ENHANCELD' MODULAR S IGNAL
FROCESSOR TIMING

SIMULATOR

Bv
MARILYN OPITZ ﬁIHEN
Bachelor of Science
in Electrical Endineering
Universitvy of Oklahoma

Norman, Oklahoma

1932

Submitted to the Faculty of the
Graduate Collede of the
Oklahoma State University
in partial ful+iliment of
the requirements for
the Dedree of
MASTER OF SCIENCE
Mav., 1987

Thesis
19371

Padle

wp.a

ENHANCED MODULAR SIGNAL

PROCESSOR TIMING

SIMULATOR

Thesis APProved:

___Qi_ﬁwj%dd M
1iesis Adviser .
N

DR Fifen

Dean of the Graduate Collese

ii

1275573

FREFACE

A timing simulator for a static Signal PFrocessinsg
Graph Notation draph was develored for the Enhanced Modular
Sidgnal FProcessor, a data flow compPuter develorped by BRell
Telerphone Laboratories for the United States Navvy. The user
inPuts the svstem confiduration and the torolodgy of the
grarh. To implement channels. a constant rate for each
channel is read and the timind simulator uses this rate to
detect inpPut aueues over threshold.

The outpPput consists of the system configuration, Aaueue
data information, functional element-utilization, node exe—
cution information, and an optional timing diadram. This
allows the user to simulate draphs for comparison or to
simulate modifications to the svstem and test the feasibil-
ity of the ProrPosed modification.

I wish to thank the pProfessors of the Computing and
Information Bciences Department far their suppPort and
encouragement during my stav at Oklahoma State Universitvy.
In particular, I wish to exPress mv sincere thanks to Doctor
Thoereson for her guidance and continued prodding. I want to
thank her for lettind me make my own mistakes and then

encouraging me to trvy adain and not dgive up.

iii

I also wish to thank mv other committee members, Doctor
D.D. Fisher and Doctor G.H. Hedrick, for their advisement in
the course of this work and my stay at Oklahoma State
University.

Special thanks do to mv family for their continued sup-
port and concern, but most of all I want to thank mv husband
and daughter, Calvin and Christina, for their constant sup-—

Port and encouradement.

iv

Chapter

I.

II.

III.

Iv.

J

TABLE OF CONTENTS

INTRDDL'CTIUNI L L] L] - L - - - L] - L] L]

Introduction to Data Flow.

Data Flow Architectures.

Sidnal Processind and Data Flow.

Ubjectives &« ¢« o« o o o =«
Reasons for Simulator. .

ENHANCED MODULAR SIGNAL PROCESSOR
OPERATIONAL SUPPORT SOFTWARE METHODOLOGY.

Sidnal FProcessindg Grarh Notation

Command Prodram. « « « =«

ENHANCED MODULAR SIGNAL PROCESSOR

Arithmetic Processor . .
o

Control Bus. « & « « « =
Data Transfer Network.
Global Memory. « « «
InPut/Outrput Frocessor
Scheduler. « « « « o« &

_ommand Program Processor.

ENHANCED MODULAR SIGNAL PROCESSOR

SIMULATOR &« &« & o & o & o o @

Data Structures.
Instructions .

Initialization . . .« . .
InPut. ¢« &« & & & ¢ & o &
OutPut &« & & & & ¢ & o &
Functional Element Confl
Main Prodram . . « . .«
Suprort Procedures . . .
Arithmetic Processor . .
Control Bus/Data Transfe

Input Output Processor .
Slobal Memorv. o« o« o« « o
Sicheduler. & ¢ o & o o

r

ict

rd
« s e s

A

-

COMMON

TIMING
esoluti
workl 1]

o
* s & 3 =8 8 T e @

Pasge

—

RUNYVURTE -

10

11
1z

14

15
17
17
13
20

ra
B

AR =G0 b

OO O O 00 MR BB

V. TEST SIMULATION . . .

VI. CONCLUSIONS

Future Work. . .

SELECTED BIBLIOGRAPHY. . . .

AFFENDIXES .

APPENDIX A

AFFENLDIX
APPENDI X
APFENDIX
APPENDI X
APPENDIX

AFPENDIX

m m Lo (o)

"]

FIGURES. .

ARITHMETIC

PROCESSOR INSTRUCTIONS.

CONFIGURATION FOR TEST CASE. . . .

TOPOLOGY INPUT o &« o« o o & & o « &

CONFIGURATION INPUT. . « . « o .

SIMULATION

CQUTPUT. ¢« o &« o & o o &

TIMING DIAGRAM SIMULATION QUTPUT .

vi

&1

b4

&3

71

75

LIST OF FIGURES

Figure

1.

=2
.

w-ta

7.

8.

9.

10.

11.

Simple Data Flow Grarhe + &« & « « o o« o« &
Data Flow Activity Template for Figure 1.
An Ernhanced Modular Signal Processor

Common Operational Support Software
Methodolody Sample Grarh. « ¢ o « o « o

Signal Processing Graph Motation of Fidure

List of Command Prodgram Instructions. . .

Enhanced Modular Signal Processor
Svystem Architecture «

Control Bus Interface . . &+ « & & o & «
Timing Simulator Hierarchy Chart.
Grarh Execution Process . . . &« & & « . .
List of Primitives Not Implemented. . . .

Test Case ToPoloSve ©v o v = = « 2 = o o =

vii

)}
I

CHAPTER I
INTRODUCT ION

John von Neumann in 1944 introduced the conceprt of a
sequential, centralized control executing instructions and &

linear memory storing instructions, data, and results. The

n

von Neumann concert has thrived in computer design since it
introduction in. 1946, Advances in semiconductor device
technolody and look—-ahead instruction decoding have produced
vast impProvements in speed of execution. Future advances in
semiconductor device technolodgy are limited bv heat dissipa-—
tion and basic Phvsical laws, thus a new arproach for
increasing the spPeed of execution was necessary. Organiza-
tional advances‘such as pPipPelinind increase performance, but
improvements are limited bv the sequential contrel of the
von Neumann concept.

Exploitind Parallelism was seen as the so1utioh to
future improvements in execution speed. The von Neumann
machine with its incremental prodram counter and with ear-
tial results being Passed between instructions via a memory
cell made the specifications of parallelism difficult.
Methods to expPlore and extract eparallelism have Proved use-—

ful and significant.

Introduction to Data Flow

In 1964, Karp and Miller (19) introduced the concept of
data flow. In the 1?707s, Jack Dennis applied the data flow
concePt to the desidgn of computer architectures. Data 'F1aw
is based on two principies, aswvnchrony and functionalitiw
(14:17). When aprlied to data flow. asvnchrony implies an
instiruction is executable when and onlw when all required
inPuts are available. Functionality implies all instruc-
tiens are functions which, by definition, necessitates an
instruction gxecute without side effects. The first princi-
Ple imrlies an instruction is triddered at the earliest pPos-—
sible moment in the execution of a Prosram,'thus rparallelism
is implicitlr denoted by the data flow method. The second
princirple implies the Parallelism can be expPloited since the
order of execution of orerations is without side effects.
Consequently, two enabled nodes camn execute concurrently or
in either order without affecting the final resuits of the
task.

Te expPlain why these two pPrinciples are significant. an
introduction and exrplanation of data flow is necessarwvy.
Data flow is based upon the flow of data through a Program
in contrast to the wvon Neumann flow of control concept.
Data flow can best be expPlained by the use of data flow
grarhs. Figure 1 (Appendix A) dives an exampPle of a
simple data flow dHraph. To fire node 1 which means to
execute the instruction at node 1, inPuts A and B mustA

both be present on the arcs to node 1. If onlv input A

is present or only inPut B, the node is not ready to fire.
Upon the reception of a data token (data item or input) on
both inrput A and input B, node 1 (and node 2 in the example)
will execute 1if two Processors are avai1#b1ei e@lse one ar
both will await an available pProcessor. Intermediate
results will be matched with other inPuts to the succeeding
node until all tokens are available. The node will then
tfire. The pPresence of the data or tokens causes the node to
fire, unlike the von Neumann concert where the existence of
caontral, i.e. the program counter, causes the node
(instruction) to fire. Upon execution of node 1 aﬁd node 2,
node 3 will be fired by inpPuts C and D.

In the computer, data flow Prodrams are denoted bv
activity templates. Fidure 2 dives the activitv templates
for the data flow draph in Fidure 1. In a data flow manner,
activity templates are ready for execution upon reception of
all operands and the result is emptw. Classical data flow
states that each inPut consists of a single token and
that each outPut consists of a sindle token. Thus &
node cannot fire if the cutput has a token present on the
arc. Modifications to classical data flow allow multiele
inputs and outpPuts, but require token labeling to distin-
guish different instances of the inPuts and outputs.

Data flow landuades and data flow architectures
expPloit pParallelism. Computer data flow landuades are in
general desisgned to overcome three limitations te von Neu-

mann lansuades. First 1is the compPlexitw of resalving all

Parallelism in current serial landuades. Second, side
effects from pProcedures, dgo to’s, and multirle assidnments
(variables beind reassigned more than once) make exploiting
rparallelism difficult. Third, serial lansuades are diFFi—
cult to verifr. Much research into structured pProdgrams and
prodgram verification has been done to serial landguades.
Data flow landuades can use this research to incorPorarce
structuring and ease of verification into the develoring

landuadges..
Data Flow Architectures

Data flow architectures are being desisned to exploit
Parallelism, to wutilize Lardse Scale Intedration and Verw
Larde 3Scale Intedration technolodies effectivelw, and to
create'an easier to pProdgram machine. To expPloit Parallelism
is actually a method to obtain hisgher speedsiwhich is the
final doal. Effective utilization of Larde Scale Intedration
and Very Larde Scale Intedration technolodgies will impProve

chip carpacitv and will capitalize on the cost effectiveness

m

of larde numbers of a few tvrPes of functicnal elements. The
doal of the data #1ow architecture is a comPuter with high
Performance at an acceptable cast. that is also reliable.
Extensive research has been made into data flow
languadges and data flow architectures. MNumerows data flow
landuages have been déve]oped such as Val; IO, . and LALU.

These languadges focus on impPlicitlyv expPressing earallelism.

Similarliv, extensive research has been made into data
flow architecture. The Massachusetts Institute of Technol-
odgy static data flow architecture pProposed bv Dennis and
Misunas (®) in 1975 is an exampPle of a rindg-based data flow
architecture. A pPrototvype of the proposed architecture has
not wvet been built. but the basic ideas have been used in
Texas Instruments Data-Driven Processor, the Toulouse LAD
svstem. and the Manchester Data Flow Frocessor (22).

The Texas Instruments Data DOriven Processoar executes
Foertran pProdgrams. Each operation or node has a masimum of
thirteen inPuts and thirtéen outputs. Memorv is lTocal to a
Processor, thus each node is assidned a pProcessor. Results

from node executions are transferred over the interconnection

network to the E-bus. The Data-Driven Frocessor with faour

m

Processors has been built and tested, but was not commer—
czially exploited.

The Toulouse LAU Svstem, Texas Instruments Data-driven
Processor, and the Manchester Data Flow Processor are all
ring-based data flow architectures. The Toulouse LAU Zvstem
has dlobal memories. an execution unit of one to thirtvy—twno
Processors, a coentrel unit,. and an interface. Each node has
A maximum of two inpPuts and several outrputszs. A pPrototvepe of
the LAU Svystem with thirtv—-two Processors has been built and
tested. The Texas Instruments and Toulouse desidns are
static architectures which allow onlv one instance of a

node, while the Manchester Data Flow Processor is a dvnamic

architecture with more than ocne instance of a node allowable.

Each node has ‘a token associated with the node distin-
quishindg the node from other instances of the node. Simula-
tions have shown ring-based architectures have a bottleneck
in the comﬁunication raths (15,22,25,28).

The iltah Data-Driven Machine attempted to overcome this
communication ePath problem with a tree structure and the
Irvine Data Flow machine uses a N # N communication network
{(wihhere N is the number of Processing elements) for token
passind. The Utah Data-Driven Machine is»an eight leaf tree
stru;ture with the superior elements at the root and infe-—
rior elements at the leavés. The supPerior Proc@ssor
schedules the work of inferior pProcessors in the tree struc-
ture. A workind prototvyre of the machine is operational and
beind evaluated. The Irvine data flow machine was desidned
to exPloit Very Larde 3Scale Intedration and to Provide a
hidgh=levels highlvy concurrent prodram ordanization (23).
Packet communication is over a N # N communication netwaork

for token Passing between Processing elements.
Signal Processing and Data Flow

These data flow machines and others proved the feasi-
bilitv of data flow architectures. 3Simulations of desidns
showed bottlenecks that impeded pPotential execution spreed
imProvemants. Using information gained bv simulations
and/or results from other data flow désiSns, American Tele-—
phone and Teledrarh Bell Laboratories commenced research and

design on a data flow architecture for sidnal or data pro-

~l

cessind. Im 19382, under contract to the United States Mavy,
American Teleprphone and Teledrarh Bell Laboratories channeled
this research intao the underiwvind design for the Enhanced
Modular Signal Processor, the Linited States Navry’'s next den-—
eration standard sidnal processor (3).

In research concurrent with research on the Enhanced
Modular 3Signal Processor, the feasibilitv of executing sig-—
nal pProcessing applications to a data flow architecture was
investidated bv a research grour at Helsinki Universitw of
Technolody, He{sinki (13). Their simulation revealed didi-
tal sidnal pProcessing aldorithms are generally data value
indePendent, i.e. the sequencing of cperations in the algo-
rithm is inderpendent of the data values. Didgital sisgnal
Processind applications are represented by block diadrams of
high-level sidnal Processing orerations, e.d., Fast Fourier
Transforms and bandwidth filterind. These blocks or high-
tevel operations tvpically are free of side effects, data
value independent. and of hidh computational complexity in
terms of elementary arithmetic operations. A continuous
stream of source data beind processed by a repeatediv @me—
cuted fixed set of aldorithms is the scenario in a real-time
digital signal pProcessindg task. The architecture Hartimo,
et al (18) pPropPose, a Data Flow Signal Processor, is a
dynamic token labelindg architecture with packet communica-
tion. The results of the simulation showed the Data Flow
Signal Processor architecture can efficientlw handle real-

time signal pProcessing apeplications.

Objectives

The objective of this work is to desidgn and imprlement a
timing simulator for the Enhanced Modular Sidgnal Processar
(EMSP). A timing simulator imPlements the timing required
to execute a series of instructions in contrast to a func-—
tional simulater which imPlements the actual outPut result-
ing from the execution. Thus the EMSP timing simulator
simulates the timind to execute a Sidgnal Processing Graerh
Notation (SPGN) static drarph. The Qutput for the simulator
is the utilization factors for each functional element, the
number of firinds (executions) for each node, the number of
channel firindgs for each channel, and the state of the
gueues when the simulation ends. An ortional putput is a
timind chart with oPcode identifiers for instructions.
Simulation timind derends on the éxecution time of Primi-
tives (algorithms) and the number o¢f words in a data
transfer on the Control Bus or the Data Transfer Network.
The simulator handles these calculations by wusing formulas
derived from the primitive manual (13) and by knowing the
transfer rate and transfer protocels on the Control Bus and
the Data Transfer Network. The user can answer all input
queries by looking at the SPGN grarh, the commaﬁd Prodram,
and the svstem confiduration for the EMSP.

The followind chapters more fullwy exprlain the EMSP tim-
ind simulator. Chaprter Il discusses SPGN and command pro-—
grams. Chaprter 1III Hiscusses the EMSP architecture,

Chapters IV dgives the details of the desidgn and implementa-—

tion of the EMSP timind simulator. Chapter V goes through a
test esimulation of a simele graph on a sparse EMSP confi-
duration. Chapter VI is a summary and a discussion of

future work.

Reasons for Simulator

Simulations of Proposed comPputer architectures have
become a valuable desidgn tool. Simulators have evaluated
the performance of many data flow architecture desidns.
These simulators reveal desidn flaws and unexpPected cmmﬁli—
cations. Simulations of data flow compPuters have pProved the
feasibility of the data flow methodoTﬁSY. -

The timind simulator for the Enhanced Modular Sisnal
Processor will be used to evaluate the Enhanced Modular Sig-
nal Processor and any future modifications te the Enhanced
Modular Sidnal Processor. Research into the éfFects of dif-
ferent memory management schemes has been PropPosed. The
timing simulator will be wused as a tool in these evalua-
tions. Research into the effects of different svstem confi—
gurations will provide useful information on the limits of
the desidgn. The effects of addind resources will reveal
oPrtimum confisurations and functional element selectians.
Saturation roints for the svystem will reveal feasibility
information on the maximum wutilization factors. The
Enhanced Modular Sidnal Processor timing simulator will Pro-
vide an important and useful tool in the evaluation of the
Enhanced Modular Sidgnal Processor and in the evaluation of

proPosed modifications.

