## INTERACTIVE MODEL OF A HOMOGENEOUS GASEOUS

PLUG FLOW REACTOR

Ву

MOHSEN HEDI ACHOUR Bachelor of Science in Chemical Engineering Oklahoma State University Stillwater, Oklahoma 1986

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1987

Thesis 1987 A179; (op. 2



#### INTERACTIVE MODEL OF A HOMOGENEOUS GASEOUS

PLUG FLOW REACTOR

Thesis Approved:

Thesis Adviser nd. H. Johann Mayis Scapan land Graduate Dean o College

## TABLE OF CONTENTS

| Chapter | ı P                           | age                                                |
|---------|-------------------------------|----------------------------------------------------|
| I.      | INTRODUCTION                  | 1                                                  |
| II.     | OBJECTIVES                    | 5                                                  |
| III.    | LITERATURE REVIEW             | 7                                                  |
|         | Types of Computer Programs    | 7<br>8                                             |
| IV.     | TYPES OF REACTORS             | 10                                                 |
|         | Batch Reactor                 | 10<br>10<br>10                                     |
|         | Continuous Mixed Flow Reactor | 12<br>12<br>12                                     |
|         | Plug Flow Reactor             | 13<br>13<br>14                                     |
| ۷.      | DESIGN OF PLUG FLOW REACTORS  | 15                                                 |
|         | Material and Energy Balances  | 15<br>18                                           |
| VI.     | BRIEF DESCRIPTION OF MAXISIM  | 21                                                 |
| VII.    | THE MODEL DESCRIPTION         | 24                                                 |
|         | Introduction                  | 24<br>26<br>26<br>27<br>27<br>27<br>28<br>28<br>29 |

Chapter

|       | Equilibrium Criteria Subroutine: RTRY Extent of Equilibrium Reaction Calculation<br>Subroutine: RXEQU(J) | 31<br>34<br>35<br>35                   |
|-------|----------------------------------------------------------------------------------------------------------|----------------------------------------|
| VIII. | THE USER MANUAL                                                                                          | 37                                     |
|       | How to Create a File                                                                                     | 37<br>37<br>38<br>40<br>40<br>40<br>40 |
| IX.   | THE MODEL PERFORMANCE AND TESTING                                                                        | 43                                     |
|       | Introduction.<br>Input Units                                                                             | 43<br>44<br>44<br>44<br>45<br>45       |
| Χ.    | CONCLUSIONS AND RECOMMENDATIONS                                                                          | 50                                     |
|       | BIBLIOGRAPHY                                                                                             | 53                                     |
|       | APPENDIX A - LOGIC STRUCTURE FOR THE INPUT SUBROUTINE<br>REAC(II)                                        | 55                                     |
|       | APPENDIX B - LOGIC STRUCTURE FOR THE CALCULATION<br>SUBROUTINES IN REACR                                 | 57                                     |
|       | APPENDIX C - DERIVATION OF HEAT CAPACITY FROM SRK EQUATION<br>OF STATE                                   | 67                                     |
|       | APPENDIX D - GENERAL KINETICS CONVERSION FACTORS                                                         | 70                                     |
|       | APPENDIX E - PROCESS DIAGRAM DISPLAY AND UPDATE MENU                                                     | 73                                     |
|       | APPENDIX F - THE OVERALL PROCESS OF HYDRODEALKYLATION OF<br>TOLUENE                                      | 76                                     |
|       | APPENDIX G - SIMULATION OF A PLUG FLOW REACTOR WITH<br>RECYCLE                                           | 92                                     |
|       | APPENDIX H - THE EFFECT OF THE VOLUME INCREMENT ON<br>THE RESULTS                                        | 02                                     |

## Chapter

| APPENDIX I - SIMULATION OF TWO PLUG FLOW REACTORS<br>IN SERIES   |
|------------------------------------------------------------------|
| APPENDIX J - SIMULATION OF TWO PLUG FLOW REACTORS<br>IN PARALLEL |
| APPENDIX K - THE NEED OF THE REACTOR WITH RECYCLE 131            |
| APPENDIX L - THE COMPUTER CODE OF THE MODEL                      |

## LIST OF TABLES

| Table |                                     |    |   | Pa | age |
|-------|-------------------------------------|----|---|----|-----|
| Ι.    | The Input Table                     | •• | • | •  | 39  |
| II.   | Input Table for the Example Problem |    | • | •  | 42  |

•

## LIST OF FIGURES

| Figure P                                                        | age |
|-----------------------------------------------------------------|-----|
| 1. Reactor Loop                                                 | 6   |
| 2. The Three Types of Reactors                                  | 11  |
| 3. Schematic Representation of a Plug Flow Reactor with Recycle | 19  |
| 4. Limitation of a Recycle Reactor                              | 20  |
| 5. Equivalence of Plug Flow Reactors in Series                  | 47  |
| 6. Equivalence of Plug Flow Reactors in Parallel                | 48  |
| 7. SRK Equation of State                                        | 69  |

#### PREFACE

The purpose of this study was to develop a chemical reactor model. A homogeneous plug flow reactor was introduced into MAXISIM, a process simulator developed and used at Oklahoma State University.

I wish to express my sincere gratitude and appreciation to my major advisor, Dr. Ruth C. Erbar, for her continuous support and assistance throughout all my undergraduate and graduate studies. I am also grateful to my committee members, Dr. Mayis Seapan and Dr. A. H. Johannes for their technical assistance during this work. I thank Mrs. Pamela Hartman for her professional work in typing this thesis.

My deepest appreciation is extended to the Tunisian government and the Scientific Mission of Tunisia for their support all throughout my undergraduate career. And many thanks to Dr. B. L. Crynes and the School of Chemical Engineering for their continuous support and for the excellent education offered.

I wish to express my warm and sincere thanks and appreciation to my dearest family: my loving mother, Hamdouna, my caring sister, Jamila, and her family, and my dear brothers, Wahab and Hamadi, and their families. I would like to express my deepest love and thanks to my memorable father, Hedi, God bless his soul, to whom I dedicate this work.

There are people in my life to whom I owe all the joy and happiness I have had throughout all these years. I would like to express my

viii

gratitude and appreciation to my relatives and all my dear friends, here in the USA and in Tunisia, for their moral support and continued caring.

¢

#### CHAPTER I

#### INTRODUCTION

Looking back to the old days when surviving was the only goal mankind searched to achieve, nature seemed to fulfill all our needs. However, as life has evolved, productivity has become a necessity for living. Ever since, man has strived to invent tools and machines for better results and higher achievement. Certainly computers constitute one of the most important and useful tools man has invented to increase not only the productivity of material goods, but also of the mind (1).

In the sixties, computer use was introduced into the domain of education and rapidly started to expand due to the availability of large scale and multiuser digital computers. The traditional teaching method of using chalkboard, projectors, tape recorders, and small teaching devices was criticized to be ineffective and to involve only few students. Whereas the use of educational computer programs allows each and every student to interact with the computer, to follow instructions, and to solve problems (1). This way the student, not only is fully involved in the learning process, but can also feel comfortable if he/she is embarrassed to show his/her "weaknesses" to a teacher or classmates (2). The Computer for scientific calculations, was first used in many primary or secondary schools and in colleges in the United States of America then reached Europe and Japan (1). Programming Logic for Automated Teaching Operation (PLATO), developed at the University of

Illinois, was the first computer-based educational system to help teach computer topics as well as math and language skills.

The users of these programs usually are not familiar with the software itself which is nothing but a set of mathematical and logical relationships describing a system of interest. These relationships, or equations, based on certain assumptions, constitute a model which is used to gain some understanding of how the corresponding system behaves. In general, models or simulation programs are a two step process. The first step is to convert reality to a model. The simulation is valid if the model adequately represents the real system. The second step is to formulate the model in a code which must do what the model requires for the simulation to be verified. As expected, some real systems are very complex. Depending on the assumptions made, the corresponding models could involve tedious and/or complicated calculations. Fortunately, the presence of desktop computers and modern software allows users with modest mathematical, statistical, and programming backgrounds to represent, explain, predict, and estimate real world phenomena.

Basically, any simulation program presents four main tasks. Firstly, the input data is required from the user in an interactive mode. The input data is usually checked for validity against the program constraints. Secondly, the data is transferred and stored for later use in the program. Thirdly, the program is executed and errors will be detected if present. And finally, the output is made available to the user under request. Despite the development of the computer technology and the advanced software, good models are not readily available, therefore simulation programs should always be used

carefully. And of course, the more technical skills the users have, the better results they obtain.

Chemical engineering simulation systems are interactive computer programs that allow an operator or an engineer to model or to simulate a series of interconnected unit operations in a plant or a single process unit such as a distillation column, a heat exchanger, or a mixed flow reactor. Bonner and Moore, in 1960, published the first chemical simulation system (3). PACER, GEMCS, MAXISIM, SIMSCI, ASPEN, and SIPRO-DTC are other examples of process design simulators. By using such programs, the user is able to set the operating parameters for the unit operations, run the program, review the results, change a few inputs, and run again until an optimum set of results is obtained.

Due to the importance of reactors in the chemical industry, the simulation of chemical reactors had gained considerable attention. Mainly, a reactor model is a set of mathematical relations describing the local production or consumption, the physical properties of the chemicals, the thermodynamics of the system, and the conservation laws (4). This information can be used to simulate a full-scale reactor or to improve the operation and control of an existing unit. A chemical reactor model can be available as one separate "stand alone" model or as one separate unit within a large simulator.

MAXISIM is a complete process design simulator program and is currently used by the students in the School of Chemical Engineering at Oklahoma State University. The focus of this study is to model an ideal gaseous plug flow reactor and include it as a reactor core in MAXISIM. The reactor is designed to handle any type of ten chemical reactions

(elementary and/or nonelementary) and operates isothermally or adiabatically depending on the user's option. The module can be used by students to analyze the performance of the reactor under specified operating conditions. It also allows the users to learn and verify some fundamentals in chemical reactor design.

#### CHAPTER II

#### OBJECTIVES

The purpose of this work is to implement a reactor core into MAXISIM, a process design simulation system. The reactor model to be added is a homogeneous gaseous ideal plug flow reactor. It is an interactive program designed for a maximum of ten reactions and fifteen reacting or product components. The chemical reactions can either be elementary or nonelementary, and the reactor can operate both isothermally and adiabatically. Modules from MAXISIM such as "Adder", "Divider", "Compressor", and "Flash" can be used along with the reactor to model a reactor system with recycle.

Once this module is installed in MAXISIM, several tasks can be performed to verify or test some fundamentals in kinetics, reactor and process design. A user would be capable of the following:

1. Determining the required reactor size for a given process and comparing it to known sizes of batch and/or mixed flow reactors.

2. Determining the outlet composition and temperature of a product stream from an operating reactor and comparing it with plant data.

3. Determining the effect of the operation mode (isothermal or adiabatic) on the reactor size or the outlet composition.

4. Determining the effect of recycle on the reactor volume, the outlet composition, the minimum feed required to meet the production specifications.

5. Testing the limitations of a plug flow reactor with recycle.

6. Testing the effect of inerts in the feed.

 Determining the effect of the feed composition on the product quality.

8. Verifying the kinetics of a process if experimental data is available.

9. Testing the effect of inlet temperature and pressure on reactor performance.

10. Fully describing the process shown in Figure 1 which consists of an adder, a reactor, a high pressure flash, a compressor, and a divider. All the modules except for the reactor are already installed in MAXISIM.



Figure 1. Reactor Loop.

#### CHAPTER III

#### LITERATURE REVIEW

#### Types of Computer Programs

As computer use emerged in education, three main software programs were important: computer-aided instruction, simulators, and small utility packages.

Because of the continuous increase of chemical engineering enrollments in the early eighties, there was a need for computer-based educational instruction techniques. The programs are used to make up for the inability of teachers to give the same level of individualized instruction to the students as they did in former years. These techniques also allow the student to be fully involved and responsible for a complete understanding of the subject and the problem-solving step. PLATO is considered the largest computer-aided instruction program. It has been tested and proven efficient for three chemical engineering courses: stoichiometry, thermodynamics, and unit operations (5). The PLATO system has a unique sophisticated software package which allows the programming of complex highly interactive problems utilizing graphs, diagrams, animations, and even projected slides, in addition to all the usual computational abilities of a large computer. This system is found to be an excellent tool for self-paced instruction of a large number of students who do not need to have any programming background.

On the other hand, process simulators are used in parallel with lectures to verify, test, or criticize some scientific fundamentals and deductions. These programs are also used in industry as an aid for modeling new designs or for improving operating plants. The students or the engineers using these process simulators, usually have a process flow diagram (i.e., flowsheet) to implement. They make use of the interactive mode in these programs to enter the different unit operations and their process data along with feeds specifications and the calculation options. Examples of currently used process simulators are PACER, developed in 1968 (6), CHESS, also developed in 1968 (7), PAS, developed at Oklahoma State University in 1968 (8), and MAXISIM, also developed at Oklahoma State University in 1980 (9). FLOWTRAN, developed at the Monsanto Company, and used in seventy companies and several universities, was introduced in 1973. Quadratic Approximation Programming (QAT), a method based on successive quadratic approximation to the plant objective and constraint function, was used to optimize the FLOWTRAN models (4).

The small utility packages, which form the third type of computer programs used in education and industry, have a rather restricted usage. They cover specified areas in simulations, statistical predictions, and economic analysis. These programs usually do not require any input from the user during the simulation run.

#### Reactor Simulators

Much of today's industrial technology in petroleum refining, petrochemical processing, and coal conversion center around the use of chemical reactors. Usually, a reactor model is built in several

steps. The first step is to develop a reaction scheme which should be the simplest one that accounts for the observed stoichiometry. The next step is to develop a kinetic model which consists of equations obtained from material and energy balances, activation energies, reaction constants, and physical and thermodynamic properties. The last step is to fit the model to the data by adjusting the parameters. This final step usually involves a number of iterations which are preferably done using a computer.

Mainly such factors as the shape, the numbers of phases, and the flow patterns in the reactor have a great effect on the performance, the design, and the complexity of the calculations. In industry we encounter several types of reactors, such as mixed flow reactors (STR), batch reactors, plug flow reactors (PFR), and others. A detailed description of each is included in Chapter IV. "A Novel Gas-Liquid Stirred Tank Reactor" is an example of an STR model developed by Union Carbide Corporation in 1985 (10). The in-situ coal gasifiers represent a departure from conventional chemical reactors in that their boundaries are not fixed. Such an "unusual" reactor model is being used in several countries including the United States and the Societ Union to recover coal reserves below strip mining depth. Gas or liquid reactors, fixed bed, moving-bed, fluidized-bed, and entrained flow reactors are also frequently used in industry (11).

#### CHAPTER IV

#### TYPES OF REACTORS

In order to achieve a good understanding of the kinetics taking place in real reactors, three main ideal reactors are considered: the batch reactor, the Plug Flow Reactor (PFR), and the mixed flow reactor or Stirred Tank Reactor (STR) as shown in Figure 2. A good design shows similar behavior for the real and the ideal reactors.

#### Batch Reactor

#### Characteristics

The batch reactor is the simplest of the three and needs the least supporting equipment. It is occasionally used for small-scale experimental studies on reaction kinetics and requires high labor and handling cost. Since there are not any inlet or outlet streams to or from the reactor, and the chemicals are well mixed inside, the composition in the reactor is assumed constant over the reactor at any given instant but varies with time until chemical equilibrium is approached.

#### Design Equation

From a material balance for any component i, the design equation for a batch reactor can be easily derived and used to solve graphically,





Figure 2. The Three Types of Reactors

analytically, or numerically for the time required to achieve a specified conversion as Equation 1 shows:

$$t = N_{io} \int_{x_{io}}^{x_{i}} \frac{dx_{i}}{V(-r_{i})}$$
(1)

where

 $\begin{array}{l} X_i = \text{conversion of component i (a reactant) at time t} \\ t = \text{time required to achieve } X_i, \, \text{hr} \\ V = \text{reactor volume, } ft^3 \\ \textbf{-r}_i = \text{reaction rate, } lbmoles/ft^3 \, \text{hr} \\ N_{io} = \text{initial number of moles of i, } lbmoles \\ x_{io} = \text{conversion of component i at initial time t}_0 \end{array}$ 

Continuous Stirred Tank Reactors (CSTR)

#### Characteristics

The continuous stirred tank reactor is also called the backmix reactor, or the ideal stirred tank reactor indicating that the contents are well mixed and the composition is uniform. As a result, the composition of the exiting stream is assumed to be the same as the fluid inside the reactor. This type of reactor presents a good control of the reaction speed since the rate of reactions is constant as the reactants are introduced.

Design Equations

Again, from material balance, the design equation can be obtained and used easily to solve for the volume required at steady state conditions to achieve a desired conversion of some reactant A. A form of this equation is shown below:

$$V = \frac{F_{A0} (X_A - X_{A0})}{-r_A}$$
(2)

where

 $X_{\Delta\Omega}$  = inlet conversion of component A (as reactant)

 $F_{AO}$  = inlet molar flow rate of component A, lbmoles/hr. The space time is an important design criteria and is defined as the time required to process one reactor volume of feed measured at specified conditions as presented in Equation 3:

$$\tau = \frac{V}{v_o} = \frac{C_{AO} X_A}{-r_A}$$
(3)

where

 $v_0$  = inlet volumetric flow rate, ft<sup>3</sup>/hr C<sub>AO</sub> = inlet concentration of A, lbmoles/ft<sup>3</sup>.

Characteristics

In different sources the plug flow reactor is also called a slug flow, a piston flow, an ideal tubular, or an unmixed flow reactor. Its main characteristic is the assumption of the absence of mixing or diffusion in the flow path. Therefore, the residence time in the reactor is the same for all fluid elements. The residence time is defined as the time required for a unit reactor volume to exit the reactor. This type of reactor yields a high quality product and is capable of processing large quantities of material. For that purpose it is widely used in industry, in particular, within the oil business such as in reforming processes.

Design Equations

By performing a differential component material balance along the reactor on component A, a few key design equations can be derived and used to model such reactors. The following equations express the interrelation between the design parameters and the system kinetics.

$$\frac{V}{F_{AO}} = \int_{X_{Ai}}^{X_{Af}} \frac{dX_{A}}{-r_{A}}$$
(4)

where

 $X_{Ai}$ ,  $X_{af}$  = inlet and outlet conversions of A

$$\tau = C_{AO} \int_{C_{Ai}}^{C_{Af}} \frac{dC_A}{-r_A}$$
(5)

where

 $C_{Ai}$ ,  $C_{Af}$  = inlet and outlet concentrations of A, lbmoles/ft<sup>3</sup>. In this model, all the calculations are based on molar flow rates rather than concentrations or conversions.

ļ

#### CHAPTER V

#### DESIGN OF PLUG FLOW REACTORS

#### Material and Energy Balances

Since the emphasis in this work is on tubular reactors, a detailed analysis of the design parameters and equations of such reactors is necessary. The integral design equation, listed as Equation 4 in the previous chapter, allows the determination of the volume of the reactor required to achieve a specified conversion if the rate of reaction can be integrated numerically or analytically within the conversion range. Such task might become very difficult or impossible for certain numbers of chemical reactions occurring simultaneously or presenting complex kinetics. A better method should be used in order to solve for the concentration gradient in the reactor. This method (12) is based on equations derived from differential material and energy balances. By performing a component i material balance around a differential section of the reactor, the following equations can be derived:

at steady state, the accumulation term vanishes yielding

$$F_{i} - F_{i+1} + r_{i} dV = 0$$
 (6b)

$$-dF_{i} = -r_{i} dV$$

$$\frac{dF_{i}}{dV} = r_{i}$$
(6d)

where

 $C_{i} = F_{i}/v \tag{7}$ 

where

 $v = total volumetric flow rate, ft^3/hr$ 

From kinetics or experimental data, using stoichiometry, and from Equation 7 above, the rates of reactions can be written as a function of temperature and component concentration. If the above equation is written for n components, n ordinary differential equations are obtained. The molar flow rates represent the dependent variables, whereas the reactor volume is the independent variable.

Considering the energy carried in and out by the chemicals, the heat of reactions, and the energy transfer from or to the surroundings, an energy balance equation can be derived. For an adiabatic operation the reactor volume dependence on the temperature in the reactor is given from the following equations:

in - out ± generation = accumulation

at steady state the accumulation term vanishes yielding

$$-\sum_{j} \Delta H_{j} \varepsilon_{i} + \sum_{i} (C_{p_{i}} F_{i}) dT = 0$$
(8a)

where

The extent of the reaction can be expressed as function of the reaction rate and the differential volume increment as follows:

$$\epsilon_j = r_j \, \mathrm{dV}$$
 (8b)

substituting  $\boldsymbol{\epsilon}_{j}$  by its value in Equation 8a gives

$$\left(-\sum_{j} \Delta H_{j} r_{j}\right) dV + \left(\sum_{i} C_{p_{i}} F_{i}\right) dT = 0$$
(8c)

when rearranged

$$\frac{dT}{dV} = \frac{\sum_{j} \Delta H_{j} r_{j}}{\sum_{i} C_{p_{i}} F_{i}}$$
(8d)

This (n+1)-th ordinary differential equation can be solved simultaneously with the other n equations for the component molar flow rates, the reactor volume, and the temperature profile using an adequate numerical method.

#### Recycle Considerations

It is sometimes desired to divide the reactor product stream and return a portion of it to the entrance of the reactor. In this case, the recycle ratio or the recycle R is defined as follows:

# $R = \frac{\text{volume of fluid returned to the reactor entrance}}{\text{volume leaving the system}}$

Figure 3 shows a typical recycle reactor scheme. To solve for the recycle effect on the reactor performance, the recycle ratio is first initiated as zero for the first pass through, then set to a desired value, and the calculations are repeated until a constant composition profile is obtained for two executive passes allowing for a desired tolerance. The integral design equation for a plug flow reactor with a recycle stream assuming there are no products in the feed becomes

$$\frac{V}{F_{AO}} = (R+1) \int_{X_{AR}}^{X_{Af}} \frac{dX_A}{-r_A}$$
(9a)

where

$$X_{AR} = \frac{R}{R+1} X_{Af}$$
(9b)

The above equation can be solved numerically or analytically for simple models. If no recycle is permitted (R=0), the above equation becomes identical to Equation 4, the integral design equation for a simple ideal plug flow reactor. It is important to notice that for infinite recycle, the plug flow reactor performance approaches that of a mixed flow







reactor. Figure 4 shows the limits of a recycle reactor as the recycle ratio varies from zero to infinity (13).





#### CHAPTER VI

#### .BRIEF DESCRIPTION OF MAXISIM

MAXISIM is an interactive simulation program used for simple thermodynamic equilibrium calculations and/or a complete process design of a system. It was written by Dr. John H. Erbar and revised by Dr. Ruth C. Erbar. Its first version was released in 1983, and its latest revision in 1987.

Like any other process simulator, MAXISIM allows the user to perform calculations and to test the results for simple to complex design models. The interactive nature of the simulator gives the user complete control of the program. He or she can create a model, set units, specify parameters, run the program, review the results, change a few things, and go again.

MAXISIM presents two operating modes -- the "immediate" mode and the "simulation" mode. In the former, quick calculations can be performed such as:

- \* three-phase bubble point, dew point, and flash equilibrium calculations
- \* stream manipulation
- \* gas heating value determination
- \* hydrate formation prediction
- process unit definition, unit operation deletion, addition and revision

Whereas the simulation mode allows the execution of a specified process model using the following current unit operations available:

- \* stream adder, divider, and splitter
- \* isothermal, constant enthalpy, fixed L/F, or three-phase
  isothermal flash
- \* expander
- \* compressor
- \* pump
- \* heater
- \* cooler
- \* heat exchanger
- \* short cut, and tray by tray distillation column
- \* short cut absorber, and tray by tray absorber/stripper
- \* short cut stabilizer
- \* plug flow reactor

The inputs to MAXISIM, in an interactive mode, consist of a set of completely specified feed streams (component flow rates, temperature and pressure, etc.), unit operations with their process data,  $C_{6+}$  fraction data if present, and unit control information. Checks for validity of the input data are performed. The academic version of MAXISIM can accept a maximum of fifty unit operations and twenty-five components. The outputs from the simulator contain mainly complete results from the immediate mode calculations, detailed description of the unit operations (feeds, products, and process data), and molar balance sheets. Depending on the users option and the set of output control parameters chosen, several other useful outputs are made available.

It is important to mention that MAXISIM leaves no choice to the user but to be well prepared and well organized before simulating any process unit model. A good understanding of the design and a reasonable technical grasp are necessary and vital to avoid bad results, slow convergence, a lot of frustration, and even impossible answers. For those reasons and others, MAXISIM is one of the good simulators for educational purposes.

#### CHAPTER VII

#### THE MODEL DESCRIPTION

Introduction

This model simulates an ideal homogeneous gaseous plug flow reactor. The program is coded in such a way that it is easy to include models of other types of reactors such as batch, stirred tank, or a catalytic reactor. A maximum of ten reactions and fifteen reacting or product components are allowed. The introduction of more reactions and more components is just a matter of changing the size of few arrays. As with some other simulators, this program is highly interactive. An effort was made to minimize and simplify the work of the user, but good organization and preparation are highly recommended. The general structure of this model consists of an input file, a calculation routine, and an output file. All these files are introduced into MAXISIM and interact with existing routines and a data base which covers a wide range of industrial chemicals. Appendices A and B include the logic structures for the input file and the calculation subroutines, respectively.

#### Input Description

First the inlet and outlet stream numbers are specified, and the inlet stream properties are obtained by flashing the stream using MAXISIM at the inlet reactor conditions. If more than one inlet or

outlet stream is defined an error message will be prompted. The number of reactions is entered next. The user is then asked by just looking at the rate equations, to enter the rate constants, the stoichiometric coefficients, and the components powers in the reaction rate expressions. The average heats of reactions are requested in the case of adiabatic operation in the reactor. Once all the information about the kinetics are fully specified, the user is given several options concerning the operation mode, the pressure drop specifications, and the convergence criteria. Both isothermal and adiabatic operations are available to control the variation of temperature along the reactor. The pressure difference between inlet and outlet is determined either by specifying a pressure drop across the reactor, or by setting the pressure of the outlet stream. Three possible convergence criteria are available to the user. The reactor volume can be fixed if the performance of an installed reactor is to be tested. But usually, the user is interested in or asked to determine a reactor size in order to produce a desired yield of a substance of interest. In this case, the outlet flow rate of that substance can be specified to set the convergence criteria. In a few cases, especially for exothermic reactions, the temperature change in the reactor is very large. consequently, to avoid overheating or freezing, the user might want to set an upper or lower limit on the exit temperature as a convergence criteria. An update menu is available in case the user decides to try different values of the reactor volume, the exit temperature, the outlet flow rate of a specified component, the operation mode, or the inlet temperature to the reactor.

#### Output Description

By the virtue of using MAXISIM, several output features are already available. A topology of the process can be viewed to check the stream numbers and their destinations. An echo of the input process data is also available to check for possible typing errors when entering the inputs. Also, a complete description of the inlet and output streams, including components flow rates, temperature, pressure, and a few other extensive and intensive properties, is given. Finally, the required reactor volume for the process and the heat load on the reactor are listed.

#### Subroutines Description

Input Subroutine: REAC(II)

This subroutine constitutes the major interactive part of the model. All the inputs, mentioned earlier, are read in and stored in a permanent array. The frequency factors, the activation energies, the Gibb's free energies, and the heats of reactions are stored in single dimensional arrays. Whereas the stoichiometric coefficients and the orders of each reaction with respect to the components are stored in two dimensional working arrays. All the other variables are stored as constants. Every input is transferred into the process data, PD, array which is permanent in MAXISIM and can be viewed before executing the simulation. All inputs are checked against appropriate limitations. Appendix A, as mentioned before, lists a logic structure for this routine.
This subroutine simply picks up the molar flow rates from the stream, the components' molecular weights from the data base, and the stream density to determine the total volumetric flow rate of the stream for later use.

$$v = \frac{\sum_{i}^{r} F_{i}(MW)_{i}}{\rho_{s}}$$
(10)

where

 $(MW)_i$  = the molecular weight of component i, lbm/lbmole

 $\rho_{\rm S}$  = density of the stream, lbm/ft<sup>3</sup>

A flow chart describing the logic structure of this subroutine is included in Appendix B.

#### Rate Constant Subroutine: RCONST

This routine sets up the rate constants as functions of temperature, T, using the inputs of the activation energies  $E_A$ 's, and the frequency factors,  $k_0$ 's, sometimes referred to as pre-exponential terms in the rate constant expressions. If the rate constant is evaluated at an average fixed temperature, then the activation energy input is entered as a dummy variable equal to zero.

$$k = k_0 \exp(-E_A/RT)$$
(11)

The Extent of Reaction Subroutine: RRXN

Picking up the stoichiometric coefficients and the order of each reaction with respect to each component from the PD array, and using the calculated value of the rate constant from RCONST, this routine sets up a unit rate change for each reaction, this is called the reaction coordinate or the extent of the reaction.

This concept is very important and useful in solving for the effect of several gaseous chemical reactions occurring simultaneously. Once the extents of all the reactions are determined, the outlet composition is easily computed by considering for each component, the changes due to respective reactions. Also if the extent of reaction method is used, the expansion effect from temperature changes is counted for inherently.

The Component Rate of Change Subroutine: RRCOMP

This routine sums up the rates of change for each component in all the reactions. This is simply done by multiplying the unit rates of change for the reactions by the respective stoichiometric coefficient of the component, then summing the calculated changes for each component separately.

The Temperature Subroutine: RTEMP

Depending on the nature of the reaction and the operation mode, the temperature may rise or drop along the length of the reactor. This change is a function of the rate of change for the reactions from RRXN, the component flow rates, the heat capacities calculated using MAXISIM data base, and the heats of reactions from the PD array. The component heat capacities are derived using the SRK equation of state, as shown in Appendix C (14).

### Differential Equation Solver: RUNGE

This constitutes the core of the reactor calculation file. Basically, all the mentioned subroutines, play the role of setting up a differential equation describing the change of each component flow rate along the reactor. These differential equations for all the components, plus the one describing the temperature change, are solved using the routine RUNGE. This routine uses Runge-Kutta fourth-order algorithm. Updates values of the component flow rates and the temperature are returned to the main program at each increment along the reactor.

A numerical routine is needed to solve the differential equations generated. There are basically three types of such numerical methods. The first class includes simple methods that are very easy to use and to understand. However, these routines are not highly recommended for general purpose usage. Such a class includes Euler's method. The second class consists of improved and elaborate first class methods. These methods are used to solve most differential equations encountered. but still are unable to adequately describe a few complicated equations. The modified Newton's method or Heun formula, the three-term Taylor series method, the Runge-Kutta first-, second-, third-, and fourth-order methods are some examples of the second class methods. It is important to notice that all the methods above compute the updated value of the function knowing only the previous value of the function. Such methods are called single-step methods. However, the third class routines are called the multistep methods because several previous points are used to determine the updated value of the function (15). Adam-Moulton's method and Gears method are example of those routines.

Choosing among the methods is not usually a clear-cut decision. Basically there are three decision factors that should be considered:

- i) the complication of the differential equations at hand,
- ii) the amount of computation involved, and
- iii) the accuracy limitations.

In this work, the Runge-Kutta fourth-order method was chosen to solve for the component flow rates along the length of the reactor. This method was chosen over Euler's basically because the latter might fail to solve the differential equations generated if the stoichiometric coefficients and the orders of the components in the reactions are not integers. Also Runge-Kutta gives better accuracy for the same volume increment. Halving the differential increment reduces the local error by a factor of 1/32, as compared to 1/2 using Euler's method. The trade-off of using Runge-Kutta over Euler's method consists of evaluating the function four times in one increment, as opposed to once, but this is not very crucial with the presence and the availability of high-speed computers which are able to perform such calculations in a few seconds for any except extremely complicated and lengthy functions. A natural question to ask is why not use a multistep method such as Adam's and Moulton's over Runge-Kutta since, not only the orders of accuracy are the same, but also the former method evaluates the function only twice in each increment and is capable of solving very stiff differential equations (16). The answer is that there exists a drawback in using Adam's method, which consists of the inconvenience of changing the step size as the calculation proceeds. This change of the step size necessitates the calculation of new points consistent with the new step size. For this reason, and the fact that Runge-Kutta is much

easier to code than is Adam's and Moulton's method, the former method is used in this work.

