
ENHANCED MODULAR SIGNAL

PROCESSOR TIMING

SIMULATOR

BY

MARILYN OPITZ AIKEN ,
Bachelor of Science

in Electrical Ensineerins

UniversitY of Oklahoma

Norman, Oklahoma

1982

Submitted to the FacultY of the
Graduate Coll~se of the

Oklahoma State UniversitY
in Partial fulfillment of

the requirements for
the Desree of

MASTER OF SCIENCE
May, 1987

--rhts\-s
\ qe1
Aa'1\e
<Uf-~

ENHANCED MODULAR SIGNAL

PROCESSOR TIMING

SIMULATOR

Thesis APPr-oved:

---ojg /l :~~- ·-:_~/l.!-~--------~~-~~is Adviser- .

--~~--~~-~----------~-
tfj JJ J ~Ave

--
_____ '21.~21~--Q~_

Dean of the Gr-aduate Collese

ii

12~/55""/3

PREFACE

A timins simulator for a static Sisnal P~ocessins

GraPh Notation sraPh was develoPed for the Enhanced Modular

Sisnal Processor, a data flow comPuter develoPed by Bell

TelePhone Laboratories for the United States NavY. The user

inPuts the sYstem confisuration and the toPoloSY of the

To imPlement channels, a constant rate for each

channel is read and the timins si~~lator uses this rate to

detect inPut ~ueues over threshold.

The outPut consists of the sYstem confisuration, ~ueue

data information, Functional element-utilization, node exe-

cution information, and an oPtional timins diasram. This

allows the user to simulate sraPhs For comParison or to

simulate modifications to the sYstem and test the feasibil

itY of the ProPosed modification.

I wish to thank the Professors of the Computins and

Information Sciences DePartment For their suPPort and

encourasement durin~ mY stav at Oklahoma State UniversitY.

In Particular, I wish to exPress mv sincere thanks to Doctor

Thoreson for her suidance and continued Proddins. I want to

thank her For lettins me make mY own mistak~s and then

encourasins me to try asain and not sive uP.

iii

I also wish to thank mY other committee members, Doctor

D.O. Fi$her and Doctor G.H. Hedrick, for their advisement in

the course of this work and mY staY at Oklahoma State

UniversitY.

SPecial thanks so to mY familY for their continued suP

Port and concern, but most of all I want to thank mY husband

and daushter, Calvin and Christina, for their constant sup

Port and encourasement.

iv

ChaPter

I.

II.

I I I.

TABLE OF CCINTENTS

INTRODUCTION. •
IntrodYction to Data Flow. • ••••
Data Flow ArchitectYres •••••••••
Sisnal Processin~ and Data Flow •••
ObJectives • • • • • •
Reasons for SimYlator •••

ENHANCED MODULAR SIGNAL PROCESSOR COMMON
OPERATIONAL SUPPORT SOFTWARE METHODOLOGY. •

Sisnal Processins GraPh Notation •
Command Prosram. •

ENHANCED MODULAR SIGNAL PROCESSOR •

Arithmetic Processor •••••
Command Prosram Processor.
Control BYs ••••••
Data Transfer Network. •
Global Memorv ••••••
InPYt/OYtPYt Processor
SchedYler •••••

. . .

Pase

1

2
4
6
8

10

11
12

14

15
17
17
18
20
20
21

IV. ENHANCED MODULAR SIGNAL PROCESSOR TIMING
SIMULATOR • • • • • • • • • • • • • • • • 24

Data Structures •• 24
Instryctions • • • • • • • • • • • • 26
Initialization • • • • • • • • • •• 28
InP•Jt. . . . • . . • • • ..
t:lu tPut • • . . . •
Functional Element Conflict ResolYtion • .-..-.

.:J..:.

Main Prosram • • . .-. .-.
• • • • • ..:J.::.

SYPPort ProcedYres • • • • • • • • • 34
Arithmetic Processor • • • • • . , • • :35
Control BYs/Data Transfer Network. • • • 36
InPut OutPYt Processor • • • • • • • 36
Gl•:tbal Memor·v. 37
Scheduler •••••••• 38

v

v. TEST SIMULATION
VI. CONCLUSIONS

Future Work.

:;ELECTED BIBLIOGRAPHY.

APPENDIXES • • • . • • • • . . • . •

APPENDIX A - FIGURES. • • .

41

44

45

46

49

50

APPENDIX B - ARITHMETIC PROCESSOR INSTRUCTIONS. 61

APPENDIX C - CONFIGURATION FOR TEST CASE. . • . 66

APPENDIX D - TOPOLOGY INPUT • • •

APPENDIX E - CONFIGURATION INPUT.

APPENDIX F - SIMULATION OUTPUT ••

. .

APPENDIX G - TIMING DIAGRAM SIMULATION OUTPUT

vi

68

71

75

78

LIST OF FIGURES

1. SimPle Data Flow GraPh ..•
2. Data Flow ActivitY TemPlate for Fisure 1 ••

3. An Enhanced Modular Sisnal Processor
Common OPerational SuPPort Software
MethodoloSY SamPle GraPh .•.•••

4.

5.

6.

7.

Sisnal Processins GraPh Notation of· Fisure 3.

List of Command Prosram Instructions.

Enhanced Modular Sisnal
SYstem Architecture •

Processor

Control Bus Interface ••

8. Ti~ins Simulator HierarchY Chart.

•;o. GraPh Execution Process •.••••

10. List of Primitives Not ImPlemented .•

11. Test Case ToPoloSY •.••••••.•

vii

Pase

51

51

52

~--. ·-'·-='

54

55

56

57

~·~ ·-··-·

60

CHAPTER I

INTRODUCTION

John von Neumann in 1946 introduced the concePt of a

sequential, centralized control executins instructions and a

linear memorY storins instructions, data, ~nd results. The

von Neumann concePt has thrived in comPuter desisn since its

introduction in 1946. Advances in semiconductor device

technoloSY and look-ahead instruction decodins have Produced

va~t imProvements in· sPeed of executiort. Future advanc~s in

semiconductor device technoloSY are limited bv heat dissipa-

tion and basic PhYsical 1 aws, thus a new aPProach for

increasins the sPeed of execution was necessarY. Orsaniza

tional advances such as PiPelinins increase Performance, but

imProvements are limited bY the sequential

von Neumann concePt.

ExPloitins Parallelism was seen as the solution to

future imProvements in execution SPeed. The von Neumann

machine with its incremental Prosr~m counter and with Par-

ti.a.l results beins Passed between instructions via a memorv

cell made the sPecification~ of parallelism difficult.

Methods to exPlore and extract Parallelism have Proved use

ful and sisnificant.

1

Introduction to Data Flow

In 1966, KarP and Miller <19) introduced the concePt of

data flow. In the 1970's, Jack Dennis aPPlied the data flow

concePt to the desi~n of comPuter architectures. Data flow

is based on two Principles. asynchronY and functionalitY

<16,17>. When aPPlied to data flow, asynchrony imPlies an

instruction is executable when and onlY when all required

inPuts are available. FunctionalitY imPlies all instruc-

tions are functions which. bv definition, necessitates an

instruction execute without side effects. The first Princi-

Ple imPlies an instruction is tri~~ered at the earliest Pos-

sible moment in the execution of a Pro~ram, thus Parallelism

is imPlicitlY denoted bv the data flow method. The second

PrinciPle imPlies the Parallelism can be exPloited since the

order of execution of oPerations is without side effects.

Consequently, two enabled nodes can execute concurrentlY or

in either order without affectin~ the final results of the

task.

To exPlain whY these two PrinCiPles are si~nificant, an

introduction and exPlanation of data flow is necessarY.

Data flow is ba~ed uPon the flow of data throu~h a Prosram

in contrast to the von Neumann flow of control concePt.

Data flow can be~t be exPlained bv the us~ of data flow

Fi~ure 1 <APPendix A> Sives an examPle of a

simPle data flow sraPh. To fire node 1 which means to

execute the instruction at node 1, inPuts A and B must

both be present on the arcs to node 1. If onlY inPut A

::::

is Present or onlv inPut B, the node is not readY to fire.

UPon the recePtion of a data token (data item or inPut) on

both inPut A and inPut B, node 1 (and node 2 in the examPle)

will execute if two Processors are available, else one or

both will await an available Processor. I nter·med ia t•a

results will be matched with other inPuts to the succeedin~

node until all tokens are available. The node wi 11 then

fire. The Presence of the data or tokens causes the node to

fire, unlike the von Neumann concePt where the existence of

control, i.e. the Pro~ram counter, causes the node

<instruction) to fire. UPon exec•Jtion of node 1. a.nd node 2,

node 3 wjll be fired bY inPuts C and D.

In the comPuter, data flow Pro~rams a.re denoted bY

activitY temPlates. Fisure 2 ~ives the activitY temPlates

for the data flow sraPh in Fisure 1. In a data flow manner,

activitY temPlates are readY for execution uPon recePtion of

all oPerands and the result is emPtY. Classical data. flow

states that each inPut consists of a sin~le token and

that each outPut consists of a sinSle token. ThtJS a.

node cannot fire if the outPut has a token Present on the

arc. Modifications to classical data flow allow multiPle

inPuts and outPuts, but require token labelins to distin-

suish different instances of the inPuts and outPuts.

Data flow lansuases and da. ta f lr)W architectures

exPloit Parallelism. Computer data. flow la.n~ua.ses are in

senera.l desisned to overcome three limitations to von Neu-

mann la.n~ua.ses. First is the comPlexitY of resolvins all

4

Parallelism in current serial lansuases. Second. side

effects from Procedur·es, so to's, and multiPle assisnments

<variables beins reassisned more than once) make exPloiting

Parallelism difficult. Third~ serial lan~uases are diffi-

cult to verifY. Much research into structured Prosrams and

Prosram verification has been d6ne to serial lansua~es.

Data flow lansuases can use this research to incorPorate

structurins and ease of verific~tion into the develoPins

lansuases.

Data Flow Architectures

Data flow architectures are beins desisned to exPloit

Parallelism, to utilize Lar~e Scale Intesration and Verv

Larse Scale Intesration technolosies effectivelY. and to

create an easier to Prosram machine. To exPloit Parallelism

is actuallY a method to obtain hisher sPeeds which is the

final Soal. Effective utilization of Larse Scale Intesration

and VerY Larse Scale Intesration technolosies will imProve

chiP caPacitY and will caPitalize on the cost effectiveness

of larse numbers of a few tYPes of functional elements. The

soal of the data flow architecture is a comPuter with hish

Performance at an accePtable cost. that is ~lso reliable.

Extensive research has been made into data flow

lansuases and data flow architectures. Numerous data flow

lansua~es have been develoPed such as V~l. ID, and LAU.

These lansuases focus on imPlicitly exPressins Parallelism.

5

Similarly, extensive research has been made into data

flow architecture. The Massachusetts Institute of Technol-

osv static data flow architecture ProPosed bv Dennis and

Misunas (9) in 1975 is an examPle of a- rins-based data flow

architecture. A PrototYPe of the ProPosed architecture has

not vet been built, but the basic ideas have been us~d in

Texas Instruments Data-Driven Processor, the Toulouse LAU

svstem, and the Manchester Data Flow Processor <22).

The Texas Instruments Data Driven Processor executes

Fortran ProSram&. Each oPeration or node has a ~aximum of

thirteen inPuts and thirteen outPuts. MemorY is local to a

Pr·ocessor, th~s each node is assisned a processor. Results

from node executions are transferred over the interconnection

network to the E-bus. The Data-Driven Processor with four

Processors has been built and tested, but was not commer-

ciallv exPloited.

The Toulouse LAU Svstem, Texas Instruments Data-driven

Processor, and the Manchester Data Flow Processor are all

rinS-based data flow architectures. The Toulouse LAU Svstem

has slobal memories, an execution unit of one to thirtv-two

Proces&ors, a control unit, and an interface. Each no:•de has

a maximum of two inPuts and several outPuts. A PrototYPe of

the LAU Svstem with thirtv-two Processors has been built and

tested. The Texas Instruments and Toulouse desisns ~re

static architectures which allow onlv one instance of a

node, while the Manchester Data Flow Processor is a dvnamic

architecture with more than one instance of a node allowable .
•

6

Each node has a token associated with the node distin-

quishins the node from other instance• of the node.

tions have shown rins-based architectures have a bottleneck

in the communication Paths (15~22~25~28>.

The Utah Data-Driven Machine attempted to overcome this

communication Path Problem with a tree structure and the

Irvine Data Flow machine uses aN* N communication network

<where N is the number of processinS element•> f•:rr· token

P~ssins. The Utah Data-Driven Machine is an eisht leaf tree

structure with the suPerior elements at the root and infe-

rior elements at the leav~s. The s•JPer i or

schedules the work of inferior Processors in the tree struc

ture. A workins PrototYPe of the machine is oPerational and

beins evaluated. The Irvine data flow machine was desisned

to exPloit VerY Larse Scale Inte~~ation and to Provide a

hish-level~ hishlv concurrent Prosram orsanization <25>.

Packet communication is over a N * N communication network

for token Passin~ between Processins elements.

Sisnal Processins and Data Flow

These data flow machines and others Proved the feasi

bilitY of data flow architectures. Simulations of desiYns

showed bottlenecks that imPeded Potential e:x:ecut iCon SPeed

imProvemer.ts. Usins information Sained bv simulations

and/or re~ults from other data flow desisns, American Tele

Phone and TelesraPh Bell Laboratories commenced research and

desisn on a data flow architecture for sisnal or data Pro-

7

cessins. In 1982, under contract to the United States Navv.

American TelePhone and TeleSraPh Bell Laboratories channeled

this research into the underlvins desi~n for the Enhanced

Modular Sisnal Processor, the United States N~vv's next sen

eration standard sisnal Processor (3).

In research concurrent with research on the Enhanced

Modular Sisnal Processor. the feasibilitY of executins sis

nal Processins aPPlications to a data flow architecture was

investisated bv a research srouP at Helsinki UniversitY of

Technolosv, Helsinki <18>. Their simulation revealed disi-

tal si~nal Processins als~rithms are senerallY data value

indePendent, i.e. the sequencins of oPerations in the also

rithm is indePendent of the data values. Disital sisnal

Processins aPPlications are rePresented bY block diasrams of

hish-level sisnal Processins operations, e.s., F~st Fourier

Transforms and bandwidth filterins. The~e blocks or hish-

level oPerations tYPicallY are free of side effects. data

value indePendent, and of hish comPutational comPlexitY in

terms of elementarY arithmetic operations. A continuous

stream of source data beins Processed bY a rePeatedlY exe

cuted fixed set of alsorithms is the scenario in a real-time

disital sisnal Processir•S task. The architecture Hartimo.

et al (18) ProPose, a Data Flow Sisnal Processor. is a

dYnamic token labelinS architecture with Packet communica-

tion. The results of the simulation showed the Data Flow

Sisnal Processor architecture can efficiently handle real

time sisnal Processins aPPlications.

8

The obJective of this work is to desisn and imPlement a

ti~ins simulator for the Enhanced Modular Sisnal Processor

<EMSP>. A timins simul~tor imPlements the timins re~uired

to execute a ~eries of instructions in contrast to a func

tional simulator which imPlements the actual outPut result-

ins from the execution. Thus the EMSP timins simulator

simulate& the timins to execute a Sisnal Pr·ocessins GraPh

Notation <SPGN> static ~raPh. The OutPut for the simulator

is the utilization factors for each functional element, the

number of firinss (executions> for each node, the number of

channel fi~in~s for each channel, and the state of the

queues when the simulation ends. An oPtional outPut is a

timins chart with oPcode identifiers for instructions.

Simulation timins dePends on the execution time of Primi

tive& <alsorithms) and the number of words in a data

transfer on the Control Bus or the Data Tran~fer Network.

The simulator handles these calculations bY usins formulas

derived From the Primitive manual ·(13> and bY knowins the

tr·ansfer rate and transfer Protocols on the Control Bus and

the Data Transfer Network. The user can answer all inPut

queries bY lookins at the SPGN sraph, the command Prosram.

and the svstem confisuration for the EMSP.

The followins chaPters more fullY exPlain the EMSP tim

ins simulator. ChaPter II discusses SPGN and command Pro-

sram&. ChaPter III discusses the EMSP architecture.

ChaPters IV sives the details of the desisn and imPlementa-

9

tion of the EMSP timins simulator. ChaPter V ~oes throush a

test ~imulation of a simPle sraPh on a sParse EMSP confi

suration. ChaPter VI is a summarY and a discussion of

future work.

Reasons for Simulator

Simulations of ProPosed com~uter architectures have

become a valuable desisn tool. Simulators have evaluated

the Performance of manY data flow architecture desisns.

The~e simulators reveal desisn flaws and unexPected comPli

cations. Simulations of data flow comPuters have Proved the

fea~ibilitv of the data flow methodoloSY.

The timins simulator for the Enhanced Modular Si~nal

Proce~sor will be used ta evaluate the Enhanced Modular Sis

nal Processor and anY future modifications to ~he Enhanced

Modular Si~n&l Processor. Research into the effects of dif

ferent memorY manasement schemes has been ProPosed. The

timins simulator will be used a~ a tool in these evalua

tions. Research into the effects of different sYstem confi

surations will Provide useful information on the limits of

the desisn. The effects of addins resources will reveal

oPtimum confi~urations and functional element selections.

Saturation Points for the sYstem will reveal feasibilitY

information on the maximum utilization factors. The

Enhanced Modular Sisnal Processor timins simulator will Pro

vide an imPortant and useful tool in the evaluation of the

Enhanced Modular Sisnal Processor and in the evaluation of

ProPosed modifications.

