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PREFACE 

This report is primarily concerned with a study of the invention 

of logarithms by John Napier, of Scotland. I considered the original 

idea of logarithms as first discovered by Napier, and the method he 

used to construct the first tables of logarithms. Material for this 

report was not easily found, and I wish to express my appreciation for 

the help received from the Special Services Department of the Oklahoma 

State University Library. I especially thank Dr. James H. Zant, Direc

tor of the Academic Year Institute for his help and advice in preparing 

this report. I also want to acknowledge the financial assistance re

ceived from the National Science Foundation, without which, this year 

of study would not have been possible. 
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CHAPTER I 

INTRODUCTION 

Having a knowledge of the history and development of a particular 

phase of mathematics may be a great help to a teacher in introducing 

and teaching it. It is the opinion of the writer that this is especially 

true in teaching a unit on logarithms. Too many students in high school 

algebra and trigonometry think of a logarithm as simply a number in a 

table. 

This report is intended to be a source of additional information 

to the teacher who is preparing to introduce a unit on logarithms, and 

may also be used by the student who is interested in learning more about 

the subject than is usally covered in a high school algebra or trigono

metry course. 

The writer has found it needful to be able to give the students 

some idea of how logarithms may be computed. It is a mystery to high 

school students how the logarithm tables are formed. It takes only a 

few minutes to demonstrate a short method of computing the logarithm of 

some numbers, and if this will erase some of the question marks from the 

student's mind the time will be well spent. An individual needs to be 

curious to learn, and if this curiousity is not satisfied the person 

might stop seeking answers to questions. Many times in mathematics a 
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student may study a unit and be left with some questions still not answered. 

It may not be possible for the teacher to answer all questions involved, 

since the background of the student may not make understanding the answer 

possible, but the learning situation is much better if questions of the 

students are answered with some degree of satisfaction. 

A discussion of the invention of logarithms is covered in chapters 

two and three. The other chapters deal with methods of computing loga

rithms, and the bases of logarithms. It is hoped this report shall be 

of service to teachers and students alike. 



CHAPTER II 

THE INVENTION OF LOGARITHMS 

It is probably true that no great mathematical invention, with one 

solitary exception, has resulted from the work of any one individual. The 

one solitary exception is the invention of logarithms. The normal develop-

ment of mathematics follows a series of steps, starting with an idea of a 

mathematician which slowly grows as others add their thoughts to the orig-

inal idea. The idea of logarithms was far removed from any other mathema-

tical idea preceeding it, and may well be considered an original idea with 

the inventor and independent of the work of others. 

In 1614 a small book of 147 pages, 90 of them filled with mathematical 

tables, was published. This book was the result of twenty years of tedious 

labor by John Napier of Scotland. T'ne purpose of the book, in our present 

day language bearing the title, 11A Description of an Admirable Table of 

I.Dgari thms 11 , is clearly pointed out in the opening words. To quote Napier 

uSeeing there is nothing (right well-beloved students of 
mathematics) that is so troublesome to mathematical prac
tice, nor doth mere molest and hinder calculators, than 
the muliplications, divisions, square and cubical extrac
tions of great numbers, which besides the tedious expense 
of time are for the most part subject to many slippery 
errors, I began therefore to consider in my mind by what1 
certain and ready art I might remove those hinderances." 

1 Alfred Hooper, Makers of Mathernatj_cs, (New York, 1948), p. 169. 
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During the sixteenth and seventeenth centuries trade between countries 

in Europe began to flourish, and it was easier and less expensive to trans

port goods by ship than by other means. Thus studies in navigation were 

carried out and required much calculating with large numbers. Also, during 

this span of time great advances were being made in astronomy. Both astron

omy and navigation required work that involved many cumbersome and lengthy 

computations. 

Wittich and Clavius (1584), two Danish mathematicians, suggested the 

use of trigonometrical tables for shortening calculations. For example 

in trigonometry the formulas (1) and (2) below are found. 

(1) cos (A+ B) = cos A cos B sin A sin B 

(2) cos (A B) = cos A cos B + sin A sin B 

Subtracting (2) from (1) gives 

(3) cos (A+ B) cos (A - B) = -2 sin A sin B, 

and upon dividing both members of (3) by -2 becomes 

( 4-) sin A sin B = 1/2 ( cos (A - B) - cos (A + B) ) • 

Formula (4) transformed the task of finding the product of two sines 

into a problem of addition, subtraction, and division by two. In Napier's 

time the sine of an angle might be a number such as 9,934,321, which makes 

the finding of the product of two sines a lengthy multiplication problem. 

It may be that formula (4) suggested to Napier the possibility of finding 

some method whereby the process of multiplication could be reduced to that 

of addition. 

In a short book called 11The Constructio", published in 1619, two 

years after the death of Napier, an explanation of the conclusions reached 

by Napier and the method he used in calculating the tables of logarithms 

are given. The origin of his idea seems to have come about by considering 

arithmetic and geometric progressions. 
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An arithmetic progression is a series of numbers that increase or 

decrease in such a way that the difference between any term and the 

preceding term is always the same. For example, the numbers o, 1, 2, 3, 

4, . form an arithmetic progression, and is the only one Napier 

made use of. 

A geometric progression is a series of numbers such as 1, 3, 9, 27, 

81, . . . , , which increase or decrease in such a way that the ratio 

between any term and the preceding term is a constant. 

