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AN ALGEBRAIC APPROACH TO BLOCKING AND CONFOUNDING 

IN FACTORIAL ARRANGEMENTS

CHAPTER I 

INTRODUCTION

Factorial arrangements of treatments have been utilized many 

times in the designs of experiments. The factorial arrangement is a 

cross-classified arrangement with the classes being the factors. The 

chief advantage of the factorial arrangement is that in the absence of 

interactions of the factors the number of parameters describing the data 

can be reduced to the set of parameters describing the levels of each of 

the factors.

Factorial arrangements are customarily dichotomized into sym

metrical factorial arrangements, where each factor has the same number 

of levels, and the asymmetrical factorial arrangements, where the num

ber of levels differ in some two or more of the factors.

Yates (22) first introduced designs and analyses of symmetrical 

factorial arrangements of the types 2™, 3^ and asymmetrical arrangements 

of the type 2™3°. Cochran's result concerning the joint distribution of 

the partition of the sum of squares of normal deviates, and Fisher's F 

ratio pertaining to the ratio of specified pairs of members of the par

titioned sum of squares, made possible the analysis of variance. The



2

theory of maximum likelihood yields estimates of parameters appearing in 

linear normal models and results by Gauss and Markoff show that these 

same estimates are valid in more general linear statistical models. The 

likelihood ratio approach to hypothesis testing confirmed that Fisher's 

F was a good statistic for testing hypotheses in factorial models.

As experimenters ran afoul of the assumptions of the linear 

models used in factorial arrangements, efforts were concentrated on re

finement of the models so that assumptions could more nearly be met. 

Perhaps the most basic assumptions of the factorial model that demanded 

to be met were the assumptions of homogeneous and uncorrelated error 

terms. Experimenters frequently found that heterogeneous errors ac

companied an increase in the size of the experimental plot.

To cope with this problem the treatment combinations comprising 

the factorial arrangement were partitioned and each member of the parti

tion was subsequently assigned to a smaller experimental plot. By this 

scheme it was felt that the within-plot variation of the experimental 

units were smaller and more homogeneous than the variation of the experi

mental units in the replicate plot, the plot consisting of the union of 

the smaller plots.

By no means was the result rendered by this technique without 

liabilities. The price of smaller and more homogeneous error terms was 

the loss of information on certain treatment contrasts. Since the moti

vation for choosing smaller experimental plots was that the experimental 

plots differed in one or more characteristics which influenced treatment 

responses, it was recognized that comparisons between the responses of 

two treatments occurring in different experimental plots could not be
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made with any degree of confidence.

Another problem to overcome was the selection of the "best" 

partition of the treatments relative to the objectives of the experiment. 

Haphazard partitions of the treatments resulted in the possible confound

ing of the factorial effects deemed most important.

Out of the last problem the theory of confounded designs 

flourished.

The question of how to confound parts of desired factorial 

effects led Bose and Kishen (2) to develop a theory for the construction 

of confounded synmetrical designs through finite projective geometries. 

Later Bose (1) discussed the problem of finding the maximum number of 

factors that can be accommodated in a block of a given size without con

founding an interaction unto a given order.

Fisher (7, 8 ) discussed this point in the s™ factorial where s 

is a prime power and found that the maximum number of factors that can

be accomodated in a block of size s^ without confounding any main effect
gf-l

or first-order interaction is ---=- . Bose has shown that with s=2 thes— 1
maximum number of factors that can be accommodated in a block of size 2 ^

|"«-1without confounding any interaction of less than third order is 2

Rao (18) also obtained the same results independently. Finney (6 ) found

these methods suitable for the development of fractional factorials.

Nair (16) gave a method for getting confounded arrangements in 

the symmetrical factorial.

Kempthome (12) systemized the technique used by Fisher and 

Finney and a detailed account of the theory appears in a later text (13). 

The construction and analysis of confounded designs for
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asymmetrical factorial arrangements was given by Kishen and Srivastiva 

(14).

Das (4) developed an alternative approach for construction of 

symmetrical factorial arrangements and obtained a maximum number of factors. 

Sarma (20) extended the approach for the construction of symmetrical 

factorial arrangements.

White and Hultquist (21) gave methods for construction of con

founded designs of the type p^q^, where p and q are distinct primes.

Raktoe (17) extended their approach and developed a method of confound

ing in factorials where the levels of the factors are from distinct 

prime fields.

Sardana gave procedures for constructing blocks of size 4q in
2

2 replications of an asymmetrical factorial of the form 2q x 2 which 

provided mutually independent estimates of all the effects.

Separate texts by Winer and Mann (15), Federer (5), and 

Kempthome (13) give methods of confounding utilizing the Galois field 

approach. Mann in addition gives a brief algebraic development of the 

analysis of factorial experiments and confounding factorial experiments.

The blocking plans given in the general theory are not neces

sary for confounding to exist. If the nature of a factorial arrangement 

is such that the confounding plans given by current methods cannot be 

followed then the researcher has to rely on a different analysis or 

alter his experiment to fit one of the available confounding plans. A 

wider selection of blocking plans would enable more latitude for design

ing and analyzing experiments that would otherwise have to be approached 

through different channels.



One of the objectives of this dissertation is to complement the
2selection of blocking plans now available. For example, in the 4 fac

torial arrangement, the Galois field theory approach yields only 3 block

ing plans ta confound part of the interaction in 4 blocks of size 4. A

method will be developed that yields 24 blocking plans each of which
2confounds part of the interaction in a 4 factorial.

Using combinatorial properties of blocks rather than field 

properties, the generalization of this result will give necessary and 

sufficient conditions for confounding effects in an n™ factorial where 

n is not restricted to a prime power. This result will be generalized 

to factorials of the type n^ x ng x ... x n^. If n^, ng, ..., n^ in 

addition have a non-trivial common divisor d, then blocking plans will 

be constructed that confound d- 1 components of a specified interaction 

of the factors. This result will be further generalized to include the 

construction of blocking plans in the n̂  ̂x n 2 x ... x n^ x q. A block

ing plan that confounds a specified set of orthogonal effects will be 

shown to be unique and the class of sets of orthogonal effects confound- 

able with a given blocking plan will be determined.

Numerous examples of blocking plans will be exhibited with an 

assortment of block sizes.

The second objective of this dissertation is to give a general 

algebraic approach to construction of factorial effects. Kronecker pro

ducts of matrices will be used extensively to define factorial effects, 

to establish the independence of the various factorial effects and to 

present the sums of squares due to the various effects. Because the 

usual sums of squares appearing in an analysis of variance are quadratic
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forms of random variables* the Kronecker product will be used to show 

that the various quadratic forms are jointly independent and that the 

matrix of a quadratic form is idempotent with a particular rank.

Mathematical models for designs of both the factorial and con

founded factorial will be given.

The class of estimable functions relative to each of the models 

will be exhibited. Confounding will be defined explicitly utilizing 

Hadamard products.

As in the designs of factorial arrangements* designs of con

founded factorial arrangements will be discussed. The quadratic forms 

of the sums of squares will be examined and the mutually independent 

quadratic forms will be determined. The matrices of all quadratic forms 

appearing in an analysis of variance will be seen to be idempotent.

The comprehensive set of blocking plans of a fixed block size 

confounding parts of a desired interaction effect will be given whenever 

feasible.

Examples will serve to illustrate the theory. The analysis of 

each example will be given.



CHAPTER II

DEVELOPMENT AND ANALYSIS OF DESIGNS INVOLVING COMPLETE 

REPLICATES OF FACTORIAL ARRANGEMENTS OF TREATMENTS

One of the problems encountered In an algebraic approach to the 

analysis of a design involving a factorial arrangement of treatments is 

the definition and representation of the factorial effects of the design. 

Another related problem is the representation of the sums of squares or 

quadratic forms due to the various factorial effects. The quadratic 

forms to be used in the construction of F ratios must be independent and 

the matrices of the forms must be idempotent. The ranks of the idempotent 

matrices of the two forms in an F ratio are the parameters of the F ratio 

and thus must be known before a test of hypothesis can be made.

Kronecker and Tensor Products

The Kronecker and Tensor products readily lend themselves to 

the definition and construction of factorial effects and to the repre

sentation of the quadratic forms of the factorial effects.

Let Vnj^(R), V^^ (R), ...» V^^(R) be m vector spaces over the 

field of real numbers R where V^^(R) is the space of all n^ dimensional 

vectors for i = 1 , 2 , ...» m.

For vectors X and Y in V^^(R) and V^^(R) respectively the tensor 

product of X and Y is the dimensional vector defined by



# X e Y =

Y

X2 Y

x„ Y 
1

This definition is easily extended to the tensor product 0 Xj 0 ... 0 X^

of m vectors where X^ is a vector in Vnj^(R). The tensor X^ 0 Xg 0 ... 0 X^

is an N = n^ng.e.n^ dimensional vector in V^(R) and the set of such tensors 

span Vjj(R). Although a vector in V^(R) is not necessarily a tensor pro

duct of vectors, it is a sum of such tensors.

The Kronecker product of matrices relates the linear operators 

or matrices of the component spaces to a linear operator of the tensors.

If B and C are matrices such that B : Vq^(R) -> Vgy^(R) and

C : Vn^(R) -> (R) then the Kronecker product of B and C is the

X n^nj matrix

B 0 C =
»21 C

bi2 C

"22 C

"m^2 C

If X 0 Y is the n^n^ dimensional vector defined previously, then

(B S C)(X 0 Y) = BX 0 CY.

By extending the definition we can define the Kronecker product

of the matrices C^, ..., where is an m^ x n^ matrix. The

linear operator maps V^^(R) into V^(R) by mapping into C^X^ and

C| 0 C_ 0 ... 0 C maps the tensor X, 0 X„ 0 ... 0 X into ^ ^ n* L i  m
(Cĵ  0 Cg 0 ... 0 C^) (Xĵ  0 Xg 0 ... 0 X^). From the definitions of
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Kronecker and tensor products it follows that (C^ 8  Cg 8  ••• 8  C^)

(X^ 8  % 2 8  ... 8  = C^X^ 8  CgXg 8  ... 8  C^X^, and thus that the image

of a tensor product of vectors is a tensor product of vectors.

It is instructive and sometimes convenient to notice that if 

the m X n matrix A is blocked into n columns A^, ... » A^, each m x 1 and

the r X s matrix B is blocked into s columns ...» B^, each r x 1,

then the Kronecker product A 8  B is blocked naturally into ns columns

Aĵ 8 B̂ , Aĵ 8 Bg » ...» A^ 8 ®g* Ag 8 ®ĵ» • • * » Ag 8 B̂ » ...» A^ 8 B̂ ,̂
..., A^ 8  Bg, each a tensor product A^ 8  B^ of vectors and each or size 

m r x l .

Although this discussion of tensor products» or Kronecker pro

ducts» is geared strictly to matrices because this is how they are used 

in this study and the discussion is adequate for these uses, it should 

be pointed out that if the standard approach is used to assign matrices 

to linear operators then the matrix of the tensor product of linear 

operators is the Kronecker product of the matrices of these operators.

The following theorems are sufficient for some of the develop

ments appearing later. The representative matrices are not necessarily 

square but are of the proper sizes to make the indicated operations 

meaningful. The inverse» transpose, rank and trace of a matrix C are

denoted respectively by C C', p(C) and tr(c). A matrix or vector

consisting of all zeroes is denoted by 0. Scalars are denoted by small 

letters.

To facilitate typing, F*(C^, Cg, ..., C^) will denote the

Kronecker product C, 8  C. 8  ... 0 C and will later be used to denote1 z m
the natural blocking of this product into tensor products. The proofs
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of some of the theorems are Appendixes and the remainder is given by 

Halmos or Jacobson (10, 11).

Theorem 2.1; 0 (Cg 0 C^) = 0 Cg) 0 Cg.

Theorem 2.2* F*(C^* •••» 0^ ^, •••, C^) +

C^_^, ...» C^) »

F*(C^, ..., C^_2 *  C^>.

Theorem 2.3: F*(aj^C^, agCg, . a^C^) = a^^ag.. .a^ F*(Cj^,C2 »... ,C^) .

Theorem 2.4:

Theorem 2.5:

Theorem 2.6:

Theorem 2.7:

Theorem 2.8:

Theorem 2.9:

Theorem 2.10:

Theorem 2.11:

Theorem 2.12:

F*(C^, Cg, ..., C J  F*(B^, Bg, ..., B^) =

F*(CiBi, CgBg, ...» C^B^).

F*(C^, Cg, ..., C^> = 0 if and only if = 0 

for some i.

tF*(C^, Cg, ..., C^)]' « F*(Ci', Cg', ..., C^').
-1If C^ exists for each C^ then

[F*(C^, Cg, ..., Co^]"l = F*(C]^^, Cgl, ...» C"b.

P[F*(Cj^, Cg, C^) ] “ P (C^) p(Cg) ... p (C^).

tr[F*(C^, Cg, ..., C^)] “ tr(Cj^) tr(Cg) ... tr(C^)

If C^ = C^ for i ■ 1, 2, ..., m then

F*(Cj^, Cg, C^) “ [F*(Cj^, Cg, . ., C^)] .

-1If C^ C^^ for i = 1 , 2 , ..., m then

[F*(Cj^, Cg, ..., C^)] ~ [F*(Cj^, Cg, ..., C^)] .

If D^, Dg, ..., are diagonal matrices

then F*(D,, D., ..., D )  is diagonal, t z m
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Theorem 2.13:

 ̂ 1 -r» «% f 4 4 #1 ^ttU\4 \»%X̂y A. W # AW» wws* w

If Cg, ...» C^ ..., C^ are idempotent

matrices, then F*(Gj^, Cg, ..., C^) is idempotent if

i

Hadamard Products

Another operation used in the factorial development is the 

Hadamard product. If X and Y are vectors in V^(R) then the Hadamard

product of X and Y is defined by

* 1 ^ 1 V l

Xg ^ 2 V 2
X 0 Y =

.
0

. •

^n V n .

This definition extends easily to a Hadamard product of a finite number 

of vectors from V^(R).

If B ■ (X^, Xg, ..., x p  and C = (Y^, Yg, .... Y^) are matrices

where a column of either is a vector in V^(R), then we define

B 0 C - (Xĵ  0 C, Xg 0 C, ...» X^ 0 C) where

X^ 0 C - (X^ 0 Y^, X^ 6  Yg, ..., X^ 0 Yg).

The set of columns of B 0 C are defined to be the set of Hadamard pro

ducts of the sets of vectors given by the columns of B and the columns 

of C.

The following theorems are used throughout this dissertation. 