CHAPTER II

ECOS METHODOLOGY

The Enhanced Modular Si~nal Processor Common 0Fera-

tiona] SuPPort Software methodolosv was develoFed to buffer

a si~nal Processin~ ensineer from the Frosrammin~ of a ~is

nal Processins aPPlication and the architecture of the

maahine executins the Pro~ram. After dealins with the pr·ob

lems associateJ with the Advanced Sisnal Processor. the Navv

realized a new methodolosv was needed to reduce develoFment

and maintenance costs of aPPlication software.(2) The diffi

culty in Prosrammins aPFlications led the NavY to FroFose A

Common OPerational. SuPPort Software methodology. A Common

OPerational SuPPort Software methodolosv CACOS> was written

in a ~raPh notation that Paralleled the block diasram struc-

ture of a diSital sisnal Processins aFFlication.

tions, or Primitives as theY are more commonlY called, are

imPlementation dePendent. Thus the Disital Sisnal Process-

ins ensineer could SPecifY the Prosrams in a sraPh notation

easilY translatable to A Common OPeration SuPPort Software

methodolosv (2,11.29>.

10

1 1

Sisnal Proc~ssins GraPh Notation

An Enhanced Modular Sisnal Processor Common OPerational

SuPPort Software methodolosv <ECOS> sraPh executes accordins

to data flow PrinciPles. It does not adhere to classical

data flow in two asPects (11). Classical data flow requires

one token or data element Per arc. In contrast. ECOS renam*s

the arcs as queues and allows multiPle instances of data

elements per queue. Each node execution can require more

than one data element Per queue. A threshold valu~ sPeci

fies how manY element~ must exist on a queue before the node

can e>~ecute. Each node execution also specifies an offset

<number of data elements to skiP over> and a read amount

<number of data elements to read) and a consume amount

<number of data elements to consun.e>. After n•:.de e>~ec•Jtir:rn.

the number of data elements written to the resPective r:rutPut

~ueue<s> is determin*d bY the Primitive based on the inPut

re.a.d amounts. A Common OPerational

methodoloSY allows more than one instance of a nr:rde to

execute at a time, but sives a warnins of po~sible indeter-

minacv if this PrinciPle is Practiced. ECOS

differs from classical data flow in the nonsPecification of

rtode execution. Each node rePresents a hiShl····· r:r:rmple:>:: r:ons-

Putation whose imPlementation is not sPecified in A Common

OPeration a 1 SuPPort Software me tho do 1 oSY. Titus, the execu

tion of a sinsle microProSrammed node instruction may exe

cute in a traditional von Neumann method.

Fisure 3 (APPendix A> shows ~ s~mPle Enh~nced Modular

Sisnal Processor Common 0Per~tional SuPPort Software metho-

dolosv sr~Ph. Node 2 and node 3 can execute concurrentlY or

in either order ~fter the execution of node 1. The Enhanced

Modul~r Sisn~l Processor Common 0Per~tion~l SuPPort Softw~re

methodolosv sraPh is translated to Sisnal Processins GraPh

Not~tion in Fisure 4 <APPendix A>. Sisn~l Processins GraPh

Notation denotes a static SraPh or sr~Ph realization which

is comPiled into a load module.

Jhe Enhanced Modular Sisnal Processor executes the ECOS

methodolosv. The EMSP suPPorts ECOS Primitives of a hiSh

comPutational comPlexitY to reflect one or more blocks of ~

disital sisnal Processins sr~Ph. The oPer~tions ~re

microPro~rammed, machine indePendent, and executed bY

sinsle-thread, control flow ~rchitectures <12>, while ACOS

is machine indePendent and follows a d~ta flow methodolosv .

. The Enh~nced Modul~r Sisnal Processor ~dheres to the Princi-

Ple of one instance of a Sr~Ph node inst~nce.

Command Prosram

To manase sraPhs, Comm~nd Prosrams were developed.

Comm~nd Prosr~ms, which ~re ~PPlication dePendent, control

sraPh execution and interaction. Command Prosrams are writ-

ten in a Hish Order L~nsuase such as ADA and use a set of

Procedure c~lls (Command Prosram Sisnal Processin~ GraPh

Notation>. A command Prosr~m creates and controls a sraPh

realization into an executins sraPh instance. More than one

instance of a realization is accePtable. with each instance

beins created and manaSed bv a Command Prosram. Command

Prosram instructions are listed in Fisure 5 <APPendix A>.

CHAPTER III

ENHANCED MODULAR SIGNAL PROCESSOR

The Enhanced Modular Si~nal Processor is a distributed

control, multiProcessor architecture desisned to imPlement

Enhanced Modular Signal Processor Common OPerational SuPPort

Software methodology <2>. Under contract to the United

States Navy, American TelePhone and Tele~raPh Bell Labora

tories is designing the Enhanced Modular Signal Processor as

the Navv/s next generation standard signal processor (3).

IndePendent modules or functional elem~nts Partition the

task~ of control, memorY mana~ement, node schedulin~,

inPut/outPut, and node execution. This modular architecture

was chosen to meet design criteria related to throughput,

reliability, modularity, and ProgrammabilitY. ThroughPut is

imProved by the selection of the data flow methodology, th~

selection of a crossbar switch to handle multiPle data Paths

in Parallel, a token Passing control bus, and a seParated

svstem control. The data flow methodology was cho~en

because it naturallY exPloits the inherent Paralleli~m of

signal Processing aPPlications and because of the asYnchronY

and functionality of signal Proce~sin~ ~raPh nodes. Relia-

bilitY is handled bY constant self monitoring bv functional

elements, by backuP critical functional elements, and an

14

15

error recoverY mechanism. The modular structure of the

Enhanced Modular Sisnal Processor allows the addition of

Global Memories and Processors to incre~se memorY manasement

or processins Power. The criteria Pertainins to Prosramma

bilitY were met bY imPlementins the Enhanced Modular Sisnal

Processor Common OPerational SuPPort Software methodoloSY.

Each module of the Enhanced Modular Sisnal Processor

can execute concurrentlY with other modules. each module

executins a different function of the sraPh instance<s>.

Each module tYP~ has its own oPeratinS sYstem functions and

each Enhanced Modular Sisnal Processor function executes

asvnchronous.lv. Parallel Processins amons the Arithmetic

Processors was selected to meet the requirement of a

throu~hPut r~te of over a billion operations Per second

and the abilitY to UPSrade the system bY a factor of sixteen

from the minimum confisuration. The Enhanced Modular Sisnal

Processor sYstem architecture is shown in Fisure 6 (APPendix

A>.

Arithmetic Processor

The Arithmetic Processors execute the node instruction

(Primitive>. a microPro~rammed realization of a hishlY com-

PutationallY comPlex sisnal Processins alsorithm. e.s., Fast

Fourier Transform. Finite ImPulse ResPonse/Infinite ImPulse

ResPonse filters. beamformers. The Arithmetic Processors are

a sin~le-thread. control flow architecture desiSned to effi

cientlY execute vector multiPlY and add oPerations. which

are characteristic of si~nal Processin~ al~orithms. Each

Arithmetic Processor oPerates asYnchronouslY and indePen-

dentlv of other Arithmetic Processors. A sched•J 1 ed n•::.de

arrives at the Arithmetic Processor in the form of an

instruction stream and node setuP besins. After accePtins

the instruction stream and decodin~ the oPerands, the Arith

metic Processor requests all inPut queues and inPut ~raPh

variables from Global Memorie~. The Arithmetic Processor

accePts the queues and ~raPh variables from the Global

Memories and stores the data alon~ with the instruction

. stream in the node e>{e-cution and control 1 oca 1 m~morY. IJP•::.n

recePtion of all inPuts, the node is l'eadv to enter the e>~e

cution Phase where the node Primitive is executed in the

Arithmetic Processor. UPon comPletion of the execution

Phase, the node enters the breakdown Phase. Breakd•::.wn

includes the sendins of Write Queue and Write GraPh Variable

instructions for all outPut queues and sraPh variables and

the sendins of a Consume Queue instruction to the Global

MemorY for all inPut queues. Queues are not consumed until

the breakdown Phase because of fa.u 1 t tc•l erance. If a fault

occurs durins the execution of a. node. the :Sched•J 1 er·

reschedules the node on a. different Processor and the queue

will not have been corruPted in Global MemorY.

The Arithmetic Processor has seParate arithmetic and

control units and can SUPPort three nodes. one in each of

the three Pha~es: setup, execution. and breakdown. Tlri s

abilitY increases throu~hPut and allows overla.PPins or PiPe-

1inins of node executions. When a. node comPletes the &etuP

17

Phase. the Arithmetic Processor issues a Request for

Instruction Stream to notifY the Scheduler that the Proces

sor is· readY for another instruction.

Command Pr-o51r·am F'rocessor

The Command Pro51ram Processor •:•:.mmand

Pro51rams. handles err-or detection and recoverv. initiali-

zation. communication with external devices. and testin51 and

debu!:!sin51. The Command Pro51r-am Processor executes command

Pro51rams which start and stoP 51raPhs. start and stoP inPut

a.nd output, lin~ and unlink inPut and ·outPut queue~. and

create queues and 51raPh instances. The Command Pro51ram Pro-

ce~&or does not ParticiPate in 51raPh execution.

Pro51ram Processor can resPond to the failure of functional

elements bY reconfi51urin51 the Enhanced Modular Si51nal Pro-

cessor to remove the element in a 51raceful sYstem de51rada-

tion. SYstem initialization is handled bY the Command Pro-

sram Processor and the Command Prosram Processor communi

cates with each functional element at sYstem initialization

to verify its abilitY to respond. Testin51 and debu5151ins

instructions a.re Provided bY the Command Pro~ram Proces~or

durins the verification stases.

Control Bus

The Control Bus Provides a communication Path between

functional elements for control messa~es. The Contr·ol B•Js

uses a token Passins technique of arbitration. Messases are

tran&ferred on the Control Bus accordins to the followins

Procedure. Each functional el~ment uPon comPletins

1.-. C•

transmission on the Control Bus besins assertins the Count

Clock line <14>. See Fisure 7 <APPendix A>. Each Por·t

(functional element~ are located on Ports> increments its

internal counter value uPon receivins the Count Clock Tine

clock Pulse. If the internal counter value matches the

functional element~s unique count value and has a messase to

tr~nsmit, the functional element a~serts StoP Clock and

Places the destination Port identification word on the Con-

trol Bus. The destination Port resPonds with a Transmit

Successful <or Transmit Failure if a ParitY error occurs)

and the transmission of the control messase commences. To

Provide synchronization, when the functional element assert-

ins the Count Clock re~ches the end of the scan cYcle, it

asserts Reset Clock and all functional elements reset their

internal count value.

The Control Bus Provides bidirectional communication

between all functional elements. Messases Passed on the

Control Bus are short comPared to messases Passed on the

Data Transfer Network and are mainlY control and status

information. The Control Bus transf~rs messases over an -=··-·
bvte data Path asYnchronouslY at a maximum data rate of 4.61

mesabvtes Per second <14>.

Data Transfer Network

To avoid the bottleneck caused bv data Path contention

cited in manv Previous data flow comPuters. a Data Transfer

19

Network was desi~ned with one or two two bY two, f (IIJ r· b··,··

f•::.ur, eisht bY eist.t, and/or sixteen bY sixteen cro•sbar

switches. UP to N <N bY N switch) unidirectional communica

tion Paths maY be connected in Parallel, Provided each

switch inPut and switch outPut Port is unique with a maximum

seven mesabYtes Per second data transfer rate Per Path. To

increase the number of functional elements that can be con-

fisured, each switch inPut has a four to one multiPlexer

called a concentrator and each switch outPut has a one to

four demultiPlexer called a distributor. Enhanced Modular

Sisnal Processor sPecifications do not allow Processor to

Processor communication or memorY to memorY communication

over the Data Transfer Network. Consequently, a maximum of

sixty-four processor~ is allowable and a maximum of sixtY

four Schedulers and Global Memories is Possible for a dual

Data Transfer Network confisuration with two sixteen bv six

teen switches.

Two levels of Data Transfer Network arbitration occur

•:oncurrent 1 Y. Arbitration on each co~centrator follows a

first com~ first served scheme if the concentrator is not

busY. If the concentrator is servicins a transf~r request,

UPon comPletion of the transfer, the concentrator passes

control to the next element requestins a transfer. Con-

nected data transfers on the Data Transfer Network cannot be

i nterr·uP"i:ed, thus if a requested destination is busy with

another data transfer, the concentrator will lose its turn

20

in the arbitration scheme. The concentrator th~n attemPts

to service anY other Pending requests. Each Data Transfer

Network follows a token Passing method of arbitration. Each

concentrator has a time slot and during its allotted time.

it will connect a data Path. if a data transfer request is

Pending on the concentrator and if the destination distribu

tor is free.

Global Memory

T~e Global MemorY stores. imPlements. and manages

instruction streams. queues. and graPh variabl~s. The Glo-

bal Memory imPlements the creation of nodes. queues, and

sraPh variables when sraPh instances are created. The Glo-

bal MemorY Provides dYnamic memorY management, for

allocating and deallocating memory as queues are written and

consumed. The Global MemorY maintains queue informa~ion

including threshold, dYnamic number of data elements. and

the size of data elements to perform dynamic memorY man~ge

ment and automatic threshold detection. EverY time a queue

is consumed or written, the Global MemorY automaticallY

checks queue thre~hold and caPacitY information and rePorts

any queue events to the Scheduler.

InPut/OutPut Processor

The InPut/OutPut Processor Performs, as its name

imPlies, all tasks SUPPorting the inPut and outPut of data.

The PrinciPles of OPeration for the Enhanced Modular Sisnal

21

Processor manual (14) lists the followins tasks for the

InPut/OutPut Processor.

1. To ~erform sisnal inPut/outPut. the InPut/Output

Processor imPlements the Process link between

the external world and the Enhanced t'lodu 1 ar·

Sisnal Processor executins sraPh.

2. To handle manv sisnal data channels with different

characteristics. the InPut /O•JtPut

SUPPOrts concurrent execution of multiPle

inPut/outPut Processes with multi-taskins.

3. To achieve data band1.11idth red•Jction. the

InPut/OutPut Processor handles front-end sisnal

Process ins.

4. To SUPPort data transfer and control functions.

5.

the InPut/OutPut Processor handles inter-functional

element communication.

To Perform InPut/OutPut Processor tasks. the

InPut/OutPut Processor manases all its internal

resources.

Scheduler

The Scheduler is the functional element in the Enhanced

Modular Sisnal Proce~sor resPonsible for imPlementinS the

data flow methodolosv. To schedule nodes in a data flow

methodolosv. the Scheduler maintains four data bases storins

queue. node and Processor information. The Queue to Node

MaP stores the node identification number for the inPut and

.-..-. ..::...::.

outPut nodes for each queue. The Node Characteristic Table

contains the number of inPut queues, tvPe of Processor

required for execution <e. s., Arithmetic

InPut/OutPut Processor), the identific~tion of the Global

Memorv containins the node's instruction stream, and the

rtumber of conditions, a dvrta.mic count of the inPut queues

vet to So over threshold (2). The Free Functional Element

list ma.inta.ins ~list of free Processors a.vaila.ble for Pro-

cessins nodes. The Readv Node List consists of all nodes

tha.t a.re eliSible for execution, but for ~hich no aPProPri-

a.te Processor is a.va.ila.ble.

When- the Scheduler receives a. Queue Over Threshold,

Queue over Ca.pacitv, etc., messa.se from a Global Memorv, the

Scheduler searches the Queue to Node Ma.P for the outP.tJt

node's node identification number. Usins the outPut node's

node identification number, the Scheduler decrements the

node's Number of Conditions in the Node Characteristic Table

for a. Queue Over Threshold messase. When the Number of Con-

ditions reaches zero, the node is scheduled bY sending a

Send Instruction Stream to the Global MemorY containins the

instruction stream <listed in the Node Characteristic Table)

if ~n aPProPriate Processor is free, other~ise the node is

Placed on the Rea.dv Node List to a~ait a free Processor. If

the node is Placed on the ReadY Node List, it ~ill be

scheduled ~hen a.n aPProPriate Processor sends a Ready For

Instruction Stream to the Scheduler. Clther~i se, the

Scheduler ~ill resPond to the Ready For Instruction Stream

23

bv Placins the Processor~s identification number on the Free

Element List.

CHAPTER IV

ENHANCED MODULAR SIGNAL PROCESSOR

TIMING SIMULATOR

In chaPter I, the motivation behind desisnins the

Enhanced Modular Sisnal Processor <EMSP> timins simulator

was stated: to Provide an imPortant and useful tool in the

evaluation of the EMSP and in the evaluation of ProPosed

modifications. Simulation is an ~ccePted Practice in the

evaluation of the Performance of ProPosed desisns. Simula

tion can estimate Performance ~s well as test ProPosed

modifications. This chaPter describes the imPlementation of

the EMSP timins simulator.

The EMSP timinS simulator was written in a modular Pro

cedural stvle in C lansuase on a Perkin Elmer 3230. Fisure

8 <APPendix A> sives the hierarchy chart for the EMSP timins

simulator. The modular Procedural stvle was selected to

imProve readability, maintainability, and modifiabilitY.

Data Structures

Data structures excePt for static data structures local

to Procedures· are centrallY defined in a header file.

Structures were declared for sraPh execution instructions,

functional elements, nodes, channels, and queues. GraPh

24

25

execution instructions are Placed on the event list, readv

list, Control Bu& request table. and the Data Transfer

request table. A SraPh execution instruction is Placed on

the event list if the functional element receivins the

instruction is busY or if the instruction has an event

occurrence time sreater than the simulated clock time.

GraPh execution instructions are Placed on the Control Bus

request table or the data transfer request table, if the

sender functional element is reques~ins action from the

receiver func~ional element. The functional element struc-

ture records the EMSP sYstem configuration for each elemeMt,

utilization, and request activitY.

The node data structure, queue data structure, and

channel data structure record sraPh topology, static setuP

information. and dYnamic information Pertaining to number of

data elements on a queue. For each inPut and output to a

node, the node structure records ~hether it is a ~raPh

instantiation Parameter, a graPh variable, or a queue. The

value of e~ch ~raPh instantiation Parameter and SraPh vari

able is stored and the global memorY functional element

identification number and element size is stored for each

Sraph variable and queue in the node data structure. The

queue data structure maintains all node execution Parameters

and caPacitY information for each queue. Channel data rate

information is kePt in the channel data structure. Conse-

between all the structures, the toPology of the

~raPh and the Parameters of the static graPh are defined.

