Name: Walter Wollmann Lohrentz Date of Degree: May 29, 1960
Institution: Oklahoma State University
Location: Stillwater, Oklahoma
Title of Study: USE OF GREEK AND LATIN DERIVATIVES IN TEACHING HIGH SCHOOL BIOLOGY

Pages in Study: 52 Candidate for Degree of Master of Science
Major Field: Natural Science
Scope and Nature of Report: In the realization that the vocabulary of first year biology students is extremely large and that past experience has shown that teaching vocabulary by use of Greek and Latin derivatives makes the study considerably easier, a survey of the extent of its use was made. Questionnaires were sent to more than 1400 biology teachers in Oklahoma and six surrounding states in an effort to find out how many teachers used this method of teaching vocabulary. The survey form requested information regarding college major and minor, years teaching experience, list of foreign languages taken in college. Also included was a list of 185 words of Greek and Latin origin. The recipient was asked to check those words taught by the derivative method.

Findings and Suggestions: In general, the survey results show that teachers using the derivative approach to teaching vocabulary are those having majors in biology, have had Greek and/or Latin in college and have had a greater length of teaching experience. It is suggested that preparatory teaching courses include work in Greek and Latin derivatives and that suitable lists of words be made readily available to teachers.

ADVISOR'S APPROVAL

USE OF GREEK AND LATIN DERIVATIVES
IN TEACHING HIGH SCHOOL BIOLOGY

By
WALTER WOLIMANN LOHRENTZ
Bachelor of Arts
Bethel College
North Newton, Kansas
1944

[^0]USE OF GRUEK AND Latin derivatives
IN TABCHING HIGH SCHOCL BJOLOGY

Report Approved:

ACKNOMLEDGMENTS

The writer acknowledges his indebtedness to the person whose assistance made this report possible.

Sincere appreciation is offered to Dr. Imy V. Holt for his continuous assistance, helpful criticisms and considerate interest throughout the study.

The writer also wishes to thank Dr. James H. Zant, Dr. Carl E. Marshall, Professor George H. White, Mr. Robert J. Boles, and Mrs. Grace Whitam for their critical analysis as the report was progressing.

A special thanks to Mrs. Doris Pankratz, Mrs. Betty Minnoch, Mrs. Diane Celarier and the writer's wife, Bonnie, for their assistance in mailing the survey form and typing the report.

TABIE OF CONTENTS
Chapter I Introduction 1Survey of Literature 2Preparation of Survey Form 5Chapter II Tabulation and Analysis of Returns 7Resume of Comments Included with leturns 30
Chapter III Conclusions 38
Literature Cited 40
Appendix 42

INDEX OF TABLES

Table Page
I Number of Mailings Compared with Returns 8
II Comparison of Number of Returns with Those Teachers Reporting a Foreign Language in Their College Training 9
III Percentage of Teachers Reporting Having Taken Latin and/or Greek in College . 10
IV Comparison of Number of Terms used by Teachers Having Had Latin and/or Greek and Those Not Having Had Latin or Greek . . 11
V Comparison of Teaching Experience of Those Reporting Latin and/or Greek and of Those Reporting No Latin or Greek 12
VI Number of Teachers Reporting Having Either Major or Minor in Biology 13
VII Comparison of the Number of Terms Used by Teachers Having Biology Major or Minor and Teachers without Biology Major or Minor 14
VIII Average Number of Terms Used Compared with Number of Years Teaching Experience in Biology 15
IX Composite Sheet of Information Pertinent to Each Term $17-26$
X Percentage Use of Prefixes 27
XI Percentage Use of Suffixes 28

CHAPTER I

INTHODUGTION

It has been stated that a first Jear biology stuatent mil need to develop a vocabulary, similar in size, to that of e stuaent taking his first year of French.

Reelizing thet the vocabulary is inmense, any method which will facilitate better comprehension will lessen the work for the studunt and make the course more enjoyable for both teacher and the student. From past experience, it has been found that the use of derivatives in teaching the vocabudary has been one of the best methods.

This report has been written as the result of a survey to find out to what extent teachers are using derivatives of Greek and Latin origin in teaching word meaning, Any other factors which an analysis of the returns showed as being pertinent to this report also has been discussed.

One of the writer's puxposes through this study has been to acquire an inereased knowledge of Greek and Latin terminology for use in improving his teeehing methods.

SURVEY OR LITBRATURE

The study of Greek and hatin derivatives should be important to us in understanding the Thylish vocabulary, since about 155060 per cent of English words have their origin in Latin. ${ }^{17}$ hore tham 8 per cent are derived from Greek. ${ }^{2}$ Approximately 75 per cent of words comprising our present-day medical vocabulary have Greek derivation. ${ }^{3}$ This would include many of our biological terms.

In contrast to vast usage of Greek and Latin terms, we find that the teaching of Greek and Latin in our public schools has diminished extensively during the past hali century. In 1900, 50 per cent of our high sehool students were studying Latin. By 1955, only 7 per cent were enrolled in Latin classes. 4 One half of the nation's schoole offer no loreign language whatsoever. ${ }^{5}$ "It seems that only 2 名 of the pupile working for the school certipicate study Greek, and that these are mostly boys. The English languge needs reviewing in the light of our rapidyy increasing
I_{K}. A. Sarafain, "Iatin in the Gurriculum," School and Society, IV (February 14, 1942), pp. 173-177.
${ }^{2}$ F.W. Gingrich, Whe Greeks - We Take Their Word for It, Soholastic, XXXIV (May 13, 1939), pp. 25-26.

3Edmund Andrews, A History of Scientisic English (New York, 1947)s p. 130.

4nsign of Life in Latin, "Newsweek, LII (Iuly 21, 1958), p. 84.
${ }^{5}$ S. D. At Kins et al. "Status of Latin in Fubiic Schools, ${ }^{\text {B }}$ School and Society, LXKXIV (Nowember 10, 1956) p. 166.
scientific vocabulary, which is almost entirely derived from Greek." 6 Further indication of the importance of $L \operatorname{tin}$ is shown in statement by Franklin P. Adams: "Teachers of English in colleges and universities have told me that most of the boys who ente) without Latin can't write en English sentence. They don't even know the meaning of words. . . ."7 To emphasize this point: ". . . . pupils who had studied Istin, for but a single year, when compared to those who had not studied it at s.ll, proved to be two to three times as likely to recognize the meanings of the words like parental, potent, and what is a more practical everyday accomplishment than to be able to manage a good English vocabulary. . . ?"! 8

One of the objectives of Latin, as stated by Mary Louise Jackson, is "the development of a working vocabulary, both in terms of realization of clusters of English meanings around a particular Latin word and in terms of recognition and use of derivatives."9

Students are capable of enlarging their vocabularies in this way without actually taking the usual courses in Latin and Greek. It can be accomplished through the study of Latin and Greek prefixes, suffixes, and root clusters. Caution in method and degree of presentation is offered in the statement, "Teachers are specially requested to confine their pupils

[^1]to the prefisen and mufices, thl thece compound partes art lemrmed in s most thorough manner.": This may then be supplemented by the learning of primatives or rcots to gain the foundations of good vocebulary. The following ponsage indiaetes this quite well. "A knowledge of 25 uatin prefixes and 50 Letin suffixes in combingtion with about 50 Jetin primetives will give one a command of English voctublary such as con be gained in no other way. . . . Tatin is an economiog way of gaining mastery of English vocabulary." The author of this paesage does not glve suggested list of the 125 words whoch he had in mind.

