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PREFACE

This report is primarily concerned with a study of the invention
of logarithms by John Napier, of Scotland, I considered the original
ided of logarithms as first discovered by Napier, and the method he
used to construcf the first tables of logarithms. Material fof this
report was not easily found, and I wish to express my appreciation for
the help received from the Specilal Services Department of the Oklahoma
State University Library. I especially thank Dr. James H. Zant, Direc-
tor of the Academic Year Institute for his help and advice in preparing
this report. I also want to acknowledge the financial assistance re~
ceived from the National Science Foundation, without which, this year

of study would not have been possible.
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CHAPTER I
INTRODUCTION

Having a knowledge of the history and development of a particular
phase of mathematics may be a great help to a teacher in introducing
and teaching it. It is the opinion of the writer that this is especially
true in teaching a unit on logarithms. Too many students in high school
algebra and trigonometry think of a logarithm as simply a number in a
table. |

This report is intended to be a source of additional information
to the teacher who is preparing to introduce a unit on logarithms, and
may also be used by the student who is interested in learning more about
the subject than is usally covered in a high school algebra or trigono-
metry course, »

The writer has found it needful to be able to give the students
some idea of how logarithms may be computed; It is a mystery to high
school students how the logarithm tables are formed. It takes only a
few minutes to demonstrate a short method of computing the logarithm of
some numbers, and if this will erase some of the guestion marks from the
student's mind the time will be well spent. An individual needs to be
curious to learn, and if this curiousity is not satisfied the person

might stop seeking answers to questions. Many times in mathematics a



gtudent may study a unit and be left with some questions still not answered.
It wmay not be possible for the teacher to answer all guestions involved,
gsince the background of the student may not make understanding the answer
possible, but the learning situation is much better if questions of the
students are answered with some degree of satisfaction.

A discussion of the invention of logarithms is covered in chapters
two and three. The other chapters deal with methods of computing loga-
rithms, and the bases of logarithms, It is hoped this report shall be

of service to teachers and students alike.



CHAPTER II
THE INVENTION OF LOGARITHMS

It is probably true that no great mathematical invention, with one
solitary exception, has resulted from the work of any one individual. The
one solitary exception is the inventlon of logarithms. The normal develop-
ment of mathematics follows a series of steps, starting with an ldea of a
mathematician which slowly grows as others add their thoughts to the orig-
inal idea., The idea of logarithms was far removed from any other mathema-
tical idea preceeding it, and may well be considered an original idea with
the inventor and independent of the work of others,

In 1814 a small book of 147 pages, 90 of them filled with mathematical
tables, was published. This book was the result of twenty years of tedious
labor by John Napier of Scotland. The purpose of the book, in our present
day language bearing the title, "A Description of an Admirable Table of
ILogarithms", 1s clearly pointed out in the opening words. To quote Napier

"Seeing there is nothing (right well-beloved students of

mathematics) that is so troublesome to mathematical prac-

tice, nor doth mere molest and hinder calculators, than

the muliplications, divisions, sguare and cubical extrac-

tions of great numbers, which besides the tedlous expense

of time are for the most part subject to many slippery

errors, I began therefore to consider in my mind by what
certain and ready art I might remove those hinderances.”

Ta1£red Hooper, Makers of Mathematics, (New York, 1948), p. 169.




During the sixteenth and seventeenth centuries trade between countries
in Burope began to flourish, and it was easier and less expensive to trans-
port goods by ship than by other means., Thus studies in navigation were
carried out and required much calculating with large numbers. Also, during
this span of time great advances were being made in astronomy. Both astron-
ony and navigation reguired work that.involved many cumbersome and lengthy
couputations.

Wittich and Clavius (1584), two Danish mathematicians, suggested the
use of trigonometrical tables for shortening calculations. For example
in trigonometry the formulas (1) and (2) below are found.

(1) cos (A + B) = cos A cos B - sin A sin B

(2) cos (A - B)

i

cos A cos B+ sin A sin B
Subtracting (2) from (1) gives

(3) cos (A+ B) - cos (A - B) = -2 gin A sin B,
and upon dividing both members of (3) by -2 becomes

(4) sin A sin B = 1/2 (cos (A - B) - cos (A + B) ).

Formula (4) transformed the task of finding the product of two sines
into a problem of addition, subtraction, and division by two. In Napler's
time the sine of an angle might be a number such as 9,934,321, which makes
the finding of the product of two sines a lengthy multiplication problem.
It may be that formula (4) suggested to Napler the possibility of finding
some method whereby the process of multiplication could be reduced to that
of addition.

In a short book called "The Constructio", published in 1619, two
years aiter the death of Napler, an explanation of the conclusions reached
by Napilexr and the method he used in calculating the tables of logarithms
are given, The origin of his 1dea seems to have come about by considering

arithmetic and geometric progressions.



An arithmetic progression is a series of numbers that increase or
decrease in such a way that the difference between any term and the
preceding term is always the same. For example, the numbers 0, 1, 2, 3,
L, . . . . . form an arithmetic progression, and is the only one Napier
made use of.

A geometric progression is a series of numbers such as 1, 3, 9, 27,
61, . . . . . ., which increase or decrease in such a way that the ratio
between any term and the preceding term is a constant.

