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CHAPTER I 

INTRODUCTION 

The purpose of this report is to describe some of the sim

pler applications of the law of universal gravitation to the 

field of astronomy, and to discuss some of the tests of the 

theory of relativity that were made possible through astronom

ical observations. Since the material presented is intended 

for use by the high school teacher in stimulating student in

terest in physics and astronomy, there is no attempt to use 

rigorous mathematical methods that are out of reach of the high 

school student-except in the case of the derivation of Kepler's 

first law. However, the gifted student may be able to benefit 

from the mathematical treatment given in this case. For the 

most part, the material is treated in a descriptive manner rather 

than quantitatively. 

Sir Isaac Newton (1642-1727) published his Philosophiae 

Naturalis Principia Mathematica, commonly known as Newton's 

Principia, at London in 1687. This work has been acknowledged 

as probably the greatest single book in the history of science, 

the appearance of which probably marks the greatest forward step 

ever made in physical science. A portion of the Principia is 

devoted to the derivation of Newton's law of universal gravita-
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tion which, as stated by Duncan, is as follows: 

Every particle of matter in the universe attracts every other 
particle with a force that varies invers~ly as the square of 
the distance between them and directly as the product of their 
masses.I 

To express the law by means of symbols let m1 and m2 be the 

masses of any two particles, d the distance between them, F 

2 the force of their attraction, and Ga constant; thus: 

G mlm2 • 
F = 2 

d 

The law of gravitation has been the basis of celestial me-

' 2 

chanics, the study of the motion of planets and stars under grav-

ity. This study was founded by Newton with his calculations of 

the motions of the bodies belonging to the solar system. Celes-

tial mechanics has not been essentially changed since the time 

of Newton, but the applications of his principles have been ex-

panded to.include bodies beyond the solar system. Several of 

the topics covered in this report were discussed thoroughly by 

Newton in his Principia. The Earth-Moon test of the law of grav-

itation, the derivation of Kepler's laws, and the theories per-

taining to the tides and the equatorial bulge of planets were 

done orignally by Newton. 

The theory of relativity, regarded by many scientists as the 

greatest advance in physical theory since Newton, was developed 

1 John Charles Duncan, Astronomy (5~ ed., New York, 1955), 
P• 234. 

2The constant G is called the gravitational constant. The 
value of G is 6.670 X 10-ll newtons-m2 kg-2. 



principally by Albert Einstein (1879-1955). Einstein has shown 

that the Newtonian laws are applicable only at comparatively 

small velocities (small, that is, compared with the velocity of 

light). The following doublet by Pope with the addition of a 

pendant by J.C. Squire is illustrative of the relation between 

Newton's work and Einstein's. 

Nature and nature's law lay hid in night 
God said, Let Newton be, and all was light 

-Pope3 

It did not last. 
Let Einstein be! 

The devi 1 howling: Ho! 
restored the status quo. 

- Squire3 

The success of Newtonian mechanics is a result of the fact 

that most of the velocities of the heavenly bodies are small com-

pared with the velocity of light. However, there are a few as-

tronomical phenomena that -can be used to verify the predictions 

of relativity theory. Three of these verifications are described 

in the latter part of the report. 

3Quoted in Cecilia Payne-Gaposchkin, Introduction~ Astron
omy, (New York, 1954), p. 168. 
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CHAPTER II 

THE EARTH-MOON TEST OF THE LAW OF GRAVITATION 

According to the well-known story, Sir Isaac Newton was 

sitting in his garden, reflecting upon the force that holds 

the Moon and planets in their orbits, when an apple fell from 

a nearby tree. It then occurred to him that the fall of the 

apple and the divergence of the motions of the Moon and planets 

from straight lines might all be produced by the same force. 

He became convinced that this was true and was eventually led 

to his law of universal gravitation. As a means of testing the 

law he compared the fall of the apple with the fall, or in other 

words deviation from straight line motion, of the Moon. This 

may be done as follows. 

We will consider the fall of the Moon as though it begins 

its motion from a position of rest and falls toward the Earth. 

In a subsequent paragraph this imagined motion is correlated 

with the actual motion of the Moon. Let Mand r represent the 

mass and radius of the Earth, m the mass of the Moon, R the 

distance between the centers of the Earth and the Moon, a the 

acceleration of the Moon in its _fall toward the Earth, and uf 

and~ the mass and acceleration of the falling apple. Then, 

from Newton's second law of motion and the law of gravitation, 

4 



ma 

G Mm' 
= 2 

r 

and 

• 

Dividing out the masses common to both sides of the equations 

gives 

and 

• 

From the above equations we see that the acceleration of a 

falling body is independent of its mass. Dividing one of the 

equations by the other produces 

2 
r a= a' -
R2 

, or 

• 

The value of~ has been determined by experiment to be 

approximately 32.2 feet per second per second. The distance 

between the Earth and the Moon is about 60 Earth-radii, so that 

R = 60r. Putting these values into the last equation, we have 

a= 32.2/3600 or a= 0.00894 feet per second per second. In 

the first second of the Moon's fall its velocity would change 

from zero to 0.00894 feet per second, and its average velocity 

during the first second would be 0.00894/2 or 0.00447 feet per 

second. Hence, the distance that the Moon would fall in one 

second is approximately 0.00447 feet. 

To complete the test we must now consider the observed 

5 
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Figure 1. Fall of the Moon 
Toward the Earth.I 

deviation of the Moon's path from the straight line that it would 

follow if it were not attracted by the Earth. In the course of 

one second the Moon moves through such a small arc that its 

deviation from a straight line may be regarded as a fall toward 

the Earth. In Figure 1 let the circle, of radius R, represent 

the orbit of the Moon, and suppose that the Moon moves from A 

to Bin one second. The diameter AP is drawn through the Earth 

at the center C. The line BN is drawn at right angles to AP. 