The intereture to be found in the fleld of this report wss extremely Imited. Moet of the IIterature complied in this Gurvey of Literature is not previous work done in this apecific fleld, but, rather, the lost final progreastonal efforts prior to the report.

10salem Tow, An An 1 gote of Derdvative Worde in the Mglish Innguage (New fork, 1852), pi9.

1Fred s. Dunbam, "mby Matin testhere Tesoh Derivetion," School Revicu, LTI (June, 1944). pp. 356.6%.

PREPARATION OF SURVEY FORM

A survey of previous litersture in this field showed very little evidence that any work had been done in the srea of determining to what extent Greek and Latin derivetives were being used by high school biology tegchers to ease the work of the student.

It was originally decided to send a survey form questionnaire to about two hundred biology teachers to find ex pertiel ancwer to the gtated topic of the report. Reslizing that the returns would be so smill that validity of conclusions would be negligible, it was later decided to mail the form to approximately fourteen hundred high school biology tegchers in Oklohoma and surrounding States.

A replication of the form sent to the teschers is included in the arnenalx of this report. Information was sought concerning teaching experience and foreign Iangunges taken in college. In dddition, they were recuested to select from a given list of words those most of ten used in the teaching of derivatives.

The following is list of sources from which the words were pelocted:

Walter P. Agsrd and Herbert M. Howe, Medical Greek and Latin at alance (New York, 1955)

Robert M, Boles, Principles of Biologicsl Terminology (1957)
Dale E. Braungard and Sn. Reta Buddeke, Biology the Study of Living Thingg (Garden City, 1957)

Edrund C. Jeeger, A Source-Book of Biological Nomes and Terms (Springfield, 1950)

Lorus J. Milne and Margery J. Milne, Biotic World and Man (Englewood Cliffis, 1958)

John W. Ritche, Biology and Human Affairs (Yonkers on Hudson, 1948)
Ella Thea Smith, Exploring Biology (Chicago, 1949).
A majority of the terms came from the text by Braungard and Buddeke which hasexcellent lists of biological terms and their origins, prefixes, and suffixes, and root words and their derivatives. Other sources proving quite useful were the publication of Robert J. Boles and A SourceBook of Biological Names and Terms by Edmund C. Jaeger.

More than two-thirds of the terms on the survey sheet were those commonly found in biology texts. In most cases, however, the terms were placed in the original Greek or Latin form.

These survey forms were mailed to 1,426 high school biology ter chers in a seven-State area including Arkansas, Colorado, Kansas, Louisiana, New Mexico, Oklahoma and Texas. Names were secured from the National Science Teachers Association.

CHAPTER II

TABULATION AND ANALYSIS OF RETURNS

As the returns were received, all the information from each return Wr tabulater on master sheets. This was done on gtate-by-State basis. IWenty-five d.ys after the forms had been mailed, the incoming mail hasd dropped to an average of two letters per day. At this time, 310 returas had been received, and receipts after this date were not included on the master sheets. However, these late returns were filed, and data of exceptional value, i.e., correspondence included with the return, was added to this report.

According to statisticisns working in the survey field, survey conducted by mail brings relatively poor results-not, primarily, because of the number received, but because of the type of individual completing the form. The persons returning this survey form were generally considered those interested in biology, and, more specifically, those biology teachers interested in vocobulury building. As a result of this, the survey is considerably biased. The writer was not aware of the extensiveness of this foctor until most of the returns had been received.

Table I shows the number of forms mailed, number of returns, and percentage of returns by states. "Other States" indicated in this table are Delaware and Connecticut (six mailings to Delaware and severteen, to Connecticut), "Unknown" returns were those in which it wes impossib? to determine from which state they had come. (First sheet of survey which
has been removed, and the postmark could not be identified.)
The average percentage of returns was slightly more than 20 per cent. The higher percentage from the State of Kansas may be due partially to the greater number of mailings to that State, but principally to the fact that the writer is a Kansan, and better acquanted with biology teachers in that State. The writer, however, took no part in selecting the teachers to be placed upon the mailing list.

The relatively poor response from Oklahoma and Arkansas probably can be attributed to the small over-all sampling in those States, thus reducing validity of conclusions drawn from these returns.

TABLE I
NUMBER OF MAILINGS COMPARED WITH RETURNS (NUMBER OF RETURNS AT THE END OF THREE WEEKS)

State	No. Mailed	No. Returns	\% Returns
Arkansas	153	17	11
Colorado	188	47	25
Kansas	278	85	31
Louisiana	240	51	21
New Mexico	76	18	24
Oklahoma	251	40	16
Texas	217	46	21
Other states	23	4	17
Unknown	-7	2	$-\cdots$
Total		$\overline{310}$	Approx.

TRBL II

 A porsigh lamguag in metr conreas Thaminem

*Credit ia given in this report for two years of a acectace language in high school.

Table II oomares the manom of semmen (by states sem tokal) to

 cedit. (Forelgn language in high suhool wes mot inchured in the

 identimied.

TABLE III

PERGENTAGE OF TEACHERS REPORTING HAVIIVG TAKEN
LATIN AND/OR GREEK IN COLLEGE*

*Credit is given in this report for two years of a specific language in high school.

Table III is a comparison by State of the number and percentage of teachers reporting having studied Latin and Greek in college. Tables II and III indicate that more than three-fifths of them have had courses in Latin and/or Greek, The very small percentage reporting Greek coincides with information found in the survey of previous literature.