If the terms of the geometric progression 1, 3, 9, 27, 81, 243,

29, « « .« . . are labeled in numerical order, that is O for 1, 1 for 3,
2 for 9, % for 27, and so on, it will be seen that the product of a term
labeled 2 and one labeled % will give the term labeled 5. To show this
more clearly take the geometric progression

1, 2, 4, 8, 16, 32, 64, 128, 256, . . . . . .
or 20, 21, 22, 23, 2&} 25, 26, 27, 28, . .
label numbers O, 1, 2, 3, &, 5, 6, 7, &, . .. . .. .
Note the label numbers are the exponents to which 2 must be raised to give
the corresponding term in the geometric progression. It is clear that the
product of the term labeled 3 and the term labeled 5 gives the term labeled
8, or 8 x 32 = 256, This fact was undoubtedly known by Napier, and had
been known since the time of Archimedes and possibly before. The above
discussion should make clear the possibility of a connection existing be-
tween terms forming a geometric progression and the label numbers that
form an arithmetic progression.

Before considering Nepier's method of forming a table of logarithms,
it might be well to consider the meaning of the sine of an angle in the
sixteenth century. The sine of an angle A (fig. 1) is the length of half

the chord subtending twice the sngle. In symbols, sing A = PM.



Figure 1

To avoid fractions the length PM was calculated in very small units.
A person compiling values of itrigonometric functions would choose a very
large value, such as 10 million or more for the radius of a circle. By
calculation the length of the half-chord, or sine, In terms of these units
a close approximation could be tabuiated without using fractions. When
the sine of an angle 1s defined in this manner it is easily seen that the
sine of 0° is 0, and the sine of 900 is 10,000,000, where 10 million is
the value assigned to the radius.

The beginning point in the construction of the logarithms of the
sines by Napier was the formation of a decreasing geometrlic progression,
the first term belng 10,000,000 and each successive term being 9,999,999/
10,000,000 of the preceding term. This progression is formed most easlly
by subtracting fromfthe first term the 1/10,000,000 the part of it to ob-

tain the second term. The procedure for a few terms is shown below.

term no.
10,000,000.0000000 +iuseoseseonsencasns 1
1.0000000 -
9,999,999.0000000 +4eeeeesssosnsannens 2
- 9999999 a
9,999,998.0000001  +ssevenesnvecsrasnns 3
0999996 -
9,999,997.0000003 sessssesnacnssnasase L
- 9999997
9,999,996.,0000006  +4esersnosacrnnanans 5

9,999,900,0004950  teisecsensesnncanons 101



Napier formed 100 proportionals in the preceding menner, The idea
was to assign label numbers in arithmetic progression to each term in the
geometric progression, but at this point it can be seen that it is a most
difficult task to continue this progression until the last desired term Of
1 is reached, UNote in the above table, as the formation progresses the
difference between any two successive terms becomes less and less showing
that the formation of a geometric progression beginning with 10,000,000
for the first term and ending with 1 for the last term would require an
almost endless number of calculations,.

Abandoning the original idea Napiler formed two other tables of
numbers in geometric progression., The common ratio in the second table
was 99,999/100,000, which is as near as possible to the ratio of the last
term of the first table to the first term of the first table and is con-
venlent to work with. The secondvtable is Tormed in the same manner as the
first one by subtracting from the first term of 10,000,000 its 100 thousandth

part to obtain the second term. The procedure is as follows:

term no.

10,000,000.000000  vuevssuserosconcacans 1
100.,000000

9,999,900.000000  +evinv.. Ceereenaane 2
99.999000

9,999,800.001000  teverrsennnonenaennn 3
99.995000

9,999,700.003000  svessssvaresoasanans b

9,995,001.220804 ... i ieeereneeeas 51

After forming the second table of 51 terms progressing in the ratio
99,999/100,000 a third table consisting of 69 columns, each column con-
taining 21 rows or terms, was formed. The first of the 69 columns was

formed using the ratio 9,995/10,000, which is near enough to the ratio



of the second number of the second table that no significent error is
introduced., Letting the first number of the first column be 10 million
and subtracting from the first number its EObOth part the second number
9,995,000 is obtained. The last number of the first\column ils 9,900,&73.
57808, only five decimal places being kept since the ratio would intro-
duce an error in the siﬁth place.

The first number of the second column is found by using the ratio
99/1@0, and subtracting from the first number in the first column its
100th paft to obtain the first number in the second column. Subtracting
from the second number in the first column its 100th part gives the second
number in the second columh. Continuing this procedure all of the numbers
of the second column wmay be found. Subtracting from the first number of
the second column its 100th part gives the filrst number of the third '
column, and subtracting from the second number of the second column its
100th part gives the second number in the third column. 3By continuing

this procedure all the other columns may be constructed for the third

table. An outline of the three tables formed by Napler is given below.

1st table 101 terms 2nd table 51 terms
10,000,000 ,0000000 10,000,000.000000
9,999,992 .0000000 9,999,900.000000
9,999,998 ,0000001 9,999, 800.001000
9,999,997 .000000% 9,999,700.003000

9,999,900.,0004950 9,995,001 .,22L80k

3rd table 69 columns 21 terms in each column

1st column 2nd column 69th column

10,000,000,0000 9,900,000.0000  up to 5,048,858,8900
9,995 ,000.0000 9,895,050.0000 5,046,334 . 4650
9,990,002.5000 9,890,102.4750 5,043,811.2932
9,985,007 .4987 9,885,157.4237 53041,289.5879
9,900,47%.5781 9,801,468.842 L, 998,609 4034



It is obvious that the computation of the above tables was greatly
facilitated by the decimal point, which was first used by Napier in the
preparation of the tables of logarithms., The use of the decimal point
made possible the computation of the tables without any error accumulat-
ing by frequent multiplications to the extent that 1t would be signifi-
cant in the finished table of logarithus.