The fall of the Moon toward the Earth in one second is the dis-

tance BM or its equivalent AN. The arc AB is so short that it 

may be taken as a straight line, being one side of a right tri-

angle whose hypotenuse is AP. Since the triangles ABP and ANB 

are similar, 

1 

,!!:! = !!! , or 
AB AP 

Duncan, p. 235. 
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iill2 
AN= AP • 

The arc AB, the distance traveled along the orbit in one second, 

is 211R/T, where Tis the number of seconds required for the Moon 

to complete one trip around its orbit; and, as AP= 2R, 

AN • 

From astronomical measurements the value of R is approximately 

9 6 · 
l.26Xl0 feet, and Tis about 2.36Xl0 seconds. Using these 

values in the above equation we have AN approximately equal to 

0.00446 feet, which is in good agreement with the value cal-

culated from the law of gravitation. After making similar 

calculations Newton stated in his Principia, "And therefore 

the force by which the moon is retained in its orbit is that 

very same force which we commonly call gravity112 • 

Figure 2, found on the following page, is based on a 

drawing by Thiel which summarizes very completely the content 

of this chapter. Notice in the drawing that the breadth of 

the arrows representing the acceleration of gravity increases 

as the Earth is approached. 

2Florian Cajori, Newton's Principia, a rev1s1on of Motte's 
translation of Sir Isaac Newton's Mathematical Principles .2,! 
Natural Philosophy (Berkeley, California, 1946), p. 408. 
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,. d 
ofJ)teo (b) C,..lc1.1. 1-zt.ted e11itt.f1'on 

(a.) Gr-a11if,d ii>V'I on -the H\oo111 
o.oo.lf5-;feet in one se,,11d 

from ir,er-tiAl p~th 
o. oo.t/ S .f eei ,' n one seco,.,J 

1',igure 2. Newton's Calculation of the Earth I s Gravi ta
tional Effect on the Moon.3 

3Rudolf Thiel, And There Was Light, translated by Richard 
and Clara Winston (New York, 1960), p. 180. 
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CHAPTER III 

D.ERIVATIONS OF KEPLE.R' S LAWS OF PLANETARY MOTION 

FROM THE LAW OF UNIVERSAL GRAVITATION 

As stated by Holton, Kepler's three laws of planetary motion 

are as follows: 

(1) Law of Elliptical Paths-"Planets move in elliptical 

paths, with the Sun at one focus of the ellipse. 111 

(2) Law of Equal Areas-"During a given time interval a line 

from the planet to the Sun sweeps out an equal area anywhere a-

2 long its elliptical path." 

(3) Harmonic Law-"lf T be the sidereal period3 of any plan-

et, and R be the mean radius of the orbit of that planet, then 

T2 = K R3 , 

4 where K is a constant having the same value for all planets." 

These three laws are of strictly empirical nature. Tycho 

Brahe (1546-1601), the Great Danish astronomer, spent nearly a 

1Gerald Holton, Introduction to Conce~ts and Theories in 
Physical Science (Reading, Mass., 1952), p. 160:-

2Ibid., P• 155. 

3The sidereal period of a planet is the time it takes the 
planet to make a circuit of the sky from one star back to the same 
star. 

4 Holton, p. 156-157. 
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10 

lifetime patiently observing and recording planetary motion with 

utmost precision. The accuracy of his measurements is indeed re-

markable when it is noted that the telescope had not been invented 

in his time. After the death of Tycho, his German assistant, 

Johannes Kepler (1571-1630), continued the observations and re-

duction of the voluminous data. After years of work with Tycho's 

data, Kepler arrived at his famous three laws. Years later, New-

ton, in his Principia, showed that Kepler's laws follow from the 

law of universal gravitation. Later in this chapter an example 

of Newton's geometrical methods is given by the derivation of the 

law of areas. Otherwise, more familiar analytical methods are 

used. 

The First Law-Law of Elliptical Paths 

The purpose of this section is to show that the orbits of 

planets are ellipses with the Sun at one focus. In order to ar-

rive at this result it is necessary to make use of the principles 

of Newtonian mechanics and the calculus. In the discussion that 

follows, capital letters represent vector quantities and lower 

case letters represent absolute magnitudes of quantities. Specif-

ically, the following symbols represent the quantities indicated. 

R - the radius vector (vector drawn from the origin of the 

coordinate system to the planet in question); 

r - the length of the radius vector; 

0 - the angle between the radius vector and a reference line; 

U - the unit vector in the direction of the positive x-axis 
X 

in retangular coordinates; 
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U - the unit vector in the direction of the positive y-axis 
y 

in rectangular coordinates; 

U - the unit vector in the direction of the radius vector; 
r 

U - the unit vector perpendicular to the radius vector and e 

in the direction of increasing 9. 

It is necessary to be able to write the equations of motion 

of a body moving under the influence of a force. To do this the 

components of the acceleration of the body must be obtained. In 

5 the case of a central force, where the gravitational force is a 

special case, the motion is restricted to a plane. Hence, if we 

use a rectangular coordinate plane which contains the orbit of 

the planet, the vector expression for the acceleration A is giv-

en by 

2 2 
A = d X u + ~ u • 

dt2 X dt2 y 

To shorten the notation let symbols with a single dot imme-

diately above them represent the first derivatives with respect 

to time of the quantities represented by the symbols. Similarly, 

let symbols with two dots above them represent the second deriv-

atives with respect to time. Thus, 

dx • 
dt = X and d 2x •• 

dt2 
= X 

In this system of notation, 

A = x U + y U • 
X y 

5A central force is one which is always directed toward a 
particular point in space. 
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In order to facilitate the mathematical operations, the com-

ponents of the acceleration should be in terms of polar coordi-

nates. The transformation from rectangular to polar coordinates 

is achieved by the use of the equations 

x = r cos 9 and 

y = r sine. 

