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Atrioventricular heart valves (AHVs), namely the mitral and tricuspid valves, regulate 

unidirectional blood flow from the atria to the ventricles in the left and right sides of the 

hearts, respectively. These valves can be afflicted by diseases which degrade the tissue 

microstructure and cause blood backflow, or valve regurgitation. This regurgitation causes 

poorer prognoses and higher mortality rates for patients. However, no current treatments 

for valve regurgitation offer an ideal solution, though recent research efforts have focused 

on developing novel treatment techniques with improved long-term therapeutic outcomes. 

For these applications, a comprehensive understanding of the mechanical behaviors and 

microstructure of the native heart valve leaflet tissues is essential. This thesis research used 

biaxial mechanical testing methods to provide novel insights into the complexity of the 

AHV leaflet mechanics, revealing: (i) the characteristic nonlinear and anisotropic 

mechanical response of the AHV leaflets, with radial stretches 30.7% higher than 
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circumferential stretches on average across all AHV leaflets, (ii) the higher stiffness of the 

mitral valve leaflets (avg. circumferential- and radial-direction stretches of 1.224 and 

1.599, respectively, under physiological loading) compared to their more compliant 

tricuspid counterparts (avg. circumferential- and radial-direction stretches of 1.298, 1.708, 

respectively, under physiological loading),   (iii) the minimal loading-rate response of the 

AHV leaflets and the anisotropic changes in tissue response with varied testing 

temperature, and (iv) the regional variance in the mechanical properties of the AHV 

anterior leaflets, with increased mechanical anisotropy in the center of the tissues and more 

isotropic mechanics nearer to the leaflet boundaries (avg. anisotropy index of 1.087 in 

central regions vs. 1.017 in edge regions). To complement these tissue mechanics studies, 

a polarization-based quantitative imaging device was developed to assess the reorientation 

of microstructural collagen fibers in response to mechanical loading. The device was 

applied to assess the representative mitral valve anterior leaflet, for the first time 

illuminating the spatial heterogeneity and load-dependence of the leaflet collagen 

microstructures, with observed average degree of optical anisotropy, which describes the 

degree of collagen fiber alignment, increasing from 0.042 in an unloaded tissue to 0.086 in 

a tissue under predicted physiological loading. These investigations and this novel system 

provide an essential first step toward elucidating the mechanics-microstructure relationship 

in the AHV leaflets. At the same time, our studies contribute to an improved understanding 

of valve leaflet tissue function, with the overarching goal of advancing treatment options 

for patients with valve regurgitation. 
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 INTRODUCTION 

1.1 Motivation  

1.1.1 Valvular heart disease prevalence and treatments 

Valvular heart disease (VHD) encompasses a variety of conditions afflicting one or more 

of the four heart valves (HVs). VHD is prevalent in an estimated 2.5% of the typical 

population in the United States, and although severity varies, even minor VHD contributes 

to poorer prognoses for patients [1, 2]. Therefore, the efficient diagnosis and optimal 

treatment of VHD is of utmost importance. A study by Iung et al. in 2011 found that VHD 

treatments accounted for 20% of all cardiovascular surgical procedures, and the frequency 

of VHD treatment is only expected to increase as patient populations age [3]. A substantial 

variety of unique protocols exist to treat different VHD phenotypes. For many patients, 

much of the treatment difficulty arises from rigorously matching the patient’s specific 

valvular disease, valve morphology, and cardiovascular geometry to the appropriate 

treatment. In addition to these pre-operative difficulties, the existing treatments have many 

challenges and suboptimal side-effects for patients. Although the efficacy differs, the 

accepted treatments generally exhibit one or more of the following shortcomings:  

(1) A lack of treatment longevity, with some patients requiring repeat surgery to 

address subsequent degeneration of the previously-treated valve [4]; 

(2) An invasive implementation, with traditional approaches requiring full open-

heart surgery, and subsequent recovery time of 6-8 weeks; 

(3) Irregular blood-flow, inducing a need for lifelong anticoagulant medication and 

causing further alterations to the cardiovascular complex 
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Given these shortcomings, research studies seek to develop novel treatment techniques for 

VHD. In the following section, we explore a set of frontier approaches for VHD treatment 

and assess the requirements for further development of these solutions. 

1.1.2 Necessities for improving VHD treatment outcomes 

One research technique proposed for informing pre-operative planning and thereby 

improving patient-treatment matching is patient-specific computational modeling. This 

process entails construction of a finite element model of the patient’s heart geometry, 

which permits the evaluation of various treatment techniques based on expected valvular 

tissue stress concentration, valvular hemodynamics, and functional behavior [5]. These 

high-fidelity computational models rely on appropriate mechanical constitutive models of 

the valvular tissue behavior, and for certain valve tissues, the experimental data has not 

been captured. Furthermore, microstructural-based material models have recently shown 

promise for improving predictions of tissue-level mechanical behaviors [6, 7]. To facilitate 

the development of these models of the valvular tissue, there is a need for more extensive 

evaluation of the microstructures of the valvular tissues. 

Tissue engineering of HVs shows promise as a new VHD therapy, free from the current 

limitations. The first step in development of a tissue-engineered valve is synthesis of the 

bulk microstructure of the replacement valve. This acellular construct, known as a scaffold, 

is then “seeded” by cells from the organ transplant patient, and later surgically implanted 

into the patient. Currently, this technique is not validated for clinical trials, but receives 

significant research effort, and is often seen as the future of valvular treatments [8, 9]. A 

modern challenge in tissue engineering is the synthesis of an appropriate biomimetic 
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scaffold material to replicate in vivo tissue function [10-12]. For this synthesis, a thorough 

understanding of the biomechanics and the dynamic tissue microstructure of the native 

valve is essential. Current imaging systems are incapable of providing this quantification, 

which could improve the development and analysis of tissue engineered HV constructs. 

Although patient-specific computational modeling and tissue engineering of HVs show 

promise as future treatment techniques, their outcomes are limited by the current 

understanding of tissue biomechanics and microstructures within the heart valve leaflets. 

To provide needed support for the next-generation therapeutic goals, the goals of this 

research are: (i) to elucidate the mechanics of the native heart valve tissues, and (ii) to 

provide novel insight into the functional dynamic microstructure of the heart valve tissues. 

1.2 Objective and Scope 

1.2.1 Mechanical studies on HV leaflets 

One of the objectives of this thesis is to characterize the mechanical properties of the 

specific porcine mitral and tricuspid valve (MV and TV) leaflets. We believe these leaflet-

specific quantifications will be valuable for improving understanding and ability to model 

the biomechanics of the MV and TV. Additionally, we seek to quantify the impact of 

testing parameters—sample deformation rate, testing temperature, donor animal, and 

region of sample selection—on the observed mechanical properties of the material. We 

believe this thorough analysis of valvular tissue mechanics will help future groups to 

appropriately represent the mechanical behaviors of the valve tissues in constitutive models 

of material behavior and high-fidelity computational models of organ-level function. 
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1.2.2 Development of a dynamic tissue microstructure imaging system 

The mechanical behaviors of tissues are a combination of the mechanical contributions of 

their internal constituents. Therefore, for a more complete understanding of tissue 

biomechanics, an in-depth knowledge of tissue microstructure is required. However, 

existing characterizations of dynamic and load-dependent microstructures of HV leaflets 

are inadequate. To better understand the load-dependence of tissue microstructure, our 

group sought to develop a novel optical-mechanical system capable of quantifying the 

load-dependent collagen microstructure in tissues subjected to arbitrary mechanical 

loading. Our objective in developing this system is to further understand the 

microstructural basis for the observed mechanical behaviors of the HV tissues. 

The remainder of this thesis is organized as follows. In Chapter 2, the function and anatomy 

of the heart valve leaflets are explored, and a review of mechanical testing and 

microstructural collagen imaging techniques for the heart valve leaflet tissues is presented. 

Chapter 3 discusses comprehensive quantifications of the mechanical properties of the MV 

and TV leaflet tissues. To complement these baseline investigations, Chapter 4 offers 

quantifications of the spatially-varied mechanical properties and stress-relaxation 

behaviors of the selected MV and TV leaflet tissues. In Chapter 5, the development of an 

optical-mechanical system to quantify the collagen fiber microstructure within HV tissues 

is discussed. Characterization of the dynamic collagen microstructures within tendon and 

mitral valve leaflets is also presented, as examples of the capabilities of the system. Chapter 

6 provides the concluding discussion about the findings in this study and the suggested 

future research extensions.  
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 LITERATURE REVIEW 

2.1 Introduction to the HV Function, Anatomy, and Diseases 

2.1.1 HV function 

The unidirectional blood flow through the four chambers of the heart is enforced via the 

regulatory action of the four heart valves: the aortic and mitral valves on the left side of the 

heart, and the pulmonary and tricuspid valves on the right side of the heart (Fig. 2.1).  

 
Figure 2.1. Schematic diagram of the four heart chambers and the four heart valves, with 

the passage of the oxygenated blood through the left side of the heart and the deoxygenated 

blood through the right side of the heart. The image was modified from Harvard Health 

Publications. 

These valves are classified into two families according to their position and morphology: 

the mitral valve (MV) and the tricuspid valve (TV) are described as the atrioventricular 

valves based on their anatomic location between the atria and ventricles, and the pulmonary 

valve (PV) and aortic valve (AV) are known as the semilunar valves owing to their half-

https://www.drugs.com/health-guide/heart-valve-problems.html
https://www.drugs.com/health-guide/heart-valve-problems.html
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moon geometry. The aortic valve enforces the exit of the oxygenated blood from the left 

ventricle to the aorta via its position at the aortic root. Similarly, the pulmonary valve 

regulates the deoxygenated blood flow from the right ventricle to the pulmonary artery. 

The atrioventricular valves demonstrate a comparable functional and positional 

parallelism—regulating the unidirectional flow from the atria to ventricles in the left and 

right heart. Despite these categorizations, each of the heart valves is subjected to distinct 

loading conditions, contributing to the unique anatomy and microstructure of each valve.  

2.1.2 Anatomy of the atrioventricular valves 

The atrioventricular valves regulate the unidirectional blood flow through the motion of 

membranous, collagenous tissues known as the leaflets, which are enclosed by ring-like 

structures known as the valve annuli (singular: annulus) (Fig. 2.2). 

 
Figure 2.2. Schematic of the anatomical components of the MV and TV apparatus—

annulus, chordae tendineae, and leaflets (papillary muscles not shown). The image was 

adapted from the Basic Medical Key. 

The complex morphologies of the valve annuli are associated with the functional openings 

of the atrioventricular valves [13]. Subsequently, significant efforts have been devoted to 

https://basicmedicalkey.com/organs-of-the-cardiovascular-system-and-their-neurovasculature/
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better understanding the impacts of the annular geometry changes on the overall AHV 

function [14-16]. Internal to the annuli are the AHV leaflets. The MV is composed of two 

anatomically distinct leaflets, namely the anterior leaflet (MVAL) and the posterior leaflet 

(MVPL), whereas the TV contains three leaflets: the anterior leaflet (TVAL), the posterior 

leaflet (TVPL), and the septal leaflet (TVSL) (Fig. 2.2). These leaflets attach around their 

superior edge to the valve annulus, and distally to the chordae tendineae network. The 

leaflets exhibit unique and frequently asymmetric shapes, allowing for the complete 

closure of the valvular orifice during systole. The leaflets also demonstrate substantial 

variance across species and population, making a general geometric description 

challenging [17-19]. During systole of the cardiac cycle, these leaflets close to enforce the 

unidirectional blood flow from the ventricles to the arteries (Fig. 2.3).  

 
Figure 2.3. Schematic of the closure of an atrioventricular heart valve and the differences 

between the valvular geometry at diastole (left) and systole (right). The image was adapted 

from Antranik. 

In valve closure, the leaflets are mechanically reinforced by a network of structurally robust 

tendons known as chordae tendineae. These chordae tendineae connect the valve leaflets 

to the papillary muscles of the ventricular wall (Fig. 2.3) [20]. The papillary muscles, 

another key anatomical component of the AHVs, provide an anchor for the attachment of 

multiple chordae tendineae groups and help prevent leaflet prolapse via contraction at the 

https://antranik.org/function-of-the-atrioventricular-and-semilunar-valves-and-fibrous-skeleton/
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onset of systole [21]. The right ventricle contains three such anchors for the securing of 

chords connecting to the TV, while the left ventricle generally contains two anchors located 

inferior to the leaflet commissures. Collectively, these four anatomical components 

comprise each AHV apparatus. Although the components have typical positions, the 

biomechanics and geometries of the valve apparatus often change throughout the lifetime 

of an individual, in some occasions accompanying the onset of disease.  

2.1.3 Valvular heart disease and current treatments 

A variety of diseases can impact the healthy function of the atrioventricular valves. Valve 

disease consequences can be broadly categorized into two groups: valve regurgitation and 

valve stenosis. In valve regurgitation, the AHVs lose their ability to close fully, resulting 

in the blood backflow, or regurgitation, from the ventricle to the atrium. This consequence 

can result from valvular component degradation, known as organic regurgitation,  or 

changes to the surrounding ventricular or valvular geometry, in which case it is known as 

functional regurgitation [22]. In many cases of functional regurgitation, the ventricle 

enlarges, causing dilation of the annulus and preventing the leaflets from complete closure 

[23]. Conversely, a common etiology associated with organic regurgitation, particularly in 

the mitral valve, is myxomatous valve disease, which describes a lengthening of the leaflets 

and/or chordae tendineae through changes to the tissue microstructure. Other causes of 

organic regurgitation include leaflet tearing or chordae rupture, which can result from 

infectious conditions such as rheumatic fever or endocarditis [24]. Organic regurgitation 

frequently manifests in leaflet prolapse—a ballooning of the leaflets above the valvular 

annulus during systole, or leaflet flail—a condition wherein the leaflets are unstable during 

systole and “flail” in the regurgitant stream. Both prolapse and flail behaviors typically 
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indicate a valve which requires treatment before further degradation [25]. Valve stenosis 

is an opposite condition from regurgitation, in which the valve is unable to open completely 

to allow blood flow. The flow impairment in stenosis typically occurs through a stiffening 

or thickening of the leaflet tissues. In the developed world, stenosis of varying degree is 

typically present in the aortic valve in elderly patients, due to a progressive calcification of 

the valves. However, in less developed regions, complications due to rheumatic fever cause 

scarring and subsequent stenosis of the mitral valve in a younger population [26].  

Treatments for valve diseases depend on the severity and mechanism of the disease. Most 

treatments for functional regurgitation entail the suturing of a synthetic annuloplasty ring 

onto the valvular annulus to restore functional geometry. For organic valve regurgitation, 

a repair or replacement procedure can be advocated. In valves with isolated degradation, 

such as individual chordae rupture or contained myxomatous disease, the advised treatment 

is typically an excision of degraded components followed by insertion of an annuloplasty 

ring to allow valve closure [27]. For more severely degraded valves, as observed in profuse 

myxomatous disease or acute valve calcification, valve replacement is required. Current 

replacement options for the mitral and tricuspid valves include bi-leaflet mechanical 

valves, or tri-leaflet xenogeneic bioprosthetic valves crafted from biologically-inactive 

bovine pericardial tissues. In addition to traditional surgically-implemented repair or 

replacement options, recent treatments have focused on transcatheter treatment methods, 

although these approaches have not yet gained widespread clinical adoption [28, 29]. 

Regardless of whether a repair or replacement method is employed, treatments for these 

valvular conditions do not offer ideal outcomes for patients. Existing approaches typically 

require an invasive open-heart procedure with an extensive recovery period. Moreover, 
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existing treatments for valve diseases can fail to fully remedy the condition, and symptoms 

can recur post-operation [30, 31]. Similarly, mechanical valve replacements require 

patients to take lifelong blood thinning medication to prevent hemolysis, whereas 

bioprosthetic valve replacements can degrade and fail, requiring subsequent operation [32]. 

To improve outcomes and diagnoses for valvular disease, many groups have examined the 

mechanics and microstructures of the native mitral and tricuspid valvular components, with 

special emphasis on the valve leaflet biomechanics.  

2.2 Mechanical Characterizations of the HV Leaflet Tissues 

2.2.1 Uniaxial and biaxial mechanical testing procedures 

A variety of methods have been developed to investigate the mechanical properties of the 

AHV leaflet tissues. Traditional techniques for soft tissue characterization stemmed from 

the seminal works by Fung et al. (1970, 1983) [33, 34], including the implementation of a 

preconditioning protocol to restore the tissue’s in vivo functional behaviors. Owing to 

recent advances in hardware and improved understanding of the functional role of valve 

tissue, these foundational techniques have further been modified and adapted to capture 

tissue’s mechanical properties in a more comprehensive manner. 

Originally, uniaxial mechanical testing was employed to quantify the mechanical 

properties of the aortic valve tissues and the xenogeneic valve replacement materials under 

tensile loading [35, 36]. An early study by Sauren et al. (1983) also examined how the 

mechanical properties of the heart valve leaflets changed with applications of cyclic 

loading in an early fatigue mechanical tests implemented for heart valve tissues. These 

results were complemented by the flexural studies on strips of the native aortic valve 
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tissues, as well as the comparisons between the bending behaviors of the native valve 

tissues and their corresponding replacement materials [37]. However, these uniaxial and 

“strip” mechanical testing techniques were unable to adequately capture the material 

anisotropy arising from the tissue’s collagen fiber network. Therefore, a biaxial mechanical 

testing system was developed to characterize the mechanical properties of the heart valve 

leaflet tissues under various biaxial loading protocols (Fig. 2.4) [38]. 

 
Figure 2.4. Schematic of a biaxial testing system for anisotropic mechanics 

characterization of heart valve leaflet tissue samples: (a) the mounting of the tissue sample 

and the application of force-controlled biaxial testing, and (b) tissue sample at the 

undeformed and loaded configurations with fiducial markers used for strain tracking. Fx 

and Fy are applied forces along the x- and y-directions, respectively.  

Through biaxial testing, the directional-coupling and anisotropy of the mechanical 

responses of the heart valves leaflets could be revealed. These phenomena inspired further 

investigations using the biaxial mechanical techniques, leading to an experimental 

framework by Sacks et al. (2000) for developing heart valve constitutive models to predict 

membrane tissue mechanics under the finite element computational modeling framework 

[39, 40]. Concurrently with this development in the constitutive modeling theory, extensive 

biaxial mechanical testing was performed on native and glutaraldehyde-treated aortic valve 
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tissues [41]. Moreover, over the past two decades, further studies were performed to 

explore the mechanical behaviors of the HV leaflets, including analyses of the layer-

specific properties, the loading-rate dependence of the mechanical properties of the aortic 

valve leaflet, the creep and stress-relaxation behaviors of the MVAL, and the impacts of 

various chemical and biological treatments on the tissue mechanics of the HV leaflets [42-

46]. Despite these extensive experimental efforts to characterize the biaxial mechanical 

properties of the aortic and mitral valve leaflet tissues, the mechanical properties of the TV 

leaflet tissues have been relatively underrepresented in literature [47, 48]. This lack of 

investigation has been due to the clinical insignificance of right-sided heart diseases, 

especially compared to the aortic valve and mitral valve conditions [3]. However, recent 

clinical evidence has shown that tricuspid regurgitation is prevalent in 18% of heart failure 

victims, and that it can worsen prognoses for cardiac disease patients if left untreated [49]. 

Also, because of the substantial anatomical differences between the leaflets of the four 

heart valves, the mechanical properties of the specific valve leaflets may not be readily 

extrapolated across valves being studied. For these reasons, characterization of the 

mechanical behaviors of the tricuspid valve leaflet tissues is a relevant goal of the heart 

valve biomechanics research. 