CHAPTER I1
ECOS METHOOOLOGY

The Enhanced Modular Sidgnal Frocessor Common OpPera-
tional Support Software methodolody was develored to buffer
a signal Processing endineer from the prodramming of a sig-
nal pProcessing application and the architecture of the
Amachiﬁe executind the program. After dealing with the prob-
lems associated with the Advanced Signal Proecessor, the Navy
realized a new methodolody was needed to reduce development
and maintenance costs of application software.(2) The diffi—
culty in pProdramming arplications led the Navvy to propose A
Common Operational 3Support Software methodology., A Common
Crperational Suprport Software methodalogy (ACDS) was written
in a graph notation that paralleled the block diagram struc-—
ture of a didital sisnal Prdcessins appPlication. OpPera-—
tions, or Primitives as thev are more commonly called, are
implementation derendent. Thus the Didital Signal Process-
ing engineer could specifv the Prodrams in a graph notation
easily translatable to A Common Operation SuppPart Software

methodology (2,11,2%9),

10

11
Signal Processing Graph Notation

An Enhanced Modular Sidnal Processor Common COrPerational
Surport Software methodelogy (ECDS) draph executes according
to data flow pPrincirples. It does not adhere to classical
data flow in two aspects (11). Classical data flow requires
aone token or data element pPer arc. In contrast, ECOS renames
the arcs as 9ueues and allows mulitieple instances of data
elements pPer aueuwe. Each node execution can require more
than one data element Per aueue. A threshold value speci-
ties how many elements must exist on a aueue befare the node

t

i

can execute. Each node execution also specifies an offs
(number of data elements to skirp over) and a read amount
(number of data elements to read) and a consume amount
(number of data elements to consume). After node execution,
the number of data elements written to the respective output
queue(s) is determined bw the primitive based on the inPut
read amounts. A Common OpPeratianal SurpPort Software
methodonloesy allows more than one instance of a node to
execute at a time, but gives a warnind of pPossible indeter-—
minacy if this pPrinciple is pPracticed. Secondlw, ECOS
differs from classical data flow in the nonspecification of
node execution. Each node represents a highly complex com-—
putation whose impPlementation is not specified inm A Common
DPerationa] Support Software methodalaogv., Thus, the execu-
tion of a sindle micropProdrammed node instruction mav e=xe-—

cute in a traditional vorn Neumann method.

1z

Figure 2 (Appendix A) shows a sample Enhanced Modular
Sidmal Processor Common Operaticonal Support Software metho-—
dolodgy draph. Node Z and node 3 can execute conmcurrently or
in either order after the execution ﬁF noede 1. The Enhanced
Modular Sidnal Processor Common Operational Suppoart Software
methodalody draph is translated to Signal Proacessing Graeh
Notation in Figure 4 (Aprendix A). Sidnal Processing Graeh
Notation denotes a static drarph or dgrarph realization which
is compilied into a Toad module.

The Enhanced Modular Signal Frocessor executes the ECOS
methodolody. The EMSP supports ECDS primitives of a hisgh
computatioconal complexity to reflect one or more blocks of a
didital signal Processing drarph. The oPerations are
microProdrammed,. machine independent,. and executed b
single—-thread, control flow architectures (12), while ACOES
is machine independent and follows a data flow methodalagy.
The Enhanced Modular Signal Processor adheres to the pPrinci-

Ple of one instance of a grarh node instance.
Command Frodram

To manade dgrarhs, Command Frodrams were developed.
Command Prodrams, which are application derpendent, contraol
graph execution and interaction. Command Programs are writ-
ten in a Hidh Order Landuade such as ADA and use a set of
procedure calls (Command FProdram Sidgnal FProcessing Graprh
NMaotation). A command Prodram creates and controls a draph

realization into an executind draph instance. More than one

instance of a realization is acceptable.,

beind created and manasged by

Prodram instructions are listed in

a Command

Figure

with each instancea
Frodram. Commanrnd

=

5 (AppPendix A).

CHAPTER III

ENHANCED MODULAR SIGNAL PROCESZSOR

The Enhanced Maodular Sidnal Processor is a distributed
centrol, multierrocessor architecture desidgned to imPlement
Enhanced Modular Signal Processor Common Operaticonal Support
Software methodologw (2). Under contract to the lUnited
States Navy, American Telerphone and Teledrarh Bell Labora-
tories is desidgnindg the Enhanced Modular Sidgnal Processor as
the Navy’s next deneration standard signal processor (3).
Inderpendent modules or functional elements partition the
tasks of control. memory management. node scheduling,
inPut/outPut, and node execution. This modular architecture
was chosen to meet desidn criteria related to throudheut,
reliability, modularitvy, and prodrammabilitv. ThroudhpPut is
impProved bwv the selection of the data flow methodolody, the
selectioﬁ of a crossbar switch to handlie multirle data raths
in Parallel. a token Passindg control bus, and a seprParated
svstem control. The data flow methodolodgy was chaosen
bhecause it maturallw exploits the inherent pParallelism of
signal pProcessind applications and because of the asvnchraonw
and functionality of signal Processing grarh nodes. Relia~
bility 1is handled bv constant self monitoring bv functional

elements, by backup critical functiconal elements. and an

14

error recovery mechanism. The modular structure of the
Enhanced Modular Sidnal Processor allows the addition of
Global Memories and Processors to increase memory management
or Processing power. The criteria pPertaining to prodgramma-—
bility were met by implementing the Enhanced Modular Signal
Frocessor Comman Operational Support Software methodologw,
Each module of the Enhanced Modular Signal Procegssor
can execute concurrently with other modules, each module
executing a different function of the drarh instance(s).
Each module twpe has its own operating svystem functions and
each Enhanced Modular 3Signal Processor function executes
asynchronously. Farallel eprocessing amondg the Arithmetic
Processors was selected +to meet the requirement of a
throughput rate of over a billion operaticons Per second
and thé abilitv to updrade the svystem bv a factor of siuteen
from the minimum confiduration. The Enhanced Modular Signal
Processor svystem architecture is shown in Fisure 6 (AppPendix

A).
Arithmetic Processor

The Arithmetic Processors execute the node instruction
(primitive), a microProdrammed realization of a highly com-
Pputationally comrlex sidgnal Processing aldorithm, e.g., Fast
Fourier Transform, Finite ImPulse Response/Infinite ImPulse
Response filters, beamformers. The Arithmetic Processors are
a single—-thread, control flow architgcture desidned to effi-

ciently execute vector multieplw and add aperaticons. which

14

are characteristic of sidnal pProcessing aldorithms. Each
Arithmetic Processor operates asvnchronously and indepen-—
dently of other Arithmetic Processors. A scheduled node
arrives at the Arithmetic Processor in the form QF an
instruction stream and node setur bedgins. After accepting
the instruction stream and decoding the orerands. the Arith-
métic Processor reauests all input aueues and input grarh
variables from Global Memories. The Arithmetic Frocessor
acceprts the queues and dgraph variables from the Global
Memories and stores the data aleng with the instruction
.stream in the node execution and control lecal memorwy. ‘Upan
recertion of all inputs, the node is ready to enter the exe-—
cution prhase where the node pPrimitive is ewxecuted in the
Arifhmetic Processor. Upon completion of the executian
Phase, the node enters +the breakdown rhase. Breakdown
includes the sending of Write Rueue and Write Grarh Variable
instructions for all outPut queues and grarh variables and
the sendind of a Consume GQueue instruction to the Global
Memory for all inPut Queues. GRueues are not consumed until
the breakdown pPhase because of fault tolerance. If a fault
occurs during the execution of a node. the Scheduler
reschedules the node on a different pProcessor and the queue
will not have been corrupted in Global Memorwvy.

The Arithmetic Processor has separate arithmetic and
control wunits and can support three nodes, ane in each of
the three Phases: setur, execution, and breakdown. This
ability increases throughput and allows overlarring or Pire—

1inind of node executions. When a node completes the setup

17

rPhase, the Arithmetic Preocessor issues a Reauest for
Instruction Stream to notify the Scheduler that the pProces-—

sar is ready for another instruction.
Command Frodram FProcessor

The Command Prosram Processor executes command
Prodgramss handles errar detection and recoverwy, initiali-
zations, communication with external devices,. and testing and
debudging. The Command Frodram Frocessor executes command
prodrams which start and stop drarhs, start and stap_ inPut
and output, link and wunlink input and ocutput Queues, and
create queues and dsrarh instances. The Command Prodgram Pro—
cessor does not participate in drarh executicn. The Command
Program Processor can respond to the failure of fupnctional
elements by reconfiguring the Enhanced Modular Signal Fro-
cessor to remove the element in a draceful svstem dedrada-—-
tion. System initialization is handled by the Command FPro-
gram Processor and the Command Program Processor communi-—
cates with each functional element at svstem initializatian
to verify its abilitv to reseond. Te;tins and debudgding
instructions are Provided vathe Command Frodram Frocessor

during the verification stasdes.
Contral Bus

The Control Bus provides a communication path between .
functional elements for control messases. The Cantral Bus
uses a token rpassing techniaue of arbitration. Messades are

transferred on the Control Bus according to the following

1=

Procedure. Each functional element wuPon comPleting a
transmission on the Control Bus bedins asserting the Count
Clock 1line (14). See Fidure 7 (Appendix A). Each Paort
(functional elements are located on ports) increments its
internal counter value upPon receiving the Count Clock Tine
clock Pulse. I+ the internal counter value matches the
functional element’s unique count value and has a messade to
transmit. the functional element asserts Stoep Clock and
Places the destination pPort identification word on the Zon-—
trol Bus. The destination pPort responds with a Transmit
Successful (or Transmit Failure if a. Paritv error occurs)
and the transmission of the control messade commences. To
provide swvnchronization, when the functional element assert—
ing the Count Clock reachés the end of the scan cvicle, it
asserts Reset Clock and all functional elements reset their
internal count value.

The Control Bus provides bidirectional cnmmuni:atiﬂh
between all functional elements. Messades Passed on the
Centrol Bus are short compared to messages pPassed on the
Data Transfer Network and are mainlvy control and status
information. fhe Control Hué transfers messades over an S-
bvte data path aswvnchronously at a maximum data rate of 4.41

medabytes pPer second (14).
Data Transfer Network

To avoid the bottlieneck caused bv data path contention

cited in manv pPrevious data flow compPuters, a Data Transfer

12

Network was designed with one or two twoe by twe, four by
four, eight by eight. and/or sixteen bv sixmteen crossbar
switches. Up to M (N bv N switch) unidirectional communica-
tion rPaths mavy be -connected in parallel, provided each
switch input and switch output Port is unique with a maximum
seven medabvtes pPer second data transfer rate per Path. To
increase the number of functional elements that cam be con-—
tidured, each switch inPut has a four to one multiplexer
called a concentrator énd each switch ouwtrput has a one to
four demultirlexer called a distributor. Enhanced Modular
Signal Processor specifications do not allew Processor to
Processor communication or memory to memorv communication
over the Data Transfer Network. Consequentiv, a maximum of
sixtvy—four pProcessors is allowable and a maximum of sixty—
four Schedulers and Global Memories is Possible for a dual
Data Tranéfer Network configuration with two sixteen bv six-—
teen switches.

Two levels of Data Transfer Network arbitration occur
concurrently. Arbitration on each concentrator follows a
first come first served scheme if the concentrator is not
busw. If the concentrator is servicing a transfer request,
upon comrPletion of the transfer, the concentrator pPasses
control to the next element requesting a transfer. Con-—
nected data transfers on the Data Transfer Network cannot be
interrurted, thus if a requested destinatimn‘is busw with

another data transfer, the concentrator will lose its turn

20

in the arbitration scheme. The concentrator then attemptis
to service anv other pending requests. Each Data Transter
Network follows a token Passing method of arbitration. Each
concentrator has a time slot and during its allotted time,
it will connect a data epath, if a data transfer request is
pendind on the concentrator and if the destination distribu-—

tor is free.
Global Memaorwy

The G5labal Memorwy stores, imPplements, and manadges
instruction streams, Aueues, and draph variables. The Glo-
bal Memorv implements the creation of nodess 9gueues, and
grarh variables when draph instances are created. The Glo-
bal Memorvy Provides dvnamic memory manadement, for
allocating and deallocatind memory as aueues are written and
censumed. The Global Memorvy maintains <queue information
including threshold. dwvnamic number of data elements, and
the size of data elements te pPerform dvnamic memory manage—
ment and automatic threshold detection. Every time a aueue
is consﬁmed or written, the Global HMemory autematicallw
checks Aueue threshold and caracity information and reports

anvy aueue events to the Scheduler.
InPut/Qutrut Frocessor

The Input/COutput Processor pPerforms,. as its name
impPlies, all tasks supporting the ineut and ocuteput of data.

The Principles af Operation for the Enhanced Modular Signal

Processor manual (14) 1lists the following tasks for the

Input/Outrut Frocessor.

1. To perform signal input/output,. the Input/Qutput
Processor implements the Process link‘ between
the external world and the Enhanced Modular
Signal Processor executindg draph.

2« To handle manv signal data channels with different
characteristics, the InPut/duteput FProcessar
supPpPorts concurrent executian of multirPle
inpPut/outPut Processes with multi-taskind.

3. To achieve data bandwidth reduction., the
Input/Output Processor handles front—end sidnal
Processind.

4. To support data transfer and control functions.
the InPut/OutPut Processcr handles inter—functional
element communication.

5. To perform Input/OutPut Processor tasks, the

InPut/OutPut Processor manages all its internal

resources.
Scheduler

The Scheduler is the functional element in the Enhanced
Maodular 3Sidnal FProcessor responsible for impPlementing the
data flow methodolodvy. To schedule nodes in a data flow
methodaolody, the Scheduler maintains four data bases storindg
queudes node and Processor inFnrmafian. The Rueue to Node

Mar stores the node identification number for the ineput and

outPut nodes for each aueue. The Node Characteristic Table
contains the number of inPut Aqueues. tvrPe of Processor
required for execution ‘(e.s., Arithmetic Processaor,
InPut/Output Processor), the identification of the Global
Memorv containing the node“s instruction stream. and the
riumber of conditions, a dvnamic count of the input dueues
vet to g0 over threshold (2). The Free Functional Element
1ist maintains a list of free Processors available for pPro-
cessind nodes, The Ready MNode List consists of all nodes
that are elidible for execution, but for which no aPPropri-
ate pProcessor is available.

When the Scheduler receives a Queue Over Threshold,
Queue over Capacity, etc.» messade from a Global Memorvy, the
Scheduler searches the Rueue to Node Map faor the output
node’s node identification number. Using the cutpPut node’s
node identification number, the Scheduler decrements the
node”’s Number of Conditions in the Node Characteristic Table
for a Rueue Over Threshold messade. When the Number of Con-
ditions reaches zero, the node is scheduled bv sending a
Send Instruction Stream to the Global Memorvy containing the
instruction stream (listed in the Node Characteristic Table)
if an appPropriate Processor is free, otherwise the node is
placed on the Ready Node List to await a free pProcessor. If
the node is placed on the Ready Node List, it will be
scheduled when an apPPropPriate pProcessor sends a Ready Fér
Instruction Stream to the Scheduler. Otherwise, the

Scheduler will respond to the Readvy For Instruction Stream

bv placing the processor“s identification number

Element List.

L) p]

A

the Free

CHAPTER IV

ENHANCED MODULAR SIGNAL PROCESSOR

TIMING SIMULATOR

In charpter I, the motivation behind designing the
Enhanced Modular Sisgnal FProcessor (EMSF) timing simulator
was stated: to provide an imPortant and useFu]ltaol in the
evaluation of the EMSF and in the evaluation of pProPosed
modifications. Simulation is an accepted practice in the
evaluation of the performance of pProrposed desidns. Simula-
tion can estimate Performance as well as test pPropPosed
modifications. This chapter describes the imeplementation of
the EMSP timind simulator.

The EMSP timing simulator was written in a modular Pro-
cedural stvyle in C landuade on a Perkin Elmer 2230. Figure
3 (Appendix A) dives the hierarchy chart for the EMSP timing
simulator. The modular procedural stvle was selected to

improve readabilitwv, maintainability, and modifiabilitv.
Data Structures

Data structures excert for static data structures local
te pProcedures - are centrally defined in a header file.
Structures were declared for dgrarh execution instructions.,

functional elements, nodes, channels, and aueues. Grarh

execution instructions are Placed on the event 1list, readwy
list,. ©Control Bus reauest table, and the Data Transfer
request table. A drarh execution instruction is pPlaced on
the event 1list if the functional element receiving the
instruction is busv or if the instruction has an event
occurrence time dreater than the simulated clock time.
Graprh execution instructions are rplaced on the Control Bus
request table or the data transfer reauest table, if the
sender functiconal element 1is requestind action from the
receiver functional element. The functional element struc-
ture records the EMSP svstem confisuration for each element,
utilization. and reguest activitv.

