STEWART, Raymond Doyle, 1942-
an algebraic approach to blocking and confounding IN FACTORIAL ARRANGEMENTS.

The University of Oklahoma, Ph.D., 1971 Statistics

University Microfilms, A XEROX Company , Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA

graduate college

AN ALGEBRAIC APPROACH TO BLOCKING AND CONFOUNDING
 IN FACTORIAL ARRANGEMENTS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

BY

```
RAYMOND DOYLE STEWART
Oklahoma City, Oklahoma
1971
```

an alcebraic approach to blocking and confounding IN FACTORIAL ARRANGEMENTS

PLEASE NOTE:

Some Pages have indistinct
print. Filmed as received.
UNIVERSITY MICROFILMS

ACKNOWLEDGMENTS

The author wishes to express his appreciation to Dr. Paul S. Anderson, Jr., Dr. John C. Brixey, Dr. Roy B. Deal, Jr., Dr. Donald E. Parker and Dr. Katherine B. Sohler for serving as members of his dissertation committee.

Special appreciation is expressed to Dr. Roy B. Deal, Jr., Chairman of the dissertation committee, for his suggestion of the topic of this dissertation and for his vast contributions of both time and knowledge during the preparation of this dissertation.

The author also wishes to express his appreciation to his wife, Marcia, for her patience and encouragement during the writing of this dissertation.

The author also wishes to thank his parents for their encouragement throughout the years of his educational development.

Special thanks are given to Mrs. Rose Titsworth for her invaluable and persistent assistance in the typing of this dissertation.

TABLE OF CONTENTS

Page
LIST OF TABLES v
LIST OF ILLUSTRATIONS vi
Chapter
I. INTRODUCTION 1
II. DEVELOPMENT AND ANALYSIS OF DESIGNS INVOLVING COMPLETE REPLICATES OF FACTORIAL ARRANGEMENTS OF TREATMENTS 7
III. ESTIMATION AND ANALYSIS OF PARTITIONED FACTORIAL arrangements of treatments 32
IV. EXAMPLES OF BLOCKING AND CONFOUNDING OF FACTORIAL ARRANGEMENTS OF TREATMENTS 54
V. A PRACTICAL EXAMPLE 79
VI. SUMMARY 85
LIST OF REFERENCES 88
APPENDIX I. 91
APPENDIX II 92
APPENDIX III 93
APPENDIX IV 94

LIST OF TABLES

Table Page
2.1 Abbreviated Analysis of Variance Table for One Replicate of an $\mathbf{n}_{1} \times \mathbf{n}_{2} \times \ldots \times \mathbf{n}_{m}$ Factorial Arrangement of Treatments 24
2.2 Abbreviated Analysis of Variance Table for One Replicate of a $2 \times 2 \times 3$ Factorial Arrangement of Treatments 25
2.3 Abbreviated Analysis of Variance for r Replicates of a C.R.D. of an $n_{1} \times n_{2} \times \ldots n_{m}$ Factorial Arrangement 29
2.4 An Abbreviated Analysis of Variance Table for b Blocks of a R.C.B.D. of an $n_{1} \times n_{2} \times \ldots \times n_{m}$ Factorial Arrangement of Treatments 31
4.1 An Analysis of Variance Table for Plan (C) in Figure 4.1 60
4.2 An Abbreviated Analysis of Variance Table for a Particular Plan in Figure 4.2 65
4.3 An Abbreviated Analysis of Variance Table for a Particular Plan of Figure 4.3 67
4.4 Abbreviated Analysis of Variance Table for the Plan Given in Figure 4.4 70
4.5 An Abbreviated Analysis of Variance Table for the Plan in Figure 4.5 72
4.6 An Ahbreviated Analysis of Variance Table for the Plan $B_{1} \cap B_{2}$ of a $2 \times 2 \times 3 \times 3$ Factorial Arrangement of Treatments 75
4.7 An Abbreviated Analysis of Variance Table of a $2 \times 6 \times 3$ Factorial Arrangement of Treatments with the Plan $B_{1} \cap B_{2}$ in Figure 4.7 78

LIST OF ILLUSTRATIONS

Figure Page
2.1 The Lexicographic Order of the Design Points of a $2 \times 2 \times 3$ Factorial Arrangement of Test. 13
2.2 A Matrix L Defining the 8 Factorial Effects of a $2 \times 2 \times 3$ Factorial Arrangement 19
3.1 The Incidence Matrices of Two Blocking Plans of a
$2 \times 2 \times 3$ Factorial 34
3.2 The Intersection of Plan (a) and P1an (b) of Figure 3.1 and Its Incidence Matrix 39
3.3 Extension of a Plan of a 2×2 Factorial Arrangement to a $2 \times 2 \times 3$ Factorial Arrangement 51
4.1 The 24 Plans of a 4×4 Factorial Arrangement of Treatment Each of Which Confounds 3 Components of the $A_{1} A_{2}$ Effect. 57
4.2 The 48 Plans of a 4×4 Factorial Each of Which Confounds 1 Component of the $A_{1} A_{2}$ Effect 62
4.3 The 3 Plans Confounding only the Mean and 1 Component of $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$ in a $2 \times 2 \times 4$ Factorial Arrangement of Treatments 66
4.4 A Plan Confounding the Mean Effect and 1 Component each of $A_{1} A_{2} A_{3}$ and A_{3} in a $2 \times 2 \times 3$ Factorial Arrangement of Treatments. 68
4.5 The Plan Confounding the Mean Effect and $A_{1} A_{2}$ in a $2 \times 2 \times 3$ Factorial Arrangement of Treatments. 71
4.6 Three Plans of a $2 \times 2 \times 3 \times 3$ Factorial Arrangement of Treatments 74
4.7 Three Plans in a $2 \times 6 \times 3$ Factorial Arrangement of Treatments 77

an algebraic approach to blocking and confounding IN FACTORIAL ARRANGEMENTS

CHAPTER I

INTRODUCTION

Factorial arrangements of treatments have been utilized many times in the designs of experiments. The factorial arrangement is a cross-classified arrangement with the classes being the factors. The chief advantage of the factorial arrangement is that in the absence of interactions of the factors the number of parameters describing the data can be reduced to the set of parameters describing the levels of each of the factors.

Factorial arrangements are customarily dichotomized into symmetrical factorial arrangements, where each factor has the same number of levels, and the asymetrical factorial arrangements, where the number of levels differ in some two or more of the factors.

Yates (22) first introduced designs and analyses of symmetrical factorial arrangements of the types $2^{m}, 3^{n}$ and asymmetrical arrangements of the type $2^{m} 3^{n}$. Cochran's result concerning the joint distribution of the partition of the sum of squares of normal deviates, and Fisher's F ratio pertaining to the ratio of specified pairs of members of the partitioned sum of squares, made possible the analysis of variance. The
theory of maximum likelihood yields estimates of parameters appearing in linear normal models and results by Gauss and Markoff show that these same estimates are valid in more general linear statistical models. The likelihood ratio approach to hypothesis testing confirmed that Fisher's F was a good statistic for testing hypotheses in factorial models.

As experimenters ran afoul of the assumptions of the linear models used in factorial arrangements, efforts were concentrated on refinement of the models so that assumptions could more nearly be met. Perhaps the most basic assumptions of the factorial model that demanded to be met were the assumptions of homogeneous and uncorrelated error terms. Experimenters frequently found that heterogeneous errors accompanied an increase in the size of the experimental plot.

To cope with this problem the treatment combinations comprising the factorial arrangement were partitioned and each member of the partition was subsequently assigned to a smaller experimental plot. By this scheme it was felt that the within-plot variation of the experimental units were smaller and more homogeneous than the variation of the experimental units in the replicate plot, the plot consisting of the union of the smaller plots.

By no means was the result rendered by this technique without liabilities. The price of smaller and more homogeneous error terms was the loss of information on certain treatment contrasts. Since the motivation for choosing smaller experimental plots was that the experimental plots differed in one or more characteristics which influenced treatment responses, it was recognized that comparisons between the responses of two treatments occurring in different experimental plots could not be
made with any degree of confidence.
Another problem to overcome was the selection of the "best" partition of the treatments relative to the objectives of the experiment. Haphazard partitions of the treatments resulted in the possible confounding of the factorial effects deemed most important.

Out of the last problem the theory of confounded designs flourished.

The question of how to confound parts of desired factorial effects led Bose and Kishen (2) to develop a theory for the construction of confounded symmetrical designs through finite projective geometries. Later Bose (1) discussed the problem of finding the maximum number of factors that can be accommodated in a block of a given size without confounding an interaction unto a given order.

Fisher $(7,8)$ discussed this point in the s^{m} factorial where s is a prime power and found that the maximum number of factors that can be accomodated in a block of size s^{r} without confounding any main effect or first-order interaction is $\frac{s^{r-1}}{s-1}$. Bose has shown that with $s=2$ the maximum number of factors that can be accommodated in a block of size $\mathbf{2}^{\mathbf{r}}$ without confounding any interaction of less than third order is 2^{r-1}. Rao (18) also obtained the same results independently. Finney (6) found these methods suitable for the development of fractional factorials.

Nair (16) gave a method for getting confounded arrangements in the symmetrical factorial.

Kempthorne (12) systemized the technique used by Fisher and Finney and a detailed account of the theory appears in a later text (13). The construction and analysis of confounded designs for
asymmetrical factorial arrangements was given by Kishen and Srivastiva (14).

Das (4) developed an alternative approach for construction of symmetrical factorial arrangements and obtained a maximum number of factors. Sarma (20) extended the approach for the construction of symnetrical factorial arrangements.

White and Hultquist (21) gave methods for construction of confounded designs of the type $p^{n} q^{m}$, where p and q are distinct primes. Raktoe (17) extended their approach and developed a method of confounding in factorials where the levels of the factors are from distinct prime fields.

Sardana gave procedures for constructing blocks of size 4 q in 2 replications of an asymmetrical factorial of the form $2 q \times \mathbf{2}^{\mathbf{2}}$ which provided mutually independent estimates of all the effects.

Separate texts by Winer and Mann (15), Federer (5), and Kempthorne (13) give methods of confounding utilizing the Galois field approach. Mann in addition gives a brief algebraic development of the analysis of factorial experiments and confounding factorial experiments.

The blocking plans given in the general theory are not necessary for confounding to exist. If the nature of a factorial arrangement is such that the confounding plans given by current methods cannot be followed then the researcher has to rely on a different analysis or alter his experiment to fit one of the available confounding plans. A wider selection of blocking plans would enable more latitude for designing and analyzing experiments that would otherwise have to be approached through different channels.

One of the objectives of this dissertation is to complement the selection of blocking plans now available. For example, in the 4^{2} factorial arrangement, the Galois field theory approach yields only 3 block-
 method will be developed that yields 24 blocking plans each of which confounds part of the interaction in a 4^{2} factorial.

Using combinatorial properties of blocks rather than field properties, the generalization of this result will give necessary and sufficient conditions for confounding effects in an $\mathbf{n}^{\text {m }}$ factorial where n is not restricted to a prime power. This result will be generalized to factorials of the type $n_{1} \times n_{2} \times \ldots \times n_{m}$. If $n_{1}, n_{2}, \ldots, n_{m}$ in addition have a non-trivial common divisor d, then blocking plans will be constructed that confound d-1 components of a specified interaction of the factors. This result will be further generalized to include the construction of blocking plans in the $n_{1} \times n_{2} \times \ldots \times n_{m} \times q$. A blocking plan that confounds a specified set of orthogonal effects will be shown to be unique and the class of sets of orthogonal effects confoundable with a given blocking plan will be determined.

Numerous examples of blocking plans will be exhibited with an assortment of block sizes.

The second objective of this dissertation is to give a general algebraic approach to construction of factorial effects. Kronecker products of matrices will be used extensively to define factorial effects, to establish the independence of the various factorial effects and to present the sums of squares due to the various effects. Because the usual sums of squares appearing in an analysis of variance are quadratic
forms of random variables, the Kronecker product will be used to show that the various quadratic forms are jointly independent and that the matrix of a quadratic form is idempotent with a particular rank.

Mathematical models for designs of both the factorial and confounded factorial will be given.

The class of estimable functions relative to each of the models will be exhibited. Confounding will be defined explicitly utilizing Hadamard products.

As in the designs of factorial arrangements, designs of confounded factorial arrangements will be discussed. The quadratic forms of the sums of squares will be examined and the mutually independent quadratic forms will be determined. The matrices of all quadratic forms appearing in an analysis of variance will be seen to be idempotent.

The comprehensive set of blocking plans of a fixed block size confounding parts of a desired interaction effect will be given whenever feasible.

Examples will serve to illustrate the theory. The analysis of each example will be given.

CHAPTER II

dEvELOPMENT AND ANALYSIS OF DESIGNS INVOLVING COMPLETE REPLICATES OF FACTORIAL ARRANGEMENTS OF TREATMENTS

One of the problems encountered in an algebraic approach to the analysis of a design involving a factorial arrangement of treatments is the definition and representation of the factorial effects of the design. Another related problem is the representation of the sums of squares or quadratic forms due to the various factorial effects. The quadratic forms to be used in the construction of F ratios must be independent and the matrices of the forms must be idempotent. The ranks of the idempotent matrices of the two forms in an F ratio are the parameters of the F ratio and thus must be known before a test of hypothesis can be made.

Kronecker and Tensor Products

The Kronecker and Tensor products readily lend themselves to the definition and construction of factorial effects and to the representation of the quadratic forms of the factorial effects.

Let $V_{n_{1}}(R), V_{n_{2}}(R), \ldots, V_{n_{m}}(R)$ be m vector spaces over the field of real numbers R where $V_{n_{i}}(R)$ is the space of all n_{i} dimensional vectors for $i=1,2, \ldots, m$.

For vectors X and Y in $V_{n_{i}}(R)$ and $V_{n_{j}}(R)$ respectively the tensor product of X and Y is the $n_{i} n_{j}$ dimensional vector defined by

$$
X \otimes Y=\left(\left.\begin{array}{c}
x_{1} Y \\
x_{2} Y \\
\vdots \\
x_{n_{1}} Y
\end{array} \right\rvert\,\right.
$$

This definition is easily extended to the tensor product $X_{1} \otimes X_{2} \otimes \ldots \otimes X_{m}$ of m vectors where X_{i} is a vector in $V_{n_{i}}(R)$. The tensor $X_{1} \otimes X_{2} \otimes \ldots X_{m}$ is an $N=n_{1} n_{2} \ldots n_{m}$ dimensional vector in $V_{N}(R)$ and the set of such tensors span $V_{N}(R)$. Although a vector in $V_{N}(R)$ is not necessarily a tensor product of vectors, it is a sum of such tensors.

The Kronecker product of matrices relates the linear operators or matrices of the component spaces to a linear operator of the tensors. If B and C are matrices such that $B: V_{n_{i}}(R) \rightarrow V_{m_{i}}(R)$ and $C: V_{n_{j}}(R) \rightarrow V_{m_{j}}(R)$ then the Kronecker product of B and C is the $m_{i} m_{j} \times n_{i} n_{j}$ matrix

$$
B \otimes C=\left(\begin{array}{ccccccc}
b_{11} & c & b_{12} & c & \ldots & b_{1 n_{i}} & c \\
b_{21} & c & b_{22} & c & \ldots & b_{2 n_{i}} & c \\
\vdots & & \vdots & & \vdots & \\
b_{m_{1} 1} c & b_{m_{i} 2} & c & \ldots & b_{m_{1} n_{i}} & c
\end{array}\right)
$$

If $X \& Y$ is the $n_{i} n_{j}$ dimensional vector defined previously, then $(B \otimes C)(X \otimes Y)=B X \& C Y$.

By extending the definition we can define the Kronecker product of the matrices $C_{1}, C_{2}, \ldots, C_{m}$ where C_{i} is an $m_{i} \times n_{i}$ matrix. The linear operator C_{i} maps $V_{n_{i}}(R)$ into $V_{m_{i}}$ (R) by mapping X_{i} into $C_{i} X_{i}$ and $C_{1} 8 C_{2} \quad \ldots C_{m}$ maps the tensor $x_{1} 8 x_{2} 8 \ldots x_{m}$ into $\left(C_{1} C_{2} \otimes \ldots C_{m}\right)\left(x_{1} \otimes x_{2} \otimes \ldots x_{m}\right)$. From the definitions of

Kronecker and tensor products it follows that ($C_{1} \otimes C_{2} \otimes \ldots \otimes C_{m}$) $\left(X_{1} \otimes x_{2} \otimes \ldots \otimes X_{m}\right)=C_{1} X_{1} \otimes C_{2} X_{2} \otimes \ldots C_{m} X_{m}$, and thus that the image of a tensor product of vectors is a tensor product of vectors.

It is instructive and sometimes convenient to notice that if the $m \times n$ matrix A is blocked into n columns A_{1}, \ldots, A_{n}, each $m \times 1$ and the $\mathrm{r} \times \mathrm{s}$ matrix B is blocked into s columns $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{s}}$, each $\mathrm{r} \times 1$, then the Kronecker product $A \otimes B$ is blocked naturally into ns columns $A_{1} \otimes B_{1}, A_{1} B_{2}, \ldots, A_{1} B_{s}, A_{2} B_{1}, \ldots, A_{2} B_{s}, \ldots, A_{n} B_{1}$, $\ldots, A_{n} \otimes B_{s}$, each a tensor product $A_{i}{ }^{8} B_{j}$ of vectors and each or size mr $\times 1$.

Although this discussion of tensor products, or Kronecker products, is geared strictly to matrices because this is how they are used in this study and the discussion is adequate for these uses, it should be pointed out that if the standard approach is used to assign matrices to linear operators then the matrix of the tensor product of linear operators is the Kronecker product of the matrices of these operators.

The following theorems are sufficient for some of the developments appearing later. The representative matrices are not necessarily square but are of the proper sizes to make the indicated operations meaningful. The inverse, transpose, rank and trace of a matrix C are denoted respectively by $\mathrm{C}^{\mathbf{- 1}}, \mathrm{C}^{\prime}, \rho(\mathrm{C})$ and $\operatorname{tr}(\mathrm{C})$. A matrix or vector consisting of all zeroes is denoted by \emptyset. Scalars are denoted by small letters.

To facilitate typing, $\mathrm{F}^{*}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{m}}\right)$ will denote the Kronecker product $\mathrm{C}_{1} \otimes \mathrm{C}_{2} 8 \ldots 8 \mathrm{C}_{\mathrm{m}}$ and will later be used to denote the natural blocking of this product into tensor products. The proofs
of some of the theorems are Appendixes and the remainder is given by Halmos or Jacobson (10, 11).

Theorem 2.1:
Theorem 2.2:

Theorem 2.3:

$$
\begin{aligned}
& C_{1}\left(C_{2} \otimes C_{3}\right)=\left(C_{1} \otimes C_{2}\right) \otimes C_{3} . \\
& F^{*}\left(C_{1}, \ldots, C_{i-1}, C_{i}, C_{i+1}, \ldots, C_{m}\right)+ \\
& F *\left(C_{1}, \ldots, C_{i-1}, B_{i}, C_{i+1}, \ldots, C_{m}\right)= \\
& F *\left(C_{1}, \ldots, C_{i-1}, C_{i}+B_{i}, C_{i+1}, \ldots, C_{m}\right) .
\end{aligned}
$$ $F *\left(a_{1} C_{1}, a_{2} C_{2}, \ldots, a_{m} C_{m}\right)=a_{1} a_{2} \ldots a_{m} F *\left(C_{1}, C_{2}, \ldots, C_{m}\right)$.

Theorem 2.4:

Theorem 2.5:
$F *\left(C_{1}, C_{2}, \ldots, C_{m}\right)=\emptyset$ if and only if $C_{i}=\emptyset$ for some 1.

Theorem 2.6:
$\left[F *\left(C_{1}, C_{2}, \ldots, C_{m}\right)\right]^{\prime}=F *\left(C_{1}{ }^{\prime}, C_{2}{ }^{\prime}, \ldots, C_{m}{ }^{\prime}\right)$.
Theorem 2.7: If C_{i}^{-1} exists for each C_{i} then $\left[F^{*}\left(C_{1}, C_{2}, \ldots, C_{m}\right)\right]^{-1}=F^{*}\left(C_{1}^{-1}, C_{2}^{-1}, \ldots, C_{m}^{-1}\right)$.

Theorem 2.8:
$\rho\left[F^{*}\left(C_{1}, C_{2}, \ldots, C_{m}\right)\right]=\rho\left(C_{1}\right) \rho\left(C_{2}\right) \ldots \rho\left(C_{m}\right)$.
Theorem 2.9:
$\operatorname{tr}\left[F *\left(C_{1}, C_{2}, \ldots, C_{m}\right)\right]=\operatorname{tr}\left(C_{1}\right) \operatorname{tr}\left(C_{2}\right) \ldots \operatorname{tr}\left(C_{m}\right)$.
Theorem 2.10; If $C_{i}=C_{i}^{\prime}$ for $i=1,2, \ldots$, m then $F *\left(C_{1}, C_{2}, \ldots, C_{m}\right)=\left[F *\left(C_{1}, C_{2}, \ldots, C_{m}\right)\right]^{\prime}$.
Theorem 2.11: If $C_{i}^{\prime}=C_{i}^{-1}$ for $i=1,2, \ldots, m$ then $\left[F *\left(C_{1}, C_{2}, \ldots, C_{m}\right)\right]^{\prime}=\left[F *\left(C_{1}, C_{2}, \ldots, C_{m}\right)\right]^{-1}$.

Theorem 2.12: If $D_{1}, D_{2}, \ldots, D_{m}$ are diagonal matrices then $F *\left(D_{1}, D_{2}, \ldots, D_{m}\right)$ is diagonal.

Theorem 2.13: If $C_{1}, C_{2}, \ldots, C_{i-1}, C_{i+1}, \ldots, C_{m}$ are idempotent matrices, then $F^{*}\left(C_{1}, C_{2}, \ldots, C_{m}\right)$ is idempotent if

Hadamard Products

Another operation used in the factorial development is the Hadamard product. If X and Y are vectors in $V_{n}(R)$ then the Hadamard product of X and Y is defined by

$$
X \in Y=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \quad \theta\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{1} y_{1} \\
x_{2} y_{2} \\
\vdots \\
x_{n} y_{n}
\end{array}\right)
$$

This definition extends easily to a Hadamard product of a finite number of vectors from $V_{n}(R)$.

If $B=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ and $C=\left(Y_{1}, Y_{2}, \ldots, Y_{B}\right)$ are matrices where a column of either is a vector in $V_{n}(R)$, then we define

$$
\begin{aligned}
& \text { B日C=(} \left.X_{1} \Theta C, X_{2} \text { © C, } \ldots, X_{r} \theta C\right) \text { where } \\
& X_{i} \oplus C=\left(X_{i} \theta Y_{1}, X_{i} \theta Y_{2}, \ldots, X_{i} \theta Y_{s}\right) .
\end{aligned}
$$

The set of columns of B θ C are defined to be the set of Hadamard products of the sets of vectors given by the columns of B and the columns of C.

