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AN ALGEBRAIC APPROACH TO BLOCKING AND CONFOUNDING

IN FACTORIAL ARRANGEMENTS
CHAPTER I
INTRODUCTION

Factorial arrangements of treatments have been utilized many
times in the designs of experiments. The factorial arrangement is a
cross-classified arrangement with the classes being the factors. The
chief advantage of the factorial arrangement is that in the absence of
interactions of the factors the number of parameters describing the data
can be reduced to the set of parameters describing the levels of each of
the factors.

Factorial arrangements are customarily dichotomized into sym-
metrical factorial arrangements, where each factor has the same number
of levels, and the asymmetrical factorial arrangements, where the num-
ber of levels differ in some two or more of the factors.

Yates (22) first introduced designs and analyses of symmetrical
factorial arrangements of the types Zm, 3" and asymmetrical arrangements
of the type 23", cCochran's result concerning the joint distribution of
the partition of the sum of squares of normal deviates, and Fisher's F
ratio pertaining to the ratio of specified pairs of members of the par-

titioned sum of squares, made possible the analysis of variance. The
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theory of maximum likelihood yields estimates of parameters appearing in
linear normal models and results by Gauss and Markoff show that these
same estimates are valid in more general linear statistical models. The
likelihood ratio approach to hypothesis testing confirmed that Fisher's
F was a good statistic for testing hypotheses in factorial models.

As experimenters ran afoul of the assumptions of the linear
models used in factorial arrangements, efforts were concentrated on re-
finement of the models so that assumptions could more nearly be met.
Perhaps the most basic assumptions of the factorial model that demanded
to be met were the assumptions of homogeneous and uncorrelated error
terms. Experimenters frequently found that heterogeneous errors ac-
companied an increase in the size of the experimental plot.

To cope with this problem the treatment combinations comprising
the factorial arrangement were partitioned and each member of the parti-
tion was subsequently assigned to a smaller experimental plot. By this
scheme it was felt that the within-plot variation of the experimental
units were smaller and more homogeneous than the variation of the experi-
mental units in the replicate plot, the plot consisting of the union of
the smaller plots.

By no means was the result rendered by this technique without
liabilities. The price of smaller and more homogeneous error terms was
the loss of information on certain treatment contrasts. Since the moti-
vation for choosing smaller experimental plots was that the experimental
plots differed in one or more characteristics which influenced treatment
responses, it was recognized that comparisons between the responses of

two treatments occurring in different experimental plots could not be



made with any degree of confidence.

Another problem to overcome was the selection of the "best"
partition of the treatments relative to the objectives of the experiment.
Haphazard partitions of the treatments resulted in the possible confound-
ing of the factorial effects deemed most important.

Out of the last problem the theory of confounded designs
flourished.

The question of how to confound parts of desired factorial
effects led Bose and Kishen (2) to develop a theory for the construction
of confounded symmetrical designs through finite projective geometries.
Later Bose (1) discussed the problem of finding the maximum number of
factors that can be accommodated in a block of a given size without con-
founding an interaction unto a given order.

Fisher (7, 8) discussed this point in the st factorial where s
is a prime power and found that the maximum number of factors that can

be accomodated in a block of size s® without confounding any main effect

r-1
or first-order interaction is gg:f . Bose has shown that with s=2 the
maximum number of factors that can be accommodated in a block of size 2T

without confounding any interaction of less than third order is 2r—1.

Rao (18) also obtained the same results independently. Finney (6) found
these methods suitable for the development of fractional factorials.

Nair (16) gave a method for getting confounded arrangements in
the symmetrical factorial.

Kempthorne (12) systemized the technique used by Fisher and
Finney and a detailed account of the theory appears in a later text (13).

The construction and analysis of confounded designs for
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asymmetrical factorial arrangements was given by Kishen and Srivastiva
(14).

Das (4) developed an alternative approach for comnstruction of
symmetrical factorial arrangements and obtained a maximum number of factors.
Sarma (20) extended the approach for the construction of symmetrical
factorial arrangements.

White and Hultquist (21) gave methods for construction of con-
founded designs of the type pnqm, where p and q are distinct primes.
Raktoe (17) extended their approach and developed a method of confound-
ing in factorials where the levels of the factors are from distinct
prime fields.

Sardana gave procedures for constructing blocks of size 4q in
2 replications of an asymmetrical factorial of the form 2q x 22 which
provided mutually independent estimateé of all the effects.

Separate texts by Winer and Mann (15), Federer (5), and
Kempthorne (13) give methods of confounding utilizing the Galois field
approach. Mann in addition gives a brief algebraic development of the
analysis of factorial experiments and confounding factorial experiments.

The blocking plans given in the general theory are not neces-
sary for confounding to exist. If the nature of a factorial arrangement
is such that the confounding plans given by current methods cannot be
followed then the researcher has to rely on a different analysis or
alter his experiment to fit one of the available confounding plans. A
wider selection of blocking plans would enable more latitude for design-
ing and analyzing experiments that would otherwise have to be approached

through different channels.
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One of the objectives of this dissertation is to complement the
selection of blocking plans now available. For example, in the 42 fac-
torial arrangement, the Galois field theory approach yields only 3 block-
fme olnan

- - e & e -
ing plans o conifcund part of the interocticn in 4 blocks

0

£ size 4. A
method will be developed that yields 24 blocking plans each of which
confounds part of the interaction in a 42 factorial.

Using combinatorial properties of blocks rather than field
properties, the generalization of this result will give necessary and
sufficient conditions for confounding effects in an n" factorial where
n is not restricted to a prime power. This result will be generalized
to factorials of the type Ny X0y X eoo XM if Ny Doy cees B in
addition have a non-trivial common divisor d, then blocking plans will
be constructed that confound d-1 components of a specified interaction
of the factors. This result will be further generalized to include the
construction of blocking plans in the n, XN, X...xXn Xxq. A block-
ing plan that confounds a specified set of orthogonal effects will be
shown to be unique and the class of sets of orthogonal effects confound-
able with a given blocking plan will be determined.

Numerous examples of blocking plans will be exhibited with an
assortment of block sizes.

The second objective of this dissertation is to give a general
algebraic approach to construction of factorial effects. Kronecker pro-
ducts of matrices will be used extensively to define factorial effects,
to establish the independence of the various factorial effects and to

present the sums of squares due to the various effects. Because the

usual sums of squares appearing in an analysis of variance are quadratic
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forms of random variables, the Kronecker product will be used to show
that the various quadratic forms are jointly independent and that the
matrix of a quadratic form is idempotent with a particular rank.

Mathematical models for designs of both the factorial and con-
founded factorial will be given.

The class of estimable functions relative to each of the models
will be exhibited. Confounding will be defined explicitly utilizing
Hadamard products.

As in the designs of factorial arrangements, designs of con-
founded factorial arrangements will be discussed. The quadratic forms
of the sums of squares will be examined and the mutually independent
quadratic forms will be determined. The matrices of all quadratic forms
appearing in an analysis of variance will be seen to be idempotent.

The comprehensive set of blocking plans of a fixed block size
confounding parts of a desired interaction effect will be given whenever
feasible.

Examples will serve to illustrate the theory. The analysis of

each example will be given.



CHAPTER 11

DEVELOPMENT AND ANALYSIS OF DESIGNS INVOLVING COMPLETE

REPLICATES OF FACTORIAL ARRANGEMENTS OF TREATMENTS

One of the problems encountered in an algebraic approach to the
analysis of a design involving a factorial arrangement of treatments is
the definition and representation of the factorial effects of the design.
Another related problem is the representation of the sums of squares or
quadratic forms due to the various factorial effects. The quadratic
forms to be used in the construction of F ratios must be independent and
the matrices of the forms must be idempotent. The ranks of the idempotent
matrices of the two forms in an F ratio are the parameters of the F ratio

and thus must be known before a test of hypothesis can be made.

Kronecker and Tensor Products

The Kronecker and Tensor products readily lend tpemselves to
the definition and construction of factorial effects and to -the repre-
sentation of the quadratic forms of the factorial effects.

Let an(R), Vnz(R), ooy Vnm(R) be m vector spaces over the

field of real numbers R where Vni(R) is the space of all n, dimensional

i
vectors for { = 1, 2, ..., m.

For vectors X and Y in Vni(R) and an(R) respectively the tensor

product of X and Y is the ninj dimensional vector defined by



;45? x2 Y

X8y =

X, Y .
1}
|

This definition is easily extended to the tensor product Xl 2] Xz 8 ...8 Xm

of m vectors where Xi is a vector in Vni(R)- The tensor Xl 3] X2 @ ... 8 Xm

is an N = oo dimensional vector in VN(R) and the set of such tensors

n;n,
span VN(R). Although a vector in VN(R) is not necessarily a tensor pro-
duct of vectors, it is a sum of such tensors.

The Kronecker product of matrices relates the linear operators
or matrices of the component spaces to a linear operator of the tensors.
If B and C are matrices such that B : Vni(R) > Vmi(R) and
C : Vuj(R) > VEB(R) then the Kronecker product of B and C is the

m,m, Xx n,n, matrix

iy * ™%

BB C-=

b Cc b Cc . b Cc
\ nil miz mlini }

If X@ Y is the ninj dimensional vector defined previously, then

(BB C)(X8Y) =BX & CY.
By extending the definition we can define the Kronecker product
i is an mox n, matrix. The
linear operator Ci maps Vn (R) into Vn&(R) by mapping X
i

of the matrices Cl’ Cz, ceesy Cm where C

into cix and

i i

C1 8 C2 8 ... 8 Cm maps the tensor x1 8 X2 8 ... 8 xm into

(C1 8 C2 e ... 8 cm)(xl 8 X2 8 ... 8 xm). From the definitions of
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Kronecker and tensor products it follows that (C1 8 02 8 ... 8 Cm)
(X1 8 X2 ® ... 8 Xm) = clxl ] CZXZ 8 ...08 mem’ and thus that the image
of a tensor product of vectors is a temsor product of vectors.

It is instructive and sometimes convenient to notice that if
the m x n matrix A is blocked into n columns Al’ ceey An, each m x 1 and
the r x s matrix B is blocked into s columns Bl’ ceey Bs’ each rx 1,
then the Kronecker product A @ B is blocked naturally into ns columns
Ay 8B, A

1832, seaey AleBs’ AzeBl, eeo vy AZGBS, ey AneBl,

cees An 8 Bs’ each a tensor product Ai 8 B, of vectors and each or size

i
mr x 1.

Although this discussion of tensor products, or Kronecker pro-
ducts, is geared strictly to matrices because this is how they are used
in this study and the discussion is adequate for these uses, it should
be pointed out that if the standard approach is used to assign matrices
to linear operators then the matrix of the tensor product of linear
operators is the Kronecker product of the matrices of these operators.

The following theorems are sufficient for some of the develop-
ments appearing later. The representative matrices are not necessarily
square but are of the proper sizes to make the indicated operations
meaningful. The inverse, transpose, rank and trace of a matrix C are
denoted respectively by c'l, C', p(C) and tr(c). A matrix or vector
consisting of all zeroes is denoted by @. Scalars are denoted by small

letters.

To facilitate typing, F*(Cl, Cys ++ey C ) will denote the
Kronecker product C1 ) C2 8 ... 8 Cm and will later be used to denote

the natural blocking of this product into tensor products. The proofs
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of some of the theorems are Appendixes and the remainder is given by

Halmos or Jacobson (10, 11).

Theorem 2.1: C, 8 (02 8 C3) = (C1 8 CZ) e Cy-
Theorem 2.2: F*(Cl, ceesy Ci-l’ Ci, Ci+1, ceey Cm? +

F*(c1, vty 01-1, Bi’ ci+1’ so vy cm) =

F*(Cl’ eo ey Ci-]_’ ci+Bi’ Ci+1, es 0y Cm)-
Theorem 2.3: F*(alcl, aZCZ’ ooy amcm) = 8,8,...3 F*(Cl,Cz,...,Cm).
Theorem 2.4: F*(Cl, Cz, cony Cm) F*(Bl, BZ’ ey Bm) =

%
F (ClBl, C2B2, cvey CmBm).

Theorem 2.5: F*(Cl, CZ’ cees Cm) =@ 4if and only if Ci =0

for some {.

Theorem 2.6: [F*(Cl, Cz, coes Cm)]' = F*(Cl', Cz', ceey Cm').
Theorem 2.7: 1f C;l exists for each C, then

[F*(C;, Cpp -vns €170 = Fr(c]Y, €51) .ony D).
Theorem 2.8: p[F*(Cl, Cz, ooy Cm)] = p(cl) p(Cz) cee P (Cm).
Theorem 2.9: tr[F*(Cl, CZ’ ceey Cm)] = tr(cl) tr(Cz) ces tr(cm).

Theorem 2.10: If Ci = Ci for i=1, 2, ..., m then

F*(Cy» Cys +oey C) = [F*(Cy, C,, ..., cm)]' .

Theorem 2.11: If C] = Czl for i =1, 2, ..., m then

[F*(C;, Cps -.os cm)]' = [F*(C;, Cpy .-, cm)]'1 .

