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CHAPTER I 

INTRODUCTION 

Looking back to the old days when surviving was the only goal 

mankind searched to achieve, nature seemed to fulfill all our needs. 

However, as life has evolved, productivity has become a necessity for 

living. Ever since, man has strived to invent tools and machines for 

better results and higher achievement. Certainly computers constitute 

one of the most important and useful tools man has invented to increase 

not only the productivity of material goods, but also of the mind (1). 

In the sixties, computer use was introduced into the domain of 

education and rapidly started to expand due to the availability of large 

scale and multiuser digital computers. The traditional teaching method 

of using chalkboard, projectors, tape recorders, and small teaching 

devices was criticized to be ineffective and to involve only few 

students. Whereas the use of educational computer programs allows each 

and every student to interact with the computer, to follow instructions, 

and to solve problems (1). This way the student, not only is fully 

involved in the learning process, but can also feel comfortable if 

he/she is embarrassed to show his/her "weaknesses" to a teacher or 

classmates (2). The Computer Assisted Instruction system (CAI), which 

is the use of the computer for scientific calculations, was first used 

in many primary or secondary schools and in colleges in the United 

States of America then reached Europe and Japan (1). Programming Logic 

for Automated Teaching Operation (PLATO), developed at the University of 
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Illinois, was the first computer-based educational system to help teach 

computer topics as well as math and language skills. 

The users of these programs usually are not familiar with the 

software itself which is nothing but a set of mathematical and logical 

relationships describing a system of interest. These relationships, or 

equations, based on certain assumptions, constitute a model which is 

used to gain some understanding of how the corresponding system 

behaves. In general, models or simulation programs are a two step 

process. The first step is to convert reality to a model. The 

simulation is valid if the model adequately represents the real 

system. The second step is to formulate the model in a code which must 

do what the model requires for the simulation to be verified. As 

expected, some real systems are very complex. Depending on the 

assumptions made, the corresponding models could involve tedious and/or 

complicated calculations. Fortunately, the presence of desktop 

computers and modern software allows users with modest mathematical, 

statistical, and programming backgrounds to represent, explain, predict, 

and estimate real world phenomena. 

Basically, any simulation program presents four main tasks. 

Firstly, the input data is required from the user in an interactive 

mode. The input data is usually checked for validity against the 

program constraints. Secondly, the data is transferred and stored for 

later use in the program. Thirdly, the program is executed and errors 

will be detected if present. And finally, the output is made available 

to the user under request. Despite the development of the computer 

technology and the advanced software, good models are not readily 

available, therefore simulation programs should always be used 
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carefully. And of course, the more technical skills the users have, the 

better results they obtain. 

Chemical engineering simulation systems are interactive computer 

programs that allow an operator or an engineer to model or to simulate a 

series of interconnected unit operations in a plant or a single process 

unit such as a distillation column, a heat exchanger, or a mixed flow 

reactor. Bonner and Moore, in 1960, published the first chemical 

simulation system (3). PACER, GEMCS, MAXISIM, SIMSCI, ASPEN, and SIPRO

DTC are other examples of process design simulators. By using such 

programs, the user is able to set the operating parameters for the unit 

operations, run the program, review the results, change a few inputs, 

and run again until an optimum set of results is obtained. 

Due to the importance of reactors in the chemical industry, the 

simulation of chemical reactors had gained considerable attention. 

Mainly, a reactor model is a set of mathematical relations describing 

the local production or consumption, the physical properties of the 

chemicals, the thermodynamics of the system, and the conservation laws 

(4). This information can be used to simulate a full-scale reactor or 

to improve the operation and control of an existing unit. A chemical 

reactor model can be available as one separate 11 Stand alone" model or as 

one separate unit within a large simulator. 

MAXISIM is a complete process design simulator program and is 

currently used by the students in the School of Chemical Engineering at 

Oklahoma State University. The focus of this study is to model an ideal 

gaseous plug flow reactor and include it as a reactor core in MAXISIM. 

The reactor is designed to handle any type of ten chemical reactions 

3 



{elementary and/or nonelementary) and operates isothermally or 

adiabatically depending on the user's option. The module can be used by 

students to analyze the performance of the reactor under specified 

operating conditions. It also allows the users to learn and verify some 

fundamentals in chemical reactor design. 
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CHAPTER II 

OBJECTIVES 

The purpose of this work is to implement a reactor core into 

MAXISIM, a process design simulation system. The reactor model to be 

added is a homogeneous gaseous ideal plug flow reactor. It is an 

interactive program designed for a maximum of ten reactions and fifteen 

reacting or product components. The chemical reactions can either be 

elementary or nonelementary, and the reactor can operate both 

isothermally and adiabatically. Modules from MAXISIM such as 11 Adder 11 , 

11 Divider 11 , 11 Compressor 11 , and 11 Fl ash 11 can be used along with the reactor 

to model a reactor system with recycle. 

Once this module is installed in MAXISIM, several tasks can be 

performed to verify or test some fundamentals in kinetics, reactor and 

process design. A user would be capable of the following: 

1. Determining the required reactor size for a given process and 

comparing it to known sizes of batch and/or mixed flow reactors. 

2. Determining the outlet composition and temperature of a 

product stream from an operating reactor and comparing it with plant 

data. 

3. Determining the effect of the operation mode (isothermal or 

adiabatic) on the reactor size or the outlet composition. 

4. Determining the effect of recycle on the reactor volume, the 

outlet composition, the minimum feed required to meet the production 

specifications. 
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5. Testing the limitations of a plug flow reactor with recycle. 

6. Testing the effect of inerts in the feed. 

7. Determining the effect of the feed composition on the product 

quality. 

8. Verifying the kinetics of a process if experimental data is 

available. 

9. Testing the effect of inlet temperature and pressure on 

reactor performance. 

10. Fully describing the process shown in Figure 1 which consists 

of an adder, a reactor, a high pressure flash, a compressor, and a 

divider. All the modules except for the reactor are already installed 

in MAXISIM. 

PURGE ,. 

FEED COMPRESSOR REACTOR 1--i~~"--

HEAVIES 

Figure 1. Reactor Loop. 
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CHAPTER III 

LITERATURE REVIEW 

Types of Computer Programs 

As computer use emerged in education, three main software programs 

were important: computer-aided instruction, simulators, and small 

utility packages. 

Because of the continuous increase of chemical engineering 

enrollments in the early eighties, there was a need for computer-based 

educational instruction techniques. The programs are used to make up 

for the inability of teachers to give the same level of individualized 

instruction to the students as they did in former years. These 

techniques also allow the student to be fully involved and responsible 

for a complete understanding of the subject and the problem-solving 

step. PLATO is considered the largest computer-aided instruction 

program. It has been tested and proven efficient for three chemical 

engineering courses: stoichiometry, thermodynamics, and unit operations 

(5). The PLATO system has a unique sophisticated software package which 

allows the programming of complex highly interactive problems utilizing 

graphs, diagrams, animations, and even projected slides, in addition to 

all the usual computational abilities of a large computer. This system 

is found to be an excellent tool for self-paced instruction of a large 

number of students who do not need to have any programming background. 
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On the other hand, process simulators are used in parallel with 

lectures to verify, test, or criticize some scientific fundamentals and 

deductions. These programs are also used in industry as an aid for 

modeling new designs or for improving operating plants. The students or 

the engineers using these process simulators, usually have a process 

flow diagram (i.e., flowsheet) to implement. They make use of the 

interactive mode in these programs to enter the different unit 

operations and their process data along with feeds specifications and 

the calculation options. Examples of currently used process simulators 

are PACER, developed in 1968 (6), CHESS, also developed in 1968 (7), 

PAS, developed at Oklahoma State University in 1968 (8), and MAXISIM, 

also developed at Oklahoma State University in 1980 (9). FLOWTRAN, 

developed at the Monsanto Company, and used in seventy companies and 

several universities, was introduced in 1973 •. Quadratic Approximation 

Programming (QAT), a method based on successive quadratic approximation 

to the plant objective and constraint function, was used to optimize the 

FLOWTRAN models (4). 

The small utility packages, which form the third type of computer 

programs used in education and industry, have a rather restricted 

usage. They cover specified areas in simulations, statistical 

predictions, and economic analysis. These programs usually do not 

require any input from the user during the simulation run. 

Reactor Simulators 

Much of today•s industrial technology in petroleum refining, 

petrochemical processing, and coal conversion center around the use of 

chemical reactors. Usually, a reactor model is built in several 
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steps. The first step is to develop a reaction scheme which should be 

the simplest one that accounts for the observed stoichiometry. The next 

step is to develop a kinetic model which consists of equations obtained 

from material and energy balances, activation energies, reaction 

constants, and physical and thermodynamic properties. The last step is 

to fit the model to the data by adjusting the parameters. This final 

step usually involves a number of iterations which are preferably done 

using a computer. 

Mainly such factors as the shape, the numbers of phases, and the 

flow patterns in the reactor have a great effect on the performance, the 

design, and the complexity of the calculations. In industry we 

encounter several types of reactors, such as mixed flow reactors (STR), 

batch reactors, plug flow reactors (PFR), and others. A detailed 

description of each is included in Chapter IV. 11 A Novel Gas-Liquid 

Stirred Tank Reactor .. is an example of an STR model developed by Union 

Carbide Corporation in 1985 (10). The in-situ coal gasifiers represent 

a departure from conventional chemical reactors in that their boundaries 

are not fixed. Such an 11 Unusual 11 reactor model is being used in several 

countries including the United States and the Societ Union to recover 

coal reserves below strip mining depth. Gas or liquid reactors, fixed 

bed, moving-bed, fluidized-bed, and entrained flow reactors are also 

frequently used in industry (11). 
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CHAPTER IV 

TYPES OF REACTORS 

In order to achieve a good understanding of the kinetics taking 

place in real reactors, three main ideal reactors are considered: the 

batch reactor, the Plug Flow Reactor (PFR), and the mixed flow reactor 

or Stirred Tank Reactor (STR) as shown in Figure 2. A good design shows 

similar behavior for the real and the ideal reactors. 

Batch Reactor 

Characteristics 

The batch reactor is the simplest of the three and needs the least 

supporting equipment. It is occasionally used for small-scale 

experimental studies on reaction kinetics and requires high labor and 

handling cost. Since there are not any inlet or outlet streams to or 

from the reactor, and the chemicals are well mixed inside, the 

composition in the reactor is assumed constant over the reactor at any 

given instant but varies with time until chemical equilibrium is 

approached. 

Design Equation 

From a material balance for any component i, the design equation 

for a batch reactor can be easily derived and used to solve graphically, 

10 



Feed 

Feed Product 

Batch Reactor Plug Flow Reactor 

Figure 2. The Three Types of Reactor~ 
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Product 
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Tank 

Reactor 

11 



12 

analytically, or numerically for the time required to achieve a 

specified conversion as Equation 1 shows: 

x. 
J 1 

dX. 
1 

V(-r.) 
1 

(1) 
xio 

where 

X· = conversion of component i (a reactant) at time t 1 

t = time required to achieve X; ' hr 

v = reactor volume, ft3 

-r i = reaction rate, lbmoles/ft3 hr 

Nio = initial number of moles of i ' 1 bmol es 

Xio = conversion of component i at initial time to 

Continuous Stirred Tank Reactors (CSTR) 

Characteristics 

The continuous stirred tank reactor is also called the backmix 

reactor, or the ideal stirred tank reactor indicating that the contents 

are well mixed and the composition is uniform. As a result, the 

composition of the exiting stream is assumed to be the same as the fluid 

inside the reactor. This type of reactor presents a good control of the 

reaction speed since the rate of reactions is constant as the reactants 

are introduced. 

Design Equations 

Again, from material balance, the design equation can be obtained 

and used easily to solve for the volume required at steady state 
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conditions to achieve a desired conversion of some reactant A. A form 

of this equation is shown below: 

(2) 

where 

XAO = inlet conversion of component A (as reactant) 

FAO =inlet molar flow rate of component A, lbmoles/hr. 

The space time is an important design criteria and is defined as the 

time required to process one reactor volume of feed measured at 

specified conditions as presented in Equation 3: 

_ V _ CAO XA 
-r------

vo -rA 
(3) 

where 

v0 = inlet volumetric flow rate, ft3/hr 

CAO = inlet concentration of A, lbmoles/ft3. 

Plug Flow Reactor (PFR) 

Characteristics 

In different sources the plug flow reactor is also called a slug 

flow, a piston flow, an ideal tubular, or an unmixed flow reactor. Its 

main characteristic is the assumption of the absence of mixing or 

diffusion in the flow path. Therefore, the residence time in the 

reactor is the same for all fluid elements. The residence time is 

defined as the time required for a unit reactor volume to exit the 

reactor. This type of reactor yields a high quality product and is 
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capable of processing large quantities of material. For that purpose it 

is widely used in industry, in particular, within the oil business such 

as in reforming processes. 

Design Equations 

By performing a differential component material balance along the 

reactor on component A, a few key design equations can be derived and 

used to model such reactors. The following equations express the 

interrelation between the design parameters and the system kinetics. 

where 

where 

v -
FAO-

XAf dXA 
J X -rA 

Ai 

XAi, Xaf = inlet and outlet conversions of A 

T = CAO 

CAi, CAf = inlet and outlet concentrations of A, lbmoles/ft3. 

(4) 

( 5) 

In this model, all the calculations are based on molar flow rates rather 

than concentrations or conversions. 



CHAPTER V 

DESIGN OF PLUG FLOW REACTORS 

Material and Energy Balances 

Since the emphasis in this work is on tubular reactors, a detailed 

analysis of the design parameters and equations of such reactors is 

necessary. The integral design equation, listed as Equation 4 in the 

previous chapter, allows the determination of the volume of the reactor 

required to achieve a specified conversion if the rate of reaction can 

be integrated numerically or analytically within the conversion range. 

Such task might become very difficult or impossible for certain numbers 

of chemical reactions occurring simultaneously or presenting complex 

kinetics. A better method should be used in order to solve for the 

concentration gradient in the reactor. This method (12) is based on 

equations derived from differential material and energy balances. By 

performing a component i material balance around a differential section 

of the reactor, the following equations can be derived: 

in- out± generation= accumulation (6a) 

at steady state, the accumulation term vanishes yielding 

Fi - F;+1 + r; dV = 0 (6b) 
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where 

where 

-dF· = -r· dV 1 1 

Fi =molar flow rate of component i, lbmoles/hr at reactor 

conditions 

Ci = Fi/v 

v = total volumetric flow rate, ft3/hr 

From kinetics or experimental data, using stoichiometry, and from 

( 6c) 

(6d) 

(7) 

Equation 7 above, the rates of reactions can be written as a function of 

temperature and component concentration. If the above equation is 

written for n components, n ordinary differential equations are 

obtained. The molar flow rates represent the dependent variables, 

whereas the reactor volume is the independent variable. 

Considering the energy carried in and out by the chemicals, the 

heat of reactions, and the energy transfer from or to the surroundings, 

an energy balance equation can be derived. For an adiabatic operation 

the reactor volume dependence on the temperature in the reactor is given 

from the following equations: 

in - out± generation= accumulation 

at steady state the accumulation term vanishes yielding 
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where 

- t Mi · e: · + t ( C F . ) dT = 0 
J J 1 1 pi 1 

=component i; i=l, ... , n 

j = reaction j; j = 1, ••• , m 

AHJ = heat of reaction j; BTU/lbmoles 

e:j = molar extent of reaction j; lbmoles/hr 

CPi =specific heat of component i; BTU/lbmoles 0 R 

Fi = component i flow rate; lbmoles/hr 

dT = differential temperature change in the reactor; 0 R 

17 

(8a) 

The extent of the reaction can be expressed as function of the reaction 

rate and the differential volume increment as follows: 

e:. = r. dV 
J J 

substituting e::j by its value in Equation 8a gives 

( - I Mi · r · ) dV + q: C F · ) dT = 0 
J J J 1 pi 1 

when rearranged 

I &1. r. 
dT _ j J J 

dV - t Cp. F i 
1 1 

(8b) 

( 8c) 

(8d) 

This (n+1)-th ordinary differential equation can be solved 

simultaneously with the other n equations for the component molar flow 

rates, the reactor volume, and the temperature profile using an adequate 

numerical method. 



Recycle Considerations 

It is sometimes desired to divide the reactor product stream and 

return a portion of it to the entrance of the reactor. In this case, 

the recycle ratio or the recycleR is defined as follows: 

R = volume of fluid returned to the reactor entrance 
volume leaving the system 

Figure 3 shows a typical recycle reactor scheme. To solve for the 

recycle effect on the reactor performance, the recycle ratio is first 

initiated as zero for the first pass through, then set to a desired 

value, and the calculations are repeated until a constant composition 

profile is obtained for two executive passes allowing for a desired 

tolerance. The integral design equation for a plug flow reactor with a 

recycle stream assuming there are no products in the feed becomes 

18 

v - ( FAO- R+l) ( 9a) 

where 

( 9 b) 

The above equation can be solved numerically or analytically for simple 

models. If no recycle is permitted (R=O), the above equation becomes 

identical to Equation 4, the integral design equation for a simple ideal 

plug flow reactor. It is important to notice that for infinite recycle, 

the plug flow reactor performance approaches that of a mixed flow 



R 

FO F 

FO- The feed to the system 
F- The feed to the reactor 
P- The·product from the reactor 

PO- The product from the system 
R- The recycle stream 

PFR- Plus flow reactor 

PO 

Figure 3. Schematic Representation of a Plug 
Flow Reactor with Recycle 
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reactor. Figure 4 shows the limits of a recycle reactor as the recycle 

ratio varies from zero to infinity (13). 

F ~0 = ( R+l) 

! 

plug flow mixed flow 

Figure 4. Limitations of a Recycle Reactor 
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CHAPTER VI 

.BRIEF DESCRIPTION OF MAXISIM 

MAXISIM is an interactive simulation program used for simple 

thermodynamic equilibrium calculations and/or a complete process design 

of a system. It was written by Dr. John H. Erbar and revised by Dr. 

Ruth C. Erbar. Its first version was released in 1983, and its latest 

revision in 1987. 

Like any other process simulator, MAXISIM allows the user to 

perform calculations and to test the results for simple to complex 

design models. The interactive nature of the simulator gives the user 

complete control of the program. He or she can create a model, set 

units, specify parameters, run the program, review the results, chanye a 

few things, and go again. 

MAXISIM presents two operating modes -- the 11 immediate 11 mode and 

the 11 Simul at ion 11 mode. In the former, quick cal cul at ions can be 

performed such as: 

* three-phase bubble point, dew point, and flash equilibrium 

calculations 

* 

* 

* 

* 

stream manipulation 

gas heating value determination 

hydrate formation prediction 

process unit definition, unit operation deletion, addition and 

revision 

21 



Whereas the simulation mode allows the execution of a specified process 

model using the following current unit operations available: 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

stream adder, divider, and splitter 

isothermal, constant enthalpy, fixed L/F, or three-phase 

isothermal flash 

expander 

compressor 

pump 

heater 

cooler 

heat exchanger 

short cut, and tray by tray distillation column 

short cut absorber, and tray by tray absorber/stripper 

short cut stabilizer 

plug flow reactor 

22 

The inputs to MAXISIM, in an interactive mode, consist of a set of 

completely specified feed streams (component flow rates, temperature and 

pressure, etc.), unit operations with their process data, c6+ fraction 

data if present, and unit control information. Checks for validity of 

the input data are performed. The acadenic version of MAXISIM can 

accept a maxim~ of fifty unit operations and twenty-five components. 

The outputs from the simulator contain mainly complete results from the 

immediate mode calculations, detailed description of the unit operations 

(feeds, products, and process data), and molar balance sheets. 

Depending on the users option and the set of output control parameters 

chosen, several other useful outputs are made available. 
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It is important to mention that MAXISIM leaves no choice to the 

user but to be well prepared and well organized before simulating any 

process unit model. A good understanding of the design and a reasonable 

technical grasp are necessary and vital to avoid bad results, slow 

convergence, a lot of frustration, and even impossible answers. For 

those reasons and others, MAXISIM is one of the good simulators for 

educational purposes. 



CHAPTER VII 

THE MODEL DESCRIPTION 

Introduction 

This model simulates an ideal homogeneous gaseous plug flow 

reactor. The program is coded in such a way that it is easy to include 

models of other types of reactors such as batch, stirred tank, or a 

catalytic reactor. A maximum of ten reactions and fifteen reacting or 

product components are allowed. The introduction of more reactions and 

more components is just a matter of changing the size of few arrays. As 

with some other simulators, this program is highly interactive. An 

effort was made to minimize and simplify the work of the user, but good 

organization and preparation are highly recommended. The general 

structure of this model consists of an input file, a calculation 

routine, and an output file. All these files are introduced into 

MAXISIM and interact with existing routines and a data base which covers 

a wide range of industrial chemicals. Appendices A and B include the 

logic structures for the input file and the calculation subroutines, 

respectively. 