If the terms of the geometric progression 1, 3, 9, 27, 81, 243, 

729, are labeled in numerical order, that is O for 1, 1 for 3, 

2 for 9, 3 for 27, and so on, it will be seen that the product of a term 

labeled 2 and one labeled 3 will give the term labeled 5. To show this 

more clearly take the geometric progression 

16, 32, 64, 128, 256, 

or 

label numbers O, 1, 2, 3, ~-, 5, 6, 7, 8, 

Note the label numbers are the exponents to which 2 must be raised to give 

the corresponding term in the geometric progression. It is clear that the 

product of the term labeled 3 and the term labeled 5 gives the term labeled 

8, or 8 x 32 == 256. This fact was undoubtedly known by Napier, and had 

been lwown since the time of Archimedes and possibly before. The above 

discussj_on should make clear the possibility of a connection existing be-

tween terms forming a geometric progression and the label numbers that 

form an arithmetic progression. 

Before considering Napier's method of forming a table of logarithms, 

it might be well to consider the meaning of the sine of an angle in the 

sixteenth century. The sine of an angle A (fig. 1) is the length of half 

the chord subtending twice the angle. In symbols, sinL A= PM. 
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Figure 1 

To avoid fractions the length PM was calculated in very small units. 

A person compiling values of trigonometric functions would choose a very 

large value, such as 10 million or more for the radius of a circle. By 

calculation the length of the half-chord, or sine, in terms of these units 

a close approximation could be tabulated without using fractions. When 

the sine of an angle is defined in this manner it is easily seen that the 

sine of o0 is o, and the sine of 90° is 10,000,000, where 10 million is 

the value assigned to the radius. 

The beginning point in the construction of the logarithms of the 

sines by Napier was the formation of a decreasing geometric progression, 

the first term being 10,000,000 and each successive term being 9,999,999/ 

10,000,000 of the preceding term. This progression is formed most easily 

by subtracting from the first term the 1/10,000,000 the part of it to ob-

tain the second term. The procedure for a few terms is shown below. 

term no. 

10,000,000~0000000 .................... 1 
1.0000000 

9,999,999.0000000 .................... 2 
. 9999999 

9,999,998.0000001 .................... 3 
• 9999998 

9,999,997.0000003 .................... 4 
• 9999997 

9,999,996.0000006 .................... 5 

. 
9,999,900.0004950 .................... 101 
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Napier formed 100 proportionals in the preceding manner. The idea 

was to assign label numbers in arithmetic progression to each term in the 

geometric progression, but at this point it can be seen that it is a most 

difficult task to continue this progression until the last desired term of 

l is reached. Note in the above table, as the formation progresses the 

difference between any two successive terms becomes less and less showing 

that the formation of a geometric progression beginning with 10,000,000 

for the first term and ending with 1 for the last term would require an 

almost endless number of calculations. 

Abandoning the original idea Napier formed two other tables of 

num·bers in geometric progression. The common ratio in the second table 

was 99,999/100,ooo, which is as near as possible to the ratio of the last 

term of the first table to the first term of the first table and is con-

venient to work with. The second table is formed in the same manner as the 

first one by subtracting from the first term of 10,000,000 its 100 thousandth 

part to obtain the second term. The procedure is as follows: 

10,000,000.000000 
100.000000 

9,999,900.000000 
99.999000 

9,999,800.001000 
99.998000 

9,999,700.003000 

9,995,001.224804 

.................... 

term no. 

1 

2 

3 

4 

51 

After forming the second table of 51 terms progressing in the ratio 

99,999/100,ooo a third table consisting of 69 columns, each column con-

"'caining 21 rows or terms, was formed, The first of the 69 columns was 

formed using the ratio 9,995/10,000, which is near enough to the ratio 
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of the second number of the second table that no significant error is 

introduced. Letting the first number of the first column be 10 million 

and subtracting from the first number its 2000th part the second number 

9.,995,000 is obtained. The last number of the first column is 9,900,473. 

57808, only five decimal places being kept since the ratio would intro-

duce an error in the sixth place. 

The first number of the second column is found by using the ratio 

99/100, and subtracting from the first nwnber in the first column its 

100th part to obtain the first number in the second column. Subtracting 

from the second number.in the first column its 100th part gives the second 

number in the second column. Continuing this procedure all of the numbers 

of the second column may be found. Subtracting from the first number of 

the second column its 100th part gives the first number of the third 

column, and subtracting from the second number of the second column its 

100th part gives the second number in the third column. By continuing 

this procedure all the other columns may be constructed for the third 

table. An outline of the three tables formed by Napier is given below. 

1st table 101 terms 

10,000,000~0000000 
9,999,999.0000000 
9,999,998.0000001 
9,999,997.0090003 

. 
9,999,900.0004950 

3rd table 

1st column 

10,000,000~0000 
9,995,000.0000 
9,990,002.5000 
9) 985 '007 )1.987 

. 
9,900,473.5781 

69 columns 21 terms in each 

2nd column 

9,900,000.0000 up to 
9,895,050.0000 
9,890,102.4750 
9,885,157.4237 

. 
9.,801,468.8423 

2nd table 51 terms 

10,000,000.000000 
9,999,900.000000 
9,999,Boo.001000 
9,999,700.003000 

. 
9,995,001.224804 

column 

69th column 

5,048,858.8900 
5 ,o46, 334)~650 
5,o~.3,811.2932 
5 ,041,289,3879 

. 
11., 998,609 .1+034 
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It is obvious that the computation of the above tables was greatly 

facilitated by the decimal point, which was first used by Napier in the 

preparation of the tables of logarithms. The use of the decimal point 

made possible the computation of the tables without any error accumulat-

ing by frequent multiplications to the extent that it would be signifi-

cant in the finished table of logarithms. 

Just as the first and second tables were used in the formation of 

the third table, the third table will be used to form the logarithmic 

table. The problem then, is to assign to each sine or natural number in 

the third table a corresponding number or logarithm. These logarithms, 

or artificial numbers, as they were first called by Napier, are to be an 

arithmetic progression corresponding to the geometric progression formed 

by the sines. 

