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PREFACE 

The ordinary Taylor series expansion has been in use for 

many years as a useful tool in applied mathematics. Among other things 

it has often been used as a means for approximating various functions for 

the purpose of numerical calculations. Oftentimes, however, a great 

number of terms need to be used in order that the desired degree of 

accuracy be obtained. It is this shortcoming of the ordinary Taylor 

series that the generalized Taylor series developed in this report will 

alleviate to a certain degree. The following study will demonstrate 

some of the possibilities of this generalized expansion with respect to 

the number of terms required to obtain a particular degree of accuracy. 

The author wishes to thank Dr. D. R. Shreve for all his many 

helpful suggestions and time spent, without which this report would 

not have been completed. The author would also like to acknowledge 

Dr. L. Wayne Johns on and the faculty of the Mathematics Department 

for all their aid and assistance during his entire graduate program. 



CHAPTER I 

The idea of approximating a frmction with an nth degree 

polynomial. which for a sufficiently large n represents the frmction 

to the degree of accuracy required for a particular application is 

usually first encountered in elementary calculus. In order that we 

might have a firm foundation for our later generalizations. we will 

exhibit a method for approximating a given function with a polynomial. 

This particular polynomial representation for a function is known 

as a Taylor series and was named after Brook Taylor, 1685-1731, an 

Englishman [1 J. The ordinary Taylor series with remainder will 

not be derived rigorously in this paper. 

There are several ways in which Taylor's formula may be proven. 

and consequently several forms which it may take. These differ 

principally in the representation of the remainder term. We shall 

examine only one form at this time, that being the form with the so-

called Lagrangian form of the remainder. In order that this representation 

of a particular function be valid we require the following be true about 

the function in question. 

The frmction f{x) and its first n-1 derivatives are continuous in 

the closed interval [a..,13] and its nth derivative exists at every interior 

point of [ a., 13 J. These requirements are less restrictive on the function 

than usual and would limit our methods of proof were we to rmdertake 
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a rigorous proof at this time [2]. Under the above requirements 

we obtain the following expansion known as the Taylor series expansion 

for a function f(x) • 

(1.1) 
(x-a.)n-1 

f(x) e f(a) + (x-a.)f' (a.) + ..• + (n-l) l 

where a..::. s .::. x 

It can be seen that all coefficients of the powers of x-a. except the 

last one are constants. The coefficient of (x-a.)n is a function of s, 
which in turn depends upon the magnitude of x [2]. It often happens 

that for a sufficiently large n, this last term may be negligibly small 

in comparison with the preceding ones and the function f(x) can be 

approximately represented by a polynomial of degree n-1 in x-a. with 

constant coefficients. 

The above equation is known as Taylor's formula and the last term, 

is called the Lagrangian form of the remainder after n terms. The 

infinite series resulting from this formula is known as Taylor's series. 

The above form of the remainder is only one of several forms in 

which it may be expressed. We shall however be primarily interested 

in this form for the purposes of this study. 

Although as mentioned earlier the Englishman., Brook Taylor,. 

is responsible for the infinite series known as Taylor's series which 

he first published in 1715, the previously derived form was first 

presented by the Frenchman,. J. L. Lagrange, in 1797 [3]. 
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A special case of the general Taylor series where a. is taken to be 

0 would take the following form. 

{l. 2) f(x) = f(a.) + x f' {a.)+ ..• + xn-1 ln-1) (a.) + xn in) (s) 
(n-1)! n! 

This series expansion is commonly referred to as Maclaurin' s series. 

We shall however, in any future reference to this series, call it simply 

a Taylor series expansion about zero. 

Since our principal interest in this particular study of Taylor 

series is our ability to approximate some f(x) in a neighborhood of x 

by the aforementioned series, it would be well that we mention some 

necessary properties of our remainder term. 

In most applications of Taylor series it is important that £or a 

particular value of n the approximate value of the remainder term be 

known. This will enable one to ascertain the size of the error occurring 

when a finite number of terms of a Taylor series expansion is taken to 

approximate the given £unction. In general the Lagrangian form of the 

remainder more readily lends itself to an approximation of this type,. 

although other forms of the remainder may prove useful in particular 

applications. 

Consider the remainder term in the previously exhibited form 

R = in) (s) (x-a.)n 
n n I 

where a. C::::. s < x. 

Since in general the exact value of s will not be known, neither will the 

exact value of in)(s) be known. This forces us then to estimate the 

value of in) (s). I£ we can establish bounds £or in) (s) such that 



m - I in) ( s) I - M then we know that the following is true [ 2] . 

(x-a.)n !: 
m n! 

This further implies 

n 
[R [ ~ M (x-a.) 

n n! 

4 

where in general M depends on both x and n. If by further examination 

of R we see that R tends to zero uniformly as n increases we may 
n n 

conclude that the Taylor series expansion converges to the function 

f(x) in the region (a., x). 

It would be well to state at this time in more precise language 

what exactly is required of the remainder term in order that a given 

series expansion is convergent. For this purpose we state the 

following necessary condition for convergence. 

For every x in (a., 13) and any e ;:, 0, there exists a positive integer N, 

independent of the choice of s in (a., x) such that [ Rn [ "'- e for all n ~ N. 

As a final item in our preliminary study of Taylor series we will 

expand and examine some particular functions as follows. Consider 

first the function y= sin x about the point zero. · Now.t 

f{x) = sin x 

f 1(x):::: COS X 

f 11 (x) =-sin x 

f 111 (x) = -COS X 

f(O) = 0 

fl (0) = 1 

f11(0}=0 

f111(0) = -1 

Using the general form previously derived for a Taylor series expansion 

about zero, we have 

f(x) 
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Since it follows that ; = Qx where O ~ Q' 1. 

The remainder term 'is therefore 

n 
R = ~!. sin(Qx + n,r) 

n n 2 
n 

Since I sin xi ~ 1 this implies [ Rn j ~ 1: 1 [ for all values of x. 

Examine the series, f(x) = sin x for convergence by means of the 

ratio test. 

u 
n+l 

u 
n 

= 

= 
n+l 

X 

(n+l) I 

nl 
n 

X 

n+l 
X 

(n+l) I 

= 

n! 
n 

X 

Since lim 
n-.oo 

X 

n+l = O < 1 for all values of x then the series converges. 

n 
Furthermore, since l Rn [ 

increases without bound. 

$ 1:1 I for all values of x. R -+ 0 as n 
n 

This would be true in this case since 
n [~ I = 0 as n increases without bound since it is a necessary condition n. 

for the convergence of a series. 

Hence the interval of convergence of the power series 

oo n 
~ (-l)n+l ~ 

n=l nl 

is - oo .c:; x < oo and we therefore conclude 

lim 
n-oo 

n 

Ix I = o nT 

for all finite x. We see then that the remainder term approaches zero 

for infinitely large n, which as mentioned before is a sufficient 

condition for our Taylor series to approximate the function in our 

region of convergence. 
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In order that we might illustrate the use of the remainder term 

in estimating the magnitude of the error involved in a particular 

calculation we will look at the following approximation based on the 

previous example. 

Suppose that we wish to compute the numerical value of sin 10°. 

Since sin 10° = rr/18 radians we examine the general form of the 

remainder as given previously 
n 

R = ~ sin(Q:x + nrr/2) 
n nl 

where O < Q < 1. 

Working with sin 10° we obtain 

[ I 1 1 Tr ( Tr nrr I 1 Tr n 
Rn = nT(l8) sin Q 18 + -z) < nT (18) 

Suppose further that we taken = 9, then 

• Tr Tr (rr31 rr51 (rr71 
sm 18 = 18 - 18) TI + (18) TI - 18) 71 

would have an error which is less than 

As the final example in the preliminary study we will expand the 

following function about some point other than zero. We take the 

following,, 

f(x) =-2 1 
+x 

around -1 and consider the remainder when n=3. 

Taking derivatives,, 

1 
f(x) = -2-

+x 

-1 
fl(x) = 2 

{2+ x) 

fl I (x) 2 
= 3 

(2+x) . 

-6 
f111 {x) = 4 

{2+x) 

f(-1) = 1 

£1(-1) = -1 

fll{-1) = 2 

flll(-1) = -6 
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Using now the general form of a Taylor series expansion about a point 

other than zero, we have, 

1 
f(x) = -2-

+x 
2 

= 1-(x+ 1) + (x+ 1) + R 3 

where 

and -1 <: s < x. 

3 
(x+l) 

3 I 

In order to estimate R 3 we observe 

and further that [ R 3 [ lies between 

1 
2+"f 

3 
(x+l) 

(Z+s) 4 

lies between -2 
1 and 1. 

