode 72, time 82681, receiver 2, sender 3, node 3 
CALLING GM 

827 
82:3 
829 

2 
2 
2 

830 2 
831 2 

4 
4 
4 
4 
4 

1 FOR EXN *I I* QOT FOR QUEUE 
INSTRUCT opcode 
CALLING SCH 

4 ..... 
"'' time 83114, receiver 1, sender 2, node 1 

832 1 2 
833 1 2 
834 1 2 
835 1 2 
836 1 2 

I* REQUEST GRAPH 

4 
4 
4 
4 
4 

VARIABLE FOR NODE 2 *I 
INSTRUCT oPcode 47, time 83687, receiver 5, sender 3? 
CALLING GN 

837 1 2 
838 1 2 

4 . -5 
4 5 

INSTRUCT oPcode -4Y time 83881, receiver 1, sender 2, 
CALLING SCH 

839 1 
840 1 

5 

841 1 5 
I* SUPERFICIAL REPORT NODE DONE *I 
INSTRUCT oPcode -4, time 84114, receiver 1. sender 2, 
CALLING SCH 

842 
843 
844 
845 
846 
847 
848 
849 
850 
851 

5 
5 
5 

5 
5 
5 

I* ACCEPT GRAPH VARIABLE FOR NODE 2 *I 

node 2 

ncrde 3 

nr:rde 3 

INSTRUCT oPcode 2, time 85176, receiver 3, sender 5, node 2 
CALLING AP 

852 
:353 
854 
855 
856 
857 

3 
3 
3 
3 
3 
3 

858 3 
859 3 

I *•~LIEUE UNDER THRESHOLD *I 
INSTRUCT opcode 44, time 85919, receiver 1. sender 2. node 3 
CALLING SCH 
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860 1 3 
861 1 3 
862 1 ·? .... 
:363 1 3 
864 1 ::=: 

I* REQUEST QUEUE 3 FCIR NODE 2 *I 
INSTRUCT oPcode 50. time 86492. receiver 5, sender 3, node 2 
CALLING GM 

865 1 3 5 
866 1 3 5 
867 1 3 5 
868 1 3 5 
869 1 3 5 

I* INPUT OUTPUT PROCESSOR COMPLETED OUTPUT TO CHANNEL *I 
I* READY FOR INSTRUCT STREAM. *I 
INSTRUCT oPcode 45, time 86960. receiver 1. sender 4. node 3 
CALLING SCH 

870 1 
871 1 
872 1 
873 1 
874 1 
875 1 
876 1 
877 1 
:378 1 
879 1 
880 1 
881 1 
882 1 

3 
3 

5 
5 
5 
5 
5 
5 
5 
5 
5 

I* ACCEPT QUEUE FOR NODE 2. NODE 2 WILL COMMENCE *I 
I* EXECUTit:lN IN THE ARITHMETIC PROCES:~OR. *I 
INSTRUCT oPcode 4, 
CALLING AP 

883 1 
884 1 
885 1 
886 1 
887 
888 
889 
890 
891 

? .... 
~= 
3 
3 
3 

3 

3 
892 3 

time 88228, receiver 3, sender 5. node 2 

I* CONSUME QUEUE. I OP IS CONS LIMING I:;).UEUE AFTER WRITING* I 
I* IT TO AN OUTPUT CHANNEL 3. *I 
INSTRUCT oPcode 72. time 89248, receiver 2, sender 4. node 3 
CALLING GM 

893 2 3 
894 2 3 
895 2 .-. 

• ;j 

896 2 :=: 
:.::97 2 

,..., 
.:.0 

898 ·"') 
"'-

,.., 
-=· 
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8'~9 2 3 
I* EXN AGAIN FOR CHANNEL 1 *I 
INSTRUCT opcode 30, time 90000, receiver 4, sender 4, node 1 
CALL I NG I tJPP 

900 2 
·~01 2 
';"102 2 
903 2 
904 2 
905 

I* WRITING QUEUE 
INSTRUCT oPcode 
CALLING GM 

·~06 2 
907 2 
·~o8 2 
909 2 
910 2 
911 2 
912 2 
913 2 
914 2 

3 4 
3 4 
3 4 
3 

FOR CHANNEL 1 FOR EXN *I 
64. time 90524, receiver 2, 

I* QUEUE UNDER THRESHOLD *I 

sender 4, node 1 

INSTRUCT oPcode 44, time 91466, receiver 1, sender·2, node 3 
CALLING SCH 

915 1 2 
916 1 2 
917 1 2 
918 1 
'719 1 

I* NODE 2 COMPLETED SET UP MODE. READY FOR INSTRUCT *I 
I* STREAM SENT TO SCHEDULER *I 
INSTRUCT oPcode 45, time 91934, receiver 1. sender 3, node 2 
CALLING SCH 

920 1 
921 1 
922 1 
923 1 
924 1 

I* READY FOR INSTRUCT STREAM RECEIVED BY SCHEDULER *I 
I* BUT BLOCKED BY QUEUE UNDER THRESHOLD. RESCHEDULED *I 
INSTRUCT opcode 45, time 92466, receiver 1, sender 3, node 2 
CALLING SCH 