To determine the logarithms for the third table it is necessary to 

have an understanding of the logarithm as thought of by Napier, and to 

know some of the relations concerning these logarithms. Consider a line 

AZ with a point P moving with decreasing velocity from A to z, as shown 

in Figure 2 below. 

A B C DEF Z 
~~---------------------------------------------~---------------------~ p 

A' B' C' D' E' i 
P' 

Figure 2 

If the distances covered in equal spans of time are marked off on AZ then 

the distances these points are from Z will be in geometric progression. 

Now if a point P' is chosen to move with constant velocity equal to the 

initial velocity of the point Pat A, and if P' moves from A' toward i 

during the same span of time that P moves from A toward Zan arithmetic 
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progression will result from the lengths P' moves in units time along A'i. 

On AZ the lengths AZ, BZ, CZ, DZ, .... form the geometric progression 

while on A'i the lengths A'B', A'C' 7 A'D', A'E', •... form the arith-

metic progression. 

If the whole sine or radius is thought of as the length AZ, then the 

first proportional or sine is the length BZ and the length A'B' is called 

the logarithm of the sine BZ. The logarithm of the whole sine AZ is zero, 

and the logarithms of CZ, DZ, and EZ are respectively A 'C', A 'D', A 'E'. 

Notice the logarithm of CZ j_s twice that of BZ and the logarithm of DZ 

is three times the logarithm of BZ, since A'B' = B'C' = C'D'. From Figure 

2 it is also clear that the logarit,hm of any given sine is greater than the 

difference between the radius and the given sine, i.e., A'B' > AZ - BZ, 

or A11 B' > AB. ( > read, is greater than;<. read, is less than). 

Now consider the moving point '1 on AZ moving in the opposite direction 

with velocity increasing at the same rate as it decreased while moving 

from A toward Zin Figure 2. In Figure 3 below let P move from A to O in 

the same time that P' moved from A' to B' and P moved from A to Bin Figure 

0 
'-. Then it is evident that OA > A1 B1 > AB, or A'B', and the logarithm of 

0 A B z 
p 

A' B' 
p~,~~~~~~~~~~~~~~~~~~~~ 

Figure 3 

the first sine lies between two limits, the greater limit being OA and the 

less limit AB. In Figure 3 if a given sine say BZ is subtracted from the 

radius AZ the less limit AB remains. Also, since the marks on OZ are in 

proportion OA/AB = AZ/BZ, then OA = AB x AZ/Bz. The greater limit OA is 

the product of the radius and the lesser limit divided by the given sine BZ. 
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Taking the first term of the first table as AZ or 10,000,000 the first 

sine BZ = 9,999,999, then the lesser limit AB= AZ - BZ = 1.0000000. The 

greater limit OA = 10,000,000 x 1/9,999,999 or 1.oooooooio. Therefore the 

first proportional 9,999,999 in table 1 has OA and AB as its limits. Tak-

ing the average of the limits gives 1.00000005 as the logarithms of the 

first proportionals. The logarithm of the second proportional is twice 

that of the first, and the logarithm of the third is three times that of 

the first. Continuing in this manner all logarithms of the sines in the 

first tables are formed. This may be shown to be true by taking the familiar 

progressions 

10 100 1000 10000 100000 

1 2 3 4 5 . ' 
from which it follows that the logarithm of the fourth term is four times 

the logarithm of the first term. Here recall the familiar logarithms to 

base 10. 

The reader might conclude from the way the logarithms of the first table 

were formed that if the logarithm of the first sine was known in the second 

table the other logarithms would immediately be knmm. This is exactly the 

case; by finding the logarithm of the first sine in the second table it is 

easy to see the others would be found just as those .of the first table. 

Napier found the logarithm of the second sine by uaing the following 

rule: (1) The difference of the logarithms of two sines lies between two 

limits; the greater limit being to radius as the difference of the sines to 

the lesser sine, and the lesser limit being to radius as the difference of 

the sines to the greater sine. 2 The rule is proved by referring to the 

figure below. 

Cl 

c.:.David Eugene Srni th, A Source Book in Mathematics, (New York, 1929) p. 154 
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0 A B X y z 

A' B' X' Y' i 

Figure 4 

The lengths marked off on OZ are to be considered in geometric pro-

gression, and the lengths marked off on A'i are in arithmetic progression. 

As has already been shown, the logarithm A'B' of the sine BZ lies between 

the two limits OA and AB. The logarithms of sines XZ and YZ are respec-

tively A'X' and A'Y'.. Now A' Y' - A'X' = X'Y', but X'Y' = A'B' since these 

lengths are in arithmetic progression, then the difference of the logarithms 

of the two sines lies between the two limits OA and AB, or in mathematical 

terms OA> A'Y' - A'X' :;.oAB. Since the ratios of any two corresponding 

terms are equal in a geometric progression, then OA/AZ = XY/YZ and AB/AZ= 

X:Y./XZ, which shows the relationship stated in the rule. 

The rule just shown to be true will suffice to find the logarithm of 

any sine near or between those of the first table. Consider for example 

the sine 9,999,900 in the second table, which is near the last sine 

9,999,900.0004950 in table one. By rule (1) the difference of the logarithms 

of these two sines lies between two limits, hence if these two limits are 

found the logarithm of the sine in the second table may be found sinee the 

logarithm of the other sine is known. Putting the information down in 

terms of symbols may be easier to follow than a description of the proce-

dure, therefore the procedure is outlined below. 