Input Description 

First the inlet and outlet stream numbers are specified, and the 

inlet stream properties are obtained by flashing the stream using 

MAXISIM at the inlet reactor conditions. If more than one inlet or 
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outlet stream is defined an error message will be prompted. The number 

of reactions is entered next. The user is then asked by just looking at 

the rate equations, to enter the rate constants, the stoichiometric 

coefficients, and the components powers in the reaction rate 

expressions. The average heats of reactions are requested in the case 

of adiabatic operation in the reactor. Once all the information about 

the kinetics are fully specified, the user is given several options 

concerning the operation mode, the pressure drop specifications, and the 

convergence criteria. Both isothermal and adiabatic operations are 

available to control the variation of temperature along the reactor. 

The pressure difference between inlet and outlet is determined either by 

specifying a pressure drop across the reactor, or by setting the 

pressure of the outlet stream. Three possible convergence criteria are 

available to the user. The reactor volume can be fixed if the 

performance of an installed reactor is to be tested. But usually, the 

user is interested in or asked to determine a reactor size in order to 

produce a desired yield of a substance of interest. In this case, the 

outlet flow rate of that substance can be specified to set the 

convergence criteria. In a few cases, especially for exothermic 

reactions, the temperature change in the reactor is very large, 

consequently, to avoid overheating or freezing, the user might want to 

set an upper or lower limit on the exit temperature as a convergence 

criteria. An update menu is available in case the user decides to try 

different values of the reactor volume, the exit temperature, the outlet 

flow rate of a specified component, the operation mode, or the inlet 

temperature to the reactor. 



26 

Output Description 

By the virtue of using MAXISIM, several output features are already 

available. A topology of the process can be viewed to check the stream 

numbers and their destinations. An echo of the input process data is 

also available to check for possible typing errors when entering the 

inputs. Also, a complete description of the inlet and output streams, 

including components flow rates, temperature, pressure, and a few other 

extensive and intensive properties, is given. Finally, the required 

reactor volume for the process and the heat load on the reactor are 

listed. 

Subroutines Description 

Input Subroutine: REAC(II) 

This subroutine constitutes the major interactive part of the 

model. All the inputs, mentioned earlier, are read in and stored in a 

permanent array. The frequency factors, the activation energies, the 

Gibb 1 s free energies, and the heats of reactions are sto~ed in single 

dimensional arrays. Whereas the stoichiometric coefficients and the 

orders of each reaction with respect to the components are stored in two 

dimensional working arrays. All the other variables are stored as 

constants. Every input is transferred into the process data, PO, array 

which is permanent in MAXISIM and can be viewed before executing the 

simulation. All inputs are checked against appropriate limitations. 

Appendix A, as mentioned before, lists a logic structure for this 

routine. 



Flow Subroutine: VFLOW 

This subroutine simply picks up the molar flow rates from the 

stream, the components• molecular weights from the data base, and the 

27 

stream density to determine the total volumetric flow rate of the stream 

for later use. 

where 

\ F. (MW). f 1 1 
v = ----

(MW)i =the molecular weight of component i, lbm/lbmole 

Ps = density of the stream, lbm/ft3 

A flow chart describing the logic structure of this subroutine is 

included in Appendix B. 

Rate Constant Subroutine: RCONST 

This routine sets up the rate constants as functions of 

(10) 

temperature, T, using the inputs of the activation energies EA•s, and 

the frequency factors, k0 1 s, sometimes referred to as pre-exponential 

terms in the rate constant expressions. If the rate constant is 

evaluated at an average fixed temperature, then the activation energy 

input is entered as a dummy variable equal to zero. 

k = k0 exp(-EA/RT) (11) 

The Extent of Reaction Subroutine: RRXN 

Picking up the stoichiometric coefficients and the order of each 

reaction with respect to each component from the PO array, and using the 



calculated value of the rate constant from RCONST, this routine sets up 

a unit rate change for each reaction, this is called the reaction 

coordinate or the extent of the reaction. 
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This concept is very important and useful in solving for the effect 

of several gaseous chemical reactions occurring simultaneously. Once 

the extents of all the reactions are determined, the outlet composition 

is easily computed by considering for each component, the changes due to 

respective reactions. Also if the extent of reaction method is used, 

the expansion effect from temperature changes is counted for 

inherently. 

The Component Rate of Change 

Subroutine: RRCOMP 

This routine sums up the rates of change for each component in all 

the reactions. This is simply done by multiplying the unit rates of 

change for the reactions by the respective stoichiometric coefficient of 

the component, then summing the calculated changes for each component 

separately. 

The Temperature Subroutine: RTEMP 

Depending on the nature of the reaction and the operation mode, the 

temperature may rise or drop along the length of the reactor. This 

change is a function of the rate of change for the reactions from RRXN, 

the component flow rates, the heat capacities calculated using MAXISIM 

data base, and the heats of reactions from the PO array. The component 

heat capacities are derived using the SRK equation of state, as shown in 

Appendix C (14). 
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Differential Equation Solver: RUNGE 

This constitutes the core of the reactor calculation file. 

Basically, all the mentioned subroutines, play the role of setting up a 

differential equation describing the change of each component flow rate 

along the reactor. These differential equations for all the components, 

plus the one describing the temperature change, are solved using the 

routine RUNGE. This routine uses Runge-Kutta fourth-order algorithm. 

Updates values of the component flow rates and the temperature are 

returned to the main program at each increment along the reactor. 

A numerical routine is needed to solve the differential equations 

generated. There are basically three types of such numerical methods. 

The first class includes simple methods that are very easy to use and to 

understand. However, these routines are not highly recommended for 

general purpose usage. Such a class includes Euler's method. The 

second class consists of improved and elaborate first class methods. 

These methods are used to solve most differential equations encountered, 

but still are unable to adequately describe a few complicated 

equations. The modified Newton's method or Heun formula, the three-term 

Taylor series method, the Runge-Kutta first-, second-, third-, and 

fourth-order methods are some examples of the second class methods. It 

is important to notice that all the methods above compute the updated 

value of the function knowing only the previous value of the function. 

Such methods are called single-step methods. However, the third class 

routines are called the multistep methods because several previous 

points are used to determine the updated value of the function (15). 

Adam-Moulton's method and Gears method are example of those routines. 



Choosing among the methods is not usually a clear-cut decision. 

Basically there are three decision factors that should be considered: 

i) the complication of the differential equations at hand, 

ii) the amount of computation involved, and 

iii) the accuracy limitations. 

In this work, the Runge-Kutta fourth-order method was chosen to solve 

for the component flow rates along the length of the reactor. This 

method was chosen over Euler•s basically because the latter might fail 

to solve the differential equations generated if the stoichiometric 

coefficients and the orders of the components in the reactions are not 

integers. Also Runge-Kutta gives better accuracy for the same volume 

increment. Halving the differential increment reduces the local error 

by a factor of 1/32, as compared to 1/2 using Euler•s method. The 

trade-off of using Runge-Kutta over Euler•s method consists of 

evaluating the function four times in one increment, as opposed to once, 

but this is not very crucial with the presence and the availability of 

high-speed computers which are able to perform such calculations in a 

few seconds for any except extremely complicated and lengthy 

functions. A natural question to ask is why not use a multistep method 

such as Adam•s and Moulton•s over Runge-Kutta since, not only the orders 

of accuracy are the same, but also the former method evaluates the 

function only twice in each increment and is capable of solving very 

stiff differential equations (16). The answer is that there exists a 

drawback in using Adam•s method, which consists of the inconvenience of 

changing the step size as the calculation proceeds. This change of the 

step size necessitates the calculation of new points consistent with the 

new step size. For this reason, and the fact that Runge-Kutta is much 
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easier to code than is Adam•s and Moulton•s method, the former method is 

used in this work. 

Equilibrium Criteria Subroutine: RTRY 

This subroutine simply sets up the equilibrium criteria for the 
. 

reactions in equilibrium. In the general case, the chemical equilibrium 

is expressed in function of the fugacity coefficients of the components 

in the gas mixture, their mole fractions and the system pressure, as 

given by Equation 12: 

where 

n 
KP- v = II ( y. ; . ) vi 

i=1 1 1 

K = chemical equilibrium constant 

p = system pressure 

Yi = mole fraction of component i 

vi = stoichiometric coefficient of component i 

v = sum of the stoichiometric coefficients in the reaction 

n = number of the components in the mixture 

$i = the fugacity coefficient of component i in the gas mixture 

(12) 

If the gases are assumed to be ideal, the fugacity coefficients are 

set to one, and if the mole fractions are expressed in terms of the flow 

rates, Equation 12 becomes 

n n v. 
KP- v ( I F. ) v - II F. 1 = 0 

i=l 1 i=l 1 
( 13) 
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Finally, the chemical equilibrium constant can be expressed as a 

function of Gibb 1 s free energy, ~Go as follows: 

-- ~GO - rr- (14) 
0 

where R is the ideal gas constant; 1.987 BTU/lbmoles 0 R. 

The equilibrium constant calculated above is at a reference 

temperature, T0 , corresponding to the Gibb•s free energy (13). Then, 

Van Hoff 1 S law is used to determine the equilibrium constant at any 

specified temperature T from Equation 13. And. 

(15) 

where 

~rxn =constant heat of reaction in the temperature interval. 

Once the thermodynamic equilibrium constant is evaluated from 

Gibb 1 s free eneryy and the temperature, the left-hand side of Equation 

13 can be evaluated from each given set of the component flow rates. 

However, the reactions in equilibrium are very fast compared to the rest 

of the reactions in the process. If the reactor volume increment is 

small, then, at the entrance to each increment in the reactor, the 

contribution of the reactions in equilibrium can be determined before 

the consideration of the rest of the reactions. 

Therefore, the component flow rates in Equation 13 can be written 

as follows: 

F· = (F·) + v·. r. 
1 1 0 1J J 

(16) 



where 

Fi = updated component flow rate 

(Fi)o = previous component flow rate 

vij = stoichiometric coefficient of component i in reaction j 

rj =molar extent of the equilibrium reaction j 

If the Fi's are substituted in Equation 13, the equilibrium criterion 

equation can be formulated 
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V· 
KP-v (~[(F.) + V·· r.]v)- II [(F.) + v .. r.] 1 = 0 t 1 0 lJ J i 1 0 lJ J 

( 17) 

The only unknown in Equation 17 is the extent of the equilibrium 

reaction. It is obvious that there is not an analytical solution, 

therefore a numerical method for solving an algebraic equation is 

needed. 

Equation 17 can be very complicated to solve if the stoichiometric 

coefficients are not integers and if the reaction in equilibrium occurs 

among several components. However, in most cases four types of 

reactions in equilibrium are encountered: 

A = B 

A = B + C 

A + B = C 

A + B = C + 0 

( 18a) 

(18b) 

( 18c) 

(18d) 

All these reactions yield to a thermodynamic equilibrium criterion which 

is reasonably easy to solve. 



Extent of Equilibrium Reaction 

Calculation Subroutine: RXEQU(J) 
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This routine uses a numerical method to solve for the extent of 

reaction in equilibrium. Basically, this constitutes a guessing 

process. Each time a value of the extent of reaction is picked, the 

subroutine RTRY is called to check if the left-hand side of Equation 17 

is close enough to zero. In essence, solving the thermodynamic 

equilibrium criteria is finding a numerical method to solve for the 

roots of the function f(x) = 0. The obvious method is the so-called 

"marching routine". It consists of picking an initial guess and 

increasing it by a small increment, while checking the value of the 

function each time, until a root is found. This routine has the 

advantage of hitting every root of the function. However, in some cases 

this method could be very slow, especially if the increment chosen is 

very small. Another method, called bisection, can be used to speed up 

the root finding task by evaluating the function at a lower and an upper 

limit, and comparing the respective signs. If there exists a sign 

change, the routine recognizes the existence of a root in between the 

limits, and therefore hunts for the zeros of the function. Obviously, 

such a method can diverge in certain cases if the lower and/or the upper 

limit is not carefully chosen. The existence of multiple roots reveals 

the problem of choosing the right or the appropriate root. In general 

the choice between such methods depends strongly on the problem at hand. 

For this task, solving for the appropriate extent of reaction in 

equilibrium, a few observations can be made in order to facilitate the 

choice. First the equilibrium reactions which are usually encountered 

are of the forms shown in Equation 18a through 18d. The thermodynamic 



equilibrium criteria, in those cases, are polynomial functions with 

highest degree of two. The bisection method is used to solve for the 

correct root fairly quickly and accurately. The component flow rates 

determine the lower and the upper limits of the extents of reactions, 

i.e., of the roots of the function. 

The Main Calculation Subroutine: REACR 

This subroutine uses all the subprograms mentioned earlier. The 

calls to the different subroutines are first put in the appropriate 

order. The product stream from the i-th volume increment or 

differential is flashed at the updated temperature and outlet pressure 

to pick up a new stream density, then the heat capacities for the 

components are updated as they are functions of temperature. 

Respectively, the subroutines VFLOW, RCONST, RRXN, RRCOMP, RTEMP, and 

RUNGE are then called to update the flow rates, and the temperature 

before entering the (i+l)-th volume increment. The testing for the 

convergence criteria, the operation mode, and the pressure 

specifications are dealt with within this subroutine. 

The Output Subroutine: REACO 
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This subroutine accomplishes two major printing objectives. First, 

it echos all the inputs to the reactor unit. This process design (PO) 

description allows the user to cross-check the numbers he/she has 

entered. First the operation mode, the volume increment, the inlet 

pressure to the reactor, the outlet pressure, and the conversion 

criteria are listed. Then the chemical reactions are displayed with the 

component names shown as reactants and/or products, e.g., C + 02 + 



co2• Finally, an input table for the process is presented in order to 

compare it to the one the user has used to enter the stoichiometric 
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coefficients and the orders of the components in each reaction. At this 

point, the user can detect input errors in the kinetics. Once the 

program is executed and the feed and the product streams are fully 

described, the output routine prints out these streams, the reactor 

volume, and the heat load on the reactor. 



CHAPTER VIII 

THE USER MANUAL 

How to Create a File 

The procedure to simulate a process containing a single reactor or 

any number of reactors is the same as the one described in MAXISIM 

manual. Basically, the feed is initiated and flashed at some specified 

inlet conditions. It is then saved or stored in a numbered stream. At 

this stage, a choice of the unit operations from MAXISIM menu is made. 

The Input Process 

The Reactor Process Inputs 

If the user has chosen to define a plug flow reactor as one of 

his/her unit operations, the following pieces of information have to be 

known in advance: 

* Reactor inlet and outlet stream numbers 

* 

* 
* 

* 

* 
* 

* 

The number of reactions 

The volume increment 

The frequency factor of each nonequilibrium reaction 

The activation energy of each nonequilibrium reaction 

The heat of each reaction 

The Gibb's free energy for each equilibrium reaction 

The option of operating isothermally or adiabatically 
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* The option of specifying the outlet pressure from reactor, or 

the pressure drop across the reactor 

* The option of specifying the reactor volume, the exit 

temperature, or the outlet flow rate of a specified 

component 

* The order of reaction with respect to each component 

* The stoichiometric coefficient of each component in each 

reaction 

Organization 

It is important to have the input data for the reactor well 

organized. First of all, it is highly recommended to have the inputs 

prepared in the order shown in the previous section. Once the 

components are chosen from the MAXISIM data base, the order in which 

they follow is fixed, therefore it is helpful to make a list of the 

components with their corresponding sequence numbers. Once this is 

done, the chemical reactions should be written in a form where the 

component names are replaced by their sequence numbers. This helps read 

off the stoichiometric coefficients. In the same manner, the rate 

expression for each reaction, which must be a power law type, should be 

rewritten and the component names again represented in those expressions 

by their sequence numbers. This, again, facilitates the picking up of 

the order of the components in each reaction. At this stage, it is 

highly recommended to set up an input table as shown in Table I. The 

input mode is set up so that the numbers are entered starting from the 

upper left corner across the rows down the columns. 
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TABLE I 

THE INPUT TABLE 

Component The Power of the 
Reaction Sequence Component Concentration 

#, 

Number 

I 

I I 

M 

Number 

1 
2 

N 

1 
2 

N 

1 
2 

N 

in the Rate Expression 

# 
# 

# 

# 
# 

# 

# 
# 

# 

## - the inputs to the model 
# - can be a positive real number or a zero for 

## - is a positive integer for a product 
- is a negative integer for a reactant 
- is zero if the component is not involved in 

Stoichiometric 
Coefficient of 
the Component 

inerts 

## 
## 

## 

## 
## 

## 

## 
## 

## 

the reaction 
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Information Storage 

Once the inputs to the reactor and the other unit operations are 

entered, the user is ready to set up a data file by simply entering "FL" 

and giving a file name after the request. By doing so, the user will 

have avoided the tedious work of reentering the input data to the 

process every time he/she needs to run the simulation. Detailed 

options, included in MAXISIM manual, can allow the user to alter the 

input data to the unit operations. 

The Update Mode 

There are five inputs to the reactor that can be updated. 

Following the menu, the operation mode in the reactor, (adiabatic or 

isothermal), the reactor volume, the exit temperature, the volume 

increment, and the outlet flow rate of a specified component can be 

altered if needed. 

Useful Remarks 

It is important to make sure that the feed to the reactor is a 

gas. Once the choice of units is made, it is crucial to enter the 

inputs such as the frequency factors, the activation energies, and the 

heats of reactions in the chosen units, as requested in the input 

instructions. 

An Input Example 

The hydrodealkylation of toluene is a common way to make benzene. 

Usually more than one reaction occurs simultaneously, but for the sake 

of this example, only the main reaction 



is assumed to take place. To model a reactor to handle this process, 

first a feed is specified, flashed at the inlet conditions of the 

reactor, then stored in a feed stream. Usually, in MAXISIM, the user 

will choose components from most to least volatile. Following this 

rule, the components in this reaction are numbered as follows 

H2 - Component #1 

CH4 - Component #2 

C6H6 - Component #3 

C7H8 - Component #4 

N2 - Component #5 

The nitrogen is thrown in the reaction as an inert. The following 

reaction rate expression is given (17): 

rate = 1 82x1o15 c 112 c • H2 to 1 
exp(-96,560/RT) lbmoles 

ft 3 hr 

From the rate expression, the frequency factor is equal to 1.82x1o15 

lbmoles/ft3 hr, the activation energy value is 96,560 BTU/lbmole. The 

input data for the kinetics of this reaction is shown in Table II. 
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TABLE II 

INPUT TABLE FOR THE EXAMPLE PROBLEM 

Component The Power of the Stoichiometric 
Reaction Sequence Component Concentration Coefficient of 

Number Number in the Rate Expression the Component 

I 1 0.5 -1 

2 0 1 

3 0 1 

4 1 -1 

5 0 0 



CHAPTER IX 

THE MODEL PERFORMANCE AND TESTING 

Introduction 

Since this model is primarily going to be used for educational 

purposes, the "friendliness•• of the interactive mode, the verification 

of reactor design fundamentals, the flexibility of the program, and the 

accuracy of the results have been tested. The hydrodealkylation of 

toluene to produce benzene is the main test case treated in this 

chapter. It constitutes a good example to work with because, not only 

does it present three chemical reactions, but also it can be tested to 

verify several reactor design principles and process design techniques. 

Input Units 

By the virtue of using MAXISIM, four sets of units are available to 

the user. Once he/she chooses a set of units the input instructions 

follow consistently the user's choice of units. Since the units of the 

frequency factor, or the so-called pre-exponential term in the rate 

expression, depend on the kinetics, two options of units are offered to 

the user. Usually the rate of reaction is given in gmole/1 sec, and 

occasionally the units are lbmoles/ft3 hr. Appendix D shows the 

conversion from one set of units for the rate constant to the other for 

any given kinetics. 
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Input Display 

As described in Chapter VII, the output subroutine displays the 

inputs for error detection. A sample of a process diagram for the 

hydrodealkylation of toluene is given in Appendix E. 

Update Menu 

An update menu is available to the user. Several options are 

given, and the user can test the performance of the model by changing 

the outlet reactor temperature, the reactor volume, the operating mode, 

the volume increment, or the production rate of a specified component. 

Appendix F contains outputs for several runs performed with the three 

reactions occurring in the hydrodealkylation of toluene. The computer 

outputs correspond to the following operating conditions. 

i) the reactor volume is set to 500 ft 3, and the operation is 

adiabatic, 

ii) the production rate of benzene is set to 200 lbmoles/hr, 
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iii) the operation mode is switched to isothermal keeping the same 

conversion factor, and 

iv) the operation is switched back to adiabatic, and the outlet 

temperature is set to 1400°F. 

Verification of Some Reactor 

Design Principles 

Referring to the outputs for the runs described above: 

* When the production rate of benzene is specified to be equal 

to 200 lbmoles/hr, a smaller reactor is needed than when the 



volume was set at 500 ft3 (or the feed may be decreased by the 

user iteratively to optimize the feed rate). 

* Since the overall process is exothermic, when the operation in 

the reactor is switched to isothermal, a much larger reactor 

is needed to meet the same benzene production rate of 200 

lbmoles/hr for the same inlet temperature. 

* From i), under adiabatic operation and with a volume equal to 

500 ft 3, the reactor exit temperature is about 1413°F. When 

an upper limit of 1400°F on the reactor outlet temperature is 

set, less production is obtained since the reactor volume can 

not reach the full 500 ft3. 