2.2.2 Prior studies on the mechanical behaviors of the AHV leaflets 

The original biaxial testing of MV tissues revealed many phenomena in both the MVAL 

and the MVPL [38]. May-Newman et al. (1995) found that both mitral valve leaflets, i.e., 

the MVAL and MVPL, exhibit a distinct material anisotropy, with higher stretches in the 

tissue’s radial (R) direction compared to the responses in the circumferential (C) direction 

(Fig. 2.5a). They also observed an elastic mechanical response with minimal hysteresis 
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during loading and unloading cycles (Fig. 2.5b). Furthermore, it was observed that both 

the MVAL and the MVPL exhibited a nonlinear stiffening response with increased loading 

(Fig. 2.5). 

 
Figure 2.5. Biaxial testing results of the MV leaflets: (a) the loading portion of a stress-

strain relationship for MVAL (unfilled) and MVPL (filled) tissues in the circumferential 

(circles) and radial (triangles) directions under equibiaxial strains, and (b) a typical loading 

and unloading cycle of the MVPL under equibiaxial stretching (circles: circumferential 

direction, triangles: radial direction). The images were modified from [38]. 

Subsequent studies of the mechanical behavior of the MV leaflet tissues include the 

investigations of the time-dependent viscoelasticity, i.e., the stress relaxation and creep 

behaviors [44, 45]. These studies showed that the MVAL exhibits a stress relaxation 

response which is typical of soft connective tissues, and that the lack of creep in the MVAL 

was atypical among collagenous soft tissues. These findings motivated the MVAL material 

classification as anisotropic quasi-elastic, indicating that the viscoelasticity in leaflet 

mechanics becomes negligible as loading approaches the in vivo deformation rates. In a 

later study, the age-dependence of the mechanical behaviors of the mitral leaflets was 

examined, and a general trend of tissue stiffening and thickening was observed with an 
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increasing specimen age [50]. More recently, aged human mitral valve samples were 

obtained and mechanically tested. These first human tissue results showed an increased 

mechanical stiffness with patient age, accompanying tissue calcification in all the leaflet 

samples [51]. These important characterizations of ex vivo mechanics of the MV leaflet 

tissues, especially as they relate to tissue microstructure and the functional valvular 

geometry, have been discussed in extensive reviews of the MV mechanics [52, 53]. In 

contrast, the mechanics of the TV leaflet tissues have traditionally merited little attention; 

a recent study by Khoiy and Amini (2016) was the first to examine the mechanical 

properties of each TV leaflet through biaxial mechanical testing methods [48] (Fig. 2.6). 

 
Figure 2.6. The mechanical response of the TVAL tissues (n=10) under various biaxial 

loading protocols (TC,max:TR,max) where TC and TR are the membrane tensions applied in the 

circumferential and radial directions, respectively: (a) 100:100 N/m, (b) 100:80 N/m, (c) 

80:100 N/m, (d) 100:50 N/m, and (e) 50:100 N/m. Bars show standard error in testing 

results over n=10 TVAL samples. The image was modified from [48]. 
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There results demonstrate the mechanical coupling between the two tissue directions, i.e., 

the deformation in one tissue direction depends on the loading in both directions. Besides 

this mechanical-coupling, nonlinear and anisotropic mechanical behaviors were found in 

each of the TV leaflets (Fig. 2.6). They also observed distinct mechanical responses in each 

TV leaflet, with increased material anisotropy in the TVPL, and slightly more extensibility 

in the TVSL than in the TVAL. Aside from the study by Khoiy and Amini (2016), only 

one other study focused on the TV tissue biomechanics [47]. The study compared the 

mechanical properties of the leaflet tissues from excised human AHVs, finding more 

extensible and thinner tissues in the right-sided TV leaflets compared to their left-sided 

counterparts (the MV leaflets). They also observed cross-donor and age-dependent 

variances in leaflet mechanical properties. However, due to the difficulty of acquiring 

human tissues, a broad age range was examined, complicating the extraction of a “healthy” 

tissue’s mechanical response. Despite these efforts to characterize the mechanical 

properties of the AHV leaflet tissues, there is a need for understanding of the link between 

the tissue mechanics and underlying microstructure, particularly in the TV leaflet tissues. 

2.3 Microstructural Characterizations of the HV Leaflets 

The HV leaflet tissues are broadly classified as membranous fibrous connective tissues. 

Morphologically, the membrane classification arises from the planar shape of the leaflet 

tissues, like skin tissue or blood vessels. The fibrous connective tissue denotes that the 

tissues are composed of cells, typically referred to as valvular interstitial cells (VICs), 

interspersed throughout a fibrous extracellular matrix (ECM). The ECM, synthesized by 

the embedded VICs, composes the bulk of connective tissue and is the primary contributor 

to the mechanical behaviors of the tissues. In the heart valve leaflet tissues, the ECM 
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consists of four primary constituents—glycosaminoglycans (GAGs), proteoglycans (PGs), 

elastin fibers, and collagen fibers—organized in complex spatial and depth-varied 

architectures [54].  

2.3.1 Layered microstructure of the HV leaflet 

Heart valve leaflet tissues are composed of four morphologically distinct layers, with an 

example depicted for the MVAL in Figure 2.7 [52]: the atrialis, spongiosa, fibrosa, and the 

ventricularis. 

 
Figure 2.7. Microscopy images of a TV posterior leaflet cross section (T: Transmural, C: 

Circumferential) stained by Movat’s Pentachrome to color VICs and elastin fibers in black, 

hydrated PGs and GAGs in blue, and collagen fibers in yellow. 

The atrialis layer, located on the atrial surface of the MV and TV leaflets, is a thin 

endothelial layer composed primarily of elastin. Inferior to the atrialis layer is the 

spongiosa—a layer loosely bound to its neighbors and composed predominantly of PGs 
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and GAGs [55]. The fibrosa, which is the thickest leaflet layer and located inferior to the 

spongiosa layer, is composed primarily of densely-packed type-I collagen fibers [56]. 

Inferior to the collagen-dense fibrosa layer, the ventricularis is a thin epithelial membrane 

located on the ventricular surface of the AHV leaflets; it is composed primarily of radially-

oriented elastin fibers and less organized collagen fibers.  

The four layers contribute distinctly to the AHV leaflet tissue biomechanics and function. 

The fibrosa layer is known to dictate the nonlinear and anisotropic leaflet mechanical 

behaviors through its dense internal collagen fiber composition [57]. It is believed that the 

radially-oriented elastin fibers within the ventricularis and atrialis allow the leaflets to 

recover their original geometries rapidly and elastically in the valve’s mechanical loading 

environment [58]. The function of the spongiosa is perhaps the least understood, with some 

groups arguing that it reduces shear strain by acting as a lubricant between the atrialis and 

fibrosa [59, 60]. For the duration of this review, we focus on the fibrosa layer due to its 

deterministic relationship with the leaflet tissue’s mechanical properties. 

2.3.2 Collagen fiber morphology and composition 

Collagen is a prevalent structural protein, composing 25-35% of protein mass within the 

body [61]. In heart valve tissues, the protein exhibits a nested internal organization down 

to a molecular level, but for mechanical applications most interest concerns the fiber scale 

(1-10 μm). Collagen fibers within the heart valve leaflets exhibit an intrinsic dynamic 

property known as “crimp”, which permits the fibers to behave like springs under tensile 

loading [62] (Fig. 2.8). On a population scale, the fibers in heart valve tissues exhibit 
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complex dynamically-structured networks. These dynamic fiber networks are responsible 

for the leaflet tissue mechanical strength and load-bearing capacity. 

 
Figure 2.8. Collagen fibers within the MVAL tissue, visualized transmurally with second 

harmonic generation imaging through two-photon microscopy: (a) unloaded tissue, (b) 

tissue under equibiaxial planar tension of 150 N/m. T: Transmural, C: Circumferential. (a) 

and (b) are at equivalent scale. The images were modified from Lee et al. (2015) [63].  

2.3.3 Techniques for quantifying collagen fiber architecture (CFA) 

A variety of optical techniques have been employed to examine the collagen fiber 

architecture (CFA) in planar tissues, such as heart valve leaflets. These techniques utilized 

different mechanisms to establish image contrast for quantifying the fiber structures, 

including reflectance and transmission differences between material constituents (often 

enhanced via histological staining), nonlinear optical responses, birefringent scattering 

properties, and front/back scattering properties of fibers and fiber families. In the 

following, imaging modalities that have been commonly adopted to quantify the CFA will 

be discussed.  
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Reflectance and transmission differences are the simplest image contrast mechanism. In a 

medium with significant reflectance and/or transmission differences between fibrous 

structures and others, a simple magnified image of the tissue will provide an adequate 

contrast for visualization of the fiber structures, such as through stained histology images. 

However simple reflectance or transmission differences in collagenous tissues generally 

may not be sufficient to adequately visualize fiber structures, so can be supplemented by 

other contrast mechanisms [64, 65] (Figure 2.9).  

 
Figure 2.9. Comparison of collagen contrast in the colon tissue stained with type-I 

collagen antibody and examined with (a) standard microscopy methods and (b) polarized 

light microscopy. The images were adapted from [66]. 

As depicted in Figure 2.9, the contrast of the CFA can be enhanced through the addition of 

polarization elements. The improved contrast arises via capturing the birefringent, or 

polarization-dependent, optical properties of the cylindrical collagen fibers. The 

augmentation of standard microscopes to capture the birefringent properties, such as the 

phase retardance and diattenuation, of the CFA is commonly referred to as polarized light 

microscopy (PLM). Because fibrous microstructural elements are the predominant 
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birefringent actors in a tissue sample, this practice allows the isolation of the CFA from the 

other microstructural constituents.  

Another standardized method to quantify the collagen fiber structures is known as second 

harmonic generation (SHG) imaging. SHG utilizes the combination of simultaneously 

incident photons in a nonlinear medium to create a reflected photon has twice the frequency 

and half the wavelength of the initial photon (i.e., the second harmonic). The SHG imaging 

technique uses gating to capture only the photons that have been upconverted to the second 

harmonic, thus employing the nonlinear optical properties of collagen fibers as a contrast 

mechanism. Although the instrumentation required for SHG imaging is complex, the 

technique permits high-resolution, high-contrast imaging of the localized CFA features. As 

such, it has been widely used for characterizing the CFAs within tissues, such as the cornea, 

tendons and heart valve leaflets [67, 68] (Fig. 2.10). 

 
Figure 2.10. Representative SHG images of MVAL microstructure at various spatial 

points, demonstrating collagen fibers (cyan) and GAGs (green). The images were adapted 

from [56]. 

For many biomedical applications, a characterization of fiber structures over a wide field 

is required, for which a decrease in the image resolution is an acceptable compromise to 
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allow mapping the CFA over a field of view (FOV) at the tissue scale. In general, the wide-

field CFA can be described by two local parameters: the fiber orientation and the fiber 

dispersion, which can be considered two-dimensional properties by assuming 

homogeneous properties across a third dimension (typically the thickness). Small angle 

light scattering (SALS) is a class of methods for producing two-dimensional maps of CFA 

via the front/back scattering properties of collagen fibers. SALS uses transmitted laser 

illumination to quantify the CFA in planar tissues. The transmitted light assumes an 

elliptical profile due to the laser’s interaction with the oriented tissue CFA. Through 

rasterized laser illumination and analyses on the transmitted light profiles, the predominant 

local collagen fiber orientation and dispersion can be extracted (Fig. 2.11). 

 
Figure 2.11. Schematic of the SALS domain mapping of collagen fiber structures: (a) the 

fundamental basis for the SALS technique (image adapted from [69]), and (b) 

representative mapping of the collagen fiber orientation (vector plot) and fiber dispersion 

(via degree of alignment, 0: randomly aligned fibers , 1: perfectly aligned fibers) for the 

ocular lamina cribrosa tissue (image adapted from [70]). 

Inherent to SALS techniques is the assumption of structural heterogeneity through the 

thickness, which can propagate errors when estimating the CFA for multilayered samples. 
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Additionally, SALS is limited in spatial resolution by the diameter of the incident beam 

and the time-cost of raster scanning larger tissue samples. Despite these limitations, the 

technique has been used widely for analysis of membrane tissues such as arteries, tendons, 

leaflets, and many ocular tissues [71, 72]. 

2.3.4 Quantifications of the CFAs of heart valve leaflets 

Several studies have examined the CFAs of the semilunar valve leaflets [73-77]; however,  

relatively fewer efforts have focused on quantification of the CFA of the tricuspid valve 

leaflets. One of the observed properties of the semilunar leaflet’s CFA is the tendency of 

collagen fibers to prefer orientation in the circumferential direction. This fiber orientation 

affinity contributes to the valve tissue’s stiffer mechanical response in the circumferential 

direction (Fig. 2.5). In quantifying the CFA, it is important to note that tissue 

microstructures will change with applied load. Toward this end, recent studies have 

examined the “dynamic” CFA of the aortic and pulmonary valve leaflets [73, 74]. 

Typically, these dynamic CFA quantifications utilize tissue fixation techniques combined 

with SALS; in this process, the leaflets are chemically fixed under specified loads and 

subsequently imaged by SALS technique [73, 78]. Representative results of the AV and 

PV leaflets via this procedure are shown in Figure 2.12. 
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Figure 2.12. Quantifications of collagen fiber preferred orientation (dashed lines: –) and 

degree of local fiber alignment (colorbar) for the pulmonary and aortic valve leaflets: (a) 

raw images of the leaflets, (b) the collagen fiber architecture prior to loading, and (c) the 

fiber architecture under 90 mmHg transvalvular fixation pressure. The images were 

modified from [73]. 

In the loaded pulmonary and aortic valve leaflet tissues, the fibers demonstrate an extended 

U-shape, running from the annular attachment at each leaflet edge to the coaptation point 

and back to the annulus. Moreover, the fibers are substantially more aligned in loaded 

tissues. However, an important consequence of the fixation-SALS experimental approach 

is the inability to test the same tissue under a variety of mechanical loading protocols, 

because the requisite chemical treatment irrevocably “fixes” the tissue’s CFA. 
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A recent technique developed by Yang et al. (2014) [77] aimed to address the shortcomings 

of the SALS modality. The technique, named polarized spatial frequency domain imaging 

(pSFDI), entails the use of spatial frequency domain imaging (SFDI) combined with 

reflectance-based polarized light imaging to perform wide-field, non-destructive depth-

modulated quantifications of the CFA in connective tissues [79, 80]. An example of the 

depth-discernment and CFA quantification capability of pSFDI compared to the full-

thickness result using the SALS technique is shown in Figure 2.13. 

The recent study by Goth et al. (2019) using the pSFDI modality found unique transmural 

fiber dispersion in the HV leaflets, with more aligned fibers in the fibrosa layer (Figure 

2.13 j) than the ventricularis layer (Figure 2.13k). Alavi et al. (2015) also observed the 

existence of both layer-specific and load-dependent CFAs in the atrioventricular heart 

valve leaflets through SHG imaging [56]. Although their study helps to extend 

microstructural understanding in the atrioventricular leaflets, the analysis was depth-

limited to the superficial 60 μm of the tissue, i.e., less than 10% of the full leaflet thickness, 

and spatially limited by the narrow FOV of SHG imaging. Therefore, considerable work is 

still warranted in understanding how the CFAs in the HV leaflets change under various 

physiological loading conditions. 

 



25 

 
Figure 2.13. pSFDI depth-modulated imaging and CFA extraction of an ovine aortic valve 

leaflet compared to equivalent SALS result. (a-c) Imaging arrangement, (d-f) raw intensity 

images, (g-i) extracted fiber orientation maps, (j-l) extracted normalized orientation index 

(NOI) maps, indicating the fiber dispersion. Note that (d, e, g, h, j, k) were limited to the 

superficial 250 μm of the tissue. The images were modified from [80]. 
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 CHARACTERIZATION OF THE MECHANICAL 
BEHAVIORS OF THE AHV LEAFLETS 

3.1 Introduction to the AHV Mechanics 

In healthy individuals, blood circulates through the heart with minimal backflow (or 

regurgitation) via proper opening and closing of the atrioventricular valves. However, 

valvular heart diseases, such as valve stenosis, valve prolapse, chordae rupture, leaflet 

damage and/or congenital defects, can affect the overall function of the valve and 

eventually lead to significant regurgitation [1, 81-83]. The regurgitation increases the strain 

on the heart and is a corollary and precedent to the development of other, more threatening, 

heart conditions.  

To improve our understanding of the functional degradation in diseased HVs, it is 

important to understand the mechanics of the valvular soft tissues. Despite the prior studies 

on heart atrioventricular valve leaflet biomechanical responses, mechanical testing results 

can vary significantly based on specific experimental procedures [84]. Therefore, it would 

be useful to compare leaflet material properties from both the MV and TV from the same 

heart under a unified mechanical quantification procedure. Moreover, the relationship 

between mechanics of the MV and TV is important towards understanding the connection 

between the MV surgical intervention and the subsequent development of functional 

tricuspid regurgitation observed in clinical studies [85-87]. 

Hence, the objective of this chapter is to utilize biaxial testing experiments to compare the 

unique material response of each MV and TV leaflet. Porcine atrioventricular leaflets were 

also tested at various loading rates and temperature levels to characterize the dependence 

of tissue response on these selected experimental parameters. In addition, the stretch 
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responses of leaflets from juvenile ovine and adult ovine hearts were characterized and 

compared to understand the effects of species and animal age on testing results. Lastly, an 

anatomical study was conducted to examine chordae distributions in porcine and ovine 

valves, and histological methods were employed to study and examine the layered 

microstructure of the porcine atrioventricular valve leaflets. 

3.2 Methods 

3.2.1 Tissue acquisition 

To characterize the material properties of porcine atrioventricular HV leaflets, porcine 

heart tissues from physically healthy pigs (80-140 kg, 1-1.5 years of age) were acquired 

from a local USDA-approved abattoir (Country Home Meat Company, Edmond, OK). To 

further compare the leaflet mechanical behaviors between different species and ages, adult 

ovine hearts (65-90 kg, 2-5 years of age) and juvenile ovine hearts (35-60 kg, 6-12 months 

of age) were also obtained. The heart tissues were frozen within 12 hours post-mortem in 

a standard freezer at -14 °C for storage purposes. This tissue storage procedure was based 

on the previous studies which found that freezing has a minimal impact on the mechanics 

of collagenous tissues such as skin tissue and arteries [88-90]. In preparation for testing, 

the hearts were thawed and leaflets from both the MV and TV were dissected (Fig. 3.1a). 

The excised leaflets were preserved in phosphate-buffered saline (PBS) and refrigerated at 

4 °C to maintain material properties until testing [91].  
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Figure 3.1. (a) dissected porcine heart showing the MV (top) and TV (bottom), with labels 

describing key anatomical components (ruler shows inches). (b) Schematic of the excised 

leaflet and the central bulk region (top), and the mounted tissue specimen on the biaxial 

mechanical testing system (C: circumferential direction; R: radial direction). 

3.2.2 Tissue preparation 

For biaxial mechanical testing, a square specimen (8 x 8 mm) was dissected from the 

central or belly region of each of the 5 atrioventricular heart valve leaflets: the MVAL, 

MVPL, TVAL, TVPL, and TVSL (Fig. 3.1b). The thickness of the specimen was measured 

at 3 different locations using digital calipers (WestWard Company, Lake Forest, IL) to 

determine an average tissue thickness. The tissue specimen was then mounted on a 

commercial biaxial mechanical testing system—BioTester (CellScale, Waterloo, ON, 

Canada), equipped with a load cell capacity of 1.5 N (Fig. 3.2a). The primary axes of the 

testing system were aligned with the tissue’s circumferential and radial directions (Fig. 
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3.1b), and four BioRakes were used to facilitate a 6.5 x 6.5mm effective testing region 

(Fig. 3.2b). Four glass beads (with diameters of 300-500 μm) were affixed to the specimen 

in a square configuration (Fig. 3.2c) for measuring the in-plane deformation and strain 

using a non-contact image-based technique as described in [40]. To ensure the tissue 

remained hydrated, the specimen was submerged in a bath of PBS solution for the duration 

of the testing process.  