Let the two given sines be 

s1 = 9,999,900.0004950 and s2 = 9,999,900.0000000 

log s1 = 100.0000050 and log S =? 
2 

The problem is to find the logarithm of s2 • Let A be the greater limit 

and B the lesser limit. The radius R = 10,000,000. Now rule (I) states 



(5) A/R = (S1 - S2 ) /s2 

(6) B/R = (S1- S2 ) /s1 . 
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In formulas (5) and (6) all quantities are known except A and B. Substi-

tution of the l'mown values in (5) and (6) gives A= 0.0004950 and B = 

0.0004950. These limits are the same out to the seventh place, due to 

the small difference in the two sines, therefore the difference in the 

logarithms of the two sines may be taken as O .000J+950. Then adding this 

difference to the logarithm of s1 gives 100.000500 for the logarithm of 

the sine in the second table. The logarithms of all the sines in the sec-

ond table may now be found. If the limits differ in say the fourth or 

fifth decimal place then the average of the two limits should be tal;:en as 

the difference between the logarithm of the two sines. 

Consider now the sine 9,995,000.0000 in the first column of the third 

table. If the logarithm of this sine is found in the manner that the 

logarithm of the sine in the second table was found an error will be intro-

duced due to the greater difference in the two sines used in this case, 

so a fourth proportional is sought such that the ratio of it to radius is 

equal to the ratio of the lesser sine to the greater sine. If Xis the 

fourth proportional, R the radius, s1 the lesser sine and S2 the greater 

sine, then X/R = s1/s2 . Now since the logarithm of similarly proportioned 

sines are equidifferent; which means the difference of the logarithms of 

X and R is equal to the difference of the logarithms of s1 and s2 , and 

since the logarithm of R is zero, then the difference of log X and log R 

is log X. Therefore if the logarithm of Xis found then adding it to log 

s2 gives log s1 . The limits of the logarithm of X are found by rule (I), 

and adding the average of these limits to the logarithm of S0 gives the 
c:.. 

logarithm of s1 • All of the other logarithms of the sines in the first 
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column are found just as those of table one and two were determined after 

the logarithm of the first sine was found. 

The logarithm of the first sine of the second column of the third 

table is found by the same procedure used to find the logarithm of the 

first sine in the first column. The first sines in all the other columns 

are found in the same manner. 

It is interesting to note the first and second tables were essential 

in forming the third table. After all the logarithms of the sines in the 

third table are determined it is used for the construction of the final 

logarithmic table. 

All the logarithms of sines embraced within the third table may be 

found by the same procedure used to find the first sines in each column. 

The logarithms of all the sines embraced within the second table are found 

simply by subtracting the given sine from radius. It should be noted here 

that the logarithms in the third table are only given to the first decimal 

place and those in the final table are given to the nearest whole number. 

The logarithms of sines less than the last sine in the third table 

are found by establishing a relationship between sines in a certain ratio 

and the differences of their logarithms. It can be shown for example that 

all sines in the ratio of two to one have 6,931,1~69.22 for the difference 

of their logarithms, and all sines in the ratio ten to one have 23,025,842.34 

as the difference of their logarithms. Then it follows that all sines whose 

ratios are multiples of two to one or ten to one would have the same multiple 

times the difference of the logarithms of the sines in the ratio two to one 

and ten to one. For example, if two sines are in the ratio four to one the 

difference of their logarithms would be twice the difference of the logarithms 

of two sines in the ratio two to one. Using this relationship the following 

table was formed by Napier. 
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Short Table 

Given Ratio: Corresponding Given Ratic Corresponding 
of Sines Difference of of Sines Difference of 

Logarithms Logarithms 

2 to l 6931~-69 .22 2000 to l 89871931~. 68 
4 to l 13862938.J.1.11. 10000 to l 92103369.36 
8 to l 20794407.66 20000 to l 99031~838.58 

10 to l 2302581~2. 311. 40000 to 1 105966307.80 
20 to l 29957311.56 80000 to 1 112297777.02 
4-0 to l 36888780.78 100000 to l 115129211.70 
Bo to 1 43820250.00 200000 to l 122060680.92 

100 to 1 l~605168lJ-. 68 11.00000 to 1 128992150 .111. 
200 to l 52983153,90 800000 to 1 135923619.36 
400 to l 599111.623 .12 1000000 to 1 13815 5051~. 04-
Boo to l 66846092.34 2000000 to l 1!+5086523. 26 

1000 to 1 690"{7527. 02 4000000 to 1 152017992 .1~8 
2000 to l 76008996.24 8000000 to l 1589494-61. 70 
4-000 to 1 8291~01~65 .1~6 10000000 to 1 161180896.38 

As an example of how the logarithm of a sine outside the limits of 

the third table may be found take the sine 378064.oo. Multiplying this 

sine by 20 gives 7561280.00., a sine within the third table. Now determine 

the logarlthm of 7561280 .00 by the procedure outlined for sines near or 

between those of the third table. The logarithm will be 279544-4. 9, and 

to this add 29957311.56 from the table above giving 32757556. as the 

logarithm of 378061~.o. 

The next problem in the construction of the logarithmic table is the 

determine the particular sine that corresponds to a given angle. It should 

be clear that the sine of 90° 0' is 10 million and the sine of 30° O' is 

5 million, and that the sines of 1~500, and 60°0 1 are easny found. Since 

the purpose of this report is to show how logarithms may be found for num-

bers in geometric progression., no attempt will be made to show how the 

sines for angles such as 63° l~o 1 , 23° 25', etc. are determined It should 

be clear to the reader that there will be 5400 terms in the final logarithmic 
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table formed by Napier, since for each degree there are 60 minutes, and 

Napier was computing the logarithms for sines of angles to the minute. 

For each one of these 5400 different angles a particular sine would cor

respond, and from the third table these sines could be found. The rules 

which enabled Napier to find the particular sines corresponding to the 

angles are given below. 

As half radius is to the sine of half a given arc, so is the sine 

of the complement of the half arc to the sine of the whole arc. 

Double the logarithm of an arc of 45 degrees is the logarithm of 

half radius. 

The sum of the logarithms of half radius and any given arc is equal 

to the sum of the logarithms of half the arc and the complement of the half 

arc. Hence, the logarithm of the half arc may be found if the logarithms 

of the other three be given. 