Table IV deals with the 185 words on the last two pages of the survey form. Teachers were asked to place a_ before the terms they used frequently when teaching derivatives and a 2 in the blank before the words which they seldom used. The total "ones" and twos" were added together from the master sheet as one number for each teacher

TABLE IV

- COMPARISON OF NUMBER OP THRMS USED BY TEACYERS HAVTMG EAD LATMV AND/OR GREFK AND THOSR WGE ERVDUG MAD IAWIS OR CREEK

Average Number of Tems Used By Teachers Having Ead Latin and/or Greek		Average Iumber of Terins Used By Teachers Mot Finving Had. Latin ou Greek
Arkanses	116	63
Colorado	82	72
Kansas	97	81.
Loulstiana	108	55
New Mexico	92	78
Oklahoma	99	79
Texes	93	59
Average Mumber	98	69
-		

reporting Latin and/or Greek. The same was done for teachers that had not taken Latin or Greak. The siverage number in both categories was also found.

Indications here wre the teachers having had Latin and/or Greak in college taugh, on the average, to per cent more torms using the deravatives method.

There were two retums which indicgted courses in Latin and Grees derivatives. This was not a large nough number for comparative study. This, however, is the type of course fyom which one world derive the greatest benefit in teaching by the derivative methoa.

TABIE V
COMPARISON OF TEACHIITG EXPERIENCE OF THOSE REPORTIIUG LATIN AND/OR GREEK AND OF THOSE REPORTING NO IAATIN OR GREEK

	Average Teaching Experience in Years of Those	
State	Reporting Latin and/or Greek	Not Reporting Latin or Greek
Arkansas	20	6
Colorado	14	12
Kansas	17	12
Louisiana	18	13
New Mexico	22	11
Oklahoma	22	12
Texas	22	12
Average	20	11

Table ∇ shows the average years of teaching experience of those teachers reporting Latin and/or Greek as compared with those reporting no Latin or Greek. This is, also, although to a lesser degree, an indication of the age of the reportee. The average of the sum of all States is also indicated.

The table exemplifies what one might expect to find. Initially, a greater length of teaching experience shows that these people were going to school at a time when a majority of students was taking Latin-ma ratio of 2:1. Secondly, longer teaching experience better acquaints a teacher with the subject.

Table VI is a comparison by State of the number of individuals having biology majors or minors and those teachers reporting neither a major or

TABLE VI
NUMBER OF TEACHERS REPORTING HAVING EITHER A MAJOR OR MINOR IN BIOLOGY

TABLE VII

COMPARISON OF THE NUMBER OF TERMS USED BY TEACHERS HAVING BIOLOGY MAJOR OR MINOR AND TEACHERS WITHOUT BIOLOGY MAJOR OR MINOR

State	No. of Terms Used By Teachers Having Biology Ma.jor or Minor	No. Of Terms Used By Teachers Not Having Biology Major or Minor
Arkansas	89	64
Colorado	85	49
Kansas	89	69
Louisiana	80	46
New Mexico	77	77
Oklahoma	88	79
Texas	69	52
Average Number of Terms Used - 82- . - 62		
biology major or minor. The "Number of Terms" is the total of the "ones"		
and "twos" checked on the survey form for each teacher. Teachers reportin		
that they did not use these derivatives were also included in this		
calculation. The average number of terms used by each group is also shown		
Teachers having backgrounds with emphasis in biology teach nearly		
one-third more terms by the derivative method than those without this		
background.		
Table VIII serves the purpose of comparing the years of teaching		
experience in biology with the average number of terms used. If the		
teacher lef	the experience category on	survey form, his form

TABLE VIII
AVERAGE NUMBER OF TERMS USED COMPARED WITH NUMBER OF YEARS OF TEACHIMG EXPERIENCE IN BIOLOGY

Average Number of Terms Used				
State Years Taught.	1-3	4-5	6-10	11-up
Arkensas	49	77	148	86
Colorado	95	47	67	103
Kansas	79	64	77	108
Louisiana	52	84	82	53
New Mexico	96	55	67	88
Oklahoma	72	95	85	100
Texas	65	77	40	81
Average Number of Terms Used	78	71	81	89

was not included in this table. The average number of terms for all

States has also been calculated for each column. The returns were nearly
evenly distributed among the four groups listed.
The general tendency is that those with more teaching experience used more terms. This does not hold true in the second column figure for $4-5$ years' experience in biology teaching. Doubtless, this is due to an inadequate number of returns.

Only 85 out of the 310 returns (24 per cent) indicated that they had been teaching at lease one section of biology each year of their teaching experience. Specific questions as to the reason for this were not asked.

Table IX is a composite sheet of information pertinint to each term. Column one indicates the number of the term as it appeared on the master copy and survey form.

Column two indicates the term--in most of the cases, appearing in an original Greek or Latin form.

Column three indicates an "L" for Latin, and a "G" for Greek origin. Column four gives one of the definitions of the term.

Column five shows the average percentage of times this term was reported; the "(\#I)" means the term occured often in teaching derivatives. Column six shows the average percentage of times this term was reported; the "(2)" means the term seldom appeared in teaching derivatives, Column seven indicates whether the term is used generally as a prefix; suffix, or root.

Column eight shows whether the term generally appears in the form shown in column two.

Column nine indicates (if answer in column eight is no) the form in which the term generaily appears. In most instances where the endings varied, no change was made.

Column ten notes other terms for which the term is easily mistaken. Column eleven indicates yes or no as to whether or not the term generally appears in at least two different words in high school biology texts.

Column twelve gives an example word using the term in column two. Approxinately two-thirds of the terms in the survey form are those which appear in at least two different words in most high school biology texts. Source of all terms has been stated previously in the report.

TABLE IX

Composite Sheet of Information Pertinent to Each Term

TABLE IX (Cont'd)

$\stackrel{\circ}{8}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { © } \\ & \text { Co } \\ & \text { H } \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 0 \\ & 0.0 \\ & 00 \\ & 80 \end{aligned}$						
18.	botane	G	plant	27	13	root	yes	-	-	yes	botany
19.	bryein	G	to well	4	11	root	yes	-	\cdots	yes	embryology
20.	color	I.	heat	24	17	root	yes	-	--	yes	calorimeter
21.	cata	G	down	19	16	root	yes	-	---	yes	catabolism
22.	chloros	G	light green	40	12	root	yes	-	---	yes	chlorophyll
23.	chole	G	bile	5	12	root	yes	---	---	no	cholestorol
24.	chroma	G	color	52	13	root	yes	--	---	yes	chromosome
25.	cide	I	kill	40	15	root	yes	---	---	yes	germicide
26.	-cle	L	small	19	15	suffix	yes	--	--m	yes	particle
27.	co, com-con-, cor	L	with	38	14	prefix	yes	-->	-mom	yes	cooperate
28.	corpus	L	body	47	17	root	yes	\cdots	-mom	yes	corpuscle
29.	cortex	\underline{L}	bark	49	21	root	yes	\cdots	\cdots	no	cortisone
30.	cospis	I	point	17	18	root	yes	--	---	no	bicuspid
31.	cutis	L	skin	19	15	root	yes	\cdots	-om	no	cuticle
32.	dem	L	down	43	12	prefoix	yes	-	--	yes	deciduous
33.	$1{ }^{\text {denos }}$	G	people	24.	16	root	yes	\cdots	moseo	no	endemic
340	derme	I	skin	72	10	root	yes	\cdots	-	yes	epiderm
35.	dio	$\underline{6}$	two	60	7	prefitx	yes	cac	Pamex	yes	dicotyledon
36.	dis, dys	I	apart	28	15	root	yes	\cdots	$\begin{aligned} & \text { dys, }(G) \\ & \text { ill, bad } \end{aligned}$	yes	dislocation