The following theorems are used throughout this dissertation. Vectors are denoted by X and Y and B and C denote matrices of the proper sizes to make the indicated operations meaningful.

Theorem 2.14: $\quad \mathrm{X} \theta \mathrm{C}=\mathrm{C} \theta \mathrm{X}$.
Theorem 2.15: $\quad c_{1} \Theta\left(c_{2} \Theta c_{3}\right)=\left(c_{1} \Theta c_{2}\right) \Theta c_{3}$.

Theorem 2.17: $J_{n} \Theta C=C$ where J_{n} is the n dimensional vector each entry of which is 1 .

Theorem 2.18: $\quad(X \in C) Y=X \theta C Y$.
Theorem 2.19: There exists a permutation matrix P such that

$$
\begin{aligned}
& F *\left(B_{1}, B_{2}, \ldots, B_{m}\right) \in F *\left(C_{1}, C_{2}, \ldots, C_{m}\right)= \\
& {\left[F *\left(B_{1} \Theta C_{1}, B_{2} \Theta C_{2}, \ldots, B_{m} \Theta C_{m}\right)\right] P .}
\end{aligned}
$$

The remainder of this chapter is devoted to the definition and construction of the 2^{m} factorial effects of a design of a factorial arrangement of treatments as well as the partition of the total sums of squares into the sums of squares due to each factorial effect.

Both tensor and Hadamard products are utilized in the construction of the factorial effects and Kronecker products are used in the representation of sums of squares.

Definition 2.1: A set of treatments T^{*} is said to be an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement of tzeatmonts if there exists a set of m factors ($m \geq 2$) such that each treatment is a combination of exactly one level from each of the factors and conversely each combination of exactly one level from each of the factors is a treatment in T^{*}.

Let the set of n_{i} levels of the $i^{\text {th }}$ factor be represented by $Z\left(n_{i}\right)=\left\{0,1, \ldots, n_{i}-1\right\}$, the set of residue classes of the integers
modulo n_{i}. We can represent T^{*} as the Cartesian product

$$
T=Z\left(n_{1}\right) \times Z\left(n_{2}\right) \times \ldots \times Z\left(n_{m}\right)
$$

hy assoriating the troatment consisting of the a_{i} level of the 1 st fartor, the a_{2} level of the second factor,, and the a_{m} level of the $m^{\text {th }}$ factor with the m-tuple ($a_{1}, a_{2}, \ldots, a_{m}$) in T.
Definition 2.2: The set $T=Z\left(n_{1}\right) \times Z\left(n_{2}\right) \times \ldots \times Z\left(n_{m}\right)$ representing the set of treatments T^{*} is called the set of design points of the $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement of treatments.

The design points must be ordered in some structured way to utilize tensor products. The ordering most convenient is the lexicographic order. With this ordering the design point ($a_{1}, a_{2}, \ldots, a_{m}$) is the $a_{1}\left(n_{2} n_{3} \ldots n_{m}\right)+a_{2}\left(n_{3} n_{4} \ldots n_{m}\right)+\ldots+a_{m-1}\left(n_{m}\right)+a_{m}$ ordinal. Figure 2.1 gives the lexicographic order of the design points of a $2 \times 2 \times 3$ factorial arrangement of treatments.

Figure 2.1--The lexicographic order of the design points of a $2 \times 2 \times 3$ factorial arrangement of test.

Having established the representation and ordering of the $N=n_{1} n_{2} \ldots n_{m}$ treatments in an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial
arrangement, we can now define the simple observational model $Y=$ Mfe where Y is an $N \times 1$ vector of observations of the responses of the treatments, M is an $N \times 1$ vector of treatment means and e is an $N \times 1$ vector of identically and independently distributed errors such that $E(e)=0$ and $E\left(e e^{\prime}\right)=\sigma^{2} I_{N}$. It is essential for later developments that Y and consequently M and e have the same ordering as T.

Definition 2.3: An effect in the model $Y=$ Mte is given by $\lambda^{\prime} M$ where λ is an $N \times 1$ vector. The vector λ is said to define the effect λ ' M.

Definition 2.4: The effects $\lambda_{1}^{\prime} M$ and $\lambda_{2}^{\prime M}$ are orthogonal if $\lambda_{1}^{\prime} \lambda_{2}=0$. Definition 2.5: The effect $\lambda^{\prime} M$ is normalized if $\lambda^{\prime} \lambda=1$.

In general a set of N mutually orthogonal effects of M exists. Indeed infinitely many such sets exists. For the factorial arrangement the selection of a set of N orthogonal effects is crucial for estimation and analysis of the factorial effects. In the following development the mean effect and m main effects of an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement are defined and subsequently used to obtain all other factorial effects. The orthogonality of the 2^{m} factorial effects is also established.

The $n_{i} \times 1$ vector consisting of all ones, $J_{n_{i}}$, appears many times in tensor representation of factorial effects. It is convenient to suppress $J_{n_{i}}$ whenever it occurs as the $i^{\text {th }}$ argument of $F *$. With this convention, for example,

$$
\begin{aligned}
& F *\left(C_{j}, C_{k}\right)=J_{n_{i}} 8 \ldots J_{n_{j-1}} \& c_{j} \otimes \ldots J_{n_{j+1}} \otimes \ldots 8 \\
& J_{n_{k-1}} C_{k} J_{n_{k+1}} \ldots J_{n_{m}} \text {. }
\end{aligned}
$$

The subscript of lowest order of an argument depicts the position of the argument in the tensor representation. The order of the arguments
 order in the tensor representation. In the example, for instance, $\mathbf{j}<\mathbf{k}$ since C_{j} preceded C_{k}.
Definition 2.6: The mean effect is $J_{N}^{\prime} M$ where

$$
J_{N}=J_{n_{1}} \otimes J_{n_{2}} \otimes \ldots J_{n_{m}}
$$

Definition 2.7: The set of level totals of the $i^{\text {th }}$ factor is $\left[F *\left(I_{n_{i}}\right)\right]$ 'M.

The columns of $F *\left(I_{n_{i}}\right)$ are n_{i} mutually orthogonal N dimensional vectors and consequently span an n_{i} dimensional vector space. The subspace spanned by J_{N} is a subspace of the space spanned by the columns of F* $\left(I_{n_{i}}\right)$. The set of vectors which are orthogonal to J_{N} in the latter space also form a subspace of dimension $n_{i} \mathbf{- 1}$. This $n_{i}-1$ dimensional subspace is called the subspace orthogonal to J_{N} relative to the space spanned by the columns of $\mathrm{F} *\left(\mathrm{I}_{\mathrm{n}_{\mathbf{i}}}\right)$.

Definition 2.8: The $i^{\text {th }}$ main effect A_{i} is defined by any orthogonal basis of the $N_{i}-1$ dimensional subspace orthogonal to J_{N} relative to the space spanned by the columns of $F *\left(I_{n_{i}}\right)$.
A_{i} is said to be defined by an $N \times n_{i}-1$ matrix L_{i} if the columns of L_{i} form a basis of the $n_{i}-1$ dimensional subspace. The $n_{i}-1$ effects defined by L_{i} are called the components of A_{i}. Tro distinct bases, each of which defines A_{i}, yield two distinct sets of components of A_{i}.

Theorem 2.20: Let $\left(J_{n_{i}}, U_{i}\right)$ be an $n_{i} \times n_{i}$ matrix such that the columns of $\left(J_{n_{i}}, U_{\underline{i}_{i}}\right)$ form an orthogonal basis of $V_{\bar{u}_{i}}(R)$. Then the columns of $\mathrm{F}^{*}\left(\mathrm{U}_{\mathbf{i}}\right)$ defines $\mathrm{A}_{\mathbf{i}}$.

Proof: $F *\left(I_{n_{i}}\right)\left(J_{n_{i}}, U_{i}\right)=F *\left(\left(J_{n_{i}}, U_{i}\right)\right)=\left(J_{N}, F *\left(U_{i}\right)\right)$
$J_{N}^{\prime} F *\left(U_{i}\right)=\left[F *\left(J_{n_{i}}\right)\right]^{\prime} F *\left(U_{i}\right)=$
$n_{1} \otimes \ldots n_{i-1} \otimes J_{n_{i}} u_{i} \otimes n_{i+1} \otimes \ldots \otimes n_{m}=\emptyset$
since $J_{\mathbf{n}_{\mathbf{i}}}^{\prime} \mathbf{U}_{\mathbf{i}}=\emptyset$.
$\left[F *\left(U_{i}\right)\right]^{\prime} F *\left(U_{i}\right)=n_{1}^{8} \ldots 8 n_{i-1} 8 U_{i}^{\prime} U_{i} 8 n_{i+1} 8 \ldots 8 n_{m}=$ $n_{1} n_{2} \cdots n_{i-1} n_{i+1} \cdots n_{m} U_{i}^{\prime} U_{i}$.

Thus the columns of $F *\left(U_{i}\right)$ and J_{N} are mutually orthogonal and the columns of $F *\left(U_{i}\right)$ defines A_{i}.
Throughout this discussion U_{i} will always denote an $n_{i} \times n_{i}{ }^{-1}$ matrix such that the columns of $F *\left(U_{i}\right)$ defines A_{i}.

Definition 2.9: If $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$ are defined respectively by $F *\left(U_{i_{1}}\right), F *\left(U_{i_{2}}\right), \ldots, F *\left(U_{i_{k}}\right)$ where $i_{1}<i_{2}<\ldots<i_{k}$ and $1<k \leq m$ then the $A_{\mathbf{i}_{1}} \quad \mathbf{A}_{\mathbf{i}_{\mathbf{2}}} \ldots \mathbf{A}_{\mathbf{i}_{\mathbf{k}}}$ interaction effect is defined by any orthogonal basis of the space spanned by the columns of $F *\left(U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{k}}\right)$.

Theorem 2.21: The space spanned by the columns of $\mathrm{F}^{*}\left(\mathrm{U}_{\mathbf{i}_{1}}, \mathrm{U}_{\mathbf{i}_{\mathbf{2}}}, \ldots, \mathrm{U}_{\mathbf{i}_{\mathbf{k}}}\right)$ has dimension $\left(n_{i_{1}}-1\right)\left(n_{i_{2}}-1\right) \ldots\left(n_{i_{k}}-1\right)$.

Proof: $\left[F *\left(U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{k}}\right)\right]^{\prime} \quad F *\left(U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{k}}\right)=$

$$
\frac{N}{n_{i_{1}} n_{i_{2}} \cdots n_{i_{k}}} \quad n_{i_{1}} \otimes n_{i_{2}} \propto \ldots \otimes D_{i_{k}} \text { where } D_{i_{j}}=U_{i_{j}}^{\prime} U_{f_{j}}
$$

Since $D_{i_{j}}$ is a diagonal matrix for $j=1,2, \ldots, k$ then by Theorem 2.12 the Kronecker product is a diagonal matrix and the columns of $F^{*}\left(U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{k}}\right)$ are orthogonal. Thus the dimension of the space spanned by the columns of $F *\left(U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{k}}\right)$ is the number of columns, $\left(n_{i_{1}}-1\right)\left(n_{i_{2}}-1\right) \ldots\left(n_{i_{k}}-1\right)$.

By definition, the mean effect is orthogonal to each main effect. The following theorems establish that a factorial effect is orthogonal to any other factorial effect.

Theorem 2.22: $\quad A_{i_{1}}$ is orthogonal to $A_{i_{2}}$.

$$
\begin{aligned}
\text { Proof: } & {\left[F *\left(U_{i_{1}}\right)\right]^{\prime}\left[F *\left(U_{i_{2}}\right)\right]=\left[F *\left(U_{i_{1}}, J_{n_{i_{2}}}\right)\right]^{\prime} F *\left(J_{n_{i_{1}}}, U_{i_{2}}\right)=} \\
& \frac{N}{n_{i_{1}} n_{i_{2}}}\left(U_{i_{1}}^{\prime} J_{n_{i_{1}}}\right) \&\left(J_{n_{i_{2}}}^{\prime} U_{i_{i}}\right)=\emptyset \\
& \text { since } U_{i_{1}}^{\prime} J_{n_{i_{1}}}=\emptyset .
\end{aligned}
$$

Theorem 2.23: The mean effect is orthogonal to the $A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}$ interaction effect.

Proof: $\quad J_{N}^{\prime}{ }^{F *}\left(U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{k}}\right)=$

$$
\frac{N}{n_{i_{1}} n_{i_{2}} \cdots n_{i_{k}}} J_{n_{i_{1}}}^{\prime} U_{i_{1}} \otimes J_{n_{i_{2}}}^{\prime} U_{i_{2}} \& \ldots J_{n_{i_{k}}}^{\prime} U_{i_{k}}=\emptyset
$$

$$
\text { since } \mathbf{J}_{\mathbf{n}_{\mathbf{i}_{1}}^{\prime}}^{\prime} \mathbf{U}_{\mathbf{1}_{1}}=\emptyset
$$

Ineorem 2.24:

$$
\begin{aligned}
& \text { if }\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \neq\left\{j_{1}, j_{2}, \ldots, j_{s}\right\} \text {. }
\end{aligned}
$$

Proof: Without loss of generality take $i_{1}<j_{1}$. Then

$$
\left[F *\left(U_{i_{1}}, U_{\mathbf{i}_{2}}, \cdots, U_{\mathbf{i}_{r}}\right)\right]^{\prime} F *\left(J_{n_{i_{1}}}, U_{j_{1}}, U_{j_{2}}, \ldots, U_{j_{j}}\right)=\emptyset
$$

utilizing Theorem 2.5 and the fact that $\mathbf{U}_{\mathbf{i}_{1}}^{\prime} \mathbf{J}_{\mathbf{n}_{\mathbf{i}_{\mathbf{1}}}}=\emptyset$.
The next theorem establishes the relationship between main effects and interaction effects.

Proof: The proof follows immediately by Theorems 2.17 and 2.19 .
The matrix $L=\left(J_{N}, F *\left(U_{1}\right), \ldots, F *\left(U_{m}\right), F *\left(U_{1}, U_{2}\right), \ldots\right.$, $\left.F *\left(U_{m-1}, U_{m}\right), \ldots, P^{*}\left(U_{1}, U_{2}, \ldots, U_{m}\right)\right)$ defines the 2^{m} factorial effects. Lis a permutation of the columns of $F *\left(\left(J_{n_{1}}, U_{1}\right),\left(J_{n_{2}}, U_{2}\right), \ldots,\left(J_{n_{m}}, U_{m}\right)\right)$ and thus has N columns.

Definition 2.10: Given the simple Iinear model $Y=$ Me and L as defined above, the model $L^{\prime} Y=L^{\prime} M+L^{\prime} e$ is a factorial effects model. A factorial effect model is a normalized factorial effects model if $L^{\prime} L=I_{N}$.
L'M is a set of N orthogonal effects and these are partitioned into the 2^{m} factorial effects. A matrix defining the factorial effects of a $2 \times 2 \times 3$ factorial arrangement is obtained from the expression $L=\left(\mathrm{J}_{\mathrm{N}}, \mathrm{F} *\left(\mathrm{U}_{1}\right), \mathrm{F}^{*}\left(\mathrm{U}_{2}\right), \mathrm{F}^{*}\left(\mathrm{U}_{3}\right), \mathrm{F}^{*}\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right), \mathrm{F}^{*}\left(\mathrm{U}_{1}, \mathrm{U}_{3}\right), \mathrm{F}^{*}\left(\mathrm{U}_{2}, \mathrm{U}_{3}\right), \mathrm{F}^{*}\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}\right)\right)$
by letting $N=12, U_{1}=U_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $U_{3}=\left[\begin{array}{rr}1 & 1 \\ -1 & 1 \\ 0 & -2\end{array}\right]$
Figure $\dot{z} . \hat{z}$ iiiustrates the resulting iz x iz matrix.

$$
L=\left[\begin{array}{rrrrrrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & 1 & 1 & 0 & -2 & 1 & 0 & -2 & 0 & -2 & 0 & -2 \\
1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & 0 & -2 & -1 & 0 & -2 & 0 & 2 & 0 & 2 \\
1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 \\
1 & -1 & 1 & 0 & -2 & -1 & 0 & 2 & 0 & -2 & 0 & 2 \\
1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 \\
1 & -1 & -1 & 0 & -2 & 1 & 0 & 2 & 0 & 2 & 0 & -2
\end{array}\right]
$$

Figure 2.2--A Matrix L defining the 8 factorial effects of a $2 \times 2 \times 3$ factorial arrangement.

An effect in the model $Y=$ M+e is $\lambda^{\prime} M$ where λ is an $N \times 1$ vector. If an effect is not known then an estimate of that effect must be obtained before a confidence interval can be constructed.

Definition 2.11: An effect $\lambda^{\prime} M$ in the model $Y=M+e$ is estimable if
there exists an $N \times 1$ vector γ such that $E\left(\gamma^{\prime} Y\right)=\lambda^{\prime} M$.
Since $E(Y)=M$ in the model $Y=M+e$ then $E\left(\lambda^{\prime} Y\right)=\lambda^{\prime} M$ and any effect is estimable. In the factorial effects model $L^{\prime} Y=L^{\prime} M+L^{\prime} e$, $E\left(L^{\prime} Y\right)=L ' M$ and thus $L^{\prime} Y$ estimates $L^{\prime} M$.

Many times the emphasis is not on estimation of the various factorial effects but is on the testing of hypotheses concerning the various factorial effects. In this situation the estimates of the factorial effects can be utilized to produce a concise expression of the
usual sums of squares appearing in an A.O.V. table.
The usual assumption of the model $Y=$ Mre is that e is distri-
 $E\left(e e^{\prime}\right)=\sigma^{2} I_{N}$. Under these conditions Graybill (9) has shown that the quadratic form $Y^{\prime} A Y$ is distributed as a noncentral chi-squared variable with parameters k and $\frac{M^{\prime} A M}{2 \sigma^{2}}$ if and only if A is an idempotent matrix of rank k. Furthermore he has shown that the two quadratic forms $Y^{\prime} A Y$ and Y'BY are independent if and only if $A B=\emptyset$. Since Fishers F statistic is the ratio of two independent chi-squared variables each divided by its degrees of freedom, we are interested in determining the ranks of idempotent matrices appearing in quadratic forms and in determining the independence of two or more quadratic forms.

Definition 2.12: Let $S^{\prime} M$ be a set of r effects such that $S^{\prime} S=I_{r}$. Then the quadratic form $\mathrm{Y}^{\prime} \mathrm{SS}^{\prime} \mathrm{Y}$ is the sum of squares due to $S^{\prime} M$ and $S S '^{\prime}$ is the matrix of the quadratic form Y 'SS'Y. The following theorems establish the ranks and idempotent properties of the matrices of the quadratic forms that partition the total sum of squares into the sums of squares due to the factorial effects.

Let $\left(\tilde{J}_{n_{i}}, \tilde{U}_{i}\right)$ be an orthogonal $n_{i} \times n_{i}$ matrix. Then $\left(\tilde{J}_{n_{i}}, \tilde{U}_{i}\right)$ '
$\left(\bar{J}_{n_{i}}, \tilde{U}_{i}\right)=I_{n_{i}}$ and also $\left(\tilde{J}_{n_{i}}, \tilde{U}_{i}\right)\left(\tilde{J}_{n_{i}}, \tilde{U}_{i}\right)^{\prime}=\tilde{J}_{n_{i}} \tilde{J}_{n_{i}}^{\prime}+\tilde{U}_{i} \bar{U}_{i}^{\prime}=I_{n_{i}}$. Denoting $\tilde{J}_{n_{i}} \bar{J}_{\mathbf{n}_{i}}^{\prime}$ by $K_{n_{i}}$ we have $\tilde{U}_{i} \tilde{U}_{i}^{\prime}=I_{n_{i}}-K_{n_{i}}$.

Theorem 2.26: $\quad K_{n_{i}}$ is an idempotent matrix of rank.

Proof: $\quad K_{n_{i}} K_{n_{i}}=\tilde{j}_{n_{i}} \tilde{j}_{n_{i}}^{\prime} \tilde{J}_{n_{i}} \tilde{j}_{n_{i}}^{\prime}=\tilde{j}_{n_{i}} 1 \tilde{j}_{n_{i}}^{\prime}=\tilde{J}_{n_{i}} \bar{j}_{n_{i}}^{\prime}=K_{n_{i}}$

$$
\rho\left(K_{n_{\underline{i}}}\right)=\rho\left(\tilde{J}_{n_{\underline{f}}} \tilde{J}_{n_{\underline{f}}}^{\prime}\right)=\rho\left(\tilde{J}_{n_{f}}\right)=1
$$

Theorem 2.27: If A is an $n \times n$ idempotent matrix of rank r then $I_{n}-A$ is an idempotent matrix of rank $n-r$.

Proof: $\quad\left(I_{n}-A\right)\left(I_{n}-A\right)=I_{n}-A-A+A^{2}=I_{n}-A$ since $A^{2}=A$. Since the rank and trace of an idempotent matrix are equal, then

$$
\rho\left(I_{n}-A\right)=\operatorname{tr}\left(I_{n}-A\right)=\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}(A)=n-r
$$

Corollary 2.1: $\quad I_{n_{i}}-K_{n_{i}}$ is an idempotent matrix of rank $n_{i}-1$.
Theorem 2.28:

$$
\left(I_{n_{i}}-K_{n_{i}}\right) K_{n_{i}}=K_{n_{i}}\left(I_{n_{i}}-K_{n_{i}}\right)=\emptyset
$$

Proof: ($\left.I_{n_{i}}-K_{n_{i}}\right) K_{n_{i}}=K_{n_{i}}-K_{n_{i}}^{2}=K_{n_{i}}-K_{n_{i}}=K_{n_{i}}^{2}-K_{n_{i}}=$

$$
K_{n_{i}}\left(I_{n_{i}}-K_{n_{i}}\right)=\emptyset
$$

Theorem 2.29: The matrix of the quadratic form of the mean effect is $K_{N}=\frac{1}{N} J_{N} J_{N}^{\prime} \cdot$ Furthermore K_{N} is an idempotent matrix of rank 1 .