The node data structure, 4Queue data structure,. and
channel data structure record drarh torpoloady, static setup
information, and dvnamic information pertaining to number of
Jata elements on a qQueue. For each input and output to a
node, the nodé structure records whether it is a dHSrarh
instantiation pParameter, a dgraph variable. or a aueue. The
value of each draph instantiation Parameter and grarph vari-
able 1is stored and the dlcebal memory functional element
identification number and element size is stored for each
grarh variable and 4queue in the node data structure. The
quzue data structure maintains all node execution pParameters
and «capacity information for each aueue. Channel data rate
infarmation is kept in the channel data structure, Conse—
agentlv, between all the structures, the torpolody of the

$rarh and the Parameters of the static sgraph are defined.

24

ODvnamic capacity of the aueues and the dvnamic state of the
EMSF are maintained by the data structure elements of the
dgrarh execution instructicons, functional elements. and

AUueues.

Instructions

Two tvrPes of instructions are defined for the EMSP.
Grarh execution instructions are used to imPlement the data
flow methodolody. Grarh execution instructions are
transferred between functional elements on the Control Bus
or the Data Transfer Network. These instructions pertain tﬁ
node schedulind and include requesting queues or drarh vari-

ables by the pProcessor, writing or consuming <Queues by a

PrOCass0or, sendind instruction streams, etc. Figure @
(ArPendix A) shows the drarh execution Process of a
scheduled naode. Each instruction listed is a dgrarh execu-—

tion instruction. but this is not an inclusive Tlist.
Numerous drarh execution pParameters deal with initializa-
tion, bootind, error detection and handling, or dvnamic
drarh modificatiaons.

A step~bv—-ster exprlanation of Fidure % (ApPendix A)
will clarify how the EM3F implements the data flow methodol-—
adv. Although Fidure 2 (ApPPendix A) is the drarh execution
process of a sindgle scheduled node, each nnde follows this
execution Process. Processind for one node bedins with an
InPut/OutpPut Processor or an Arithmetic Processor writing to
a queude over the Data Transfer Network to a Global Memorvy.

If the AQaueue Soes over threshold (a threshold specified in

the inPut =Zraprh). a Bueue Over Threshold messade is sent to
the Scheduler over the Control Bus. If all inPput sueues for
the node are over threshold and an arppropriate Processaor is
free, the Scheduler sends a Send Instruction Stream over the
Control Bus to the Global Memory storind the Instruction
Stream. The Global Memoary locates the Instruction Stream
and sends the Instruction Stream to the Processor specified
in the Send Instruction Stream. After Acceptind the
Instruction Stream, the Arithmetic Processor requests atll
inPut 4queues and draph variables by sendingd a Request Queue
for each input AQueue or a Redquest Graprh Variable for each
input draph variable to the Global Memory aver the Control
Bus. After all aueues and draprh variables are accepted b
the Arithmetic Processor with Accept Queue and Accert Grarh
Variable instructions, the Processor sends a Readvy For
Instruction Stream to the Scheduler over the Control EBus and
commences Primitive or node execution. UPpon comrletion of
the eprimitive execution, the Processor writes all output
queues and draph variables by sendindg the Write Queue and
Write Grarh .Variable instructions over the Data Transfer
Network. If the Global Memory detects a Gueue Over Thres-—
haeld or CaPacity as the qQueue is written, the Global Memorw
sends a Quewe Over Threého]d orr Caracity instruction to
the Scheduler and a new node mavy be scheduled. After all
cutputs are written, the pProcessor commences consuming all
inPut auveues by issuing the Consume Gueue instruction over
the Contreol Bus to the Global Memorv. If a 9queue is over

threshald after consumpPticon. a Gueue Dver Threshold messade

is sent to the Global Memory or if the gueue sSoes under
threshold, a Ruede Under Threshold messade is sent to the
Global Memorwy.

~In Fidure 9 (Appendix A). one step of the draph execu-
tion has requesits for grarh variables and aueues as input
and writing drarh variables and writind and consuming sueues
as outeput to an Arithmetic Processor. This is the pPrimitive
execution phase where the sidnal Processing application
aldorithms specified by the Sidnal Processing Grarh Notation
grarh nodes are executed. These eprimitives or arithmetic
processor instructions are arithmetic and/or losi?a1 calcu—
lations that may be hishly computationally complex sisnal
Pprocessing aldorithms such as Fast Fourier Transforms or
Infinite ImPulse Responses. or simPle vector lodical func-
tions. The pPrimitives are executed by a von Neumann sequen-—
tial, centralized control Arithmetic Frocessor. A compPlete

list of the pPrimitives are diven in ApPendix B.
Initialization

Initialization consists of defining all variablés in
the. functicenal element structures to null conditions, to
nullifving all node Pointers, to settindg the time to zero.
rnullifving a1l channel information, and initializing all
request lists to emptv. The instruction Tist, the Cantrol
Bus 1ist, and the Data Transfer Network list must be ini-
tialized to empty lists before inPut to the svystem creates
initial instructiaons. Initialization of thé lists and the

TIME variable are necessary for PropPer Prodram execution,

29

but other initialization was done as a precauticnarvy measurs

to insure a valid known initial state of the simulator.
Input

After initialization, inpPuts are read from twoe inpPut
files whose names are interactivelvy entered. The first file
contains the static drarph’s torpolody. For each node, the
inPuts must be entered in the followind order. First, the
node“s uniaue identification number must be read and the
node’s Primitive mnemonic (ApPendix B). The simulator uses
the mnemonic to locate the primitive in a table and to det
information about the primitive’s inputs. outputs, and tim-
ing requirements. The simulator next reads the tvpe (drarh
variable, draph instantiation parameter, or queue) for each
input. If the input is a draph variable, the drarh variable
identification number is read. If the inpPut is a queue, the
queue identification number, the threshold,. consume, and
read node execution pParameters are read. If one of the
primitive inPuts is a family of Aueues, 3 -1 must be entered
to sidnal the end of the familv. After the inputs for the
node are read. the outputs are read. The simulator reads
the tvype (drarh variable or aqueuwe) of output and the
output’s identification number., If the variable is a sueue,
the valve amount is read. If one of the primitive cutprPuts
is a family of aueues, a -1 must be entered to sidgnal the
end of the familv. The information in this inPut file com—

Prletelv specifies the static draeph or drarh realization.

To identifv the EMSP svstem and a more dvnamic dgraph, a
second file of information is necessary. This file contains
outPut Parameters, the svystem configuration, channel infor-
mation. and variable information. The simulator first reads
the maximum number of time units the simulator is to simu-
late and whether the user prefers a timindg chart. Next the
simulatoer defines the swvstem configuration bv reading the
number of Data Transfer Networks and the switch size of each
Data Transfer Network,. and the functional element informa—
tion. Each functional element has the following ordered
inPut? functioenal element identification number, tvrPe of
functional element (Arithmetic Frocessor,. Scheduler, etc.),
Data Transfer Network of the concentrator. concentratoer
number. element of concentrator, Data Transfer Network of
distributor, distributor number, and element of distributar.
A ~1 as the functional element identification number is used
to signal the end of functional element inFormation;

Next channel information is read. Channel information
is wused to fully define the aueues that are inpPut or ocuteput
te the grarph. The simulator reads the followindg ordered
channel information: channel identification number, channel
Pricrity, channel rate, the aueue attached te the channel,
the functional element identification number of the
InpPut/OutrPut Frocessor, and whether the channel is an ineput
or outPut channel. A -1 as the channel identification

number is used to end the chanmnel infaormation.

Fimnallwv, the simulator reads the node’s Global memory
identification Anumber, variable values, and aueue capacitwy
information. For each node, the simulator reads the iden—
tification nﬁmber of the Glebal Memory storindg the instruc-
tion stream. Sequentiallvy for each inpPut except for the
queue the wvariable value is read,. and except for the dgrarh
instantiation Parameter the Global Memorvy identification
number is read,. and for each inpPut sueue, the [ueue caracity
is read. Sequentially for each output, the Glebal Memory is
read. If the output is a queue attached to an output chan-—
nel (siﬁk), the caracity of the aueue and the threshold is
read after the Global Memory identification number since the
this information is normally read when the node at the head
of the 4Sueue is read. If the output is of type queue and
not a sink Queue, the caracity is read after the Global

Memoryv identification number.
Qutput

Qutput for the EMSP timing simulator consists of a
title, a svstem configuration chart, a'utilizatian factor
for each functional element, a total time to execute a draph
(orr & maximum time), and an optional step—bv—ster runtime
utilization draph, node execution information. channel exe-—
cution information. and Aueue information. The confidura-
tion chart echoes the input configuration and will be useful
teo verify the input configuration and as a reference
when doind comParison studies. After the confidguration

chart, the total time to execute the static drarph is

stated or, if the static dgrarh is a continuous loor, the
maximum execution time specified. Utilization factors will
be used to evaluate the Enhanced Modular Sidnal Processor
and anr proposed modifications. The number of firinds per
node 1is in a table diving the node identification
number, the node opPcode, and the number of times the node
was fired. The opPtional step—-bv—ster runtime wutilization
grarh is a timing chart for the Enhanced Modular Sidgnal
Processor and is optional because of the larde aquantity of
the output and the severe dedradation to the Performance of
the simulator. Node, channel. and Queue information
dives the number of the times the node or channel was
scheduled and the number of elements on the 49queue at the

time the simulation stops.
Functional Element Conflict Resolution

The EMSP Princirles of Operation Manual (14) does not
fully define the hardware implementation of the Control Bus
or the Data Transfer Network. The manual states the Control
Bus allocates timing slots based on an internal count value
which is a function of the functional element’s identifica-—
tion number. The function relatind the identification
number to the timing sloet and the method of arbitration
resolution are unPublished. Consequently, a decision was
made to allecate timing slots from Q to the maximum Possible
number of functional elements in a linear order on the simu-

lator.

(1)
)

The manual (14) states the Data Transfer Network simul-
tanwously creates data rpaths between functional elements,
resolyes concentrator element conflicts,. and resolves con-—
centrator conflicts. Since the method of conflict resolu-
tion was not fully defined with start up conditions, it was
decided to select arbitrarily the lowest numbered element of
a concentrator and the lowest numbered concentrator. Con—
flict resolution and Data Transfer Network operations follow

the method stated in Chapter III.
Main Prodram

The main prodram either directly or indirectly calls

all Procedurés and handles the actual time schedulind.

" Before startindg the timing simulation, the main Prodgram

zalls the initializatien procedure. and the inrut Pro-
cedures. Then, it calls the sutPut Procedures to pPrint a
title to describe the 5imu1ation and the simulated svystem
confiduration for future reference. To start the graph, the
main Prodram initializes the time to zero and calculates the
firing times of all sour&e nodes. The main Program then
enters a lonp that executes the eveﬁt Processing of the
functional elements, the Control Bus, and the Data Transfer
Netwarlk. Instructions are scheduled according to an event
list. Ewvents or instructions are Placed on a singlv-linked
list in ascending order of the execution time. The Data
Transfer Ne twork and . Control Bus are not event

scheduled because the Enhanced Modular Signal Processor per-

34

forms arbitration resolution everwv time wunit concurrentiy
with instruction execution. After the loorP maximum time has
exceeded or no further instructions are executable, the main
prodgram pPrints ufilization factors and a complete list of

the number of times each node or channel was scheduled, and

queue execution infaormation.
Support Procedures

A number of pProcedures are necessary for sortindg,
searchindg, calculatindg execution information, and creating
dvnamic memorvy allocation. These supPort procedures are
invisible to the user and are mentioned only for the pPurpose
of fully defining the simulator. Because of the frequencw
of accessind elements of the channel, node, and aueue
arravs, it is feasible to order these arrars. ﬁuicksorts
are used to sort the nodes and channels. A linear inser-
tion method is used to order the Queues since before each
insertion. the aAaueue arrav is searched for the AQueue.
Binarv searches were chosen to take advantade of the sorted
arravs, Frocedures to calculate the timing for hode execu—
tion, to calculate the size of variables, and to calculate
the pProduce amount for aueues were Placed in separate pro-

cedures to impProve readabilitv and modifiabilitv.

L1y,
a

Arithmetic Processor

Fince the Arithmetic Processor can handle three nodes
simultaneausly, each Arithmetic Processor reauired mofe than
the timing Qariable in the functional element data struc-
ture. The timing variable in the functional element data
structure is used for the node or nodes in setup or break-
down mode. A serParate timing variable is reauired for the
node in each Arithmetic Processor in the execution mode. To
handle the requirement of onlv one node in setur mode, the
Arithmetic Frocessor sends a Ready +for Instruction Stream
when a node has comPIetéd.setup mode. To handle only one.
node in execution mode, the execution node timing is checked
for the specified Arithmetic Processor and if a node is in
execution maode, the execution time is increased by the exe-
cution time of the node completing setur mnde.

Arithmetic Processors implement all instructions neces-
sary to execute a primitive. The pPrimitive execution time
is calculated when the dynamic node information is read
and is stored in the node information. The Arithmetic Pro-
cessor handles Accert Instruction Stream instructions and
then denerates the aPpPropriate Request Bueue and Request
Grarh Variable instructions. After all inputs for a eprimi-
tive have been accerted with Accert Queue and Accept Grarh
Variable instructions, the primitive enters the execution
mode. Ourindg breakdown mode, the Arithmetic Processor den-—
erates Write Grarh Variable or Write Glueue instructions to
all woutput variables and Consume RQueue instructions to all

inPut aueues.

26
Control Bus/Data Transfer Network

The procedures to handle the simulation of the Control
Bus and the simulation of the Data Transfer Network are verw
similar. The procedures bedin with a loop that traverses
the 1linked list of waiting requests and Places the reauests
in the appropriate eiement of an arravy ordered by functional
element identification number (Control Bus) or concentrator
configuration (Data Transfer Network). This loop pPlaces all
requests on the request arrav for future schedulinsg.

Next, another loop handles the timind for attempting
the data transfer -or makins the data transfer. It checks
the request array and if an instruction is waitind to be
scheduled it attempts to schedule or schedules the request.
The Data Transfer Network pProcedure checks the status of the
destination dJdistributor. If the distributor is busw, the
Procedure implements the timind for an attempted transfer,
otherwise the epProcedure implements fhe timind for the data
transfer. Schedulind follows the methodolody discussed in

Chapter II.
InpPut/Output Processor

To allow for flexibility with inPut and output, the
InPut/OutrPut Frocessor desidn specifications were kept at a
minimum. The Input/QutrPut Processor handles a minimal
number .oF instructions. The EMSF desidn specifications
allow for Input/Cutput Processors to execute a wvariable

number of channel instructions simultaneously. EMSF imple-—

37

mentations to-date have restricted the Input/OutPput Proces-—
sor to ewecutindg onlv one channel instruction at a time and
this is the approach of the EMSP timing simulator.

The InPut/Cutput Processor issues itsel¥ an Execute
Node instruction when an inPut channel does over threshold.
The Input/Cutput Frocessor sends a Write Gueue to the Glo-
bal Memorvy storind the aueue. An Execute Instruction Stream
instruction writes to an output channel and has a set time
associated with the instruction. The ather two instructions
the Input/Output Frocessor implements of sidnificance to a
static dgrarh are Continue Node Data Transfer and Suspend
Node Data Transfer. Susrend Node Data Transfer suspends a
channel wuntil a Continue Node Data Transfer reverses the

susPension.
Global Memorvy

To imPlement the timindg for Global Memorvy operations, a
Biobal Memory Procedure was desidned in the timing simula-
tor. A Global Memory executind an instruction cannot be
interrupted. Therefore, uraon receiving an instruction, the
Global Memor+v Procedure first checks if the Global Memorwv is
free and if not, replaces the instruction on the event list
with a future event time. |

The Glebal Memor+ handles requests for instructions,
aueues, and dgrarh variables. The fimins to execute these
requests is a function of the number.oF words in the node
instruction stream, <Queue, or graprph variable. The Glaobal

Memor+ pPraocedure after calculatind the timingd pPlaces the

33

Accert Instruction, Accert RQueues or Accert Grarh Variable
instruction on the Data Transfer Network. The Global Memorw
Procedure handles Write RAueue and Consume Gueue instructions
by updating the queue number of data items and sending anv
arppropPriate Gueue Over CarPacitwy, Queue Under Capacitw, Rueue
Over Threshold. and/or RQueue Under Threshold instructions

over the Contraol Bus to the Scheduler.
Scheduler

The Scheduler pProcedure hand1es the timing simulation
for the Scheduler functional element. The Scheduler can
execute onlvy one instruction at a time. If the Scheduler is
busvy when an instruction on the event list is readv to be
scheduled, the instruction must be returned to the event
list with a time equivalent ta the Scheduler’s next free
time.