Just as the first and second tables were used in the formation of
the third table, the third table will be used to form the logarithmic
table, The problem then, is to assign to each sine or natural number in
the third table a corresponding number or logarithm. These logarithms,
or artificial numbers, as they were first called by Napler, are to be an
arithmetic progression corresponding to the geometric progression formed
by the sines.

To determine the logarithums for the third table it is necessary to
have an understanding of the logarithm as thought of by Napler, and to
know some of the relations concerning these logarithms. Conslder a line
AZ with a polnt P moving with decreasing velocity from A to Z, as shown

in Figure 2 below.

A B C D E F Z
P
Al B! C! Dt E! i
Pt

Flgure 2

If the distances covered in eqgual spans of time are marked off on AZ then
the distances these points are from Z will be in geometric progression.
Now if a point P' is chosen to move with constant velocity equal to the
initial velocity of the point P at A, and if P' moves from A' toward i

during the same span of time that P moves from A toward Z an arithmetic
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progression will result from the lengths P' moves in units time along ATi.
On AZ the lengths AZ, Bz, CZ, DZ, . . . . form the geometric progression
while on A'i the lengths A'B', A'C', A'D', A'E', . . . . . form the arith-
metic progression.

If the whole sine or radius is thought of as the length AZ, then the
first proportional or sine is the length BZ and the length A'B' is called
the logarithm of the sine BZ. The logarithm of the whole sine AZ is zero,
and the logarithms of CZ, DZ, and EZ are respectively A'C!', A'D', A'E',
Notice the logarithm of CZ is twice that of BZ and the logarithm of DZ
is three times the logarithm of BZ, since A'B' = B'C' = C'D'. From Figure
2 1t 1s also clear that the logarithm of any given sine is greater than the
difference between the radius and the given sine, i.e., A'B' > AZ - BZ,
or A*B'> AB. (> read, is greater than; £ read, is less than).

Now consider the woving point "

on AZ moving in the opposite direction
with velocity increasing at the same rate as 1t decreased while moving
from A toward Z in Figure 2. In Figure 3 below let P move from A to O in

the same time that P' moved from A' to B' and P moved from A to B in Figure

2. Then it is evident that OA > A'B' > AB, or A'B', and the logarithm of

o A B Z
P
At Bt
Pl
Figure 3

the first sine lies between two limits, the greater limit being OA and the
less limit AB. In Figure 3 if a given sine say BZ is subtracted from the
radius AZ the less limit AB remains. Also, since the marks on 0Z are in

proportion OA/AB = AZ/BZ, then OA = AB x AZ/BZ. The greater limit OA is

the product of the radius and the lesser limit divided by the given sine BZ,
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Taking the first term of the first table as AZ or 10,000,000 the first
sine BZ = 9,999,999, then the lesser limit AB = AZ - BZ = 1.,0000000. The
gregter limit OA = lO}CO0,000 b4 1/9;999,999 or 1.0000000L0. Therefore the
first proportional 9,999,999 in table 1 has CA and AB as its limits., Tak-
ing the average of the limits gives 1.,00000005 as the logarithms of the
first proportionals. The logarithm of the second proportional is twice
that of the first, and the logarithm of the third is three times that of
the first, Continuing in this menner all logarithms of the sines in the
first tables are formed. This may be shown to be true by taking the familiar
progressions

10 100 1000 10000 100000 . .

1 2 3 b 5 e e ey
from which it follows that the logarithm of the fourth term i1s four times
the logarithm of the first term. Here recall the familiar logarithms to
base 10.

The reader might conclude from the way the logarithms of the first table
were formed that if the logarithm of the first sine was Iknown in the second
table the other logarithms would immediately be known. This is exactly the
cage; by finding the logarithm of the first sine in the second table it is
easy to see the others would be found Jjust as those .of the first table.

Napier found the logarithm of the second sine by using the following
rule: (1) The difference of the logarithms of fwo sines lies between two
limits; the greater limit being to radius as the difference of the sines to
the lesser sine, and the lesser limit beling to radius as the difference of
the sines to the greater sine.2 The rule is proved by referring to the

figure below.

(o)
“David Eugene Smith, A Source Book in Mathematics, (Hlew York, 1929) p. 154
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Al B! X' Yo

Figure k4

The lengths marked off‘on 0Z are to be considered in geometric pro-
gression, and the lengths marked off on A'i are in arithmetic progression.
As has already been shown, the logarithm A'B' of the sine BZ lies between
the two limits OA and AB. The logarithms of sines X7 and YZ are yespec-
tively A'X' and A'Y', Now A" ¥' - A'X'" = X'Y', but X'Y" = A'B' since these
lengths are in arithmetic progression, then the difference of the logarithms
of the two sines lles between the two limits OA and AB, or in mathematical
terms OA > A'Y!' - A'X' 2 AB. Since the ratios of any two corresponding
terms are equel in a geometric progression, then OA/AZ = XY /YZ and AB/AZ =
XY/KZ, which shows the relationship stated in the rule. |

The rule Just shown to be true will suffice to find the logarithm of
any sine near or between those of the Tirst table. Consider for example
the sine 9,999,900 in the second table, which is near the last sine
9,999,900.000&950 in table one. By rule (1) the difference of the logarithms
of these two sines lies between two limits, hence if these two limits are
found the logarithm of the sine in the second table may be found sinee the
logarithm of the other sine is known. Putting the information down in
terms of symbols may be easier to follow than a description of the proce-
dure, therefore the procedure is outlined below.