Vectors are denoted by X and Y and B and C denote matrices of the proper 

sizes to make the indicated operations meaningful.
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Theorem 2.14

Theorem 2.15

Theorem 2*16

Theorem 2.17

Theorem 2.18

Theorem 2.19

J 0 C = C where J is the n dimensional vector each n n
entry of which is 1 .

(X 0 C)Y = X 0 CY.

There exists a permutation matrix P such that 

F*(B^, B J  0  Cg, C J  =

[F*(B^ 0 C^, Bg 0 Cg, ...» B^ 0 CJ]P.

The remainder of this chapter is devoted to the definition and 

construction of the 2™ factorial effects of a design of a factorial 

arrangement of treatments as well as the partition of the total sums of 

squares into the sums of squares due to each factorial effect.

Both tensor and Hadamard products are utilized in the construc

tion of the factorial effects and Kronecker products are used in the 

representation of sums of squares.

Definition 2.1; A set of treatments T* is said to be an

n, X n_ X ... X n factorial arrangement of treatments X z m
if there exists a set of m factors (m i. 2 ) such that 

each treatment is a combination of exactly one level 

from each of the factors and conversely each combina

tion of exactly one level from each of the factors is 

a treatment in T*.

Let the set of levels of the i^^ factor be represented by 

Z(n^) « {0, 1, ..., n^ -1}, the set of residue classes of the integers
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modulo n^. We can represent T* as the Cartesian product

T = Z(n,) X Z(n„) x ... x Z(n )X z m

hy asBnriatlng the treafmenf consisting of the a^ level of the 1st lec

tor, the a^ level of the second factor, ..., and the level of the

factor with the m-tuple (a^, a^, ..., a^) in T.

Definition 2.2: The set T = Z(n^) x zCng) x ... x Z(n^) representing

the set of treatments T* is called the set of design

points of the n^ x ng x ... x n^ factorial arrangement 

of treatments.

The design points must be ordered in some structured way to 

utilize tensor products. The ordering most convenient is the lexico

graphic order. With this ordering the design point (â ,̂ a^, ...» a^)

is the a, (n_n_...n ) + a_(n_n, ...n ) + ... + a _(n ) +  a ordinal.1 Z j m Z j 4 m m—1 m m
Figure 2.1 gives the lexicographic order of the design points of a 

2 x 2 x 3  factorial arrangement of treatments.

(000)(001)(002)(010)
(011)(012)(100)(101)(102)(110)(111)(112)

Figure 2.1— The lexicographic order of the design points of a 
2 x 2 x 3  factorial arrangement of test.

Having established the representation and ordering of the

N = n, n. ... n treatments in an n, x n. x ... x n factorial 1 z m 1 z m
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arrangement, we can now define the simple observational model Y - Hfe 

where Y is an N x 1 vector of observations of the responses of the treat

ments, M is an N X 1 vector of treatment means and e is an N x 1 vector 

of identically and independently distributed errors such that E(e) = 0 

and E(ee') - o^l^. It is essential for later developments that Y and 

consequently M  and e have the same ordering as T.

Definition 2.3: An effect in the model Y = Mfe is given by X'M where

X is an N X 1 vector. The vector X is said to define 

the effect X'M.

Definition 2.4; The effects X^M and X^M are orthogonal if X^ X^ - 0.

Definition 2.5: The effect X'M is normalized if X'X = 1.

In general a set of N mutually orthogonal effects of M exists.

Indeed infinitely many such sets exists. For the factorial arrangement

the selection of a set of N orthogonal effects is crucial for estimation

and analysis of the factorial effects. In the following development the

mean effect and m main effects of an n, x n„ x ... x n factorial1 z m
arrangement are defined and subsequently used to obtain all other fac

torial effects. The orthogonality of the 2™ factorial effects is also 

established.

The n. X 1 vector consisting of all ones, J , appears many
*i

times in tensor representation of factorial effects. It is convenient

to suppress whenever it occurs as the i argument of F*. With this

convention, for example,

F*(C,,C. ) - J 0 . . . 0 J  @ C, 9 ... 0 J 9 ... 9j k n^ j

J 9 C. 9 J 9 ... 9 J
V i  "fcn
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The subscript of lowest order of an argument depicts the position of 

tiie argument in the tensor representation. The order of the arguments 

in this abbreviated notation is aeçused to agree with theli idative 

order in the tensor representation. In the example, for instance, j < k 

since preceded C^.

Definition 2.6: The mean effect is where

■'n - \  \  » -  « J. •1 2  m

Definition 2.7: The set of level totals of the i*"̂  factor is

[F*(l )]'M.
“i

The columns of F*(I ) are n. mutually orthogonal N dimensional
”i 1

vectors and consequently span an n^ dimensional vector space. The sub

space spanned by is a subspace of the space spanned by the columns of 

F*(l^ ). The set of vectors which are orthogonal to in the latter

space also form a subspace of dimension n^-1. This n^-1 dimensional

subspace is called the subspace orthogonal to relative to the space

spanned by the columns of F*(I ).
®i

Definition 2.8: The î ** main effect is defined by any orthogonal

basis of the N^ - 1 dimensional subspace orthogonal to 

relative to the space spanned by the columns of

■ ' * < V

is said to be defined by an N x n^-1 matrix if the columns 

of form a basis of the n̂ ^-l dimensional subspace. The n^-1 effects 

defined by are called the components of A^. Two distinct bases, each 

of which defines A^, yield two distinct sets of components of Â .̂
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Theorem 2.20: Let (J^ , U^) be an x matrix such that the columns

of (J , U ) form an orthogonal basis of V_ (R). Then 
"i - “i

the columns of F*(U^) defines

Proof: F*(In ) (J^ , U^) = » U^)) = (J^, F*(U^))

F*(U^) = [F*(J^^)]' F*(U^) =

n. @ ... 8 n, . 8 J U. 8 n... 0 ... 0 n = 0  1 i-1 n^ i i+1 m

since J ' U. = 0.
“i *

[F*(U^) 1 ' F*(U^) = n^0.. .0n^_j^0U| ^i®“i+l®' " •̂ “n» =

* 1 ^ 2 * * * “i- 1  “i+ 1  * * * “m ^i *

Thus the columns of F*(U^) and are mutually orthogonal

and the columns of F*(U^) defines Â ,.

Throughout this discussion will always denote an n^ x n̂ -̂1

matrix such that the columns of F*(U^) defines A^.

Definition 2.9: If A, , A , ...» A are defined respectively by
1 2 \

F*(U^ ), F*(U^ ), .... F*(U^) where i^ < ig < ... < i^

and 1 < k 5 m then the A. A. ... A, interaction
^1 ^ 2 \

effect is defined by any orthogonal basis of the space

spanned by the columns of F*(U. . U, , .... U. ).
h  ^ 2 \

Theorem 2.21: The space spanned by the columns of F*(U. ,U. .....U, )
^1 ^2 \

has dimension (n. -1 )(n. -1)...(n. -1 ). 
^ 1 ^2
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Proof: [F*(U^ , U )]» F*(U^ , , ...» U, ) =

1 2 
N   D. « D, a ... 8  D. where D. = U .' U . .

\  \  ■■■ %  *^1 h  \  -j 'j -j

Since D. is a diagonal matrix for j = 1, 2, k then by Theorem 2.12
j

the Kronecker product is a diagonal matrix and the columns of

F*(U. ,11. , U. ) are orthogonal. Thus the dimension of the space
1 ^2 \

spanned by the columns of F*(U. , U. , ..., U. ) is the number of

columns, (n. -l)(n. -l)...(n -1 ).
^1 ^ 2 ha

By definition, the mean effect is orthogonal to each main

effect. The following theorems establish that a factorial effect is

orthogonal to any other factorial effect.

Theorem 2.22: A, is orthogonal to A. .
\  ^2

Proof: [F*(U. )]' [F*(U. )] - [F*(u. , J )]’ F*(J , U ) =
^ 1 ^ 2 ^ 1 “i^ iĵ  2

** (U/ J ) 8 (J_ ' U, ) = 0
“iĵ  “i2 ^ 1 “i, “i2 ^ 2

since U.' J

Theorem 2.23: The mean effect is orthogonal to the A. A. .. .A,
1 2 ha

interaction effect. 

Proof: J' F*(U. , U. , ..., U. )
" n  ^ 2 \

^ J' U, 8 J' 8 ... 9 J' U, " 0n. n. ... n. n. i* n, i_
h  ^2 ha h  ^ ^ " u He
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since J' U. * 0. 

iheorem 2.24: A. A^ ... A. is orthogonal to A, ... A^
H  2 \  ^ 1  ^ 2  ^s

if {i^» ^2* **** ^ ^2* **•» jg}*

Proof: Without loss of generality take iĵ  < Then

[F*(U. , Ü. , ..., U )]’ F*(J . U , U , ...» U ) = 0
H  2 r ”i^ Jl ^ 2  Js

utilizing Theorem 2.5 and the fact that U* J = 0.

The next theorem establishes the relationship between main 

effects and interaction effects.

Theorem 2.25: F*(U. , U , .... ) = F*(U, ) Q F*(U, ) 0 ... 0 F*(U, ).
1 2i’* i- ’ ik V  ^ 2 V

Proof: The proof follows immediately by Theorems 2.17 and 2.19.

The matrix L = (J^, F*(U^), ...» F*(UJ, PtCU^.Ug),...,

F*(U ,,U ), ...» F*(U,, U., ..., U )) defines the 2™ factorial effects. m~x m X z m

L is a permutation of the columns of F*((J , U_), (J ,PL),..., (J ,U ))n. 1 n« z n m1 z m

and thus has N columns.

Definition 2.10: Given the simple linear model Y = Mfe and L as defined 

above, the model L'Y » L'M + L'e is a factorial effects

model. A factorial effect model is a normalized fac

torial effects model if L ’L * I^.

L'M is a set of N orthogonal effects and these are partitioned 

into the 2™ factorial effects. A matrix defining the factorial effects 

of a 2 X 2 x 3 factorial arrangement is obtained from the expression 

L - (J^, F*(U^^) ,F*(Ug) ,F*(Ug) .F^CUj^.Ug) ,F*(U^,Uy ,P*(Ug,Ug) ,F*(U]^,Ug,Ug))
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by letting N = 12, = Ug = j and =
1 1 
-1 1 
0 -2

figure z.z ixxus

L =

Figu
2 x 2 x 3  fac

rates tne resulting 12 x XZ matrix.

1 1 1 1 1 1 1 1 1 1 1 l ‘
1 1 1 - 1  1 1 - 1 1 -1 1 -1 1
1 1 1 0 - 2 1 0 -2 0 -2 0 -2
1 1 - 1  1 1 - 1  1 1 -1 -1 -1 -1
1 1 —1 —1 1 —1 —1 1 1 -1 1 -1
1 1 - 1  0 - 2 - 1  0 -2 0 2 0 2
1 -1 1 1 1 - 1 - 1 -1 1 1 -1 -1
1 -1 1 - 1  1 - 1  1 -1 -1 1 1 -1
1 —1 1 0 —2 —1 0 2 0 -2 0 2
1 - 1 - 1  1 1 1 - 1 -1 -1 -1 1 1
1 - 1 - 1 - 1  1 1 1 -1 1 -1 -1 1
1 - 1 - 1  0 - 2  1 0 2 0 2 0 -2

e 2.2— A Matrix L defining the 8 factorial effects of a 
orial arrangement.

An effect in the model Y = M+e is X*M where X is an N x 1 vec

tor. If an effect is not known then an estimate of that effect must be

obtained before a confidence interval can be constructed.

Definition 2.11; An effect X*M in the model Y = M+e is estimable if

there exists an N x 1 vector y such that E(y'Y) = X'H.

Since E(Y) = M in the model Y = M+e then E(X'Y) = X'M and any 

effect is estimable. In the factorial effects model L'Y = L'M + L'e, 

E(L'Y) = L'M and thus L'Y estimates L'M.

Many times the emphasis is not on estimation of the various

factorial effects but is on the testing of hypotheses concerning the

various factorial effects. In this situation the estimates of the fac

torial effects can be utilized to produce a concise expression of the
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usual sums of squares appearing in an A.Q.V. table.

The usual assumption of the model Y = Mbe is that e is distri

buted as a multivariate normal random variable wiui E(e) - 0 aim 

E(ee') = Under these conditions Graybill (9) has shown that the

quadratic form Y 'AY is distributed as a noncentral chi-squared variable

with parameters k and ^ ^ 2  K  and only if A is an idempotent matrix of 

rank k. Furthermore he has shown that the two quadratic forms Y 'AY and 

Y 'BY are independent if and only if AB = 0. Since Fishers F statistic 

is the ratio of two independent chi-squared variables each divided by 

its degrees of freedom, we are interested in determining the ranks of 

idempotent matrices appearing in quadratic forms and in determining the 

independence of two or more quadratic forms.

Definition 2.12: Let S'M be a set of r effects such that S'S = I^. Then

the quadratic form Y'SS'Y is the sum of squares due to 

S'M and SS' is the matrix of the quadratic form Y'SS'Y. 

The following theorems establish the ranks and idempotent 

properties of the matrices of the quadratic forms that partition the 

total sum of squares into the sums of squares due to the factorial 

effects.

Let (J , U.) be an orthogonal n. x n. matrix. Then (J , Û.)' n^ 1 1 1  n^ 1

(J , Û ) = I and also (J , Ù.) (5 , Ù,)' = 3 J ’ + Ü. ÙÎ = I .1 n^ n^ 1 n^ i n^ n^ 1 i n^

Denoting J J' by K we have Ù. Ù! = I - K .
i ”i i ”i

Theorem 2.26; K is an idempotent matrix of rank .
"i
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Proof: K K = J  J * J  J * = J  1 J' = J j * = K

"i “i “i “i “i “i "i “i “i “i

p(K ) = p(J J' ) = p(J ) = 1.
i i i i

Theorem 2.27: If A is an n x n idempotent matrix of rank r then I^-A

is an idempotent matrix of rank n-r.

Proof: (I -A) (I -A) = I -A -A + A^ = I -A since A^ = A. Since the  n n n n

rank and trace of an idempotent matrix are equal, then

p(I -A) = tr(I -A) = tr(I ) - tr(A) = n-r.n n n

Corollary 2.1: -K^ is an idempotent matrix of rank n^-1.

Theorem 2.28: ( I - K ) K  = K ( I - K ) = 0 n^ n^ n^ n^ n^ n̂.

Proof; ( I - K ) K  = K - K ^ = K - K  = K ^ - K  =n^ n^ n^ n^ n^ n^ n^ n^

K (I - K ) = 0 .
"i "i *̂ i

Theorem 2.29: The matrix of the quadratic form of the mean effect is

Kjj “ ^  Jjj Furthermore is an idempotent matrix

of rank 1.