${ }^{1}$ Edmund C. Jaeger, A Sompe Book of Biologicel Names and Terms, C. C. Thomas Fub., Springfield, HI. $1950,574.03 \mathrm{~J} 22 \mathrm{~S}$

TABLE IX (Cont t)

$\stackrel{\circ}{8}$	$\begin{aligned} & 00 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { cIf } \\ & \text { of } \\ & 0.1 \\ & 0.8 \end{aligned}$									
37.	dorsum	L	back	26	15	root	yes	-	-	yes	dorsal
38.	ducare	L	to lead	13	8	root	no	duct	--m	yes	reproduction
39.	dys, dism	G	bad	17	12	root	yes	-	dys (I) apart	yes	Idysentary
40.	$\begin{aligned} & \text { ect- } \\ & \text { ex- } \end{aligned}$	L.	off, out of	66	6	prefix	yes	-m-	-	yes	external
41.	exo-ena-, en-endo-	G	in	57	6	prefix	yes	-	--	yes	endoderm
42.	-eidos	G	like	3	12	suffix	no	-oid	-	yes	euglenoid
43.	epi-	G	upon	61	9	prefix	yes	---	-	yes	epidermis
440	emia	G	blood	6	10	root	yes	\cdots	---	yes	anemia
45.	erythos	G	red	23	20	root	yes	\cdots	\cdots	yes	erythocyte
46.	ferra	I.	to bear	24	15	root	no	-fer	$\cdots \infty$	yes	conifer
47.	-fy	I	to malke	9	15	suffix	yes	\cdots	-mom	yes	identify
48.	game	G	to maxry	1.5	16	root	\#es	\pm	anglowsaron gamen-play	n yes	gamete
49.	gastro	G	stomach	59	14	root	yes	\cdots	\cdots	yes	gaster
50.	-sgen	G	to be	24	13	suffix	yes	-m-	\cdots	yes	orygen

${ }^{1}$ Walter P. Agard \& Herbert No Howe, Medical Greek \mathbb{L} Latin at a Glance (New York, 1955) Hoeber-Harper Pub. 610.14, A261m

TABLE IX (Cont'd)

\approx

TABLI IX（Cont，${ }^{1}$ ）

$\stackrel{\circ}{8}$	\％		$\begin{aligned} & \text { 咐 } \\ & \text { 룰 } \\ & \text { © } \end{aligned}$								
71.	iehthys	G	Pish	30	16	root	yes	－	－	yes	ichthology
72.	ileum	L	groin	24	23	root	yes			no	ileum
73.	$\begin{aligned} & \text {-ism, } \\ & \text {-ismmos } \end{aligned}$	G	condition	29	18	suffix	yes	－	－	yes	parasitism
74.	ite	G	aiv．of body	28	14	suffix	yes	－	－	yes	dendrite
75.	－itis	G	inflam－ ation	36	13	suffix	yes	－	－	yes	appendicitis
76.	inter－	\underline{L}	betseen	63	9	prefix	yes	－	－	yes	internode
77.	intram	L	within	60	13	prefix	yes		－	yes	intracellular
78.	kardia	G	heart	12	14	root	no	cardia	－	yes	cardiac
79.	karpos	G	wrist	8	14	root	no	carpos	－	no	carpal
80.	kephale	G	head	5	16	root	no	cephale	－	yes	cephalopod
81.	kimein	G	to move	3	13	root	no	kin	－	yes	kinetic
82.	kolla	G	glue	3	11	root	no	colla	－	no	colloid
83.	kotyledon	G	cup shaped	41	18	root	no	cotyledon	－	no	cotyledon
84.	kytos	G	hollow vessel	10	9	root	no	cytos	－	yes	cytoplasm
85.	Iatuss	\mathbf{L}	side	12	14	root	no	lateris	－	no	lateral
86.	Iac	\underline{L}	milk	26	15	root	yes	－	－	yes	lactation
87.	labrivem	\underline{H}	1ip	4.2	23	root	yes	－	－	no	labium
88.	－Iet	L	dimin utive	14	9	suffix	yes	－	－	yes	platelet
89.	17pos	G	fat	13	11	root	yes	－	－	no	lipoid

TABIE IX（Gont．${ }^{\text {d }}$ ）

$\stackrel{\circ}{8}$		$\begin{aligned} & \text { 도웅 } \\ & \text { 号 } \end{aligned}$									
90.	Iogos	G	science of	63	8	root	yes	－－	－－－	yes	biology
91.	lysis	G	loosening	17	12	root	yes	－－	－－	yes	hemolysis
92.	makros－	G	large	\％	13	prefix	no	macro	－－	yes	macronucleus
93.	mamma	I	breast	11	16	root	yes	－－	－－－	yes	nammal
94.	maxilla	L	jawbone	45	23	root	yes	－－	－－－	no	maxilla
95.	mensis	Li	month	16	12	root	yes	－－－	－－－	no	menstruation
96.	mesos－	G	middle	28	11	prefix	yes	－－－	－－	yes	mesoderm
97.	meter	G	several	56	12	prefix	yes	－－－	－－－	yes	metaphase
98.	milcros－	G	smal1	21	12	prefix	no	micro	－	yes	microscope
99.	mono－	G	one	72	6	prefix	yes	－－－	－－－	yes	monocyte
100.	morphos	G	form	38	17	root	yes	－－－	－－－	yes	morphology
101.	mucus	L	secretion								
			from nose	33	21	root	yes	－－	\cdots	no	mucous．
102.	mutare	I	change	13	13	root	yes	－	－－－	yes	mutation
103.	mykes	G	fungus	3	10	ront	no	myco	－－－	no	mycelium
104.	myos	G	muscle	8	13	root	yes	，	－－－	yes	myocarditis
105.	nema	G	thread	26	13	root	yes	－－－	－－－	yes	Nemahelminthes
106.	nephros	G	kidney	26	17	root	yes	－－	－	yes	nephritis
107.	neuron	G	nerve	53	23	root	yes	－－	－－－	yes	neuron
108.	nodus	\underline{L}	knot	18	16	root	yes	－－－	－－	yes	nodule
109．	nutrire	I．	nourish	7	12	root	yes	－－	－－－	no	nutrition
170.	oculus	I	eve	27	14	root	yes	－－－	－－－	no	oculist
111.	oikos	G	house	5	11	root	no	eco		no	ecology
112．	oion	G	egs	6	11	root	no	oon	－－	no	oogonia