Iet the two given sines be
Sl = 9,999,900.0004950 and 52 = 9,999,500.0000000

= 100.0000050 end log S. = ?

log & 5

1
The problem is to find the logarithm of 82. Iet A be the greater limit

and B the legser 1limit. The radius R = 10,000,000. Now rule (I) states
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]

(5) A/R
(6) B/R

(8, - 8,) /5,

(sl- 32) /sl.

i

In formulas (5) and (6) all gquantities are known except A and B. Substi-
tution of the known values in (5) and (6) gives A = 0.000L950 and B =
0.0004950., These limits are the same out to the seventh place, due to
the small difference in the two sines, therefore the difference In the
logarithus of the two sines may be taken as 0.0004950. Then adding this
difference to the logarithm of S. gives 100.000500 for the logarithm of

lC}

the sine in the second table. The logarithms of all the sines in the sec-
ond table may anow be found. If the limits differ in say the fourth or
fifth decimal place then the average of the two limits should be taken as
the difference between the logarithm of the two sianes,

Consider now the sine 9,995,000,0000 in the first column of the third
table. If the logarithm of this sine is found in the manner that the
logarithm of the sine in the second table was found an error will be intro-
duced due to the greater difference in the two sines used 1n this case,
so a fourth proportional is sought such that the ratlo of it to radius is
equal To the ratio of the lesser sine to the greater sine, If X is the
foﬁrth proportional, R the radius, Sl the lesser sine and 32 the greater
sine, then X/R = Sl/SE'- Now since the logarithm of similarly proportioned
sines are eguidifferent; which means the difference of the logarithms of
X and R 1is equalvto the difference of the logarithms of Sl and 82, and
since the logarithm of R is zero, then the difference of log X and log R
is log X. Therefore if the logarithm of X is found then adding it to log

S,

o gives log S

1 The limits of the logarithm of X are found by rule (I),

and addlng the average of these limits to the logarithm of S2 gives the

logarithm of S5 All of the other logarithms of the sines in the first

1
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column are found Just as those of table one aﬁd two were determined after
the logarithm of the Tirst sine was found.

The logarithm of the first sine of the second column of the third
table is found by the sawme procedure used to find the logarithm of the
first sine in the first column. The first sines in all the other columns
are Tound in the same manner.

It is interesting to note the first and second tables were essential
in forming the third table. After all the logarithms of the sines in the
third table are determined it is used for the construction of the final
logarithmic table.

All the logarithms of sines embraced within the third table may be
found by the same procedufe used to find the first sines in each column.
The logarithms of all the sines embraced within the second table are found
simply by subtracting the given sine from radius. It should be notéd here
that the logarithms in the third table are only given to the first decimal
place and those in the final table are given to the nearest whole number,

The logarithms of sines less than the last sine in the third table
are found by establishing a relationship between sines in a certain ratio
and the differences of theilr logarithms. It can be shown for example that

11 sines in the ratio of two to one have 6,931,469.22 for the difference

Q

of their logarithms, and all sines in the ratio ten to one have 25,025,842.54
as the difference of their logarithms., Then 1t follows that all sines whose
ratios are multiples of two to one or ten to one would have the same multiple
ti@es the difference of the logarithms of the sines in the ratio two ©to one
and ten to one. Tor example, 1f two sines are in the ratio four to one the
difference of thelr logaritﬁms would be twice the difference of the logarithms

of two sines in the ratio two to one. Using this relationship the following

table was formed by Napier.



Short Table -

Given Ratilo: Corresponding Given Ratic . Corresponding
of Sines : Difference of of Sines Difference of
: logarithns Logarithms

2to 1l 6931469 .22 8000 to 1 80871934 .68

b tol 13862938, b0 10000 to 1 92103%369.36
&to 1l 20794L07.66 20000 to 1 99034838.58

10 to 1 23025842, 34 L0000 to 1 1059663%07.80
20 to 1 29957311.56 £0000 to 1 112897777.02
40 to 1 368868780.78 100000 to 1 115129211.70
€0 to 1 : 43800250,00 200000 to 1 122060680.92
100 to 1 46051684 .68 400000 to 1 128992150,1k
200 to 1 5298315%.90 800000 to 1 135923619.36
Loo to 1 5991462% .12 1000000 to 1 138155054, 0L
€00 to 1 66846092, 34 2000000 to 1 145086523.26
1000 to L 69077527 .02 4000000 to 1 15201799248
2000 to 1 : 76008996 .24 8000000 to 1 158049L61.70
LOOO to 1 82ohokes 46 10000000 to 1 161180896.38

As an example of how the logarithm of a sine outside the limits of
the third table may be found take the sine 378064.00. Multiplying this
sine by 20 gives 7561280.00, a sine within the third table. Now determine
the logarithm of 7561280.00 by the procedure outlined for sines near or
between those of the third table. The logarithm will be 27954Lk .9, and
to this add 29957311.56 from the table above giving 32757556. as the
logarithm of %78064.0.

The .next problem 1n the construction of the logarithmic table is the
determine the particular sine that corresponds to a given angle. It should
be clear that the sine of 900 O' is 10 million and the sine of 500 0" is
5 million, and that the sines of 45%0" and 60°0" are easily found. Since
the purpose of this report is to show how logarithms may be found for num-
bers in geometric progression, no attempt will be made to show how the
sines for angles such as 650 MO‘, 250 251, etc; are determined It should

be clear to the reader that there will be 5400 terms in the final logarithmic
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table formed by Napier, since for each degree there are 60 minutes, and
Napier was computing the logarithms for sines of angles to the minute.
For each one of these 5400 different angles a particular sine would cor-
respond, and from the third table these sines could be found. The rules
which enabled Napiler to find the particular sines corresponding to the
angles are glven below.