Proof: The mean effect is given by J ^ .  Letting denote the

normalized mean effect, we get and
r r

N ^ * ^no* "  ' ^n ^

[F*(j , J , ..., 3 )] =
*̂ 1 “2 "m

\  \  . % ....... ^n)'• L x z z  m m  1 2  m
By Theorem 2.8 and Theorem 2.13 is idempotent with rank 1,
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Theorem 2.30: The matrix of the quadratic form of the effect is

F* (K , K f « « « * K » I “ K 1 K. J • • • > K ) •
1 2 i-1 i i i+1

Moreover this matrix is idempotent with rank n^-1.

Proof: Let F*(U^) denote the normalized arguments of F*(U^).

Then F*(Û _) [F*(U^)]' =

 W  -
 V i ’ V  V i  V

and is by Theorem 2.8 and Theorem 2.13 an idempotent matrix 

of rank n^-1.

Theorem 2.31: The matrix of the quadratic form of the A. A. ...A
h  2 \

effect is F*(K ,...,K ,I - K , K , ...,
”l “ij-l “ij "lj^+1

 ’

an idempotent matrix of rank (n. -1) (n. -1) ... (n. -1). 

Proof: F*(U. ,U.  U )[^(U. ,U. ,...,U, )]' is by definition
1 h  \  ^1 h  S

the matrix of the quadratic form and by Theorem 2.4 we get 

the desired matrix.

Since the Kronecker product of idempotent matrices is idem- 

potent we have the matrix of the quadratic form of the A. A. ...A
H  ^2 k

effect is idempotent with rank (n. -l)(n. -l)...(n. -1).
^1 h  ^

Theorem 2.32: The product of the matrices of quadratic forms of two

distinct factorial effects is the zero matrix.

Proof ; The i^^ argument of F* representing the matrix of the quadratic
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form of any factorial effect is either K or I - Kn, n. n.I l l
Since the factorial effects are distinct, one of the arguments, 

say the is K fut oue of the quadratic fotma while the
th "jj argument of the other quadratic form is I - K . Then

“j '‘j
by Theorem 2,5 and Theorem 2.28 we get the desired result.

The sum of the matrices of the quadratic form of the 2™ factorial 

effects is
m
1 E F*(W-, W_, ..., W ) =

I - K, . K„ ,  '
i dL i

 V i -  V  » =
1

%  W . ( I  ^  . K ,  " - I ' V  -1

In, 1.) = V1 / m

Thus the sum of the quadratic forms of the 2™ factorial effects is the 

total sum of squares Y'l^Y.

Table 2.1 gives abbreviated A.O.V. of one replicate 

n^ X Ug X ... X n^ factorial. Since it is customary to call the rank of 

an idempotent matrix of a quadratic form the degrees of freedom of the 

quadratic form, the ranks of the matrices of the quadratic forms of the 

factorial effects will give the degrees of freedom (d.f.) column.

An abbreviated analysis of variance table for one replicate of 

a 2 X 2 X 3 factorial arrangement of treatments is given in Table 2.2.
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TABLE 2.1

ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR ONE REPLICATE 
OF AN i»i X H2 X ... X FACTORIAL ARRANGEMENT

n* 'tdva'tmwmtc

Source d.f. S.S.
Total

Mean

m

V 2

* 1* 2'

*1 - 1

1

.nm

I

*m“l

(n^-I)(ng-I)

Y ’Y

' V
Y ’(I -K 0K 0...0K )Y 

*I *I * 2  *m
Y‘ (K 01 -K 0K 0...0K )Y 

*I *2 *2 *3 *m

Y'(K 0...0K 01 -K )Yn, n , n n 'I m-I m m
Y'(I -K 01 -K 0K 0...0K )Y 

*1 *I *2 *2 *3 *m

Y'(K 0...0K 01 -K 01 -K )Y
*I *m-2 *m-I *m-I *m *m

(Hj -̂I) (ng-I) •. • (n^ ^-I) Y'(I -K 01 -K 0...0I -K 0K )Y 
*I *I *2 *2 *m-I *m-I *m

A« A a •••a X / m (n^-I)(Og-I)•.•(n^-I)

Y'(K 01 -K 01 -K 0...0I -K )YRg Rg R*% Ra R RX z /  J J HI in

■L X 2 z m m
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TABLE 2.2

ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR ONE REPLICATE 
OF A 2 X 2 X 3 FACTORIAL ARRANGEMENT OF TREATMENTS

Source d.f. S.S.

Total 12 Y'Y

Mean 1 Y'K^gY

4 1 Y'Clg-Kg ® ^2 0 Kg) Y

^2 1 Y'(Kg 0 Ig-Kg 0 Kg)Y

2 Y '(Kg 0 Kg 0 Ig-Kg)Y

^1^2 1 Y'(Ig-Kg a Ig-Kg a Kg)Y

*1*3 2 Y'(Ig-Kg a Kg 0 Ig-Kg)Y

*2*3 2 Y '(Kg 0 Ig-Kg 0 Ig-Kg)Y

*1*2*3 2 Y ’(Ig-Kg a Ig-Kg a Ig-Kg)Y
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A situation frequently encountered is that only one replicate 

of a factorial arrangement of treatments is available. In this instance 

no estimate of experimental error i9 available from the data unless it 

is known that some factorial effect is zero.

A frequent practice is to assume that the interaction of highest 

order is negligible. Upon making this assumption we have

E[Y’(I -K 01 -K 0...0 I -K )Y] =
ni « 1 “ 2 " 2

E[(Mfe)'(I -K 01 -K 0...0I -K )(Mfe)] =
1 1 2 2 m m

E[e’(I -K 01 -K 0...0I -K )e] =
" 1  *̂ 1 " 2 “ 2 "m "m

02 tr(I -K 01 -K 0...01 -K =
" 1  ” 1 " 2 ” 2 ”m "m

(n, -1) (n_-l)... (n -1) .X z m

If e is assumed to be distributed as a multivariate normal random variable,
1 _

the quadratic form „2 Y'(I -K 01 -K 0...0I -K )Y is distributed as a
* 1 " 1  *^2 " 2 '̂m V

chi-squared random variable with parameters (n^-1)(ug-l)•••(n^-1). To

test a hypothesis that some factorial effect other than the highest order

interaction effect is zero, the ratio of the mean squares is formed and

this ratio is compared to the critical value of the F of the appropriate

degrees of freedom.

Although the assumption concerning the highest order interaction

may be untenable, the proposed test is conservative in that the "true"

Type I error is less than that used to obtain the critical F value.

A completely randomized design (C.R.D.) is a design in which

the treatments are randomly assigned to the experimental units.

If r replicates of the N treatment of an n, x n_ x ... x n1 z m
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factorial arrangements is desired than Nr experimental units are required. 

The Nr experimental units arc partitioned in some random fashion into N
c«a>t~c cot- r*nnha-îr»*îr*r» r* «•«’It-e? TÎ»o M at“o nnt«y acc-ionoil ot-

random to the N sets of experimental units.

We than have the r simple linear models = life^ for 1=1 r.

These can be combined into the simple model Y* = M*4e* where

Y* =

I h ^l\

®2
• , M* = J 0 M and e* = •
• * r •

Y er 1 r

Y* is an Nr x 1 vector, M* is the Nr x 1 vector

M

and e* is an Nr x 1 error vector such that E(e*) = 0 and

E(e*e*') = 0^1^^ . For tests of hypotheses e* is also assumed to be 

distributed as a multivariate normal random variable.

The Gauss-Markoff Theorem states that the best linear unbiased 

estimate of M is given by the least squares estimate and is

. _  1 r
M = Y - -  E Y. .

1 . 1 i

Theorem 2.33; Y*'(I^-K^ 0 I^)Y* is an unbiased estimate of N(r-l)o^.

Proof: E[Y**(I^-K^ 0 I^)Y*] = E[(J^0Mie*)'(I^-K^0I^)(J^0H+e*)] =

E[(J^0 M)'(I^-K^0 Ijj)(J 0̂ M) + e*'(I^-K^0 Ijj)e*l - 

(j; (I^-K^)Jj.) 0 (M'yi) +  E[e*'(I^-K^0I^)e*] -
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0 0M'M + E [e*'(I^ -K ^0Ij^ )e*] = 

tr(I^-K^0Ijj) = o^(r-l)N.

The total sum of squares is the sum of the sums of squares due to error

and treatments. Thus Y*'Y* = Y*' (I^-K^0I^)Y* + Y*'(K^0I^)Y* and

Y*'(K^0Ijj)Y* is the sum of squares due to treatments. In the simple

model Y* = J^0M + e*, the estimate of J^0M is J^0Y. Thus the sum of squares

due to treatments is (J^0 Y) ' (J^0 Y) = r Y'Y. Since J^0 Y = (K^0I^)Y*,

then r Ÿ'Ÿ = Y*' (K^8I^) ' (K^8I^)Y* = Y*'(K^0I^)Y*.

The matrix J^0L defines the factorial effects in the model

Y* = J^0Mfe*. If S'M defines some factorial effect in the model Y = M+e

then we have seen that S'Y estimates this effect. (J^0S)'(J^0M) is the

factorial effect in the model Y* = J 0M+e* and the estimate of this effectr
is (J^0S)'Y*. The sum of squares due to this effect is Y*'(J^0S)(J^0S)'Y* =

Y*'(Kp0SS')Y* = Y *'(K ^0Ijj)'(K j.0SS ')(K ^0Ijj)Y * = (J^0Y) * (K^0SS') (J^0Y) =

r K^J^0Ÿ'SS'Ÿ = r  Y'SS'Y.

Table 2.3 gives an A.O.V. for a C.R.D. of an n. x nu x ... x n1 Z m
factorial arrangement. A randomized complete block design (R.C.B.D.) is 

a design in which blocks of experimental material is available. The 

blocks may occur naturally or may be chosen. The basic motivation for 

the randomized complete block design is that blocks of homogeneous units 

may be chosen with the units in different blocks differing considerably.

In this design it is desirable to account for the differences in block 

totals. The blocks of experiments are chosen randomly and the N units 

of a block are randomly assigned to the N treatments of an 

n^ X ng X ... X n^ factorial arrangement.

The randomized complete block design can be analyzed as a single
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TABLE 2.3

ABBREVIATED ANALYSIS OF VARIANCE FOR r REPLICATES 
OF A C.R.D. OF AN X n2 X ... 1%  

FACTORIAL ARRANGEMENT

Source d.f. S.S.
Total rN

A
Mean 1 rY'KjjY

A. n,-l rY'd -K 0K 0...0K )Y 
" 1 " 1 " 2  "mJL JL

"m-1 rŸ*(K0...0K„ 01 -K )Ÿ 
" 1 m-1 m m

^1 ^ 2 (n^-1)(n^-l) rŸ' (I -K 01 -K 0K 0...0K )Y 
" 1 " 1 " 2  " 2  3 m

A ,A m-1 m rY'(K 0...0K 01 -K 01 -K )Y n, n . n ^ n ^ n n  1 m-2 m-1 m-1 m m

A. Ag ... A i 6 in (n^-1)(ng-l)...(n^-1) rŸ' (I -K 01 -K 0...01 -K )Y n, n, n« n_ n n 1 1 z z m m
r

error (r-l)N Z (Y.-Y)'(Y.-Y) 
1=1 ^ ^
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replicate of a b x x Rg % ••• x factorial arrangement of treatments, 

but instead of using only the highest order interaction for a measure of 

error, all interactions involving blocks are used for the measure of

error.

The model is Y* = M* + a 0 + e* where

' ^1 ®1

Y* = , M* = Jy0M , a = =2 and e* = ®2

% 1

The sums of squares of this design are obtained in the same manner as in 

the completely randomized design with the exception that block sums of 

squares are taken from the error sums of squares.

Table 2.4 gives an analysis of variance for b blocks of a 

randomized complete blocks design of an n^ x n^ x ... x n^ factorial 

arrangement of treatments.
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TABLE 2.4

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR b BLOCKS 
OF A R.C.B.D. OF AN iiĵ X n£ X ... x 

FACTORIAL ARRANGEMENT OF TREATMENTS

Source d.f. S.S.
b

Total bN
A

Mean I bŸ'KjjŸ
Blocks b-I

n^-I bY’Cl -K 8K 0...0K )Y 
”l "2 “m

.

n^-I bY'(K0...0K 01 -K )Y 
”l “m-I %  %

(Hĵ -I) (ng-I) bŸ’d  -K 01 -K 0K 0...0K„ )Y 
"l “l ”2 "2 “3 m

bŸ'(K0...0K„ 01 -K 01 -K )Y n, n „ n , n _ , n n  1 in—Z in—1 in—i m m

A.A^...A i Z tn (ng-I) • • • (n^-I) bŸ' (I -K 01 -K 0...01 -K )Y 
"l "l "2 "2 %  "m

Residual (b-I)(N-I) ’'‘■‘W W ’f*



CHAPTER III

ESTIMATION AND ANALYSIS OF PARTITIONED FACTORIAL 

ARRANGEMENTS OF TREATMENTS

Frequently a factorial arrangement of treatments is so large 

that it becomes difficult to get a replicate of homogeneous experimental 

units. From practical considerations it is often impossible to obtain 

large homogeneous replicates, especially if the replicate consists of 

litter mates of laboratory animals or hospital out-patients in a specific 

age-sex-race classification. It may also be that the units within a 

replicate are fairly homogeneous originally but change with time and the 

factorial arrangement is so large that all the treatments cannot be 

applied in a sufficiently small time span. Consequently time becomes a 

factor or "factor" and the heterogeneity of units results in larger errors 

and loss of power in tests of hypotheses.

To circumvent the problem of heterogeneous errors the technique 

of blocking is employed. By this technique the units of a replicate are 

partitioned into a number of blocks of units where the units within each 

block are more homogeneous than units within the replicate. The blocks 

may occur naturally as in the case of litter mates of laboratory animals 

or they may be determined by actually selecting a homogeneous group of 

units.

While a judicious choice of a blocking plan yields a set of

32
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homogeneous blocks of units, the incorporation of a blocking plan in a 

factorial arrangement of treatments produces an inhe? ent loss in the 

number of orthogonal estimable effects. The blocks are selected to be 

homogeneous within themselves and thus the blocks differ considerably.

Any comparison between treatments applied in different blocks reflects 

both block differences and treatment differences. Thus we say that com

parisons between treatments in different blocks are confounded with 

blocks.