A Plug Flow Reactor with Recycle 

Using an adder, a flash unit, a compressor, and a divider from the 

MAXISIM unit operation menu, a plug flow reactor with recycle, so-called 

••Reactor Loop" as shown in Figure 1, is simulated. Appendix G contains 

the output for such a process. A process topology, a process design for 

each unit operation, a full description of the feed and product streams 

in the process, and the unit operations• characteristics or sizes are 

included in the printout. 

Accuracy of the Model 

In this model, as mentioned previously, the SRK equation of state 

is used to determine the properties of the streams and the compnoents; 

also the differential equations describing the changes along the reactor 

are solved using a fourth-order Runge-Kutta method. Due to those two 
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reasonably powerful methods, the results from the model are found to be 

accurate. 
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Appendix H shows two identical runs except the voTume increment for 

the second run has been cut to one-fourth that of the original run. In 

the first simulation, with the volume increment equal to 1 ft 3, the 

production rate of benzene and the outlet temperature from the reactor 

are equal to 215.97 lbmoles/hr and 1413.23°F, respectively; whereas, in 

the second run (dv = 0.25 ft3), they are equal to 215.98 lbmoles/hr and 

1415.5°F, respectively, showing very small variation due to increment 

size because of the accuracy of the fourth-order Runge-Kutta. 

Two identical plug flow reactors are simulated in series, and their 

performance is tested against a single reactor twice as large as shown 

in Figure 5. The topology of the system, the process data, and the 

outputs are shown in Appendix I. Using an inlet temperature and 

pressure equal to 1200°F and 495 psia, respectively, identical yields of 

benzene are obtained using the two reactors in series and the single 

reactor alone. 

Two identical plug flow reactors are simulated in parallel using a 

divider and an adder from MAXISIM. The divider splits the feed in half 

between the reactors, and the products of the reactors are combined 

using the adder to yield the overall process product as shown in 

Figure 6. For given feeds and inlet conditions, the benzene production 

from a single reactor with a volume equal to 500 ft3 was 232.94 

lbmoles/hr. For the same feed and inlet conditions, and using two 

reactors in parallel with a volume equal to 250 ft3 each, the benzene 

production was 232.91 lbmoles/hr, showing about 0.02% difference. The 
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topology of the system, the process data, and the outputs from MAXISIM 

are shown in Appendix J. 

To avoid coking in the reactor (17), the ratio of hydrogen to 

aromatics should be at least three to one (usually it is five to one). 

If a single pass through the reactor is chosen, at least·650 lbmoles/hr 

of hydrogen are required to produce 203 lbmoles/hr of benzene. To avoid 

the large amount of hydrogen in the feed, i.e., the operating cost, a 

portion of the reactor product is recycled. The drawback of the recycle 

is the increase of the reactor volume, but this is not crucial because 

this cost is included in the capital cost which is paid only once in a 

lifetime. Appendix K shows two simulations producing 203 lbmoles/hr of 

benzene from the reactor. The first run represents a single pass 

through the reactor, and the second set of results are obtained using a 

79% recycle stream. The purge and the recycle percentages can be 

optimized by performing different runs. The user should change one of 

the two percentages each time and check the reactor volume and the feed 

rate. 
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CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

The purpose behind this work is to develop a plug flow reactor 

model and include it as a reactor core into MAXISIM. The computer code 

of the model is included in Appendix L. Based on the structure and the 

performance of this model, several conclusions are drawn. 

1. Despite the enormous number of calculations involved, a 

simulation of a plug flow reactor with several equilibrium and/or 

nonequilibrium reactions can be performed with little I/0 time, i.e., it 

takes about five seconds if the reactor volume is equal to 500 ft 3 in 

the hydrodealkylation of toluene case. 

2. Some reactor design principles and process design techniques 

can be illustrated using the reactor model with MAXISIM for the example 

given. 

a. Increasing the inlet temperature to the reactor, if 

exothermic reactions are present, will increase the yield 

or the conversion for irreversible reactions. 

b. Changing the operating pressure in the reactor will 

change the output. 

c. Recycling a percentage of the product stream will alter 

the feed to the system required to meet the purity 

specifications. 
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3. A complete chemical process containing plug flow reactors 

within its unit operations can be simulated on MAXISIM, and the optimum 

operating variables of the modules can be investigated. 

Since several assumptions are made within this plug flow reactor 

model calculation, few recommendations will serve to improve parts of 

this work. 

1. The maximum number of reactions and components allowed can be 

increased by simply changing the size of the PO array and making the 

necessary changes in the working arrays in the calculation routine of 

the reactor. 
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2. The modeling of a fixed-bed catalytic reactor or a fluidized 

bed can be simply introduced by creating calculation subroutine for such 

reactors, and calling them from the main calculation routine. 

Obviously, a few other inputs will be requested from the user and stored 

in the PO array. The numerical methods (Runge-Kutta fourth-order and 

the bisection method) can both be used to solve the differential 

equations generated to describe the changes along the reactor. 

3. The ideal gas assumption is made only when the extent of the 

reaction in equilibrium is calculated. This assumption can be avoided 

if both the forward and the reverse rate constants in the reversible 

reaction are known. In that case, such a reaction should be modeled as 

two irreversible reactions to avoid the ideal gas assumption and the 

bisection numerical method calculations. 

4. Since SRK equation of state is available in MAXISIM, the 

fugacity coefficients of the components in the mixture can be picked up 

and used in the thermodynamic equilibrium criteria. Such an improvement 

should be checked for necessity since in most cases the phase of 



interest is well in the gaseous phase far from the envelope; in which 

case the ideal gas assumption is probably safe. 

5. Again, using the SRK equation of state for the gas and liquid 

phases, or the split approach if activity correlations are available, a 

heterogeneous reactor model can be introduced. 

6. Using ~he SRK equation of state or an activity coefficient 

correlation for a liquid phase, a plug flow reactor that handles 

chemical reactions occurring in the liquid phase can be simulated. 

52 



BIBLIOGRAPHY 

1. l Bitzer, D., 11 The Wide World of Computer-Based Education .. , Advances 
In Computers, ..!§_, pp. 239-283 (1976). 

2. Kingery, R. A., R. D. Berg, and E. H. 
the Classroon 11 , Men and Ideas in 
Histories From Illinois, Urbana: 
( 1967) • 

Schillinger, 11 A Computer in 
Engineering: Twelve 
University of Illinois Press 

3. , Computers and Education: An International Bibliography 
on Computers 1 n Educabon, Jlillsterdam: lnternat10na I 
Federation on Information Processing (1970). 

4. Lower, S., G. Gerhold, S. G. Smith, K. J. Johnson, and J. W. Moore, 
11 Computer-Assi sted Instruction in Chemistry .. , Journal of 
Chemical Education, ~(4), pp. 219-227 (April 1979). 

5. Motard, R. L., and D. M. Himmelblau, 11 Current Situation on the User 
of Computers in the Education of Chemical Engineers .. , 
Computers and Chemical Engieering, l_, pp. 213-216 (1979). 

6. Mah, R. S. H., 11 Recent Development in Process Design .. , Symposium on 
Basic Questions of Design Theory, Columbia University, New 
York (1974). 

7. Kehat, E., and M. Schacham, 11 Chemical Process Simulation Programs-
111 , Process Technology, l&_(1/2), p. 38 (1973). 

8. Erbar, J. H., Process Analysis System (PAS), School of Chemical 
Engineering, Oklahoma State On1vers1ty (1980). 

9. Erbar, J. H., MAXI*SIM: An Interactive Program for Process 
Simulation and Design, Norsk Hydro, Process Technology 
Department, Oslo, Norway (1976). 

10. Litz, L. M., 11 A Novel Gas-Liquid Stirred Tank Reactor 11 , Chemical 
Engineering Progress, pp. 36-43 {November 1985). 

11. Murray, A. P., 11 Steam-Methane Reformer Kinetic Computer Model with 
Heat Transfer and Geometry Options 11 , Ind. Eng. Chern. Process 
Des. Dev., ~' pp. 286-294 (1985). 

12. Froment, G. F., and K. B. Bischoff, Chemical Reactor Analysis and 
Design, John Wiley and Sons (1979). 

13. Levenspiel, 0. L., Chemical Reaction Engineering, 2nd Ed., New 
York: Wiley and Sons (1972). 

53 



14. Majeed, A. I., "Partial Derivative of the SRK Equation of State", 
Project S113A07, Norsk Hydro, Process Technology Department, 
Oslo, Norway (1985). 

15. Rice, J. R., Numerical Methods, Software and Analysis, New York: 
McGraw-Hill, Inc. (1983). 

16. King, T. J., Introduction to Numerical Computation, New York: 
McGraw-Hill, Inc. (1984). . 

17. Rase, F. H., Chemical Design for Process Plants, Volume 2, New 
York: John W1ley and Sons (1977). 

54 



APPENDIX A 

LOGIC STRUCTURE FOR THE INPUT 

SUBROUTINE REAC(II) 
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INLET AND OUTLET STREAMS 

' 
NUMBER OF REACTIONS 

t 

INLET TEMPERATURE AND PRESSURE 

' 
OPERATION MODE 

t 

PRESSURE DROP SPECIFICATION 

t 

CONVERSION CRITERIA 

t 

FREQUENCY FACTORS FOR IRREVERSIBLE 
REACTIONS 

t 

ACTIVATION ENERGIES FOR IRREVERSIBLE 
REACTIONS 

,. 
GIBBS'FREE ENERGIES FOR REVERSIBLE 

REACTIONS 

t 

HEATS OF REACTIONS 

t 

ORDERS AND STOICHIOMETRIC COEFF.ICIENTS 
OF THE COMPONENTS IN EACH REACTION 

LOGIC STRUCTURE FOR REAC<II> 



APPENDIX B 

LOGIC STRUCTURE FOR THE CALCULATION 

SUBROUTINES IN REACR 
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KINETICS 
INPUTS 

CALL EQUIL FROM 
MAXISIM TO FLASH 

EACH STREAM 

CONVERSION 
CRITERIA 

MARCHING ALONG REACTOR 
UNTIL 

CONVERSION CRITERION 
IS SATISFIED 

PRODUCT 
STREAM 

& 
REACTOR 

SIZE 

LOGIC STRUCTURE FOR SUBROUTINE REACR 

FEED 
STREAM 

MAXISIM 
DATA BASE 
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STREAM 

DENSITY 

STREAM 
VOLUMETRIC 

FLOW 
RATE 

LOGIC STRUCTURE FOR VFLOW 

COMPONENTS 
MOLECULAR 

WEIGHTS 
FROM 

MAXISIM 
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STREAM 
TEMPERATURE 

T 

CONVERSION 
FACTOR FOR 

Ko 

FREQUENCY 
FACTOR 

Ko 

LOGIC STRUCTURE FOR RCONST 

ACTIVATION 
ENERGY 

EA 

ARRHENIUS 

LAW 
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POWER OF THE 
COMPONENTS 
IN THE RATE 
EXPRESSIONS 

COMPONENTS 
FLOW RATES 

AND 
VOLUMETRIC 
FLOW RATE 

SET UP THE 
RATE 

EXPRESSIONS 

TYPE OF 

REACTION 

I RREVERS I.BLE REVERSIBLE 

RATE 
CONSTANTS 

CALL 
RTRY 

\
EXTENTS 0~ 
RREVERSIBLE 
REACTIONS \

EXTENTS OF I 
REVERSIBLE 
REACTIONS 

LOGIC STRUCTURE FOR RRXN 
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STOICHIOMETRIC 
COEFFICIENTS 

THE TOTAL 
CHANGES IN 

THE COMPONENTS 
FLOW RATES 

THE EXTENTS OF 
THE REACTIONS 

LOGIC STRUCTURE FOR RCOftP 
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EXTENTS OF REACTIONS 
AND 

COMPONENTS FLOW RATES 

I 

HEATS - i COMPONENTS f-+- STREAM 
OF HEAT TEMPERATURE 

REACTIONS CAPACITIES 

~ 

TEMPERATURE 
CHANGE AT EAC 

INCREMENT 

LOGIC STRUCTURE FOR RTEMP 
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THE VOLUME 
INCREMENT 

1 

COMPONENTS COMPONENTS 
RATES OF PREVIOUS 
CHANGES FLOW RATES 

' 

I THE DIFFERENTIAL I -EQUATIONS TO BE 
SOLVED I 

TEMPERATURE 
CHANGE , FROM RTEMP 

DETERMINATION OF 
THE_ COEFFICIENTS 

IN RUNGE-KUTTA 
FOURTH ORDER 

UPDATED VALUES OF 
TEMPERATURE 

AND 
FLOW RATES 

LOGIC STRUCTURE FOR RUNGE 



GIBB'S FREE 
ENERGY 

AT 
To 

EQUILIBRIUM 
CONSTANT 

AT To 

HEAT OF 
REACTION 

AT 
TAVO 

EQUILIBRIUM 
CONSTANT 

AT T 

VAN HOFF'S 
EQUATION 

COMPONENTS RATES 
SYSTEM PRESSURE 
STOICHIOMETRIC COE. 
EXTENT OF REACTION 

• 

TESTING OF THE 
EQUILIBRIUM 

CRITERIA 

LOGIC STRUCTURE FOR RTRY 
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INITIAL GUESS 
FOR THE EXTENT 

OF THE REACTION 

. 

.... CALL RTRV 
~ 

UPDATE NOT THE 
THE SATISFIED EQUILIBRIUM SATISFIED EXTENT 

EXTENT OF THE 
OF THE CRITERIA REACTION 

REACTION IS FOUND 

LOGIC STRUCTURE FOR RXEQU 



APPENDIX C 

DERIVATION OF HEAT CAPACITY FROM 

SRK EQUATION OF STATE 

67 



Constant Pressure Heat Capacity, Cp 

where 

c = c0 
p p 

c0 = the ideal gas state heat capacity. p 
I I 

The departure function Cp can be calculated if Cv (the constant volume 

heat capacity heat departure function) is known from 

1 T [ ( aP I aT) vi 
c v = ( aP 1 av) T 

C~ is available from the temperature derivative of the ideal gas state 

enthalpy equation 

H0 = a1T + a T2 + a r3 + 2 3 

For a mixture 

C0 x. p. 1 
1 

where X; is the mole fraction of each species in the mixture. 

The SRK equation of state is used to evaluate the partial 

derivative of pressure with respect to temperature and pressure. 

Figure 7 shows the expression of the SRK equation of state. 
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b . A 2 ( ac a) ; b. 8 
1 n cpi = ~ ( Z - 1) - 1 n ( Z - B) - "B" [ ( ac a) - 1f] 1 n ( 1 + 7 ) 

-$ = [ ~ - -h-J 1 n (1 + ~) + 1 - Z 

#!-- = I x; 1 n cpi - -@ + I x; 1 n X; + 1 n P /P 0 

z3 - z2 + {A - B - B2)z - AB = 0.0 

A- (aca)P B = b Tp; b = L x1. b1. 
- R2 T2 

RTci 
b; = 0.08667 -P-; a 

C; Ci 

R2 r2 
c. 

1 = 0.42747 --;::op-

2 m; = 0.480 + 1.574 W; - 0.176 W; 

C; 

( aca) = I I x. xj a0.5 a0.5 0.5 0.5 (1 - k .. ) a. a. . . 1 C; c. 1 J 1J 1 J J 

n ao.5 ao.5 0.5 0.5 ( aca) i = I X. a. a. (1- k .. ) 
j=1 J c. c. 1 J 1J 1 J 

n n 
ao .5 a0.5 aq· 5 m. a0.5 a0.5 
c. c. J 1 c. Ci 

8 = I I [ 1 J + 1 x. x. 
2 rc. T 2 rc. 1 J i=1 j=1 r. 

J 1 1 

aq • 5 m. 1 J 
T r. 

J 

Figure 7. SRK Equation of State 

J (1 
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APPENDIX D 

GENERAL KINETICS CONVERSION FACTORS 
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The rate expression is usually given in mole/lit sec. For general 

kinetics, the rate expression is as follows: 

rate vA c "B vc = k0 exp(-A/RT) CA B Cc ••• moles/lit sec 

where vA, vB, vc = the stoichiometric coefficients of components A, B, 

and C, respectively, if the concentration is written as a function of 

the flow rate. 

rate 

VA v 
FA FB 

= k0 exp(-A/RT) { } moles/lit sec 
VA + VB ... 

v 

where v =total volumetric flow rate. 

The units of the rate constant can be determined as follows: 

[ k J 
0 

mole 
=(lit sec) 

if the units of the volumetric flow rate and the molar flow rates are 

substituted in 

= ( mole ) 
[ ko] 1 it sec 
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If the rate expression is given in lbmole/ft3hr, then the rate constant 

units are 

[ k J I ft 3 VA + "B + • • • -1 1 
o = ( lbmole) (nr) 

From the two previous equations 

[k
0
]' = [ko] {(454 mole)(0.03532 ft3)}vA + "B + ••• -1 (3600 sec) 

lbmole lit hr 
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PROCESS DIAGRAt~ DISPLAY AND UPDATE MENU 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 6-AUG-1987 
PAGE 5 USER: 

REAC # 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1.00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 500.000 CUFT 

H2 + C7H8 -> CH4 + C6H6 

RXN. SEQ.# ORDER STOCHID> 

0.50 -1.00 

2 o.oo 1. !)I) 

7 0.00 1.00 .:.1 

4 1.00 -1.00 



ENTER NEXT COt1MAND? 

ENTER NEXT COMMAND? 
UPl 
** ERROR ** SELECTION UP NOT FOUND 

ENTER NEXT UPDATE COMMAND ? 

** UPDATE MENU** 

ENTER CC TO CHANGE THE CONVERSION CRITERIA 
ENTER OP TO CHANGE OPERATION MODE 
ENTER VI TO CHANGE VOLUME INCREMENT 
ENTER MN TO DISPLAY MENU 
ENTER QT TO STOP UPDATE ? 

ENTER NEXT UPDATE COMMAND ? 
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. APPENDIX F 

THE OVERALL PROCESS OF HYDRODEALKYLATION 

OF TOLUENE 

76 



In the hydrodealkylation process, the following three chemical 

reactions occur: 

The main reaction is the hydroyenation of toluene, whereas the 

other two form the side reactions in the system. The feed to the 

reactor consists of mainly hydrogen and toluene with a trace of ortho

xylene. 

Four outputs are included testing the three conversion criteria 

(reactor volume, outlet temperature, and the benzene production rate) 

and the two operation modes (adiabatic and isothermal). 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 6-AUG-1987 
PAGE 5 USER: 

REAC # 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1. 00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 500.000 CUFT 

H2 + C7H8 -> CH4 + C6H6 

H2 + o-x -) CH4 + C7H8 

C6H6 = H2 + DIPHENYL 

RXN. SEQ.# ORDER STOCHID> 

0.50 -1.00 

") 0.00 1.00 .... 

~ 0.00 1.00 .., 

4 1.00 -1.00 

<= 0.00 0.00 ,J 

6 0.00 0.00 

2 0.50 -1.00 

2 '"' 0.00 1.00 .:.. 

2 7 0.00 0.00 .;, 

" 4 0.00 1. 00 .:.. 

" C" 1.00 -1.00 .:.. .J 
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") 6 0.00 0.00 .. 
' 0.00 1.00 ·.I 

3 2 o.oo 0.00 

3 3 0.0(1 -2.00 

' 4 0.00 0.00 ·.I 

3 5 0.00 0.00 

' 6 0.00 1.00 ·.I 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 5 USER: 

UNIT OPERATION NO 1 IS A REAC UNITn 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 " .:.. 

NAME TOLUENE BENZENE 
COMPONENT 
H2 450.0000 221.3273 
CH4 18.7000 247.3728 
C6H6 0.0000 215.9727 
C7H8 203.3000 0.0272 
o-x 12.7000 0.0000 
DIPHENYL 0.0000 0.0000 

TOTAL 684.7000 684.7000 

T,DEG F 1200.00 1413.23 
P,PSIA 495.00 490.00 
H,KBTU 18378.55 20866.16 
S,KBTU/R 41.9603 43.8732 
MOL WEIGHT 31.0685 31.0837 
D,LB/FT3 0.8533 0.7495 
L/F(MOLARl 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0. 00 KBTU per HR 
THE REACTOR VOLUME= 500.00 CUFT 



DO YOU WANT TO PRINT MOL BALANCE SHEETS;YES OR NO? 