 
Figure 3.2. (a) Image of the biaxial mechanical testing system (BioTester), (b) image of 

the mounted tissue, (c) schematic of the valve leaflet specimen before and after prescribed 

loading, and (d) illustration of the force-controlled protocols employed in both the baseline 

and temperature-controlled tests (Fmax: the maximum applied load,  —  : the applied tension 

in the circumferential direction, and  ---  : the applied tension in the radial direction). 
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3.2.3 Biaxial mechanical testing protocols 

Force-controlled biaxial mechanical testing was performed on 4 experimental groups: (i) 

the baseline testing group (porcine tissues) with a loading rate of 4.42 N/min at room 

temperature (22 °C), (ii) the loading-rate effect group (porcine tissues) with three loading 

rates of 2.29 N/min, 4.42 N/min, and 7.92 N/m at room temperature (22°C), (iii) the 

temperature effect group (porcine tissues) with a loading rate of 4.42 N/min at three 

temperature levels (27 °C, 32 °C and 37 °C), and (iv) the species and age group (porcine, 

adult ovine, and juvenile ovine tissues) with a loading rate of 4.42 N/min at the 

physiological temperature (37 °C). The sample size of each atrioventricular heart valve 

leaflet for each of these groups was n=6.  

For each biaxial mechanical test, the physiological stress levels of the MV and TV leaflets 

were estimated to be Pmax = 240 kPa and Pmax = 115 kPa, respectively, where P is the first 

Piola-Kirchhoff (1st-PK) stress. This maximum stress assumption is based on the Laplace’s 

law assuming coapted leaflets with spherical geometry and mean radius of curvature of 2 

cm [48], and the transvalvular pressure gradients of 100 mmHg [92] and 40 mmHg [48] 

for the coapted MV and TV, respectively. Then, the maximum applied membrane tensions 

in both the circumferential and radial directions were calculated based on measured 

thickness of the leaflet tissue, i.e. ( C ,R )max max sT P t   , where ts is the specimen average 

thickness. Similarly, the maximum applied force in each direction were computed as 

( C ,R )max ( C ,R )F T L  max sP t  , where L is the initial loaded region edge length. 

Each test began with a preconditioning protocol, during which estimated membrane 

tensions TC,max and TR,max were applied for 8 repeated loading-unloading cycles (Fig. 3.2d), 
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considering a preload of 1% of TC,max and TR,max, to restore the dissected tissue to its 

respective in vivo functional configuration [93, 94]. The ascending applied loading 

preconditioning method is typical in the field, while the 8 cycles were found to be adequate 

due to the observed convergence of the mechanical response curves. Then, biaxial testing 

with various loading ratios (TC,max:TR,max = 1:1, 0.75:1, 1:0.75, 0.5:1, and 1:0.5) was 

conducted (Fig. 3.2d). Data from the unloading portion of the last cycle of each loading 

protocol were used in the tissue stress and strain analyses as described in the next 

subsection and presented in the results in Section 3.3.  In addition to the monitored forces 

and BioRake separation distance in both directions, a series of 1280 x 960 pixel images 

were collected by a high-resolution CCD camera (The Imaging Source LLC, Charlotte, 

NC) at 15 Hz. The images were used for non-contact planar strain calculations described 

in the next section. 

3.2.4 Tissue stress and strain calculations 

Digital image correlation (DIC) based techniques have been widely utilized in the 

biomechanics society to track the deformations of a tissue specimen while avoiding the 

Saint-Venant edge effects on tissue deformation [95]. For this process, four fiducial 

markers (glass beads) were placed in the central delimited region (3mm x 3mm) of the 

valve leaflet specimen (Fig. 3.2c). A series of images of the tissue specimen were collected 

by the high-resolution CCD camera, and the time-dependent positions of the four fiducial 

markers were analyzed based on the acquired images using the DIC-based capability in the 

LabJoy software of the BioTester system: 

      1 2 3 4I I It t , I , , ,x X d    ,  (3.1) 
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where X I and x I  are the two-dimensional marker positions at the undeformed (reference) 

configuration (Ω0) and at the deformed configuration (Ωt), respectively, and dI’s are the 

displacement vectors of the fiducial markers, i.e.,  d I(t) = [uI(t),  vI(t)]T, where  Iu t  and 

 Iv t  are the displacements of marker I at time t in the x- and y-directions, respectively. 

To compute the in-plane strains of the tissue specimen, a four-node bilinear finite element 

was developed based on the 4 markers, and the deformation gradient tensor F was 

computed using an in-house MATLAB program (R2016a, The MathWorks, Natick, MA) 

based on the previously developed strain-calculation technique [40, 96]: 
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where xIB s′  and yIB s′ are the shape function derivatives associated with node I with respect 

to the x and y coordinates, respectively. Note the x- and y-coordinates were aligned with 

the tissue’s circumferential and radial directions, respectively (Fig. 3.1b and Fig. 3.2b). 

The right Cauchy-Green deformation tensor C and the Green strain tensor E could then be 

computed: 

 TC = F F , and 1= ( )
2

E C I ,   (3.3) 

where I is the 2nd-order identity tensor. The circumferential and radial stretches, λC and λR, 

were determined by the square roots of the principal values of C. Next, the first Piola-

Kirchhoff (1st-PK) stress tensor P was computed using the specimen average thickness, ts, 

and the applied membrane tensions, TC and TR, as follows: 
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3.2.5 Quantification of the anatomical structure of valve apparatus 

To complement the mechanical response data from biaxial mechanical testing, we further 

investigated the anatomical features of both the porcine and adult ovine atrioventricular 

HVs (n=6). In brief, we measured the number of chordae and each chord’s length, then 

classified the chordae according to their respective supported leaflet. Adapting the 

classification convention of Toma et al. (2016) [97], tertiary chordae were not measured, 

and no distinction was captured between primary and secondary chordae. The length of 

each chord was measured from proximal attachment at the papillary muscles to distal 

attachment at the ventricular leaflet surface. We also measured each leaflet’s thickness in 

3 separate locations using digital calipers with a resolution of 0.01 mm. 

3.2.6 Histological analysis 

To examine the microstructural organization of the ECM components in the valve leaflets, 

specimens from all five atrioventricular valve leaflets were fixed in 10% formalin at room 

temperature. These tissue specimens were then dehydrated in graded solutions of alcohol 

and embedded in paraffin. Samples of 5-7 µm thickness were sectioned and stained with 

Masson’s trichrome stain. For the morphological characterization, all stained sections were 

examined with a halogen illumination microscope (AmScope, Irvine, CA) at a 

magnification of 2X. Images of leaflets were captured using a 10 Mega Pixel camera and 

analyzed with ImageJ software (National Institute of Health, Bethesda, MD). A single 

image of each valve leaflet was captured from the stained sections and thickness was 
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measured at three random locations in the collected image. Further, the color deconvolution 

and image threshold plugins in ImageJ [98] were used to quantify the collagen content in 

each leaflet specimen. 

3.2.7 Statistical analysis 

Previous studies have demonstrated a difference between the stretch responses due to the 

preconditioning effect and the applied loading to the tissue [99]. To capture these 

distinctions, we compared three different stretch metrics across directions for the same 

tissue (circumferential versus radial) and between the five atrioventricular valve leaflets. 

For each leaflet type, the peak stretches ( 0− peak
Cλ and 0− peak

Rλ ) were defined as the 

circumferential and radial stretch values at the peak stress from the equibiaxial tension 

protocol as. The peak stretches were further decomposed into two constituents: (i) the 

preconditioning stretches ( 0 1−
Cλ  and 0 1−

Rλ ), defined as the tissue stretch from the mounting 

configuration (Ω0) to the post-preconditioning state (Ω1), and (ii) the mechanical stretches 

( 1− peak
Cλ  and 1− peak

Rλ ), defined as the tissue stretch from the post-preconditioning 

configuration (Ω1) to the peak loading state.  

These stretch measures in all three experimental groups (baseline, loading-rate effect, 

temperature effect, and species effect) were evaluated via a one-way ANOVA with the null 

hypothesis of equivalent stretches across study groups to examine the differences in the 

leaflet mechanical responses. Similarly, in the anatomical study, the leaflet thicknesses, 

leaflet-specific chordae lengths, and leaflet-specific chordae quantities were all compared 

using the standard one-way ANOVA method. A p-value <0.05 was considered as 

statistically significant and a p-value <0.10 as nearly significant.  
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3.3 Results 

3.3.1 Baseline testing  

Results for the MV and TV leaflets under loading protocols (TC,max:TR,max =1:1, 0.5:1, 1:0.5, 

0.75:1, and 1:0.75) are presented in Figure 3.3 and Figure 3.4, respectively. Table 

3.1Error! Reference source not found. provides the mean ± standard error of the mean 

(SEM) of the stretches for the MV and TV leaflets at the specified stress values for the 

equibiaxial loading protocol (TC,max:TR,max = 1:1).  

Table 3.1. Circumferential and radial stretches of porcine AHVs (n=6) at selected stress 

levels (% of maximum 1st-PK stress) under equibiaxial tension protocol (TC,max:TR,max = 

1:1). Values are reported as mean ± SEM. 

% of 
P11,max λ MVAL MVPL TVAL TVPL TVSL 

0% 

0− peak
Cλ  1.061 ± 

0.049 
1.087 ± 
0.032 

1.089 ± 
0.023 

1.120 ± 
0.041 

1.168 ± 
0.035 

0− peak
Rλ  1.358 ± 

0.042 
1.429 ± 
0.069 

1.434 ± 
0.050 

1.511 ± 
0.035 

1.476 ± 
0.066 

25% 

0− peak
Cλ  1.207 ± 

0.058 
1.192 ± 
0.031 

1.172 ± 
0.026 

1.270 ± 
0.058 

1.331 ± 
0.023 

0− peak
Rλ  1.551 ± 

0.054 
1.572 ± 
0.081 

1.569 ± 
0.072 

1.735 ± 
0.037 

1.641 ± 
0.035 

50% 

0− peak
Cλ  1.219 ± 

0.061 
1.204 ± 
0.032 

1.194 ± 
0.026 

1.292 ± 
0.059 

1.355 ± 
0.023 

0− peak
Rλ  1.572 ± 

0.055 
1.589 ± 
0.082 

1.624 ± 
0.084 

1.766 ± 
0.040 

1.664 ± 
0.088 

75% 

0− peak
Cλ  1.225 ± 

0.062 
1.212 ± 
0.034 

1.204 ± 
0.026 

1.303 ± 
0.060 

1.367 ± 
0.023 

0− peak
Rλ  1.583 ± 

0.055 
1.599 ± 
0.082 

1.640 ± 
0.087 

1.780 ± 
0.040 

1.676 ± 
0.089 

100% 

0− peak
Cλ  1.231 ± 

0.063 
1.217 ± 
0.034 

1.210 ± 
0.027 

1.310 ± 
0.060 

1.374 ± 
0.023 

0− peak
Rλ  1.591 ± 

0.055 
1.606 ± 
0.082 

1.651 ± 
0.089 

1.788 ± 
0.040 

1.685 ± 
0.089 
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Figure 3.3. Mean ± SEM of the 1st-PK stress versus stretch results of the porcine MVAL 

and MVPL tissues (n=6) at room temperature (22 °C) under: (a) equibiaxial tension 

(TC,max:TR,max = 1:1), (b) TC,max:TR,max = 0.5:1, (c) TC,max:TR,max = 1:0.5, , (d) TC,max:TR,max = 

0.75:1., and (e) TC,max:TR,max = 1:0.75. 
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Figure 3.4.  Mean ± SEM of the 1st-PK stress versus stretch results of the porcine TVAL, 

TVPL, and TVSL tissues (n=6) at room temperature (22 °C) under (a) equibiaxial tension 

(TC,max:TR,max = 1:1), (b) TC,max:TR,max = 0.5:1, (c) TC,max:TR,max = 1:0.5, (d) TC,max:TR,max = 

0.75:1., and (e) TC,max:TR,max = 1:0.75. 
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Through the statistical analysis, it was found that both the MV and TV leaflets exhibited 

anisotropic material behavior with the peak stretches smaller in the circumferential 

direction than in the radial direction (p<0.012 for all leaflets, cf. Figure 3.3a and Figure 

3.4a). Our results also revealed some statistically significant differences in the mechanical 

responses of the AHV leaflets. Specifically, the MVPL and TVAL were stiffer in the 

circumferential direction than the TVSL (p=0.050), and the TVPL was more compliant in 

the radial direction than the MVAL (p=0.024). 

3.3.2 Loading-rate effect on the biaxial mechanical properties 

Representative results of our loading rate effect group from the equibiaxial loading 

protocol (TC,max:TR,max = 1:1) for all MV and TV leaflets are presented in Figure 3.5. 

Representative results from the same group under other loading protocols TC,max:TR,max = 

0.5:1 and 1:0.5 are shown in Figure 3.6 and Figure 3.7, respectively. Statistical analysis 

results of the circumferential and radial stretches of each AHV leaflet in response to varied 

loading rates are included in Appendix B. 



39 

 
Figure 3.5. Representative biaxial mechanical testing results of each porcine 

atrioventricular leaflet under equibiaxial tension (TC,max:TR,max = 1:1) at room temperature 

(22 °C), showing the effect of varied loading rates on the quantified 1st-PK stress versus 

stretch relationship: (a) MVAL, (b) MVPL, (c) TVAL, (d) TVPL, and (e) TVSL. 

 
Figure 3.6. Representative biaxial mechanical testing results of each porcine 

atrioventricular leaflet under TC,max:TR,max = 0.5:1 at room temperature (22 °C), showing the 

effect of varied loading rates on the quantified 1st-PK stress versus stretch relationship: (a) 

MVAL, (b) MVPL, (c) TVAL, (d) TVPL, and (e) TVSL. 
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Figure 3.7. Representative biaxial mechanical testing results of each porcine 

atrioventricular leaflet under TC,max:TR,max = 1:0.5 at room temperature (22 °C), showing the 

effect of varied loading rates on the quantified 1st-PK stress versus stretch relationship: (a) 

MVAL, (b) MVPL, (c) TVAL, (d) TVPL, and (e) TVSL. 

Three observations could be drawn from the statistical analysis results: (1) the 

preconditioning stretches increase as the loading rate increases in both the circumferential 

and radial directions; (2) the mechanical stretches decrease as the loading rate increases in 

both directions; (3) as the loading rate increases, the peak stretch in the circumferential 

direction decreases while the peak stretch in the radial direction. The observed trends were 

not statistically significant but were generally persistent across all the MV and TV leaflets.  

3.3.3 Temperature effect on the biaxial mechanical properties 

The mechanical responses under the equibiaxial tension protocol with varied temperature 

levels were presented in Figure 3.8 for the representative MV and TV leaflets. Similarly, 

the representative results associated with other loading protocols (TC,max:TR,max = 0.5:1 and 

1:0.5) are shown in Figure 3.9 and Figure 3.10, respectively. The corresponding statistical 
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analysis results of the circumferential and radial direction stretches of each AHV leaflet at 

varied testing temperatures are included in Appendix B. No statistically significant results 

were found; however, a general increase in extensibility with increased testing temperature 

was observed. Additionally, three observations were drawn from the analysis of the 

temperature effect results: (1) an increase in temperature led to the decrease in the 

circumferential preconditioning stretch but an increase in the radial preconditioning 

stretch; (2) the mechanical stretches had no noticeable or statistically significant correlation 

to the increase in temperature in both the circumferential and radial directions; (3) through 

comparison of the peak stretches, we found that an increase in the temperature 

corresponded to a decrease in the circumferential peak stretch but an increase in the radial 

peak stretch. These trends were generally consistent across all the MV and TV leaflets, but 

not prevalent enough to attain statistical significance.  

 
Figure 3.8. Representative biaxial mechanical testing results of each porcine 

atrioventricular leaflet under TC,max:TR,max = 1:1, showing the effect of temperature on the 

quantified 1st-PK stress versus stretch relationship: (a) MVAL, (b) MVPL, (c) TVAL, (d) 

TVPL, and (e) TVSL. 
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Figure 3.9. Representative biaxial mechanical testing results of each porcine 

atrioventricular leaflet under TC,max:TR,max = 0.5:1, showing the effect of temperature on the 

quantified 1st-PK stress versus stretch relationship: (a) MVAL, (b) MVPL, (c) TVAL, (d) 

TVPL, and (e) TVSL. 

 
Figure 3.10. Representative biaxial mechanical testing results of each porcine 

atrioventricular leaflet under TC,max:TR,max = 1:0.5, showing the effect of temperature on the 

quantified 1st-PK stress versus stretch relationship: (a) MVAL, (b) MVPL, (c) TVAL, (d) 

TVPL, and (e) TVSL. 
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3.3.4 Comparison of the mechanical responses between species 

The averaged mechanical responses (n=6) for the MVAL and TVAL under equibiaxial 

loading from porcine, adult ovine, and juvenile ovine hearts are presented in Figure 3.11, 

respectively. Further information about the statistical comparisons of the peak stretches, 

preconditioning stretches, and the mechanical stretches between any two of these species 

is presented in Appendix B. 

 
Figure 3.11. Comparisons of the biaxial mechanical responses of representative 

atrioventricular valve leaflet tissues under TC,max:TR,max = 1:1 at 37 °C between different 

species and ages (adult porcine, adult ovine/sheep, and juvenile ovine/lamb). 
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The cross-species (porcine versus ovine) and within-species (juvenile ovine versus adult 

ovine) observed behaviors were specific to MVAL or TVAL and did not support 

conclusions across leaflets. Through interpreting the statistical analysis results, we found 

three leaflet-specific relations: (1) the preconditioning stretches were lower for the porcine 

TVAL than the adult ovine TVAL in both the circumferential (p=0.028) and radial 

directions (p=0.057); (2) the mechanical stretches were notably lower for the juvenile ovine 

MVAL than the adult ovine MVAL in the radial direction (p=0.052) but showed no 

consistent trends in the circumferential direction (p=0.614); (3) In the MVAL, the peak 

stretch was lower for the porcine tissue than the juvenile ovine tissue in the circumferential 

direction but higher in the radial direction. The results also showed the more isotropic 

behavior of the juvenile ovine leaflets compared to the porcine and adult ovine tissues (Fig. 

3.11). 

3.3.5 Anatomical quantification of the valve apparatus 

The measurements of the anatomical and structural features of porcine and adult ovine 

atrioventricular valves are shown in Table 3.2. It was found that the porcine MVAL was 

significantly thicker than each porcine TV leaflet (p<0.040), and the porcine MVPL was 

thicker than the porcine TVPL and TVSL (p<0.006). The similarity in the length of the 

chordae anchoring porcine and ovine valve leaflets was also observed, as reflected in the 

MVAL where chordae anchoring porcine leaflets had a length 17.5 ± 1.32 mm, while those 

anchoring the ovine leaflet had a comparable length of 17.9 ± 1.12 mm (Table 3.2). 

Conversely, we found that the porcine MV and TV had more chordae than the ovine MV 

and TV (p<0.001 and p=0.002, respectively). These similarities in chordae lengths and 

significant differences in chordae quantities are explored further in Section 3.4.6. 
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Table 3.2. Anatomical measurements for chordae and leaflet tissues of both porcine and 

ovine atrioventricular heart valves (n=6, each valve leaflet). All quantities are reported as 

mean ± SEM. 