The theory of blocking is simplified by partitioning the set of 

design points T and applying the treatments corresponding to a block of 

T to a homogeneous set of experimental units of the exact size to accomo

date the treatments.

Definition 3.1: The collection of subsets B = : 1=1, 2, ..., b}

of T is a blocking plan or partition of T if

1) b

A ' '
and

2) n Bj is null for i / j.

Since comparisons among treatments in different blocks have 

little meaning, only plans in which the size (number of treatments) of 

each block is larger than 1 will be considered.

Definition 3.2: The N x 1 vector is the incidence matrix of the

block Bĵ  of a plan B and Is defined by the characteris

tic function X* where

XÎ (T)
X* (2) 
^2 where x (j) (1 If jeBi 0 otherwise.
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T has the lexicographic ordering.

Definition 3.3: X = (xĵ , Xg* •••» Xy) is the incidence matrix of the

blocking plan B = : i=l, 2, ..., b}.

It follows from the definitions of blocking plan and characteris

tic matrix that X and x^ @ Xj = X^ where

ij
f 1 if i 
J 0 if i

= j 
j

Figure 3.1 gives the incidence matrices of two plans of a 

2 x 2 x 3  factorial.

Plan (a)

Plan (b)

1 0
1 0
1 0

000 010 0 1
001 Oil 0 1
002 012 0 1
110 100 X ® 0 1
111 101 0 1
112 102 0 1

1 0
1 0
1 0

1 0 0
0 0 1
1 0 0

000 010 001 0 1 0
002 102 oil 0 0 1
012 110 100 X * 1 0 0
101 112 0 0 1
111 1 0 0

0 1 0
0 1 0
1 0 0
0 1 0

Figure 3.1— The incidence matrices of two blocking plans of a 
2 x 2 x 3  factorial.
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With a given blocking plan B the model for the factorial arrange

ment of treatments is assumed to be Y = M + Xa + e where Y is the observa

tional vector, M is the vector of treatment means.

a = where a.

%  I

is the additive effect due to and e is an N x 1 vector of independent 

and identically distributed errors with a zero mean and a variance of o^. 

This model is equivalent to the model

E X. 0 Y = E (x. 0 M +  a Xj + Xj ® e) and it is easy 
i=l i=l ^ 1 1 X

to see that the observational model for the units in B^ is

0 Y = 0 M + a^Xi + X^ 0 e.

In the model Y = M +  e we have seen that X'Y is the estimate

of X*M. However in the model Y = M + Xa +  e, E(X'Y) = X'M + X'Xa and 

thus X'M is estimable if X'Xa = 0.

Mann ( 15 ) gave a brief discussion of the technique of block

ing and confounding. His definition of confounding is equivalent to the 

following definition although he chose not to use the concept of the 

Hadamard product.

Definition 3.4: An effect X'H is confounded with the block B^ of a

plan B if x^ 0 1 = cx^ where c is a scalar.

A set of r effects S'M is confounded with the block B^ if

X^ 0 S « (c^Xi* CgX^, •••» c^x^) and S'M is confounded with each block

of a plan B if
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X 0 S = ^21*2' ^22^2* ' ^2r^2' '

% 2 ^ d * ' *T>r^b^*

Définition 3.5: An effect A'M is orthogonal to the block of a plan B

if A'xi = 0.
A set of r effects S'M is orthogonal to B̂  if S'x^ = 0 and S'M

is orthogonal to each block of a plan B if S'X = 0.
Definition 3.6: An effect A'M is partially confounded with the block

B^ of a plan B if A'M is neither orthogonal to B^ nor 

confounded with B^.

The two theorems that follow are due to Mann ( 15 ).

Theorem 3.1: The mean effect is confounded with each block of

a plan B.

Proof : X 0 Jjj = X by Theorem 2.17.

Theorem 3.2: If a set of r effects S'M is confounded with B^ and y is an

r X 1 vector, then (Sy)'M is confounded with B^.

Proof: Xx ® Sy = (x^ ® S)y - (c^Xx» c^Xx* •••» =

(c^, Cg, ...» c^)y Xx - c Xx by Theorem 2.18.

Theorem 3.3: If S'M is a set of r effects orthogonal to each block of

a plan B and A is an r x s matrix, then (SA)'M is 

orthogonal to each block of B.

Proof: 0 » S'X * A'(S'X) = A'S'X = (Si.)'X.
Theorem 3.4: Let B be a plan of b blocks and let S'M be a set of b

normalized orthogonal effects. Then S is confounded in 

each block of B if and only if S » XC where C is an 

orthogonal matrix and X is the matrix resulting from the
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normalization of the columns of X.

Proof ; Since S'M is confounded in each block, then

(b b b \
‘=1 2 * 1.....

= S'S = (XC)'(XC) = C'X'XC = C' C = C'C. Thus C is an 

orthogonal matrix. Conversely, if S = XC, then S'M is con

founded in each block of B by Theorem 3.2.

Theorem 3.5; Let (S, S*) define a set of N normalized orthogonal

effects where S is N x b and let B be a plan of b blocks.

Then S'M is confounded in each block of B if and only

if S*'M is orthogonal to each block of B.

Proof: By Theorem 3.4, S = XC where C'C = I^, and from S*'S = 0

we obtain S*'XC = 0 whence we get S*'X = 0 = S*'X.

Conversely if S*'M is orthogonal to each block of B, then 

S*'X = 0 = S*'X. Now X'M is a set of b normalized orthogonal 

effects confounded with blocks. Since the columns of X and 

S respectively are orthonormal bases of the same subspace 

then there exists an orthogonal matrix C such that S - XC. 

Since X'M is confounded in each block then S is confounded 

in each block by Theorem 3.2.

Theorem 3.6: If Xĵ M and X^M are confounded in a block of of a plan

B then (X̂  ̂0 X^) 'M is confounded in 6 .̂

Proof: 0 ( ^ 1 0 Xg) = (Xĵ  0 0 X^ « c^x^ 0 X% =

Ci(Xi 0  Xg) . c^CgXi •

Theorem 3.7: If a plan B of b blocks confounds the b normalized

orthogonal effects S'M, then B is unique.
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Proof: Let be a plan of b blocks that confounds S'M. Then by

Theorem 3.4, S = XC = X^C* where X'X = = Xj^X* and

C'C = = Cĵ Ĉ . Thus X = Xj^C^C = X^P and P is orthogonal.

From X = X̂ P̂ we obtain = X^ where P = (p^, p^, ..., Py)

and notice that each entry of p^ must be non-negative and

at least one entry must be positive. Since pĵ Pj = 0 for i f j

we have that p^ 0 p^ = 0 for i = 1 , 2 , ..., b and i # j and

furthermore that

h b b
p. e E p. = E (p. 0 p.)= 0 . The vector E p. has
J i=l ^ i=l J ^ i=l

ifj ifj ifj
at least b- 1 positive entries which implies the p^ has at 

most one positive entry. Thus p^ has exactly one positive 

entry and thus b-1 entries of zero. Therefore P is a permu

tation matrix and the plans B and B^ are identical.

Definition 3.2: Let Bĵ  and B^ be plans consisting of b^ and blocks

respectively. Then B^ fl B^ is the set

B* = n Bgj, 1=1, 2, ...» b̂ ,̂

j — 1, 2 , ..., 5 2 }»

B* is called the intersection of B^ and Bg and is a blocking 

plan. The incidence matrix of B*j is x^^ 8  X£j where x^^ and X2j 

the respective incidence matrices of B^^ and Bgj• Letting the members 

of B* assume the lexicographic order, we see that the incidence matrix 

of B* is X* = X^ 0 Xg.

Figure 3.2 gives the incidence matrix of the intersection of 

Plan (a) and Plan (b) of Figure 3.1.
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0 0 0 1 1 0 0 0 1 0 1 2 010 Oil
0 0 2 1 1 2 101 102 1 0 0
111

X =

1 0 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
10 1 0 0 0 0

Figure 3.2—  The intersection of Plan (a) and Plan (b) of 
Figure 3.1 and its incidence matrix.

From practical considerations it is desirable to have blocks 

of equal size. The assumption of homogeneous errors is rarely met in 

most biological situations. It is intuitively obvious that the units of 

a small block can be chosen to be more homogeneous than the units of a 

large block. Blocks of equal size also are advantageous from a theoretical 

standpoint.

Theorem 3.8: Let B be a plan consisting of b blocks of size r. Then

B confounds the set of b orthogonal effects S'M if and 

only if there exists a matrix C satisfying S = XC and 

C'C = D, a diagonal matrix.

Proof: By Theorem 3.4 B confounds S if and only if there exist an

orthogonal matrix Ĉ  ̂such that S * XĈ .̂ Since

X

then B confounds S and S'S = rD if and only if there exists

a C such that C'C = D and S = XC.

Theorem 3.9: Let B^ and Bg be two plans of bĵ  and bg blocks of equal

size respectively and let (J. , W.) and (J. , W«) bebi 1 Dg /
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orthogonal matrices. If the effects *M are mutually

orthogonal to the effects (XgWg)'M, then

XJXg = T-^—  J. J/ and thus the blocks of the plan1 2 bj_ bg

n Bg are of equal size.

Proof ; Since the effects (X^W^)'M are mutually orthogonal to the 

effects (XgWg)'M, we have

0 = (X^W^)'XgW2 = X^ Xg Wg = =

+

whence

From

%  = Kb/ 1 4  +  - \ ^ i h \  ■

\  4  = » l \ >  '^2 - •’i * 2 = %  %

X'X„J, = XJ J„ = ^  J, we obtain1 2 bg I N  bĵ  bĵ

S  \  '^2 '  W %  = " l \ %

(3.1)

V i j  " W b / i j  ■ respectively.

Since K. J. = J, , the last equality yields 
“l °1 °1

^  w  ■

Substituting for the quantities in (3.1) we obtain 

X:X^ = **i“o - 1- u 3v Jv which implies that each block of1 2 b^bg b^ bg

Nof the plan B_ fl B, is of size t— 7—i 2 b^bg
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Since the blocks of f) are of equal size and C'C is 

diagonal where C = , W^0 , then by Theorem

3.8 (Xĵ  6 Xg)C defines a set of b^b^ orthogonal effects.

Theorem 3.10; 9 X^) (Jy&ly , W^0Jj^ , J^0Wg) = (J^, X^W^, X^W^)

Proof: (X^ e -  (X^ 8

Let (i)̂ =
w_

w.
denote a column of W^.

Then for i = 1 (X^^QX^) ^Ib V b ,

V b ,

V »2

E “ iC xn®  x , ) j .  = Z u. X u  9  X.Jj=l 2-b„ j=l j ^Ij - “2“b,

thus

"j H i  ® ■’n ■ "jXij = V i

(X^ 8  Xj) (W^ 8  ) - X̂ Wĵ

For 1 = 2  we have

(X1QX2 )(Jb^2  ̂ - (XjjOX2 » X22®X2 » •••* X2b^9X2^

‘*lj**2>“ 2 ■ * l i ® V 2 ■ W 2 “ *2“ 2 and
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(Xĵ ex̂ ) = XgWg. Thus

(Xi0 X2 )(Jb0 Jb2 * '"bf2> = ("̂ N' % '  % ) '

Thus we see that H confounds the effects confounded by 

either or B^. The (b̂ -̂l) (b2“l) orthogonal effects defined by 

(Xĵ 0 X2 > (Wĵ 0W2) are also confounded.

Definition 3.3: If the respective blocks of B̂  ̂and B2 are of equal

size and B^ confounds the orthogonal effects defined 

by X^(J^ , W^) and (X^W^)'(X2W2) = 0 , the set of 

(b^-1 )(b2-l) effects [(X^0 X2)(W^0 W2)]'M is the 

generalized interaction of (X^W^) 'M and 'M.

A blocking plan B determines the model Y = M + Xa + e. 

The following theorem gives a sufficient condition for 

the estimability of a set of effects.

Theorem 3.11: S'M is estimable in the model Y = M + Xa + e if S'M is

orthogonal to each block of the plan determined by X. 

Proof: If S'X = 0, then E(S'Y) = S'M + S'Xa = S'M.

In most experimental situations a is not known. For the case in 

which a is not known it is extremely unlikely that S'Xa = 0 unless 

S'X - 0 and for practical purposes one can say that S'M is estimable 

only if S'X = 0.

Definition 3.4: In the model Y = M + Xa + e the block sum of squares

is Y'XX'Y.

Since S = XC with C orthogonal defines a set of normalized 

orthogonal effects then Y'SS'Y is also the block sum of squares. The 

mean effect is confounded in each block of a plan and the sum of squares
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due to the mean is Y'K^Y. The quadratic form Y'(XX*-Kjj)Y is called 

the between all blocks (B.Â.B.) sum of squares.

Theorem 3.12: XX' is an idempotent matrix of rank b where b is the

number of blocks in the plan defined by X.

Proof: XX'XX' = X X' = . Since X'X = I^, the rank of XX' is

b.

Theorem 3.13: XX' = XX'K^ =

Proof: Let the size of be r^ for i = 1, 2, ..., b. Then X = XD,

where D is a diagonal matrix with d.^ = —^  , and

XX' = XD^X'. So KjjXX' = ^  JjjJÿœ^X' = I  Jjj(r^,r2 ,...,r^^)D^X'

ÏÏ Jn  •'i = S  •'n  •’n  = S,-

= Kj; = (K^ XX')' - XX'K^.

Definition 3.5: In the model Y = M +  Xn + e. Y'(I_ - XX')Y is the----------  ---  N
within all blocks (W.A.B.) sum of squares.

Theorem 3.14: - XX' and XX' - are idempotent matrices of rank

N-b and b-1 respectively.

Proof ; Since XX* is idempotent of rank b, - XX' is idempotent of 

rank N-b by Theorem 2.27.

(XX*-K^) (XX'-K^) » XX'XX' - KjjibC' - HC'Kjj+K^ =

XX' - Kjj and p(XX'-K^) « tr(XX'-K^) « 

tr(XX') - tr(Kjj) = tr(X'X)-l = b-1
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We have seen that a plan B determines the model Y = M + Xa + e.

If L defines the 2™ factorial effects L*M, then we have the model

L'Y = L'M + L*Xa + L*e. The following results are due to plans which

confound one or more factorial effects. The n. x n„ x ... x n factorial1 2  m
arrangement is assumed unless otherwise indicated.

Theorem 3.15; If (J^, U) is an orthogonal matrix and n > 2, then the

columns of U Ô U span V^(R).