Equilibrium Criteria Subroutine: RTRY

This subroutine simply sets up the equilibrium criteria for the reactions in equilibrium. In the general case, the chemical equilibrium is expressed in function of the fugacity coefficients of the components in the gas mixture, their mole fractions and the system pressure, as given by Equation 12:

$$KP^{-\nu} = \prod_{i=1}^{n} (y_{i} \hat{\phi}_{i})^{\nu} i$$
 (12)

where

K = chemical equilibrium constant

P = system pressure

y<sub>i</sub> = mole fraction of component i

 $v_i$  = stoichiometric coefficient of component i

v = sum of the stoichiometric coefficients in the reaction

n = number of the components in the mixture

 $\hat{\phi}_i$  = the fugacity coefficient of component i in the gas mixture

If the gases are assumed to be ideal, the fugacity coefficients are set to one, and if the mole fractions are expressed in terms of the flow rates, Equation 12 becomes

$$KP^{-\nu} \left(\sum_{i=1}^{n} F_{i}\right)^{\nu} - \prod_{i=1}^{n} F_{i}^{\nu} = 0$$
(13)

Finally, the chemical equilibrium constant can be expressed as a function of Gibb's free energy,  $\Delta G^{\circ}$  as follows:

$$\ln K_{0} = -\frac{\Delta G^{0}}{RT_{0}}$$
(14)

where R is the ideal gas constant; 1.987 BTU/lbmoles °R.

The equilibrium constant calculated above is at a reference temperature,  $T_0$ , corresponding to the Gibb's free energy (13). Then, Van Hoff's law is used to determine the equilibrium constant at any specified temperature T from Equation 13. And

$$\ln \frac{K}{K_{0}} = -\frac{\Delta H_{rxn}}{R} \left(\frac{1}{T} - \frac{1}{T_{0}}\right)$$
(15)

where

 $\Delta H_{rxn}$  = constant heat of reaction in the temperature interval.

Once the thermodynamic equilibrium constant is evaluated from Gibb's free energy and the temperature, the left-hand side of Equation 13 can be evaluated from each given set of the component flow rates. However, the reactions in equilibrium are very fast compared to the rest of the reactions in the process. If the reactor volume increment is small, then, at the entrance to each increment in the reactor, the contribution of the reactions in equilibrium can be determined before the consideration of the rest of the reactions.

Therefore, the component flow rates in Equation 13 can be written as follows:

$$F_{i} = (F_{i})_{o} + v_{ij} r_{j}$$
<sup>(16)</sup>

where

 $F_i$  = updated component flow rate

 $(F_i)_0$  = previous component flow rate

 $v_{i,i}$  = stoichiometric coefficient of component i in reaction j

 $r_j$  = molar extent of the equilibrium reaction j

If the  $F_i$ 's are substituted in Equation 13, the equilibrium criterion equation can be formulated

$$KP^{-\nu} \left( \sum_{i} \left[ (F_{i})_{o} + v_{ij} r_{j} \right]^{\nu} \right) - \prod_{i} \left[ (F_{i})_{o} + v_{ij} r_{j} \right]^{\nu} = 0$$
(17)

The only unknown in Equation 17 is the extent of the equilibrium reaction. It is obvious that there is not an analytical solution, therefore a numerical method for solving an algebraic equation is needed.

Equation 17 can be very complicated to solve if the stoichiometric coefficients are not integers and if the reaction in equilibrium occurs among several components. However, in most cases four types of reactions in equilibrium are encountered:

| A = B         | (18a) |
|---------------|-------|
| A = B + C     | (18b) |
| A + B = C     | (18c) |
| A + B = C + D | (18d) |

All these reactions yield to a thermodynamic equilibrium criterion which is reasonably easy to solve.

# Extent of Equilibrium Reaction

Calculation Subroutine: RXEQU(J)

This routine uses a numerical method to solve for the extent of reaction in equilibrium. Basically, this constitutes a guessing process. Each time a value of the extent of reaction is picked, the subroutine RTRY is called to check if the left-hand side of Equation 17 is close enough to zero. In essence, solving the thermodynamic equilibrium criteria is finding a numerical method to solve for the roots of the function f(x) = 0. The obvious method is the so-called "marching routine". It consists of picking an initial guess and increasing it by a small increment, while checking the value of the function each time, until a root is found. This routine has the advantage of hitting every root of the function. However, in some cases this method could be very slow, especially if the increment chosen is very small. Another method, called bisection, can be used to speed up the root finding task by evaluating the function at a lower and an upper limit, and comparing the respective signs. If there exists a sign change, the routine recognizes the existence of a root in between the limits, and therefore hunts for the zeros of the function. Obviously, such a method can diverge in certain cases if the lower and/or the upper limit is not carefully chosen. The existence of multiple roots reveals the problem of choosing the right or the appropriate root. In general the choice between such methods depends strongly on the problem at hand.

For this task, solving for the appropriate extent of reaction in equilibrium, a few observations can be made in order to facilitate the choice. First the equilibrium reactions which are usually encountered are of the forms shown in Equation 18a through 18d. The thermodynamic equilibrium criteria, in those cases, are polynomial functions with highest degree of two. The bisection method is used to solve for the correct root fairly quickly and accurately. The component flow rates determine the lower and the upper limits of the extents of reactions, i.e., of the roots of the function.

The Main Calculation Subroutine: REACR

This subroutine uses all the subprograms mentioned earlier. The calls to the different subroutines are first put in the appropriate order. The product stream from the i-th volume increment or differential is flashed at the updated temperature and outlet pressure to pick up a new stream density, then the heat capacities for the components are updated as they are functions of temperature. Respectively, the subroutines VFLOW, RCONST, RRXN, RRCOMP, RTEMP, and RUNGE are then called to update the flow rates, and the temperature before entering the (i+1)-th volume increment. The testing for the convergence criteria, the operation mode, and the pressure specifications are dealt with within this subroutine.

The Output Subroutine: REACO

This subroutine accomplishes two major printing objectives. First, it echos all the inputs to the reactor unit. This process design (PD) description allows the user to cross-check the numbers he/she has entered. First the operation mode, the volume increment, the inlet pressure to the reactor, the outlet pressure, and the conversion criteria are listed. Then the chemical reactions are displayed with the component names shown as reactants and/or products, e.g.,  $C + O_2 \rightarrow$ 

CO<sub>2</sub>. Finally, an input table for the process is presented in order to compare it to the one the user has used to enter the stoichiometric coefficients and the orders of the components in each reaction. At this point, the user can detect input errors in the kinetics. Once the program is executed and the feed and the product streams are fully described, the output routine prints out these streams, the reactor volume, and the heat load on the reactor.

#### CHAPTER VIII

#### THE USER MANUAL

#### How to Create a File

The procedure to simulate a process containing a single reactor or any number of reactors is the same as the one described in MAXISIM manual. Basically, the feed is initiated and flashed at some specified inlet conditions. It is then saved or stored in a numbered stream. At this stage, a choice of the unit operations from MAXISIM menu is made.

#### The Input Process

The Reactor Process Inputs

If the user has chosen to define a plug flow reactor as one of his/her unit operations, the following pieces of information have to be known in advance:

- \* Reactor inlet and outlet stream numbers
- \* The number of reactions
- \* The volume increment
- \* The frequency factor of each nonequilibrium reaction
- \* The activation energy of each nonequilibrium reaction
- \* The heat of each reaction
- \* The Gibb's free energy for each equilibrium reaction
- \* The option of operating isothermally or adiabatically

- \* The option of specifying the outlet pressure from reactor, or the pressure drop across the reactor
- \* The option of specifying the reactor volume, the exit temperature, or the outlet flow rate of a specified component
- \* The order of reaction with respect to each component
- The stoichiometric coefficient of each component in each reaction

#### Organization

It is important to have the input data for the reactor well organized. First of all, it is highly recommended to have the inputs prepared in the order shown in the previous section. Once the components are chosen from the MAXISIM data base, the order in which they follow is fixed, therefore it is helpful to make a list of the components with their corresponding sequence numbers. Once this is done, the chemical reactions should be written in a form where the component names are replaced by their sequence numbers. This helps read off the stoichiometric coefficients. In the same manner, the rate expression for each reaction, which must be a power law type, should be rewritten and the component names again represented in those expressions by their sequence numbers. This, again, facilitates the picking up of the order of the components in each reaction. At this stage, it is highly recommended to set up an input table as shown in Table I. The input mode is set up so that the numbers are entered starting from the upper left corner across the rows down the columns.

| Т | 'AB | LE | Ι |
|---|-----|----|---|
|   |     |    |   |

THE INPUT TABLE

| Reaction<br>Number | Component<br>Sequence<br>Number | The Power of the<br>Component Concentration<br>in the Rate Expression | Stoichiometric<br>Coefficient of<br>the Component |
|--------------------|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|
| Ι                  | 1<br>2<br>•                     | #<br>#                                                                | ##<br>##<br>•                                     |
|                    | •<br>•<br>•<br>•                | •<br>•<br>#                                                           | •<br>•<br>##                                      |
| II                 | 1                               | #                                                                     | ##                                                |
|                    | 2                               | #                                                                     | ##                                                |
|                    | •                               | •                                                                     | •                                                 |
|                    | •                               | •                                                                     | •                                                 |
|                    | N                               | #                                                                     | ##                                                |
| м                  | 1                               | #                                                                     | ##                                                |
|                    | 2                               | #                                                                     | ##                                                |
|                    | •                               | •                                                                     | •                                                 |
|                    | •                               | •                                                                     | •                                                 |
|                    | N                               | #                                                                     | ##                                                |

#, ## - the inputs to the model # - can be a positive real number or a zero for inerts ## - is a positive integer for a product - is a negative integer for a reactant - is zero if the component is not involved in the reaction

#### Information Storage

Once the inputs to the reactor and the other unit operations are entered, the user is ready to set up a data file by simply entering "FL" and giving a file name after the request. By doing so, the user will have avoided the tedious work of reentering the input data to the process every time he/she needs to run the simulation. Detailed options, included in MAXISIM manual, can allow the user to alter the input data to the unit operations.

#### The Update Mode

There are five inputs to the reactor that can be updated. Following the menu, the operation mode in the reactor, (adiabatic or isothermal), the reactor volume, the exit temperature, the volume increment, and the outlet flow rate of a specified component can be altered if needed.

#### Useful Remarks

It is important to make sure that the feed to the reactor is a gas. Once the choice of units is made, it is crucial to enter the inputs such as the frequency factors, the activation energies, and the heats of reactions in the chosen units, as requested in the input instructions.

#### An Input Example

The hydrodealkylation of toluene is a common way to make benzene. Usually more than one reaction occurs simultaneously, but for the sake of this example, only the main reaction

 $C_7H_8 + H_2 \rightarrow C_6H_6 + CH_4$ 

is assumed to take place. To model a reactor to handle this process, first a feed is specified, flashed at the inlet conditions of the reactor, then stored in a feed stream. Usually, in MAXISIM, the user will choose components from most to least volatile. Following this rule, the components in this reaction are numbered as follows

H<sub>2</sub> - Component #1

CH<sub>4</sub> - Component #2

 $C_6H_6$  - Component #3

 $C_7H_8$  - Component #4

N<sub>2</sub> - Component #5

The nitrogen is thrown in the reaction as an inert. The following reaction rate expression is given (17):

rate = 
$$1.82 \times 10^{15} C_{H_2}^{1/2} C_{tol.} \exp(-96,560/RT) \frac{1 \text{ bmoles}}{\text{ft}^3 \text{ hr}}$$

From the rate expression, the frequency factor is equal to  $1.82 \times 10^{15}$  lbmoles/ft<sup>3</sup> hr, the activation energy value is 96,560 BTU/lbmole. The input data for the kinetics of this reaction is shown in Table II.

INPUT TABLE FOR THE EXAMPLE PROBLEM

| Reaction<br>Number | Component<br>Sequence<br>Number | The Power of the<br>Component Concentration<br>in the Rate Expression | Stoichiometric<br>Coefficient of<br>the Component |
|--------------------|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|
| I ·                | 1                               | 0.5                                                                   | -1                                                |
|                    | 2                               | 0                                                                     | 1                                                 |
|                    | 3                               | 0                                                                     | 1                                                 |
|                    | 4                               | 1                                                                     | -1                                                |
|                    | 5                               | 0                                                                     | 0                                                 |

#### CHAPTER IX

## THE MODEL PERFORMANCE AND TESTING

Introduction

Since this model is primarily going to be used for educational purposes, the "friendliness" of the interactive mode, the verification of reactor design fundamentals, the flexibility of the program, and the accuracy of the results have been tested. The hydrodealkylation of toluene to produce benzene is the main test case treated in this chapter. It constitutes a good example to work with because, not only does it present three chemical reactions, but also it can be tested to verify several reactor design principles and process design techniques.

## Input Units

By the virtue of using MAXISIM, four sets of units are available to the user. Once he/she chooses a set of units the input instructions follow consistently the user's choice of units. Since the units of the frequency factor, or the so-called pre-exponential term in the rate expression, depend on the kinetics, two options of units are offered to the user. Usually the rate of reaction is given in gmole/l sec, and occasionally the units are lbmoles/ft<sup>3</sup> hr. Appendix D shows the conversion from one set of units for the rate constant to the other for any given kinetics.

#### Input Display

As described in Chapter VII, the output subroutine displays the inputs for error detection. A sample of a process diagram for the hydrodealkylation of toluene is given in Appendix E.

#### Update Menu

An update menu is available to the user. Several options are given, and the user can test the performance of the model by changing the outlet reactor temperature, the reactor volume, the operating mode, the volume increment, or the production rate of a specified component. Appendix F contains outputs for several runs performed with the three reactions occurring in the hydrodealkylation of toluene. The computer outputs correspond to the following operating conditions.

- i) the reactor volume is set to 500 ft<sup>3</sup>, and the operation is adiabatic,
- ii) the production rate of benzene is set to 200 lbmoles/hr,
- iii) the operation mode is switched to isothermal keeping the same conversion factor, and
- iv) the operation is switched back to adiabatic, and the outlet temperature is set to 1400°F.

Verification of Some Reactor Design Principles

Referring to the outputs for the runs described above:

\* When the production rate of benzene is specified to be equal to 200 lbmoles/hr, a smaller reactor is needed than when the

volume was set at 500 ft<sup>3</sup> (or the feed may be decreased by the user iteratively to optimize the feed rate).

- \* Since the overall process is exothermic, when the operation in the reactor is switched to isothermal, a much larger reactor is needed to meet the same benzene production rate of 200 lbmoles/hr for the same inlet temperature.
- \* From i), under adiabatic operation and with a volume equal to  $500 \text{ ft}^3$ , the reactor exit temperature is about 1413°F. When an upper limit of 1400°F on the reactor outlet temperature is set, less production is obtained since the reactor volume can not reach the full 500 ft<sup>3</sup>.

#### A Plug Flow Reactor with Recycle

Using an adder, a flash unit, a compressor, and a divider from the MAXISIM unit operation menu, a plug flow reactor with recycle, so-called "Reactor Loop" as shown in Figure 1, is simulated. Appendix G contains the output for such a process. A process topology, a process design for each unit operation, a full description of the feed and product streams in the process, and the unit operations' characteristics or sizes are included in the printout.

## Accuracy of the Model

In this model, as mentioned previously, the SRK equation of state is used to determine the properties of the streams and the compnoents; also the differential equations describing the changes along the reactor are solved using a fourth-order Runge-Kutta method. Due to those two reasonably powerful methods, the results from the model are found to be accurate.

Appendix H shows two identical runs except the volume increment for the second run has been cut to one-fourth that of the original run. In the first simulation, with the volume increment equal to 1 ft<sup>3</sup>, the production rate of benzene and the outlet temperature from the reactor are equal to 215.97 lbmoles/hr and 1413.23°F, respectively; whereas, in the second run (dv = 0.25 ft<sup>3</sup>), they are equal to 215.98 lbmoles/hr and 1415.5°F, respectively, showing very small variation due to increment size because of the accuracy of the fourth-order Runge-Kutta.

Two identical plug flow reactors are simulated in series, and their performance is tested against a single reactor twice as large as shown in Figure 5. The topology of the system, the process data, and the outputs are shown in Appendix I. Using an inlet temperature and pressure equal to 1200°F and 495 psia, respectively, identical yields of benzene are obtained using the two reactors in series and the single reactor alone.

Two identical plug flow reactors are simulated in parallel using a divider and an adder from MAXISIM. The divider splits the feed in half between the reactors, and the products of the reactors are combined using the adder to yield the overall process product as shown in Figure 6. For given feeds and inlet conditions, the benzene production from a single reactor with a volume equal to 500 ft<sup>3</sup> was 232.94 lbmoles/hr. For the same feed and inlet conditions, and using two reactors in parallel with a volume equal to 250 ft<sup>3</sup> each, the benzene production was 232.91 lbmoles/hr, showing about 0.02% difference. The





Volume= V1 + V2

Figure 5. Equivalence of Plug Flow Reactors in Series

. .







topology of the system, the process data, and the outputs from MAXISIM are shown in Appendix J.

To avoid coking in the reactor (17), the ratio of hydrogen to aromatics should be at least three to one (usually it is five to one). If a single pass through the reactor is chosen, at least 650 lbmoles/hr of hydrogen are required to produce 203 lbmoles/hr of benzene. To avoid the large amount of hydrogen in the feed, i.e., the operating cost, a portion of the reactor product is recycled. The drawback of the recycle is the increase of the reactor volume, but this is not crucial because this cost is included in the capital cost which is paid only once in a lifetime. Appendix K shows two simulations producing 203 lbmoles/hr of benzene from the reactor. The first run represents a single pass through the reactor, and the second set of results are obtained using a 79% recycle stream. The purge and the recycle percentages can be optimized by performing different runs. The user should change one of the two percentages each time and check the reactor volume and the feed rate.

## CHAPTER X

## CONCLUSIONS AND RECOMMENDATIONS

The purpose behind this work is to develop a plug flow reactor model and include it as a reactor core into MAXISIM. The computer code of the model is included in Appendix L. Based on the structure and the performance of this model, several conclusions are drawn.

1. Despite the enormous number of calculations involved, a simulation of a plug flow reactor with several equilibrium and/or nonequilibrium reactions can be performed with little I/O time, i.e., it takes about five seconds if the reactor volume is equal to 500 ft<sup>3</sup> in the hydrodealkylation of toluene case.

2. Some reactor design principles and process design techniques can be illustrated using the reactor model with MAXISIM for the example given.

- a. Increasing the inlet temperature to the reactor, if exothermic reactions are present, will increase the yield or the conversion for irreversible reactions.
- Changing the operating pressure in the reactor will change the output.
- c. Recycling a percentage of the product stream will alter the feed to the system required to meet the purity specifications.

3. A complete chemical process containing plug flow reactors within its unit operations can be simulated on MAXISIM, and the optimum operating variables of the modules can be investigated.

Since several assumptions are made within this plug flow reactor model calculation, few recommendations will serve to improve parts of this work.

1. The maximum number of reactions and components allowed can be increased by simply changing the size of the PD array and making the necessary changes in the working arrays in the calculation routine of the reactor.

2. The modeling of a fixed-bed catalytic reactor or a fluidized bed can be simply introduced by creating calculation subroutine for such reactors, and calling them from the main calculation routine. Obviously, a few other inputs will be requested from the user and stored in the PD array. The numerical methods (Runge-Kutta fourth-order and the bisection method) can both be used to solve the differential equations generated to describe the changes along the reactor.

3. The ideal gas assumption is made only when the extent of the reaction in equilibrium is calculated. This assumption can be avoided if both the forward and the reverse rate constants in the reversible reaction are known. In that case, such a reaction should be modeled as two irreversible reactions to avoid the ideal gas assumption and the bisection numerical method calculations.

4. Since SRK equation of state is available in MAXISIM, the fugacity coefficients of the components in the mixture can be picked up and used in the thermodynamic equilibrium criteria. Such an improvement should be checked for necessity since in most cases the phase of

interest is well in the gaseous phase far from the envelope; in which case the ideal gas assumption is probably safe.

5. Again, using the SRK equation of state for the gas and liquid phases, or the split approach if activity correlations are available, a heterogeneous reactor model can be introduced.

6. Using the SRK equation of state or an activity coefficient correlation for a liquid phase, a plug flow reactor that handles chemical reactions occurring in the liquid phase can be simulated.

#### BIBLIOGRAPHY

- 1. Bitzer, D., "The Wide World of Computer-Based Education", Advances In Computers, 15, pp. 239-283 (1976).
- 2. Kingery, R. A., R. D. Berg, and E. H. Schillinger, "A Computer in the Classroon", <u>Men and Ideas in Engineering: Twelve</u> <u>Histories From Illinois</u>, Urbana: University of Illinois Press (1967).
- 3. <u>Computers and Education: An International Bibliography</u> on Computers in Education, Amsterdam: International Federation on Information Processing (1970).
- 4. Lower, S., G. Gerhold, S. G. Smith, K. J. Johnson, and J. W. Moore, "Computer-Assisted Instruction in Chemistry", <u>Journal of</u> Chemical Education, 56(4), pp. 219-227 (April 1979).
- 5. Motard, R. L., and D. M. Himmelblau, "Current Situation on the User of Computers in the Education of Chemical Engineers", <u>Computers and Chemical Engineering</u>, 3, pp. 213-216 (1979).
- 6. Mah, R. S. H., "Recent Development in Process Design", <u>Symposium on</u> <u>Basic Questions of Design Theory</u>, Columbia University, New York (1974).
- 7. Kehat, E., and M. Schacham, "Chemical Process Simulation Programs -1", <u>Process Technology</u>, <u>18(1/2)</u>, p. 38 (1973).
- 8. Erbar, J. H., <u>Process Analysis System (PAS)</u>, School of Chemical Engineering, Oklahoma State University (1980).
- 9. Erbar, J. H., MAXI\*SIM: An Interactive Program for Process Simulation and Design, Norsk Hydro, Process Technology Department, Oslo, Norway (1976).
- 10. Litz, L. M., "A Novel Gas-Liquid Stirred Tank Reactor", <u>Chemical</u> <u>Engineering Progress</u>, pp. 36-43 (November 1985).
- 11. Murray, A. P., "Steam-Methane Reformer Kinetic Computer Model with Heat Transfer and Geometry Options", <u>Ind. Eng. Chem. Process</u> <u>Des. Dev., 24</u>, pp. 286-294 (1985).
- 12. Froment, G. F., and K. B. Bischoff, <u>Chemical Reactor Analysis and</u> <u>Design</u>, John Wiley and Sons (1979).
- Levenspiel, O. L., <u>Chemical Reaction Engineering</u>, 2nd Ed., New York: Wiley and Sons (1972).

- 14. Majeed, A. I., "Partial Derivative of the SRK Equation of State", <u>Project S113A07</u>, Norsk Hydro, Process Technology Department, <u>Oslo</u>, Norway (1985).
- 15. Rice, J. R., <u>Numerical Methods</u>, Software and Analysis, New York: McGraw-Hill, Inc. (1983).
- 16. King, T. J., <u>Introduction to Numerical Computation</u>, New York: McGraw-Hill, Inc. (1984).
- 17. Rase, F. H., <u>Chemical Design for Process Plants</u>, <u>Volume 2</u>, New York: John Wiley and Sons (1977).

# APPENDIX A

LOGIC STRUCTURE FOR THE INPUT SUBROUTINE REAC(II)



LOGIC STRUCTURE FOR REAC(II)

# APPENDIX B

# LOGIC STRUCTURE FOR THE CALCULATION

# SUBROUTINES IN REACR







LOGIC STRUCTURE FOR VFLOW







# LOGIC STRUCTURE FOR RRXN






.

#### LOGIC STRUCTURE FOR RTEMP



LOGIC STRUCTURE FOR RUNGE







#### LOGIC STRUCTURE FOR RXEQU

66

## APPENDIX C

# DERIVATION OF HEAT CAPACITY FROM SRK EQUATION OF STATE

Constant Pressure Heat Capacity,  $C_p$ 

$$C_{p} = C_{p}^{0} - C_{p}^{\prime}$$

where

 $C_p^0$  = the ideal gas state heat capacity. The departure function  $C_p'$  can be calculated if  $C_v'$  (the constant volume heat capacity heat departure function) is known from

$$c'_{p} - c'_{v} = \frac{T [(\partial P / \partial T)_{v}]^{2}}{(\partial P / \partial v)_{T}}$$

 $C_{p}^{0}$  is available from the temperature derivative of the ideal gas state enthalpy equation

$$H^{0} = a_{1}^{T} + a_{2}^{T} + a_{3}^{T} + \dots$$
$$C_{p}^{0} = a_{1} + 2a_{2}^{T} + 3a_{3}^{T} + \dots$$

For a mixture

$$(C_p^0)_{mix} = \sum_i C_{p_i}^0 X_i$$

where  ${\rm X}_{\,i}$  is the mole fraction of each species in the mixture.

The SRK equation of state is used to evaluate the partial derivative of pressure with respect to temperature and pressure. Figure 7 shows the expression of the SRK equation of state.

$$\begin{aligned} \ln \phi_{i} &= \frac{b_{i}}{b} (Z - 1) - \ln (Z - B) - \frac{A}{B} \left[ \frac{2(aca)_{i}}{(aca)} - \frac{b_{i}}{b} \right] \ln (1 + \frac{B}{Z}) \\ &- \frac{AH}{RT} = \left[ \frac{A}{B} - \frac{B}{RD} \right] \ln (1 + \frac{B}{Z}) + 1 - Z \\ \frac{AS}{R} &= \sum x_{i} \ln \phi_{i} - \frac{AH}{RT} + \sum x_{i} \ln x_{i} + \ln P/P_{0} \\ Z^{3} - Z^{2} + (A - B - B^{2})Z - AB = 0.0 \\ A &= \frac{(aca)P}{R^{2}T^{2}}; B = b \frac{P}{T}; b = \sum x_{i} b_{i} \\ b_{i} &= 0.08667 \frac{RT_{ci}}{P_{ci}}; a_{ci} = 0.42747 \frac{R^{2}T_{ci}^{2}}{P_{ci}}; \alpha_{i}^{0.5} = 1 + m_{i} (1 - T_{ci}^{0.5}) \\ m_{i} &= 0.480 + 1.574 w_{i} - 0.176 w_{i}^{2} \\ (aca) &= \sum_{i} \sum_{j=1}^{r} x_{j} x_{j} a_{ci}^{0.5} a_{cj}^{0.5} \alpha_{j}^{0.5} \alpha_{j}^{0.5} (1 - k_{ij}) \\ (aca)_{i} &= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \left[ \frac{a_{ci}^{0.5} a_{cj}^{0.5} \alpha_{j}^{0.5} m_{i}}{2 T_{cj} T_{cj}} + \frac{a_{ci}^{0.5} a_{ci}^{0.5} \alpha_{i}^{0.5} m_{j}}{2 T_{ci} T_{cj}} \right] (1 - k_{ij}) \\ \kappa_{i} &= \phi_{i}^{L}/\phi_{i}^{V} \end{aligned}$$

.

## Figure 7. SRK Equation of State

## APPENDIX D

.

1

## GENERAL KINETICS CONVERSION FACTORS

The rate expression is usually given in mole/lit sec. For general kinetics, the rate expression is as follows:

rate = 
$$k_0 \exp(-A/RT) C_A^{\nu} C_B^{\nu} C_C^{\nu} \dots$$
 moles/lit sec

where  $v_A$ ,  $v_B$ ,  $v_C$  = the stoichiometric coefficients of components A, B, and C, respectively, if the concentration is written as a function of the flow rate.

rate = 
$$k_0 \exp(-A/RT) \left\{ \frac{F_A^{\nu_A} F_B^{\nu} \cdots}{(V_A^{\nu_A} + V_B \cdots)} \right\}$$
 moles/lit sec

where v = total volumetric flow rate.

The units of the rate constant can be determined as follows:

$$[k_o] = \left(\frac{\text{mole}}{\text{lit sec}}\right) \left\{\frac{\sqrt{\nu_A + \nu_B + \cdots}}{F_A^{\nu_A} F_B^{\nu_B} \cdots}\right\}$$

if the units of the volumetric flow rate and the molar flow rates are substituted in

$$[k_o] = \left(\frac{\text{mole}}{\text{lit sec}}\right) \left\{\frac{(\text{lit/sec})^{\nu_A} + \nu_B + \cdots}{\left(\frac{\text{mole}}{\text{sec}}\right)^{\nu_A} + \nu_B + \cdots}\right\}$$

= 
$$\left(\frac{\text{mole}}{\text{lit sec}}\right) \left\{\frac{\text{lit}}{\text{mole}}\right\}^{\nu}A^{+\nu}B^{+\cdots}$$

$$[k_0] = (\frac{\text{lit}}{\text{mole}})^{\nu_A + \nu_B + \dots - 1} (\frac{1}{\text{sec}})$$

If the rate expression is given in lbmole/ft<sup>3</sup>hr, then the rate constant units are

$$[k_0]' = \left(\frac{ft^3}{Ibmole}\right)^{\nu_A + \nu_B + \cdots - 1} \left(\frac{1}{hr}\right)$$

From the two previous equations

$$[k_0]' = [k_0] \{(\frac{454 \text{ mole}}{1 \text{ bmole}})(\frac{0.03532 \text{ ft}^3}{1 \text{ it}})\}^{\vee A} + {}^{\vee B} + \cdots + (\frac{3600 \text{ sec}}{1 \text{ hr}})$$

$$[k_0]' = [k_0] (16.04)^{\nu_A + \nu_B + \cdots -1}$$
 (3600)

### APPENDIX E

.

## PROCESS DIAGRAM DISPLAY AND UPDATE MENU

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 6-AUG-1987 PAGE 5 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT THE INLET PRESSURE TO REACTOR= 495.0000 PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE SPECIFIED REACTOR VOLUME= 500.000 CUFT

H2 + C7H8 -> CH4 + C6H6 RXN. SEQ.# ORDER STOCHIO> 1 1 0.50 -1.00 1 2 0.00 1.00 0.00 1 3 1.00 1 4 1.00 -1.00

ENTER NEXT COMMAND?

ENTER NEXT COMMAND? UP1 \*\* ERROR \*\* SELECTION UP NOT FOUND

ENTER NEXT UPDATE COMMAND ?

1

\*\* UPDATE MENU\*\*

 ENTER
 CC
 TO CHANGE THE CONVERSION CRITERIA

 ENTER
 OP
 TO CHANGE OPERATION MODE

 ENTER
 VI
 TO CHANGE VOLUME INCREMENT

 ENTER
 MN
 TO DISPLAY MENU

 ENTER
 QT
 TO STOP UPDATE ?

ENTER NEXT UPDATE COMMAND ?

## APPENDIX F

•

## THE OVERALL PROCESS OF HYDRODEALKYLATION

OF TOLUENE

In the hydrodealkylation process, the following three chemical reactions occur:

$$H_2 + C_7 H_8 + CH_4 + C_6 H_6$$
  
 $H_2 + o-xylene + CH_4 + C_7 H_8$ 

 $2C_6H_6 \stackrel{+}{\rightarrow} H_2 + diphenyl$ 

xylene.

The main reaction is the hydrogenation of toluene, whereas the other two form the side reactions in the system. The feed to the reactor consists of mainly hydrogen and toluene with a trace of ortho-

Four outputs are included testing the three conversion criteria (reactor volume, outlet temperature, and the benzene production rate) and the two operation modes (adiabatic and isothermal).