As half radiﬁs is to the sine of half a given arc, so 1s the sine
of the complement of the half arc to the sine of the whole arc.

Double the logarithm of an arc of 45 degrees is the logarithm of
half radius.

The sum of the logarithms of half radius and any given arc is egual
to the sum of the logarithms of half the arc and the complement of the half
arc. Hence, the logarithm of the half arc may be found i1f the logarithms
of the other three be given.

When the logarithms of all arcs not less than 45 degrees are given
the logarithms of all less arcs are very easily obtained.

The above rules should suffice to give the reader an ildea of how
the angles for the sines were found., The rules may be proved using geome-
tric principles.

Below is given a portion of the third table with a few of the sines
and thelr logarithms. This should help as a means of checking some of the
computations that may be carried out by the reader who wants to examine some

of the rules and relations discussed in this chapter.



Sines

15000000, 0000
9995000 . 0000
2990002 . 5000

50074967

9950

9900k73.57E0

Sines

5900000, 0000
9895050 .0000
98901024750
9885157 4237
96021k, Eh51

9801466, 8h23

Sines
5048658, 8900
5046334, L605
5043811.29%2
5041289.3879
5028668, 7435

LgoBt609 . Lo3k

THIRD TABILE

lst Column

2nd Column

69th Column

Logarithas

.0
5001,2
10002.5
15005.7
20005.0

1000

no
A3

.0

Logarithms

100503,%
10550k .6
110505 . &
115507.
120508,

s}

)4

o

.

200528,2

Logaritihms

6834225,
6830227,
6E228,
6C49229.6
6554230, &

W= e



CHAPTER III

THE CONTRIBUTION OF BRIGGS AND OTHERS

Henry Briggs (1556 - 1631), Professor of Geometry at Oxford, received
the work of Napier with such enthusilasm that a meeting with Napier was
arranged. During this meeting both Napler and Briggs agreed that the
tables would be more useful if they were altered so that the logarithm
of 1 would be 0 and the logarithm of 10 would be an appropriate power of
10. Thus the Briggs or common system of logarithms of today was born,
and Brilggs devoted a considerable amount of time thereafter to the con-
struction of tables of logarithms based upon the new plan.

In 1624k Briggs published "Arithmetica Logarithmica', containing a
1lk-place table of common logarithms of the numbers from 1 to 20,000 and
from 90,000 to 100,000. The gap between 20,000 and 90,000 was later filled
in with help, by Adriaen Vlacq (1600 - 1666), a Dutch bookseller and pub-
ligher.

In the formation of a table of commen logarithms a great deal of
computation is necessary as 1s shown by the following discussion. To
calculate logarithms Briggs made use of the feollowing facts. Consider the

series bhelow:

]..l

e
W

i~
Ut

[0}
-3

. . arithmetic series (logs)

2 b 8 16 32 64128 . . . . geometric series (antilogs)
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Tow the arithmetic mean between any two numbers a and b is 1/2 (a + b),
and the geometric mean between two numbers A and B is‘JAB. As an
example, take a = 2 and b = 4 in the arithmetic series, then 1/2 (a + b) =
1/2 (2 + 4) = 3. DNote the arithmetic mean of any three consecutive numbers
in the arithmetic_series is the middle one, and the same 1s true for three
consecutive numbers in the geometric series., For example, consider A = 4
and B = 16 in the geometric series, then VAB = VI x 16 =6k = 8. These
properties hold true even 1f the difference between the terms-in the
arithmetic series is a fraction. .The method Briggs used then, is essen-
tially inserting arithmetic means in between geometric means to find the
logarithm of prime numbers, After the logarithms of the prime numbers are
known the other logarithms may be found from the relations of logarithms,
i.e.; log A/B = log A - log B, log AB = A + log B. The calculation of
the logarithm of 5 is given below as an example of the method Briggs

< used to form a table of logarithms.



20

HNumbers or antilogarithns Logarithms

A = 1.000000 g = 00000000
B = 10.000000 b= 1.0000000
C= WaB = 3.162277 ¢c=1/2 (a+b) = 0.5000000
D= 4BC = 5.62%413 d=1/2 (b +c) = 0.7500000
E= y0D = 4.216964 e=1/2 (c+d) = 0.6250000
F= JJE = 4.86967k f=1/2(d+e) = 0.6875000
G= WDF = D5.232991 g=1/2 (a+ ) = 0.7187500
He= »JFg = 5.048065 h=1/2 (f+g) = 0.7051250
I= %EH = 4.958069 i=1/2 (f +n) 0.6953125
J= WHI = 5.oq2865 J=1/2 (h + 1) 0.6992187
¢ = NI = L.980416 k=1/2 (i + 3) = 0.6972656
L= JJx = 4.991627 1=1/2 (5+k) = 0.6082k21
M= AJn = L4.9972Lk0 m=1/2 (5 +1) 0.698730L
= 4/Ju = 5.000052 n=1/2 (j+m) = 0.6089745
0= i = L4.9986hk7 0=1/2 (n+mn) = 0.6083525
P= 0 = 4.999350 p=1/2 (n+o0) = 0.6989135
Q= Wop = k.999701 q=1/2 (o +p) = 0.6080Lk0
R= +pg = 4.999876 r=1/2 (p + q) 0,6989592
§ = wg = L4.999963 s=1/2 (n+q) = 0.6989668
T = NS = 5.000008 t=1/2 (n+s) 0.6989707
U= 8T = 5.999984 u=1/2 (s +1t) = 0.6989687
Vo= WJTU = 14.999997 v=1/2 (t+u) 0.6989697
W= TV = 5.00000% w=1/2 (¢t +v) = 0.6989702
X= VW = 5.000000 x=1/2 (v +w) = 0.6989700