** UPDATE MENU** 

ENTER CC TO CHANGE THE CONVERSION CRITERIA 
ENTER OP TO CHANGE OPERATION MODE 
ENTER VI TO CHANGE VOLUME INCREMENT 
ENTER MN TO DISPLAY MENU 
ENTER QT TO STOP UPDATE ·1 

ENTER NEXT UPDATE COMMAND ? 
cc 

ENTER THE CONVERSION CRITERIA 

2 

0 FOR REACTOR VOLUME 
FOR OUTLET TEMPERATURE 

2 FOR PRODUCTION RATE (P/Fl 

ENTER THE DISIRED PRODUCTION RATE IN LB MOLES/HR 

200 
SPECIFY THE COMPONENT SEQUENCE NUMBER 

ENTER NEXT UPDATE COMMAND ? 
QT 
ENTER NEXT COMMAND? 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 6-AUG-i987 
PAGE 8 USER: 

REAC # 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1.00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE PRODUCTION RATE OF COMP.# 3 IS 200.00 LB MOLES/HR 

H2 + C7H8 -> CH4 + C6H6 

H2 + o-x -> CH4 + C7H8 

C6H6 = H2 + DIPHENYL 

RXN. SEQ.# ORDER STOCHIO> 

0.50 -1.00 

. ., 0.00 1.00 '-

7 0.00 1.00 .;, 

4 1.00 -1.00 

"' ...! 0.00 0.00 

6 0.00 0.00 

2 0.50 -1.00 

2 2 0.00 1.00 

2 ' 0.00 0.00 •.J 

" 4 0.00 1.00 '-
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, 5 1. 00 -1.00 .. 
, 6 0.00 0.00 .. 
3 0.00 1.00 

< 2 o.oo 0.00 •..! 

3 3 o.oo -2.00 

~ :;, 4 0.00 0.00 

.3 5 0.00 0.00 

3 b o.oo 1.00 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 7 USER: 

UNIT OPERATION NO 1 IS A REAC UNIT*** 1.1 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 2 

NAME TOLUENE BENZENE 
COMPONENT 
H2 450.0000 237.3010 
CH4 18.7000 231.3991 
C6H6 0.0000 200.0647 
C7H8 203.3000 15.8696 
o-x 12.7000 0.0657 
DIF'HENYL 0.0000 0.0000 

TOTAL 684.7000 684.7001 

T,DEG F 1200.00 1398.89 
P,PSIA 495.00 490.00 
H,KBTU 18378.55 20701.59 
S,KBTU/R 41.9603 43.8980 
MOL WEIGHT 31.0685 31.0820 
D,LB/FT3 0.8533 0.7552 
LiF(MOLARl 0.00001) 0.00000 

THE HEAT LOAD ON REACTOR IS 0.00 KBTU per HR 
THE REACTOR VOLUME= 284.00 CUFT 



DO YOU WANT TO PRINT MOL BALANCE SHEETS;YES OR NO? 

** UPDATE MENU** 

ENTER CC TO CHANGE THE CONVERSION CRITERIA 
ENTER OP TO CHANGE OPERATION MODE 
ENTER VI TO CHANGE VOLUME INCREMENT 
ENTER MN TO DISPLAY MENU 
ENTER QT TO STOP UPDATE ? 

ENTER NEXT UPDATE COMMAND ? 
OP 

ENTER 0 
ENTER 1 

0 

FOR ISOTHERMAL OPERATION 
FOR ADIABATIC OPERATION 

ENTER NEXT UPDATE COMMAND ? 
QT 
ENTER NEXT COMMAND? 
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SCI MAXI*SIM 
VERSION #2. 2 
PAGE 

REAC i 

JOB ID: 
DATE: 6-AUG-1987 

11 USER: 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ISOTHERMAL 
THE VOLUME INCREMENT= 1.00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE PRODUCTION RATE OF COMP.ft: 3 IS 200.00 

H2 + C7H8 -> CH4 + C6H6 

H2 + 0-X -> CH4 + C7H8 

C6H6 = H2 + DIPHENYL 

RXN. SEQ.# ORDER STOCHIO> 

0.50 -1.00 

2 0.00 1.00 

3 0.00 1.00 

4 1.00 -1.00 

C" o.oo 0.00 ,J 

6 0.00 o.oo 

"' 0.50 -1.00 L 

~. , 0.00 1.00 L L 

2 .) 0.00 0.00 

2 4 0.00 1.00 

86 
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2 5 1.00 -i.OO 

, 6 0.00 0.00 .. 
3 0.00 1.00 

'r 2 0.00 0.00 "' 

< ·.J 3 0.00 -2.00 

3 4 o.oo 0.00 

7 5 0.00 0.00 .j 

3 6 0.00 1.00 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 9 USER: 

UNIT OPERATION NO 1 IS A REAC UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 2 

NAME TOLUENE BENZENE 
COMPONENT 
H" .:. 450.0000 237.3507 
CH4 18.7000 231.3492 
C6H6 0.0000 200.0135 
C7H8 203.3000 15.9221 
o-x 12.7000 0.0645 
DIPHENYL 0.0000 0.0000 

TOTAL 684.7000 684.7000 

T,DEG F 1200.00 1200.00 
P,PSIA 495.00 490.00 
H,KBTU 18378.55 17384.24 
S,KBTU/R 41.9603 42.0098 
MOL WEIGHT 31.0685 31.0780 
D,LB/FT3 0.8533 0.8465 
L!F(MOLARl 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS -11124.56 KBTU pet' HR 
THE REACTOR VOLUME= 1764.00 CUFT 



89 

SCI MAXI+SIM JOB ID: 
VERSION #2.2 DATE: 6-AUG-1987 
PAGE 16 USER: 

REAC It 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OFfRATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREME}JT= 1.00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR OUTLET TEMPERATURE= 1400.000 DEG F 

H2 + C7H8 -> CH4 + C6H6 

H2 + o-x -> CH4 + C7H8 

C6H6 = H2 + DIPHENYL 

RXN. SEQ.# ORDER STOCHIO> 

0.50 -1.00 

.... 0.00 1.00 .:. 

' ·.J 0.00 1. 00 

4 1.00 -1.00 

5 0.00 0.00 

6 o.oo o.oo 

" 0.50 -1.00 i. 

2 2 0.00 1. 00 

2 .3 0.00 0.00 

2 4 0.00 1.00 

'"' 5 1.00 -1.00 .:. 
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2 6 0.00 o.oo 
T 0.00 1.00 •J 

T 2 o.oo 0.00 •J 

3 3 0.00 -2.00 

' 4 o.oo 0.00 " 
T 5 0.00 0.00 •J 

T 
•..! 6 0.00 1.00 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 11 USER: 

UNIT OPERATION NO 1 IS A REAC UNIT*** ,, 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 2 

NAME TOLUENE BENZENE 
COMPONENT 
H2 450.0000 236.4900 
CH4 18.7000 232.2101 
C6H6 0.0000 200.8693 
C7H8 203.3000 15.0714 
o-x 12.7000 0.0593 
DIPHENYL 0.0000 0.0000 

TOTAL 684.7000 684.7002 

T,DEG F 1200.00 1399.62 
P,PSIA 495.00 490.00 
H,KBTU 18378.55 20709.98 
S,KBTU/R 41.9603 43.8985 
MOL WEIGHT 31.0685 31.0821 
D,LB/FT3 0.8533 0.7549 
LIF<MOLAR> 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0. 00 KBTU pet· HR 
THE REACTOR VOLUME= 286.00 CUFT 
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SIMULATION OF A PLUG FLOW REACTOR WITH RECYCLE 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 15 USER: 

UNIT OPERATION 1 IS A ADDR UNIT 
2 FEED<Sl TO UNIT OPERATION 1 HAVE BEEN DEFINED: 

1, B, 
1 PRODUCT(S) FROM UNIT OPERATION 1 HAVE BEEN DEFINED: 

2, 

UNIT OPERATION 2 IS A COMP UNIT 
1 FEED(Sl TO UNIT OPERATION 2 HAVE BEEN DEFINED: 

1 PRODUCT(S) FROM UNIT OPERATION 2 HAVE BEEN DEFINED: 
3, 

UNIT OPERATION 3 IS A REAC UNIT 
1 FEED(Sl TO UNIT OPERATION 3 HAVE BEEN DEFINED: 

1 PRODUCT(Sl FROM UNIT OPERATION 3 HAVE BEEN DEFINED: 
4, 

UNIT OPERATION 4 IS A FLSH UNIT 
1 FEED(Sl TO UNIT OPERATION 4 HAVE BEEN DEFINED: 

4, 
2 PRODUCT (8) FROM UNIT OPERATION 4 HAVE BEEN DEFINED: 

5, 6, 

UNIT OPERATION 5 IS A DVDR UNIT 
1 FEED\Sl TO UNIT OPERATION 5 HAVE BEEN DEFINED: 

5, 
2 PRODUCT(Sl FROM UNIT OPERATION 5 HAVE BEEN DEFINED: 

7, 8, 

THE FOLLOWING STREAM(S) ARE EXTERNAL FEEDS TO THE SIMULATION: 
1, 

THE FOLLOWING STREAM!Sl ARE PRODUCTS FROM THE SIMULATION: 
6, 7, 

STREAM NO 8 IS A RECYCLE STREAM 
LOOP 1 ENDS WITH UNIT OPERATION NO 5 
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SCI MAXI*SIM JOB ID: 
VERSION ii2.2 DATE: 6-AUG-1987 
PAGE 6 USER: 

ADDR # 1 
ADDR UNIT OPERATION REQUIRES NO PROCESS DATA 

COMP # 2 
DISCHARGE PRES = 495.00 PSIA 
DISCHARGE TEMP = 1200.00 DEG F 
1=REV ADB;2=POLYTR = 1.00 

REAC # 3 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1.00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 500.000 CtJFT 

H2 + C7H8 -> CH4 + C6H6 

H2 + 0-X -> CH4 + C7H8 

C6H6 = H2 + DIPHENYL 

RXN. SEQ.# ORDER STOCHIO> 

0.50 -1.00 

2 0.00 1.00 

3 0.00 1.00 

4 1. 00 -1.00 

5 0.00 o.oo 

6 0.00 0.00 

2 0.50 -i.OO 



., 
i.. 

2 

2 

2 

2 

1' 
·.J 

3 

3 

3 

1' 
•J 

FLSH # 4 

,, 
i.. 

1' -· 
4 

5 

6 

2 

3 

4 

5 

6 

0.00 1.00 

0.00 0.00 

0.00 1.00 

1.00 -1.00 

0.00 o.oo 

.0.00 1. 00 

0.00 0.00 

0.00 -2.00 

0.00 0.00 

0.00 o.oo 

0.00 1.00 

CALCULATION TYPE = 1.0 
SPEC OR ESTM T = 100.00 DEG F 
SPEC PRESSURE = 485.00 PSIA 
SPEC OR ESTM L/F = 0.20000 

DVDR # 5 
PERCENT OF TOTAL FEED 

TO PRODUCT 
20.400 
79.600 

PRODUCT 
NUMBER 

1 
2 
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SCI MAXI*SIM 
VERSION #2.2 
PAGE 

JOB ID: 
DATE: 

17 USER: 
7-AUG-1987 

UNIT OPERATION NO 1 IS A ADDR UNIT*** 

FEEDS>>>>>>>>>>>>>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 8 2 

NAME FEED RECYCLE CMINLET 
COMPONENT 
H2 450.0000 1416.6345 1854.1699 
CH4 18.7000 340.5688 359.5651) 
C6H6 0.0000 4.4993 4.5012 
C7H8 203.3000 3.2738 206.5448 
o-x 12.7000 0.0361 12.7356 
DIPHENYL 0.0000 0.0000 0.0000 

TOTAL 684.7000 1765.0125 2437.5164 

T,DEG F 1200.00 100.00 681.47 
P,PSIA 495.00 485.00 465.00 
H,KBTU 18385.02 6990.10 25328.35 
S,KBTU/R 41.9722 50.0933 96.4254 
MOL WEIGHT 31.0866 5.0857 12.4059 
D,LB/FT3 0.8538 0.4041 0.4851 
L/FIMOLAR) 0.00000 0.00000 0.00000 
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SCI MAXI*SIM 
VERSION #2. 2 
PAGE 

JOB ID: 
DATE: 

18 USER: 
7-AUG-1987 

UNIT OPERATION NO 2 IS A COMP UNIHu 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 2 3 

NAME CMINLET TOLUENE 
COMPONENT 
H2 1854.1699 1854.1699 
CH4 359.5650 359.5650 
C6H6 4.5012 4.5012 
C7H8 206.5448 206.5448 
o-x 12.7356 12.7356 
DIPHENYL 0.0000 0.0000 

TOTAL 2437.5164 2437.5164 

T,DEG F 681.47 1200.00 
P,PSIA 485.00 495.00 
H,KBTU 25328.35 41359.41 
S,KBTU/R 96.4254 107.8463 
MOL WEIGHT 12.4059 12.3983 
D,LB/FT3 0.4851 0.3407 
L/F(MOLARl 0.00000 0.00000 

VALUES AT DELTA S = 0.0 
TEMP = 685.45 DEG F 
L/F(MOLARl = 0.00000 

WORK= -6300.44 HP AT 0.71 7. EFFICIENCY 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 19 USER: 

UNIT OPERATION NO 3 IS A REAC UNIT*** ·~ 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES AR£ LB-MOLS 
STREAM NO < •.J 4 

NAME TOLUENE BENZENE 
COMPONENT 
H2 1854.1699 1781.7428 
CH4 359.5650 431.9936 
C6H6 4.5012 70.2432 
C7H8 206.5448 147.4893 
o-x 12.7356 6.0491 
DIPHENYL 0.0000 0.0000 

TOTAL 2437.5164 2437.5178 

T,DEG F 1200.00 1235.29 
P,PSIA 495.00 490.00 
H,KBTU 41359.41 42177.20 
S,KBTU/R 107.8463 108.8405 
MOL WEIGHT 12.3983 12.3997 
D,LB/FT3 0.3407 0.3304 
L/F(MOLAR) 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0.00 KBTU per HR 
THE REACTOR VOLUME= 500.00 CUFT 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 20 USER: 

UNIT OPERATION NO 4 IS A FLSH UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>>>>>>>>>>>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 4 5 6 

NAME BENZENE VAPOR HEAVY 
COMPONENT 
H2 1781.7428 1779.6915 2.0512 
CH4 431.9936 427.8503 4.1433 
C6H6 70.2432 5.6524 64.5908 
C7H8 147.4893 4.1129 143.3765 
o-x 6.0491 0.0453 6.0038 
DIPHENYL 0.0000 0.0000 0.0000 

TOTAL 2437.5178 2217.3523 220.1655 

T,DEG F 1235.29 100.00 100.00 
P,PSIA 490.00 485.00 485.00 
H,KBTU 42177.20 8781.53 -1594.29 
S,KBTU/R 108.8405 62.9313 11.3657 
MOL WEIGHT 12.3997 5.0857 86.1323 
D,LB/FT3 1), 3304 0.4041 52.7411 
L/F(MOLARl 0.00000 0.00000 1.00000 

HEAT TRANSFERfi'ED -34989.96 KBTU 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 21 USER: 

UNIT OPERATION NO 5 IS A DVDR UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>>>>>>>>>>>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 5 7 8 

NAME VAPOR PUfi:GE RECYCLE 
COMPONENT 
H2 1779.6915 363.0571 1416.6345 
CH4 427.8503 87.2814 340.5688 
C6H6 5.6524 1.1531 4.4993 
C7H8 4.1129 0.8390 3.2738 
0-X 0!0453 0.0092 0.0361 
DIPHENYL 0.0000 0.0000 0.0000 

TOTAL 2217.3523 452.3399 1765.0125 

T,DEG F 100.00 100.00 100.00 
P,PSIA 485.00 485.00 485.00 
H,KBTU 8781.53 1791.43 6990.10 
S,KBTU/R 62.9313 12.8380 50.0933 
MOL WEIGHT 5.0857 5.0857 5.0857 
D,LBIFT3 0.4041 0.4041 0.4041 
L/F(MOLARl 0.00000 0.00000 0.00000 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 22 USER: 

OVERALL PROCESS MATERIAL BALANCE 

COMPONENT TOTAL TOTAL RATIO 
NAME FEEDS PRODUCTS <PD/FD> 

H2 450.0000 365.1083 0.81135 
CH4 18.7000 91.4247 4.88902 
C6H6 0.0000 65.7439 0.00000 
C7H8 203.3000 144.2155 0.70937 
o-x 12.7000 6.0130 0.47346 
DIPHENYL 0.0000 0.0000 0.00000 

TOTAL 684.7000 672.5054 0.98219 



APPENDIX H 

THE EFFECT OF THE VOLUME INCREMENT 

ON THE RESULTS 
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SCI MAXI*SIM JOB ID: 
VERSION lt2.2 DATE: 9-AUG-1987 
PAGE 10 USER: 

REAC II 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1.00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 500.000 CUFT 

H2 + C7H8 -> CH4 + C6H6 

H2 + o-x -> CH4 + C7H8 

C6H6 = H2 + DIPHENYL 

RXN. SEQ.lt ORDER STOCHIO> 

i).50 -1.00 

2 0.00 1.00 

3 o.oo 1.00 

4 1.00 -1.00 

5 0.00 0.00 

6 0.00 0.00 

") 0.50 -1.1)0 <. 

2 2 1).00 1.00 

2 T 
·~ 0.00 0.00 

,., 
4 0.00 1.00 L 

") 5 1.00 -1.00 
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, 
6 0.00 0.00 .. 

3 0.00 1.00 

' 
, 0.00 0.00 " .:.. 

3 ' 0.00 -2.00 " 
~ .;, 4 0.00 0.00 

3 5 0.00 0.00 

3 L 0.00 1.00 u 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 9-AUG-1987 
PAGE 6 USER: 

UNIT OPERATION NO 1 IS A REAC UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>> 
STfi~M FLOW RATES ARE LB-MOLS 
STREAM NO 1 2 

NAME TOLUENE BENZENE 
COMPONENT 
H2 450.0000 221.3273 
CH4 18.7000 247.3728 
C6H6 0.0000 215.9727 
C7H8 203.3000 0.0272 
o-x 12.7000 0.0000 
DIPHENYL 0.0000 0.0000 

TOTAL 684.7000 684.7000 

T,DEG F 1200.00 1413.23 
P,PSIA 495.00 490.00 
H,KBTU 18378.55 20866.16 
S,KBTU/R 41.9603 43.8732 
MOL WEIGHT 31.0685 31.0837 
D,LB/FT3 0.8533 0. 7495 
L/F(MOLAR) 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0.00 KBTU pet· HR 
THE REACTOR VOLUME= 500.00 CUFT 
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SCI MAXI*SIM JOB ID: 
VERSION ~2.2 DATE: 9-AUG-1987 
PAGE 12 USER: 

REAC # 

*** THIS IS THE PO FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 0.25 CUFT 

THE INLET PRESSURE TO REACTOfi~ 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 500.000 CUFT 

H2 + C7H8 -> CH4 + C6H6 

H2 + o-x -> CH4 + C7H8 

CbHb = H2 + DIPHENYL 

RXN. SEQ.# ORDER STOCHIO> 

0.50 -1.00 

2 0.00 1.00 

3 0.00 1.00 

4 1.00 -1.00 

5 0.00 <).00 

6 0.00 0.00 

,.., 0.50 -1.00 .. 
2 2 0.00 1.00 

,.., 7 0.00 0.00 .. ·.J 

,.., 4 o.oo 1.00 .:. 

2 " 1.00 -1.00 .J 
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, 6 o.oo 0.00 .:. 