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 6-AUG-1987 PAGE 5 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

PSIA

| THE OP              | ERATIO                     | N IN THE I                        | REACTOR IS ADIA                           | NBATIC             | х<br>7                         |            |
|---------------------|----------------------------|-----------------------------------|-------------------------------------------|--------------------|--------------------------------|------------|
| THE<br>THE<br>THE S | INLET<br>OUTLET<br>PECIFII | PRESSURE<br>PRESSURE<br>ED REACTO | TO REACTOR=<br>FROM REACTOR=<br>R VOLUME= | 49<br>500 <b>.</b> | 5.0000<br>490.0000<br>000 CUFT | PSIA<br>PS |
|                     |                            |                                   |                                           |                    |                                |            |
| H2                  | +                          | C7H8                              | -> CH4                                    | +                  | C6H6                           |            |
| H2                  | +                          | 0-X                               | -> CH4                                    | +                  | C7H8                           |            |
| C6H6                |                            | = H2                              | + DIPHEN                                  | IYL                |                                |            |
|                     |                            |                                   |                                           |                    |                                |            |
| RXN.                | SEQ.#                      | ORDER                             | STOCHIO>                                  |                    |                                |            |
| 1                   | 1                          | 0.50                              | -1.00                                     |                    |                                |            |
| 1                   | 2                          | 0.00                              | 1.00                                      |                    |                                |            |
| 1                   | 3                          | 0.00                              | 1.00                                      |                    |                                |            |
| 1                   | 4                          | 1.00                              | -1.00                                     |                    |                                |            |
| 1                   | 5                          | 0.00                              | 0.00                                      |                    |                                |            |
| 1                   | 6                          | 0.00                              | 0.00                                      |                    |                                |            |
| 2                   | 1                          | 0.50                              | -1.00                                     |                    |                                |            |
| 2                   | 2                          | 0.00                              | 1.00                                      |                    |                                |            |
| 2                   | 3                          | 0.00                              | 0.00                                      |                    |                                |            |
| 2                   | 4                          | 0,00                              | 1.00                                      |                    |                                |            |
| 2                   | 5                          | 1.00                              | -1.00                                     |                    |                                |            |

78

| 2 | 6 | 0.00 | 0.00  |
|---|---|------|-------|
| 3 | 1 | 0.00 | 1.00  |
| 3 | 2 | 0.00 | .0.00 |
| 3 | 3 | 0.00 | -2.00 |
| 3 | 4 | 0.00 | 0.00  |
| 3 | 5 | 0.00 | 0.00  |
| 3 | 6 | 0.00 | 1.00  |

p

79

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE         | 5 | USER:   |            |

UNIT OPERATION NO 1 IS A REAC UNIT\*\*

| FEEDS>>>>>PRODUCTS>>>> |                               |          |  |  |  |  |  |  |  |
|------------------------|-------------------------------|----------|--|--|--|--|--|--|--|
| STREAM FLOW            | STREAM FLOW RATES ARE LB-MOLS |          |  |  |  |  |  |  |  |
| STREAM NO              | 1                             | 2        |  |  |  |  |  |  |  |
| NAME                   | TOLUENE                       | BENZENE  |  |  |  |  |  |  |  |
| COMPONENT              |                               |          |  |  |  |  |  |  |  |
| H2                     | 450.0000                      | 221.3273 |  |  |  |  |  |  |  |
| CH4                    | 18.7000                       | 247.3728 |  |  |  |  |  |  |  |
| C6H6                   | 0.0000                        | 215.9727 |  |  |  |  |  |  |  |
| C7H8                   | 203.3000                      | 0.0272   |  |  |  |  |  |  |  |
| 0-X                    | 12.7000                       | 0.0000   |  |  |  |  |  |  |  |
| DIPHENYL               | 0.0000                        | 0.0000   |  |  |  |  |  |  |  |
| TOTAL                  | 684.7000                      | 684.7000 |  |  |  |  |  |  |  |
| T,DEG F                | 1200.00                       | 1413.23  |  |  |  |  |  |  |  |
| P,PSIA                 | 495.00                        | 490.00   |  |  |  |  |  |  |  |
| H,KBTU                 | 18378.55                      | 20866.16 |  |  |  |  |  |  |  |
| S,KBTU/R               | 41.9603                       | 43.8732  |  |  |  |  |  |  |  |
| MOL WEIGHT             | 31.0685                       | 31.0837  |  |  |  |  |  |  |  |
| D,LB/FT3               | 0.8533                        | 0.7495   |  |  |  |  |  |  |  |
| L/F(MOLAR)             | 0.00000                       | 0.00000  |  |  |  |  |  |  |  |

| THE | HEAT LOAD ON REACTOR | IS     | 0.00 KBTU | per HR |
|-----|----------------------|--------|-----------|--------|
| THE | REACTOR VOLUME=      | 500.00 | CUFT      |        |

DO YOU WANT TO PRINT MOL BALANCE SHEETS; YES OR NO?

1

\*\* UPDATE MENU\*\*

ENTER CC TO CHANGE THE CONVERSION CRITERIA ENTER OP TO CHANGE OPERATION MODE ENTER VI TO CHANGE VOLUME INCREMENT ENTER MN TO DISPLAY MENU QT TO STOP UPDATE ? ENTER ENTER NEXT UPDATE COMMAND ? CC ENTER THE CONVERSION CRITERIA 0 FOR REACTOR VOLUME 1 FOR OUTLET TEMPERATURE 2 FOR PRODUCTION RATE (P/F) 2 ENTER THE DISIRED PRODUCTION RATE IN LB MOLES/HR 200 SPECIFY THE COMPONENT SEQUENCE NUMBER

3 ENTER NEXT UPDATE COMMAND ? QT ENTER NEXT COMMAND? SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 6-AUG-1987 PAGE 8 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT THE INLET PRESSURE TO REACTOR= 495,0000 PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE PRODUCTION RATE OF COMP.# 3 IS 200.00 LB MOLES/HR H2 + C7H8 -> CH4 + C6H6 H2 + 0-X -> CH4 + C7H8 C6H6 = H2 + DIPHENYL RXN. SEQ.# ORDER STOCHIO> 1 1 0.50 -1.00 1 2 0.00 1.00 1 3 0.00 1.00 1 4 1.00 -1.00 1 5 0.00 0.00 1 0.00 0.00 6 2 0.50 1 -1.002 2 0.00 1.00 2 3 0.00 0.00 2 4 0.00 1.00

| 2 | 5 | 1.00 | -1.00 |
|---|---|------|-------|
| 2 | 6 | 0.00 | 0.00  |
| 3 | 1 | 0.00 | 1.00  |
| 3 | 2 | 0.00 | 0.00  |
| 3 | 3 | 0.00 | -2.00 |
| 3 | 4 | 0.00 | 0.00  |
| 3 | 5 | 0.00 | 0.00  |
| 3 | 6 | 0.00 | 1.00  |

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE         | 7 | USER:   |            |

UNIT OPERATION NO 1 IS A REAC UNIT\*\*\* ...

t

| FEEDS>>>>>PRODUCTS>>>> |                               |          |  |  |  |  |  |  |  |  |
|------------------------|-------------------------------|----------|--|--|--|--|--|--|--|--|
| STREAM FLOW            | STREAM FLOW RATES ARE LB-MOLS |          |  |  |  |  |  |  |  |  |
| STREAM NO              | 1                             | 2        |  |  |  |  |  |  |  |  |
| NAME                   | TOLUENE                       | BENZENE  |  |  |  |  |  |  |  |  |
| COMPONENT              |                               |          |  |  |  |  |  |  |  |  |
| H2                     | 450.0000                      | 237.3010 |  |  |  |  |  |  |  |  |
| CH4                    | 18.7000                       | 231.3991 |  |  |  |  |  |  |  |  |
| C6H6                   | 0.0000                        | 200.0647 |  |  |  |  |  |  |  |  |
| C7H8                   | 203,3000                      | 15.8696  |  |  |  |  |  |  |  |  |
| 0-X                    | 12.7000                       | 0.0657   |  |  |  |  |  |  |  |  |
| DIFHENYL               | 0.0000                        | 0.0000   |  |  |  |  |  |  |  |  |
| TOTAL                  | 684.7000                      | 684.7001 |  |  |  |  |  |  |  |  |
| T,DEG F                | 1200.00                       | 1398.89  |  |  |  |  |  |  |  |  |
| P,PSIA                 | 495.00                        | 490.00   |  |  |  |  |  |  |  |  |
| н, квти                | 18378.55                      | 20701.59 |  |  |  |  |  |  |  |  |
| S,KBTU/R               | 41.9603                       | 43.8980  |  |  |  |  |  |  |  |  |
| MOL WEIGHT             | 31.0685                       | 31.0820  |  |  |  |  |  |  |  |  |
| D,LB/FT3               | 0.8533                        | 0.7552   |  |  |  |  |  |  |  |  |
| L/F(MOLAR)             | 0.00000                       | 0.00000  |  |  |  |  |  |  |  |  |

| THE | HEAT LOAD | ) ON REACTOR | IS     | 0.00 KBTU | per HR |
|-----|-----------|--------------|--------|-----------|--------|
| THE | REACTOR   | VOLUME=      | 284.00 | CUFT      |        |

DO YOU WANT TO PRINT MOL BALANCE SHEETS; YES OR NO?

1

#### \*\* UPDATE MENU\*\*

ENTERCCTO CHANGE THE CONVERSION CRITERIAENTEROPTO CHANGE OPERATION MODEENTERVITO CHANGE VOLUME INCREMENTENTERMNTO DISPLAY MENUENTERQTTO STOP UPDATE ?

#### ENTER NEXT UPDATE COMMAND ?

OP

| ENTER | 0 | FOR ISOTHERMAL OPERATION |
|-------|---|--------------------------|
| ENTER | 1 | FOR ADIABATIC OPERATION  |

Û

ENTER NEXT UPDATE COMMAND ?

ENTER NEXT COMMAND?

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 6-AUG-1987 PAGE 11 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

| The op<br>The V<br>The<br>The<br>The | ERATIO<br>OLUME<br>INLET<br>OUTLET | n in the F<br>Increment=<br>Pressure<br>Pressure | REACTOR IS<br>= 1.00<br>TO REACTOR<br>FROM REACTO | ISOTHE<br>CUFT<br>=<br>DR= | rma<br>49 | L<br>5.0000<br>490.000 | PSIA<br>20 PSIA |    |          |
|--------------------------------------|------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------|-----------|------------------------|-----------------|----|----------|
| THE P                                | RODUCT                             | ion rate (                                       | OF COMP.#                                         | 3                          | IS        |                        | 200.00          | LB | MOLES/HR |
| H2                                   | +                                  | C7H8                                             | -> CH4                                            |                            | +         | C6H6                   |                 |    |          |
| H2                                   | +                                  | 0-X                                              | -> CH4                                            |                            | +         | C7H8                   |                 |    |          |
| C6H6                                 |                                    | = H2                                             | + DI                                              | PHENYL                     |           |                        |                 |    |          |
| RXN.                                 | SEQ.#                              | ORDER                                            | STOCHIO>                                          |                            |           |                        |                 |    |          |
| 1                                    | 1                                  | 0.50                                             | -1.00                                             |                            |           |                        |                 |    |          |
| 1                                    | 2                                  | 0.00                                             | 1.00                                              |                            |           |                        |                 |    |          |
| 1                                    | 3                                  | 0.00                                             | 1.00                                              |                            |           |                        |                 |    |          |
| 1                                    | 4                                  | 1.00                                             | -1.00                                             |                            |           |                        |                 |    |          |
| 1                                    | 5                                  | 0.00                                             | 0.00                                              |                            |           |                        |                 |    |          |
| 1                                    | 6                                  | 0.00                                             | 0.00                                              |                            |           |                        |                 |    |          |
| 2                                    | 1                                  | 0.50                                             | -1.00                                             |                            |           |                        |                 |    |          |
| 2                                    | 2                                  | 0.00                                             | 1.00                                              |                            |           |                        |                 |    |          |
| 2                                    | 3                                  | 0.00                                             | 0.00                                              |                            |           |                        |                 |    |          |
| 2                                    | 4                                  | 0.00                                             | 1.00                                              |                            |           |                        |                 |    |          |

|   | 2 | 5 | 1.00 | -i.00 |
|---|---|---|------|-------|
|   | 2 | 6 | 0.00 | 0.00  |
|   | 3 | 1 | 0.00 | 1.00  |
|   | 3 | 2 | 0.00 | 0.00  |
|   | 3 | 3 | 0.00 | -2.00 |
| • | 3 | 4 | 0.00 | 0.00  |
|   | 3 | 5 | 0.00 | 0.00  |
|   | 3 | 6 | 0.00 | 1.00  |

•

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE         | 9 | USER:   |            |

UNIT OPERATION NO 1 IS A REAC UNIT\*\*\*

| FEEDS>>>>>PRODUCTS>>>> |                               |          |  |  |  |  |  |  |
|------------------------|-------------------------------|----------|--|--|--|--|--|--|
| STREAM FLOW F          | STREAM FLOW RATES ARE LB-MOLS |          |  |  |  |  |  |  |
| STREAM NO              | 1                             | 2        |  |  |  |  |  |  |
| NAME                   | TOLUENE                       | BENZENE  |  |  |  |  |  |  |
| COMPONENT              |                               |          |  |  |  |  |  |  |
| H2                     | 450.0000                      | 237.3507 |  |  |  |  |  |  |
| CH4                    | 18.7000                       | 231.3492 |  |  |  |  |  |  |
| C6H6                   | 0.0000                        | 200.0135 |  |  |  |  |  |  |
| C7H8                   | 203.3000                      | 15.9221  |  |  |  |  |  |  |
| 0-X                    | 12.7000                       | 0.0645   |  |  |  |  |  |  |
| DIPHENYL               | 0.0000                        | 0.0000   |  |  |  |  |  |  |
| TOTAL                  | 684.7000                      | 684.7000 |  |  |  |  |  |  |
| T,DEG F                | 1200.00                       | 1200.00  |  |  |  |  |  |  |
| P,PSIA                 | 495.00                        | 470.00   |  |  |  |  |  |  |
| H,KBTU                 | 18378.55                      | 17384.24 |  |  |  |  |  |  |
| S,KBTU/R               | 41.9603                       | 42.0098  |  |  |  |  |  |  |
| MOL WEIGHT             | 31.0685                       | 31.0780  |  |  |  |  |  |  |
| D,LB/FT3               | 0.8533                        | 0.8465   |  |  |  |  |  |  |
| L/F (MOLAR)            | 0.00000                       | 0.00000  |  |  |  |  |  |  |

| THE | HEAT LOAD | on reactor | IS -    | -11124.56 KBTU | per HR |
|-----|-----------|------------|---------|----------------|--------|
| THE | REACTOR   | VOLUME=    | 1764.00 | ) CUFT         |        |

1

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 6-AUG-1987 PAGE 16 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

 THE OPERATION IN THE REACTOR IS ADIABATIC

 THE VOLUME INCREMENT=
 1.00
 CUFT

 THE INLET PRESSURE TO REACTOR=
 495.0000
 PSIA

 THE OUTLET PRESSURE FROM REACTOR=
 490.0000
 PSIA

 THE SPECIFIED REACTOR OUTLET TEMPERATURE=
 1400.000
 DEG

H2 + C7H8 -> CH4 + C6H6

H2 + O-X -> CH4 + C7H8

/

C6H6 = H2 + DIPHENYL

| RXN. | SEQ.# | ORDER | STOCHIO> |  |
|------|-------|-------|----------|--|
| 1    | 1     | 0.50  | -1.00    |  |
| 1    | 2     | 0.00  | 1.00     |  |
| 1    | 3     | 0.00  | 1.00     |  |
| 1    | 4     | 1.00  | -1.00    |  |
| 1    | 5     | 0.00  | 0.00     |  |
| 1    | 6     | 0.00  | 0.00     |  |
| 2    | 1     | 0.50  | -1.00    |  |
| 2    | 2     | 0.00  | 1.00     |  |
| ź    | 2     | 0.00  | 0.00     |  |
| 2    | 4     | 0.00  | 1.00     |  |
| 2    | 5     | 1.00  | -1.00    |  |

| 2 | 6 | 0.00 | 0.00  |
|---|---|------|-------|
| 3 | 1 | 0.00 | 1.00  |
| 3 | 2 | 0.00 | 0.00  |
| 3 | 3 | 0.00 | -2.00 |
| 3 | 4 | 0.00 | 0.00  |
| 3 | 5 | 0.00 | 0.00  |
| 3 | 6 | 0.00 | 1.00  |

.

90

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 11      | USER:   |            |

.

ť

UNIT OPERATION NO 1 IS A REAC UNIT\*\*\* ~

| FEEDS>>>>>PRODUCTS>>>>        |          |          |  |  |  |  |  |
|-------------------------------|----------|----------|--|--|--|--|--|
| STREAM FLOW RATES ARE LB-MOLS |          |          |  |  |  |  |  |
| STREAM NO                     | 1        | 2        |  |  |  |  |  |
| NAME                          | TOLUENE  | BENZENE  |  |  |  |  |  |
| COMPONENT                     |          |          |  |  |  |  |  |
| H2                            | 450.0000 | 236.4900 |  |  |  |  |  |
| CH4                           | 18.7000  | 232.2101 |  |  |  |  |  |
| C6H6                          | 0.0000   | 200.8693 |  |  |  |  |  |
| C7H8                          | 203.3000 | 15.0714  |  |  |  |  |  |
| 0-X                           | 12.7000  | 0.0593   |  |  |  |  |  |
| DIPHENYL                      | 0.0000   | 0.0000   |  |  |  |  |  |
|                               |          |          |  |  |  |  |  |
| TOTAL                         | 684.7000 | 684.7002 |  |  |  |  |  |
|                               |          |          |  |  |  |  |  |
| T,DEG F                       | 1200.00  | 1399.62  |  |  |  |  |  |
| P,PSIA                        | 495.00   | 490.00   |  |  |  |  |  |
| н,квти                        | 18378.55 | 20709.98 |  |  |  |  |  |
| S,KBTU/R                      | 41.9603  | 43.8985  |  |  |  |  |  |
| MOL WEIGHT                    | 31.0685  | 31.0821  |  |  |  |  |  |
| D,LB/FT3                      | 0.8533   | 0.7549   |  |  |  |  |  |
| L/F(MOLAR)                    | 0.00000  | 0.00000  |  |  |  |  |  |

| THE I | heat loai | ) on reactor | IS     | 0.00 KBTU | per HR |
|-------|-----------|--------------|--------|-----------|--------|
| THE   | REACTOR   | VOLUME=      | 286.00 | CUFT      |        |

APPENDIX G

## SIMULATION OF A PLUG FLOW REACTOR WITH RECYCLE

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 7-AUG-1987 PAGE 15 USER:

UNIT OPERATION 1 IS A ADDR UNIT 2 FEED(S) TO UNIT OPERATION 1 HAVE BEEN DEFINED: 1, 8, 1 PRODUCT(S) FROM UNIT OPERATION 1 HAVE BEEN DEFINED: 2, UNIT OPERATION 2 IS A COMP UNIT 1 FEED(S) TO UNIT OPERATION 2 HAVE BEEN DEFINED: 2, 1 PRODUCT(S) FROM UNIT OPERATION 2 HAVE BEEN DEFINED: 3, UNIT OPERATION 3 IS A REAC UNIT 1 FEED(S) TO UNIT OPERATION 3 HAVE BEEN DEFINED: 3, 1 PRODUCT (S) FROM UNIT OPERATION 3 HAVE BEEN DEFINED: 4, UNIT OPERATION 4 IS A FLSH UNIT 1 FEED(S) TO UNIT OPERATION 4 HAVE BEEN DEFINED: 4, 2 PRODUCT(S) FROM UNIT OPERATION 4 HAVE BEEN DEFINED: 5, 6, UNIT OPERATION 5 IS A DVDR UNIT 1 FEED(S) TO UNIT OPERATION 5 HAVE BEEN DEFINED: 5, 2 PRODUCT(S) FROM UNIT OPERATION 5 HAVE BEEN DEFINED; 7, 8, THE FOLLOWING STREAM(S) ARE EXTERNAL FEEDS TO THE SIMULATION: 1. THE FOLLOWING STREAM(S) ARE PRODUCTS FROM THE SIMULATION: 6, 7,

STREAM NO 8 IS A RECYCLE STREAM LOOP 1 ENDS WITH UNIT OPERATION NO 5

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 6-AUG-1987 |
| PAGE         | 6 | USER:   |            |

ADDR # 1 ADDR UNIT OPERATION REQUIRES NO PROCESS DATA

COMP # 2 DISCHARGE PRES = 495.00 PSIA DISCHARGE TEMP = 1200.00 DEG F 1=REV ADB;2=POLYTR = 1.00

REAC # 3

.

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

| THE OPERATION IN THE REACTOR IS ADIA | BATIC        |      |
|--------------------------------------|--------------|------|
| THE VOLUME INCREMENT= 1.00 CU        | FT           |      |
| THE INLET PRESSURE TO REACTOR=       | 495.0000     | PSIA |
| THE DUTLET PRESSURE FROM REACTOR=    | 490.0000     | PSIA |
| THE SPECIFIED REACTOR VOLUME=        | 500.000 CUFT |      |
|                                      |              |      |

| H2 | ł | C7H8 | -> | CH4 | + | C6H6 |
|----|---|------|----|-----|---|------|
|    |   |      |    |     |   |      |

H2 + O-X -> CH4 + C7H8

C6H6 = H2 + DIPHENYL

RXN. SEQ.# ORDER STOCHIO> 0.50 1 1 -1.00 1 2 0.00 1.00 0.00 3 1.00 1 1.00 -1.00 4 1 5 0.00 0.00 1 0.00 0.00 1 6 2 1 0.50 -1.00

| 2 | 2   | 0.00  | 1.00  |
|---|-----|-------|-------|
| 2 | 3   | 0.00  | 0.00  |
| 2 | 4   | 0.00  | 1.00  |
| 2 | 5   | 1.00  | -1.00 |
| 2 | 6   | 0.00  | 0.00  |
| 3 | 1 - | .0.00 | 1.00  |
| 3 | 2   | 0.00  | 0.00  |
| 3 | 3   | 0.00  | -2.00 |
| 3 | 4   | 0.00  | 0.00  |
| 3 | 5   | 0.00  | 0.00  |
| 3 | 6   | 0.00  | 1.00  |

#### FLSH # 4

CALCULATION TYPE = 1.0 SPEC OR ESTM T = 100.00 DEG F SPEC PRESSURE = 485.00 PSIA SPEC OR ESTM L/F = 0.20000

#### DVDR # 5

| PERCENT OF TOTAL FEED | PRODUCT |
|-----------------------|---------|
| TO PRODUCT            | NUMBER  |
| 20.400                | 1       |
| 79,600                | 2       |

t

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 17      | USER:   |            |

#### UNIT OPERATION NO 1 IS A ADDR UNIT\*\*\*

ŧ

| FEEDS>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |           |           |           |  |  |  |  |
|------------------------------------------|-----------|-----------|-----------|--|--|--|--|
| STREAM FLOW RATES ARE LB-MOLS            |           |           |           |  |  |  |  |
| STREAM NO 1 8 2                          |           |           |           |  |  |  |  |
| NAME                                     | FEED      | RECYCLE   | CMINLET   |  |  |  |  |
| COMPONENT                                | COMPONENT |           |           |  |  |  |  |
| H2                                       | 450.0000  | 1416.6345 | 1854.1699 |  |  |  |  |
| CH4                                      | 18,7000   | 340.5688  | 359.5650  |  |  |  |  |
| C6H6                                     | 0.0000    | 4.4993    | 4.5012    |  |  |  |  |
| C7H8                                     | 203.3000  | 3.2738    | 206.5448  |  |  |  |  |
| 0-X                                      | 12.7000   | 0.0361    | 12.7356   |  |  |  |  |
| DIPHENYL                                 | 0.0000    | 0.0000    | 0.0000    |  |  |  |  |
| TOTAL                                    | 684.7000  | 1765.0125 | 2437.5164 |  |  |  |  |
| T,DEG F                                  | 1200.00   | 100.00    | 681.47    |  |  |  |  |
| P,PSIA                                   | 495.00    | 485.00    | 485.00    |  |  |  |  |
| н,квти                                   | 18385.02  | 6990.10   | 25328.35  |  |  |  |  |
| S,KBTU/R                                 | 41.9722   | 50.0933   | 96.4254   |  |  |  |  |
| MOL WEIGHT                               | 31.0866   | 5.0857    | 12.4059   |  |  |  |  |
| D,LB/FT3                                 | 0.8538    | 0.4041    | 0.4851    |  |  |  |  |
| L/F(MOLAR)                               | 0.00000   | 0.00000   | 0.00000   |  |  |  |  |

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 18      | USER:   |            |

#### UNIT OPERATION NO 2 IS A COMP UNIT\*\*\*

| FEEDS>>>>>PRODUCTS>>>>        |           |           |  |  |
|-------------------------------|-----------|-----------|--|--|
| STREAM FLOW RATES ARE LB-MOLS |           |           |  |  |
| STREAM NO 2 3                 |           |           |  |  |
| NAME                          | CMINLET   | TOLUENE   |  |  |
| COMPONENT                     |           |           |  |  |
| H2                            | 1854.1699 | 1854.1699 |  |  |
| CH4                           | 359.5650  | 359.5650  |  |  |
| C6H6                          | 4.5012    | 4.5012    |  |  |
| C7H8                          | 206.5448  | 206.5448  |  |  |
| 0-X                           | 12.7356   | 12.7356   |  |  |
| DIPHENYL                      | 0.0000    | 0.0000    |  |  |
| TOTAL                         | 2437.5164 | 2437.5164 |  |  |
| T,DEG F                       | 681.47    | 1200.00   |  |  |
| P,PSIA                        | 485.00    | 495.00    |  |  |
| н,квти                        | 25328.35  | 41359.41  |  |  |
| S,KBTU/R                      | 96.4254   | 107.8463  |  |  |
| MOL WEIGHT                    | 12.4059   | 12.3983   |  |  |
| D,LB/FT3                      | 0.4851    | 0.3407    |  |  |
| L/F(MOLAR)                    | 0.00000   | 0.00000   |  |  |

| VALUES AT | DELTA | S | = | 0.0     |     |   |
|-----------|-------|---|---|---------|-----|---|
| TEMP      |       |   | = | 685.45  | DEG | F |
| L/F(MOL   | .ar)  |   | = | 0.00000 |     |   |

WORK = -6300.44 HP AT 0.71 % EFFICIENCY

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 19      | USER:   |            |

#### UNIT OPERATION NO 3 IS A REAC UNIT\*\*\* 40

| FEEDS>>>>>PRODUCTS>>>>        |           |           |  |  |  |
|-------------------------------|-----------|-----------|--|--|--|
| STREAM FLOW RATES ARE LB-MOLS |           |           |  |  |  |
| STREAM NO 3 4                 |           |           |  |  |  |
| NAME                          | TOLUENE   | BENZENE   |  |  |  |
| COMPONENT                     |           |           |  |  |  |
| H2                            | 1854.1699 | 1781.7428 |  |  |  |
| CH4                           | 359.5650  | 431.9936  |  |  |  |
| C6H6                          | 4.5012    | 70.2432   |  |  |  |
| C7H8                          | 206.5448  | 147.4893  |  |  |  |
| 0-X                           | 12.7356   | 6.0491    |  |  |  |
| DIPHENYL                      | 0.0000    | 0.0000    |  |  |  |
| TOTAL                         | 2437.5164 | 2437.5178 |  |  |  |
| T,DEG F                       | 1200.00   | 1235.29   |  |  |  |
| P,PSIA                        | 495.00    | 490.00    |  |  |  |
| н,квти                        | 41359.41  | 42177.20  |  |  |  |
| S,KBTU/R                      | 107.8463  | 108.8405  |  |  |  |
| MOL WEIGHT                    | 12.3983   | 12.3997   |  |  |  |
| D,LB/FT3                      | 0.3407    | 0.3304    |  |  |  |
| L/F(MOLAR)                    | 0.00000   | 0.00000   |  |  |  |

| THE | HEAT LOAD ON REACTOR | IS     | 0.00 KBTU | per HR |
|-----|----------------------|--------|-----------|--------|
| THE | REACTOR VOLUME=      | 500.00 | CUFT      |        |
| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 20      | USER:   |            |

## UNIT OPERATION NO 4 IS A FLSH UNIT\*\*\*

.

| FEEDS>>>>>PRODUCTS>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |              |           |          |
|--------------------------------------------------------|--------------|-----------|----------|
| STREAM FLOW                                            | RATES ARE LE | 3-MOLS    |          |
| STREAM NO                                              | 4            | 5         | 6        |
| NAME                                                   | BENZENE      | VAPOR     | HEAVY    |
| COMPONENT                                              |              |           |          |
| H2                                                     | 1781.7428    | 1779.6915 | 2.0512   |
| CH4                                                    | 431.9936     | 427.8503  | 4.1433   |
| C6H6                                                   | 70.2432      | 5.6524    | 64.5908  |
| C7H8                                                   | 147.4893     | 4.1129    | 143.3765 |
| 0-X                                                    | 6.0491       | 0.0453    | 6.0038   |
| DIPHENYL                                               | 0.0000       | 0.0000    | 0.0000   |
| TOTAL                                                  | 2437.5178    | 2217.3523 | 220.1655 |
| T,DEG F                                                | 1235.29      | 100.00    | 100.00   |
| P,PSIA                                                 | 490.00       | 485.00    | 485.00   |
| H,KBTU                                                 | 42177.20     | 8781.53   | -1594.29 |
| S,KBTU/R                                               | 108.8405     | 62.9313   | 11.3657  |
| MOL WEIGHT                                             | 12.3997      | 5.0857    | 86.1323  |
| D,LB/FT3                                               | 0.3304       | 0.4041    | 52.7411  |
| L/F(MOLAR)                                             | 0.00000      | 0.00000   | 1.00000  |

HEAT TRANSFERRED -34989.96 KBTU

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 21      | USER:   |            |

## UNIT OPERATION NO 5 IS A DVDR UNIT\*\*\*

| F           | EEDS>>>>>>PR | ODUCTS>>>>> | ·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
|-------------|--------------|-------------|----------------------------------------|
| STREAM FLOW | RATES ARE LB | -MOLS       |                                        |
| STREAM NO   | 5            | 7           | 8                                      |
| NAME        | VAPOR        | PURGE       | RECYCLE                                |
| COMPONENT   |              |             |                                        |
| H2          | 1779.6915    | 363.0571    | 1416.6345                              |
| CH4         | 427,8503     | 87.2814     | 340.5688                               |
| C6H6        | 5.6524       | 1.1531      | 4.4993                                 |
| C7H8        | 4.1129       | 0.8390      | 3.2738                                 |
| 0-X         | 0,0453       | 0.0092      | 0.0361                                 |
| DIPHENYL    | 0.0000       | 0.0000      | 0.0000                                 |
| TOTAL       | 2217,3523    | 452.3399    | 1765.0125                              |
| T,DEG F     | 100.00       | 100.00      | 100.00                                 |
| P,PSIA      | 485.00       | 485.00      | 485.00                                 |
| н,квти      | 8781.53      | 1791.43     | 6990.10                                |
| S,KBTU/R    | 62.9313      | 12.8380     | 50.0933                                |
| MOL WEIGHT  | 5.0857       | 5.0857      | 5.0857                                 |
| D,LB/FT3    | 0.4041       | 0.4041      | 0.4041                                 |
| L/F(MOLAR)  | 0.00000      | 0.00000     | 0.00000                                |

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 22      | USER:   |            |

## OVERALL PROCESS MATERIAL BALANCE

.

| COMPONENT | TOTAL    | TOTAL    | RATIO   |
|-----------|----------|----------|---------|
| NAME      | FEEDS    | PRODUCTS | (PD/FD) |
| H2        | 450.0000 | 365.1083 | 0.81135 |
| CH4       | 18.7000  | 91.4247  | 4.88902 |
| C6H6      | 0.0000   | 65.7439  | 0.00000 |
| C7H8      | 203.3000 | 144.2155 | 0.70937 |
| 0-X       | 12.7000  | 6.0130   | 0.47346 |
| DIPHENYL  | 0.0000   | 0.0000   | 0.00000 |
| TOTAL     | 684.7000 | 672.5054 | 0.98219 |

## APPENDIX H

.

Ĕ

THE EFFECT OF THE VOLUME INCREMENT ON THE RESULTS SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 9-AUG-1987 PAGE 10 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT THE INLET PRESSURE TO REACTOR= 495.0000 PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE SPECIFIED REACTOR VOLUME= 500.000 CUFT

H2 + C7H8 -> CH4 + C6H6

H2 + O-X -> CH4 + C7H8

C6H6 = H2 + DIPHENYL

RXN. SEQ.# ORDER STOCHIO> 0.50 -1.00 1 1 1 2 0.00 1.00 1 3 0.00 1.00 1 4 1.00 -1.001 5 0.00 0.00 1 6 0.00 0.00 2 0.50 -1.001 2 2 0.00 1.00 2 3 0.00 0.00 2 4 0.00 1.00 2 5 1.00 -1.00

\*

| 2   | 6 | 0.00 | 0.00   |
|-----|---|------|--------|
| 3   | 1 | 0.00 | 1.00   |
| - 3 | 2 | 0.00 | 0.00   |
| 3   | 3 | 0.00 | -2.00  |
| 3   | 4 | 0.00 | 0.00   |
| 3   | 5 | 0.00 | • 0.00 |
| 3   | 6 | 0.00 | 1.00   |

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 9-AUG-1987 |
| PAGE         | 6 | USER:   |            |

## UNIT OPERATION NO 1 IS A REAC UNIT\*\*\*

| FEEDS>>>>>PRODUCTS>>>> |                               |                  |  |  |  |  |
|------------------------|-------------------------------|------------------|--|--|--|--|
| STREAM FLOW            | STREAM FLOW RATES ARE LB-MOLS |                  |  |  |  |  |
| STREAM NO              | 1                             | 2                |  |  |  |  |
| NAME                   | TOLUENE                       | BENZENE          |  |  |  |  |
| COMPONENT              |                               |                  |  |  |  |  |
| H2                     | 450.0000                      | 221.3273         |  |  |  |  |
| CH4                    | 18,7000                       | 247.3728         |  |  |  |  |
| C6H6                   | 0.0000                        | 215.9727         |  |  |  |  |
| C7H8                   | 203.3000                      | 0.0272           |  |  |  |  |
| 0-X                    | 12.7000                       | 0.0000           |  |  |  |  |
| DIPHENYL               | 0.0000                        | 0.0000           |  |  |  |  |
| TOTAL                  | 684.7000                      | <b>684.</b> 7000 |  |  |  |  |
| T,DEG F                | 1200.00                       | 1413.23          |  |  |  |  |
| P,PSIA                 | 495.00                        | 490.00           |  |  |  |  |
| H,KBTU                 | 18378.55                      | 20866.16         |  |  |  |  |
| S,KBTU/R               | 41.9603                       | 43.8732          |  |  |  |  |
| MOL WEIGHT             | 31.0685                       | 31.0837          |  |  |  |  |
| D,LB/FT3               | 0.8533                        | 0.7495           |  |  |  |  |
| L/F(MOLAR)             | 0.00000                       | 0.00000          |  |  |  |  |

| THE | HEAT LOAD | ) ON REACTOR | IS     | 0.00 KBTU | per HR |
|-----|-----------|--------------|--------|-----------|--------|
| THE | REACTOR   | VOLUME=      | 500.00 | CUFT      |        |

٩.