Theorem 2,12: 1f Dl’ D2’ ooy Dm are diagonal matrices

then F*(Dl’ DZ’ sy nm) is diagonal.
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Theorem 2,13: If Cl, 02, ceey

ci—l’ Ci+ s esey Cm are idempotent

matrices, then F*(Cl, 02, cees Cm) is idempotent if

Y T
anu vn}.] if Ci iz

Hadamard Products

Another operation used in the factorial development is the

Hadamard product. If X and Y are vectors in Vn(R) then the Hadamard

product of X and Y is defined by

’xl\ ‘ !Y1 ”‘171
\ [

XeyY-= e o

*
- .

1 I Y R ey

This definition extends easily to a Hadamard product of a finite number

of vectors from Vn(R).
If B = (xl, xz, ceesy Xr) and C = (Yl, Yz, ey Ys) are matrices
where a column of either is a vector in Vn(R), then we define
BeC= (X1 e C, XZ O Cy coey Xr @ C) where
X, 0eC= (Xi e Yl’ X, e Yz, cees X e Ys).
The set of columns of B ® C are defined to be the set of Hadamard pro-
ducts of the sets of vectors given by the columns of B and the columns
of C.
The following theorems are used throughout this dissertation.
Vectors are denoted by X and Y and B and C denote matrices of the proper

sizes to make the indicated operations meaningful.
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Theorem 2.14: Xec=Cc0Xx.

Theorem 2.15: C1 o (62 (] C3) = (C1 o Cz) 6 C

3 .

‘
7
2
iy
1]
3
I
o
F,)
"
[~
2
fl

A dmnliec X' = @A.

Theorem 2.17: Jn ® C = C where Jn is the n dimensional vector each

entry of which is 1.

Theorem 2.18: (X0 C)Y = X © CY.

Theoxrem 2.19: There exists a permutation matrix P such that

F*(Bl’ Bz, esey Bm) @ F*(c]-’ C2, csey Cm) =
[F*(B, © C,, B, 8 C,, ..., B_ © C)]P.

The remainder of this chapter is devoted to the definition and
construction of the 2" factorial effects of a design of a factorial
arrangement of treatments as well as the partition of the total sums of
squares into the sums of squares due to each factorial effect.

Both tensor and Hadamard products are utilized in the construc-
tion of the factorial effects and Kronecker products are used in the
representation of sums of squares.

Definition 2.1: A set of treatments T* is said to be an

N, X0y X eeo XA factorial arrangement of tréatments
if there exists a set of m factors (m 2 2) such that
each treatment is a combination of exactly one level
from each of the factors and conversely each combina-
tion of exactly one level from each of the factors is
a treatment in T#%,

Let the set of n, levels of the 1th factor be represented by

Z(ni) = {0, 1, ..., n, -1}, the set of residue classes of the integers
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modulo n,. We can represent T* as the Cartesian product
T= Z(nl) x Z(nz) X o0 X Z(nm)
hv assneiating the treatment consisting of the al level of the l1at+ far-
tor, the a, level of the second factor, ..., and the a level of the mth

factor with the m-tuple (al, 8ys cees am) in T.

Definition 2.2: The set T = Z(nl) x Z(nz) X eee X Z(nm) representing

the set of treatments T* is called the set of design

points of the By XN, X ..o XN factorial arrangement

of treatments.

The design points must be ordered in some structured way to
utilize tensor products. The ordering most convenient is the lexico-
graphic order. With this ordering the design point (al, gy ees am)
is the al(n2n3...nm) + az(n3n4...nm) + ... + am_l(nm) + a ordinal.
Figure 2.1 gives the lexicographic order of the design points of a

2 x 2 x 3 factorial arrangement of treatments.

(000)
(001)
(002)
(010)
(011)
(012)
(100)
(101)
(102)
(110)
(111)
(112)

Figure 2.1--The lexicographic order of the design points of a
2 x 2 x 3 factorial arrangement of test.

Having established the representation and ordering of the

N=nn, ... n treatments inann, xn, x ... x n_ factorial
1 72 m 1 2 m
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arrangement, we can now define the simple observational model Y = Mie
where Y is an N x 1 vector of observations of the responses of the treat-
ments, M is an N x 1 vector of treatment means and e 1s an N x 1 vector
of identically and independently distributed errors such that E(e) = 0
and E(ee') = oZIN. It is essential for later developments that Y and
consequently M and e have the same ordering as T.

Definition 2.3: An effect in the model Y = Mte is given by A'M where

A is an N x 1 vector. The vector A is said to define

the effect A'M.

Definition 2.4: The effects AiM and AEM are orthogonal if Ai Az = 0.

Definition 2.5: The effect A'M is normalized if A'A = 1.

In general a set of N mutually orthogonal effects of M exists.
Indeed infinitely many such sets exists. For the factorial arrangement
the selection of a set of N orthogonal effects is crucial for estimation
and analysis of the factorial effects. In the following development the
mean effect and m main effects of an D, XNy, X ... XN factorial
arrangement are defined and subsequently used to obtain all other fac-

torial effects. The orthogonality of the 2™ factorial effects is also

established.
The n, x 1 vector consisting of all ones, Jn s appears many
i
times in tensor representation of factorial effects. It is convenient

to suppress Jni whenever it occurs as the ith argument of F*., With this

convention, for example,

F*(Cj’ck) = Jn ... 8 Jn @C,08...8J e ... 8

1 41 3 B4l

J 8c, eJ @...8J .
Ny KoMy L
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The subscript of lowest order of an argument depicts the position of
the argument in the tensor representation. The order of the arguments
in this abbreviated notation is ascumad to zagroc with thelr relative
order in the tensor representation. In the example, for instance, j < k
since Cj preceded Ck.
Definition 2.6: The mean effect is J&M where

JN = Jn ] Jn ... 837 .
1 2 n

Definition 2.7: The set of level totals of the ith factor is

[F*(Ini)]'M.

The columns of F*(In ) are n, mutually orthogonal N dimensional
i

vectors and consequently span an n, dimensional vector space. The sub-
space spanned by JN is a subspace of the space spanned by the columns of

I-‘*(In ). The set of vectors which are orthogonal to J

in the latter
i N

space also form a subspace of dimension ni-l. This ni-l dimensional

subspace is called the subspace orthogonal to J_, relative to the space

N

gpanned by the columns of F*(In ).
i

Definition 2.8: The 1th main effect Ai is defined by any orthogonal

basis of the Ni-l dimensional subspace orthogonal to

JN relative to the space spanned by the columns of

F*(Ini).

A, is said to be defined by an N x n

1 -1 matrix Li if the columns

i
of Ly form a basis of the ni-l dimensional subspace. The ni-l effects

defined by Li are called the components of A Two distinct bases, each

i.
of which defines Ai’ yield two distinct sets of components of Ai.
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i X ni matrix such that the columns

Theorem 2.20: Let (J_ , U,) be an n
ng i

of (Jﬂ » U;) form an orthogonal basis of V_ (R). Then
2 -_— (Y9

i i
the columns of F*(Ui) defines Ai'
Proof: F*(I, ) (Jn » U)) = I"*((Jn » U)) = Jy» F*(U,))
i i i

J& F*(Ui) = [F*(Jn )] F*("i) =

i
n,8...8n, 8 Jni U, 80, 8..8n =@
since Jn' U, = g.
i
[F*(Ui)]' F*(Ui) = nle...Gni_IGUi Un, .8...8n =
n 0y ..o By g M, eee B Ui u; -

Thus the columns of F*(Ui) and JN are mutually orthogonal

and the columns of F*(Ui) defines Ai’

will always denote an n, x n, -1

Throughout this discussion U i 1

i

matrix such that the columns of F*(Ui) defines Ai'

Definition 2.9: If A,  , Ai s seey A, are defined regpectively by

L, 4 L

F*(U1 ) F*(Ui ), eees F*¥(U, ) where 1. < 12 € 4ee < ik

1 2 N 1

and 1 < k <m then the A, A .eo A, 1nteraction

Hi, e
effect is defined by any orthogonal basis of the space

).

spanned by the columns of F*(Ui ’ Ui s seey U

1 b L

Theorem 2.21: The space spanned by the columns of F*(U1 ,U1 seeesl

1 1 L

-1) L]
1

)

has dimension (ni -1)(n1 -1)...(n
1 2
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Proof: [F*(Ui s Ui s «eey U )] F*(Ui s Ui s ceey U ) =

1 L 4 1 1 L

D, 8D & ...8D, vhered, =U,'U, .

i, i, : 1 2 "k i 373

<

Since Di is a diagonal matrix for j =1, 2, ..., k then by Theorem 2.12

k|

the Kronecker product is a diagonal matrix and the columns of

F*(Ui » Ui 9 oeey U

1 1 "

spanned by the columns of F*(Ui » U
1

) are orthogonal. Thus the dimension of the space

s seey U, ) is the number of

2 I

i

columns, (ni -1)(ni =1)...(n, -1).

1 2 N

By definition, the mean effect is orthogonal to each main
effect. The following theorems establish that a factorial effect is
orthogonal to any other factorial effect.

Theorem 2.22: A, 1is orthogonal to A, .
4 1,

Proof: [F*(U, )]' [F*(U, )] = [F*(u, , 3 )]' F*(J  , U, )

1 2 1 12 il 2

'3, Y8 U )=

1 1, 1 11 12 2

' =
since U ' J_ é.
1 11

Theorem 2.23: The mean effect is orthogonal to the A, A, ...A

L, 4

interaction effect.

9 Ceey U

2 L

n a2, o, U
1, ™ LM

. ' % =
Proof: JN F (Ui » U )

1 i

8J' U, 8...8J' U, =¢
11 n1 12 n1k ik

1 2
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Theorem 2.24: A, A, ... Ai is ortnogonali to Aj Aj cos Aj
1 2 r 1 2

S

if {il’ 12’ ceo ey 1r} # {jl, jz, se vy js}o
Proof: Without loss of generality take 11 < jl. Then

[F*(Ui ’ Ui > sees Ui ! F*(Jn » U

1 12 r 1. 3

, U ’ ...’ U ) = ¢
3 k|
1 2

s

utilizing Theorem 2.5 and the fact that Ui Jn = @.

1 il

The next theorem establishes the relationship between main

effects and interaction effects.

).

1 b2 " 1 2 "
Proof: The proof follows immediately by Theorems 2.17 and 2.19.
Ttle mtrix L = (J [ F*(Ul) 9 o0y F*(Um) » F*(Ul ’UZ) geeoey

F*(Um_l,Um), ey F*(Ul, U2, cessy Um)) defines the 2™ factorial effects.

%
L is a permutation of the columns of F ((Jnl, Ul), (an,Uz),..., (Jnm,Um))

and thus has N columms.

Definition 2.10: Given the simple linear model Y = Mte and L as defined

above, the model L'Y = L'M + L'e is a factorial effects
model. A factorial effect model is a normalized fac-
torial effects model if L'L = IN.
L'M is a set of N orthogonal effects and these are partitioned
into the 2" factorial effects. A matrix defining the factorial effects

of a 2 x 2 x 3 factorial arrangement is obtained from the expression

L=(J, p*(ul),r*(uz) »F*(U5) ,F*(Ul,Uz),F*(UI,U3),F*(UZ.U3).P*(U1»U2,U3))
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_ _ _ 1 _ 111
by letting N = 12, U, =4, = [_1 ] and U3 “lo-2 .

Figure 2.z ilijustrates the resulting 12 x iZ matrix.

1l 1 1 1 1 1 1 1 1 1 1 1]
1 1 1 -1 1 1 -1 1 -1 1 1 1
1 1 1 0 -2 1 0 -2 0 =2 0 =2
1 1 -1 1 1 -1 1 -1 -1 -1 -1
1 1 -1 -1 1 -1 -1 1 1 -1 -1
L |t 1 -1 0 -2 o0 -2 2
1 -1 1 1 -1 -1 -1 1 -1 -1
1 -1 -1 -1 1 -1 -1 1 -1
1 -1 -2 -1 0 2 0 -2 2
1 -1 -1 1 -1 -1 -1 1 1
1 -1 -1 -1 1 1 1 -1 1 -1 -1 1
1 -1 -1 0 -2 1 0 2 0 2 0 -2]

Figure 2.,2--A Matrix L defining the 8 factorial effects of a
2 x 2 x 3 factorial arrangement.

An effect in the model Y = Mte is A'M where A is an N x 1 vec-
tor. If an effect is not known then an estimate of that effect must be
obtained before a confidence interval can be constructed.