table IX（Cont＇d）

$\stackrel{0}{8}$	$\begin{aligned} & \text { W } \\ & \text { W } \\ & \mathbf{0} \end{aligned}$	\＄ \＄ \％ 8	$\begin{aligned} & \text { 휼 } \\ & \text { 흉 } \\ & \text { © } \end{aligned}$								
113.	opsis	G	appear－ ance	9	12	root	yes	－	－	no	pteropsid
114．	optikos	G	pert．to sight	6	13	root	no	opticos	S	no	optical
115.	organon	G	instrument	14	15	root	yes	－	－	no	organ
116．	－osis，	G	condition of	26	17	suffix	yes	－	－	yes	metamorphosis
117．	osmus	G	pushing	12	11	root	yes	－	－	no	osmotic
118.	ovi ovo	$\underline{1}$	egg	54	18	root	yes	－	－	yes	oviparous
119.	palaios	G	old	4	11	root	no	paleo	－	yes	paleontology
120．	parere	L	bring forth	6	10	root	no	parous	－	no	oviparous
121.	parem	G	beside	41	20	prefix	yes	－	－	yes	parasite
122.	pathos	G	suffering	34	19	root	yes	－	－	yes	pathogenic
123.	pellis	${ }_{\text {L }}$	skin	7	12	root	yes	－	－	no	pellegra
124．	peptein	G	to coolk	10	22	root	yes	－	－	yes	pepsin
125.	peri－	G	around	39	16	mrefix	yes	－	－	yes	pericardium
126．	phaggein	${ }^{6}$	to eat	7	10	root	yes	－	－	yes	phagocyte
127.	pharynax	c	chasm	50	21	root	yes	－		no	pharynx
128.	pherein	G	to carry	2	9	root	no	phore	－	no	chromatophore
129．	pholbes	$\underline{6}$	fexr	20	13	ront	yes	－	－	yes	hydrophobia

TABLE IX (Cont $^{\prime}$ d)

TABLE IX (Cont'd)

$\stackrel{\circ}{8}$	$\begin{aligned} & \text { od } \\ & \text { B } \end{aligned}$										
150.	schizein	G	to split	9	10	root	yes	---	--	no	schizont
151.	s scare	L	to cut off	5	12	root	no	seg	-	no	segment
152.	sepein	G	to make putrid	4	10	root	no	sepsis	---	no	antisepsis
153.	seta	I	stiff	41	15	root	yes	---	---	no	seta
			hair								
154.	sitos	G	food	6	11	root	yes	---	--	no	parasite
155.	solvere	L	to dissolve	11	12	root	yes	---	--	no	solvent
156.	soma	G	body	27	14.	root	yes	---	---	yes	chronosome
157.	spirare	L	breathe	13	11	root	yes	--	---	yes	respiration
158.	stamen	L	thread	45	22	root	yes	--.	--	no	stamen
159.	steros	G	solid	13	13	root	yes	---	---	no	progesterone
160.	stoma	G	mouth	52	17	root	yes	--	---	no	hyyostome
161.	streptos	G	twisted	19	15	root	yes	-	---	no	streptococcus
162.	sub-	L	blow	57	8	prefix	yes	-	---	yes	subnormal
163.	$\begin{aligned} & \text { sym-, } \\ & \text { syn- } \end{aligned}$	G	with	38	12	prefix	yes	--	--	yes	symbiosis
164.	tarsos	G	flat of foot	24	8	root	yes	---	---	no	metatarsal
165.	temnein	G	to cut	2	9	root	no	tom	---	yes	anatomy
166.	terra	L	land	57	12	root	yes	~--	---	no	terrain
167.	testes	L	witness of vir- ility	40	24	root	yes	--	-	no	testis

TABLE IX (Cont'd)

0°	$$	g \% \% ¢						$\begin{aligned} & \text { 星 } \\ & \dot{4} \\ & \dot{4}{ }^{\circ} \mathrm{O} \\ & \vdots 0 \\ & 0 \end{aligned}$			
168.	therme	G	heat	23	10	root	yes	---	---	yes	thermometer
169.	thrix	G	hair	5	11	root	no	trico	-	no	trichocyst
170.	thyreos	G	shield	3	11	root	no	thyro	---	no	hyperthyroidism
171.	tomos	L	to cut	6	10	root	yes		---	yes	anatomy
172.	toxicon	G	arrow poison	15	13	root	yes	---	---	yes	toxic
173.	trachys	G	rough	16	13	root	yes	---	---	no	trachea
174.	trans-	L	across	55	11	prefix	yes	---	---	yes	transportation
175.	trophos	G	feeder	15	12	root	yes	---	---	yes	atrophy
176.	tropos	G	to turn	19	14	root	yes	---	---	yes	tropism
177.	tri-	G	three	69	8	prefix	yes	---	---	yes	tricuspid
178.	vacca.	L	cow	23	7	root	yes	---	---	yes	vaccination
179.	vas	L	vessel	30	19	root	yes	---	-	yes	vascular
180.	vena	L	vein	45	18	root	yes	---	-	yes	vein
181.	venter	L	belly	14	12	root	no	ventr	----	yes	ventral
182.	vita, viva	L	life	36	17	root	yes	--	---	yes	vitamin
183.	volvere	L	to turn	19	13	root	no	valv	--	yes	univalve
18\%.	vorare	L	devour	6	9	root	no	voro	---	yes	carnivore
185.	zoon	G	animal	32	11	root	yes	---	----	yes	zoology

It may be of interest to note that the percentage of times the term was used infrequently (those terms marked with a 洊2) has a narrow range for 2 the entire list of 185 terms; generally, between $10-20$ per cent. This may be seen on Table IX. Naturally, those terms appearing in the same form as commoniy found today--those in the average individual's vocabulary, etc.-showed greater percentage of use.