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 9-AUG-1987 PAGE 12 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 0.25 CUFT THE INLET PRESSURE TO REACTOR= 495.0000 PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE SPECIFIED REACTOR VOLUME= 500.000 CUFT

H2 + C7H8 -> CH4 + C6H6

H2 + O-X -> CH4 + C7H8

C6H6 = H2 + DIPHENYL

RXN. SEQ.# ORDER STOCHIO> 1 1 0.50 -1.00 1 2 0.00 1.00 1 0.00 3 1.00 1 4 1.00 -1.00 1 5 0.00 0.00 0.00 1 0.00 6 2 0.50 -1.00 1 2 2 0.00 1.00 2 3 0.00 0.00 2 4 0.00 1.00 2 5 1.00 -1.00

| 2 | 6 | 0.00 | 0.00  |
|---|---|------|-------|
| 2 | 1 | 0.00 | 1.00  |
| 3 | 2 | 0.00 | 0.00  |
| 3 | 3 | 0.00 | -2.00 |
| 3 | 4 | 0.00 | 0.00  |
| 3 | 5 | 0.00 | 0.00  |
| 3 | 6 | 0.00 | 1.00  |

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 9-AUG-1987 |
| PAGE 8       | USER:   |            |

UNIT OPERATION NO 1 IS A REAC UNIT\*\*\* 10

| FEEDS>>>>>PRODUCTS>>>>        |          |          |  |  |  |  |  |
|-------------------------------|----------|----------|--|--|--|--|--|
| STREAM FLOW RATES ARE LB-MOLS |          |          |  |  |  |  |  |
| STREAM NO 1 2                 |          |          |  |  |  |  |  |
| NAME                          | TOLUENE  | BENZENE  |  |  |  |  |  |
| COMPONENT                     |          |          |  |  |  |  |  |
| H2                            | 450.0000 | 221.3194 |  |  |  |  |  |
| CH4                           | 18.7000  | 247.3812 |  |  |  |  |  |
| C6H6                          | 0.0000   | 215.9811 |  |  |  |  |  |
| C7H8                          | 203.3000 | 0.0187   |  |  |  |  |  |
| 0-X                           | 12.7000  | 0.0000   |  |  |  |  |  |
| DIPHENYL                      | 0.0000   | 0.0000   |  |  |  |  |  |
| TOTAL                         | 684.7000 | 684.7004 |  |  |  |  |  |
| T,DEG F                       | 1200.00  | 1415.50  |  |  |  |  |  |
| P,PSIA                        | 495.00   | 490.00   |  |  |  |  |  |
| н,квти                        | 18378.55 | 20905.06 |  |  |  |  |  |
| S,KBTU/R                      | 41.9603  | 43.8938  |  |  |  |  |  |
| MOL WEIGHT                    | 31.0685  | 31.0837  |  |  |  |  |  |
| D,LB/FT3                      | 0.8533   | 0.7486   |  |  |  |  |  |
| L/F(MOLAR)                    | 0.00000  | 0.00000  |  |  |  |  |  |

| THE | HEAT LOAD ON REACTOR | IS     | 0.00 KBTU | per HR |
|-----|----------------------|--------|-----------|--------|
| THE | REACTOR VOLUME=      | 500.00 | CUFT      | •      |

# APPENDIX I

•

SIMULATION OF TWO PLUG FLOW REACTORS IN SERIES The first run shows the results from the simulation of one single reactor with a volume equal to 500 ft<sup>3</sup>. The second run shows the results from the simulation of two reactors in series. For comparison, look at stream number 2 in the first run, and stream number 3 in the second run.

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 7-AUG-1987 PAGE 4 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT THE INLET PRESSURE TO REACTOR= 495.0000 PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE SPECIFIED REACTOR VOLUME= 500.000 CUFT

1

H2 + C7H8 -> CH4 + C6H6

RXN. SEQ.# ORDER STOCHIO> 1 0.50 -i.00 1 1 2 0.00 1.00 1 3 0.00 1.00 1 4 1.00 -1.00

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE 6       | , | USER:   |            |

UNIT OPERATION NO 1 IS A REAC UNIT\*\*\*

.

| FEEDS>>>>>PRODUCTS>>>>        |          |          |  |  |  |  |  |  |
|-------------------------------|----------|----------|--|--|--|--|--|--|
| STREAM FLOW RATES ARE LB-MOLS |          |          |  |  |  |  |  |  |
| STREAM NO                     | 1        | 2        |  |  |  |  |  |  |
| NAME                          | TOLUENE  | BENZENE  |  |  |  |  |  |  |
| COMPONENT                     |          |          |  |  |  |  |  |  |
| H2                            | 450.0000 | 217.0577 |  |  |  |  |  |  |
| CH4                           | 0.0000   | 232.9424 |  |  |  |  |  |  |
| C6H6                          | 0.0000   | 232.9424 |  |  |  |  |  |  |
| C7H8                          | 233.0000 | 0.0576   |  |  |  |  |  |  |
| TOTAL                         | 683.0000 | 683.0001 |  |  |  |  |  |  |
| T,DEG F                       | 1200.00  | 1408.17  |  |  |  |  |  |  |
| P,PSIA                        | 495.00   | 490.00   |  |  |  |  |  |  |
| н,квти                        | 18865.59 | 21383.47 |  |  |  |  |  |  |
| S,KBTU/R                      | 42.5316  | 44.6471  |  |  |  |  |  |  |
| MOL WEIGHT                    | 32.7408  | 32.7541  |  |  |  |  |  |  |
| D,LB/FT3                      | 0.8995   | 0.7920   |  |  |  |  |  |  |
| L/F(MOLAR)                    | 0.00000  | 0,00000  |  |  |  |  |  |  |

| THE | HEAT | LOAD | ON   | REACTOR | IS     |   |
|-----|------|------|------|---------|--------|---|
| THE | REA  | CTOR | VOLI | JME=    | 500.00 | ) |

0.00 KBTU per HR CUFT .

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 7-AUG-1987 PAGE 6 USER:

UNIT OPERATION 1 IS A REAC UNIT 1 FEED(S) TO UNIT OPERATION 1 HAVE BEEN DEFINED: 1, 1 PRODUCT(S) FROM UNIT OPERATION 1 HAVE BEEN DEFINED: 2, UNIT OPERATION 2 IS A REAC UNIT 1 FEED(S) TO UNIT OPERATION 2 HAVE BEEN DEFINED: 2, 1 PRODUCT(S) FROM UNIT OPERATION 2 HAVE BEEN DEFINED: 3, THE FOLLOWING STREAM(S) ARE EXTERNAL FEEDS TO THE SIMULATION:

1, THE FOLLOWING STREAM(S) ARE PRODUCTS FROM THE SIMULATION: 3, 1

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 7-AUG-1987 PAGE 7 USER:

REAC # 1

c.

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT THE INLET PRESSURE TO REACTOR= 495.0000 PSIA THE OUTLET PRESSURE FROM REACTOR= 492.5000 PSIA THE SPECIFIED REACTOR VOLUME= 250.000 CUFT

H2 + C7H8 -> CH4 + C6H6

RXN. SEQ.# ORDER STOCHIO>

 1
 1
 0.50
 -1.00

 1
 2
 0.00
 1.00

 1
 3
 0.00
 1.00

 1
 4
 1.00
 -1.00

REAC # 2

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT THE INLET PRESSURE TO REACTOR= 492.5000 PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE SPECIFIED REACTOR VOLUME= 250.000 CUFT

H2 + C7H8 -> CH4 + C6H6

RXN. SEQ.# ORDER STOCHIO>

1 1 0.50 -1.00

| 1 | 2 | 0.00 | 1.00  |
|---|---|------|-------|
| 1 | 3 | 0.00 | 1.00  |
| 1 | 4 | 1.00 | -1.00 |

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE         | 8 | USER:   |            |

UNIT OPERATION NO 1 IS A REAC UNIT\*\*\* ::

| Æ           | EDS>>>>>>    | oducts>>>> - |
|-------------|--------------|--------------|
| STREAM FLOW | RATES ARE LB | -MOLS        |
| STREAM NO   | 1 .          | 2            |
| NAME        | FEED1        | PROD.1       |
| COMPONENT   |              |              |
| H2          | 450.0000     | 258.0125     |
| CH4         | 0.0000       | 191.9874     |
| C6H6        | 0.0000       | 191.9874     |
| C7H8        | 233.0000     | 41.0126      |
| TOTAL       | 683.0000     | 682.9999     |
| T,DEG F     | 1200.00      | 1372.39      |
| P,PSIA      | 495.00       | 492.50       |
| н,квти      | 18865.59     | 20957.63     |
| S,KBTU/R    | 42.5316      | 44.6117      |
| MOL WEIGHT  | 32.7408      | 32.7523      |
| D,LB/FT3    | 0.8995       | 0.8114       |
| L/F(MOLAR)  | 0.00000      | 0.00000      |

| THE | HEAT | LOAD   | ON   | REACTOR | IS |
|-----|------|--------|------|---------|----|
| THE | READ | CTOR 1 | 70LL | JME=    | 25 |

0.00 KBTU per HR 50.00 CUFT

÷

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE         | 9 | USER:   |            |

UNIT OPERATION NO 2 IS A REAC UNIT\*\*\* VIA

| FEEDS>>>>>PRODUCTS>>>> |                               |          |          |  |  |  |  |  |  |
|------------------------|-------------------------------|----------|----------|--|--|--|--|--|--|
| STREAM                 | STREAM FLOW RATES ARE LB-MOLS |          |          |  |  |  |  |  |  |
| STREAM NO 2 3          |                               |          |          |  |  |  |  |  |  |
| NAME                   | NAME PROD.1 PROD.2            |          |          |  |  |  |  |  |  |
| COMPONE                | NT                            |          |          |  |  |  |  |  |  |
| H2                     |                               | 258.0125 | 217.0548 |  |  |  |  |  |  |
| CH4                    |                               | 191.9874 | 232.9451 |  |  |  |  |  |  |
| C6H6                   |                               | 191.9874 | 232.9451 |  |  |  |  |  |  |
| C7H8                   |                               | 41.0126  | 0.0548   |  |  |  |  |  |  |
| Total                  | •                             | 682.9999 | 682.9998 |  |  |  |  |  |  |
| T,DEG F                |                               | 1372.39  | 1408.16  |  |  |  |  |  |  |
| P,PSIA                 |                               | 492.50   | 490.00   |  |  |  |  |  |  |
| н,квти                 |                               | 20957.63 | 21383.25 |  |  |  |  |  |  |
| S,KBTU/                | ′R                            | 44.6117  | 44.6469  |  |  |  |  |  |  |
| MOL WEI                | GHT                           | 32.7523  | 32.7541  |  |  |  |  |  |  |
| D,LB/FT                | 3                             | 0.8114   | 0.7920   |  |  |  |  |  |  |
| L/F (MOL               | .AR)                          | 0.00000  | 0.00000  |  |  |  |  |  |  |

| THE HE | AT LOAI | ) on reactor | IS     | 0.00 KBTU | per HR |
|--------|---------|--------------|--------|-----------|--------|
| THE R  | EACTOR  | VOLUME=      | 250.00 | CUFT      |        |

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 10      | USER:   |            |

## OVERALL PROCESS MATERIAL BALANCE

| Component | TOTAL    | TOTAL    | RATIO   |
|-----------|----------|----------|---------|
| NAME      | FEEDS    | PRODUCTS | (PD/FD) |
| H2        | 450.0000 | 217.0548 | 0.48234 |
| CH4       | 0.0000   | 232.9451 | 0.00000 |
| C6H6      | 0.0000   | 232.9451 | 0.00000 |
| C7H8      | 233.0000 | 0.0548   | 0,00024 |
| TOTAL     | 683.0000 | 682.9998 | 1.00000 |

.

~

## APPENDIX J

.

SIMULATION OF TWO PLUG FLOW REACTORS IN PARALLEL The first run shows the results from the simulation of one single reactor with a volume equal to 500 ft<sup>3</sup>. The second run shows the results from the simulation of two reactors in parallel. For comparison, look at stream number 2 in the first run, and stream number 6 in the second run.

ŝ,

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 7-AUG-1987 PAGE 4 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT THE INLET PRESSURE TO REACTOR= 495.0000 PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE SPECIFIED REACTOR VOLUME= 500.000 CUFT

+ C7H8 -> CH4 H2 + C6H6 RXN. SEQ.# ORDER STOCHIO> 1 0.50 -1.00 1 1 2 0.00 1.00 3 0.00 1 1.00 1 4 1.00 -1.00

.

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 5       | USER:   |            |

UNIT OPERATION NO 1 IS A REAC UNIT\*\*\*

| FEEDS>>>>>PRODUCTS>>>>        |          |          |  |  |  |
|-------------------------------|----------|----------|--|--|--|
| STREAM FLOW RATES ARE LB-MOLS |          |          |  |  |  |
| STREAM NO                     | 1        | 2        |  |  |  |
| NAME                          | TOLUENE  | BENZENE  |  |  |  |
| COMPONENT                     |          |          |  |  |  |
| H2                            | 450.0000 | 217.0577 |  |  |  |
| CH4                           | 0.0000   | 232.9424 |  |  |  |
| C6H6                          | 0.0000   | 232.9424 |  |  |  |
| C7HB                          | 233.0000 | 0.0576   |  |  |  |
| TOTAL                         | 683.0000 | 683.0001 |  |  |  |
| T,DEG F                       | 1200.00  | 1408.17  |  |  |  |
| P,PSIA                        | 495.00   | 490.00   |  |  |  |
| н,квти                        | 18865.59 | 21383.47 |  |  |  |
| S,KBTU/R                      | 42.5316  | 44.6471  |  |  |  |
| MOL WEIGHT                    | 32.7408  | 32.7541  |  |  |  |
| D,LB/FT3                      | 0.8995   | 0.7920   |  |  |  |
| L/F(MOLAR)                    | 0.00000  | 0.00000  |  |  |  |

| THE | HEAT LOAD ON REACTOR | IS     | 0.00 KBTU | per HR |
|-----|----------------------|--------|-----------|--------|
| THE | REACTOR VOLUME=      | 500.00 | CUFT      | •      |

SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 7-AUG-1987 PAGE 2 USER:

UNIT OPERATION 1 IS A DVDR UNIT 1 FEED(S) TO UNIT OPERATION 1 HAVE BEEN DEFINED: 1, 2 PRODUCT(S) FROM UNIT OPERATION 1 HAVE BEEN DEFINED: 2, 3, UNIT OPERATION 2 IS A REAC UNIT 1 FEED(S) TO UNIT OPERATION 2 HAVE BEEN DEFINED: 2, 1 PRODUCT(S) FROM UNIT OPERATION 2 HAVE BEEN DEFINED: 4, UNIT OPERATION 3 IS A REAC UNIT 1 FEED(S) TO UNIT OPERATION 3 HAVE BEEN DEFINED: 3, 1 PRODUCT(S) FROM UNIT OPERATION 3 HAVE BEEN DEFINED: 5,

UNIT OPERATION 4 IS A ADDR UNIT 2 FEED(S) TO UNIT OPERATION 4 HAVE BEEN DEFINED: 4, 5, 1 PRODUCT(S) FROM UNIT OPERATION 4 HAVE BEEN DEFINED: 6,

THE FOLLOWING STREAM(S) ARE EXTERNAL FEEDS TO THE SIMULATION: 1, THE FOLLOWING STREAM(S) ARE PRODUCTS FROM THE SIMULATION: 6,

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE         | 3 | USER:   |            |

| DVDR # 1              |         |
|-----------------------|---------|
| PERCENT OF TOTAL FEED | PRODUCT |
| TO PRODUCT            | NUMBER  |
| 50.000                | 1       |
| 50.000                | 2       |

REAC # 2

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT THE INLET PRESSURE TO REACTOR= 495.0000 PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE SPECIFIED REACTOR VOLUME= 250.000 CUFT

H2 + C7H8 -> CH4 + C6H6 RXN. SEQ.# ORDER STOCHIO> 1 -1.00 1 0.50 2 1 0,00 1.00 1 3 0.00 1.00 1 4 1.00 -1.00 REAC # 3

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

 THE OPERATION IN THE REACTOR IS ADIABATIC

 THE VOLUME INCREMENT=
 1.00
 CUFT

 THE INLET PRESSURE TO REACTOR=
 495.0000
 PSIA

 THE OUTLET PRESSURE FROM REACTOR=
 490.0000
 PSIA

 THE SPECIFIED REACTOR VOLUME=
 250.000
 CUFT

H2 + C7H8 -> CH4 + C6H6

•

| RXN. | SEQ.# | ORDER | STOCHIO> |  |
|------|-------|-------|----------|--|
| 1    | 1     | 0.50  | -1.00    |  |
| 1    | 2     | 0.00  | 1.00     |  |
| 1    | 3     | 0.00  | 1.00     |  |
| 1    | 4     | 1.00  | -1.00    |  |

ADDR # 4

ADDR UNIT OPERATION REQUIRES NO PROCESS DATA

.

.

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE         | 4 | USER:   |            |

## UNIT OPERATION NO 1 IS A DVDR UNIT\*\*\*

| FE          | EDS>>>>>PR   | ODUCTS>>>>> | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
|-------------|--------------|-------------|-----------------------------------------|
| STREAM FLOW | RATES ARE LB | -MOLS       |                                         |
| STREAM NO   | 1            | 2           | - 3                                     |
| NAME        | FEED         | 1/2FEED     | 1/2FEED                                 |
| COMPONENT   |              |             |                                         |
| H2          | 450.0000     | 225.0000    | 225.0000                                |
| CH4         | 0.0000       | 0.0000      | 0.0000                                  |
| C6H6        | 0.0000       | 0.0000      | 0.0000                                  |
| C7H8        | 233.0000     | 116.5000    | 116.5000                                |
| TOTAL       | 663.0000     | 341.5000    | 341.5000                                |
| T,DEG F     | 1200.00      | 1200.00     | 1200.00                                 |
| P,PSIA      | 495.00       | 495.00      | 495.00                                  |
| н,квти      | 18871.37     | 9432.79     | 9432.79                                 |
| S,KBTU/R    | 42.5422      | 21.2658     | 21.2658                                 |
| MOL WEIGHT  | 32.7572      | 32.7408     | 32.7408                                 |
| D,LB/FT3    | 0,9000       | 0.8995      | 0.8995                                  |
| L/F(MOLAR)  | 0.00000      | 0.00000     | 0.00000                                 |

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 7-AUG-1987 |
| PAGE 5       | USER:   |            |

## UNIT OPERATION NO 2 IS A REAC UNIT\*\*\*

| FEEDS>>>>>PRODUCTS>>>>        |          |          |  |  |  |
|-------------------------------|----------|----------|--|--|--|
| STREAM FLOW RATES ARE LB-MOLS |          |          |  |  |  |
| Stream NO                     | 2        | 4        |  |  |  |
| NAME                          | 1/2FEED  | PROD.1   |  |  |  |
| COMPONENT                     |          |          |  |  |  |
| H2                            | 225.0000 | 108.5427 |  |  |  |
| CH4                           | 0.0000   | 116.4572 |  |  |  |
| C6H6                          | 0.0000   | 116.4572 |  |  |  |
| C7H8                          | 116.5000 | 0.0427   |  |  |  |
| TOTAL                         | 341.5000 | 341.4999 |  |  |  |
| T,DEG F                       | 1200.00  | 1405.46  |  |  |  |
| P,PSIA                        | 495.00   | 490.00   |  |  |  |
| н,квти                        | 9432.79  | 10667.94 |  |  |  |
| S,KBTU/R                      | 21.2658  | 22.3110  |  |  |  |
| MOL WEIGHT                    | 32.7408  | 32.7540  |  |  |  |
| D,LB/FT3                      | 0.8995   | 0.7932   |  |  |  |
| L/F(MOLAR)                    | 0.00000  | 0.00000  |  |  |  |

| THE HEAT LOAD ON REACTO | R IS   | 0.00 KBTU | per HR |
|-------------------------|--------|-----------|--------|
| THE REACTOR VOLUME=     | 250.00 | CUFT      |        |

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE         | 6 | USER:   |            |

## UNIT OPERATION NO 3 IS A REAC UNIT\*\*\*

| FEEDS>>>>>PRODUCTS>>>>        |          |          |  |  |  |  |
|-------------------------------|----------|----------|--|--|--|--|
| STREAM FLOW RATES ARE LB-MOLS |          |          |  |  |  |  |
| STREAM NO                     | 3        | 5        |  |  |  |  |
| NAME                          | 1/2FEED  | PROD.2   |  |  |  |  |
| COMPONENT                     |          |          |  |  |  |  |
| H2                            | 225.0000 | 108.5427 |  |  |  |  |
| CH4                           | 0.0000   | 116.4573 |  |  |  |  |
| C6H6                          | 0.0000   | 116.4573 |  |  |  |  |
| C7H8                          | 116.5000 | 0.0427   |  |  |  |  |
| TOTAL                         | 341.5000 | 341.5000 |  |  |  |  |
| T,DEG F                       | 1200.00  | 1405.46  |  |  |  |  |
| P,PSIA                        | 495.00   | 490.00   |  |  |  |  |
| н,квти                        | 9432.79  | 10667.92 |  |  |  |  |
| S,KBTU/R                      | 21.2658  | 22.3110  |  |  |  |  |
| MOL WEIGHT                    | 32.7408  | 32.7541  |  |  |  |  |
| D,LB/FT3                      | 0.8995   | 0.7932   |  |  |  |  |
| L/F(MOLAR)                    | 0.00000  | 0.00000  |  |  |  |  |

| THE | HEAT | LOAD   | ON   | REACTOR | IS     |
|-----|------|--------|------|---------|--------|
| THE | REA  | CTOR ' | VOLI | ME=     | 250.00 |

0.00 KBTU per HR CUFT .

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE         | 7 | USER:   |            |

# UNIT OPERATION NO 4 IS A ADDR UNIT\*\*\*

| FEEDS>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |              |          |          |  |  |
|------------------------------------------|--------------|----------|----------|--|--|
| STREAM FLOW                              | RATES ARE LB | -MOLS    |          |  |  |
| STREAM NO                                | 4            | 5        | 6        |  |  |
| NAME                                     | PROD.1       | PROD.2   | OVERALL  |  |  |
| COMPONENT                                |              |          |          |  |  |
| H2                                       | 108.5427     | 108.5427 | 217.0854 |  |  |
| CH4                                      | 116.4572     | 116.4573 | 232.9145 |  |  |
| C6H6                                     | 116.4572     | 116,4573 | 232.9145 |  |  |
| C7H8                                     | 0.0427       | 0.0427   | 0.0854   |  |  |
| TOTAL                                    | 341.4999     | 341.5000 | 682.9999 |  |  |
| T,DEG F                                  | 1405.46      | 1405.46  | 1405.29  |  |  |
| P,PSIA                                   | 490.00       | 490.00   | 490.00   |  |  |
| H, KBTU                                  | 10667.94     | 10667.92 | 21335.86 |  |  |
| S,KBTU/R                                 | 22.3110      | 22.3110  | 44.6248  |  |  |
| MOL WEIGHT                               | 32.7540      | 32.7541  | 32.7614  |  |  |
| D,LB/FT3                                 | 0.7932       | 0.7932   | 0.7934   |  |  |
| L/F(MOLAR)                               | 0.00000      | 0.00000  | 0.00000  |  |  |

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 7-AUG-1987 |
| PAGE 8       | } | USER:   |            |

2

## OVERALL PROCESS MATERIAL BALANCE

•

| COMPONENT | TOTAL    | TOTAL    | RATIO   |
|-----------|----------|----------|---------|
| NAME      | FEEDS    | PRODUCTS | (PD/FD) |
| H2        | 450.0000 | 217.0854 | 0.48241 |
| CH4       | 0.0000   | 232.9145 | 0.00000 |
| C6H6      | 0.0000   | 232.9145 | 0.00000 |
| C7H8      | 233.0000 | 0.0854   | 0.00037 |
| TOTAL     | 683.0000 | 682.9999 | 1.00000 |

# APPENDIX K

ç

THE NEED OF THE REACTOR WITH RECYCLE SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 9-AUG-1987 PAGE 5 USER:

REAC # 1

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT THE INLET PRESSURE TO REACTOR= 495.0000 PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE PRODUCTION RATE OF COMP.# 3 IS 203.00 LB MOLES/HR H2 + C7H8 -> CH4 + C6H6 H2 + O-X -> CH4 + C7H8 C6H6 = H2 + DIPHENYL RXN. SEQ.# ORDER STOCHIO> 1 0 50 100

•

| 1 | 1 | 0.50 | -1.00 |
|---|---|------|-------|
| 1 | 2 | 0.00 | 1.00  |
| 1 | 3 | 0.00 | 1.00  |
| 1 | 4 | 1.00 | -1.00 |
| 1 | 5 | 0.00 | 0.00  |
| 1 | 6 | 0.00 | 0.00  |
| 2 | i | 0.50 | -1.00 |
| 2 | 2 | 0.00 | 1.00  |
| 2 | 3 | 0.00 | 0.00  |
| 2 | 4 | 0.00 | 1.00  |

| 2 | - 5 | 1.00 | -1.00 |
|---|-----|------|-------|
| 2 | 6   | 0.00 | 0.00  |
| 3 | 1   | 0.00 | 1.00  |
| 3 | 2   | 0.00 | 0.00  |
| 3 | 3   | 0.00 | -2.00 |
| 3 | 4   | 0.00 | 0.00  |
| 3 | 5   | 0.00 | 0.00  |
| 3 | 6   | 0.00 | 1.00  |

| SCI MAXI*SIM |   | JOB ID: |            |
|--------------|---|---------|------------|
| VERSION #2.2 |   | DATE:   | 9-AUG-1987 |
| PAGE         | 7 | USER:   |            |

•

UNIT OPERATION NO 1 IS A REAC UNIT\*\*\*

| FEEDS>>>>>PRODUCTS>>>>        |          |          |  |  |  |  |
|-------------------------------|----------|----------|--|--|--|--|
| STREAM FLOW RATES ARE LB-MOLS |          |          |  |  |  |  |
| STREAM NO                     | 1        | 2        |  |  |  |  |
| NAME                          | TOLUENE  | BENZENE  |  |  |  |  |
| COMPONENT                     |          |          |  |  |  |  |
| H2                            | 629.3000 | 413.5182 |  |  |  |  |
| CH4                           | 18,7000  | 234.4818 |  |  |  |  |
| C6H6                          | 0.0000   | 203.1246 |  |  |  |  |
| C7H8                          | 203.3000 | 12.8326  |  |  |  |  |
| 0-X                           | 12,7000  | 0.0428   |  |  |  |  |
| DIPHENYL                      | 0.0000   | 0.0000   |  |  |  |  |
| TOTAL                         | 864.0000 | 863.9999 |  |  |  |  |
| T,DEG F                       | 1200.00  | 1388.11  |  |  |  |  |
| P,PSIA                        | 495.00   | 490.00   |  |  |  |  |
| н, квти                       | 20466.50 | 22832.64 |  |  |  |  |
| S,KBTU/R                      | 47.8736  | 50.0149  |  |  |  |  |
| MOL WEIGHT                    | 25.0379  | 25.0490  |  |  |  |  |
| D,LB/FT3                      | 0.6872   | 0.6120   |  |  |  |  |
| L/F(MOLAR)                    | 0.00000  | 0.00000  |  |  |  |  |

| THE | HEAT LOAD | ) ON REACTOR | IS     | 0.00 KBTU | per HR |
|-----|-----------|--------------|--------|-----------|--------|
| THE | REACTOR   | VOLUME=      | 367.00 | CUFT      |        |
SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 9-AUG-1987 PAGE 15 USER:

UNIT OPERATION 1 IS A ADDR UNIT 2 FEED(S) TO UNIT OPERATION 1 HAVE BEEN DEFINED: i, 8, 1 PRODUCT(S) FROM UNIT OPERATION 1 HAVE BEEN DEFINED: 2, UNIT OPERATION 2 IS A COMP UNIT 1 FEED(S) TO UNIT OPERATION 2 HAVE BEEN DEFINED: 2, 1 PRODUCT(S) FROM UNIT OPERATION 2 HAVE BEEN DEFINED: 3, UNIT OPERATION 3 IS A REAC UNIT 1 FEED(S) TO UNIT OPERATION 3 HAVE BEEN DEFINED: 3, 1 PRODUCT(S) FROM UNIT OPERATION 3 HAVE BEEN DEFINED: 4, UNIT OPERATION 4 IS A FLSH UNIT 1 FEED(S) TO UNIT OPERATION 4 HAVE BEEN DEFINED: 4, 2 PRODUCT(S) FROM UNIT OPERATION 4 HAVE BEEN DEFINED: 5, 6, UNIT OPERATION 5 IS A DVDR UNIT 1 FEED(S) TO UNIT OPERATION 5 HAVE BEEN DEFINED: 5, 2 PRODUCT(S) FROM UNIT OPERATION 5 HAVE BEEN DEFINED: 7, 8, THE FOLLOWING STREAM(S) ARE EXTERNAL FEEDS TO THE SIMULATION: 1. THE FOLLOWING STREAM(S) ARE PRODUCTS FROM THE SIMULATION: 6, 7,

STREAM NO 8 IS A RECYCLE STREAM LOOP 1 ENDS WITH UNIT OPERATION NO 5 SCI MAXI\*SIM JOB ID: VERSION #2.2 DATE: 9-AUG-1987 PAGE 34 USER:

ADDR # 1 ADDR UNIT OPERATION REQUIRES NO PROCESS DATA

COMP # 2 DISCHARGE PRES = 495.00 PSIA DISCHARGE TEMP = 1200.00 DEG F 1=REV ADB;2=PDLYTR = 1.00

REAC # 3

1

1

5

6

0.00

0.00

0.00

0.00

\*\*\* THIS IS THE PD FOR THE REACTOR UNIT \*\*\*\*

THE OPERATION IN THE REACTOR IS ADIABATIC THE VOLUME INCREMENT= 1.00 CUFT 495.0000 THE INLET PRESSURE TO REACTOR= PSIA THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA THE PRODUCTION RATE OF COMP.# 3 IS 203.00 LB MOLES/HR H2 + C7H8 -> CH4 + C6H6 + C7H8 H2 + O-X -> CH4 + DIPHENYL C6H6 = H2 RXN. SEQ.# ORDER STOCHIO> 0.50 1 1 -1.00 1 2 0.00 1.00 1 0.00 1.00 3 1 4 1.00 -1.00

| 2 | 1 | 0.50 | -1.00  |  |
|---|---|------|--------|--|
| 2 | 2 | 0.00 | 1.00   |  |
| 2 | 3 | 0.00 | 0.00   |  |
| 2 | 4 | 0.00 | 1.00   |  |
| 2 | 5 | 1.00 | -1.00  |  |
| 2 | 6 | 0.00 | - 0.00 |  |
| 3 | 1 | 0.00 | 1.00   |  |
| 3 | 2 | 0.00 | 0.00   |  |
| 3 | 3 | 0.00 | -2.00  |  |
| 2 | 4 | 0.00 | 0.00   |  |
| 3 | 5 | 0.00 | 0.00   |  |
| 3 | 6 | 0.00 | 1.00   |  |

.

.