+x 

[ x+l [ 3 

(Z+ x) 4 

Taking for example x = -0. 9, R 3 would be negative and [ R 3 [ would 

lie between O · OO~ and O. 001. This would then give us an estimate 
(1.1) 

of the error involved, thus enabling us to decide whether or not this 

approximation was suitable for whatever purpose we had in mind. 

The following chapter will introduce a generalized form of Taylor's 

series in one variable which will be somewhat different from the one 

studied here. The major part of the next chapter will be devoted to 

obtaining this generalization and some related properties. 



CHAPTER II 

From the preceding chapter we have seen that the standard 

Taylor series expansion is a powerful tool for the purpose of approxi

mating the values of various functions in the region of convergence 

of their series expansions. Were one to attempt to apply this method 

of approximations to a large number of functions, it would become 

apparent that in many cases requiring a high degree of accuracy a 

large number of terms would have to be considered. It can further 

be seen, that if for the same degree of accuracy a fewer number of 

terms of a series expansion for the function in question could be 

considered, the work involved in approximating the function would 

be simplified. In the following pages we shall develop a series 

expansion of any function satisfying the conditions for a Taylor series 

expansion which can usually be made to converge about twice as 

rapidly as the corresponding Taylor series expansion [ 4]. We 

proceeded in the following manner. 

Assume the following conditions on the function f(x). 

1, f{x) is continuous in an interval which contains a. and x .• 

2. All derivatives of f(x) up to and including the one of order 

m+ n+ 1, where m and n are positive integers or zero, are 

continuous in the previously mentioned interval. 

8 
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Throughout this derivation the gr eek letter Q will be used to denote 

a value between a. and x. Also we will denote the binomial coefficients 

by (p} with the understanding that (p} = 0 if p is less than q. 
q q 

Theorem 2.1: Under the conditions just stated 

(2.1) f(x) = f{a.) + z; (m+n-k) I C (mk)/k\a.} - (-1/(kn}/k}(x)]{x-a.)k + R 
k=l (m+n} I 

where 

n 
R = (-1) 

m+n+l 
m ln l (x-a.} /m+ n+ l} (Q) 
(m+n) I (m+ n+ 1) I 

Proof: Let 
X 

(2. 2) F{x) = f /m+n+l) (t) g(t)d t 
a. 

where g{t) = (x-t)m (t-a.}n and a. ~ t ~. x. 

By a well known formula for repeated integrations by parts 

F(x} = n_;m (-l)i /m+n-i\t)g{i}(t) J 
1=0 

X 

a. 

We show by induction the following 

(2. 3} g(i} {t} = ~ (-1} i-k i l (. m )( nk) {x-t)m+ k-i (t-a.)n-k 
k=o 1-k 

where i represents the order of the derivative to be taken. 

Taking i = 1 

Using formal differentiation 

g(l}(t} = -m(x-t}m-l (t-a.}n + n(x-t)m (t-a.)n-l 

The proposition is therefore true for i = 1. 

Assume true £or i= h, then 
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g(h) (t) 

. . 0 1 m n m n-h + ... + (-1) h.( 0 )(h)(x-t) (t-a.) 

Consider g<h+l)(t) found by formally differentiating g(h)(t) with respect 

to t. We then have 

g{h+l)(t) = (-l)hhl(~)(~) [n(x-t)m-h(t-a.)n-l_(m-h)(x-t)m-(h+l)(t-a.)n] 

h-1 m n [ ( m+l-h n-2 m-h n-1] +(-1) hl(h_1)( 1) (n-1) x-t) (t-a.) -(m+l-h)(x-t) (t-a.) 

0 m n [ m( n-(h+ 1) m-1 n-h] + ... + (-1) h I ( 0 )(h) (n-h)(x-t) t-a.) -m(x-t) (t-a.) 

( l)h+l(h l) m I (x-t)m-h-l(t-a.)n 
= - + I (h+l) I (m-h-1) I 

h m I n ! m-h( n-1 
+ (-l) hi hi (m-h) I · n IO I n(x-t) t-a.) 

h mt 
+ (-l) hi {h-1) l(m~h+l) I 

nl m-h n-1 
(n-l) !l l (m+ 1-h)(x-t) (t-a.) 

( l) Oh! ml nl ( -h)( -t)m(t-·)n-(h+l) 
+ · · · + - m IO I · h I (n-h) I n x a. 

Consider the second and third .term of the above expansion as follows. 

[ h m! nl 
( -l) h I h I (m -h) ! · n ! 0 I n 

h ml 
+(-l)hl (h-l)!(m-h+l)! 

n! ( ][ m-h n-1] (n-l) 111 m-h+ 1) . (x-t) (t-a.) 

( l) hh I I I ( 1 . 1 ) [(x-t)m-h(t-a.)n-1] 
= - .m n hl(m-h)l(n-1)! + (h-l)!{m-h)!{n-1)1 

(-l)hh!m!n! 1. [ m-h n-1] = {h-1) I (m-h) I {n-1) I (h + l) (x-t) (t-a.) 

= (-l)h(h+l) Im In I [(x-t)m-h(t-a.)n-1]· 
h! (m-h) I (n-1) I 
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It can be seen at this point that the first term of our series expansion 

for g(h+l)(t) satisfies the general formula for g(i)(t) with i=h+l if we 

take k=O. It can further be seen that the above combination of the 

second and third terms satisfy the general formula if k=l. By 

combining each succeeding pair of terms in a similar manner we can 

continue to satisfy our general formula for each successive value of 

k up to k=h. Due to the nature of the way in which we are combining 

successive terms, our last term must be considered alone and will 

have to satisfy the general formula for k= h+ 1 if our general formula 

is going to be proven. We precede to examine this last term in the 

following manner. 

Consider the last term of our expansion for g<h+ l) (t) obtained by 

differentiating g(h\t). This term is as follows, 

0 1 m I n I m . n-h-1 
( -1) h. m ! 0 I h I (n-h) I {n-h)(x-t) ( t-a) 

Rewriting the above we have 

(-l)O him In! {n-h) (x-t)m(t-a)n-h-1 
m IO I h l (n-h) I 

Multiplying by ~!i and simplifying we have, 

(-l)O (h+l)!mlnl {x-t)m(t-a)n-h-1 
m IO I (h+ 1) I {n-h-1}1 

This satisfies our general formula when k = h+l and our formula is 

proven. 

Consider now, g(i\a} where i <: n. 

From the general formula for g(i\t) we see that (t-a)n-k would appear 

n-k in each term and where t=a then (t-a) = 0, and each term would 

vanish. Therefore g(i) (a) = 0 for i < n. Further consider g(i) (a) where i~n. 
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n-k 
Here we see that where k= n, (t-u) would become 1 and for k n,, 

(~) = 0 and all succeeding terms would vanish. Therefore 

(2. 4) (i)( ) _ ( l)i-n . 1 ( mJ( )m+n-i f . 2: g Cl - - 1. . x-u or 1 n 
1-

Secondly consider g(i) (x) where i m. Under this condition the 

m+k-i . factor {x-t) would appear 1n each term and be equal to zero,. 

therefore 

where i ~ m 

m+k-i On the other hand,, if i - m, the term (x-t) would equal 1 where 

k= i-m and this particular term would be, (-l)mil(. n )(x-u)m+n-i. 
1-m 

Examining all terms where k 
. m+k-i 1-m, we see that the factor (x-t) 

would appear in each term and therefore cause each of these terms 

to vanish when evaluated at t= x. Last of all we examine the terms 

where k.::: i - m and see that (.mk) = 0 since m <. i - k, thus causing 
l-

all of these terms to vanish. We then conclude 

(2. 5) 

Using Equations (2.4) and (2. 5) in (2. 6) below, 

( 2. 6) F(x) = :§~(-1/im+n-i)(t)g(i)(t) J 
X 

Cl 

we obtain the following difference. 

F(x) 

n+m . ( ") . 
~ (-l) l f m+ n-1 (u)( -l)1-n i 1 ( _m )(x-u)m+ n-i 

i=o i-n 
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Set m+n-i = k then,. 

Further simplifying, we have the following equation 

Once again consider Equation (2. 2) 

X 

F(x) = [f(m+n+l)(t)g{t)dt 

a. 

Examining g(t) we find that it is of constant sign through the interval 

of integration. This allows us to apply the mean value theorem for 

integrals which may be quoted as follows [2]. 

Let f(x) and g(x) be two functions which are continuous in the interval 

(a., (3) and suppose that g(x) does not change sign in the interval. Then 

there exists at least one value Q, a. !S. Q ~ (3, such that 

f3 (3 

facx)g(x)dx = f{Q) f g(x)dx 

a. a. 