(1) 

(2) 

The components of the acceleration along the x and y axes 

are given by the second derivatives of Equations (1) and (2) re-

spectively. Hence, 

sin 9 (- r 9 ~ 2 re)+ cos e (- r 02 + r) 

i = sin 0 (- r ~2 + r) + cos 9 (r i + 2 r b) • 

., 
X = , and 

Vector addition of these two components gives the vector expres-

sion for the acceleration; 

xU + -;; u (r -
. 2 

9 U ) A= = r 0 )(cos e U + sin 
X y X y 

(r 0 + 2 
. a)(- sin 9 U 0 u ) + r + cos • X y 

To get the expression for A in the form desired, U and U 
X y 

must be replaced by U and U. From Figure 3, on the following r e 

page, it is seen that 

U = cos 0 U +sine U and 
r X y 

u =!= - sin 6 U + cos 0 U • 0 X y 

Therefore, in terms of the unit vectors u and u ' r 8 

(r ·2 (r e . 6) A= r e ) u + + 2 r u • r e 

From Newton's second law of motion, 

where mis the.mass of the body in question, Fis the force acting 



u. 

I 

I cose 1 
siri e 

Figure 3. Relation Between the Unit Vectors 
of Rectangular Coordinates and Those of 
Polar Coordinates. 

on the body, and A is the acceleration experienced by the body 

as a result of the force. Since the force being dealt with is a 

13 

central force there is no component of the force in the direction 

of U. Hence, the magnitude, f, of the force is given by 
e 

f = m (r - r 02) 'and 

m (r 9 + 2 r a)= 0. 

Considering Equation (4) notice that 

m (r 0 + 2 r 9) 

Multiplying by r gives 
2 . 

,!L(r e) = o. 
m dt 

!! ,!L(r2 0) = 0 • = r dt 

Integrating the above equation, we have 
2 • 

m r e =constant= j , 

where j is called the angular momentum. 

(3) 

(4) 

(5) 

In the expression for the law of universal gravitation let 



k = GMm. Then the force of Equation (3) is -k/r2 , where the 

negative sign is used to indicate that the force is directed 

oppositely to the direction of the radius vector drawn from the 

attracting center to the body in question. Making this sub-

stitution for the force f, Equation (3) becomes 

( •• · 2) k m r - r 0 = - 2 • 
r 

• 
0 may be eliminated from the above equation by the use of 

(5), 
. 

j/mr 
2 Equation where e = • 'l'hi s substitution gives 

. 2 k .. J r - 2 3 = - 2 • 
m r m r 

Equation (6) is in terms of r and t, where the equation 

desired is one in terms of r and e which would be the differ-

ential equation of the orbit in polar coordinates. To make 

this transition note that 

Then,. 

• dr • E£ _j_ 
r = d0 9 = d0 2 • 

m r 

.2 
,] 

2 4 m r 

(6) 

Making use of the last expression, Equation (6) assumes the form 

2 
k m r 

.2 
J 

(7) 

which is the differential equation of the orbit in the desired 

form. 

14 

To solve Equation (7) we make the substitution r = o/u. Then, 

dr 
d0 = - l .ill! 2 d0 , and 

u 



Employing these in Equation (7), the differential equation takes 

the form 

The solution of this equation is seen by inspection to be 

u = a cos (e + p) + k.:, 
J 

where a is an arbitrary constant to be determined by the bound

ary conditions and pis the phase angle. The equation for r is 

1 1 
r = - = • 

u (km/j 2) + a cos (e + p) 

The above expression is the equation of a conic section. 

The conic sections consist of the circle, ellipse, parabola·, and 

the hyperbola. The nature of the orbit for a particular body 

is dependent upon the total energy (potential energy plus 

kinetic ·energy) ,of the body. The planets possess energies in 

the proper range for their orbits to be of elliptical nature. 

The Second Law-Law of Equal Areas 

In deriving the law of equal areas, two methods are used. 

The first method is that undertaken by Newton in his Principia. 

The second method is done with use of the calculus. 

The first method is taken directly from a translation of 

the Principia which was written originally in Latin. As stated 

in the translation, the law of areas is as follows: "The areas 

which revolving bodies describe by radii drawn to an immovable 

15 



centre of force do lie in the same immovable planes, and are 

proportional to the times in which they are described. 116 Since 

the gravitational force is a central force it satisfies the 

statement of this proposition. The proof proceeds -as follows: 

For suppose the time to be divided into equal parts, and in 
the first part of that time let the body by its innate force 
describe the ri~ht line AB. In the second part of that time, 
the same would (by Law 1)7, if not hindered, proceed directly 

_.c ____ -........ , 
- /_, I 
./ I 

I 
I 

I 

'e 

I 

I 

Figure 4. Newton's Drawing Illustrating His Proof 
of the Law of Equal Areas. 

6c · · 40 . aJor1, P• • 

7Law I states: 
or of uniform motion 
change that state by 

"Every body continues in its state of rest, 
in a right line, unless it is compelled to 
forces impressed upon it." Ibid., p. 13. 

16 
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to c, along the line Be equal to AB; so that by the radii AS, BS, 
cS, drawn to the centre, the equal areas ASB, BSc, would be de~ 
scribed. But when the body is arrived at B, suppose that a cen
tripetal force acts at once with a great impulse, and, turning 
aside the body from the right line Be, compels it afterwards to 
continue its motion along the right line BC. Draw cC parallel 
to BS, meeting BC in C; and at the end of the second part of the 
time, the body (by Cor. I of the Laws)S.will be found inc, in· 
the same plane with the triangle ASB. Join SC, and, because SB 
and Cc are parallel, the triangle SBC will be equal to the tri
angle SBc, and therefore also to the triangle SAB. By the like 
argument, if the centripetal force acts successively in C, D, E, 
etc., and makes the body, in each single particle of time, to 
describe the right lines CD, DE, EF, etc., they will all lie in 
the same plane; and the triangle SCD will be equal to the tri
angle SBC, and SDE to SCD, and SEF to SDE. And therefore, in 
equal times, equal areas are described in one immovable plane: 
.and, by composition, any sums SADS, SAFS, of those areas, are to 
each other as the times in which they are described. Now let 
the number of those triangles be augmented, and their breadth 
diminished in infinitum.; and their ultimate perimeter ADF will be 
a curved line: and therefore the centripetal force, by which the 
body is continually drawn back from the tangent of this curve, 
will act continually; and any described areas SADS, SAFS, which 
are always proportional to the times of description, will, in 
this case also, be proportional to those times. Q.E.D."9 

Now the same result will be obtained through the use of 

the calculus. Consider Figure 5 in which a particle of mass m 

is traversing the trajectory SS' under the influence of a cen-

tral force the center of which is at O. The area of the infin-

itesimal triangle OBB' is 

1 1 2 
dA = 2 r r d0 = 2 r d9. 