Pefinition 2.11: An effect A'M in the model Y = Mte is estimable if

there exists an N x 1 vector y such that E(y'Y) = A'M.
Since E(Y) = M in the model Y = Mie then E(A'Y) = A'M and any
effect is estimable. In the factorial effects model L'Y = L'M + L'e,
E(L'Y) = L'M and thus L'Y estimates L'M.
Many times the emphasis is not on estimation of the various
factorial effects but is on the testing of hypotheses concerning the
various factorial effects. In this situation the estimates of the fac-

torial effects can be utilized to produce a concise expression of the
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usual sums of squares appearing in an A.0.V. table.
The usual assumption of the model Y = Mte is that e is distri-

o~ y—

~ - 1 - Vo . - « = o .» -l N ~ v
c BUinal Tanuuvit variaple witn np\ney — v ang

2]
~
1]
o
-
~
I

oZIN. Under these conditions Graybill (9) has shown that the

quadratic form Y'AY is distributed as a noncentral chi-squared variable

with parameters k and H%%E- if and only if A is an idempotent matrix of
rank k. Furthermore he has shown that the two quadratic forms Y'AY and
Y'BY are independent if and only if AB = . Since Fishers F statistic
is the ratio of two independent chi-squared variables each divided by
its degrees of freedom, we are interested in determining the ranks of
idempotent matrices appearing in quadratic forms and in determining the

independence of two or more quadratic forms.

Definition 2.12: Let S'M be a set of r effects such that S'S = I . Then
the quadratic form Y'SS'Y is the sum of squares due to
S$'M and SS' is the matrix of the quadratic form Y'SS'Y.
The following theorems establish the ranks and idempotent
properties of the matrices of the quadratic forms that partition the
total sum of squares into the sums of squares due to the factorial

effects.

3 o 3 ]
Let (Jni, Ui) be an orthogonal n, xn, matrix. Then (Jni, Ui)

QG ,U0)=I andalso (J_ ,U0,) @G ,0)'=3 3 +0,0 =1 .
n, i n, n, i n, i n, ‘ng i1 n,
Denoting J_ J' by K we have U, U' = I_ -K .
ng, 0y n, i1 n; ny
Theorem 2.26: l(.n is an idempotent matrix of rank .

i



Proof: l(.n Kn = Jn ‘;
i i i i

fube
[l
=]
e
[
s

) =pl ) =1.

= J T
p(Kni) p(Jn‘ a, .

- -

Theorem 2.27: If A is an n x n idempotent matrix of rank r then In—A

is an idempotent matrix of rank n-r.

Proof: (In-A)(In-A) = In-A -A + A2 = In—A since A2 = A. Since the

rank and trace of an idempotent matrix are equal, then

p(In~A) = tr(In-A) = tr(In) - tr(A) = n-r.

Corollary 2.1: In -K.n is an idempotent matrix of rank ni-l.

i M
Theorem 2.28: (I -K )X =K (I -K )=¢
ni ni ni ni ni ni
2 _ 2 _
Proof: (I - K )K =K - Kn =K - Kn = Kn - Kn =
ny ™oy By B[y ny Ny i M

i MM
Theorem 2.29: The matrix of the quadratic form of the mean effect is

=1 '
KN =N JN J.. Furthermore KN is an idempotent matrix

of rank 1.

Proof: The mean effect is given by JﬁM. Letting 3ﬁM denote the

normalized mean effect, we get jN = JN and

v N
l T A A = F&*(J 3 J
N JNJN JN N KN F (Jnl, an, veey Jnm)

[F*(j ’ J 9 sy J )] =
b ) "
nl ﬂl “2 “2 nm nm nl n2 nm

By Theorem 2.8 and Theorem 2.13 KN is idempotent with rank 1.
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Theorem 2.30: The matrix of the quadratic form of the Ai effect is

F*(K » K y eeey K ’ I - K ’ K 9 eoey K ).
nl n2 ni_l ni ni ni+1 m

Moreover this matrix is idempotent with rank ni-l.

Proof: Let ?*(Ui) denote the normalized arguments of F*(Ui)'

Then ir*(ui) [Fx(u)]" =

- - ~ -~

FR(J J' y euuy J J' LU U',J I L,...,J 3') =
n, o0y n Ry P oMy LI
F* (K 9 eccoey K LY I - K ? K 9 weeoy K )
s By ™ N My B

and is by Theorem 2.8 and Theorem 2.13 an idempotent matrix

of rank n -1.

i

Theorem 2.31: The matrix of the quadratic form of the A, A, ...A
i1 i
172 k
effect iS F*(K ’-oo’K ’I - K 'Y K 9 seey

n n n n n
1 11-1 11 11 ii+1
Kn » «ees K ),

, I -K ,K
Bl M The Ty e

an idempotent matrix of rank (ni -1)(n1 “1)...(n, -1).

1 2 i

Proof: F*(U, ,U, ,...,U, )[F*(U, ,U, ,...,U, )]1' is by definition
Lhi i, 4 L', o

the matrix of the quadratic form and by Theorem 2.4 we get

the desired matrix.

Since the Kronecker product of idempotent matrices is idem-

potent we have the matrix of the quadratic form of the Ai Ai "'Ai

1 72 k
effect is idempotent with rank (ni -1)(ni -1)...(n, -1).

1 2 L

Theorem 2.32: The product of the matrices of quadratic forms of two

distinct factorial effects is the zero matrix.

Proof: The ith argument of F* representing the matrix of the quadratic
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form of any factorial effect is either Kn or In - K,n
i i i
Since the factorial effects are distinct, one of the arguments,

th - - . .« e
say the 3 , is K fur vne oi ihe quadraiic foiws wnile the
th
i argument of the other quadratic form is I - K . Then

by Theorem 2,5 and Theorem 2.28 we get the desired result.

The sum of the matrices of the quadratic form of the 2" factorial

effects is
m
pX X FR(W,, W, oo, W) =
=1 Well -K ,K } L m
i i i

m-1
z z [F*(wl,wz,...,wﬁ_l,ln -K )+
1

i=l W.elI  -K , K } i M
i n; n, ong 1

FR(H ,Wype e W 0, K )]s
4

m-1

L X F(W,,W,,...,W .,I )=
=1 Well -K ,K } 1772 w-1’"n,
i i M

FA(L , I, +o.y I_) =T
n,’ 'n, n) =y

Thus the sum of the quadratic forms of the 2" factorial effects is the
total sum of squares Y'INY.

Table 2.1 gives abbreviated A.0.V. of one replicate
n; XN, X .oo XN factorial. Since it is customary to call the rank of
an idempotent matrix of a quadratic form the degrees of freedom of the
quadratic form, the ranks of the matrices of the quadratic forms of the
factorial effects will give the degrees of freedom (d.f.) column.

An abbreviated analysis of variance table for one replicate of

a 2 x 2 x 3 factorial arrangement of treatments is given in Table 2.2.
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TABLE 2.1

ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR ONE REPLICATE
OF AN nj x n2 x ... X ny FACTORIAL ARRANGEMENT

OF TREATMENTS

Source d.f. S.S.
]
Total nn,...n Y'Yy
Mean 1 Y'KNY
A n,—-1 Y! (1 -K SK 8...8k )Y
1 1 N N
A n,~1 Y'(KQI -K 8K @8...8K )Y
2 2 n; m, 0, Ny o
A n -1 Y'(K 8...8K 81 -K )Y
m m n n
1 m-1 m m
172 1 2 0y 0, mynyng Ny
—-— -— ' -— -—
Am—lAm (nm-l 1) (nm 1) Y (xne. . .ﬁKn SIn K Eln Kn )Y
1 m-2 m-1 m-1 m m
A A LN .A
1% M2 % nm-l -1 ®n
1M ™ 3 3 m m
AlAz. oA (nl-—l) (n2-1) coo (nm-l) Y' (In-KneIn-K Q.. ,e];n-x )Y
1% M2 My m m
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TABLE 2.2

ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR ONE REPLICATE
OF A 2 x 2 x 3 FACTORIAL ARRANGEMENT OF TREATMENTS

Source d.f. S.S.
Total 12 Y'y
Mean 1 Y'KlZY

Ay 1 Y' (Iz--l(2 8 K2 8 K3)Y
A, 1 Y'(K2 e I,K, & K3)Y
A3 2 Y'(K2 e KZ 8 13-K3)Y
A]_A2 1 Y'(IZ-K2 e I[2 K e 1(3)
A1A3 2 Y'(IZ—K2 e K2 81 -K3)Y
A2A3 2 Y'(K2 8 IZ—K2 e I3—K3)Y
A1A2A3 2 Y'(IZ-K2 e 12 K @I K3)Y
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A situation frequently encountered is that only one replicate
of a factorial arrangement of treatments is available. In this instance
no estimate of experimental error ic availahle €rom the dat
is known that some factorial effect is zero.

A frequent practice is to assume that the interaction of highest
order is negligible. Upon making this assumption we have

E[Y'(I_-K 8 K 8...8 I K )Y] =
LMo m “m

E[{ (tte)’ (I -K @I -K 8...81 -K )(He)] =
b B T R "n "m

Efe'(I K 8L K 8...8L -K_)e] =
1172 72 m m

a2 tr(I K | o1 K 8...81n—Kn =
b s B By ) m m

(nl-l)(n2~1)...(nm-1)02 .

If e is assumed to be distributed as a multivariate normal random variable,
P

the quadratic form 02 Y' (I -K BI -K 8...81n-K )Y is distributed as a
oM, m m

chi-squared random variable with parameters (nl-l)(nz-l)...(nmfl). To
test a hypothesis that some factorial effect other than the highest order
interaction effect is zero, the ratio of the mean squares is formed and
this ratio is compared to the critical value of the F of the appropriate
degrees of freedom.

Although the assumption concerning the highest order interaction
may be untenable, the proposed test is conservative in that the "true"
Type I error is less than that used to obtain the critical F value.

A completely randomized design (C.R.D.) is a design in which
the treatments are randomly assigned to the experimental units.

If r replicates of the N treatment of an nxXmn, X ... xn
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factorial arrangements is desired than Nr experimental units are required.

The Nr experimental units are partitioned in some random fashion into N

cote, each got containi r unitec The N

random to the N sets of experimental units.
We than have the r simple linear models Yi = M—!—ei for i=1,...,r.
These can be combined into the simple model Y* = M*+e* where

) A

Y* ) s Mk = Jr &M and ek = *

|,

Y* is an Nr x 1 vector, M*¥ is the Nr x 1 vector

and e* is an Nr x 1 error vector such that E(e*) = 0 and

Boeee X

l

E(ekex') = °2INr . For tests of hypotheses e* is also assumed to be
distributed as a multivariate normal random variable.

The Gauss-Markoff Theorem states that the best linear unbiased
estimate of M is given by the least squares estimate and is

" - r
M=Y=1 5 ¢
r

j=1 1

Theorem 2.33:

Y*'(Ir-Kr ® L)Y* is an unbiased estimate of N(r-1)o2.
Proof: E[Y*'(Ir—l(r e IN)Y*] = E[(Jr8H+e*)'(Ir~KrQIN)(Jr@M+e*)] =
E[(JrGM)'(It-KtGIN)(JrGM) + e*'(Ir-KrGIN)e*] =

(J; (Ir-Kr)Jr) 8 (H'INM) + E[e*'(Ir-KrOIN)e*] =
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v ' - * =
0 &M'M + Efe* (Ir Kr@IN)e ]

2 - = 2 ¢y
o tr(Ir KrGIN) o= (r-1)N.

The total sum of squares is the sum of the sums of squares due to error

and treatments. Thus YX'Y* = Y*'(I -K ®L)Y* + Y¥(K ®L)Y* and
Y*YKrGIN)Y* is the sum of squares due to treatments. In the simple

model Y* = JrGM + e*, the estimate of Jr@M is Jréil Thus the sum of squares
due to treatments is (JrG ?)'(Jrs Y) = r Y'Y. Since JrB Y = (KrGIN)Y*’
then r Y'Y = Y*'(K BL )" (K 8L )Y* = Y*'(K 8L )Y+.

The matrix irGL defines the factorial effects in the model
Y* = J 8Miek. If S'M defines some factorial effect in the model Y = Mte
then we have seen that S'Y estimates this effect. (erS)'(JISM) is the
factorial effect in the model Y* = Jr8H+e* and the estimate of this effect
is (3r88)'Y*. The sum of squares due to this effect is Y*'(Jr@S)(erS)'Y* =
T*' (K 855')Y* = YA’ (K 8L)" (K 8SS') (K BI )Y+ = (J_6Y) ' (K 8S5') (J 8Y) =
Ji K J 8Y'SS'Y = r ¥'ss'Y.

Table 2.3 gives an A.0.V. for a C.R.D. of an Ny XNy X ooo XN
factorial arrangement. A randomized complete block design (R.C.B.D.) is
a design in which blocks of experimental material is available. The
blocks may occur naturally or may be chosen. The basic motivation for
the randomized complete block design is that blocks of homogeneous units
may be chosen with the units in different blocks differing considerably.
In this design it is desirable to account for the differences in block
totals. The blocks of experiments are chosen randomly and the N units
of a block are randomly assigned to the N treatments of an
n XNy X ... xn factorial arrangement.