TABLE I
PERCENTAGE USE OF PREFIXES

Survey	Form No.	Prefix	\% Use	Survey Form No	Prefix	\% Use
	1	a-, an-	85	76	inter-	72
	2	ad-	60	77	intra-	73
	8	anti-	84	92	makro-	21
	15	bi-	85	96	mesos.	39
	27	co-, con-, com-,	52	97	meta-	68
	32	de-	55	98	micro-	33
	35	di-	67	99	monow	78
	40	ect-, ex-, exo-	72	121	para-	61
	41	en-, em-, endo-	63	125	peri-	55
	43	epi-	70	139	poly-	72
	58	hemi-	78	144	protos-	29
	61	heteros-	51	162	sub-	65
	63	homo-	83	163	sym-, syn-,	50
	68	hyper-	81	174	trans-	66
	69	hypo-	80	177	tri-	77
Average percentage use for all prefixes - 68%						

TABLE XI
PERCENTAGE USE OF SUFFIXES

Survey Form No.	Term	8Use	Survey Form No.	Term	\% Use
26	-cle	34	74	-itc	42
42	-eidos	15	75	-itis	49
47	-fy	24	88	-let	23
50	-gen	37	90	-logos	71
70	-ic, -oic	37	113	-opsis	21
73	-ism	47	116	-osis	43
		Average percentage use is 36%			

Prefixes generally show the highest percentage of use--an average of 68 per cent by Table X ; next are suffixes which show an average of 36 per cent use, as shown in Table XI.

In cases where the original Greek term was of a different form from the form it takes today, the percentage was notably lower. A good example of this is in the suffix, "-eidos" (Term No. 42), meaning "like;" which is used in words today as "-old." The term is possibly as well known as most other suffixes, but would probably be familiar in the form listed only to those teachers having a background in Greek.

Again, this can be illustrated in the Greek term for blood, "haima" (Term No. 56), which had 13 per cent usage, as compared to the form "emia" (Term No. 44), with which we are more familiar, which had 16 per cent usage. In this case, the same word was listed twice, in two different forms.

The Greek term, "temnein" (Form No. 165), meaning "to cut"--1I per cent, and the Latin term, "tomus" (Term No. 171), meaning "to cut"-- 16 per cent, are both generally used in the form, "tom," today. This is an example of how two terms having different spelling but the same meaning from different languages are used as one term today.
"Homo," a Greek term meaning "one and the same"--83 per cent, and "homo," today, but have different meanings. Although the percentage of usage was high, it is doubtful if this number of teachers realized both meanings, as Indicated from over-all percentages of all terms.

The use of the letter "k", as found in "kardia," instead of "cardia," seemed to be quite confusing to many people. This term, (Term No. 78), was marked by only 26 per cent of the teachers. This common term being listed by so few seemed to indicate a lack of knowledge of Greek. More than half of our biological terms are of Greek derivation.

The duplication of the term, "pulmo" (Term No. 141), meaning "lung"-50 per cent, and "pulmo" (Term No. 246)--46 per cent, was not intentional; but it might indicate that the majority of teachers had tired by this point. The over-all picture of percentages shows a considerably larger number of terms checked among the first twenty-five terms than in the last twenty-five. The last eight terms of the list (on the survey form sent to the teachers) were placed on a separate sheet. A noticeable number of teachers who had checked many terms on the first page left the second page blank.

RESUME OF COMMENTE INCuDD WITH PEMPRNS

Although the writer had wot specifically asked for comments, he received a wide veriety of them on approximately 20 per cent of the returns. feeling that many of these were pertinent to the report, the writer has teken the liberty to include some of them.

The identity prior to esch quotation hes the following meaning:
Bi. Mejor No. of Yrs. No. of Yrs. For. Lang. No. of 105 Survey
or Tesching H.S. Biol. Taken In Derivatives which Bi. Minor Experience Teeching College* He Teaches In Class

Example: Yes - 4-2 French-German - 75
*If return indicated two or more years of s specific langaege were taken in high school it is recorded here.

First, a comment from a former biology teacher, presently the head of the science department in a large school, who conpleded the retarn in lieu of a biology teacher:

Yes - 7-4-German - 70-"Knowing the poor rete of returink one sometimes gets on surveys of this neture, I am taking the liberty to completo this form, . . . hope that it may be of velue."

Numerous similar comments were recelved.

Concerning comments from proponents of the plang the following is possibly the most emphetic:

Yes - 35-16 - Letin-SpanishmFrench - 182-". . there should be State law thet seny child who has an T. Q of 110 or over be foreed to
take at least one semester of Latin and one of Greek--just to learn derivation of words."

Additional comments from teachers using derivation follow:
No date - 98 - "Am delighted that you are doing this study. . " find study of roots an indispensable method of vocabulary building in high school."

No - 33 - 25 - German-Latin - 127 - "Ilike your report and am happy to check what I use in learning meaning and spelling of new words,"

Yes - ll - ll - 0-82 - " . . . definitely sold on using prefixes and suffixes to explain meanings of words--particularily for ketter students who go to college."

Yes - 7-5 - German-Latin-Greek - 136 "Am a firm believer in teaching terminology from the root words."

- 11 - 6 - Latin - 11 "Was very interested in your topic. I do try to stress the Latin and Greek derivation. . . . It seems that today so few high school students take Latin constantly feel that I should stress it more."

No - 19 - 5 - Latin-French-Greek - 86 - ". . . find that my limited study of Greek has helped me tremendously. It is the difference between understanding the descriptive meaning of the terms and simply memorizing them. . . . if we could get more help from spelling teachers so that by the time students get to second year high school they would know common prefixes-roots-suffixes."

No - 12 - 12 Latin-French - 158 - "I have five biology students who are also taking Latin this year. I find that I get much more interest and motivation in relating root words to the word derivatives which they
use in their work. It makes the vocabulary work much more mesningful and I"m sure it adds interest to their Lstin when they dincover how it helps them in their other classes. It certainly helps them build sine vocabulary which hes meaning."

Yee - 18-10-German-Iatin-Spanish-French - 184-". . . would do much better hed T not dropped the only Creek course I ever getarted - . . . believe strongly in using words and building new ones in the lesson period."

No - 4-3-0-131-". . . am an English teacher and I use words (derivatives) to teach meanings and usage, and to build vocabulary. I couldn't teach any subject without presenting word meaning and significances first."

No - 6-3-Sparth - 42 - "This (1ist) is difficult to do, becauge we probably use mony noxe roots, prefixes, and suffixes than we are awtre of while we are explaining terms. . . . this method is just one of gny number of means of teaching meanings."