Proof: The mean effect is given by $J_{N}^{\prime M}$. Letting $\bar{J}_{N}^{\prime} M$ denote the normalized mean effect, we get $\tilde{J}_{N}=\frac{J_{N}}{\sqrt{N}}$ and $\frac{1}{N} J_{N_{N}} J_{N}^{\prime}=\tilde{J}_{N} \tilde{J}_{N}^{\prime}=K_{N}=F *\left(\tilde{J}_{n_{1}}, \tilde{J}_{n_{2}}, \ldots, \tilde{J}_{n_{m}}\right)$ $\left[F *\left(\tilde{J}_{n_{1}}, \bar{J}_{n_{2}}, \ldots, \tilde{J}_{n_{m}}\right)\right]=$
$F *\left(j_{n_{1}} \tilde{J}_{n_{1}}^{\prime}, \tilde{J}_{n_{2}} \tilde{J}_{n_{2}}^{\prime}, \ldots, \tilde{J}_{n_{m}} \tilde{J}_{n_{m}}^{\prime}\right)=F *\left(K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{m}}\right)$.
By Theorem 2.8 and Theorem $2.13 \mathrm{~K}_{\mathrm{N}}$ is idempotent with rank 1.

Theorem 2.30: The matrix of the quadratic form of the A_{i} effect is

$$
F *\left(K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{i-1}}, I_{n_{i}}-K_{n_{i}}, K_{n_{i+1}}, \ldots, K_{m}\right)
$$

Moreover this matrix is idempotent with rank $n_{i}-1$.
Proof: Let $\tilde{F} *\left(U_{i} ;\right.$ denote the normalized arguments of $F *\left(U_{i}\right)$.
Then $\tilde{F} *\left(U_{i}\right)\left[F *\left(U_{i}\right)\right]^{\prime}=$
$F *\left(\bar{J}_{n_{1}} \bar{J}_{n_{i}}^{\prime}, \ldots, \bar{J}_{n_{i-1}} \tilde{J}_{n_{i-1}}^{\prime}, \tilde{U}_{i} \tilde{U}_{i}^{\prime}, \tilde{J}_{n_{i+1}} \bar{J}_{n_{i+1}}^{\prime}, \ldots, \tilde{J}_{n_{m}} \tilde{J}_{n_{m}^{\prime}}^{\prime}\right)=$ $F *\left(K_{n_{1}}, \ldots, K_{n_{i-1}}, I_{n_{i}}-K_{n_{i}}, K_{n_{i+1}}, \cdots, K_{n_{m}}\right)$
and is by Theorem 2.8 and Theorem 2.13 an idempotent matrix of rank $n_{1} \mathbf{- 1}$.

Theorem 2.31: The matrix of the quadratic form of the $A_{\mathbf{1}_{1}} A_{\mathbf{i}_{2}} \ldots A_{\mathbf{i}_{k}}$

an idempotent matrix of $\operatorname{rank}\left(n_{i_{1}}-1\right)\left(n_{i_{2}}-1\right) \ldots\left(n_{i_{k}}-1\right)$.
Proof: $\quad \overline{\mathrm{F}} *\left(\mathrm{U}_{\mathrm{i}_{1}}, \mathrm{U}_{\mathrm{i}_{2}}, \ldots, \mathrm{U}_{\mathrm{i}_{k}}\right)\left[\overline{\mathrm{F}}^{*}\left(\mathrm{U}_{\mathrm{i}_{1}}, \mathrm{U}_{\mathrm{i}_{2}}, \ldots, \mathrm{U}_{\mathrm{i}_{k}}\right)\right]^{\prime}$ is by definition the matrix of the quadratic form and by Theorem 2.4 we get the desired matrix.

Since the Kronecker product of idempotent matrices is idempotent we have the matrix of the quadratic form of the $A_{\mathbf{i}_{1}} \mathbf{A}_{\mathbf{1}_{\mathbf{2}}} \ldots \mathbf{A}_{\mathbf{1}_{k}}$ effect is idempotent with rank $\left(n_{1_{1}}-1\right)\left(n_{i_{2}}-1\right) \ldots\left(n_{i_{k}}-1\right)$.

Theorem 2.32: The product of the matrices of quadratic forms of two distinct factorial effects is the zero matrix.

Proof: The $i^{\text {th }}$ argument of F * representing the matrix of the quadratic
form of any factorial effect is either $K_{n_{i}}$ or $I_{n_{i}}-K_{n_{i}}$. Since the factorial effects are distinct, one of the arguments, sā̈ thie j th is $\ddot{n}_{n_{j}}$ ful une oí cine quadraide fuims whifle the $j^{\text {th }}$ argument of the other quadratic form is $\mathbf{I}_{\mathbf{n}_{\mathbf{j}}}-\mathrm{K}_{\mathbf{n}_{\mathbf{j}}}$. Then by Theorem 2.5 and Theorem 2.28 we get the desired result. The sum of the matrices of the quadratic form of the 2^{m} factorial effects is

$$
\begin{aligned}
& \sum_{i=1}^{m} \quad W_{i} \varepsilon\left\{I_{n_{i}}-K_{n_{i}}, K_{n_{i}}\right\} \quad F *\left(W_{1}, W_{2}, \ldots, W_{m}\right)= \\
& \text { m-1 } \\
& \left.{ }_{i=1}^{\sum} W_{i} \varepsilon\left\{I_{n_{i}}-K_{n_{i}}, K_{n_{i}}\right\}^{\left[F * \left(W_{1}, W_{2}, \ldots, W_{m-1}, I_{n_{i}}\right.\right.}-K_{n_{i_{1}}}\right)+ \\
& \left.F *\left(W_{1}, W_{2}, \ldots, W_{m-1}, K_{n_{i_{1}}}\right)\right]= \\
& \text { m-1 } \\
& \sum_{i=1}^{\sum} \quad W_{i} \varepsilon\left\{I_{n_{i}}{ }^{\Sigma} K_{n_{i}}, K_{n_{i}}\right\} \quad{ }^{F *}\left(W_{1}, W_{2}, \ldots, W_{m-1}, I_{n_{i}}\right)= \\
& F *\left(I_{n_{1}}, I_{n_{2}}, \ldots, I_{n_{m}}\right)=I_{N} .
\end{aligned}
$$

Thus the sum of the quadratic forms of the 2^{m} factorial effects is the total sum of squares $Y^{\prime} I_{N} Y$.

Table 2.1 gives abbreviated A.O.V. of one replicate $n_{1} \times n_{2} \times \ldots x n_{m}$ factorial. Since it is customary to call the rank of an idempotent matrix of a quadratic form the degrees of freedom of the quadratic form, the ranks of the matrices of the quadratic forms of the factorial effects will give the degrees of freedom (d.f.) column.

An abbreviated analysis of variance table for one replicate of a $2 \times 2 \times 3$ factorial arrangement of treatments is given in Table 2.2 .

TABLE 2.1
abbreviated analysis of variance table for one replicate OF AN $n_{1} \times n_{2} \times \ldots \times n_{m}$ FACTORIAL ARRANGEMENT
of tpeatmentes

Source	d.f.	S.S.
Total	$n_{1} n_{2} \cdots n_{m}$	Y'Y
Mean	1	$\mathrm{Y}^{\prime} \mathrm{K}_{\mathrm{N}} \mathrm{Y}$
A_{1}	$n_{1}{ }^{-1}$	$Y^{\prime}\left(I_{n_{1}}-K_{1} 8 K_{1} n_{2}^{\left.8 \ldots 8 K_{n_{m}}\right) Y}\right.$
A_{2}	$n_{2}{ }^{-1}$	$Y^{\prime}\left(K_{n_{1}}^{8 I} I_{2} K_{n_{2}}^{8 K} K_{n}^{\left.\otimes \ldots 8 K_{n_{m}}\right) Y}\right.$
-	-	-
-		
A_{m}	n_{m}^{-1}	$Y^{\prime}\left(K_{n_{1}}^{\otimes \ldots} \ldots K_{n_{m-1}} \otimes I_{n_{m}}-K_{n_{m}}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2}$	$\left(n_{1}-1\right)\left(n_{2}-1\right)$	$Y^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{\otimes I_{n}}-K_{n_{2}}^{8 K_{n_{3}}^{\otimes}} \ldots \otimes K_{n_{m}}\right) Y$
-	-	-
-		
$A_{m-1} A_{m}$	$\left(n_{m-1}-1\right)\left(n_{m}^{-1}\right)$	$Y^{\prime}\left(K_{n_{1}}^{\otimes \ldots \otimes K_{n-2}} I_{m-1}-K_{n_{m-1}}^{\left.\otimes I_{n_{m}}-K_{m}\right) Y}\right.$
-	-	-
-		
$\mathrm{A}_{1} \mathrm{~A}_{2} \cdots$	$\left(n_{1}-1\right)\left(n_{2}-1\right) \ldots\left(n_{m-1}-1\right)$	$Y^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{\otimes I_{n_{2}}-K_{n}^{8} \ldots \otimes I_{m-1}}-K_{n_{m-1}}^{\otimes K_{n}}\right) Y$
-	-	-
-	-	
$\mathrm{A}_{2} \mathrm{~A}_{3} \cdots$	$\left(n_{2}-1\right)\left(n_{3}-1\right) \ldots\left(n_{m}-1\right)$	$Y^{\prime}\left(K_{n_{1}} \otimes I_{n}-K_{n_{2}}^{8 I} n_{3}-K_{n} 8 \ldots 8 I_{n_{m}}-K_{n}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2} \ldots$	$\left(n_{1}-1\right)\left(n_{2}-1\right) \ldots\left(n_{m}-1\right)$	$Y^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{8 I_{n}}-K_{n}^{8 \ldots 8 I_{n}}-K_{n}\right) Y$

TABLE 2.2
abbreviated analysis of variance table for one replicate OF A $2 \times 2 \times 3$ FACTORIAL ARRANGEMENT OF TREATMENTS

Source	d.f.	S.S.
Total	12	Y'Y
Mean	1	$Y^{\prime} K_{12}{ }^{\text {Y }}$
A_{1}	1	$Y^{\prime}\left(I_{2}-K_{2} \otimes K_{2} \otimes K_{3}\right) Y$
A_{2}	1	$Y^{\prime}\left(K_{2} \otimes I_{2}-K_{2} \otimes K_{3}\right) Y$
A_{3}	2	$Y^{\prime}\left(K_{2} \otimes K_{2} \otimes I_{3}-K_{3}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2}$	1	$Y^{\prime}\left(\mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{~K}_{3}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{3}$	2	$Y^{\prime}\left(I_{2}-K_{2} \otimes \mathrm{~K}_{2} \otimes \mathrm{I}_{3}-\mathrm{K}_{3}\right) \mathrm{Y}$
$\mathrm{A}_{2} \mathrm{~A}_{3}$	2	$Y^{\prime}\left(\begin{array}{l}K_{2}\end{array} \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{I}_{3}-\mathrm{K}_{3}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$	2	$Y^{\prime}\left(I_{2}-K_{2} \otimes I_{2}-K_{2} \otimes I_{3}-K_{3}\right) Y$

A situation frequently encountered is that only one replicate of a factorial arrangement of treatments is available. In this instance no estimate of experimental error is guailable frem the data unless it is known that some factorial effect is zero.

A frequent practice is to assume that the interaction of highest order is negligible. Upon making this assumption we have

$$
\begin{aligned}
& E\left[Y ^ { \prime } \left(I_{n_{1}}-K_{n_{1}}^{\otimes I} n_{2}-K_{n_{2}}^{\left.\left.\otimes \ldots \otimes I_{n_{m}}-K_{m}\right) Y\right]=}\right.\right. \\
& E\left[(M+e)^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{8 I_{n}}-K_{2} n_{2}^{8} \ldots \otimes I_{n_{m}}-K_{m}\right)(M+e)\right]= \\
& E\left[e^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{\otimes I_{n}} n_{n_{2}} K_{m} \ldots \otimes I_{n_{m}}-K_{n_{m}}\right) e\right]= \\
& \sigma^{2} \operatorname{tr}\left(I_{n_{1}}-K_{n_{1}} 8 I_{n_{2}}-K_{n_{2}}^{\otimes \ldots \otimes I_{m}}{ }_{m} K_{m}=\right. \\
& \left(n_{1}-1\right)\left(n_{2}-1\right) \ldots\left(n_{m}-1\right) \sigma^{2} .
\end{aligned}
$$

If e is assumed to be distributed as a multivariate normal random variable, the quadratic form $\frac{1}{\sigma^{2}} Y^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{8 I} I_{2}-K_{n_{2}}^{8 \ldots 8 I_{n_{m}}}-K_{n_{m}}\right) Y$ is distributed as a chi-squared random variable with parameters $\left(n_{1}-1\right)\left(n_{2}-1\right) \ldots\left(n_{m}-1\right)$. To test a hypothesis that some factorial effect other than the highest order interaction effect is zero, the ratio of the mean squares is formed and this ratio is compared to the critical value of the F of the appropriate degrees of freedom.

Although the assumption concerning the highest order interaction may be untenable, the proposed test is conservative in that the "true" Type I error is less than that used to obtain the critical F value.

A completely randomized design (C.R.D.) is a design in which the treatments are randomly assigned to the experimental units.

If r replicates of the N treatment of an $n_{1} \times n_{2} \times \ldots \times n_{m}$
factorial arrangements is desired than Nr experimental units are required. The Nr experimental units are partitioned in some random fashion into N
 random to the N sets of experimental units.

We than have the r simple linear models $Y_{i}=M_{i+}$ for $i=1, \ldots, r$. These can be combined into the simple model $Y *=M *+{ }^{*}$ where

$$
Y^{*}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
\cdot \\
Y_{r}
\end{array}\right) \quad, M^{*}=J_{r} \otimes M \quad \text { and } \quad e^{*}=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\cdot \\
\cdot \\
e_{r}
\end{array}\right)
$$

Y^{*} is an $\mathrm{Nr} \times 1$ vector, M^{*} is the $\mathrm{Nr} \times 1$ vector
$E\left(e^{*} e^{*}\right)=\sigma^{2} I_{N r}$. For tests of hypotheses e^{*} is also assumed to be distributed as a multivariate normal random variable.

The Gauss-Markoff Theorem states that the best linear unbiased estimate of M is given by the least squares estimate and is

$$
\hat{M}=\bar{Y}=\frac{1}{r} \sum_{i=1}^{r} Y_{i}
$$

Theorem 2.33: $\quad Y \star^{\prime}\left(I_{r}-K_{r} \otimes I_{N}\right) Y *$ is an unbiased estimate of $N(r-1) \sigma^{2}$.
Proof: $E\left[Y^{*^{\prime}}\left(I_{\mathbf{r}}-K_{r} \otimes I_{N}\right) Y^{*}\right]=E\left[\left(J_{\mathbf{r}} 8 M+e^{*}\right)^{\prime}\left(I_{\mathbf{r}}-K_{r} \otimes I_{N}\right)\left(J_{\mathbf{r}} 8 M+e^{*}\right)\right]=$

$$
E\left[\left(J_{r} 8 M\right)^{\prime}\left(I_{r}-K_{r} 8 I_{N}\right)\left(J_{r} 8 M\right)+e^{*}\left(I_{r}-K_{r} \otimes I_{N}\right) e^{*}\right]=
$$

$$
\left(J_{\mathbf{r}}^{\prime}\left(I_{\mathbf{r}}-K_{\mathbf{r}}\right) J_{\mathbf{r}}\right) \otimes\left(M^{\prime} I_{N} M\right)+E\left[e^{*^{\prime}}\left(I_{\mathbf{r}}-K_{\mathbf{r}} \otimes I_{N}\right) e^{\star}\right]=
$$

$$
\begin{aligned}
& 0 \otimes M^{\prime} M+E\left[e^{{ }^{\prime}}\left(I_{r}-K_{r} \otimes I_{N}\right) e^{\star}\right]= \\
& \sigma^{2} \operatorname{tr}\left(I_{r}-K_{r} \otimes I_{N}\right)=\sigma^{2}(r-1) N .
\end{aligned}
$$

The total sum of squares is the sum of the sums of squares due to error and treatments. Thus $Y *^{\prime} Y *=Y *^{\prime}\left(I_{r}-K_{r} \otimes I_{N}\right) Y *+Y *^{\prime}\left(K_{r} 8 I_{N}\right) Y *$ and $Y *^{\prime}\left(K_{r} \otimes I_{N}\right) Y *$ is the sum of squares due to treatments. In the simple model $Y *=J_{r} 8 M+e^{*}$, the estimate of $J_{r} Q M$ is $J_{r} 8 \overline{\mathrm{Y}}$. Thus the sum of squares

The matrix $\overline{\mathrm{J}}_{\mathbf{r}}$ 岂 defines the factorial effects in the model
 then we have seen that $S^{\prime} Y$ estimates this effect. ($\tilde{J}_{\mathbf{r}} 8 S$) ' $\left(\mathrm{J}_{\mathbf{r}} 8 \mathrm{M}\right)$ is the factorial effect in the model $Y *=J_{r} \otimes M+e *$ and the estimate of this effect

 $\mathrm{J}_{\mathbf{r}}^{\prime} \mathrm{K}_{\mathbf{r}} \mathrm{J}_{\mathbf{r}}{ }^{8} \overline{\mathrm{Y}} \mathrm{S}^{\prime} \mathrm{SS}^{\prime} \overline{\mathrm{Y}}=\mathbf{r} \overline{\mathrm{Y}}^{\prime} \mathrm{SS}^{\prime} \overline{\mathrm{Y}}$.

Table 2.3 gives an A.O.V. for a C.R.D. of an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement. A randomized complete block design (R.C.B.D.) is a design in which blocks of experimental material is available. The blocks may occur naturally or may be chosen. The basic motivation for the randomized complete block design is that blocks of homogeneous units may be chosen with the units in different blocks differing considerably. In this design it is desirable to account for the differences in block totals. The blocks of experiments are chosen randomly and the N units of a block are randomly assigned to the N treatments of an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement.

The randomized complete block design can be analyzed as a single

TABLE 2.3
abbreviated analysis of variance for r replicates OF A C.R.D. OF AN $n_{1} \times n_{2} \times \ldots n_{m}$

FACTORIAL ARRANGEMENT

Source	d.f.	S.S.
Total	rN	$\underset{i=1}{\Sigma} Y_{i}^{\prime} Y_{i}$
Mean	1	${ }^{\text {r }}{ }^{\prime} K_{N} \overline{\mathrm{Y}}^{\prime}$
${ }^{\text {A }} 1$	$n_{1}{ }^{-1}$	$r \bar{Y}^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{8 K_{n}}{ }^{8} \ldots 8 K_{n}\right) \bar{Y}$
A_{m}	$n_{m}-1$	$r \bar{Y}^{\prime}\left(K_{n_{1}} \otimes \ldots 8 K_{n_{m-1}} 8 I_{n_{m}}-K_{n_{m}}\right) \bar{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{2}$	$\left(n_{1}-1\right)\left(n_{2}^{-1)}\right.$	$r \bar{Y}^{\prime}\left(I_{n_{1}}-K_{n_{1}} \otimes I_{n_{2}}-K_{n_{2}}^{\otimes K} K_{3}^{\otimes \ldots \otimes K_{n}}\right) \bar{Y}$
$A_{m-1} A_{m}$	$\left(n_{m-1}-1\right)\left(n_{m}^{-1}\right)$	$r \bar{Y}^{\prime}\left(K_{n_{1}}^{\otimes \ldots 8 K_{n_{m-2}}} I_{m-1}-K_{m-1} \otimes I_{n_{m}}-K_{n_{m}}\right) \bar{Y}$
$A_{1} A_{2} \cdots A_{m}$	$\left(n_{1}-1\right)\left(n_{2}-1\right) \ldots\left(n_{m}-1\right)$	
error	($\mathrm{r}-1$) N	$\sum_{i=1}^{Y}\left(Y_{i}-\bar{Y}\right)^{\prime}\left(Y_{i}-\bar{Y}\right)$

replicate of $a b \times n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement of treatments, but instead of using only the highest order interaction for a measure of error, all interactions involving blocks are used for the measure of error.

The model is $\mathrm{Y} *=\mathrm{M} *+\alpha \otimes \mathrm{J}_{\mathrm{N}}+\mathrm{e}^{*}$ where

$$
Y^{*}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{b}
\end{array}\right) \quad, M^{*}=J_{b} \otimes M \quad, \quad \alpha=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{b}
\end{array}\right) \quad \text { and } \quad e^{*}=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{b}
\end{array}\right)
$$

The sums of squares of this design are obtained in the same manner as in the completely randomized design with the exception that block sums of squares are taken from the error sums of squares.

Table 2.4 gives an analysis of variance for blocks of a randomized complete blocks design of an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement of treatments.

TABLE 2.4

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR b BLOCKS OF AR.C.B.D. OF AN $n_{1} \times n_{2} \times \ldots \times n_{m}$ FACTORIAL ARRANGEMENT OF TREATMENTS

Source	d.f.	S.S.
Total	bN	$\sum_{i=1}^{b} Y_{i}^{\prime} Y_{i}$
Mean	1	$\mathrm{b}^{\mathbf{Y}} \mathrm{K}_{\mathrm{N}} \mathrm{Y}^{\mathbf{Y}}$
Blocks	b-1	$Y^{*}{ }^{\prime}\left(I_{b}-K_{b}{ }^{8} K_{N}\right) Y^{*}$
${ }^{\text {A }}$	$n_{1}{ }^{-1}$	$b \bar{Y}^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{8 K_{n}} \otimes \ldots \otimes K_{n_{m}}\right) \bar{Y}$
-	-	-
-	-	
$A_{\text {m }}$	n_{m}^{-1}	$b \bar{Y}^{\prime}\left(K_{n_{1}}^{8 \ldots} \ldots K_{m-1} I_{m}-K_{m}\right) \bar{Y}$
${ }^{A}{ }_{1}{ }_{2}$	$\left(n_{1}-1\right)\left(n_{2}-1\right)$	$b \bar{Y}^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{\otimes I I_{n}}-K_{n_{2}}^{\theta K_{n}} \otimes \ldots \otimes K_{n_{m}}\right) \bar{Y}$
-	-	-
-	-	
$A_{m-1} A_{m}$	$\left(n_{m-1}-1\right)\left(n_{m}-1\right)$	$b \bar{Y}^{\prime}\left(K_{n_{1}} \otimes \ldots 8 K_{n_{m-2}} \theta I_{m-1}-K_{n_{m-1}} \theta I_{m}-K_{n_{m}}\right) \bar{Y}$
-	-	
-	.	
$A_{1} A_{2} \ldots A_{\text {m }}$	$\left(n_{1}-1\right)\left(n_{2}-1\right) \ldots\left(n_{m}-1\right)$	$b \bar{Y}^{\prime}\left(I_{n_{1}}-K_{n_{1}}^{\left.\otimes I I_{n_{2}}-K_{n} \otimes \ldots I_{n_{m}}-K_{m}\right) \bar{Y}, ~}\right.$
Residual	(b-1) (N-1)	$\mathrm{Y}^{\prime}\left(\mathrm{I}_{\mathrm{b}}-\mathrm{K}_{\mathrm{b}}{ }^{81} \mathrm{I}_{\mathrm{N}}-\mathrm{K}_{\mathrm{N}}\right) \mathrm{Y} *$

CHAPTER III

ESTIMATION AND ANALYSIS OF PARTITIONED FACTORIAL ARRANGEMENTS OF TREATMENTS

Abstract

Frequently a factorial arrangement of treatments is so large that it becomes difficult to get a replicate of homogeneous experimental units. From practical considerations it is often impossible to obtain large homogeneous replicates, especially if the replicate consists of litter mates of laboratory animals or hospital out-patients in a specific age-sex-race classification. It may also be that the units within a replicate are fairly homogeneous originally but change with time and the factorial arrangement is so large that all the treatments cannot be applied in a sufficiently small time span. Consequently time becomes a factor or "factor" and the heterogenedty of units results in larger errors and loss of power in tests of hypotheses.