The randomized complete block design can be analyzed as a single
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TABLE 2.3

ABBREVIATED ANALYSIS OF VARIANCE FOR r REPLICATES
OF A C.R.D. OF AN nj X n2 X ... Dy

FACTORTAL ARRANGEMENT

Source d.f. S.S.
Total rN I Y'y
i=1 ii
Mean 1 r—f'KN?
=, _ —
Al nl—l rY (In KneKnﬂ.. .GKn )Y
171 2 m
Am nm-l rY' (xne. . .exn @In—K )Y
1 m-1 m m
172 1 2 NNy Ny Ny Nyttt
-— -— —' -— -
-1 (nm__1 1) (nm 1) rY (Kn@...GKn GIn Kn ﬂln Kn )Y
1 m-2 m-l m-1 m m
1 1 L) 2 m m
r —— —
error (x-1)N z (Y,.-Y)'(Y,-Y)
=1 i i
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replicate of a b x N XM, X .o XN factorial arrangement of treatments,
but instead of using only the highest order interaction for a measure of

error, all interactions involving blocks are used for the measure of

error.
The model is Y* = M* + o & JN 4+ e* where
A | |
Y a e
Y* = 2 s M* = JbﬁH s a = 2 and ek = 2

.

| ™ | \ab} \‘:*bl

The sums of squares of this design are obtained in the same manner as in

the completely randomized design with the exception that block sums of

squares are taken from the error sums of squares.

Table 2.4 gives an analysis of variance for b blocks of a

randomized complete blocks design of an n; X0y X .o XD factorial

arrangement of treatments.



TABLE 2.4

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR b BLOCKS
OF A RoC-B-Do OF AN nl X n2 X see X nm

FACTORIAL ARRANGEMENT OF TREATMENTS

Source d.f. S.S.
b
Total bN r Y'y
=1 i“i
Mean 1 bY'KNY
- ‘ Al
Blocks b-1 Y* (Ib KbeKN)Y*
A n,-1 bY' (I K 8K 8...8K )Y
1 1 n;my N,y ny
A n -1 bY' (K 8...81( 81 —K )Y
m m n
l m -1 "m m
A1A2 (nl-l) (nz-—l) bY' (I —K 81 -K 81( 8.. GK )Y
n; 0Byt 0, T
Am—lAm (n _ -1)(n_~1) bY' (K 8.. .BKn @In -Kn GIn—l(n )Y
1 m~-2 m~1 m-1 m m
1 1 ) n m m
Resid - - *! - - *
esidual (b-1) (N-1) Y (Ib l(bGIN KN)Y




CHAPTER III

ESTIMATION AND ANALYSIS OF PARTITIONED FACTORIAL

ARRANGEMENTS OF TREATMENTS

Frequently a factorial arrangement of treatments is so large
that it becomes difficult to get a replicate of homogeneous experimental
units. From practical considerations it is often impossible to obtain
large homogeneous replicates, especially if the replicate consists of
litter mates of laboratory animals or hospital out-patients in a specific
age-sex-race classification. It may also be that the units within a
replicate are fairly homogeneous originally but change with time and the
factorial arrangement is so large that all the treatments cannot be
applied in a sufficiently small time span. Consequently time becomes a
factor or "factor" and the heterogeneity of units results in larger errors
and loss of power in tests of hypotheses.

To circumvent the problem of heterogeneous errors the technique
of blocking is employed. By this technique the units of a replicate are
partitioned into a number of blocks of units where the units within each
block are more homogeneous than units within the replicate. The blocks
may occur naturally as in the acase of litter mates of laboratory animals
or they may be determined by actually selecting a homogeneous group of
units.

While a judicious choice of a blocking plan yields a set of

32
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homogeneous blocks of units, the incorporation of a blocking plan in a
factorial arrangement of treatments produces an inherent loss in the
number of orthogonal estimable effects. The blocks are selected to be
homogeneous within themselves and thus the blocks differ considerably.
Any comparison between treatments applied in different blocks reflects
both block differences and treatment differences. Thus we say that com-
parisons between treatments in different blocks are confounded with
blocks.

The theory of blocking is simplified by partitioning the set of
design points T and applying the treatments corresponding to a block of
T to a homogeneous set of experimental units of the exact size to accomo-

date the treatments.

Definition 3.1: The collection of subsets B = {Bi : i=1, 2, ..., b}
of T is a blocking plan or partition of T if
b
1) U B; =T and
i=1

2) Bi n Bj is null for i # j.
Since comparisons among treatments in differeni blocks have

little meaning, only plans in which the size (number of treatments) of

each block is larger than 1 will be considered.

Definition 3.2: The N x 1 vector X4 is the incidence matrix of the

block Bi of a plan B and is defined by the characteris-

tic function xz where

| 4, )

x* (2
12( ) where x: () -
. h

4,

1 if jeBy

B* =
Xy Xy (T 0 otherwise.
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T has the lexicographic ordering.

Definition 3.3: X = (xl’ Xgs +=-» xb) is the incidence matrix of the
blocking plan B = {8, : i=1, 2, ..., bl.
It follows from the definitions of blocking plan and characteris-

tic matrix that X Jb = JN and Xg *) xj = 61j X3 where

s = d1ifi=3
ij 0if i #3 °

|

Figure 3.1 gives the incidence matrices of two plans of a

2 x 2 x 3 factorial.

10
1 0
10
000|010 0 1
oo1|o11 0 1
002|012 0 1
Plan (a) 110|100 X= 1o 1
111101 0 1
112|102 0 1
1 0
1 0
1 0
- p
10 0]
0 01
100
000| 010{ 001 01 0
002| 102 011 0 0 1
Plan (b) 012} 110] 200 x= |1 0 o
101|112 0 0 1
111 100
01 0
010
100
01 0
e -

Figure 3.1--The incidence matrices of two blocking plans of a
2 x 2 x 3 factorial.
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With a given blocking plan B the model for the factorial arrange-

ment of treatments is assumed to be Y =M + Xa + e where Y is the observa-
tional vector, M is the vector of treatment means,

|

3
a = . where a
| = |

is the additive effect due to Bi and e is an N x 1 vector of independent

i

and identically distributed errors with a zero mean and a variance of ¢2.
This model is equivalent to the model
b b

Z X3 oY= iil(xi OM+ a;xy + Xq © e) and it is easy
to see that the observational model for the units in Bi is
Xy 0Y= Xy oM+ ayXy + Xg 0 e.

In the model Y = M + e we have seen that A'Y is the estimate
of A'M. However in the model Y =M + Xa + e, E(A'Y) = A'M + A'Xa and
thus A'M is estimable if A'Xa = 0.

Mann ( 15 ) gave a brief discussion of the technique of block-
ing and confounding. His definition of confounding is equivalent to the
following definition although he chose not to use the concept of the

Hadamard product.

Definition 3.4: An effect A'M is confounded with the block Bi of a
plan B if Xq 0= X4 where ¢ is a scalar.
A set of r effects S'™M is confounded with the block Bi if

Xg 0SS = (01X1, CoXyr covs crxi) and S'M is confounded with each block
of a plan B if
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X85 = (eq3Xy2 €1pXgs =+=5 ©3.Xg5 C93Xgs CooXgs <++s CppXos -oos
1%b° Sb2%p’ *°*? Cbr¥p)*

Definition 3.5: An effect A'M is orthogonal to the block B; of a plan B

' =
if A X4 0.
A set of r effects S'M is orthogonal to B, if 8'xy = @ and S'M
is orthogonal to each block of a plan B if $'X = §.

Definition 3.6: An effect A'M is partially confounded with the block

Bi of a plan B if A'M is neither orthogonal to Bi nor
confounded with Bi'
The two theorems that follow are due to Mann ( 15).
Theorem 3.1: The mean effect J&M is confounded with each block of

a plan B.

Proof: X @ Jy =X by Theorem 2.17,

Theorem 3.2: If a set of r effects S'M is confounded with Bi and y is an
r x 1 vector, then (Sy)'M is confounded with Bi'

Proof: X4 ® Sy = (xi 8 Sy = (clxi, CoXgs +vos crxi)Y =
(cl, Cos eees €)Y X; = ¢ X4 by Theorem 2.18.

Theorem 3.3: If S'M is a set of r effects orthogonal to each block of
a plan B and A is an r x s matrix, then (SA)'M is
orthogonal to each block of B.
Proof: @ = S'X = A'(S'X) = A'S'X = (S.)'X.
Theorem 3.4: Let B be a plan of b blocks and let S'M be a set of b
normalized orthogonal effects. Then S is confounded in

each block of B if and only 1f S = XC where C is an

orthogonal matrix and X is the matrix resulting from the
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normalization of the columns of X.
Proof: Since S'M is confounded in each block, then
b b b

S=] £ CeiyXes I Crofus sees I Co%: ) = XC and
ARt L U P25 soq Cib ;)

I =S'S= (X¢)"(XC) = ¢'X'¥C = C' I, € = C'C. Thus C is an
orthogonal matrix. Conversely, if S = XC, then S'M is con-
founded in each block of B by Theorem 3.2.
Theorem 3.5: Let (S, S*) define a set of N normalized orthogonal
effects where S is N x b and let B be a plan of b blocks.
Then S'M is confounded in each block of B if and only
if S*'M is orthogonal to each block of B.
Proof: By Theorem 3.4, S = XC where C'C = I, and from S*'s = ¢
we obtain S*'XC = @ whence we get S*'X = § = S*'X.
Conversely if S*'M is orthogonal to each block of B, then
S*'X = § = S*'X. Now X'M is a set of b normalized orthogonal
effects confounded with blocks. Since the columns of X and
S respectively are orthonormal bases of the same subspace
then there exists an orthogonal matrix C such that S = iC.
Since X'M is confounded in each block then S is confounded
in each block by Theorem 3.2.
Theorem 3.6: If MM and AEM are confounded in a block of By of a plan

B then (Al o Az)'M is confounded in Bi'

Proof: X4 e(ll e Az) = (xi © Al) e A 0

256X 9%

cy (x5 @ 1)) = €185%4 -
Theorem 3.7: If a plan B of b blocks confounds the b normalized

orthogonal effects S'M, then B is unique.
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Proof: Let B, be a plan of b blocks that confounds S'M. Then by

Theorem 3.4,S = XC = i*c* where X'X = I, = X . and

L]
b *
b= C,C,- Thus X = X.C,C' = X,P and P is orthogonal.

o
)
I
b=
|

From X = X, P we obtain Xy = X, Py where P = (pl, Pys coos pb)
and notice that each entry of Py nust be non-negative and

at least one entry must be positive. Since pip:| =0 for i # j
we have that pj ®p; = @ fori=1, 2, ..., band 1 # j and

furthermore that

b b b
p;® X p, = L (p,0p,)=0 . The vector I p has
N - R 1=1 1

1#] i#] i#]

at least b-1 positive entries which implies the pj has at
most one positive entry. Thus pj has exactly one positive
entry and thus b-1l entries of zero. Therefore P is a permu-
tation matrix and the plans B and B, are identical.

Definition 3.2: Let B1 and 32 be plans consisting of b1 and b2 blocks

respectively. Then Bl n B2 is the set

* = . gk = -

11 n sz! 1!
j=1,2, ..., b2}.

B* is called the intersection of Bl and B2 and is a blocking

*
plan. The incidence matrix of “13 is X14 e x2j where X14 and x2j are
the respective incidence matrices of Bli and sz. Letting the members

of B* assume the lexicographic order, we see that the incidence matrix

* X =
of B* is X Xl ) XZ.

Figure 3.2 gives the incidence matrix of the intersection of

Plan (a) and Plan (b) of Figure 3.1.
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000}110|001{012{010|011 1 0 0 0 0 O
002|112 101}102{100 0 01 0 0O
111 1 0 00 00O
0 00 010

0 0 0 0 01

X = 0 001 0O

0 00 0 01

0 001000

0 00 010

010 0 0O

1 0 00 0O

01 0 0 O Q

Figure 3.2-- The intersection of Plan (a) and Plan (b) of
Figure 3.1 and its incidence matrix.
From practical considerations it is desirable to have blocks
of equal size. The assumption of homogeneous errors is rarely met in
most biological situations. It is intuitively obvious that the units of
a small block can be chosen to be more homogeneous than the units of a
large block. Blocks of equal size also are advantageous from a theoretical

standpoint.

Theorem 3.8: Let B be a plan consisting of b blocks of size r. Then
B confounds the set of b orthogonal effects S'M if and
only if there exists a matrix C satisfying S = XC and
C'C = D, a diagonal matrix.

Proof: By Theorem 3.4 B confounds S if and only if there exist an

orthogonal matrix C, such that S = ic*. Since

A |
X Vi X
then B confounds S and S'S = rD if and only if there exists

a C such that C'C = D and S = XC.