No - 5-4 - Greek-Eebrew - 37-". . . I think thet a glossmry of root words (Greek and Latin) would help in teaching biology se well as other sciences."

Yes - 2-2-78-"In my two short years of teaching biology,... I used these prefixes and suffixes to a great extent. . . ."

Yes - 23-23-French - 53-". . . seldom use of roots in beginming biology, but I usually do in advanced-especially in anatomy."

Yes - 11 - 11 - Norwegian-French-Greek - 98-". . . an appreciation of the basic structure is important. . . . It might be of interest to you to know that Latin and Greek vocabulary are my hobby."

Yes:-4-2-Latin-French -". . not a class period goes by that we do not discuss derivation of some term-with the help usually of Webster's dictionary, . . . I notice a marked "carry over" particularily in those students studying Latin. . . . I only wish that our text books included derivatives in the glossaries."

Yes - 4-4-Latintion- "I use meaning of words in Greek and Latin for ali phylum and class--and most of the examples. . . . It seems students get a better concept of classification and retain them longer."

Yes - 13 - 10 German-Latin - 79 - "Most times the Greek or Latin word is not given directly but a statement such as: This comes from the Latin word which means "life"' and the use of the word as In 'vital,' 'vitamin' or 'vitality' often brings forth the word from a pupil then taking latin or who has taken it.
"Another technique is to take the prefix, etc., as it is commonly used, indicate the meaning and illustrate various words in which it may be found, i.e., micro = small, microscope, micrometer, microtome, microptera (Romalea).
"I think teaching vocabulary by use of word derivatives very useful and frequently wish I had studied Greek."

Yes - 9-6-German-Spanish - 185-"I am rather pleased someone is doing work such as this. . . . Biology has long suffered a bad name by having so many 'long' words--they, in turn, not being taught through their real meaning--this is the way they should be taught."

Examples of individuals carrying on more extensive programs than that requested in survey are as follows:

Yes - 8-7-Spanish - 74 - "I use the derivatives even now in other classes (English and Spanish)."

Yes - 41-36 - Spanish-French - 137-". . . emphasize derivatives of words, both Latin and Greek, for general science and biology, also in 'environs', French - 'surroundings,' and 'grosbenk,' German for 'large bill' meaning ' cardinal.' Youngsters usually like such explanations."

There were many persons who did not use the derivative method of teaching vocabulary--most of those that made comments did not seem to understand how to use this method, as evidenced by some of the following quotes:

Yes - 21 - 12 - French - ". . . do not teach derivative . . . too much when you have six classes a day--five other than biology."

Yes - 7-7-60-". . . have enough trouble with students trying to understand English. I use strange words as little as possible. Only two to three students of my 150 will ever go into biology work. I would be spending time teaching something of little importance to the majority."

Yes - 40-30-French - "It seems to me you are wasting your time. * . My biology teaching has all been done at the secondary level, very successful and happy classes. But I keep it on that level. Far too many who are teaching biology are ruining it for high school youngsters. ..."

Yes - 7-3-1. . .regret to say that I do not emphasize this approach to vocabulary as I cannot convince myself of its import."

Yes - 8-1-". . . Seldom use any Latin or Greek words in any of my classes and therefore do not use derivatives in teaching meanings of words."

Tes - 8-6-". . . don't teach vocabulary by use or derivatives except that some word derivatives may come up in class discussionthats all!"

No-8-5-"I do not spend much time on teaching vocabulary for teaching word derivatives for the simple reason I do not know much about it myself. I do have a collection of words that I hand out for reference. . . "

No - 9-3-"Since I have had no foreign language, I don't use any of the above derivatives."

No - 12-2-". . . teach vocabulary and spelling; but teaching derivation is time consuming."

Yes - 8-4-French - 27 - ". . . feel that the time spent in memorizing them could be spent to cover more of the many interesting phases and specimens related to biology. . . . Naturälly, $I^{\prime} m$ hoping you are trying to help rid our courses of Latin and Greek terms, but have a feeling you are not."

Yes - 46-35-German-Latin-French-Spanish-". . . very few teachers who teach Latin or Greek teach them so that they have any connection with biology. I doubt that one Greek or Latin teacher in a thousand ever took a course in biology unless it was forced upon him. : I approve of a course in Greek and Latin roots. . . It is just as easy to teach the words that come from the Latin or Greek in biology to high school students in other ways. Most high school students have had neither Latin or Greek, so in most cases it is lost effort to introduce a second or third unknown to them. . . ."

Yes - 36-36-Spanish - 53-"For sophomore high school students,
many of whom are C or sub-C quality and have never studied a foreign language, it is a bit difficult to get across to them anything other than "so what'!"

The following selections are from teachers not using derivations, but emphasizing vocabulary.

Yes - - 2-2 - "We do not teach word origin to any extent; however, with regard to scientific names, we do try to emphasize word recognition based on use of ancient Latin and Greek origin of the roots. . . Beyond this we teach structure, relationship and function with considerable emphasis on recognition."

No - 1 - 1 - German-French - 13 -". , . teach very little vocabulary by use of word derivatives. I teach a lot of vocabulary because it is important for high school students; however, most of this is done by association of a name with some object, function, etc.

Several teachers made reports comparable to the following statement:
Yes - 3-2-Latin - 148-"You are conducting a very interesting study. Since I have never made a special study of Greek and Latin derivatives, I would like very much to read the results of your study."

In several instances, lists of terms used by the reportee in his classes were returned with the completed survey form. In addition to this, the following references were made to lists available.

Yes - 2-2-74-"Enclosed you will find a copy of a paper prepared by Mr. Robert Boles (OSU graduate student) a few years ago to be used by our high school classes. We find the list of great value in building a working science vocabulary."

There were three other returns which made reference to the work of

Mr. Boles. Two references to Dr. Featherly's work were also listed. Yes - 28-25 - Latin - Spanish - French - "I have found it (Taxonomic Terminology of Higher Plants by H; I. Featherly) to be very good."

Possibly the greatest number of letters received were from teachers having an inquiring nature into the subject since it was not familiar to them. Following are some examples of this:

Yes - 7-3-German - 59- "This is an idea I may be able to use. Perhaps I'm missing something by not teaching derivatives. Thanks for the idea."

Yes - 22-5-7-"Many of them have no meaning to me at all. I only wish I knew Latin derivatives."

These and similar statements, in themselves, would have made the report worth while.