A brief exPlanation of a few of the Scheduler-s
instructions are included as an overview. To handie GQueue
Over Capacity instructions, the Scheduler procedure updates
the aqueue’s status and if the Queue is attached to an input
channel, sends a SuspPend Node Data Transfer instruction to
the channel. For an internal or source Queue, a Gueue Over
Threshold instruction causes the Scheduler to decrement the
number of conditions variable (if the number of conditions
was not previously decremented for the Aueue) for the node
at the aueue’s head. If the number of conditions is zero
and the node or channel is not susPpended. the Scheduler

attempts to schedule the node. If the free pProcessor list

(%]
R

has an available Processor, the node is scheduled bv sendins
a Send Instruction Stream instruction to the Global Memorwy
storindg the instruction. If a Proacessor is not availables
the instruction is Pplaced on a ready list to await a free
Processor. I+ the aueue is a éink queue, the Gueue Over
Threshold instruction is handled by verifving the channel is
not suspended and sendind an Execute Instruction Stream
instruction to the InPut/OutpPut Processor. A Rueue Under
Capacitv instruction chandes the status of the 9sueue and
node, and, if the node’s number of conditions is zero, the
node is scheduled or Placed on the readv list., A Ready for
Instruction Stream instruction is implemented by scheduling
a waitind node if available or b? placing the Processor’s
functional element identification number on the free pProces-

sor list.

CHAPTER V
TEST SIMULATION

A sample drarh consistindg of three nodes executing on a
five functional element svstem (two Global Memories) was
selected as an examrPle for further discussion. Aprpendix C
dives the complete details of the EMSP confisuratinn for the
simulation and the draph to be simulated. After initializa-
tion: the simulator requests the maximum number of
microseconds the user desires to simulate, whether the wuser
desires to enter debud mode where an coptional timing chart
is printed, and the names of the two input files. The first
inPut file contains the dgraprh torPolody and can be easilw
translated from a éiSnal Processindg Grarh Notation pProdgram.
When aueried about threshold, reads consume, and offset
amounts, a nedative number implies the node execution Param—
eter 1is dependent on a Previous input Parameteé. For exam—
Ple, if the threshold for pParameter twoe, a Ssueue, is
«quivalent toe N, pParameter one. a nedative one would be
inPut for the threshold for parameter two. This interderen—
dency is verw common and this method was chosen as a [uick
and easy method for the user to remember and follow. ApPrPen-—

dixx D dives the Query session for the input of the dgrarh in

41

42

Arpendix C. Comments are contained within delimiters /#*COM-—
MENT#/ and user inputs are contained within delimiters
#inpPut# for ease of readind.

InPut file two contains the svstem confiduration 'and
all draprh information besides topolodgy (file one). The svs—'
tem configuration procedure reads inpPut file two for func-—
tional element identiFication numbers, functional element
tvpe (Arithmetic Processor,. Global Memorw,. etc.)» and Data
Transfer Network confiduration of the element s concentrator
and distributor (APPendix C). The channel identification
number, channel priority, channel rate. Input/Outeput Procés—,
sor, and channel tvpe (InPut or Output) for each channel is
read bv the channel Procedure. Next, the read values Pro-
cedurg, after ordering the nodes by node identification
number, reads the identification numbers of the Gluobal
Memorw storing the nodes, drarh variables. and gueues. All
values for drarh instantiation Parameters and sraph vari-—
ables and all other pPertinent information are read. APPen—
dix E dives the complete Aquery session for the graph in
APPeﬁdix C. The interested reader will find the session
well documented and self-explanatorvy.

QutrPut for the simulation consists of a table of the
EMSP svstem oconfiguration, functional element utilization
information, node execution information, channel execution
information, and A9ueue execution information. The svystem

confisuration table echoes the svstem confiduration inPut by

'S
(1]

the user. The function element wutilization information
dives the utilization factors for each functicnal element.
Utilization is calculated as the number of time units the
functicnal element was busy divided bv the number of time
gnits the simulation simulated., This method of utilization
calculation was modified for Ithe Arithmetic Processar to
handle the Arithmetic Processor”s abilitvy to execute a node
and set up a node simultaneousliy. The utilization for the
Arithmetic Processor calculates busy time as the time the
element was executing setup or breakdown instructions _P]us
the time executingd the instruction. Thus an Arithmetic Pro-—
cessor could have a possible two hundred rpercent utiliza-
tion. The node execution information dives the number of
noede firindgs for each node, the opcode for the node. and the
node identification number. Channel execution information
gives the channel identification number and the number of
channel firindgs. Bueue execution information dives the
Aueue identification number, the number of data items on the
queue at the end of the simulation, and the nodes or chan-
nels at the head and tail of each aueue. ApPendix F dives
the test simulation for the inpﬁts specified in APPendix B,
ArpPendix C, and Appendix D. ApPpPendix G dives a complete
listing of the test simulation with the optional timing
chart. The timing chart is documented and instructions dive
the exact time units to the nearest one hundredth of a‘time
unit (divide the time in the instruction comment bv one hun-

dred).

CHAFTER VI
CONCLUSIONS

The Enhanced Modular Signal Processor (EMSF) timing
simulatoer simulates the timind for a static draph during the
draph execution Process. Nodes are scheduled using a modi-
fied data flow methodology which allow; multirle elemenis aon
a data inpPut. A scheduled node follows the drarh execution
Pprocess shown in Figure 9 (ApPPendix A). InpPuts to the swvs-—
tem consist of interactively enterind the names of two inpPut
files and the sPecified inpPut files. Outrput consists of the
svystem confiduration, an optional timing chart, functional
element utilization, node and channel execution information.
and aueue information.

Fidure 10 (Appendix A) dives a complete 1list of the
primitives that could not be executed. 3Bix of the pPrimi-
tives (the ones with a star in Fidgure 10 (Appendix A)) were
unexecutable because thevy had more than seven inputs. A
fixed lendth opcode data table was chosen for aquick searches
and ease of modification, a desidn decision was made to
allow onlv seven inPuts to save storade, If the opcode data
table had allowed twelve inPuts, the above six Primitives
would have been supported. but at a cost of five extra brtes

Per Primitive.

44

45

would have been supported, but at a cost of five extra bvtes
Per Primitive.

The other nine unexecutable primitives had inPut or
outrPut queues whose lenéth were dependent on a node’s execu-—
tion. Since the primitives were not executed, the lendgth of

the 9aueues was unknown and the timing for Read Gueue and

Write Gueue instructions could not be calculated.
Future Work

The EMSF does not simulate a dvynamic drarh where inPut
variables and channels can be dvnamically changed dJduring
grarh execution. One reason for not simulating a dvnamic
grarh is the hude amount of overhead and bookkeerindg neces-—
sarv to handle a dvnamic drarh. A second reason is the dif-
ficultv in specifrving the timing for dvnamic instructions.
The third reason is the timind associated with dvnamic
actions to the draph execution Processing instructions are
denerally in ratios exceedindg 1000 to 1. But the madior rea-—
san for simulating static drarhs is the tlack of a thoroush
understanding of the effects on the grarh of a dvn;mic sSWs—
tem. Usindg the static EMSP timing simulator and information
dathered from test simulations, a more thorough understand-
ing of +the EMSP can be obtained. Using this understanding
and bv obtaining more information from the EMSP designers,
i.e. Bell Telerphone Laboratories, a dvnamic EMSP simulator
could be designed to perform more thorough analvsis of the

EM2P data flow compPuter.

(1)

()

(4)

(&)

(7)

SELECTED BIEBLIOGRAFHY

Arvind, and V. Kathail, "A Multirle Processor Data

Flow Machine that SupPPorts Generalized
Procedures”, Conference Praoceedings the 3th
Annual SvymPosium an CompPuter Architecture,
Minnearolis, Minnesota, Mar 12-14, 17281, pPP2?1-
02,

Bloch, Fedrick H.», "The Enhanced Modular Signal
Processar”, Proceedinds aof the Seventeenth Annual
Fittsburdh Conference on Modelindg and Simulation.,
Vol. 16, Part 3, 1936, pp. 329-336.

Brown. N.H., "The EMSP Dataflow CompPuter", Froceedings

17th Hawaii Internaticnal Conference Bvstem
Sciences, Honolulu, Hawaii, January, 1¥84, ppI3¥-
43.

Burkowski, F.Jd.> "A Multi-user Data Flow
Architecture”, Conference Proceedings the 2th

Annual SvmpPosium on Computer Architecture.,
Minnearolis, Minnescota, Mav 12-14, 1721, pPP3IZ27-
240,

Damodaran, Meledath and Amitava Hazra, "Methods for
Svstem Simulation on a Restricted Data Flow
Architecture", ACM National Conference
Proceedingds 1921, November 7-11, pPP&0O-66.

Davis. Alan L. and Robert M. Keller, "Data Flow
Program 0Graprhs”, Computer, Vol. 15, No. 2
(February, 1782), ppP26—-41.

Dennis, Jack B.. "Data Flow Supercomputers", Caomputer,
Val. 13, No. 11 (November 1%S0), pPP43-56.

Dennis, .Jack B., Willie Y.P. Lim, and William B.
Ackerman, "“The MIT Data Flow Endineering Model",
Proceedings of the IFIP Warid Computer Consdress
1223, pPrPSSI-560.

Dennis, J.B. and D.P. Misunas, "A Preliminary
Architecture for a Basic Data-Flow Processor",
Proceedings 2nd Annual Svmpasium on Computer
Architecture, Januarvy Z0-22, 1975, pPrPl126-132.

44

(10)

(11

(12)

(13

(14)

(13)

(14)

(17)

(1)

47

Dennis, Jack B.. Joseph Stow, and Bhaskar Guharowv,
"JIM: An Experimental Multi-user Swvstem
Supportind Functiomal Prodramming"., Proceedinds
International Workshorp on High Level CompPuter
Architecture 1784, pPrl.l-1.%.

ECOS Tutorial: Preliminarys ApPril 26, 1985, ppl-2%.

EMSP/ASP Common OpPerational Suprart Software
Methadolody Specification Version 3.0, Prerared
bv Analvtic Discirlines, Inc. {now Evaluation
Research Corporation) under contract to the Naval
Research Laboratory, May 31, 1924,

Enhanced Modular Signal Processor (EMSF) Primitive
Analvsis Specification, CDRL £130, dated Februarwy
22, 1239, prerpared for the Naval Sea Svstems
Command. PMS412 bv AT®T Bell Laboratories on
behalf of AT%T Technolodies under cantract
NOO024-31-C-7313.

Enhanced Modular Sidgnal Processor (EM3SP) Principles aof
Operation. Prepared bv AT%T Bell Laboratories for
the Naval Sea Svstems Command (FPMS412)., March 135,
1985,

Farrell, Edward F., Moondin Ghani, and Philie
Treleaven, " A Concurrent CompPuter Architecture
and A Ring Based ImpPlementation", Conference
FProceedinds of the 6th Annual SvmPosium on
ComPuter Architecture,. April 23-25, 1979, ppl-lil.

GaJdski. D.D., D.J. Padua, D.Jd. Kuck, and R.H. Kuln, "A
Second UOpinion on Data Flow Machines and
Landuages”", Computer. Vol. 15, No. 2 (Februarw
1982), pPPSG-4%,

Gostelow, Kim P.. and Robert E. Thomas, "A View of
Dataflow", Proceedinds of the AFIPS National
Computer Conference 1979, June 4-7, Val. 48,
PR. &27-4633.

Hartima, Iiro, Klaus Kronlof, 0111 Simula, and Jdorma
Skvtta, "DFSP: A Data Flow Signal Processar”,
IEEE Transactions on CaomPuters, Vol. C-33, No. 1,
January 1936, pp23-33.

KarPp, R.M. and R.E. Miller, "Froperties of a Mode for
Parallel Computation: Determinancy, Termination,
and Hueuing", SIAM Jaurnal of Arplied
Mathematics, Vol. 14, No. 46 (November, 17466}, PP
1290-1411.

(20)

(26)

4%

FPatnaik, L.M.> R. GovindaraJjan, and N.3. Ramodoss,
"Miesidn and Performance Evaluation of EXMAN: An
EXtended MANchester Data Flow CompPuter”, IEEE
Transactions on Coamputers, Veol. C-35, No. I
March 1986, PPZ279-244.

Srini. Vason F., "A Fault-Tolerant Dataflow Svstem”,
ComPuters Vol. 12, No. 3 (March 1785), pPPS4-4A3.

Srini, Vason P., "An Architectural CompParison of
Datafliow Svstems", CompPuter Vol. 17 No. 3
(March 1986), PP&E-EE.

Srini. V.P.» "An Architecture for Extended Abstract
Oata Flow", Conference Froceedings the 8th Annual
SvmPosium on Computer Architecture, Minnearpolis.
Minnesota, May 12-14, 1981, ppz023-325.

Treleaven, Philip C.» "Exprloiting Program Concurrencw
in Computing Svstems", Camputer, Val. 12, No. 1
(January 1977), pp42-47,

Treleaven,. Philip C., David Brownbridge,. and Richard
‘P. Hoprkins, "Data Driven and Demand Driven
Computer Architecture". CompPutindg Survers, Vol.
14, No. 1, March, 1932, ppP73—-143.

Treleaven, FPhiliep C.>» Richard FP. Hopkins., and Faul W..
Rautenbach, "Combining Data Flow and Control Flow
Computing”, The Computer Journal,. Vol. 25, No. 2,

 Februarvy, 1982, ppP207-217.

Watson, Ian. and John Gurd, "“A Fractical Data Flow
Computer”", Computer, Vol. 15 No. 2 (Februarw
1982), pp 51-57.

Watson. Ian. and Jdohn Gurd, "A Prototvpe Data Flow
Computer with Token Labelling”, Proceedindgs of
the AFIPS National Computer Conference 1979,
Vol. 43, pPPAZ3-623.

Wu, Y.S.>, "A Common CpPerational Software (ACOS)
ArpProach to a Signal Processing Development
Svstems: ., L. s. Naval Research Laboratorvy,
Washington, D.C. 20373, ICASSP33, Bostaono
PP1172-11735.

APPENDIXES

APPENDIX A

FIGURES

50

51

NODE 1 ARC ¢
OUTPUT E
NODE 2 ARC D
FORMULA: E = (A + B) * (A - B)
Figure 1. Simple Data Flow Graph.
ADD
INPUT A >)
H—>) MULT
I\)
\/
. —)
SUB - 3 OUTPUT E
—)
{ ~
INPUT B~ ——>)

Figure 2. Data Flow Activity Template for Figure 1.

QUEUEZ2

VOR_SQR

VOR_ACOS
N2

N3

Y QUEUE4 ~ QUEUES

Figure 3. An Enhanced Modular Signal
Processor Common Operational Support
Software Methodology Sample Graph.

52

ZGRAPH(FIGURES
GIP = N:INT
INFUTE = QUEUEL:CFIXELD
OUTRUTR = GUEUE4,
GUEUES: FIXEL)
A
ZRUEUE (QLIEUEZ , QUEUEZ: FIXEL)
P
ZNCODE (N1
FRIMITIVE = VOC_LOG
PRIM_IN = QUEUEl THRESHOLD = N
READ = N
OFFSET = O
CONSIUME = N
PRIM_OUT = QUEUEZ,QUEUE3)
7
ZNODE (N2
PRIMITIVE = VOR_SER
PRIM_IN = QUEUEZ THRESHOLD = N
READ = N
OFF3SET = O
CONSUME = N
PRIM.OUT = QUEUES4)
YA
ZNODE (N3
PRIMITIVE = VOR_ACOS
PRIM_IN = QUEUE3 THRESHOLD = N
READ = N
OFFSET = O
CONSUME = N
PRIM_OUT = GQIUEUESDS)
A7
ZENDGRAPH

Fidure 4. Sidgnal FProcessing
Srarh Notation of Figure 2.