Dividing by dt, an infinitesimal element of time, gives 

8 

dA 
dt = 

Corollary I of the Laws states: "A body, acted on by two 
forces simultaneously, will describe the diagonal of a parallel
ogram in the same time as it would describe the sides by those 
forces separately." Ibid., p. 14. 

9Ibid., pp. 40-41. 
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rde 

Figure 5. Illustration of the Relati~n Between 
the Infinitesimal Area Swept Out by the Radius 
Vector in Moving Through the Infinitesimal 
Angle de.IO 

It has been shown on page 13 that 

Hence, 

2 d0 
m r dt =constant= j • 

dA 1 . ___ .J. 
dt - 2 m • 

From the above equation we see that dA/dt is a constant 

depending upon the mass of the body in question. d.A/dt is 

called the areal velocity and is t.he rate at which area is 

swept out by the radius vector drawn from the force center to 

the body. 

10nobert A. Beeker, Introduction to Theoretical Mechanics 
(New York, 1954), p. 225. 

18 



The Third Law-Harmonic Law 

2 3 In this section we are to show that T =KR, where Tis 

the sidereal period of any planet, R is the mean radius of the 

orbit of that planet, and K is a constant having the same value 

for all planets. 

To arrive at this result let us simplify the conditions by 

assuming that the orbits are circular rather than elliptical. 

This is very nearly true for some of the planets. For circular 

orbits, the centripetal force is given by mv2/R, where mis the 

mass of the planet, vis its speed, and R is the radius of its 

orbit. The attracting center is assumed to be at rest. Then 

2 
!L?: 

R 

where Mis the mass of the attracting body. If Tis the time 

required for one complete revolution of the planet, that is the 

sidereal period, then 

2 TT R and V = T ' 
4 TI' 2 R2 Q.J! 

T2 
= R 

, or 

T2 4 re R3 
= GM • 

For the case of the planets of the solar system, Mis the mass 

of the Sun and 4rr2/GM is constant for all planets. Of course, 

the planets themselves exert forces upon each other, but for 

most purposes these forces are negligible when compared with the 

force exerted by the Sun. 

19 



CHAPTER IV 

DETERMINATION OF THE MASSES OF ASTRONOMICAL BODIES 

To determine the masses of astronomical bodies we make use 

of Kepler's harmonic law. In deriving the harmonic law in the 

preceeding section it was assumed that the attracting body was 

at rest. This is approximately true if the mass of the attrac-

ting body is very large as compared with the mass of the at-

tracted body. Actually, both bodies experience an acceleration 

toward the center of mass of the two. Hence, if the masses of 

the bodies are comparable the accelerations of both bodies must 

be considered. If we let a1 be the acceleration toward the 

center of mass of the body of mass m1 , and a 2 be the accelera

tion of the body of mass m2 , then the acceleration observed is 

al+ a2. From Newton's second law of motion and the law of 

gravitation we can write two equations, 

where R is the distance between the centers of the bodies, as-

suming that the bodies are spherical. Dividing out the masses 

common to both sides of the equations produces 

20 



al = 
G m2 and 

R2 

a2 = G m1 • 

R2 

Adding these two equations gives 

If we have orbital motion both bodies revolve about the 

center of mass. However, we can regard the motion as though one 

body is fixed and the other revolves about the fixed body. Let 

the observed acceleration, a1 + a 2 , be denoted by a. Let v 

represent the orbital speed of one body about the other. Then 

a= v 2/R, if the orbit is circular. This is very nearly true in 

some cases. Since v = 21TR/T, where Tis the period of the 

motion, we have that 

a= 
4 TI2 R 

T2 

• 

For planets having satellites, and double stars that are 

(8) 

sufficiently resolvable, the quantities Rand T can be measured, 

and the sum of the masses of the two bodies under consideration 

may be calculated. If one of the bodies is very large compared 

to the other, the mass of the large body may be taken as approx-

imately equal to the sum of the two masses. It is possible to 

do this for some of the planets of the solar system. In the 

consideration of double stars this approximation usually cannot 

be made. However, there is a method by which the ratio of the 

21 



22 

two masses may be obtained if the plane of the motion of the two 

bo·dies is parallel to the line of sight. Then there will be ob-

served a shift in the wavelengths of the light from each of the 

bodies toward either the red or violet depending upon whether 

the- body is moving toward or away from the observer in its mo-

tion about the center of mass. This wavelength shift is an ex-

ample of the Doppler-Fizeau principle, which may be stated as 

follows: 

"When the distance between an observer and a source of light is 
increasing, the lines of the spectrum lie farther to the red than 
their normal positions, and when the distance is diminishing they 
lie farther to the violet, the displacement being proportional to 
the relative velocity of recession or approach. 11 1 

Therefore, the magnitude of the shift in wavelength depends upon 

the component of velocity of the body that is directed toward or 

away from the observer. Hence, the magnitude of the shift reaches 

a maximum when the line between the centers of the bodies is per-

pendicular to the line of sight and reaches a minimum when the 

line of centers is parallel to the line of sight. 