925 1 
926 1 
5127 1 
928 1 
929 1 

I* WRITE QUEUE 4 FCtR NODE 2 EXECUTION *I 
I* WRITE QUEUE INSTRUCTS ALWAYS GIVE QUEUE NUMBER*/ 
I* OF NODE AT HEAD OF THE QUEUE. *I 
INSTRUCT oPcode 64. time 92974, receiver 2. sender 3, node 3 
CALLING GM 930 1 2 

·~31 1 2 



•;>32 1 2 
933 1 2 
934 1 2 
935 1 2 
936 1 2 
937 1 2 
938 1 2 
939 1 2 
940 1 2 
941 1 2 

I* READY FOR INSTRUCT STREAt1 TRIGGERED NODE 1 ON READY*/ 
I* LIST IN SCHEDULER. SEND INSTRUCT STREAM TO GM2 *I 
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I* TO START NODE 1 EXECUTING. *I 
INSTRUCT oPcode 53, time 94173, receiver 2, sender 1, node 1 
CALLING GM 

942 2 
I* RESCHEDULED FROM T I t1E 942 *I 
INSTRUCT oPcode 53, "1: ime •;>42:34, receiver 2, sender 1, n•:•de 1 
CALLING GM 

943 2 
944 2 
•;>45 2 
946 2 

I* QUEUE OVER THRESHOLD FOR QUEUE 1 
INSTRUCT oPcode 42, time 94641, receiver 1, sender 2, nod~ 1 
CALLING SCH 

•;>47 1 2 
948 1 2 
•;>49 1 2 
9!30 1 2 
951 1 2 

I* CONSUME QUEUE 3 FOR NODE 2 EXECUTION. 
INSTRUCT oPcode 72, time 95151, receiver 5, sender 3, node 2 
CALLING GM 

·~52 1 
953 1 
954 1 
·;>55 1 
9:;j6 1 
957 
958 

2 
2 ... , .... 
2 

5 
5 
5 
5 
5 
5 
5 

I* ACCEPT INSTRUCT STREAt1 FROt1 GM TO AP FOR NODE 1 *I 
INSTRUCT oPcode 3, time 95900, receiver 3, sender 2, node 1 
CALLING AP 

9!39 
960 
961 
962 
963 

I* SUPERFICIAL 

3 
3 
3 
3 
3 

REPORT 

5 
5 
5 
5 
5 

NODE DONE. 
INSTRUCT oPcode -4, time 96351, receiver 1, sender 5, node 2 
CALLING SCH 

·~164 
965 

3 



·~66 

'767 
968 
969 
·~71) 

S'l71 
·~72 

973 
I* QUEUE OVER THRESHCILD FOR WRITE QUEUE FOR NODE 2 *I 
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I* EXECUTION. *I 
INSTRUCT opcode 42. time 97383, receiver 1. sender 2. node 3 
CALLING SCH 

974 1 
975 1 
976 1 
·~77 1 
978 1 
·~79 1 

I* REQUEST GRAPH VARIABLE FOR NODE 1 EXECUTION. *I 
INSTRUCT opcode 47, time 97956; receiver 2, sender· 3, node 1 
CALLING GM 

981) 1 2 
S''81 1 2 
·~82 1 2 
983 1 2 
984 1 2 

I* QUEUE UNDER CAPAC I TV SENT TO SCHEDULER FROI'1 GM. *I 
I* I~UEUE 3 ON CHANNEL 2 HAS GONE UNDER CAPACITY. *I 
I* CHANNEL WILL BE TURNED BACK ON WITH A CNDT 
I* INSTRUCT <CONTINUE NIJDE DATA TRANSFER> *I 
INSTRUCT oPcode 43, time 98438, receiver 1. sender 5, node 2 
CALLING SCH 

985 1 
986 1 
987 1 
988 1 
989 1 
990 1 
991 1 
·~92 1 
993 1 

2 

2 
2 

2 

I* RESCHEDULED FROM TIME 985 
INSTRUCT oPcode 43, time 99383, receiver 1. sender 5, node 2 
CALLING SCH 
I* ACCEPT GRAPH VARIABLE FROM GM TO AP FOR NODE 1 *I 
INSTRUCT oPcode 2. time 99386, receiver 3, sender 2. node 1 
CALLING AP 

994 1 
·~95 1 
996 1 
·~·~7 1 
998 1 
99'~ 1 

3 
3 
3 
3 
3 
·-:. ·-· 

I* CHANNEL 1 HAS FIRED 
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INSTRUCT oPcode 30, time 100000, receiver 4, sender 4, node 1 
CALLING IOPP 

1000 1 3 4 

FUNCTIONAL ELEMENT UTILIZATION 

FEID TYPE UTILIZATION 

TOTAL TU1E 

1 SCH 4~: 

:2 Gt·1 40 

~: AP 30 

4 IOP .-. ...:. 

5 GM 14 

= 1000. 

NODE EXECUTION INFOR~1ATION 

NODE ID OPCODE NODE FIRINGS 

1 
:2 

14 
:28 
:25 

:2 
:2 
1 

CHANNEL EXECUTION INFORMATION 

CHANNEL ID CHANNEL FIRINGS 

1 10 
2 
3 1 

l:;lUEUE EXECUTION INFORMATION 

QUEUE ID DATA ITEMS HEAD NODE 

1 35 1 
:2 5 3 
""• .:J 10 :2 
4 11 ·-:. ..... 
5 0 ""• .:J 

TAIL NODE 

1 
1 
2 
2 
~: 
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