26

Dvnamic caPacitY of the queues and the dvnamic state of the

EMSP are maintained bv the data structure elements of the

execution instructions. functional elements. and

queues.

Instructions

Two tvpes of instructions are defined for the EMSP.

GraPh execution instructions are used to imPlement the data

flow methodolo~v. execution instructions are

tr-ansferred between functional elements on the Control Bus

or the Data Transfer Network. These 1nstructions Pertain to

node schedulin~ and include requestin~ queues or ~raPh vari

ables bv the Processor. writin~ or consumin~ queues bv a

Processor. sendin~ instruction streams. etc. Fisure 9

<APPendix A> shows the ~raPh execution process of

scheduled node.

tion instruction.

Each instruction listed is a SraPh execu

but this is not an inclusive list.

Numerous SraPh execution parameters deal with initializa-

tion. bootins. error detection and handlin~.

SraFh modifications.

or dvnamic

A steP-bv-steP exPlanation of Fisure 9 <APPendix A)

will clarifY how the EMSP imPlements the data flow methodol

osv. Althoush Fi~ure 9 <APPendix A> is the sraPh execution

Process of a sin~le scheduled node. each node follow~ this

execution Process. Processins for one node besins with an

InPut/Output Processor or an Arithmetic Processor writins to

a queue over the Data Transfer Network to a Global Memorv.

If the queue soes over threshold <a threshold sPecified in

27

the inPut ~raPh), a Queue Over Threshold messase is sent to

the Scheduler over the Control Bus. If all inPut queues for

the node are over threshold and an aPProPriate Processor is

free, the Scheduler sends a Send Instruction Stream over the

Control Bus to the Glob~l MemorY storins the Instruction

Stream. The Global Me~QrY locates the Instruction Stream

and sends the Instruction Stream to the Processor sPecified

in the Send Instruction Stream. After AccePtinS the

Instruction Stream, the Arithmetic Processor requests all

inPut queues and SraPh variables bv sendins a Request Queue

for each inPut queue or ~ Request Gr~Ph Variable for each

input Sr·aph variable to the Global MemorY over the Control

Bus. After all queues and sraPh variabl~s are accePted bv

the Arithmetic Processor with AccePt Queue and AccePt GraPh

Variable instructions, the Processor sends a ReadY For

Instruction Stream to the Scheduler over the Control Bus and

commences Primitive or node execution. Upon comPletion of

the Primitive execution, the Processor writes all outPut

queues and ~raph variables bY sendins the Write Queue and

Write GraPh Variable instructions over the Data Transfer

Network. If the Global MemorY detects a Queue Over Thres-

hold or CaPacitY as the queue is written, the Global Memorv

sends a Queue Over Threshold or CaPacitY instruction to

the Scheduler and a new node maY be scheduled. After all

outPuts are written, the Processor commences consumins all

inPut queues bv issuins the Consume Queue instruction over

the Control Bus to the Global Memory. If a queue is over

threshold after consumPtion. a Queue Over Threshold messase

28

is ~ent to the Global MemorY or if the queue ~oes under

threshold, a Queue Under Threshold messase is sent to the

Global MemorY.

In Fisure 9 <APPendix A>, one steP of the SraPh execu

tion has requests for sraPh variables and queues as inPut

and writins sraPh variables and writins and consumins queues

as outPut to an Arithmetic Processor. This is the Primitive

execution Phase where the sisnal Processins aPPlication

alsorithms sPecified bY th~ Sisnal Processins GraPh Notation

sraph nodes are executed. These Primitives or arithmetic

Processor instructions are arithmetic and/or losical calcu

lations that maY be hiShlY comPutationallY comPlex sisnal

Processins alsorithms such as Fast Fourier Transforms or

Infinite ImPulse ResPonses. or simPle vector loSical func-

tions. The Primitives are executed bY a von Neumann sequen

tial. centralized control Arithmetic Processor. A comPlete

lis~ of the Primitives are Siven in APPendix B.

Initialization

Initialization consists of definins all variables in

the functional element structures to null conditions, to

nullifYins all node Pointers. to settins the time to zero.

nullifvins all channel information. and initializins all

request lists to emPtY. The instruction list. the Control

Bus list. and the Data Transfer Network list must be ini

tialized to emPtY lists before inPut to the sYstem creates

initial instructions. Initialization of the lists and the

TIME variable are necessarY for ProPer Prosram execution.

29

but other initialization was done as a PrecautionarY measure

to insure a valid known initial state of the simulator.

InPut

After initialization, inPuts are read from two inPut

files whose names are interactivelY entered. The first file

contains the static ~raPh's toPolo~Y. For each node, the

inPuts must be entered in the followin~ order. First, the

node's unique identification number must be read and the

node's Primitive mnemonic (APPendix B>. The simulator uses

the mnemonic to locate the Primiti~e in a table and to ~et

information about the Primitive's inPuts, outputs, and tim

in~ requirements. The simulator next reads the tvPe <~raPh

variable. ~raPh instantiation Parameter, or queue> for each

inPut. If the inPut is a ~raPh variable, the ~raPh variable

identification number is read. If the inPut is a queue, the

queue identification number, the threshold,

read node execution Parameters are read.

consume. and

If one of the

Primitive.inPuts is a familv of queues, a -1 must be entered

to si~nal the end of the familY. After the inPuts for the

node are ~ead, the outPuts are read. The simulator reads

the tYPe <sraPh variable or queue> of outPut and the

outPut's identification number. If the variable is a queue.

the valve amount is read. If one of the Primitive outPuts

is a familY of queues, a -1 mu~t be entered to si~nal the

end of the familY. The information in this inPut file com

PletelY sPecifies the static ~raPh or ~raPh realization.

30

To identify the EMSP system and a more dynamic sraph, a

second file of information is necessarY. This file contains

outPut Parameters, the sYstem confisuration, channel in for~

mation, and variable information. The simulator first reads

the maximum number of time units the simulator is to simu-

late and whether the user Prefers a timins chart. Next the

simulator defines the SYstem confisuration bY readins the

number of Data Transfer Networks and the switch size of each

Data Transfer Network. and the functional element informa-

tion. Each functional element has the followins .ordered

inPut: functional element identificati~n number. tYPe of

functional element <Arithmetic P~ocessor. Scheduler. etc.),

Data Transf~r Network of the concentrator, concentrator

number, element of concentrator, Data Transfer Network of

distributor. distributor number. and element of distributor.

A -1 as the functional element identification number is used

to sisnal the end of functional element information.

Next ch~nnel information is read. Channel information

is used to fullY define the queu~s that are inPut or outPut

to the SraPh. The simulator reads the followins ordered

channel information: channel identification number, channel

Priority, channel rate. the queue attached to the channel.

th~ functional element identification number of the

InPut/Output Pr·ocessor. and whether the channel is an inPut

or outPut channel. A -1 as the channel identification

number is used to end the channel information.

31

Finally, the simulator reads the node's Global memorY

identification number. variable values. and queue caPacitY

i n f 1) r mat i 0:1 n • F1)r each node, the s im•J 1 a tor reads the i den-

tification number of the Global MemorY storins the instruc-

ti1)n stream. SequentiallY for each inPut excePt for the

queue the variable value is read, and except for the sraPh

instantiation Parameter the Global MemorY identification

number is read. and for each inPut queue. the queue caPacitY

is read. SequentiallY for each outPut. the Global MemorY is

read. If the outPut is a queue attached to an outPut chan

ne 1 <sink>, the capacitY of th~ que•Je and the thresho 1 d is

read after the Global MemorY identification number since the

this information is normallY read when the node at the head

of the queue is read. If the outPut is of tYPe queue and

not a sink queue. the caPacitY is read after the Global

MemorY identification number.

OutPut

OutPut for the EMSP timins simulator consists of a

title. a system confisuration chart. a utilization factor

for each functional element. a total time to execute a sraPh

<or a maximum time), and an oPtional steP-bY-steP runtime

utilization sraPh, node execution information, channel

cution information. and queue information. The confiS•Jra-

tion chart echoes the inPut confisurati6n and will be useful

to verifY the input confisuration and as a reference

when doins comPar·ison studies. After the confisuration

chart. the tocal time to execute the static sraPh is

stated or. if the static ~raPh is a continuous looP. the

maximum execution time sPecified. Utilization factors will

be used to evaluate the Enhanced Modular Sisnal Processor

and anY ProPosed modifications. The number of firinss Per

node is in a table Sivin!l the node identification

numbe~. the node oPcode. and the number of times the node

was fired. The oPtional steP-bY-steP runtime utilization

SraPh is a timin!l chart for the Enhanced Modular Si!lnal

Processor and is oPtional because of the lar!le quantitY of

the outPut and the severe desradation to the Performance of

the sim•Jlator. Node, channel, and information

!lives the number of the times the node or channel was

scheduled and the number of elements on the queue at the

time the simulation stoPs.

Functional Element Conflict Resolution

The EMSP PrinciPles of OPeration Manual <14) does not

fullY define the hardware imPlementation of the Control Bus

or the Data Tr~nsfer Network. The manual states the Control

Bus allocates timins slots based on an internal count value

which is a function of the functional element's identifica-

t ion n•Jmber. The function relatin!l the identification

number to the timin~ slot and the method of arbitration

resolution are unpublished. Consequently, a decision was

made to allocate timin~ slots from 0 to the maximum Possible

number of functional elements in a linear order on the simu

lator.

The manual <14) states the Data Transfer Network simul

taneouslY creates data Paths between functional elements,

resolves concentrator element conflicts. and resolves con-

centrator conflicts. Since the method of conflict resolu-

tion was not fullY defined with start UP conditions. it was

decided to select arbitrarilY the lowest numbered element of

a concentrator and the lowest numbered concentrator. Con-

flict resolution and Data Transfer Network oPerations follow

the method stated in ChaPter III.

Main Pro!iram

The main Pro~ram either directlY or indirectlY calls

a 1 1 Procedures and handles the actual time schedulin!i.

Before startins the timins simulation. the main Pro~ram

calls the initialization Procedure. and the inPut Pro

cedures. Th~n. it calls the outPut Procedures to Print a

title to describe the simulation and the simulated sYstem

confisuration for future reference. To start the sraph, the

main Pro!iram initializes the time to zero and calculates the

firins times of all source nodes. The main Prosram then

enters a loop that executes the event Processins of the

functional elements, the Control Bus, and the Data Transfer

Network. Instructions are scheduled accordins to an event

list. Events or instructions are Placed on a sinslv-linked

list in ascending order of the execution time. The Data

Tr·ansfer Network and . Con tro 1 Bus are not event

scheduled because the Enhanced Modular Sisnal Processor Per-

34

forms arbitration resolution everY time unit concurrentlY

with instruction execution. After the looP maximum time has

exceeded or no further instructions are executable. the main

Prosram Prints utilization factors and a comPlete list of

the number of times each node or channel was scheduled. and

queue execution information.

SuPPort Procedures

A number ~f Procedures are necessarY for sortins.

search ins, calculatins execution information. and creatins

dYnamic memorY allocation. These suPPort Procedures are

invisible to the user and are mentioned onlY for the PUrPose

of fullY definins the simulator. Because of the frequencY

of accessins elements of the channel, node. and queue

arrays, it is feasible to order these arraYs. Quick sorts

are used to sort the nodes and channels. A linear inser

tion method is used to order the queues since before each

insertion. the queue arraY is searched for the queue.

BinarY searches were chosen to take advantase of the sorted

arraYs. Procedures to calculate the timins for node execu-

tion. to calculate the size of variables, and to calculate

the Produce amount for queues were Placed in seParate Pro

cedures to imProve readabilitY and modifiabilitY.

35

Arithmetic Processor

Since the Arithmetic Processor can handle three nodes

simultaneously, e~ch Arithmetic Processor required more than

the timins variable in the functional element data struc-

ture. The timins variable in the functional element data

structure is used for the node or nodes in setuP or break

down mode. A seParate timins v~riable is required for the

node in each Arithmetic Processor in the execution mode. To

handle the requirement of onlY one node in setuP mode, the

A~ithmetic Processor sends a Readv for Instruction Stream

when a node has comPleted setuP mode. To handle onlY one

node in execution mode, the execution node timins is checked

for the sPecified Arithmetic Processor and if a node is in

execution mode, the execution time is increased bY the exe

cution time of the node comPletins setuP mode.

Arithmetic Processors imPlement all instructions neces

sarY to execute a Primitive. The Primitive execution time

is calculated when the dvnamic node information is read

and is stored in the node information. The Arithmetic Pro

cessor handles AccePt Instruction Stream instructions and

then senerates the aPProPriate Request Queue and Request

GraPh Variable instructions. After all inPuts for a Primi

tive have been accePted with AccePt Queue and AccePt GraPh

Variable instructions. the Primitive enters the execution

mode. Durins breakdown mode, the Arithmetic Processor sen-

erates Write GraPh Variable or Write Queue instructions to

all outPut variables and Consume Queue instructions to ~11

inPut queues.

36

Control Bus/Data Transfer Network

The Procedures to handle the simulation of the Control

Bus and the simulation of the Data Transfer Network are verY

similar. The Procedures beSin with a looP that traverses

the linked list of waitins re~uests and Places the re~uests

in the aPProPriate element of an arraY ordered bY functional

element identification number <Control Bus> or concentrator

confisuration <Data Transfer Network>. This looP Places all

re~uests on the re~uest arraY for future schedulins.

Next, another looP handles the timins for attemPtins

the data transfer ·or makins the data transfer. It checks

the re~uest arraY and if an instruction is waitins to be

scheduled it attemPts to schedul~ or schedules the re~uest.

The Data Transfer Network Procedure checks the status of the

destination distributor. If the distributor is busy, the

Procedure imPlements the timins for an attemPted transfer,

otherwise the Procedure imPlements the timins for the data

transfer. Schedulins follows the methodoloSY discussed in

ChaPter II.

InPut/OutPut Processor

To allow for flexibilitY with inPut and output, the

InPut/OutPut Processor desisn specifications were kePt at a

minimum. The InPut/OutPut Processor handles a minimal

number of instructions. The EMSP desisn sPecifications

allow for InPut/OutPut Processors to execute a variable

number of channel instructions simultaneouslY. EMSP imPle-

37

ment~tions to-date have restricted th~ InPut/OutPut Proces-

sor to executins onlv one channel instruction at a time and

this is the aPProach of the EMSP timins simulator.

The InPut/OutPut Proces&or issues itself an Execute

Node instruction ~hen an inPut channel soes over threshold.

The InPut/OutPut Processor sends a Write Queue to the Glo-

bal MemorY storins the queue. An Execute Instruction Stream

instruction writes to an outPut channel and has a set time

associated with the instruction. The other two instructions

the InPut/OutPut Processor imPlements of siSnificance to a

static sraPh are Continue Node Data Transfer and SusPend

Node Data Transfer. SusPend Node Data Transfer susPends a

channel until a Continue Node Data Transfer reverses the

susPension.

Global Memory

To imPlement the timins for Glob~l MemorY oPerations. a
I

Global MemorY Procedure was desisned in the timins simula-

tor. A Global MemorY executins an instruction cannot be

interruPted. Therefore, uPon receivins an instruction. the

Global MemorY Procedure first checks if the Global Memory is

free and if not. rePlaces the instruction on the event list

with a future event time.

The Global MemorY handles requests for instructions.

and sraPh variables. The timins to execute these

requests is a function of the number of words in the node

instruction stream, queue, or sraPh variable. The Global

Memory Procedure after calculatins the timins Places the

38

AccePt Instruction, AccePt Queue, or AccePt GraPh Variable

instruction on the Data Transfer Network. The Global MemorY

Procedure handles Write Queue and Consume Queue instructions

bY uPdatin~ the queue number of data items and sendin~ anY

aPProPriate Queue Over CaPacity, Queue Under CaPacity, Queue

Over Threshold, and/or Queue Under Threshold instructions

over the Control Bus to the Scheduler.

Scheduler

The Scheduler procedure handles the timinS si~ulation

for the Scheduler functional element. The Scheduler can

execute onlY one instruction at a time. If the Scheduler is

busY when an instruction on the event list is readY to be

scheduled, the instruction must be returned to the event

list with a time equivalent to the Scheduler's next free

time.

A brief exPlanation of a few of the Scheduler's

instructions are included as an overview. To handle Queue

Over CaPacitY instructions, the Scheduler Procedure uPdates

the queue's status and if the queue is attached to an inPut

channel. sends a SusPend Node Data Transfer instruction to

the channel. For an internal or source queue, a Queue Over

Threshold instruction causes the Scheduler to decrement the

number of conditions variable <if the number of conditions

was not Previously decremented for the queue) for the node

at the queue's head.

and the node or channel

If the number of conditions is zero

is not susPended, the Scheduler

attemPts to schedule the node. If the free Processor list

39

has an ~v~ilable Processor. the node is scheduled bY sendins

a Send . Instruction Stream instruction to the Global MemorY

storins the instruction. If a Processor is not available,·

the instruction is Placed on a readY list to await a free

Processor. If the queue is a sink queue. the Queue Over

Threshold instruction is handled bv verifvinS the channel is

nol susPended and sendins an Execute Instruction Stream

instruction to the InPut/OutPut Processor. A Queue Under

CaPacitY instruction chanses the status of the queue and

node, and. if the node's number of conditions is zero. the

node is scheduled or Placed on the readY list. A Ready for

Instruction Stream instruction is imPlemented bY schedulins

a waitin~ node if available or bv Placin~ the Processor's

functional element identification number on the free Proces-

sor list.