Proof : It suffices to show that the rows of U 0 U are linearly in

dependent. Let

0Î

and p£ = u^2 * » “in-1  ̂ the i*'*' row of U.
n n

Then Z d,,p* = 0  if and only if Z d..p’p. = 0 
i=l 1 = 1

if and only if U'DU = 0 where D is the diagonal matrix with

d^^ as the i*"̂  diagonal element. U'DU = 0 implies

(I -K )D(I -K ) » 0. Thus we have D = DK + K D - K DK and n n n n  n n n n

< 1 1  = "hlch yield* djj . .
The diagonal elements are equal and

Z d,. = tr(D) « tr(p) implies that D = 0. Therefore 
i=l

the rows of U 6  U are linearly independent and consequently 

the columns of U 0 U span V^(R).
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Theorem 3.16: If B confounds and > 2, n^ > 2, then B confounds

and .

Proof: By Theorem 3.6 B confounds [F*(U^,U^) 0 F*(U^,Uj)]'m .

F*(U^,Uj) 0 F*(U^,Uj) = F*(U^0U^, Uj0Uj)P by Theorem 2.19. 

Since the columns of U^O span (R) then there exists a 

matrix such that (U^0U^)H^ = (J^ ,U^). Similarly there

exists a matrix H. such that (U.0U.)H. = (J ,U.). Thus J J J J J
F*(U 0U., U 0U.)(H 0H ) = F*((J ,U.), (J ,U.)) is confoundedX X  J J X J X Uj 3

by Theorem 3.2. Therefore the effects defined by 

(J^, F*(up, F*(Uj), F*(U^,U^))are confounded with B.

Theorem 3.17: If B confounds A. , A. , ...,A, and n. > 2 for
1 2

for i = 1, 2, ..., k then B confounds A. , A. , ...» A.
^ 1 ^2 \

and any interaction involving only these effects.

Proof ; The proof follows that of the last theorem. There exists

matrices H. , ..., H . such that 
^1 \

F*(U. eu. , U, eu, , ..., U, 0U, )(H. 8H, 8 ... 8H, ) =
1 1 2 ^ 2 \  \  ^ 1 ^ 2 \

F*((J ,U ), (J ,U ), ..., (J ,U. )).
"i^ ^ 1 “i2 ^ 2 "i^ ^k

Thus the effects defined by (J , F*(U. ), ...» F*(U. ),
" ^ 1 ^k

F*(U ,U. ), ..., F*(U. ,U.), ..., F*(U. ,U. ,...,U, ))
^ 1 2 ^k- 1 \  h  h  \

are confounded with B.

Theorem 3.18; The plan B determined by X = F*(I ) uniquely confounds
*i

only the mean effect and A^.
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Proof; By Theorem 3.8,X(J , U.) = F*(I )(J , U.) = F*((J , U.)) =

1 1 1  1

(Jjj, F*(U^)) defines a set of effects confounded with B. By

Theorem 3.7 X is unique.

Theorem 3.19: If B confounds A. , A . , ..., A . then B confounds any
1 2

interaction involving only these effects.

Proof : Let ...» j^} be a subset of {i^, ig, ...» i^}.

Then by Theorem 3.6 F*(U. )0F*(U. )0...0F*(U. ) =
3l 32 Jr

F*(U. , U, , ...» U. ) defines a set of effects confounded 
Jl ^2 Jr

with B.

F*(I , I ) is the incidence matrix of the plan
"‘l "^2

which confounds the effects given in the last theorem. This plan is 

the intersection of the plans defined by F*(I ), F*(I ),..., and

F*(I ). 
k
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Definition 3.3; The number of design points in 3^ whose

entries are respectively a. , a. , a. is
h  J2 ^s

hj Cj1>j9 »•••»J Î 3, ,a, )•
^ ^ s jf ^2 3s

Theorem 3.20: A blocking plan B of b blocks confounds the mean effect

and b- 1 components of ..A^ if and only if for each

set ,jg}, where 1 < s < m, h^(j^,j2 *•••«Jg '
0 ,0 ,...,0 ) = ',ig ; Cj ,Cj ,...,Cj ) for each

(c. ,c. ,...,c. ) in Z(N. ) X Z(N. ) x ... x Z(N. ).
Jl 32 3g Ji J2 3g

Proof : By Theorem 3.5, any factorial effect other than Â Â2 ...A^

or the mean effect is orthogonal to B.

Thus IF*((J , U, ), (J , U, ) (J , U, ),
j, ^2 ^r-1

Ù, , (J , U, (J , U ))]' X - 0 for
Jr+ 1  "j,

r=l, 2, ..., s. Multiplication on the left of the last

equality by [(J , Ü. 8  t(J , U. )']"^ S ... 0
jl ^ 1 "jg h

[(J , U. )']"! 9 Ù, 0  l(J , U. )']"! @ ... 0
jr-l "Jr+ 1

[W„ , I), yields
\

> V   V  - V  - V  ’ \   V  <3.2)
3l ^ 2 2 r-l 

for i=l,2,...,b and r*l,2,«..,s. Upon choosing the first 

column of each of the arguments we have

(1 “ Jl ) h^(j^, J2 » •••» jg » 0 , 0 , ..., 0 ) “
^r
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-1Jr

I'j C j 11 j o » • • • » j_» • • • » J _ » 0,0f...»0j3,114 , "iYJi.jg'' 'Jr' '^s' ' '-'-jJr aj^=l r

which simplifies to the equality

n. — 1

1

Jr Jr

0 *0 *» « «*0 *a. *0 * « « «*0 )
Jr

for i = 1 , 2 , ...» b and r = 1 , 2 , ..., s.

Choosing the c. +1 st columns of I -K we obtain
"j, "dr

J2 * * * * *^r* * " * *^s*^*^* * * * ~

^  _Q ^2 > • • • »̂ r* * * * » • • • »0 ) •
jr ^

Thus h^(j^* ̂ 2 * * * ' > * * * >0) ~ J2 » • • • » jr* * • * * jg*

0 *0 *•••*c $ *•••*0 )Jr

for c. = 0*1,...*n. . Letting r=l we have 
^r Jr

hj^Cjl*j2 *• • • »js»®»®»• • • ~ ^&(^1 *^2 ' »0 »».**0 ).

When r=2 we have from (3,2)

'■"‘ V  - \ - V  ’ V .  • • • • ■ V  >1' x,=«-
Jl J2 J2 J jg

By choosing the c +1 st column of I and the first column of3l

each of the remaining arguments we obtain
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"^2

^ 2 2

C, *3. *0» » » «»0)•3l 32

Choosing the c. +1 st column of I - K yields 
^ 2 "j; “32

1h&(jl'j2 ' '"'js:Cj *Gj *0 ''"',0 ) - aj = 0 \^^l*^ 2 *****^s’
1 2  J2

C, *3. ÿO %•••fO)•Jl Jg

Thus h^(jj^,^2 » • • • » »0»»*»»0) ~ h^(j^,^2 » • * • »Jg»

c, *c . »0 j•••jO)«Jl Jg

Continuing In this manner we obtain the following equalities 

corresponding to the value that r assumes:

^2 » • • • »Jg»®»®» • • • lO) ** ^2 * • * •

^^2 , hĵ ( » j 2 » • • • » jg ^ h^ ( j , j 21 • • • » j g j j

■*̂ 3» ~

^£^^1 » J 2*'̂ 3 • * * * *'̂ s* »0f • • • »0) Î

1*®”!» ;c. ,c. ;"»**c. ,0*0) =
^ ^ ^ ^ h  h  Js-2

hj(j-| ,j~,. • •,j jc. ,c. , "#,c. ,c. ,0) ;
^ ^ ^ ® ^1 ^2 :s-2 ^8-1
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r=s, h ;c. ,c. ,0 ) =a 1 / s 3 i J2 Jg_i

h - •fj »c, »c. , «.,c. ,c. ).
^ ^ ̂  s Jl J2 Jg-l

Hence the equality • • •, jg;0,0,... ,0) =

' "'*Cj ) holds for each

(c. ,c, ,...,c. ) in Z(n. ) x Z(n. ) x ... x z(n. ).
Jl 32 Jg ^ 1 ^ 2

The converse follows by reversing the steps of the proof.

Theorem 3.21; Let B be a plan of b blocks confounding X(J^,C), where

XC defines b-1 normalized components of A. ,A. ,...,A ,
H  ^ 2 \

and let A = F*(U. ,U.  U. )[F*(U. ,U. ,...,U, )]’.
^ 1 ^ 2 \  \  ^ 2 \

Then A-(XX'-K^) is idempotent and [A-(XX'-K^)]X = 0

if and only if the blocks of B are of equal size r. 

Proof; XK^X'= XJ^J^X' =• if and only if XJ^ = if and

only if the blocks of B are of equal size. Let (W,W*) be

an orthogonal matrix such that F*(U. ,U. ,...,U. )W = XC.
h  ^2 \

Then XX'A = XX'(XC,F*(U, ,U. ,...,U, )W*
1 2 ^k

(XC,F*(U^ ,U^ .... ,Uj^)W*) • = XCC'X’ = X(I^-K^)X* = AXX' .

Since A and Xx-K^ are idempotent and AK^ = 0 and 

XX'Kjj = Kjj then A-(XX-K^) is idempotent if and only if 

XX'A « XX'-K^ if and only if X(Ij^-Kj^)X’ = XX'-K^ if and only 

XKyX' " if and only if the blocks of B are of equal size.
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(A-(XX'-Kjj))X = 0=AX - X + KjjX = X(I^-K^)-X + =

-MC^ + lyC. tyc - XK^ = 0 if and only If XK^X' =

if and only if the blocks of B are of equal size. 

Definition 3.4: The extension of a plan B* of b blocks of an

n^ X Hg X ... X n^ factorial arrangement of treatments

to an n^ x Ug x ... x n^ x n^^^ x ... x n^ factorial

arrangement of treatments is B = (B^ri = l,2,...,b}

where = 6* % ^^"k+1^ % ... % Z(n^).
B is a plan of b blocks in an n, x n. x ... x n factorial1 z m

arrangement and the incidence matrix of B is X * X* 0 where X* is the 

incidence matrix of B* and q = ' ' ' *^m' Figure 3.3 gives the
extension of a plan of a 2 x 2 factorial arrangement to a 2 x 2 x 3

factorial arrangement.

B*:

X*

0 0 
1 1

0 1 
1 0

lii)

B:

0 0 0 0 1 0
0 0 1 O i l
0 0 2 0 1 2
1 1 0 1 0  0
1 1 1 1 0  1
1 1 2 1 0  2

Figure 3.3— Extension of a plan of a 2 x 2 factorial arrangement 
to a 2 X 2 X 3 factorial arrangement.
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Theorem 3.22: If B* confounds the set of b normalized orthogonal defined

by S in an n^ x ng x ... x n^ factorial arrangement, then

the extension of B* confounds the set of b normalized

orthogonal effects defined by S 0 J in an n_ x n_ x ... x nq i / m
factorial arrangment.

Proof ; By Theorem 3.4 there exist an orthogonal matrix C such that 

S = X*C. Thus S 8  = X*C 8  = (X* 8  1^)0 = XC and by

Theorem 3.4 the effects defined by S 8  are confounded with

the extension of B*.

Corollary 3.2; If B* confounds the mean effect and A* in an

n^ X ng X ... X n^ factorial arrangement, then the exten

sion of B* confounds the mean effect and in an 

n^ X ng X ... X n^ factorial arrangement.

Corollary 3.3: If B* confounds the mean effect and b-1 components of

A* A* ... A* in an n^ x ng x ... x n̂  ̂factorial arrange

ment, then the extension of B* confounds the mean effect

and b-1 components of A. A. ... A in an
1 ^2 ^r

n̂  ̂X ng X ... X n^ factorial arrangement.

Theorem 3.23: If B is a plan of b blocks and confounds the mean effect

and b-1 components of A^ Ag ... A^ then B is the extension 

of a plan that confounds the mean effect and b- 1 components 

of A^ A| ... A^ in an n^ x ng x ... x n^ factorial arrange
ment.

Proof: Let q = n^ n% ... n^^ p = (n̂ -̂l) (ng-l)... (n^-1) and r = N/q.

By hypothesis, there exists a p x b-1 matrix W with normalized
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orthogonal columns such that B confounds the b normalized 

orthogonal effects defined by ( J ^ , . @Ù^0J^)W). By

Theorem 3.4 there exists an orthogonal matrix C such that 

X = ( j ^ , ..0Ù^@j^)W)C = [(Jq,(Ùi@Ù2 8 ...@Ù^)W)C]8 jp =

X* 8  . That X* is an incidence matrix follows from the

fact that X is an incidence matrix. Thus X* is a normalized 

incidence matrix of a plan B* that confounds the mean effect 

and b-1 components of A* A* ... A^ in an n^ x ng x ... x 

factorial arrangement of treatments.



CHAPTER IV

EXAMPLES OF BLOCKING AND CONFOUNDING OF FACTORIAL 

ARRANGEMENTS OF TREATMENTS

The purpose of this chapter is to illustrate how the develop

ment in the preceding chapters can be utilized in obtaining plans and 

their analyses of variance.

In light of Theorem 3.21, only plans with equal block sizes will 

be considered. It is evident from the results in CHAPTER 111 that one 

cannot confound an arbitrary set of b orthogonal effects with b blocks. 

However, a plan of b blocks does confound at least one set of b orthogonal 

effects.

If there exists a plan of b blocks that confounds the mean 

effect and b- 1 components of A^A^.. .A^ in an n^ x ng x ... x n^ factorial 

arrangement, then it follows from Theorem 3.20 that b divides n^ for

i=l, 2, ..., k. Conversely, if b>l and b divides n^ for 1=1, 2 .......k,

then the condition of Theorem 3.20 can be met and thus there exists a 

plan of b blocks that confounds the mean effect and b- 1 components of 

the highest-order interaction.

In the analysis of any confounding plan, it should be remembered 

that differences in responses due to blocks is eliminated in the W.A.B. 

analysis. The price of eliminating these differences is the loss of in

formation on the mean effect and b-1 orthogonal effects.

54
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If a researcher has no preference as to what effects to confound, 

then components of the highest-order Interaction is often a good choice 

since this interaction is the most difficult to interpret. Since the 

highest-order interaction is usually taken as the error term in the 

single replicate experiments, the confounding of b- 1 components of this 

interaction will reduce the error degrees of freedom. This loss in error 

degrees of freedom alone is not necessarily a liability since the same 

situation occurs whenever one chooses a randomized complete block design 

in lieu of a completely randomized design. However, if this interaction 

has very few degrees of freedom, then it is perhaps better to confound 

components of an interaction of little interest so as not to reduce the 

degrees of freedom for error.