Applying this theorem directly to the function, we have, 

X 

F{x) ~ im+n+l)(Q) Ig(t)dt 

a. 

where a. ~ Q ~ x 

To evaluate this integral we set~ 

t = (x-a.)u+a. dt = (x-a.)du 

therefore since 
m n g(t) = (x-t) (t-a.) we have 

m n 
g(t)dt = [ x -(x-a.)u-a.J [(x-a)u] (x-a.)du 
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m n 
= [ x{l-u)-a.(1-u)J [ u(x-a.)] (x-a.)du 

m m n n 
= (x-a.) (1-u) (x-a.) u (x-a.)du 

m+n+l m n = (x-a.} (1-u) u du 

We then determine the new limits as follows. Since t= (x-a.)u+a. 

let t=a. then a.= (x-a.)u+ a., this implies 0= (x-a.)u which implies u= 0. 

Now let t=x then x= (x-a.}u+ a., this implies x-a.=(x-a.}u which impliesu;:l. 

Therefore 
1 

F(x) = lm+n+l){Q)(x-a.)m+n+l f (1-u)mundu 

0 

The integral on the right is a beta function and therefore, 

1 {c m n mini 
1-u) u du = ( l) 1 m+n+ 

0 

Then, 

(2. 8} 
m+n+l 

F(x) = m In I (x-a.) im+n+l)(Q} 
(m+n+l) I 

Considering Equations (2. 7} and (2. 8) we have 

n [ k n (k} m (k} J k (-1) F(x) = ~ (m+ n-k} ! (-1) (k )f (x} - { k }f (a) (x-a.) 
k=O 

m+n+l 
F(x) _ m In ! (x-a.} f(m+ n+ 1) ( Q}. 

- (m+n+l) 

Multiplying Equation (2. 8) through by (-l)n we obtain 

(2. 9} 
1 ( }m+ n+l ( } 

(-l)nF(x) = (-l)n m In. x-a. f m+ n+ 1 {Q). 
(m+n+l) I 

Subtracting (2. 9) from (2. 7) we further have 

(2.10) 

n 
- (-1) 

I I { )m+n+l ( l) m n x-a. f m+n+ (Q} 
(m+n+l} ! 



Simplifying, we obtain the following equation 

( 2.11) 

n + (-1) 
! !( )m+n+l ( l) m n x-a. f m+n+ (Q). 

{m+n+l) ! 

Consider the term where k= O. 

we then have 

(m+n) ! [f(a.) - f(x)J = 
{m+n) I 

f(a.) - f(x) 

15 

f{x) = f(a.) + 1: (m+n-k}! [(W}ik) (a.} - (-l)k(nk)ik}(x)](x-a.}k + R 
k=l (m+n) ! 

where 
m+n+l 

R - ( l)n. m!nl(x-a.) f(m+n+l)(Q} where a.< Q < x. 
- - (m+n) I {m+n+l) I 

The theorem is therefore proven. 

It can readily be seen at this point, that by different choices of 

m and n,a wide variety of expansions are possible. Take notice here, 

that if we let n = 0 in our general expansion we have 

( 2.12) 

where 
m+l 

R _ m ! (x-a.} /m+ 1\ Q} 
- m l(m+l) I 

The above expansion is then recognized to be nothing more than the 

familiar Taylor finite expansion with remainder exhibited in the 

previous chapter. 

An unusually interesting case and the one in which we are most 

interested because of its easily applied form is where n= m. This 

may be written as follows 



(Z.13) 

where 

n 
R = (-1) 

Z Zn+l 
(nl) (x-a.) lZn+l)(Q) 
(Zn) I {Zn+ 1) I 

We may compute all coefficients Ck by setting 

(Z.14) C = (Zn-k) ! (n) 
k (Zn) I k 

and establishing the following recursion formula 

(Z.15) 
n-k 1 

Ck+l = (Zn-k)(k+l) Ck and Cl= 2 

Direct substitution into the formula for Ck where k=l gives us 

16 

c1 = 1. In order to establish the above formula for Ck+ p we assume 

Ck as above and proceed as follows 

(Z.16) 

_ (Zn-k-1) I n! 
- (Zn) ! (k+ l) I (n-k-1) ! 

(n-k)(Zn-k) 
Multiplying through by (n-k)(Zn-k) we have 

( Z .17) 
n-k 

Ck+ 1 = (Zn-k)(k+ 1) 

which establishes our recursion formula for the coefficients of the 

above expansion. 

Last of all we inspect the remainder term of the above expansion 

as a measure of rapidity of convergence. By using Sterlings 

approximations for factorials we see that 

(Z.18) 
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This indicates that for even a moderately small n the remainder 

term is usually small. This implies that convergence is usually 

rapid. 

For purpqses oi completeness we shall conclude this discussion 

of our generalization by extending it to an infinite expansion. We 

proceed as follows. 

Let p and q be non-negative real numbers not both zero and let m 

and n become infinite in such a way that n/m_.:..p/q. Under these 

conditions we do the following. 

Consider the expressions 

(2.19) (m+n-k) I (m) 
{m+n) I k 

and (m+ n-k) (n) 
{m+n) ! k · 

Under the conditions just stated concerning the behavior of n/m as 

n and m become infinite we examine the first expression for its 

limit as n and m increase without bound> 

(2. 20) 

(m+n-k) I (m) _ ('rn+n-k) I 
(m+n) I k - (m+n) I 

m I 
kl (m-k) l 

(m-k+ l)(m-k+ 2) ••• (m-k+ k) 1 
= X.m+n-k+1Hm+n-k+2>n .(m+n> ·TI· 

Dividing numerator and denominator of the right side of Equation (2. 20) 

by n we have· 

(m _ k + ~)(m _ k + 2) ••• (m _ k + k) 
n n nn nn n n n 1 
m k lm k 2 m k k TI 
(-+ 1 - - + -)(-+ 1 - - + -) ..• (- + 1 - - + -) n n nn n n n nu 

(2. 21) 

(2. 21) can be made smaller term for term than the first expression 

in (2.19) by rewriting as follows 
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(2. 22) 

mkmk mk 
(- - -)(- - -) ... (- --) n n n n n n 
m (m m (-+ 1) -+ 1) •.• (-+ 1) n n n 

1 u= 

Letting m and n increase without bound under our original conditions" 

we have 
(m _ k)k 

1 
(q)k k 1 

lim 
n n p 1 q 

(m+ l)k TI = (q+ l)k • TI = k TI (m, m)-oo (q+p) n p 

k 
This gives us as a lower bound of the limit of our expression ____ q=----,k,-

kl (q+ p) 

Consider again expression (2. 21).. This can be made larger term for 

term than the first expression in (2.19) by writing it as follows 
. . 

m km k m k m kk 
(-+ -)(-+ -) ... (-+ -) (-+ -) 

(2. 23) 
n n n n n n 1 n n 1 

m k 1 m k 1 m k 1 · kl= rn k 1 k · TI 
(-+ 1--+-)(-+l--+-) ..• (-+l--+-) (-+1--+-) n n nn nn n nn n nn 

Taking the limit here as n and m increase without bound under the 

same conditions as above,, we have 

lim 
(n.,.m)- oo k 

p 

This gives us as an upper bound of our expression 
k 

q 
k 

(p+ q) 

1 
TI. 

Since the upper bound is equal to the lower bound of the limit of our 

expression, we conclude the following: 

Under the conditions previously stated 

k 
lim 

(n·,_m)-oo 

(m+n-k) I 
(m+n) I (~) = q k 

kl{p+q) 

Using a similar argument we may further show that under the same 

conditions on m and n 



lim 
(n, m)- co 

(m+n-k) I (n) = 
(m+n) I k 

k 
p 

k 
kl{p+q) 

Using the limits just derived,. our general expansion 

becomes 

If in this expan,sion we let p = 0 we have 
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which is the familar Taylor expansion. Letting p= q we get the following 

To prove the validity of our generalized infinite expansion 

we do the following. 

Let f(x) have the following Taylor series expansions 

with respective radii of convergence Ra., Rx" each greater than j x-a. j. 

Choose u and v such that u-a. = q{;~~) and v-x == - p~;~ • 

Since _q_ and _P_ both lie between O and 1, it follows that u and v as 
p+q P+q 

defined both lie in their respective intervals of convergence. 