CHAPTER V

TEST SIMULATION

A samPle sraPh consistins of three nodes executins on a

five functional element system <two Global Memories) was

selected as an examPle for further discussion. APPendix C

sives the comPlete details of the EMSP confisuration for the

simulation and the sraph·to be simulated. After initializa-

tion. the simulator requests the maximum number of

microseconds the user desires to simulate. whether the user

d~sires to enter debus mode wher~ an oPtional timins chart

is Printed, and the names of the two inPut files. The first

inPut file contains the sraPh toPoloSY and can be easilY

translated from a Sisnal Processins GraPh Notation Prosram.

When queried about threshold, read. consume. and offset

amounts, a nesative number imPlies the node execution Param

eter is dePendent on a Previous inPut Parameter. For exam-

Pl~. if the threshold for Parameter two. a queue, is

equivalent to N. Parameter one. a nesative one would be

inPut for the threshold for Parameter two. This interdePen

dencY is verY common and this method was chosen as a quick

and easy method for the user to remember and follow. APPen

dix D sives the querY s~ssion for the inPut of the sraPh in

41

APPendix C. Comments are contained within delimiters /*COM-

MENT*/ and user inPuts are contained within delimiters

inPut for ease of readinS.

InPut file two contains the sYstem confisuration and

~11 sraPh information besides toPoloSY ~file one>. The sys-

tem confisuration Procedure reads inPut file two for func-

tional element identification numbers. functional element

tYPe <Arithmetic Processor, Global Memory, etc.), and D~ta

Transfer Network confisuration of the element's concentrator

and distributor <APPendix C>. The channel identification

number. channel Priority, channel rate. InPut/OutPut Proces-

sor, and channel tYPe <InPut or OutPut> for each channel is

read bv the channel Procedure. Next. the read values Pro-

cedure. after orderins the nodes bY node identification

number, reads the identification numbers of the Global

Memory storinS the node~. sr~Ph variables, and queues. All

values for sraPh instantiation Parameters and sr~Ph vari-

ables and all other Pertinent information are read. APPen-

dix E Sives the comPlete querY session for the sraPh in

APPendix C. The interested reader will find the session

well documented ~nd self-exPlanatorY.

OutPut for the simulation consists of a table of the

EMSP sYstem confisuration. functional element utilization

information, node execution information, channel execution

information. and queue execution information. The svstem

confisuration table echoes the svstem confisuration inPut bY

43

the user. The function element utilization information

sives the utilization factors for each functional element.

Utilization is calculated as the number of time units the

functional element was busY divided bY the number of time

units the simulation simulated. This method of utilization

calculation was modified for the Arithmetic Processor to

handle the Arithmetic Processor's abilitY to execute a node

and set uP a node simultaneouslY. The utilization for the

Arithmetic Processor calculates busy time as the time the

element was executins setuP or breakdown instructions Plus

the time executins the instruction. Thus an Arithmetic Pro

cessor could have a Possible two hundred Percent utiliza-

tion. The node execution information Sives the number of

node firinss for each node, the oPcode for the node, and the

node identification number. Channel execution information

sives the channel identification number and the number of

channel firinss. Queue execution information sives the

queue identification number, the number of data items on the

queue at the end of the simulation, ~nd the nodes or chan

nels at the head and tail of each queue. APPendix F sives

the test simulation for the inPuts sPecified in APPendix B.

APPendix c, and APPendix D. APPendix G sives a comPlete

listins of the test simulation with the oPtional timins

chart. The timins chart is documented and instructions Sive

the exact time units to the nearest one hundredth of a time

unit <divide the time in the instruction comment bv one hun

dred).

CHAPTER VI

CONCLU:~ IONS

The Enhanced Modular Sisnal Processor timins

simulator simulates the timins for a static ~raPh durins the

sraPh execution Process. ·Nodes are scheduled usins a modi

fied data flpw methodoloSY which allows multiPle elements on

a data inPut. A scheduled node follows the sraPh execution

Process shown in Fisure 9 (APP~ndix A>. InPuts to the sys-

tem consist of interactivelY enterins the names of two inPut

files and the sPecified inPut files. OutPut consists of the

sYstem confisuration, an oPtional timins chart. functional

element utilization. node and channel execution information.

and queue information.

Fi~ure 10 (APPendix A> sives a comPlete list of the

Primitives that could not be executed. Six of the Primi

tives (the ones with a star in Fisure 10 <APPendix A>> were

unexecutable because theY had more than seven inPuts. A

fixed lensth oPcode data table was chosen for quick searches

and ea~e of modification, a desisn decision was made to

allow onlY seven inPuts to s~ve storase. If the OPCOde data

table had allowed twelve inPuts. the above six primitives

would have been SUPPorted, but at a cost of five extra bvtes

Per Primitive.

44

45

would have been supported, but at a cost of five extra bytes

Per Primitive.

The other nine unexecutable Primitives had inPut or

outPut queues whose len~th were dePendent on a node's execu

tion. Since the Primitives were not executed, the len~th of

the queues was unknown and the timin~ for Read Queue and

Write Queue instructions could not be calculated.

Future Work

The EMSP does not simulate a dYnamic ~raPh where inPut

variables and channels can be dynam~callY chan~ed durin~

~raPh execution. One reason for not simulatin~ a dYnamic

~raPh is the hu~e amount of overhead and bookkeepin~ neces

sarY to handle a dynamic ~raPh. A second reason is the dif

ficultY in sPecifyin~ the timin~ for dYnamic.instructions.

The third reason is the timin~ associated with dYnamic

actions to the ~raPh execution Processin~ instructions are

~enerallY in ratios exceedin~ 1000 to 1. But the maJor rea

son for simulatin~ static ~raPhs is the lack of a thorou~h

understandin~ of the effects on the ~raPh of a dYnamic sYs

tem. Usin~ the st~tic EMSP timin~ simulator and information

~athered from test simulations, a more thorou~h understand

in~ of the EMSP can be obtained. Usin~ this understanding

and by obtainin~ more information from the EMSP desi~ner~,

i.e. Bell TelePhone L~boratories, a dvnamic EMSP simulator

could be desi~ned to Perform more thorou~h analYsis of the

EMSP data flow comPuter.

SELECTED BIBLIOGRAPHY

<1> Arvir.d • .a.nd V. Ka.tha.il. "A MultiPle Processor D.a.ta.
Flow Machine that SuPPorts Generalized
Procedures", Conference Proceedinss the 8th
Annual SYmPosium on ComPuter Architecture.
MinneaPolis. Minnesota.. MaY 12-14, 1981. PP291-
:.:::C>2.

(2> Bl•::.ch, Fedrick H., "The Enhanced Modu 1 ar Si sna 1
Proc~ssor", Proceedin~s of the Seventeenth Annual
Pittsbursh Confer~nce on Modelins and Simulation,
Vol. 16, Part 3, 1986, PP. 829-836.

<3> Brown. N.H •• "The EMSP Dataflow ComPuter". Proceedir.Ss
17th Hawaii International Conference Svstem
Sciences. Honolulu. Hawaii. ~anuary, 1984, PP39-
4S.

(4) Burkowski, F.~ •• "A Multi-user Data. Flow
Architecture", C•::.nference Proceed i nss the :3th
Annual SYmPosium on ComPuter Architecture,
MinneaPolis. Minnesota. M.a.Y 12-14, 1981. PP327-
340.

(5)

(6)

Damodara.n. Meledath and Amita.va
SYstem Simulation on .a.
Architecture", ACM
Proceedinss 1981. November

Ha.zra., "Methods for
Restricted Data Flow
National Conference
9-11, PP60-66.

Davis. Alar. L. and Robert M. Keller, "Data Flow
ProSra.m Graphs",
<February, 1982),

ComP•Jter. Vol. 15, N•::.. 2
PP26-41.

<7> Dennis. Jack B •• "Data Flow SuPercomPuters", ComPuter.
Vol. 13. No. 11 <November 1980), PP48-56.

(8) Dennis, Jack B •• Willie Y.P. Lim. and William B.
Ackerman. "The MIT Data. Flow Ensineerins Model",
Proceedinss of the IFIP World ComPuter Con~ress
1983, PP553-560.

<9> Dennis, J.B. and D.P. t-1is•Jnas. "A PreliminarY
Architecture for a. Basic Data-Flow Processor",
Proceedinss 2nd Annual SYmPosium on ComPuter
Architecture. January 20-22. 1975, PP126-132.

46

(10)

47

Dennis, .Ja•:k B., JosePh Stov. and Bhaskar Guharov.
11 VIM: Ar, ExPerimental Multi-user Svstem
SuPPortins Functional Prosrammins''• Proceedirass
International WorkshoP on HiSh Level ComPuter
Architecture 1984, PP1.1-1.9.

(11) ECOS Tutorial: Preliminary, APril 26, 1985, PP1-29.

<12) EMSP/ASP Common 0Per~tiona1 SuPPort Software
Methodolosv SPecification Version 3.0, PrePared
bv AnalYtic DisciPlines. Inc. (now Evaluation
Research CorPoration) under contract to the Naval
Research Laboratory, MaY 31, 1984.

<13> Enhanced Modular Sisnal Processor <EMSP> Primitive
AnalYsis SPecification. CDRL C130, dated FebruarY
22, 1985, prePared for the Naval Sea Svstems
Command. PMS412 bv AT&T Bell Laboratories on
behalf of AT&T Technolosies under contract
N00024-81-C-7318.

(14> Enhanced Modular Sisnal Processor <EMSP> PrinciPles of
OPeration, Prepared bY AT&T Bell Laboratories for
the Naval Sea Svstems Command <PMS412), March 15,
1985.

<15> Farrell, Edward F •• Noondin Ghani. and PhiliP
Treleaven. " A Concurrent ComPuter Architecture
and A Ri ns B<:lsed ImPl emer.ta t ion", Conference
Proceedinss of the 6th Annual SYmPosium on
ComPuter Architecture. APril 23-25, 1979, PP1-11.

<16) GaJski, D.D •• D.J. Padua. D.J. l<uck, and R.H. l<ulr,, "A
Second OPinion on Data Flow Machines and
Lansuases", ComPuter. Vol. 15. No. 2 <Februarv
1982), PP58-69.

<17) Gostelow. Kim P., and Robert E. Thomas. "A View of
Dataflow", Pro•:eedinss of the AFIPS Na.ti•:.nal
ComPuter Conference 1979, June 4-7, Vol. 48,
pp. 62'5)-635.

(18> Hartirua.. Iiro. Klaus Kronlof, Olli Simula.. and Jorma.
SkYtta.. "DFSP: A Data. Flow Si~na.l Processor",
IEEE Transactions ora ComPuters. Vol. C-35. No. 1,
Ja.nuarv 1986. PP23-33.

< 19) l<a.rP. R.M. and R.E. Miller. "Pr•)Perties of a. t·1ode fc•r
Parallel ComPutation: Determina.ncv, Termination.
and t~ueu ins", SIAM ,..Journa 1 of APP 1 ied
Mathematics. Vol. 14 .. No. 6 <Nov'<!'mber. 1966) • PP
1~:90-1411.

(20) Patnaik. L.M •• R. GovindaraJan. and N.S. Ramodoss.
"Des i srt and Performance Eva l•Ja t ion of EX MAN:
EXtended MANchester Data Flow ComPuter",
Tran~actions on ComPuters. Vol. C-35, No.
March 1986, PP229-244.

48

An
IEEE

.-, ..:;,

<21> Srini. Vason F'., 11 A Fault-Tolerant Dataflow SYstem",
ComPuter. Vol. 18, No. 3 <March 1985), PP54-68.

<22> Srini. Vason P., 11 An Architectural ComParison of
Dataflow Svstems 11 • ComPuter Vol. 19, No. 3
<March 1986), PP68-88.

<23) Srini. V.P., "An Architecture for Extended Abst·ract
Data Flow", Conference Proceedinss the 8th Annual
SYmPosium on ComPuter Architecture. MinneaPolis.
Minnesota. Mav 12-14, 1981, PP303-325.

<24) Treleaven. PhiliP c., "E>~Ploitins Pro::iram Conc•JrrencY
in ComPutins Svstems", Cc•mPuter. Vol. 12, No. 1
(JanuarY 1979), PP42-49.

<25) Treleaven. PhiliP c .• David Brownbridse. and Richard
·P. HoPkins, "Data Driven and Demand Driven
Computer Architecture", ComPutins Surveys, Vol.
14, No. 1, March, 1982, PP93-143.

(26> Treleaven, PhiliP c., Richard P. HoPkins, and Paul W •.

(27)

Rautenbach. "Combinins Data Flow and Control Flow
ComPutins", The ComPuter Journal, Vol. 25. No. 2,
Februarv. 1982. PP207-217.

Watson. Ian. and John Gurd.
ComPuter", ComPuter.
1982), PP 51-57.

"A Practical Data Flow
Vol. 15, No. 2 <FebruarY

<28> Watson. Ian. and John Gurd, "A PrototYPe Data Flow
ComPuter· with Token Labell in::i", Proceedinss of
the AFIPS National ComPuter Conference 1979,
Vol. 48, PP623-628.

<29> Wu, Y.S., 11 A Common OPerational Software <ACOS>
APProach to a Sisnal Processins DeveloPment
Svstem:, U.S. Naval Research Laboratory,
Washin::iton, D.C. 20375, ICASSP83, Boston,
PP1172-1175.

APPENDIXES

APPENDIX A

FIGURES

51

FORMULA, E = (A + B) * (A - B)

Figure 1. Simple Data Flow Graph.

' .. -·-

ADD
INPUT A , -,) \ '·

I ...) MULT ' " , ...) \

(...)
SUB ... -OUTPUT E
r) \ . /

(~) , INPUT B

Figure 2. Data Flow Activity Template for Figure 1.

·•
' '

VOR_SQR
N2

. QUEUE4

QUEUE1

VOC_LOG
Nl

QUEUEJ

VOR ACOS
NJ

QUEUE5

Figure J. An Enhanced Modular Signal
Processor Common Operational Support
Software Methodology Sample Graph.

52

/.t3RAPH < F I GURE3
GIP = N:INT
I NPUTQ = t:;lLIEUE 1 : CF I XEJ:t
OUTPUTQ = QUELIE4,

QUEUES: F I XEI:t >
I. I.
/.QUEUE<QUELIE2,QUEUE3:FIXEJ:t>
I. I.
/.NOJ:tE<Nl

PRIMITIVE = VOC_LOG
PRIM-IN = QUEUE! THRESHOLO = N

REAJ:t = N
OFFSET = 0
CONSUME = N

PRIM_OLJT = t:;'.!UEUE2, G'JUEUE3)
I. I.
/.NOJ:tE<N2

PRIMITIVE = VOR_SQR
PRIM-IN = QUEUE2 THRESHOLD = N

READ = N
OFFSET = 0
CONSUME = N

PRit1_0UT = QUEUE4>
I./.
/.NODE<N3

PRIMITIVE = VOR_ACOS
PRit-1-IN = QUEUE3 THRESHOLD = N

READ = N
OFFSET = 0
CONSUI"1E = N

PRIM-OUT = t:;".~UEUES>
I./.
/.ENDGRAPH

Fi~ure 4. Si~nal Processin~

GraPh Notation of Fi~ure 3.

COMt'IAND

SF' AWN
ABORT
START
STOP
INITIO
START It)
STOPIO
CREATEQ
I:tESTROYQ
INITG!
FLLISHQ
CONNECTt:;".t

DISCONNECTQ

ADDDATA
WAITDATA
CREATEGV
DESTROYGV
READGV
WRITEGV
UNLINK
LINK
REIN IT

RESUME

Fisure 5.

DESCRIPTION

Create a. Process
Abort a. Process
Start a. Process
StoP a Process
Link queue to channel
Start or resume a channel
StoP a. channel
Create a qeJeue
DestroY a. queue
Initialize a queue

54

Remove a.ll elements from a. queue
Connect a. queue to Command

Prosra.m
Disconnect a queue from

a Command Prosra.m
Add da.ta elements to a queue
Wa.it for da.ta. on a. queue
Create a sraPh variable
DestroY a. sra.Ph va.ria.ble
Rea.d a ~raPh variable
Write a. sra.Ph va.ria.ble
Unlink a queue
Link a. queue
Reinitia.lize all queues and

Sra.Ph va.ria.bles
Resume a Process

List of Command Prosra.m Instructions

D••Df•Y•
Tec1u:.at

CofnpuiiH

55

FE Co.,.trol 8ut / / / / / .y { ti { t{ (/ /
/ 7 L 7 / 7 / 7 / /

- Sc ... d GM c;u GM c;u . . . _c;w
' 2 J • ft v 1/ / v v !/

l t t t t !IT Co"t•ot

6·• I D••• ,,.,., • .,, ~••o"• ~ -~ + .. + .. + " '" " " " L " . " 1. .. ·: c ••• ,,. , 0,. " . !7
~~ ! l ~ l liT Co,..trot 8ut Tl / / t4Mih•'"•CI

/ 7 / 7 co··· - / 7 / 7 ---. c"'
,.,. ,.,. . 1 J lOP o 1-. ·v / ~ - / v / _v v v 1

.. v Hi9'>-Sc-d ...i --o ••• f£c---
~1

Figure 6. Enhanced Modular Signal Processor System Architecture.