Anatomical 
Measurements 

Mitral Valve Tricuspid Valve 

MVAL MVPL TVAL TVPL TVSL 

Po
rc

in
e 

Leaflet Thickness 
(mm) 0.79 ± 0.10 0.70 ± 0.06 0.52 ± 0.06 0.46 ± 0.04 0.37 ± 0.02 

Number of Chordae 10.0 ± 0.50 20.5 ± 1.20 11.2 ± 1.30 11.8 ± 1.00 12.3 ± 1.80 

Chordae Length 
(mm) 17.5 ± 1.32 14.1 ± 0.70 10.8 ± 0.80 11.3 ± 1.30 11.3 ± 0.77 

A
du

lt 
O

vi
ne

 Leaflet Thickness 
(mm) 0.40 ± 0.03 0.36 ± 0.02 0.28 ± 0.03 0.26 ± 0.02 0.27 ± 0.03 

Number of Chordae 4.7 ± 0.50 10.2 ± 0.80 6.8 ± 0.50 8.2 ± 0.50 8.7 ± 0.90 

Chordae Length 
(mm) 17.9 ± 1.12 14.8 ± 0.59 10.5 ± 0.79 10.9 ± 0.82 12.1 ± 0.83 

3.3.6 Histological analysis 

The Masson’s trichrome-stained MV and TV leaflets from a representative porcine heart 

are shown in Figure 3.12. The average thickness obtained from the histology images of 

each leaflet are presented in Table 3.3.  
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Figure 3.12. Histological sections of all the MV and TV leaflets (MVAL, MVPL, TVAL, 

TVPL, and TVSL) stained with Masson’s trichrome. Four morphologically distinct layers 

of the leaflets (atrialis: A, spongiosa: S, ventricularis: V, fibrosa: F) were identified. 

Table 3.3. The thickness and collagen fiber content obtained from the histology sections 

of porcine MV and TV leaflets. All quantities except for collagen content (generated from 

image analysis) are reported as mean ± SEM with 3 repeated measurements. 

 Mitral Valve Tricuspid Valve 

MVAL MVPL TVAL TVPL TVSL 

T
hi

ck
ne

ss
 (µ

m
) A 43.74 ± 4.22 54.84 ± 7.07 54.11 ± 5.32 50.27 ± 5.16 74.29 ± 4.78 

S 135.21 ± 8.23 99.85 ± 6.93 108.53 ± 5.59 221.26 ± 7.40 260.31 ± 9.26 

F 477.82 ± 6.41 556.35 ± 11.72 250.77 ± 9.69 154.01 ± 10.95 149.21 ± 6.62 

V 121.14 ± 7.64 141.44 ± 15.18 35.93 ± 3.72 20.17 ± 2.78 20.82 ± 2.24 

Intact 777.92 ± 13.46 852.49 ± 7.00 449.33 ± 3.63 445.71 ± 7.51 504.62 ± 9.55 

Collagen 
Content 

(%) 
77.65 69.13 68.51 45.16 32.30 

The MV leaflets were distinctly thicker than the TV leaflets to sustain a higher 

transvalvular pressure level [100]. The characteristic four layers of the leaflets: 

ventricularis, spongiosa, fibrosa, and atrialis were histologically distinguishable in all the 

five leaflets (Fig. 3.12). The fibrosa layer is primarily composed of a dense layer of 

collagen and comprises ~60% of the total thickness of the MV leaflets. Similarly, the 
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histology image suggested the fibrosa is the dominant layer of the TVAL. Interestingly, we 

found the spongiosa, composed of non-fibrous constituents such as GAGs, was the thickest 

layer in the TVPL and TVSL. The ventricularis layer, facing the ventricle in each 

atrioventricular leaflet, was twice as thick in the MVAL as the TVAL, whereas it was 

seven-times thicker in the MVPL than in the TVPL. Histology image-based collagen 

quantification of the valve leaflets indicated the MVAL and MVPL have 77.7%, and 69.1% 

collagen fiber contents, respectively, whereas the TVAL and TVPL have 68.5%, 45.2% 

collagen fiber content, respectively (Table 3.3). Interestingly, we also found the collagen 

fiber content is lower in the TVSL (~32%) than in other leaflets. 

3.4 Discussion 

3.4.1 Baseline testing 

Our baseline testing confirmed the previously quantified anisotropic, nonlinear elastic 

mechanical response of HV leaflets (Figure 3.3 and Figure 3.4), through the presence of a 

toe portion of the curve (near the low-stress region) and a highly stiff, nearly asymptotic 

region as the force approached the maximum physiological stress experienced by the 

leaflets. All leaflets tested were significantly stiffer in the circumferential direction 

(p<0.010). Specifically, the average stretches under equibiaxial loading differed between 

the circumferential and radial directions by 0.360 for the MVAL, 0.389 for the MVPL, 

0.441 for the TVAL, 0.444 for the TVPL, and 0.284 for the TVSL (Table 3.1). In general, 

the TV leaflets were more compliant than the MV leaflets at their respective physiological 

loadings in both tissue directions.  
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In a prior study, planar biaxial testing was performed on porcine MV tissues and stretches 

of 1.2 and 1.4 were found for the MVAL in the circumferential and radial directions under 

an equibiaxial loading protocol [45], whereas stretches of 1.232 ± 0.154 and 1.592 ± 0.136 

were found in our study for the MVAL in the same directions (Table 3.1). Recent studies 

have shown that testing parameters, such as the mounting mechanism, the spacing of 

attachment points and the specimen size, could have an impact on the biaxial mechanical 

testing results [84]. Such discrepancy between our results and those of Grashow et al. 

(2006), particularly in the radial direction, may be attributed to procedural differences such 

as different tissue mounting mechanisms (rigid BioRake fixture in our study versus suture 

hooks in the study by Grashow et al. (2006)) and different methods used to estimate and 

model the maximum in vivo loading, i.e., the applied forces computed through measured 

thickness based on estimated Pmax  used in our study versus applied forces based on 

estimated Tmax in the study by Grashow et al. (2006). 

Our observed stretches of the TV leaflets were similar to those reported by Khoiy and 

Amini (2016) [48]. In their study, the TVPL showed the most anisotropy, with the TVAL 

and TVSL exhibiting similar, but lower, amounts of mechanical anisotropy. In general, our 

results agreed with these findings for the TV leaflets. Khoiy and Amini (2016) also found 

the TVPL was the most compliant leaflet in the radial direction. Our study agreed with 

their finding, with the observed radial peak stretches of 1.651 ± 0.089 for the TVAL, 1.788 

± 0.040 for the TVPL, and 1.685 ± 0.089 for the TVSL (Table 3.1). Importantly, both 

studies found the same anisotropic and nonlinear mechanical behaviors of the TV leaflets.  
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3.4.2 Effects of various loading rates on the mechanical responses 

An interesting result of the loading rate testing group is the decrease in mechanical stretch 

of the tissue in both directions with an increased loading rate. These results support the 

viscoelastic nature of heart valve leaflets [101], and agree with the time-dependent stress 

relaxation as observed in leaflet tissues [42].  However, our results prove contrary to those 

of a prior study by Grashow et al. (2006), where a variety of loading rates were examined 

and no significant dependence of mechanical properties on loading rate was observed [45]. 

One possible reason for this discrepancy is Grashow et al. (2006) examined the peak stretch 

of the tissue, while we examined the decomposed components of the peak stretch. As for 

the MVAL, we observed minor differences in the peak stretch between the loading rates of 

2.29 N/min and 7.92 N/min in the circumferential direction (p=0.844) and radial direction 

(p=0.614). Based on these peak stretches, it is reasonable to conclude that there was no 

significant viscoelastic effect. However, by decomposing the peak stretch and examining 

the mechanical stretch, the statistical comparisons showed the tissue is stiffer under the 

loading rate of 7.92 N/min than the rate of 2.29 N/min in both the circumferential direction 

(p=0.334) and the radial direction (p=0.077). These comparisons of mechanical stretches 

could shed light on the tissue’s native response to varied loading rates, as decoupled from 

the preconditioning effect. 

3.4.3 Effects of temperature on the mechanical responses 

In the result of temperature group, we found distinct trends between the circumferential 

direction and the radial direction. Specifically, it was found that the preconditioning and 

peak stretches decreased in the circumferential direction but increased in the radial 
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direction with increased temperature. A general lack of temperature dependence in the 

mechanical stretches ( 1− peak
Cλ  and 1− peak

Rλ ) of the atrioventricular valve leaflet tissues was 

also observed, which illustrated how the temperature dependence observed in the peak 

stretches was primarily an indicator of similar temperature effects in the preconditioning 

stretches. These findings are potentially useful for informing protocols where maintenance 

of valve tissue at body temperature would not be feasible. In such experiments, we expect 

valve tissue’s mechanical response would be relatively unimpacted by the non-

physiological temperature. 

3.4.4 Motivation for porcine-ovine HV comparison 

Both porcine and ovine hearts are commonly employed in animal studies as analogous to 

human hearts [102]. A proper comparison between human and ovine or porcine hearts first 

requires an intimate understanding of the mechanics and anatomy of the non-sapiens heart. 

To that end, the biaxial mechanical responses of porcine, adult ovine, and juvenile ovine 

atrioventricular leaflet tissues were compared (Fig. 3.11), and the specific anatomical 

features of the MV and TV from both porcine and ovine hearts were examined (Table 3.2). 

3.4.5 Comparisons of the mechanical responses between species 

The mechanical responses of the MVAL and TVAL of the porcine, adult ovine, and 

juvenile ovine heart were examined (Fig. 3.11) to capture the distinct tissue response 

between different species and between the juvenile and adult ovine animals.  

In this study group, it was found that the preconditioning stretches were lower for the 

porcine HVs than the ovine valves, and the mechanical stretches of the porcine heart were 
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generally higher than the mechanical stretches of the ovine hearts, particularly in the TVAL 

(Fig. 3.11). It was also observed that the peak stretches for the adult ovine TVAL were 

higher than those of the porcine TVAL in both the circumferential direction (p=0.090) and 

the radial direction (p=0.180). These differences between the porcine and ovine MV and 

TV imply the necessity to consider the mechanics of the specific analogous heart valve in 

computational models, rather than assuming similar properties based on similar function. 

With regards to within-species examinations, it was found that the juvenile ovine MVAL 

behaved in a more isotropic manner compared to the adult ovine heart, whereas the TVAL 

showed little stretch response differences between the adult and juvenile ovine hearts (Fig. 

3.11). In addition, some discrepancy between the juvenile and adult ovine MVAL 

mechanical responses and similarity between the juvenile and adult ovine TVAL 

mechanical responses were observed. These findings suggest possible differences in the 

development rates between the MV and TV, and motivate further examinations of HV 

growth and remodeling over the organism maturation period [103]. 

3.4.6 Comparisons of anatomy and microstructure between species 

Our anatomical comparison allowed a glimpse into the differences and similarities between 

valvular structures of different species (Table 3.2). Substantial differences in leaflet 

thickness between the porcine and ovine valve was observed, with the porcine MVAL 

thickness of 0.79 ± 0.10 mm and the ovine MVAL thickness of 0.40 ± 0.03 mm, but similar 

average chordae lengths between the porcine and ovine valves (Table 3.2). These leaflet 

thicknesses are interpreted as proportional to the valvular capacity to bear pressure load, 

assuming healthy valve tissue. As such, it is intriguing that the MVs of the different species 
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exhibit such similar chordae lengths, despite the apparent difference in load-bearing 

capacity/necessity [100]. In addition, it was found that the chordae quantity generally 

correlated with the leaflet thickness. For example, the porcine TVAL possessed 11.2 ± 1.30 

anchoring chordae to support a leaflet of thickness 0.52 ± 0.06 mm, while the ovine TVAL 

had only 6.8 ± 0.50 anchoring chordae to support a leaflet of thickness 0.28 ± 0.05 mm. 

This relationship could provide insight into the growth and development process of chordae 

tendineae in the atrioventricular heart valves.  

To examine the chordae quantities within human heart valves, Lam et al. (1970) and Silver 

et al. (1971) conducted anatomical studies on the human MV and TV, respectively [17, 

18]. They found human hearts have, on average, 25 chordae in both the mitral and tricuspid 

valves. Our study revealed average chordae quantities of 30.5 ± 1.7 and 35.3 ± 2.8 chords 

for porcine mitral and tricuspid valves, respectively, and 14.9 ± 1.3 and 23.7 ± 1.9 chords 

for the adult ovine mitral and tricuspid valves, respectively. These differences in chordae 

quantities between species suggest unique valvular density and distribution of chordae 

tendineae within human, porcine, and ovine atrioventricular valves. The error presented in 

the chordae quantities also alludes to the differences in physiological structures across 

specimens, and the inability to determine a precise expected value for the chordae quantity 

within a healthy valve.  

3.4.7 Discussion of the histological results 

Valve leaflets are composed of collagen, elastin, GAGs, and PGs. The corresponding 

nonlinear anisotropic mechanical response of the valve leaflets is mainly determined by 

these constituents in the ECM. Studying the microstructural organization of leaflets is 
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crucial to understanding the physiological functions of the leaflets. In this study, we 

investigated the distinct thicknesses of the individual leaflet layers, as well as the collagen 

composition in the MV and TV leaflets based on quantitative histology analyses. The intact 

layer thickness measured from the histological images (Table 3.3) was in the same range 

as the thickness obtained from anatomical measurements (Table 3.2). The histological 

measurements allowed us to precisely quantify the discrepancies in the thickness of intact 

and individual layers of the MV and TV leaflets (Table 3.3). The measurements also 

showed the MV leaflets have relatively thicker collagen-rich fibrosa and ventricularis 

layers compared to TV leaflets (Fig. 3.12). The atrialis layer, which is facing the atrium in 

each leaflet, occupies 6.42 ± 1.36% of the total thickness of the MVPL and 11.32 ± 2.31% 

of the total thickness of the TVPL (Table 3.3). Although both atrioventricular valves are 

located in between the atrium and the ventricle, their respective leaflets are subjected to 

distinct hemodynamic loading conditions and transvalvular pressure gradients. Such 

functional discrepancies lead to the difference in the microstructural organization of the 

MV and TV leaflets as observed in this study. In addition, the high collagen fiber content 

and the collagen-rich fibrosa layer in the MV leaflets may serve as a primary load bearing 

layer to sustain higher pressures during cardiac cycles compared to the TV counterparts. 

3.4.8 Study limitations 

Biaxial testing methods are notoriously limited in their ability to capture and account for 

in-plane shear stresses [39]. In our study, planar shear stresses were found to be negligible 

compared to their direct stress counterparts, and so were not included in the results. This is 

standard practice in biaxial testing experiments [104]. In addition, we encountered 

difficulty in determining an average sample thickness due to the roughness and non-
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uniformity of the HV leaflets, particularly in regions with chordae attachments [105]. To 

address this obstacle, three thickness measurements from different regions of the testing 

sample were averaged. Still, the measurement of tissue thickness with calipers can result 

in lower than expected values due to tissue compressibility. A more optimal thickness 

measurement approach could employ optical coherence tomography (OCT) or a similar 

non-contact method to provide a more robust measurement. Another potential limitation of 

our study was the use of frozen tissues. Although this is a standard practice in biaxial 

mechanical testing experiments [42, 45], the effect of freezing on the mechanics of HV 

tissues has not been rigorously studied. Within the biaxial mechanical testing process, other 

factors such as the load cell resolution, the force-control algorithm, and the tissue 

interaction with the PBS solution can cause scattering in the observed sample mechanical 

responses. We saw this scatter in the low-loading regime for the tricuspid tissues, especially 

for the representative effect study results (e.g., Figs. 3.5-3.10(c,d,e) for TV leaflets). In 

addition to these experimental limitations, the natural variance in biological material 

property and structure led to substantial discrepancies in biaxial testing and anatomical 

study results. This challenge persists across many biological domains and leads to larger 

errors in experimental results compared to other fields.  

3.4.9 Concluding remarks 

In this Chapter, the response of each porcine atrioventricular leaflet has been thoroughly 

characterized. Our comprehensive results suggest the porcine MVAL and MVPL exhibit 

similar levels of material anisotropy, and the porcine TVPL is the most compliant in both 

the circumferential and radial directions and the most anisotropic among the three tricuspid 

leaflets. These findings also suggest the necessity of employing different constitutive 
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model parameters to describe the distinct mechanical behavior of each individual 

atrioventricular valve leaflet, rather than assuming homogeneous mechanical properties 

between leaflets. Moreover, we have demonstrated an increased loading rate is associated 

with a stiffer mechanical response, and increased temperature yields directionally-specific 

differences in the tissue stretches. A novel quantification of the distinct mechanical 

responses of porcine and ovine leaflets was also provided, along with the quantification of 

the difference in leaflet mechanical response between different species and between 

juvenile and adult ovine animals. The work presented in this Chapter is also the first of its 

kind to examine the anatomic chordae distributions within porcine and ovine 

atrioventricular valves to quantify the structural differences between MV and TV.   
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 SPATIAL VARIATION IN THE MECHANICAL 
PROPERTIES OF THE MVAL AND TVAL TISSUES 

4.1 Region-Specific AHV Tissue Mechanics 

With recent advances in computer power and numerical methods, it becomes possible for 

computational models to provide key insights into the behaviors and function of the 

atrioventricular HVs. It is expected that predictive computer simulations could be 

employed in determining possible failure mechanisms of current treatments and in 

supplementing patient-specific surgery planning. Current computational models 

incorporate valvular tissue material properties primarily based upon experimental data of 

the bulk tissue-level mechanical properties [42, 45, 106-108]. Although the heterogeneity 

of the HV microstructure has been qualitatively examined via organ-level computational 

studies [7, 109, 110], no existing efforts have attempted to characterize how this collagen 

network contributes to spatially-varied tissue mechanics. Therefore, most existing 

computational models assumed spatially homogeneous material properties, which may not 

accurately represent the leaflet tissues. Hence, there is a critical need to investigate the 

spatial variance in the MV and TV mechanical properties for enhancing existing 

computational models. 

The goal of this research is to address this need through novel characterizations of the 

regional mechanical properties and stress relaxation behaviors of both the MV and TV 

leaflets. Specifically, the anterior leaflets (MVAL and TVAL) were selected to represent 

each atrioventricular valve based on their anisotropic, highly-nonlinear nature [45, 48, 

111]. Mechanical testing with various biaxial mechanical loading and stress relaxation 
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protocols was conducted for each of the six tissue regions of the MVAL and TVAL to 

examine the regional variance/similarity in the tissue’s mechanical properties. 

4.2 Methods 

4.2.1 Tissue acquisition & sectioning 

Healthy, adult porcine hearts (80-140 kg, 1-1.5 years of age) were obtained from a local 

USDA approved slaughterhouse (Country Home Meat Co., Edmond, OK). Hearts were 

obtained on the same day of excision from the animal, promptly cleaned of clots, and 

placed in a freezer at -14 °C. This freezing-based storage procedure was adopted according 

to previous studies, which demonstrated a minimal effect of freezing on the mechanical 

properties of collagenous tissues [88-90]. For dissection, hearts were thawed and the MV 

and TV anterior leaflets were excised (Fig. 4.1a-b). Next, the leaflets were laid flat and 

further sectioned into six regions of a 6 x 6 mm dimension (Fig. 4.1c): regions B and E are 

denoted as the central regions, whereas regions A, C, D, and F are classified as the edge 

regions. The sectioned tissue samples were then stored in PBS solution and refrigerated in 

a 4 °C environment for testing within two days of dissection. 

4.2.2 Tissue sample preparation  

At the time of testing, the sectioned tissues’ thicknesses were recorded at three locations 

using digital calipers (Westward 1AAU4) and averaged. The specimens were then 

mounted, using BioRakes to facilitate an effective loaded region of 4 x 4 mm, onto a 

commercial biaxial mechanical testing system (BioTester–CellScale, Canada) equipped 

with 1500 mN load cells (Fig. 4.1d). The circumferential and radial tissue directions were 

aligned with the testing system’s x- and y-directions (Fig. 4.1e).  
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Figure 4.1. Dissected porcine hearts showing (a) the MV and (b) the TV with the anterior 

leaflet highlighted for both atrioventricular HVs. (c) Schematic of a valve anterior leaflet 

with the six tested regions. Experimental images of (d) the biaxial mechanical tester 

(BioTester) used in this study and (e) a mounted tissue sample with labelled components 

of the biaxial mechanical testing system. 