3 0.00 1.00 

'l' 2 0.00 0.00 •.J 

"l" "l" 0.00 -2.00 oJ •J 

3 4 0.00 0.00 

"l" 5 0.00 0.00 ·.J 

"l" 
·J 6 0.00 1.00 
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SCI MAXI *SIM jOB ID: 
VERSION ~2.2 DATE: 9-AIJG-1987 
PAGE 8 USER: 

UNIT OPERATION NO 1 IS A REAC UNIT*** ,, 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STHEAM NO 2 

NAME TOLUENE BENZENE 
COMPONENT 
H2 450.0000 221.3194 
CH4 18.7000 247.3812 
C6H6 0.0000 215.9811 
C7H8 203.3000 0.0187 
o-x 12.7000 0.0000 
DIPHENYL 0.0000 0.0000 

TOTAL 684.7000 684.7004 

T,DEG F 1200.00 1415.50 
P,PSIA 495.00 490.00 
H,KBTU 18378.55 20905.06 
S,I~]TU/R 41.9603 43.8938 
MOL WEIGHT 31.0685 31.0837 
D,LB/FT3 0.8533 0.7486 
L/FlMOLARl 0.00000 0.00000 

TP.£ HEAT LOAD ON REACTOR IS 0. 00 KBTU per HR 
THE REACTOR VOLUME= 500.00 CUFT 



APPENDIX I 

SIMULATION OF TWO PLUG FLOW 

REACTORS IN SERIES 

109 



The first run shows the results from the simulation of one single 

reactor with a volume equal to 500 ft3. The second run shows the 

results from the simulation of two reactors in series. For comparison, 

look at stream number 2 in the first run, and stream number 3 in the 

second run. 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 4 USER: 

REAC lt 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1.00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 500.000 CUFT 

H2 + C7H8 -> CH4 

RXN. SEQ.# ORDER STOCHIO> 

2 

"!' 
·..1 

4 

0.50 -1.00 

0.00 1.00 

0.00 1.00 

1.00 -1.00 

+ C6H6 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE b USER: 

UNIT OPERATION NO 1 IS A REAC UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 2 

NAME TOLUENE BENZENE 
COMPONENT 
H2 450.0000 217.0577 
CH4 0.0000 232.9424 
C6H6 0.0000 232.9424 
C7H8 233.0000 0.0576 

TOTAL 683.0000 683.0001 

T,DEG F 1200.00 1408.17 
P,PSIA 495.00 490.00 
H,KBTU 18865.59 21383.47 
S,KBTU/R 42.5316 44.6471 
MOL WEIGHT 32.7408 32.7541 
D,LB/FT3 0.8995 0.7920 
L!F!MOLARl 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0.00 KBTU per HR 
THE REACTOR VOLUME= 500.00 CUFT 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 6 USER: 

UNIT OPERATION 1 IS A REAC UNIT 
1 FEED!Sl TO UNIT OPERATION 1 HAVE BEEN DEFINED: 

1, 
1 PRODUCT!Sl FROM UNIT OPERATION 1 HAVE BEEN DEFINED: 

2, 

UNIT OPERATION 2 IS A REAC UNIT 
1 FEED!Sl TO UNIT OPERATION 2 HAVE BEEN DEFINED: 

2, 
1 PRODUCT!Sl FROM UNIT OPERATION 2 HAVE BEEN DEFINED: 

"'!' . .,, 

THE FOLLOWING STREAM!Sl ARE EXTERNAL FEEDS TO THE SIMULATION: 
1, 

THE FOLLOWING STREAM!Sl ARE PRODUCTS FROM THE SIMULATION: 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 . 
PAGE 7 USER: 

REAC # 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1.00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 492.5000 PSIA 

THE SPECIFIED REACTOR VOLUME= 250.000 CUFT 

H2 + C?HS -> CH4 + C6H6 

RXN. SEQ.# ORDER STOCHIO> 

0.50 -1.00 

, 0.00 1.00 .. 
T 
·.J o.oo 1.00 

4 1.00 -1.00 

REAC # 2 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1. 00 CUFT 

THE INLET PRESSURE TO REACTOR= 492.5000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 250.000 CUFT 

H2 + C7H8 -> CH4 + C6H6 

RXN. SEQ.# ORDER STOCHrD> 

0.50 -1.00 



2 

7 .,;, 

4 

0.00 

0.00 

1.00 
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1.00 

1. 00 

-1.00 



SCI MAXI*SIM JOB ID: 
VERSION i2.2 DATE: 7-AUG-1987 
PAGE 8 USER: 

UNIT OPERATION NO 1 IS A REAC UNIT*** w; 

fEEDS>>>>>>>PRODUCTS>>>> · 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 . 2 

NAME FEED1 PROD.1 
COMPONENT 
H2 450.0000 258.0125 
CH4 0.0000 191.9874 
C6H6 0.0000 191.9874 
C7H8 233.0000 41.0126 

TOTAL 683.0000 682.9999 

T,DEG F 1200.00 1372.39 
P,PSIA 495.00 492.50 
H,KBTU 18865.59 20957.63 
S,KBTU/R 42.5316 44.6117 
MOL WEIGHT 32.7408 32.7523 
D,LB/FT3 0.8995 0.8114 
L/F(MOLARl 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0.00 KBTU per HR 
THE REACTOR VOLUME= 250.00 CUFT 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 9 USER: 

UNIT OPERATION NO 2 IS A REAC UNIT*** vr .j 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 2 3 

NAME PROD.1 PROD.2 
COMPONENT 
H2 258.0125 217.0548 
CH4 191.9874 232.9451 
C6H6 191.9874 232.9451 
C7H8 41.0126 0.0548 

TOTAL 682.9999 682.9998 

T,DEG F 1372.39 1408.16 
P,PSIA 492.50 490.00 
H,KBTU 20957.63 21383.25 
S,KBTU/R 44.6117 44.6469 
MOL WEIGHT 32.7523 32.7541 
D,LB/FT3 0.8114 0.7920 
L/F(MOLAR) 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0. 00 KBTU pet· HR 
THE REACTOR VOLUME= 250.00 CUFT 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 10 USER: 

OVERALL PROCESS MATERIAL BALANCE 

COMPONENT TOTAL TOTAL RATIO 
NAME FEEDS PRODUCTS (PD/FDl 

H2 450.0000 217.0548 0.48234 
CH4 0.0000 232.9451 0.00000 
C6H6 0.0000 232.9451 0.00000 
C7H8 233.0000 0.0548 0.00024 

TOTAL 683.0000 682.9998 1.00000 



APPENDIX J 

SIMULATION OF TWO PLUG FLOW 

REACTORS IN PARALLEL 

119 



The first run shows the results from the simulation of one single 

reactor with a volume equal to 500 ft 3• The second run shows the 

results from the simulation of two reactors in parallel. For 

comparison, look at stream number 2 in the first run, and stream number 

6 in the second run. 
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SCI MAXI*SIM JOB ID: 
VERSION ~2.2 DATE: 7-AUG-1987 
PAGE 4 USER: 

REAC # 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1. 00 C!JFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 500.000 CUFT 

H2 + C7H8 -> CH4 + C6H6 

RXN. SEQ.# ORDER STOCHIO> 

0.50 -1.00 

2 0.00 1.00 

3 0.00 1.00 

4 1.00 -1.00 



SCI MAXI*SIM JOB ID: 
VERSION 112.2 DATE: 7-AUG-1987 
PAGE 5 USER: 

UNIT OPERATION NO 1 IS A REAC UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM ~ID 1 2 

NAME TOLUENE BENZENE 
COMPONENT 
H2 450.0000 217.0577 
CH4 0.0000 232.9424 
C6H6 0.0000 232.9424 
C7H8 233.0000 0.0576 

TOTAL 683.0000 683.0001 

T,DEG F 1200.00 1408.17 
P,PSIA 495.00 490.00 
H,KBTU 18865.59 21383.47 
S,KBTUIR 42.5316 44.6471 
MOL WEIGHT 32.7408 32.7541 
D,LB/FT3 0.8995 0.7920 
L/F!MOLAR) 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 
THE REACTOR VOLUME= 500.·00 

0.00 kBTU per HR 
CUFT 
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SCI MAXI*SIM 
VERSION lt2. 2 
PAGE 

JOB ID: 
DATE: 7-AUG-1987 

2 USER: 

UNIT OPERATION 1 IS A DVDR UNIT 
1 FEED (Sl TO UNIT OPERATION 1 HAVE BEEN DEFINED: 

1, 
2 PRODUCT!Sl FROM UNIT OPERATION 1 HAVE BEEN DEFINED: 

2, 1' ... , 
UNIT OPERATION 2 IS A REAC UNIT 

1 FEED<Sl TO UNIT OPERATION 2 HAVE BEEN DEFINED: 
? .. , 

1 Ph~DUCT!Sl FROM UNIT OPERATION 2 HAVE BEEN DEFINED: 
4, 

UNIT OPERATION 3 IS A REAC UNIT 
1 FEED<Sl TO UNIT OPERATION 3 HAVE BEEN DEFINED: 

1' ._., 
1 PRODUCT!Sl FROM UNIT OPERATION 3 HAVE BEEN DEFINED: 

s, 

UNIT OPERATION 4 IS A ADDR UNIT 
2 FEED(S) TO UNIT OPERATION 4 HAVE BEEN DEFINED: 

4, 5, 
1 PRODUCT(S) FROM UNIT OPERATION 4 HAVE BEEN DEFINED: 

6, 

THE FOLLOWING STREAM<Sl ARE EXTERNAL FEEDS TO THE SIMULATION: 
1, 

THE FOLLOWING STREAM!Sl ARE PRODUCTS FROM THE SIMULATION: 
6, 
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SCI MAXI*SIM 
VERSION #2.2 
PAGE 

DVDR # 1 

JOB ID: 
DATE: 

3 USER: 

PERCENT OF TOTAL FEED 
TO PRODUCT 

50.000 
50.000 

REAC # 2 

7-AUG-1987 

PRODUCT 
NUMBER 

1 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1.00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 250.000 CUFT 

H . ., .. + C7H8 -> CH4 + C6H6 

RXN. SEQ.# ORDER STDCHIO> 

0.50 -1.00 

2 0.00 1. 00 

-r 0.00 1.00 •J 

4 1.00 -1.00 

REAC # 1' 
•J 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLU!'1E INCREMENT= 1. 00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE SPECIFIED REACTOR VOLUME= 250.000 CUFT 

H2 + C7H8 -> CH4 + C6H6 
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RXN. SEQ.It ORDER STOCHIO) 

0.50 -1.00 

2 0.00 1.00 

3 o.oo 1.00 

4 1.00 -1.00 

ADDR # 4 
ADDR UNIT OPERATION REQUIRES NO PROCESS DATA 
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SCI MAXIJSIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 4 USER: 

UNIT OPERATION NO 1 IS A DVDR UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>>>>>>>>>>>>>> 
~TREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 2 -r 

•.J 

NAME FEED 1/2FEED 1/2FEED 
COMPONENT 
H2 450.0000 225.0000 225.0000 
CH4 0.0000 0.0000 0.0000 
C6H6 0.0000 0.0000 0.0000 
C7H8 233.0000 116.5000 116.5000 

TOTAL 683.0000 341.5000 341.5000 

T,DEG F 1200.00 1200.00 1200.01) 
P,PSIA 495.00 495.00 495.00 
H,KBTU 18871.37 9432.79 9432.79 
S,KBTU/R 42.5422 21.2658 21.2658 
MOL WEIGHT 32.7572 32.7408 32.7408 
D,LB/FT3 0.9000 0.8995 0.8995 
LIF<MOLARl 0.00000 0.00000 0.00000 



SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 5 USER: 

UNIT OPERATION NO 2 IS A REAC UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 2 4 

NAME 1/2FEED F~OD.1 

COMPONENT 
H2 225.0000 108.5427 
CH4 0.0000 116.4572 
C6H6 0.0000 116.4572 
C7H8 116.5000 0.0427 

TOTAL 341.5000 341.4999 

T,DEG F 1200.00 1405.46 
P,PSIA 495.00 490.00 
H,KBTU 9432.79 10667.94 
S,KBTU/R 21.2658 22.3110 
MOL WEIGHT 32.7408 32.7540 
D,LB/FT3 0.8995 0.7932 
L/F(MOLARl 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 
THE REACTOR VOLUME= 250.00 

0. 00 KBTU pet· HR 
CUFT 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 7-AUG-1987 
PAGE 6 USER: 

UNIT OPERATION NO 3 IS A REAC UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO "' 5 ·J 

NAME 1/2FEED PROD.2 
COMPONENT 
H2 225.0000 108.5427 
CH4 0.0000 116.4573 
C6H6 0.0000 116.4573 
C7H8 116.5000 0.0427 

TOTAL 341.5000 341.5000 

T,DEG F 1200.00 1405.46 
P,PSIA 495.00 490.00 
H,KBTU 9432.79 10667.92 
S,KBTU/R 21.2658 22.3110 
MOL WEIGHT 32.7408 32.7541 
D,LB/FT3 0.8995 0.7932 
L/F!MOLARl 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0.00 KBTU pet' HR 
THE REACTOR VOLUME= 250.00 CUFT 



SCI MAXI*SIM 
VEf\'S ION #2. 2 
PAGE 

JOB ID: 
DATE: 

7 USER: 
7-AUG-1987 

UN IT OPERATION NO 4 IS A ADDR UNIT*** 

FEEDS::>)>>>>>>>>>>>>>)> >PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 4 5 6 

NAME PROD.1 PROD.2 OVERALL 
COMPONENT 
H2 108.5427 108.5427 217.0854 
CH4 116.4572 116.4573 232.9145 
C6H6 116.4572 116.4573 232.9145 
C7H8 0.0427 0.0427 0.0854 

TOTAL 341.4999 341.5000 682.9999 

T,DEG F 1405.46 1405.46 1405.29 
P,PSIA 490.00 490.00 490.00 
H,KBTU 10667.94 10667.92 21335.86 
S,KBTU/R 22.3110 22.3110 44.6248 
MOL WEIGHT 32.7540 32.7541 32.7614 
D,LB/FT3 0.7932 0.7932 0.7934 
L/F(MOLARl 0.00000 0.00000 0.00000 
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SCI MAXI*SIM JOB ID: 
VERSION ~2.2 DATE: 7-AUG-1987 
PAGE 8 USER: 

OVERALL PROCESS MATERIAL BALANCE 

COMPONENT TOTAL TOTAL RATIO 
NAME FEEDS PRODUCTS (PD/FDl 

H2 450,0000 217.0854 0.48241 
CH4 0.0000 232.9145 0.00000 
C6H6 0.0000 232.9145 0,00000 
C7H8 233.0000 0.0854 0.000.37 

TOTAL 683.0000 682.9999 1.00000 



APPENDIX K 

THE NEED OF THE REACTOR 

WITH RECYCLE 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 9-AUG-1987 
PAGE 5 USER: 

REAC # 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1. 00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 F'SIA 

THE PRODUCTION RATE OF COMF'.# 3 IS 203.00 

H2 + C7H8 -> CH4 + C6H6 

H2 + o-x -> CH4 + C7H8 

C6H6 = H2 + DIPHENYL 

RXN. SEQ.# ORDER STOCHIO> 

0.50 -1.1)0 

2 0.00 1.00 

"'!' 0.00 1.00 .., 

4 1. !)!) -1.00 

5 0.00 0.00 

6 0.00 0.00 

., 
0.50 -1.00 .. 

2 '"' 0.00 1. 00 ,;. 

2 
.,. 

0.00 0.00 -~ 

.-, 4 0.00 1. 00 .:.. 
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. ., 
5 1.00 -1.00 i.. 

2 6 0.00 0.00 

3 0.00 1.00 

3 ':1 0.00 0.00 ... 

3 3 0.00 -2.00 

' ·.J 4 0.00 0.00 

.,. . .;, 5 0.00 0.00 

' 6 0.00 1.00 ·.J 



SCI MAXI*SIN 
VERSION #2.2 
PAGE 

JOB ID: 
DATE: 9-AUG-1987 

7 USER: 

UNIT OPERATION NO 1 IS A REAC UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 2 

NAME TOLUENE BENZENE 
COMPONENT 
H2 629.3000 413.5182 
CH4 18.7000 234.4818 
C6H6 0.0000 203.1246 
C7H8 203.3000 12.8326 
o-x 12.7000 0.0428 
DIPHENYL 0.0000 0.0000 

TOTAL 864.0000 863.9999 

T,DEG F 1200.00 1388.11 
P,PSIA 495.00 490.00 
H,KBTU 20466.50 22832.64 
S,KBTU/R 47.8736 50.0149 
MOL WEIGHT 25.0379 25.0490 
D,LB/FT3 0.6872 0.6120 
L/F(MOLARl 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0. 00 KBTU pet' HR 
THE REACTOR VOLUME= 367.00 CUFT 
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SCI MAXI*SIM JOB ID: 
VERSION ~2.2 DATE: 9-AUG-1987 
PAGE 15 USER: 

UNIT OPERATION 1 IS A ADDR UNIT 
2 FEED <Sl TO UNIT OPERATION 1 HAVE BEEN DEFINED: 

1, a, 
1 PRODUCT (Sl FROM UNIT OPERATION 1 HAVE BEEN DEFINED: 

2, 

UNIT OPERATION 2 IS A COMP UNIT 
1 FEED(S/ TO UNIT OPERATION 2 HAv~ BEEN DEFINED: 

1 PRODUCT<Sl FROM UNIT OPERATION 2 HAVE BEEN DEFINED: 
3, 

UNIT OPERATION 3 IS A REAC UNIT 
1 FEED<Sl TO UNIT OPERATION 3 HAVE BEEN DEFINED: 

1 PRODUCT<Sl FROM UNIT OPERATION 3 HAVE BEEN DEFINED: 
4, 

UNIT OPERATION 4 IS A FLSH UNIT 
1 FEED<Sl TO UNIT OPERATION 4 HAVE BEEN DEFINED: 

4, 
2 PRODUCT<Sl FROM UNIT OPERATION 4 HAVE BEEN DEFINED: 

5, 6, 

UNIT OPERATION 5 IS A DVDR UNIT 
1 FEED(S) TO UNIT OPERATION 5 HAVE BEEN DEFINED: 

5, 
2 PRODUCT(Sl FROM UNIT OPERATION 5 HAVE BEEN DEFINED: 

7, a, 

THE FOLLOWING STREAM<Sl ARE EXTERNAL FEEDS TO THE SIMULATION: 
1, 

THE FOLLOWING STREAM<Sl ARE PRODUCTS FROM THE SIMULATION: 
6, 

.., ,, 

STREAM NO 8 IS A RECYCLE STREAM 
LOOP 1 ENDS WITH UNIT OPERATION NO 5 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 9-AUG-1987 
PAGE 34 USER: 

ADDR # 1 
ADDR UNIT OPERATION REQUIRES NO F~OCESS DATA 

COMP # 2 
DISCHARGE PRES = 495.00 PS!A 
DISCHARGE TEMP = 1200.00 DEG F 
l=REV ADB;2=POLYTR = 1.00 

REAC # 3 

*** THIS IS THE PD FOR THE REACTOR UNIT **** 

THE OPERATION IN THE REACTOR IS ADIABATIC 
THE VOLUME INCREMENT= 1. 00 CUFT 

THE INLET PRESSURE TO REACTOR= 495.0000 PSIA 
THE OUTLET PRESSURE FROM REACTOR= 490.0000 PSIA 

THE PRODUCTION RATE OF COMP. # 3 IS 203.00 LB MOLES/HR 

H2 + C7H8 -> CH4 + C6H6 

H2 + o-x -> CH4 + C7H8 

C6H6 = H2 + DIPHENYL 

RXN. SEQ.i ORDER STOCHIO> 

0.50 -1.00 

2 0.00 1.00 

T 0.00 1.00 ·-· 

4 1. 00 -1.00 

5 0.00 0.00 

6 0.00 0.00 



2 

2 

- 2 

2 

2 

T 
·..J 

3 

3 

3 

< ·J 

3 

FLSH # 4 

2 

3 

4 

5 

6 

2 

3 

4 

5 

6 

0.50 -1.00 

0. 00 1. 00 

0.00 0.00 

0.00 1.00 

1.00 -1.00 

0.00 • 0.00 

0.00 1.00 

0.00 o.oo 

o.oo -2.00 

0.00 0.00 

0.00 0.00 

0.00 1.00 

CALCULATION TYPE = 1. 0 
SPEC OR ESTM T = 100.00 DEG F 
SPEC PRESSURE = 485.00 PSIA 
SPEC OR ESTM L/F = 0.20000 

DVDR ft: 5 
PERCENT OF TOTAL FEED 

TO PRODUCT 
20.400 
79.600 

Pli.'ODUCT 
NUMBER 

1 
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SCI MAXI*SIM JOB ID: 
VERSION ~2.2 DATE: 9-AUG-1987 
PAGE 42 USER: 

UNIT OPERATION NO 1 IS A ADDR UNIT*** 

FEEDS>>>>>>>>>>>>>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 1 8 2 

NAME FEED RECYCLE COMPINL 
COMPONENT 
H2 450.0000 873.1261 1299.6881 
CH4 18.7000 813.0051 829.4761 
C6H6 0.0000 14.1494 13.9856 
C7H8 203.3000 0.6928 203.9788 
o-x 12.7000 0.0013 12.7013 
DIPHENYL 0.0000 0.0000 0.0000 

TOTAL 684.7000 1700.9749 2359.8301 

T,DEG F 1200.00 100.00 654.15 
P,PSIA 495.00 485.00 485.00 
H,KBTU 18385.02 6995.70 25279.18 
S,KBTU/R 41.9722 55.5203 101.9957 
MOL WEIGHT 31.0866 9.3897 15.7473 
D,LB/FT3 0.8538 0.7574 0.6319 
L/F(MOLARl 0.00000 0.00000 0.00000 
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SCI MAXItSIM JOB ID: 
VERSION ~2.2 DATE: 9-AUG-1987 
PAGE 43 USER: 

UNIT OPERATION NO 2 IS A COMP UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO .., ' .:.. ·.I 

NAME COMPINL TOLUENE 
COMPONENT 
H2 1299.6881 1299.6881 
CH4 829.4761 829.4761 
C6H6 13.9856 13.9856 
C7H8 203.9788 203.9788 
o-x 12.7013 12.7013 
DIPHENYL 0.0000 0.0000 

TOTAL 2359.8301 2359.8301 

T,DEG F 654.15 1200.00 
P,PSIA 485.00 495.00 
H,KBTU 25279.18 4:!.888. 88 
S,KBTU/R 101.9957 115.4028 
MOL WEIGHT 15.7473 15.7397 
D,LB/FT3 0.6319 0.4323 
L/F(MOLARl 0.00000 0.00000 

VALUES AT DELTA S = 0.0 
TEMP = 657.69 DEG F 
L/F(MOLARl = 0.00000 

WORK = -7313.88 HP AT 0.58 !. EFFICIENCY 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 9-AUG-1987 
PAGE 44 USER: 

UNIT OPERATION NO 3 IS A REAC UNIT*** 1 

FEEDS>>>>>>>PRODUCTS>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 3 4 

NAME TOLUENE BENZENE 
COMPONENT 
H2 1299.6881 1098.1405 
CH4 829.4761 10.:)1.0270 
C6H6 13.9856 203.0260 
C7H8 203.9788 27.4484 
o-x 12.7013 0.1915 
DIPHENYL 0.0000 0.0000 