The logaerithm of & prime number such as 41 would have to be found
using 1 and 100, whose corresponding logarithms are O and 2,

Hapier's only rival for priority of invention of logarithms was
Jobst Blirgi (1552 - 1952), a Swiss instrument maker. Blrgl conceilved
and constructed a table of logarithms independently of Napier, but did
not publish the results until 1620, six years after Napiler announced the
discovery of logarithums. The work of Blirgi was definitely based on the
laws of exponents, as logarithms are now regarded to be. It is generally
believed that Napier conceived the idea of logarithms before Blrgi.

The calculations in astronomy and navigation were not solely respon-
gible for man seeking methods to shoxrten such calculations. The flourish-
ing trade between nations during the 16th and 1T7th centuries called for

guicker ways of calculating interest, and led to the construction of
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tables for such calculations. The calculation of compound interest is a
practical application of the geometric series. If = 1s the rate of
interest per dollar invested, then in one year $1.00 invested grows to

(1 + r), and in two years grows to $(1 + r)g, ete. TFor instance if r =

%

then in one year $l.OO grows to $(l.05); at the end of two years it grows
¢ =12 . ‘
to $(1.05)7 = $1.1025,
For interest compounded once a year the following series are given:

The amount is

z I
Q+r)° @)t Q+r)® @)’ @+r) (@)
at the end of
0 1 2 % X 5 years.

The years making up the arithmetic series correspond to the exponents,
or logarithms as they are now known to be, in the geometric series., If
g table of logarithms was made Trom the two series above what would the
base be? To make_the above series more meaningful compare them with the

arithmetic and geometric series below.

Simon Stevin (1548 - 1620) of Bruges in Belgium prepared tables of
compound interest for calculations in commercial arithmetic. These
tables were actually logarithmic tables, but were not recognized as such
at the time,

The series for the limiting value of e, the base of the natural
logarithms, arises 1n the construction of compound interest tables. This
serles can be obtained from the expansion of (1 + l/n)n, and has a limit-

ing value of e = 2,718281828459......... To see how this value for e is

5%,
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$1.00 has grown after n years at a rate r = 1/n

Number of Years Rate of Interest Amount
7 i/n
20 5 % 42.65%
25 Lk 9% 2.666
4o 2 1/2 Yo 2.685
50 2 Jo 2.682
100 1 % 2.705

If the table is continued for larger and larger values of n the amount

1

oseyr and closer to the value e. A more detalled discussion of the

o)
-
w
[@]
—

base e will be made in the next chapter.



CHAPIER IV

BASES OF LOGARITHMS AND SERIES

COMPUTATION OF IOGARITHMS

The tremendous labor required for the construction of logarithmic
tables naturally led mathematicians to search for quicker and easiler
methods of calculating logarithms of numbers. This search gave new
impetus to the study of infinite series. As was shown in the preceding
chapter, the base ¢ of the Nepierian or natural logarithms 1s related
ﬁo infinite series. In this chapter e is shown to be a suitable base
for a system of logarithms, and also gives a convenient method of calcu-

lating logarithms,
The Base e

I . . n , .
To find e expand the expression (1 + 1/n)" by the binomial formula

giving
; n{n - 1) n(n-1) (n-2)
(1) @+ 1/n) =1 +n/a+ —gemmnn-m- S et T
n x 2! n’ x 3.
n - 2
=2+ (1-1/m) 1/2t + (L= ~g====) 130+ .« . .,
n

Now as 1 takes on larger and larger values (1) approaches a limiting

value, since for large values of n the value of the expressions (1 - l/n)
=z 2 — . | . 3

and (L - (3n - 2) /n ) are very close to 1. These expressions may be made

as near 1 in value as deslired by letting n assume a sufficlently large

no
N
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value. Therefore series (1) may be made to approach a limiting value by

letting n approach an infinitely large valve. Then the limit of (1) is
(2) (L+1/a) =@+ 1/ +1/30 + 1M+ . . . . . . ).
The series (2) has a limiting value between 2.7 and 2.8. It is

denoted by the letter e, The value of e may be calculated as accurately

as desired by taking a sufficient number of terms in the series. The

(%]

number e serves as the base of the natural system of logarithms. It i
a conveniént vase to use, since a logarithmic serles may be developed for
computiﬁg logarithms of numbers to base e. The base e logarithms also
simplifies the differentiation of the logarithmic function in calculus.

An eapproximate value of e may be computed from the series (2) as follows:

1+ = 2.000000000
1 : 2t = ,500000000
130 = (L22!)s3 = 166666667
1L+ht = (L=z3):h = 041666667
1:50 = (Lsht)s5 = .0083%3333
1+6f = (1L:5'):6 = ,001L388889
1278 = (L6 )7 = .000198413
1+ 80 0= (1s+70):8 = 000024802
129! = (18 ):9 = ,000002756
1100 = (1+9! )10 = ,000000276
111 = (1 210!') 11 = .000000025

2.7182818 ‘o seven places.

H
i

The Base of Napier's Logarithms

Although the base e logarithms are called Neplerian or natural
logarithms the base ¢ 1s not the base of the logarithms first formed
by Napier. Note the logarithms of Napler increased as the numbers de-

creased, which is Just opposite to the natural logarithms. Napier
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undoubtedly did not even think of a base in developing logarithms, and
it was not until Buler pointed out. the connectlon between logarithms,
bases, and exponents that logarithmic bases were considered.