Four fiducial markers were placed in an array via a surgical pen on the central region of 

the tissue for optical tracking-based strain calculations (cf. Sections 3.2.4, 4.2.4). The tissue 

was submerged in a 37 °C PBS bath to emulate the valve’s physiological conditions. 

4.2.3 Biaxial mechanical testing 

Following the experimental procedure developed in our previous study [111], biaxial 

mechanical testing was performed to investigate the differences and similarities in the 
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mechanical responses of the MVAL and TVAL tissue regions. In brief, the maximum 

applied membrane tension in the C and R-directions ( ,maxCT and ,maxRT ) of 100 N/m and 50 

N/m were used for the MVAL and TVAL, respectively [48, 92]. A two-step force-

controlled biaxial testing procedure was used to characterize the mechanical behavior of 

the MVAL and TVAL tissue regions. First, a preconditioning protocol was used to restore 

the valve leaflet tissue to its in vivo configuration, in which ,maxCT and ,maxRT  were applied 

in each direction at a rate of 2.29 N/min for 8 repeated loading/unloading cycles with a 

preload as 2.5% of ,maxCT and ,maxRT . Next, five varying loading ratios ( ,max ,max:C RT T = 1:1, 

0.75:1, 1:0.75, 0.5:1, and 1:0.5) with 8 loading/unloading cycles were employed to 

investigate all possible physiological tissue deformations. Throughout the test, the BioRake 

separation distance and force were continuously recorded, and a series of 1280 x 960 pixel 

images were collected at 15 Hz using a high-resolution CCD camera. Data from the 

unloading portion of the last cycle of each loading protocol were used in the tissue stress 

and strain analyses as described in the next subsection, and in the results presented in 

Section 4.3. In addition, a biaxial stress-relaxation test was employed to observe the 

regional variance in the stress decaying response. For this testing, tissue specimens were 

loaded to ,maxCT and ,maxRT  using the maximum displacements recorded previously. Then, 

the specimens were held to relax over 15 minutes. The force readings were retrieved at a 

rate of 5 Hz for the subsequent stress reduction analysis. Although 3-hour stress relaxation 

experiments have been previously adopted for the semilunar valve leaflets by Huang et al. 

(2015) [112] and the MV leaflets by Sacks et al. (2004, 2006) [44, 108], the majority of 

stress reduction occurs within the first 800 seconds. Hence, the 15-minute stress-relaxation 
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period was chosen as sufficient to observe noticeable differences in the relaxation 

behaviors between the regions of both the MVAL and TVAL tissues.  

4.2.4 Tissue strain & stress calculations 

These tissue optical strain-tracking procedures follow the practices discussed in our 

previous manuscript, allowing for the computation of the deformation gradient, F (cf. 

Section 3.2.4) [111]. The stretches in each direction were then computed by taking the 

square roots of the principle values of the right Cauchy deformation tensor, T=C F F , and 

the membrane tension was then computed by 

 C C

R R

T 0 F 01
0 T 0 FL
   
         

,  (4.1) 

where FC and FR are the recorded force in the C and R-direction, respectively, and L is the 

effective edge length. Various stress measures can be readily computed using the 

membrane tension values and the associated specimen’s thickness: 

       1CC RR s C Rdiag , / t diag T ,TP P P   , 1S F P , and 1 TJσ PF  [113, 114], for 

making comparisons with results in other studies. Here, P is the 1st-PK stress tensor, S is 

the 2nd-PK stress tensor, σ is the Cauchy stress tensor, and J = det(F) is the Jacobian of F. 

Finally, an anisotropy index (AI), defined as the ratio of the peak stretch in the radial 

direction to the circumferential stretch, i.e., AI = 0− peak
Rλ / 0− peak

Cλ , was used quantitatively 

compare regional anisotropy. 

For analyses of the decaying stress responses from stress relaxation testing, force readings 

were converted to membrane tensions. The reported membrane tension values were 
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normalized by the peak values with respect to each direction for evaluating the percent 

relaxation over the 15-minute duration.  

4.2.5 Statistical analysis 

For quantitative comparisons, the peak tissue stretches ( 0− peak
Cλ and 0− peak

Rλ ) obtained from 

the mechanical testing results were further broken into two parts as described in our 

previous work [111]: (i) the preconditioning stretches ( 0 1−
Cλ  and 0 1−

Rλ ), which are defined 

as the tissue deformations due to the preconditioning effect, and (ii) the mechanical 

stretches ( 1− peak
Cλ  and 1− peak

Rλ ) which denote the tissue deformations in response to 

mechanical loading with respect to the post-preconditioning configuration. These 

decomposed stretch measures, along with the AI derived from the peak stretches, were 

compared between regions A-F using the standard one-way ANOVA. A p-value <0.05 was 

considered as statistically significant and a p-value <0.10 as nearly significant.  

4.3 Results 

4.3.1 Thickness of leaflet regions 

The measured thickness was generally consistent for the six regions with maximum 

variations of 0.106 mm for the MVAL and 0.104 mm for the TVAL. Thickness 

measurements for the MVAL were: 0.633 ± 0.033 mm (region A), 0.600 ± 0.045 mm 

(region B), 0.657 ± 0.041 mm (region C), 0.554 ± 0.039 mm (region D), 0.551 ± 0.045 mm 

(region E), and 0.584 ± 0.061 mm (region F). As for the TVAL, thicknesses were: 0.309 ± 

0.028 mm (region A), 0.287 ± 0.038 mm (region B), 0.378 ± 0.032 mm (region C), 0.301 

± 0.039 mm (region D), 0.368 ± 0.048 mm (region E), and 0.391 ± 0.041 mm (region F). 
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4.3.2 Biaxial mechanical testing 

Biaxial mechanical testing provided insight into the variance in stretch across the MVAL 

and TVAL tissue regions. Equibiaxial testing results ( ,max ,max:C RT T = 1:1) for the MVAL 

and TVAL total tissue stretch are reported in Figure 4.2 and Figure 4.3. Quantitative 

comparisons of the anisotropy index are summarized in Figure 4.4, while comparisons of 

the preconditioning and mechanical stretches are summarized in Figure 4.5 and Figure 4.6, 

respectively. Compiled quantitative mechanics metrics for the MVAL regions are shown 

in Table 4.1, and similar results for the TVAL regions are shown in Table 4.2. 

 
Figure 4.2. Mean ± SEM of membrane tension versus total tissue stretch results for the six 

MVAL tissue regions under equibiaxial loading ( ,max ,max:C RT T = 1:1). The labels (a-f) 

correspond to the region label defined in Figure 4.1c. N.S.: non-statistically significant.   
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Figure 4.3. Mean ± SEM of membrane tension versus total tissue stretch results for the six 

TVAL tissue regions under equibiaxial loading ratio ( ,max ,max:C RT T = 1:1). The labels (a-f) 

correspond to the region label defined in Figure 4.1c. N.S.: non-statistically significant. 

 
Figure 4.4. Mean ± SEM of anisotropy index for peak stretch of the six regions of the (a) 

MVAL and (b) TVAL. The labels (A-F) correspond to the regions defined in Figure 4.1c. 
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Figure 4.5. Mean ± SEM of the preconditioning stretches ( 0 1−

Cλ  and 0 1−
Rλ ) of (a) the six 

MVAL tissue regions and (b) the six TVAL tissue regions under equibiaxial loading in 

both the C (left) and R (right) directions. (*) denotes statistically significant (p<0.05) 

difference between groups and (**) denotes nearly statistically significant (0.05<p<0.10) 

difference between groups; otherwise, not statistically significant (p>0.10). 
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Figure 4.6. Mean ± SEM of the mechanical stretches ( 1− peak

Cλ  and 1− peak
Rλ ) of all six (a) 

MVAL and (b) TVAL tissue regions in both the C (left) and R (right) directions under the 

equibiaxial loading. (*) denotes statistically significant (p<0.05) difference and (**) 

denotes nearly statistically significant (0.05<p<0.10) difference between groups; 

otherwise, not statistically significant (p>0.10). 

Three main trends were observed for all loading ratios ( ,max ,max:C RT T = 1:1, 0.75:1, 1:0.75, 

0.5:1, and 1:0.5) in our biaxial mechanical testing results as described below. (1) We found 

that the central regions had a greater difference in the total tissue stretch between the 

circumferential and radial directions than the edge regions for the MVAL (region B: 

p=0.034, region E: p=0.017) and TVAL (region B: p=0.162, region E: p=0.189). (2) By 

analyzing the anisotropy index (AI ), we found the central regions were more anisotropic 

than the edge regions for the MVAL (statistically significant difference comparing B-A: 
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p=0.016, B-C: p=0.010, and E-A: p=0.010, and nearly statistically significant difference in 

D-E: p=0.072, and E-F: p=0.096). This trend was also observed in the TVAL regions 

(statistically significant difference comparing B-C: p=0.048, and nearly statistically 

significant difference in E-C: p=0.070). (3) It was found that the mechanical stretches in 

the circumferential direction of the MVAL were higher in regions near the annulus (regions 

A, B, and C) than those in regions near the free edge (regions D, E, and F) (circumferential 

direction, 0.036<p<0.703; radial direction, 0.136<p<0.842). This trend was not observed 

for the TVAL as the mechanical stretches were mainly uniform across the entire leaflet 

(circumferential direction, 0.496<p<0.910; radial direction, 0.050<p<0.930). Specifically, 

the mechanical stretches in the circumferential direction were 1.122-1.155 and 1.122-1.142 

for the MVAL and TVAL tissue regions, respectively, whereas the mechanical stretches 

in the radial direction were 1.128-1.150 and 1.112-1.144 for the MVAL and TVAL tissue 

regions, respectively (Table 4.1 and Table 4.2). 
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Table 4.1. Total tissue stretch, anisotropy index, preconditioning stretch, mechanical 

stretch from biaxial mechanical tests, and the engineering strain from stress relaxation tests 

for each MVAL region. Values are reported as mean (SEM). 

  A (n=13) B (n=13) C (n=13) D (n=12) E (n=13) F (n=13) 

Total Tissue 
Stretch at Peak 

Loading 

0 peak
Cλ
−

 
1.301 

(0.043) 
1.189 

(0.021) 
1.250 

(0.030) 
1.239 

(0.029) 
1.194 

(0.021) 
1.224 

(0.037) 
0 peak
Rλ
−

 
1.259 

(0.038) 
1.280 

(0.035) 
1.261 

(0.030) 
1.281 

(0.032) 
1.317 

(0.043) 
1.253 

(0.034) 
Anisotropy Index: 

0 0/peak peak
R Cλ λ− −

 
0.977 

(0.034) 
1.076 

(0.018) 
1.010 

(0.015) 
1.036 

(0.018) 
1.103 

(0.030) 
1.030 

(0.030) 

Preconditioning 
Stretch 

0 1−
Cλ  1.114 

(0.029) 
1.036 

(0.013) 
1.073 

(0.026) 
1.087 

(0.028) 
1.048 

(0.013) 
1.080 

(0.029) 
0 1−
Rλ  1.085 

(0.033) 
1.113 

(0.031) 
1.094 

(0.029) 
1.126 

(0.030) 
1.138 

(0.036) 
1.094 

(0.027) 

,max ,max:
= 1:1

C RT T  
1 peak
Cλ
−

 
1.155 

(0.017) 
1.136 

(0.013) 
1.154 

(0.011) 
1.129 

(0.006) 
1.128 

(0.014) 
1.122 

(0.010) 
1 peak
Rλ
−

 
1.150 

(0.012) 
1.139 

(0.012) 
1.142 

(0.010) 
1.128 

(0.008) 
1.147 

(0.014) 
1.134 

(0.010) 

,max ,max:
= 0.75 :1

C RT T  
1 peak
Cλ
−

 
1.290 

(0.044) 
1.169 

(0.021) 
1.240 

(0.030) 
1.224 

(0.028) 
1.184 

(0.021) 
1.215 

(0.036) 
1 peak
Rλ
−

 
1.259 

(0.039) 
1.262 

(0.037) 
1.262 

(0.030) 
1.287 

(0.034) 
1.315 

(0.044) 
1.254 

(0.034) 

,max ,max:
= 1: 0.75

C RT T  
1 peak
Cλ
−

 
1.305 

(0.043) 
1.189 

(1.247) 
1.247 

(0.030) 
1.240 

(0.029) 
1.191 

(0.021) 
1.224 

(0.038) 
1 peak
Rλ
−

 
1.250 

(0.038) 
1.277 

(0.034) 
1.252 

(0.027) 
1.281 

(0.030) 
1.315 

(0.043) 
1.247 

(0.033) 

,max ,max:
= 0.5 :1

C RT T  
1 peak
Cλ
−

 
1.133 

(0.019) 
1.120 

(0.013) 
1.131 

(0.012) 
1.102 

(0.006) 
1.105 

(0.014) 
1.104 

(0.010) 
1 peak
Rλ
−

 
1.148 

(0.013) 
1.137 

(0.012) 
1.140 

(0.011) 
1.138 

(0.011) 
1.137 

(0.016) 
1.137 

(0.011) 

,max ,max:
= 1: 0.5

C RT T  
1 peak
Cλ
−

 
1.157 

(0.018) 
1.136 

(0.014) 
1.156 

(0.012) 
1.127 

(0.005) 
1.122 

(0.014) 
1.124 

(0.010) 
1 peak
Rλ
−

 
1.132 

(0.014) 
1.126 

(0.012) 
1.125 

(0.011) 
1.114 

(0.013) 
1.133 

(0.014) 
1.119 

(0.010) 

Engineering 
Strain in Stress 

Relaxation 
Tests (ε = L/L0) 

C 0.275 
(0.054) 

0.203 
(0.033) 

0.277 
(0.034) 

0.371 
(0.060) 

0.171 
(0.040) 

0.211 
(0.035) 

R 0.283 
(0.034) 

0.348 
(0.035) 

0.276 
(0.080) 

0.371 
(0.086) 

0.440 
(0.090) 

0.473 
(0.065) 

*Variation in the sample size (n) was due to tests in which tissue data was not successfully acquired, 
such as tissue tearing or tissue insufficiently large, as typically observed for the edge regions. 
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Table 4.2. Tissue total stretch, anisotropy index, preconditioning stretch, mechanical 

stretch from biaxial mechanical tests, and the engineering strain from stress relaxation tests 

for each TVAL region. Values are reported as mean (SEM). 

  A (n=13) B (n=13) C (n=13) D (n=12) E (n=13) F (n=10) 

Total Tissue 
Stretch at Peak 

Loading 

0 peak
Cλ
−

 
1.367 

(0.064) 
1.310 

(0.033) 
1.358 

(0.054) 
1.345 

(0.049) 
1.272 

(0.035) 
1.255 

(0.033) 
0 peak
Rλ
−

 
1.387 

(0.064) 
1.430 

(0.076) 
1.348 

(0.059) 
1.414 

(0.079) 
1.379 

(0.072) 
1.275 

(0.053) 
Anisotropy Index: 

0 0/peak peak
R Cλ λ− −  

1.019 
(0.027) 

1.086 
(0.039) 

0.993 
(0.021) 

1.054 
(0.051) 

1.083 
(0.043) 

1.013 
(0.020) 

Preconditioning 
Stretch 

0 1−
Cλ  1.187 

(0.062) 
1.135 

(0.033) 
1.169 

(0.047) 
1.147 

(0.045) 
1.092 

(0.032) 
1.071 

(0.027) 

0 1−
Rλ  

1.214 
(0.063) 

1.232 
(0.072) 

1.164 
(0.056) 

1.212 
(0.076) 

1.171 
(0.063) 

1.098 
(0.052) 

,max ,max:
= 1:1

C RT T  
1 peak
Cλ
−

 
1.152 

(0.257) 
1.154 

(0.183) 
1.161 

(0.247) 
1.173 

(0.228) 
1.164 

(0.193) 
1.172 

(0.197) 
1 peak
Rλ
−

 
1.142 

(0.258) 
1.161 

(0.285) 
1.158 

(0.249) 
1.167 

(0.288) 
1.178 

(0.287) 
1.161 

(0.232) 

,max ,max:
= 0.75 :1

C RT T  
1 peak
Cλ
−

 
1.146 

(0.282) 
1.146 

(0.185) 
1.159 

(0.262) 
1.159 

(0.221) 
1.156 

(0.197) 
1.158 

(0.205) 
1 peak
Rλ
−

 
1.132 

(0.273) 
1.147 

(0.280) 
1.160 

(0.271) 
1.156 

(0.290) 
1.179 

(0.291) 
1.150 

(0.240) 

,max ,max:
= 1: 0.75

C RT T  
1 peak
Cλ
−

 
1.146 

(0.279) 
1.148 

(0.181) 
1.154 

(0.253) 
1.163 

(0.227) 
1.157 

(0.181) 
1.161 

(0.197) 
1 peak
Rλ
−

 
1.129 

(0.270) 
1.151 

(0.286) 
1.150 

(0.259) 
1.149 

(0.289) 
1.169 

(0.285) 
1.143 

(0.231) 

,max ,max:
= 0.5 :1

C RT T  
1 peak
Cλ
−

 
1.131 

(0.280) 
1.136 

(0.186) 
1.149 

(0.255) 
1.147 

(0.226) 
1.140 

(0.191) 
1.146 

(0.196) 
1 peak
Rλ
−

 
1.133 

(0.266) 
1.153 

(0.287) 
1.159 

(0.261) 
1.158 

(0.296) 
1.175 

(0.293) 
1.152 

(0.233) 

,max ,max:
= 1: 0.5

C RT T  
1 peak
Cλ
−

 
1.143 

(0.283) 
1.148 

(0.182) 
1.162 

(0.261) 
1.165 

(0.229) 
1.160 

(0.189) 
1.158 

(0.188) 
1 peak
Rλ
−

 
1.123 

(0.267) 
1.144 

(0.280) 
1.146 

(0.271) 
1.142 

(0.283) 
1.164 

(0.269) 
1.131 

(0.227) 

Engineering 
Strain in Stress 

Relaxation 
Tests (ε = L/L0) 

C 0.431 
(0.044) 

0.395 
(0.074) 

0.517 
(0.228) 

0.334 
(0.036) 

0.276 
(0.029) 

0.400 
(0.050) 

R 0.327 
(0.084) 

0.369 
(0.077) 

0.345 
(0.044) 

0.466 
(0.058) 

0.489 
(0.185) 

0.344 
(0.161) 

*Variation in the sample size (n) was due to tests in which tissue data was not successfully acquired, such 
as tissue tearing or tissue insufficiently large, as typically observed for the edge regions 
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4.3.3 Stress relaxation testing results 

A general trend of anisotropic exponential decays in the normalized membrane tension was 

found for both the MVAL and TVAL tissue regions (Fig. 4.7 and Fig. 4.8). Average values 

of the prescribed engineering strain are summarized in Table 4.1 for the MVAL regions 

and Table 4.2 for the TVAL regions. For the MVAL, all regions were observed to have a 

similar stress decay, except for region F, which decayed slightly more in the 

circumferential direction (Fig. 4.7). As for the TVAL, decays in the membrane tension 

magnitude were observed to be similar across all regions (Fig. 4.8). Comparing between 

the MVAL and the TVAL, an approximately 20-25% decay in stress reduction was 

observed for the MVAL tissue regions, whereas approximately 15-20% stress reduction 

was found across all TVAL tissue regions.  