---- - --- - -- - - ---- ---

56

oun oc C t Cl k (CCLK)

Data Clock (DCLK)
Command Transmit Successful (TS)
Program

Processor Data Bus (CBD)
SBIT Parity (PAR}

-
Stop Clock (SCLK)
Transmit Failure
Reset Count (RC)

I '

\ ____ ,..-----11
v

Control Bus
'

~~
.;

'

Functional Functional
Element· Element

Figure 7• Control Bus Interface.

main<>
initC >
reoi:l.d-nodes<>
read_confis<>
read_i•::.P(>
r-ead-values()
outPut-title()
•::.utPut_conf i !I<>
start-iop(>
CBUS< >
DTNC >
AP<>
13M<>
IOPC >
::tCH < >
OtJtPtJt_uti 1 ()
•::.utPut_chan < >
o•JtP•Jt_que•Jes < >

read_nodes<>
create_node()
a,p_opcode<>
sort<>

read_confili()
schinit<>

read-ioP()
!iet_queue<>
create_queue<>

read_ val tJes < >
cal-size()
•:al_Produce < >
cal_ time< >

CBUSC >
delete_list<>
insert-list<>

DTN< >
delete_lis.t<>
inser-t_lisc<>

AP<>
create_instruct<>
set_channe 1 C)
Set_node()
delete_1istC>
insert_list<>

13M<>
set_channe1<>
create-instruct<>
set_node < >
insert-list<>
delete-list<>

IOP< >
create_instruct<>
set_channe 1 < >
set_node < >
insert_list<>
delete_list<>

SCHC >
create_instruct<>

· set_char.ne 1 < >
set_node < >
insert-list<>
delete_li::jt()

aP-OPCode()
search<>
read_queue<>
oread_queue<>

read_queue()
liet_qtJeue < >
create_queue<>

oread_queue<>
set_que•Je < >
create_queue<>

Fisure 8. Timin!i Simulator HierarchY Chart.

57

IOP
AP

WQ

~I SCH

QOT RQ/RGV SIS AIS AQ/AGV
.----_!_----,

GM SCH

WQ - Write Queue
WGV - Write Graph Variable
QOT - Quete over Threshold
SIS - Send Instruction Stream
AIS - Accept Instruction Stream
RQ - Read Queue
RGV - Read Graph Variable
AQ - Accept Queue
AGV - Accept Graph Variable
CQ - Consume Queue

GM

RFIS - Ready for Instruction Stream

AP

SCH

··SIS

AP - Arithmetic Processor
GM - Global Memory
IOP - Input/Output Processor
SCH - Scheduler

Figure 9. Graph Execution Process.

AP

WQ/!JIJGV

GM

QOT

SCH

MNEMONIC

FIR-RNS

CDt·LRFIR

BFR....;FREQ
BFR-FREQB
BFR-GEA
BFR_GEAB
BFR_TIME
SSP_BEPR

SSP_CONV
SSP_FROD
SSP_INDX
SSP-PKDT
SSP_PKPK
SSP_STAT

PRit1ITIVE

Finite ImPulse Response
Filter<ComPlex. N Stase>

Finite ImPulse ResPonse
Filter<Real. N Sta~e>

ComPlex Demodulation and FIR
Filter <Real. Fixed Freq.)

Frequency Domain Beamformer
FrequencY Domain Beamform
Prester and AdaPtive Beamform
Prester and AdaPtive Beamform
Time Domain Beamform
Bearin~ Estimate Pre-Proce~s

Real
Conversion
FrequencY Determination
Peak Index
Peak Detect
Peak Pick
Period Statistic~

Fi~ure 10. List of Primitives
Not ImPlemented.

59

60

QUEUEl QUEUEJ

QUEUE2

. .

QUEUE5

Figure 11. Test Case Topology.

APPENDIX B

ARITHMETIC PROCESSOR INSTRUCTIONS

61

'-..)()R_:-;Cl)S

'v'OR_ASIN
'·/OR_ATAN

\/OR_EXP
'-/OR_ I I'~DX

','(:.F.:_I"10D
!.../ ::) R _ t·~l E (.:i
'._!;~q::; SHF
'v'OF:_:3IN
\/(1R_~3C:R

'·.)C, 1:;:_:3\~ RT

\/C) C _ C (Jt-..~'-T
')()C E::<P
\/<)C_L{)(~

'v'OC_I'1A(::i
'.JOC_POL
'v'OC_.RECT
l..JOL_AND
l../OL_LSHF
'v'OL_OR
'v'OL_XOR
'-.JF.:R_ I NP
'·./RR_SADD
'v'RR_:3I:)I\/
'v'RR._SDI'.../B
'v' R R __ sr··1UL
t./RR_'vADD
~ .. / R R_ ~-./C• I rv•

\.'PR '·)i11JL
!...)RR_.., 1·../t1f..JL.B
I Jr-rr"t I 11-·1 IT"o
-../ n. r...:. ~- v .::; \l .c'

'v'RC_t··1UL
\/CC_Il\iF'
\/CC_.SADD
\/C:C __ SDI!.../
'/CC_St1UL

'.../ C C ··-'·./C• I 'v'

'.../ (-:, ~: ··- \/ t~1Ll L
·-./C C~_!...l'St...JE.

\/LL_C~~:

F R I i'·1 IT I 'v'E

Vector Arc-cosine
'· . .)ectc~:r· A·r·c-·::;:in~~

Vector Arc-tangent
Vector Arc-tan(Y,X>
Vector One's Complement
\/r:f!cto-r· Ct:JSine
Vector Exponential
'-..Jecto·r"· Inde>::in·::~

t/ector' Lo·:;3ar·· i 1: hrr.
Real Vector Magnitude
'...-'c? c i: cJ 1·' 1'1o du.l us
~--./ 1? C t CJ ·r-· j.J 1? g .:Et t (:?

Vector Arithmetic ShiFt b~: Bi~E
t../,:::..·cto·(· Sine
'-..ie~.::tc;r-· :3q_U.Z1.Y~e

Vectar Square Root
'·/·:::- c t t.:llr. p, r •:::J Ll ffl en 1:
Vector Argument (B)·

Complex Vector Conjugate
Complex Vector Exponential
Complex Vector Logarithm
Complex Vector Magnitude
Rectangular to Polar Conversion
Polar to Rectangular --·--· ... ---: -···--c._.u I I \i l;;~ r· ':::i .L 1_1 l l

Vector Logical 'AND' Mask
Vector Logical Shift by S Bits
Vector Logical 'OR'
Vector Logical 'Exclusive OR'
Real Vector Inner Product
Vector-Scalar Add
Vector-Scalar Divide
Vector-Scalar Divide CBl
Vector-Scalar Multipl~
Real Vector-Vector Add
Real Vector-Vector Divide
Real Vector-Vector Multipl~
Real Vector-Vector Multipls (BJ
Real Vector-Vector Subtract
Real-Complex Vector Add
Real-Complex Vector Divide
Real-Complex Vector Multiply
Complex Vector Inner Product
Complex Vector-Scalar Add
Complex Vector-Scalar Divide
Complex Vector-Scalar Multipl~
Complex Vector-Vector Add
Carr.plex Vector-Vector Divide
Complex Vector-Vector Multiply
Complex Vector-Vector Subtract
Vector Logical 'AND'
Vecto~ Logical 'OR'

t·10R_3X3I
t10R_ TPSE
t'lOR_ TRCE
t-10C-3X3I
t10C_ TPSE
1"10C_ TRCE
t'lRR_MUL
MCC_MUL
\l Ct·1_ CTHS
'v'CI"I_MI'"1X
'v'CM_SORT
1/CM_ THRS
VCM_WDl.JC
DMC BF1Fl
DMC_CTOR
Dt·1C_FAFX
Dt'IC_FX~.F

Dt-1C_FXFA
Dr1C_RTOC
DFC_CCAT
DFC_CCATB
DFC CNRME.
DFC CREPE.
DFC_SEP
DFC_SEPB
DFC_DSD
DFC_DYNR
DFC_MTC
DFC_MTCB
DFC_r'lTR
DFC_MTRB
DFC_PACh
DFC_RCAT
DFC_RDMUX
DFC_REQ
DFC_RMUX
DFC_RNRMB
DFC RREP
DFC_RSEP
DFC._SRF'
DFC_SRP:E.
DFC_UPAh
DCP_AVGl

DCP_A'--/GN

DCP_CPWR
D_CP _CSt1G
DCP _CSMGJ:.
DCP_CYTG
DCP __ Er;t)l

Real Matrix Inverse t3X3l
Real Matrix Transpose
Real Matrix Trace
Complex Matrix In~erse <JX3'
Complex Matrix Transpose
Complex Matrix Trace
Real Matrix Multiply
Complex Matrix Multiply
\/e1= t~::}r~ Cornp.~.·r"·e .::t n d Th r-· e~=-h C_! J. :::!
Vector Maximum/Minimum
Vector Straight Select1on ~c'·'
1..-'ectc.·(· Th·(·(::::shcl ,:j
Vector Window Containm2n~
BFP to Fixed Conversion CFi
Complex to Real Conversion

._,) ·--'

F :i. >:: f~ d t:~~ r~- ·r-. .3. ~ t o F i >:: :~72 d 1·.,.·1 ::: d :?:? ~:: :::.:.:: n \/ ::? ·;·~ ·:::- i. , ..
Fixed to Block Floating 0 o1nt Ccnv2~~:

Fixed to Fixed Array Convers~on
Real to Complex Conversion
Vector Concatenate
Block Floating Point Concaten2~e 0

Complex Block Normalization ~El

Complex Replicate CB)
Com p 1 e::-:: Se par·.;::~ t •::?.

Complex Separate (B)
Data Scaling and Display
D~namic Range Check
Mu 1 t i 1::;.1 ~ T C
MLI 11: i p 1 ~ T c (B)
t'lLtl t i p 1 ~ T R
Mt_tl t. i p J. ~ T R (I:~)
Data Bit Pack
Vector Concatenate
Vector Demultiplex
Req_uant i ::-::\-1: ion
'-.lee -!:or~ Mu l t :L p 1 .::~::-::
Real Block Normal1zat1on
Real Replic.::··.te
PE~.:.<l. 1 :3epc-\·f'.:7~. te

Selectable Replicate
Selectable Replicat2 lB)

Da t.:.. Bit Un p.:.-..ck
Linear Averaging Filter. Si~slo

A\/ e ·r-· a. ·~~ (-?

Linear Averaging File~s
Multiple Averages

Power <Complex Input)
Complex SPectral Magnitude
Complex Spectral Magnitude \bl

c:~-.:i c 1 e Tt·· i q ·~e·r··

Exponential Averaging Filt2r 1

I)C.P _FR(~~~J:B
DCP_Lir·..rT
DCP _U·1R
DC P _r~.11·~1E
:DCF _C~ I i-·-~T
LiCP _F I t-~T
f.)(:;p_:3TI
L)CP_ZFIL
DCP._ZFILE·
L=CP_ZFILC
I)CP _ZF I L(:B

FFT _CCE.
FFT _CR:E~
FFT _R:2C:B

FFT RB2CB

FFT_RBCB

FFT _RCf.
I I R_C llt.l

IIR_C11

IIR_C21

IIR_C22

IIR_R10

IIrLR11

I I R_R21

I I i-~_R22

FIR_C2S

FIP_Ct·~S

FIR_RlS

FIR_R2S

F I R,_MJ-.IS

Exponential Ave~aging Fi!ter,
Multiple Averages

Frequency Weighting
Frequencw Weighting (Bl
Linear Interpolation
Local Mean Removal
Noise Mean Estimation
Quadratic Interpolat1on
Running Integration
Short Term Integration
Ze·r"'t::J F i 11
Z•::?l"·r.J Fill (B)
Zero Fill Complex
Zero Fill Complex !Bl
Complex Block to Complex

:E~lcrck r-F1.
Comple>=: Bl·~cf..: ·to

:P.lDck FFT

r-, __ .. ·t
r'=.~-:.:.-t .. L

Complex to Comolex Bleck FFT
Gomplex to Real Block FFT
Two Real to Complex

:B 1 cJc!.a.: Ft=-r
Two Real Block to Com~:ex

Block FFT
Real b.:> Cc•rftP l•::?>=:

Block FFT
Real to Complex Block FFT
Infinite Impulse Filter

Camp 1 e::<, 1 Pi..':. l (f.?

Infinite Impulse Filter
CoiTtJ::;le::-::, l i::Jole, 1 Z~2ro

Infinite Impulse Filter
Comple:=<j 2 Poles, 1 z,~,?·r-·:::.

Infinite Impulse Filter
Complex, 2 Poles, 2 Zer~~s

Infinite Impulse Filter
Real j 1 Pol•=-

Infinite Impulse Filter
Real, 1 Pole, 1 Zer'C

Infinite Impulse Filte~-
Rea l , 2 F' Cj l (-:2 -~~ , 1 Z (2 ·r-· C!

Infinite Impulse Filter
Real, 2 Poles~ 2 Zeroes

Finite Impulse Response
Filter(Complex, One Stagel

Finite Impulse Response
Filter<Complex, Two Stage)

Finite Impulse Response
FilterCComplexj N Stage)

Finite Impul3e Response
Filter(Real, One Stage)

Finite Impulse Response
Filter<Feal. Two Stage)

Finite Impulse Response
F :i. 1 t E··:--· (Rt?..:J.l ; I\! S t .a·~ e)

CI>t··i_ CFF

cr>t1_F.:\/F

BFR_FRE(~

:t\FR_FREi~B

:BFR_<.:iE/~

:3SP _BEPCB

SSP_BIN
SSP_ COI\1\/

SSP_DNS
:3SP _DOP
SSP_FROD
SSP_INDX
SSF:: _U~P
SSF'_(Jf"··.J()F
:;::.:3 P _ P~<i:)T
SSP_Ph:F'h:
::;sp_p:JL1
:3SP _SELF
S:3P _S~r<E
:::::::;p _:3Tr.~T
:~:3P .. _Z:CR:3

Complex Demodulation
(Complex, Fixed Fr?o.

Complex Demodulation
(Complex, Variable Freq.

Complex Demodulation
(Real, Fixed Freq.)

:c
r:::.=_ ..

Complex Demodulation and~·~ Filt~r
CReal, Fixed Freq.)

Complex Demodulation
CReal1 Variable Freq. l

Frequenc~ Domain Beamformer
Frequenc~ Domain Beamform !B>
Prester and Adaptive Beamfor~
Prester and Adapti~e Beamform
Time Domain Beamform

Bearing Estimate Pre-proc2ss

CcJrn t=·l e::< (:B ;;
Bearing Estimate Pre-p0ocess

Real
B•?ar' i ng Smooth
Bin Detecti.:::m
Con -...;t::rs i t.:ln

Difar Coherent Detection
D i ·F-at' r.,Ju.ll :::>teet"·
Doppler Compensate
Frequency Determination
Peak In de::<
Linec..H' Peal..: Pich
On/Off St . .ui. tch
Pe~d.; Detect
Pe.:.~i...: Pic:.:
Pul~:5•:? Dt::?b::?ction
Self Noise Removal
~::pr.:;l .. ~i2 3Ltpp·r·E:ss

Period Statistics
Zero Crossing Detect

APPENDIX C

CONFIGURATION FOR TEST CASE

.•• I oc

67

Et1SP CONFIGURATION FOR SIMULATION

FEll) TYPE CONCENTRATOR DISTRIBUTOR
DTN CON ELEMENT DTN DIS ELEMENT

1 SC:H 0 5 0 1 3 .-.
..:0

2 13M 1 6 1 0 6 2
:3 AP (I 7 :2 1 5 1
4 IOP 1 3 3 0 4 (l

5 GM 0 15 3 1 7 :2

"''•Je•Jeid he.:i.d_n •:• de t.:i.il_node threshold consume r·ead size
1 1 1 5 5 5 1
2 3 1 5 5 5 1
:3 2 :2 10 10 l(l 1
4 3 2 9 9 9 1
5 3 3 2 2 2 1

queueid GM tYPe da.-l:a_i tems Produce caPacitY
1 2 2 0 5 100
2 2 (I 0 5 30
:3 5 2 (I 10 :20
4 2 0 0 10 40
5 2 1 0 2 15

nodeid oPcode num_inPuts NOC GM firin!is exec_ time
1 14 1 1 2 0 285
2 28 1 1 5 0 1000
3 25 2 .-, 2 0 600

nodeid tYPe size liilrl value
1 GV 1 2 5 I* INPUT *I
1 QUEUE 5 2 0 I* INPUT *I
1 QUEUE 5 :2 0 I* OUTPUT *I

nodeid tYPe size !im va l•Je
2 GV 1 5 10 I* INPUT *I
2 QUEUE 10 5 0 I* INPUT *I
2 QUEUE 10 2 0 I* OUTPUT *I

nc•de i d tYPe si~e !im value
3 GV 1 .-. ..::. 2 I* INPUT *I
3 QUEUE 2 2 0 I* INPUT *I
3 t:;-~UEUE 2 2 0 I* INPUT *I
3 QUEUE 2 2 0 I* OUTPUT *I

APPENDIX D

TOPOLOGY INPUT

68

INPUT the node identification number I* NODE 1 *I
and answer all queries about the node
InPut -1 to quit when asked the node id * 1*
INPUT oPcode mnemonic for AP instruction *VOR_SQR*
G I P -4, t:3V -:3, OR QUEI,JE -5
INPUT GraPh Variable Identification Number
GIP -4, GV -3, OR QUEUE -5
INPUT queue id. Answer all questions
about the queue. /*INPUT: QUEUE 1*/ * 1*
INPUT threshold. I* DePendent on GV value*/ *-1*
INPUT consume amount. *-1*
INPUT read amount. *-1*
GV -3 or· l:;'.IUEUE -5 I *OUTPUT: QUEUE 2* I *-5*
INPUT queue id. Answer all questions
ab•::.•J·i: the queue.
INPUT valve amount for outPut queue.

* 2*
-1

I* NODE 2 *I

69

INPUT the node id and answer all queries about the node.
InPut -1 to quit when asked the node id * 2*
INPUT oPcode mnemonic for AP instruction *VOR_ACOS*
GIP--4, GV -3, OR QUEUE -5 *-3*
INPUT GraPh Variable Identification Number * 2*
(~I P -4, f3V -3, OR QUEUE -5 *-5*
INPUT queue id. Answer all questions
about the queue. /*INPUT: QUEUE 3*/
INPUT threshold. I* DePendent of GV value*/
INPUT consume amount.
INPUT read amount.
GV -3 or G'lUEUE -5 I *OUTPUT: QUEUE 4* I
INPUT queue id. Answer all questions
ab•)Ut the queue.
INPUT valve amount for outPut queue.