Since 

( 2. 2 7) u = q{x-a.) + a(p+ q) = qx+ ap 
(p+q) (p+ q) 

and 

(2. 28) V = 
-p(x-a) + x(p+ q) = pa+ xq 

{P+ q) (p+ q) 

We may conclude that u= v. Therefore we may equate our Taylor 

expansions for f(u) and f(v) thusly 

(2. 29) ~ f(k)( ) {u-a.)k 
~ a. kl 

k=O 
= 

By substituting the values for u and v we obtain 

( 2. 30) 
oo k /k)(a) 
~ [ _9._ (x-a.)] k I 

k=O p+q 

00 k (k) 
= ~ [ _L(a-x)] f (x) 

k=O P+ CJ. kl 

By slight rearrangement of terms we obtain 

which is precisely our generalized infinite expansion arrived at 

previously. Therefore we conclude that this infinite expansion is 

valid for all non-negative values of p and q not both zero provided 

Ix-a [ is less than both Ra and Rx. 
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By choosing a finite number of terms of the infinite expansion, 

the accuracy is usually not as good as that obtained by using a finite 

expansion of the same order. Moreover it is difficult to obtain a bound 

for the error when the infinite expansion is used [ 4]. 

In the next chapter of this report we shall exhibit several examples 

of familiar functions expanded by this generalized method and compare 

them with the familiar Taylor expansions of the same functions. We 
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shall further exhibit some approximation formulas derived by this 

method and compare them with some well known approximation 

formulas often used for this purpose. Finally we shall derive an 

interpolation correction formula arising from this generalized 

expansion and exhibit some of its possible applications. 



CHAPTER III 

Since this chapter is going to deal mainly with comparing the 

results obtained by our generalized scheme, with the results 

obtained by better known methods for the same purpose,, we shall 

begin as follows. 

Consider the ordinary Taylor series expansion around the point 

zero for the function ln(l+ x) . 

( 3.1) 
1 2 1 3 

ln{l+x) = X - 2 x + 3X 

For the purposes of our approximation we take 8 terms of the above 

series and approximate ln 2 and ln 1.1. By this means we get 

ln 2 = .6345238090 

ln 1.1 = . 09 53101797 

We can see ln 2 has an error in the second decimal place and ln 1.1 

has an error in the tenth decimal place, illustrating the well known 

fact that Taylor series approximations are more accurate in a small 

neighborhood about the point of expansion. 

Let us now consider our generalized expansion for the same 

function. By the general formula of the previous chapter" where, 

n = m = 4 and a..= 0, we obtain the following 

(3. 2) ln(l+x) = ln 1 + ~ [1+ 1}x]x + / 8 [-1+ (l+~) 2 ] x 2 

l[ 2 ]3 1 [ 6 ]4 
+ - 2 + 3 X + 1680 - 6 + 4 X 

M (4zj (4zj 

22 
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Combining terms and simplifying we then have 

. 2 3 4 5 6 7 8 
(3 . 3) 1 (1 ) ~ 840x+ 2940x + 3640x + l 750x +168x -28x + Bx -3x 

n +x - 2 3 4 · 
840 + 3360x+ 5040x + 3360x + 840x 

Factoring into a more usable form £or the desk calculator or for 

programming we have 

x 840+x[2940+x(3640+x 1750+x[168+x(-28+x8-3x)] )] 
( 3. 4) ln(l+ x) = -------=------~-----=-----------

840+ x [3360+ x[5040+ x(3360+840x)]j 

Using the above approximation £or ln 2 and ln 1.1 we obtain 

ln 2 =· • 6930803571 

ln 1.1 =. 09 531017980 

We see that 1n 2 has an error in the fourth decimal place as compared 

with an error in the second place for the ordinary Taylor series. We 

further notice that ln 1.1 is accurate to ten decimal places as compared 

· with nine places £or the ordinary Taylor series. This is more 

significant when we remember that we used only half as many terms 

in our generalized expansion as we did in the Taylor series. 

In order that we might more fully appreciate the capabilities of 

this approximation,. we will examine the error term involved by taking 

the fir st £our terms as our approximation. From our general form £or 

the error term as given in Chapter II we have in this case 

where 

2 9 
R = (-1) 4 ( 4 I) x 

8191 

a. <: g ""x. 

= 
9 

X £(9)(Q) 
5-6·7·8·5·6·7·8·9 

By inspecting the derivatives of ln(l+x) we see that i 9) (Q) = 8 ! 9 . 
(l+ Q) 

Taking a worst than possible value £or Q,. £or the purpose of creating 

a larger error,,. we have £( 9)(Q) = 8 ! ,. which in turn gives us 
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9 
R ~ 6~ 0 = . 0015. 

We see then that when x=l we have at most an error in the third 

decimal. We have already seen of course that our error actually 

occurs in the fourth decimal place. If we take x=. l,. we remember 

that we obtained ten decimal accuracy. This, however. was limited 

by the number of places available on a desk calculator. By examining 

the error term when x= .1, and letting Q be such that our error is the 

worst possible, we obtain 

9 
R < ( .1) 

- 630 = . 000000000001 

This indicates our error would not occur before the twelfth decimal 

place and further indicates a good approximation using only a few 

terms of the expansion. We want to keep in mind however, that as x 

becomes greater than 1 our error begins increasing in the order of 

(x-a) 9 , where x-a > 1 and accuracy decreases rapidly. It is then 

apparent that in order to insure a high degree of accuracy, a must 

be taken in a reasonably small neighborhood of x. This would, of course, 

limit the range over which we could approximate the function ln(l+x) 

satisfactorily. 

Having met with such success in our first comparison it seems 

appropriate that we make a comparison between our scheme and a 

well known and accepted method for that purpose. For our basis of 

comparison we take the Hasting' s approximations [ s]. These 

approximations are well known in industry for both desk calculator 

and digital computor applications. We want to compare these, not 

only on the basis of results, but also as to the number of operations 
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necessary to obtain these results. For the function in question, 

namely ln(l+ x), Hastings has several approximations over the range 

0 ~ x S 1 which vary only in the degree of accuracy, number of 

operations; and the value of constants used. Since our approximation 

used an eighth degree polynomial in the numerator, we will select 

the Hastings approximation which also employs an eighth degree 

polynomial. It is as follows [5] 

2 
(3. 5) ln(l+x) = °']_X + a..2x + ... + 

where 

a..1 = .9999,9642,39 

a..2 = -. 499811 7412, 38 

0.3 = . 3317, 9902, 58 

0.4 = -. 2407, 3380, 84 

8 
a.Bx 

a. 5 

a.6 

a.7 

a..8 

= 
= 
z 

= 

.1676,5407,11 

-. 0953, 2938, 97 

.0360,8849,37 

-.0064,5354,42 

An outstanding feature of the Hastings approximations is that over 

the range of consideration the error is cyclic. Due to this fact the 

approximation may be just as accurate at a point near the end of the 

range as at some point near the beginning of the range. This is not 

true of our approximation however, since the beginning of our range 

is taken to be the point at which we expanded the series and we lose 

accuracy as we move further away from this point. 

Over the above range we find that Hastings I approximation has 

at most an error in the eighth decimal place. By investigating our 

error function for x=. 4 we have 

9 
R ~ (i,jt = . 0000004 

which indicates at most an error in the seventh place. Since our 
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error is not cyclic, we see that from . 4 ~ x !:: 1 our approximation 

will give an increasingly worse approximation than the Hastings 

approximation. Examining our error when x=. 3, we see that our 

error term is as follows 

9 
R <t: ( • 3) = • 00000003 - b30 

which indicates at most an error in the eighth decimal place and 

therefore implies that our approximation over the range O :::' x !:: • 3 

will give in general better results than the Hastings approximation. 

We need also observe at this time that the Hastings approximation 

requires the evaluation of an eighth degree polynomial, while our 

approximation requires the evaluation of an eighth degree polynomial 

and a fourth degree polynomial in order to obtain a result. It becomes 

then a matter of the required degree of accuracy and the range, over 

which you have to work as to the relative values of the two approximations. 

It should also be observed that, by using more terms of our series 

expansion, the accuracy would increase over a greater range. It 

should also be noted that, with each increase of the number of terms 

used, the polynomials to be evaluated increase in degree in the ratio 

of 2 to 1. For example, by using five terms we would need to evaluate 

a tenth degree polynomial and a fifth degree polynomial. 

As a further example of this generalized expansion we examine 

the function f(x) = ex. We shall in this case speak only briefly of the 

expansion of ex by the ordinary Taylor series, and deal mainly with 

the Hastings approximations for e -x. We will obtain our approximation 

for e -x simply by taking the reciprocal of our approximation for ex. 
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First consider the generalized expansion for ex with m=n=4 and 

a.= 0 

(3. 6) 
X e = 

1 2/ 3/ 4/ 1+ 2 x+ 3x 28+ x 84+ x 1680 

1 2/ 3/ 4/ 1 - z'X + 3x 28 - X 84 + X 1680 

For our brief comparison with the ordinary Taylor's expansion we 

set x=l and calculate e by the above expansion~ which gives 

e = 2721/1001 = 2. 71821718 .•• which is an error less than 1 in the 

seventh decimal place. Using a finite Taylor expansion with n=4 

gives us an error in the second decimal place. In fact it is necessary 

to take n=l2 in the Taylor expansion to obtain accuracy to eight decimal 

places [ 4]. 