TOTAL 2359.8301 2359.8335 

T,DEG F 1200.00 1286.43 
P,PSIA 495.00 490.00 
H,KBTU 43888.88 46145.32 
S,KBTU/R 115.4028 116.9566 
MOL WEIGHT 15.7397 15.7432 
D,LB/FT3 0.4323 0.4072 
L/F(MOLARl 0.00000 0.00000 

THE HEAT LOAD ON REACTOR IS 0.00 KBTU per HR 
THE REACTOR VOLUME= 1914.00 CUFT 
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SCI MAXI*SIM JOB ID: 
VERSION ~2.2 DATE: 9-AUG-1987 
PAGE 45 USER: 

UNIT OPERATION NO 4 IS A FLSH UNIT*** 

FEEDS>>>>>>>PRODUCTS>>>>>>>>>>>>>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 4 5 6 

NAME E'ENZENE VAPOR HEAVY 
COMPONENT 
H2 1098.1405 1096.8921 1.2484 
CH4 1031.0270 1021.3632 9.6638 
C6H6 203.0260 17.7756 185.2504 
C7H8 27.4484 0.8704 26.5780 
o-x 0.1915 0.0017 0.1898 
DIPHENYL 0.0000 0.0000 0.0000 

TOTAL 2359.8335 2136.9031 222.9304 

T,DEG F 1286.43 100.00 100.00 
P,PSIA 490.00 485.00 485.00 
H,KBTU 46145.32 8788.58 -1546.46 
S,KBTU/R 116.9566 69.7493 9.9499 
MOL WEIGHT 15.7432 9.3897 76.6933 
D,LB/FT3 0.4072 0.7574 52.4747 
L/F(MOLARl 0.1)0000 1).00000 1.00001) 

HEAT TRANSFERRED -38903.20 KBTU 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 9-AUG-1987 
PAGE 46 USER: 

UNIT OPERATION NO 5 IS A OVOR UNIT*** 

FEEDS>>>>>>>PROOUCTS>>>>>>>>>>>>>>>> 
STREAM FLOW RATES ARE LB-MOLS 
STREAM NO 5 7 8 

NAME VAPOR PURGE RECYCLE 
COMPONENT 
H2 1096.8921 223.7660 873.1261 
CH4 1021.3632 208.3581 813.0051 
C6H6 17.7756 3.6262 14.1494 
C7H8 0.8704 0.1776 0.6928 
o-x 0.0017 0.0003 0.0013 
OIPHENVL 0.0000 0.0000 0.0000 

TOTAL 2136.9031 4~.S. 9282 1700.9749 

T,OEG F 100.00 100.00 100.00 
P,PSIA 485.00 485.00 485.00 
H,KBTU 8788.58 1792.87 6995.70 
S,KBTU/R 69.7493 14.2288 55.5203 
MOL WEIGHT 9.3897 9.3897 9.3897 
01LB/FT3 0.7574 0.7574 0.7574 
L/F(MOLARl 0.00000 0.00000 0.00000 
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SCI MAXI*SIM JOB ID: 
VERSION #2.2 DATE: 9-AUG-1987 
PAGE 47 USER: 

OVERALL PROCESS MATERIAL BALANCE 

COMPONENT TOTAL TOTAL RATIO 
NAME FEEDS PRODUCTS (PD/FD) 

H2 450.0000 225.0144 0.50003 
CH4 18.7000 218.0219 11.65892 
C6H6 0.0000 188.8766 0.00000 
C7H8 203.3000 26.7556 0.13161 
o-x 12.7000 0.1902 0.01497 
DIPHENYL 0.0000 0.0000 0.00000 

TOTAL 684.7000 658.8586 0.96226 
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) 

2460 c 
2461 c 
2462 ccccccc 
2463 C SUBROUTINE INPUT FOR REACTOR 
2464 c 
2465 
2466 
2467 
2468 
2469 
2470 
2471 

Cl23456 

2472 
2473 
2474 
2475 
2476 

2477 
2478 
2479 
2480 
2481 
2482 
2483 
2484 
2485 
2486 
2487 
2488 
2489 
2490 
2491 
2492 
2493 
2494 
2495 
2496 
2497 
2498 
2499 
2500 
2501 
2502 
2503 
2504 
2505 
2506 
2507 
2508 
2509 
2510 
2511 
2512 

c 
SUBROUTINE REAC<IIl 

DIMENSION IFDBUU, IPDB (11 l, KMD !5l 
COMMON/PRD1/F1!500l,IDCS<25l,IDPR0<50l,IFD(50l, 

1 IFDL(200l,IPD<50l,IPDL<200l,IPRC<70l,IRC<50l, 
2 ISIZ<25l, ITCNT(100l ,JPD<50l ,MHB(50l ,NRECU10l, 
3 PD(1250l ,PROP(3000l ,RCNT(100l, TEMP<410l, X(5000l 
COI1110N/SIZE2/ISIZ2(100l 
COMMON/UPDATE/IUPDT(50l 
COI1110N/COMIO/NI,NO,IYES,INO,PNAM!15l,~lPAGE 

COMMON/UNITA1/UDA<3l,ULA<3l,UVA(3l,ULB<3l,UHT(9l,UDF<6l,HPU<3 

COMMON/UNITA2/TU<4l,PU<6l,HU<3l,SU(6l,RU!6l,UM<3l,PUX!6l 
COMMON/UNITA3/UARE(3l,UVIS!6l,UTHC!9l,UHPA<3l,UVB!3l,USG<6l 
COMMON/UNITDM/IU1,IU2,IU3,IU21,IU31 
EQUIVALENCE<ITCNT!18l,N2l,<ITCNT!21l,NCPl, <ITCNT(22l,NCPUl, 

1 <ITCNT<23l ,NCPT l, <ITCNT (24l ,NCPP l, <ITCNT<25l ,NCPH l, 
2 <ITCNT(26l,NCPS )1 (ITCNT<27l,NCPF l, <ITCNT<2Bl,NCPD l, 
3 (ITCNT<29l,NCPN l,<ITCNT<30l,NCP5 >,<ITCNT<31l,NEL l, 
4 <ITCNT<32l,NARFD l,<ITCNT(33l,NARPD l, <ITCNT(34l,NARPV l, 
5 <ITCNT<35l,NMAX l, <ITCNT(36l,NEOS l,<ITCNT<37l,NHELP l, 
6 <ITCNT<3Bl,NST l, <ITCNT!39l,NND l, <ITCNT(46l,NOPT l 

EQUIVALENCE<RCNT(ll,RTOLl,<RCNT<2l,RACCl, <RCNT(3l,QIJCl, 
1 <RCNT< 4l,RHOV l, (RCNT< Sl,YMW l,!RCNT< 6l,XMWl, 
2 !RCNT(51l, TST l, !RC~n<52l, TEND l, <RCNT<53l,PSTl, 
3 <RCNT<54l,PEND l, <RCNT<55l,DELT l, !RCNT<56l,DELPl, 
4 <RCNT(57l,TLMU l, !RCNT!5Bl,TLML l, !RCNT(59l,PLMUl, 
5 !RCNT!60l ,HSPECl, !RCNT<61l ,FRAC l 
COMMON/INPR1/F(10l,A!10l,ONEX!15,10l 1ST0(15,10l,HR(10l 
COMMON/INPR2/NNCP,M 
COMMON/EQRXN/NRX!lOl,GRX<lOl 
DATA KMD/2HCC12HOP,2HVI 12HMN,2HQT/ 
FORMAT!' ENTER FEED STREAM ID NO TO REACTOR UNIT',I3,'?'l 

2 FORMAT!11I5l 
FORMAT<' ENTER PRODUCT STREAM ID NO FROM REACTOR', !3, '?' l 

5 FORMAT ( F20. Ol 
6 FORMAT! 

1 /' ** UPDATE MENU** ''I 
4 /' ENTER cc TO CHANGE THE CONVERSION CRITERIA', 
7 I' ENTER OP TO CHANGE OPERATION MODE', 
2 I' ENTER VI TO C~ANGE VOLUME INCn£MENT l 

l 

5 /' ENTER MN TO DISPLAY MENU', 
b " ' ,. ENTER QT TO STOP UPDATE ? '/) 

., FORMAT(A2l I 

8 FORMAT<' ENTER THE 'IOLUME INCREMENT IN ',A41l 
9 FORMAT( ' ENTER THE INLET TEMPERATURE IN ! ,A4) 
10 FORMAT\ ' ENTER THE INLET PRESSURE IN ',A4l 
11 FORMAT! ' NO OF FEEDS SHOULD BE ONE ' i l 
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2513 
2514 
2515 
2516 
2517 
2518 

,ll 

12 
14 
15 
17 
18 
20 

FORMAT! ' 
FORMAT! 1 

FORMAT! 1 

FORMAT! ' 
FORMAT( I 

FORMAT! ' 

NO OF PRODUCTS SHOULD BE ONE '/) 
ENTER NEXT UPDATE COMMAND ? 'l 
ONLY ONE FEED ALLOWED TO REACTOR UNIT', I3/l 
PRODUCT STREAM IS ',I3,/l 
UNIT1 ,I3,' HAS PRODUCTS AS FEEDS 'f) 
ENTER ORDER OF COMP.# I I I3, I IN RXN. 

2519 21 FORMAT< ' ENTER THE NUMBER OF REACTIONS 'f) 
2520 23 FORMAT( ' ENTER THE STOICHIOMETRIC COEFFICIENT ', 
2521 1 'OF COMPONENT ' , I31 ' IN REACTION ', 13, ll 
2522 24 FORMAT< ' THE MAXIMUM NUMBER OF REACTIONS IS TEN'/) 

I I 13 

2523 · 41 FORMAT! ' ARE THE UNITS OF THE FREQUENCY FACTOR IN TERMS 1 1 

2524 1 / 1 0-gmoles,lit,sec 1-lbmoles,cuft,ht' 'f) 

2525 26 FORMAT( ' ENTER THE FREQUENCY FACTOR OF REACTION ',I3,/) 
2526 27 FORMAT( ' ENTER THE ACTIVATION ENE~~y OF REACTION ' 1 13 
2527 1 1 1 IN ',A4,'1',A4,'MOLES'/l 
2528 28 FORMAT( ' ENTER THE HEAT OF REACTION ',I3,' IN ', 
2529 1 A4,'1',A4,'MOLES'/l 
2530 35 FORMAT! ' ENTER THE OUTLET PRESSURE OPTION', 
2531 1 /' ENTER 1 IF PRESSURE DROP IS TO BE SPECIFIED', 
2532 2 I' ENTER 0 IF OUTLET PRESSURE IS TO BE SPECIFIED'!> 
2533 36 FORMAT( ' ENTER PRESSURE DROP ACROSS THE REACTOR IN ',A4/ 

2534 37 FORMAT! ' ENTER OUTLET PRESSURE FROM REACTOR IN ',A4/l 
2535 30 FORMAT( 
2536 1 I' ENTER 0 FOR ISOTHERMAL OFiRATION ', 
2537 2 I' ENTER 1 FOR ADIABATIC OPERATION 'll 
2538 31 FORMAT( ' ENTER THE CONVERSION CRITERIA ', 
2539 1 I' 0 FOR REACTOR VOLUME', 
2540 2 I ' 1 FOR OUTLET TEMPERATURE ' 1 

2541 3 I ' 2 FOR PRODUCTION RATE (P/Fl '!) 

2542 32 FORMAT( 1 SPECIFY THE COMPONENT SEQUENCE NUMBER 1 /l 
2543 33 FORMAT( 1 ENTER THE DESIRED REACTOR VOLUME ',A4/i 
2544 34 FORMAT(' ENTER THE DISIRED PRODUCTION RATE IN 1 1A4,'MOLES/HR 

'/) 

2545 38 FORMAT< ' ENTER THE OUTLET REACTOR TEMPERATURE IN DEG ',A 
1/) 

2546 39 FORMAT! ' IS REACTION ',13, ' IN EQUILIBRIUM ', 
2547 1 /' ENTER 1:NO 2:YES 1 /l 
2548 40 FORMAT! 1 ENTER THE GIBB_S FREE ENERGY FOR RXN. 1 13 
2549 1 ,' IN',A4,'1',A4,'MOLE'/l 
2550 IF!II.EQ.Ol GO TO 70 
2551 IPOS=JPD<NEU 
2552 WRITE(6,*)IPOS 
2553 IF m.LT.OlGO TO 91 
2554 GO TO 95 
2555 70 IPOS=NARPV 
2556 WRITE<6,fl1POS 
2557 212 J(FD=O 
2558 DO 245 1=1,11 
2559 IFDBW=O 
2560 245 CONTINUE 
2561 9001 WRITE(N0,1) NEL 
2562 READ(N1,2,£RR=9001l <IFDB(I), I=1, 1l 
2563 CALL FPSTAK ( 1FD, IFDB, IFDL,NARFD, NEL, KFDl 
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2564 
2565 
2566 
2567 
2568 
2569 
2570 
2571 
2572 
2573 
2574 
2575 
2576 
2577 
2578 
2579 
2580 
2581 
2582 
2583 
2584 
2585 
2586 
2587 
2588 
2589 
2590 
2591 
2592 
2593 
2594 
2595 
2596 
2597 
2598 
2599 
2600 
2601 
2602 
2603 
2604 
2605 
2606 
2607 
2608 
2609 
2610 
2611 
2612 
2613 
2614 
2615 
2616 
2617 
2618 

IF<KFD.NE.Ol GO TO 210 
WRITE (NO, 11) 
GO TO 212 

210 IF<KFD.EQ.1l GO TO 228 
WRITE WO, 15) NEL 
GO TO 212 

228 DO 310 K=1,KFD 
IDEST=<IFDB<Kl-1l*NCP5 + NCPD 
X<IDESTI=NEL 

310 CONTINUE 
214 KPD=O 

DO 9002 I=1, 11 
IPDB(l)=O 

9002 CONTINUE 
WRITE <NO, 3) NEL 
READ<NI,2,ERR=214lliPDB<Il,I=1,1l 
CALL FPSTAKUPD, IPDB, IPDL,NARPD,NEL,KPD> 

215 IF <KPD. EQ.U GO TO 191 
WRITE !NO, 12) 
GO TO 214 

191 WRITE!N0,17l !IPDBl1ll 
216 IDUP=O 

CALL FPSCAN<KFD,KPD,IFDB,IPDB,IDUPl 
IF<IDUP.EQ.Ol GO TO 246 
WRITElN0,18l NEL 
GO TO 214 

246 NARFD=NARFD + KFD +1 
NARPD=NARPD + KPD +1 
MHB!NEU=l 

91 CONTINUE 
c 
c 
C*** READ IN THE INPUT DATA AND STORE IN PD ARRAY 
c 
c 

NNCP=NCP 
100 WRITE!N0,21l 

READ<NI,2,ERR=100lM 
IF <Ml 100,100,101 

101 IF!M.GT.10l GO TO 103 
PDUPOSl =M 
IF<II.GT.OlGO TO 3000 
GO TO 110 

103 WRITE!N0,24l 
GO TO 100 

110 WRITE<N0,9lTU<IU1l 
READ\NI,5,ERR=110lTTRINT 
PD!IPOS+4l=TTRINT 

119 WRITE<N0,10lPU(IU2l 
READ(m,5,ERR=119lPTRINT 
PD (1 POS+ 364) =PTRI NT 

120 WRITEiN0,30l 
READ<NI,2,ERR=120lNOP 
IF(N0Pl120,122,122 

122 lF(~JOP.GT.llGO TO 120 

147 



148 

2619 PD ( IPOS+3l =NOP 
2620 IF(II.GT.Ol 60 TO 3000 
2621 130 WRITE <NO, 35) 
2622 READ<NI,2,ERR=130lNPS 
2623 PD(IPOS+40l=NPS 
2624 IFlNPSl130,131,132 
2625 131 WRITE{N0,37lPUliU2l 
2626 READ<NI,5,ERR=131lORP 
2627 IF<ORPl131,131,133 
2628 133 PD<IPOS+5l=ORP 
2629 IF<II.GT.OlGO TO 3000 
2630 GO TO 140 
2631 132 IF{NPS.GT.1lGO TO 130 
2632 134 WRITE<N0,36lPU<IU2l 
2633 READ<NI,5,ERR=134l PRDROP 
2634 IF <PRDROPl134,135,135 
2635 135 PD<IPOS+7l=PRDROP 
2636 IF !II.GT.Ol 60 TO 3000 
2637 140 WRITE<N0,31> 
2638 READ<NI,2,ERR=140l NCC 
2639 PD ( IPOS+41 l =NCC 
2640 IF(NCCl140,141,142 
2641 141 WRITElN0,33l,UVB<IU3l 
2642 READ<NI,5,ERR=141l RV 
2643 IF{RVl141,141,143 
2644 143 PD(IPOS+2l=CONVRT(12,IU3,1,RV> 
2645 IFlii.GT.OlGO TO 3000 
2646 915 WRITE<N0,8l,UVB<IU3l 
2647 READ<NI,S,ERR=915lDV 
2648 IF<DVl915,915,916 
2649 916 PD<IPOS+1l=CONVRT(12,IU3,1,DVl 
2650 IF<II.GT.Ol60 TO 3000 
2651 60 TO 150 
2652 142 IFlNCC.6T.2l60 TO 140 
2653 IF(NCC.EQ.2l 60 TO 147 
2654 145 WRITE<N0,38lTUliU1l 
2655 READ<NI,5,ERR=145l ROT 
2656 PD<IPOS+6l=CONVRT<l,IU1,2,ROT> 
2657 IFlii.GT.OlGO TO 3000 
2658 115 WRITE<N0,8l,UVB<IU3l 
2659 READlNI,5,ERR=115lDV 
2660 IF<DV>115,115,116 
2661 116 PD<IPOS+1l=CONVRT<12,IU3,1,DVl 
2662 IF<II.GT.OlGO TO 3000 
2663 60 TO 150 
2664 147 WRITE<N0,34lUMliU3l 
2665 READ<NI,S,ERR=147lFP 
2666 IF<FPl147,146,146 
2667 146 PD!IPOS+9l=CONVRT<3,IU3,1,FPi 
2668 144 WRITE<N0,32l 
2669 READ<NI, 2, EF:R=144lNS 
2670 IF!NSl144,144,149 
2671 149 PD<IPOS+8l=NS 
2672 IF(II.GT.Ol60 TO 3000 ...,,.,< 
..:..Ot·j 117 WRITE<N0,8l,UVB<IU3) 



2674 READ<NI,5,ERR=117lDV 
2675 IF<DVl117,117,118 
2676 118 PD<IPOS+1l=CONVRT<12,IU3,1,DVl 
2677 IF<II.GT.OlGO TO 3000 
2678 GO TO 150 
2679 c 
2680 c 
2681 C** INPUT OF KINETICS 
2682 c 
2683 
2684 
2685 
2686 
2687 
2688 
2689 
2690 
2691 
2692 
2693 
2694 
2695 
2696 
2697 
2698 
2699 
2700 
2701 
2702 
2703 
2704 
2705 
2706 
2707 
2708 
2709 
2710 
2711 
2i12 
2713 
2714 
2715 
2716 
2717 
2718 
2719 
2720 
2721 
2722 

2724 
2725 
2726 
2727 r ·-

150 DO 4000 I=1,M 
165 WRITE<N0,39l I 

READ<NI,2,ERR=165lNRX<Il 
PD<IPOS+41+Il=NRX<Il 
IF<NRX<Ill165,165,154 

154 IF<NRX<Il.EQ.2lGO TO 166 
151 WRITE<N0,26l I 

READ<NI,5,ERR=151lF<Il 
PD<IPOS+9+Il=F<Il 
IF<II.GT.OlGO TO 3000 

155 WRITE<N0,41l 
READ<NI,2,ERR=155lLFUN 
PD<IPOS+363l=LFUN 
IF<II.GT.OlGO TO 3000 

152 WRITE<N0,27li,HU<IU3l,UM<IU3l 
READ<NI,5,ERR=152lA<Il 
PD<IPOS+19+Il=CONVRT<4,IU3,1,A(Ill 
IF<II.GT.OlGO TO 3000 

153 WRITE<N0,28l I,HU<IU3l,UM<IU3) 
READ<NI,5,ERR=153lHR<Il 
PD<IPOS+29+Il=CONVRT<4,IU3,1,HR<Ill 
IF <II.GT.OlGO TO 3000 
GO TO 4002 