The examples which follow illustrate the use of Theorem 3.20 in 

obtaining plans that confound components of the highest-order interaction. 

The first example is given in somewhat greater detail than the others

and it is hoped that the reader can see how the other examples can be

similarly developed.

Example 4.1: Suppose that a researcher is interested in the re

sponses of mice upon administration of 16 treatments com

prising a 4 X 4 factorial arrangement of treatments. The 

factors are taken as 4 levels of different drugs and for 

the purposes of this example the factors are considered 

fixed. All the possible combinations of one level from 

each of the factors comprise the set of design points 

T = Z(4) X Z(4). Let the levels within each factor be

naturally ordered so that, for example, the design point
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(2 , 3) represents the third level of the first drug and 

the fourth level of the second drug.

The researcher has at his disposal 4 strains of mice 

with 4 mice in each strain and he has good reason to be

lieve that differences in strains will influence the re

sponses to the treatments. He desires information on the 

main effects and also wants to assess the magnitude of the 

contrast + P^g.

Since differences among the strains of mice are 

thought to influence the responses, then strains should 

be confounded with blocks. The need for information on 

the main effects indicates that the main effects and 

Ag should be orthogonal to strains (blocks).

The largest block size that permits these considera

tions is four. With a block size of 4 we can satisfy the 

conditions of Theorem 3.20 and thus obtain a plan of 4 

blocks that confounds the mean effect and 3 components of 

the A^Ag interaction effect. The conditions are; 

h^(j, c^) « 1 for i = 1, 2, 3, 4, j = 1, 2, and Cj = 0, 1, 

2, 3. A plan satisfies these conditions if and only if 

A^ and Ag are orthogonal to blocks. Since the mean effect 

and A^Ag are orthogonal to both A^ and A^ and since the 

mean effect is confounded in any plan, then 3 components 

of A^Ag are confounded with blocks. Appearing in Figure

4.1 are the 24 plans, each of which confounds only the 

mean effect and 3 components of A^Ag. That no two plans
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(a)
0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 01 0 2 03 0 0 0 1 0 2 03
1 1 1 2 13 1 0 (b) 1 1 1 0 13 1 2 (c) 1 1 1 0 13 1 2 (d) 1 1 13 1 0 12
22 23 2 0 21 22 23 2 0 21 22 23 21 20 2 2 2 0 23 21
33 30 31 32 33 32 31 30 33 32 30 31 33 32 31 30

(e)
0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 0 1 0 2 03
1 2 1 2 1 1 1 0 (f) 13 1 0 1 1 12 (g) 13 12 1 0 11 (h) 13 1 2 11 1 0
23 2 0 23 22 21 22 23 20 21 2 0 23 22 21 23 20 22
31 33 30 31 32 33 30 31 32 33 31 30 32 30 33 31

(i)
0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 0 1 0 2 03
1 2 13 1 0 1 1 (j) 1 2 13 1 0 1 1 (k) 12 13 1 1 1 0 (1 ) 1 2 1 0 13 1 1
23 2 0 21 22 23 22 2 1 2 0 23 2 2 20 21 23 2 2 21 2 0
31 32 33 30 31 30 33 32 31 30 33 32 31 33 30 32

(m)
0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 0 1 0 2 03 00 0 1 0 2 03
1 2 13 1 0 11 (n) 12 13 1 0 1 1 (o) 1 2 13 1 1 1 0 (P) 12 1 0 13 1 1
2 1 2 2 23 2 0 21 2 0 23 2 2 21 2 0 23 22 2 1 23 2 0 22
33 30 31 32 33 32 31 30 33 32 30 31 33 32 31 30

(q)

0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 0 1 0 2 03
1 1 1 2 13 10 (r) 1 1 1 0 13 1 2 (s) 1 1 1 0 13 12 (t) 1 1 13 1 0 1 2
23 2 0 21 22 23 2 2 21 2 0 23 22 2 0 2 1 23 2 2 2 1 2 0
32 33 30 31 32 33 30 31 32 33 31 30 32 30 33 31

(u)
0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 0 1 0 2 03 0 0 0 1 0 2 03
13 1 0 1 1 1 2 (V) 13 1 2 1 1 1 0 (w) 13 1 2 1 0 1 1 (x) 13 1 2 1 1 1 0
22 23 2 0 21 2 2 23 2 0 21 22 23 21 2 0 22 2 0 23 2 1
31 32 33 30 31 30 33 32 31 30 33 32 31 33 30 32

Figure 4.1— The 24 plans o£ a 4 x 4 factorial arrangement of 
treatment each of which confounds 3 components of the effect.
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confound the same 3 components follows from Theorem 3.7.

In order to assess the magnitude of the contrast X^M 

the set of design points {(0,2), (1,3), (2,1), (3,0)} must 

appear in the same block and thus these treatments must be 

given to the same strain of mice. An inspection of Figure

4.1 reveals that these design points comprise a block in 

plans (c), (q), and (r). Each of these three plans con

founds 3 components of A^A^ and leaves A^, A^ and the con

trast XqM free of strain effects. These three plans are 

also good choices for obtaining information on the contrasts

~ ^ ^ 1 3 ~ ^30 ^ 0 2 ~ *̂ 30 these contrasts are
intra-block and thus are free of block effects.

The plans appearing in Figure 4.1 exclusive of plans 

(c), (q) and (r) are of dubious value for estimating the 

contrast X^M because the usual estimate of X^M involves 

differences in blocks.

To proceed farther with this example let us choose 

plan (c) as the design plan. Strains are then randomly 

assigned to blocks and the 4 mice within a strain are ran

domly assigned to the treatments within a block.

The model for plan (c) is

Y = M + X o + e  

or more explicitly
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^00 f-oo'
r
i=1

^01 1 ‘*01i ;
^02 **02 ;*3

^03 *̂ 03 |“4

^10 ^10 1 ̂2
>11 ^11

^12 ^12

^13 “13 ^3

^20 “20 ®4

^21 ‘*21 ^3

^22 ^22 ^1

^23 ^23 ^2

^30 »̂ 30 ^3

?31 ^31 ^4

?32 ^32 ®2

?33 ^̂ 33 “1
In this model both M and a are unknown and a contrast 

X'M is estimable if and only if X'X » 0. Since X'X^ = 0 

then XgM is estimable. An analysis of variance for plan 

(c) is given in Table 4.1.

The 5 components of Â Âg in the W.A.B. analysis are 

called residual and their mean square is used as the de

nominator of the mean square ratio to test X^M. The mean 

square for residual is also used as the denominator for 

testing the mean square ratios of A^ and A^. In the event 

that one accepts the hypothesis that X^M " 0 then the sum



TABLE 4.1

AN ANALYSIS OF VARIANCE TABLE FOR PLAN (C) 
IN FIGURE 4.1

Source d.f. S.S.

Total

Mean

B.A.B. (A^Ag)

W.A.B.

X'M

Residual (A^A^)

16

12
3

3

1

5

16ÿ2
ij

[“ ■
Z
j)e6, 'ij ^ -16ÿ2

T Z (Z -16ÿ^^ i j 13

T Z (E -16ÿZ ̂ J i IJ

4 (^02 " y 13 “ ^21 ^30^

S.S.(W.A.B.)-S.S.(Aj^)-S.S.(A2 )-S.S.(X^M)

M.S.R. (A^)

o\o

M.S.R.(Res.) 
M.S.R.(Ag) 

M.S.R.(Res.) 
M.S.R.(X^M) 
M.S.R.(Res.)
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of squares for may be pooled with the sum of square 

for residual and the mean square of this pool may be used 

as the denominator for testing the mean square ratios of 

and A^.

A test of B.A.B. is futile since the B.A.B. sum of 

squares reflects both differences among strains and differ

ences among the sets of treatments administered to the 

different strains. One would intuitively hope that the 

B.A.B. be relatively large but a fortuitous selection of 

the sets of treatments assigned to the strains could pro

duce a relatively small mean square for B.A.B. One should 

therefore avoid the practice of pooling the sum of squares 

for B.A.B. with the sum of squares for residual. This 

situation differs from the practice of pooling the block 

sum squares with the sum of squares for residual in the 

randomized complete block design for in the latter design 

each treatment appears in each block and a preliminary 

test of the mean square for blocks can be made.

This concludes the discussion of confounding 3 com

ponents of a 4 X 4 factorial arrangement of treatments 

with a plan consisting of 4 blocks. With a block size of 

8 in a 4 X 4 factorial arrangment of treatments we have 

2 blocks and to confound 1 component of A^A^ a plan must 

satisfy the following conditions: h^(j,Cj) = 2 for i = 1 , 

2, j * 1» 2 and c^ = 0, 1, 2, 3. The set of 48 plans 

satisfying these conditions are given in Figure 4.2. An
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0 0 0 1 0 0 0 2 0 0 0 1
0 2 03 0 1 03 03 02
1 1 1 0 11 1 0 10 12
13 1 2 1 2 13 11 13
2 0 21 22 20 21 2 0
22 23 23 21 22 23
31 30 30 32 32 30
33 32 31 33 33 31

0 0 0 2
0 1 03
1 0 12
1 1 13
2 2 2 0
23 2 1
32 30
33 31

0 0 01 0 0 0 1
03 0 2 0 2 03
11 1 0 10 12
12 13 1 1 13
21 2 0 22 2 0
2 2 23 23 2 1
30 31 31 30
33 32 33 32

0 0 01 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 2
0 2 03 03 0 2 01 03 02 03 01 03
1 1 10 11 1 0 11 1 0 10 11 1 2 1 0
13 12 1 2 13 13 12 1 2 13 13 1 1
21 2 0 2 0 2 1 2 0 21 2 1 2 0 21 2 0
2 2 23 22 23 22 23 23 22 22 23
30 31 31 30 32 30 31 30 30 32
33 32 33 32 33 31 33 32 31 33

0 0 01
03 0 2
11 1 0
12 13
2 0 2 2
21 23
32 30
33 31

0 0 0 2 0 0 0 1 0 0 0 1 0 0 01 0 0 0 2 0 0 0 2
0 1 03 0 2 03 0 2 03 03 0 2 0 1 03 0 1 03
1 2 1 0 12 1 0 11 1 0 1 0 1 1 1 0 11 10 1 2
13 1 1 13 1 1 12 13 1 2 13 12 13 1 1 13
20 22 20 2 2 21 20 2 1 2 0 21 2 0 22 20
21 23 21 23 23 22 22 23 23 22 23 21
32 30 31 30 30 31 31 30 32 30 31 30
33 31 33 32 33 32 33 32 33 31 32 33

0 0 01 0 0 0 2 00 0 1
03 02 0 1 03 03 02
1 2 1 0 12 1 0 10 11
13 1 1 13 11 13 1 2
2 1 2 0 2 2 2 0 21 2 0
2 2 23 23 2 1 22 23
30 32 30 32 31 30
31 33 31 33 32 33

0 0 0 1
0 2 03
11 1 0
13 1 2
2 2 2 0
23 21
30 32
31 33

a 4 X 4

0 0 0 1 0 0 0 1
0 2 03 03 0 2
10 11 11 1 0
13 1 2 13 1 2
21 2 0 2 0 2 1
22 23 22 23
31 30 31 30
33 32 32 33

confounds 1 component of the effect.
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0 0 02 00 0 1 0 0 02 0 0 01 0 0 0 1 0 0 0 1
0 1 03 02 03 0 1 03 03 0 2 03 0 2 02 03
12 1 0 11 1 0 11 1 0 1 0 12 1 1 1 0 10 1 2
13 11 13 1 2 1 2 13 1 1 13 1 2 13 11 13
2 0 21 21 2 0 2 0 22 2 2 20 20 21 21 2 0
22 23 23 22 21 23 23 21 23 2 2 23 2 2
31 30 30 31 32 30 31 30 31 30 32 30
33 32 32 33 33 31 32 33 32 33 33 31

0 0 01 0 0 01 0 0 02 0 0 0 2 0 0 0 1 0 0 01
0 2 03 03 0 2 0 1 03 0 1 03 03 02 03 0 2
1 1 1 0 11 1 0 11 1 0 1 2 10 11 1 0 11 1 0
13 12 1 2 13 13 1 2 13 1 1 12 13 12 13
2 0 21 21 2 0 2 2 20 2 0 22 2 2 2 0 20 21
23 2 2 23 22 23 21 2 1 23 23 21 23 22
31 30 30 31 30 31 31 30 30 32 31 3032 33 32 33 32 33 32 33 31 33 32 33

0 0 0 1 0 0 0 1 0 0 01 0 0 02 0 0 0 2 0 0 01
0 2 03 02 03 03 02 0 1 03 0 1 03 03 0 2
1 2 1 0 11 1 0 10 11 1 0 1 1 1 0 12 1 2 10
13 1 1 12 13 1 2 13 1 2 13 1 1 13 13 1 1
21 2 0 20 2 1 21 2 0 2 2 20 21 2 0 20 22
23 22 23 22 23 2 2 23 21 2 2 23 21 2330 32 31 30 31 30 31 30 32 30 31 3031 33 33 32 32 33 33 32 33 31 32 33

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0103 0 2 02 03 0 2 03 03 0 2 0 1 03 02 03
1 0 11 11 1 0 1 0 11 1 1 1 0 12 1 0 10 1113 12 13 1 2 13 12 13 1 2 13 11 12 13
21 2 0 20 22 21 2 0 2 1 2 0 21 2 0 21 20
22 23 21 23 23 22 2 2 23 23 2 2 23 2 231 30 32 30 31 30 30 31 30 31 31 3032 33 33 31 32 33 32 33 32 33 33 32

Figure 4.2— Continued
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abbreviated analysis of variance of a particular plan is 

given in Table 4.2.

Example 4.2: In the 2 x 2 x 4  factorial arrangement a plan that

confounds only the mean effect and components of 

must have a block size of 8 . Such a plan must satisfy the 

following conditions:

h^(j;Cj) = 4,

hi(3;c3> = 2 ,

h^(l,2 ;c^,C2) = 2 and

h^Cj.SiCj.Cg) = 1, for i=l,2, j=l,2,Cj = 0,1 and

C3 = 0 ,1 ,2 ,3.

The three plans that confounds only the mean effect 

and 1 component of A3A2A3 are given in Figure 4.3. An 

abbreviated analysis of variance appears in Table 4.3.

If the numbers of levels of the factors do not have 

a common divisor other than unity, then there is no plan 

with equal block sizes that confounds only the mean effect 

and components of the highest-order interaction. In this 

case the confounding of components of the highest-order 

interaction results in the confounding or partial confound

ing of components of other factorial effects.