Before we compare our expansion with Hastings' approximation 

we will again expand ex taking n=5 and a...:O for a more accurate 

approximation. Once again using our general expansion, and our 

recursion formula for coefficients, we obtain the following 

1 2/ 3 4/ 5/ 1+ 2 x+ x 9+x /72+x 1008+x 30,240 
(3. 7) X 

e = 

Rewriting for easier calculation as we did for the function f(x) = ln(l+ x) 

we obtain 

(3, 8) X 
e = 

30240+ x}l5120+ x[3360+ x(420+ x30+x)]J 

30240+ xf-15120+x[3360+ x(-420+ x30-x)]j 

Taking x=l we obtain e=49171/18089 = 2, 718281828 .•. which is accurate 

to the capacity of the desk calculator used in computation. To obtain 

an estimate of its accuracy past the ninth decimal we examine the error 

term as follows 
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5 ! 51 x11 e g 

R = -

where 

which will reduce to 

R- 39240x11 eg 

- 10,059,033, 600(39240 - 19620x+ 4360x2 3 4 5 
540x + 30x - x ) 

Taking x=l we obtain 

R S . 0000000002 

which implies at worst an error in the tenth decimal place. Consider 

the results obtained for various other values of x as follows. 

X = 1. 5 

ex= 4. 481689110 (Error in the seventh decimal place) 

-x ( e = . 223130158 Error in the eighth decimal place) 

X = 2 

ex= 7. 3890577 50 (Error in the sixth decimal place) 

e -x= .135335252 (Error in the eighth decimal place) 

X = 3 

ex= 20. 0859728 (Error in the fourth decimal place) 

-x e = • 497859878 3 (Error in the fifth decimal place) 

We see then that the error is increasing as we move further away 

from x::O and by an examination of the error term we see that it is 

increasing by an order of x11, which causes us to restrict our range 

over which we will attempt to make a favorable comparison with the 

Hastings approximation. Before we restrict our range in any manner 

we will examine the Hastings approximation for e -x. We examine 
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first the Hastings approximation using a twelfth degree polynomial. 

We selected this one since it is the approximation using a polynomial 

of degree nearest to the fifth degree polynomial used in our approximation. 

The Hastings approximation is as follows [5] 

(3. 9} -x 
e = 1 

where 

a.1 = . 2507, 213 

a.2 = • 0292, 732 

a.3= .0038,278 

Using this approximation we find that over the range O ~ x :5 3 we can 

expect at least three place accuracy. We see then from our previous 

results that we can expect at least five place accuracy over the same 

range using the approximation derived from our generalized expansion 

with n=5. Since this is by no means the most accurate Hastings 

approximation for this function, we will now consider the most accurate 

Hastings approximation, as follows [ 5] 

(3.10) 

where 

-x 
e = 

a.1 = .2499,9868,42 

a.2 = . 0312, 5758, 32 

a.3 = . 0025, 9137, 12 

1 

a. 4 = • 0001, 7156, 20 

a.5 = .0000, 0543, 02 

a.6 = .0000, 0069, 06 

Using the above approximation over the same range as before we can 

expect at least six place accuracy. As a means of comparison, we 

consider our approximation over the range O =:: x S 2, and find that 
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we may expect at least seven place accuracy. We see then that as 

before our approximation over a selected range gives greater 

accuracy than the Hastings approximation" In the previous example 

it would, however, be well to note that our approximation requires 

the evaluation of two fifth degree polynomials followed by a division. 

By comparison the Hastings approximation requires the evaluation of 

a sixth degree polynomial, three multiplications, followed by a division. 

One might also note that the constants involved in the Hastings 

approximation are of such length that you would be unable to handle 

all significant digits on a computer using eight significant digits in 

its floating point system. This of course would reduce the accuracy 

of the results. 

As in the previous example, we cou'ld achieve a satisfactory degree 

of accuracy over a different range by an appropriate choice of a. This 

would always be true of our generalized expansion, as with any Taylor 
\ ' 

series expansion, and will not be brought out specifically in any of our 

other examples. 

As a last example of this type we will consider the function f(x) 

= arc tan x. Consider first the ordinary Taylor expansion for arc tan x 

around the point zero. 

( 3. 11) 
1 3 1 5 

arc tan x = x - 3 x + 5 x 
1 7 

-7Yf. + ... 

Taking n = 11 and x = 1 in the above expansion we obtain arc tan 1 = . 744011544, 

which has an error in the second decimal place [6 J. We now consider 

our generalized expansion with n = m = 4 and a.= 0. 
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1 [ 1 J 3 [ 2x ]. 2 (3.12) arc tan x = arc tan 0+ 2 l+--2 x+ 28 · O+ 2 2 x 
l+x (l+x ) 

2 2 
1 [ 2 2(3x -1) J 3 1 [o 24x(x -1)] 4 R 

+ 84 - + 2 3 X + 1680 + 2 4 X + 
(l+x ) . (l+x ) 

Simplifying and combining terms we have 

11 9 7 5 3 
(3.13) arc tan x= -40x 8+680x 64464x +!176x +~160x +1680x 

1680x + 6720x + 10080x + 6720x +1680 

Rewriting for easier calculation we obtain 

1680x+x3 6160+x2 [8176+x2 (4. 464+x2 680-40x2) J 
(3.14) arc tan x = ------------------------

2 2[ 2 2] 1680+x 6720+x 10080+x (6720+1680x) 

Taking x=l we obtaint arc tan 1 = 21120/26880 which gives us 

arc tan 1 = . 78 5714285, which has an error in the fourth decimal 

place [ 6 J. By taking x=, l we obtain arc tan.I = . 099668650 5, which 

has an error in the ninth decimal place. We see then that our error 

is naturally increasing as we move further away from zero, Our 

error over the range O ::S x ~ 1 would correspond to our error over 

the range -1 ::; x ~ 0 and would be equal in magnitude for points of 

equal distance either side of zero. Taking then for our range of 

consideration -1 ~ 0 ~ 1 we could expect our error curve over this 

range to be symmetric about they axis passing through the point x=O. 

For our final comparisonJ' we consider the Hastings approximation 

for arc tan x [ 5 J . 
( 3. 15) 

where 

c1 = . 9992150 

c 3 = -. 3211819 

C 5 = .1462766 

c 7 = -. 0389929 
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This approximation over the previously stated range will have at 

least four place accuracy with a minimum number of operations 

necessary to arrive at a result. Therefore our approximation would 

be preferred over the Hastings approximation only in a limited 

neighborhood of zero and where the increased accuracy was of such 

a necessity to warrant the added calculation necessary. 

It would then seem that over particular ranges this generalized 

expansion will produce an approximation formula which is superior 

to the Hastings approximations. One must keep in mind however 

that the Hastings approximations in general are applicable over a 

much wider range than any one particular approximation formula 

derived by our general method. Also the number of operations required 

to obtain a result with our generalized expansion is generally greater 

than with the Hastings approximation, We note however that the degree 

of accuracy obtained by approximation formulas obtained in this manner 

rely principally on the number of terms used and the choice of a., as 

long as the function in question will satisfy the conditions of the expansion, 

We have by no means investigated all the possibilities of this 

expansion as a means of obtaining approximation formulas. We have 

instead tried to show its behavior in only a few cases.t and we leave 

its total possibilities along this line relatively unexplored. 

As a second possible use for this expansion we derive the following 

interpolation correction formula [7]. 

n 
Theorem 3.1: f(x) = ~ Il 

i=O j;ti 

x.-x 
_J_ S. + R 
x.-x. 1 

J 1 
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where 
n x.-x 

{3.16) R = z; II 
i=O jfi 

_J~- R .• 
x.-x. 1 

J 1 

We develop the above as follows: 

Let f{x) together with its first m+ n+ 1 derivatives be continuous in an 

interval containing x 0 ,x1 ..• ,xn• where xi f xj. We define the following 

{m+n-i)lml C ! = __,__ __ ......_ __ _ 
1 (m+ n) ! (m-i) Ii! 