When the logarithms of all arcs not less than 45 degrees are given 

the logarithms of all less arcs are very easily obtained, 

The above rules should suffice to give the reader an idea of how 

the angles for the sines were found, The rules may be proved using geome

tric principles. 

Below is given a portion of the third table with a few of the sines 

and their logarithms. This should help as a means of checking some of the 

computations that may be carried out by the reader who wants to examine some 

of the rules and relations discussed in this chapter. 



Sines 
10000000.0000 
9995000.0000 
9990002.5000 
9985007 .4987 
9980014.9950 

. 
9900473 .5780 

Sines 

9900000.0000 
9895050.0000 
9890102 .1~ 750 
9885157.4237 
9880214.8451 

9801468.8423 

Sines 

5011-8858. 8900 
501~6334 .4605 
50~-3811. 2932 
50~-1289. 3879 
5028668. 71~35 

. 
4998609.4034 

THIRD TABLE 

1st Column 

2nd Column 

69th Column 

Logarithms 

.o 
5001.2 

10002.5 
15003.7 
20005.0 

100025.0 

Logarithms 

100503.3 
10550~-.6 
110505.8 
115507.1 
120508.3 

. 
200528.2 

Logarithms 

6834225,8 
6839227.1 
62~-~-228. 3 
6849229.6 
6851~230. 8 

. 
693J+250.8 
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CHAPTER III 

THE CONTRIBUTION OF BRIGGS AND OTHERS 

Henry Briggs (1556 - 1631), Professor of Geometry at Oxford) received 

the work of Napier with such enthusiasm that a meeting with Napier was 

arranged. During this meeting both Napier and Briggs agreed that the 

tables would be more useful if they were altered so that the logarithm 

of 1 would be O and the logarithm of 10 would be an appropriate power of 

10. Thus the Briggs or common system of logarithms of today was born, 

and Briggs devoted a considerable amount of time thereafter to the con

struction of tables of logarithms based upon the new plan. 

In 162~- Briggs published "Ari thmetica Logari thmica", containing a 

14-place table of common logarithms of the numbers from 1 to 20,000 and 

from 90,000 to 100,000. The gap between 20,000 and 90)000 was later filled 

in with help, by Adriaen Vlacq (1600 - 1666), a Dutch bookseller and pub

lisher. 

In the formation of a table of common logarithms a great deal of 

computation is necessary as is shown by the following discussion. To 

calculate logarithms Briggs made use of the following facts. Consider the 

series below: 

1 

2 

2 

4 

3 4 5 

8 16 32 

6 7 

64 128 

.. arithmetic series (logs) 

. geometric series (antilogs) 

18 
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Now the arithmetic mean between any two numbers a and bis 1/2 (a+ b), 

and the geometric mean between two numbers A and B is "1AB. As an 

example, take a = 2 and b = 4 in the arithmetic series, then 1/2 ( a + ·b) = 

1/2 (2 + 4) = 3. Note the ari.thmetic mean of any three consecutive numbers 

in the arithmetic series is the middle one, and the same is true for three 

consecutive numbers in the geometric series. For example, consider A= 4 

and B = 16 in the geometric series, then ·FAB = J ~- x 16 = J'64 = 8. These 

properties hold true even j_f the difference between the terms in the 

arithmetic series is a fraction. The method Briggs used then, is essen

Jcially inserting arithmetic means in between geometric means to find the 

logarithm of prime numbers. After the logarithms of the prime nw.ubers are 

known the other logarithms may be found from the relations of logarithms, 

i. e ··J log A/B = log A - log B, log AB = A + log B. The calculation of 

the logarithm of 5 is given below as an example of the method Briggs 

. used to form a table of logarithms. 



20 

Numbers or antilogarithms Logarithms 

A= 1.000000 a= 0.0000000 
B = 10.000000 b = 1.0000000 
C = •[AB = 3.162277 C = 1/2 (a+ b) = 0.5000000 
D= .fBC ·= 5.623413 d = 1/2 (b + c) = 0.7500000 
E= .fen = 4.216964 e = 1/2 (c + d) = 0.6250000 
F = .fDE = 4.869674 f = 1/2 ( d + e) = 0.6875000 
G= .fDF = 5.232991 g = 1/2 (d + f) = 0.7187500 
H = .fFG = 5.048065 h = 1/2 (f + g) = 0.7031250 
I=- .fFH 4.958o69 i = 1/2 (f + h) = 0.6953125 
J = tr ·- 5 .002865 j = 1/2 (h + i) = 0.6992187 
K= J = 4.98o416 k = 1/2 (i + j) = 0.6972656 
L= .fJK. = 4.991627 1 = 1/2 ( j + k) = 0.6982421 
M= ,J"JL = 4.997240 m = 1/2 (j + 1) = 0.6987304 
N = .f JJ:IJ. = 5.000052 n = 1/2 (j + m) = 0.6989745 
0 = ,JMN = 4.998647 0 = 1/2 (m + n) = 0.6988525 
p = Jfro = 4.999350 p = 1/2 (n + o) = 0.6989135 
Q= ,[op = 4.999701 q = 1/2 (o + p) = 0.6989440 
R = .fpQ = 4.999876 r = 1/2 (p + q) = 0.6989592 
s = .JJ:JQ = 4.999963 s = 1/2 (n + q) = 0.6989668 
T = ,,fas = 5.000008 t = l/2(n+s) = 0.6989707 
u =. .fsT = 4.999984 u = 1/2 (s + t) = 0.6989687 
V = .fTU = 4.999997 v= l/2(t+u) = 0.6989697 
w = .fTV = 5.000003 w = 1/2 ( t + V) = 0.6989702 
X = ,Jvw ~ 5.000000 X = 1/2 (v + w) = 0.6989700 

The logarithm of a prime number such as 41 would have to be found 

using 1 and 100, whose corresponding logarithms are O and 2. 