## FLSH # 4

CALCULATION TYPE = 1.0 SPEC OR ESTM T = 100.00 DEG F SPEC PRESSURE = 485.00 PSIA SPEC OR ESTM L/F = 0.20000

## DVDR # 5

| PERCENT OF TOTAL FEED | PRODUCT |
|-----------------------|---------|
| TO PRODUCT            | NUMBER  |
| 20.400                | 1       |
| 79.600                | 2       |

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 9-AUG-1987 |
| PAGE 42      | USER:   |            |

## UNIT OPERATION NO 1 IS A ADDR UNIT\*\*\*

| FEEDS>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |                               |           |           |  |  |  |
|------------------------------------------|-------------------------------|-----------|-----------|--|--|--|
| STREAM FLOW                              | STREAM FLOW RATES ARE LB-MOLS |           |           |  |  |  |
| STREAM NO                                | 1                             | 8         | 2         |  |  |  |
| NAME                                     | FEED                          | RECYCLE   | COMPINL   |  |  |  |
| COMPONENT                                |                               |           |           |  |  |  |
| H2                                       | 450.0000                      | 873.1261  | 1299.6881 |  |  |  |
| CH4                                      | 18.7000                       | 813.0051  | 829.4761  |  |  |  |
| C6H6                                     | 0.0000                        | 14.1494   | 13.9856   |  |  |  |
| C7H8                                     | 203.3000                      | 0.6928    | 203.9788  |  |  |  |
| 0-X                                      | 12.7000                       | 0.0013    | 12.7013   |  |  |  |
| DIPHENYL                                 | 0.0000                        | 0.0000    | 0.0000    |  |  |  |
| TOTAL                                    | <b>684.</b> 7000              | 1700.9749 | 2359.8301 |  |  |  |
| T,DEG F                                  | 1200.00                       | 100.00    | 654.15    |  |  |  |
| P,PSIA                                   | 495.00                        | 485.00    | 485.00    |  |  |  |
| H,KBTU                                   | 18385.02                      | 6995.70   | 25279.18  |  |  |  |
| S,KBTU/R                                 | 41.9722                       | 55.5203   | 101.9957  |  |  |  |
| MOL WEIGHT                               | 31.0866                       | 9.3897    | 15.7473   |  |  |  |
| D,LB/FT3                                 | 0.8538                        | 0.7574    | 0.6319    |  |  |  |
| L/F(MOLAR)                               | 0.00000                       | 0.00000   | 0.0000    |  |  |  |

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 9-AUG-1987 |
| PAGE 43      | USER:   |            |

## UNIT OPERATION NO 2 IS A COMP UNIT\*\*\*

| FEEDS>>>>>PRODUCTS>>>> |              |           |  |  |
|------------------------|--------------|-----------|--|--|
| STREAM FLOW            | RATES ARE LE | -MOLS     |  |  |
| STREAM NO              | 2            | 3         |  |  |
| NAME                   | COMPINL      | TOLUENE   |  |  |
| COMPONENT              |              |           |  |  |
| H2                     | 1299.6881    | 1299.6881 |  |  |
| CH4                    | 829.4761     | 829.4761  |  |  |
| C6H6                   | 13.9856      | 13.9856   |  |  |
| C7H8                   | 203.9788     | 203.9788  |  |  |
| 0-X                    | 12.7013      | 12.7013   |  |  |
| DIPHENYL               | 0.0000       | 0.0000    |  |  |
| TOTAL                  | 2359.8301    | 2359.8301 |  |  |
| T,DEG F                | 654.15       | 1200.00   |  |  |
| P,PSIA                 | 485.00       | 495.00    |  |  |
| H, KBTU                | 25279.18     | 43888.88  |  |  |
| S,KBTU/R               | 101.9957     | 115.4028  |  |  |
| MOL WEIGHT             | 15.7473      | 15.7397   |  |  |
| D,LB/FT3               | 0,6319       | 0.4323    |  |  |
| L/F(MOLAR)             | 0.00000      | 0.00000   |  |  |

| VALUES AT | DELTA | S | = | 0.0     |     |   |
|-----------|-------|---|---|---------|-----|---|
| TEMP      |       |   | = | 657.69  | DEG | F |
| L/F(MO    | LAR)  |   | = | 0.00000 |     |   |

WORK = -7313.88 HP AT 0.58 % EFFICIENCY

,

| SCI MAXI*SIM |    | JOB  | ID:       |            |
|--------------|----|------|-----------|------------|
| VERSION #2.2 |    | DATE | :         | 9-AUG-1987 |
| PAGE         | 44 | USEF | <b>}:</b> |            |

## UNIT OPERATION NO 3 IS A REAC UNIT\*\*\* +

| FEEDS>>>>>PRODUCTS>>>> |              |           |  |  |
|------------------------|--------------|-----------|--|--|
| STREAM FLOW            | RATES ARE LE | -MOLS     |  |  |
| STREAM NO              | 3            | 4         |  |  |
| NAME                   | TOLUENE      | BENZENE   |  |  |
| COMPONENT              |              |           |  |  |
| H2                     | 1299.6881    | 1098.1405 |  |  |
| CH4                    | 829.4761     | 1031.0270 |  |  |
| C6H6                   | 13.9856      | 203.0260  |  |  |
| C7H8                   | 203,9788     | 27.4484   |  |  |
| 0-X                    | 12.7013      | 0.1915    |  |  |
| DIPHENYL               | 0.0000       | 0.0000    |  |  |
|                        |              |           |  |  |
| TOTAL                  | 2359.8301    | 2359.8335 |  |  |
|                        |              |           |  |  |
| T,DEG F                | 1200.00      | 1286.43   |  |  |
| P,PSIA                 | 495.00       | 490.00    |  |  |
| н,квти                 | 43888.88     | 46145.32  |  |  |
| S,KBTU/R               | 115.4028     | 116.9566  |  |  |
| MOL WEIGHT             | 15.7397      | 15.7432   |  |  |
| D,LB/FT3               | 0.4323       | 0.4072    |  |  |
| L/F(MOLAR)             | 0.00000      | 0.00000   |  |  |

| THE | HEAT LOAD ON REACTOR | IS      | 0.00 KBTU | per HR |
|-----|----------------------|---------|-----------|--------|
| THE | REACTOR VOLUME=      | 1914.00 | CUFT      |        |

.

,

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 9-AUG-1987 |
| PAGE 45      | USER:   |            |

¢

## UNIT OPERATION NO 4 IS A FLSH UNIT\*\*\*

| FEEDS>>>>>PRODUCTS>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |              |           |          |  |
|--------------------------------------------------------|--------------|-----------|----------|--|
| STREAM FLOW                                            | RATES ARE LE | HOLS      |          |  |
| STREAM NO                                              | 4            | 5         | 6        |  |
| NAME                                                   | BENZENE      | VAPOR     | HEAVY    |  |
| COMPONENT                                              |              |           |          |  |
| H2                                                     | 1098.1405    | 1096.8921 | 1.2484   |  |
| CH4                                                    | 1031.0270    | 1021.3632 | 9.6638   |  |
| C6H6                                                   | 203.0260     | 17.7756   | 185.2504 |  |
| C7H8                                                   | 27.4484      | 0.8704    | 26.5780  |  |
| 0-X                                                    | 0.1915       | 0.0017    | 0.1898   |  |
| DIPHENYL                                               | 0.0000       | 0.0000    | 0.0000   |  |
| TOTAL                                                  | 2359.8335    | 2136.9031 | 222.9304 |  |
| T,DEG F                                                | 1286.43      | 100.00    | 100.00   |  |
| P,PSIA                                                 | 490.00       | 485.00    | 485.00   |  |
| Н,КВТИ                                                 | 46145.32     | 8788.58   | -1546.46 |  |
| S,KBTU/R                                               | 116.9566     | 69.7493   | 9.9499   |  |
| MOL WEIGHT                                             | 15.7432      | 9.3897    | 76.6933  |  |
| D,LB/FT3                                               | 0.4072       | 0.7574    | 52.4747  |  |
| L/F(MOLAR)                                             | 0.00000      | 0.00000   | 1.00000  |  |

HEAT TRANSFERRED -38903.20 KBTU

| SCI MAXI*SIM | JOB   | B ID:          |  |
|--------------|-------|----------------|--|
| VERSION #2.2 | DAT   | TE: 9-AUG-1987 |  |
| PAGE 4       | 6 USE | ER:            |  |

## UNIT OPERATION NO 5 IS A DVDR UNIT\*\*\*

•

| FE          | EDS>>>>>PR    | oducts>>>>> | ·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
|-------------|---------------|-------------|----------------------------------------|
| STREAM FLOW | RATES ARE LB  | -MOLS       |                                        |
| STREAM NO   | REAMIND 5 7 8 |             |                                        |
| NAME        | VAPOR         | PURGE       | RECYCLE                                |
| COMPONENT   |               |             |                                        |
| H2          | 1096.8921     | 223.7660    | 873.1261                               |
| CH4         | 1021.3632     | 208.3581    | 813.0051                               |
| C6H6        | 17.7756       | 3.6262      | 14.1494                                |
| С7Н8        | 0.8704        | 0.1776      | 0.6928                                 |
| 0-X         | 0.0017        | 0.0003      | 0.0013                                 |
| DIPHENYL    | 0.0000        | 0.0000      | 0.0000                                 |
| TOTAL       | 2136.9031     | 435.9282    | 1700.9749                              |
| T,DEG F     | 100.00        | 100.00      | 100.00                                 |
| P,PSIA      | 485.00        | 485.00      | 485.00                                 |
| н,квти      | 8788.58       | 1792.87     | 6995.70                                |
| S,KBTU/R    | 69.7493       | 14.2288     | 55.5203                                |
| MOL WEIGHT  | 9.3897        | 9.3897      | 9.3897                                 |
| D,LB/FT3    | 0.7574        | 0.7574      | 0.7574                                 |
| L/F(MOLAR)  | 0.00000       | 0.00000     | 0.00000                                |

| SCI MAXI*SIM | JOB ID: |            |
|--------------|---------|------------|
| VERSION #2.2 | DATE:   | 9-AUG-1987 |
| PAGE 47      | USER:   |            |

## OVERALL PROCESS MATERIAL BALANCE

| COMPONENT | TOTAL    | TOTAL    | RATIO    |
|-----------|----------|----------|----------|
| NAME      | FEEDS    | PRODUCTS | (PD/FD)  |
| H2        | 450.0000 | 225.0144 | 0.50003  |
| CH4       | 18.7000  | 218.0219 | 11.65892 |
| C6H6      | 0.0000   | 188.8766 | 0.00000  |
| C7H8      | 203.3000 | 26.7556  | 0.13161  |
| 0-X       | 12.7000  | 0.1902   | 0.01497  |
| DIPHENYL  | 0.0000   | 0.0000   | 0.00000  |
| TOTAL     | 684.7000 | 658.8586 | 0.96226  |

.

## APPENDIX L

1

## THE COMPUTER CODE OF THE MODEL

| 2460 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2461 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2462 | CCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2463 | C SUBROUTINE INPUT FOR REACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2464 | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2465 | -<br>C123456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7444 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2400 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2407 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2468 | DIMENSIUM IFDB(11), IFDB(11), KMD(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2469 | CUMMUN/PRD17F1(500), IDC5(25), IDPRU(50), IFD(50),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2470 | 1 IFDL(200), IPD(50), IPDL(200), IPRC(70), IRC(50),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2471 | 2 ISIZ(25), ITCNT(100), JPD(50), MHB(50), NRECL(10),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2472 | 3 PD(1250), PROP(3000), RCNT(100), TEMP(410), X(5000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2473 | COMMON/SIZE2/ISIZ2(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2474 | COMMON/UPDATE/IUPDT(50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2475 | COMMON/COMIO/NI,NO,IYES,INO,PNAM(15),NPAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2476 | COMMON/UNITA1/UDA(3), ULA(3), UVA(3), ULB(3), UHT(9), UDF(6), HPU(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| )    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2477 | COMMON/UNITA2/TU(4), PU(6), HU(3), SU(6), RU(6), UM(3), PUX(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2478 | COMMON/UNITA3/UARE(3).UVIS(6).UTHC(9).UHPA(3).UVB(3).USG(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2479 | COMMON/UNITOM/TU1_TU2_TU3_TU3_TU31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2480 | FOULTVALENCE (ITCNT (18), N2), (ITCNT (21), NCP), (ITCNT (22), NCPU),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2481 | (ITCNT(23)_NCPT_), (ITCNT(24)_NCPP_), (ITCNT(25)_NCPH_).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7487 | 2 (ITCNT(26) NCPS ) (ITCNT(27) NCPE ) (ITCNT(28) NCPD )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7497 | (ITCNT (29) NCPN ) (ITCNT (30) NCPS ) (ITCNT (31) NEL )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7494 | 4 (ITCNT(32)  MARED  (ITCNT(33)  MARED  ) (ITCNT(34)  MARED  )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2404 | = (110MT(32), MMAY) (110MT(32), MEAR 2), (110MT(37), MEER 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2400 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2400 | CHICK (307, 101 7, (1104 (37, 1104 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (177, 101 (110)))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2407 | I (DENT ( A) DEDU ) (DENT ( 5) VMM ) (DENT ( 4) VMM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2400 | $\frac{1}{1} (CONT(4), COUV), (CONT(5), THW ), (CONT(5), CONT(5)), (CONT(5)), (CONT(5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2407 | Z = (RGNT(GI), IST ), (RGNT(GZ), (END), (RGNT(GJ), IST), (RGNT(GZ), IST), (RGNT(GZ), RET (GZ), (RGNT(GZ), RET (GZ)), (RGNT(GZ), RET (GZ)), (RGNT(GZ), RET (GZ)), (RGNT(GZ), RET (GZ)), (RGNT(GZ)), (RGNT(GZ))), (RGNT(GZ)), (RGNT(GZ)), (RGNT(GZ)), (RGNT(GZ))), (RGNT(GZ)), (RGNT(GZ))), (RGNT(GZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2470 | $ = \frac{1}{2} \left( \frac{1}{2} \right) \left( $ |
| 2471 | 4 (RUNI(37), ILHU ), (RUNI(38), ILHL ), (RUNI(37), FLHU),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2492 | 5 (RUN)(60),HSPEC), (RUN)(61),FRAC /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2493 | CUMMUN/INFRI/F(10), A(10), UNEX(15,10), S10(15,10), HR(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2494 | CUMMUN/INPR2/NNCP,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2495 | LUMMUN/EURXN/NRX(10), GRX(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2496 | DATA KMD/2HCC,2HUP,2HV1,2HMN,2HUT/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2497 | 1 FURMAT(' ENTER FEED STREAM ID NO TO REACTOR UNIT', I3, '?')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2498 | 2 FURMAT (1115)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2499 | 3 FORMAT(' ENTER PRODUCT STREAM ID NO FROM REACTOR', 13, '?')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2500 | 5 FORMAT(F20.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2501 | 6 FORMAT (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2502 | 1 /' ** UPDATE MENU** ',/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2503 | 4 /' ENTER CC TO CHANGE THE CONVERSION CRITERIA ',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2504 | 7 /' ENTER OP TO CHANGE OPERATION MODE ',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2505 | 2 /' ENTER VI TO CHANGE VOLUME INCREMENT ',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2506 | 5 /' ENTER MN. TO DISPLAY MENU ',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2507 | 6 /' ENTER QT TO STOP UPDATE ? '/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2508 | 7 FORMAT (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2509 | 8 FORMAT(' ENTER THE VOLUME INCREMENT IN ', A4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2510 | <pre>9 FORMAT( ' ENTER THE INLET TEMPERATURE IN ',A4)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2511 | 10 FORMAT( ' ENTER THE INLET PRESSURE IN ', A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2512 | 11 FORMAT( ' NO OF FEEDS SHOULD BE ONE '/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

2513 12 FORMAT( ' NO OF PRODUCTS SHOULD BE ONE '/) 2514 14 FORMAT( ' ENTER NEXT UPDATE COMMAND ? ') 2515 15 FORMAT( ' ONLY ONE FEED ALLOWED TO REACTOR UNIT', 13/) 2516 17 FORMAT( ' PRODUCT STREAM IS '. I3. /) 2517 18 FORMAT( ' UNIT', I3, ' HAS PRODUCTS AS FEEDS '/) 2518 20 FORMAT( ' ENTER ORDER OF COMP.# ', 13, ' IN RXN. 1,13 ,/) 2519 21 FORMAT( ' ENTER THE NUMBER OF REACTIONS '/) 2520 23 FORMAT( ' ENTER THE STOICHIOMETRIC COEFFICIENT ', 2521 1 'OF COMPONENT '.I**3.**' IN REACTION ···'.13./) 2522 24 FORMAT( ' THE MAXIMUM NUMBER OF REACTIONS IS TEN'/) 2523 41 FORMAT( ' ARE THE UNITS OF THE FREQUENCY FACTOR IN TERMS '. 2524 1 /' O-gmoles, lit, sec 1-lbmoles,cuft,hr '/) 2525 26 FORMAT( ' ENTER THE FREQUENCY FACTOR OF REACTION ', I3, /) 2526 27 FORMAT( ' ENTER THE ACTIVATION ENERGY OF REACTION '.13 2527 1 ,' IN ', A4, '/', A4, 'MOLES'/) 2528 28 FORMAT( ' ENTER THE HEAT OF REACTION ', I3, ' IN ', 2529 1 A4, '/', A4, 'MOLES'/) 2530 35 FORMAT( ' ENTER THE OUTLET PRESSURE OPTION', 2531 1 /' ENTER 1 IF PRESSURE DROP IS TO BE SPECIFIED'. ENTER 0 IF OUTLET PRESSURE IS TO BE SPECIFIED'/) 2532 2 /' 2533 36 FORMAT( ' ENTER PRESSURE DROP ACROSS THE REACTOR IN ·',A4/ ) 2534 37 FORMAT( ' ENTER OUTLET PRESSURE FROM REACTOR IN ', A4/) 2535 30 FORMAT( 1 /\* 2536 ENTER 0 FOR ISOTHERMAL OPERATION '. 2537 2 /' ENTER FOR ADIABATIC OPERATION '/) 1 2538 31 FORMAT( ' ENTER THE CONVERSION CRITERIA ', 2539 1/1 0 FOR REACTOR VOLUME ', 2 / 1 2540 1 FOR OUTLET TEMPERATURE ' 2541 3/1 2 FOR PRODUCTION RATE (P/F) '/) 32 FORMAT( ' SPECIFY THE COMPONENT SEQUENCE NUMBER '/) 2542 2543 33 FORMAT( ' ENTER THE DESIRED REACTOR VOLUME ', A4/) 2544 34 FORMAT(' ENTER THE DISIRED PRODUCTION RATE IN ', A4, 'MOLES/HR 1/) 2545 38 FORMAT ( ' ENTER THE OUTLET REACTOR TEMPERATURE IN DEG ',A 1/) 2546 39 FORMAT( ' IS REACTION ', I3, *'* IN EQUILIBRIUM ', 2547 1 /! ENTER 1:NO 2:YES '/) 2548 40 FORMAT( ' ENTER THE GIBB\_S FREE ENERGY FOR RXN. 13 2549 1 ,' IN', A4, '/', A4, 'MOLE'/) 2550 IF(II.EQ.0) GD TO 70 IPOS=JPD (NEL) 2551 2552 WRITE(6,\*) IPOS IF (II.LT.0)60 TO 91 2553 2554 GO TO 95 2555 70 IPOS=NARPV 2556 WRITE(6,\*) IPOS 2557 212 KFD=0 2558 DO 245 I=1,11 2559 IFDB(I)=02560 245 CONTINUE 2561 9001 WRITE(NO,1) NEL 2562 READ(NI, 2, ERR=9001) (IFDB(I), I=1, 1) 2563 CALL FPSTAK(IFD, IFDB, IFDL, NARFD, NEL, KFD)

| 7564                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | ΤΕ(KED NE Δ) 60 TO 21Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2504                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | WRITE(NU,117                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2006                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2567                                                                                                                                                                                                                                 | 210                                                                                                                                                                                                             | IF(KFD.EQ.1) 60 TU 228                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2568                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | WRITE (ND, 15) NEL                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2569                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | GO TO 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2570                                                                                                                                                                                                                                 | 228                                                                                                                                                                                                             | DO 310 K=1,KFD                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2571                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | IDEST=(IFDB(K)-1)*NCP5 + NCPD                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2572                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | X(IDEST)=NEI                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2573                                                                                                                                                                                                                                 | 710                                                                                                                                                                                                             | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2070                                                                                                                                                                                                                                 | 010                                                                                                                                                                                                             | KOR-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20/4                                                                                                                                                                                                                                 | 214                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2575                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | DU 9002 1=1,11                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2576                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | IPDB(I)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2577                                                                                                                                                                                                                                 | 9002                                                                                                                                                                                                            | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2578                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | WRITE(NO,3) NEL                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2579                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | READ(NI, 2, ERR=214)(IPDB(I), I=1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2580                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | CALL FPSTAK (IPD. IPDB. IPDL. NARPD. NEL. KPD)                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2581                                                                                                                                                                                                                                 | 215                                                                                                                                                                                                             | TE(KPD, EQ, 1) GD TD 191                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2507                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2002                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2584                                                                                                                                                                                                                                 | 141                                                                                                                                                                                                             | WRIE(NU, 1/) (IPDB(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2585                                                                                                                                                                                                                                 | 216                                                                                                                                                                                                             | IDUP=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2586                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | CALL FPSCAN(KFD, KPD, IFDB, IPDB, IDUP)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2587                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | IF(IDUP.EQ.0) GO TO 246                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2588                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | WRITE(NO.18) NEL                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2589                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | 60 TO 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2500                                                                                                                                                                                                                                 | 744                                                                                                                                                                                                             | NADED-NADED + KED +1                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2070                                                                                                                                                                                                                                 | 240                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2371                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | אאתרט-אאתרט ד גרט דו                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0000                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2592                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | MHB(NEL)=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2592<br>2593                                                                                                                                                                                                                         | 91                                                                                                                                                                                                              | MHB(NEL)=1<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2592<br>2593<br>2594                                                                                                                                                                                                                 | 91<br>C                                                                                                                                                                                                         | MHB(NEL)=1<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2592<br>2593<br>2594<br>2595                                                                                                                                                                                                         | 91<br>C<br>C                                                                                                                                                                                                    | MHB(NEL)=1<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2592<br>2593<br>2594<br>2595<br>2596                                                                                                                                                                                                 | 91<br>C<br>C<br>C***                                                                                                                                                                                            | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597                                                                                                                                                                                         | 91<br>C<br>C<br>C***<br>C                                                                                                                                                                                       | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598                                                                                                                                                                                 | 91<br>C<br>C<br>C***<br>C<br>C                                                                                                                                                                                  | MHB(NEL)=1<br>Continue<br>Read in the input data and store in PD Array                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2598                                                                                                                                                                         | 91<br>C<br>C<br>C***<br>C<br>C                                                                                                                                                                                  | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2598<br>2599<br>2400                                                                                                                                                         | 91<br>C<br>C<br>C***<br>C<br>C                                                                                                                                                                                  | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP                                                                                                                                                                                                                                                                                                                                                                                        |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2600                                                                                                                                                         | 91<br>C<br>C<br>C***<br>C<br>C<br>100                                                                                                                                                                           | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>DEAD(NL 2, EDD=100)M                                                                                                                                                                                                                                                                                                                                                |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601                                                                                                                                                         | 91<br>C<br>C***<br>C<br>100                                                                                                                                                                                     | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(NO,21)<br>READ(NI,2,ERR=100)M                                                                                                                                                                                                                                                                                                                                                 |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602                                                                                                                                                 | 91<br>C<br>C***<br>C<br>100                                                                                                                                                                                     | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101                                                                                                                                                                                                                                                                                                                           |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2602<br>2603                                                                                                                                 | 91<br>C<br>C<br>C***<br>C<br>100                                                                                                                                                                                | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF (M.GT.10) GO TO 103                                                                                                                                                                                                                                                                                                 |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2603<br>2604                                                                                                                         | 91<br>C<br>C<br>C***<br>C<br>100<br>101                                                                                                                                                                         | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF (M.GT.10) GO TO 103<br>PD(IPOS)=M                                                                                                                                                                                                                                                                                   |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2603<br>2604<br>2605                                                                                                         | 91<br>C<br>C<br>C***<br>C<br>100<br>101                                                                                                                                                                         | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF (M.GT.10) GO TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GO TO 3000                                                                                                                                                                                                                                                          |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2603<br>2604<br>2605<br>2606                                                                                                         | 91<br>C<br>C***<br>C<br>100<br>101                                                                                                                                                                              | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GO TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GD TO 3000<br>GO TO 110                                                                                                                                                                                                                                              |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2603<br>2604<br>2605<br>2606<br>2607                                                                                                 | 91<br>C<br>C<br>C<br>***<br>C<br>100<br>101                                                                                                                                                                     | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(NO,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GO TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GD TO 3000<br>GO TO 110<br>WRITE(NO.24)                                                                                                                                                                                                                              |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2604<br>2603<br>2604<br>2605<br>2606<br>2607<br>2608                                                                                 | 91<br>C<br>C<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>C                                                                                                               | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(NO,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GD TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GD TO 3000<br>GO TO 110<br>WRITE(ND,24)<br>GD TO 100                                                                                                                                                                                                                 |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2609                                                                         | 91<br>C<br>C<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>C<br>C<br>C<br>C<br>T<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GD TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GD TO 3000<br>GO TO 110<br>WRITE(N0,24)<br>GO TO 100<br>WRITE(N0,9)TU(IU1)                                                                                                                                                                                           |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2609<br>2609                                                                 | 91<br>C<br>C<br>C<br>100<br>101<br>103<br>110                                                                                                                                                                   | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(NO,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GO TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GO TO 3000<br>GO TO 110<br>WRITE(NO,24)<br>GO TO 100<br>WRITE(NO,9)TU(IU1)<br>READ(NI.5,ERR=110)TTRINT                                                                                                                                                               |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2609<br>2610<br>2611                                                 | 91<br>C<br>C<br>C<br>100<br>101<br>103<br>110                                                                                                                                                                   | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GD TD 103<br>PD(IPOS)=M<br>IF(II.GT.0)GD TO 3000<br>GD TO 110<br>WRITE(N0,24)<br>GD TO 100<br>WRITE(N0,9)TU(IU1)<br>READ(NI,5,ERR=110)TTRINT<br>PD(IPOS4)=TTRINT                                                                                                                                           |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2609<br>2610<br>2611<br>2611                                         | 91<br>C<br>C<br>C<br>100<br>101<br>103<br>110                                                                                                                                                                   | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GD TD 103<br>PD(IPOS)=M<br>IF(II.GT.0)GD TO 3000<br>GD TO 110<br>WRITE(N0,24)<br>GD TO 100<br>WRITE(N0,9)TU(IU1)<br>READ(NI,5,ERR=110)TTRINT<br>PD(IPOS+4)=TTRINT<br>PD(IPOS+4)=TTRINT                                                                                                                     |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2607<br>2608<br>2609<br>2610<br>2611<br>2612                                 | 91<br>C<br>C<br>C<br>100<br>101<br>103<br>110<br>117                                                                                                                                                            | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(NO,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GD TD 103<br>PD(IPOS)=M<br>IF(II.GT.0)GD TO 3000<br>GD TO 110<br>WRITE(NO,24)<br>GD TO 100<br>WRITE(NO,24)<br>GD TO 100<br>WRITE(NO,9)TU(IU1)<br>READ(NI,5,ERR=110)TTRINT<br>PD(IPOS+4)=TTRINT<br>WRITE(NO,10)PU(IU2)<br>PCPD(NI = CPD=110)DTDINT                                                          |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2607<br>2608<br>2609<br>2610<br>2611<br>2612<br>2613                         | 91<br>C<br>C<br>C<br>100<br>101<br>103<br>110<br>117                                                                                                                                                            | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(NO,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF (M. 6T.10) GO TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GO TO 3000<br>GO TO 110<br>WRITE(NO,24)<br>GO TO 100<br>WRITE(NO,24)<br>GO TO 100<br>WRITE(NO,9)TU(IU1)<br>READ(NI,5,ERR=110)TTRINT<br>PD(IPOS+4)=TTRINT<br>WRITE(NO,10)PU(IU2)<br>READ(NI,5,ERR=119)PTRINT                                                        |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2607<br>2608<br>2609<br>2610<br>2611<br>2612<br>2613<br>2614                 | 91<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                               | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(NO,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GO TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GO TO 3000<br>GO TO 110<br>WRITE(NO,24)<br>GD TO 100<br>WRITE(NO,9)TU(IU1)<br>READ(NI,5,ERR=110)TTRINT<br>PD(IPOS+364)=PTRINT<br>PD(IPOS+364)=PTRINT                                                                                                                 |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2609<br>2608<br>2609<br>2610<br>2611<br>2612<br>2613<br>2614<br>2615         | 91<br>C<br>C<br>C<br>100<br>101<br>103<br>110<br>117<br>120                                                                                                                                                     | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GD TD 103<br>PD(IPOS)=M<br>IF(II.GT.0)GD TO 3000<br>GO TO 110<br>WRITE(N0,24)<br>GD TO 100<br>WRITE(N0,9)TU(IU1)<br>READ(NI,5,ERR=110)TTRINT<br>PD(IPOS+4)=TTRINT<br>WRITE(N0,10)PU(IU2)<br>READ(NI,5,ERR=119)PTRINT<br>PD(IPOS+364)=PTRINT<br>WRITE(N0,30)                                                |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2609<br>2608<br>2609<br>2610<br>2611<br>2612<br>2613<br>2614<br>2615<br>2616 | 91<br>C<br>C<br>C<br>100<br>101<br>103<br>110<br>119<br>120                                                                                                                                                     | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GO TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GO TO 3000<br>GO TO 110<br>WRITE(N0,24)<br>GD TO 100<br>WRITE(N0,9)TU(IU1)<br>READ(NI,5,ERR=110)TTRINT<br>PD(IPOS+4)=TTRINT<br>WRITE(N0,10)PU(IU2)<br>READ(NI,5,ERR=119)PTRINT<br>PD(IPOS+364)=PTRINT<br>WRITE(N0,30)<br>READ(NI,2,ERR=120)NOP                       |
| 2592<br>2593<br>2594<br>2595<br>2596<br>2597<br>2598<br>2599<br>2600<br>2601<br>2602<br>2603<br>2604<br>2605<br>2604<br>2605<br>2606<br>2607<br>2608<br>2609<br>2609<br>2610<br>2611<br>2612<br>2613<br>2614<br>2615<br>2614<br>2615 | 91<br>C<br>C<br>C<br>100<br>101<br>103<br>110<br>117<br>120                                                                                                                                                     | MHB(NEL)=1<br>CONTINUE<br>READ IN THE INPUT DATA AND STORE IN PD ARRAY<br>NNCP=NCP<br>WRITE(N0,21)<br>READ(NI,2,ERR=100)M<br>IF (M) 100,100,101<br>IF(M.GT.10) GO TO 103<br>PD(IPOS)=M<br>IF(II.GT.0)GO TO 3000<br>GO TO 110<br>WRITE(N0,24)<br>GO TO 100<br>WRITE(N0,9)TU(IU1)<br>READ(NI,5,ERR=110)TTRINT<br>PD(IPOS+4)=TTRINT<br>WRITE(N0,10)PU(IU2)<br>READ(NI,5,ERR=119)PTRINT<br>PD(IPOS+364)=PTRINT<br>WRITE(N0,30)<br>READ(NI,2,ERR=120)NOP<br>IF(NOP)120,122,122 |