]

[

COMMAND

SFAWN
ABORT
START
STOP
INITIO
STARTIO
STOPIO
CREATER
DESTROYR
INITE
FLUSH®
CONNECT®

DISCONNECTR

ADDDATA
WAITDATA
. CREATEGV
DESTROYGV
READGV
WRITEGV
UNL INK
LINK
REINIT

RESUME

Figure S.

54

DESCRIPTION

Create a Process

Abort a Process

Start a Process

StoP a Praocess

Link aueue to channel

Start or resume a channel

Storp a channel

Create a queue

Destrov a aueue

Initialize a queue

Remove all elements from a queue

Connect a Queue to Command
Prodram

Disconnect a aueue from
a Command Frodram

Add data elements to a queuae

Wait for data on a Queue

Create a draph variable

Destrovy a drarh variable

Read a draph variable

Write a dgrarh variable

Unlink a queue

Link a aueue

Reinitialize all queues and
dgrarh variables

Resume a Process

List of Command Prodram Instructions

55

e A A A AN

feomend Scheg GMm Gm (1%} ™ o] e o
1 2 3 4 n
: i |
t 81T Control
Bus
[Osta Transier | Netwarn EL——..
y 4 4 . A Y '3 1 p

ps m u) i /L

L " o i+ Data Trenster Metworx [17

4 & r BIT Controt Bus

High-Speed
y 4 y \ 4 Chennel Adaoter
Despleys
Yectcat ap »
A
Computer : cre 1 2 op APIQ i-
- .
Conirol 4 . y
. High- Soeed
Sonsor
Deta
FE Contrel Bus . - b
Serser A

Oata Pest Processing Recording

Figure 6. Enhanced Modular Signal Processor
System Architecture.

Count Clock (CCLK)

Data Clock (DCLK)

Command N
Program Transmit Successful (TS)
Processor Data Bus (CBD)

SBIT

_Parity (PAR)

Stop Clock (SCLK)
Transmit Failure
Reset Count (RC)

|

- vV
Control Bus
? t
Functional Functional
Element - Element

Figure 7. Control Bus Interface.

main()
init()
read_nodes()
read_confidg()
read_iop()
read_values()
output_titlie()
outpPut_confid()
start_iop()
ZBUS ()
DTN()
ArP()
GM()
I0P()
SCH(O)
cutpPut_util ()
autput_chan()
outpPut_quenes()

read_nodes()
create_node()
ap_.orPcode()
sort()

read_config()
schinit()

read_iop()
det_queue()
create_queue()

read_values()
cal_size()
czal_pProduce()
cal_time()

CBUS()
delete_list()
insert_list()

DTN()
delete_list()
insert_list()

APC()

create.instruct()
dget_channel ()
get_node()
delete_list()
insert_list()

GM(O)

det_channel ()
create_instruct()
dget_nade()
insert_list()
delete_list()

I0PC)

create_instruct()
dget_channel ()
get_node()
insert.list()
delete_list()

SCHQO)

create_instruct()
“det_channel ()
dget_node()
insert_list()
delete_list()

arP_orPcaode()

search()
read_queue()
oread_queue()

read_queue()

dget_aueue()
create_queue()

oread.queue()

det_queue()
create_queue()

Figure 2. Timindg Simulator Hierarchvy Chart.

S7

QOT

I0P : SIS ’ . .
AP | <::r___—~ SCH e/ S

wQ

QOT SIS AIS RQ/RGV AQ/AGY

GM ‘"4 SCH ? GM I AP 1 o

A ,
SCH
WQ - Write Queue

WGV - Write Graph Variable

Q0T - Quew over Threshold
SIS - Send Instruction Stream
AIS - Accept Instruction Stream

ca
AP
Riiiz/////r Wa/ WGV
GM
SIS QoT
SCH

RQ - Read Queue) AP - Arithmetic Processor
RGV - Read Graph Variable GM - Global Memory

AQ - Accept Queue . I0P - Input/Output Processor
AGV - Accept Graph Variable SCH - Scheduler

CQ - Consume Queue
RFIS - Ready for Instruction Stream

Figure 9. Graph Execution Process.

8¢

MNEMONIC
FIR_CNS
FIR_RNS
CODM_RFIR

BFR-FREQ
BFR_FREGB
BFR_GEA
BFR_GEARE
BFR-TIME
S5P_BEFR

S5P_CONV
SSP_FROD
SSP_INDX
SSP_PKDT
SSP_PKPK
SSP_STAT

Figure 10,
Not Implemented.

PRIMITIVE

Finite ImPpulse RespPonse
Filter{(CompPplex, N Stadge)
Finite Impulse RespPanse
Filter(Real, N Stade)
Complex Demodulation and FIR
Filter (Real., Fixed Frea.)
Freauency Domain Beamformer
Frequency Domain Beamform (R)

"Prester and Adartive Beamform

Prester and Adartive Beamform

Time Domain Beamform

Bearing Estimate Pre—-pProcess
Real

Conversion

Frequency Determination

Peak Index

Peak Detect

Peak Pick

Period Statistics

List of Primitives

9

60 -

QUEUE3

VOR_ACOS VOR_SQR

QUEUEZ2 QUEUE4

' VOR_ATN2

QUEUES

Figure 11. Test Case Topology.

APFENDIX B

ARITHMETIC FRGCEBSOR INETRUCTIOME

[
s

."~"| (:i ‘:

'.11.

o
o B i o R x
3] 'J]

1]

AT
L =
3 Sy
Jp—
vt

ZGRT

l""ll"’(—

_&aRGE

ST

,_LOG
~MAG
PR
_RECT
_AND

_SHF

_0OR
_HOR
~INP

Salh

STV TS
ER=1EEAY

_SEIVE

SMUL

_VabD

VDIV

_EMUL
_WYADD
VDIV

e
hu
]

)

e e T

oo
[l
o+
.

™ =1
R & |
il

h

» Bauars Foob

v Argument

Aﬁqumﬂﬂ+ (B
cmplsx VYector Conjugats
Comeles: e:PDr Esponential
Comple: Vector Logarithm
Complex Yector Magnitude
Rectangular to Polar Conwver
Polar ko Rectangular Conw
Vector Logical *AMNDT Ma
Logical Shift by
Logical TOR?
Logical "Exclusi

l Yector Inner Product
'ecbor—-S5calar Add

111
I
+
C

m

<2
i
bz}

o

Al

o B O
D

X v 1o

™ Multisla
f Mul i

R : Subt

= —Complex Yactor Add

7 —Complex Vecotor Divide
Hﬁ“l—uumpls- Veotor Multiely

Comelexs Feeoduic
ump}mx =y ar Add
i Divide

Multiply

MOR _
MOR_

HOR_
MGC—

MQC
Mo

MRR_
MCC_
YoM

VEM_
YoM
VCH

pMC

EMC_F
DMC_

DMC_
DFGC_

TP 323
TRCE
3X31
_TFPSE
~TRCE
MUL

HUL

CTHS
MM X

SORT

_THRS
YCOM_
DMC_
DMC_CT

WDWC
BF1FY
DR
FAFX
XEF
FXFA
RTGC
CCAT

U— 'u_c \.:A i B

DFC

DFL

DFC_
DFC_
DFC_
DFC_
DFC_T
DFC_
DFC_
DFC_
_RDMUX
DFC_
DFC_

FC_
DFC_
DFC_

DFEC ST

DFC

DFZ_
DFC

DCP_

DCF_

DCP_

DCP_
P_CSMGE
LCP_

_EAVL

InIN
JEL

DCP

~CNRHME
DFC_

CREPE
“EP
EPE
D:D
DYNMR
MTC
MTCE
MTR
MTRE
FPACK
RCAT

REQ
RMUX
RNRME
RREF
RSEP
RF
SRPE
I"Hl"n.

AVhl

&Y GEN

‘-!l

LSMG

~ T
KR G B e |

g
wid

i
i1

Gy T Al
GO om it
ERET

T et b

3

(S

I m =
T =T T

U=r - o
B
Complex
Compls:
Campl

Complex =) =)
Data Scaling and Display
Dynamic Rangs Check

9

3
Multiply T C
Multiply T C (B}
Multiply T R
Multiply T R
Dakta Bit Pack
Vm tor Concatsnats

chtor Demulltiple
“quﬂnilhgllun
Yeochtor Multiples
Block Norms

l

-T
1]

a3
14
LU
et

4]
il
—
P
T

5
it i
T T

4.8
]

[1
o e
HI
[

+
i
g

i

-

I we I 41 O £

1}
i
—|J
I

[
3

r

o

s |

m .

1]

s
i

i1

3>ﬂ

i
hl{

<«
it

I-—‘ i

Pl iy
P"_JLU’::‘T LS : HH
Coamnis Less
Complax

\
il

B]
Rl
[HIR T

et)
it
FRGHE

LTMT
Liixd

LR

MME
GINT
MT

T e
R S B S

S R S I S R N I W
a i" o

r
m

FFT_CCE
FFT_CRE
FFT_RZCE

T

]
-~
A
3

TIR_CZ2:

ITR_C2Z

4
=4
Al
|
A
-t
-

]
4
A3
A1
[3]
[y

Pendird -4
FIR_C

r= e
I [P

FIR_R1Z
FIR_RZE
FIR_EME

7 3 b
x]

i

reRduency
ar Interpolati
ﬂcal Meaan Remova
Moise FMean Er+1n
Quadratic Int
Running IﬂtEgF:ﬁiﬁﬂ
Zhort Term I 1

e
-
Ih

ro Fill

z_l—'
Zaro Fill (B3
z 1 Comple:
7 1
[4
™"
L d
FE
2lo
E Fr
Com to
[} il
T t
B FrF
n

Two Real RBlock fo Somgel
Block FFT

Real to Compls:
Block FFT

Real to Comple:x Biogk FFT
Infinite Impulse Filiter-
CDmPlEﬁg 1 Pl
Infinite Impulss Fil
Comple:x, 1 Pols. 1
Infinite lse Fil
Comple,y PDIEEQ 1
Infinite Impulsse Filise-—

Complesxy, Z Poles, 2
Infinits Impulss Fi

Realy, 1 Pols
Infinite Impulss Filtsr-

M
+

il

u
|

1n1te Impul:
Filter (Com
1nL+" Impul=se
ilher(Comp
Flﬁlte Impul
Filter{Rgal
Finite Impulse

“

T{

DRI

30 0T

CopP

_FRCD

= _IMDX

_LFF

[
U U1

Comp Le
CComEm L
Comple
{Real

i

.
ar

=
Come s
(REalj

Ji]
s

1]
ot
i
iC

Fraguency
Freskher an
F Taroa
'r.:

o

e
L

furVﬂraf
Difar s
Difar Mu

DOﬁpler

FE'

(R

Peak Dete
Pemak Fiohk
Dimt

APPEMNDT X

COMFIGURATION FOR

Li

e

&7

EMSP CONFIGURATION FOR SIMULATION

FEIL TYFE CONCENTRATOR DISTRIBUTOR
OTN CON ELEMENT OTN DIs ELEMENT
1 SCH 0 b ¢ 1 I 3
2 M 1 & 1 0 6 2
= AP o 7 2 1 5 1
4 I0P 1 3 3 0 4 0
=5 GM o 13 3 1 7 2

aueueid head_node tail_node threshold consume read size
1 1 1 S S o 1
2 3 1 b b 3 1
= 2 2 10 10 10 i
4 3 2 > 7 o 1
3 3 3 2 2 2 1

tvre data_items produce capacity

i)
c
[
[
[
[WS
Q.
Q)
4

1 2 2 O S 100
2 2 0 0 S 30
3 S 2 0 10 20
4 2 0 0 10 40
5 2 1 0 2 15
nodeid orcode num.inpPuts NOC OM firindgs exec_time
1 14 i 1 2 0 285
2 23 1 1 S 0 1000
= 29 2 2 s 0 600
nodeid tvyPe size din value
1 GV b 2 S /% INPUT %/
1 GUELE 3 2 Q /% INPUT #/
1 HUEUE S 2 Q /# QUTPUT #/
nodeid tvype size gm value
2 GV 1 5 10 /7+# INPUT =/
= RAUEUE 10 b Q /% INPUT x/
2 GUEUE 10 2 Q /% QUTPUT #/
nodeid tvre size dEm value
3 GV 1 2 2 /# INPUT #/
3 QAUEUE 2 2 Q /% INPUT #/
=3 RUEUE 2 2 O /# INFUT */
3 GIEUE 2 2 Q /% QUTPUT =/

AFPENDIX D

TOPOLOGY INPUT

INFUT the node identification number /% NODE 1 #/
and answer all sueries abaout the node
InPut -1 to quit when asked the node id # 1#
INFUT opcode mnemonic for AP instruction #VOR_SGR#
GIF -4, GV -2, DR GLUEUE -5 #=33
INFUT Grarh Variable Identification Number #* 1%
GIP -4, GV -3, OR QUEUE -5 #-5
INFUT queue id. Answer all guestions
about the aueue. /#INPUT: QUEUE 1%/ # 1%
INFUT threshold. /# Derendent on GV value#/ #-—1%#
INPUT consume amount. #—13
INFUT read amount. *—1#
GV -3 or QUEUE -5 /#QUTPUT: QUEUE 2%/ #—-53
INFUT Queue id. Answer all questions
about the sueue. # 2%
INPUT valve amount for cutput aueue. #—1%
/% NODE 2 #/
INPUT the node id and answer all queries about the node.
Input -1 to guit when asked the node id * Z#
INPUT opPcode mnemonic for AP instruction #VOR_ACOS#
GIFP -4, GV -2, OR QUEUE -5 ‘ =33
INPUT Grarh Variable Identification Number ¥ 2%
GIF -4, GV -2, OR QUEUE -S #—Dd
INPUT sueue id. Answer all auestions
about the gaueue. /#INPUT: QLEUE 3%/ #
INPUT threshold. /% Derendent of GV value#/ #—1%
INPUT consume amount. #—14
IMPUT read amount. #*—13
GV -2 or RUELUE -5 /#0UTPUT: QUEUE 4#/ #=54
INPUT aueue id. Answer all questions
about the queue. #* 44
INFPUT valve amount for outrPut aueue. *—-13
/# NODE 3 #/
INPUT the node id and answer all queries about thenode.
InpPut -1 to auit when asked the node id # 3#
INPUT orPcode mnemonic for AP instruction #VOR_ATNZ*
GIF -4, GV -2, OR GQUEUE -S #-=-3%
INPUT Graph Variable Identification Number #* I
GIP -4, GV -3, OR QUEUE -3 /#INPUT: GQUEUE 2%/ #-5%
INPUT aueue id. Answer all questions
about the queue. * 2%
INPUT threshold. /% Threshold constant value#/ # 5#
INFUT consume amount. #* T
INPUT read amount. ¥ T
SIF -4, GV -3, OR RUEUE -5 /#INPUT: QUEUE 4%/ #-5#
INPUT queue id. Answer all questions
about the queue. * 4%
INPUT threshold. : * T
INFUT consume amount. * I
INPUT read amount. * ¥
GV -2 or QUEUE -5 /#0UTPUT: QUEUE S*/ #—=5
INPUT queue id. Answer all auestions
about the Qaueue. ® 5%
INPUT valve amount for output aueue. #—14%

70

/% NO MORE NODES 30 INPUT —-1%/
INFPUT the node id and answer all sueries about thenode.
InPut =1 to quit when asked the node id #—14%

APFENDIX E

CONFIGURATIOGN INPUT

/% INPUT SYSTEM CONFIGLIRATION #/

HOW MANY DTN- S, [DATA TRANSFER NETWORKS. 1 or 2 #* D
INPUT switch size for DTNCO] *163%
INFUT switch size +for LOTNL13] #* S
/% Scheduler with FEID of 1 3#/

Input Functional Element ID for each element.

INPUT -1 TO QUIT..veaceanss #* 1
INFUT tvpe of Functional element, AP = 0O

» CPP = 4, GM = 1, IOP = 3, SCH =2 * 2%
INPUT which DTN concentrator is on, O ar 1 #* Q3
INPUT which concentrator on DTN #* T
INPUT which element on concentrator # Q%
INPUT which DTN distributor is ons, O or 1§ #* 1+
INFUT which distributor on DTN ¥ S
INPUT which element on distributor #* 3

/% GLOBAL MEMORY with FEID 2 #/

Input Functional Element ID for each element.

INPUT =1 TO QUITevacacans ; * 2%
INPUT tvre of Functional element, AP = 0O

: CFFP =4, GM = 1, IOP = 3, SCH = 2 # 13
INPUT which DTN concentrator is on, O or 1 # 1+
INFUT which concentrator on DTN * b
INPUT which 2lement on concentrator #* 1+
INPUT which DTN distributeor is on> O or 1 # Q%
INPUT which distributor on DTN ' * b
INFUT which element on distributor * 2%

/% ARITHMETIC PROCESS0OR with FEID 3%/

Input Functional Element ID for each element.