To circumvent the problem of heterogeneous errors the technique of blocking is employed. By this technique the units of a replicate are partitioned into a number of blocks of units where the units within each block are more homogeneous than units within the replicate. The blocks may occur naturally as in the case of litter mates of laboratory animals or they may be determined by actually selecting a homogeneous group of units.

While a judicious choice of a blocking plan yields a set of
homogeneous blocks of units, the incorporation of a blocking plan in a factorial arrangement of treatments produces an inherent loss in the number of orthogonal estimable effects. The blocks are selected to be homogeneous within themselves and thus the blocks differ considerably. Any comparison between treatments applied in different blocks reflects both block differences and treatment differences. Thus we say that comparisons between treatments in different blocks are confounded with blocks.

The theory of blocking is simplified by partitioning the set of design points T and applying the treatments corresponding to a block of T to a homogeneous set of experimental units of the exact size to accomodate the treatments.

Definition 3.1: The collection of subsets $B=\left\{\beta_{i}: i=1,2, \ldots, b\right\}$ of T is a blocking plan or partition of T if

1) $\underset{i=1}{b} B_{i}=T \quad$ and 2) $\beta_{i} \cap \beta_{j}$ is null for $i \neq j$.

Since comparisons among treatments in differeni blocks have little meaning, only plans in which the size (number of treatments) of each block is larger than 1 will be considered.

Definition 3.2: The $N \times 1$ vector X_{1} is the incidence matrix of the block β_{i} of a plan B and is defined by the characteristic function $X_{i}^{\text {K }}$ where

$$
x_{i}=x_{i}^{*}(T)=\left(\begin{array}{c}
x_{i_{1}}^{*}(1) \\
x_{i_{2}}^{*}(2) \\
\vdots \\
x_{i_{N}}^{*}(N)
\end{array}\right) \quad \text { where } x_{i_{j}}^{*}(j)= \begin{cases}1 & \text { if } j \varepsilon \beta_{i} \\
0 & \text { otherwise. }\end{cases}
$$

T has the lexicographic ordering.
Definition 3.3: $x=\left(x_{1}, x_{2}, \ldots, x_{b}\right)$ is the incidence matrix of the blocking plan $B=\left\{\beta_{i}: i=1,2, \ldots, b\right\}$.

It follows from the definitions of blocking plan and characteristic matrix that $X J_{b}=J_{N}$ and $x_{i} \theta x_{j}=\delta_{i j} x_{i}$ where

$$
\delta_{i j}=\left\{\begin{array}{lll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right.
$$

Figure 3.1 gives the incidence matrices of two plans of a $2 \times 2 \times 3$ factorial.

Figure 3.1--The incidence matrices of two blocking plans of a $2 \times 2 \times 3$ factorial.

With a given blocking plan B the model for the factorial arrangement of treatments is assumed to be $Y=M+X \alpha+e$ where Y is the observational vector, M is the vector of treatment means,

$$
a=\left|\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{b}
\end{array}\right| \quad \text { where } a_{i}
$$

is the additive effect due to β_{i} and e is an $N \times 1$ vector of independent and identically distributed errors with a zero mean and a variance of σ^{2}. This model is equivalent to the model

$$
\sum_{i=1}^{b} x_{i} \theta Y=\sum_{i=1}^{b}\left(x_{i} \theta M+a_{i} x_{i}+x_{i} \theta e\right) \text { and it is easy }
$$

to see that the observational model for the units in β_{i} is $X_{i} \theta Y=x_{i} \theta M+a_{i} X_{i}+x_{i} \theta$ e.

In the model $Y=M+e$ we have seen that $\lambda^{\prime} Y$ is the estimate of $\lambda^{\prime} M$. However in the model $Y=M+X \alpha+e, E\left(\lambda^{\prime} Y\right)=\lambda^{\prime} M+\lambda^{\prime} X \alpha$ and thus $\lambda^{\prime} M$ is estimable if $\lambda^{\prime} X \alpha=0$.

Mann (15) gave a brief discussion of the technique of blocking and confounding. His definition of confounding is equivalent to the following definition although he chose not to use the concept of the Hadamard product.

Definition 3.4: An effect $\lambda^{\prime} M$ is confounded with the block β_{i} of a plan B if $X_{i} \Theta \lambda=c X_{i}$ where c is a scalar.

A set of r effects $S^{\prime} M$ is confounded with the block β_{i} if $X_{i} \otimes S=\left(c_{1} X_{i}, c_{2} X_{i}, \ldots, c_{r} X_{i}\right)$ and $S^{\prime} M$ is confounded with each block of a plan B if
$X \in S=\left(c_{11} x_{1}, c_{12} x_{1}, \ldots, c_{1 r} x_{1}, c_{21} x_{2}, c_{22} x_{2}, \ldots, c_{2 r} x_{2}, \ldots\right.$,

$$
\left.c_{b 1} x_{b}, c_{b 2} x_{b}, \ldots, c_{b r} x_{b}\right)
$$

Definition 3.5: An effect $\lambda^{\prime} M$ is orthogonal to the block B_{i} of a plan B if $\lambda^{\prime} x_{i}=0$.
A set of r effects $S^{\prime} M$ is orthogonal to β_{i} if $S^{\prime} X_{i}=\emptyset$ and $S^{\prime} M$ is orthogonal to each block of a plan B if $S^{\prime} X=\varnothing$.

Definition 3.6: An effect $\lambda^{\prime} M$ is partially confounded with the block β_{i} of a plan B if $\lambda^{\prime} M$ is neither orthogonal to β_{i} nor confounded with β_{i}.
The two theorems that follow are due to Mann (15).
Theorem 3.1: The mean effect $J_{N}^{\prime M}$ is confounded with each block of a plan B.

Proof: $X \in J_{N}=X \quad$ by Theorem 2.17.
Theorem 3.2: If a set of r effects $S^{\prime} M$ is confounded with β_{i} and γ is an $r \times 1$ vector, then $\left(S_{\gamma}\right)$ ' M is confounded with β_{i}.
Proof: x_{i} © $S \gamma=\left(x_{i} \oplus S\right) \gamma=\left(c_{1} x_{i}, c_{2} x_{i}, \ldots, c_{r} x_{i}\right) \gamma=$ $\left(c_{1}, c_{2}, \ldots, c_{r}\right) \gamma x_{i}=c x_{i}$ by Theorem 2.18.

Theorem 3.3: If $S^{\prime} M$ is a set of r effects orthogonal to each block of a plan B and A is an $r \times s$ matrix, then (SA) M is orthogonal to each block of B.

Theorem 3.4: Let B be a plan of blocks and let S'M be a set of b normalized orthogonal effects. Then S is confounded in each block of B if and only if $S=\bar{X} C$ where C is an orthogonal matrix and $\overline{\mathrm{X}}$ is the matrix resulting from the
normalization of the columns of X .
Proof: Since $S^{\prime} M$ is confounded in each block, then
$S=\left(\underset{i=1}{b} c_{i 1} \tilde{x}_{i}, \sum_{i=1}^{b} c_{i 2} \tilde{x}_{i}, \ldots, \sum_{i=1}^{b} c_{i b} \tilde{x}_{i}\right)=\tilde{x} c \quad$ and $I_{b}=S^{\prime} S=(\tilde{X} C)^{\prime}(\bar{X} C)=C^{\prime} \tilde{X}^{\prime} \tilde{X} C=C^{\prime} I_{b} C=C^{\prime} C$. Thus C is an orthogonal matrix. Conversely, if $S=X X C$, then $S^{\prime} M$ is confounded in each block of B by Theorem 3.2.

Theorem 3.5: Let (S, S) define a set of N normalized orthogonal effects where S is $N \times b$ and let B be a plan of blocks. Then $S^{\prime} M$ is confounded in each block of B if and only if $S *$ ' M is orthogonal to each block of B.

Proof: By Theorem 3.4, $S=\tilde{x} C$ where $C^{\prime} C=I_{b}$, and from $S^{*}{ }^{\prime} S=\emptyset$
 Conversely if $S^{\star \prime} M$ is orthogonal to each block of B, then $S^{* '} X=\emptyset=S^{* '} \bar{X}$. Now $\tilde{X}^{\prime} M$ is a set of b normalized orthogonal effects confounded with blocks. Since the columns of $\tilde{\mathrm{X}}$ and S respectively are orthonormal bases of the same subspace then there exists an orthogonal matrix C such that $S=\tilde{X} C$. Since $\bar{X} ' M$ is confounded in each block then S is confounded in each block by Theorem 3.2.

Theorem 3.6: If $\lambda_{1}^{\prime} M$ and $\lambda_{2}^{\prime M}$ are confounded in a block of β_{i} of a plan B then $\left(\lambda_{1} \quad \theta \quad \lambda_{2}\right)$ ' M is confounded in B_{i}.

Proof:

$$
\begin{aligned}
x_{i} \theta\left(\lambda_{1} \theta \lambda_{2}\right)= & \left(x_{i} \theta \lambda_{1}\right) \theta \lambda_{2}=c_{1} x_{i} \theta \lambda_{2}= \\
& c_{1}\left(x_{i} \theta \lambda_{2}\right)=c_{1} c_{2} x_{i} .
\end{aligned}
$$

Theorem 3.7: If a plan B of blocks confounds the b normalized orthogonal effects $S^{\prime} M$, then B is unique.

Proof: Let B_{k} be a plan of b blocks that confounds $S^{\prime} M$. Then by Theorem 3.4, $s=\tilde{X} c=\tilde{X}_{*} C_{t}$ where $\tilde{X}^{\prime} \tilde{X}=I_{b}=\tilde{X}_{*}^{\prime} \tilde{X}_{t}$ and $C^{\prime} C=I_{b}=C_{*}^{\prime} C_{*} . \quad$ Thus $\tilde{X}=\tilde{X}_{*} C_{k} C^{\prime}=\tilde{X}_{*} P$ and P is orthogonal. From $\tilde{X}=\tilde{X}_{\star} P$ we obtain $\tilde{X}_{i}=\tilde{X}_{k} \rho_{i}$ where $P=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{b}\right)$ and notice that each entry of ρ_{i} must be non-negative and at least one entry must be positive. Since $\rho_{i}^{\prime} \rho_{j}=0$ for $i \neq j$ we have that $\rho_{j} \Theta \rho_{i}=\emptyset$ for $i=1,2, \ldots, b$ and $i \neq j$ and furthermore that
 at least b-l positive entries which implies the ρ_{j} has at most one positive entry. Thus ρ_{j} has exactly one positive entry and thus $\mathbf{b - 1}$ entries of zero. Therefore P is a permutation matrix and the plans B and B_{t} are identical.

Definition 3.2: Let B_{1} and B_{2} be plans consisting of b_{1} and b_{2} blocks respectively. Then $B_{1} \cap B_{2}$ is the set

$$
B^{*}=\left\{\beta_{i j}^{*}: \beta_{i j}^{*}=\beta_{1 i} \cap \beta_{2 j}, i=1,2, \ldots, b_{1},\right.
$$

$$
\left.j=1,2, \ldots, b_{2}\right\}
$$

B^{*} is called the intersection of B_{1} and B_{2} and is a blocking plan. The incidence matrix of $\beta_{i j}^{*}$ is $X_{1 i}{ }^{\theta} X_{2 j}$ where $X_{1 i}$ and $X_{2 j}$ are the respective incidence matrices of $\beta_{1 i}$ and $\beta_{2 j}$. Letting the members of B^{*} assume the lexicographic order, we see that the incidence matrix of B^{*} is $X^{*}=X_{1} \Theta X_{2}$.

Figure 3.2 gives the incidence matrix of the intersection of Plan (a) and Plan (b) of Figure 3.1.

$$
X=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Figure 3.2-- The intersection of Plan (a) and Plan (b) of Figure 3.1 and its incidence matrix.

From practical considerations it is desirable to have blocks of equal size. The assumption of homogeneous errors is rarely met in most biological situations. It is intuitively obvious that the units of a small block can be chosen to be more homogeneous than the units of a large block. Blocks of equal size also are advantageous from a theoretical standpoint.

Theorem 3.8: Let B be a plan consisting of b blocks of size r. Then B confounds the set of b orthogonal effects $S^{\prime} M$ if and only if there exists a matrix C satisfying $S=X C$ and $C^{\prime} C=D$, a diagonal matrix.

Proof: By Theorem 3.4 B confounds $\tilde{\mathrm{S}}$ if and only if there exist an orthogonal matrix C_{*} such that $\tilde{S}=\tilde{X} C_{\star}$. Since

$$
\overline{\mathbf{x}}=\frac{1}{\sqrt{x}} \mathrm{X}
$$

then B confounds S and $S^{\prime} S=r D$ if and only if there exists a C such that $C^{\prime} C=D$ and $S=X C$.

Theorem 3.9: Let B_{1} and B_{2} be two plans of b_{1} and b_{2} blocks of equal size respectively and let $\left(\tilde{J}_{b_{1}}, W_{1}\right)$ and $\left(\tilde{J}_{b_{2}}, W_{2}\right)$ be
orthogonal matrices. If the effects $\left(X_{1} W_{1}\right)$ ' M are mutually orthogonal to the effects $\left(X_{2} W_{2}\right)$ ' M, then $X_{1}^{\prime} X_{2}=\frac{N}{b_{1} b_{2}} J_{b_{1}} J_{b_{2}}^{\prime}$ and thus the blocks of the plan $B_{1} \cap B_{2}$ are of equal size.

Proof: Since the effects $\left(X_{1} W_{1}\right)$ ' M are mutually orthogonal to the effects ($\mathrm{X}_{2} \mathrm{~W}_{2}$)'M, we have

$$
\begin{aligned}
\emptyset= & \left(x_{1} W_{1}\right) ' x_{2} W_{2}=W_{1}^{\prime} x_{1}^{\prime} x_{2} W_{2}=W_{1} W_{1}^{\prime} x_{1}^{\prime} x_{2} W_{2} W_{2}^{\prime}= \\
& \left(I_{b_{1}}^{-K_{b_{1}}}\right) x_{1}^{\prime} x_{2}\left(I_{b_{2}}^{-K_{b_{2}}}\right)=x_{1}^{\prime} x_{2}-K_{b_{1}} x_{1}^{\prime} x_{2}-x_{1}^{\prime} x_{2} K_{b_{2}}+ \\
& K_{b_{1}} x_{1}^{\prime} x_{2} K_{b_{2}}
\end{aligned}
$$

whence

$$
\begin{equation*}
x_{1}^{\prime} x_{2}=K_{b_{1}} x_{1}^{\prime} x_{2}+x_{1}^{\prime} x_{2} K_{b_{2}}-K_{b_{1}} x_{1}^{\prime} x_{2} K_{b_{2}} \tag{3.1}
\end{equation*}
$$

From

$$
\begin{aligned}
& J_{b_{1}}^{\prime} x_{1}^{\prime} x_{2}=\left(X_{1} J_{b_{1}}\right)^{\prime} x_{2}=J_{N}^{\prime} x_{2}=\frac{N}{b_{2}} J_{b_{2}}^{\prime} \text { and } \\
& x_{1}^{\prime} x_{2} J_{b_{2}}=x_{1}^{\prime} J_{N}=\frac{N}{b_{1}} J_{b_{1}} \quad \text { we obtain } \\
& \frac{N}{b_{2}} J_{b_{1}} J_{b_{2}}^{\prime}=J_{b_{1}} J_{b_{1}}^{\prime} X_{1}^{\prime} x_{2}=b_{1} K_{b_{1}} X_{1}^{\prime} x_{2} \text { and } \\
& \frac{N}{b_{1}} J_{b_{1}}^{J_{b_{2}}^{\prime}}=x_{1}^{\prime} X_{2} J_{b_{2}} J_{b_{2}}^{\prime}=b_{2} x_{1}^{\prime} x_{2} K_{b_{2}} \quad \text { respectively. }
\end{aligned}
$$

Since $\mathrm{K}_{\mathrm{b}_{1}}{ }^{\mathrm{J}_{b_{1}}}=\mathrm{J}_{\mathrm{b}_{1}}$, the last equality yields

$$
b_{2} K_{b_{1}} X_{1}^{\prime} X_{2} K_{b_{2}}=\frac{N}{b_{1}} J_{b_{1}} J_{b_{2}}^{\prime}
$$

Substituting for the quantities in (3.1) we obtain

$$
X_{1}^{\prime} x_{2}=\frac{N}{b_{1} b_{2}} J_{b_{1}} J_{b_{2}}^{\prime} \quad \text { which implies that each block of }
$$

of the plan $B_{1} \cap B_{2}$ is of size $\frac{N}{b_{1} b_{2}}$.

Since the blocks of $B_{1} \cap B_{2}$ are of equal size and $C^{\prime} C$ is diagonal where $c=\left(J_{b_{1}}^{\otimes J} b_{2}, W_{1} \otimes J_{b_{2}}, J_{b_{1}}^{\otimes W}, W_{1} \otimes W_{2}\right)$, then by Theorem 3.8 ($X_{1} \oplus X_{2}$)c defines a set of $b_{1} b_{2}$ orthogonal effects. Theorem 3.10: $\quad\left(\mathrm{X}_{1} \otimes \mathrm{X}_{2}\right)\left(\mathrm{J}_{\mathrm{b}_{1}}^{8 \mathrm{~J}_{\mathrm{b}_{2}}}, \mathrm{~W}_{1} \otimes \mathrm{~J}_{\mathrm{b}_{2}}, \mathrm{~J}_{\mathrm{b}_{1}}^{\otimes \mathrm{W}_{2}}\right)=\left(\mathrm{J}_{\mathrm{N}}, \mathrm{X}_{1} \mathrm{~W}_{1}, \mathrm{X}_{2} \mathrm{~W}_{2}\right)$ Proof: $\left(X_{1} \ominus X_{2}\right)\left(J_{b_{1}}^{\otimes J_{b_{2}}}\right)=\left(X_{1} \Theta X_{2}\right) J_{b_{1} b_{2}}=J_{N}$

$$
\text { Let } w_{i}=\left|\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{b_{i}}
\end{array}\right| \quad \text { denote a column of } w_{i}
$$

Then for $i=1 \quad\left(X_{1} \Theta X_{2}\right)\left(\omega_{1}{ }^{\otimes J_{b_{2}}}\right)=\left(x_{11} \Theta X_{2}, x_{12} \Theta X_{2}, \ldots, x_{1 b_{2}} \Theta X_{2}\right)\left|\begin{array}{c}w_{1} J_{b_{2}} \\ w_{2} J_{b_{2}} \\ \vdots \\ w_{b_{1}} J_{b_{2}}\end{array}\right|=$

$$
\begin{aligned}
& \sum_{j=1}^{b_{1}} w_{j}\left(x_{1 j} \theta x_{2}\right) J_{b_{2}}=\sum_{j=1}^{b_{1}} w_{j} x_{1 j} \Theta x_{2}^{J_{b_{2}}}= \\
& b_{1} \\
& \sum_{j=1}^{b_{1}} w_{j} x_{1 j} \theta J_{N}=\sum_{j=1}^{\sum} w_{j} x_{1 j}=x_{1} \omega_{1}
\end{aligned}
$$

thus

$$
\left(x_{1} \Theta x_{2}\right)\left(W_{1} \Theta J_{b_{2}}\right)=x_{1} W_{1}
$$

For $1=2$ we have

$$
\begin{aligned}
& \left(x_{1} \otimes x_{2}\right)\left(J_{b_{1}}^{\otimes \omega_{2}}\right)=\left(x_{11} \theta x_{2}, x_{12} \otimes x_{2}, \ldots, x_{1 b_{1}} \theta x_{2}\right) \\
& \sum_{j=1}^{b_{1}}\left(x_{1 j} \theta x_{2}\right) \omega_{2}=\sum_{j=1}^{b_{1}} x_{1,} \theta x_{2} \omega_{2}=J_{N} \theta x_{2} \omega_{2}=x_{2} \omega_{2} \quad \text { and }
\end{aligned}
$$

$$
\begin{gathered}
\left(\mathrm{X}_{1} \otimes \mathrm{X}_{2}\right)\left(\mathrm{J}_{\mathrm{b}_{1}}^{\left.\otimes W_{2}\right)}=\mathrm{X}_{2} \mathrm{~W}_{2} \cdot\right. \text { Thus } \\
\left(\mathrm{X}_{1} \otimes \mathrm{X}_{2}\right)\left(\mathrm{J}_{b_{1}}^{\otimes J_{b_{2}}}, \mathrm{~W}_{1} \otimes \mathrm{~b}_{b_{2}}, J_{b_{1}}^{\otimes W_{2}}\right)=\left(\mathrm{J}_{\mathrm{N}}, \mathrm{X}_{1} \mathrm{~W}_{1}, X_{2} W_{2}\right) .
\end{gathered}
$$

Thus we see that $B_{1} \cap_{B_{2}}$ confounds the effects confounded by either B_{1} or B_{2}. The $\left(b_{1}-1\right)\left(b_{2}-1\right)$ orthogonal effects defined by $\left(X_{1} \Theta X_{2}\right)\left(W_{1} 8 W_{2}\right)$ are also confounded. Definition 3.3: If the respective blocks of B_{1} and B_{2} are of equal size and B_{i} confounds the orthogonal effects defined by $X_{i}\left(J_{b_{i}}, W_{i}\right)$ and $\left(X_{1} W_{1}\right)^{\prime}\left(X_{2} W_{2}\right)=\emptyset$, the set of $\left(b_{1}-1\right)\left(b_{2}-1\right)$ effects $\left[\left(X_{1} \otimes X_{2}\right)\left(W_{1} \otimes W_{2}\right)\right]^{\prime} M$ is the generalized interaction of $\left(X_{1} W_{1}\right)$ ' M and $\left(X_{2} W_{2}\right) ' M$. A blocking plan B determines the model $Y=M+X a+e$. The following theorem gives a sufficient condition for the estimability of a set of effects.