Napier's only rival for priority of invention of logarithms was 

Jobst Bilrgi (1552 - 1932), a Swiss instrument maker. Blirgi conceived 

and constructed a table of logarithms independently of Napier, but did 

not publish the results until 1620, six years after Napier announced the 

discovery of logarithms. The work of BUrgi was definitely based on the 

laws of exponents, as logarithms are now regarded to be. It is generally 

believed that Napier conceived the idea of logarithms before BlirgL 

The calculations in astronomy and navigation were not solely respon-

sible for man seeking methods to shorten such calculations. The flourish-

ing trade between nations during the 16th and 17th centuries called for 

quicker ways of calculating interest, and led to the construction of 
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tables for such calculations. The calculation of compound interest is a 

practical application of the geometric series. If r is the rate of 

interest per dollar invested, then in one year ¢1.00 invested grows to 

¢(1 + r), and in two years grows to ~(1 + r)2, etc. For instance if r = 5°/o, 

then in one year ¢1.00 gwows to ¢(1.05 ); at the end of two years it grows 

2 
to ¢(1.05) = ¢1.1025. 

For interest compounded once a year the following series are given: 

The amount is 

(1 + r )° (1 + r )1 (1 + r)2 (1 + r )3 (1 + r)4 (l + r)5 

at the end of 

0 1 2 3 4 5 years. 

The years making up the arithmetic series correspond to the exponents, 

or logarithms as they are now known to be, in the geometric series. If 

a table of logarithms was made from the two series above what would the 

base be? To make the above series more meaningful compare them with the 

arithmetic and geometric series below. 

0 l 3 4 

g3 2~ 

5 

25 

7 

7 2 -· 

Simon Stevin (1548 - 1620) of Bruges in Belgium prepared tables of 

compound interest for calculations in commercial arithmetic. These 

tables were actually logarithmic ta"bles, but were not recognized as such 

at the time. 

The series for the limiting value of~, the base of the natural 

logarithms, arises in the construction of compound interest tables. This 

series_ can be_ obtained from the e:icpansion of (l + 1/n)n, and has a limit-

ing value of e = 2.718281828459 •••••••.• To see how this value fore is 
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suggested by a study of compound interest a list of the amounts to which 

¢1.00 has grmm after n years at a rate r = 1/n is given. 

Number of Years Rate of Interest Amount 
n 1/11 

20 5 fo ~2.653 
25 4 !o 2.666 
11-0 2 1/2 o 2.685 
50 2 /0 2.682 

100 l °lo 2.705 

If the table is continued for larger and larger values of n the amount 

gets closer and closer to the value e. A more detailed discussion of the 

base e will be made in the next chapter. 



CHAPTER IV 

BASES OF LOGARITHMS AND SERIES 

COMPUTATION OF LOGARITBJ.v:IS 

The tremendous labor required for the construction of logarithmic 

tables naturally led mathematicians to search for quicker and easier 

methods of calculating logarithms of numbers. This search gave new 

impetus to the study of infinite series. As was shown in the preceding 

chapter, the base~ of the Napierian or natural logarithms is related 

to infinite series. In this chapter~ is shown to be a suitable base 

for a system of logarithms, and also gives a convenient method of calcu-

lating logarithms. 

The Base e 

To find ~ expand the expression (1 + 1/n)n by the binomial formula 

giving 
n(n - 1) n (n - 1) (n - 2) 

(1) (1 + 1/n)n = 1 + n/n + - 2------- + 
n X 2! 

= 2 + (1 - 1/n) 1/2! + 

n3 X 3! 
3n - 2 

(1 - -2----) 1/3! 
n 

+ . . . • 

+ . . . . . 

Now as n takes on larger and larger values (1) approaches a limiting 

value, since for large values of n the value of the expressions (1 - 1/n) 

and (1 - (3n - 2) /n2 ) are very close to 1. These expressions may be made 

as near 1 in value as desired by letting n assume a sufficiently large 
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value. Therefore series (1) may be made to approach a limiting value by 

lettii1g n approach an infinitely large value. Then the limit of (1) is 

(2) (1 + 1/n)n = (2 + 1/2! + 1/3! + 1/4! + • ) . 
The series (2) has a limiting value between 2.7 and 2.8. It is 

denoted ·by the letter~· The value of e may be calculated as accurately 

as desired by taking a sufficient number of terms in the series. The 

number e serves as the base of the natural system of logarithms. It is 

a convenient base to use, since a logarithmic series may be developed for 

computing logarithms of numbers to base e. The base~ logarithms also 

simplifies the differentiation of the logarithmic function in calculus. 

An approximate value of e may be computed from the series (2) as follows: -

1 + 1 = 2.000000000 

1 2! = .500000000 

1 3! = (1 2! ) 3 = .166666667 

1 4! = (1 3! ) . l~ = • 0~-1666667 

l 5 ! = (1 . 4! ) 5 = .008333333 
1 6! = (1 . 5! ) . 6 = .001388889 

1 7! = (1 6! ) 7 = .000198~-13 

1 . 8! = (1 7! ) 8 = .000024802 ';" 

1 9! = (1 8! ) 9 :::: .000002756 

1 10! = (1 9! ) . 10 = .000000276 

1 . 11! = (1 10 ! ~ 11 .000000025 

e = 2.7182818 to seven places. -

The Base of Napier's Logarithms 

Although the base e logarithms are called Napierian or natural 

logarithms the base e is not the base of the logarithms first formed .,_ 

by Napier. Note the logarithms of Napier increased as the numbers de-

creased; which is just opposite to the natural logarithms. Napier 
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undoubtedly did not even think of a base in developing logarithms, and 

it was not until Euler pointed out the connection between logarithms, 

bases, and exponents that logarithmic bases were considered. 