INPUT =1 TO GUUIT . eecnacea * 3%
INFUT tvpe of Functional element, AP = O
» CPP =4, GM =1, IOP = 3, SCH = 2 #* Q%
INFUT which DTN concentrator is on, QO or 1 #* O
INPUT which concentrator on DTN ‘ #* 7%
INPUT which element on concentrator #* 2%
INPUT which DTN distributor is on: O ar 1 ¥ 1#
INFUT which distributor on DTN #* S
INPUT which element on distributoer ¥ 13

/% INFUT/0UTPUT PROCESSOR with FEID 4%/
InPut Functional Element ID for each element.
INPUT =1 TO BUIT.eeeacana # 4
INPUT tvre of Functional element, AP = O
» CPP =4, GM = 1, IOP = 3, SCH = & # S
INPUT which DTN concentrator is on, O or 1 # 1%
INFUT which concentrator on DOTN *® I
IMPUT which element on concentrator ¥ 3
INPUT which DTN distributor is on, O or 1 # Q%
INPUT which distributor on DOTN #* 4
INFUT which element on distributor * O
/% GLOBAL MEMORY with FEID 5 %/

InPut Functicocnal Element ID for each element.

INPUT =1 TO BUIT. . eeanaee * S
INFUT twpe of Functional element. AP = 0

» PP = 4, GM = 1, I0OP = 3, SCH = 2 # 1%
INPUT which DTN concentrator is aons, Q ar 1 #* Q%

-
.

INPUT which concentrator an OTN) #1554

INFUT which element on concentrator # O
INPUT which DTN distributor is an. O ar 1 #* 13
INFPUT which distributor on DTN # 7
INPUT which element on distributor * 2%
/% NO MORE FUNCTIONAL ELEMENTS S0 -1#/
InPut Functional Element ID for each element.
INPUT =1 TO G IT.e.eeceeanes #—1%

/% INPUT CHANNEL INFORMATION #/
/% CHANNEL 1 ATTACHED TQO RUEUE 1%/

0w

INPUT channel id. Input -1 to guit. Answer all questians

about the channel. #* 14
INPUT prioritv of channel. * 14
INFUT channel rate of input # S0000#
INPUT id of queue channel is attached. # 1%
INFUT id of FEID of IOP,. Functiornal element id

of InpPut CutrPut Processor. * 4%
INPUT 2 aor QUTPUT 1 Channel #* 2

/¥ CHANNEL 2 ATTACHED TO QUEUE 3%/
INFUT channel id. InpPut -1 .to auit. Answer all

auestions about the channel. * 2%
INFUT pPriority of channel. #* 2
INPUT channel rate of input # 100000%
INFPUT id of sueue channel is attached. * ¥
INPUT id of FEID of IOP> Functional element id

of Input QOutput Processor. * 4%
INPUT 2 or QUTPUT 1 Channel ¥ 2%

/# CHANNEL 3 ATTACHED TO GQUEUE S/
INPUT channel id. Input -1 to suit. Answer all

questions about the channel. * I
INPUT priority of channel. #* 3
INFUT channel rate of input # 300000+
INPUT id of aueue channel is attached. #* D

INPUT id of FEID of IOP, Functional element id #* 4%

aof InPut Quteput Processor.

INFUT 2 or QUTPUT 1 Channel #* 1%
/7# NO MORE CHANNELS 350 INPUT -1/

INFUT channel id. Input -1 to auit. Answer all

-quastions about the channel. # —1#%

/¥ INFUT NODE INFORMATION THAT IS DYNAMIC:#*/
/¥ NODE 13/
NOTE: Mast input aueues and draph variables are

located in same Global Memory as Node InstructionStream

INPUT GM of GRAPH VARIABLE * 2%
INFUT value of GV # S
INPUT GHM of GQUEUE #* 2%
INPUT capacitw. #1004

/% NODE 2%/
NOTE: Most input aqueues and dgrarh variables are

located in same Global Memory as Node InstructionStream

INPUT GM of GRAPH VARIABLE # S
INFUT value of GV #10%
INPUT GM of QUEUE # S
INFUT carpacitwy. #20Q%

/% NODE 3%/
NOTE: Most inPut Queues and draph variables are

lacated in same Global Memorvy as Node InstructionStream

INFUT GM of GRAPH VARIABLE #* 24
INPUT value of GV #* 2%
INFUT GM of SLUEUE #* 2%
INPUT carpacitvy. #3230
INFUT GM of QUEUE R
INPUT capacitvy. #4044

/% Since output queue 5 is attached to a channel */
/¥ @xira information must be dathered about the #/

/% queue at this time, i.e. the caracity and #/
/# threshold. #*/
INFUT GM of GUEUE * 2
INPUT capracitw. #1559

INPUT threshold. . *

74

APPENDIX F

SIMULATION QUTPUT

.

EMSF CONFIGURATION FOR SIMULATION

FEID TYPE COMCEMTRATGR DIETH .
DTM CON ELEMEMT DT ol ELEMENT

i =CH) 5 B 1
= ak 1 & 1 @ "
= AF @ 7 = i ;L
4 I0OF 1 3z 3 & iy
| &M 3 i3 3 i 7 =

FURCTIGNAL ELEMEMT UTILIZATION

i3
1
-4
[w]

TYPE . UTILIZATICN

ul
]
=
.
b

-4
I

L TIME 1993.

NGDE EXECUTION IMFORMATION

. N el atats P TN I T IO R
ID GRCODE WMoODE FIRIMGS
1 14 =
= - -
< = o
- e
= = 1

CHAMNMEL EXECUTION INFORMATIOHN

CHaMMEL ID CHANNEL F
4

et

NODE

EsD

1
1
i

ITEME

DAaTHA

- A

EUE ID

;'

. o
wd el 040

[IR R R %)
M

fon BV B A B o T |

APFENDIX G

TIMING DIAGRAM SIMULATIGN QUTRUT

m

TIMING SIMULATOR FOR THE
ENHANCED MODULAR SIGNAL FROCESSOR

EMSP CONFIGURATION FOR SIMULATION

FEID TYFE CONCENTRATOR DISTRIBUTOR
DTN CON ELEMENT DTN DIs ELEMENT
1 SCH 0 S 0 1 3 &
2 GM 1) 1 0 [e
3 AP ¢] 7 2 1 = 1
4 0P 1 3 3 0 4 O
S GM 0 15 i 1 7 2
TIMING CHART FOR EM3P GRAPH
TIME 1 2 = 4 =
0
v
/% TWO GRAPH FROCESS INSTRUCTS FIRE AT SAME TIME ONE IS #/
/% RESCHEDULED FOR TIME 103. INSTRUCT 30 IS5 EXN 30 #/
/# A CHANNEL HAS GONE OVER THRESHOLD ANLD FIRED. #*/

INSTRUCT opcode 30, time 10000, receiver 4, sender 4, node 1
CALLING IOFP
INSTRUCT opcode 30, time 10000, receiver 4, sender 4, node 2
CALLING IOPF

100 4
101 4
102 4

/% RESCHEDULELD INSTRUCT EXN IS NOW EXECUTED AS IOF IS FREE#/
INSTRUCT opPcode 30, time 10300, receiver 4, sender 4, node 2
CALLING IOFF :

103 4
104 4
105 4 -

/3 EXN INSTRUCT TRIGGERED A WRITE QUEUE TO QUELE 1 #/
INSTRUCT opcode 64, time 10534, receiver 2, sender 4, node 1
CALLING GHM

106 2
107 2
103 2

/# EXN INSTUCTION TRIGGERED A WRITE QUEUE TO RQUEUE 3 #/
INSTRUCT opPcode 64, time 10392, receiver S, sender 4, node 2
CALLING GM

10%

110

111

112

MENER
i

o
ted

113
114
113
116
117
118
119
120
121
122
123
124
125
126
127
128
12%
130
/% GUEUE 1 HAS GONE OVER THRESHOLD. WRITE QUEUE INSTRUCT %/
/% TRIGGERED A GUEUE DOVER THRESHOLD INSTRUCT. */
INSTRUCT opcode 42, time 13040, receiver 1, sender 2, node 1
CALLING 3SCH ' ’

PN NRN

adoadiadaadad

131 1

132 1

133 1

134 1

135 1
/% QUEUE 3 HAS GONE OVER THRESHOLD. WRITE QUEUE INSTRUCT#/
/% TRIGGERED A QUEUE OVER THRESHOLD INSTRUCT BUT */
/# SCHEDULER IS BUSY S0 RESCHEDULEZ #/

INSTRUCT opcode 42, time 13536, receiver 1, sender S, node 2
CALLING SCH
136
137
133
139
140
141
142
143
144
145
1446
147
143
14%
150
/% RESCHEDULED QUELIE OVER THRESHOLD INSTRUCT FOR RUEUE 33/
INSTRUCT opcode 42, time 15040, receiver 1, sender S, node 2
CALLING SCH
151 1
152 i
153 1
154 1

Ll ol Sl O ol o R B o T

155 1

154 1

1357 1
/% SEND INSTRUCT STREAM INSTRUCTION TRIGGERED BY GLEUE 13#/
/% GOING OVER THRESHOLD. NODE 1 IS FIRING. */

INSTRUCT opcode 53, time 15747, receiver 2, sender 1, node 1
CALLING GM

158

1S9

1460

161

1462

163

1464

165

1466

167

148

162

170

171

172

173

174
/# ACCEPT INSTRUCT STREAM SENT EBY GLOEBAL MEMEORY TO #*/
/% ARITHMETIC PROCESSOR. */
INSTRUCT opcode 3, time 17430, receiver 3, sender 2, node 1
CALLING AP

175

176

177

173

179

130

1381

132

183

134

185

184

187

132

139

170

191

192

193

174

195

1926

197

193

199
/# REGUEST GRAPH VARIAEBLE FROM GLOBAL MEMORY FOR NODE 1 #/

= e b e e P e S e S

MRODMNMNMRORRNRDNER

(AROEANTN]

/% SENT BY ARITMETIC PROCEZSOR. ®/
INSTRUCT opcode 47, time 1¥918, receiver 2, sender 3, node 1
CALLING oM

/# CHANNEL 1 HAS FIRED AGAIN AND CHANNEL 2. CHANMEL 2 */
/% BLOCKED AGAIN AND RESCHEDULED. OPCODE 30 IS EXM. #/
INSTRUCT opcode 30, time 20000, receiver 4, sender 4, npode 1
CALLING IOPP

INSTRUCT orcode 30, time 20000, receiver 4, sender 4, node 2
CALLING IOPP

200 2 4
201 2 4
202 z 4

/# RESCHEDULED CHANNEL 2 EXN or EXECUTE NCODE INSTRUCT #/
INSTRUCT opcode 30, time 20300, receiver 4, sender 4, node 2
CALLING IOPF

203 2 4

204 2 4
/# WRITE QUELIEE TRIGGERED ON GUEUE 1 BY CHANNEL FIRING. #/
/% MUST BE RESCHEDULED BECAUSE OF PREVIOQUS REQIEST GV. */
INSTRUCT orpcode 64, time 20482, receiver 2, sender 4, node 1
CALLING GM

205

206

=207

2083

209
/% WRITE QUEUE TRIGGERED ON GUEUE = BY CHANNEL FIRING. #/
INSTRUCT orPcode 64, time 20902, receiver 5, sender 4, node 2
CALLING GM

4

N RN

210 2 S
211 2]
/% RESCHEDULED WRITE GQUEUE ON QUELE 1 #/

INSTRUCT opcode &4, time 21129, receiver 2, sender 4. node 1
CALLING GM

212 2 =

213 2 b=
/# GLOBAL MEMORY SENDING ACCEPT GRAPH VARIABLE INSTRUCT #/
/¥ TGO ARITHMETIC PROCESSOR FOR NODE 1. #*/

INSTRLUCT opcode 2, time 21392, receiver 2. sender 2. nade 1
CALLING AP

214 2 e S

215 2 2 <)

214 2 = =]

217 2 R S

213 2 3 S

217 2 3 =

=2 2 3 S

221 2 3 S

222 2 I S
/#% REGUEST QUEUE SENT TO GLOBAL MEMEORY FROM ARITHMETIC */
/#* PROCESSOR FOR NODE 1. RESCHEDULED. */

INSTRUCT opcode S50, time 2224697, receiver 2, sender 3, node 1
CALLING GM

-y - -
223 s]

/% RESCHEDULE REQUEST QUEUE. */
INSTRUCT opcoade S0, time 22384, receiver 2» sender 3. node |1
CALLING GM

224 2 3

225 2 3

226 2 i

227 2 3
/# QUEUE OVER THRESHOLD ONE RUEUE 3 IN RESFONSE TO WRITE #/
/% QUEUE BECAUSE OF CHANNEL FIRING. ®/

INSTRUCT opcode 42, time 22751, receiver 1, sender 5, node 2

CALLING SCH
228
229
230
231
232
233
234
235
236
237
238
23%

/# GLOBAL MEMORY SENDING ACCEPT QUEUE INSTRUCT TO #/

/% ARITHMETIC PROCESS30R. */

INSTRUCT opcode 4, time 239246, receiver 3, sender 2, node 1

CALLING AP

0 W0y W O3 00

MNMDRNRRNRODRNR

b s bt ek b ek b ek b

240 3

241 3

242 3

243 &

244]

245 3

246 3

247 3

243 3

249 2
/% QUEUE OVER THRESHOLD. GQUEUE 1 OVER BECAUSE OF *#/
/% WRITE QUEUE #/

INSTRUCT opcode 42, time 24955, receiver 1, sender &, node 1
CALLING =CH

250 1 3
251 i 3
252 1 3
253 1 Ic
254 1 3
255 1 =
254 1 3
257 1 =
258 1 3
259 1 =
260

261

262

263

264

265

266

2467

262
/#%# NODE 1 HAS COMFLETED EXECUTION AND IS WRITING RQUEUE 2%/
/% NOTE ALL WRITE RUEUES EXCEPT TO OUTPUT QUEUES GIVE */
/% THE NODE IDENTIFICATION NUMBER OF THE HEAD NODE TO */
/# THE QUEUE. #/
INSTRUCT opcode 64, time 246824, receiver Z, sender 3, node 3
CALLING GM

269 2
270 2
271 s
272 2

/# NODE 1 HAS COMFLETED SO0 ARITHMETIC PROCESSOR IS READY*®*/
/# FOR NEXT INSTRUCT 30 READY FOR INSTRUCTION STREAM #/
INSTRUCT opcode 45, time 27215, receiver 1, sender 3 node 1
CALLING 3CH
273
274
275
276
277
273
279
230
281
232
283
234
2895
286
287
233
289
270
291
292
293
274
/# UPON RECEFTION OF THE REALDY FOR INSTRUCT STREAM. NODE 3/
/% 2 WHICH WAS WAITING ON THE READY LIST IN THE SCHEDULER:/
/# IS SCHEDULED WITH A SEND INSTRUCT STREAM. #*/
INSTRUCT opPcode 53, time 27454, receiver 5, sender 1, node &
CALLING GM
295
276
297
293
299
/% WUEUE 2 HAS GONE AVER THRESHOLD WITH THE WRITE RQUELUE #/
/% TRIGGERED BY THE EXECUTION OF NODE 1. #*/
INSTRUCT oprcode 42, time 29922, receiver 1, sender 2, node 2

D EY B RO M RY R R

= b ek et pd b ek b ek b ped Pt s b ek e s

Aadoda

CALLING 3CH

/% CHANNEL 1 AND 2 HAVE FIRED AGAIN. CONFLICT AGAIN AND #/

/# RESCHEDULED. #/

~ INSTRUCT opcode 30, time 30000, receiver 4, sender 4, node 1
CALLING IQPP _

INSTRUCT opcode 320, time 30000, receiver 4, sender 4, node Z

CALLING IOPP

300 1 4 5
301 1 4 S
302 1 4 5
INSTRUCT opcode 30, time 3 nde 2

0300, receiver 4, sender 4, n
CALLING IOPF :

303 1 4 S

304 1 4 b7
/# NODE 1“s FIRING HAS TRIGGERED A CONSUME QUEUE INSTRUCT#/
/# ONE QUEUE 1 ATTACHED TO NODE 1. */

INSTRUCT opPcade 72, time 30432, receiver 2, sender 3, node 1

CALLING GM

/####e NOTE THE PARALLELISM ON THE FUNCTIONAL ELEMTENTS##d##/
305 1 2 4 S

/# WRITE QUEUE FOR QUEUE 1 TRIGGERED BY CHANNEL.RESCHEDULEID:/

" INSTRUCT opPcode 64, time 30506, receiver 2, sender 4, node 1

CALLING GM

306 1 2 5

307 1 2 S

308 1 2

309 1 2
/# WRITE QUEUE FOR GUEUE 3 TRIGGERED BY CHANNEL Z. #/
INSTRUCT orcode 64, time 30926, receiver 5, sender 4, node 2
CALLING GM

310 2 S

311 2 S

312 2 S
/% GLOBAL MEMORY SENDING ACCEPT INSTRUCT STREAM TO #/
/% ARITHMETIC PROCESSOR FOR NODE 2. */

-

INSTRUCT orpcode 3, time 31204, receiver 3, sender 5, node 2
CALLING AP

313 2 3 5
314 2 3 S
315 2 3 S
316 2 3 S

/% REFORT NODE DONE WAS ADLDED TO NOTIFY THE SCHEDULER A #/
/% NODE HAD FINISHED. EMSP DOES NOT ALLOW TWD INSTANCES #/
/# OF THE SAME NODE. COPCODE IS ONLY FOR SIMULATOR AND NOT#/
/% A INSTRUCT ON EMSP S0 IT TAKES NO TIME. #/
INSTRUCT orpcode -4, time 31432, receiver 1, sender 2, node 1
CALLING 3CH
/# RESCHEDULED WRITE RUELIE FOR NODE 1 */
INSTRUCT opPcode 64, time 31632, receiver 2, sender 4, node 1
CALLING GM -

317

313

319

320

3

O AN VR N

Awmaa

321
322
323
324
325

26

B3R RN R RS

&

/# QUEUE GVER THRESHOLD FOR GUEUE 1

INSTRUCT opcode 42,
CALLING SCH

327
3z8
329
&30
331
332

Ll ol ol el

[

time

32664, receiver

/# REGUEST GRAPH VARIABLE. NODE Zz.