Theorem 3.11: $S^{\prime} M$ is estimable in the model $Y=M+X \alpha+e$ if $S^{\prime} M$ is orthogonal to each block of the plan determined by X.

Proof: If $S^{\prime} X=\emptyset$, then $E\left(S^{\prime} Y\right)=S^{\prime} M+S^{\prime} X \alpha=S^{\prime} M$.
In most experimental situations α is not known. For the case in which α is not known it is extremely unlikely that $S^{\prime} \mathrm{X} \alpha=\emptyset$ unless $S^{\prime} X=\emptyset$ and for practical purposes one can say that $S^{\prime} M$ is estimable only if $S^{\prime} X=\varnothing$.

Definition 3.4: In the model $Y=M+X \alpha+e$ the block sum of squares is $Y^{\prime} \tilde{X}^{\prime}{ }^{\prime} Y$.

Since $S=X X C$ with C orthogonal defines a set of normalized orthogonal effects then Y'SS'Y is also the block sum of squares. The mean effect is confounded in each block of a plan and the sum of squares
due to the mean is $Y^{\prime} K_{N} Y$. The quadratic form $Y^{\prime}\left(X^{\prime} \bar{X}^{\prime}-K_{N}\right) Y$ is called the between all blocks (B.A.B.) sum of squares.

Theorem 3.12: $\bar{x} \bar{x}^{\prime}$ is an idempotent matrix of rank b where b is the number of blocks in the plan defined by X.

Proof: $\tilde{X} \tilde{x}^{\prime} \tilde{x}^{\prime} \tilde{x}^{\prime}=\tilde{X} I_{b} \tilde{X}^{\prime}=\tilde{X} \tilde{x}^{\prime}$. Since $\tilde{X}^{\prime} \tilde{X}=I_{b}$, the rank of \tilde{x}^{\prime} is b.

Theorem 3.13: $K_{N} \tilde{x}^{\prime} \tilde{X}^{\prime}=\overline{\mathrm{X}} \bar{X}^{\prime} \mathrm{K}_{\mathrm{N}}=\mathrm{K}_{\mathrm{N}}$
Proof: Let the size of β_{i} be r_{i} for $i=1,2, \ldots, b$. Then $\bar{X}=X D$, where D is a diagonal matrix with $d_{i i}=\frac{1}{\sqrt{r_{i}}}$, and

$$
\begin{aligned}
& \tilde{X} \tilde{X}^{\prime}=X D^{2} X^{\prime} \cdot \text { So } K_{N} \tilde{X}^{\prime} \tilde{X}^{\prime}=\frac{1}{N} J_{N} J_{N}^{\prime} X D^{2} X^{\prime}=\frac{1}{N} J_{N}\left(r_{1}, r_{2}, \ldots, r_{b}\right) D^{2} x^{\prime}= \\
& \frac{1}{N} J_{N} J_{b}^{\prime} X^{\prime}=\frac{1}{N} J_{N} J_{N}^{\prime}=K_{N} \cdot \text { Also } \\
& K_{N}=K_{N}^{\prime}=\left(K_{N} \tilde{x} \tilde{X}^{\prime}\right)^{\prime}=\tilde{X} \tilde{X}^{\prime} K_{N} .
\end{aligned}
$$

Definition 3.5: In the model $Y=M+X \alpha+e, Y^{\prime}\left(I_{N}-\tilde{X} \tilde{X}^{\prime}\right) Y$ is the within all blocks (W.A.B.) sum of squares.

Theorem 3.14: $I_{N}-\tilde{X} \tilde{X}^{\prime}$ and $\tilde{X}^{\prime} \tilde{X}^{\prime}-K_{N}$ are idempotent matrices of rank $\mathrm{N}-\mathrm{b}$ and $\mathrm{b}-1$ respectively.

Proof: Since $\bar{X} \bar{X}^{\prime}$ is idempotent of rank $b, I_{N}-\tilde{X} \tilde{X}^{\prime}$ is idempotent of rank N-b by Theorem 2.27.

$$
\begin{aligned}
& \left(\tilde{X} \tilde{x}^{\prime}-K_{N}\right)\left(\tilde{X} \tilde{X}^{\prime}-K_{N}\right)=\tilde{X} \tilde{X}^{\prime} \tilde{X} \tilde{X}^{\prime}-K_{N} \tilde{X}^{\prime} \tilde{X}^{\prime}-\tilde{X} \tilde{X}^{\prime} K_{N}+K_{N}^{2}= \\
& \tilde{X} \tilde{x}^{\prime}-K_{N} \text { and } \rho\left(\tilde{X} \tilde{X}^{\prime}-K_{N}\right)=\operatorname{tr}\left(\tilde{X} \tilde{X}^{\prime}-K_{N}\right)= \\
& \operatorname{tr}\left(\tilde{X} \tilde{X}^{\prime}\right)-\operatorname{tr}\left(K_{N}\right)=\operatorname{tr}\left(\tilde{X}^{\prime} \tilde{X}\right)-1=b-1
\end{aligned}
$$

We have seen that a plan B determines the model $Y=M+X \alpha+e$. If L defines the 2^{m} factorial effects L ' M, then we have the model $L^{\prime} Y=L^{\prime} M+L^{\prime} X \alpha+L^{\prime} e$. The following results are due to plans which confound one or more factorial effects. The $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement is assumed unless otherwise indicated.

Theorem 3.15: If (\bar{J}_{n}, U) is an orthogonal matrix and $n>2$, then the columns of $U \Theta U$ span $V_{n}(R)$.

Proof: It suffices to show that the rows of $U \Theta U$ are linearly independent. Let

UӨU $=\left(\begin{array}{c}\rho_{1}^{*} \\ \rho_{2}^{*} \\ \vdots \\ \rho_{n}^{*} \\ n\end{array}\right) \quad$ where $\rho_{i}^{*}=\left(u_{i 1} \rho_{i}, u_{i 2} \rho_{i}, \ldots, u_{i n-1} \rho_{i}\right)$
and $\rho_{i}=\left(u_{i 1}, u_{i 2}, \ldots, u_{i n-1}\right)$ is the $i^{\text {th }}$ row of U. Then

$$
\sum_{i=1}^{n} d_{i i} \rho_{i}^{*}=\emptyset \text { if and only if } \sum_{i=1}^{n} d_{i i} \rho_{i}^{\prime} \rho_{i}=\emptyset
$$

if and only if U 'DU $=\emptyset$ where D is the diagonal matrix with $d_{i i}$ as the $i^{\text {th }}$ diagonal element. $U^{\prime} D U=\emptyset$ implies $\left(I_{n}-K_{n}\right) D\left(I_{n}-K_{n}\right)=$. Thus we have $D=D K_{n}+K_{n} D-K_{n} D K_{n}$ and $d_{i i}=\frac{d_{i i}}{n}+\frac{d_{i i}}{n}-\frac{\operatorname{tr}(D)}{n^{2}}$ which yields $d_{i i}=\frac{-\operatorname{tr}(D)}{n(n-2)}$. The diagonal elements are equal and

$$
\begin{aligned}
& \sum_{i=1}^{n} d_{i i}=\operatorname{tr}(D)=\frac{-\operatorname{tr}(D)}{n-2} \quad \text { implies that } D=\emptyset \text {. Therefore } \\
& \text { the rows of } U \in U \text { are linearly independent and consequently } \\
& \text { the columns of } U Q U \text { span } V_{n}(R) \text {. }
\end{aligned}
$$

Theorem 3.16: If B confounds $A_{i} A_{j}$ and $n_{i}>2, n_{j}>2$, then B confounds $\mathrm{A}_{\mathbf{i}}$ and $\mathrm{A}_{\mathbf{j}}$.
Proof: By Theorem 3.6 B confounds $\left[F *\left(\mathrm{U}_{\mathrm{i}}, \mathrm{U}_{\mathrm{j}}\right) \oplus \mathrm{F}^{*}\left(\mathrm{U}_{\mathrm{i}}, \mathrm{U}_{\mathrm{j}}\right)\right]{ }^{\prime} \mathrm{M}$.
$F *\left(U_{i}, U_{j}\right) \theta F *\left(U_{i}, U_{j}\right)=F *\left(U_{i} \theta U_{i}, U_{j} \theta U_{j}\right) P$ by Theorem 2.19. Since the columns of $U_{i} \otimes U_{i}$ span $V_{n_{i}}(R)$ then there exists a matrix H_{i} such that $\left(U_{i} \theta U_{i}\right) H_{i}=\left(J_{n_{i}}, U_{i}\right)$. Similarly there exists a matrix H_{j} such that $\left(U_{j} \theta U_{j}\right) H_{j}=\left(J_{n_{j}}, U_{j}\right)$. Thus $F *\left(U_{i} \theta U_{i}, U_{j} \theta U_{j}\right)\left(H_{i} 8 H_{j}\right)=F *\left(\left(J_{n_{i}}, U_{i}\right),\left(J_{n_{j}}, U_{j}\right)\right)$ is confounded by Theorem 3.2. Therefore the effects defined by $\left(\mathrm{J}_{\mathrm{N}}, \mathrm{F} *\left(\mathrm{U}_{\mathrm{i}}\right), \mathrm{F} *\left(\mathrm{U}_{\mathrm{j}}\right), \mathrm{F}^{*}\left(\mathrm{U}_{\mathrm{i}}, \mathrm{U}_{\mathrm{j}}\right)\right.$) are confounded with B.

Theorem 3.17: If B confounds $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$ and $n_{i}>2$ for
for $i=1,2, \ldots, k$ then B confounds $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$
and any interaction involving only these effects.
Proof: The proof follows that of the last theorem. There exists matrices $H_{i_{1}}, \ldots, H_{i_{k}}$ such that

$$
\begin{aligned}
& F *\left(\left(J_{n_{i_{1}}}, U_{i_{1}}\right),\left(J_{n_{i_{2}}}, U_{i_{2}}\right), \ldots,\left(J_{n_{i_{k}}}, U_{i_{k}}\right)\right) .
\end{aligned}
$$

Thus the effects defined by $\left(J_{N}, F *\left(U_{i_{1}}\right), \ldots, F *\left(U_{i_{k}}\right)\right.$, $\left.F *\left(U_{i_{1}}, U_{i_{2}}\right), \ldots, F *\left(U_{i_{k-1}}, U_{i_{k}}\right), \ldots, F *\left(U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{k}}\right)\right)$ are confounded with B.

Theorem 3.18: The plan B determined by $X=F *\left(I_{n_{i}}\right)$ uniquely confounds only the mean effect and A_{i}.

Proof: By Theorem 3.8, $X\left(J_{n_{i}}, U_{i}\right)=F *\left(I_{n_{i}}\right)\left(J_{n_{i}}, U_{i}\right)=F *\left(\left(J_{n_{i}}, U_{i}\right)\right)=$ ($\mathrm{J}_{\mathrm{N}}, \mathrm{F} *\left(\mathrm{U}_{\mathrm{i}}\right)$) defines a set of effects confounded with B. By Theorem 3.7 X is unique.

Theorem 3.19: If B confounds $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$ then B confounds any interaction involving only these effects.

Proof: Let $\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}$ be a subset of $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. Then by Theorem 3.6 $\mathrm{F}^{*}\left(\mathrm{U}_{\mathbf{j}_{\mathbf{1}}}\right) \theta \mathrm{F} *\left(\mathrm{U}_{\mathbf{j}_{\mathbf{2}}}\right) \theta \ldots \theta \mathrm{F}^{*}\left(\mathrm{U}_{\mathbf{j}_{\mathbf{r}}}\right)=$ $F *\left(U_{\mathbf{j}_{1}}, U_{\mathbf{j}_{\mathbf{2}}}, \ldots, \mathrm{U}_{\mathbf{j}_{\mathbf{r}}}\right)$ defines a set of effects confounded with B.
$F *\left(I_{n_{i_{1}}}, I_{n_{i_{2}}}, \ldots, I_{n_{i_{k}}}\right)$ is the incidence matrix of the plan
which confounds the effects given in the last theorem. This plan is the intersection of the plans defined by $F *\left(I_{n_{i_{1}}}\right), F^{*}\left(I_{r_{i_{2}}}\right), \ldots$, and $F *\left(I_{n_{i}}\right)$.

Definition 3.3: The number of design points in β_{i} whose $j_{1}, j_{2}, \ldots, j_{s}$ entries are respectively $\mathbf{a}_{\mathbf{j}_{\mathbf{1}}}, \mathbf{a}_{\mathbf{j}_{\mathbf{2}}}, \ldots, \mathbf{a}_{\mathbf{j}_{\mathbf{s}}}$ is $h_{i}\left(j_{1}, j_{2}, \ldots, j_{s} ; a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{s}}\right)$.
Theorem 3.20: A blocking plan B of blocks confounds the mean effect and $b-1$ components of $A_{1} A_{2} \ldots A_{m}$ if and only if for each set $\left\{j_{1}, j_{2}, \ldots, j_{s}\right\}$, where $1 \leq s<m, h_{i}\left(j_{1}, j_{2}, \ldots, j_{s}\right.$; $0,0, \ldots, 0)=h_{i}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{s}}\right)$ for each $\left(c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{s}}\right)$ in $Z\left(N_{j_{1}}\right) \times Z\left(N_{j_{2}}\right) \times \ldots \times Z\left(N_{j_{s}}\right)$.

Proof: By Theorem 3.5, any factorial effect other than $A_{1} A_{2} \ldots A_{m}$ or the mean effect is orthogonal to B. Thus $\left[F *\left(\left(J_{n_{j_{1}}}, U_{j_{1}}\right),\left(J_{n_{j_{2}}}, U_{j_{2}}\right), \ldots,\left(J_{n_{j_{r-1}}}, U_{j_{r-1}}\right)\right.\right.$, $\left.\left.\tilde{\mathrm{u}}_{\mathrm{j}_{\mathbf{r}}},\left(\mathrm{J}_{\mathrm{n}_{\mathrm{j}_{\mathrm{r}+1}}}, \mathrm{U}_{\mathrm{j}_{\mathrm{r}+1}}\right), \cdots,\left(\mathrm{J}_{\mathbf{j}_{\mathbf{s}}}, \mathrm{U}_{\mathbf{j}_{\mathbf{s}}}\right)\right)\right]^{\prime} \mathrm{x}=\emptyset$ for $r=1,2, \ldots, s$. Multiplication on the left of the last equality by $\left[\left(J_{n_{j_{1}}}, U_{j_{1}}\right)^{\prime}\right]^{-1} \otimes\left[\left(J_{n_{j_{2}}}, U_{j_{2}}\right)^{\prime}\right]^{-1} \otimes \ldots \otimes$ $\left[\left(J_{n_{j_{r-1}}},{u_{j_{r-1}}}\right)^{i}\right]^{-1} \otimes \tilde{u}_{j_{r}} \otimes\left[\left(J_{n_{j_{r+1}}}, u_{j_{r+1}}\right)^{i}\right]^{-1} \otimes \ldots 8$ $\left[\left(J_{n_{j_{s}}}, U_{j_{s}}\right)^{\prime}\right]^{-1}$ yields
$F *\left(I_{n_{j_{1}}}, I_{n_{j_{2}}}, \ldots, I_{n_{j_{r-1}}}, I_{n_{j_{r}}}-K_{n_{j_{j}}}, I_{n_{j_{r+1}}}, \ldots, I_{n_{j_{s}}}\right)^{\prime} X_{i}=\emptyset$
for $i=1,2, \ldots, b$ and $r=1,2, \ldots, s$. Upon choosing the first column of each of the arguments we have

$$
\left(1-\frac{1}{n_{j_{r}}}\right) h_{i}\left(j_{1}, j_{2}, \ldots, j_{s} ; 0,0, \ldots, 0\right)=
$$

$\frac{1}{n_{j_{r}}} \quad{ }_{a_{j_{r}}}^{\mathrm{n}_{j_{r}}}{ }^{-1}{ }^{h_{i}}\left(j_{1}, j_{2}, \ldots, j_{r}, \ldots, j_{s} ; 0,0, \ldots, 0, a_{j_{r}}, 0, \ldots, 0\right)$
which simplifies to the equality
$h_{i}\left(j_{1}, j_{2}, \ldots, j_{s} ; 0,0, \ldots, 0\right)=\frac{1}{n_{j_{r}}} \quad a_{j_{r}}^{n_{j_{r}}}=0{ }_{h_{i}}\left(j_{1}, j_{2}, \ldots, j_{r}, \ldots, j_{s} ;\right.$

$$
\left.0,0, \ldots, 0, a_{j_{\mathbf{r}}}, 0, \ldots, 0\right)
$$

for $i=1,2, \ldots, b$ and $r=1,2, \ldots, s$.
Choosing the $c_{\mathbf{j}_{\mathbf{r}}}+1$ st columns of $\mathrm{I}_{\mathbf{n}_{\mathbf{j}}}-\mathrm{K}_{\mathbf{n}_{\mathbf{j}}}$ we obtain
$h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{r}, \ldots, j_{s} ; 0,0, \ldots, c_{j_{r}}, \ldots, 0\right)=$ $\frac{1}{n_{j_{r}}} \quad a_{j_{r}}^{{ }^{n_{j_{r}}}}=0 \quad h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{r}, \ldots, j_{s} ; 0,0, \ldots, a_{\mathbf{j}_{r}}, \ldots, 0\right)$.

Thus $h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; 0,0, \ldots, 0\right)=h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{r}, \ldots, j_{s} ;\right.$ $\left.0,0, \ldots, c_{\mathbf{j}_{\mathbf{r}}}, \ldots, 0\right)$
for $c_{\mathbf{j}_{\mathbf{r}}}=0,1, \ldots, \mathbf{n}_{\mathbf{j}_{\mathbf{r}}}$. Letting $r=1$ we have
$h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; 0,0, \ldots, 0\right)=h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, 0, \ldots, 0\right)$.
When $r=2$ we have from (3.2)
$\left[F^{\star}\left(I_{n_{j}}, I_{n_{j_{2}}}-K_{n_{j_{2}}}, I_{n_{j=1}}, \ldots, I_{n_{j_{s}}}\right)\right]^{\prime} x_{\ell}=\emptyset$.
By choosing the $\mathrm{c}_{\mathrm{j}_{1}}+1$ st column of $\mathrm{I}_{\mathrm{n}_{\mathbf{j}}}$ and the first column of
each of the remaining arguments we obtain

$$
\begin{aligned}
h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, 0, \ldots, 0\right)= & \frac{1}{n_{j_{2}}} a_{j_{2}}^{n_{j_{2}}}=0 \quad h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ;\right. \\
& \left.c_{j_{1}}, a_{j_{2}}, 0, \ldots, 0\right) .
\end{aligned}
$$

Choosing the $c_{j_{2}}+1$ st column of $I_{n_{j_{2}}}-K_{n_{j_{2}}}$ yields

$$
\begin{gathered}
h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, c_{j_{2}}, 0, \ldots, 0\right)= \\
\frac{1}{n_{j_{2}}} \quad a_{j_{2}}^{n_{j_{2}}}=0 h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ;\right. \\
\\
\left.c_{j_{1}}, a_{j_{2}}, 0, \ldots, 0\right) .
\end{gathered}
$$

Thus $h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, 0, \ldots, 0\right)=h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ;\right.$

$$
\left.c_{j_{1}}, c_{j_{2}}, 0, \ldots, 0\right)
$$

Continuing in this manner we obtain the following equalities corresponding to the value that r assumes:

$$
\begin{aligned}
& r=1, h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; 0,0, \ldots, 0\right)=h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, 0, \ldots, 0\right) ; \\
& r=2, h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, 0, \ldots, 0\right)=h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, c_{j_{2}}, 0, \ldots, 0\right) ; \\
& r=3, h_{\ell}\left(j_{1}, j_{2}, j_{3}, \ldots, j_{s} ; c_{j_{1}}, c_{j_{2}}, 0, \ldots, 0\right)= \\
& \quad h_{\ell}\left(j_{1}, j_{2}, j_{3}, \ldots, j_{s} ; c_{j_{1}}, c_{j_{2}}, c_{j_{3}}, 0, \ldots, 0\right) ;
\end{aligned}
$$

$r=s-1, h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{s-2}}, 0,0\right)=$ $h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{s-2}}, c_{j_{s-1}}, 0\right) ;$

$$
\begin{array}{r}
r=s, h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{s-1}}, 0\right)= \\
h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{s-1}}, c_{j_{s}}\right) .
\end{array}
$$

Hence the equality $h_{\ell}\left(j_{1}, j_{2}, \ldots, j_{s} ; 0,0, \ldots, 0\right)=$ $h_{\ell}\left(j_{1}, j_{2}, \ldots j_{s} ; c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{s}}\right)$ holds for each $\left(c_{\mathbf{j}_{1}}, \mathrm{c}_{\mathbf{j}_{2}}, \ldots, \mathrm{c}_{\mathbf{j}_{\mathbf{s}}}\right)$ in $\mathrm{z}\left(\mathrm{n}_{\mathbf{j}_{1}}\right) \times \mathrm{z}\left(\mathrm{n}_{\mathbf{j}_{2}}\right) \times \ldots \times \mathrm{z}\left(\mathrm{n}_{\mathbf{j}_{s}}\right)$.