C = {m+n-i)lnl 
i (m+n} l(n-i) Iii 

( 3. 17) 

(3.18) Rk = (-1) 
n 

where 

I I( )m. +n+l m n x-xk 

(m+n) I (m+n+l) I 

k = 0, 1, 2, .• , • n 

t<m+ n+ 1) (Q ) 
k 

X.:::, Qk.:::, Xk 

Proof: 

From the previous chapter we know that the function f{x) may be 

expanded in a generalized Taylor series expansion as follows 

(m+ n-i) I [ m (i) . i n {i) ]' i 
{3.19) f{x)=f(xk)+ ; 1 (m+n)l. {i )f (xk)-(-1) (i)f (x) (x-xk) +Rk 

By rearranging terms we may write (3 .19) as follows 

(3. 20) 
(m+ n-i) I n (i) i 

f (x) + z; { ) I (. ) f {x)(xk -x) = sk + Rk 
i=l m+n . 1 

or 

( 3. 21) k= 0,1,., .,n 

These may be considered as n+l linear equations in f(x), f'(x), .•• , ln)(x). 



The determinant of the coefficients would then be 

1 cl (xo-x> 

1 
D = 

1 

2 
C 2 (x0 -x) 

2 
C 2 (x1-x) 

2 c 2(xn -x) C (x -x)n 
n n 
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We recognize Das a modified form of a Vandermonde determinant 

and since any Vandermonde determinant in x. can be expressed as 
1 

II (x.-x.) we write D as follows 
• . 1 J 
1 J 

n 
D = ( II C.) [ II (x. -x.)] 

. 1 1 . . 1 J 1= 1>J 

which does not vanish since all x' s are distinct and the C I s are 

different from zero. Hence we may solve the system of equations 

for f(x) by Kramer's rule and obtain 

D· f(x) = 

S +R 
n n 

C 2(x0 -x) 

C 2 (x1-x) 

C (x -x) 
n 0 

Cn(x1-x) 

C (x -x) 
n n 

Expanding the above determinant by the elements of the first column 

we obtain 

(3. 22) 



where 

M = k 

2 c 2 (x0 -x) 

2 
C 2 (x1-x) 

kth row mis sing 

2 
c 2 (xn -x) 

Expanding Mk we obtain 

n 

n 
en (xo-x> 

n C (x -x) 
n n 

(3. 23) Mk= [ IT c.J[ IT (x.-x)J[ IT (x.-x.)J 
. 0 1 . ..Lk 1 . . . ..L. k 1 J 1= 1r 1>J;J,-

Dividing (3. 22) through by D we obtain 

n 
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[ IT c.J[ IT (x.-x)][ IT (x.-x.)] 
i- 0 1 ifk 1 i >J'. i J . .ik 1 J - , , r 

(3. 24) n 
[ IT C. ][ IT (x.-x.)] 

. 1 1 . . 1 J 
lZ 1) J 

Since IT (xk-x.) can be written as (-l)k II {x.-xk) the above becomes 
k>j J j k J 

as follows. 

n . Ilk (x. -x) 
f(x) = ~ 1= 1 {Sk + Rk) 

k=O [ IT (x. -xk)J [ IT (x. -xk)] 
i>k 1 j.c:.k J 

Setting i=j and k=i in the above expression we have 

( 3. 2 5) f(x) 
i=O 

n 

(Sk + Rk) 
II (x.-x.) II (x.-x.) 

. . J 1 . . J 1 
J>l J"l 

x.-x 
= ~ IT J S. + R 

1 
i=O jf-i 

x.-x. 
J 1 



where 

x.-x 
R = ~ _J_ R. 

· .. I x.-x. 1 
J-rl · J 1 

and the theorem is proven. 

In order that we might obtain the previously mentioned 

interpolation correction formula in a readily usable form, we do 

the following. 

Let n=m-=l in Equation (6) and obtain the following 

(3. 26) 

where 

and 

We then have 

which then gives us the following 

{ 3. 2 7) f{x) = I+ C + R 

36 
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where 

{3. 28) I 
{xl-x)f (xo) + (x-xo)f (xl) 

= 
xl-xO 

and 

( 3. 2 9) C 
(xl -x) (x-xo) 

[ fl {xo) - fl (x1>J = 2(x1-x0 ) 

and 

( 3. 3 0) 

with 8, between x 1 and x and 9-0 between x 0 and x. It may well be 

observed here that I is ordinary linear interpolationi while C is an 

additive correction to be applied to the interpolated value obtained 

by I. R may be used to establish bounds for the remaining error 

after the correction has been applied, The accuracy of this corrective 

factor may be improved by the use of additional derivatives in C. 

To illustrate the previously derived interpolation correction 

formula, we present the following examples. 

Calculating cos 40° by the previously described method and taking 

x 0 = rr/ 6 and x1 = rr/ 4, we proceed as follows. 

Take cos x = f{x). Then f(x) = cos x = I+ C + R. 

Calculating I, which is actually Lagrangian interpolation, we have 

1 = ( rr/ 4 - . 69813) (-fJ/2) + (. 69813 - rr/6) {¥2/2) 

rr/ 4 - rr/6 

where . 69813 is the value of 40° in radians. Evaluating the expression, 

we obtain 

.198986 
I = . 261799 = . 76007 {Error in third decimal place). 
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Then calculating C, we have 

C _ {rr/4 - .69813)(.69813 - rr/6) [f'( ) _ f'( )]. 
- 2( rr/9 - rr/6) XO xl 

where the value of f' (x0 ) and f' (x1) are found by taking the value of 

-sin x at x 0 and x1. We then have 

. 0031545 
C = . 523598 = . 00602 

Therefore 

f{x) = I+ C a: • 76007 + . 00602 = . 76609 

where cos 40° = . 76604 to five places, 

In order that we might determine the error to be expected in this 

sort of correction we examine R, where 

and G0 lies between x 0 and x, and G1 lies between x and x1. 
Taking the worst possible values for G0 and G1 , we have 

R ""- . 000085 

which implies that we may expect no worse than an error in the fifth 

decimal place, This is precisely what we had in the above example. 

As a second and final example of what we might use this correction 

for> we cite the following. 

Suppose we wish to approximate the compound interest formula 

(1. 031) 50 . Taking f(x) = {l+ x) 50 we do the following. 

Take n=m=2 in our formula for f{x) and settingx0 = 0.0275, x1 = 0.03, 

x 2 = 0. 035, and x = O. 031, we have 

(1. 031) 50 = _ 16 S 84 S 7 S R 
75 0 + 75 1 + 25 2 + 



where 

· m (m+n-i) Im I 
S = f(x ) + k 

0 0 i=l (m+ n) I (m-i) Ii! 

Since m = n= 2 and x 0 =. 0275 we have 

2 (4-i)l21 (i) i 
SO = f(xO) + k 41 ( 2-i) Ii! f (xO)(x-xO) 

i:::l 

Then 
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so = (1.0275) 50 + ~ 50(1.0275) 49 (.0035)-t-fz" 49. 50(1.0275) 48 (.0035) 2 

= 3. 88232177 + 0. 33061125 + o. 00919714 

= 4. 22213016. 

By a similar process we obtain 

s1 = 4. 49115519 

s 2 =5.06235147 

and we then obtain 

50 
(1. 031) = 4. 6018 588 + R. 

Using Equation (3 .18) from this chapter and 

n x.-x 
R= ~ TI _J_ R. 

i=O j,{i xj-xi l 

we obtain the following 

-0.00000032 ~ R ~ -0.00000026 

which implies that we have seven decimal accuracy. When this value 

is approximated by means of ordinary linear interpolation between 

the rates O. 03 and O. 035.,. the error exceeds 2 in the second decimal 

place. 

We see then,. that the accuracy of this means of interpolation is 

limited only by the number of derivatives used. This would, of course, 
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be determined by the needed accuracy and the desired ease of 

calculation. 

As a final and concluding example of how this generalized Taylor 

series might be applied, we will formulate a scheme for the purpose 

of approximating modified Bessel functions of the second kind. These 

are usually denoted by the notation K {x). For our example we will 
n 

consider only the case where n= 0 and to a lesser extent the case 

where n= 1. 

As a preparation for the scheme which we are going to use for these 

approximations, we wish to show that our previously derived general-

ization is valid for {x-a.1) ~ 0 as well as {x-a.1) > 0. Under the same 

conditions on the function as imposed previously, we proceed as 

follows. Define 

(3. 31) 

a. 

F(x) ~ f 1 f m+ n-i) (t)q (i) (t) d t 

X 

where 

m n 
q{t) = {a.1-t) (t-x) . 

We notice here that the only difference from our previous derivation 

is that the roles of a.1 and x have been interchanged. 