 
Figure 4.7. Mean ± SEM of the normalized membrane tension versus time results from the 

stress relaxation testing for all the six MVAL tissue regions.  
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Figure 4.8. Mean ± SEM of the normalized membrane tension versus time results from the 

stress relaxation testing for all the six TVAL tissue regions. 

4.4 Discussion 

4.4.1 Overall findings and comparisons with previous work 

Biaxial mechanical characterization of the six regions of the MVAL and TVAL allowed 

for comparisons of the leaflet tissue’s spatially-varied mechanical properties. It was found 

that the central regions (region B and region E, cf. Fig. 4.1c) of both leaflets had a more 

distinct difference in the peak tissue stretches, but this difference was found to be 

statistically significant only for the MVAL. The mechanical properties and material 

anisotropy for the MVAL tissue regions characterized in this study agree with previous 

work considering the central belly region [115]. However, from our statistical analyses for 

the TVAL, we found that the p-values of the material anisotropy for the central regions 

were much lower than those for the edge regions, suggesting a more distinct difference in 
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the peak tissue stretches for the TVAL central regions, which agrees with previous 

investigations [48]. 

The observation of the belly regions being more anisotropic was supported when 

comparing the AIs between any two tissue regions. Statistically significant differences in 

the AI were found to be more pronounced for the MVAL tissue regions, especially when 

comparing the central regions (B and E) to the majority of edge regions (A, C, and D). In 

contrast, statistically significant differences were only found for the TVAL between 

regions B and C as well as between regions E and C. This novel finding suggests there is 

a noticeable regional variance in the mechanical behaviors of the MVAL and TVAL, 

typically when comparing the central belly regions to those edge regions as closer to the 

free edge and commissures of the valve.  

From our analyses of the mechanical stretches for the MVAL and TVAL tissue regions, a 

general trend was observed with the circumferential stretches being larger in regions closer 

to the annulus than those near the free edge for the MVAL. Although other regional 

comparisons for the TVAL did not yield observable trends, the regional variances in 

tissue’s stretch response suggest spatially-varied mechanical behaviors of the 

atrioventricular heart valve leaflets.  

Lastly, regional variance was exemplified through stress relaxation testing. Our results 

indicated a general trend of anisotropic, exponential decaying in the stress magnitude for 

the MVAL and TVAL tissue regions. The stress decay was reflective of previous studies 

considering the bulk leaflet tissues, especially in those central belly regions [45, 54, 116]. 

Moreover, a fair amount of variation in stress decay was also observed between the six 
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tissue regions. The general trend of greater stress decay in the MVAL regions compared to 

the TVAL regions suggests that the MVAL regions may have greater stress-relaxation 

potential than the TVAL regions. 

4.4.2 Study limitations 

General study limitations for our biaxial testing framework have been discussed in our 

previous work [111]: (i) shear stress was neglected from our calculations due to its 

negligibility, which is typical for biaxial testing protocols, and (ii) the freezing effect on 

the AHV mechanical behaviors has not been extensively investigated and is an assumption 

from studies involving other soft tissues. In addition, there were two specific limitations 

for this study. First, the effective loaded region in this study was much smaller than our 

previous investigation (6.5 mm versus 4.5 mm) and, to our knowledge, there is no study 

showing the effect of specimen loaded size on the characterized mechanical behavior of 

the leaflets. Further investigation may be warranted on the specimen size effect to 

determine the optimal testing size for the most accurate mechanical characterization of the 

MV and TV leaflet regions, as currently underway in our lab. Secondly, a hold time of 15-

minutes was considered for the stress relaxation testing in this study. An ongoing study 

from our group and other previous investigations have shown that a holding time of 

approximately 4 hours may be warranted to observe the full pattern of the stress relaxation 

behavior; still, the majority of stress reduction occurs within the first 900 seconds [45, 54, 

116]. In addition, our stress relaxation results have shown that the 15-minute period is 

sufficient to observe regional similarities/differences in the stress reduction behaviors (Fig. 

4.6 and Fig. 4.7). 
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4.4.3 Concluding remarks 

This research has, for the first time, examined the regional variance and similarity of the 

mechanical properties of the MVAL and TVAL. The biaxial mechanical testing results in 

this study have demonstrated a significant difference in the material anisotropy when 

comparing the central tissue regions to the edge regions. Variance was observed in the 

mechanical stretch across the six tissue regions with greater extensibility observed near the 

annulus of the MVAL. Our stress relaxation results have further showed an anisotropic, 

exponential stress decay trend with variations in the stress reduction between tissue 

regions. Our novel experimental findings could provide a better understanding of the 

spatially-varying mechanics of the leaflets and open the door to future refinement of 

computational models for accurate prediction of diseased or surgically-intervened 

conditions, where tissue heterogeneity plays an essential role in the valve function.  
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 PSFDI SYSTEM DEVELOPMENT 

5.1 Introduction to Collagen Fiber Quantification Techniques 

Collagen fibers compose the ECM in tissues such as tendons, arteries, HV leaflets, and 

skin. In collagenous tissues, the fibers are arranged in specific architectures to support the 

functional requirements of the material [117-119]. Due to the relationship between tissue 

mechanical function and collagen fiber organization, significant efforts have been 

dedicated to quantifying the collagen fiber architectures (CFAs) in various tissues [91, 120, 

121]. These research studies have traditionally analyzed static tissues, i.e., tissues not 

subjected to external mechanical loading. For example, existing studies have reported the 

static orientation and spread of collagen fibers throughout the domain of the sclera, 

meniscus, and murine lung, among others [122-124]. However, these static quantifications 

are fundamentally incomplete for understanding the tissue mechanical function, because 

collagen networks will change in response to mechanical loading [125-127]. Thus, 

complete description of CFA and function requires quantification of changes to fiber 

networks under applied mechanical loading. The combined structural and mechanical 

description of dynamic CFA is essential for improved comprehension of the structure-

function relationship in healthy tissues, and to improve understanding of structural and 

functional degradation in diseased tissues.  

Unfortunately, existing imaging techniques are generally incapable of providing this 

rigorous quantification. To explore the capabilities and shortcomings of existing imaging 

modalities, current fiber architectural quantification methods are reviewed below, with 

emphasis on their capacity for wide-field examination of dynamic fiber architectures in 

loaded tissues (Table 5.1). 
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Table 5.1. Comparison of collagen fiber quantification techniques [68, 72, 73, 128-130]. 

 polarized Spatial Frequency 
Domain Imaging (pSFDI) 

Quantitative-Polarized Light 
Microscopy (Q-PLM) 

Imaging Time 
Order of minutes, potentially shorter 
with improved hardware and lower 

resolution 

Single image capture in seconds, usually 
requires images at various polarizations 

Capture 
Method 

Series of images, arbitrary 
magnification 

Arbitrarily magnified image capture 

Field of View 
(FOV) 

Varies by lens, as large as desired, 
typically order of cm 

Varies by lens (typically order of μm-mm) 

Resolution Dictated by pixel-size of images and 
number of polarization states captured 

Varies by magnification & sample 
thickness 

Contrast 
Mechanism 

Birefringence of collagen fiber 
structure, reflectance-based 

Birefringence of collagen fiber structure, 
transmission-based 

 

 Small Angle Light Scattering 
(SALS) 

Second Harmonic Generation (SHG) 
Imaging 

Imaging Time Order of hours, depends on size and 
desired resolution 

Single image capture on order of minutes 

Capture 
Method 

Rasterized scanning with image 
capture at each raster point 

Second harmonic frequency generation 
and capture at each pixel of final image 

FOV As large as desired, typically cm-scale 
due to time limitations 

Initial images on order of 𝜇𝜇𝜇𝜇,  
reconstructed images on order of 100𝜇𝜇𝜇𝜇 

Resolution Dependent upon depth-averaged light 
diffusion and incident beam size 

High resolution, capable of resolving 
individual collagen fibrils 

Contrast 
Mechanism 

Anisotropic light scattering by fibrous 
structures extracted from transmitted 

light signatures 

Birefringent molecular hyperpolarizability 
among fibers/fibrils alongside frequency 

doubling nonlinear phenomena 

The above values present a baseline of the capabilities of these imaging modalities, as each 

technique has been customized and extended for specific applications, leading to a variety 

of FOVs, imaging resolutions, and image acquisition times. For example, although PLM 

is typically used to examine samples on a microscopic scale, similar techniques were 

recently applied via the addition of quarter-wave plates  to examine dynamic collagen 
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structures over a cm-scale in milliseconds, albeit with lower resolution [131]. In another 

recent custom application, a commercial SHG device was integrated with a mechanical 

testing system to examine changes to collagen fibril structures under load [132, 133]. 

However, this quantification was depth-limited to the superficial 60 μm of the tissue and 

was not able to interrogate large tissue regions with spatially-varied microstructures due to 

imaging time and FOV constraints.  

We examined the techniques listed while considering the goal of quantifying dynamic CFA 

over large tissue domains, and were impressed by the capabilities offered by the pSFDI 

modality. The technique can be conceptualized as a reflectance combination of polarized 

light imaging and Spatial Frequency Domain Imaging (SFDI), a planar projection method 

utilizing structured illumination to probe tissue properties [77, 79]. Through the projection 

of varied spatial frequency patterns, pSFDI can obtain aggregated information about tissue 

structures above a desired depth in the tissue [134]. In terms of microstructural 

quantifications, this technique: (i) is designed for quantitative analysis of collagen fiber 

orientation and degree of alignment, (ii) examines a cm-scale FOV in the order in the order 

of minutes for analysis of complex and spatially-varied tissue microstructures, (iii) allows 

depth discernment for quantification of multilayered samples, (iv) permits analysis of 

native, unfixed and non-chemically altered tissues, and (v) captures reflected light, 

encouraging modularity with external systems.  

To provide quantification of dynamic collagen architecture, our group developed a system 

based on the integration of a pSFDI instrument with a commercial biaxial tester. The 

integrated system is capable of depth-modulated rapid quantification of collagen fiber 

orientation and degree of alignment throughout the spatial domain of a tissue sample. 
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Additionally, the system can examine samples at arbitrary desired biaxial loading states, 

rendering an essential tool for opto-mechanical analysis of membrane tissues, such as the 

heart valve leaflets, arteries, skin and others. The system has been validated through 

combined mechano-structural testing on tendon tissues with a known fiber architecture 

[135] and further utilized in testing on the heart valve leaflets to demonstrate analytical 

capabilities for multilayered tissues with spatially and depth-varied collagen architectures 

at physiologically relevant loading states. The specific details of the integrated system and 

the fundamentals it relies upon are described in the following sections.  

5.2 Methods 

5.2.1 Theory of birefringent collagen scattering 

When subjected to polarized illumination, collagen fibers exhibit birefringence, i.e., a 

refractive response that depends upon the polarization and propagation of the incident light. 

More specifically, collagen fibers manifest structural birefringence, i.e., a birefringence 

arising from the cylindrical shape of the fibers. The structural birefringence of the fibers 

can be captured via a co-polarization imaging approach—a reflectance-based imaging 

methodology wherein light approaching a sample and reflected light from the sample are 

forced to pass through the same linear polarizer with angle θpolarizer. This co-polarized 

imaging system can be easily realized with several simple optical components (Fig. 5.1a), 

including a light projector, a linear polarizer, and a CCD camera.  
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Figure 5.1. (a) Schematic of a co-polarized pSFDI system, showing the optical 

components and passage of light, including scattering from the fibrous tissue 

microstructure. (b) Illustration of the birefringent reflected intensity response with an 

example fiber with orientation angle θfiber=90° and a polarizer angle θpolarizer defined on the 

polar axis with the same reference. 

By rotating the polarizer in a co-polarized imaging system through a 0°-180° range and 

capturing the corresponding reflected intensity associated with each θpolarizer, the 

birefringence of the collagen structure manifests in the varied reflected light intensity. This 

birefringent intensity variation is depicted for an example fiber with an orientation angle 

θfiber of 90° (Fig. 5.1b). The bimodal intensity response is periodic over a 180° range, due 

to symmetry in linear polarization, and has a global maximum where θpolarizer=θfiber with 

corresponding offset local maximum where θpolarizer=θfiber±90°. Simply put, the peaks in 

reflected intensities occur when the polarizer transmission axis is parallel to and 
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perpendicular to the fiber orientation angle. Quantitatively, the birefringent reflected 

intensity of a group of collagen fibers (Fig. 5.1b) can be described by the following 3-term 

Fourier cosine series: 

   0 2 42 4out
f p f p

sys

I a a cos a cos   


              .                      (5.1) 

Equation (5.1), derived based on a formal Stokes/Mueller approach in Appendix C, 

describes the reflected intensity of a group of fibers as a function of the θpolarizer, where τsys 

is the bulk systemic coefficient encompassing non-birefringent intensity modifiers, such as 

the aperture of the camera, and a0, a2, and a4 are the three Fourier coefficients. Specifically, 

a0 describes the average reflected light from the sample, whereas a2 and a4 represent the 

optical anisotropies arising from the birefringence within the sample.  

For complex clusters of collagen fibers with varied in-plane polar orientations, the 

magnitudes of the optical anisotropies provide a means of examining the dispersion of the 

fibers, which is reflected in the degree of optical anisotropy (DOA) in the sample: 

2 4

0 2 4

a aDOA
a a a




 
,                                                 (5.2) 

Although the DOA metric is not a perfect indicator of collagen fiber dispersion, as the 

observed optical anisotropy can be impacted by other factors [79], the DOA can still 

provide valuable comparative information about the spatial dispersion of collagen fibers 

throughout a sample, and can permit microstructural comparisons between loaded and 

unloaded tissue samples, as explored in Section 5.3. Together, Eqns. (5.1) & (5.2) provide 

the fundamental theory relating the birefringent optical response of a collagenous tissue to 
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the mean fiber orientation θfiber and the approximate fiber dispersion via DOA. In the pSFDI 

theory, these relationships are used to extract spatial collagen structural information from 

a tissue sample’s optical response. The practical implementation of the pSFDI structural 

quantification method will be discussed further in Section 5.2.3.  

5.2.2 Spatial frequency domain imaging (SFDI) theory 

pSFDI employs the spatial frequency domain imaging (SFDI) theory to control the 

effective imaging depth of our system’s microstructural quantifications. SFDI allows 

specification of the effective penetration depth, eff ,AC , of the measurements via control of 

the spatial frequency fx of the projected light pattern: 

1
2eff ,AC

xf



 ,                                               (5.3) 

By regulating the incident light’s spatial frequency, we can produce spatial maps of the 

predicted material properties, encoding only information above a desired effective 

penetration depth, according to Eq. (5.3). These depth-controlled images are known as AC 

images. In the SFDI demodulation process, these depth-controlled AC images are 

generated along with full-optical-thickness images, denoted as the DC images. Although 

the use of SFDI for depth-modulated imaging has been well-explored in literature [136-

138], we provide a thorough analysis of Eq. (5.3) and the derivation of the DC and AC 

penetration depth formulae in Appendix C. 
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5.2.3 Polarized spatial frequency domain imaging system 

The pSFDI (polarized SFDI) imaging technique combines the ability of co-polarized 

imaging to quantify birefringent fiber structures with the depth-discrimination capabilities 

of SFDI. Our group has integrated the traditional pSFDI system with a mechanical testing 

system to form a novel opto-mechanical system capable of quantifying wide-field load-

driven changes in a tissue sample’s collagen microstructure. Our pSFDI system utilizes an 

LED-driven, micromirror-based pattern projection system (Texas Instruments, Dallas, TX) 

with projection wavelength of 490 nm (cyan) and a 5 Megapixel CCD camera (Basler, 

Germany) with lens of f/1.9 and exposure time of 50 ms. For controlled rotational 

polarization, the system employs a nanoparticle linear polarizer with diameter 25 mm 

mounted into a rotational servo motor with 0.1° resolution (Thorlabs, Newton, NJ). These 

components are fixed to a vertical breadboard using a combination of purpose-built 3D-

printed components and standard optics mounting hardware (Fig. 5.2).  
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Figure 5.2. Trimetric and side views of the integrated pSFDI and biaxial testing system. 

Arrows in the side view indicate the passage of light through the system. 

For all dynamic testing, the pSFDI system was positioned vertically above a commercial 

biaxial testing system (CellScale, Ontario, Canada) and calibrated to the tissue size to 

create the integrated opto-mechanical imaging system. During testing, the projection-

system projects 3 phase-shifted images sequentially through a polarizer at angle θpolarizer 

and onto a tissue sample. For each projected image, the light reflects from the sample and 

passes through the same polarizer before capture by the camera. This projection-capture 

sequence is repeated at each of 37 discrete polarization increments (5° increments from 0° 

to 180°, including both endpoints). The coordination of image projection, image capture, 

and polarizer rotation is accomplished through a custom LabView program (Austin, TX). 

After testing, the phase-shifted images are first smoothed via convolution with a 

normalized 5x5 uniform kernel, or convolution matrix, and are then combined at each pixel 
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and polarization state according to DC and AC convention from SFDI theory (cf. 

Appendix C for more details). At each pixel in the resultant DC and AC images, the 

intensity is fit with respect to θpolarizer using a moving least-squares (MLS) model [139]. 

This fitting allows the extraction of θfiber as the polarization angle where the MLS model 

fit intensity is maximized, according to Eq. (5.1). Utilizing the extracted θfiber arrays to 

compute the cosine terms in Eq. (5.1), linear curve fitting is then performed via the normal 

equation to extract the three Fourier term coefficients (a0, a2, a4) at each pixel. These 

coefficients are further applied to Eq. (5.2) to compute the DOA image. These data analysis 

processes were repeated in full for both DC and AC datasets, with the effective penetration 

depth of the AC images computed using Eq. (5.3). All data analyses were implemented via 

in-house Python programs. 

5.2.4 Analyzing the CFA in soft tissues 

All tissues used in the following studies were obtained from a USDA-certified abattoir 

(Country Home Meat Co., Edmond, OK). The tissues were frozen for storage purposes and 

thawed prior to testing and sample selection. 

Verification Test – Bovine Tendon Tissues 

First, to validate the microstructural predictions by the developed pSFDI system, “static” 

testing on bovine tendon samples at varied planar orientations was performed. In the 

interior region of bovine tendon, collagen fibers exhibit a strong preferential alignment 

along the longitudinal tendon axis [140]. To evaluate the efficacy of the system’s 

microstructural predictions, the quantified collagen fiber orientations of tendon samples 

were compared to the expected preferential orientation as previously mentioned. In brief, 
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three thin tissue samples were excised from the central region of bovine tendons, with care 

taken to exclude the synovial sheath membrane enclosing the tendon. The samples were 

then placed at varied planar orientations, sandwiched between two microscope slides in a 

3D-printed container, and mounted to the pSFDI system. Samples were imaged with a 

spatial frequency fx=0.20 mm-1. Because the orientation prediction capability of the system 

was the focus of this group, we considered only the DC, or full-depth, image results from 

this study. 

Quantification of Dynamic Changes in the CFA – Bovine Tendon Tissues 

Next, deformation-controlled tensile testing was performed to examine the load-dependent 

changes in the collagen fiber microstructures. Specifically, a strip of tissue, with a thickness 

of 1.25 mm, a width of 15 mm, and a length of 40 mm, was extracted from the central 

region of a bovine tendon, with the strip length corresponding to the tendon axis. The 

tendon sample was then mounted to the biaxial testing system subject to various uniaxial 

strains (0%, 1%, 2% and 3%), while the CFA of the tendon tissue sample was quantified 

by pSFDI imaging with a spatial frequency fx=0.27 mm-1. 