INSTRUCT opcode 47,

CALLING GM

333
- 334
335
336
337

/# GUEUE 3 HAS GONE
/% GUEUE OVER CAPACITY MESSAGE TOQ SCHEDULER.
/% RESCHEDULED.
INSTRUCT opcode 41,
CALLING SCH

338
339
240
341
342
343
344
345
346

/% RESCHEDULED GQUEUE OVER CAPACITY INSTRUCT.
INSTRUCT oprpcode 41,
CALLING SCH

1
1
1
1

1

(ol ol S R o

time

QVER

time

time

33237, receiver

adadam

1,

=)

oA

#*/
sender 2, node

-

#*/
sender 3. node 2

"

CAPACITY. GLOBAL MEMORY SENT s/

33719, receiver

aaadtadwm

34664, receiver 1,

1,

*/
*/
sender 5, node

(]

#®/
sender S, node 2

/# ACCEPT INSTRUCT STREAM TO ARITHMETIC FPROCESSOR FOR#/
/% NODE 2 FROM GLOBAL MEMORY.

INSTRUCT opPcode

CALLING AP

247
343
349
350
=51
352
eI
354
2355

356

L o I O S S P

-
<9

(ECARO T WAV Y I UM TN

time

-

J4692,

receiver 3»

*/

sender S. node 2

337 1 3
3598 1 3
35Y 1 =

/# GQUEUE OVER THRESHOLD INSTRUCT FOR NOLE 1.
/% RESCHEDULED.
INSTRUCT opPcode 42, time 35923, receiver 1, sender Z,
CALLING 3CH
360 1 3
361 1)
/% RESCHEDULED GWEUE OVER THRESHOLD.
INSTRUCT orcode 42, time 36164, receiver 1, sender 2,
CALLING SCH

262 1 3
363 1 3
364 1 =

/% REQUEST GQUEUE FOR NODE 2 FOR GQUEUE 3.
INSTRUCT opPcode S0, time 36496, receiver S5, sender 32,
CALLING GHM ’

365 1 3 S
366 1 3 S
367 1 3 S
368 1 S
369 1 S

/# QRUEUE OVER THRESHOLD FOR QUEUE =. RESCHEDULED.
INSTRUCT opPcode 42, time 36973, receiver 1, sender 5,
CALLING SCH
370 1 S
371 1 : S
/% RESCHEDULED QUEUE OVER THRESHOLD FOR GUELE 2.
INSTRUCT opcode 42, time 37164, receiver 1, sender S,
CALLING SCH
372
373
374
275
374
377
372
377
320
331
92
333
224
/# ACCEPT QUELE FOR GQUEUE = AND NODE =Z.
INSTRUCT opPcode 4, time 3341646, receiver 3, sender S,
CALLING AP

P ek Bt ek e et b b b
aaadadtag

=85 3
326]
287 be]
333 =
289 ic
370 =

=91

#®/
*/
node

#*/
node

*/
node

#*/

node

*/
node

#*/
node 2

o
~

[N]

k3

[¥x)
1]

/¥ BUEUE QVER CAPACITY INSTRUCT ON A CHANNEL RECGUJIRES#*/

/# A SNOT OR STOF NODE DATA TRANSFER MESSAGE TO BE SENT #/
/# TO THE INPUT/QUTPUT PROCESZOR. */
INSTRUCT orcode 71, time 3714658, receiver 4, sender 1, node 2
CALLING IOFPP :

ERROR CHANREL 2z HAS OVERRAN QIUELE =

392 3 4
93 3 4

374 3 4

295 3

396 3

2397]

393]

I9Y 3

/# SAME OLD CHANNEL FIRINGS. #/

INSTRUCT opcode 30, time 40000, receiver 4, sender 4. node 1
CALLING IOFPP
INSTRUCT opcode 320, time 40000, receiver 4, sender 4, node 2
CALLING IOPP

400 = 4
401 3 4
402 3 4

/% CHANNEL 2 HAS BEEN STOFFED S0 NO TIME NECESSARY FOR EXNi#/
INSTRUCT opcode 30, time 40300, receiver 4, sender 4, node 2
CALLING IOFPF

403 3
404 3
405 3

/7# CHANNEL FIRING TRIGGERED A WRITE QUELUE ON QUELE 1 #*/
INSTRUCT opcode 64, time 40502, receiver 2., sender 4, node 1

CALLING GM

406 2

407 2

403 bl

409 2

410 =2

411 2

412 2

413 2

414 py »
/+# NODE 2 HAS COMPLETED SET UP MODE IN ARITHMETIC FROCESSOR#/
/# 30 SENDS READY FOR INSTRUCT STREAM (RFIS) TO */
/% SCHEDULER. */
INSTRUCT opPcode 45, time 41442, receiver 1, sender 3, node 2

CALLING SCH

415 1 2
416 1 2
417 1 <
418 1
412 1

/# RFIS FROM INPUT/OUTPUT PROCESSOR WHEN CHANNEL STOFFED. #/
INSTRUCT opPcode 45, time 41710, receiver 1. sender 4, node 2
CALLING SCH

420 1

=

421 i

422 1

423 1

424 1

425 - 1

426 1

427 1

428 i

422 1

4320 1

431 1
/% RFIS RESCHEDULELD AT TIME 420. #/
INSTRUCT opcode 45, time 43142, receiver 1, sender 4, node 2
CALLING SCH
/¥ WRITE QUEUE TRIGGERED BY EXECUTION OF NODE 2. #/
INSTRUCT opcode 64, time 43162, receiver 2, sender 3, node 3
CALLING GM

432 1 2

433 i 2

434 1 2

4335 1 2

436 1 2

437 1 2

433 1 2

43 1 2

4490 1 2

441 i 2 ' :
/% SEND INSTRUCT STREAM TRIGGERED BY RFIS #*/
INSTRUCT opPcode 53, time 44135, receiver 2, sender 1, node 1
CALLING GM

442 1 2

443 1 2

444 1 2
INSTRUCT opcode 53, time 44472, receiver 2, sender 1, node 1
CALLING GM

4435 1 2

444 1 2
/% QUEUE OVER THRESHOLD TRIGGERED BY CHANNEL FIRING ANLD #/
/% WRITE QUEUE. */
INSTRUCT opcode 42, time 44403, receiver 1, sender Z, node 1
CALLING SCH

447 i 2

443 1 2
INSTRUCT opcode 42, time 44842, receiver 1, sender Z, node 1
CALLING 3CH

449 1 2

430 1 2

4351 1 2
/% CONSUME QUEUE TRIGSGERED BY EXECUTION OF NODE 2. */

INSTRUCT opcode 72, time 45113, receiver 5, sender 3, node 2

CALLING GM
4352 1
453 1
434 1

S

b

=
)

[NV

-

20

455 1 2 S
456 1 2 S
4357 1 2 o
458 1 5
4359 b
460 S
461 =
/% ACCEPT INSTRUCT STREAM FOR NODE 1. #/

INSTRUCT opcaode 3, time 46102, receiver 3, sender 2: node 1
CALLING AP

462 3 S
4463 3 =
/# SUPERFICIAL REFORT NODE DONE FOR NODE 2. */

INSTRUCT opcode =4, time 46312, receiver 1, sender 35, node 2
CALLING SCH

4464 3

465 3

4466 3

467

4638

4469

470

471

472

473
/% GQUEUE OVER THRESHOLD FOR NODE 3 AND GUEUE 2 or 4. */
INSTRUCT opcode 42, time 47345, receiver 1, sender 2, node
CALLING SCH

M 7Y |

474 1
479 1
4764 1
477 1
473 1
479 1
/# REQUEST GRAPH VARIABLE FOR NODE 1. #/

INSTRUCT opcode 47, time 47713, receiver 2, sender 3, node 1
CALLING GM

430 1 2
421 1 2
432 1 2
483 1 2
/# QUEUE OVER THRESHOLD FOR NODE Z AND GUEUE 3. #/

INSTRUCT opcode 42, time 48400, receiver 1, sender 5, node =2
CALLING SCH
434
4835
436
47
433
459
490
C 491
492
493

RPN

e B I o o o S]

71

/% RESCHEDULED FROM TIME 424. */
INSTRUCT opPcode 42, time 49345, receiver 1, sender 5, node &2
CALLING SCH

494 i
/+# ACCEFPT GRAPH VARIAELE. #/
INSTRUCT opcode -2, time 49476, receiver 3, sender 2, node 1
CALLING AP

493 1 3
496 1 3
497 1 3
473 1 3
499 1 3
/# CHANNEL 1 FIRED. EXECUTE NODE (EXN). #/

INSTRUCT apcade 320, time S0000, receiver 4, sender 4, node 1
CALLING IOPF

S00 1 b 4

501 1 3 4

502 1 3 4

503 1 3

S04 1 i<

503 1 z .
/# WRITE QUEUE FOR GQUELE 1 #*/
INSTRUCT opPcode 44, time 50512, receiver 2, sender 4, node 1
CALLING GM

506 1 2 3

507 1 2 32
/% REQUEST GUELE. #*/
INSTRUCT oPcode 50, time 50723, receiver 2. sender 32, node 1
CALLING GM

508 1 2 3
509 1 2 3
510 1 2 3
511 1 2 3
512 1 2 c:
513 1 2 3
514 2 3
515 2

5164 pe)

517 z

/% RESCHEDULED FROM TIME S0€. ®/

INSTRUCT opPcode 50, time 51767, receiver 2, sender 3, node 1
CALLING GM

oS3 2
Sie 2
220 2
521 2
S22 =2
s2¢ 2
524 2
925 2
S26 pei
= 2
T238 s
02 2

/% GQUEUE OVER THRESHOLD FOR QUEUE 1. #/
INSTRUCT opcode 42, time 529355, receiver 1, sender &, node 1
CALLING SCH
530 i 2
531 1
532 1
533 1
/# ACCEPT QAUEUE. */
INSTRUCT opPcode 4, time 53363, receiver 3, sender 2, node 1
CALLING AP
534
535
536é
537
538
53%
540
S41
542
543
544
545
544
247
S48
549
350
951
552
S33
554
355
556
557
558
959
560
Sé61
562
~/# WRITE GQUEUE TRIGGERED BY EXECUTION OF NODE 1 %/
INSTRUCT opcode 464, time 56233, receiver 2, sender 3, node 3
CALLING GM
S63
S64
565
566
S67
S68
S69
570
/# RFIS TRIGGERED BY COMFLETION OF THE EXECUTION. OF NODRE 1=/
INSTRUCT opcode 45, time I7007, receiver 1, sender Z, node 1
CALLING 5CH
571 1 2

o ph bt pat P

WWOOWWWWWRHNWWRWOEWO W W

MENRRE R

r

=72
S7e
74
o735
376
=577
578
S79
oS80
S81
o32
=83
S24
58S
086
S87
588
=89
970
591
Svz
/# SEND INSTRUCT STREAM FOR NODE 3 TRIGGERED BY RFIS.®/
INSTRUCT opcode 53, time T9246, receiver 2, sender 1, node
CALLING GM

[V N A

=t P s et o b g B el b A R e

S93 2
594 2
593 2
596 2

J

597 2
/% ROT ON QUEUE 2 OR 4 TRIGGERED BY NODE 1 EXECLUTICON */
INSTRUCT opcode 42, time 5?7714, receiver 1, sender 2, node
CALLING SCH

o993 1 2

S99 1 2
/% EXN */
INSTRUCT opcode 30, time 40000, receiver 4, sender 4, node
CALLING IOPP

&£00 1 2 4
601 1 2 4
&02 1 2 4

/% CONSUME QUEUE 1 TRIGGERED BY NODE 1 EXECUTION #/

INSTRUCT opcode 72, time 40224, receiver 2, sender 3, node

CALLING GM
A03 1
&£04 1
605 1 =2

/% WRITE QUELE 1 TRIGGERED BY EXN. #/

INSTRUCT opcode 464, time 40503, receiver 2, sender 4, node

CALLING GM

/% CONSUME GQUEUE WAS RESCHEDULED FROM TIME 603 #/

INSTRUCT opcode 72, time 60539, receiver 2, sender 2, node

CALLING GM

/% WRITE QUEUE TIME RESCHEDULED AGAIN #/

INSTRUCT opcode 44, time 40539, receiver 2, sender 4, node

[

Ll

CALLING GH

606 1 2
607 1 2
&08 2
609 =

/# ACCEPT INSTRUCT STREAM SENT TO AP FROM GM FOR #/

/% NODE 3%/

INSTRUCT oPcade 3, time 40998, receiver 3, sender 2, node 3
CALLING AP

&10 2 3
611 2 3
12 2 3
613 2]
&14 2 3
613 2 3
6516 2

617 P

/# SUPERFICIAL REPORT NODE #/

INSTRUCT opcode -4, time &178%, receiver 1, sender 2 node 1
CALLING 3CH

/% WRITE QUEUE FOR EXN FINALLY NUT RESCHEDULED BUT "%/

/% EXECUTED. #*/
INSTRUCT opcode &4, time 61789, receiver 2, sender 4. node 1
CALLING GM

b1 2
619 ey
&20 2
621 2
622 2
623 2
624 2

/#% QUEUE OVER THRESHOLD FOR CONSUME QUEUE */
INSTRUCT opcode 42, time 62456, receiver 1, sender 2, node 1
CALLING SCH

625 1 2

&246 1 2

&27 i 2

A&23 1 2

629 1 2

&30 1 2
/# RERQUEST GRAFH VARIABLE. SAME INSTRUCT BUT IT #/
/% RGV GAVE IN ON PART OF A TIME UNIT AND WAS */
/# RESCHEDULED LATER IN THE TIME UNIT. #/

0l

INSTRUCT opcode 47, time 63029, receiver 2, sender I node
CALLING GM
INSTRUCT opcade 47. time 43044, receiver 2 sender 3, node
CALLING GM

0y

631 1 2
632 1 2
&33 1 2
&34 1 2
&S5 1 2
636 1 2
&37 1 b

633
639
640
641
642
&43
644
&45

/% ACCEPT GRAFPH VARIAEBELE.
INSTRUCT opcode
CALLING AF ‘

&46
647
&4
649
&S50
651
652

et e B s

MRIRRIR

25

INEANANONANIEA

time 64554,

/% GOT FOR WRITE GQUEUE #/

INSTRUCT orcode 42,
CALLING sSCH-

633
654
&35
636
&57
658

/% REQUEST QUEUE
INSTRUCT opcode 50,
CALLING GM

&SS9
660
661
662
&63
664
4665
666
&67
663
&&69
670
671
672
&73
674

[T

1

. et et

RHRNNNNNRNRNEPDNR

Wwwown

FROM AP TO GM FOR NODE 3%/

INEIEANCEARCEA)

time 65261,

time 65834,

receiver 3,

receiver 1,

receiver 2,

/# ACCEPT Q®UEUE FROM GM TO AP FOR NODE 3#/
INSTRUCT opcade 4,

CALLING AP

675
676
&77
678
&7

O3 O) 03 0

time 67424,

receiver 3,

sender 2,

sender 2

sender 3,

sender 2,

"’i‘
on

NODE 3 TRYING TO EXECUTE #/

node 3

node 1

node 3

node 3

630
631 3
/# REQUEST QUEUE FROM AF TO GM FOR NODE 3 #/
/% NOTE NODE 3 HAS TWOD INPUT QUEUES (2 % 4) %/
INSTRUCT apcode S0, time 623185, receiver 2, sender 2. node 2
CALLING GM

A

2.