By the previously used formula for repeated integration by parts, 

we have 

We obtain as before, by induction, 

(3. 3 2) 
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Therefore q (i) (x) = 0 if i ~ n and all terms vanish for i ~ n except 

where k = n. Therefore 

(3. 33) 

Similarly q(i)(a.1) = 0 if i <!. m and for i 2 m 

( 3. 34) q (i)(a.) r (-l)mi!(. n )(a. -x)m+n-i 
1 1-m 1 

Using (3. 33) and (3. 34) in (3. 32) and changing indices by setting 

k = m+ n-i we obtain 

( 3. 3 5) n [ kn (k) m (k) J k (-1) F(x) = ~ (m+n-k)! {-1) (k)f (a.1)-(k)f (x) {a.1-x) 
k=O 

Consider once more Equation (3, 31). Since q(t) is still of constant 

sign throughout the interval we may as before apply the mean value 

theorem for integrals and obtain 

a., 

F(x) = lm+n+l)(8) f' q(t)dt where x ~ 8 c:. a.1 

X 

To evaluate this integral we set t = (a.1-x)u + x and obtain 

1 

F(x) = lm+ n+ 1) (8)(a.cx) m+ n+ 1 f {1-u) mun du 

0 

Recognizing as before that this last integral is a beta function and 

equals m !n!/(m+n+l) I, we obtain 

(3. 36) 

1 1 ( )m+n+l 
F{x) - m.n. a.1-x im+n+l)(8) 

- {m+n+ 1) I 

The proposition is proved by eliminating F(x) from Equation (3. 35) 

and (3. 36) and obtaining 



42 

( 3. 3 7) _ ~ (m+ n-k) I [(m)lk) (x)-(-l)k(n )ik) (a. )]{a. -x)k-R 
f(x) = f(a.l) k=l (m+ n) ! k k 1 1 

where 

R = (-l)n 
1 '( )m+n+l m .n. a.1-x 

i:µ1+ n+ 1) ( 8) 

(m+n) ! (m+n+l) I 

Taking a.1 = a. and comparing this expansion with our expansion derived 

in Chapter II, we see that for identical x these expansions are the 

same. We are therefore able to pick our point of expansion other 

than x with no regard as to its position relative to x. We need only 

be sure that the £unction satisfies the condition of our theorem in 

whatever interval selected, 

Since we have the previously derived expansion verified, we are 

able to write £or any £unction a general expansion about x and any 

general point a.. Using this general expansion we are able to obtain 

an expansion £or any x in terms of {x-a.) £or any desired a.. We £ind 

also that we are able to obtain our expansion for any desired £unction 

in a more readily calculable form by using the previously defined 

£unction 
X 

F(x) = f r!m+n+l)(t) g(t)dt 

a. 

where 

m m 
g(t) = (x-t) (t-a.) 

and performing the indicated integration. We will use this scheme 

£or deriving an approximation formula £or the Bessel £unction K 0 (x), 

using three derivatives. We will refer to all approximations £or K 0 (x) 

obtained by using this formula as K~{x). in order to differentiate these 

values from any obtained using higher order derivatives. We proceed 

as follows. 
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X 

F{x) ~ f fm+n+l)(t) g{t)dt 

a. 

m n 
g(t) = (x-t) (t-a.) 

Setting m = n = 3 

X 

F(x) = f fvi\t) g(t)dt 

a. 

By either formal integration by parts applied seven times or by the 

previously exhibited formula for repeated integration by parts, we 

obtain 

(3. 38) F(x) = f{a.) - f(x) + ~ [ f 1 (a.) + f 1 (x)](x-a.) 

+ lo [ fl i (a.)-fl i (x)]{x-a.) 2 + l~O [ fl i 1 (a.)+ flit (x)]<x-a.) 3 + R 

Since the expansion obtained by this means is the same as obtained 

by substituting into the general formula, we incur the same error 

term. Therefore, 

( I ) 2 ( ) 2n+ 1 ( R _ (-l)n n. x-a. f 2n+l)(e) 
- (2n)l(2n+l)l 

where 0 lies betw~en a. and x. 

Setting F(x) = 0 in the above expansion we obtain 

(3. 39) 

1 3 1 2 1 . 
= UO fl i 1 (a.) (x-a.) + 10 fl i (a.) (x-a.) + zI1 (a.) (x-a.) + f(a.) + Ra. 

Further setting a.= {3 in this expansion we have 

1 3 1 2 1 
(3.40) - 120 f 111 (x)(x-{3) + 10 f 11 (x)(x-{3) -: 2 £1(x)(x-{3) + f{x) 

1 3 1 2 1 
= 120 f111({3)(x-{3) +10f11(x)(x-{3) +zf1(x)(x-{3)+f({3) + R/3 
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where Ra. and R/3 are R. with the points of expansion other than x. 

a. and f3 respectively. 

Using a well known identity for differentiating Bessel functions 

of this type [s J. we obtain 

(3. 41) K 0(x) = - K 1(x) 

1 
K'o (x) = x Ki (x) + K0(x) 

1 2 
K' a' (x) = - x K 0(x) - Kl (x)(l+ 2/x ) 

Substituting into Equations (3. 39) and (3. 40) the value of the derivatives 

of K 0(x) we obtain 

(3. 42) 

(3. 43) 

where P 0 • P 1 and Q0 , Q1 are respectively the rational coefficients 

of K0(x). :Ki(x), in the expansions about a. and f3 respectively. P 2 and 

Q2 are all terms in the respective expansions which do not have as 

factors either K 0(x) or K1(x). These terms would be as follows. 

[ 1 1 l] 2 
p O = (x-a.) x · 120 + 10 (x-a.) + 1 

p 1 = l [ (x-a.) (l+ 2/x2) 110 + lo . ~] (x-a.) + 1} (x-a.) 

P2 =[[(- ~ Ko(a.)-:Ki(a.)(1+2/a.2))(x-a.)1lo + J(Ko(a.)+! :Ki(a.)](x-a.) 

-1 :Ki(a.)J (x-a.) + KO(a.) 

[ 1 1 1 ] 2 
QQ = (x-/3) X • 120 + 10 (x-/3) + l 

Ql = [ [ (x-f3) {l+ 2/x2) 1~0 + 1~ • ~] (x-f3) + 1 ] (x-f3) 

[[ 1 I 2 1 1 1 J Q2 = (-13Ko(f3)-Kl(f3)(1+2 f3 ))(x-f3)120 + 10(Ko(f3)+13Ki(f3)) (x-f3) 

- 1 Ki (f3)] (x-f3) + Ko(f3) 
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Multiplying Equation {3, 42) by o1 and Equation (3. 43) by -Pp then 

adding, we have 

(3. 44) 

Therefore 

(3. 45) + 

where is the error term involved in using this 

approximation. 

Using this approximation we obtained the following results. 

Computations were made on an IBM 650 computer using floating 

point and therefore eight decimal accuracy. 

As shown on Table I on the following page, it will be noticed 

that we used j3-o.= 1. since a somewhat greater difference was tried 

with poor results., Even with 13 ... a. = 2 the error was undesirably large. 

It was also found that the expansion very quickly became intolerably 

inaccurate outside the interval [a., 13]. We have therefore restricted 

ourselves to a difference of 1 and attempted to approximate only 

between the values of a. and 13. 
Over the range of our table you will note the following. Between 

1 and 2, we obtained no worse than 4 place accuracy. Between 3 and 4, 

we obtained no worse than 6 place accuracy. Over any of the other 

ranges covered in the table we obtained no worse than 5 place accuracy, 

although often as good as 7. Although not shown on the table, over the 

range of 11 to 12 we obtained no worse than 6 place accuracy. 



TABLE I 

Table of Approximations for Kg(x) 

X 
3 

K 0 (x) approx K 0{x) actual {8 places) 

1.1 o. 36562712 1. 0 2.0 0.36560239 

1. 3 o. 27825417 1. 0 2.0 o. 27824765 

1. 5 O. 21379998 1.0 2.0 00 21380556 

1, 7 O, 1654 7156 1,0 200 0,16549632 

1. 9 0 .12881401 1. 0 2.0 0 .12884598 

3.1 0.030954774 3.0 4.0 0.03095471 

3.3 0.024610657 3.0 4.0 0. 02461063 

3.5 O. 019598893 3.0 4.0 o. 01959890 

3. 7 0. 015630615 3.0 4.0 0.01563066 

3.9 0. 012482250 3.0 4.0 o. 01248232 

5.1 0.003308130 5,0 6.0 o. 00330831 

5.3 0. 0026 591080 5.0 6.0 0. 00265911 

5.5 0. 002138 7084 5.0 6.0 0. 002138 71 

5. 7 0.0017212083 5.0 6.0 0. 0017 2121 

5.9 o. 0013860020 5.0 6.0 o. 00138601 

7.1 0. 00038173961 7.0 8.0 0. 00038174 

7.3 0.00030836232 7.0 8.0 0. 00030836 

7.5 0. 00024917761 7.0 8.0 0. 00024918 

7. 7 O. 00020141991 7.0 8.0 0. 00020142 

7.9 0. 000162867 44 7.0 8.0 0. 0001628 7 

9 .1 0.000045792001 9.0 10. 0 0.00004579 

9.3 0. 000037095919 9.0 10.0 0. 00003710 

9.5 0.000030057883 9.0 10.0 0.00003006 

9.7 0.000024360288 9.0 10. 0 0.00002436 

9.9 0. 000019746700 9.0 10.0 o. 00001975 

46 
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In order that we might see what accuracy could be expected by 

this scheme, we investigate a typical error term. 

where, with n = 3 

R a. 
(-1)3(3!)2(x-a.)7 f(vii)(A) h 1 = 6 171 -.1: w ere Ql ies between x and a. 