Quantifications of Depth-Discrimination and Dynamic Changes in the CFA – Porcine 

Mitral Valve Anterior Leaflet (MVAL) Tissues 

Heart valve leaflets, such as the MVAL, exhibit spatially-varied CFAs with complex layer-

dependent microstructures [60, 141]. Therefore, dynamic testing on porcine MVAL tissue 

samples was performed to predict a more complex collagen fiber architecture using our 

developed pSFDI system and to examine the depth-discrimination feature of the SFDI 

imaging. Two studies were considered to examine the microstructures of the MVAL tissue 
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samples: (i) Study A, to examine how the collagen fiber structures in response to varied 

biaxial loads, and (ii) Study B, to analyze the CFA across different MVAL tissue layers.  

In each study, anterior leaflet tissue samples were excised from the MV and mounted to 

the biaxial tester using BioRakes to create an effective testing region of 10 x 10 mm. The 

tissue was mounted ensuring circumferential and radial directions were aligned with the 

testing x- and y-axes, respectively. Sample tissues were then preconditioned to restore their 

in vivo functional condition, using a standard force-controlled preconditioning protocol 

with a maximum force of 1000 mN applied in both the circumferential and radial 

directions, based on an assumed maximum physiological membrane tension of 100 N/m 

[43, 48] and a 10 mm effective edge length. 

In Study A, an MVAL sample with a thickness of 0.75 mm was examined. After the above-

mentioned preconditioning step, the tissue sample was subjected to variety of biaxial loads: 

FC:FR=1000mN:1000mN, 1000mN:250mN, and 250mN:1000mN, where FC and FR are the 

forces applied in the circumferential and radial directions, respectively. A spatial frequency 

fx=0.27 mm-1 was adopted for all tests in Study A with only the DC, or full-depth, image 

results reported. 

In Study B, an MVAL sample with a thickness of 0.87 mm was subjected to mechanical 

preconditioning and then examined with spatial frequencies of 0.71 mm-1, 0.42 mm-1, 0.24 

mm-1, and 0.20 mm-1 (corresponding to AC imaging depths of 225, 375, 650, and 800 µm, 

respectively, based on Eq. (5.3)). The sample was then loaded with FC-FR=1000 mN:1000 

mN, and the pSFDI imaging was repeated using the same set of spatial frequencies 

mentioned above. Both AC and DC image results were compiled and reported. 
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5.3 Results 

5.3.1 Collagen microstructural imaging for bovine tendon tissues  

The fiber orientations for various bovine tendon samples are presented in Figure 5.3.  

 
Figure 5.3. Microstructural quantifications from the pSFDI system. (a) DC images for 3 

bovine tendon tissue samples, with expected fiberθ  according to the tendon’s preferential 

axial direction, i.e., 120°, 60°, and 20°. Red circles indicate single pixel locations where: 

(b) DC intensity responses, together with the 3-term Fourier series fit (Eq. (5.1)) for 

quantifying the fiberθ , are presented. (c) Colormaps of the predicted fiber  associated with 

each tendon tissue sample. 

Several key findings can be extracted from these plots. Principally, we observed that the 

Fourier cosine series (Eq. (5.1)) is able to accurately describing the birefringent reflected 

intensity of collagenous tissues with an arbitrary fiber orientation (Fig. 5.3b). Secondly, 
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the pixelwise fiberθ  predictions (Fig. 5.3c) are in a very good agreement with the 

longitudinal axis of the tendon. These “static” imaging results validated the pSFDI system 

we developed and further prompted our investigation into the effects of external loading 

on the tendon tissue’s microstructure. The system predictions of the dynamic CFA for a 

strip of bovine tendon subjected to various uniaxial loads are shown in Figure 5.4. 

 
Figure 5.4. Dynamic microstructural quantifications from the integrated biaxial-pSFDI 

system. (a) Experimental raw images of bovine tendon tissue specimen (thickness = 1.25 

mm), and predictions of (b) fiberθ  and (c) DOA at 0% and 3% uniaxial strains. (d) DC 

intensity responses, obtained by spatially averaging over the region outlined in red, 

considering 0%, 1%, 2%, and 3% uniaxial strains. 

The predominant fiber orientations in the uniaxially-loaded tendon fell along the tendon 

longitudinal axis at approximately 70º, as shown in Figure 5.4b. Unlike the fiber orientation 
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predictions, the predicted DOA changed markedly, increasing heterogeneously across the 

tissue domain (Fig. 5.4c). The optical signal averaged over a bulk region of the tissue is 

presented in Figure 5.4d, where the increased strain corresponds to an increase in the 

magnitude of the optical birefringence. This increased birefringence is captured in the 

corresponding increase in average DOA; For example, the DOA values extracted from the 

optical responses (Figure 5.4d) were 0.127, 0.163, 0.196, and 0.2127 for the 0%, 1%, 2%, 

and 3% loading states, respectively. The clear and expected DOA increase with increased 

tissue loading supports its use to indicate fiber dispersion and recruitment in tissues. As 

tissues are loaded, fiber families are expected to exhibit a more uniform alignment in the 

direction(s) of applied loading [7, 63, 142, 143]; our system dynamically quantifies this 

phenomenon through the DOA metric. 

5.3.2 Collagen microstructural imaging for MV leaflet tissues  

We used our system to further analyze MVAL tissue samples under various biaxial loads, 

and the results, which are the first of their kind, are shown in Figure 5.5.  

Our results indicate that the collagen fiber architecture of the MVAL tissue sample is both 

spatially complex and highly load-dependent. Specifically, in the unloaded state, the fibers 

were generally aligned in an extended U-shape—tracing an arc from the annulus on the 

left, toward the coaptation point, and back to the annulus on the right. This microstructure 

has been well-catalogued in heart valve leaflets [72, 144, 145]. Moreover, the unloaded 

DOA was relatively spatially uniform, falling into a range of 0.02-0.08 throughout the 

tissue. However, we observed drastic and spatially-varied changes in both the predicted 

fiber orientations and DOA with applied loading (Fig. 5.5c, Fig. 5.5d, and Fig. 5.5e), 
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dependent upon the direction and the magnitude of the load. To draw insights from the 

complex dynamic microstructures quantified in the MVAL sample, we plotted the bimodal 

distributions of the fiberθ  and DOA over the tissue domain for each loading ratio (Fig. 5.6). 

 
Figure 5.5. Dynamic microstructural quantifications from the integrated biaxial-pSFDI 

system. (a) Schematic of the porcine MVAL specimen (thickness = 0.75 mm) mounted to 

the BioTester and the DC image showing the biaxially-loaded region. (C: Circumferential, 

R: Radial). Predictions of fiberθ (vector field) and DOA for the MVAL tissue (b) after 

preconditioning, and (c-d) under various biaxial loads. 
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Figure 5.6. Distributions of the fiberθ  and DOA predictions from MVAL testing in Figure 

5.5. (a) Testing image of the MVAL with the region of interest (ROI) outlined in red and 

loading labelled. Histograms of (b) the fiberθ  distributions with the corresponding bimodal 

von Mises distribution fit (Eq. (5.4)) and (c) the DOA distributions with the corresponding  

bimodal normal distribution fit (Eq. (5.6)). The parameters of the fit are summarized in 

Table 5.2), where the distributions were obtained from all the pixels in the ROI. 

Both the fiberθ and DOA distributions for the MVAL tissue sample exhibited a salient 

bimodal character, regardless of loading state (Fig. 5.6b,c). Based on these observations, 

and previous studies suggesting the presence of multiple fiber families in heart leaflets 

[118], we used bimodal models to quantify the fiberθ and DOA distributions. For the fiber 

orientation, a bimodal π-periodic von Mises distribution was used in the fitting, as a more 
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tractable alternative to a wrapped bimodal normal distribution. The distribution is 

described  by: 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2
ˆ | , , , , | , 1 | ,fiber fiber fiberf w wg w gθ µ κ µ κ θ µ κ θ µ κ= + − ,     (5.4) 
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where 1 1( , )µ κ  and 2 2( , )µ κ  are the parameters associated with the first von Mises 

disribution and the second von Mises distribution, respectively, I 0 is the zeroth-order Bessel 

function, and [ ]0,1w∈  is the mixing parameter. κ, the dispersion parameter with range 

[0,1], can be considered analogous to 1/ 2  , where  is the standard deviation of a 

corresponding normal distribution. 

Similarly, the predicted DOA was fit by a bimodal normal distribution: 
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where 1 1( , )µ σ  and 2 2( , )µ σ  are the parameters associated with the two mixing normal 

distributions, respectively, and [ ]0,1w∈  is the mixing parameter. 



92 

The fiberθ  and DOA measured frequencies (Fig. 5.6) were both normalized prior to fitting 

with their respective probability distribution functions. The fitting parameters, along with 

the coefficient of determination for each model fit (R2) and the tissue stretches are presented 

for each loading ratio in Table 5.2. 

Table 5.2. Bulk distributions of the CFA in the MVAL (cf. Fig. 5.5 and Fig. 5.6). Bimodal 

fiber orientation and DOA fitting are described by Eqns. (5.4) & (5.6), respectively. 

FIBER ORIENTATION VON MISES DISTRIBUTION FIT  

FC:FR 1 (deg.) 1  (x10-3) w 2 (deg.) 2 (x10-3) R2 

0 mN:0 mN 49.063 0.347 0.401 151.199 2.42 0.908 
1000 mN:1000 mN 66.038 0.148 0.416 161.794 2.84 0.936 
250 mN:1000 mN 78.135 0.917 0.360 154.321 1.66 0.943 
1000 mN:250 mN 3.005 0.386 0.666 165.323 4.32 0.938 

 

DOA BIMODAL NORMAL DISTRIBUTION FIT 

FC:FR 1µ  1σ  w  2µ  2σ  R2 

0 mN:0 mN 0.0226 0.0049 0.0922 0.0424 0.0166 0.993 
1000 mN:1000 mN 0.0544 0.0189 0.3747 0.1078 0.0279 0.990 
250 mN:1000 mN 0.0665 0.0275 0.8066 0.1174 0.0348 0.993 
1000 mN:250 mN 0.0442 0.0169 0.2788 0.0995 0.0291 0.980 

 

TISSUE DEFORMATION 

FC:FR Cλ   Rλ  

0 mN:0 mN 1.0 1.0 
1000 mN:1000 mN 1.169 1.268 
250 mN:1000 mN 1.060 1.311 
1000 mN:250 mN 1.241 1.113 

 

As shown in Figure 5.6 and Table 5.2, the orientation distributions varied substantially 

with the applied loading ratio. For example, when FC:FR=250 mN:1000 mN, the 

distributions moved toward the radial tissue direction to support the radially-concentrated 

loading, with the smaller peak rotating from 66.1° under equibiaxial loading to 78.2°, and 
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the larger peak rotating from 161.8° to 154.3°. Similarly, when FC:FR=1000 mN:250 mN 

the peaks moved toward the circumferential tissue direction, with the smaller peak 

adjusting from 66.1° under equibiaxial loading to 2.9° under circumferentially-

concentrated loading and the larger peak adapting from 161.8° to 165.2° under this 

circumferential-preferred loading state. 

As for the the DOA distributions, the most straightforward result is the general increase in 

DOA from the unloaded state to all loaded states. We also found that when the orientation 

distributions demonstrated two apparently distinct peaks, the DOA distributions generally 

exhibited either a single peak or two peaks with similar means. Conversely, in loading 

states where the orientation distributions coalesced, the DOA distributions separated. For 

example, when the FC:FR=250 mN:1000 mN the orientation exhibited two distinct 

groupings, but the DOA was apparently unimodal. However, when the FC:FR=1000 

mN:250 mN the orientation distribution became nearly unimodal and the corresponding 

DOA distribution exhibited two distinct peaks. This curious pattern holds for the 

FC:FR=1000 mN:1000 mN and FC:FR=0 mN:0 mN distributions as well, albeit with smaller 

magnitudes. 

A uniform result across each loading ratio as observed from this study is the tissue 

microstructural affinity for the circumferential direction. For each loading state, the center 

of the larger fiber distribution fell between 151° and 4°. Although the exact position 

changed with the loading ratio, the more prevalent fiber family was always oriented along 

the circumferential tissue direction. The DOA distributions affirmed the circumferential 

proclivity of the tissue microstructure; the average DOA over the ROI was 0.085 for 

FC:FR=1000 mN:250 mN, but decreased to 0.078 under FC:FR=250 mN:1000 mN. That is, 
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for equivalent biaxial loading magnitudes, we generally observed more aligned fibers when 

the loading prejudice was in the circumferential tissue direction rather than the radial 

direction. This circumferential inclination manifests in the tissue stretches as well, with 

stretches of 26.80% in the radial direction but only 16.87% in the circumferential direction 

under the equibiaxial load (FC:FR=1000 mN:1000 mN). The extensive circumferential 

affinity in tissue microstructure will be discussed further in relation to heart valve tissue 

mechanical properties in Section 5.4.2. 

Remark: It should be noted that the assumption of bimodal microstructural distributions 

was made a-priori to allow quantifications of the fiberθ  and DOA distributions of the 

MVAL tissue sample, as well as their dependence on the applied loads. While other models 

may more completely represent the population distributions, these bimodal models suffice 

for our demonstrative purposes. 

5.3.3 Quantified transmural CFA for the MVAL tissues 

The microstructure of an MVAL sample at various depths was also analyzed according to 

(Eq. (C.14)). Before assessing the imaging results, it’s important to understand the layered 

structure of the MVAL. A cross-sectional histological view of the MVAL morphology is 

show in Figure 5.7a, where collagen fibers are stained in blue, and each layer is labeled 

with its respective thickness [146]. In this study, we examined an MVAL with a thickness 

of 0.87 mm from the atrialis-side at various imaging depths as shown in Figure 5.7b. We 

imaged the unloaded tissue at each penetration depth (Fig. 5.7b), then applied an 

equibiaxial load of FC:FR=1000 mN:1000 mN and repeated the pSFDI imaging (Fig. 5.7c).  
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Figure 5.7. Depth-modulated microstructural predictions from the integrated biaxial-

pSFDI system. (a) Histological image illustrating the 4 morphologically distinct layers of 

a typical porcine MVAL tissue (image modified from [147]). Predictions of fiberθ  from the 

AC intensities for a porcine MVAL tissue sample (thickness=0.87 mm) at various 

penetration depths associated with different spatial frequencies ( fx ) determined based on 

Eq. (5.3): (b) after preconditioning, and (c) under equibiaxial loading of 1000 mN. 

Predictions from the DC intensities are included to compare orientation predictions 

extracted from the full optical thickness. 

In the unloaded state, the fiber orientations showed substantial depth-variance (Figure 5-

7a). For example, the predicted fiber orientation changes from ~90° at the shallowest 

imaging depth (225 µm) to ~0° as the imaging depth increases (the black square). Similar 

depth-dependent orientations can be observed in the upper-central region of the unloaded 
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test (the black circle), where the predominant fiber orientation changes from ~160° to a 

mixture of ~0° and ~70° fiber orientations as the imaging depth increases. These results 

indicate that the spatial organization of collagen fibers may be different in the uppermost 

atrialis layer from the inferior fibrosa layer for an unloaded MVAL. In contrast, these 

depth-dependent differences become indiscernable when the MVAL tissue was subjected 

to the biaxial loading (Fig. 5.7c). Specifically, the fiber orientation quantifications in the 

loaded tissue are nearly independent of imaging depth, for the range of the examined spatial 

frequencies. This novel finding suggests that, while unloaded fiber orientations vary with 

tissue layers, the fiber orientations in the biaxially-loaded MVAL (FC:FR = 1000 mN:1000 

mN) are uniform throughout the atrialis and fibrosa layers.  

5.2.4 Discussion 

5.4.1 Evaluation of the integrated system’s capabilities 

This study has demonstrated the capability of an integrated biaxial-pSFDI system to 

quantify the collagen microstructures of soft tissues under various mechanical loading 

conditions. First of all, we found that although the fiber orientation predictions for the 

bovine tendon samples were mainly accurate (Fig. 5.3). Still, we observed some local 

irregularities due mainly to rough sample surfaces rather than any systemic prediction 

biases. For example, the thin streaks of incorrect predictions for the tissues in Figure 5.3 

correspond to regions where the collagen fiber bundles on the tissue surface were not 

compressed against the microscope slide. These surface irregularities caused specular 

reflections, resulting in the incorrect fiber predictions. The systemic preference for a 

smooth sample surface is manifest further in the dynamic uniaxial testing on bovine tendon 

(Fig. 5.4). Specifically, orientation predictions for the loaded tissue in Figure 5.4b 
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contained striations of incorrect predictions of ~160° along the direction of applied force, 

seemingly caused by heterogeneous loading throughout the tissue. We observed that 

loading caused collagen fiber bundles to be nonuniformly recruited and form an uneven 

surface geometry, generating abnormal reflections and subsequent incorrect predictions. 

This observation is supported by the DOA measurements for the loaded tissue, which show 

substantial spatial differences in fiber recruitment. This unfortunate systemic dependence 

on a smooth surface could be easily improved by using a larger spatial smoothing kernel 

in the analysis, at the cost of prediction resolution, or submerging the testing samples in a 

bath to reduce the magnitude of the difference in index of refraction between the tissue and 

the surrounding media, as implemented in the MVAL tissue imaging experiments. 

Fortunately, the surface effects found in the tendon analysis did not persist into the study 

of the MVAL microstructure due to the smooth leaflet surface and the PBS bath. However, 

because the MVAL were kept hydrated in a solution bath during testing, we observed 

pointwise irregularities in the MVAL predictions due to impurities drifting on the surface 

of the PBS solution. We also saw some specular reflections from the surface of the PBS, 

but these “bright spots” were typically outside of the tissue domain (Fig. 5.5a), and could 

be relocated via adjusting the incidence angle of the projected light. In addition to capturing 

collagen fiber architecture throughout the tissue domain, our system was able to monitor 

the changes in local fiber networks in response to the varied applied loads. This novel 

capability is a powerful tool for providing new insight into tissue fiber microstructures. For 

example, dynamic fiber distributions across the MVAL have been quantified and analyzed 

(Fig. 5.5 and Fig. 5.6) for the first time, yielding a better understanding of the fiber 

architectural behaviors within the MVAL subjected to mechanical loading. We expect that 
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subsequent studies will similarly shed light on a variety of previously impenetrable 

phenomena by examining the dynamic microstructures of a variety of collagenous tissues. 