166 WRITE<N0,40ll,HU<IU3l,UM<IU3l 
READ<NI,5,ERR=166lGRX(I) 
PD<IPOS+51+Il=CONVRT<4,IU3,1,GRX<Ill 
IFiii.GT.OlGO TO 3000 

167 WRITE<N0,28li 
READ<NI,5,ERR=167lHR<Il 
PD<IPOS+29+Il=CONVRT<4,IU3,1,HR(lll 
IFm.GT.OlGO TO 3000 

4002 CONTINUE 
4000 CONTINUE 

DO 5000 J=t,M 
DO 6000 I=l,NNCP 
IF<NRX<Jl.EQ.2lGO TO 161 

160 WRITE<N0,20l I,J 
READiNI,5,ERR=160lONEX<I,Jl 
PD< IPOS+ltHJ+51 +I l =ONEX (I, Jl 

161 WRITE \NO, 23) I, J 
READ<NI,5,ERR=161l STO<I,Jl 
PD UPOS+10*J+201 +I l =STO <I, Ji 

6000 CONTINUE 
5000 CONTINUE 

2728 C** NOW ALL INPUT DATA IS IN PD,NEX,STO ARRAYS 

149 
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2729 c 
2730 IF(!I.GT.OlGO TO 3000 
2731 IFm.LT.OlGO TO 90 
2732 JPD(NELl=NARPV 
2733 NARPV=NARPV+ISIZ!16l 
2734 ISIZ2(NELl=ISIZ(16l 
2735 GO TO 90 
2~~ 95 WRITE(N0,6) 
2737 3000 WRITE!N0,14l 
2738 READ!NI,7,ERR=3000l KE 
2739 CALL SCOUT!5,KMD,KE,KADl 
2740 IF(KAD.EQ.Ol GO TO 31)00 
2741 GO TO (140,120,117,95,90l,t::AD 
2742 90 CONTINUE 
2743 99 IRC(NEll =1 
2744 IUPDT!NELl=l 
2745 RETURN 
2746 END 

* 
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1282 c 
1283 C123456 
1284 SUBROUTINE REACR 
1285 c 
1286 COMMON/BU61/ILV, ITYPE, IQ, IHORS, IEXTQ, IPRT 
1287 COMMON/PRD1/Fl!500l,IDCSl25l,IDPRD!50l,IFD!50l, 
1288 1 IFDL!200l 1 IPD(50l,!PDL(200l 1 IPRC<70l,IRC!50l 1 

1289 2 ISIZ (25) 'ITCNT(100l ,JPD(50) ,MHB(50) ,NRECU10l I 

1290 3 PDl1250) ,PROP(3000l I RCNT<100l I TEMP!410) I X (5000) 
1291 COMMON/UPDATE/IUPDT!50l 
1292 COMMON/COMIOINI,NO,IYES,INO,PNAM!15l,NPA6E 
1293 COMMON/UNITA2/TUl4l,PU!6l,HU!3l,SU!6l,RU!6l 1UM(3l,PUX(6l 
1294 COMMON/UNITAl/UDAl3l,ULA<3l,UVA!3l,ULB<3l,UHT<9l 1UDF<6l 
1295 COMMON/UNITA3/UARE!3l,UVIS!6l,UTHC!9l,UHPA(3l,UVB!3l,US6(6l 
1296 COMMON/UNITDM/IU1,IU2,IU31 IU21,IU31 
1297 COMMON/CWRK/WK(6600) 1 IWKOOOl 
1298 COMMON/DBB/IFDB!11l,IPDBl11l,KMD(5l 
1299 EQUIVALENCE!ITCNT!18l 1 N2l 1 (ITCNT!21l,NCPl, !ITCNT<22l,NCPUl, 
1300 1 !ITCNT!23l,NCPT l, !ITCNT<24l,NCPP l,!ITCNT!25l,NCPH l, 
1301 2 <ITCNT(26l,NCPS l,!ITCNT!27l 1NCPF l, !ITCNT<28l 1NCPD l, 
1302 3 !ITCNTt29l,NCPN l,!ITCNT!30l,NCP5 l, <ITCNT!31l 1 NEL l, 
1303 4 (!TCNT<32l ,NARFD ) '(!TCNT<33l ,NARPD ) '<ITCNT(34) ,NARPV ) I 
1304 5 <ITCNT<35l,NMAX l, <ITCNT!36l 1NEOS l, !ITCNT!37l,NHELP l, 
1305 6 !ITCNT<38l,NST l,<ITCNT(39l,NND l,UTCNT(40l,IIQ l, 
1306 7 !ITCNT!41l ,JJQ l, !ITCNT<42l ,NPDMAX>, !ITCNT<43l ,NFDMAXl, 
1307 8 tiTCNT!44l,NPVMAXl,!ITCNT(45l 1NPRNT )1 !ITCNT!46l,NOPT l, 
1308 9 <ITCNT<47l,L1MIT l, <ITCNT<48l,IWARN l 
1309 EQUIVALENCE!RCNT!ll,RTOLl, <RCNT!2l,RACCl,tRCNT!3l,QIJCl, 
1310 1 <RCNH 4l, RHOV l, !RCNT( 5), YMW l, !RCNT( 6), XMWl, 
1311 2 !RCNT (51l, TST l, <RCNT (52l, TEND l, !RCNT<53l, PSTl, 
1312 3 <RCNH54l,PEND l, !RCNTI55l,DELT l 1 !RCNT!56l,DELP l, 
1313 4 !RCNTi57l,TLMU l,<RCNT!58l 1TLML l, !RCNT!59l,PLMU l1 

1314 5 !RCNT!60l,HSPECl, <RCNT!61l,FRAC l 
1315 COMMON/INPR1/F (lt)) ,AUOl ,ONEX( 15, 10l ,ST0<151 10), HR<lOl 
1316 COMMON/INPR2/NNCP,M 
1317 COMMON/CALC2/TO,DF,FFi15l 1 DV 
1318 COMMON/TRACIUOLDU5l 1CHAN6E<15l 
1319 COMMON/SELEC/NOP,NCC,NPS 
1320 COMMON/CRIT /FFOUT ( 15), PROD ( 15l 
1321 COMMON/ALI/HCAP,CPP!15l 
i322 COMMON/EQRXN/NRX(10l,6RX!10l 
1323 COMMON/EQRXN1/PO 
1324 COMMON/OUTP/VO 
1325 COMMON/RPRINTl/SIGMA\10) 
1326 COMMON/RPRINT2/LFUN 
1327 REAL DF'ROP ( 10l 
1328 c 
1329 c 
1330 FORMAT\' REAC ~ ',!2} 
1331 WRITE {NO,l l NEL 
1332 IPOS=JPD\NELl 
1333 NNCP=NCP 
1334 IF'RT=1 
1.335 FFTOL=.OOl 



1336 
1337 
1338 c 

TTOL=.5 
VTOL=.01 

1339 C TRANSFER OF FLOW RATES FROM X-ARRAY TO FF-ARRAY 
1340 c 
1341 
1342 
1343 
1344 
1345 
1346 

NL=IFD<NEU 
NSF= IFDUNL + 1l 
NTOP= <NSF -ll 
NLP=IPD<NEU 
NSP=IF'DL<NLP+1l 
NTOF=NSP-1 

1347 DO 1111 I=1,NCP 
1348 FF<Il=X<NTOP*NCF~+Il 

1349 C WRITE<NO,*lFF<Il 
1350 1111 CONTINUE 
1351 TO=X<NTOP*NCF'5+NCP+2) 
1352 DF=X!NTOF'*N~+NCP+7) 

1353 F'O=X<NTOP*NCP5+NCP+3l 
1354 C WRITE<NO,*lTO,PO 
1355 c 
1356 C PD ARRAY TRANSFER 
1357 c 
1358 NOP=PD<IPOS+3) 
1359 NPS=PD<IPOS+40l 
1360 NCC=PD<IPOS+41l 
1361 ORP=CONVRT<2,IU2,1,PD<IPOS+5)) 
1362 PRDROP=CONVRT<2, IU2, 1, F'D ( IPOS+7) l 
1363 LFUN=PD<IPOS+363l 
1364 M=PD<IPOSl 
1365 DO 70 I=1,M 
1366 GRX W=1000*PD<IPOS+51+Il 
1367 NRX<Il=PD<IPOS+41+Il 
1368 DO 101 J=1,NNCP 
1369 SIGMA<Jl=STO<J,Il 
1370 101 CONTINUE 
1371 F<Il=PD<IPOS+9+Il 
1372 A (I) =1000*PD( IPOS+19+ I) 
1373 HR<Il=1000*F'D!IPOS+29+Il 
1374 70 CONTINUE 
1375 DO 130 JJ=1,M 
1376 DO 140 MPW=1,NNCP 
1377 O~JEX<MPW,JJl=PD<IPOS+10*JJ+51+MF'Wl 

1378 STO<MPW,JJl=PD!IPOS+10*JJ+201+MPWl 
1379 140 CONTINUE 
1380 130 CONTINUE 
1381 IF<NPS.EQ.OlPOUT=ORP 
1382 IF <NPS. EQ. 1l POUT =PO-PRDROF' 
i383 IF<NCC.EQ.OlRV=PD!IF'OS+2) 
1384 IF!NCC.EQ.1lTMAX=F'D!IF'OS+6) 
1385 IF!NCC.EQ.2lFP=PD<IPOS+9l 
1.386 IF !NCC. EQ. 2) NS=PD ( IF'OS+8l 
1387 FTOL=5.0 
1388 ICOUNT=l 
1389 DV=PD ( I F'OS+ ll 
1390 'JO=DV 

152 
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1391 NOPT=5 
1392 TST=TO 
1393 TEND=O.O 
1394 DELT=O.O 
1395 PST=PO 
1.396 PEND=O.O 
1397 DELP=O.O 
1398 IEXT2=2 
1399 NLPH=1 
1400 IF ( NH20. NE. 0) NLPH=2 
1401 CALL XMOVER!NSF,1l 
1402 CALL CALC 
1403 CALL FMOVER! 1, NSFl 
1404 IF<NOP.EQ.OlGO TO 200 
1405 CALL SRKPD<DPROPl 
1406 HCAP=DPROP!1l 
1407 200 CONTINUE 
1408 DO 30 I=1 13000 
1409 DO 40 J=1,NNCP 
1410 OLD(J) =FF (J) 
1411 40 CONTINUE 
1412 CALL RUNGE 
1413 DO 150 NN=1,NNCP 
1414 X <NTOF*NCP5+NNl =FF !NNl 
1415 150 CONTINUE 
1416 ~JOPT=5 

1417 TST=TO 
1418 TEND=O.O 
1419 DELT=O.O 
1420 PST=POUT 
1421 PEND=O.O 
1422 DELP=O.O 
1423 IEXT2=2 
1424 NLPH=1 
1425 IF!NH20.NE.OlNLPH=2 
1426 CALL XMOVER!NSP,1l 
1427 CALL CALC 
1428 CALL FMOVER!1,NSP) 
1429 IF!NOP.EQ.OlGO TO 210 
1430 CALL SR~PD<DPROPl 
1431 HCAP=DPROP<1l 
1432 210 DF=X <NTOF*NCP5+NCP+7) 
1433 IF<NCC.EQ.OlGO TO 80 
1434 IF<NCC.EQ.1lGO TO 90 
1435 IF<NCC.EQ.2lGO TO 100 
1436 80 IF ( <RV-VOL LE. VTOUGO TO 110 
1437 GO TO 33 
1438 90 IF ((TMAX-TOl. LE. TTOUGO TO 110 
1439 GO TO 33 
1440 100 IFUFF<NSl-FPl.GE.FFTOUGO TO 110 
1441 33 ICOUNT=ICOUNT+1 
1442 VO=VO+DV 
1443 30 CONTINUE 
1444 110 CONTINUE 
1445 DO 220 I=l,NNCP 
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1446 C WRITE<NO,*lX<NTOF*NCP5+Il 
1447 220 CONTINUE 
1448 IPRT=O 
1449 RXHT=O.O 
1450 DO 2 JHT=l,M 
1451 DO 3 IHT=1,NNCP 
1452 IF!STO(IHT,JHTl.GE.OlGO TO 4 
1453 RXHT=RXHT+HR (JHTl *!X !NTOF'*NCPS+ IHTl-FF ( IHTl l 
1454 4 CONTINUE 
1455 3 CONTINUE 
1456 2 CONTINUE 
1457 PD!IPOS+362l=RXHT 
1458 IF(NOP.EQ.UPD!IPOS+362l=O.O 
1459 RETURN 
1460 END 
1461 c 
1462 C** SUBROUTINE TO SUM UP THE VOLUMETRIC FLOW RATES 
1463 c 
1464 SUBROUTINE VFLOW 
1465 COMMON/PR01/F1(500l,IDCS!25l,IDPRD!50l,IFD!50l, 
1466 1 IFDU200l, IPD!50l, IPDL!200l, IPRC!70l, IRC(50l, 
1467 2 ISIZ (25l, ITCNH100l ,JPD!50l ,MHB<50l ,NRECU10l, 
1468 3 PD(1250) ,PROP{3000) ,RCNT!100) I TEMP!410l I X (5000) 
1469 COMMON/CALC2/TO,DF 1FF!15l,DV 
1470 COMMON/INPR1/F!10l,A!10l 10NEX!15,10l 1ST0!15,10l,HR!10l 
1471 COMMON/INF'R2/NNCP,M 
1472 COMMON/CALC4/VF,FFM!15l 
1473 EQUIVALENCEOTCNT(18) ,N2l, !ITCNH21l ,NCPl, !ITCNH22l ,NCPUl, 
1474 1 !ITCNH23l,NCF'Tl 1 !ITCNH24l,NCPP l,!ITCNT!25l,NCPH l 1 

1475 2 !ITCNT!26l,NCPSl,!ITCNT(27l 1NCPF l, !ITCNT!28l 1NCPD l, 
1476 3 !ITCNT(29l 1NCPNl 1 !ITCNT!30l 1NCP5 l 1 

1477 4 <ITCNT(38l,NST )1 <ITCNT!39l,NND l 
1478 EQUIVALENCE<IPRC!ll,MLCXAl 1 !IPRC(2l,MLCYl, <IPRC!3l,MLCXBl, 
1479 1 !IPRC( 4l,MLTXAl 1 !IPRC! 5l,MLTYl, !IPRC( 6l,MLTXBl, 
1480 2 !IPRC! 7l,MLPXAl 1 !1Ph~( Bl,MLPY )1 <IPRC( 9l,MLPXBl, 
1481 3 !IPRC!10l IMLHOl I !IPRC(ll) ,MLSOl' (!PRC(12) ,MLCZFl' 
1482 4 !IPRC03l ,MLKVAl, !IPRC(14l ,MLKVBl, (!PRC!15l ,MPHSPl, 
1483 5 !IPRC!16l,MPRC1l, !IPRC!17l,MPRC2l 1 !IPfi~(18l,MPfi~3l, 
1484 6 !IPRC(19l 1MPRC4l 1 !IPRC!20l,MPRC5l, 
1485 7 !IPRC(26l 1MPRA1l 1 

1486 8 !IPRC!36l,MM l, 
1487 1 !IPRC(62) IMECU ) ! (lf'RC!63) ,11ECP ) I (lPRC(64) ILOCKPl 
1488 REAL WE!15l 
1489 VF=O.O 
1490 FMM=O.O 
1491 DO 5 I=NST,NND 
1492 NN=(I-1l*N2+MPHSP 
1493 WE<Il=PROP<NN+Bl 
1494 5 CONTINUE 
1495 DO 10 I=l,NNCP 
1496 FFM<Il=FF(!l*WE<Il 
1497 10 CONTINUE 
1498 DO 20 I=1,NNCP 
1499 FM=FFM<Il+FMM 
1500 FMM=FM 
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1501 20 CONTINUE 
1502 VF=FMM/DF 
1503 RETURN 
1504 END 
1505 c 
1506 CH SUBROUTINE RCONST-TO DEVELOP THE EXPRESSIONS FOR 
1507 c THE RATE CO~JSTANTS OF THE REACTIONS 
1508 c 
1509 SUBROUTINE RCONST 
1510 COMMON/CALC2/TO,DF,FF<15l,DV 
1511 COMMON/INPR1/F ( 10) ,AOO>, ONEX <15, 10> ,ST0<15, 10), HR(ll)) 
1512 COMMON/INPR2/NNCP,M 
1513 COMMON/CALC3/RK(10l 
1514 COMMON/EQRXN/NRX ( 10 > , GRX ( 10) 
1515 COMMON/RPRINT2/LFUN 
1516 RC=1.986 
1517 CTERM=l.O 
1518 DO 10 !=1 1M 
1519 IF<NRX<Il.EQ.2l60 TO 20 
1520 c WRITE<6,*lLFUN 
1521 IF<LFUN.EQ.1lGO TO 21 
1522 DO 2 J=1 1NNCP 
1523 PSS=PSS+STO<J,I> 
1524 2 CONTINUE 
1525 IF<PSS.EQ.1lCTERM=3600 
1526 IF<PSS.NE.1lCTERM=360t)*(16. 04H(PSS-1l) 
1527 21 RK(l)=CTERM*F(Il*EXP(-A(I)/(RC*TOl) 
1528 20 CONTINUE 
1529 10 CONTINUE 
1530 RETURN 
1531 END 
1532 c 
1533 CH SUBI\'OUTINE RRXN-TO DEVELOP A "UNIT" RATE EQUATION 
1534 c FOR EACH REACTION 
1535 c 
1536 SUBROUTINE RRXN 
1537 COMMON/CALC4/VF,FFM(15) 
1538 COMMONIINPR1/F{l!)) 1A(10) ,ONEX (15, 10) ,STOU5, 10) ,HR!10l 
1539 COMMON/INPR2/NNCP,M 
1540 COMMON/CALC3/RK ( 10) 
1541 COMMON/CALC2/TO,DF,FF(15l,DV 
1542 COMMON/CALC5/R(10) 
1543 COMMON/EQRXN/NRX(10l,GRX<10l 
1544 DIMENSION RR(10l 
1545 DO 40 J=1,M 
1546 IF<NRX<Jl.EQ.llGO TO 41 
1547 CALL RXEQU(J) 
1548 41 CONTINUE 
1549 40 CONTINUE 
1550 DO 10 J=l,M 
1551 IF\NRX(Jl.EQ.2lGO TO 15 
1~1:".., 

,J,J,;. S=O.O 
1553 DO 30 I=1,NNCP 
1554 S=S+ABS\ONEX<I,J)) 
i!:'~e 
i· ... h .. h.J 30 CONTINUE 
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1556 RR(Jl=RK(J) 
1557 DO 20 I=l,NNCP 
1558 IF<FF(Il.LE.OlGO TO 20 
1559 IF<ONEX<I,Jl.EQ.OlGO TO 20 
1560 RR<Jl~fi~(J)*(FF(Il**(ONEX<I,Jlll 
1561 20 CONTINUE 
1562 R<Jl=RR(Jl/VF**S 
1563 15 CONTINUE 
1564 10 CONTINUE 
1565 RETURN 
1566 END 
1567 c 
1568 c 
1569 CH SUBROUTINE RCOMP-TO SET UP THE TOTAL RATE EXPRESSION 
1570 c FOR EACH COMPONENT 
1571 c 
1572 SUBROUTINE RRCOMP 
1573 COMMON/INPRl/F (10) ,A (10) ,ONEX 05, 10) ,ST0(15, 10l ,HR (11)) 

1574 COMMON/INPfi1/NNCP,M 
1575 COMMON/CALC5/R(10l 
1576 COMMON/CALC6/RCOMP ( 15) 
1577 DO 10 I=1,NNCP 
1578 RCOMPW=O.O 
1579 DO 20 J=1,M 
1580 RCOMP(Il=RCOMP<Il+STO(I,Jl*R(J) 
1581 20 CONTINUE 
1582 10 CONTINUE 
1583 RETURN 
1584 END 
1585 c 
1586 CH SUBROUTINE RTEMP-TO EVALUATEM 
1587 CH SUBROUTINE RTEMP-TO EVALUATE THE TEMPERATURE 
1588 ,~ .. CHANGE ALONG THE REACTOR 
1589 c 
1590 SUBROUTINE RTEMP 
1591 COMMON/INPRl!F (11)) ,AOOl ,ONEX (15, 10) ,ST005, 10) ,HR (11)) 

1592 COMMON/INPR2/NNCP,M 
1593 COMMON/CALC2/TO,DF,FF(15l,DV 
1594 COMMON/CALC51R<10l 
1595 COMMON/CALC7/DT 
1596 COMMON/SELEC!NOP,NCC,NPS 
1597 COMMON/ ALI /HCAP, CPP ( 15l 
1598 REAL XHR < 10) 
1599 DHR=O.O 
1600 DO 10 J=1,M 
1601 DHR=DHR + HR<JlfR(J) 
1602 10 CONTINUE 
1603 FC=O.O 
1604 DO 20 I=l,NNCP 
1605 FC=FC + FF<Ii*CPP(I) 
1606 20 CONTINUE 
1607 c WRITEI6,*lR(1l,DHR,FC,DT 
1608 DT=- \DHR/FCl *DV 
1609 RETURN 
1610 END 