|   | 2619         |         | PD(IPOS+3)=NOP                        |
|---|--------------|---------|---------------------------------------|
|   | 2620         |         | IF(II.GT.0) GD TD 3000                |
|   | 2621         | 130     | WRITE(ND,35)                          |
|   | 2622         |         | READ (NI.2.ERR=130) NPS               |
|   | 2623         |         | PD(IPOS+40)=NPS                       |
|   | 2620         |         | TE (NPS) 130 131 132                  |
|   | 2024         | 171     | HOTTE/NO 37100,101,102                |
|   | 2020         | 1.51    | DEAD/NIT 5 EDD-1711000                |
|   | 2020         |         | TE/0001171 171 177                    |
| ŧ | 2027         | 177     | 17 (007) 101, 101, 100                |
|   | 2028         | 155     |                                       |
|   | 2629         |         | IF (II.61.0)60 10 3000                |
|   | 2630         |         | 60 10 140                             |
|   | 2631         | 132     | IF (NPS.G1.1) GU TU 1.30              |
|   | 2632         | 134     | WRITE(NO, 36) PU(IU2)                 |
|   | 2633         |         | READ(NI,5,ERR=134) PRDROP             |
|   | 2634         |         | IF (PRDROP)134,135,135                |
|   | 2635         | 135     | PD(IPOS+7)=PRDROP                     |
|   | 2636         |         | IF (II.GT.0) GO TO 3000               |
|   | 2637         | 140     | WRITE(NO,31)                          |
|   | 2638         |         | READ(NI,2,ERR=140) NCC                |
|   | 2639         |         | PD(IPOS+41)=NCC                       |
|   | 2640         |         | IF (NCC) 140, 141, 142                |
|   | 2641         | 141     | WRITE (ND. 33) - HVR (1113)           |
|   | 7647         |         | READ(NI 5 ERE=141) RV                 |
|   | 2012         |         | TE(PV) + A1 + A1 + A3                 |
|   | 2040         | 117     | DN/IDDC+3)-CONUDT/13 107 1 DU         |
|   | 2011         | 140     | TE (11 CT O) CD TD 7000               |
|   | 2040         | 015     |                                       |
|   | 2040         | 710     |                                       |
|   | 2647         |         | KEAD (NI, 3, EKK=913) DV              |
|   | 2648         | <b></b> | IF (DV) 713, 713, 716                 |
|   | 2649         | 916     | PD(1PUS+1)=CUNVR1(12,103,1,DV)        |
|   | 2650         |         | IF(II.GT.0)60 TO 3000                 |
|   | 2651         |         | GO TO 150                             |
|   | 2652         | 142     | IF(NCC.GT.2)60 TO 140                 |
|   | 2653         |         | IF(NCC.EQ.2) GO TO 147                |
|   | 2654         | 145     | WRITE(NO, 38) TU(IU1)                 |
|   | 2655         |         | READ(NI,5,ERR=145) ROT                |
|   | 2656         |         | PD(IPOS+6)=CONVRT(1, IU1, 2, ROT)     |
|   | 2657         |         | IF(II.GT.0)GD TO 3000                 |
|   | 2658         | 115     | WRITE(NO,8),UVB(IU3)                  |
|   | 2659         |         | READ (NI, 5, ERR=115) DV              |
|   | 2660         |         | IF(DV)115,115,116                     |
|   | 2661         | 116     | PD(IPOS+1)=CONVRT(12.IU3.1.DV)        |
|   | 2662         |         | IF (IL 6T. 0) 60 TO 3000              |
|   | 2663         |         | 60 TD 150                             |
|   | 2665         | 147     | WRITE (NO 34) (M(1)(3)                |
|   | 7445         | 1.11    | PEAD/NI 5 EPD=147)EP                  |
|   | 2000         |         | TE/ED + 147 + 44 + 144                |
|   | 2000         | + 47    | 17(77)147,140,140                     |
|   | 2007<br>2007 | 140     | - 201703777-00NVN((0,100,1,77)        |
|   | 2000         | 144     | WRITEINU, JZ/<br>DEAD/NE D EDD-1445NO |
|   | 2667         |         | READ (N1, 2, EKK=144) NS              |
|   | 2670         |         | 1r (N5) 144, 144, 149                 |
|   | 2671         | 149     | PD(1P05+8)=NS                         |
|   | 2672         |         | IF(11.6T.0)60 TO 3000                 |
|   | 2673         | 117     | WRITE(NO,8),UVB(IU3)                  |

| 2674          | READ(NI,5,       | ERR=117) DV                              |
|---------------|------------------|------------------------------------------|
| 2675          | IF (DV) 117.     | 117,118                                  |
| 2676          | 118 PD(IPOS+1)   | =CONVRT(12, IU3, 1, DV)                  |
| 2677          | IF(II.GT.O       | ) GB TD 3000                             |
| 2678          | GO TO 150        |                                          |
| 2679          | С                |                                          |
| 2680          | С                |                                          |
| 2681          | C** INPUT OF     | KINETICS                                 |
| 2682          | C                |                                          |
| 2683          | 150 DD 4000 I=   | 1.M                                      |
| 2684          | 165 WRITE (NO. 3 | 9) T                                     |
| 2685          | READ (NI. 2.     | FRR=1.65) NRX (1)                        |
| 2686          | PD (1P0S+41      | +1) = NRX(1)                             |
| 2687          | TE (NRY (1))     | 145 145 154                              |
| 2688          | 154 IF (NRY (1)  | F0 2160 T0 144                           |
| 2000          | 151 WRITE(NO 2   | 4) T                                     |
| 2007          | DI WATTE MO,2    | 07 I<br>EDD-151\E(T)                     |
| 207V<br>9201  | DD ( TODCLOL     |                                          |
| 2071          |                  | 17-F(17)<br>NGD TD 3000                  |
| 2072          | 155 JOTTE/NO /   | 1)                                       |
| 2070          |                  |                                          |
| 2074          | DD/IDDC+74       |                                          |
| 207J<br>9202  | TE/IT CT A       | 37-LFUN<br>360 TO 3000                   |
| 2070<br>0207  | 150 NOTE/NO 2    | 700 10 3000<br>7)T UH/THTS UM/THTS       |
| 2077          |                  | CPD-150\A(1)                             |
| 2070.<br>3200 |                  | ERR-132/H(1)                             |
| 2077          | FU(1FU3717       | 717 = 0000000000000000000000000000000000 |
| 2700          | 157 UDITE/NO 5   | 760 (0.3000<br>65 t.00/1075 06/1075      |
| 2701          | 100 WRITE(NU,2   | 8) 1,HU(103),UM(103)                     |
| 2702          | READ(NI, J,      | ERR=133/HK(1)                            |
| 2703          | FU(1FU5+2)       | +1)=CUNVR1(4,103,1,HR(1))                |
| 2704          |                  | 0/60/10/3000                             |
| 2700          | 60 10 4002       | ALT 181/71/71 184/71/71                  |
| 2705          | IGG WRITE(NU, 4  | () 1, HU(103), UM(103)                   |
| 2707          | READ(NI, J,      |                                          |
| 2708          | PD(1P05+51       | +1)=CUNVR1(4,103,1,68X(1))               |
| 2709          |                  | 760 10 3000                              |
| 2/10          | 16/ WRITE(NU,2   | 8)1                                      |
| 2/11          | READ(N1,5,       | ERR=16/)HR(1)                            |
| 2/12          | PD(1P05+25       | +1)=CUNVR((4, 103, 1, HR(1)))            |
| 2/13          | 11-(11.51.0      | 160 10 3000                              |
| 2714          | 4002 CONTINUE    |                                          |
| 2715          | 4000 CUNTINUE    |                                          |
| 2716          | DU 5000 J=       | 1,1                                      |
| 2717          | DO 6000 I=       | 1, NNCF                                  |
| 2718          | IF(NRX(J).       | EQ.2)60 TO 161                           |
| 2719          | 160 WRITE(NO,2   | 0) I,J                                   |
| 2720          | READ(NI,5,       | ERR=160) ONEX (I, J)                     |
| 2721          | PD(IPOS+10       | *J+51+I)=ONEX(I,J)                       |
| 2722          | 161 WRITE(NO,2   | 3) I, J                                  |
| 2723          | READ(NI,5,       | ERR=161) STO(I,J)                        |
| 2724          | PD(IPOS+10       | *J+201+1)=STU(I,J)                       |
| 2725          | 5000 CONTINUE    |                                          |
| 2/26          | 5000 CONTINUE    |                                          |
| 2/27          | U                |                                          |
| 2/28          | U** NOW ALL I    | NFUT DATA IS IN PD,NEX,STD ARRAYS        |

.

| 2729 | Ľ    |                               |
|------|------|-------------------------------|
| 2730 |      | IF(II.GT.0)60 TO 3000         |
| 2731 |      | IF(II.LT.0)GD TO 90           |
| 2732 |      | JPD (NEL) =NARPV              |
| 2733 |      | NARPV=NARPV+ISIZ(16)          |
| 2734 |      | ISIZ2(NEL)=ISIZ(16)           |
| 2735 |      | GO TO 90                      |
| 2736 | 95   | WRITE(NO,6)                   |
| 2737 | 3000 | WRITE(NO,14)                  |
| 2738 |      | READ(NI,7,ERR=3000) KE        |
| 2739 |      | CALL SCOUT (5,KMD,KE,KAD)     |
| 2740 |      | IF(KAD.EQ.0) 60 TO 3000       |
| 2741 |      | 60 TO (140,120,117,95,90),KAD |
| 2742 | 90   | CONTINUE                      |
| 2743 | 99   | IRC (NEL) =1                  |
| 2744 |      | IUPDT(NEL)=1                  |
| 2745 |      | RETURN                        |
| 2746 |      | END                           |
|      |      |                               |

¥

| 1282 | C                                                                      |
|------|------------------------------------------------------------------------|
| 1283 | C123456                                                                |
| 1284 | SUBROUTINE REACR                                                       |
| 1285 | С                                                                      |
| 1286 | COMMON/BUG1/ILV.ITYPE.IQ.IHORS.IEXTQ.IPRT                              |
| 1287 | COMMON/PRD1/F1 (500), IDCS (25), IDPRD (50), IFD (50),                 |
| 1288 | 1 IFDL (200), IPD (50), IPDL (200), IPRC (70), IRC (50),               |
| 1289 | 2 ISIZ(25). ITCNT(100). JPD(50). MHB(50). NRECL(10).                   |
| 1290 | 3 PD (1250), PROP (3000), RCNT (100), TEMP (410), X (5000)             |
| 1291 | COMMON/UPDATE/IUPDT (50)                                               |
| 1292 | COMMON/COMIO/NI.NO.IYES.INO.PNAM(15).NPAGE                             |
| 1293 | COMMON/UNITA2/TU(4).PU(6).HU(3).SU(6).RU(6).UM(3).PUX(6)               |
| 1294 | COMMON/UNITA1/UDA(3).ULA(3).UVA(3).ULB(3).UHT(9).UDF(6)                |
| 1295 | COMMON/UNITA3/UARE (3), UVIS (6), UTHC (9), UHPA (3), UVB (3), USG (6) |
| 1296 | COMMON/UNITDM/IU1.IU2.IU3.IU21.IU31                                    |
| 1297 | CDMMON/CWRK/WK (6600). IWK (100)                                       |
| 1298 | COMMON/DBB/IFDB(11), IPDB(11), KMD(5)                                  |
| 1299 | EQUIVALENCE (ITCNT (18), N2), (ITCNT (21), NCP), (ITCNT (22), NCPU),   |
| 1300 | 1 (ITCNT(23).NCPT ). (ITCNT(24).NCPP ). (ITCNT(25).NCPH ).             |
| 1301 | 2 (ITCNT(26).NCPS ). (ITCNT(27).NCPF ). (ITCNT(28).NCPD ).             |
| 1302 | 3 (ITCNT (29), NCPN ), (ITCNT (30), NCP5 ), (ITCNT (31), NEL ),        |
| 1303 | 4 (ITCNT(32), NARED ), (ITCNT(33), NARPD ), (ITCNT(34), NARPV ),       |
| 1304 | 5 (ITCNT (35).NMAX ). (ITCNT (36).NEOS ). (ITCNT (37).NHELP ).         |
| 1305 | 6 (ITCNT(38).NST ), (ITCNT(39).NND ), (ITCNT(40).IIQ ),                |
| 1306 | 7 (ITCNT(41), JJQ ), (ITCNT(42), NPDMAX), (ITCNT(43), NFDMAX),         |
| 1307 | 8 (ITCNT(44), NPVMAX), (ITCNT(45), NPRNT), (ITCNT(46), NOPT),          |
| 1308 | 9 (ITCNT(47), L1MIT ), (ITCNT(48), IWARN )                             |
| 1309 | EQUIVALENCE (RCNT(1), RTOL), (RCNT(2), RACC), (RCNT(3), QIJC),         |
| 1310 | 1 (RENT( 4), RHOV ), (RENT( 5), YMW ), (RENT( 6), XMW),                |
| 1311 | 2 (RCNT (51), TST ), (RCNT (52), TEND ), (RCNT (53), PST),             |
| 1312 | 3 (RCNT (54), PEND ), (RCNT (55), DELT ), (RCNT (56), DELP ),          |
| 1313 | 4 (RCNT (57), TLMU ), (RCNT (58), TLML ), (RCNT (59), PLMU ),          |
| 1314 | 5 (RCNT (60), HSPEC), (RCNT (61), FRAC )                               |
| 1315 | COMMON/INPR1/F(10),A(10),ONEX(15,10),STO(15,10),HR(10)                 |
| 1316 | COMMON/INPR2/NNCP,M                                                    |
| 1317 | COMMON/CALC2/TO, DF, FF(15), DV                                        |
| 1318 | COMMON/TRACK/OLD(15), CHANGE(15)                                       |
| 1319 | COMMON/SELEC/NOP, NCC, NPS                                             |
| 1320 | COMMON/CRIT/FFOUT(15), PROD(15)                                        |
| 1321 | COMMON/ALI/HCAP, CPP(15)                                               |
| 1322 | COMMON/EQRXN/NRX(10), GRX(10)                                          |
| 1323 | COMMON/EQRXN1/PO                                                       |
| 1324 | COMMON/OUTP/VO                                                         |
| 1325 | COMMON/RPRINT1/SIGMA(10)                                               |
| 1326 | COMMON/RPRINT2/LFUN                                                    |
| 1327 | REAL DPROP(10)                                                         |
| 1328 | C                                                                      |
| 1329 | C                                                                      |
| 1330 | 1 FORMAT(' REAC # ',I2)                                                |
| 1331 | WRITE(NO,1)NEL                                                         |
| 1332 | IPOS=JPD (NEL)                                                         |
| 1333 | NNCP=NCP                                                               |
| 1334 | IPRT=1                                                                 |
| 1335 | FFTOL=.001                                                             |

| 1336  | TTOL=.5                                                                    |
|-------|----------------------------------------------------------------------------|
| 1337  | VT0L=.01                                                                   |
| 1338  | С                                                                          |
| 1339  | C TRANSFER OF FLOW RATES FROM X-ARRAY TO FF-ARRAY                          |
| 1340  | С.                                                                         |
| 1341  | NI = TED (NEL)                                                             |
| 1742  |                                                                            |
| 1342  | NOF-11/2L (NET 1/                                                          |
| 1343  |                                                                            |
| 1344  |                                                                            |
| 1345  | NSP=IPDL(NLP+1)                                                            |
| 1346  | NTOF=NSP-1                                                                 |
| 1347  | DO 1111 I=1,NCP                                                            |
| 1348  | FF(I)=X(NTOP*NCP5+I)                                                       |
| 1349  | C WRITE(NO,*)FF(I)                                                         |
| 1350  | 1111 CONTINUE                                                              |
| 1351  | TO=X (NTOP*NCP5+NCP+2)                                                     |
| 1352  | DF=X (NTOP*NCP5+NCP+7)                                                     |
| 1353  | PO=X (NTOP*NCP5+NCP+3)                                                     |
| 1354  | C WRITE(ND.*)TO.PO                                                         |
| 1355  | C                                                                          |
| 1356  | C PD ARRAY TRANSFER                                                        |
| 1357  | C                                                                          |
| 1358  | NOP=PD ( TPOS+3)                                                           |
| 1750  | NPS=PD(IPOS+an)                                                            |
| 1367  | NPC=DD(IDDC+4)                                                             |
| 1300  | NGG-FD(1FGGT41)<br>ADD-FDAHADT/O 1400 ( DD/1D0C+5))                        |
| 1001  | DRF-DUNVR((2,102,1,FD()F0073))                                             |
| 1362  | FRUKUF=CUNVK1(2,102,1,FU(1F05+77)                                          |
| 1363  | LFUN=PD(1FU5+363)                                                          |
| 1.564 | M=PD(1PU5)                                                                 |
| 1365  | DU 70 I=1,M                                                                |
| 1366  | GRX(I)=1000*PD(IPOS+51+I)                                                  |
| 1367  | NRX(I)=PD(IPOS+41+I)                                                       |
| 1368  | DO 101 J=1,NNCP                                                            |
| 1369  | SIGMA(J)=STO(J,I)                                                          |
| 1370  | 101 CONTINUE                                                               |
| 1371  | F(I)=PD(IPOS+9+I)                                                          |
| 1372  | A(I)=1000*PD(IPOS+19+I)                                                    |
| 1373  | HR(I)=1000*PD(IP0S+29+I)                                                   |
| 1374  | 70 CONTINUE                                                                |
| 1375  | DO 130 JJ=1,M                                                              |
| 1376  | DO 140 MPW=1.NNCP                                                          |
| 1377  | ONEX(MPW.JJ)=PD(IPOS+10*JJ+51+MPW)                                         |
| 1378  | STD (MPW, J.I) = PD ( 1PDS+10*JJ+201+MPW)                                  |
| 1379  | 140 CONTINUE                                                               |
| 1380  | 130 CONTINUE                                                               |
| 1781  | IE (NPS ED A) POUT=ORP                                                     |
| 1797  |                                                                            |
| 1302  |                                                                            |
| 1704  | I (NCC. LQ. V/(Y-1 //I/CCT/)<br>IC (NCC ED 1) TMAY-OD/IDOC14)              |
| 1004  | IC (NOC) EQ. 17 (THATED) IC (NOC) EQ. 2)<br>IE (NOC) EQ. 2) ED-DD (IEQCIO) |
| 1000  | 15 (NCC ED 2) NC-DD (1909:0)                                               |
| 1000  | IF (MUL.EW.2/NS=FU(IFUS78)                                                 |
| 1087  |                                                                            |
| 1388  |                                                                            |
| 1389  | DV=PD(1PU5+1)                                                              |
| 1390  | VO=DV                                                                      |

| 1391 |     | NOPT=5                          |
|------|-----|---------------------------------|
| 1392 |     | TST=T0                          |
| 1393 |     | TEND=0.0                        |
| 1394 |     | DELT=0.0                        |
| 1395 |     | PST=P0                          |
| 1396 |     | PEND=0.0                        |
| 1397 |     | DELP=0.0                        |
| 1398 |     | IEXT2=2                         |
| 1399 |     | NLPH=1                          |
| 1400 |     | IF (NH2D, NE, 0) NL PH=2        |
| 1401 |     | CALL XMOVER (NSE. 1)            |
| 1402 |     | CALL CALC                       |
| 1403 |     | CALL EMOVER (1, NSE)            |
| 1404 |     | IF (NOP_EQ_0) GO TO 200         |
| 1405 |     | CALL SEKED (DEBOE)              |
| 1404 |     | $HC\Delta P = DPROP(1)$         |
| 1407 | 200 | CONTINUE                        |
| 1408 | 200 | DO 30 I=1 3000                  |
| 1400 |     | DD 40 I=1,0000                  |
| 1410 |     |                                 |
| 1410 | 40  |                                 |
| 1411 | 40  |                                 |
| 1412 |     | CHLL RUNDE                      |
| 1413 |     |                                 |
| 1414 | 150 | X (NTUF *NCFO+(NN) =FF (NN)     |
| 1410 | 150 |                                 |
| 1416 |     | NOPIED                          |
| 1417 |     |                                 |
| 1418 |     | IEND=0.0                        |
| 1419 |     | DEL I=0.0                       |
| 1420 |     | P51=P001                        |
| 1421 |     | PEND=0.0                        |
| 1422 |     |                                 |
| 1423 |     | 1EX12=2                         |
| 1424 |     | NLPH=1                          |
| 1425 |     | IF (NH2D.NE.0) NLPH=2           |
| 1426 |     | CALL XMOVER(NSP,1)              |
| 1427 |     | CALL CALC                       |
| 1428 |     | CALL FMOVER(1,NSP)              |
| 1429 |     | IF(NOP.EQ.0)60 TO 210           |
| 1430 |     | CALL SRKPD (DPROP)              |
| 1431 |     | HCAP=DPROP(1)                   |
| 1432 | 210 | DF=X (NTOF*NCP5+NCP+7)          |
| 1433 |     | IF (NCC.EQ.0)60 TO 80           |
| 1434 |     | IF(NCC.EQ.1)60 TO 90            |
| 1435 |     | IF (NCC.EQ.2) GO TO 100         |
| 1436 | 80  | IF((RV-VO).LE.VTOL)GO TO 110    |
| 1437 |     | 60 TO 33                        |
| 1438 | 90  | IF((TMAX-TO).LE.TTOL)GO TO 110  |
| 1439 |     | GO TO 33                        |
| 1440 | 100 | IF((FF(NS)-FP).GE.FFTOL)GO TO : |
| 1441 | 33  | ICOUNT=ICOUNT+1                 |
| 1442 |     | VO=VO+DV                        |
| 1443 | 30  | CONTINUE                        |
| 1444 | 110 | CONTINUE                        |
| 1445 |     | DO 220 I=1,NNCP                 |

.

| 1446    | C WRITE(NO,*)X(NTOF*NCP5+I)                                       |
|---------|-------------------------------------------------------------------|
| 1447    | 220 CONTINUE                                                      |
| 1448    | IPRT=0                                                            |
| 1449    | RXHT=0.0                                                          |
| 1450    | DO 2 JHT=1.M                                                      |
| 1451    | DO 3 IHT=1.NNCP                                                   |
| 1452    |                                                                   |
| 1457    |                                                                   |
| 1450    |                                                                   |
| 1454    |                                                                   |
| 1400    |                                                                   |
| 1405    |                                                                   |
| 140/    | PU(1PU5+362)=RXH1                                                 |
| 1458    | IF (NUP.EQ. 1) PD (1PUS+362) =0.0                                 |
| 1459    | RETURN                                                            |
| 1460    | END                                                               |
| 1461    | C                                                                 |
| 1462    | C** SUBROUTINE TO SUM UP THE VOLUMETRIC FLOW RATES                |
| 1463    | C                                                                 |
| 1464    | SUBROUTINE VFLOW                                                  |
| 1465    | COMMON/PRD1/F1(500), IDCS(25), IDPRD(50), IFD(50),                |
| 1466    | 1 IFDL (200), IPD (50), IPDL (200), IPRC (70), IRC (50),          |
| 1467    | 2 ISIZ(25), ITCNT(100), JPD(50), MHB(50), NRECL(10),              |
| 1468    | 3 PD(1250), PROP(3000), RENT(100), TEMP(410), X (5000)            |
| 1469    | COMMON/CALC2/TO, DF, FF(15), DV                                   |
| 1470    | COMMON/INPR1/F(10), A(10), ONEX(15, 10), STD(15, 10), HR(10)      |
| 1471    | COMMON/INPR2/NNCP,M                                               |
| 1472    | COMMON/CALC4/VF, FFM (15)                                         |
| 1473    | EQUIVALENCE (ITCNT(18), N2), (ITCNT(21), NCP), (ITCNT(22), NCPU), |
| 1474    | 1 (ITCNT(23),NCPT), (ITCNT(24),NCPP ), (ITCNT(25),NCPH ),         |
| 1475    | 2 (ITCNT(26), NCPS), (ITCNT(27), NCPF ), (ITCNT(28), NCPD ),      |
| 1476    | 3 (ITCNT (29), NCPN), (ITCNT (30), NCP5 ),                        |
| 1477    | 4 (ITCNT (38), NST ), (ITCNT (39), NND )                          |
| 1478    | EQUIVALENCE (IPRC(1), MLCXA), (IPRC(2), MLCY), (IPRC(3), MLCXB),  |
| 1479    | 1 (IPRC( 4), MLTXA), (IPRC( 5), MLTY), (IPRC( 6), MLTXB),         |
| 1480    | 2 (IPRC( 7), MLPXA), (IPRC( 8), MLPY ), (IPRC( 9), MLPXB),        |
| 1481    | 3 (IPRC(10), MLHO), (IPRC(11), MLSO), (IPRC(12), MLCZF),          |
| 1482    | 4 (IPRC(13), MLKVA), (IPRC(14), MLKVB), (IPRC(15), MPHSP).        |
| 1483    | 5 (IPRC(16), MPRC1), (IPRC(17), MPRC2), (IPRC(18), MPRC3),        |
| 1484    | 6 (IPRC(19), MPRC4), (IPRC(20), MPRC5),                           |
| 1485    | 7 (IPRC(26), MPRA1).                                              |
| 1486    | 8 (IPRC (36), MM ).                                               |
| 1487    | 1 (IPRC (62), MECU ), (IPRC (63), MECP ), (IPRC (64), LOCKP)      |
| 1488    | REAL WE (15)                                                      |
| 1489    | VE=0.0                                                            |
| 1490    | FMM=0.0                                                           |
| 1491    | DO 5 JENST. NND                                                   |
| 1497    | NN=(1-1) *N2+MPHSP                                                |
| 1493    | WE(I)=PROP(NN+R)                                                  |
| 1494    |                                                                   |
| 1495    | DO 10 I=1.NNCP                                                    |
| 1496    | FFM(I)=FF(I)*WF(I)                                                |
| 1497    | 10 CONTINUE                                                       |
| 1498    | DO 70 J=1.NNCP                                                    |
| 1499    | FM=FFM(1)+FMM                                                     |
| 1500    | FMM=FM                                                            |
| 1 W V V | 1 tu 1                                                            |

| 1501   | 20       | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1502   |          | VF=FMM/DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1503   |          | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1504   |          | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1505   | С        | Ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1506   | C**      | SUBROUTINE RCONST-TO DEVELOP THE EXPRESSIONS FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1507   | Ē        | THE RATE CONSTANTS OF THE REACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1508   | C<br>C   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1500   | U U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1007   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1010   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1511 . |          | CUMMUN/INPRI/F(10),A(10),UNEX(15,10),S(U(15,10),HK(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1512   |          | CUMMUN/INPR2/NNCP, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1513   |          | COMMON/CALC3/RK(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1514   |          | COMMON/EQRXN/NRX(10), GRX(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1515   |          | COMMON/RPRINT2/LFUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1516   |          | RC=1.986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1517   |          | CTERM=1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1518   |          | DO 10 I=1,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1519   |          | IF (NRX (1).EQ.2) GO TO 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1520   | C        | WRITE(6.*)LFUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1521   |          | IF (LFUN, EQ. 1) GO TO 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1522   |          | DR 2 J=1.NNCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1523   |          | PSS=PSS+ST0(I, I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1524   | 2        | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1525   | -        | IE (PSS ED 1) CTERM=3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1525   |          | $I = \{1, 0\}, I = $ |
| 1020   | 24       | IF (F33.NE.1/5(ENN-3000*(10.04**(F33-1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1327   | 21       | RK(1)=U1ERM*F(1)*EXF(-A(1)/(RU*(0))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1528   | 20       | CUNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1329   | 10       | CUNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1530   |          | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1531   | _        | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1532   | C        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1533   | C**      | SUBROUTINE RRXN-TO DEVELOP A "UNIT" RATE EQUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1534   | C        | FOR EACH REACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1535   | С        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1536   |          | SUBROUTINE RRXN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1537   |          | COMMON/CALC4/VF,FFM(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1538   |          | COMMON/INPR1/F(10),A(10),ONEX(15,10),STD(15,10),HR(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1539   |          | COMMON/INPR2/NNCP,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1540   |          | COMMON/CALC3/RK(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1541   |          | COMMON/CALC2/TO, DF, FF(15), DV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1542   |          | COMMON/CALC5/R(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1543   |          | COMMON/ERRXN/NRX(10).GRX(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1544   |          | DIMENSION BR(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1545   |          | NO = AO = I = M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1546   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1547   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1540   | A 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1540   | 11<br>AD | CONTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1047   | 40       | DO IN THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1000   |          | DU 10 J-1,1<br>IE/NOV/J) ED DYCD TO 4E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1001   |          | IF (MKA (J). EQ. 2/60 10 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1002   |          | 5=U.U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1000   |          | DU 30 1=1, NNLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1554   |          | S=S+ABS(UNEX(I,J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1555   | 30       | CUNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 1556         |         | RR(J) = RK(J)                                                |
|--------------|---------|--------------------------------------------------------------|
| 1557         |         | DO 20 I=1.NNCP                                               |
| 1558         |         | IE(EE(I), IE, 0) = 0 TO 20                                   |
| 1559         |         | $IE(INEY(I, I) = E_0 \cap E_0 = T_0 = 20$                    |
| 1560         |         | RR(I) = RR(I) + (FF(I) + (ONFY(I I)))                        |
| 1541         | 20      | CONTINUE                                                     |
| 1547         | 20      | R(I)=RR(I)/UExxC                                             |
| 1547         | 15      |                                                              |
| 1544         | 10      | CONTINUE                                                     |
| 1545         | 10      | CONTINCE<br>Detrion                                          |
| 1565         |         |                                                              |
| 1547         | c       |                                                              |
| 130/         | с<br>с  |                                                              |
| 1068         | 6       |                                                              |
| 1367         | 6.**    | SUBRUUTINE RELIMPTU SET UP THE TUTAL RATE EXPRESSION         |
| 1570         | C o     | FUR EACH CUMPUNENT                                           |
| 15/1         | U       | AUROAUTING ROADWO                                            |
| 15/2         |         | SUBRUUTINE RRCUMP                                            |
| 15/3         |         | CUMMUN/INFR1/F(10), A(10), UNEX(15, 10), S(U(15, 10), HR(10) |
| 1574         |         | COMMON/INPR2/NNCP,M                                          |
| 1575         |         | COMMON/CALC5/R(10)                                           |
| 1576         |         | COMMON/CALC6/RCOMP(15)                                       |
| 1577         |         | DO 10 I=1,NNCP                                               |
| 1578         |         | RCOMP(I)=0.0                                                 |
| 1579         |         | DO 20 J=1,M                                                  |
| 1580         |         | RCOMP(I)=RCOMP(I)+STO(I,J)*R(J)                              |
| 1581         | 20      | CONTINUE                                                     |
| 1582         | 10      | CONTINUE                                                     |
| 1583         |         | RETURN                                                       |
| 1584         |         | END                                                          |
| 1585         | С       |                                                              |
| 1586         | C**     | SUBROUTINE RTEMP-TO EVALUATEM                                |
| 1587         | C**     | SUBROUTINE RTEMP-TO EVALUATE THE TEMPERATURE                 |
| 1588         | С       | CHANGE ALONG THE REACTOR                                     |
| 1589         | С       |                                                              |
| 1590         |         | SUBROUTINE RTEMP                                             |
| 1591         |         | COMMON/INPR1/F(10), A(10), ONEX(15, 10), STO(15, 10), HR(10) |
| 1592         |         | COMMON/INPR2/NNCP.M                                          |
| 1593         |         | COMMON/CALC2/TO.DF.FF(15).DV                                 |
| 1594         |         | COMMON/CALC5/R(10)                                           |
| 1595         |         |                                                              |
| 1596         |         | COMMON/SELEC/NOP.NCC.NPS                                     |
| 1597         |         | COMMON/ALT/HCAP. CPP (15)                                    |
| 1598         |         | BEAL YHR (10)                                                |
| 1500         |         | NHR=0 0                                                      |
| 1400         |         | DO 10 T=1.M                                                  |
| 1401         |         | DU 10 5-1,1<br>DHR=DHR + HR(I)+R(I)                          |
| 1407         | 10      |                                                              |
| 1002         | 10      |                                                              |
| 1404         |         | PG-0.0                                                       |
| 1004         |         | 20 20 1-1,000F<br>EF=EF 1 EE/T\2000(T)                       |
| 10VJ<br>14A4 | 20      | 10-10 T FEVI/30FEVI/<br>CONTINUE                             |
| 1000<br>1407 | 20<br>r | UNITIOE<br>NOTTE/L x10/11 DUD EP DT                          |
| 1077         | ٤.      | WRIELO;*/RLi/;URR;EL;UI<br>RT/RUD/ER\xRU                     |
| 1000         |         | DI\UNK/FD/#UV                                                |
| 1007         |         |                                                              |
| 1510         |         | END                                                          |