Theorem 3.9: Let Bl and Bz be two plans of b1 and b2 blocks of equal

size respectively and let (3 ,» W.) and (3 ,
b1 1 b

W,) be
2 2
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orthogonal matrices. If the effects (xlwl)'u are mutually

orthogonal to the effects (XZWZ)'M, then

y - N '
xlxz blbz JlebZ and thus the blocks of the plan

B1 n B2 are of equal size.
Proof: Since the effects (xlwl)'u are mutually orthogonal to the
effects (XZWZ)'M’ we have

= v = ' w! = Tyt L .
B = (X W) "X W, =W X5 Xy W, = W, WX, X, W W,

(I,-K, ) XX, (I,-K,_ )= XX - X'X, - XIX +
blxbl 1% Ibszz 1%2 Kbl 1% — % 2Kb2

XIX
%, "1%2%,
1y = ] ] - ]
whence x1x2 Kb1X1X2 + X1X2Kb2 Kb1x1x2Kb2 . (3.1)
Tyt = ty = T =N__|
From Jb Xl X2 = (XlJb ) X2 JN X2 b Jb, and
1 1 2 2
N
] = y! = X _
X1x2Jb = x1 JN b Jb we obtain
2 1 1
N
—J_ J' =J J!' XX, =b XX and
b, 'b, "b, * b Tb F1%2 = P1fp *i%p
N
= J J' =X'X.J J' =b XX respectively.
b, Vb, b, T M1¥2lp b, T P2K1%o,
Since Kb Jb = Jb » the last equality yields
171 1
bk KIKK = o~ 3 J .
2 1 172 2 b1 b1 b2
Substituting for the quantities in (3.1) we obtain
'—_-_g.— '
x1x2 b5 Jb Jb which implies that each block of
172 172
N
of the plan B1 n B2 is of size 5B .

172
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Since the blocks of B1 n 32 are of equal size and C'C is

diagonal where C = (JbSJb s W.8 Jb s J,OW,, W, 8 W

1P 1 byt Thy27 1

3.8 (X1 %) XZ)C defines a set of blb2 orthogonal effects.

Theorem 3.10:

172 2 1

N

Proof: (X1 (] Xz)(Jb@Jb ) = (Xl 2] XZ)Jb b =
1 72 172
= |
Y2
Let w; = . denote a column of wi.
w
| b1

Then for i = 1 (xlexz)(mlan ) =

2), then by Theorem

(X1 e XZ)(JbGJb s WlﬂJb s Jbﬁwz) = (J,» xlwl, XZWZ)

(x118%35 X129%ps -5 Xy, OXy) ’leb ‘
2 2 2
w,J
2°b,
w, J
\ by bzl
b ) b
E W, X0 X)), = I w, x1:® X,J
j=1 37137 27, j1 J %13 2°p,
b b,
L W, Xq: 9@ J, = I W.X; = X0
P K e P N 1*1
thus (X, @ X,)(W, o Jbz) = X, W,
For 1 = 2 we have
K1) ) = Gy ®%ps X1g%Kzs o Xgp OXp) o, | -
“2
\
"2 )
b b
z = = -
i (xljexz)mz jil XI:OXsz JNOXZm2 X2m2 and
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(XlQXZ) (chlawz) = XZWZ. Thus
(XIGXZ) (JbﬂJb s wl&lb ’ waz) = (JN, xlwl, XZWZ).
172 2 1
Thus we see that B1 n B2 confounds the effects confounded by
either B1 or B,. The (bl-l)(bz—l) orthogonal effects defined by
(XIOXZ)(Wlﬁwz) are also confounded.

Definition 3.3: If the respective blocks of B1 and B2 are of equal

size and Bi confounds the orthogonal effects defined
by xi(Jbi’ Wi) and (Xlwl)'(szz) = @, the set of
(bl—l)(bz—l) effects [(xloxz)(wlswz)]'n is the
generalized interaction of (Xlwl)'M and (szz)'M.

A blocking plan B determines the model Y = M + Xa + e.
The following theorem gives a sufficient condition for

the estimability of a set of effects.

Theorem 3.11: S'™™ is estimable in the model Y =M + Xa + e if S'M is

orthogonal to each block of the plan determined by X.
Proof: If S'X = @, then E(S'Y) = S'M + S'Xa = S'M.
In most experimental situations a is not known. For the case in
which a is not known it is extremely unlikely that S'Xa = @ unless
S'X = @ and for practical purposes one can say that S'M is estimable
only if $'X = 4.

Definition 3.4: In the model Y = M + Xa + e the block sum of squares

is Y'XX'Y.
Since S = XC with C orthogonal defines a set of normalized
orthogonal effects then Y'SS'Y is also the block sum of squares. The

mean effect is confounded in each block of a plan and the sum of squares
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due to the mean is Y'KNY. The quadratic form Y'(ii'—KN)Y is called

the between all blocks (B.A.B.) sum of squares.

Theorem 3.12: XX' is an idempotent matrix of rank b where b is the

number of blocks in the plan defined by X.

o~ o ~ - ~—

Proof: XX'XX' =X I X' =XX'. Since X'% = I, the rank of XX' is

0

Theorem 3.13: KN XxX*

XKy = Ky

Proof: Let the size of Bi be r, fori=1, 2, ..., b. Then X = XD,

where D is a diagonal matrix with d,, = L » and
Hooa
i
w'! = 2.0 "l..._]_-_ 12n=l 2|=
i "oyt -,l '
N JN Jb X J J KN Also

Ky = Ky = (K x')' = ii'xN.

Definition 3.5: In the model Y =M + Xa + e» Y'(IN - XX')Y is the

within all blocks (W.A.B.) sum of squares.

Theorem 3.14: IN - XX' and XX' - KN are idempotent matrices of rank

N-b and b-1l respectively.

Proof: Since XX' is idempotent of rank b, I

N XX' is idempotent of

rank N-b by Theorem 2.27.
2

(i‘d'(l_KN) (ﬁl_KN) = ﬁ'i{i' - KN)"D'{l - i’o"{IKN_l_KN
- Ky and p(ii'-KN) = tr(ii'-KN) =

tr(Xx') - tr(K,) = tr(X'X)-1 = b-1
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We have seen that a plan B determines the model Y = M + Xa + e.

If L defines the 2™ factorial effects L'M, then we have the model

L'Y = L'M + L'Xa + L'e. The following results are due to plans which

confound one or more factorial effects. The n, x n2 X o0 X nm factorial

1

arrangement is assumed unless otherwise indicated.

Theorem 3.15: If (jn, U) is an orthogonal matrix and n > 2, then the

Proof:

columns of U @ U span Vn(R).

It suffices to show that the rows of U 6 U are linearly in-

dependent. Let

*
01
03
= *
vuevu . where Py (uilpi’ UioPys coes uin—lpi)
*
|
and p, = (u u u ) is the 1th row of U
i 11 “i2* °°°? Tin-1 :
n . n
- ' =
Then 121 d pi = ® if and only if 121 d; P3Py [

if and only if U'DU = § where D is the diagonal matrix with
d;; as the gth diagonal element. U'DU = @ implies
(In-Kn)D(In-Kh) = . Thus we have D = DKn + KnD - K.nDKn and

d d
B & | ii _ tr(D) _ —tr(D)
dii a + ” 2 which yields dii pa-2) -

n

The diagonal elements are equal and
n

T d11 = tr(D) = i%%igl implies that D = §. Therefore
i=1

the rows of U @ U are linearly independent and consequently

the columns of U @ U span Vn(R).



45

Theorem 3.16: If B confounds A,A, and n, > 2, n, > 2, then B confounds

i i >

A, and A..
1 J
Proof: By Theorem 3.6 B confounds [F*(U.,U.) ) F*(Ui,U )1 'M.
* = F*%
F ("1’"3) 2] F*(Ui,Uj) F (Ui j Uj)P by Theorem 2.19.

Since the colummns of UiO Ui span Vn (R) then there exists a
i

such that (UiGUi)Hi = (Jni’ui)' Similarly there

exists a matrix H, such that (U,0U,)H

k| i h]

j)(H F*((Jni’ui)’ (Jnj,Uj)) is confounded

by Theorem 3.2. Therefore the effects defined by

matrix Hi

= (Jn ,U,). Thus

%
F (UiOUi, U

J.., F*(Ui)’ F*(Uj), F*(Ui,U )) are confounded with B.

3

Theorem 3.17: If B confounds A, , A, , ...,A, and n, > 2 for
il 12 ik i

for i=1, 2, ..., k then B confounds Ai R Ai s caey Ai

1 2 k
and any interaction involving only these effects.
Proof: The proof follows that of the last theorem. There exists

matrices Hi s sos3 H

1 N

FX(U, OU, , U, U, , ..., U ) (1, en 8 ...6H, ) =
i, 47 i, ik i i, I

such that

F*((Jnil’uil)’ (Jni )uiz)) ooy (Jni ,Uik)).
2 k

Thus the effects defined by (J., F*(U, ), ..., Fx(U, ),
N 11 ik

F*(U ’U )’ LAY F*(U ,U )’ LI F*(U U ,.oo,“ ))
1,71, 1 LT Ty

are confounded with B.

Theorem 3.18: The plan B determined by X = F*(In ) uniquely confounds
i

only the mean effect and Ai'
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- = * = *
Proof: By Theorem 3.8,X(Jni, Ui) F (Ini)(Jni, Ui) F ((Jni, Ui))

(JN, F*(Ui)) defines a set of effects confounded with B. By
Theorem 3.7 X is unique.

Theorem 3.19: If B confounds A, , A

i then B confounds any

1 L2 i

interaction involving only these effects.

Proof: Let {jl, Jgs eees jr} be a subset of {il, 1y, «oes ik}.

Then by Theorem 3.6 FX(U, )OF*(U, )0...0F*(U, ) =

X

3,700 0, 3

F*(U, , U, 5, «.., U, ) defines a set of effects confounded
317 3, Ir
with B.

F*(In s Iy ceey In ) is the incidence matrix of the plan

. n
L 1 i

which confounds the effects given in the last theorem. This plan is

the intersection of the plans defined by F*(In ), F*(Iﬂ )y .., and

i i,

F*(In ).

e
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Definition 3.3: The number of design points in Bi whose jl, j2, ceey jS

entries are respectively a, , a., 5, .., aj is

j]_ jz s

h,(3,530900es3.3 @, 58, seeesd, )e
i-1°-2 s jl j2 g

Theorem 3.20: A blocking plan B of b blocks confounds the mean effect

and b-1 components of A1A.2...A.ln if and only if for each
set {jl,jz,...,js}, where 1 < s < m, hi(jl’jZ""’js ;

0,0,...,0) = hi(jl,jz,...,js 3 cjl,cjz,...,cjs) for each

(cjl,cjz,...,cj ) in Z2(N

) xZ(N, ) X ... x Z(N, ).
s 3 3, j

S

Proof: By Theorem 3.5, any factorial effect other than A1A2"‘Am

or the mean effect is orthogonal to B.

Thus [F*((J , U, ), (O , U, ), ..., I » U ),
N h "3, 32 M dea

U, , U )y eeey (30 , U, D] X =9 for

I N ", s

r=1, 2, ..., s. Multiplication on the left of the last
equality by [, , U, »1 e, v, )1 le...8
3, 1 3, 2

-1

G, v )1 e ... 8

1 el 8 LU
jr-l

jr—l jr jr+1 jr+1

11-1
[(Jnj , Ujs) 1" yields

8

F*(In ’In ’-oo’In ,I -Kn [ In ,---,In )'xi=¢ (3'2)

n
3h 3 dear 3 A s

for i=1,2,...,b and r=1,2,...,8. Upon choosing the first
column of each of the arguments we have

1
(1 - ;;-) hi(jl’ jZ’ ceey js 30,0, ..., 0) =

r
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njr-l
1 . .
;3"“ )-_— hi(jl’jZ’...’jr’.'.'jS’ 0:090-'10)3j 30,...,0)
aj; =1 T
r jr

which simplifies to the equality

n, -1
1 e
hi(jl’jZ’.'.’js;o’o’.“’o) = 'n— az =0 hi(jl’jZ’...’jr’...’jS;
jr jr
0,0,...,0,ajr,0,...,0)

for i1, 2, +oo, b and r=1, 2, ..., s.

Choosing the c, +1 st columns of I_ -K we obtain
I 5.

r T

hl(jl,jz,...,jr,...,js;0,0,...,cjr,...,0) =

R .
a§ =0 hz(jl,j2)0' o,jr,. . .,js,0,0,. L) ,aj [ RN ,0) .

I
r r

Thus hy(3;535se+¢53550,05004,0) = hy (3153500 eesdpseeerdys

0,0’...,0 ,...,0)

jl.‘

for cj = 0,1,...,nj » Letting r=l1 we have
L o o

hy (31530 ++23430,0,...,0) = hz(jl,jz,...,js;cjl,o,...,O).