CHAFTER III

CONCLUSIONS
Results of the survey indicate that teachers having majors in biology, Greek and/or Latin in college and greater length of teaching experience taught more word meanings, by use of derivatives, than teachers not having these qualifications. The over-all percentages of terms used seem to be relatively low, as compared to the number which are found in biology texts.

Since only two individuals reported specific courses in Latin and/or Greek derivatives, probably biological terminology was not stressed in these two language studies. At best, the biology and language courses would have had a few common prefixes and suffixes.

The survey indicates that many teachers realize their inadequacy in this field and have professed an interest in learning more. The following suggestions are propounded, not only on behalf of the biology teacher (and his students), but also, for other science teachers or all teachers.

1. That teachers take a course in Greek and Latin derivatives while in college.
2. That lists of prefixes, suffixes and roots be placed in the hands of each biology teacher. (List compiled by Robert J. Boles is among the best.)

This could be accomplished through:

1. Departments of Education in the various states.
2. Biological journals.
3. National educational journals to which most teachers subscribe.

LITERATURE CITED

Adams, Franklin P. "Is Latin Useless." Time XXXXIX (April 14, 1947 93.

Agard, Walter R. and Herbert M. Howe. Medical Greek and Latin at a Glance. New York: Hoeber-Harper, 1955.

Andrews, Edmund. A History of Scientific English. New York: Richard R. Smith, 1947, 130.
"An English Investigation of the Values of Greek as a School Study." School and Society, LVI (August, 1942) 95.

Atkins, Samuel D., et al. "Status of Latin in Public Schools." School and Society IXXXIV (November 10, 1956) 166-167.

Boles, Robert J. "Principles of Biological Terminology." Kansas State University, 1957.

Braungart, Dale E. and Sister Rita Buddeke. The Biology of Living Things. Garden CIty: Doubleday, 1957.

Dunham, Fred S. "Why Latin Teachers Teach Derivation." School Review LII (June 1944) 356-361.

Gingrich, Felix W. "The Greeks, We Take Their Word for It." Scholastic, XXXIV (May 13, 1939) 25-26.

Harrington, Karl P. "Why Latin," School and Society, IIII (March 15, 1941) 321-326.

Jackson, Mary Louise. "Expanding Concepts in Latin." School Review LVI (May 1948) 275-279.

Jaeger, Edmund C. A Source-Book of Biological Names and Terms. Springfield: Charles E. Thomas, 1950.

Milne, Loras J, and Margery J. Milne. Biotic World and Man. Englewood Cliffs: Prentice-Hall, 1958.

Ritche, John W. Biology and Human Affairs. Yonkers on Hudson: World Book, 1948.

Sarafain, K. Armen, "Latin in the Curriculum." School and Society, LV (February 14, 1942) 173-177.
"Si.gn of Life in Latin." Newsweek LII (July 21, 1958) 84. Smith, Ella Thea. Exploring Biology. Chicago: Harcourt, Brace, 1949. Town, Salem. An Analysis of Derivative Words in the English Language. New York: Houghton Osgood, 1852.

APPENDIX

1106 West Scott Stillwater, Oklahoma December 19, 1959

Dear

By way of introduction - I am a high school biology teacher attending 0. S. U. this year under a grant from the National Science Foundation.

As a required report I have chosen the topic "Use of Greek and Latin Derivatives in the Teaching of High School Biology."

Noting that you are a biology teacher, I am requesting your assistance in completing the attached survey form and hope that you will return it to me at your earliest convenience.

Thanking you for your kind consideration, I remain
Sincerely,
W. W. Lohrentz

Questionaire:
Use of Greek and Latin Derivatives in Teaching High school Biology.
I. Please check the appropriate space or write out the better descriptive word for each category.

II. Purpose of the survey is to determine the degree to which teachers teach vocabulary by use of word derivatives.

The list of words has been selected primarily from a series of high school biology texts.

Some of the words are "root" words, while others are normally used as prefixes or suffixes. The letter "G" and "L" behind the term indicates Greek or Latin origin.

Instructions - Place a 1 in the blank preceeding the word if you use the derivative as the principal method of teaching the meaning of the word.

Place a 2 in the blank if you seldom use the derivative for teaching word meaning.

Do not mark those words that you either do not know the meaning of or that you do not use.

Example - The word biology is derived from the Greek words "bios" meaning life and "logos" meaning speak. If you teach the derivatives of this word extensively you would mark 1 bios G and $l_{\text {logos }}$ G.

II continued:

II continued:

	mykes G
	myos G
	nema G
	nephros G
	neuron G
	nodus I
	nutrire L
	oculus L
	oikos G
	opsis G
	optikos G
	-organon G
	-osis, -sis, G
	_ovi, Ovo, L
	palaios G
	parere L
	param G
	pathos G
	pellis L
	peptein G
	perim G
	phagein G
	phexynx G
	pherein G
	phobos G
	phyllon G.
	phylon G
	physis G
	phyton G
	pithecus G
	platys G
	pleuxa G
	pneuma G
	pollen L
	polyme G
	ponere L
	pulmo
	poros G.
	\qquad pus, pes, ped, pod G protos G

Suggestions for additional root words, prefixes and suffixes

VITA
Walter Wollmann Lohrentz
Candidate for the Degree of
Master of Science

Report: USE OF GREEK AND LATIN DERIVATIVES IN TEACHING HTCH SCHOOL BIOLOGY

Major Field: Natural Science
Biographicel:
Personal Data: Born in Peking, China on November 17, 1922, the son of Abraham M. and Marie Lohrentz.

Education: Attended elementary school at McPherson, Kensas: graduated from McPherson High School in 1941; received Bachelor of Axta degree from Bethel College, North Newton, Kansas, in 1944, with majors in Biology and Chemistry; completed the requirements for Master of Science degree in May 1960.

Professional Experience: Taught biological and physical sciences for three years at Coldwater High School, Coldwater, Kansas: taught biological and physical sciences at Burns Coneolideted Schools, Burns, Kansas, for nine years.

[^0]: Submitted to the faculty of the Graduate School of the Oklahoma State University
 in partial fulfillment of the requirements
 for the degree of
 MASTER OF SCIENCE
 May, 1960

[^1]: 6"An English Investigation of the Value of Greek as a School Study," School and Society, LVI (August 1, 1942), p. 95.
 $7_{\text {Franklin P. Adams, "Is Latin Useless," Time, IL (April 14, 1947), p. C. }}$
 8Karl P. Harrington, "My Latir," School and Society, LIII (Varch 15, 1941), pp. 321-326.
 ${ }^{9}$ Mary Louise Jackson, "Expunding Concepts in Latin," School Review, LVI (May, 1948), pp. 275-279.