-

î,

| 1611 | С    |                                                                               |
|------|------|-------------------------------------------------------------------------------|
| 1612 | C SL | JBROUTINE RUNGE-TO SOLVE DE.'S USING 4-TH ORDER RUNGA-KUTTA                   |
| 1613 | C    |                                                                               |
| 1614 |      | SUBROUTINE RUNGE                                                              |
| 1615 |      | DIMENSION S1(15), S2(15), S3(15), S4(15)                                      |
| 1616 |      | COMMON/CALC6/RCOMP(15)                                                        |
| 1617 |      | COMMON/CALC2/TO.DE.FE(15).DV                                                  |
| 1618 |      | COMMON/INPR2/NNCP.M                                                           |
| 1619 |      | COMMON/TRACK/OLD(15).CHANGE(15)                                               |
| 1620 |      |                                                                               |
| 1620 |      | COMMON/SELECTION NOC NOS                                                      |
| 1422 |      |                                                                               |
| 1022 |      |                                                                               |
| 1020 |      | CALL VELUW                                                                    |
| 1024 |      |                                                                               |
| 1620 |      |                                                                               |
| 1626 |      | CALL RRUMP                                                                    |
| 1627 |      | DU 70 1=1, NNCP                                                               |
| 1628 |      | FFPRE(I)=FF(I)                                                                |
| 1629 | 70   | CONTINUE                                                                      |
| 1630 |      | DO 10 I=1,NNCP                                                                |
| 1631 |      | S1(I)=DV*RCOMP(I)                                                             |
| 1632 |      | FF(I)=FF(I)+.5*S1(I)                                                          |
| 1633 | 10   | CONTINUE                                                                      |
| 1634 |      | CALL VFLOW                                                                    |
| 1635 |      | CALL RCONST                                                                   |
| 1636 |      | CALL RRXN                                                                     |
| 1637 |      | CALL RRCOMP                                                                   |
| 1638 |      | DO 20 I=1,NNCP                                                                |
| 1639 |      | S2(I)=DV*RCOMP(I)                                                             |
| 1640 |      | FF(I)=FF(I)+.5*S2(I)                                                          |
| 1641 | 20   | CONTINUE                                                                      |
| 1642 |      | CALL VFLOW                                                                    |
| 1643 |      | CALL RCONST                                                                   |
| 1644 |      | CALL RRXN                                                                     |
| 1645 |      | CALL RRCOMP                                                                   |
| 1646 |      | DD 30 I=1.NNCP                                                                |
| 1647 |      | S3(1) = DV + RCOMP(1)                                                         |
| 1648 |      | FF(I) = FF(I) + S3(I)                                                         |
| 1649 | 30   | CONTINIE                                                                      |
| 1450 |      |                                                                               |
| 1451 |      |                                                                               |
| 1001 |      |                                                                               |
| 1002 |      |                                                                               |
| 1000 |      |                                                                               |
| 1034 |      | DU = 0 $I = 1$ , WALF                                                         |
| 1600 |      | 54(1)=UV*RCUMP(1)                                                             |
| 1000 | 60   |                                                                               |
| 160/ |      | 00 40 1=1,ANUF<br>CUANCE(1) - (1// A) - (C) (1) (C+CC(1) (C+CT(1)) - C) (1) ( |
| 1608 |      | LHANDE(1)=(1/5.0)*(51(1)+2*52(1)+2*53(1)+54(1))                               |
| 1657 | • -  | FF(1)=FFFKE(1)+UHANGE(1)                                                      |
| 1660 | 40   | CUNTINUE                                                                      |
| 1561 |      | IF (NUP.EW.0) GU TU SO                                                        |
| 1662 |      | CALL RIEMP                                                                    |
| 1663 | -    | 10=10+01                                                                      |
| 1664 | С    | WRITE(6,*)DT,TO                                                               |
| 1665 | 50   | CONTINUE                                                                      |

| 1667         END           1668         C           1669         C           1670         C           1671         C           1672         C           1673         SUBROUTINE TO SET UP THE EQUILIBRIUM LIMITATIONS           1671         C           1673         SUBROUTINE RXEQU (J)           1674         COMMON/CALCS/R(10)           1675         PTOL=.0001           1676         ALPHA=0.0           1677         BETA=100.0           1678         ICOUNT=1           1679         10         CONTINUE           1680         C         WRITE (6, *) ALPHA, BETA, RALPHA, RBETA           1681         CALL RTRY (RETA, REPTA)           1682         IF (ABS (RALPHA).LE.PTOL) GD TO 41           1683         CALL RTRY (RERN)           1684         RW= (ALPHA+BETA) / 2.0           1685         CALL RTRY (RERN)           1686         PROD2.T.O.0 GD TO 20           1687         PROD2.T.O.0 GD TO 20           1688         IF (PROD1.LT.O) GD TO 20           1689         IF (PROD2.LT.O.0 GO TO 70           1690         GD TO 10           1691         ICOUNT.GE.100) GD TO 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1666 | RETURN                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------|
| 1668       C         1670       C         1671       C         1672       C         1673       SUBROUTINE TO SET UP THE EQUILIBRIUM LIMITATIONS         1674       COMMON/CALCS/R(10)         1675       PTOL=.0001         1676       ALPHA=0.0         1677       BETA=100.0         1676       ALPHA=0.0         1677       BETA=100.0         1678       ICOUNT=1         1679       IO <continue< td="">         1680       C         1671       ICOUNT=1         1676       ALPHA=0.0         1677       BETA=100.0         1678       ICOUNT=1         1679       IO<continue< td="">         1680       C         1681       CALL RTRY (ALPHA, RALPHA).         1682       IF (APSOBALPHA). LE.PTOL) GO TO 41         1683       CALL RTRY (NW, RRW)         1684       RW= (ALPHA+BETA) / 2.0         1685       CALL RTRY (NW, RRW)         1686       PROD1=RALPHA*RRW         1687       IF (PRD2.LT.0) GO TO 20         1689       IF (PRD2.LT.0) GO TO 70         1691       20 BETA-RW         1692       ICOUNT=ICOUNT+1</continue<></continue<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1667 | END                                                   |
| 1669       C         1670       C       SUBROUTINE TO SET UP THE EQUILIBRIUM LIMITATIONS         1671       C       OF THE REACTIONS IN EQUILIBRIUM         1672       C         1673       SUBROUTINE RXEQU (J)         1674       COMMON/CALCS/R(10)         1675       PTOL=.0001         1676       ALPHA=0.0         1677       BETA=100.0         1678       ICOUNT=1         1679       10       CONTINUE         1680       C       WRITE (6, *) ALPHA, BETA, RALPHA, REETA         1681       CALL RTRY (ALPHA, RALPHA)       14         1682       IF (ABS (RALPHA).LE.PTOL)GO TO 41         1683       CALL RTRY (BETA, RALPHA)       14         1684       RW=(ALPHA+BETA)       14         1685       CALL RTRY (RW, RRW)       14         1686       PROD1_ETALPHA+RRW       1687         1687       PROD2-REBETA-RRW       1688         1688       IF (PRDD1_LT.O) GO TO 20       1689         1697       IF (PRDD1_LT.O) GO TO 70       1689         1697       IF (ICOUNT.GE.100) GO TO 70       1691         1697       IF (ICOUNT.GE.100) GO TO 70       1697         1697       IF (ICOUNT.GE.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1668 | C                                                     |
| 1470         C         SUBROUTINE TO SET UP THE EQUILIBRIUM LIMITATIONS           1471         C         OF THE REACTIONS IN EQUILIBRIUM           1472         C         OF THE REACTIONS IN EQUILIBRIUM           1473         SUBROUTINE RXEQU (J)         1           1474         COMMON/CALCS/R(10)         1           1475         PTOL=.0001         1           1476         ALPHA=0.0         1           1477         BETA=100.0         1           1478         ICOUNT=1         1           1479         10         CONTINUE           1480         C         WRITE (6, *) ALPHA, BETA, RALPHA, RBETA           1481         CALL RTRY (ALPHA, BETA, RALPHA, RBETA           1482         IF (ABS (RALPHA) .LE.PTOL)GO TO 41           1483         CALL RTRY (BETA, RBETA)           1484         RW= (ALPHA+RETA) /2.0           1485         CALL RTRY (RW, RRW)           1486         RE (PROD1.LT.0) GO TO 20           1487         PROD2=RBETA+REW           1488         IF (PROD2.LT.0) GO TO 70           1489         GO TO 10           1489         IF (PROD2.LT.0) GO TO 70           1489         IF (ICOUNT-ECOUNT+1           1497         IF (ICOUNT-EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1669 | С                                                     |
| 1671       C       OF THE REACTIONS IN EQUILIBRIUM         1672       C         1673       SUBROUTINE RXEQU (J)         1674       COMMON/CALCS/R(10)         1675       PTOL=.0001         1676       ALPHA=0.0         1677       BETA=100.0         1678       ICOUNT=1         1679       10         1680       C         WRITE (6,*) ALPHA, BETA, RALPHA, RBETA         1681       CALL RTRY (ALPHA, RALPHA)         1682       IF (ABS (RALPHA), LE, PTOL) 60 TO 41         1683       CALL RTRY (N, RRW)         1684       RW=(ALPHA+BETA)/2.0         1685       CALL RTRY (NN, RRW)         1686       PROD1=RALPHA+RRW         1687       PROD2=RBETA+RRW         1688       IF (PROD2.LT.0) GO TO 20         1689       IF (COUNT.GE.100) GO TO 70         1691       20       BETA=RW         1692       ICOUNT=ICOUNT+1         1693       GO TO 10         1694       GO TO 10         1695       30       ALPHA=RW         1696       ICOUNT=ICOUNT+1         1697       IF (ICOUNT.GE.100) GO TO 70         1698       GO TO 10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1670 | C SUBROUTINE TO SET UP THE EQUILIBRIUM LIMITATIONS    |
| 1672       C         1673       SUBROUTTNE RXEQU (J)         1674       COMMON/CALCS/R (10)         1675       PTOL=.0001         1676       ALPHA=0.0         1677       BETA=100.0         1678       ICOUNT=1         1679       10       CONTINUE         1680       C       WRITE (6, *) ALPHA, BETA, RALPHA, RBETA         1681       CALL RTRY (ALPHA, RALPHA)       IE         1682       IF (ABS (RALPHA).LE.PTOL) GD TO 41         1683       CALL RTRY (BETA, RBETA)         1684       RM=(ALPHA) FETA) / 2.0         1685       CALL RTRY (RW, RRW)         1686       PROD1=RALPHA*RRW         1687       PROD2-RBETA*RRW         1688       IF (PROD1.LT.0) GD TO 20         1689       IF (PROD2.LT.0) GD TO 30         1690       GD TO 70         1691       20       BETA=RW         1692       ICOUNT=ICOUNT+1         1693       IF (ICOUNT.GE.100) GD TO 70         1694       GO TO 10       10         1695       30       ALPHA=RW         1696       ICOUNT=ICOUNT+1       16         1697       IF (ICOUNT.GE.100) GD TO 70       16         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1671 | C OF THE REACTIONS IN EQUILIBRIUM                     |
| 1473         SUBROUTINE RXEQU (J)           1674         COMMON/CALCS/R(10)           1675         PTDL=,0001           1676         ALPHA=0.0           1677         BETA=100.0           1678         ICOUNT=1           1679         10         CONTINUE           1680         C         WRITE (6, *) ALPHA, BETA, RALPHA, RBETA           1681         CALL RTRY(ALPHA, RALPHA)           1682         IF (ABS(RALPHA).LE.PTOL.D60 TD 41           1683         CALL RTRY(BETA, RALPHA)           1684         RW=(ALPHA+BETA)/2.0           1685         CALL RTRY(RW, RRW)           1686         PRDD1=RALPHA*RRW           1687         PRDD2=RBETA*RRW           1688         IF (PRDD1.LT.0) GD TD 20           1689         IF (RCD2.LT.0) GD TO 30           1690         GD TO 70           1691         20           1692         ICOUNT=ICOUNT+1           1693         JO ALPHA=RW           1694         GO TO 10           1695         JO ALPHA=RW           1696         ICOUNT=ICOUNT+1           1697         IF (ICOUNT.GE.100) GO TO 70           1698         GO TO 71           1699         GO TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1672 | С                                                     |
| 1674         COMMON/CALCS/R (10)           1675         PTOL=.0001           1676         ALPHA=0.0           1677         BETA=100.0           1678         ICOUNT=1           1679         10         CONTINUE           1680         C         WRITE (6, *) ALPHA, BETA, RALPHA, RBETA           1681         CALL RTRY (ALPHA, RALPHA)           1682         IF (ABS (RALPHA), LE, PTOL) 60 TD 41           1683         CALL RTRY (RALPHA, RALPHA)           1684         RW= (ALPHA+BETA)/2.0           1685         CALL RTRY (RM, RRW)           1686         PROD1=RALPHA*RRW           1687         PROD2-REETA*RRW           1688         IF (PROD2.LT.0) 60 TD 20           1689         IF (PROD2.LT.0) 60 TD 70           1689         IF (ICOUNT-ICOUNT+1           1690         GO TO 70           1691         20         BETA=RW           1692         ICOUNT=ICOUNT+1           1693         IF (ICOUNT-GE.100) GO TO 70           1694         GO TO 10           1695         30 ALPHA=RW           1696         ICOUNT=ICOUNT+1           1697         41 R(J)=ALPHA           1698         GO TO 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1673 | SUBROUTINE RXEQU (J)                                  |
| International and the second | 1674 |                                                       |
| 1376         ALPHA=0.0           1677         BETA=100.0           1677         BETA=100.0           1678         ICOUNT=1           1679         10         CONTINUE           1680         C         WRITE(6,*)ALPHA,BETA,RALPHA,REETA           1681         CALL RTRY(ALPHA,RALPHA)           1682         IF (ABS (RALPHA).LE.PTOL)GD TO 41           1683         CALL RTRY (BETA,RBETA)           1684         RW=(ALPHA+BETA)/2.0           1685         CALL RTRY (RW,RRW)           1686         PROD1=RALPHA+RRW           1687         PROD2=RBETA+RRW           1688         IF (PROD1.LT.0) GD TO 20           1689         IF (PROD2.LT.0) GD TO 30           1691         20         BETA=RW           1622         ICOUNT=ICOUNT+1           1637         GD TO 70           1649         IF (ICOUNT.GE.100) GD TO 70           1654         GD TO 10           1655         CALPHA=W           1666         ICOUNT=ICOUNT+1           1677         IF (ICOUNT.GE.100) GD TO 70           1658         GD TO 10           1659         GD TO 10           1659         GD TO 10           1679         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1675 | ΡΤΠL=.0001                                            |
| Internet         Internet           1677         BETA=100.0           1678         ICOUNT=1           1677         10         CONTINUE           1680         C         WRITE(6, *) ALPHA, BETA, RALPHA, RBETA           1681         CALL RTRY (ALPHA, BETA, RALPHA)           1682         IF (ABS (RALPHA). LE.PTOL) GD TO 41           1683         CALL RTRY (BETA, RBETA)           1684         RW=(ALPHA). LE.PTOL) GD TO 41           1685         CALL RTRY (BETA, RBETA)           1686         PROD1=RALPHA*REW           1687         PROD2-RBETA*RRW           1688         IF (PROD1.LT.O) GD TO 20           1689         IF (PROD2.LT.O) GD TO 30           1690         GD TO 70           1691         20           1692         ICOUNT=ICOUNT+1           1693         IF (ICOUNT.GE.100) GD TO 70           1694         GD TO 10           1695         30           1696         GD TO 10           1697         IF (ICOUNT.GE.100) GD TO 70           1698         GD TO 10           1697         IF (ICOUNT.GE.100) GD TO 70           1698         GD TO 10           1697         IF (ICOUNT.GE.100) GD TO 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1676 | AL PHA=0.0                                            |
| Internet           1678         ICOUNTINUE           1677         10         CONTINUE           1680         C         WRITE(6,*)ALPHA, BETA, RALPHA, RBETA           1681         CALL RTRY (ALPHA, BETA, RALPHA)           1682         IF (ABS(RALPHA).LE.PTOL)GD TO 41           1683         CALL RTRY (BETA, RBETA)           1684         RW=(ALPHA+BETA)/2.0           1685         CALL RTRY (RW, RRW)           1686         PROD1=RALPHA*RRW           1687         PROD2=RBETA*RRW           1688         IF (PROD1.LT.O) GO TO 20           1689         IF (PROD2.LT.O) GO TO 30           1690         GD TO 70           1691         20         BETA=RW           1692         ICOUNT=ICOUNT+1           1693         30         ALPHA=RW           1694         GO TO 10         10           1695         30         ALPHA=RW           1696         ICOUNT=ICOUNT+1         1697           1697         41         R(J)=ALPHA           1698         GO TO 10         1697           1699         41         R(J)=ALPHA           1700         C         WRITE(6,*)*R(J)           1705         END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1677 | BFTA=100.0                                            |
| 10       CONTINUE         1677       10       CONTINUE         1680       C       WRITE (6, *) ALPHA, BETA, RALPHA, REETA         1681       CALL RTRY (ALPHA, RALPHA). LE.PTOL/GO TO 41         1682       IF (ABS (RALPHA). LE.PTOL/GO TO 41         1683       CALL RTRY (BETA, RBETA)         1684       RW=(ALPHA+BETA)/2.0         1685       CALL RTRY (RM, RRW)         1686       PROD1=RALPHA*RRW         1687       PROD2=RBETA*RRW         1688       IF (PROD2.LT.O) GO TO 20         1689       IF (PROD2.LT.O) GO TO 20         1690       GO TO 70         1691       20 BETA=RW         1692       ICOUNT=ICOUNT+1         1693       IF (ICOUNT.GE.100) GO TO 70         1694       GO TO 10         1695       30 ALPHA=RW         1696       ICOUNT=ICOUNT+1         1697       IF (ICOUNT.GE.100) GO TO 70         1698       GO TO 10         1697       IF (ICOUNT.GE.100) GO TO 70         1698       GO TO 71         1700       C         1701       GO TO 71         1702       70 WRITE (6, *) R(J)         1703       71 CONTINUE         1704       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1678 | TCDINT=1                                              |
| Image: Section 2016         Image: Section 2016           1680         C         WRITE (6, *) ALPHA, BETA, RALPHA, RBETA           1681         CALL RTRY (ALPHA, RALPHA)           1682         IF (ABS (RALPHA). LE.PTOL) GO TO 41           1683         CALL RTRY (BETA, RBETA)           1684         RW=(ALPHA+BETA) / 2.0           1685         CALL RTRY (RW, RRW)           1686         PROD2=RBETA+RRW           1687         PROD2=RBETA+RRW           1688         IF (PROD1.LT.0) GO TO 20           1689         IF (PROD2.LT.0) GO TO 30           1690         GO TO 70           1691         20 BETA=RW           1692         ICOUNT=ICOUNT+1           1693         IF (ICOUNT.GE.100) GO TO 70           1694         GO TO 10           1695         30 ALPHA=RW           1696         ICOUNT=ICOUNT+1           1697         IF (ICOUNT.GE.100) GO TO 70           1698         GO TO 10           1699         41 R (J)=ALPHA           1700         C           1701         GO TO 71           1702         70 WRITE (6, *) 'ROOT IS NOT FOUND'           1703         71 CONTINUE           1704         RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1679 |                                                       |
| 1631       CALL RTRY (ALPHA, RALPHA)         1682       IF (ABS (RALPHA). LE.PTOL) 60 TD 41         1683       CALL RTRY (ALPHA, RALPHA)         1684       RW= (ALPHA+BETA) / 2.0         1685       CALL RTRY (RW, RRW)         1686       PR0D1=RALPHA*RRW         1687       PR02=RBETA*RRW         1688       IF (PR01.LT.0) GD TD 20         1687       PR02=RBETA*RW         1688       IF (PR01.LT.0) GD TD 20         1689       IF (PR01.LT.0) GD TD 30         1690       GD TO 70         1691       20         1692       ICOUNT=ICOUNT+1         1693       IF (ICOUNT.GE.100) GD TD 70         1694       GD TD 10         1695       30 ALPHA=RW         1696       ICOUNT=ICOUNT+1         1697       IF (ICOUNT.GE.100) GD TD 70         1698       GO TD 10         1697       41 R(J)=ALPHA         1700       C         1701       GD TO 71         1702       70 WRITE(6,*)*ROT IS NOT FOUND*         1705       END         1706       C         1707       C         1708       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709 <td>1680</td> <td>C WRITE (6. *) AI PHA, BETA, RAI PHA, RBETA</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1680 | C WRITE (6. *) AI PHA, BETA, RAI PHA, RBETA           |
| 1022         IF (ABS (RALPHA). LE. FTOL.) 60 TO 41           1682         CALL RTRY (BETA, RBETA)           1684         RW= (ALPHA+BETA) / 2.0           1685         CALL RTRY (RW, RRW)           1686         PROD1=RALPHA+RRW           1687         PROD2=RBETA+RRW           1688         IF (PROD1.LT.0) 60 TO 20           1689         IF (PROD2.LT.0) 60 TO 30           1689         IF (PROD2.LT.0) 60 TO 30           1689         IF (PROD2.LT.0) 60 TO 30           1690         60 TO 70           1691         20 BETA=RW           1692         ICOUNT=ICOUNT+1           1693         IF (ICOUNT.GE.100) 60 TO 70           1694         60 TO 10           1695         30 ALPHA=RW           1696         ICOUNT=ICOUNT+1           1697         IF (ICOUNT.GE.100) 60 TO 70           1698         60 TO 10           1699         41 R (J)=ALPHA           1700         C           WRITE (6,*)*(J)           1701         60 TO 71           1702         70 WRITE (6,*)*(RODT IS NOT FOUND'           1703         71 CONTINUE           1704         RETURN           1705         END           170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1681 | CALL RTRY (ALPHA, RALPHA)                             |
| 1011       CALL RTRY (BETA, RBETA)         1683       CALL RTRY (BETA, RBETA)         1684       RW= (ALPHA+BETA) / 2.0         1685       CALL RTRY (RW, RRW)         1686       PROD1=RALPHA*RRW         1687       PROD2=RBETA*RRW         1688       IF (PROD1.LT.0) GD TO 20         1687       PROD2=RBETA*RRW         1688       IF (PROD1.LT.0) GD TO 30         1690       GD TO 70         1691       20         1692       ICOUNT=ICOUNT+1         1693       IF (ICOUNT.GE.100) GD TO 70         1694       GD TO 10         1695       30         1696       ICOUNT=ICOUNT+1         1697       IF (ICOUNT.GE.100) GD TO 70         1698       GO TO 10         1697       41 R (J)=ALPHA         1700       C         1701       GO TO 71         1702       70 WRITE (6,*) R (J)         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1707       C         1708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1682 |                                                       |
| 1000         ORE (ALPHA+BETA)/2.0           1685         CALL RTRY (RW, RRW)           1686         PR0D1=RALPHA+RRW           1687         PR0D2=RBETA+RRW           1688         IF (PR0D1.LT.0) GD TD 20           1687         PR0D2=RBETA+RRW           1688         IF (PR0D2.LT.0) GD TD 30           1690         GD TO 70           1691         20 BETA=RW           1692         ICOUNT=ICOUNT+1           1693         IF (ICOUNT.GE.100) GD TD 70           1694         GD TD 10           1695         30 ALPHA=RW           1696         ICOUNT=ICOUNT+1           1697         IF (ICOUNT.GE.100) GD TD 70           1698         GO TD 10           1697         IF (ICOUNT.GE.100) GD TD 70           1698         GO TD 10           1699         41 R (J)=ALPHA           1700         C           1701         GO TO 71           1702         TO WRITE(6,*) R (G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1683 | CALL RTRY (BETA, RBETA)                               |
| 1011       Init Alternational and the second s                  | 1684 | RW=(A) PHA+BETA)/2,0                                  |
| Loss         Order Information           1686         PROD1=RALPHA*RRW           1687         PROD2=RBETA*RRW           1688         IF (PROD1.LT.0) GD TD 20           1689         IF (PROD2.LT.0) GD TO 30           1690         GD TD 70           1691         20 BETA=RW           1692         ICOUNT=ICOUNT+1           1693         IF (ICOUNT.GE.100) GD TD 70           1694         GD TD 10           1695         30 ALPHA=RW           1696         ICOUNT=ICOUNT+1           1697         IF (ICOUNT.GE.100) GD TD 70           1698         GD TD 10           1697         IF (ICOUNT.GE.100) GD TD 70           1698         GO TD 10           1699         41 R (J)=ALPHA           1700         C           1697         IF (ICOUNT.GE.100) GD TD 70           1698         GO TD 10           1699         41 R (J)=ALPHA           1700         C           1701         GD TD 71           1702         70 WRITE(6,*)*(RDT IS NOT FOUND*           1703         71 CONTINUE           1704         RETURN           1705         END           1706         C <t< td=""><td>1685</td><td>CALL RTRY (RW, RRW)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1685 | CALL RTRY (RW, RRW)                                   |
| 1687       PR0D2=RBETA*RRW         1688       IF (PR0D1.LT.0) GD TO 20         1689       IF (PR0D2.LT.0) GD TO 30         1690       GD TO 70         1691       20 BETA=RW         1692       ICOUNT=ICOUNT+1         1693       IF (ICOUNT.GE.100) GD TO 70         1694       GD TO 10         1695       30 ALPHA=RW         1696       ICOUNT=ICOUNT+1         1697       IF (ICOUNT.GE.100) GD TO 70         1698       GO TO 10         1699       41 R (J)=ALPHA         1700       C         WRITE (6,*) R (J)         1701       GO TO 71         1702       70 WRITE (6,*) ROJT IS NOT FOUND?         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C       EQUILIBRIUM         1710       C         1711       SUBROUTINE XREQU (J)         1712       COMMON/CALCS/R (10)         1713       PTOL=.000001         1714       SIG1=SIG1.         1716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1686 | PRODI=RAI PHA*RRW                                     |
| 1688       IF (PROD1.LT.0) GO TO 20         1689       IF (PROD2.LT.0) GO TO 30         1690       GD TO 70         1691       20 BETA=RW         1692       ICOUNT=ICOUNT+1         1693       IF (ICOUNT.GE.100) GO TO 70         1694       GD TO 10         1695       30 ALPHA=RW         1696       ICOUNT=ICOUNT+1         1697       16 ALPHA=RW         1696       ICOUNT=ICOUNT+1         1697       30 ALPHA=RW         1696       ICOUNT=ICOUNT+1         1697       16 R(ICOUNT.GE.100) GD TO 70         1698       GO TO 10         1699       41 R(J)=ALPHA         1700       C         1697       41 R(J)=ALPHA         1700       C         WRITE(6,*)R(J)       100         1701       GO TO 71         1702       70 WRITE(6,*)RODT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1711       SUBROUTINE XREQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1687 | PROD2=RBFTA*RRW                                       |
| 1689       IF (PROD2.LT.0) GO TO 30         1690       GO TO 70         1691       20 BETA=RW         1692       ICOUNT=ICOUNT+1         1693       IF (ICOUNT.GE.100) GO TO 70         1694       GO TO 10         1695       30 ALPHA=RW         1696       ICOUNT=ICOUNT+1         1697       IF (ICOUNT.GE.100) GO TO 70         1698       GO TO 10         1697       IF (ICOUNT.GE.100) GO TO 70         1698       GO TO 10         1699       41 R (J)=ALPHA         1700       C         WRITE (6,*) R (J)         1701       GO TO 71         1702       70 WRITE (6,*) 'RODT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1714       SIG1=0.0         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1688 | IE (PROD1.IT.O) GO TO 20                              |
| 1670       G0 TO 70         1671       20 BETA=RW         1672       ICOUNT=ICOUNT+1         1673       IF (ICOUNT.GE.100) GD TD 70         1674       GD TO 10         1675       30 ALPHA=RW         1676       ICOUNT=ICOUNT+1         1677       IF (ICOUNT.GE.100) GD TD 70         1678       GO TO 10         1679       41 R (J)=ALPHA         1700       C         WRITE (6,*) R (J)         1701       GO TO 71         1702       70 WRITE (6,*) RODT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C SUBROUTINE TO SET UP THE EXTENSION DF REACTIONS IN         1707       C         1708       C SUBROUTINE XREQU(J)         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30 CALL RTRY(SIG1,RSIG1)         1717       IF(ABS(RSIG1).LE.PTOL) GO TO 20 </td <td>1689</td> <td>IF (PROD2.1 T.O) 60 TO 30</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1689 | IF (PROD2.1 T.O) 60 TO 30                             |
| 1671       20       BETA=RW         1672       ICOUNT=ICOUNT+1         1673       IF (ICOUNT.GE.100) GD TD 70         1674       GD TD 10         1675       30         1676       ICOUNT=ICOUNT+1         1677       IF (ICOUNT.GE.100) GD TD 70         1678       GD TD 10         1679       41         1679       41         1679       41         1700       WRITE (6,*)R(J)         1701       GD TD 71         1702       70         1703       71         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1701       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1707       C         1708       C         1709       C         1701       EQUILIBRIUM         1702       COMMON/CALC5/R (10)         1711       SUBROUTINE XREQU (J)         1712       COMMON/CALC5/R (10)         1714       SIG1=0.0         1715       IFLAG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1690 | GD TD 70                                              |
| 107       10       Definition         1692       ICOUNT=ICOUNT+1         1693       IF (ICOUNT.GE.100) GD TD 70         1694       GD TD 10         1695       30         1696       ICOUNT=ICOUNT+1         1697       IF (ICOUNT.GE.100) GD TD 70         1698       GD TD 10         1697       IF (ICOUNT.GE.100) GD TD 70         1698       GD TD 10         1699       41         1700       C         WRITE (6,*)R(J)       GO TO 71         1701       GO TO 71         1702       70         1703       71         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1709       C         1710       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1701       EQUILIBRIUM         1702       COMMON/CALC5/R (10)         1711       SUBROUTINE XREQU (J)         1712       COMMON/CALC5/R (10)         1714       SIG1=0.0 <td>1691</td> <td>20 BETA=RW</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1691 | 20 BETA=RW                                            |
| 1072       FORMULT RELIANCE         1693       IF (ICOUNT.GE.100) G0 T0 70         1694       GD TO 10         1695       30 ALPHA=RW         1696       ICOUNT.GE.100) G0 T0 70         1697       IF (ICOUNT.GE.100) G0 T0 70         1698       GD TO 10         1699       41 R(J)=ALPHA         1700       C         WRITE(6,*)R(J)       GO TO 71         1701       GO TO 71         1702       70 WRITE(6,*)'RODT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1701       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1707       C         1708       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1, RSIG1)         1717       IF(ABS(RSIG1).LE.PTOL) GO T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1697 |                                                       |
| 1673       In the second                   | 1672 | IE (ICOUNT. GE. 100) GO TO 70                         |
| 1675       30 ALPHA=RW         1676       ICDUNT=ICDUNT+1         1677       IF (ICDUNT.GE.100) GD TD 70         1678       GD TD 10         1679       41 R(J)=ALPHA         1700       C       WRITE(6,*)R(J)         1701       GD TD 71         1702       70 WRITE(6,*)'RODT IS NDT FOUND'         1703       71 CDNTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1707       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALCS/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1,RSIG1)         1717       IF (ABS (RSIG1) .LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1694 |                                                       |
| 1070       00 HE HITKW         1696       ICDUNT=ICDUNT+1         1697       IF (ICDUNT.GE.100) GD TO 70         1698       GO TO 10         1699       41 R(J)=ALPHA         1700       C         WRITE(6,*)R(J)         1701       GO TO 71         1702       70 WRITE(6,*)'ROOT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALCS/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30         1717       IF (ABS (RSIG1) .LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=1FLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1695 | 30 AL PHA=RW                                          |
| 1697       IF (ICOUNT.GE.100) GD TD 70         1698       GD TD 10         1697       41 R(J)=ALPHA         1700       C       WRITE(6,*)R(J)         1701       GD TD 71         1702       70 WRITE(6,*)'RODT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1711       SUBROUTINE XREQU(J)         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1,RSIG1)         1717       IF (ABS (RSIG1).LE.PTOL) GO TD 20         1718       SIG1=SIG1+.01         1719       IFLAG=1FLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1696 | TCDINT=TCDINT+1                                       |
| 1677       If (Toburnation) of the rest         1698       GO TO 10         1699       41 R(J)=ALPHA         1700       C       WRITE(6,*)R(J)         1701       GO TO 71         1702       70 WRITE(6,*)'ROOT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1, RSIG1)         1717       IF (ABS (RSIG1). LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1697 | IE (ICDINT_GE_100) GD_TD_70                           |
| 1670       GG 10 ALPHA         1697       41 R (J) = ALPHA         1700       C       WRITE (6, *) R (J)         1701       GO TO 71         1702       70 WRITE (6, *) 'RODT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1701       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1710       C         1711       SUBROUTINE XREQU (J)         1712       COMMON/CALC5/R (10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY (SIG1, RSIG1)         1717       IF (ABS (RSIG1).LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1698 |                                                       |
| 1700       C       WRITE(6,*)R(J)         1701       G0 TO 71         1702       70 WRITE(6,*)'ROOT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1701       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30         1717       IF(ABS(RSIG1), LE.PTOL) 60 TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1670 |                                                       |
| 1700       GO TO 71         1701       GO TO 71         1702       70 WRITE(6,*)'ROOT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1709       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1, RSIG1)         1717       IF (ABS(RSIG1).LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1700 | r WRITE (A. *) R(J)                                   |
| 1701       TO WRITE (6, *)'ROOT IS NOT FOUND'         1702       70 WRITE (6, *)'ROOT IS NOT FOUND'         1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1701       EQUILIBRIUM         1702       COMMON/CALC5/R (10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30         1717       IF (ABS (RSIG1).LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1701 |                                                       |
| 1702       70 WRITE(G), 77 ROOT TO ROT                   | 1702 | 70 WRITE(A +)'ROOT IS NOT FOUND'                      |
| 1703       71 CONTINUE         1704       RETURN         1705       END         1706       C         1707       C         1708       C         1709       C         1709       C         1710       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30         1717       IF(ABS(RSIG1), RSIG1)         1717       IF(ABS(RSIG1), LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1702 |                                                       |
| 1707       END         1705       END         1706       C         1707       C         1708       C         1709       C         1709       C         1710       C         1711       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R (10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30         1717       IF(ABS(RSIG1), RSIG1)         1717       IF(ABS(RSIG1), LE.PTOL) 60 TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1704 | RETURN                                                |
| 1705       C         1706       C         1707       C         1708       C         1709       C         1709       C         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30         1717       IF (ABS (RSIG1), LE, PTOL)         1718       SIG1=SIG1+, 01         1719       IFLAG=1FLAG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1705 | END                                                   |
| 1707       C         1708       C       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C       EQUILIBRIUM         1710       C       EQUILIBRIUM         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1, RSIG1)         1717       IF(ABS(RSIG1).LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1706 |                                                       |
| 1707       C       SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN         1709       C       EQUILIBRIUM         1710       C         1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1, RSIG1)         1717       IF (ABS(RSIG1).LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1707 |                                                       |
| 1705       C       EQUILIBRIUM         1707       C       EQUILIBRIUM         1710       C         1711       SUBROUTINE XREQU(J)         1712       CDMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1, RSIG1)         1717       IF (ABS(RSIG1).LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1708 | C SUBBOLITINE TO SET UP THE EXTENSION OF REACTIONS IN |
| 1710       C         1711       SUBROUTINE XREQU(J)         1712       CDMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1, RSIG1)         1717       IF(ABS(RSIG1).LE.PTOL) 60 TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1709 |                                                       |
| 1711       SUBROUTINE XREQU(J)         1712       COMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1,RSIG1)         1717       IF(ABS(RSIG1).LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1710 | C.                                                    |
| 1712       CDMMON/CALC5/R(10)         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30         1717       IF (ABS (RSIG1) . LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1711 | SUBBOUTINE XREQU(J)                                   |
| 1712       PTOL=.000001         1713       PTOL=.000001         1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL         1717       IF (ABS (RSIG1) . LE.PTOL)       G0         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1712 |                                                       |
| 1714       SIG1=0.0         1715       IFLAG=1         1716       30       CALL RTRY(SIG1,RSIG1)         1717       IF(ABS(RSIG1).LE.PTOL) GO TO 20         1718       SIG1=SIG1+.01         1719       IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1713 | PTOL=.000001                                          |
| 1715     IFLAG=1       1716     30     CALL RTRY(SIG1,RSIG1)       1717     IF(ABS(RSIG1).LE.PTOL) GO TO 20       1718     SIG1=SIG1+.01       1719     IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1714 | SIG1=0.0                                              |
| 1716     30     CALL RTRY(SIG1,RSIG1)       1717     IF (ABS(RSIG1).LE.PTOL) GO TO 20       1718     SIG1=SIG1+.01       1719     IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1715 | IFLAG=1                                               |
| 1717         IF (ABS (RSIG1).LE.PTOL) GO TO 20           1718         SIG1=SIG1+.01           1719         IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1716 | 30 CALL RTRY(SIG1.RSIG1)                              |
| 1718 SIG1=SIG1+.01<br>1719 IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1717 | IF (ABS (RSIG1), LE.PTOL) GD TO 20                    |
| 1719 IFLAG=IFLAG+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1718 | SIG1=SIG1+,01                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1719 | IFLAG=IFLAG+1                                         |
| 1720 IF (IFLAG.GT. 100) 6D TD 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1720 | IF(IFLAG.GT.100)6D TD 31                              |