To see the relation that exists between the base of Napier's
logarithms and the base e of the natursl iogarithms consider the figure

below.

A C B

let AB = a = 107

, x = DF, and y = BC, then AC = a - v. DRemember Napier
considered AB as the whole radius, and a point moving along AB from A

toward B with velocity decreasing geowmetrically. Using a bit of calcu~

lus; 1f the velocity of the point C 1s defined as
(1) d(a - v)

then separating the variables in (1) and integrating gives

d(a - y) :
e el N L0
or
(2) -nat. log y = t + K, where K 1s the constant of integration.

Now when t = O, then y = AB = a and

(3) X = -nat. log a

NMow since in Napler's concept of logarithms the point I moves with
a constant velocity equal to the initial velocity of point C when t = O,

that 1s, the velocity y = a, then the velocity of the point F is given by

(&) 1x

_—= g
dt



From (4) dx = a 4dt, which upon integrating each side gives
(5)

but by definition x = Nap. log v, hence by substitution Nap. log y = x = at,

[V
Py
i

= at,

or

10! (- nat. log vy - X),

L

(6) Nap. log ¥

which becomes upon substituting the value of K from (3)
(7) Nap. log v = 107 nat. log lO(/y.

Formula (7) gives the relation between the two systems.

The Exponential Series

The exponential series is the development in ascending powers of x
the xth power of a certain constant base, The series is derived by using
the binomial formula as follows:

, . \ nx .
Bxpanding by the binomial formula the expression (1 + l/n) gives
1)

: - nx nx{nx - 1) nx(nx -
(1) (@ +2/m)™ = 14 o+ mmmgmmeee SR +
' n n x 2% n” x 3!

o . Bnx - 23 '
=1+ x+ (x° - x/n) l/21+(:_<:)—‘ --------- ) L/3L ...

: oo . 2
In (1) as n approaches an infinitely large value the expression (x~ - x/n)
. I ] ; 3 (%ny® 2
approaches x_ as a limit, and the expression (x” -~ (3ax” - 2x) /n") approaches

xj as a limit. Hence for n approaching infinitely large values the limit-

ing value of the series in (l) becomes

(2) (L+1/m)™ =@ +x+ x2/21 FH B i)

mil

. . - man e
Wow since from the rule of exponents (x )= x , then 1t follows that

(3) (1 +1/0)™)" = (1 +21/m),

and substitution in (2) gives
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(5) (L + 1)) = (Lt x+ 22/20 + /30 & s )

. n
But as n approaches a large value the expression (L + l/n) approaches

(L+1+1/20 +1/38 + ......) or e, and substitution in (4) gives
(5) e =1+ x XE/QI K B e,

X . . . .
In (5) ¢” is called the exponential function of x, and the series
. - b . . .
developed from e 1s called the exponential series, To derive a formula
k

applicable to any posltive conatant base a, let logea = k, then a = ¢

3 « 5 o % herefor "
and x _ kx e(looea)/. Therefore by (5)
(6) o = 1 + (logea)x F o me—— F o S —— e

The convergency of the serles derived in this chapter will not be discussed
here, since the purpose 1s simply to show the serles involved 1n computing
logarithms and how they are derived. Formula (6) is called the exponential

formula and will be used to derive the logarithmic series.

The Iogarithmic Series

The logarithmic series is The expansion of logc(l + %) in ascending
e v
powers of x. It 1s derived as follows: By the exponential formula, when

(1 + x) is the base and y the exponent,

22
(Tog (1 + x))%y

(1) (L+x) =1+ (loge (L4 %))y + —emZemmmceemeem F oeiennnn
21
By the binomial formula,
y y(y - 1) ¥y -1) (y-2) ,
(2) (L 4+ %) =1+ ¥ + =mmmeme= HE F omemmmm e e S S
ot 51

Now equating the second members of (1) and (2) gives

(108, (1 + %)%
(%) 1+ (loge (L + %))7 + =meZmcmmem e Foerenennn
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5 =
y(v - 1x= vy - 1) (y - 2)x°
=l+yX+ —————————— b e +-c..¢...
: 5!
b4 j2 xdy "5y5 - 5x5v2 + 2x)y
=1 4 Uy Tt ommmmmmemm—- A e e &
21 3! A .
_1v3 2x5 Xy —7x9y %’ yB
=1 4+ XA e b ommmet Laieeieee Vot e I + .
21! 58 21 38 !

Now equation (3) is an identical equation since the two series have the
same sum and both are sbsolutely convergent for all finite rational values
of y, x being numerically less than 1. Therefore, equating the coefficients

of y Iln the two series gives

..:]_Ka (-—]_) (-.2)}(5 (-—l) ("'2) (“B)XLI_
()_;ﬂ) log (l + X) = K mmmm b meemmeeae Fommmm e T
e o1 300 e

Simplifying the second member gives

o)

= )
(5) Log, (L+x)=x-x"/2+x"/3 - x4/h F oeieteceneans

This series is called the logarithmic series, and is absolutely
convergent for x € 1, and conditionally convergent for x = 1.
To Compute Natural Logarithms

Since the logarithmic series
N ":) 3 ) - .
(1) log (1L +x)=x-x"/2+%x"/35 - x4/4 P

is not convergent for x > 1, it cannot be used to find the natural logarithm
of any positive number, however great; and for ease in computation 1t is
desirable that the series obtained be rapidly convergent.