The converse follows by reversing the steps of the proof.
Theorem 3.21: Let B be a plan of b blocks confounding $\left.\tilde{x}^{(} \bar{J}_{b}, C\right)$, where XXC defines b-1 normalized components of $A_{\mathbf{i}_{1}}, A_{\mathbf{i}_{2}}, \ldots, A_{\mathbf{i}_{\mathbf{k}}}$, and let $A=\tilde{F}^{*}\left(U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{k}}\right)\left[\tilde{\mathrm{F}}^{\star}\left(\mathrm{U}_{\mathrm{i}_{1}}, \mathrm{U}_{\mathrm{i}_{2}}, \ldots, \mathrm{U}_{\mathrm{i}_{k}}\right)\right]^{\prime}$. Then $A-\left(\tilde{X}^{\prime} \bar{X}^{\prime}-K_{N}\right)$ is idempotent and $\left[A-\left(\tilde{X}^{\prime} \bar{X}^{\prime}-K_{N}\right)\right] X=\emptyset$ if and only if the blocks of B are of equal size r. Proof: $\tilde{\mathrm{X}} \mathrm{K}_{\mathrm{b}} \overline{\mathrm{X}}^{\prime}=\tilde{\mathrm{X}}_{\mathbf{b}} \tilde{\mathrm{J}}_{\mathbf{b}} \tilde{X}^{\prime}=\tilde{\mathrm{J}}_{\mathrm{N}} \tilde{\mathrm{J}}_{\mathrm{N}}^{\prime}=\mathrm{K}_{\mathrm{N}}$ if and only if $\tilde{\mathrm{X}}_{\mathrm{b}}=\tilde{\mathrm{J}}_{\mathrm{N}}$ if and only if the blocks of B are of equal size. Let (W, W) be an orthogonal matrix such that $\tilde{\mathbb{F}} *\left(\mathrm{U}_{\mathrm{i}_{1}}, \mathrm{U}_{\mathrm{i}_{2}}, \ldots, \mathrm{U}_{\mathbf{i}_{k}}\right) \mathrm{W}=\mathbb{X} \mathbf{C}$. Then $\tilde{X} \tilde{X}^{\prime} \mathrm{A}=\tilde{\mathrm{X}} \tilde{X}^{\prime}\left(\tilde{X} C, \tilde{\mathrm{~F}}{ }^{\star}\left(\mathrm{U}_{\mathbf{i}_{1}}, \mathrm{U}_{\mathbf{i}_{2}}, \ldots, \mathrm{U}_{\mathbf{i}_{\mathbf{k}}}\right) \mathrm{W}^{\boldsymbol{*}}\right.$ $\left(\tilde{X} C, \tilde{F} *\left(U_{i_{1}}, U_{i_{2}}, \ldots, U_{i_{k}}\right) W\right)^{\prime}=\tilde{X} C C^{\prime} \tilde{X}^{\prime}=\tilde{X}\left(I_{b}-K_{b}\right) \tilde{X}^{\prime}=A \tilde{X} \tilde{X}^{\prime}$. Since A and $\tilde{X} \tilde{X}-K_{N}$ are idempotent and $A K_{N}=\emptyset$ and $\bar{X} \bar{X}^{\prime} K_{N}=K_{N}$ then $A-\left(\bar{X} \tilde{X}-K_{N}\right)$ is idempotent if and only if $\tilde{X} \tilde{X}^{\prime} A=\tilde{X} \tilde{X}^{\prime}-K_{N}$ if and only if $\mathcal{X}\left(I_{b}-K_{b}\right) \tilde{X}^{\prime}=\tilde{X}^{\prime} \tilde{X}^{\prime}-K_{N}$ if and only $\mathrm{XK}_{\mathrm{b}} \tilde{\mathrm{x}}^{\prime}=\mathrm{K}_{\mathrm{N}}$ if and only if the blocks of B are of equal size.

$$
\begin{aligned}
& \left(A-\left(\tilde{X} \tilde{X}^{\prime}-K_{N}\right)\right) \tilde{X}=\emptyset=A \tilde{X}-\tilde{X}+K_{N} \tilde{X}=\tilde{X}\left(I_{b}-K_{b}\right)-\tilde{X}+K_{N} \tilde{X}= \\
& -\tilde{X} K_{b}+K_{N} \tilde{X} . \quad K_{N} \tilde{X}-\tilde{X} K_{b}=\emptyset \quad \text { if and only if } \tilde{X} K_{b} \tilde{X}^{\prime}=K_{N}
\end{aligned}
$$

if and only if the blocks of B are of equal size.
Definition 3.4: The extension of a plan B^{*} of b blocks of an
$n_{1} \times n_{2} \times \ldots \times n_{k}$ factorial arrangement of treatments
to an $n_{1} \times n_{2} \times \ldots \times n_{k} \times n_{k+1} \times \ldots \times n_{m}$ factorial
arrangement of treatments is $B=\left\{\beta_{i}: i=1,2, \ldots, b\right\}$
where $\beta_{i}=\beta_{i}^{*} \times Z\left(n_{k+1}\right) \times \ldots \times Z\left(n_{m}\right)$.
B is a plan of b blocks in an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial
arrangement and the incidence matrix of B is $X=X^{*} \delta J_{q}$ where $X *$ is the incidence matrix of B^{*} and $q=n_{k+1}, n_{k+2}, \ldots, n_{m}$. Figure 3.3 gives the extension of a plan of a 2×2 factorial arrangement to a $2 \times 2 \times 3$ factorial arrangement.

$$
\left.\begin{array}{ll}
\text { B*: } & \quad \begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\hline
\end{array} \\
X: \begin{array}{llll|lll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 2 & 0 & 1 & 2 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 2 & 1 & 0 & 2
\end{array} \\
\left.\begin{array}{lll}
1 & 0 \\
0 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right) & X= \\
& \\
1 & \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 0
\end{array}\right)
$$

Figure 3.3--Extension of a plan of a 2×2 factorial arrangement to a $2 \times 2 \times 3$ factorial arrangement.

Theorem 3.22: If $B *$ confounds the set of b normalized orthogonal defined by S in an $n_{1} \times n_{2} \times \ldots \times n_{k}$ factorial arrangement, then the extension of B^{*} confounds the set of b normalized orthogonal effects defined by $S \otimes J_{q}$ in an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangment.

Proof: By Theorem 3.4 there exist an orthogonal matrix C such that $S=\tilde{X} * C$. Thus $S \tilde{J}_{q}=\tilde{X} * C \bar{J}_{q}=\left(\tilde{X} * \bar{J}_{q}\right) C=\bar{X} C$ and by Theorem 3.4 the effects defined by $S \otimes j_{q}$ are confounded with the extension of $\mathrm{B} *$.

Corollary 3.2: If B^{*} confounds the mean effect and A_{i}^{*} in an $n_{1} \times n_{2} \times \ldots \times n_{k}$ factorial arrangement, then the extension of B^{*} confounds the mean effect and A_{i} in an $n_{1} \times n_{2} \times \ldots \times n_{k}$ factorial arrangement.
Corollary 3.3: If BH^{H} confounds the mean effect and b-1 components of $A_{i_{1}}^{*} A_{\mathbf{i}_{2}}^{*} \ldots A_{i_{r}}^{*}$ in an $n_{1} \times n_{2} \times \ldots \times n_{k}$ factorial arrangement, then the extension of B^{*} confounds the mean effect and b-1 components of $A_{i_{1}} A_{i_{2}} \cdots A_{i_{r}}$ in an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement.

Theorem 3.23: If B is a plan of b blocks and confounds the mean effect and $b-1$ components of $A_{1} A_{2} \ldots A_{k}$ then B is the extension of a plan that confounds the mean effect and b-1 components of $A_{1}^{*} A_{2}^{*} \ldots A_{k}^{*}$ in an $n_{1} \times n_{2} \times \ldots \times n_{k}$ factorial arrangement.

Proof: Let $q=n_{1} n_{2} \ldots n_{k}, p=\left(n_{1}-1\right)\left(n_{2}-1\right) \ldots\left(n_{k}-1\right)$ and $r=N / q$. By hypothesis, there exists a $p \times b-1$ matrix W with normalized
orthogonal columns such that B confounds the b normalized orthogonal effects defined by ($\tilde{J}_{N},\left(\tilde{U}_{1} 8 \tilde{U}_{2} 8 \ldots 8 \tilde{U}_{k} \otimes \tilde{J}_{r}\right) W$). By Theorem 3.4 there exists an orthogonal matrix C such that $\tilde{X}=\left(\bar{J}_{N},\left(\bar{U}_{1} \otimes \tilde{U}_{2} \otimes \ldots \otimes \tilde{U}_{k} \otimes \bar{J}_{r}\right) W\right) C=\left[\left(\bar{J}_{q},\left(\tilde{U}_{1} \otimes \tilde{U}_{2} \otimes \ldots \otimes \tilde{U}_{k}\right) W\right) C\right] \otimes \tilde{J}_{r}=$ $\overline{\mathrm{X}} * \overline{\mathrm{~J}}_{\mathrm{r}}$. That $\mathrm{X} *$ is an incidence matrix follows from the fact that X is an incidence matrix. Thus \tilde{X}^{*} is a normalized incidence matrix of a plan B^{*} that confounds the mean effect and $b-1$ components of $A_{1}^{*} A_{2}^{*} \ldots A_{k}^{*}$ in an $n_{1} \times n_{2} \times \ldots \times n_{k}$ factorial arrangement of treatments.

CHAPTER IV

EXAMPLES OF BLOCKING AND CONFOUNDING OF FACTORIAL
 ARRANGEMENTS OF TREATMENTS

The purpose of this chapter is to illustrate how the development in the preceding chapters can be utilized in obtaining plans and their analyses of variance.

In light of Theorem 3.21, only plans with equal block sizes will be considered. It is evident from the results in CHAPTER III that one cannot confound an arbitrary set of b orthogonal effects with b blocks. However, a plan of blocks does confound at least one set of borthogonal effects.

If there exists a plan of b blocks that confounds the mean effect and $b-1$ components of $A_{1} A_{2} \ldots A_{k}$ in an $n_{1} \times n_{2} \times \ldots \times n_{k}$ factorial arrangement, then it follows from Theorem 3.20 that b divides n_{i} for $i=1,2, \ldots, k$. Conversely, if $b>1$ and b divides n_{i} for $1=1,2, \ldots, k$, then the condition of Theorem 3.20 can be met and thus there exists a plan of b blocks that confounds the mean effect and $b-1$ components of the highest-order interaction.

In the analysis of any confounding plan, it should be remembered that differences in responses due to blocks is eliminated in the W.A.B. analysis. The price of eliminating these differences is the loss of information on the mean effect and $b-1$ orthogonal effects.

If a researcher has no preference as to what effects to confound, then components of the highest-order interaction is often a good choice since this interaction is the most difficult to interpret. Since the highest-order interaction is usually taken as the error term in the single replicate experiments, the confounding of $\mathbf{b - 1}$ components of this interaction will reduce the error degrees of freedom. This loss in error degrees of freedom alone is not necessarily a liability since the same situation occurs whenever one chooses a randomized complete block design in lieu of a completely randomized design. However, if this interaction has very few degrees of freedom, then it is perhaps better to confound components of an interaction of little interest so as not to reduce the degrees of freedom for error.

The examples which follow illustrate the use of Theorem 3.20 in obtaining plans that confound components of the highest-order interaction. The first example is given in somewhat greater detail than the others and it is hoped that the reader can see how the other examples can be similarly developed.

Example 4.1: Suppose that a researcher is interested in the responses of mice upon administration of 16 treatments comprising a 4×4 factorial arrangement of treatments. The factors are taken as 4 levels of different drugs and for the purposes of this example the factors are considered fixed. All the possible combinations of one level from each of the factors comprise the set of design points $T=Z(4) \times Z(4)$. Let the levels within each factor be naturally ordered so that, for example, the design point
$(2,3)$ represents the third level of the first drug and the fourth level of the second drug.

The researcher has at his disposal 4 strains of mice with 4 mice in each strain and he has good reason to believe that differences in strains will influence the responses to the treatments. He desires information on the main effects and also wants to assess the magnitude of the contrast $\lambda_{0}^{\prime} M=\mu_{02}-\mu_{13}-\mu_{21}+\mu_{30}$.

Since differences among the strains of mice are thought to influence the responses, then strains should be confounded with blocks. The need for information on the main effects indicates that the main effects A_{1} and A_{2} should be orthogonal to strains (blocks).

The largest block size that permits these considerations is four. With a block size of 4 we can satisfy the conditions of Theorem 3.20 and thus obtain a plan of 4 blocks that confounds the mean effect and 3 components of the $A_{1} A_{2}$ interaction effect. The conditions are: $h_{i}\left(j, c_{i}\right)=1$ for $i=1,2,3,4, j=1,2$, and $c_{j}=0,1$, 2, 3. A plan satisfies these conditions if and only if A_{1} and A_{2} are orthogonal to blocks. Since the mean effect and $A_{1} A_{2}$ are orthogonal to both A_{1} and A_{2} and since the mean effect is confounded in any plan, then 3 components of $A_{1} A_{2}$ are confounded with blocks. Appearing in Figure 4.1 are the 24 plans, each of which confounds only the mean effect and 3 components of $A_{1} A_{2}$. That no two plans

(a) \begin{tabular}{|l|l|l|l|}
\hline 00 \& 01 \& 02 \& 03

11 \& 12 \& 13 \& 10

22 \& 23 \& 20 \& 21

33 \& 30 \& 31 \& 32

\hline

 (b)

\hline 00 \& 01 \& 02 \& 03

11 \& 10 \& 13 \& 12

22 \& 23 \& 20 \& 21

33 \& 32 \& 31 \& 30

\hline

 (c)

\hline 00 \& 01 \& 02 \& 03

11 \& 10 \& 13 \& 12

22 \& 23 \& 21 \& 20

33 \& 32 \& 30 \& 31

\hline

 (d)

\hline 00 \& 01 \& 02 \& 03

11 \& 13 \& 10 \& 12

22 \& 20 \& 23 \& 21

33 \& 32 \& 31 \& 30

\hline
\end{tabular}

Figure 4.1-The 24 plans of a 4×4 factorial arrangement of treatment each of which confounds 3 components of the $A_{1} A_{2}$ effect.
confound the same 3 components follows from Theorem 3.7.
In order to assess the magnitude of the contrast $\lambda_{0}^{\prime} M^{M}$ the set of design points $\{(0,2),(1,3),(2,1),(3,0)\}$ must appear in the same block and thus these treatments must be given to the same strain of mice. An inspection of Figure 4.1 reveals that these design points comprise a block in plans (c), (q), and (r). Each of these three plans confounds 3 components of $A_{1} A_{2}$ and leaves A_{1}, A_{2} and the contrast $\lambda_{0}^{\prime} M$ free of strain effects. These three plans are also good choices for obtaining information on the contrasts $\mu_{02}-2 \mu_{13}-\mu_{30}$ and $\mu_{02}-\mu_{30}$ since these contrasts are intra-block and thus are free of block effects.

The plans appearing in Figure 4.1 exclusive of plans (c), (q) and (r) are of dubious value for estimating the contrast $\lambda_{0}^{\prime} M$ because the usual estimate of $\lambda_{0}^{\prime} M$ involves differences in blocks.

To proceed farther with this example let us choose plan (c) as the design plan. Strains are then randomly assigned to blocks and the 4 mice within a strain are randomly assigned to the treatments within a block.

The model for plan (c) is

$$
Y=M+X \alpha+e
$$

or more explicitly

59

In this model both M and a are unknown and a contrast $\lambda^{\prime} M$ is estimable if and only if $X^{\prime} \lambda=\emptyset$. Since $X^{\prime} \lambda_{0}=\emptyset$ then $\lambda_{0}^{\prime} M$ is estimable. An analysis of variance for plan (c) is given in Table 4.1.

The 5 components of $A_{1} A_{2}$ in the W.A.B. analysis are called residual and their mean square is used as the denominator of the mean square ratio to test $\lambda_{0}^{\prime} M$. The mean square for residual is also used as the denominator for testing the mean square ratios of A_{1} and A_{2}. In the event that one accepts the hypothesis that $\lambda_{0}^{\prime} M=0$ then the sum

TABLE 4.1
an analysis of variance table for plan (C) IN FIGURE 4.1

Source	d.f.	S.S.	F
Total	16	$\sum_{i, j}^{\Sigma} y_{i j}^{2}$	
Mean	1	$16 \mathrm{y}^{-2}$	
B.A.B. ($\mathrm{A}_{1} \mathrm{~A}_{2}$)	3	$\frac{1}{4} \sum_{k}^{\sum}\left[\begin{array}{c} \Sigma \\ (1, j) \varepsilon \beta_{k} \end{array} y_{i f}\right]^{2}-16 \bar{y}^{2}$	
W.A.B.	12		
A_{1}	3	$\frac{1}{4} \sum_{i}\left(\sum_{j} y_{i j}\right)^{2}-16 \bar{y}^{2}$	$\frac{\text { M.S.R. }\left(A_{1}\right)}{\text { M.S.R.(Res.) }}$
A_{2}	3	$\left.\frac{1}{4} \underset{j}{\sum} \underset{i}{\left(\Sigma y_{1 j}\right.}\right)^{2}-16 \bar{y}^{2}$	$\frac{\text { M.S.R. }\left(A_{2}\right)}{\text { M.S.R. } \operatorname{Res} .)}$
$\lambda_{0}^{\prime M}$	1	$\frac{1}{4}\left(y_{02}-y_{13}-y_{21}+y_{30}\right)^{2}$	$\frac{\text { M.S.R. }\left(\lambda_{0}^{\prime} M\right)}{\text { M.S.R. } \operatorname{Res.})}$
Residual ($A_{1} A_{2}$)	5	S.S.(W.A.B.)-S.S.(A_{1})-S.S. ($\left.A_{2}\right)-$ S.S. $\left(\lambda_{0}^{\prime}{ }^{M}\right)$	

of squares for $\lambda_{0}^{\prime} M$ may be pooled with the sum of square for residual and the mean square of this pool may be used as the denominator for testing the mean square ratios of A_{1} and A_{2}.

A test of B.A.B. is futile since the B.A.B. sum of squares reflects both differences among strains and differences among the sets of treatments administered to the different strains. One would intuitively hope that the B.A.B. be relatively large but a fortuitous selection of the sets of treatments assigned to the strains could produce a relatively small mean square for B.A.B. One should therefore avoid the practice of pooling the sum of squares for B.A.B. with the sum of squares for residual. This situation differs from the practice of pooling the block sum squares with the sum of squares for residual in the randomized complete block design for in the latter design each treatment appears in each block and a preliminary test of the mean square for blocks can be made.

This concludes the discussion of confounding 3 components of a 4×4 factorial arrangement of treatments with a plan consisting of 4 blocks. With a block size of 8 in a 4×4 factorial arrangment of treatments we have 2 blocks and to confound 1 component of $A_{1} A_{2}$ a plan must satisfy the following conditions: $h_{i}\left(j, c_{j}\right)=2$ for $i=1$, $2, j=1,2$ and $c_{j}=0,1,2,3$. The set of 48 plans satisfying these conditions are given in Figure 4.2. An

00	01	00	02	00	01	00	02	00	01	00	01
02	03	01	03	03	02	01	03	03	02	02	03
11	10	11	10	10	12	10	12	11	10	10	12
13	12	12	13	11	13	11	13	12	13	11	13
20	21	22	20	21	20	22	20	21	20	22	20
22	23	23	21	22	23	23	21	22	23	23	21
31	30	30	32	32	30	32	30	30	31	31	30
33	32	31	33	33	31	33	31	33	32	33	32

00	01	00	01	00	02	00	01	00	02	00	01
02	03	03	02	01	03	02	03	01	03	03	02
11	10	11	10	11	10	10	11	12	10	11	10
13	12	12	13	13	12	12	13	13	11	12	13
21	20	20	21	20	21	21	20	21	20	20	22
22	23	22	23	22	23	23	22	22	23	21	23
30	31	31	30		30	31	30	30	32	32	30
33	32	33	32			33	32	31	33	33	31

00	02	00	01		01	00	01	00	02	00	02
01	03	02	03	02	03	03	02	01		01	03
12	10	12	10	11	10	10	11	10	11	10	12
13	11	13	11	12	13	12	13	12	13	11	13
20	22	20	22	21	20	21	20	21	20	22	20
21	23	21	23	23	22	22	23	23	22	23	21
32	30	31	30		31	31	30	32	30	31	30
33	31	33	32	33	32	33	32	33	31	32	33

00	01	00	02		01	00	01	00	01	00	01
03	02	01	03		02	02	03	02	03	03	02
12	10	12	10		11	11	10	10	11	11	10
13	11	13	11			13	12	13	12	13	12
21	20	22	20			22	20	21	20	20	21
22	23	23	21			23	21	22	23	22	23
30	32	30	32			30	32	31	30	31	30
31	33	31	33			31	33	33	32	32	33

Figure 4.2--The 48 plans of a 4×4 factorial each of which confounds 1 component of the $A_{1} A_{2}$ effect.

00 02 01 03 12 10 13 11 20 21 22 23 31 30 33 32	00 01 02 03 11 10 13 12 21 20 23 22 30 31 32 33	00 02 01 03 11 10 12 13 20 22 21 23 32 30 33 31	00 01 03 02 10 12 11 13 22 20 23 21 31 30 32 33	00 01 03 02 11 10 12 13 20 21 23 22 31 30 32 33	000 01 02 03 10 12 11 13 21 20 23 22 32 30 33 31
00 01 02 03 11 10 13 12 20 21 23 22 31 30 32 33	00 01 03 02 11 10 12 13 21 20 23 22 30 31 32 33	00 02 01 03 11 10 13 12 22 20 23 21 30 31 32 33	00 02 01 03 12 10 13 11 20 22 21 23 31 30 32 33	00 01 03 02 11 10 12 13 22 20 23 21 30 32 31 33	00 01 03 02 11 10 12 13 20 21 23 22 31 30 32 33
00 01 02 03 12 10 13 11 21 20 23 22 30 32 31 33	00 01 02 03 11 10 12 13 20 21 23 22 31 30 33 32	00 01 03 02 10 11 12 13 21 20 23 22 31 30 32 33	00 02 01 03 10 11 12 13 22 20 23 21 31 30 33 32	00 02 01 03 10 12 11 13 21 20 22 23 32 30 33 31	00 01 03 02 12 10 13 11 20 22 21 23 31 30 32 33
00 01 03 02 10 11 13 12 21 20 22 23 31 30 32 33	00 01 02 03 11 10 13 12 20 22 21 23 32 30 33 31	00 01 02 03 10 11 13 12 21 20 23 22 31 30 32 33	00 01 03 02 11 10 13 12 21 20 22 23 30 31 32 33	00 02 01 03 12 10 13 11 21 20 23 22 30 31 32 33	00 01 02 03 10 11 12 13 21 20 23 22 31 30 33 32

Figure 4.2--Continued
abbreviated analysis of variance of a particular plan is given in Table 4.2.

Example 4.2:

In the $2 \times 2 \times 4$ factorial arrangement a plan that confounds only the mean effect and components of $A_{1} A_{2} A_{3}$ must have a block size of 8 . Such a plan must satisfy the following conditions:

$$
\begin{aligned}
& h_{i}\left(j ; c_{j}\right)=4, \\
& h_{i}\left(3 ; c_{3}\right)=2, \\
& h_{i}\left(1,2 ; c_{1}, c_{2}\right)=2 \text { and } \\
& h_{i}\left(j, 3 ; c_{j}, c_{3}\right)=1, \text { for } i=1,2, j=1,2, c_{j}=0,1 \text { and } \\
& \quad c_{3}=0,1,2,3 .
\end{aligned}
$$

The three plans that confounds only the mean effect and 1 component of $A_{1} A_{2} A_{3}$ are given in Figure 4.3. An abbreviated analysis of variance appears in Table 4.3.

If the numbers of levels of the factors do not have a common divisor other than unity, then there is no plan with equal block sizes that confounds only the mean effect and components of the highest-order interaction. In this case the confounding of components of the highest-order interaction results in the confounding or partial confounding of components of other factorial effects.