Example 4.3: In the 2 x 2 x 3  factorial arrangement no plan with

equal block sizes exists that confounds only the mean 

effect and components of A^A^A3 . The plan B in Figure 

4.4 confounds 1 component each of Aj^AgA3 and A 3 in addition
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TABLE 4.2

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE 
FOR A PARTICULAR PLAN IN FIGURE 4.2

Source d.f. S.S.

Total 16 Y'Y

Mean 1

B.A.B. (A^Ag) 1 Y'(XX-Kj^g)Y
W.A.B. 14 Y'(l2 0 -XX')Y

3 Y'(l4 -K^W^)Y

3 Y*(K^0 I^-K^)Y

4 * 2 8



66

0 0 0 0 0 2
0 0 1 0 0 3
0 1 2 0 1 0
0 1 3 O i l
1 0  2 1 0  0
1 0  3 1 0  1
1 1 0 1 1 2
1 1 1 1 1 3

0 0 0 0 0 1
0 0 2 0 0 3
O i l 0 1 0
0 1 3 0 1 2
1 0  1 1 0  0
1 0  3 1 0  2
1 1 0 1 1 1
1 1 2 1 1 3

0 0 0 0 0 1
0 0 3 0 0 2
O i l 0 1 0
0 1 2 0 1 3
1 0  1 1 0  0
1 0  2 1 0  3
1 1 0 1 1 1
1 1 3 1 1 2

Figure 4.3— The 3 plans confounding only the mean and 1 compon
ent of in a 2 X 2 X 4 factorial arrangement of treatments.
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TABLE 4.3
AN ABBREVIATED ANALYSIS OF VARIANCE TABLE 

FOR A PARTICULAR PLAN OF FIGURE 4.3

Source d.f S.S.

Total 16 Y'Y
Mean 1 Y'Ki6Y
B.A.B. (A^AgAg) 1 Y'(XX'-K^^)Y
W.A.B. 14 Y'(Ij^g-XX')Y

1 Y'd^K^S Kg 0 Kj,)Y
1 Y ’(Kg 0 Ig-Kg 0 K^)Y

A3 3 Y ’(Kg 0 Kg 0 I^-K^)Y
I Y ’(Ig-Kg 0 Ig-Kg 0 K^)Y

A1A3 3 Y '(Ig-Kg 0 Kg 0 l4-Kj,)Y

A2A3 3 Y ’(Kg 0 Ig-Kg 0 I^-K^)Y
Ajî Â Â 2 Y ’((Ig-Kg 0 Ig-Kg 0 I^-K^ - XX’+ R^g)Y
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0 0 0 0 0 1 0 0 2
o i l 0 1 0 0 1 2
1 0  0 1 0  1 1 0  2
1 1 1 1 1 0 1 1 2

Figure 4.4— A plan confounding the mean effect and 1 component 
each of A1A2A3 and A3 in a 2 x 2 x 3 factorial arrangement of treatments.
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to the mean effect. The latter statement follows from the

1 1 1\
application of Theorem 3.8 with the matrix C = I 1 -1 11 =

1 0 -2/

XC =

0 0 
1 0 
0 1 
1 0 
0 0 
0 1 
0 0

0 0
0 0 1

0 -2 12 *

8

Example 4.4:

Example 4.5

and thus the mean effect, 1 component of and 1 com

ponent of Ag are confounded with B. The plan B is not a 

good choice if information on A^ is paramount. Table 4.4 

gives an abbreviated analysis of variance for the plan 

given in Figure 4.4.

For the situation in which we cannot sacrifice infor

mation on the highest-order interaction we can confound 

components of another interaction or main effect.

In a 2 X 2 x 3 factorial arrangement A^Ag has 1 com

ponent. A plan confounding Â Â̂  is unique by Theorem 3.7. 

By Theorem 3.23 the plan is the extension of a plan con

founding A£A* in a 2 X 2 factorial arrangement. The plan 

is given in Figure 4.5 and an abbreviated analysis of 

variance appears in Table 4.5.

Using Corollary 3.2 and Theorem 3.23 we see that there 

exists a total of 24 plans that confounds the mean effect
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TABLE 4.4

ABBREVIATED ANALYSIS OF VARIANCE TABLE 
FOR THE PLAN GIVEN IN FIGURE 4.4

Source d.f. S.S.

Total 1 2 Y'Y

Mean 1 Y'Ki2Y

B. A. B. 2 Y'(XX'-K^2 )Y

S 1 Y'(XŸ3 Y^X’)Y

A^A^Ag 1 Y'Cxi^YgX')?
W.A.B. 9 Y'(I^2 -XX)Y

4 1 Y'ClgrXg 8  K 2  8  K^XY

^ 2
1 Y'CKg 8  I2 -K2  8  K3 >Y

A 3 1 Y'((K2  8  Kg 8  1 3 - K ^ -  X^39^X')Y
1 Y'(l2 “K2  8  I2 -K2  8  K3 >Y

2 Y'(l2 ”K 2  8  Kg 8  I3 -K3 >Y

*2*3 2 Y*(K2  8  Tg-Kg 0  I3 -K3 >Y

*1*2*3 1 Y'Giz"*? ® ® ^ 3 " V "  %Y2 Y2*')Y
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0 0 0 0 10
0 0 1 O i l
0 0 2 0 12
1 1 0 10 0
1 1 1 10 1
1 1 2 10 2

Figure 4,5— The plan confounding the mean effect and A-A„ In a 
2 x 2 x 3  factorial arrangement of treatments.
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TABLE 4.5

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE 
FOR THE PLAN IN FIGURE 4.5

Source d.f. S.S.

Total 1 2 Y ’Y

Mean 1 Y ’Ki2Y

B.A.B. (A^Ag) 1 Y'(XX’-K32)Y

W.A.B. '0 Y ’(l32-XX’)Y

1 Y'(l2-K2 0  K2 0  K3)Y

4 1 Y ’(K2 0  I2-K2 0  K3 >Y
A 3 2 Y ’(K2 0  K2 0  %3-K3)Y

A3 A3 2 Y'(l2-K2 0  K2 0  I3-K3 >Y

*2*3 2 Y ’(K2 0  I2-K2 0  Ig-KgX?
A3A2A3 2 Y'(l2-K2 0  I2-K2 0  Ig-KgX?
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and 3 components of in any 4 x 4 x q factorial arrange

ment. An analysis of variance is straightforward. The 

W.A.B. analysis of A^A^ has 6 degrees of freedom and the 

matrix of its quadratic form is I^-K^ 8

If confounds only the mean effect and components 

of A^Ag.. .A^ and B^ confounds only the mean effect 

and components XgCg of by Theorem 3.9

and Theorem 3.6 B = B^ n is a plan with blocks of equal 

size and confounds the effects defined by (J^, X^C^, ^2^2* 

(X^ âXg) (C^eCg). Furthermore (X^ 0 X^) {0^90^)= 0

defines components of A^A^...A^ since there exist and 

Wg such that X^C^ = F*(U^,Ü2 »... and XgCg =

^ * ^ \ + l » \ + 2 ’* * * * V ”2 V l  ® %2®2 ^ ®

0
pq

"̂ p » <\+l » \ + 2  ® ••• ® 0 =
pq

(U^ 0 Ü2 0 ... 0 Ùj.) 0 W 2 ) 0 jjj .
pq

Example 4.6; I n a 2 x 2 x 3 x 3  factorial arrangement the plans

B^ and B2 in Figure 4.6 confound respectively the mean

effect and ^^2 the mean effect and 2 components of

AgA^. B = B^ n B2 confounds the mean effect, A^^2* ^ com
ponents of AgA^ and 2 components of A^A2A^A^ with its 6 

blocks of size 6. An abbreviated analysis of variance 

appears in Table 4.6
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B1 '

0 0 0 0 0 1 0 0
0 0 0 1 0 1 c 1
0 0 0 2 0 1 0 2
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 2
0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 2 0 0 1 0
0 0 1 2 0 1 1 2 0 0 2 2 0 0 2 0 0 0 2 1
0 0 2 0 0 1 2 0 0 1 0 0 0 1 0 1 0 1 0 2
0 0 2 1 0 1 2 1 0 1 1 1 0 1 1 2 0 1 1 0
0 0 2 2 0 1 2 2 ®2* 0 1 2 2 0 1 2 0 0 1 2 1
1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 2
1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 2 1 0 1 0
1 1 0 2 1 0 0 2 1 0 2 2 1 0 2 0 1 0 2 1
1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 2
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2 1 1 1 0
1 1 1 2 1 0 1 2 1 1 2 2 1 1 2 0 1 1 2 1
1 1 2 0 1 0 2 0
1 1 2 1 1 0 2 1
1 1 2 2 1 0 2 2

0 0 0 0 0 0 0 1 0 0 0 2 0 1 0 0 0 1 0 1 0 1 0 20 0 1 1 0 0 1 2 0 0 1 0 0 1 1 1 0 1 1 2 0 1 1 00 0 2 2 0 0 2 0 0 0 2 1 0 1 2 2 0 1 2 0 0 1 2 11 1 0 0 1 1 0 1 1 1 0 2 1 0 0 0 1 0 0 1 1 0 0 21 1 1 1 1 1 1 2 1 1 1 0 1 0 1 1 1 0 1 2 1 0 1 01 1 2 2 1 1 2 0 1 1 2 1 1 0 2 2 1 0 2 0 1 0 2 1
Figure 4.6- 

ment of treatments.
-Three plans o f a 2 x 2 x 3 x 3  factorial arrange-
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TABLE 4.6

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE FOR THE PLAN
OF A 2 X 2 x 3 x 3  FACTORIAL ARRANGEMENT 

OF TREATMENTS

Source d.i:. S.S.
Total 36 Y'Y
Mean 1 Y'K3 ,Y
B.A.B. 5 Y'(XX'-K^^)Y

^1 ^ 2
1 Y'(X^Xi-K36)Y

*3*4 2 Y'(X^X^-Kg^)Y

*1*2*3*4 2 Y'(XX'-X^Xj^-X^X^ +
W.A.B. 30

* 1
1 Y'dg-Kgg Kg 8  Kg 8  Kg)Y

* 2
1 Y'(Kg0 Ig-Kg 0 K^ 0 Kg)Y

*3 2 Y '(Kg 0  Kg 0  Ig-Kg 0  Kg)Y

*4 2 Y '(Kg 0 Kg 0 K^ 0 l3 -K3 >Y

*1*3 2 Y'(Ig-Kg 0 Kg 0 I3 -K3  0 Kg)Y

*1*4 2 Y'(l2 "K2  0  Kg 0  Kg 0  Ig-Kg)Y

*2*3 2 Y '(Kg 0 Ig-Kg 0 I3 -K3  0 Kg/Y

*2*4 2 Y '(Kg 0 Ig-Kg 0 Kg 0 Ig-Kg)Y

*3*4 2 Y'CCKg 0 Kg 0 Ig-Kg 0 Ig-K^XgX^ + Kgg)Y

*1*2*3 2 Y '(Ig-Kg 0 Ig-Kg 0 Ig-Kg 0 Kg) Y

*1*2*4 2 Y'(Ig-Kg 0 Ig-Kg 0 Kg 0 Ig-Kg)Y

*1*3*4 4 Y '(Ig-Kg 0 Kg 0 Ig-Kg 0 Ig-Kg)Y

*2*3*4 4 Y '(Kg 0 Ig-Kg 0 Ig-Kg 0 Ig-Kg) Y

*1*2*3*4 2 Y\(lg-Kg 0 Ig-Kg 0 Ig-Kg 0 Ig-Kg ' XX '
+ X^X| + XgXj - Kgg)Y
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In the 2 x 6 x 3  factorial arrangement and Bg 

given in Figure 4.7 respectively confound the mean effect 

and 1 component of and the mean effect and 2 compon

ents of AgAg. The component of A^^A^ confounded is defined 

by

1
-1 -i 0 8 and

the two components of A^A^ are defined by

0

1 1 
1 1 
0 -2

;i • : 1
-1 1 
-1 1 
1 1 
0 -2

By Theorem 3.6 the Hadamard product of these two sets of

effects is confounded and defines a set of effects also

confounded with B = B^ n B^. The Hadamard product is

' 1 1 
-1 1 
0 -2 
0 —2 
1 1 
-1 1 
-1 1 
1 1 
0 —2

of A^A^A^ are confounded. An abbreviated analysis of 

variance is given in Table 4.7.

-i 0 0 and thus 2 components
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B1"

0 0 0 0 3 0
0 0 1 0 3 1
0 0 2 0 3 2
0 1 0 0 4 0 0 0 0 0 0 1 0 0 2
0 1 1 0 4 I 0 1 1 0 1 2 0 1 0
0 1 2 0 4 2 0 2 2 0 2 0 0 2 1
0 2 0 0 5 0 0 3 0 0 3 1 0 3 2
0 2 1 0 5 1 0 4 I 0 4 2 0 4 0
0 2 2 0 5 2 ®2'- 0 5 2 0 5 0 0 5 1
1 3 0 1 0 0 1 0 0 1 0 1 1 0 2
1 5 1 1 0 1 1 1 1 1 1 2 1 1 0
1 3 2 1 0 2 1 2 2 1 2 0 1 2 1
1 4 0 1 1 0 1 3 0 1 3 1 1 3 2
1 4 I 1 1 1 I 4 1 1 4 2 1 4 0
1 4 2 1 1 2 1 5 2 1 5 0 1 5 1
1 5 0 1 2 0
1 5 1 1 2 1
1 5 2 1 2 2

B,n Bj:

0 0 0 0 0 1 0 0 2 0 3 0 0 3 1 0 3 2
0 1 1 0 1 2 0 1 0 0 4 1 0 4 2 0 4 0
0 2 2 0 2 0 0 2 1 0 5 2 0 5 0 0 5 1
1 3 0 1 3 1 1 3 2 1 0 0 1 0 1 1 0 2
1 4 1 1 4 2 1 4 0 1 1 1 1 1 2 1 1 0
1 5 2 1 5 0 1 5 1 1 2 2 1 2 0 1 2 1

Figure 4.7- 
of treatments.

-Three plans in a 2 x 6 x 3 factorial arrangement
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TABLE 4.7

AN ABBREVIATED ANALYSIS OF VARIANCE TABLE OF A 2 x 6 x 3 
FACTORIAL ARRANGEMENT OF TREATMENTS WITH THE 

PLAN B n B IN FIGURE 4.7

Source d.f. S.S.