Evaluating successive derivatives in the same manner as we did to 

obtain (3. 41), we have 

If, for example, we attempt to find the expected error where a.= 3, 

{3= 4, and x = 3. 4, we have the following data available for computation. 

Ql = - . 29152318 

pl = . 20533149 

PO = 1. 0161569 

o0 = 1. 0354706 

7 
(x-a.) = . 0016384 

7 
(x-{3) = -.0279936 

Evaluating /vii)(Q) using the worst possible values for Ql and Q2 we obtain 

R P. < . 00000002 
a., I"' 

which implies that we may expect no worse than seven place accuracy 

with x = 3 .. 4, which is exactly what we obtained. 

By examining the derivative of K0 (Q) we see. that for larger values 

of Q this derivative would tend to decrease in size and reduce the size 

of our error. This does not become immediately effective however. 

since our error term is not a function of /vii)(Q) alone. By examining 

our table we see that overall accuracy is better for larger values of x, 
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although for particular values of x the error may be greater than for 

smaller values of x in lower ranges. 

In order that one might see what effect on accuracy the taking of 

further derivatives in our approximation formula might have,. we do 

the following. 

Integrate successively as before the following integral 

X 

F(x) = f(ix)(t) g(t)dt 

a. 

m n 
where g(t) = (x-t) (t-a.) with n = :i;n = 4 obtaining by a similar scheme 

as before 

1 4 iv 1 3 3 2 1 
1680 (x-a.) f (x) - 84 (x-a.) flt t (x)+ zs(x-a.) flt (x)- z<x-a.)f' {x) + f{a.) 

1 4 iv 1 3 3 2 1 
= 1680(x-a.) f (a.)+84(x-a.) f'"(a.)+zs{x-a.) f"(a.)+z(x-a..)f'{a.)+f(a.) 

Differentiating K011 (x) we have 

Substituting in the above expansion and a similar expansion for (x-f3), 

we have, using the same notation as before, the following. 

P O = f [ (8~ 0 ~ (4 6/x 2) (x-<1)+ J4 (l+ 3 / x 2) )(x-a.)+ 3/ 28 . ! ](x-a.)+ q (x --a.) 

pl= tc<1l80(1+7/x2+24/x4)(x-a.)+412 ~ (1+3/x2))(x-a.)+z38{1+2/x2)]{x-a.) 

+ ! · l 1 (x-a.) + 1 2 X 

1 3 2 1 1 3 [l 
p 2 = KO(a.) - 2 (x-a.)Kl (a.)+ 28(x-a.) (KO(a.)+aKl (a.)-84 (x-a..) a. KO(a.) 

and similar expressions for Q 0, Qp and Q2 • 
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Obtaining and solving the same equations as (3.42) and (3. 43),. 

we have 

+ 
QRa. -P1Rj3 

QlPO-PlQO 

We then have the same general expression as before only with 

different values for the components. 

Using our new approximation and again computing our values to 

eight places on the IBM 650 computor we obtain the values found in 

Table II on the following page. 

Observing Table II we see that overall accuracy has been improved 

. on the average of 1 to 2 places. Although on particular values we 

improved by as much as three places and on some none at all. It 

might be well at this point to examine the ninth derivative of K 0(x) 

· sine e it would be a factor in our error term. Differentiating our 

seventh derivative twice we obtain 

K ix(Q) __ 4 (1 23 67 5 5040)K (Q) _ (1 26 569 10440 + 403:o )K-(Q) 
O - Q + 2 + 4 + ----::l> 0 + 2. + 4 + 6 --1 

Q Q. Q Q Q Q Q 

We observe here that although this factor is getting larger,. it is not 

getting larger at an extremely rapid rate. This is particularly true 

for large values of Q. 

Although the results obtained by our latest approximation gives 

seven place accuracy or better in all ranges covered by our table 

except between 1 and 2,. better accuracy could possibly be obtained by 

using higher order approximations. We shall not at this time attempt 

to demonstrate this possibility.,. however. 



TABLE II 

Table of Approximations for Ki(x) 

X Ki(x) approx Kt-{x) actual (8 places) 

1.1 o. 36560041 1.0 2,0 0.36560239 

1. 3 0.27824736 1.0 2,0 0, 27824765 

1. 5 o. 21380578 l, 0 2.0 0. 21380556 

1. 7 0 .16549786 1,0 2.0 O, 16549632 

1.9 0,12884889 1.0 2.0 0, 12884598 

3, l O. 030954 709 3,0 4.0 0. 030954 71 

3,3 0. 024610631 3,0 4,0 O. 02461063 

3.5 0.019598897 3,0 4.0 o. 01959890 

3.7 0. 015630660 3,0 4.0 o. 01563066 

3.9 0.012482324 3,0 4.0 o. 01248232 

5,1 O. 0033083103 5,0 6,0 0. 00330831 

5.3 o. 0026591070 5.0 6.0 0.00265911 

5.5 o. 0021387086 5.0 6.0 o. 00213871 

5.7 0. 0017 212101 5.0 6.0 0. 0017 2121 

5.9 0. 0013860050 5.0 6.0 o. 00138601 

7.1 0, 00038173938 7.0 8,0 0. 00038174 

7.3 0,00030836222 7.0 8.0 0.00030836 

7.5 o. 00024917762 7.0 8.0 o. 00024918 

7.7 0. 00020142004 7.0 8.0 0 •. 00020142 

7.9 0. 00016286767 7.0 8,0 o. 00016287 

9 .1 O. 000045791979 9.0 10. 0 0.00004579 

9.3 O. 000037095912 9.0 10.0 o. 00003710 

9.5 o. 000030057885 9.0 10.0 0,00003006 

9.7 .0.000024360302 9.0 10. 0 0.00002436 

9.9 0. 0000197467 25 9.0 10.0 o. 00001975 

50 
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As a concluding example of Bessel function approximation we 

will exhibit the results obtained by using this type of approximation 

for the Bessel function IS(x) using 3 derivatives. 

While Table II on the following page only covers the range 

between 1 and 2,, we observe that the accuracy although good to five 

places for some x drops off to as poor as 3 place accuracy in the 

upper half of the interval. This is not as good as the approximation 

for K0 (x) over this range. The effect of the derivative on the error 

term of this approximation would be similar to the effect encountered 

in approximating K 0(x). _ This is because the derivatives of these two 

functions are related in the following manner for any number of 

successive derivatives. 

K 0 '(x) 

K "(x) 
0 

= --~(x) 

= -~i(x) 

K"' (x) = 0 •1,'. I (x) 

As a concluding remark about this entire group of approximations 

for Bessel functions,, we feel it necessary to point out some of its 

obvious shortcomings. As pointed out before it :will not extrapolate 

and therefore restricts one to interpolation between the points of 

one 1 s two expansions. Furthermore,, these points must be such that 

(j3-a.) = 1 in order that reasonable accuracy be maintained over the 

entire range. Last of all,, it is extremely hard to predict at what 

range and at what point in that range your greatest accuracy will be 

obtained. It has been observedt however, that as good as or better 

accuracy is obtained near the midpoint of the range as opposed to any 

point near the endpoints. 



TABLE III 

Table of Approximations for K{(x) 

X 
3 

K1 (x) approx a. 
3 

K1 {x) actual (8 places) 

1.1 0.50987719 1. 0 2.0 0.50976003 

1. 2 0.43466297 1. 0 2.0 0.43459239 

1. 3 0.37257468 1. 0 2.0 0.37254750 

1. 4 0.32083388 1. 0 2.0 0.32083590 

1. 5 0.27735495 1. 0 2,0 0.27738780 

1.6 0.24055654 1. 0 2.0 O. 24063391 

1. 7 0. 20922836 1. 0 2.0 0.20936249 

1. 8 0 .18244227 1.0 2.0 0.18262310 

1. 9 O .15949405 1.0 2.0 0.15966015 
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