Example 4.3:
In the $2 \times 2 \times 3$ factorial arrangement no plan with equal block sizes exists that confounds only the mean effect and components of $A_{1} A_{2} A_{3}$. The plan B in Figure 4.4 confounds 1 component each of $A_{1} A_{2} A_{3}$ and A_{3} in addition

TABLE 4.2
an abbreviated analysis of variance table FOR A PARTICULAR PLAN IN FIGURE 4.2

Source	d.f.	S.S.
Total	16	Y'Y
Mean	1	$Y^{\prime} K_{16}{ }^{Y}$
B.A.B. $\quad\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)$	1	$Y^{\prime}\left(\underline{X} X \chi^{-K} 16\right) Y$
W.A.B.	14	$Y^{\prime}\left(I_{16}-\bar{X}^{\prime} \mathrm{X}^{\prime}\right) \mathrm{Y}$
A_{1}		$\mathrm{Y}^{\prime}\left(\mathrm{I}_{4}-\mathrm{K}_{4} \mathrm{OR}_{4}\right) \mathrm{Y}$
A_{2}		$Y^{\prime}\left(\mathrm{K}_{4} \mathrm{II}_{4}-\mathrm{K}_{4}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{2}$		$Y^{\prime}\left(\mathrm{I}_{4}-\mathrm{K}_{4} \mathrm{O}_{4} \mathrm{~K}_{4}-\tilde{X} \tilde{X}^{\prime}+\mathrm{K}_{16}\right) Y$

$\left.\left\lvert\, \begin{array}{lll|lll}0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 3 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 & 1 & 1 \\ 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 & 1 & 3\end{array}\right.\right]$

0	0	0	0	0	1
0	0	2	0	0	3
0	1	1	0	1	0
0	1	3	0	1	2
1	0	1	1	0	0
1	0	3	1	0	2
1	1	0	1	1	1
1	1	2	1	1	3

0	0	0	0	0	1
0	0	3	0	0	2
0	1	1	0	1	0
0	1	2	0	1	3
1	0	1	1	0	0
1	0	2	1	0	3
1	1	0	1	1	1
1	1	3	1	1	2

Pigure 4.3-The 3 plans confounding only the mean and 1 component of $A_{1} A_{2} A_{3}$ in a $2 \times 2 \times 4$ factorial arrangement of treatments.

TABLE 4.3

an abbreviated analysis of variance table FOR A PARTICULAR PLAN OF FIGURE 4.3

Source	d.f	S.S.
Total	16	Y'Y
Mean	1	$Y^{\prime} K_{16}{ }^{\text {Y }}$
B.A.B. $\quad\left(A_{1} A_{2} A_{3}\right)$	1	
W.A.B.	14	$Y^{\prime}\left(I_{16}-\tilde{X I}^{\prime}\right) \mathrm{Y}$
A_{1}		$Y^{\prime}\left(I_{2} \mathrm{~K}_{2} \otimes \mathrm{~K}_{2} 8 \mathrm{~K}_{4}\right) \mathrm{Y}$
A_{2}		$Y^{\prime}\left(K_{2} \otimes I_{2}-K_{2} \otimes K_{4}\right) Y$
A_{3}		$Y^{\prime}\left(\mathrm{K}_{2} \mathrm{~K}_{2} \otimes \mathrm{I}_{4}-\mathrm{K}_{4}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{2}$		$Y^{\prime}\left(I_{2}-K_{2} \otimes I_{2}-K_{2} \otimes K_{4}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{3}$		$Y^{\prime}\left(I_{2}-K_{2} \otimes \mathrm{~K}_{2} \otimes \mathrm{I}_{4}-\mathrm{K}_{4}\right) Y$
$\mathrm{A}_{2} \mathrm{~A}_{3}$		$Y^{\prime}\left(\mathrm{K}_{2} \otimes \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{I}_{4}-\mathrm{K}_{4}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$		$Y^{\prime}\left(\left(I_{2}-\mathrm{K}_{2} \otimes \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{I}_{4}-\mathrm{K}_{4}\right)-\tilde{X} \tilde{X}^{\prime}+\mathrm{K}_{16}\right) Y$

0	0	0	0	0	1	0	0	2
0	1	1	0	1	0	0	1	2
1	0	0	1	0	1	1	0	2
1	1	1	1	1	0	1	1	2

Figure 4.4--A plan confounding the mean effect and 1 component each of $A_{1} A_{2} A_{3}$ and A_{3} in a $2 \times 2 \times 3$ factorial arrangement of treatments.
to the mean effect. The latter statement follows from the application of Theorem 3.8 with the matrix $C=\left(\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2\end{array}\right)=$ $\left(J_{3}, r_{2}, r_{3}\right)$, $\mathrm{XC}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left(\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2\end{array}\right)=\left(\begin{array}{l}J_{12},\binom{1}{-1} \otimes\binom{1}{-1} \otimes\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right),\binom{1}{1} \otimes \\ \\ \left.\binom{1}{1} \otimes\left(\begin{array}{r}1 \\ 1 \\ -2\end{array}\right)\right)\end{array}\right.$ and thus the mean effect, 1 component of $A_{1} A_{2} A_{3}$ and 1 component of A_{3} are confounded with B. The plan B is not a good choice if information on $\mathbf{A}_{\mathbf{3}}$ is paramount. Table 4.4 gives an abbreviated analysis of variance for the plan given in Figure 4.4.

For the situation in which we cannot sacrifice information on the highest-order interaction we can confound components of another interaction or main effect.

Examp1e 4.4:
In a $2 \times 2 \times 3$ factorial arrangement $A_{1} A_{2}$ has 1 component. A plan confounding $A_{1} A_{2}$ is unique by Theorem 3.7. By Theorem 3.23 the plan is the extension of a plan confounding $A_{1}^{*} A_{2}^{*}$ in a 2×2 factorial arrangement. The plan is given in Figure 4.5 and an abbreviated analysis of variance appears in Table 4.5.

Example 4.5:
Using Corollary 3.2 and Theorem 3.23 we see that there exists a total of 24 plans that confounds the mean effect

TABLE 4.4
abbreviated analysis of variance table
FOR the plan given in figure 4.4

Source	d.f.	S.S.
Total	12	Y'Y
Mean	1	$Y^{\prime} K_{12}{ }^{\text {Y }}$
B.A.B.	2	$Y^{\prime}\left(\bar{X} \bar{X}^{\prime}-K_{12}\right) Y$
A_{3}		$Y^{\prime}\left(\bar{X}^{\prime} \bar{Y}_{3} \tilde{r}_{3}^{\prime} \bar{X}^{\prime}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$		$Y^{\prime}\left(\tilde{X}^{\underline{X}} \bar{\gamma}_{2} \bar{\gamma}_{2}^{\prime} \bar{X}^{\prime}\right) Y$
W.A.B.	9	$Y^{\prime}\left(I_{12}{ }^{-\bar{X} \bar{X}}\right) \mathrm{Y}$
A_{1}		$Y^{\prime}\left(I_{2}-K_{2} \otimes K_{2} \otimes K_{3}\right) Y$
A_{2}		$Y^{\prime}\left(\mathrm{K}_{2} \otimes \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{~K}_{3}\right) \mathrm{Y}$
A_{3}		$Y^{\prime}\left(\left(K_{2} \otimes K_{2} \otimes I_{3}-K_{3}\right)-\tilde{X X}_{3} \tilde{\gamma}_{3}^{\prime} \bar{X}^{\prime}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2}$		$Y^{\prime}\left(I_{2}-\mathrm{K}_{2} \otimes \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{~K}_{3}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{3}$		$Y^{\prime}\left(I_{2}-\mathrm{K}_{2} 8 \mathrm{~K}_{2} \mathrm{EI}_{3}-\mathrm{K}_{3}\right) \mathrm{Y}$
$\mathrm{A}_{2} \mathrm{~A}_{3}$		$Y^{\prime}\left(\mathrm{K}_{2} \otimes_{2}-\mathrm{K}_{2} \mathrm{I}_{3}-\mathrm{K}_{3}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$		$\mathrm{Y}^{\prime}\left(\left(I_{2}-\mathrm{K}_{2} \otimes \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{I}_{3}-\mathrm{K}_{3}\right)-\tilde{X}_{\mathrm{X}}^{2} \tilde{\mathrm{r}}_{2} \mathrm{X}^{\prime}\right) \mathrm{Y}$

0	0	0	0	1	0
0	0	1	0	1	1
0	0	2	0	1	2
1	1	0	1	0	0
1	1	1	1	0	1
1	1	2	1	0	2

Figure 4.5-The plan confounding the mean effect and $A_{1} A_{2}$ in a $2 \times 2 \times 3$ factorial arrangement of treatments.

TABLE 4.5
an abbreviated analysis of variance table FOR THE PLAN IN FIGURE 4.5

Source	d.f.	S.S.
Total	12	Y'Y
Mean	1	$Y^{\prime} K_{12}{ }^{\prime}$
B.A.B. ($\mathrm{A}_{1} \mathrm{~A}_{2}$)	1	$Y^{\prime}\left(\tilde{X} \tilde{X}^{\prime}-\mathrm{K}_{12}\right) \mathrm{Y}$
W.A.B.	\bigcirc	$Y^{\prime}\left(I_{12}-{ }^{\left.-X \tilde{X}^{\prime}\right)} \mathrm{Y}\right.$
A_{1}		$Y^{\prime}\left(I_{2}-K_{2} \otimes K_{2} \otimes K_{3}\right) Y$
A_{2}		$Y^{\prime}\left(\mathrm{K}_{2} \otimes \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{~K}_{3}\right) \mathrm{Y}$
A_{3}		$Y^{\prime}\left(K_{2} \otimes \mathrm{~K}_{2} \otimes \mathrm{I}_{3}-\mathrm{K}_{3}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{3}$		$Y^{\prime}\left(I_{2}-K_{2} \otimes K_{2} \otimes I_{3}-K_{3}\right) Y$
$\mathrm{A}_{2} \mathrm{~A}_{3}$		$Y^{\prime}\left(K_{2} \otimes I_{2}-K_{2} \otimes I_{3}-K_{3}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$		$\mathrm{Y}^{\prime}\left(\mathrm{I}_{2}-\mathrm{K}_{2} \mathrm{SI}_{2}-\mathrm{K}_{2} \mathrm{O}_{3}-\mathrm{K}_{3}\right) \mathrm{Y}$

and 3 components of $A_{1} A_{2}$ in any $4 \times 4 \times q$ factorial arrangement. An analysis of variance is straightforward. The W.A.B. analysis of $A_{1} A_{2}$ has 6 degrees of freedom and the matrix of its quadratic form is $\mathrm{I}_{4}-\mathrm{K}_{4} \otimes \mathrm{I}_{4}-\mathrm{K}_{4}-\overline{\mathrm{X}} \bar{X}^{\prime}+\mathrm{K}_{16}$. If B_{1} confounds only the mean effect and components $X_{1} C_{1}$ of $A_{1} A_{2} \ldots A_{k}$ and B_{2} confounds only the mean effect and components $X_{2} C_{2}$ of $A_{k+1} A_{k+2} \ldots A_{r}$ then by Theorem 3.9 and Theorem 3.6 $B=B_{1} \cap B_{2}$ is a plan with blocks of equal size and confounds the effects defined by $\left(J_{N}, X_{1} C_{1}, X_{2} C_{2}\right.$, $\left(X_{1} \otimes X_{2}\right)\left(C_{1} \otimes C_{2}\right)$. Furthermore $\left(X_{1} \Theta X_{2}\right)\left(C_{1} \otimes C_{2}\right)=X_{1} C_{1} \Theta X_{2} C_{2}$ defines components of $A_{1} A_{2} \ldots A_{r}$ since there exist W_{1} and W_{2} such that $\mathrm{X}_{1} \mathrm{C}_{1}=\tilde{\mathrm{F}} *\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{k}}\right) \mathrm{W}_{1}$ and $\mathrm{X}_{2} \mathrm{C}_{2}=$ $\tilde{F} *\left(U_{k+1}, U_{k+2}, \ldots, U_{r}\right) W_{2}$ and $X_{1} C_{1} \Theta X_{2} C_{2}=\left[\left(\bar{U}_{1} \otimes \tilde{U}_{2} \otimes \ldots \theta \tilde{U}_{k}\right) W_{1} \otimes\right.$ $\mathrm{J}_{\mathrm{q}}{\underset{\mathrm{pq}}{\mathrm{N}}}^{\mathrm{J}_{\mathrm{N}}} \boldsymbol{0}$
$J_{p}\left(0_{k+1} 8 \tilde{U}_{k+2} \ldots \tilde{\mathrm{U}}_{\mathrm{r}}\right) \mathrm{W}_{2} \otimes \tilde{\mathrm{~J}}_{\frac{\mathrm{N}}{}}^{\mathrm{pq}}=$
$\left(\tilde{U}_{1} \otimes \tilde{\mathrm{U}}_{2} \otimes \ldots \tilde{\mathrm{U}}_{\mathrm{r}}\right)\left(\mathrm{W}_{1} \otimes \mathrm{~W}_{2}\right) \otimes \frac{\bar{J}_{\mathrm{N}}}{\mathrm{pq}}$.
Example 4.6:
In a $2 \times 2 \times 3 \times 3$ factorial arrangement the plans B_{1} and B_{2} in Figure 4.6 confound respectively the mean effect and $A_{1} A_{2}$ and the mean effect and 2 components of $A_{3} A_{4} \cdot B=B_{1} \cap B_{2}$ confounds the mean effect, $A_{1} A_{2}, 2$ components of $A_{3} A_{4}$ and 2 components of $A_{1} A_{2} A_{3} A_{4}$ with its 6 blocks of size 6. An abbreviated analysis of variance appears in Table 4.6

	0000	0100
	0001	0101
	0002	0102
	0010	0110
	0011	0111
	0012	0112
	0020	0120
	0021	0121
B_{1} :	0022	0122
	1100	1000
	1101	1000
	1102	1002
	1110	1010
	1111	1011
	1112	1012
	1120	1020
	1121	1021
	1122	1022

$B_{2}: \quad\left[\begin{array}{lllllllll|llll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 0 & & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 & & 0 & 1 & 1 & 2 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 2 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 0 & 2 & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 2 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 2 & 1 & 1 & 2 & 0 & 1 & 1 & 2 & 1\end{array}\right]$
$B_{1} \cap B_{2}: \quad\left[\begin{array}{llll|llll|llll|llll|llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 2 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 1 & 0 & 1 & 2 & 2 & 0 & 1 & 2 & 0 & 0 & 1 & 2 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 2 & 1 & 1 & 2 & 0 & 1 & 1 & 2 & 1 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 2 & 1 \\ \hline\end{array}\right.$

Figure 4.6-Three plans of a $2 \times 2 \times 3 \times 3$ factorial arrangement of treatments.

TABLE 4.6

an abbreviated analysis of variance table for the plan

$$
\begin{gathered}
B_{1} \cap B_{2} \text { OF A } 2 \times 2 \times 3 \times 3 \text { FACTORIAL ARRANGEMENT } \\
\text { OF TREATNENTS }
\end{gathered}
$$

Source	d.f.	S.S.
Total	36	$Y^{\prime} \mathbf{Y}$
Mean	1	$Y^{\prime} K_{36}{ }^{\text {Y }}$
B.A.B.	5	$Y^{\prime}\left(\tilde{X} \tilde{X}^{\prime}-K_{36}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2}$	1	$Y^{\prime}\left(\tilde{X}_{1} \tilde{X}_{1}^{\prime}-K_{36}\right) Y$
$\mathrm{A}_{3} \mathrm{~A}_{4}$	2	$Y^{\prime}\left(\bar{X}_{2} \tilde{X}_{2}^{\prime}-K_{36}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$	2	$Y^{\prime}\left(\bar{X}^{\prime} \bar{X}^{\prime}-\tilde{X}_{1} \tilde{X}_{1}-\tilde{X}_{2} \tilde{X}_{2}^{\prime}+\mathrm{K}_{36}\right) \mathrm{Y}$
W.A.B.	30	
A_{1}	1	$Y^{\prime}\left(\mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{~K}_{2} \otimes \mathrm{~K}_{3} \otimes \mathrm{~K}_{3}\right) \mathrm{Y}$
A_{2}	1	$Y^{\prime}\left(K_{2}{ }^{8} \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{~K}_{3} \otimes \mathrm{~K}_{3}\right) \mathrm{Y}$
A_{3}	2	$Y^{\prime}\left(K_{2} \otimes K_{2} \otimes I_{3}-K_{3} \mathrm{~K}_{3}\right) Y$
A_{4}	2	$Y^{\prime}\left(K_{2} \otimes K_{2} \otimes K_{3} \otimes I_{3}-K_{3}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{3}$	2	$Y^{\prime}\left(I_{2}-K_{2} \otimes K_{2} \otimes I_{3}-K_{3} \otimes K_{3}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{4}$	2	$Y^{\prime}\left(I_{2}-K_{2} \otimes K_{2} \otimes K_{3} \otimes I_{3}-K_{3}\right) Y$
$\mathrm{A}_{2} \mathrm{~A}_{3}$	2	$Y^{\prime}\left(K_{2} \otimes I_{2}-K_{2} \otimes I_{3}-K_{3} \otimes K_{3}\right) Y$
$\mathrm{A}_{2} \mathrm{~A}_{4}$	2	$Y^{\prime}\left(K_{2} \otimes I_{2}-K_{2} \otimes K_{3} \otimes I_{3}-K_{3}\right) Y$
$\mathrm{A}_{3} \mathrm{~A}_{4}$	2	$Y^{\prime}\left(\left(K_{2} \mathrm{~K}_{2} \mathrm{I}_{3}-\mathrm{K}_{3} \mathrm{I}_{3}-\mathrm{K}_{3}-\mathrm{X}_{2} \tilde{X}_{2}^{\prime}+\mathrm{K}_{36}\right) \mathrm{Y}\right.$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$	2	$Y^{\prime}\left(I_{2}-K_{2} \otimes I_{2}-K_{2} \otimes I_{3}-K_{3} \otimes K_{3}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{4}$	2	$Y^{\prime}\left(\mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{I}_{2}-\mathrm{K}_{2} \otimes \mathrm{~K}_{3} \otimes \mathrm{I}_{3}-\mathrm{K}_{3}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{3} \mathrm{~A}_{4}$	4	$Y^{\prime}\left(I_{2}-K_{2} \otimes K_{2} \otimes I_{3}-K_{3} \otimes I_{3}-K_{3}\right) Y$
$\mathrm{A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$	4	$Y^{\prime}\left(K_{2} \otimes I_{2}-K_{2} \otimes I_{3}-K_{3} \otimes I_{3}-K_{3}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$	2	$\begin{array}{r} Y^{\prime}\left(\left(I_{2}-K_{2} \otimes I_{2}-K_{2} 8 I_{3}-K_{3} \otimes I_{3}-K_{3}-\bar{X} \bar{X}^{\prime}\right.\right. \\ \left.+\tilde{X}_{1} \tilde{X}_{1}^{\prime}+\tilde{X}_{2} \tilde{X}_{2}^{\prime}-K_{36}\right) Y \end{array}$

$$
\text { In the } 2 \times 6 \times 3 \text { factorial arrangement } B_{1} \text { and } B_{2}
$$ given in Figure 4.7 respectively confound the mean effect and 1 component of $A_{1} A_{2}$ and the mean effect and 2 components of $A_{2} A_{3}$. The component of $A_{1} A_{2}$ confounded is defined by

$$
\binom{1}{-1} \otimes\left[\binom{1}{-1} \otimes \quad J_{3}\right] \otimes \quad J_{3} \quad \text { and }
$$

the two components of $A_{2} A_{3}$ are defined by

$$
\binom{1}{1} \otimes\binom{1}{1} \otimes\left[\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
0 & -2 \\
0 & -2 \\
1 & 1 \\
-1 & 1 \\
-1 & 1 \\
1 & 1 \\
0 & -2
\end{array}\right]
$$

By Theorem 3.6 the Hadamard product of these two sets of effects is confounded and defines a set of effects also confounded with $B=B_{1} \cap B_{2}$. The Hadamard product is

$$
\binom{1}{-1} \otimes\binom{1}{-1} \otimes\left[\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
0 & -2 \\
0 & -2 \\
1 & 1 \\
-1 & 1 \\
-1 & 1 \\
1 & 1 \\
0 & -2
\end{array}\right] \text { and thus } 2 \text { components }
$$

of $A_{1} A_{2} A_{3}$ are confounded. An abbreviated analysis of variance is given in Table 4.7.
$\mathbf{B}_{1}: \quad\left[\begin{array}{lll|lll}0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 2 & 0 & 3 & 2 \\ 0 & 1 & 0 & 0 & 4 & 0 \\ 0 & 1 & 1 & 0 & 4 & 1 \\ 0 & 1 & 2 & 0 & 4 & 2 \\ 0 & 2 & 0 & 0 & 5 & 0 \\ 0 & 2 & 1 & 0 & 5 & 1 \\ 0 & 2 & 2 & 0 & 5 & 2 \\ 1 & 3 & 0 & 1 & 0 & 0 \\ 1 & 5 & 1 & 1 & 0 & 1 \\ 1 & 3 & 2 & 1 & 0 & 2 \\ 1 & 4 & 0 & 1 & 1 & 0 \\ 1 & 4 & 1 & 1 & 1 & 1 \\ 1 & 4 & 2 & 1 & 1 & 2 \\ 1 & 5 & 0 & 1 & 2 & 0 \\ 1 & 5 & 1 & 1 & 2 & 1 \\ 1 & 5 & 2 & 1 & 2 & 2\end{array}\right]$
$\mathrm{B}_{2}: \quad\left[\begin{array}{lll|lll|lll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 2 & 2 & 0 & 2 & 0 & 0 & 2 & 1 \\ 0 & 3 & 0 & 0 & 3 & 1 & 0 & 3 & 2 \\ 0 & 4 & 1 & 0 & 4 & 2 & 0 & 4 & 0 \\ 0 & 5 & 2 & 0 & 5 & 0 & 0 & 5 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 0 \\ 1 & 2 & 2 & 1 & 2 & 0 & 1 & 2 & 1 \\ 1 & 3 & 0 & 1 & 3 & 1 & 1 & 3 & 2 \\ 1 & 4 & 1 & 1 & 4 & 2 & 1 & 4 & 0 \\ 1 & 5 & 2 & 1 & 5 & 0 & 1 & 5 & 1\end{array}\right]$

$B_{1} \cap B_{2}: \quad |$| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 3 | 1 | 0 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 4 | 1 | 0 | 4 | 2 | 0 | 4 | 0 |
| 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 1 | 0 | 5 | 2 | 0 | 5 | 0 | 0 | 5 | 1 |
| 1 | 3 | 0 | 1 | 3 | 1 | 1 | 3 | 2 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 2 |
| 1 | 4 | 1 | 1 | 4 | 2 | 1 | 4 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 |
| 1 | 5 | 2 | 1 | 5 | 0 | 1 | 5 | 1 | 1 | 2 | 2 | 1 | 2 | 0 | 1 | 2 | 1 |

Figure 4.7--Three plans in a $2 \times 6 \times 3$ factorial arrangement of treatments.