In Figure 6 let c be the position of the center of mass of 

the system, M the mass of the more massive body, R the distance 

from the center of the mass M to c, m the mass of the less mas-

sive body, and r the distance from the center of the mass m to c. 

Then, from the law of moments, MR= mr. Since Mis greater than 

m, it follows that R is less than r. 

At the position where the line of centers is perpendicular 

to the line of sight the component of the velocity parallel to 

1 Duncan, p. 168. 
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Figure 6. Motion of Two Bodies About 
Their Common Center of Mass. 

the line of sight is the only component of the velocity, and 

the magnitude of the shifts in the wavelengths of the observed 

light is greater than at any other position. Let V represent 

the orbital speed of the mass M about the center of mass and 

v represent the orbital speed of the mass m about the center of 

mass. Then 

V= 2 TT R 
T 

and .2 1T r , 
V = T 

where Tis the period of the orbital motion of the bodies about 

the center of mass. Note that Tis the same for the motion of 

both bodies. Dividing one equation by the other gives 

Since 

V = R • 
V r 
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R = !!!. ' 
r M 

we have that 

V = !!!. • 
V M 

If we let K be the magnitude of the maximum wavelength shift of 

the light from mass Mand k be the magnitude of the maximum 

wavelength shift of the light from the mass m, then, since the 

magnitude of the shift is proportional to the velocity, 

(9) 

Figure 7 shows the relation between the wavelength shifts 

of the light from the two bodies for one period, where the be-

ginning of the period is taken to be when the line of centers 

is parallel to the line of sight. 
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;n 

11111,t1e-

/er1fth 

..... .._ 

star of smallei- m11.s.s 
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Figure 7. Relation Between the Wavelength Shifts of the 
Light From Two Revolving Bodies Over One Period. The 
figure is drawn for a mass ratio of 3 to 1. 
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If K/k is known, we have from Equation (9) that m = MK/k 

which may be used to replace min Equation (8) so that M may be 

25 

determined. In an analagous manner the mass m may be calculated. 

It is sometimes of interest to know the surface gravity of 

a planet. By the surface gravity of a planet is meant its at-

traction for bodies at its surface. It can be computed when 

the body's mass and radius are known. The surface gravity may 

be conveniently expressed as.the ratio of the acceleration of 

a body falling upon the planet and the acceleration due to 

gravity at the surface of the Earth. Let Mand r be the mass 

and radius of the Earth, M' and r' be the mass and radius of the 

planet, g and g' be the acceleration due to gravity at the sur-

face of the Earth and the planet respectively, and m be the mass 

of the falling body. From Newton's second law of motion and the 

law of gravitation we have 

Mm 
mg= G ~ and 

r 

G M' m m g t = ·2 • 
r' 

Dividing one equation by the other gives 

That is, the planet's surface gravity is numerically equal to its 

mass divided by the square of its radius if each of these quan-

tities is expressed in terms of the Earth's mass and radius as 

units. 



CHAPTER V 

ELEMENTARY THEORY OF TIDES 

The periodic rise and fall of the water of the ocean, known 

as tides, is caused by the action of the Moon and Sun. The 

Moon's tide-raising force at a point on the Earth's surface is 

the difference between the gravitational force exerted by the 

Moon at the distance of the Earth's center and the force exerted 

at the point. The Sun's tide-raising·force is of a similar na

ture. The body of the Earth, which is almost perfectly rigid, 

responds only ~lightly to this difference in force, but the flu

id oceans are more affected. Since the gravitational attraction 

between two bodies decreases as the distance between the bodies 

becomes greater, the Moon's or Sun's attraction is more than av

erage for that part of the ocean nearest the Moon or Sun and less 

than average for the most distant part. Though much more massive 

than the Moon, the Sun is so much more distant that its tide

raising force is only about one-third that of the Moon. 

For simplicity, set us consider for the purpose of the fol

lowing discussion only the action of the Moon in producing tides. 

To further simplify, let us suppose that the whole Earth is cov

ered by very deep water. In Figure 8, let the center of the 

Earth be at C and that of the Moon at M, and consider the action 

of the Moon on drops of water situated at A and B. Since the 

26 
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Figures. Tide-Raising Forces at Opposite Points. 1 

body of the Earth is almost perfectly rigid, it may be considered 

to move as a single body and the Moon's effect on it is the same 

as if its mass were concentrated at C. But the drops of water 

in the ocean are free to move relatively to the body of the Earth. 

Let CK represent the acceleration produced by the Moon's attrac-

tion in the solid Earth, and let AS and BT be the accelerations 

produced in A and B. Since A is nearer the Moon than is C, AS 

will be longer than CK. Similarly, since Bis farther from the 

Moon than is C, BT will be shorter than CK. Now resolve AS and 

BT into component vectors so that the components AL of AS and BN 

of BT have the same length·as CK and also the same direction as 

CK •. Then the differences in acceleration of the drops of water 

and the solid Earth are represented by .AR and BQ. It is impor-

tant to note that, since the diagonal of the lower parallelogram 

is shorter than its horizontal side, the other side is here di-

1 Duncan, p. 253. 



rected toward the left; that is, the tide-raising force is di

rected away from the Moon. The tide-raising acceleration in 

different parts of the Earth's circumference is shown by the 

arrows in Figure 9, by which it is seen that the tidal forces 
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of the Moon tend to heap the water up in two places on the Earth's 

surface situated at opposite ends of a diameter~one directly un

der the Moon and the other on the opposite side of the Earth. 

Figure 9. The Two Tidal Bulges. 2 

Now let us consider the combined effects of the Moon and 

Sun in producing tides. The two sets of tides may be considered 

as operating independently so that the separate effects of the 

two add together to produce the resultant tides. Let us consider 

two special cases of this combined tidal action-spring tide and 
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neap tide. The spring tide occurs when the Moon is new or full. 