When r=2 we have from (3.2)

[F*(x, ,I -k ,I seees )] x,=0.

i, ", M, M= ig

By choosing the cj +1 st column of In and the first column of
1

3

each of the remaining arguments we obtain
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nj2
.. 1 . . . .
hE(Jl’JZ"."jS;cj »0y...,0) = — Z =0 hl(Jl’JZ’.."JS’
1 "1, %,
cjl,ajz,O,...,O).
Choosing the ¢, +1 st column of I - K yields
Ip oy, ™
2 2
1 njz
hl(jl’jZ"'°’jS;cj :Cj :0’---’0) = ;—_' _o 2(31’j29°'°sj H
1 72 jz 2
cjl,ajz,o,...,O).
Thus hl(jl’jZ""’js;cjl’o’""0) = hl(jl’jZ""’js;
Cc ,C ,0,0-.,0)0
179,

Continuing in this manner we obtain the following equalities

corresponding to the value that r assumes:

r=1, hz(jl,jz,...,js;0,0,...,0) = hz(jl’jZ""’js;cjl’o""’o);

T2, By()edgseeesdgity s0seens0) = hy(padpsee i 205...,0);

1,1,

r=3, hl(jl’jZ’j3"'.’js;cjl’cjz’o"."0) =

hl(jl’jZ’j3"."js;cjl’cjz’cj3’0"'.’O);

L4
.

r=s-1, hl(jl’jZ""’js;c »0,0) =

sCy peeesC
3173, o2

h (j »J "-':j seveyC sC »0) 5
1772 ", Ig-2 g1
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r=S, hz(jl’jZ’ oo ’js;cjl!cjz! s o ,cjs_l’O) =

h (j % "-°9j 3C;: 1C, seee,yC sC. ).
L¥71°72 s jl j2 s-1 3
Hence the equality hz(jl,jz,...,js;0,0,...,O) =
hl(jl’jZ""js;cjl’cjz""’cjs) holds for each

TRLRLS ) in Z(nj ) x Z(n

) x ... x Z(n
j2 s 1 j2

).

]

(cjl,c i

The converse follows by reversing the steps of the proof.

Theorem 3.21: Let B be a plan of b blocks confounding i(jb,c), where

XC defines b-1 normalized components of Ay 5A 5..0A
1 2 k

and let A = F*(U, ,U, ,...,U )[ﬁ*(u WU, 5...,U, )]".
1,1, i ) 1

Then A—(ii'—KN) is idempotent and [A-(ii'-KN)]x =@

if and only if the blocks of B are of equal size r.

Proof: xxbx' i& 3 X' = 3 J' = K if and only if be = J if and

only if the blocks of B are of equal size. Let (W,W*) be

an orthogonal matrix such that F*(Uu, ,U, ,...,U, )W = XC.
i i ik
1 2
Then XX'A = XX'(XC,F*(U, ,U, ,...,U, Wk
4L, 1

= I tytl - ¥ = 7' = AYR?
(Rc,r*(uil,uiz....,uik)w*) Xce'x x(Ib xb)x AXX' .

Since A and Xi-KN are idempotent and AR, = ¢ and

iX'KN = KN then A—(ii—KN) is idempotent if and only if

TVA = YN - g = ¥RV

XX'A = XX Ky if and only if X(Ib K )X XX'-Ky if and only

XKbi' = KN if and only 1if the blocks of B are of equal size.



51
(A—(i{i'-KN))i = @=AX - X + KNX = X(IK )X + KX =
-)h(b+KNi. KNi-iu(b=¢ 1fandon1y1f}”u(bi' = Ky
if and only if the blocks of B are of equal size.

Definition 3.4: The extension of a plan B* of b blocks of an

n, xn

1 g X eee XD factorial arrangement of treatments
toann; XN, X ... X moXD g X e XD factorial

arrangement of treatments is B = {Bizi = 1,2,...4b}

- o*
where B1 Bi x Z(nk+1) X eee X Z(nm).
B is a plan of b blocks in an n; X0y X ..o XMW factorial

arrangement and the incidence matrix of B is X

X* & Jq where X* is the
% = .

incidence matrix of B* and q N 1Mk P Figure 3.3 gives the

extension of a plan of a 2 x 2 factorial arrangement to a 2 x 2 x 3

factorial arrangement.

000j010
001|011
Bk 00]01 B: 0021012
) 11]10 ) 1101100
111101
1121102

{10

1 0

10

1 0 01

0 1 0 1

X* = 0 1 X = 01

10 01

0 1

01

1 0

1 0

101

Figure 3.3--Extension of a plan of a 2 x 2 factorial arrangement
to a 2 x 2 x 3 factorial arrangement.
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Theorem 3.22: If B* confounds the set of b normalized orthogonal defined

by S in am n; XMy X co0 XM factorial arrangement, then

the extension of B* confounds the set of b normalized

orthogonal effects defined by S @ Jq in an n, X0y X ..o XA

factorial arrangment.
Proof: By Theorem 3.4 there exist an orthogonal matrix C such that

S=X*. Thus $87J = i*cajq = (X* 8 3 )C = XC and by
Theorem 3.4 the effects defined by S @ jq are confounded with
the extension of B¥*.

Corollary 3.2: If B* confounds the mean effect and A¥ in an

i

XN, X ... XA factorial arrangement, then the exten-

sion of B* confounds the mean effect and Ai in an

n XN, X ..o XN factorial arrangement.

Corollary 3.3: If B* confounds the mean effect and b-1 components of

Ag Ag cee A{ in an n; XN, X .. XN factorial arrange-
1 72

ment, then the extension of B* confounds the mean effect

and b-1 components of A, A, ... A, in an
11 i2 1r

Ny XMy X eow XM factorial arrangement.

Theorem 3.23: If B is a plan of b blocks and confounds the mean effect

and b-1 components of A1 A2 cee Ak then B is the extension

of a plan that confounds the mean effect and b-1 components
of A% A; cee Aﬁ inann xm, x ... x n, factorial arrange-
ment.

By hypothesis, there exists a p x b-1 matrix W with normalized
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orthogonal columns such that B confounds the b normalized

orthogonal effects defined by (JN,(U18U28...8UkQJr)W). By

Theorem 3.4 there exists an orthogonal matrix C such that

= J ,(U 8...@0 GJ )W)c = [(J (U QU 6...GUk)W)C]@3r =

X* @ jr . That X* is an incidence matrix follows from the
fact that X is an incidence matrix. Thus X* is a normalized
incidence matrix of a plan B* that confounds the mean effect

and b-1 components of A% A; .e. A; inann, xn

1 Zx...xnk

factorial arrangement of treatments.



CHAPTER IV

EXAMPLES OF BLOCKING AND CONFOUNDING OF FACTORIAL

ARRANGEMENTS OF TREATMENTS

The purpose of this chapter is to illustrate how the develop-
ment in the preceding chapters can be utilized in obtaining plans and
their analyses of variance.

In light of Theorem 3.21, only plans with equal block sizes will
be considered. It is evident from the results in CHAPTER III that one
cannot confound an arbitrary set of b orthogonal effects with b blocks.
However, a plan of b blocks does confound at least one set of b orthogonal
effects.

If there exists a plan of b blocks that confounds the mean
effect and b~1 components of AIAZ"'Ak in an D, XNy, X ..o XN factorial
arrangement, then it follows from Theorem 3.20 that b divides n, for

i
i=1, 2, ..., k. Conversely, if b>1 and b divides n, for i=1, 2, ..., k,
then the condition of Theorem 3.20 can be met and thus there exists a
plan of b blocks that confounds the mean effect and b-1 components of

the highest-order interaction.

In the analysis of any confounding plan, it should be remembered
that differences in responses due to blocks is eliminated in the W.A.B.
analysis. The price of eliminating these differences is the loss of in-
formation on the mean effect and b-1 orthogonal effects.

54
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If a researcher has no preference as to what effects to confound,
then components of the highest-order interaction is often a good choice
since this interaction is the most difficult to interpret. Since the
highest-order interaction is usually taken as the error term in the
single replicate experiments, the confounding of b-1 components of this
interaction will reduce the error degrees of freedom. This loss in error
degrees of fr;;AOm alone 1s not necessarily a liability since the same
situation occurs whenever one chooses a randomized complete block design
in lieu of a completely randomized design. However, if this interaction
has very few degrees of freedom, then it is perhaps better to confound
components of an interaction of little interest so as not to reduce the
degrees of freedom for error.

The examples which follow illustrate the use of Theorem 3.20 in
obtaining plans that confound components of the highest-order interaction.
The first example is given in somewhat greater detail than the others
and it is hoped that the reader can see how the other examples can be
similarly developed.

Example 4.1: Suppoge that a researcher is interested in the re-
sponses of mice upon administration of 16 treatments com-
prising a 4 x 4 factorial arrangement of treatments. The
factors are taken as 4 levels of different drugs and for
the purposes of this example the factors are considered
fixed. All the possible combinations of one level from
each of the factors comprise the set of design points
T = 2(4) x Z(4). Let the levels within each factor be

naturally ordered so that, for example, the design point
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(2, 3) represents the third level of the first drug and
the fourth level of the second drug.

The researcher has at his disposal 4 strains of mice
with 4 mice in each strain and he has good reason to be-
lieve that differences in strains will influence the re-
sponses to the treatments. He desires information on the
main effects and also wants to assess the magnitude of the
contrast A&M = Moo ~ M3 = My + Ma0°

Since differences among the strains of mice are
thought to influence the responses, then strains should
be confounded with blocks. The need for information on
the main effects indicates that the main effects A1 and
A2 should be orthogonal to strains (blocks).

The largest block size that permits these considera-
tions is four. With a block size of 4 we can satisfy the
conditions of Theorem 3.20 and thus obtain a plan of 4
blocks that confounds the mean effect and 3 components of
the A1A2 interaction effect. The conditions are:
hi(j' ci) =] fori=1, 2, 3, 4, J =1, 2, and ¢

h |
2, 3. A plan satisfies these conditions if and only if

=0, 1,

Al and Az are orthogonal to blocks. Since the mean effect
and A1A2 are orthogonal to both A1 and A2 and since the
mean effect is confounded in any plan, then 3 components
of AlAz are confounded with blocks. Appearing in Figure
4.1 are the 24 plans, each of which confounds only the

mean effect and 3 components of A A,. That no two plans
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Figure 4.1--The 24 plans of a 4 x 4 factorial arrangement of
treatment each of which confounds 3 components of the A1A2 effect.
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confound the same 3 components follows from Theorem 3.7.

In order to assess the magnitude of the contrast kéu
the set of design points {(0,2), (1,3), (2,1), (3,0)} must
appear in the same block and thus these treatments must be
given to the same strain of mice. An inspection of Figure
4.1 reveals that these design points comprise a block in
plans (c), (q), and (r). Each of these three plans con-
founds 3 components of A1A2 and leaves Al’ A2 and the con-
trast A&M free of strain effects. These three plans are
also good choices for obtaining information on the contrasts
"02 - 2 H13 " H3g and Ho2 ~ V39 since these contrasts are
intra-block and thus are free of block effects.

The plans appearing in Figure 4.1 exclusive of plans
(c), (q) and (r) are of dubious value for estimating the
contrast AéM because the usual estimate of A&M involves
differences in blocks.

To proceed farther with this example let us choose
plan (c) as the design plan. Strains are then randomly
assigned to blocks and the 4 mice within a strain are ran-
domly assigned to the treatments within a block.

The model for plan (c) is
Y=M+Xa+e

or more explicitly
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In this model both M and a are unknown and a contrast

A'M is estimable if and only if X'A = . Since X'AO =@

then A&M is estimable. An analysis of variance for plan
(c) is given in Table 4.1.

The 5 components of A1A2 in the W.A.B. analysis are
called residual and their mean square is used as the de-
nominator of the mean square ratio to test A6H. The mean
square for residual is also used as the denominator for

testing the mean square ratios of A1 and Az. In the event

that one accepts the hypothesis that A'M = 0 then the sum

0



TABLE 4.1

AN ANALYSIS OF VARIANCE TABLE FOR PLAN (C)

IN FIGURE 4.1
Source d.f. S.S. F
Total 16 z yij
i,]
Mean 1652
k (i,j)eBk
W.A.B. 12
M.S.R. (&)
1 2 ..=2
A 4 i (§ yij) -16y M.S.R. (Res.)
M.S.R.(A,)
1 2 . =2 2
) I § (i ygg)" 16y M.5.R. (Res.)
1 ” M.S.R. (A M)
] o— - -
Aot 7 Woz2 ~ Y13 ~ Y31 * V30 ¥.5.R. (Res.)

Residual (AlAz)

S.S.(W.A.B.)-S.S.(Al)-S.S.(AZ)-S.S.(AéM)

09
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of squares for Aan may be pooled with the sum of square
for residual and the mean square of this pool may be used
as the denominator for testing the mean square ratios of
A1 and AZ'

A test of B.A.B. is futile since the B.A.B. sum of
squares reflects both differences among strains and differ-
ences among the sets of treatments administered to the
different strains. One would intuitively hope that the
B.A.B. be relatively large but a fortuitous selection of
the sets of treatments assigned to the strains could pro-
duce a relatively small mean square for B.A.B. One should
therefore avoid the practice of pooling the sum of squares
for B.A.B. with the sum of squares for residual. This
situation differs from the practice of pooling the block
sum squares with the sum of squares for residual in the
randomized complete block design for in the latter design
each treatment appears in each block and a preliminary
test of the mean square for blocks can be made.