TABLE 4.7
an abbreviated analysis of variance table of a $2 \times 6 \times 3$ factorial arrangerient of treatments with the

PLAN $\mathrm{B}_{1} \cap \mathrm{~B}_{2}$ IN FIGURE 4.7

Source	d.f.	S.S.
Total	36	Y'Y
Mean	1	$Y^{\prime} K_{36}{ }^{\text {Y }}$
B.A.B.	5	$Y^{\prime}\left(\bar{X} \bar{X}^{\prime}-K_{36}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{2}$		$Y^{\prime}\left(\tilde{X}_{1} \tilde{X}_{1}^{\prime}-\mathrm{K}_{36}\right) \mathrm{Y}$
$\mathrm{A}_{2} \mathrm{~A}_{3}$		$Y^{\prime}\left(\tilde{X}_{2} \tilde{X}_{2}^{\prime}-\mathrm{K}_{36}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$		$Y^{\prime}\left(\bar{X}^{\prime} \bar{X}^{\prime}-\tilde{X}_{1} \tilde{\mathrm{X}}_{1}^{\prime}-\overline{\mathrm{x}}_{2} \tilde{\mathrm{X}}_{2}^{\prime}+\mathrm{K}_{36}\right) \mathrm{Y}$
W.A.B.	30	$Y^{\prime}\left(I_{36}-\tilde{X} \tilde{x}^{\prime}\right) Y$
${ }^{\text {A }} 1$		$Y^{\prime}\left(I_{2}-\mathrm{K}_{2} 8 \mathrm{~K}_{6} 8 \mathrm{~K}_{3}\right) \mathrm{Y}$
A_{2}		$Y^{\prime}\left(\mathrm{K}_{2}{ }^{区 1} \mathrm{C}_{6}-\mathrm{K}_{6} 8 \mathrm{~K}_{3}\right) \mathrm{Y}$
A_{3}		$Y^{\prime}\left(\mathrm{K}_{2} \mathrm{OK}_{6} \mathrm{AI}_{3}-\mathrm{K}_{3}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{2}$		$Y^{\prime}\left(\left(I_{2}-K_{2} 8 I_{6}-K_{6} 8 K_{3}\right)-\tilde{X}_{1} \tilde{X}_{1}^{\prime}+K_{36}\right) Y$
$\mathrm{A}_{1} \mathrm{~A}_{3}$		$Y^{\prime}\left(I_{2}-K_{2} \otimes K_{6} \otimes I_{3}-K_{3}\right) Y$
$\mathrm{A}_{2} \mathrm{~A}_{3}$		$Y^{\prime}\left(\left(\mathrm{K}_{2}{ }^{81} \mathrm{I}_{6}-\mathrm{K}_{6}{ }^{81} \mathrm{I}_{3}-\mathrm{K}_{3}\right)-\tilde{X}_{2} \tilde{X}_{2}^{\prime}+\mathrm{K}_{36}\right) \mathrm{Y}$
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$		

CHAPTER V

A PRACTICAL EXAMPLE

This chapter is intended to illustrate how the development in CHAPTERS III and IV can be utilized to design a practical plan that is appropriate for data analysis. Emphasis is placed upon those aspects where the design or analysis was either impossible or more difficult before. In the past, designs have been artificially forced into patterns where all factors had the same number of levels and even these numbers were restricted.

Also, many times researchers have well designed experiments, but unforeseen events or a lack of facilities or time forced them to compromise their analyses. Such is the scope of the following experimental example and although the results developed earlier are not necessarily restricted to this type of shortcoming, it is felt that the chosen example will provide some of the reasons as to why the usual analysis is not appropriate and illustrate one type of situation where it is advantageous to use these results. It is hoped that the reader can easily imagine that these applications can be made to a wide variety of situations in which the response to be measured depends on the levels of several factors, some kind of blocking is advantageous, and large numbers of replicates are not feasible.

Suppose that a researcher has collected a sample of blood from
each of 24 dogs in order to determine the effects of 24 diets comprising a $2 \times 2 \times 6$ factorial arrangement of treatments upon the total blood lipids in dogs.

The three factors are carbohydrate, protein and fat. The two levels of carbohydrate are 5 and 10 grams per kilogram of body weight, the two levels of protein are 20 and 40 grams per kilogram of body weight and the six levels of fat are $8,16,24,32,40,48$ grams per kilogram of body weight. The treatments are the 24 combinations of carbohydrate-proteinfat and the response he wishes to measure is the number of micrograms of total blood lipids per milliliter of whole blood. The high and low levels of both carbohydrate and protein can be indicated by 0 and 1 and the six levels of fat can be indicated by $0,1,2,3,4$, and 5 . Thus a three tuple such as $(0,1,4)$ represents the diet consisting of the low level of carbohydrate, the high level of protein and $40 \mathrm{~g} / \mathrm{kg}$ of fat.

Because of situations beyond his control, the researcher must utilize two different laboratories for the assays. He realizes that the use of different laboratories might introduce bias into responses because of different techniques or technicians.

In his investigation he would like to ascertain if the two levels of carbohydrate are different relative to the measured response. Also, he desires to know if the two levels of protein influence the measured responses and the six levels of fat influence the measured responses. In statistical terms these statements are equivalent to the evaluation of the three main effects.

Also of interest to the experimenter is whether or not the pattern of responses for one factor is different at each level of another
factor when the remaining factor is collapsed. Thus the researcher wants to investigate the carbohydrate x protein, carbohydrate x fat, and the protein x fat interactions. The experimenter is not interested in the carbohydrate x protein x fat interaction.

The experimenter knows that any assignment of the blood samples to the two laboratories will invalidate any comparisons of assays from different laboratories. That is, he is unable to attribute differences in blood samples assayed in different laboratories to a difference in treatments because of the bias introduced by the difference in laboratories. He also feels that he should assign 12 blood samples to each of the laboratories.

In order to obtain all the information desired by the experimenter, we can construct a plan using the results of CHAPTER III. We can immediately discard any plan which confounds any main effect or first order interaction since the researcher desires information on these effects. Thus we desire to confound part of the highest-order interaction. A plan that confounds part of the carbohydrate x protein x fat interaction is easy to construct. Since each laboratory is to receive 12 samples then we must have blocks of size 12.

The allocation of the blood samples to the laboratories is dependent upon the interest of the experimenter. For example, since he wants information on the main effect of carbohydrate, it would be very undesirable to assign all samples at the low level of carbohydrate to one laboratory and the remaining samples at the high level of carbohydrate to the other laboratory. Such a practice would invalidate or bias the usual estimate of the carbohydrate main effect and corresponding sum of squares.

Thus we see that the individual levels of each of the factors must be balanced in each laboratory. For similar reasons all combinations of levels from any two must be balanced in order for the estimates and sums of squares of the 3 first-order interaction to exist. These conditions are easy to satisfy in the construction of an allocation plan.

Ten allocation plans exist which will give the experimenter the desired estimates. The following plan is one of the ten allocation plans that confouads only the highest-order interaction.

Lab 1	Lab 2
000	003
001	004
002	005
013	010
014	011
015	012
103	100
104	101
105	102
110	113
111	114
112	115

The sum of squares for all effects other than the carbohydrate x protein x fat interaction are computed in the usual manner and have the usual rules governing the degrees of freedom. The sum of squares for the highest-order interaction is computed by subtracting the sum of squares for main effects first-order interactions and laboratories from the total (corrected for the mean) sum of squares. This sum of square can be used as the residual sum of squares and has only (1)(1)(5)-1 = 4 degrees of freedom because one degree of freedom due to the laboratory sum of squares is subtracted from the usual 5 degrees of freedom for this interaction.

We should be aware of the implication of the last computation. All the main effects and first-order interactions are intra-laboratory
or sums of intra-laboratory comparisons and thus does not involve differences in laboratories or inter-laboratory comparisons. This is why the inter-laboratory in the form of the laboratory sum of squares was removed from the usual sum of squares due to the carbohydrate x protein x fat interaction. Since the highest-order interaction is used many times to test the significance of the first-order interactions and possibly main effects, then by not removing the laboratory sum of squares from the usual sum of squares for the highest-order interaction, we would be testing intra-laboratory comparisons with a residual error consisting of both intra-laboratory and inter-laboratory comparisons. Thus the inter-laboratory comparison is eliminated from the highest-order interaction and correspondingly one degree of freedom is lost.

Failure to eliminate the inter-laboratory comparison would tend to inflate the residual sum of squares by the inclusion of the square of bias due to the different laboratories. The researcher can follow the allocation plan and still get the usual sums of squares of the effects of interest at a loss of one degree of freedom of the highest-order interaction. If bias due to the difference in laboratories really exists, then the loss of the degree of freedom is welcome since the inter-laboratory sum of squares is substantial.

The usual tests of significance can be made in the manner appropriate to the $2 \times 2 \times 6$ factorial arrangement of treatments with the exception that the residual sum of squares now has only 4 degrees of freedom associated with it. That is, the highest-order interaction is used as the error term in testing each first-order interaction for its effect. If no significance is found the main effects are tested using the highest-order
interaction as the error term or the pooling of the non-significant interaction terms to obtain a new measure of error. Since a large number of textbooks of both methods and experimental design cover the tests of hypotheses for these types of situations, a detailed discussion of the tests to be employed in this example would be redundant and therefore is not undertaken.

CHAPTER VI

SUMMARY

This dissertation provided a method of construction of a set of orthogonal effects in an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement of treatments and a partition of this set into the 2^{m} factorial effects. A canonical representation of the $2^{\text {m }}$ factorial effects was established by utilizing tensor products and the set of tensors defining an interaction effect was related to the Hadamard product of sets of vectors defining the main effects. The matrix of the quadratic form of a factorial effect was established and was seen to be invariant of the choice of the orthogonal set defining the factorial effect. This matrix was also the Kronecker product of idempotent matrices and therefore idempotent by a preliminary theorem.

The preceding developments provided a simple expression for the partition of the total sum of squares into the sums of squares due to the factorial effects. The ranks of the matrices of the quadratic forms were determined and were related to parameters of non-central chi-squared random variables. Analyses of variance were presented in general and for selected simple examples.

Definitions, methods of construction, and analyses of variance were given for the randomized complete block design and the completely randomized design with factorial arrangements of treatments.

This dissertation also gave an algebraic treatment of blocking and confounding of a single replicate of a factorial arrangement of treatments. The set of treatments of an $n_{1} \times n_{2} \times \ldots \times n_{m}$ factorial arrangement was represented by the Cartesian product (in the respective order) of the residue classes of the respective moduli. The incidence matrices of the blocks of a plan were defined and the Hadamard product was used to explicitly define confounding of an effect with a block of a plan.

The Hadamard product of tensors that define confounded effects was seen to reproduce tensors which also defined confounded effects. Linear combinations of confounded effects also are confounded. An effect confounded in each block of a plan was seen to be defined by some linear combination of the incidence matrices of the blocks of the plan. The number of mutually orthogonal effects confounded in every block of a plan is equal to the number of blocks of the plan. The class of orthogonal effects confoundable with a given plan was determined and a plan that confounds only a given set of effects was shown to be unique.

Necessary and sufficient conditions are established for confounding only the mean effect and components of the highest-order interaction with the blocks of a plan. This result leads to necessary and sufficient conditions for the existence of such a plan and is extended to apply to lower-order interactions or main effects.

The effects confounded in the intersection of two plans are related to the effects confounded in the separate plans. Necessary and sufficient conditions for estimability of an effect are given.

It was established that blocks must be of equal size if only the mean effect and components of an interaction effect are confounded.

Aside from the mean effect if the effects confounded by one plan are orthogonal to the effects confounded by a second plan and the blocks of both plans have common sizes then the intersection of the two plans yields a plan whose blocks are of equal size. The latter plan confounded the effects confounded by either plan and the generalized interaction of the set of effects of one plan with the set of effects of the other.

It was shown that the generalized interaction of components of $A_{1} A_{2} \ldots A_{k}$ with components of $A_{r} A_{r+1} \ldots A_{s}$ is a set of components of $A_{1} A_{2} \ldots A_{k} A_{r} \ldots A_{s}$ provided $k<r$. This result can be extended to the case where $k \geq r$ if judicious choices of the two sets of components are made. However the actual construction of the two plans is difficult and it is easier to use the methods that have resulted from the theories of Galois field, and projective geometries.

This dissertation has attempted to provide broad insight into the construction of factorial effects and the representation of the quadratic forms thereof in a factorial arrangement of treatments.

It is hoped that the results concerning blocking and confounding will lead to an understanding as to when and why confounding is a worthwhile procedure and will make for easier construction of blocking plans.

LIST OF REFERENCES

1. Bose, R. C. (1947). Mathematical theory of the symmetrical factorial design. Sankhya, 8:107-166.
2. Bose, R. C. and Kishen, K. (1940). On the problem of confounding in the general symmetrical factorial design. Sankhya, 5:21-36.
3. Cochran, Wm. G. and Cox, G. M. (1957). Experimental Designs. John Wiley and Sons, Inc., New York.
4. Das, M. N. (1964). A somewhat alternative approach for construction of symmetrical factorial designs and obtaining maximum number of factors. Calcutta Statist. Assoc. Bull. 13:1-17.
5. Federer, W. T. (1955). Experimental Design. Macmillan Company, New York.
6. Finney, D. J. (1945). The factorial replication of factorial arrangements. Ann. Eugen., London, 12:291-301.
7. Fisher, R. A. (1942). The theory of confounding in factorial experiments in relation to the theory of groups. Ann. Eugen., London, 11:341-353.
8. Fisher, R. A. (1945). A system of confounding for factors with more than two alternatives, giving completely orthogonal cubes and higher powers. Ann. Eugen., London, 12:283-290.
9. Graybil1, F. A. (1961). An Introduction to Linear Statistical Models. McGraw-Hill Book Co., New York.
10. Halmos, P. R. (1958). Finite-Dimensional Vector Spaces. D. VanNorstrand Co., Inc., Princeton, N. J.
11. Jacobson, N. (1953). Lectures in Abstract Algebra Vol. II. D. VanNostrand Co., Inc., New York.
12. Kempthorne, 0. (1947). A simple approach to confounding fractional replication in factorial experiments. Biometrika, 34:255-272.
13. Kempthorne, 0. (1952). The Design and Analysis of Experiments. John Wiley and Sons, Inc., New York.
14. Kishen, K. and Srivastava, J. N. (1959a). Confounding in asymetrical factorial designs in relation to finite geometries. Current Sci., 28: 98-100.
15. Mann, H. B. (1952). Design and Analysis of Experiments. The Dover Press.
16. Nair, K. R. (1938). On a method of getting confounded arrangements in the general symmetrical type of experiment. Sankhya, 4: 121-138.
17. Raktoe, B. L. (1969). Combining Elements from Distinct Prime Fields in Mixed Factorials. Ann. of Math. Statist., 40:498-504.
18. Rao, C. R. (1947). Factorial experiments derivable from combinatorial arrangements of arrays. J. Royal Stat. Soc., Supp., 9:128-139.
19. Sardana, M. G. (1965). Construction and analysis of $2 \mathrm{q} \times 2^{2}$ asymmetrical factorial designs in two replications. J. Indian Soc. Agric. Statist., 17:111-115.
20. Sarma, T. C. S. R. (1967). On construction of symmetrical fractional factorial designs. J. Indian Soc. Agric. Statist., 19:83-91.
21. White, D. and Hultquist, R. A. (1965). Construction of confounding plans for mixed factorial designs. Ann. Math. Stat., 36: 1256-1271.
22. Yates, F. (1937). The design and analysis of factorial experiments. Tech. Commun. Imp. Bur. Soil Sci., No. 35.

APPENDIXES

APPENDIX I

$B \otimes C=\emptyset$ if and only if $B=\emptyset$ or $C=\emptyset$.
Proof: Necessity follows from definition.
If $B \otimes C=\emptyset$ then $b_{i j} C=\emptyset$ for each $b_{i j}$ in B.
Thus $B=\emptyset$ or $C=\emptyset$.
Proceeding inductively, if $B_{1} \ldots B_{m-1}=\emptyset$ implies $B_{i}=\emptyset$ for some i then $B_{1} \otimes \ldots B_{m}=\emptyset$ implies either $B_{1} \otimes \ldots B_{m-1}=\emptyset$ or $B_{m}=\emptyset$. Thus $B_{i}=\emptyset$ for some i.

APPENDIX II

If $C_{1}, \ldots, C_{i-1}, C_{i+1}, \ldots, C_{m}$ are idempotent and non-zero then $\mathrm{F} *\left(\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{m}}\right)$ is idempotent if and only if C_{i} is idempotent.

Proof: Necessity follows by Theorem 2.4. If $F *\left(C_{1}, \ldots, C_{m}\right)$ is idempotent then
$\left[F^{*}\left(C_{1}, \ldots, C_{m}\right)\right]^{2}=F^{*}\left(C_{1}^{2}, \ldots, C_{i-1}^{2}, C_{i}^{2}, C_{i+1}^{2}, \ldots, C_{m}^{2}\right)=$ $F *\left(C_{1}, \ldots, C_{i-1}, C_{i}^{2}, C_{i+1}, \ldots, C_{m}\right)=F *\left(C_{1}, \ldots, C_{m}\right)$. Thus $F *\left(C_{1}, \ldots, C_{i-1}, C_{i}-C_{i}^{2}, c_{i+1}, \ldots, c_{m}\right)=\emptyset$ and by Theorem $2.5 C_{i}-C_{i}^{2}=\emptyset$. Thus C_{i} is idempotent.

APPENDIX III

If X is an n-dimensional vector, y is an r-dimensional vector and A is an nxr matrix, then $(X \in A) Y=X \theta A Y$.

$$
\begin{aligned}
& \text { Proof: }(X \theta A) Y=\left(X \theta \alpha_{1}, X \theta \alpha_{2}, \ldots X \theta \alpha_{r}\right) Y= \\
&\left(X \theta \alpha_{1}\right) y_{1}+\left(X \theta \alpha_{2}\right) y_{2}+\ldots+\left(X \theta \alpha_{r}\right) y_{r}= \\
& X \in\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}+\ldots+\alpha_{r} y_{r}\right)=X \theta A Y \quad \text { where } \\
& \\
& A=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right) \text { and } Y=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{r}
\end{array}\right)
\end{aligned}
$$

APPENDIX IV

If A, B, C, D are matrices of dimension $n \times r, m x s, n \times q, \operatorname{mxp}$ respectively then there exists a permutation matrix P such that $(A B) \theta(C D)=[(A \Theta C) \otimes(B O D)] P$.

Proof: $(A \otimes B) \Theta(C \otimes D)=\left(\alpha_{1} \Theta \beta_{1}, \ldots, \alpha_{1} \Theta \beta_{s}, \alpha_{2} \Theta \beta_{1}, \ldots\right.$, $\left.\alpha_{2} \Theta \beta_{s}, \ldots, \alpha_{r} \Theta \beta_{1}, \ldots, \alpha_{r} \theta \beta_{s}\right) \theta\left(\gamma_{1} \theta \delta_{1}, \ldots, \gamma_{1} \theta \delta_{p}\right.$, $\gamma_{2}{ }^{\theta \delta_{1}}, \ldots, \gamma_{2} \theta \delta_{p}, \ldots, \gamma_{q} \theta \delta_{p}$ and
$(A \in C) 8(B \Theta D)=\left(\alpha_{1} \theta \gamma_{1}, \ldots, \alpha_{1}{ }^{\theta} \gamma_{q}, \alpha_{2} \theta \gamma_{1}, \ldots, \alpha_{2}{ }^{\theta} \gamma_{q}, \ldots\right.$,
$\left.\alpha_{r}{ }^{\theta} \gamma_{1}, \ldots, \alpha_{r}{ }^{\theta \gamma_{q}}\right) \theta_{1}\left(\beta_{1} \theta \delta_{1}, \ldots, \beta_{1} \theta \delta_{p}, \beta_{2}{ }^{\theta \delta_{1}}, \ldots, \beta_{2} \theta \delta_{p}, \ldots\right.$,
$\beta_{s} \Theta \delta_{p}$) where $\alpha_{i}, B_{j}, \gamma_{k}, \delta_{l}$ are the $i^{\text {th }}, j^{\text {th }}, k^{\text {th }}, e^{\text {th }}$ column of A, B, C, D respectively. Since both matrices are of dimension nm \times rsqp and

$$
\begin{aligned}
& \left|\begin{array}{cccc}
a_{1 i} c_{1 k}{ }^{\beta} & \theta & \delta_{\ell} \\
a_{2 i} c_{2 k}{ }^{\beta} j & \theta & \delta_{\ell} \\
\\
a_{m i} c_{m k} \beta_{j} & \theta & \delta_{\ell}
\end{array}\right|=\left(\alpha_{i} \theta_{k}\right) \theta\left(\beta_{j} \Theta \delta_{\ell}\right)
\end{aligned}
$$

then there exists a permutation matrix P such that

$$
(A \otimes B) \Theta(C \otimes D)=[(A \in C) \otimes(B \in D)] P
$$

Proceeding inductively, if Lirere exists a \mathbf{P}_{m-1} such that
 $\left.\left.C_{m-1}\right)\right] P_{m-1} \quad$ then
$\left(B_{1} 8 \ldots \otimes B_{m-1} 8 B_{m}\right) \Theta\left(C_{1}^{8} \ldots 8 C_{m-1}^{8 C_{m}}\right)=\left[\left[\left(B_{1}^{8} \ldots 8 B_{m-1}\right) \theta\left(C_{1}^{8} \ldots 8 C_{m-1}\right)\right]\right.$ $\left.\left(B_{m} \Theta C_{m}\right)\right] P_{2}=\left[\left[\left(B_{1} \Theta C_{1}\right) \otimes \ldots \otimes\left(B_{m-1} \Theta C_{m-1}\right)\right] P_{m-1} \otimes\left(B_{m} \Theta C_{m}\right) I\right] P_{2}=$ $\left[\left(B_{1} \Theta C_{1}\right) \& \ldots\left(B_{m} \Theta C_{m}\right)\right]\left(P_{m-1} I\right) P_{2}$. $\left(P_{m-1} \| I\right) P_{2}$ is a permutation matrix and thus there exists a permutation matrix P_{m} such that

$$
F *\left(B_{1}, \ldots, B_{m}\right) \Theta F *\left(C_{1}, \ldots, C_{m}\right)=F *\left(B_{1} \theta C_{1}, \ldots, B_{m} \theta C_{m}\right) P_{m}
$$