Total 36 Y'Y

Mean 1 Y'KsgY

B.A.B. 5 Y'(XX'-Kg^)Y

V 2 1 Y'(XiX;-K36)Y

A 2A3 2 Y'(x,x;-K3a)Y

*1*2*3 2 Y '(XX'-XiXj-X2X^+Kg^)Y

W.A.B. 30 Y'(I^g-XX')Y

* 1 1 Y'Clg-KgGK^eXgyY

* 2 5 Y'(K20Ig-K^0K3)Y

*3 2 Y'CK^GK^eig-KgyY

*1 * 2 4 Y'(ïl2-K20l6-Kg0K3hXiXi + K,*)Y

*1*3 2 Y'(l2-K2 8  8  Ig-K2)Y

*2*3 8 Y'((K2 0 I^-K^8 l3-K^ - X^X^ +

*1*2*3 8 Y '((l2-K2@I^-K^8 lg-K^XX ' +X^X^+X2^2^3e) ̂



CHAPTER V 

A PRACTICAL EXAMPLE

This chapter Is intended to illustrate how the development in 

CHAPTERS III and IV can be utilized to design a practical plan that is 

appropriate for data analysis. Emphasis is placed upon those aspects 

where the design or analysis was either impossible or more difficult be

fore. In the past, designs have been artificially forced into patterns 

where all factors had the same number of levels and even these numbers 

were restricted.

Also, many times researchers have well designed experiments, but 

unforeseen events or a lack of facilities or time forced them to compro

mise their analyses. Such is the scope of the following experimental ex

ample and although the results developed earlier are not necessarily re

stricted to this type of shortcoming, it is felt that the chosen example 

will provide some of the reasons as to why the usual analysis is not 

appropriate and illustrate one type of situation where it is advantageous 

to use these results. It is hoped that the reader can easily imagine that 

these applications can be made to a wide variety of situations in which 

the response to be measured depends on the levels of several factors, some 

kind of blocking is advantageous, and large numbers of replicates are not 

feasible.

Suppose that a researcher has collected a sample of blood from
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each of 24 dogs in order to determine the effects of 24 diets comprising 

a 2 X 2 X 6 factorial arrangement of treatments upon the total blood 

lipids in dogs.

The three factors are carbohydrate* protein and fat. The two 

levels of carbohydrate are 5 and 10 grams per kilogram of body weight* the 

two levels of protein are 20 and 40 grams per kilogram of body weight and 

the six levels of fat are 8, 16* 24* 32* 40, 48 grams per kilogram of body 

weight. The treatments are the 24 combinations of carbohydrate-protein- 

fat and the response he wishes to measure is the number of micrograms of 

total blood lipids per milliliter of whole blood. The high and low levels 

of both carbohydrate and protein can be indicated by 0 and 1 and the six 

levels of fat can be indicated by 0* 1* 2* 3* 4, and 5. Thus a three 

tuple such as (0, 1, 4) represents the diet consisting of the low level 

of carbohydrate* the high level of protein and 40 g/Kg of fat.

Because of situations beyond his control* the researcher must 

utilize two different laboratories for the assays. He realizes that the 

use of different laboratories might introduce bias into responses because 

of different techniques or technicians.

In his investigation he would like to ascertain if the two levels 

of carbohydrate are different relative to the measured response. Also* 

he desires to know if the two levels of protein Influence the measured re

sponses and the six levels of fat influence the measured responses. In 

statistical terms these statements are equivalent to the evaluation of 

the three main effects.

Also of interest to the experimenter is whether or not the pat

tern of responses for one factor is different at each level of another
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factor when the remaining factor is collapsed. Thus the researcher wants 

to investigate the carbohydrate x protein, carbohydrate x fat, and the 

protein x fat interactions. The experimenter is not interested in the 

carbohydrate x protein x fat interaction.

The experimenter knows that any assignment of the blood samples 

to the two laboratories will invalidate any comparisons of assays from 

different laboratories. That is, he is unable to attribute differences 

in blood samples assayed in different laboratories to a difference in 

treatments because of the bias introduced by the difference in laboratories. 

He also feels that he should assign 12 blood samples to each of the labor

atories.

In order to obtain all the information desired by the experimenter, 

we can construct a plan using the results of CHAPTER III. We can immedi

ately discard any plan which confounds any main effect or first order 

interaction since the researcher desires information on these effects.

Thus we desire to confound part of the highest-order interaction. A plan 

that confounds part of the carbohydrate x protein x fat interaction is 

easy to construct. Since each laboratory is to receive 12 samples then 

we must have blocks of size 12.

The allocation of the blood samples to the laboratories is de

pendent upon the interest of the experimenter. For example, since he 

wants information on the main effect of carbohydrate, it would be very 

undesirable to assign all samples at the low level of carbohydrate to one 

laboratory and the remaining samples at the high level of carbohydrate to 

the other laboratory. Such a practice would invalidate or bias the usual 

estimate of the carbohydrate main effect and corresponding sum of squares.
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Thus we see that the individual levels of each of the factors 

must be balanced in each laboratory. For similar reasons all combinations 

of levels from any two must be balanced in order for the estimates and 

sums of squares of the 3 first-order interaction to exist. These condi

tions are easy to satisfy in the construction of an allocation plan.

Ten allocation plans exist which will give the experimenter the 

desired estimates. The following plan is one of the ten allocation plans 

that confounds only the highest-order interaction.

Lab 1 Lab 2
000 003
001 004
002 005
013 010
014 Oil
015 012
103 100
104 101
105 102
110 113
111 114
112 115

The sum of squares for all effects other than the carbohydrate x protein x 

fat interaction are computed in the usual manner and have the usual rules 

governing the degrees of freedom. The sum of squares for the highest-order 

interaction is computed by subtracting the sum of squares for main effects 

first-order interactions and laboratories from the total (corrected for 

the mean) sum of squares. This sum of square can be used as the residual 

sum of squares and has only (1)(1)(5)-1 - 4 degrees of freedom because 

one degree of freedom due to the laboratory sum of squares is subtracted 

from the usual 5 degrees of freedom for this interaction.

We should be aware of the Implication of the last computation.

All the main effects and first-order interactions are intra-laboratory
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or sums of intra-laboratory comparisons and thus does not involve differ

ences in laboratories or inter-laboratory comparisons. This is why the 

inter-laboratory in the form of the laboratory sum of squares was removed 

from the usual sum of squares due to the carbohydrate x protein x fat 

interaction. Since the highest-order interaction is used many times to 

test the significance of the first-order interactions and possibly main 

effects, then by not removing the laboratory sum of squares from the usual 

sum of squares for the highest-order interaction, we would be testing 

intra-laboratory comparisons with a residual error consisting of both 

intra-laboratory and inter-laboratory comparisons. Thus the inter-labora

tory comparison is eliminated from the highest-order interaction and 

correspondingly one degree of freedom is lost.

Failure to eliminate the inter-laboratory comparison would tend 

to inflate the residual sum of squares by the inclusion of the square of 

bias due to the different laboratories. The researcher can follow the 

allocation plan and still get the usual sums of squares of the effects of 

interest at a loss of one degree of freedom of the highest-order inter

action. If bias due to the difference in laboratories really exists, then 

the loss of the degree of freedom is welcome since the inter-laboratory 

sum of squares is substantial.

The usual tests of significance can be made in the manner appro

priate to the 2 x 2 x 6  factorial arrangement of treatments with the ex

ception that the residual sum of squares now has only 4 degrees of freedom 

associated with it. That is, the highest-order interaction is used as the 

error term in testing each first-order interaction for its effect. If no 

significance is found the main effects are tested using the highest-order
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interaction as the error term or the pooling of the non-significant inter

action terms to obtain a new measure of error. Since a large number of 

textbooks of both methods and experimental design cover the tests of 

hypotheses for these types of situations, a detailed discussion of the 

tests to be employed in this example would be redundant and therefore is 

not undertaken.



CHAPTER VI

SUMMARY

This dissertation provided a method of construction of a set of 

orthogonal effects in an n^ x ng x ... x n^ factorial arrangement of

treatments and a partition of this set into the 2™ factorial effects. A

canonical representation of the ^  factorial effects was established by 

utilizing tensor products and the set of tensors defining an interaction 

effect was related to the Hadamard product of sets of vectors defining 

the main effects. The matrix of the quadratic form of a factorial effect 

was established and was seen to be invariant of the choice of the orthog

onal set defining the factorial effect. This matrix was also the 

Kronecker product of idempotent matrices and therefore idempotent by a 

preliminary theorem.

The preceding developments provided a simple expression for the 

partition of the total sum of squares into the sums of squares due to

the factorial effects. The ranks of the matrices of the quadratic forms 

were determined and were related to parameters of non-central chi-squared 

random variables. Analyses of variance were presented in general and for 

selected simple examples.

Definitions» methods of construction» and analyses of variance 

were given for the randomized complete block design and the completely 

randomized design with factorial arrangements of treatments.
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This dissertation also gave an algebraic treatment of blocking 

and confounding of a single replicate of a factorial arrangement of treat

ments . The set of treatments of an n^ x ng x ... x n^ factorial arrange

ment was represented by the Cartesian product (in the respective order) 

of the residue classes of the respective moduli. The incidence matrices 

of the blocks of a plan were defined and the Hadamard product was used 

to explicitly define confounding of an effect with a block of a plan.

The Hadamard product of tensors that define confounded effects 

was seen to reproduce tensors which also defined confounded effects.

Linear combinations of confounded effects also are confounded. An effect 

confounded in each block of a plan was seen to be defined by some linear 

combination of the incidence matrices of the blocks of the plan. The 

number of mutually orthogonal effects confounded in every block of a plan 

is equal to the number of blocks of the plan. The class of orthogonal 

effects confoundable with a given plan was determined and a plan that 

confounds only a given set of effects was shown to be unique.

Necessary and sufficient conditions are established for confound

ing only the mean effect and components of the highest-order interaction 

with the blocks of a plan. This result leads to necessary and sufficient 

conditions for the existence of such a plan and is extended to apply to 

lower-order interactions or main effects.

The effects confounded in the intersection of two plans are re

lated to the effects confounded in the separate plans. Necessary and 

sufficient conditions for estimability of an effect are given.

It was established that blocks must be of equal size if only 

the mean effect and components of an interaction effect are confounded.
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Aside from the mean effect if the effects confounded by one plan are 

orthogonal to the effects confounded by a second plan and the blocks of 

both plans have common sizes then the intersection of the two plans yields 

a plan whose blocks are of equal size. Tlie latter plan confounded the 

effects confounded by either plan and the generalized interaction of the 

set of effects of one plan with the set of effects of the other.

It was shown that the generalized interaction of components of 

A^A2 ...A^ with components of A^A^^g^.. .A^ is a set of components of 

^1^2'* *^^r* * *^s Provided k<r. This result can be extended to the case 
where kzr if judicious choices of the two sets of components are made. 

However the actual construction of the two plans is difficult and it is 

easier to use the methods that have resulted from the theories of Galois 

field, and projective geometries.

This dissertation has attempted to provide broad insight into 

the construction of factorial effects and the representation of the quad

ratic forms thereof in a factorial arrangement of treatments.

It is hoped that the results concerning blocking and confounding 

will lead to an understanding as to when and why confounding is a worth

while procedure and will make for easier construction of blocking plans.
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APPENDIX I

B 0 C = 0 if and only if B = 0 or C = 0.

Proof: Necessity follows from definition.

If B 0 C = 0 then = 0 for each in B.

Thus B = 0 or C = 0.

Proceeding inductively, if B̂  ̂0 ... 0 = 0 implies B^ = 0

for some i then B_ 0 ... 0 B = 0  implies either B_ 0 ... 0 B , = 0 or 1 m 1 m-1
B = 0. Thus B. = 0 for some i. m i
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APPENDIX II

If ^i+1* **'* idempotent and non-zero then

F*(Cĵ , ...» C^) is idempotent if and only if is idempotent.

Proof ; Necessity follows by Theorem 2.4. If ...» C^) is

idempotent then

[F*(C^,...,CJ]^ = F*(cJ....,C^_J, C^,  C^) =

F*(Cj^j... ^1+1 * * * * * •••> . Thus

F*(Cj^j ...» 1* ^i+1* **** ^m^ ** ^ 3nd by
2Theorem 2.5 C^-C^ = 0. Thus is idempotent.
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APPENDIX III

If X is an n-dimensional vector, y is an r-dimensional vector 

and A is an nxr matrix, then (X 0 A)Y = X 0 AY.

Proof; (X 0 A)Y - (X 0 a^, X 0 Og, ... X 0 n^)Y =

(X 0 a^)yj + (X 0 a2>y2 + ... + (X 0 a^y^. =

X 0 («]̂ yĵ + “2^2 = X 0 AY where

A = (a^, Ü2, . , a^) and Y y 7 1

w /
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APPENDIX IV

If A, B, C, D are matrices of dimension nxr, mxs, nxq, mxp 

respectively then there exists a permutation matrix P such that 

(A 0 B) e (C 0 D) = [(A 0 C) 0 (B 0 D)]P.

Proof; (A 0 B) 0 (C 0 D) = (o^ 0 .... 0 0 B^,...,

® , « « » o^0Bj^, « « fO^0Bg) 0 ^p*

* * * *^2 ® YqO and

(A 0 C) 0 (B 0 D) = (oj^0Yj^,. .  .,Q^0Yq, «2®^^» • • • »“2®^q’ ' ”  ’ 

(î OYĵ , • • • ,ct̂ 0Yq) 0 (Bj^0f2̂, • • •,Bĵ 05p, B2®̂ ĵ > • • • »^2®^p’* * * ’ 
Bg05p) where a^, B^, Y^, are the i^^\

column of A, B, C, D respectively. Since both matrices are 

of dimension nm x rsqp and

(a^0Bj) 0 (Yĵ 06^) =

*liGj

'2k\

I

a2i®j ® C2k*t

a2i=2kGj ® \
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then there exists a permutation matrix P such that 

(A 0 B) 0 (C 0 D) = [(A 0 C) 0 (B 0 D)]P.

Proceeding inductively, if there exists a P^_j^ such that

(B,0 B-0...0 B -) 0 (C,0 CL0...0 C ,) = [(B.GC_)0(B_0C.)0...0(B .01 / m—X 1 z m—1 X X  z z m— 1

^m-l^^^m-1 then

(B,0...0B -0B ) 0 (C.0...0C ,0C ) =[[(B,0...0B .)0(C.0...0C 0X m—X m X m—X m X m—X X m—x

[(B,8c,)9...a(B ec )j(p„ ,8 i)p, .X X  m m  m—X z

(P^^ 0 lyPg is a permutation matrix and thus there exists a

permutation matrix P^ such that

F*(B,,...,B ) 0 F*(Ct ,...,C ) = F*(B.0C.,...,B 0C )P .X m X m X X  m m m