' Since the Moon and Sun are then attracting from the same or op-

posite directions, lunar and solar tides reinforce each other; 

the high tide is highest and the low tide is lowest. The neap 

tide occurs when the Moon is at either quarter phase. Then the 

Moon and Sun are 90° apart, so that one set of tides is partly 

neutralized by the other. Figure 10 illustrates the addition of 

the effects of the Sun and Moon to produce spring and neap tides. 

The heights of the tides are greatly exaggerated in the drawing. 

Spv-irig Tide 

Moon 
~ 

S,111 + 
tJe?lp Ttde 

Figure 10. Spring and Neap Tides. 3 

The average interval of time between successive passages of 

3Payne-Gaposchkin, p. 146. 
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the Moon across the meridian is 24 hours and 50 minutes. Hence, 

on the average, high tides should occur every 12 hours and 25 min

utes and low tides at equal intervals halfway between. In the ac

tual case, however, the water of the ocean is not frictionless, 

and the tidal bulge is partly carried forward by the Earth's ro

tation. Also, the bulge has a tendency to travel as a wave with 

a velocity wh{ch depends upon the depth, and the progress of the 

tidal wave around the Earth is vastly complicated by the varying 

depth of the sea, the presence of continents and islands, and the 

irregularity of coast lines. Therefore, high tide and the transit 

of the Moon are generally far from simultaneous. The actual pre

diction of the time and height of high water cannot be made from 

astronomical data alone, but depends also upon local observations 

of the tides. 

Although there is disagreement as to how the Earth-Moon sys

tem was formed in the beginning, it is generally agreed that a few 

billion years ago the rotation of the Earth was very rapid and 

that the Moon was much closer to the Earth than it now is. The 

nearness of the Moon would have produced excessively high tides, 

and the friction between the water and the uneven floors of the 

ocean produced by the Earth rotating under the tides would have 

slowed the rotation of the Earth. But the same friction would 

tend to drag the tides slightly ahead of the line joining the cen

ters of the Earth and Moon, and the gravitational pull of this un

symmetrical tide would increase the Moon's orbital velocity and 

cause it to spiral out into a larger orbit. Since the angular mo

mentum of the Earth-Moon system must remain constant, any rota-
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tional energy lost by the Earth would have to be transformed into 

orbital energy of the Moon. Thus the length of the day on the 

Earth has slowly increased to its present value of 24 hours, and 

the Moon has spiraled out to its distance of 238,000 miles from 

the Earth. 

This process is still going on. The length of the day is 

increasing by about 0.0016 seconds per century. In the passage 

of 2,000 years the change will amount to about 3 hours. It has 

been calculated by G. H. Darwin that the tidal friction will con

tinue to slow the Earth's rotation and increase the size of the 

Moon's orbit with a corresponding increase in its period of rev

olution until the day and month are of the same length and are 

both equal to about 47 of our present days. At this remote period 

in the future the Earth-Moon system will be internally stabl~, 

the Earth turning the same hemisphere always toward the Moon, 

just as the Moon now presents one hemisphere to the Earth. At 

this stage lunar tides cannot alter the system; but solar tides 

still operate on it, and they will slow down the Earth's rota

tion until the day is longer than the month and the Moon will rise 

in the west and set in the east. The lunar tides on the Earth 

will now exert a retarding force on the Moon's orbital motion, 

causing it to spiral in slowly toward the Earth's surface. How

ever, instead of eventually colliding with the Earth, it seems 

more likely that the Moon will finally be disrupted by the tre

mendous tidal forces which would be exerted on it by the Earth 

as the Moon draws near the Earth. If this happens the Moon will 

be shattered and the fragments scattered around the Earth in a 
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ring comparable to the rings of Saturn. 

Calculations made by E. A. Roche on the assumption of a 

liquid satellite of equal density with its primary planet showed 

that the satellite could not withstand tidal disruption if it 

were at a distance less than 2.44 times the planet's radius (the 

"Roche limit"). The outer edge of Saturn's ring is at a distance 

of 2.30 radii from the planet's center, and the nearest approach 

of a satellite is 3.11 radii. Thus it seems very possible that 

the rings are the remnants of one or more moons whose orbits 

carried them too close to the planet. This evidence seems to 

support the speculation that the Moon will be disrupted as it 

nears the Earth. 

It is important to understand that it is dangerous, scien

tifically, to project very minute changes over exceedingly long 

periods of time. Unsuspected forces may alter the picture com

pletely. It is quite likely that new and better theories will 

soon displace the theory of the Earth-Moon system as presented 

here. 



CHAPTER VI 

ELEMENTARY THEORY OF THE EQUATORIAL BULGE OF PLANETS 

If a planet were stationary, with no force but gravitation 

acting on its parts, it would have the form of a perfect sphere. 

This is true because the gravitational force being directed 

toward the center of gravity of the system of particles results 

in these particles grouping themselves as near the center as 

possible. However, if the planet is rotating, every particle 

of its substance (except those exactly on its axis) revolves in 

a circle which is centered on a point on the axis and which lies 

in a plane parallel to the equator. Motion in a circle results 

in a tendency of the moving body to fly away from the center, 

a tendency which is known as centrifugal acceleration. The mag-

nitude of the centrifugal acceleration, ac, is given by 

2 
V 

ac =;, 

where vis the magnitude of the velocity of the particle, and r 

is the distance from the particle to the center of the circle. 

If the magnitude of the velocity is constant, then 

V = 2 TT r 
T 

where Tis the time for one revolution. Then, 

4 ]T2 r 
ac = T2 • 
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(10) 



(. , )(': 
~-
~ 

Centt-ifuf •I 
~----« 

5 

Figure 11. Effect of the Earth's Rotation 
on a Body at Its Surface.I 

Since the times of revolution of all the planets are practically 

constants, Equation (10) applies to their motion. 