-1
-1
-1
-5

INPUT the node id and answer all queries about thenode.
InPut -1 to quit when asked the node id * 3*
INPUT oPcode mnemonic for AP instruction *VOR_ATN2*
GIP -4, GV -3, OR QUEUE -5 *-3*
INPUT GraPh Variable Identification Numb~r * 3*
GIP -4, GV -3, OR QUEUE -5 /*INPUT: QUEUE 2*/ *-5*
INPUT queue id. Answer all questions
about the queue.
INPUT threshold. I* Threshold constant value*/
INPUT consume amount.
INPUT read amount.
GIP -4, GV -3, OR QUEUE -5 /*INPUT: QUEUE 4*/
INPUT queue id. Answer all questions
about the queue.
INPUT threshold.
INPUT consume amount.
INPUT read amount.
GV -3 or QUEUE -5 /*OUTPUT: QUEUE 5*/
INPUT queue id. Answer all questions
about the queue.
INPUT valve amount for outPut queue.

* 2*
* 5*
* 5*
* 5*
-5

I* NO MORE NODES SO INPUT -1*/
INPUT the node id and answer all queries about thenode.
InPut -1 to quit when asked the node id *-1*

70

APPENDIX E

CONFIGURATION INPUT

71

I* INPUT SYSTEM CONFIGURATION *I
HOW MANY DTN~s, DATA TRANSFER NETWORKS, 1 or 2
INPUT switch size for DTNCOJ
INPUT ~witch size for DTN[1J

I* Scheduler with FEID of 1 *I
InPut Function~l Element ID for each element.

INPUT -1 TO QUIT •••••••••
INPUT tvPe of Functional element. AP = 0
, CPP = 4, GM = 1, IOP = 3, SCH = 2
INPUT which DTN concentrator is on. 0 or 1
INPUT which concentr~tor on DTN
INPUT which element on concentrator
INPUT which DTN distributor is on. 0 or 1
INPUT which distributor on DTN
INPUT which element on distributor

I* GLOBAL MEMORY with FEID 2 *'
InPut Functional Element ID for each element.

INPUT -1 TO QUIT •••••••••
INPUT tYPe of Functional element. AP = 0
, CPP = 4, GM = 1, IOP = 3, SCH = 2
INPUT which DTN concentrator is on, 0 or 1
INPUT which concentrator on DTN
INPUT which element on concentrator
INPUT which DTN distributor is on. 0 or 1
INPUT which distributor on DTN
INPUT wt.ich element on distributor

I* ARITHMETIC PROCESSOR with FEID 3*/
InPut Functional Element ID for each element.

INPUT -1 TO QUIT •••••••••
INPUT tYPe of Functional element. AP = 0

* 2*
16
* 8*

, CPP = 4, GM = 1, IOP = 3, SCH = 2 * 0*
INPUT which DTN concentrator is on. 0 or 1 * 0*
INPUT which concentrator on DTN * 7*
INPUT which element on concentrator * 2*
INPUT which DTN distributor is on, 0 or 1 * 1*
INPUT which distributor on DTN * 5*
INPUT which element on distributor * 1*

I* INPUT/OUTPUT PROCESSOR with FEID 4*/
InPut Functional Element ID for each element.

INPUT -1 TO QUIT •••••••••
INPUT tvPe of Functional element. AP = 0
, CPP = 4, GM = 1, IOP = 3, SCH = 2
INPUT which DTN concentrator is on. 0 or 1
INPUT which concentrator on DTN
INPUT which element on concentrator
INPUT which DTN distributor is on, 0 or 1
INPUT which distributor on DTN
INPUT which element on distributor

I* GLOBAL MEMORY with FEID 5 *I
InPut Functional Element ID for each element.

INPUT -1 TO QUIT •••••••••
INPUT tYPe of Functional element, AP = 0
, CPP = 4, GM = 1, IOP = 3, SCH = 2
INPUT which DTN concentr~tor is on. 0 or 1

* 3*
* 1*
* 3*
* 3*
* 0*
* 4*
* 0*

72

INPUT which concentrator on DTN
INPUT which element on concentrator
INPUT which DTN distributor is on. 0 or 1
INPUT which distributor on DTN
INPUT which element on distributor

I* NO MORE FUNCTIONAL ELEMENTS SO -1*/
InPut Functional Element ID for each element.

INPUT -1 TO QUIT •••••••••

I* INPUT CHANNEL INFORMATION *I
I* CHANNEL 1 ATTACHED TO QUEUE 1*/

15
* 3*
* 1*
* 7*
* 2*

73

INPUT channel id. InPut -1 tb quit.
abr:••Jt
INPUT
INPUT
INPUT
INPIJT

the dH~onrte 1.
PrioritY of channel.

Answer a 11 questions
* 1*
* 1*

channel rate of inPut
id of queue channel is attached.

* 50000*
* 1*

id of FEID of IOP, Functional element id
of InPut OutPut Processor.

INPUT 2 or OUTPUT 1 Channel
I* CHANNEL 2 ATTACHED TO QUEUE 3*/

INPUT channel id. InPut -1 -to quit. Answer all
questions about the channel. * 2*
INPUT Prioritv of channel. * 2*
INPUT channel rate of inPut * 100000*
INPUT id of queue channel is attached. * 3*
INPUT id of FEID of IOP, Functional element id
of InPut OutPut Processor.

INPUT 2 or OUTPUT 1 Channel
I* CHANNEL 3 ATTACHED TO QUEUE 5*/

INPUT channe 1 i d. InPut -1 to -.u it. Answer all
questions about the channel. * 3*

* 3*
* 300000*

INPUT PrioritY of channel.
INPUT channel rate of inPut
INPUT id of queue channel ls attached.
INPUT id of FEID of IOP, Functional element id
of InPut OutPut Processor.

INPUT 2 or OUTPUT 1 Channel * 1*
I* NO MORE CHANNELS SO INPUT -1*/

INPUT channel id. InPut -1 to quit. Answer all
·questions about the channel. * -1*

I* INPUT NODE INFORMATION THAT IS DYNAMIC*/
I* NODE 1*/

NOTE: Most inPut queues and sraPh variables are
located in same Glob~l MemorY as Node InstructionStream

INPUT GM of GRAPH VARIABLE
INPUT value of GV
INPUT Gt·1 of QUEUE
INPUT capacitY.

I* NODE 2*/

* 2*
* 5*
* 2*

100

NOTE: Most inPut queues and ~raPh variables are
located in same Global MemorY as Node InstructionStream

INPUT GM of GRAPH VARIABLE
INPUT value of GV
INPUT GM of QUEUE
INPUT r:aPacitY.

I* NODE 3*1

* 5*
10
* 5*
20

NOTE: Most inPut queues and sraPh variables are
located in same Global Memorv as Node In$tructionStream

INPUT GM of GRAPH VARIABLE
INPUT value of GV
INPUT GM r:•f QUEUE
INPUT caPacitv.
INPUT GM of QUEUE
INPUT caPacitY.

I* Since outPut queue 5 is attached to a channel
I* extra information must be sathered about the
I* queue at this time, i.e. the caPacitY and
I* thre$hold.

INPUT GM of QUEUE
INPUT ca.Pacitv.
INPUT- threshr:•l d.

* 2*
* 2*
* 2*
30
* 2*
40
*I
*I
*I
*I

74

APPENDIX F

SIMULATION OUTPUT

75

TIMING SIMULATOR FOR THE
ENHANCED MODULAR SIGNAL PROCESSOR

EMSP CONFIGURATION FOR SIMULATION

FEID TYPE CON CENT R.C:; TOR D I s·r!=t I J:·,l .. _.iT()Fi:
DTN CON ELEI'1ENT DTN

0 s < lt.J '
1 •:J 1

,..,.
'.;.".)

0
..., --- < .. .l

·I 3 '""! :·::.
.l ·-.J ;:.J 4- IUP
0 1 r.:: -~ <

...J ~ J. 5

FUNCTIONAL ELEMENT UTILIZATION

FEID

1

2

....,. . ..;)

it-

5

T'r'PE

SCH

GM

AP

IOP

TOTAL TIME = 1000.

NODE EXECUTION INFORMATION

l'·-JODE ID t)PC{):DE

1 14 2
2 28 2
..:.· 25 1

CHANNEL EXECUTION INFORMATION

43

4-0

30

.-.
L

14

CHANI'·JEL F If;~ I N(:i:3
1

.; ,.,
l.\U

~C.) I s El_El'iEr··.~T

··-'

·=
--~

.[.~

._j

QUEUE EXECUTION INFORMATION

QUEUE ID

1 35
s

10
1 1

~J

. ...)
·;
J.

1

T;~ I L ;·.IC•:C.E

·I
.i.

1

-.7 -~.·

APPENDIX G

TIMING DIAGRAM SIMULATION OUTPUT

FEID TYPE

TIMING SIMULATOR FOR THE
ENHANCED MODULAR SIGNAL PROCESSOR

EMSP CONFIGURATION FOR SIMULATION

CONCENTRATOR DISTRIBUTOR
DTN CON ELEMENT DTN DIS ELEt'IENT

1 SCH 0 5
2 GM 1 6
3 AP (l 7
4 IOP 1 :3
5 GM 0 15

T I t·1 I NG CHART FOR EMSP GRAPH

TIME
0

99

1 ... ,
.;;; 4 5

(l 1 ~:
.-,
..:,.

1 0 6 2
2 1 5 1
3 0 4 0
3 1 7 .-,

..::.

I* TWO GRAPH PROCESS INSTRUCTS FIRE AT SAME TIME ONE IS *I
I* RESCHEDULED FOR TIME 103. INSTRUCT 30 IS EXN SO *I
I* A CHANNEL HAS GONE OVER THRESHOLD AND FIRED. *I
INSTRUCT oPcode 30, time 10000, receiver 4, sender 4, node 1
CALLING IOPP
INSTRUCT oPcode
CALLING IOPP

100
101
102

I* RESCHEDULED
INSTRUCT opcode
CALLING IOPP

103
104
105

I* EXN INSTRUCT
INSTRUCT OPCode
CALLING GM

106 2
107 2
108 2

30, time 10000, receiver 4,

4
4
4

INSTRUCT EXN IS NOW EXECUTED
:30, time 10300. receiver· 4,

4
4
4

TRIGGERED A WRITE QUEUE TO
64, time 105:34, receiver 2.

sender 4, node :2

AS IOF' I.-. ..::0 FREE*/
sender 4, node 2

t;~UEUE 1 *I
sender· 4, n•:•d~ 1

I* EXN INSTUCTION TRIGGERED A WRITE QUEUE TO QUEUE 3 *I
INSTRUCT opcode 64, time 10892, receiver 5, sender 4, node 2
CALLING GM

109 2 5
110 2 5
111 2 5
112 2 5

113
114
115
116
117
118
11';'1
120
121
122
123
124
1·")~ 4-..1

126
127
128
129
130

:::o

2 5
2 5
2 5
2 5
2 5
2 5

5
5
5
5

I* QUEUE 1 HAS GCtNE OVER THRESHOLD. WRITE QUEUE INSTRUCT *I
I·* TRIGGERED A QUEUE OVER THRESHOLD INSTRUCT. *I
INSTRUCT oPcode 42, time 13040, receiver 1, sender 2, node 1
CALLING SCH

131 1
1:32 1
133 1
134 1
135 1

I* QUEUE 3 HAS GONE OVER THRESHOLD. WRITE t~UELIE INSTRUCT* I
I* TRIGGERED A QUEUE OVER THRESHOLD INSTRUCT BUT *I
I* SCHEDULER IS BUSY SO RESCHEDULE> *I
INSTRUCT oPcode 42, time 13536, receiver 1, sender 5, node 2
CALLING SCH

136 1
137 1
138 1
139 1
140 1
141 1
142 1
143 1
144 1
145 1
146 1
147 1
148 1
149 1
150 1

I* RESCHEitULED QUEUE OVER THRESHOLD INSTRUCT FOR QUEUE :3* I
INSTRUCT OPcode 42, time 15040, receiver 1, sender 5, node 2
CALLING SCH

151 1
152 1
15:3 1
154 1

155 1
156 1
157 1

81

I* SEND INSTRUCT STREAM INSTRUCTION TRIGGERED BY QUEUE 1*/
I* GOING OVER THRESHOLD. NODE 1 IS FIRING. *I
INSTRUCT OPcode 53, time 15747~ receiver 2, sender 1. node 1
CALL I NG Gt·l

158 1 2
15';> 1 2
160 1 2
161 1 2
162 1 2
163 1 2
164 1 2
165 1 2
166 1 2
167 1 2
168 1 2
16'7 1 2
170 1 2.
171
172
173
174

I* ACCEPT INSTRUCT STREAM SENT BY GLOBAL t"iEMEORY TO *I
I* ARITHMETIC PROCESSOR. *I
INSTRUCT oPcode 3, time 17430, receiver 3, &ender 2. node 1
CALLING AP

'*

175 3
176
177
178
179
180
181
182
183
184
185
186
187
18:3
18'7
1·;;ro
191
1';>2
193
1'~4

195
196
197
1•;>:::
1'?9
REQUEST

3
3
3
3

GRAPH VARIABLE FROM GLOBAL MEMORY FOR NODE 1 *I

I* SENT BY ARITMETIC PROCESSOR.
INSTRUCT opcode 47, time 19918. receiver 2. sender 3,
CALLING Gt'l
I* CHANNEL 1 HAS FIRED AGAIN AND CHANNEL 2. CHANNEL 2
I* BLOCKED AGAIN AND RESCHEDULED. OPCODE 30 IS EXN.
INSTRUCT opcode 30. time 20000, receiver 4, sender 4,
CALLING IOPP
INSTRUCT opcode 30. time 20000, receiver 4, sender 4,
CALLING IOPP

200 2 4
201 2 4
202 2 4

:32

node 2

I* RESCHEDULED CHANNEL 2 EXN or EXECUTE NODE INSTRUCT *I
INSTRUCT oPcode 30, time 20300, receiver 4, sender 4. node 2
CALL I NG I (IPP

203 2 4
204 2 4

I* WRITE QUEUE TRIGGERED ON G'JUEUE 1 BY CHANNEL FIRING. *I
I~ MUST BE RESCHEDULED BECAUSE OF PREVIOUS REQUEST GV. *I
INSTRUCT opcode 64, time 20482, receiver 2, sender 4, node 1
CALLING GM

205 2 4
206 2
207 2
208 2
209 2

I* WRITE QUEUE TRIGGERED ON QUEUE :.;: BY CHANNEL FIRING. *I
INSTRUCT oPcode 64, time 20902, receiver 5, sender 4, node 2
CALLING GM

210 2 5
211 2 5

I* RESCHEDULED WRITE QUEUE ON QUEUE 1 *I
INSTRUCT opcode 64, time 21129, receiver 2. sender 4. node 1
CALLING GM

212 2 5
213 2 5

I* GLOBAL 1'1EMORY SENDING ACCEPT GRAPH VARIABLE INSTRUCT *I
I* TO ARITHMETIC PROCESSOR FOR NODE 1. *I
INSTRUCT opcode 2, time 21392, receiver 3, sender 2, node 1
CALLING AP

214 2 3 5
215 2 3 5
216 2 .-,

.j 5
217 2 3 5
218 2 3 5
219 2 3 5
220 2 3 5
221 2 3 5
222 .-,

" 3 5
I* REQUEST QUEUE SENT TO GLOBAL MEMEORY FROM ARITHMETIC *I
I* PROCESSOR FOR NODE 1. RESCHEDULED. *I
INSTRUCT OPCOde 50. time 22269, receiver 2. sender 3, node 1
CALLING GM

..............
~""'-..:;) 2 3

I* RESCHEDULE REQUEST QUEUE. *I
INSTRUCT oPcode 50, time 22384, receiver 2, sender 3, node 1
CALLING GM

:224 2 3
225 2

.:>

226 2 3
227 2 3

'* QUEUE OVER THRESHOLD ONE QUEUE 3 IN RESF'ONSE TO

'* QUEUE BECAUSE OF CHANNEL FIRING.
WRITE *I

*' 5, node 2 INSTRUCT OPCOde 42. time 22751. receiver 1' sender·
CALLING SCH

228 1 2 3
229 1 2 3
230 1 2;;.

231 1 2 3
232 1 2 3
233 1 2 3
234 1 :2 3
235 1 2
236 1 2
237 1
238
23';;o

I* GLOBAL MEMORY SENDING ACCEPT QUEUE INSTRUCT TO *I
I* ARITHMETIC PROCESSSOR. *I
INSTRUCT oPcode 4, time 23926, receiver 3, ~ender 2. node 1
CALLING AP

240 3
241 3
242 3
243 3
244 3
245 3
246 3
247 3
:248 3
249 3

'* QUEUE OVER THRESHOLD.