e

| 1721  | GO TO 30                                                             |
|-------|----------------------------------------------------------------------|
| 1722  | 31 R(J)=0.0                                                          |
| 1723  | 60 TO 21                                                             |
| 1774  |                                                                      |
| 1725  | R(I)-CICI                                                            |
| 1720  | 01 CONTINUE                                                          |
| 1720  |                                                                      |
| 1727  |                                                                      |
| 1720  | ENU                                                                  |
| 1727  |                                                                      |
| 17.50 | C SUBRUUTINE FUR CHECKING EQUILIBRIUM CUNDITIONS                     |
| 1/31  |                                                                      |
| 1732  | SUBROUTINE RTRY (RA, FRA)                                            |
| 1733  | COMMON/CALC2/TO,DF,FF(15),DV                                         |
| 1734  | COMMON/INPR1/F(10),A(10),ONEX(15,10),STO(15,10),HR(10)               |
| 1735  | COMMON/INPR2/NNCP,M                                                  |
| 1736  | COMMON/CALC5/R(10)                                                   |
| 1737  | COMMON/EQRXN/NRX(10), GRX(10)                                        |
| 1738  | COMMON/EQRXN1/PO                                                     |
| 1739  | REAL EQUIK(10), EQUIK1(10), EQFF(15), OLDR(10), OLDF(10)             |
| 1740  | RC=1.987                                                             |
| 1741  | EQUIK(J)=EXP(-(GRX(J)/(RC*536,4)))                                   |
| 1742  | EQUIK1 (J) = EQUIK (J) * EXP (- (HR (J) / RC) * (1 / TO-1 / 536, 4)) |
| 1743  | 55=0.0                                                               |
| 1744  | DD 20 T=1.NNCP                                                       |
| 1745  | SS=SS+ST0(1, J)                                                      |
| 1746  |                                                                      |
| 1747  | 22 Y=0.0                                                             |
| 174R  | DO TO TEL NNCP                                                       |
| 1740  | EOEE(1) = EE(1) + ETO(1 - 1) + EOA                                   |
| 1750  |                                                                      |
| 1751  |                                                                      |
| 1731  | JO LOWITNUE                                                          |
| 1757  | 1F \55.EW, 0/00 10 20<br>FOL_FOUT(4/1) x /DAxx/ 20\\x ///xx00\       |
| 1/33  | EQL=EQUIK1(J)*(FV**(~55))*(Y**55)                                    |
| 1/04  |                                                                      |
| 1/00  | 25 EQL=EQUIK1(J)                                                     |
| 1/36  | 26 EQR=1.0                                                           |
| 1/5/  | DU 50 1=1,NNCF                                                       |
| 1758  | IF (STO(I, J).EQ.0)GD TO 31                                          |
| 1759  | IF(EQFF(I).EQ.0)GO TO 31                                             |
| 1760  | $C \qquad \text{WRITE} (6, *) I, EQFF (I), STO(I, J)$                |
| 1761  | EQR=EQR*(EQFF(I)**STO(I,J))                                          |
| 1762  | 31 CONTINUE                                                          |
| 1763  | 50 CONTINUE                                                          |
| 1764  | FRA=EQL-EQR                                                          |
| 1765  | RETURN                                                               |
| 1766  | END                                                                  |
| 1767  | C                                                                    |
| 1768  | С                                                                    |
| 1769  | C SUBROUTINE REACO-TO DISPLAY SOME OF THE PD INFORMATION             |
| 1770  | C REATOR VOLUME AND HEAT LOAD                                        |
| 1771  | C                                                                    |
| 1772  | SUBROUTINE REACD                                                     |
| 1773  | COMMON/PRD1/F1(500), IDCS(25), IDPR0(50), IFD(50).                   |
| 1774  | 1 IFDL (200), IPD (50), IPDL (200), IPRC (70), IRC (50).             |
| 1775  | 2 ISIZ(25), ITCNT(100), JPD(50), MHB(50), NRECL(10),                 |

¢

.

|                                                                                             | 3 FB(1230), FR0F(3000), RGN1(100), TENF(410), X(3000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             | COMMON/COMIO/NI,NO,IYES,INO,PNAM(15),NPAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                           | COMMON/UNITA1/UDA(3),ULA(3),UVA(3),ULB(3),UHT(9),UDF(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •                                                                                           | COMMON/UNITA2/TU(4), PU(6), HU(3), SU(6), RU(6), UM(3), PUX(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ľ                                                                                           | COMMON/UNITA3/UARE(3).UVIS(6).UTHC(9).UHPA(3).UVB(3).USG(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | COMMON/UNITOM/TH1.1U2.1U3.1U21.1U31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I                                                                                           | EQUIVALENCE (ITCNT (18), N2), (ITCNT (21), NCP), (ITCNT (22), NCPU),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | 1 (ITCNT/33)  NCPT (ITCNT/24)  NCPD (ITCNT/25)  NCPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | 2  (ITCMT(22), NGPC) (ITCMT(27), NGPC) (ITCMT(20), NGPC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | $\frac{2}{2} \left( \frac{1}{20}, 1$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| l .                                                                                         | 5 (IICNI(27), NUFN/, (IICNI(30), NUFD), (IICNI(31), NEL),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                           | 4 (ITCNT(60), INTRY), (ITCNT(38), NST), (ITCNT(39), NND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | EQUIVALENCE (IPRC(1), MLCXA), (IPRC(2), MLCY), (IPRC(3), MLCXB),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ł                                                                                           | 1 (IPRC( 4), MLTXA), (IPRC(5), MLTY), (IPRC(6), MLTXB),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | 2 (IPRC(7),MLPXA),(IPRC(8),MLPY),(IPRC(9),MLPXB),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                           | 3 (IPRC(10),MLHO),(IPRC(11),MLSO),(IPRC(12),MLCZF),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | 4 (IFRC(13), MLKVA), (IFRC(14), MLKVB), (IFRC(15), MFHSP),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •                                                                                           | 5 (IPRC(16), MPRC1), (IPRC(17), MPRC2), (IPRC(18), MPRC3),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | 6 (IPRC(19), MPRC4), (IPRC(20), MPRC5),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ļ                                                                                           | 7 (IPRC(26), MPRA1),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ;                                                                                           | 8 (IPRC(36).MM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,<br>,                                                                                      | 1 (IPRC (62), MECU), (IPRC (63), MECP), (IPRC (64), LOCKP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| }                                                                                           | COMMON/CALC2/TO.DE.FE(15).DV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,<br>)                                                                                      | COMMON/EDRYN/NRY(10) GRY(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                           | COMMON/EQRANI/MARTIO/ COMMITS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,                                                                                           | DIMENSION LEET (10) LETCHT (10) TELL (10) ELC(15 10) EC(15 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | DIMENSION DECIVIES 101 DECIVES 101 DECIDENTIAL DECIDENTE DECIDORICAL DECIDORICAL DECIDORICAL DECIDORICAL DECIDORIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •                                                                                           | DIMENSION RELZ(13,107, REZ(13,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| )<br>-                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | CUMMUN/INPRI/F(10),A(10),UNEX(15,10),510(15,10),HR(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                             | COMMON/SUPP/IPRINT, PPRINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,<br>, C                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| , C<br>, C                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| , C<br>, C<br>, 1                                                                           | FORMAT(/' REAC # ',I2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| , C<br>C<br>C<br>1<br>2<br>2                                                                | FORMAT(/' REAC # ',I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | FORMAT(/' REAC # ',I2)<br>FORMAT( ' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ISOTHERMAL ')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ) C<br>7 C<br>8 1<br>9 2<br>0 3                                                             | FORMAT(/' REAC # ',I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ADIABATIC ')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ) C<br>7 C<br>8 1<br>9 2<br>9 3<br>. 4<br>2 5                                               | FORMAT(/' REAC # ',I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C C C C C C C C C C C C C C C C C C C                                                       | FORMAT(/' REAC # ',I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4)<br>FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C C C C C C C C C C C C C C C C C C C                                                       | FORMAT(/' REAC # ',I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4)<br>FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ŗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C C C C C C C C C C C C C C C C C C C                                                       | FORMAT(/' REAC # ',I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT('' THE REACTOR VOLUME= ',F10.2,3X,A4)<br>FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C C C C C C C C C C C C C C C C C C C                                                       | FORMAT(/' REAC # ', I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4)<br>FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12.<br>1 ,' ',A4,'MOLES/HR'/)<br>FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | FORMAT(/' REAC # ',I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(/' THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(//' THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4)<br>FORMAT(/' THE REACTOR VOLUME= ',F10.2,3X,A4)<br>FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12.<br>1 ,' ',A4,'MOLES/HR'/)<br>FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C C C C C C C C C C C C C C C C C C C                                                       | FORMAT(/' REAC # ', I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(/' THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(/' THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4)<br>FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12.<br>1 ,' ',A4,'MOLES/HR'/)<br>FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER<br>EDEMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C C C C C C C C C C C C C C C C C C C                                                       | FORMAT(// REAC # ', I2)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(// THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(// THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT(' THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4)<br>FORMAT(// THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12.<br>1 ,' ',A4,'MOLES/HR'/)<br>FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER<br>FORMAT(//'**** THIS IS THE PD FOR THE REACTOR UNIT **** ')<br>FORMAT(/ THE OPERATION OF THE REACTOR UNIT **** ')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ', I2) FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT('/ THE OPERATION IN THE REACTOR IS ISOTHERMAL ') FORMAT(// THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12. 1 ,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(//'**** THIS IS THE PD FOR THE REACTOR UNIT **** ') FORMAT(' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | FORMAT(/' REAC # ',12)<br>FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4)<br>FORMAT(// THE OPERATION IN THE REACTOR IS ISOTHERMAL ')<br>FORMAT(// THE OPERATION IN THE REACTOR IS ADIABATIC ')<br>FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4)<br>FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12<br>1 ,' ',A4,'MOLES/HR'/)<br>FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER<br>FORMAT(//'**** THIS IS THE PD FOR THE REACTOR UNIT **** ')<br>FORMAT(' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3<br>1 ,' DEG ',A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ',I2) FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT('' THE OPERATION IN THE REACTOR IS ISOTHERMAL ') FORMAT(//' THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT('' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12. 1 ,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(//'**** THIS IS THE PD FOR THE REACTOR UNIT **** ') FORMAT(' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3' 1 ,' DEG ',A4) FORMAT(' THE SPECIFIED REACTOR VOLUME= ',F12.3,2X,A4) FORMAT(' THE SPECIFIED REACTOR SPECIFIED REACTO</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , a <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ',I2) FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT('' THE OPERATION IN THE REACTOR IS ISOTHERMAL ') FORMAT(/' THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT('' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12.' 1,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(//'**** THIS IS THE PD FOR THE REACTOR UNIT **** ') FORMAT(' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3' 1,' DEG ',A4) FORMAT(' THE SPECIFIED REACTOR VOLUME= ',F12.3,2X,A4) FORMAT(' THE OUTLET REACTOR TEMPERATURE= ',F12.3,' DEG '</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ',12) FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT('' THE OPERATION IN THE REACTOR IS ISOTHERMAL ') FORMAT(/' THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12. 1 ,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(//'***** THIS IS THE PD FOR THE REACTOR UNIT ***** ') FORMAT(' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3' 1 ,' DEG ',A4) FORMAT(' THE SPECIFIED REACTOR VOLUME= ',F12.3,2X,A4) FORMAT(' THE OPERATURE TEMPERATURE= ',F12.3,' DEG ' </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ',12) FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT('' THE OPERATION IN THE REACTOR IS ISOTHERMAL ') FORMAT(/' THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12. 1 ,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(//'' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT('' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3' 1 ,' DEG ',A4) FORMAT(' THE SPECIFIED REACTOR VOLUME= ',F12.3,2X,A4) FORMAT(' THE OUTLET REACTOR TEMPERATURE= ',F12.3,' DEG ' FORMAT('' THE INLET PRESSURE TO REACTOR= ',F12.4,' ',A4</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ',12) FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT('' THE OPERATION IN THE REACTOR IS ISOTHERMAL ') FORMAT(/' THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12. 1 ,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(/'' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT('' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3' 1 ,' DEG ',A4) FORMAT(' THE SPECIFIED REACTOR VOLUME= ',F12.3,2X,A4) FORMAT(' THE OUTLET REACTOR TEMPERATURE= ',F12.3,' DEG ' FORMAT('' THE INLET PRESSURE TO REACTOR= ',F12.4,' ',AP FORMAT('' THE INLET PRESSURE TO REACTOR ',F12.4,' ',AP FORMAT''' THE ',F12.4,' ',AP FORMAT''''''''''''''''''''''''''''''''''''</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ',12) FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT(/' THE OPERATION IN THE REACTOR IS ISOTHERMAL ') FORMAT(/' THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12. 1 ,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(//'' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT('' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3' 1 ,' DEG ',A4) FORMAT(' THE SPECIFIED REACTOR VOLUME= ',F12.3,2X,A4) FORMAT(' THE OUTLET REACTOR TEMPERATURE= ',F12.3,' DEG ' FORMAT(' THE OUTLET PRESSURE TO REACTOR= ',F12.4,' ',A4 FORMAT(' THE OUTLET PRESSURE FROM REACTOR= ',F12.4,'</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ',12) FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT('/ THE OPERATION IN THE REACTOR IS ISOTHERMAL ') FORMAT(// THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12. 1 ,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(///'***** THIS IS THE PD FOR THE REACTOR UNIT ***** ') FORMAT(' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3' 1 ,' DEG ',A4) FORMAT(' THE SPECIFIED REACTOR VOLUME= ',F12.3,2X,A4) FORMAT(' THE OUTLET REACTOR TEMPERATURE= ',F12.3,' DEG ' FORMAT(' THE OUTLET PRESSURE TO REACTOR= ',F12.4,' ',A4' FORMAT(' THE OUTLET PRESSURE FROM REACTOR= ',F12.4,'</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ',12) FORMAT(' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT(/' THE OPERATION IN THE REACTOR IS ISDTHERMAL ') FORMAT(/' THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT(' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12. 1 ,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' per FORMAT(//'**** THIS IS THE PD FOR THE REACTOR UNIT **** ') FORMAT(' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3 1 ,' DEG ',A4) FORMAT(' THE SPECIFIED REACTOR VOLUME= ',F12.3,2X,A4) FORMAT(' THE OUTLET REACTOR TEMPERATURE= ',F12.3,' DEG ' FORMAT(' THE OUTLET PRESSURE TO REACTOR= ',F12.4,' ',A' FORMAT(' THE OUTLET PRESSURE FROM REACTOR= ',F12.4,' FORMAT(//SX,2A4,3X,'-&gt;',3X,2A4)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | <pre>FORMAT(/' REAC # ',12) FORMAT('' THE VOLUME INCREMENT= ',F6.2,' ',A4) FORMAT(//' THE OPERATION IN THE REACTOR IS ISOTHERMAL ') FORMAT('/' THE OPERATION IN THE REACTOR IS ADIABATIC ') FORMAT('' THE REACTOR VOLUME= ',F10.2,3X,A4) FORMAT(/' THE PRODUCTION RATE OF COMP.# ',I3,' IS ',F12. 1,' ',A4,'MOLES/HR'/) FORMAT(///' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(//' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(//' THE HEAT LOAD ON REACTOR IS ',F12.2,1X,A4,' PER FORMAT(' THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3,' FORMAT(' THE SPECIFIED REACTOR VOLUME= ',F12.3,2X,A4) FORMAT(' THE OUTLET REACTOR TEMPERATURE= ',F12.3,' DEE ' FORMAT(' THE INLET PRESSURE TO REACTOR= ',F12.4,' ',A+' FORMAT(' THE OUTLET PRESSURE FROM REACTOR= ',F12.4,' FORMAT('/'5X,2A4,3X,'-&gt;',3X,2A4)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 3 , 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>Conmon/UnitA1, w0, rt2, rwart13, wr H0<br/>COMMON/UNITA1/UDA(3), ULA(3), UVA(3), ULB(3), UHT (9), UDF (6)<br/>COMMON/UNITA2/TU(4), PU(6), HU(3), SU(6), RU(6), UM(3), PUX(6)<br/>COMMON/UNITA2/TU(4), PU(6), UTHC (9), UHPA(3), UVB(3), USB(6)<br/>COMMON/UNITDM/IU1, IU2, IU3, IU21, IU31<br/>EQUIVALENCE (ITCNT(18), N2), (ITCNT(21), NCP), (ITCNT(22), NCPU),<br/>1 (ITCNT(23), NCPT), (ITCNT(24), NCPP), (ITCNT(25), NCPH),<br/>2 (ITCNT(26), NCPS), (ITCNT(77), NCPF), (ITCNT(28), NCPD),<br/>3 (ITCNT(29), NCPN), (ITCNT(38), NST), (ITCNT(39), NND)<br/>EQUIVALENCE (IPRC(1), MLCXA), (IPRC(2), MLCY), (IPRC(3), MLCXB),<br/>1 (IPRC(4), MLTXA), (IPRC(5), MLTY), (IPRC(6), MLTXB),<br/>2 (IPRC(7), MLPXA), (IPRC(5), MLTY), (IPRC(6), MLTXB),<br/>3 (IPRC(10), MLHO), (IPRC(11), MLSO), (IPRC(12), MLCZF),<br/>4 (IPRC(13), MLKVA), (IPRC(11), MLSO), (IPRC(12), MLCZF),<br/>5 (IPRC(16), MPRC1), (IPRC(17), MPRC2), (IPRC(18), MPRC3),<br/>6 (IPRC(19), MPRC4), (IPRC(20), MPRC5),<br/>7 (IPRC(26), MPRA1),<br/>8 (IPRC(36), MM),<br/>1 (IPRC(26), MEC1), (IPRC(63), MECP), (IPRC(64), LOCKP)<br/>COMMON/OUTP/V0<br/>COMMON/CALC2/T0, DF, FF (15), DV<br/>COMMON/CALC2/T0, DF, FF (15), DV<br/>COMMON/CALC2/T0, DF, FF (15), DV<br/>COMMON/EQRXN/NRX(10), GRX(10)<br/>COMMON/EQRXN/NRX(10), GRX(10)<br/>COMMON/EQRXN/NRX(10), GRX(10)<br/>COMMON/EQRXN/NRX(10), GRX(10)<br/>COMMON/INR2/NNCP, M<br/>COMMON/INR2/NNCP, M<br/>COMMON/INR2/NNCP, M<br/>COMMON/INR2/NNCP, M<br/>COMMON/INR2/NNCP, M<br/>COMMON/INR7/FO DIMENTING (15, 10), HR (10)</pre> |

| 1826   | 17   | FORMAT(//3X,2A4,2X,'+',2X,2A4,3X,'->',3X,2A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1827   | 18   | FORMAT (//3X, 2A4, 2X, '+', 2X, 2A4, 3X, '=', 3X, 2A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1828   | 19   | FORMAT (//3X, 2A4, 3X, '->', 3X, 2A4, 2X, '+', 2X, 2A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1829   | 20   | FORMAT (//3X.2A4.3X.'='.3X.2A4.2X.'+'.2X.2A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1830   | 21   | FORMAT (//1X, 2A4, 2X, '+', 2X, 2A4, 3X, '->', 3X, 2A4, 2X, '+', 2X, 2A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1831   | 22   | FORMAT (//1X, 2A4, 2X, '+', 2X, 2A4, 3X, '=', 3X, 2A4, 2X, '+', 2X, 2A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1832   | 23   | FORMAT (///1X.'RXN.'.3X.'SEQ. #'.3X.'ORDER'.3X.'STOCHIO>')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1833   | 24   | FORMAT (/2X, 12, 5X, 13, 4X, F5, 2, 5X, F5, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1834   |      | IPOS=JPD (NEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1835   |      | IF (INTRY.NE.0) GD TD 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1836   |      | WRITE (NO. 1) NEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1837   |      | NL=IFD(NEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1838   |      | NSF=IFDL(NL+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1839   |      | NTOP=NSF-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1840   |      | TPRINT=PD(IPDS+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1841   |      | PPRINT=PD(IPOS+364)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1847   |      | WRITE (NO. 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1843   |      | M=PD(IPOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1944   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1945   |      | DO 100 I=1 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1045   |      | NBY(I) = BD(IBOS+41+I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1017   |      | NAX (37-1 D (1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) (37-1) |
| 1047   |      | D0 201 1-1,000<br>DNEV(1 1)=D0(1000+10+1+51+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1040   |      | $CTD(1 = 1) = DD(1DDC_{11}) + 1 + 20(1 + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1097   | 201  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1051   | 100  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1050   | 100  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1032   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1054   |      | NUL-FV(1FU3741)<br>DOT-FONUDT(1 0 101 DD/100C+4))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1804   |      | $\mathbf{R} (\mathbf{M} \in \mathbf{C} \setminus \{1, 2, 1\} \in \mathbf{C} \setminus \{\mathbf{C} \in \mathbf{C} \mid \mathbf{C} \in \mathbf{C} : \mathbf{C} \in \mathbf{C} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1833   |      | IF (NUF.EW.V/WRIIC(NU,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1000   |      | 17 (NUF.EW.1/WRIIC(NU, 4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1837   |      | VI=FU(IFU0=1)<br>UDITE(NO_3)(CONDOT(12_1_IU7_UI1) UDD(IU7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1858   |      | WRITE(NU, 2)CONVRT(12, 1, 103, V1), UVD(103)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1804   |      | N5=FU(IFU5+8)<br>CD=CDW(D1/Z_(D)(ID0C(0))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1860   |      | PF=LUNVK1(3,1,103,PU(1P05+77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1861   |      | KV=PD(1P05+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1862   |      | NPS=PD(1PUS+40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1863   |      | IF (NPS.EQ.0) URP=PD (IPUS+5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1864   |      | 1F(NPS.EQ.1)UKP=PPRINT-PD(1PUS+7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1865   |      | WRITE (NU, 13) PPRINT, PU(102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1866   |      | WRITE(NU, 14) URP, PU(102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1867   |      | IF (NCC. EQ. 0) WRITE (NU, 10) CUNVET (12, 1, 103, KV), UVB (103)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1868   |      | IF (NCC. EQ. 1) WRITE (NO, 4) RUT, TO (TOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1869 - |      | IF (NCC. EQ. 2) WRITE (NO, 6) N5, FP, UM (TOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1870   |      | DU SO J=1,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1871   |      | LEFT(J)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1872   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1873   |      | DU 40 1=1,NNCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1874   |      | IF(STO(1,J).EQ.0)GO TO 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1875   |      | IF(STO(I,J).LT.0)LEFT(J)=LEFT(J)+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1876   |      | IF (STO(I,J).GT.0)LRIGHT(J)=LRIGHT(J)+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1877   | 41   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1878   | 40   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1879   |      | IRLL(J) = LEFT(J) + LRIGHT(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1880   | - 30 | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

•

| 1881      | DO 50 J=1,M                                                                         |
|-----------|-------------------------------------------------------------------------------------|
| 1882      | LCOUNT=1                                                                            |
| 1883      | IRCOUNT=1                                                                           |
| 1884      | DO 60 I=1,NNCP                                                                      |
| 1885      | ILM=(I-1)*N2+1+MPHSP                                                                |
| 1886      | ILN=ILM+1                                                                           |
| 1887      | C WRITE(NO,*)STO(I,J),LCOUNT,IRCOUNT                                                |
| 1888      | IF(STO(I,J).EQ.0)GO TO 61                                                           |
| 1889      | IF (STO(I, J).LT.0) RLC (LCOUNT, J) = PROP (ILN)                                    |
| 1890      | IF (STO(I, J).LT.0) RLC2 (LCOUNT, J) = PROP (ILM)                                   |
| 1891      | IF (STO(I, J).LT.0) LCOUNT=LCOUNT+1                                                 |
| 1892      | IF (STO(I,J).GT.0) RC (IRCOUNT, J) = PROP(ILN)                                      |
| 1893      | IF(STO(I,J).GT.0)RC2(IRCOUNT,J)=PROP(ILM)                                           |
| 1894      | IF (STD(I,J).GT.0) IRCOUNT=IRCOUNT+1                                                |
| 1895      | 61 CONTINUE                                                                         |
| 1896      | 60 CONTINUE                                                                         |
| 1897      | IF(IRLL(J).NE.2)60 TO 62                                                            |
| 1898      | IF (NRX (J).NE.1)WRITE (NO, 15) RLC2(1, J), RLC(1, J), RC2(1, J), RC(1, J           |
| (1899     | IF(NRX(J).EQ.2)WRITE(NO,16)RLC2(1,J),RLC(1,J),RC2(1,J),RC(1,J                       |
| 1         |                                                                                     |
| 1900      |                                                                                     |
| 1901      | 52 IF(IRLL(J).NE.3)60 10 63                                                         |
| 1902      | IF (LK16H) (J).NE.2/60 10 64                                                        |
| 1905<br>) | IF (NRX (J).EQ. 1) WRITE (NU, 19) REC2(1, J), REC(1, J), RC2(1, J), RC(1, J         |
| 1904      | 1,RC2(2,J),RC(2,J)                                                                  |
| 1905      | IF(NRX(J).EQ.2)WRITE(NO,20)RLC2(1,J),RLC(1,J),RC2(1,J),RC(1,J                       |
| )         |                                                                                     |
| 1906      | 1,RC2(2,J),RC(2,J)                                                                  |
| 1907      | GO TO 65                                                                            |
| 1908      | 64 IF (NRX (J).EQ.1) WRITE (ND, 17) RLC2 (1, J), RLC (1, J), RLC2 (2, J), RLC (2    |
| ,J)       |                                                                                     |
| 1909      | 1,RC2(1,J),RC(1,J)                                                                  |
| 1910      | IF(NRX(J).EQ.2)WRITE(ND,18)RLC2(1,J),RLC(1,J),RLC2(2,J),RLC(2                       |
| ,J)       |                                                                                     |
| 1911      | 1 ,RC2(1,J),RC(1,J)                                                                 |
| 1912      | GO TO 65                                                                            |
| 1913      | 63 IF (NRX (J).EQ.1) WRITE (NO, 21) RLC2 (1, J), RLC (1, J), RLC2 (2, J), RLC (2    |
| ,J)       |                                                                                     |
| 1914      | 1,RC2(1,J),RC(1,J),RC2(2,J),RC(2,J)                                                 |
| 1915      | IF (NRX (J) . EQ. 2) WRITE (NO, 22) RLC2 (1, J) , RLC (1, J) , RLC2 (2, J) , RLC (2 |
| ,J)       |                                                                                     |
| 1916      | 1,RC2(1,J),RC(1,J),RC2(2,J),RC(2,J)                                                 |
| 1917      | GO TO 65                                                                            |
| 1918      | 65 CONTINUE                                                                         |
| 1919      | 50 CONTINUE                                                                         |
| 1920      | WRITE (NO, 23)                                                                      |
| 1921      | DO 70 J=1,M                                                                         |
| 1922      | DO SO I=1, NNCP                                                                     |
| 1923      | ILM=(I-1)*N2+1+MPHSP                                                                |
| 1924      | ILN=ILM+1                                                                           |
| 1925      | WRITE(NO,24)J,I,ONEX(I,J),STO(I,J)                                                  |
| 1926      | 80 CONTINUE                                                                         |
| 1927      | 70 CONTINUE                                                                         |
| 1141      | a walan marana                                                                      |

| 1928 |     | GO TO 11                                                     |
|------|-----|--------------------------------------------------------------|
| 1929 | 200 | CONTINUE                                                     |
| 1930 |     | RXHT=PD(IPOS+362)/1000.0                                     |
| 1931 |     | WRITE(NO,7)CONVRT(4,1,IU3,RXHT),HU(IU3)                      |
| 1932 |     | IF (NOP.EQ.1) WRITE (NO, 12) CONVRT (1, 2, IU1, TO), TU(IU1) |
| 1933 |     | WRITE(ND, 5) CONVRT(12, 1, IU3, VO), UVB(IU3)                |
| 1934 | 11  | CONTINUE                                                     |
| 1935 |     | RETURN                                                       |
| 1936 |     | END                                                          |
| ¥    |     |                                                              |

# VITA 🐣

#### MOHSEN HEDI ACHOUR

#### Candidate for the Degree of

#### Master of Science

Thesis: INTERACTIVE MODEL OF A HOMOGENEOUS GASEOUS PLUG FLOW REACTOR

Major Field: Chemical Engineering

Biographical:

- Personal Data: Born in Chebba, Tunisia, September 29, 1962, the son of Mr. and Mrs. Hedi Achour.
- Education: Graduated from Homma Charkia-Chebba Primary School, June 1973; Chebba High School: Baccalauriat, June 1981; Oklahoma State University: B.S. in Chemical Engineering, May, 1986; completed requirements for the Master of Science degree in December, 1987.
- Professional Experience: Teaching Assistant Spring 1987/Fall 1986, School of Chemical Engineering, Oklahoma State University; Summer Salesman - Summers 1986, 1985, 1984, 1982, Company Essaada, Tunisia; Soccer Coach, October 1984, 1985, 1986, YMCA, Stillwater, OK; Assistant Engineer, December -January 1983, Masco, Holdenville, OK.