Let us consider the centrifugal acceleration of a particle 

at the surface of a planet. Then, in Equation (10), r is the 

perpendicular distance from the particle to the axis of rotation 

of the planet. Assuming that Tis a constant for all positions 

on the surface, we see that a varies as we go from the pole to 
C 

the equator so that a is zero at the poles and is a maximum 
C 

value at the equator. As shown in Figure 11, the acceleration 

at any place may be regarded as the resultant of two accelera-

tions operating at right angles to each other: 

(1) The lifting effect is opposed to the planet's attrac-

tion and therefore diminishes the weight of an object at that 
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1Robert H. Baker, Astronomy (6~ ed., New York, 1955), p. 50. 
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place. 

(2) The sliding effect of the planet's rotation is directed 

along the surface toward the equator. This effect has only the 

rigidity of the planet to resist it. The result is that the 

planets, notably the Earth, Jupiter, Saturn, and Uranus, instead 

of being exact spheres, are bulged at their equators and have 

approximately the form of oblate spheroids. 

If we define the oblateness of a planet to be the difference 

between its equatorial and polar radii divided by its equatorial 

radius, then, from astronomical measurements, we have for the 

Earth an oblateness of 0.0034; for Jupiter, 0.06; for Saturn, 

0.11; and for Uranus, 0.09. 



CHAPTER VII 

THE DISCOVERY OF NEW PLANETS 

In 1781 William Herchel of Bath, England, an amateur astron

omer, discovered the planet Uranus which at the time was the out

ermost known member of the solar system. By that time it was 

known how to compute the elliptic orbit of a planet from a few 

widely separated observations of its varying positions. Also, 

the expected small deviations from the true ellipse owing to the 

perturbing force of the other planets were accurately predictable 

on the basis of Newton's law of gravitation. Uranus' 84-year or

bit was so mapped out for it by calculation, and for many years 

no irregularities were noticed. But by 1830 it became evident 

that there were unaccounted-for irregularities in its orbit. 

This caused some people to suggest that perhaps Ne,vton's 

theory did not hold at such immense distances. Uranus is nearly 

twice as far from the Sun as Saturn, which previous to the dis

covery of Uranus was the outermost known planet. Others sug

gested that perhaps there was a more distant, undiscovered plan

et that was causing additional perturbations in Uranus' path. 

The latter idea induced a young undergraduate at Cambridge Uni

versity, John C •. Adams, to undertake the immensely difficult math

ematical task of locating the positions of the unknown planet 

solely from the observed motions of Uranus, using throughout the 
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law of gravitation. He finally obtained his result two years 

after his graduation and wrote to the Royal Observatory at Green

wich asking that their telescope search for the new planet at the 

predicted location. But, since Adams was a young unknown mathe

matician, he was not taken seriously enough to interrupt the cur-

'rent work at the observatory. 

A short time later another young man, Leverrier in France, 

finished similar independent calculations which predicted almost 

the same position for the unknown planet as that predicted by 

Adams. Leverrier sent his own prediction to the head of the ob

servatory at Berlin, who on the very evening of the letter's ar

rival himself searched for and recognized the planet at very near

ly the suspected position. This occurred in 1846. The new plan

et was named Neptune. The discovery of Neptune served to fortify 

the position of the law of gravitation as .indeed a universal law. 

Even after the effects due to the presence of Neptune were 

taken into account, the observations of Uranus did not agree per

fectly with theoretical calculations. The success of Adams and 

Leverrier naturally led to attempts to find another unknown plan

et that could be causing the discrepancies. The most determined 

and thorough of the investigators attacking this problem was 

Percival Lowell. He based his computations on the motion of Ura

nus for, in his opinion, Neptune could not be used because it had 

traversed less than half its orbit since its discovery and the 

available observations did not go far enough back. In 1905 he 

began a photographic search by his assistants at the Lowell Ob

servatory based upon previously calculated estimates as to the 
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position of the suspected planet. In 1915, a year before his 

death, Lowell published the results of mathematical work on the 

subject which he had been conducting for years. His investigation 

disclosed two possible solutions which placed the planet in either 

of two opposite regions of the sky, with considerable uncertainty 

as to its exact location in either. 

On January 21, 1930, C. W. Tombaugh, working at the Lowell 

Observatory under the direction of V. M. Slipher and C. O. Lamp

land, found on photographs taken by him in one of the predicted 

regions an object which in apparent path and rate of motion con

formed approximately to Lowell's predictions of the trans

Neptunian planet. Further watching established its planetary 

character and its location beyond the orbit of Neptune. The new 

planet was named Pluto. The mass and brightness of Pluto proved 

to be less than that predicted by Lowell. The unexpected faint

ness of Pluto points to the skill and persistence with which 

Tombaugh examined his plates. 

While there is no question of the honor due Lowell and his 

associates for the discovery of Pluto through systematic photo

graphic search, the view that Lowell could be said to have dis

covered the planet m~thematically has been disputed. W. H. 

Pickering also had worked on the problem using less elaborate 

methods than Lowell's but taking into account the irregularities 

in Neptune's motion as well as those of Uranus. He had predicted 

a position for the unknown planet that was nearly the same as 

that predicted by Lowell. In 1919 M. L. Humason photographed at 

Mount Wilson a region suggested by Pickering. However, his exam-
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imation of the plates failed to reveal a new planet. Following 

Tombaugh's discovery, S. B. Nicholson re-examined Humason's plates 

and found the new planet. The orbit of Pluto as determined from 

old photographs and Lowell Observatory positions is in fair agree

ment with that predicted by Lowell and Pickering. The mass of 

Pluto, however, proves to be less than predicted, and it is held 

by some authorities that the discrepancies of motion of Uranus 

and Neptune could not possibly be due to the attraction of so 

small a body. If this is true, then it is an astonishing coinci

dence that the planet appeared so near the predicted position. 