Substituting -x for x in (1) gives

, ) i \ :
(2) log (1 - x) = -x - xa/E - x7/3 - xF/M e tacesrsseaaens

Subtracting (2) from (1)
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(%) loge(l + x) - loge(l -x) = 2(x + XB/B + x5/5 O I

or _
1+ x 3

(&) log ==~~~ = 2(x + x7 /3 + x5/5 e U PP |
1l - x

which is true when x €.1. Iet n De a positive number when natural
logarithm is known, and let m be a greater positive number whose natural
logarithn is to be computed. Then, since (m - n) / (m + n) is positive
and less than 1, this value may be substituted for x in (4). If x =

(m - n) / (n+n)

o R o b o e = == = - ; and in (4) since

1+ x m
log ==w==- = log - = log m - log n, then
e e
1l - x n
(5) m - n 1 m-n 3 1 m - n 5
7 log m = log n = 2(mmmmm SRR (— ) R TR (T ) A S
m+n 3 m+n 5 m-+n

This is the logarithmic formuwla for m > n > O.

Since logel = 0, by substituting 1 for n and 2 for m, logeE may be
found; then by substituting 2 for n and 3 for m logGB may be found; etc.
Hence, a table of logarithms may be constructed by substituting for n in
(5) the successive values 1, 2, 3, L, ,.... and for m values greater by

one in each instance.

g

Substituting n + 1 for m in (5) gives the more convenient formula
(6) loge(n + 1) = log n = 2] G et cmmmz ot viae ), ‘

which 1s true for all positive wvalues of n. By taking a value of n and
substituting in (6) it can be seen that (6) converges very rapidly. To

see how formula (6) is used consider the following xample:
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Find the natural logarithm of 2 to the nearest sixth decimal place.
Solution. ~ - Bubstituting 1 for n and O for logel in the formula

for loge(m + 1) gives

log, 2 =0+ 2(1/5+ 1/3°57 + 1/5°5 + 1/T30 4 vevrinaninnennl)
=2/3 4 2/5-39 + 2/3-59 + :/7-57 P

Since '2/55 =2/3+ 9, 2/55 = 7:3/5j -~ 9, 2/5( = 2/55 =9, etc.,

and since these quotients are divided by L, 3, 5, 7, . . . respectively,

the computation may be neatly arranged as follows:
3[2.00000000
ol .666666067 &+ 1 = 0.66666667
of .OTLOTHOT + 3 = ,02L69136
9] 00823045 + 5 = 00164609
o .000914LhG + 7 = 00013064
91 00010161 + 9 = ,00001129
9] 00001129 + 11 = ,00000103
L00000125 4+ 13 = ,00000010

1t
O
(6]
[0}
no
it

adding gives 1 0.69%14718 = 0.693147 to six places.

Computing Base Ten lLogarithus

The base e arises naturally in the process of finding a formula for
computing logarithms. Natural logarithms are more convenlent to use in
theoretical work, but in numerical calculations common ox Briggs logarithms
are the most convenient to use because the base of the common logarithms is
the same as the base of the decimal system of notation. Hence, the next
thms can be changed to common logarithms,

problen is the see how natural logari

Q1=

H

Iet H be the number whose logarithm to base 10 is sought. From
mula (6) of the previous section logeN and 1 éelO may be found. Suppose

y N =19, or N = ep, and that
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Now let r be the multiplier, as yet unknown, by which logeN is multiplied

to produce loglON; that is, let

(3) log. N = r log N = rp, then
10 e P

by (3) 0 = 10?7, and vy (2)

i

(k) 1= (eD)P = 4P

by (4) and (1) e¥P L

e from which

]

(5) arp = p, and r = 1/g, a constant.

Now by (2) g = log 10 and upon substituting this in (5)

(6) r o= l/logelO.

By formula (6) of the previous section it is found that log 10 =
2.30258509. . ., from which r = .43420LLE, | . Then the loéarithm of
any number to base 10 may be found by formula (3) of this section, by
using = equal to the value given above. In general formula (6) of this
section holds for any base a so that r = l/logea. A discussion of tﬁe
relation of base e to other bases can usually be found in college algebra

and trigonometry textbooks.



CHAPTER V
CONCIUSION

The problem involved in this report was simply to study the invention
of logarithms; being principally concerned with the construction of the
logarithmic tables, and writing the results in a form suitable for study
by a high school mathematics teacher or student.

In summary the main points considered in this report were discussions
concerned with John Napier's invention of logarithms, the work of Briggs
and others on the ilmprovement of logarithmic tables, and a rather detailed
account of the development of series for computing logarithms., It is dif-
ficult to find material for any further study of the historical account
of the Invention of logarithus, but a further study of series may be pur-
sued by those interested, and much information on this subject may be
found.

There is 1ittle doubt that John Napier was the true inventor of log-
arithmns and o doubt at all that his ideas were original. This study
should give one the feeling that great things may be accomplished by the
invention of such mathematical ldeas as logarithms. It would be lmpossible
to estimate the worth of logarithms to mankind. The slide rules carried
by the many engineering and science students are good examples of the

value of Napier's invention.
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Although many wonder about the wvalue of some mathematics taught Jjust
becausge immediate applications may not come to mind, it should always be
kept in mind that mathematlics has thrived because of its wany applications.
A study of an invention in the past should give one a feeling that such
efforts on the part of mathematicians are not in vain; and even if some
of the mathematics being stressed now doesn't make too much sense %o

those who are not well versed in tThe subJect it should not be condemmed

in view of the great value past mathematical 1ldeas have been to man.
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