'* WRITE QUEUE
INSTRUCT OPCOde 42. time
CALLING SCH

250 1 3
251 1 3
252 1 3
253 1

..:•
254 1 3
255 1 3
256 1 3
257 1 ~:

258 1
.:)

259 1 '=' ·-·
260
261
262
263

QUEUE 1 OVER BECAUSE OF *I

*' 24955, receiver 1. sender 2. node 1

264
265
266
267
268

84

I* NODE 1 HAS COMPLETED EXECUTION AND IS WRITING QUEUE 2*/
I* NOTE ALL WRITE G'~IJEUES EXCEPT TO OUTPUT QUEUES GIVE *I
I* THE NODE IDENTIFICATION NUMBER OF THE HEAD NODE TO *I
I* THE QUEUE. *I
INSTRUCT oPcode 64, time 26824, receiver 2. sender 3, node 3
CALLING GM

269 2
270 2
271 2
272 2

I* NODE 1 HAS COMPLETED SO ARITHMETIC PROCESSOR IS READY*/
I* FOR NEXT INSTRUCT SO READY FOR INSTRUCTION STREAM *I
INSTRUCT oPcode 45, time 27215, receiver 1, sender 3, node 1
CALLING SCH

273 1 .-,
274 1 2
275 1 2
276 1 2
277 1 2
278 1 2
279 1 2
280 1 2
281 1
2?2 1
283 1
284 1
285 1
286 1
287 1
288 1
289 1
2';'10
291
292
293
294

I* UPON RECEPTION OF THE READY FOR INSTRUCT STREAM, NODE *I
I* 2 WHICH WAS WAITING ON THE READY LIST IN THE SCHEDULER*/
I* IS SCHEDULED WITH A SEND INSTRUCT STREAM. *I
INSTRUCT oPcode 53, time 29454, receiver 5, sender 1, node 2
CALLING Gt-1

295
296
297
298

5

5
299 5

I* QUEUE 2 HAS GONE AVER THRESHOLD WITH THE WRITE QUEUE *I
I* TRIGGERED BY THE EXECUTION OF NODE 1. *I
INSTRUCT oPcode 42, time 29922, receiver 1. sender ;:;::, node 3

:35

CALLING SCH
I* CHANNEL 1 AND 2 HAVE FIRED AGAIN. CONFLICT AGAIN AND *I
I* RESCHEDULED. *I
INSTRUCT oPcode 30, time 30000, receiver 4, sender 4, node 1
CALLING IOPP
INSTRUCT opcode 30, time 30000, receiver 4, sender 4, node 2
CALLING IOPP

300 1 4 5
301 1 4 5
302 1 4 5

INSTRUCT oPcode 30, time 30300, ~eceiver 4, sender 4, node 2
CALLING IOPP

303 1 4 5
304 1 4 5

I* NODE 1./s FIRING HAS TRIGGERED A CONSUME QUEUE INSTRUCT*/
I* ONE QUEUE 1 ATTACHED TO NOt•E 1. *I
INSTRUCT oPcode 72, time 30432, receiver 2. sender 3, node 1
CALLING GM
I***** NOTE THE PARALLELISM ON THE FUNCTIONAL ELEMTENTS*****I

305 1 2 4 5
I* WRITE QUEUE FOR QUEUE 1 TRIGGERED BY CHANNEL.RESCHEDULED*/
INSTRUCT opcode 64, time 30506, receiver 2, sender 4, node 1
CALLING GM

306 1 2 5
307 1 2 5
308 1 2
30':i) 1 2

I* WRITE QUEUE FOR QUEUE 3 TRIGGERED BY CHANNEL 2. *I
INSTRUCT oPcode 64, time 30926, receiver 5, sender 4, node 2
CALLING GM

310 2 5
311 2 5
312 2 5

I* GLOBAL MEMORY SENDING ACCEPT INSTRUCT STREAM TO *I
I* ARITHMETIC PROCESSOR FOR NODE 2. *I
INSTRUCT oPcode 3, time 31206, receiver 3, sender 5, node 2
CALLING AP

313 2 3 5
314 2 3 5
315 2 3 5
316 2 3 5

I* REPORT NODE DONE WAS ADDED TO NOTIFY THE SCHEDULER A *I
I* NODE HAD FINISHED. EMSP DOES NOT ALLOW TWO INSTANCES *I
I* OF THE SAI'1E NODE. OPCODE IS ONLY FOR SU1ULATOR ANti NOT*/
I* A INSTRUCT ON ENSP SO IT TAKES NO TIME. *I
INSTRUCT OPcode -4, time 31632, receiver 1, sender 2, node 1
CALLING SCH
I* RESCHEDULED WRITE l:;lUEUE FOR NODE 1 *I
INSTRUCT oPcode 64, time 31632, receiver 2, sender 4, node 1
CALLING GM

317 2 3 5
318 2 5
319 2 5
320 2 5

:=:t:..

321 ·~ ..!.. 5
:322 2 5
323 2
324 2
325 2
326 2

I* QUEUE OVER THRESHOLD FOR QUEUE 1 *'
INSTRUCT oPcod~ 42, time 32664, receiver 1, sender 2, node 1
CALLING SCH

327 1 2
328 1 2
329 1
330 1
:331 1
332 1

I* REQUEST GRAPH VARIABLE. NODE 2. *I
INSTRUCT oPcode 47, time 33237, receiver 5, sender 3, node 2
CALLING GM

333 1 5
334 1 5
335 1 5
336 1 5
337 1 5

I* QUEUE 3 HAS GONE OVER CAPAC I TV. GLOBAL MEI'10RY
I* QUEUE OVER CAPACITY MESSAGE TO SCHEDULER.
I* RESCHEDULED.
INSTRUCT oPcode 41, time 33719, receiver 1. sender
CALLING SCH

338 1 5
339 1 5
340 1 5
341 1 5
342 1 5
343 1 5
344 1 5
345 1
346 1

SENT

5.

I* RESCHEDULED QUEUE OVER CAPACITY INSTRUCT. *I

*'

*' *' node 2

INSTRUCT oPcode 41. time 34664, receiver 1. sender 5. node 2
CALLING SCH
I* ACCEPT INSTRUCT STREAt'l TO ARITHMETIC PROCESSOR FOR* I
I* NODE 2 FROM GLOBAL MEMORY. *I
INSTRUCT oPcode 2, time 34692, receiver 3, ~ender 5. node 2
CALLING AP

347 1 3
348 1 3
349 1 3
350 1 3
351 1 3
352 1 3
35~: 1 3
354 1 8l
:355 1 3
356 1 :3

357 1 :3
358 1 3
35·~ 1 ::::

I* QUEUE OVER THRESHOLD INSTRUCT FOR NODE 1.
I* RESCHEDULED.
INSTRUCT oPcode 42. time 35923. receiver 1. s~nder 2, node 1
CALLING SCH

. 360 1 3
361 1 3

I* RESCHEDULED QUEUE OVER THRESHOLD.
INSTRUCT oPcode 42, time 36164, receiver 1, sender 2, nod~ 1
CALLING SCH

~:62 1 3
363 1 3
364 1 ::::

I* REQUEST QUEUE FOR NODE 2 FOR QUEUE 3.
INSTRUCT oPcode 50, time 36496. receiver 5. sender 3. node 2
CALLING Gt1

365 1 3 5
366 1 3 5
367 1 3 5
368 1 5
369 1 5

I* QUEUE OVER THRESHOLD FOR QUEUE 3. RESCHEDULED.
INSTRUCT oPcode 42. time 36978. receiver 1. sender 5, node 2
CALLING SCH

370 1
371 1

I* RESCHEDULED
INSTRUCT oPcoo.Je
CALLING SCH

372 1
373 1
374 1
375 1
376 1
377 1
378 1
37'~ 1
380 1
381 1
:382
383
384

5
5

QUEUE OVER THRESHOLD FOR QUEUE 3. *I
42. time 37164. receiver 1. sender 5. node 2

5
5
5
5
5
5
5

I* ACCEPT QUEUE FOR QUEUE 3 AND NODE 2. *I
INSTRUCT oPcode 4, time 38416. receiver 3, sender 5. node 2
CALLING AP

385
386
387
388

3
3
3

3

3

:38

I* QUEUE OVER CAPACITY INSTRUCT ON A CHANNEL REQUIRES*/
I* A SNDT OR STOP NODE DATA TRANSFER MESSAGE TO BE SENT *I
I* TO THE INPUT/OUTPUT PROCESSOR. *I
INSTRUCT opcode 71, time 39168, receiver 4, sender 1, node 2
CALLING IOPP
ERROR CHANNEL 2 HAS OVERRAN

4
I~UEUE 3

392
393
394
395
396
397
398
399

'* SAME

3
3
3
3
3

~ ._.

3

4
4

OLD CHANNEL FIRINGS.
INSTRUCT opcode 30, time 40000,
CALLING IOPP
INSTRUCT opcode 30, tim~ 40000,
CALLING IOPP

400 3 4
401 3 4
402 3 4

receiver 4,

receiver 4,

sender· 4, *' node 1

I* CHANNEL 2 .HAS BEEN STOPPED SO NO TIME NECESSARY FOR EXN*/
INSTRUCT oPcode 30, time 40300, receiver 4, sender 4, node 2
CALLING IOPP

403
404

3
3

405 3
/* CHANNEL FIRING TRIGGERED A WRITE QUEUE ON QUEUE 1 *I
INSTRUCT oPcode 64, time 40502, receiver 2, sender 4, node 1
CALLING GM

406 2
407 2
408 2
409 2
410 2
411 2
412 2
413 2
414 2

I* NODE 2 HAS COMPLETED SET UP MODE IN ARITHMETIC PROCESSOR*/
I* SO SENDS READY FOR INSTRUCT STREAM <RFIS> TO *I
/* SCHEDULER. *I
INSTRUCT oPcode 45, time 41442, receiver 1. send~r 3, node 2
CALLING SCH

415 1
416 1
417 1
418 1
41'7 1

2

.-. ...:.

/* RFIS FROM INPUT/OUTPUT PROCESSOR WHEN CHANNEL STOPPED. *I
INSTRUCT oPcode 45, time 41910, receiver 1, sender 4, node 2
CALLING SCH

420 1

421 1
422 1
423 1
424 1
425. 1
426 1
427 1
428 1
429 1
430 1
431 1

I* RFIS RESCHEDULED AT TH1E 420.
INSTRUCT oPcode 45, time 43142, receiver 1, sender 4, node 2
CALLING SCH
I* WRITE QUEUE TRIGGERED BY EXECUTION OF NODE 3. *I
INSTRUCT oPcode 64, time 43162, receiver 2, sender 3, node 3
CALL I NG CiM

4:32 1 2
43:3 1 2
434 1 2
435 1 2
436 1 2
437 1 2
438 1 2
439 1 2
440 1 2
441 1 2

I* SEND INSTRUCT STREAM TRIGGERED BY RFIS
INSTRUCT oPcode 53, time 44135, receiver 2, sender 1, node 1
CALLING GM

442 1 2
443 1 2
444 1 2

INSTRUCT oPcode 53, time 44472, receiver 2, sender 1, node 1
CALLING GM

445 1 2
446 1 2

I* QUELIE OVER THRESHOLD TRIGGERED BY CHANNEL FIRING AND *I
*I

receiver 1, sender 2. node 1
I* WRITE QUEUE.
INSTRUCT oPcode 42, time 44603,
CALLING SCH

447 1 2
448 1 2

INSTRUCT opcode 42, time 44842, receiver 1. sender 2. node 1
CALLING SCH

449 1 2
450 1 2
451 1 2

I* CONSU~1E QUEUE TRIGGERED BY EXECUTION OF NODE 2.
INSTRUCT oPcode 72, time 45113, receiver 5, sender 3, node 2
CALLING GM

452 1
453 1
454 1

2
2
2

5

5

455
456
457
458

1
1
1
1

2
2
2

5
5
5
5

459 5
460 5
461 5

I* ACCEPT INSTRUCT STREAM FOR NODE 1. *I

90

INSTRUCT oPcode 3, time 46102, receiver 3, sender 2, node 1
CALLING AF'

462 3 5
463 3 5

I* SUF'ERF I C I AL REF'ORT NODE DONE FOR NODE 2. *I
INSTRUCT oPcode -4, time 46313, receiver 1, sender 5, node 2
CALLING SCH

464 3
465 3
466 3
467
468
469
470
471
472
473

I* QUEUE OVER THRESHOLD FOR NODE 3 AND QUEUE 2 or 4. *I
INSTRUCT oPcode 42, time 47345, receiver 1, sender 2, node 3
CALLING SCH

474 1
475 1
476 1
477 1
478 1
479 1

I* REQLIEST GRAPH VARIABLE FOR NODE 1 • *I
INSTRUCT oPcode 47, time 47918, receiv~r 2, sender 3, node 1
CALL I NG Gt-1

480 1 2
481 1 2
482 1 2
483 1 2

I* QUEUE OVER THRESHOLD FOR NODE 2 AND QUEUE 3. *I
INSTRUCT opcode 42, time 48400, receiver 1. sender 5, node 2
CALLING

484
485
486
487
488
489
4'3)0
491
4'3)2
49:3

SCH
1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2

91

I* RESCHEDULED FROM T I 1'1E 484.
INSTRUCT oPcode 42, time 49345, receiver 1, sender 5, node 2
CALLING SCH

494 1
I* ACCEPT GRAPH VARIABLE. *I
INSTRUCT oPcode·2, time 49476. receiver 3, sender 2, node 1
CALLING AP

495 1 3
496 1 3
497 1 3
498 1 3
499 1 3

I* CHANNEL 1 FIRED. EXECUTE NODE <EXN>. *I
INSTRUCT OPCOde :30.
CALLING IOPP

500 1 3
501 1 3
502 1 3
503 1 3
504 1 3
505 1 '?

I* WRITE QUEUE FOR
INSTRUCT oPcode 64.
CALLING GM

506 1 2 3
507 1 2 3

I* REQUEST QUEUE.
INSTRUCT OPCOde so.
CALLING GM

508 1 2 3
509 1 2 3
510 1 2 3
511 1 2 3
51:2 1 2 3
513 1 2 3
514 2 3
515 2
516 2
517 2

time 50000, receiver 4, sender 4, node 1

4
4
4

QUEUE 1 *I
time 50512, receiv~r 2. sender 4, node 1

*' time 507:23. receiver 2. sender 3, node 1

I* RESCHEDULED FROM TIME 508. *I
INSTRUCT oPcode 50, time 51767, receiver 2. sender 3, node 1
CALL I NG Gt-1

518 2
51 s-1 2
520 2
521 2
522 2
5'::1.-,

.:;...:0 2
524 2
525 2
526 2
527 2
528 2
529 .-,

~

·;-2

I* QUEUE OVER THRESHOLD FOR l:;liJEUE 1. *I
INSTRUCT OPCOde 42. time 52955. re•:eiver 1' sender

"""' node 1
CALLING SCH

530 1 2
531 1
532 1
533 1

I* ACCEPT l:;lUEUE. *I
INSTRUCT OPCOde 4. time 53368. receiver 3. sender :2, node 1
CALLING AP

534 1 3
535 1 3
536 1 3
537 1 3
538 1 3
539 1 3
540 3
541 3
542 3
543 3
544 3
545 3
546 3
547 3
548 3
549 3
550 3
551 3
552 3
553 3
554 3
555
556
557
558
559
560
561
562

I* WRITE QUEUE TRIGGERED BY EXECLITION OF NODE 1 *I
INSTRUCT oPcode 64. tim~ 56238. receiver 2. sender :3, node --:. ._.

CALLING GM
563 2
564 2
565 2
566 2
567 2
568 2
569 2
570 2

I* RFIS TRIGGERED BY COMPLETION OF THE EXECUTION. OF NODE 1*1
INSTRUCT oPcode 45, time 57007, receiver 1, sender 3, node 1
CALLING SCH

571 1 2

572
57~:

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
s·~2

1 2
1 2
1 2
1
1
1
1
1
1
1
1
1
1
1
1
1

I* SEND INSTRUCT STREAM FCIR NODE 3 TRIGGERED BY RF IS. *I
INSTRUCT oPcode 53, time 59246, receiver 2, sender 1, node 3
CALLING GM

5'?3 2
594 2
595 2
596 2
597 2

I* QOT ON QUEUE
INSTRUCT OPCOde
CALLING SCH

5'?8 1 2
599 1 2

I* EXN *I
INSTRUCT opcode
CALLING IOPP

600 1
601 1
602 1

2
2

2 OR 4 TRIGGERED BY NODE 1 EXECUTION *I
42, time 59714, receiver 1. sender 2. node 3

30. time 60000,

4
4
4

receiver 4, sender 4, node 1

I* CONSUME QUEUE 1 TRIGGERED BY NODE 1 EXECUTION *I
INSTRUCT opcode 72, time 60224, receiver 2, sender 3, node 1
CALLING GM

603 1 2
604 1 2
605 1 2

I* WRITE QUEUE 1 TRIGGERED BY EXN. *I
INSTRUCT oPcode 64, time 60508, receiver 2, sender 4, node 1
CALL I NG Gl'1
I* CCINSUME G!UEUE WAS RESCHEDULEI:I FROM T I t1E 603 *I
INSTRUCT opcode 72, time 60589, receiver 2. sender 3, node 1
CALLING GM
I* WRITE QUEUE TIME RESCHEDULED AGAIN *I
INSTRUCT oPcode 64, time 60~89, receiver 2, sender 4, node 1

CALLING Gt1
606 1 2
607 1 2
608 2
609 2

I* ACCEPT INSTRUCT STREAM SENT TO AP FROM GM FOR *I
I* NODE 3*/

'?4

INSTRUCT oPcode 3, time 60998, receiver 3, sender 2. node 3
CALLING AP

610 2 3
611 2 3
612 2 3
61:3 2 ~:

614 2 3
615 2 .-,

,:I

616 2
617 .-, ...

I* SLIPERF I C I AL REPORT NODE *I
INSTRUCT oPcode -4, time 61789, receiver 1, sender 2. node 1

CALLING SCH
I* WRITE QUEUE FOR EXN FINALLY NOT RESCHEDULED BUT·*;

I* EXECUTED. *I
INSTRUCT oPcode 64, time 61789, receiver 2, sender 4, node 1

CALLING GM
618 2
619 2
620 2
621 2
622 2
623 2
624 2

I* QUEUE OVER THRESHOLD FOR CONSUME QUEUE *I
INSTRUCT opcode 42, time 62456, receiver 1, sender 2, node 1

CALLING SCH
625 1 2
626 1 2
627 1 2
628 1 2
629 1 2
630 1 2

I* REQUEST GRAPH VARIABLE. SAME INSTRUCT BUT IT *I
I* RGV GAVE IN ON PART OF A TH1E UNIT AND WAS
I* RESCHEDULED LATER IN THE Tit-1E UNIT.
INSTRUCT oPcode 47, time 63029, receiver 2, sender 3, node 3

CALLING GM
INSTRUCT opcode 47, time 63044. receiver 2. sender 3, node 3

CALL I NG Gj\1
631 1
632 1
633 1
634 1
635 1
636 1
637 1

2
2
'"J
2
2
2
2

638
639
640
641
642
643
644
645

1
1
1
1
1
1
1

2
.;:;.