157 

1611 c 
1612 c SUBROUTINE RUNGE-TO SOLVE DE.'S USING 4-TH ORDER RUNGA-KUTTA 
1613 c 
1614 SUBROUTINE RUNGE 
1615 DIMENSION S1<15l,S2(15l,S3<15l,S4(15l 
1616 COMMON/CALC6/RCOMP<15l 
1617 COMMON/CALC2/TO,DF,FF<15l,DV 
1618 COMMON/INPR2/NNCP,M 
1619 COMMON/TRACK/OLD<15l,CHANGE(15l 
1620 COMMON/CALC7/D) 
1621 . COMMON/SELEC/NOP,NCC,NPS 
1622 REAL FFPRE < 15 l 
1623 CALL VFLOW 
1624 CALL RCONST 
1625 CALL RRXN 
1626 CALL RRCOMP 
1627 DO 70 I=l,NNCP 
1628 FFPRE (!) =FF (!) 
1629 70 CONTINUE 
1630 DO 10 I=1,NNCP 
1631 Sl(Il=DV*RCOMP(l) 
1632 FF<Il=FF<I>+.5*S1<Il 
1633 10 CONTINUE 
1634 CALL VFLOW 
1635 CALL RCONST 
1636 CALL RRXN 
1637 CALL RRCOMP 
1638 DO 20 I=1,NNCP 
1639 S2(Il=DV*RCOMP<Il 
1640 FF<Il=FF<Il+.5*S2(Il 
1641 20 CONTINUE 
1642 CALL VFLOW 
1643 CALL RCONST 
1644 CALL RRXN 
1645 CALL RRCOMP 
1646 DO 30 I=1,NNCP 
1647 S3(ll=DV*RCOMP<Il 
1648 FF<Il=FF<Il+S3(1) 
1649 30 CONTINUE 
1650 CALL VFLOW 
1651 CALL RCONST 
1652 CALL RRXN 
1653 CALL RRCOMP 
1654 DO 60 I=1,NNCP 
1655 S4(Il=OViRCOMP<Il 
1656 60 CONTINUE 
1657 DO 40 I=1,NNCP 
1658 CHANGE <I l = < 1/6.0) *(51 { Il +2*52 ( Il +2*83 (I l +54 (Ill 
1659 FF<Il=FFPRE<Il+CHANGE\Il 
1660 40 CONTINUE 
1661 IFiNOP.EQ.OlGO TO 50 
1662 CALL RTEMP 
1663 TO=TO+DT 
i664 c WRITE<6,*lDT,TO 
1665 50 CONTINUE 
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1666 RETURN 
1667 END 
1668 c 
1669 c 
1670 c SUBROUTINE TO SET UP THE EQUILIBRIUM LIMITATIONS 
1671 c OF THE REACTIONS W EQUILIBRIUM 
1672 c 
1673 SUBROUTINE RXEQU (Jl 
1674 COMMON/CALC5/R!10l 
1675 PTOL=.0001 
1676 ALPHA=O.O 
1677 BETA=100.0 
1678 ICOUNT=1 
1679 10 CONTINUE 
1680 c WRITE!6,*lALPHA,BETA,RALPHA,RBETA 
1681 CALL RTRY !ALPHA, RALPHAl 
1682 IF(ABS<RALPHAl.LE.PTOLlGO TO 41 
1683 CALL RTRY<BETA,RBETAl 
1684 RW=!ALPHA+BETAl/2.0 
1685 CALL RTRY!RW,RRWl 
1686 PROD1=RALPHA*RRW 
1687 PROD2=RBETA*RRW 
1688 IF!PRODl.LT.Ol GO TO 20 
1689 IF(PROD2.LT.Ol GO TO 30 
1690 GO TO 70 
1691 20 BETA=RW 
1692 ICOUNT=ICOUNT+1 
1693 IF<ICOUNT.GE.100l GO TO 70 
1694 GO TO 10 
1695 30 ALPHA=RW 
1696 ICOUNT=ICOUNT+1 
1697 IF(!COUNT.GE.100) GO TO 70 
1698 GO TO 10 
1699 41 R (J) =ALPHA 
1700 c WRITE!61*lR<Jl 
1701 GO TO 71 
1702 70 WRITE(6,*l'ROOT IS NOT FOUND' 
1703 71 CONTINUE 
1704 RETURN 
1705 END 
1706 c 
1707 c 
1708 c SUBROUTINE TO SET UP THE EXTENSION OF REACTIONS IN 
1709 c EQUILIBRIUM 
1710 c 
1711 SUBROUTINE XREQU(J) 
1712 COMMON/CALCS/R<lOl 
1713 PTOL=.000001 
1714 8161=0.0 
1715 IFLAG=l 
1 "Ti ' 1>0 30 CALL RTRY(SIGl,RSIGll 
1717 IF!ABS!RSIG1l.LE.PTOLl GO TO 20 
1718 SIG1=SIG1+.01 
1719 IFLAG=IFLAG+1 
1720 IF!IFLAG.GT.100JGO TO 31 
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1721 GO TO 30 
1722 31 R (J)=O. 0 
1723 60 TO 21 
1724 20 CONTINUE 
1725 RUl =SIG1 
1726 21 CONTINUE 
1727 RETURN 
1728 END 
1729 c 
1730 c SUBROUTINE FOR CHECKING EQUILIBRIUM CONDITIONS 
1731 c 
1732 SUBROUTINE RTRY!RA,FRAl 
1733 COMMON/CALC2/TO,DF,FF!15l,DV 
1734 COMMON/INPR1/F ( 10), A !10), ONEX (15,10) ,ST005, 10), HRilOl 
1735 COMMON/INPR2/NNCP,M 
1736 COMMON/CALC5/R!10l 
1737 COMMON/EQRXN/NRX!10l,6RX!10) 
1738 CDMMON/EQRXN1/PO 
1739 REAL EQUIK<lOl ,EQUIK1 !10l ,EQFF!15l ,OLDRflOl ,OLDF<lOl 
1740 RC=1.987 
1741 EQUIK W=EXPHGRX !Jl I (RC*536. 4l l J 
1742 EQUIKl!Jl=EQUIK<Jl*EXP!-(HR(JJ/RCl*!1/T0-1/536.4JJ 
1743 SS=O.O 
1744 DO 20 I=l,NNCP 
1745 SS=SS+STO! I, J l 
1746 20 CONTINUE 
1747 22 Y=O.O 
1748 DO 30 I=l,NNCP 
1749 EQFF!Il=FF!Il+STO!I,Jl*RA 
1750 Y=Y+EQFF!Il 
1751 30 CONTINUE 
1752 IF!SS.EQ.OlGO TO 25 
1753 EQL=EQUIKl(Jl*(POH<-SSll*!YHSSJ 
1754 80 TO 26 
1755 25 EQL=EQUIK1 (J) 
1756 26 EQR=l.O 
1757 DO 50 I=1,NNCP 
1758 IF<STO!I,Jl .EQ,!)JGO TO 31 
1759 IF!EQFF!IJ.EQ.OJGO TO 31 
1760 c WRITE!6,*li,EQFF!Il,STO<I,Jl 
1761 EQR=EQR*<EQFF!Il**STO!I,Jll 
1762 31 CONTINUE 
1763 50 CONTINUE 
1764 FRA=EQL-EQR 
1765 RETURN 
1766 END 
1767 c 
1768 c 
1769 c SUBROUTINE REACO-TO DISPLAY SOME OF THE PO INFORMATION 
1770 ,.. REATOR VOLUME AND HEAT LOAD !.. 

i771 I"' 
t.. 

1772 ~JBROUTI~JE REACO 
17i3 COMMON/PRD1/F1!500l,IDCS!25l,IDPR0!50J,IFD!50l, 
1774 i IFDL!200l, IF'D!SOJ, IPDL\200l, IF'RC\70), IF:C(50l, 
1775 2 ISIZ (25l, ITCNT i100J, JF'D (50l 1MHB!50l, NRECU 10), 



1776 3 PDl1250l 1PROP<3000l,RCNT<lOOl,TEMP(410l,X<5000l 
1777 COMMON/COMIO/NI 1N0 1 IYES 1 IN0 1PNAM<15l 1 NPASE 
1778 COMMON/UNITA1/UDA<3l,ULA<3l,UVA(3l 1 ULB<3l 1UHT(9l,UDF<6l 
1779 COMMON/UNITA2/TU(4l 1 PU!6l 1 HUl3l 1 SUl6l 1 RU<6l,UM<3l,~JX(6) 

1780 COMMON/UNITA.3/UARE (3)! UVIS (6) 'UTHC (9) 'UHPA (3) I lJVB (3) I USG (6) 
1781 COMMON/UNITDM/IU1 1 IU21 IU3, IU21, IU31 
1782 EQUIVALENCE<ITCNT(18l,N2l, <ITCNT<21l,NCPl,<ITCNTl22l,NCPUl, 
1783 1 <ITCNTl23l,NCPTl, <ITCNT<24l,NCPPl 1 <ITCNTl25l,NCPHl, 
1784 2 < ITCNT <26> ,NCPSl, <ITc~n <27> ,NCPF> 1 < ITCNT<28l ,NCPDl, 
1785 3 <ITCNT(29l 1 NCPNl, <ITCNT<30l,NCP5l, <ITCNT(31l,NELl 1 

1786 4 <ITCNT(60l,INTRYl,<ITCNT(38l,NSTl,<ITCNT!39l,NNDl 
1787 EQUIVALENCE<IPRC(l) ,MLCXA)' <IPRC (2) ,MLCYl I ( IPRC (3) I ~1LCXBl I 

1788 1 <IPRC< 4l 1 MLTXAl 1 <IPRC(5l,MLTYl,<IPRC(6l,MLTXBl, 
1789 2 <IPRC!7l,MLPXAl,<IPRC(8l,MLPYl 1 <IPRC!9l 1 MLPXBl, 
1790 3 <IPRCl10l 1MLHOl, (IPRC<11l,MLSOl, <IPRC<12l,MLCZFl, 
1791 4 <IPRCl13l 1 MLKVAl, <IPRCH4l,MLKVBl, <IPRC<15l,MPHSPl, 
1792 5 <IPRC(16l,MPRC1l, <IPRC<17l,MPRC2l 1 (IPRC<18l,MPRC3l, 
1793 6 <IPRCl19l,MPRC4l 1 <IPRC(20l 1MPRC5l, 
1794 7 <IPRC<26l,MPRA1l, 
1795 8 <IPRCl36l,MMl 1 

1796 1 <IPRCl62l,MECUl,<IPRCl63l,MECPl,(IPRC<64l,LOCKPl 
1797 COMMON/OUTP/VO 
1798 COMMON/CALC2/TO,DF,FF(15l,DV 
1799 COMMON/EQRXN/NRX < 101, SRX { 10) 
1800 COMMON/EQRXN1/PO 
1801 DIMENSION LEFT!10l,LRISHT(10l,IRLL(10l,RLC(15,10l,RC<15,10l 
1802 DIMENSION RLC2(15,10l,RC2{15,10l 
1803 COMMON/INPR2/NNCP,M 
1804 COMMON/INPR1/F ( 10) ,A ( 11)) I ONEX ( 15, 10) I STO (15, 10) 'HR ( 10) 
1805 COMMON/SUPP/TPRINT,PPRINT 
1806 c 
1807 c 
1808 1 FORMAT!/' REAC # 1 1 I2l 
1809 2 FORMAT< 1 THE VOLUME INCREMENT= ',F6.2,' 1 ,A4l 
1810 3 FORMAT<//' THE OPERATION IN THE REACTOR IS ISOTHERMAL 1 l 
1811 4 FORMAT(!/' THE OPERATION IN THE REACTOR IS ADIABATIC 'i 
1812 5 FORMAT< 1 THE REACTOR VOLUME= ',F10.2,3X,A4l 
1813 6 FORMAT</' THE PRODUCTION RATE OF COMP.# 1 1 I31 1 IS 1 1F12. 

2 
1814 1 I I ',A4, 1 MOLES/HR1 /) 

1815 7 FORMATU// 1 THE HEAT LOAD ON REACTOR IS 1 1F12.2,1X 1A4 1 1 pet• 
HR'l 
1816 8 FORMAT(//'**** THIS IS THE PD FOR THE REACTOR UNIT****') 
1817 9 FORMAT< 1 THE SPECIFIED REACTOR OUTLET TEMPERATURE= ',F12.3 
1818 1 ,' DES ',A4l 
1819 10 FORMAT( 1 THE SPECIFIED REACTOR VOLUME= ',F12.312X,A4l 
1820 12 FORMAT( ' THE OUTLET REACTOR TEMPERATURE= ',F12.31 ' DES ' 

Ali 
1821 

) 
13 FORMAT(' THE INLET PRESSURE TO REACTOR= ',F12.4 1 ' ' 1 A4 

1822 14 FORMAT(' THE OUTLET PRESSURE FROM REACTOR= ',F12.4,' 
,A4) 
1823 15 FORMAT(/ /5X, 2A4,3X, I->'' 3X, 2A4l 
1824 
1 I"V"'\C' .o.:...J 16 FORMAT U /5X, 2A4, 3X, '= 1 , 3X,2A4l 
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1826 
1827 
1828 
1829 
1830 
1831 
1832 
1833 
1834 
1835 
1836 
1837 
1838 
1839 
1840 
1841 
1842 
1843 
1844 
1845 
1846 
1847 
1848 
1849 
1850 
1851 
1852 
1853 
1854 
1855 
1856 
1857 
1858 
1859 
1860 
1861 
1862 
1863 
1864 
1865 
1866 
1867 
1868 
1869 
1870 
1871 
18i2 
1873 
1874 
1875 
1876 
1877 
1878 
1879 
1880 

17 FORMAT(//3X,2A4,2X,'+',2X 12A4,3X,'->',3X,2A4l 
18 FORMAT!//3X,2A4,2X, 1+',2X,2A4,3X 1 '=' 13X,2A4l 
19 FORMAT!//3X,2A4,3X,'->',3X,2A4,2X, 1+1 12X,2A4l 
20 FORMAT!//3X,2A4,3X,'=',3X,2A4,2X,'+' 12X,2A4l 
21 FORMAT (J llX, 2A4, 2X, '+', 2X, 2A4, .3X 1 '->' ,3X, 2A4,2X, '+', 2X, 2A4l 
22 FORMAT!//1X,2A4,2X,'+',2X,2A4,3X 1 '=',3X,2A412X,'+',2X,2A4l 
23 FORMAT (J //1X, 1 RXN.', 3X, 'SEQ. It' 1 3X, 'ORDER' , 3X, 'STOCHIO>' l 
24 FORMAT!/2X,I215X,I3,4X,F5.2,5X,F5.2l 

IPOS=JPD !NELl 
IF!INTRY.NE.OlGO TO 200 
WRITE<NO,llNEL 
NL=IFD<NEU 
NSF= IFDUNL + 1l 
NTOP=NSF-1 
TPRINT=PD(IPOS+4l 
PPRINT=PD ( IPOS+~>64l 
WRITE !NO, 8) 
M=PD!IPOSl 
NNCP=NCP 
DO 100 J=l,M . 
NRX!Jl=PD!IPOS+41+Jl 
DO 201 I=1,NNCP 
ONEX!I,Jl=PD!IPOS+10*J+51+Il 
STO (I, J) =PD( IPOS+101J+201 + Il 

201 CONTINUE 
100 CONTINUE 

NOP=PD (I POS+3 l 
NCC=PD OPOS+41 l 
ROT=CONVRT!1 12,IU1 1PD!IPOS+6ll 
IF!NOP.EQ.OlWRITE<N0,3l 
IF!NOP.EQ.llWRITE!N0,4l 
VI=PD<IPOS+l l 
WRITE<N0,2lCONVRT!121 1,IU3,VIl,UVB(IU3l 
NS=PD ( IPOS+Bl 
FP=CONVRT!31 11 IU3,PD<IPOS+9ll 
RV=PD(IPOS+2l 
NPS=PD! IPOS+40l 
IF <NPS. EQ. I)) ORP=PD ( IPOS+5l 
IF !NPS. EQ.1 l ORP=PPRINT -PO ( IPOS+ 7l 
WRITE !NO, 13l PPRINT, PU ( IU2l 
WRITE!N01 14lORP,PU!IU2l 
IF<NCC.EQ.OlWRITE!N0,10lCONVRT!12,1,IU3,RVl,UVB(IU3l 
IF!NCC.EQ.llWRITE!N0,9lROT,TU!IU1i 

. IF!NCC.EQ.2lWRITE!N0,6lNS,FP,UM!IU3l 
DO 30 J=1,M 
LEFTUl=O 
LR I GHT (J) =0 
DO 40 I=l,NNCP 
IF (STO (I ,J). EQ. Ol GO TO 41 
IF!STO<I,Jl.LT.OlLEFT(J)=LEFT(J)+1 
IF !STO (I 1 J). GT .OlLRIGHT (Jl =LRIGHT Ui +1 

41 CONTINUE 
40 CONTINUE 

IRLL(J)=L£FT(Jl+LRIGHT!Jl 
30 CONTINUE 
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1881 
1882 
1883 
1884 
1885 
1886 
1887 c 
1888 
1889 
1890 
1891 
1892 
1893 
1894 
1895 
1896 
1897 
1898 

) 

1899 
) 

1900 
1901 
1902 
1903 

) 

1904 
1905 

) 

1906 
1907 
1908 

,Jl 
1909 
1910 

,J) 
1911 
1912 
1913 

I.]) 

1914 
1915 

,J) 
1916 
1917 
1918 
1919 
1920 
1921 
1Cl'i'"' 
1923 
1924 
1925 
1926 
1Q'i7 

I-.;; 

DO 50 J=l,M 
LCOUNT=1 
IRCOUNT=1 
DO 60 I=1,NNCP 
ILM=<I-1l*N2+1+MPHSP 
ILN=ILM+1 
WRITE<NO,*lSTO<I,Jl,LCOUNT,IRCOUNT 
IF<STO<I,Jl.EQ.OlGO TO 61 
IF<STO<I,Jl.LT.OlRLC<LCOUNT,Jl=PROP<ILNl 
IF<STO<I,Jl.LT.OlRLC2<LCOUNT,Jl=PROP<ILMl 
IF <STO <I ,Jl .LT. Ol LCOUNT=LCOUNT+f 
IF <STD< I ,Jl .GT. OlRC < IRCOUNT ,Jl =PROP( ILNl 
IF<STO<I,Jl.GT.OlRC2<IRCOUNT,Jl=PROP<ILMl 
IF <STO<I ,Jl. GT. Ol IRCOUNT=IRCOUNT+1 

61 CONTINUE 
60 CONTINUE 

IF<IRLL<Jl.NE.2lGO TO 62 
If<NRX(Jl.NE.1lWRITE<N0,15lRLC2(1,Jl,RLC<1,Jl,RC2<1,Jl,RC(1,J 

IF<NRX(J).EQ.2lWRITE<N0,16lRLC2<1,Jl,RLC<1,Jl,RC2<1,Jl,RC!1,J 

GO TO 65 
62 IF<IRll(Jl.NE.3lGO TO 63 

IF<LRIGHT(Jl.NE.2lGO TO 64 
IF<NRX<Jl.EQ.1lWRITE<N0,19lRLC2(1 1Jl,RLC<1,Jl,RC2<1,Jl,RC(1,J 

1 ,RC2<2,Jl,RC<2,Jl 
IF<NRX<Jl.EQ.2lWRITE<N0,20lRLC2<1,Jl,RLC<1,Jl,RC2(1,Jl,RC<1,J 

1 ,RC2<2,Jl,RC<2,Jl 
GO TO 65 

64 IF<NRX(Jl.EQ.1lWRITE<N0,17lRLC2(1 1Jl,RLC<1,Jl,RLC2<2,Jl,RLC<2 

1 ,RC2!1,Jl ,RC<1,Jl 
IF<NRX<Jl.EQ.2lWRITEIN0,18lRLC2<1,Ji,RLCil,Jl,RLC2(21J),RLC(2 

1 ,RC2(1 1Jl,RC<1,Jl 
GO TO 65 

63 IF<NRX(Jl.EQ.1lWRITE<N0,21lRLC2i1,Jl,RLC<1,Jl,RLC2<2,Jl,RLC<2 

1 ,RC2<1,Jl,RC<l,Jl,RC2<2,Jl,RC<2,Jl 
IF<NRX<Jl.EQ.2lWRITE<N0,22lRLC2(1,Jl,RLC(1,Jl,RLC2<2,Jl,RLC(2 

1 ,RC2!1,Jl,RC<1,Jl,RC2<2,Jl,RC(2,Jl 
GO TO 65 

65 CONTINUE 
50 CONTINUE 

WRITE <NO, 23l 
DO 70 J=t,M 
DO 80 I=l,NNCP 
ILM=<I-1l*N2+1+MPHSP 
ILN=ILM+l 
WRITE<N0,24lJ,I,ONEX<I,Ji,STO<I,Jl 

80 CONTINUE 
70 CONTINUE 
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1928 
1929 
1930 
1931 
1932 
1933 
1934 
1935 
1936 

* 

GO TO 11 
200 CONTINUE 

RXHT=PD!IPOS+362l/1000.0 
WRITE!NO, 7)CONVRT!4, 1, IU3,RXHTl ,HU!IU3l 
IF!NOP.EQ.1)WRITE!NO, 12lCONVRT!1,2, IU1, TO) I TU!IUl) 
WRITE!N0,5lCONVRT!121 11 IU3,VOi,UVB(IU3i 

11 CONTINUE 
RETURN 
END 
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