CHAPTER VIII 

ASTRONOMICAL TESTS OF THE THEORY OF RELATIVITY 

The theory of relativity was developed principally by the 

physicist Einstein in papers published in 1905 and 1915. On the 

basis of the theory of relativity Einstein derived a new law of 

gravitation with the use of general tensor analysis, which is too 

complicated for any example of it to be given here. It is impor

tant to understand that the law must be such that its consequences 

agree with those derived from Newton's law of gravitation as a 

first approximation, since this law describes the motions of the 

solar system with high accuracy; and it must also be in harmony 

with the predictions of the theory of relativity. Actually, there 

were available to Einstein several possible guesses as to the cor

rect law of gravitation. But one stood out in contrast to all 

others as the simplest in mathematical form. He adopted this law 

as a tentative hypothesis and then proceeded to look for predic

tions based on it which could be tested by experiment. 

From the new law of gravitation, Einstein made three pre

dictions that might be tested by astronomical observations. One 

prediction was as follows: Rays of light passing near a massive 

body should be bent toward it. A ray of light just grazing the 

surface of the Sun should be deflected by 1.75 seconds of arc. 

Stars seen adjacent to the Sun during an eclipse should appear to 
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be displaced outward by this angular amount. This effect is 

shown diagramatically in Figure 12. 
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Figure 12. Apparent Displacement of a Star Near The Sun's Limb. 

This effect was first tested in 1919 during a total solar 
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eclipse that was visible in Africa and Brazil. This was an excel-

lent opportunity for the test because the Sun at the time was 

among the bright stars of the cluster Hyades, so that their light 

had to pass near the Sun to reach the Earth. These stars were 

photographed during the eclipse by Sir Arthur Eddington and C.R. 

Davidson, who later photographed the same star field with the 

same instruments when the Sun was in another part of the sky. 

Comparison of the plates showed that the star positions were ap-

parently shifted by an amount to verify Einstein's prediction. 

These tests have been repeated when the opportunity presented it-

self. At the Australian eclipse of 1922 W. W. Campbell confirmed 

the results of Eddington and Davidson. The test by G. van Bies-

broeck at the eclipse of February 25, 1952, showed an average dis-



placement of 1.70 seconds at the Sun's edge, which is in good 

agreement with the prediction. 

The second prediction to be considered was that physical 

processes in a region of high gravitational potential, when com-

pared with similar processes at a point of low potential, should 

be found to take place more slowly. Consequently, atomic vibra-

tions on the Sun should appear to be slowed down, and spectral 

lines observed in the spectrum of sunlight should be shifted 

slightly toward the red (longer wavelengths) as compared with 

lines emitted or absorbed by the same elements on the Earth. 
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Many of the spectral lines of sunlight are thus shifted, but 

the Einstein effect is so complicated with effects of pressure, 

radial velocity, etc., that its detection is very difficult. How

ever, the star which is the companion of the star Sirius1 affords 

an excellent test of the prediction. This star is known to have 

a diameter of 24,000 miles and a density of 53,000 times that of 

water. Its small diameter and tremendous density gives the com-

panion of Sirius an incredibly great surface gravity so that the 

relativistic red shift is also large. In the case of most stars, 

the Einstein effect is too slight to be easily measured and is al-

so combined with the shift of the spectrum lines due to the star's 

motion. However, the motion of the companion of Sirius is accu-

rately known so that the shift due to the motion can be allowed 

1The companion of Sirius, although unseen, was first detected 
by F. W. Bessel in 1844 from its gravitational effects on the mo
tion of Sirius. In 1862, during a test of a new 18-inch refractor, 
A.G. Clark observed the companion for the first time. 



for. After allowing for this, there was found by W. S. Adams a 

residual redward displacement of 0.32 angstrom units, in almost 

perfect agreement with the Einstein displacement calculated by 

Eddington. 
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Einstein's third prediction was that the motion of the plan

ets in their orbits should be slightly different from that pre

dicted by Newton's law of gravitation. In particular, the major 

axis of the elliptical orbit of Mercury should be caused to rotate 

about the Sun at the rate of 43 seconds of arc per century. 

The above prediction was made in 1915, but a discrepancy in 

the rate of precession of the major axis of Mercury's orbit had 

already been noted by Leverrier in 1845. By calculating the per

turbing effects of Venus and other planets he obtained a predicted 

value for the rate of rotation of the axis which was about 40 sec

onds less than the observed rate of approximately 570 seconds per 

century. At this time there were several suggestions as to the 

cause of the irregularity. Some suggested that Newton's law of 

gravitation should be amended by substituting the exponent 

2.00000016 for 2. But this suggestion was abandoned when it was 

noted that the calculated motion of the major axis of the orbit of 

Venus would then not agree with the observed motion. Leverrier 

concluded that this irregular motion of Mercury must be caused by 

an undiscovered planet revolving within the orbit of Mercury. 

However this hypothetical planet, which received the name Vulcan, 

has never been seen. Another idea was that the orbital motion is 

influenced by a cloud of meteoric matter. From such a cloud light 

should be reflected so that it should be observable. No such light 
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has been detected so that this suggestion has also been abandoned. 

Hence, after many years of conjecture, the new law of gravitation 

as proposed by Einstein was successful in explaining this disturb

ing matter. This was the first physical test of the theory of 

relativity. 

It is also predicted by the theory of relativity that the ma

jor axes of the other planets should rotate at a rate different 

from that predicted by Newton's law of gravitation. However, Mer

cury is the only planet with the proper conditions of orbit and 

velocity to afford a good test. The magnitude of the Einstein ef

fect on the rotation of the axis of the orbit is dependent on the 

orbital velocity of the planet. The velocity.of Mercury is large 

enough to produce a measurable effect, and its orbit is highly 

elliptical so that the position of the major axis is easily lo

cated. The planet Venus has a large enough orbital velocity for 

the test, but its orbit is so nearly circular that the position 

of its major axis is difficult to determine. The orbit of Mars 

is satisfactorally elliptical, but its velocity is too small. 

The other planets are similarly unsuitable for the test. How

ever, the effect is cumulative and should eventually be detected 

from the study of observations made over a long period of time. 
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