2
2
2

95

VARIABLE. NODE 3 TRYING TO EXECUTE *I I* ACCEPT GRAPH
INSTRUCT oPcode 2,
CALLING AP

time 64554, receiver 3, sender 2, node 3

646
647
648
64';>
650
651

3
3
3 .-. ..:·
3
3

652 3
I* QOT FOR WRITE QUEUE *I
INSTRUCT opcode 42, tim~ 65261, receiver 1, ~ender 2. node 1
CALL I NG SCH ·

653 1 3
654 1 3
655 1 3
656 1 3
657 1 3
658 1 3

I* REQUEST QUEUE FROM AP TO GM FOR NODE 3*1
INSTRUCT oPcode so, time 65834, receiver 2, sender 3, node 3
CALLINC; GM

659 1
660 1
661 1
662 1
663
664
665
666
667
66:3
669
670
671
672
673
674

2
2
2
2
2
2
2
2
2
2
2
2

3

3
3
3
3
3

FROM GM TO AP FOR NODE 3*/ I* ACCEPT QUEUE
INSTRUCT OPcode 4,
CALLING AP

675
676
677
678
679

.-,

.:}

3
3
3

time 67424, receiver 3, sertder 2, node 3

6:30 3
681 3

I* REQUEST QUEUE FROM AP TO GM FOR NODE 3 *I
I* NOTE NODE 3 HAS TWO INPUT QUEUES (2 & 4) *I
INSTRUCT oPcode 50, time 68185, receiver 2. ~ender 3,
CALLING 131'1

682
683
684
685
686
687
688
689
690
691
692
693
694
6';"15
696
697
698

2
2
2
.-,
2
2
2
2
2
2
2
2

'='
3
2:
3
~:
.-,
.;:;o
....
·-· .-,
-=-
'=' ·-· .-.
-=-
3
3

I* ACCEPT QUEUE 4 FROM GM TO AP FOR NODE 3*/

96

node ::::

INSTRUCT oPcode 4, time 69846. receiver 3. sender 2, node 3
CALLING AP

699 3
I* CHANNEL 1 FIRED AGAIN *I
INSTRUCT oPcode 30, time 70000. receiver 4. ~ender 4, node 1
CALLING IOPP

700 3 4
701 3 4
702 3 4
703 3
704 3
705 3

I* CHANNEL 1 FIRED AND IS WRITING TO QUEUE 1 *I
INSTRUCT oPcode
CALLING GM

706 2
707 2
708 .-, ..:..
709 .-..

..:..

710 .-,
..:..

711 2
712 2
713 2
714 2
715 2
716 2
717 2
71E: 2
719
720

64.

3_,

3
'=' ._,

3

.-,
-=-
3
3

3

.-,
-=-

time 70546, receiver 2, sender 4, node 1

- -----

721
72:2
723
724
725
726
727

'?7

I* NODE 3 COMPLETED EXECUTION AND IS WRITING QUEUE 5*1
INSTRUCT oPcode 64, time 72758, receiver 2, sender 3, node 3
CALLING GM

728
729
730
731
732
733
734
735
736
737
738

2
2
~:.
2
2
2

2
2
2
2

739 2
740

I* QOT FOR EXN AND WRITE QUEUE*/
INSTRUCT oPcode 42, time 74001, receiver 1, sender 2, node 1
CALLING SCH

. 741 1
742 1
743 1
744 1

I* READY FOR INSTRUCT STREAt1 SINCE AP FIN I SHED *I
I* SET UP MODE *I
INSTRUCT oPcode 45, time 74469, receiver 1, sender 3, node 3
CALLING SCH

745 1
746 1
747 1
748 1
749 1
750 1

I* WAS RESCHEDULED FROI'1 T I t1E 7 45 *I
INSTRUCT oPcode 45, time 75001, receiver 1, sender 3, node 3
CALLING SCH

751 1
752 1
753 1
754 1
755 1
756 1
757 1
758 1
759 1
760 1
761 1

762 1
763 1
764 1
765 1
766 1
767 1

I* SEND INSTRUCT STREAM. NODE 2 JUST FIRED *I

98

INSTRUCT oPcode 53, time 76708, receiver 5, sender 1, node 2
CALLING GM

768 5
769 5
770 5
771 5

I* QOT BUT CHANNEL IS BUSY -- QUEUE 5 and EXECUTE NODE 3 *I
INSTRUCT oPcode 42, time 77176, receiv~r 1, sender 2, node 3
CALLING SCH

772
773
774

5
5
5

775 5
776 5

I* CONSUME QUEUE EXECUTE NODE 3*/
INSTRUCT oPcode 72, time 77686, receiver 2, sender 3, node 3
CALLING GM

777 2 5
778 2 5
779 2 5
780 2 5
781 2
782 2
783 2
784 2
785 2

'* ACCEPT INSTRUCT STREAM FOR NODE 2 FROM GM5 TO AP *I
INSTRUCT opcode 3. time 78554, receiver 3, sender 5, node 2
CALLING AP

786
787
788
78';'1
790
791
792
79~:

794
795
796
797
798
799

2 3
2 3
2 3

.-,

.,:1

3

I* EXECUTE INSTRUCT STREAM. QUEUE 5 OR CHANNEL 3 *I
I* IS BEING WRITTEN *I
INSTRUCT oPcode 24, time 79904, receiver 4, sender 1, node 3
CALLING IOPP

I* EXN FOR NODE 1 AND t:;lUEUE 1 *I
INSTRUCT oPcode 30, time 80000, receiver 4, sender 4, node 1
CALLING IOPP

800 4
801 4
802 4

I* REQUEST QUEUE FOR WRITING TO CHANNEL 3 *1.
INSTRUCT oPcode SO, time 90204, receiver 2, sender 4, node 3
CALLING GM
I* PREEMPTED BY EIS AND NOW EXECUTINT EXN *I
INSTRUCT oPcode 30. time 80204, receiver 4, sender 4, node 1
CALLING IOPP

803 2 4
I* QOT *I
INSTRUCT oPcode 42, time 80372, receiver 1, sender 2, node 3
CALLING SCH

804 1 2 4
80S 1 2 4
806 1 2
807 1 2
808 1 2

I* WRITE QUEUE FOR QUEUE 1 TRIGGERED BY EXN. RESCHEDULED *I
INSTRUCT oPcode 64, time 80864, receiver 2, sender· 4, r..:Hie 1
CALLING GM
I* RESCHEDULED *I
INSTRUCT oPcode 72, time 80882, receiver 2, sender 3, node 3
CALL I NG Gj\1

809 1 2
:310 1 2
811 1 2
812 1 2
813 1 2
814 2

I* RESCHEDULED WRITE QUEUE FOR EXN AND QUEUE 1*1
INSTRUCT oPcode 64, time 81426, receiver 2, sender 4, node 1
CALLING GM
I* RESCHEDULED AGAIN *I
INSTRUCT oPcode 72, time 81426, receiver 2, sender 3, node 3
CALLING GM

815 2
816 2
817 2

I* ACCEPT QUEUE FROM GM TO IOP. OUTPUT CHANNEL 3 *I
I* TRIGGERED. *I
INSTRUCT ope ode 4. time 81774. receiver 4, sender 2, node ~=

CALLING IOPP
818 2 4
81'7 2 4
820 2 4
821 2 4
C•~.-,

~·~~ 2 4
823 2 4
824 2 4
825 2 4

-- - -- ---------- - - -----

100

826 2 4
I* CONSUME QUEUE 4. NODE 2 COMPLETED EXECUTION *'
INSTRUCT oPcode 72, time 82681, receiver 2, sender 3, node 3
CALLING GM

827
82:3
829

2
2
2

830 2
831 2

4
4
4
4
4

1 FOR EXN *I I* QOT FOR QUEUE
INSTRUCT opcode
CALLING SCH

4
"'' time 83114, receiver 1, sender 2, node 1

832 1 2
833 1 2
834 1 2
835 1 2
836 1 2

I* REQUEST GRAPH

4
4
4
4
4

VARIABLE FOR NODE 2 *I
INSTRUCT oPcode 47, time 83687, receiver 5, sender 3?
CALLING GN

837 1 2
838 1 2

4 . -5
4 5

INSTRUCT oPcode -4Y time 83881, receiver 1, sender 2,
CALLING SCH

839 1
840 1

5

841 1 5
I* SUPERFICIAL REPORT NODE DONE *I
INSTRUCT oPcode -4, time 84114, receiver 1. sender 2,
CALLING SCH

842
843
844
845
846
847
848
849
850
851

5
5
5

5
5
5

I* ACCEPT GRAPH VARIABLE FOR NODE 2 *I

node 2

ncrde 3

nr:rde 3

INSTRUCT oPcode 2, time 85176, receiver 3, sender 5, node 2
CALLING AP

852
:353
854
855
856
857

3
3
3
3
3
3

858 3
859 3

I *•~LIEUE UNDER THRESHOLD *I
INSTRUCT opcode 44, time 85919, receiver 1. sender 2. node 3
CALLING SCH

101

860 1 3
861 1 3
862 1 ·?
:363 1 3
864 1 ::=:

I* REQUEST QUEUE 3 FCIR NODE 2 *I
INSTRUCT oPcode 50. time 86492. receiver 5, sender 3, node 2
CALLING GM

865 1 3 5
866 1 3 5
867 1 3 5
868 1 3 5
869 1 3 5

I* INPUT OUTPUT PROCESSOR COMPLETED OUTPUT TO CHANNEL *I
I* READY FOR INSTRUCT STREAM. *I
INSTRUCT oPcode 45, time 86960. receiver 1. sender 4. node 3
CALLING SCH

870 1
871 1
872 1
873 1
874 1
875 1
876 1
877 1
:378 1
879 1
880 1
881 1
882 1

3
3

5
5
5
5
5
5
5
5
5

I* ACCEPT QUEUE FOR NODE 2. NODE 2 WILL COMMENCE *I
I* EXECUTit:lN IN THE ARITHMETIC PROCES:~OR. *I
INSTRUCT oPcode 4,
CALLING AP

883 1
884 1
885 1
886 1
887
888
889
890
891

?
~=
3
3
3

3

3
892 3

time 88228, receiver 3, sender 5. node 2

I* CONSUME QUEUE. I OP IS CONS LIMING I:;).UEUE AFTER WRITING* I
I* IT TO AN OUTPUT CHANNEL 3. *I
INSTRUCT oPcode 72. time 89248, receiver 2, sender 4. node 3
CALLING GM

893 2 3
894 2 3
895 2 .-.

• ;j

896 2 :=:
:.::97 2

,...,
.:.0

898 ·"')
"'-

,..,
-=·

102

8'~9 2 3
I* EXN AGAIN FOR CHANNEL 1 *I
INSTRUCT opcode 30, time 90000, receiver 4, sender 4, node 1
CALL I NG I tJPP

900 2
·~01 2
';"102 2
903 2
904 2
905

I* WRITING QUEUE
INSTRUCT oPcode
CALLING GM

·~06 2
907 2
·~o8 2
909 2
910 2
911 2
912 2
913 2
914 2

3 4
3 4
3 4
3

FOR CHANNEL 1 FOR EXN *I
64. time 90524, receiver 2,

I* QUEUE UNDER THRESHOLD *I

sender 4, node 1

INSTRUCT oPcode 44, time 91466, receiver 1, sender·2, node 3
CALLING SCH

915 1 2
916 1 2
917 1 2
918 1
'719 1

I* NODE 2 COMPLETED SET UP MODE. READY FOR INSTRUCT *I
I* STREAM SENT TO SCHEDULER *I
INSTRUCT oPcode 45, time 91934, receiver 1. sender 3, node 2
CALLING SCH

920 1
921 1
922 1
923 1
924 1

I* READY FOR INSTRUCT STREAM RECEIVED BY SCHEDULER *I
I* BUT BLOCKED BY QUEUE UNDER THRESHOLD. RESCHEDULED *I
INSTRUCT opcode 45, time 92466, receiver 1, sender 3, node 2
CALLING SCH

925 1
926 1
5127 1
928 1
929 1

I* WRITE QUEUE 4 FCtR NODE 2 EXECUTION *I
I* WRITE QUEUE INSTRUCTS ALWAYS GIVE QUEUE NUMBER*/
I* OF NODE AT HEAD OF THE QUEUE. *I
INSTRUCT oPcode 64. time 92974, receiver 2. sender 3, node 3
CALLING GM 930 1 2

·~31 1 2

•;>32 1 2
933 1 2
934 1 2
935 1 2
936 1 2
937 1 2
938 1 2
939 1 2
940 1 2
941 1 2

I* READY FOR INSTRUCT STREAt1 TRIGGERED NODE 1 ON READY*/
I* LIST IN SCHEDULER. SEND INSTRUCT STREAM TO GM2 *I

103

I* TO START NODE 1 EXECUTING. *I
INSTRUCT oPcode 53, time 94173, receiver 2, sender 1, node 1
CALLING GM

942 2
I* RESCHEDULED FROM T I t1E 942 *I
INSTRUCT oPcode 53, "1: ime •;>42:34, receiver 2, sender 1, n•:•de 1
CALLING GM

943 2
944 2
•;>45 2
946 2

I* QUEUE OVER THRESHOLD FOR QUEUE 1
INSTRUCT oPcode 42, time 94641, receiver 1, sender 2, nod~ 1
CALLING SCH

•;>47 1 2
948 1 2
•;>49 1 2
9!30 1 2
951 1 2

I* CONSUME QUEUE 3 FOR NODE 2 EXECUTION.
INSTRUCT oPcode 72, time 95151, receiver 5, sender 3, node 2
CALLING GM

·~52 1
953 1
954 1
·;>55 1
9:;j6 1
957
958

2
2 ... ,
2

5
5
5
5
5
5
5

I* ACCEPT INSTRUCT STREAt1 FROt1 GM TO AP FOR NODE 1 *I
INSTRUCT oPcode 3, time 95900, receiver 3, sender 2, node 1
CALLING AP

9!39
960
961
962
963

I* SUPERFICIAL

3
3
3
3
3

REPORT

5
5
5
5
5

NODE DONE.
INSTRUCT oPcode -4, time 96351, receiver 1, sender 5, node 2
CALLING SCH

·~164
965

3

·~66

'767
968
969
·~71)

S'l71
·~72

973
I* QUEUE OVER THRESHCILD FOR WRITE QUEUE FOR NODE 2 *I

104

I* EXECUTION. *I
INSTRUCT opcode 42. time 97383, receiver 1. sender 2. node 3
CALLING SCH

974 1
975 1
976 1
·~77 1
978 1
·~79 1

I* REQUEST GRAPH VARIABLE FOR NODE 1 EXECUTION. *I
INSTRUCT opcode 47, time 97956; receiver 2, sender· 3, node 1
CALLING GM

981) 1 2
S''81 1 2
·~82 1 2
983 1 2
984 1 2

I* QUEUE UNDER CAPAC I TV SENT TO SCHEDULER FROI'1 GM. *I
I* I~UEUE 3 ON CHANNEL 2 HAS GONE UNDER CAPACITY. *I
I* CHANNEL WILL BE TURNED BACK ON WITH A CNDT
I* INSTRUCT <CONTINUE NIJDE DATA TRANSFER> *I
INSTRUCT oPcode 43, time 98438, receiver 1. sender 5, node 2
CALLING SCH

985 1
986 1
987 1
988 1
989 1
990 1
991 1
·~92 1
993 1

2

2
2

2

I* RESCHEDULED FROM TIME 985
INSTRUCT oPcode 43, time 99383, receiver 1. sender 5, node 2
CALLING SCH
I* ACCEPT GRAPH VARIABLE FROM GM TO AP FOR NODE 1 *I
INSTRUCT oPcode 2. time 99386, receiver 3, sender 2. node 1
CALLING AP

994 1
·~95 1
996 1
·~·~7 1
998 1
99'~ 1

3
3
3
3
3
·-:. ·-·

I* CHANNEL 1 HAS FIRED

105

INSTRUCT oPcode 30, time 100000, receiver 4, sender 4, node 1
CALLING IOPP

1000 1 3 4

FUNCTIONAL ELEMENT UTILIZATION

FEID TYPE UTILIZATION

TOTAL TU1E

1 SCH 4~:

:2 Gt·1 40

~: AP 30

4 IOP .-. ...:.

5 GM 14

= 1000.

NODE EXECUTION INFOR~1ATION

NODE ID OPCODE NODE FIRINGS

1
:2

14
:28
:25

:2
:2
1

CHANNEL EXECUTION INFORMATION

CHANNEL ID CHANNEL FIRINGS

1 10
2
3 1

l:;lUEUE EXECUTION INFORMATION

QUEUE ID DATA ITEMS HEAD NODE

1 35 1
:2 5 3
""• .:J 10 :2
4 11 ·-:.
5 0 ""• .:J

TAIL NODE

1
1
2
2
~:

VITA

MarilYn OPitz Aiken

Candidate for the Desree of

Master of Science

Thesis: ENHANCED MODULAR SIGNAL PROCESSOR TIMING SIMULATOR

MaJor Field: ComPutins and Information Sciences

Bio~raPhical:

Personal Data: Born in Chickasha, Oklahoma. October 6,
1960, the dau~hter of G. W. and Thelma G. OPitz.
Married to Calvin E. Aiken on June 12. 1982.
Dau~hter Christina D. Aiken born SePtember 9,
1984.

Education: Graduated from Chickasha Hish School.
Chickasha, Oklahoma, in May, 1978; received
Bachelor of Science Desree in Electrical
Ensineerins from the UniversitY of Oklahoma in
Mav. 1982; comPleted re~uirements for the Master
of Science deSree at Oklahoma State UniversitY
in Mav. 1987.

Professional ExPerience: Ensineer. Halliburton
Services. Duncan, Oklahoma, June, 1982, to
Ausust, 1984; Graduate Assistant, DePartment
of ComPuter Science, Oklahoma State University,
November. 1984, to January, 1985.