This concludes the discussion of confounding 3 com-
ponents of a 4 x 4 factorial arrangement of treatments
with a plan consisting of 4 blocks. With a block size of
8 in a 4 x 4 factorial arrangment of treatments we have
2 blocks and to confound 1 component of A1A2 a plan must

satisfy the following conditions: hi(j,c )=2fori=1,

]
2, =1, 2 and cj =0, 1, 2, 3. The set of 48 plans

satisfying these conditions are given in Figure 4.2, An
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Figure 4.2--The 48 plans of a 4 x 4 factorial each
confounds 1 component of the AIAZ effect.

which
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Figure 4.2--Continued
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abbreviated analysis of variance of a particular plan is

given in Table 4.2.
In the 2 x 2 x 4 factorial arrangement a plan that
confounds only the mean effect and components of AlAZA3

must have a block size of B. Such a plan must satisfy the

following conditions:

hi(j;c )

h |
hi(3;c3) = 2,

4,

h1(1.2;c1,c = 2 and

2)

hi(j,B;cj,c3) 1, for i=1,2, j=1,2,c, = 0,1 and

3
cq = 0,1,2,3.

The three plans that confounds only the mean effect
and 1 component of A1A2A3 are given in Figure 4.3. An
abbreviated analysis of variance appears in Table 4.3.

If the numbers of levels of the factors do not have
a common divisor other than unity, then there is no plan
with equal block sizes that confounds only the mean effect
and components of the highest-order interaction. In this
case the confounding of components of the highest-order
interaction results in the confounding or partial confound-
ing of components of other factorial effects.

In the 2 x 2 x 3 factorial arrangement no plan with
equal block sizes exists that confounds only the mean
effect and components of A1A2A3. The plan B in Figure

4.4 confounds 1 component each of A1A2A3 and A3 in addition
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TABLE 4.2

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE
FOR A PARTICULAR PLAN IN FIGURE 4.2

Source d.f. S.S.
Total 16 Y'y
]
Mean 1l Y K16Y
B.A.B. (A}A,) 1 Y' (f{f(-KIG)Y
1 R d
W.A.B. 14 Y (Il6 X'y
' -
Al 3 Y (14 KlogKl&)Y
' —
A2 3 Y (K48 14 Kﬁ)Y
' s dl
A1A2 8 Y (14-—1(48 IT,KI, XX +K16)Y
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Figure 4.3--The 3 plans confounding only the mean and 1 com
14243 in a 2 x 2 x 4 factorial arrangement of treatments.

ent of A
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TABLE 4.3

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE
FOR A PARTICULAR PLAN OF FIGURE 4.3

Source d.f S.S.
Total 16 Y'y
1]
Mean 1 Y K16Y
Vg
B.A.B. (A1A2A3) 1 ¥ (XX K16)Y
W.A.B. 14 Y' (1L, -fo”c')Y
Al 1 Y(IKQKZBKA)Y
A2 1 Y' (K ) 12-1(2 8 Kl')Y
A3 3 Y' (K 8 K ® 14 4)Y
AlA2 1 Y' (I 2 8 I2 K ) KI’)Y
' Ld -
AlA3 3 Y (I K2 8 KZ 8 I A)Y
L
A2A3 3 Y (K 8 12 KZ <] 16 KA)Y
' - -~
A1A2A3 2 ((I K 8 12 l( 8 I Kl.) XX '+ I(16)Y
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Figure 4.4~-A plan confounding the mean effect and 1 component
each of AjAjA3 and A3 in a 2 x 2 x 3 factorial arrangement of treatments.
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to the mean effect. The latter statement follows from the

1 11
application of Theorem 3.8 with the matrix C = |1 -1 1} =
1 0 -2
(JB’YZ’Y3)’
100
01 OT
001
010
100
XC = 001 111 1 1 1 1
100 1-1 1] = le s |-1] 8]-1j81-1],1|1]8
010 1 0-2 0
001
010 (1) o ( 1
1100 1 1
ioo1 -2

and thus the mean effect, 1 component of A1A2A3 and 1 com-
ponent of A3 are confounded with B. The plan B is not a
good choice if information on A3 is paramount. Table 4.4
gives an abbreviated analysis of variance for the plan
given in Figure 4.4.

For the situation in which we cannot sacrifice infor-
mation on the highest-order interaction we can confound
components of another interaction or main effect.

In a 2 x 2 x 3 factorial arrangement AlA2 has 1 com-
ponent. A plan confounding A1A2 is unique by Theorem 3.7.
By Theorem 3.23 the plan is the extension of a plan con-
founding A{Ag in a 2 x 2 factorial arrangement. The plan
is given in Figure 4.5 and an abbreviated analysis of
variance appears in Table 4.5.

Using Corollary 3.2 and Theorem 3.23 we see that there

exists a total of 24 plans that confounds the mean effect
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TABLE 4.4

ABBREVIATED ANALYSIS OF VARIANCE TABLE
FOR THE PLAN GIVEN IN FIGURE 4.4

Source d.f. S.S.
Total 12 Y'y
]
Mean 1 Y Kle
VG
B.A.B. 2 Y (XX K12)Y
VTS Syt
A3 1 Y'( y3y3x )Y
Vv Sigt
A1A2A3 1 Y (XYZYZX )Y
W.A.B. 9 Y'(Ilz—)”d{)Y
' -
Al 1 Y (I2 Kz 8 Kz ] K3)Y
' -
A2 1 Y (KZ [ ] I2 Kz 8 K3)Y
] o e Y wiyt
A3 1 Y ((K2 8 KZ ) I3 K3) XY3Y3X )Y
' - —
AlAZ 1 Y (12 K, a8 12 K, 8 K3)Y
' - -—
A1A3 2 Y (I2 K2 8 1(2 B 13 K3)Y
' —-— -—
A2A3 2 Y (K2 aQ I2 K2 8 I3 K3)Y

[ - - _ - Y iyt
AAA, 1 Y ((12 K, 81, K, 81, K3) Xy, v X )Y
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Figure 4.5--The plan confounding the mean effect and A1A2 in a
2 x 2 x 3 factorial arrangement of treatments.
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TABLE 4.5

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE
FOR THE PLAN IN FIGURE 4.5

Source d.f. S.S.
Total 12 Y'y

Mean 1 Y'KlZY

B.A.B. (AA,) | D 4 (fo’{'—xu)y

W.A.B. 0 Y'(I,,-KK)Y
Al 1 Y'(IZ—K2 8 K2 ) K3)Y
AZ 1 Y'(K2 ] 12-1(2 ] K3)Y
A3 2 Y'(K2 ] KZ 8 I3-K3)Y
A1A3 2 Y'(IZ-K2 8 KZ ] 13-K3)Y
A2A3 2 Y'(K2 ] 12—K2 e 13-K3)Y

' —-— L d -—
A1A2A3 2 Y (12 KZ 8 I2 K2 8 13 K3)Y
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and 3 components of A1A2 in any 4 x 4 x q factorial arrange-

ment. An analysis of variance is straightforward. The

W.A.B. analysis of A1A2 has 6 degrees of freedom and the

matrix of its quadratic form is LK, Q@I-K -XX"+K,_.

44 16
If B1 confounds only the mean effect and components

xlcl of A1A2'°'Ak and B2 confounds only the mean effect
and components XZCZ of Ak+1Ak+2"'Ar then by Theorem 3.9
and Theorem 3.6 B = B1 n B2 is a plan with blocks of equal
size and confounds the effects defined by (JN’ chl’ XZCZ’

(Xiﬁxz) (clecz). Furthermore (X1 (¢] XZ)(C1802)= ch 0 X.C

1 272

defines components of AlAZ"'Ar since there exist Wl and

wz such that X1Cl = F*(Ul,Uz,...,Uk)W1 and X,C, =

F*(Uk+1,Uk*2,...,Ur)W2 and X1C1 0 XZCZ = [(UIGU 8...8U )W. &

Jp 8 (0k+1 8 uk&Q 8 ... 8 Ur)WZ 3 JN

Pq
(U1 8 U2 ... 8 Ur)(w1 8 WZ) e q§~ .

Pq

Ina2x 2 x 3 x 3 factorial arrangement the plans

B1 and B2 in Figure 4.6 confound respectively the mean
effect and A1A2 and the mean effect and 2 components of
A3A4. B = B1 N B2 confounds the mean effect, A1A2, 2 com-
ponents of A3A4 and 2 components of A1A2A3A4 with its 6
blocks of size 6. An abbreviated analysis of variance

appears in Table 4.6
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Figure 4.6--Three plans of a 2 x 2 x 3 x 3 factorial arr

ment of treatments.
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TABLE 4.6

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR THE PLAN
BlﬂB2 OF A 2 x 2 x 3 x 3 FACTORIAL ARRANGEMENT
OF TREATMENTS

Source d.f. S.8.
Total 36 Y'y

Mean 1 Y'K36Y

B.A.B. 5 Y'(ii’('—x36)Y
AjA, 1 Y (Xlii-x3 )Y
AA, 2 Y (f(zié-K%)Y
AJA AN, 2 X' (fo‘c'-ilii-izii + Ky )Y

W.A.B. 30
Ay 1 Y'(Iz—KZG K, 8K, 8 K3)Y
A, 1 Y'(K,8 I,K, 8 Ky 8 K,)Y
A, 2 Y'(K, 8K, 8 I,K; 8 K;)Y
A, 2 Y'(K, 8K, 8 Ky 8 I,K)Y
AA, 2 Y'(I,K, 8 K, 8 I,K, 8 K,)Y
AjA, 2 Y'(I,K, 8 K, 8 Ky 8 I,-K,)Y
A2A3 2 Y'(K2 8 I,X, 8 I;-K, 8 K3)Y
An, 2 Y'(K, 8 I,K, 8 K; 8 I,-Ky)Y
AN, 2 Y'(k, 8K, 8 I,K,8 13-K3-22i5 + Ky )Y
AJAA, 2 Y'(I,K, 8 I,K, 8 I,-K, 8 K;)Y
AJAA, 2 Y'(I,K, 8 I,K, 8K, 8 I,K,)Y
AALA, 4 Y'(I,K, 8 K, 8 I;-K; 8 I,-K,)Y
AjAaA, 4 Y'(K, 8 I,K, 8 I,-K,; 8 I,-K,)Y
AjAAA, 2 Y'(@,X, ® I,-K, 8 I,-K; 8 1K, - xx'

v v v w' -
+ X1X1 + szz K36)Y
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Example 4.7: In the 2 x 6 x 3 factorial arrangement B1 and 32
given in Figure 4.7 respectively confound the mean effect

and 1 component of A1A2 and the mean effect and 2 compon-

ents of A2A3. The component of A A, confounded is defined

172
by
| 1 1
l'l) 8 (_1) & 1| ® J, and
the two components of A2A3 are defined by
"1 1]
-1 1
0 -2
1 1 0 -2
-1 1
-1 1
1 1
. 0 -2

By Theorem 3.6 the Hadamard product of these two sets of
effects is confounded and defines a set of effects also

confounded with B = B1 n BZ' The Hadamard product is

(1 1
-1 1
g -2
(_i ) 8 (_i ) 8 2 -i and thus 2 components
-1 1
-1 1
1 1,
0 -2

of A1A2A3 are confounded. An abbreviated analysis of

variance is given in Table 4.7.
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Figure 4.7--Three plans in a 2 x 6 x 3 factorial arrangement

of treatments.
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TABLE 4.7

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE OF A 2 x 6 x 3
FACTORIAL ARRANGEMENT OF TREATMENTS WITH THE

PLAN Blﬂ B, IN FIGURE 4.7

Source d.f. S.S.
Total 36 Y'y
Mean 1 Y'K36Y
B.A.B. 5 Y'(Ri'—x36)Y
A\A, 1 Y'(il“i—x36)y
AA, 2 Y'(izié—K36)Y
AjALA, 2 Y'(ii'~ilii—izié+K36)Y
W.A.B. 30 Y'(136—ii')y
A 1 Y'(I,7K,8K 8K,)Y
A, 5  Y'(K,BI K 8K,)Y
A, 2 Y'(K28K6813-K3)Y
AA, 4 Y'«IZ—KZGIG—K68K§Fi1ii + Ky )Y
AjA, 2 Y'(I1,7K, ® K, 8 I,-K,)Y
A, 8  Y'(K,8I K BI,K) - X, X5 + Kyg)Y
AyhAg 8 Y'(I,~K)BT R B, -K )RR+ X[ +X, X 4K )Y




CHAPTER V
A PRACTICAL EXAMPLE

This chapter is intended to illustrate how the development in
CHAPTERS III and IV can be utilized to design a practical plan that is
appropriate for data analysis. Emphasis is placed upon those aspects
where the design or analysis was either impossible or more difficult be-
fore. In the past, designs have been artificially forced into patterns
where all factors had the same number of levels and even these numbers
were restricted.

Also, many times researchers have well designed ¢xperiments, but
unforeseen events or a lack of facilities or time forced them to compro-
mise their analyses. Such is the scope of the following experimental ex-—
ample and although the results developed earlier are not necessarily re-
stricted to this type of shortcoming, it is felt that the chosen example
will provide some of the reasons as to why the usual analysis is not
appropriate and illustrate one type of situation where it is advantageous
to use these results. It is hoped that the reader can easily imagine that
these applications can be made to a wide variety of situations in which
the response to be measured depends on the levels of several factors, some
kind of blocking is advantageous, and large numbers of replicates are not
feasible.