To see the relation that exists between the base of Napier's 

logarithms and the base e of the natural logarithms consider the figure 

below. 

A C B 

D F E 

Let AB= a= 107, x = DF, and y = BC, then AC= a - y. Remember Napier 

considered AB as the whole radius, and a point moving along AB from A 

toward B with velocity decreasing geometrically. Using a bit of calcu-

lus; if the velocity of the point C is defined as 

(1) d(a - y) 
dt = Y, 

then separating the variables in (1) and integrating gives 

or 

f d(a - y) 
dt = f dt, 

(2) -1'.iat. logy= t + K, where K is the constant of integration. 

Now when t ~ o, then y =AB= a and 

(3) K = -·nat. log a 

Now since in Napier's concept of logarithms the point F moves with 

a constant velocity equal to the initial velocity of point C when t = O, 

that is, the velocity y = a, then the velocity of the point Fis given by 

(4) 
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From (4) dx = a dt, which upon integrating each side gives 

(5) X = at, 

but by definition x =Nap. logy, hence by substitution Nap. logy= x = at, 

or 

(6) Nap. logy; 107 (- nat. logy - K), 

which becomes upon substituting the value of K from (.3) 

( 7) Nap. log y ;: 10 7 nat. log 10 7 /y. 

Formula (7) gives the relation between the two systems. 

The Exponential Series 

The exponential series is the development in ascending powers of x 

the xth power of a certain constant base. The series is derived by using 

the binomial formula as follows: 

Expanding by the binomial formula the expression (,1 + 1/n)nx gives 

nx nx(nx: - 1) nx(nx - 1) (nx - 2) 
(1) (1 + 1/n)nx = 1 + ·- + ---------- + ------------------- + ..... 

n n2 x 2! n3 x .3! 
.3nx2 - 2x 

= 1 + x + (x2 - x/n) 1/2! + (x3 - -----2---) 1/3! + ....•.. 
n 

In (1) as 2 n approaches an infinitely large value the expression (x - x/n) 

approaches x2 as a limit, and the expression (x3 - (3nx2 ~ 2x) /n2 ) approaches 

x3 as a limit. Hence for n approaching infinitely large values the limit-

ing value of the series in (1) becomes 

(2) (1 + 1/n)nx = (1 + x + x2/2! + x.3/3! + ••••••••••••• ) 

Now since from the rule of exponents (xml = xmn, then it follows that 

and substitution in (2) gives 
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But as n approaches a large value the expression (1 + 1/n)n approaches 

(1 + 1 + 1/2! + 1/3! + •••••. )or?, l;l,nd substitution in (4) gives 

(5) ex= 1 + x + x2/2! + x3/3! + .•••••..•.•••.• 

In ( 5) X • e J.S called the exponential function of x, and the series 

X developed from e is called the exponential series. To derive a formula 

k applicable to any positive constant base a, Jet log a= k, then a= e - e 

and x .kx (log a)x Therefore by (5) 
a =e =e e . 2 3 :z. 

( lo~ a)2 x (log a} x~ x ee e 
a = 1 + (log a)x + ---------- + ---------- + e 2! 3! 

(6) 

The convergency of the series derived in this chapter will not be discussed 

here, since the purpose is simply to show the series involved in computing 

logarithms a.11.d how they are derived. Formula (6) is called the exponential 

formula and will be used to derive the logarithmic series. 

The Logarithmic Series 

The logarithmic series is the expansion of log (1 + x) in ascending e 

powers of x. It is derived as follows: By the exponential formula, when 

(1 + x) is the base and y the exponent, 

(1) 
(log (1 + x))2y2 

(1 + x)y = 1 + (log (1 + x))y + ---~----------e 2! 

By the binomial formula, 

(2) 
y y(y - 1) 2 y(y - 1) (y - 2) 

(1 + x) = 1 + yx + --------x + ----------------
2! 3! 

Now equating the second members of (1) and (2) gives 

(3) 1 + (log 
e 

. 2 2 
(log (1 + x)) y 

( . e . 
1 + x))y + --------------- + 

2! 

+ ••••••• 

3 
X + • • • • • • 



= 1 + yx + 

2 y(y - l)x 

-----·----
2 2! 

.X y2 - x2y 

= 1 + xy + -----------
2! 

2 -lx 

y(y - 1) (y - 2)x5 
+ ------------------ + •..•••.• 

3' 
x3y3 -·3x3y2 + 2x3y 

+- ------------------- + •..••••.• 
3! 2 2 

X y -3x3y 
2 

= 1 + X + + ----+ y + ----- + -------
2! 3! 2! 3! 
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x3 y3 
+ ------

3! 

Now equation (3) is an identical equation since the two series have the 

+ 

same sum and both are absolutely convergent for all finite rational values 

... 

of y, x being numerically less than 1. Therefore, equating the coefficients 

of yin the two series gives 

(4) log (1 + x) = x + e 

-lx2 ( -1) ( .. 2 )x3 

+ ----------- + 
2! 3! 

Simplifying the second member gives 

(5) 

4 ( -1) ( -2) ( - 3 )x 
---------------- + ••.••• 

4! 

.............. 

This series is called the logarithmic series, and is absolutely 

convergent for x < 1, and conditionally convergent for x = 1. 

(1) 

To Compute Natural Logarithms 

Since the logarithmic series 

2 ~ 4 
log ( 1 + X) = X - X /2 + X) /3 - X /J.1. + e 

is not convergent for x:,, 1, it cannot be u:sed to find the natural logarithm 

of any positive number, however .. great; and for ease in computation it is 

desirable that the series obtained be rapidly convergent. 