682 2 3
633 2 b
684 2 c;
43S 2 =
686 2 3
&87 2 =
&83 2 2
639 2 3
&90 2 3
691 2]
&2 2 3
&3 2 =
694 2 3
695

&94

&I7

698

/# ACCEPT GQUEUE 4 FROM GM TO AF FOR NODE 3%/
INSTRUCT orcode 4, time 69846, receiver 3, sender 2, node 3
CALLING AR

LI 3
/% CHANNEL 1 FIRELD AGAIN #/
INSTRUCT opcode 30, time 70000, receiver 4., sender 4, node 1
CALLING IOPF

700 i 4
701 3 4
702 3 4
703 3
704 =
705 b

/# CHANNEL 1 FIRED AND IS WRITING TO RQUEUE 1 #/
INSTRUCT opcode &4, time 7054646, receiver 2, sender 4, node 1
CALLING GM

706 2 3
707 2 I
708 2 3
709 2 b
710 2 3
711 2]
712 2 e
713 2 b
714 2 3
713 2 o
716 2 3
717 2 =
718 2 3
719]

720

721
D
L&

723

724

725

7246

727
/% NODE 3 COMPLETED EXECUTION AND IS WRITING QUEUE S/
INSTRUCT opcode 464, time 72753, receiver 2, sender 3, node 2
CALLING GM

728 2
729 2
730 2
73 2
732 2
733 2
734 2
735 2
736 2
737 2
738 2
739 2
740

/% QOT FOR EXN AND WRITE RUEUE#*/
INSTRUCT oPpcode 42, time 74001, receiver 1, sender 2, node 1
CALLING SCH

741 1
742 1
743 1
744 1
/# READY FOR INSTRUCT STREAM SINCE AF FINISHED #/
/% SET UP MODE */

INSTRUCT opcode 45, time 74449, receiver 1, sender 3, node 2
CALLING SCH

745 1
746 1
747 1
743 1
749 1
750 1

/¥% WAS RESCHEDLWLED FROM TIME 745 #/
INSTRUCT opcode 45, time 735001, receiver 1, sender 3, noade 3
CALLING SCH

751 1
7352 1
753 1
754 1
735 1
756 1
757 1
758 1
759 1
760 1
761 1

762
763
764
765
766
767

/# SEND INSTRUCT STREAM. NODE 2 JUST FIRED #/

INSTRUCT opcode 53, time 746703, receiver 5, sender 1, node 2

CALLING GM

b s e

7468 S
769 S
770 S
771 S

/% GOT BUT CHANNEL IS BUSY —-- QUEUE S and EXECUTE NOQDE & #/
INSTRUCT opPcode 42: time 77176, receiver 1. sender 2, node 3
CALLING SCH

772 S
773 S
774 S
7735 S
774 S

/% CONSUME QUEUE EXECUTE NODE 3%/
INSTRUCT opcode 72, time 7768&» receiver 2, sender 3, node 3
CALLING GM

777 2 S
773 2 S
779 2 S
730 2 S
781 2
732 2
783 2
734 2
785 2

/% QCCEPT INSTRUCT STREAM FOR NODE 2 FROM GMS TO AP #/
INSTRUCT opcade 3, time 78554, receiver 3, sender 5, node 2

CALLING AF

786 2 3

737 2 3

783 2 3

739 e

790 3

791

792

79%

794

793

7964

797

79¢€

799
/% EXECUTE INSTRUCT STREAM. GUEUE T OR CHANNEL 3 #/
/# I3 BEING WRITTEN */

INSTRUCT opcode 24, time 79904, receiver 4, sender 1, node 3
CALLING IOFPP

/¥ EXN FOR NODE 1 AND QIUEUE 1%/
INSTRUCT oprcade 30, time S0000, receiver 4, sender 4, node 1

CALLING IOPP

800 4
301 4
202 4

/% REQUEST RUEUE FOR WRITING TO CHANNEL 3 #/
INSTRUCT opcode 50O, time 30204, receiver 2, sender 4. node
CALLING GM
/# FPREEMPTED BY EIS AND NOW EXECUTINT EXN #/
INSTRUCT opcode 30, time 20204, receiver 4, sender 4, node |1
CALLING IOPF

203 2 4
/% QOT #/
INSTRUCT opcode 42, time S0372, receiver 1. sender 2, node
CALLING SCH

(1]

804 1 2 4
205 1 2 4
206 1 2
207 i 2
808 1 2

/# WRITE QUEUE FOR QUEUE 1 TRIGGERELD BY EXN. RESCHEDULED #/
INSTRUCT opcode &4, time 30864, receiver 2, sender 4, node 1
CALLING GM

/% RESCHEDULED #/

INSTRUCT opcode 72, time 80882, receiver 2, sender 3, node 3
CALLING GM

£09 1 2
210 1 2
S11 1 2
812 1 2
313 1 2
214 2

/# RESCHEDULED WRITE QUEUE FOR EXN AND QUEUE 1+/

INSTRUCT orcode 64, time 81424, receiver 2. sender 4, node 1
CALLING GM

/# RESCHEDULED AGAIN #/

INSTRUCT opcode 72, time 81426, receiver 2, sender 3, node
CALLING 5M

3

215 2

816 2

=217 2
/% ACCEFT G@UEUE FROM GM.TO IOP. OQOUTPUT CHANNEL = */
/% TRIGGERED. ‘ ®/

L)

INSTRUCT oecode 4, time 51774, receiver 4, sender 2, node =
CALLING IOPP

g18 2 4
219 2 4
520 2 4
321 2 4
g2z 2 4
823 2 4
o224 2 4
325 2 4

100

326 2 4
/% CONSUME QUEUE 4. NODE 2 COMPLETED EXECUTION #/
INSTRUCT opcode 72, time 82681, receiver 2, sender
CALLING GM

[
L)

node 3

227 2 4
323 2 4
329 e 4
330 o2 4
351 2 4

/# 0T FOR QUEUE 1 FOR EXN #/
INSTRUCT opcode 4Z, time 83114, receiver 1, sender 2, node 1
CALLING SCH

832 1 2 4
233 1 2 4
o34 1 2 4
335 1 2 4
8586 1 2 4

/% REGQUEST GRAFPH VARIABLE FOR NODE 2 %/
INSTRUCT opcode 47, time 334687, receiver 5. sender
CALLING 15M

237 1 4 .. %S

332 1 4 5
INSTRUCT orPcode -4, time S3881. receiver 1, sender 2, node
CALLING 3CH)

)

node

03
-

B3 rD

0

839 1 S
840 1 S
241 1 S

/% SUPERFICIAL REPORT NODE DONE #/
INSTRUCT opcode -4. time 84114, receiver 1. sender 2, node
CALLING SCH

w

842 S
343 S
244 S
8435 =]
844 S
347 b=
848 S
347

850

351

/# ACCEPT GRAPH VARIABLE FOR NODE 2 #/

INSTRUCT orpcode 2, time 35174, receiver 2: sender S, node 2
CALLING AF

=52 3
353 =2
354 3
855 3
8556 i
357]
258 3
359 3

/¥RQUEUE UNDER THRESHOLD #/
INSTRUCT opcode 44, time 85919, receiver 1, sender 2, node 3
CALLING 3SCH

101

2460 i 3
Si6l 1 3
362 1 =
2463 1 3
3464 1 =

/% REGUEST GQUEUE = FOR NODE 2 #/
INSTRUCT opcode S50, time 36492, receiver 5, sender 3, node 2

CALLING GM

8635 1 3 S

366 1 3 =]

267 1] S

368 1 3 S

869 1 = S
/% INPUT OUTPUT PROCESSOR COMPLETED OQUTPUT TO CHANNEL #/
/% READY FOR INSTRUCT STREAM. */

INSTRUCT opcode 45, time 56960, receiver 1, sender 4. node 3
CALLING 3CH

870 1 3 S

371 1 3 S

272 1 S

873 1 5

874 1 S

375 1 =

276 1 5

377 1 S

378 1 S

]79 1

380 1

g3t 1

ge2 1
/# ACCEPT QUELUE FOR NCODE 2. NODE 2 WILL COMMENCE 3/
/% EXECUTION IN THE ARITHMETIC PROCES30R. */

INSTRUCT orpcode 4, time 388222, receiver 2, sender 5, node &2
CALLING AP

283 1]

224 1 =

2895 1 3

386 1 3

=87 3

333 =

2389 =

320 =

591 3

372 =
/% CONSUME GUELUE. IOPFP I3 CONSUMING GUEUE AFTER WRITING®/
/# IT TO AN OUTPUT CHANNEL 3. */

o

INSTRUCT oPcode 72, time 89248, receiver 2, sender 4, node &
CALLING GM

893 2 3
394 2 3
595 2 3
396 2 3
§97 z 03
893 2 3

399 2 3
/# EXN AGAIN FOR CHANNEL 1 #/
INSTRUCT opcode 30, time 70000, receiver 4, sender 4.
CALLING IOPP

200 2 2 4
201 2 3 4
202 2 e 4
203 2 3

S04 2

205

/% WRITING QUEUE FOR CHANNEL 1 FOR EXN #/

INSTRUCT oPcode 44, time 70524, receiver 2, sender 4,

CALLING GM
206 2
*07 2
203 2
Y09 2
210 2
@11 2
212 s
213 2
214 2

/# QUEUE UNDER THRESHOLD +#/
INSTRUCT opcode 44, time 9146646, receiver 1, sender =,
CALLING SCH

915 1 2
216 1 2
217 1 2
213 1
219 1

102

e

node

/# NODE 2 COMPLETED SET UP MODE. READY FOR INSTRUCT #/

/¥ STREAM SENT TQ SCHEDULER
INSTRUCT opcode 45, time 91934, receiver 1, sender =,
ZALLING SCH

220 1
921 1
922 1
923 1
924 1

/# READY FOR INSTRUCT STREAM RECEIVED BY SCHEDULER #/
/% BUT BLOCKED BY QUEUE UNDER THRESHOLD. RESCHEDULED
INSTRUCT opcode 45, time 9246466, receiver 1, sender 5.
CALLING sSCH

925 1
P26 1
927 1
923 1
P29 1

/# WRITE QUEUE 4 FOR NODE 2 EXECUTION
/% WRITE QUEUE INSTRUCTS ALWAYS GIVE QUELUE NUMBER#/
/# OF NODE AT HEAD OF THE GUEUE.
INSTRUCT opPcode 64, time 72974, receiver 2, sender 3,
CALLING GM 930 1 2

P31 1 2

*/
node

A

*/

node

#*/

#/

node

node 1

node 1

0,

]

[ay
<
f_i_'l

P32 1 2

gcic 1 2

34 1 2

Y35 1 2

Y36 1 2

w37 1 2

38 1 2

Y3 1 2

240 1 2

w41 1 2
/% READY FOR INSTRUCT STREAM TRIGGERED NODE 1 ON READY#/
/% LIST IN SCHEDULER. SEND INSTRUCT STREAM TO GM2 #/
/% TO START NODE 1 EXECUTING. #/

INSTRUCT orPcode 353, time 94173, receiver 2, sender 1, node 1
CALLING GM

942 2
/# RESCHEDULED FROM TIME 942 #/
INSTRUCT opcode 33, time 24234, receiver 2, sender 1. node 1
CALLING GM

43

*44

45

V44
/% QUEUE OVER THRESHOLD FOR QUELE 1 #/
INSTRUCT opcode 42, time 94641, receiver 1, sender 2, node 1
CALLING SCH ‘

PPN

247 1 2
45 1 2
249 1 2
250 1 2
951 1 2
/# CONSUME GQUEUE 3 FOR NODE 2 EXECUTION. #/

INSTRUCT opcode 72, time 75151, receiver 3, sender 3, node 2
CALLING GM

P52 1 2 S
953 1 2]
254 1 2 5
P50 1 2 =
P56 1 =
957 S
@58 S

/% ACCEFT INSTRUCT STREAM FROM GM TQO AF FOR NODE 1 3/
INSTRUCT copcode 3. time 23700, receiver 3, sender 2, node 1
CALLING AP

259 3 S

260 3 S

261 3 S

962 3 o

P63 i S :
/#% SUFPERFICIAL REFORT NODE DONE. ®/

INSTRUCT opcode —4, time ?6351, receiver 1, sender 3. node 2
CALLING SCH

264 3

P65

104

Pbb

267

PHE

26

P70

@71

P72

@73
/% GUEUE OVER THRESHOLD FOR WRITE RUEUE FOR NODE 2 #/
/% EXECUTION. #/
INSTRUCT opPcode 42, time 97383, receiver 1, sender 2, node !
CALLING SCH

[

974 1
DTS 1
976 1
977 1
278 1
IT7? 1
/% REQUEST GRAFH VARIABLE FOR NODE 1 EXECUTION. */

INSTRUCT opcode 47, time 97956, receiver 2, sender 3, node 1
CALLING oM

280 1 2

81 1 2

982 1 2

283 1 2

784 1 2
/% GQUEUE UNDER CAPACITY SENT TO SCHEDULER FROM GM. #/
/¥ FUEUE 3 ON CHANNEL 2 HAS GONE UNDER CAPACITY. */
/# CHANNEL WILL BE TURNED BACK ON WITH A CNDT #®#/
/% INSTRUCT (CONTINUE NODE DATA TRANSFER) */

[

INSTRUCT opcode 43, time 984322, receiver 1, sender S, node
CALLING SCH

985 1 2
86 1 2
w87 1 2
933 1 2
989 1 2
Y90 1 2
w1 1 by
92 1

993 1

/% RESCHEDWULED FROM TIME 985 #*/

INSTRUCT opcode 43, time 2?9333, receiver 1, sender 3, node 2
CALLING SCH
/# ACCEFT GRAFH VARIABLE FROM GM TO AP FOR NODE 1
INSTRUCT opPcode 2, time 99336, receiver 3, sender
CALLING AF

*/
2, node 1

994 1 3
P95 1 3
994 1 3
397 1 3
a4 1]
DY 1]

/% CHANNEL 1 HAS FIRED #/

105

INSTRUCT opcode 30, time 100000, receiver 4, sender 4, node 1
CALLING ICQPF
1000 i = 4

FUNCTIONAL ELEMENT UTILIZATION

FEID - TYPE UTILIZATION
1 SCH 42
2 5 40
c AP 30
4 IOP z
S GM | 14

TOTAL TIME = 1000.

NODE EXECUTION INFORMATION

NODE ID OPCODE NODE FIRINGS
1 14 2
2 23 2
3 25 1

CHANNEL. EXECUTION INFORMATION
CHANNEL ID CHANNEL FIRINGS

10

L]
-

1

Wk -

GAUEUE EXECUTION INFORMATION

QUEUE ID DATA ITEMS HEAD NODE TAIL NODE
1 3 1 1
2z 5 3 1
= 10 2 z
4 11 3 z
5 0 a 3

\

VITA
Marilwn Opitz Aiken
Candidate for the Degree of

Master of Science

Thesis: ENHANCED MODULAR SIGNAL PROCESSOR TIMING SIMULATOR
Major Field: CompPuting and Information Sciences
Bicosrarhical:

Fersonal Data: PBaorn in Chickasha, Cklahoma, QOctober &,
1760, the dausghter of G. W. and Thelma G. Opitz.
Married to Calvin E. Aiken on June 12, 1982,
Daudhter Christina 0. Aiken born Sertember 2,
i9g4,

Education: Graduated from Chickasha High Schaal,
Chickasha, Qklahoma, in Mavs 19735 received
RBachelor of Science Dedree in Electrical
Engineering from the University of QOklahoma in
May, 1%2235 comeleted requirements for the Master
of Science dedree at Oklahoma State University
in Mawvw, 1¥27.

Frofessiocnal Exrerience: Endineer, Halliburton

Services, Duncan. Jklahoma, Jdune. 1932, to
August, 173435 Graduate Assistant, Derpartment
of CompPuter Science. Qklahoma State Universitw,
Navembaer, 1924, to Januarw,. 1955,

)]