Suppose that a researcher has collected a sample of blood from
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each of 24 dogs in order to determine the effects of 24 diets comprising
a 2 x 2 x 6 factorial arrangement of treatments upon the total blood
lipids in dogs.

The three factors are carbohydrate, protein and fat. The two
levels of carbohydrate are 5 and 10 grams per kilogram of body weight, the
two levels of protein are 20 and 40 grams per kilogram of body weight and
the six levels of fat are 8, 16, 24, 32, 40, 48 grams per kilogram of body
weight. The treatments are the 24 combinations of carbohydrate-protein-
fat and the response he wishes to measure is the number of micrograms of
total blood lipids per milliliter of whole blood. The high and low levels
of both carbohydrate and protein can be indicated by 0 and 1 and the six
levels of fat can be indicated by 0, 1, 2, 3, 4, and 5. Thus a three
tuple such as (0, 1, 4) represents the diet consisting of the low level
of carbohydrate, the high level of protein and 40 g/Kg of fat.

Because of situations beyond his control, the researcher must
utilize two different laboratories for the assays. He realizes that the
use of different laboratories might introduce bias into responses because
of different techniques or technicians.

In his investigation he would like to ascertain if the two levels
of carbohydrate are different relative to the measured response. Also,
he desires to know if the two levels of protein influence the measured re-
sponses and the six levels of fat influence the measured respomnses. In
statistical terms these statements are equivalent to the evaluation of
the three main effects.

Also of interest to the experimenter is whether or not the pat-

tern of responses for one factor is different at each level of another
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factor when the remaining factor is collapsed. Thus the researcher wants
to investigate the carbohydrate x protéin, carbohydrate x fat, and the
protein x fat interactions. The experimenter is not interested in the
carbohydrate x protein x fat interaction.

The experimenter knows that any assignment of the blood samples
to the two laboratories will invalidate any comparisons of assays from
different laboratories. That is, he is unable to attribute differences
in blood samples assayed in different laboratories to a difference in
treatments because of the bias introduced by the difference in laboratories.
He also feels that he should assign 12 blood samples to each of the labor-
atories.

In order to obtain all the information desired by the experimenter,
we can construct a plan using the results of CHAPTER III. We can immedi-
ately discard any plan which confounds any main effect or first order
interaction since the researcher desires information on these effects.
Thus we desire to confound part of the highest-order interaction. A plan
that confounds part of the carbohydrate x protein x fat interaction is
easy to construct. Since each laboratory is to receive 12 samples then
we must have blocks of size 12.

The allocation of the blood samples to the laboratories is de-
pendent upon the interest of the experimenter. For example, since he
wants information on the main effect of carbohydrate, it would be very
undesirable to assign all samples at the low level of carbohydrate to one
laboratory and the remaining samples at the high level of carbohydrate to
the other laboratory. Such a practice would invalidate or bias the usual

estimate of the carbohydrate main effect and corresponding sum of squares.
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Thus we see that the individual levels of each of the factors
must be balanced in each laboratory. For similar reasons all combinations
of levels from any two must be balanced in order for the estimates and
sums of squares of the 3 first-order interaction to exist. These condi-
tions are easy to satisfy in the construction of an allocation plan.

Ten allocation plans exist which will give the experimenter the
desired estimates. The following plan is one of the ten allocation plans
that confouuds only the highest-order interaction.

Lab 1l Lab 2

000 003
001 004
002 005
013 010
014 011
015 012
103 100
104 101
105 102
110 113
111 114
112 115

The sum of squares for all effects other than the carbohydrate x protein x
fat interaction are computed in the usual manmner and have the usual rules
governing the degrees of freedom. The sum of squares for the highest-order
interaction is computed by subtracting the sum of squares for main effects
first~order interactions and laboratories from the total (corrected for
the mean) sum of squares. This sum of square can be used as the residual
sum of squares and has only (1)(1)(5)-1 = 4 degrees of freedom because
one degree of freedom due to the laboratory sum of squares is subtracted
from the usual 5 degrees of freedom for this interaction.

We should be aware of the implication of the last computation.

All the main effects and first-order interactions are intra-laboratory
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or sums of intra-laboratory comparisons and thus does not involve differ-
ences in laboratories or inter-laboratory comparisons. This is why the
inter-laboratory in the form of the laboratory sum of squares was removed
from the usual sum of squares due to the carbohydrate x protein x fat
interaction. Since the highest-order interaction is used many times to
test the significance of the first-order interactions and possibly main
effects, then by not removing the laboratory sum of squares from the usual
sum of squares for the highest-order interaction, we would be testing
intra-laboratory comparisons with a residual error consisting of both
intra-laboratory and inter-laboratory comparisons. Thus the inter-labora-
tory comparison is eliminated from the highest-order interaction and
correspondingly one degree of freedom is lost.

Failure to eliminate the inter-laboratory comparison would tend
to inflate the residual sum of squares by the inclusion of the square of
bias due to the different laboratories. The researcher can follow the
allocation plan and still get the usual sums of squares of the effects of
interest at a loss of one degree of freedom of the highest-order inter-
action. If bias due to the difference in laboratories really exists, then
the loss of the degree of freedom is welcome since the inter-laboratory
sum of squares is substantial.

The usual tests of significance can be made in the manner appro-
priate to the 2 x 2 x 6 factorial arrangement of treatments with the ex-
ception that the residual sum of squares now has only 4 degrees of freedom
associated with it. That is, the highest-order interaction is used as the
error term in testing each first-order interaction for its effect. 1If no

significance is found the main effects are tested using the highest-order
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interaction as the error term or the pooling of the non-significant inter-
action terms to obtain a new measure of error. Since a large number of
textbooks of both methods and experimental design cover the tests of
hypotheses for these types of situations, a detailed discussion of the
tests to be employed in this example would be redundant and therefore is

not undertaken.



CHAPTER VI
SUMMARY

This dissertation provided a method of construction of a set of
orthogonal effects in an n, XN, X ... Xxn factorial arrangement of
treatments and a partition of this set into the 2™ factorial effects. A
canonical representation of the 2™ factorial effects was established by
utilizing tensor products and the set of tensors defining an interaction
effect was related to the Hadamard product of sets of vectors defining
the main effects. The matrix of the quadratic form of a factorial effect
was established and was seen to be invariant of the choice of the orthog-
onal set defining the factorial effect. This matrix was also the
Kronecker product of idempotent matrices and therefore idempotent by a
preliminary theorem.

The preceding developments provided a simple expression for the
partition of the total sum of squares into the sums of squares due to
the factorial effects. The ranks of the matrices of the quadratic forms
were determined and were related to parameters of non-central chi-squared
random variables. Analyses of variance were presented in general and for
selected simple examples.

Definitions, methods of construction, and analyses of variance
were given for the randomized complete block design and the completely
randomized design with factorial arrangements of treatments.
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This dissertation also gave an algebraic treatment of blocking
and confounding of a single replicate of a factorial arrangement of treat-

ments. The set of treatments of an n1 XxXn

ment was represented by the Cartesian product (in the respective order)

g X eeo XM factorial arrange-

of the residue classes of the respective moduli. The incidence matrices
of the blocks of a plan were defined and the Hadamard product was used
to explicitly define confounding of an effect with a block of a planm.

The Hadamard product of tensors that define confounded effects
was seen to reproduce tensors which also defined confounded effects.
Linear combinations of confounded effects also are confounded. An effect
confounded in each block of a plan was seen to be defined by some linear
combination of the incidence matrices of the blocks of the plan. The
number of mutually orthogonal effects confounded in every block of a plan
is equal to the number of blocks of the plan. The class of orthogonal
effects confoundable with a given plan was determined and a plan that
confounds only a given set of effects was shown to be unique.

Necessary and sufficient conditions are established for confound-
ing only the mean effect and components of the highest-order interaction
with the blocks of a plan. This result leads to necessary and sufficient
conditions for the existence of such a plan and is extended to apply to
lower-order interactions or main effects.

The effects confounded in the intersection of two plans are re-
lated to the effects confounded in the separate plans. Necessary and
sufficient conditions for estimability of an effect are given.

It was established that blocks must be of equal size if only

the mean effect and components of an interaction effect are confounded.
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Aside from the mean effect if the effects confounded by one plan are
orthogonal to the effects confounded by a second plan and the blocks of
both plans have common sizes then the intersection of the two plans yields
a plan whose blocks are of equal size. The latter plan confounded the
effects confounded by either plan and the generalized interaction of the
set of effects of one plan with the set of effects of the other.

It was shown that the generalized interaction of components of
AlAz...Ak with components of ArAr+l'°'As is a set of components of
AlAZ"'AkAr°°‘As provided k<r. This result can be extended to the case
where k2r if judicious choices of the two sets of components are made.
However the actual construction of the two plans is difficult and it is
easier to use the methods that have resulted from the theories of Galois
field, and projective geometries.

This dissertation has attempted to provide broad imsight into
the construction of factorial effects and the representation of the quad-
ratic forms thereof in a factorial arrangement of treatments.

It is hoped that the results concerning blocking and confounding
will lead to an understanding as to when and why confounding is a worth-

while procedure and will make for easier construction of blocking plans.
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APPENDIX I

BO®C=¢@ if and only if B = @ or C = 0.
Proof: Necessity follows from definition.
If BO®C=09 thenb,.C=¢ for each b,, in B.

ij ij
Thus B =@ or C = @.

Proceeding inductively, if B, 8 ... 8B, = ¢ implies B, = ()

for some 1 then B, 8 ... 8@ Bm = @ implies either B, 8 ... @ B-1° @ or

1

Bm = @#. Thus Bi = @ for some {i.

1
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APPENDIX II

1f Cl’ ceny ci—l’ Ci+1’ cees Cm are idempotent and non-zero then

F*(Cl, cees Cm) is idempotent if and only if C, is idempotent.

i
Proof: Necessity follows by Theorem 2.4. If F*(Cl, cees Cm) is

idempotent then

2 2 2

% = F* 2
[F (cl’-.-’C )] F (cl,ooo’ci 1’ Cl’ Clll

2
’ .I.’ cm) =

2
* = F%k
F (Cl""’ci-l’ Ci, cill""’c ) F (Cl, veey C ). Thus

2 =
F*(Cl, ey Ci-l’ Ci"‘Ci, Ci+1, ceey Cm) = ¢ and by

Theorem 2.5 C -C2

7€ = #. Thus C

i is idempotent.
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APPENDIX III

If X is an n-dimensional vector, y is an r-dimensional vector
and A is an nxr matrix, then (X @ A)Y = X O AY.

Proof: (X © AV = (X0 @y, X0 «a ... X0 ur)Y =

2’
xXo al)y1 + (X6 a2)y2 + ...+ Xeo u.r)yr =

X0 (a1y1+ @y, * ...+ aryr) = X © AY where

-

"1

<
N

MN-—-. -——-‘—’

A= (al, Gps =ves ar) and Y =

<
~
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APPENDIX IV

If A, B, C, D are matrices of dimension nxr, mxs, nxq, mxp
respectively then there exists a permutation matrix P such that
(A®@B)® (CB®D) =[(ABC) 8 (BO D)]P.

Proof: (A®B) 6 (C®D) = (al e] Bl’ sees Oy ¢} BS, a, ® Bl”"’
a, (¢} Bs, cees arGBl,...,urGBS) ] (ylgél,...,yle Gp,
72961,...,72 o 6p,..., yq@ 6p and
(AGC) 8 (BOD) = (uleyl,...,ulqu, u20Y1,...,u207q,...,
areyl,...,arGYq) 8 (Blecl,...,elosp, 82061,...,8206p,...,

th _th

.th ,th
Bseép) where ays B., Yy 62 arethe i, j , k , ¢

3

column of A, B, C, D respectively. Since both matrices are

of dimension nm x rsqp and

!au“j\ “11&\ (alisj 6 °1k51\
3185 1 [cabe | | 221f5 © by
(“188j) e (yke«sg) = . . . -

\amiBj} °mk6z} \ nify @ °mk‘sx}

31:%kP5 @ 9y

351%KB1 @ % \

= (aievk) 8 (BjG«SE)

\ amicmkej 0 62 }

9%
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then there exists a permutation matrix P such that
(AGB) @ (C8D) =[(AGC) B (BO D)]P.
Troceeding inductively, if Litere exists a Pm—l such that

(B8 B,8...8 B__1) @ (C,8C,8...8 C__;) = [(B;6C,)8(B,0C,)8...8(B 8

2 2

Cm—l)]Pm—l then

(B,8...88 8B ) @ (C,8...8C__

- 8¢ =[[(B.8...88_)0(C,8...8C )] ®

(BmGCm)]P2 = [[(BIOCI)@...E(anlecm_l)] Pm_le(BmGCm)I]P2 =

[(B,6C,)8...8(B &C )] (P__,8 )P, .

(p 8 I)P2 is a permutation matrix and thus there exists a

m-1

permutation matrix Pm such that

* > o . * > e 0 = * L BN L]
F (Bl, ,Bm) OF (Cl, ’Cm) F (BIGCI, ,BmGCm)Pm