Substituting -x for x in (1) gives 

(2) ................. 
Subtracting (2) from (1) 
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(3) log (1 + x) - log (1 - x) e e 
3 5 = 2(x + X /3 + X /5 + ••••.•• ), 

or 
1 + X 

(1~) loge-----= 2(x + x3/3 + x5/5 + ..•......•....•.•...•.. ) 
1 - X 

which is true when x <: 1. Let n be a positive number when natural 

logarithm is known, and let m be a greater positive number whose natural 

logarithm is to be computed. Then, since (m - n) / (m + n) is positive 

and less than 1, this value may be substituted for x in (4). If x = 

(m - n) / (m + n) 

1 + X 1 + ( rn - n) I (m + n) 2m m 
-----···= --------------------- = = - ; and in (4) since 
1 - X l -

1 + X 

10°· -----oe = 

(5) 

1 - X 

log m 
e 

(m - n) I (m + n) 2n n 

m 
log - = log m - log n., then e e e n 

m - n 1 m - n 3 1 m - n 
= log n = 2(----- + - ( -----) + _ ( -----)5 

e m + n 3 m + n 5 m + n 

This is the logarithmic formula form> n > O. 

+ ••••. ) 

Since log 1 = 0, by substituting 1 for n and 2 for m, log 2 may be 
e e 

found; then by substituting 2 for n and 3 form log 3 rnay be found; etc. e 

Hence, a table of logarithms rnay be constructed by substituting for n in 

(5) the successive values 1, 2, 3, !.~, ..... and for rn values greater by 

one in each instance. 

Substituting n + 1 form in (5) gives the more convenient formula 

1 1 
(6) log (n + 1) = log n = 2(------ + ----~----- + ..•..• ), 

e e 2n + 1 3(2n + 1)3 

which is true for all positive values of n. By taking a value of n and 

substituting in (6) it can be seen that (6) converges very rapidly. To 

see how formula ( 6) is usea_ consider the following example: 



Fj_nd the natural logarithm of 2 to the nearest sixth decimal place. 

Solution. - - Substituting 1 for n and O for log 1 in the formula 
e 

for log (n + 1) gives 
e 

log 2 = 0 + 2(1/3 + 1/3·33 + 1/5·35 + 1/7·37 + .•.••••...••••• ) e 

= 2/3 + 2/3·33 + 2/5·35 + 2/7.37 + •.••••.••••.•••.••• 
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and since these quotients are divided by 1, 3, 5, 7, • respectively, 

the computation may be neatly arranged as follows: 

3 
9 

, 1 0.66666667 .. = 
9 . 3 = .02~-69136 
9 .,. 5 - . 001611-609 
9 + 7 = .00013064 
9 9 = .00001129 
9 11 = .00000103 . 13 ::: .00000010 .. 
adding gives log 2 = 0.69314718 = 0.693147 to six plac~s. e 

Computj_ng Base 'l'en Logarithms 

The base e arises naturally in the process of finding a formula for 

computing logari thrns. Natural logari thtns are more convenient to use in 

theoretical work, but in numerical calculations common or Briggs logarithms 

are the most convenient to use because the base of the common logarithms is 

the same as the base of the decimal system of notation. Hence, the next 

problem is the see how natural logar·ithms can be changed to common logarithms. 

Let N be the number whose logarithm to base 10 is sought. From for-

mula (6) of the previous section log N and log 10 may be found. Suppose e e 

(1) 

(2) log 10 = q, or 10 e 
= eq . 
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Now let r be the multiplier) as yet unknown, by which log N is multiplied 
e 

to produce log10N; that is, let 

(3) lorY N = r loo- N = np then 
0 10 °e ' 

by (3) N 
ro 

= 10 1: , and by ( 2) 

(4) N = (eq/p = 

(1) eqrp = by ( L~) and from which 

(5) qrp = p, and r = 1/q, a constant. 

Now by (2) q = log 10 and upon substituting this in (5) 
e 

(6) r = 1/log 10. e 

By formula ( 6) of the prevfous section it is fo1md that log 10 = 
e 

2.30258509 ... , from which r = .434294~-8 ... Then the logarithm of 

any number to base 10 may be found by formula (3) of this section, by 

using r equal to ·the value given above. In general formula ( 6) of this 

section holds for any base a so that r = 1/log a, A discussion of the 
e 

relation of base e to other bases can usually be found in college algebra 

and trigonometry textbooks. 



CHAPTER V 

CONCLUSION 

The problem involved in this report was simply to study the invention 

of logarithms; being principally concerned with the construction of the 

logarithmic tables; and writing the results in a form suitable for study 

by a high school mathematics teacher or student. 

In summary the main ·points considered in this report were discussions 

concerned with John Napier's invention of logarithms, the work of Briggs 

and others on the improvement of logarithmic tables, and a rather detailed 

account of the development of ser:Les for computing logarithms. It is dif

ficult to find material for any further study of the historical account 

of the invention of logarithms, but a further study of series may be pur

sued by those interested, and much information on this subject may be 

found. 

There is little doubt that John Napier was the true inventor of log

arithms and no doubt at all that his ideas were original. This study 

should give one the feeling that great things may be accomplished by the 

invention of such mathematical ideas as logarithms. It would be :impossible 

to estimate the worth of logarithms to mankind. The slide rules carried 

by the many engineerj_ng and science students are good examples of the 

value of J\Japier' s invention. 

32 
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Although many wonder about the value of some mathematics taught just 

because immediate applications may not come to mind, it should always be 

kept in mind that mathematics has thrived because of its many applications. 

A study of an invention in the past should give one a feeling that such 

efforts on the part of mathematicians are not in vain; and even if some 

of the mathematics being stressed now doesn't make too much sense to 

those who are not well versed in the subject it should not be condemmed 

in view of the great value past mathematical ideas have been to man. 
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