In the spatial frequency study (Study B), we noticed the appearance of some banding in the 

image of the unloaded tissue at the higher spatial frequencies (Fig. 5.7b). Since one of the 

purposes of demodulating the 3 phase-shifted initial images into the AC image is to ensure 

a uniform illumination, no indication of the incident light projection should appear in the 

resultant images. These bands did not appear at lower spatial frequencies, nor in the loaded 

tissue predictions (Fig. 5.7c). We suspect these bands were caused by a systemic flaw 

manifesting only at high spatial frequency and weak sample birefringence. While our 

captured intensities encode predominantly information from the sample, there is a small 

amount of light that is reflected from the surface of the polarizer and captured by the 

camera. For larger spatial frequencies and more reflective samples, this minor reflection 

error is negated by the signal from the tissue. However, at high spatial frequencies, the 

minor reflection can cause the intensity skew in the captured images from sinusoidal, 

leading to banding in the AC combined images. These errors could be remedied in future 

studies by systemic normalizations and improved calibrations, like those described in the 

recent paper by Goth. et al. (2019), or by restricting the incident spatial frequency to a 

given range [148]. Despite the appearance of these bands, our system was able to capture 

the changes to microstructure that accompany loading throughout the thickness of the 

MVAL. This capacity has numerous applications in the analysis of a variety of layered 

tissues, such as skin tissue, arteries, gastrointestinal wall, and others.  
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5.4.2 Relationship between CFA and tissue mechanics in the MVAL 

Our study revealed the complexity of load-dependence in MVAL tissue microstructure; 

these quantified microstructural behaviors can shed light on many of the phenomena 

observed in mechanical studies on the MV leaflets, such as the material anisotropy, 

nonlinearity, and the observed spatial variations [147, 149, 150]. Our study revealed that, 

although the collagen fibers in the MVAL are not perfectly oriented in the circumferential 

direction, the fibers demonstrate a predominant circumferential orientation even under 

preferential loading in the radial direction (Fig. 5.6d). This circumferential tendency 

corresponds to the higher circumferential stiffness in the mechanical response of the heart 

valve leaflets, contributing to the tissue material’s anisotropy. In terms of the spatial 

differences in tissue microstructures, our study demonstrated that the microstructures of 

the MVAL tissue sample were generally spatially heterogenous regardless of the applied 

loads (Fig. 5.5). The observed microstructural heterogeneity in the MVAL echoes the 

previous findings of mechanical differences across different MVAL regions [149]. In 

addition to the material anisotropy and the regional variance, ongoing studies are using this 

integrated system to examine the microstructural basis for the nonlinear mechanical 

response of the heart valve leaflets. Preliminary results suggest that after a large amount of 

deformation and fiber realignment, indicated by the toe-region of the mechanical curve, 

the CFA reaches a “terminal” point and will adjust no further. This cessation of 

microstructural change corresponds to a rapid stiffening in the tissue mechanics, thus 

enforcing the observed nonlinear mechanical curves (manuscript in preparation). As 

demonstrated by this pilot study, quantifying the load-dependent microstructure in 

membranous tissues like the MVAL can allow explanation of the tissue mechanics from a 
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microstructural basis. This deeper comprehension of the microstructure behind the tissue’s 

mechanical properties will be essential for improving the understanding of the diseased 

tissue states and for enriching computational models of the heart valve function [151]. 

5.4.3 Concluding remarks 

This study contributes to the fields of biological tissue imaging and biomechanics. Our 

contributions can be summarized as follows: (1) development of a novel integrated pSFDI 

with biaxial mechanical testing system for dynamic microstructural quantification, (2) 

validation of the system through imaging on static and dynamic bovine tendon tissue 

samples, and (3) presentation of the local and bulk microstructural properties of collagen 

fibers in an MVAL sample under a variety of loading conditions, providing examples of 

the unique and extensive microstructural quantification capabilities of the integrated 

system. Following this presentation of results, we provided a transparent assessment of the 

strengths and weaknesses of the system. Finally, we indicated future paths to improve the 

system capabilities alongside research extensions and investigations we believe will 

improve the diagnosis and treatment of collagenous tissue diseases through fundamental 

engineering mechanics study. 
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 CONCLUSION  

6.1 Summary of Thesis Contributions 

The mechanical responses of each of the two MV and three TV leaflets have been 

quantified and reported. Additionally, the effects of various testing parameters – including 

loading rate, testing temperature, and species – on the mechanical responses of the leaflets 

has been investigated. To provide context for the mechanical behaviors, the distributions 

of the chordae tendineae, the leaflet thicknesses, and the leaflet compositions were also 

quantified and presented. Subsequently, the spatial variance in the mechanical properties 

of the MVAL and TVAL was examined; results showed heterogeneous mechanical 

properties in both anterior leaflets. This observation prompted further investigation into the 

microstructural basis for the spatially-varied mechanical behaviors. Through literature 

review, existing collagen fiber quantification techniques were found to be inadequate for 

characterizing the desired dynamic and spatially-varied CFA in the HV tissues. To 

characterize this dynamic CFA, a pSFDI system was developed and assessed through 

testing on bovine tendon samples before integration with a biaxial mechanical tester. 

Preliminary dynamic CFA predictions for MVAL tissues were obtained through integrated 

testing, and bimodal fiber orientation and DOA distributions were quantified and modeled. 

This research has quantified the MV and TV leaflet mechanics, informing reproduction of 

healthy tissue behaviors in both computational models and replacement biomaterials. The 

system developed in this study allows improved analysis of the mechanics-microstructure 

relationship in collagenous materials, serving as a tool for future investigations. 
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6.2 Recommendations for Future Work 

6.2.1 Microstructure and mechanics studies 

As mentioned in Section 5.1, no existing studies have quantified the microstructure of the 

TV leaflets. Our group seeks to remedy this omission via investigation of the regionally-

varied microstructure of the TV leaflets through dynamic pSFDI followed by histological 

methods. This analysis will provide quantification and comparison of three essential 

properties of the TV leaflets: (1) the dynamic CFA, as obtained through the combined 

pSFDI-mechanical testing results, (2) the bulk mechanical response over the belly region 

of the leaflet under multiple loading protocols, as obtained from the biaxial tester, and (3) 

the depth-varied microstructural composition, as obtained from histological image 

processing. Representative results from the combined mechanical-structural quantification 

for the TVSL are presented in Figure 6.1. The results show that, although fiber alignment 

tends to prefer the circumferential direction, the distribution is highly nonuniform. Like the 

MVAL sample from Section 5.3.2, we found dynamic CFA in the TVSL demonstrated 

directionally-dependent properties. Specifically, we saw higher DOA with circumferential-

prejudiced loading (Fig. 6.1d), compared to similar loading concentrated in the radial-

direction (Fig. 6.1c). In addition to these analyses, we conducted histology on three tissue 

samples extracted from different regions of the TVSL. We expect this combined 

quantification technique will improve understanding of spatial variance in the TV leaflets 

and the mechanics-microstructure relationships. Our ongoing project seeks to perform and 

publish similar analyses for all the three TV leaflets. 
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Figure 6.1. (a-d) CFA predictions and (e) mechanical response curves for a TVSL tissue 

specimen subjected to loading ratios (FC:FR, mN) of (a) 0:0, after preconditioning, (b) 

500:500, (c) 125:500, and (d) 500:125. White streamlines show θfiber, while DOA is 

represented via colormap. Note that tissues were imaged at the maximum load of each 

mechanical curve. 

In addition to further analysis of the TV leaflets, future valuable studies could examine 

further effects of varying the different biaxial mechanical testing parameters. Despite the 
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many studies presented in this thesis, we still have little understanding of how testing 

procedures such as freezing, PBS immersion, and effective loaded region size affect the 

observed mechanical properties of the leaflet tissues. These and similar effect studies could 

provide scope to the works presented herein and help to elucidate the in vivo mechanical 

behaviors of the valve tissues. 

6.2.2 Biomaterials testing 

To complement studies on the mechanical properties and microstructures of the 

atrioventricular leaflets, our group seeks to analyze biomaterials used in the design of 

replacement bioprosthetic heart valves. Thanks to the dynamic CFA quantification system, 

we expect new perspectives on the biomechanical similarity of the heart valve replacement 

materials could be gained. Typically, chemically-fixed bovine pericardial tissue is used as 

a biomaterial for heart valve replacement (cf. Section 2.1.3) [152, 153]. An ongoing study 

seeks to examine how the various treatment parameters, including fixation time, tissue 

loading at fixation, and chemical concentration, among others, affect the dynamic CFA in 

the pericardial tissues. Furthermore, we plan to compare CFAs in these fixed tissues to 

those of native leaflets to understand how the mechanics and CFA of the artificial material 

differ, potentially causing functional disparities between native and replacement valves. 

6.1.2 Interval imaging project 

Our group seeks to understand how the CFA changes in the heart valve leaflets throughout 

the physiological loading cycle. Rather than examining the tissue at the mechanical 

endpoints, we recently developed software to examine the tissue at multiple intervals 

throughout the loading domain, as depicted in Figure 6.2. We expect this interval analysis 
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will allow elucidation of the microstructural basis for the observed nonlinearity in the tissue 

mechanical response, among other findings. Through this new software development, we 

can obtain 10 discrete CFA quantifications throughout the mechanical loading curve in a 

20-minute test. With this improved data acquisition rate, novel investigations into tissue 

mechanics and microstructures become feasible. 

 
Figure 6.2. Depiction of CFA quantification at 10 distinct kinematic states over the 

physiological mechanical loading interval for a representative heart valve leaflet tissue.  

6.2.3 Machine learning approaches to relate tissue CFA to mechanics 

Machine learning approaches have recently shown promise in predicting tissue mechanical 

response from microstructures [154]. This capability has important applications in 

selection of biomaterials for use in synthetic heart valves and for biomaterials synthesis in 

other fields. We believe the quantitative CFA metrics supplied by the integrated-pSFDI 

system could provide valuable and novel inputs for predicting the mechanics-
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microstructure relationship. However, machine learning models require large datasets to 

develop sufficient accuracy and generalizability. To increase the data output of our system, 

we have implemented measures such as the interval testing described previously (cf. 

Section 6.2.2) and are examining algorithmic methods for training broadly accurate 

algorithms on smaller datasets. We are excited to uncover the further details on the 

relationships between mechanics and microstructures through these algorithmic 

approaches.  
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APPENDIX A: NOMENCLATURE AND SYMBOLS 

 

Class Abbreviation Description 

Organs 

HV Heart Valve 

MV Mitral Valve 

TV Tricuspid Valve 

Leaflets 

MVAL Mitral Valve Anterior Leaflet 

MVPL Mitral Valve Posterior Leaflet 

TVAL Tricuspid Valve Anterior Leaflet 

TVPL Tricuspid Valve Posterior Leaflet 

TVSL Tricuspid Valve Septal Leaflet 

Tissue 
Microstructure 

CFA Collagen Fiber Architecture 

DOA Degree of Optical Anisotropy 

ECM Extracellular Matrix 

GAG Glycosaminoglycan 

PG Proteoglycan 

VIC Valvular Interstitial Cells 

Mechanics 
AI Anisotropy Index 

PK Piola-Kirchhoff 

Directions 
C Circumferential direction 

R Radial direction 

Imaging 
Parameters 

FOV Field of View 

ROI Region of Interest 

Imaging 
Techniques 

SALS Small-Angle Light Scattering 

SFDI Spatial Frequency Domain Imaging 

SHG Second Harmonic Generation 

PLM Polarized Light Microscopy 

pSFDI Polarized Spatial Frequency Domain Imaging 

Q-PLM Quantitative Polarized Light Microscopy 
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Mechanical 
Loading  

 

T Applied Membrane Tension 

P 1st-Piola-Kirchhoff (1st-PK) Stress Tensor 

S 2nd-Piola-Kirchhoff (2nd-PK) Stress Tensor 

σ Cauchy Stress Tensor 

Sample 
Deformation  

C Right Cauchy-Green Deformation Tensor 

dI Displacement of Node I 

E Green Strain Tensor 

F Deformation Gradient Tensor 

J Jacobian; Determinant of the Deformation Tensor 

,C Rλ  
Principal Stretch in the Circumferential (C) or Radial (R) 
Direction 

0
,

peak
C Rλ −  Peak Stretch in the Circumferential or Radial Direction 

0 1
,C Rλ −  Preconditioning Stretch in the Circumferential or Radial 

Direction 
1

,
peak

C Rλ −  Mechanical Stretch in the Circumferential or Radial 
Direction 

xI’s Undeformed Fiducial Marker Coordinates Prior to Loading 

XI’s  Deformed Fiducial Marker Coordinates After Loading 

Sample 
Geometry 

L Effective Edge Length of Loaded Region 

ts Sample Thickness 

Light 
Properties 

xf  Spatial Frequency of Projection Pattern 

I  Captured Light Intensity 

S


 Stokes Vector of Polarized Light 

polarizer  Linear Polarization Axis of Light  

Sample 
Optical 

Properties 

  Birefringent Sample Phase Retardance 

D  Birefringent Sample Diattenuation 

s '  Sample Reduced Scattering Coefficient 

a  Sample Absorption Coefficient 

R  Reflectance of a Sample 

fiber  Planar Collagen Fiber Orientation in a Sample 

System 
Optical 

Properties 

DC ,AC
eff  Effective Penetration Depth of Optical Signal (DC or AC) 

M  Mueller Matrix of Polarized Light Transport 
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sys  System Parameter Containing Non-Birefringent Optical 
Modifiers 

Optical Fitting a0,2,4 Fourier Fitting Coefficients 

Distribution 
Fitting 

1 2,  Mean of the First and Second Distributions 

P Mixing Parameter of the Bimodal Distributions 

1 2,  Standard Deviation of the First and Second Distributions 

Other 
SEM Standard Error of the Mean 

VHD Valvular Heart Disease 

 
 
 
 
  



110 

APPENDIX B: STATISTICAL ANALYSIS OF BIAXIAL 
TESTING DATA 

We present statistical analyses for the equibiaxial protocol (TC,max:TR,max = 1:1) of 3 

different experimental groups, as described in Section 3.2.3: (1) the loading rate effect 

study, (2) the temperature effect group, and (3) the species effect group. We consider tissue 

responses in the circumferential and radial directions separately in the statistical analysis 

of each of these studies. For each of these experimental groups, three different stretch 

measures are examined, as described in detail in Section 3.2.7. 

For each leaflet within the loading rate effect group, the statistical analysis of stretch in 

each direction for each valve leaflet of MVAL, MVPL, TVAL, TVPL, and TVSL is 

presented in its respective figure (Figs. B.1-B.5). The statistical analysis results from the 

loading-rate group for the mitral and tricuspid valve leaflets are presented in Table B.1 and 

Table B.2, respectively. Similarly, our statistical analysis results associated with the 

temperature effect group are presented in Figures B.6-B.10, and in Table B.3 and Table 

B.4. As for the species group, the statistical analysis results for the MVAL and TVAL 

tissues are presented in Table B.5 and Table B.6, respectively. 
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Figure B.1. Statistical analyses of the MVAL from the loading rate effect group (n=6), 

with plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, 

and (c) the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant 

difference, p>0.10, #: nearly statistically significant difference, p<0.10, and *: statistically 

significant difference, p<0.05) 
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Figure B.2. Statistical analyses of the MVPL from the loading rate effect group (n=6), with 

plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, and (c) 

the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant difference, 

p>0.10, #: nearly statistically significant difference, p<0.10, and *: statistically significant 

difference, p<0.05) 
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Figure B.3. Statistical analyses of the TVAL from the loading rate effect group (n=6), with 

plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, and (c) 

the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant difference, 

p>0.10) 
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Figure B.4. Statistical analyses of the TVPL from the loading rate effect group (n=6), with 

plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, and (c) 

the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant difference, 

p>0.10) 
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Figure B.5. Statistical analyses of the TVSL from the loading rate effect group (n=6), with 

plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, and (c) 

the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant difference, 

p>0.10) 
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Table B.1. Statistical analysis of the loading rate effect group on the preconditioning ( 0 1
Cλ
−  

and 0 1
Rλ
− ), mechanical ( 1 peak

Cλ
−  and 1 peak

Rλ
− ), and the peak stretches ( 0 peak

Cλ
− and 0 peak

Rλ
− ) of 

the MVAL and MVPL tissues (n=6). Quantities are presented as mean ± SEM. 

MVAL 

Circ. 2.29 N/min 4.42 N/min 7.92 N/min 
p value 

(2.29-4.42) 
p value 

(4.42-7.92) 
p value 

(2.29-7.92) 
0 1
Cλ
−  1.053 ± 0.029 1.074 ± 0.030 1.081 ± 0.034 0.624 0.879 0.539 

1 peak
Cλ
−  1.180 ± 0.038 1.142 ± 0.034 1.129 ± 0.032 0.479 0.785 0.334 

0 peak
Cλ
−  1.245 ± 0.069 1.231 ± 0.069 1.225 ± 0.071 0.884 0.956 0.844 

Rad. 2.29 N/min 4.42 N/min 7.92 N/min p value 
(2.29-4.42) 

p value 
(4.42-7.92) 

p value 
(2.29-7.92) 

0 1
Rλ
−  1.297 ± 0.078 1.366 ± 0.046 1.418 ± 0.053 0.464 0.472 0.227 

1 peak
Rλ
−  1.202 ± 0.028 1.164 ± 0.022 1.142 ± 0.012 0.315 0.408 0.077 

0 peak
Rλ
−  1.559 ± 0.099 1.590 ± 0.061 1.620 ± 0.065 0.789 0.744 0.614 

MVPL 

Circ. 2.29 N/min 4.42 N/min 7.92 N/min p value 
(2.29-4.42) 

p value 
(4.42-7.92) 

p value 
(2.29-7.92) 

0 1
Cλ
−  1.046 ± 0.023 1.088 ± 0.035 1.103 ± 0.042 0.349 0.787 0.268 

1 peak
Cλ
−  1.165 ± 0.035 1.121 ± 0.019 1.114 ± 0.019 0.295 0.808 0.235 

0 peak
Cλ
−  1.218 ± 0.039 1.218 ± 0.037 1.227 ± 0.045 0.999 0.871 0.873 

Rad. 2.29 N/min 4.42 N/min 7.92 N/min p value 
(2.29-4.42) 

p value 
(4.42-7.92) 

p value 
(2.29-7.92) 

0 1
Rλ
−  1.397 ± 0.081 1.424 ± 0.079 1.480 ± 0.084 0.812 0.639 0.492 

1 peak
Rλ
−  1.175 ± 0.017 1.129 ± 0.016 1.101 ± 0.007 0.077 0.159 0.0024 

0 peak
Rλ
−  1.638 ± 0.089 1.606 ± 0.090 1.630 ± 0.093 0.807 0.859 0.951 
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Table B.2. Statistical analysis of the loading rate effect on the preconditioning, mechanical, 

and peak stretches of the TVAL, TVPL, and TVSL tissues (n=6) (mean ± SEM) 

TVAL 

Circ. 2.29 N/min 4.42 N/min 7.92 N/min 
p value 

(2.29-4.42) 
p value 

(4.42-7.92) 
p value 

(2.29-7.92) 
0 1
Cλ
−  1.090 ± 0.038 1.093 ± 0.026 1.091 ± 0.027 0.954 0.966 0.982 

1 peak
Cλ
−  1.127 ± 0.031 1.108 ± 0.024 1.105 ± 0.022 0.647 0.929 0.587 

0 peak
Cλ
−  1.226 ± 0.041 1.210 ± 0.029 1.206 ± 0.037 0.758 0.936 0.728 

Rad. 2.29 N/min 4.42 N/min 7.92 N/min p value 
(2.29-4.42) 

p value 
(4.42-7.92) 

p value 
(2.29-7.92) 

0 1
Rλ
−  1.393 ± 0.061 1.435 ± 0.054 1.459 ± 0.052 0.618 0.747 0.424 

1 peak
Rλ
−  1.171 ± 0.039 1.147 ± 0.039 1.140 ± 0.038 0.678 0.888 0.576 

0 peak
Rλ
−  1.635 ± 0.104 1.650 ± 0.098 1.668 ± 0.101 0.919 0.899 0.823 

TVPL 

Circ. 2.29 N/min 4.42 N/min 7.92 N/min p value 
(2.29-4.42) 

p value 
(4.42-7.92) 

p value 
(2.29-7.92) 

0 1
Cλ
−  1.150 ± 0.026 1.161 ± 0.030 1.178 ± 0.031 0.780 0.708 0.506 

1 peak
Cλ
−  1.165 ± 0.048 1.129 ± 0.048 1.114 ± 0.045 0.610 0.829 0.461 

0 peak
Cλ
−  1.337 ± 0.054 1.310 ± 0.066 1.312 ± 0.064 0.763 0.983 0.776 

Rad. 2.29 N/min 4.42 N/min 7.92 N/min p value 
(2.29-4.42) 

p value 
(4.42-7.92) 

p value 
(2.29-7.92) 

0 1
Rλ
−  1.449 ± 0.050 1.474 ± 0.043 1.523 ± 0.040 0.712 0.433 0.281 

1 peak
Rλ
−  1.232 ± 0.027 1.215 ± 0.032 1.190 ± 0.028 0.700 0.567 0.306 

0 peak
Rλ
−  1.783 ± 0.057 1.788 ± 0.044 1.810 ± 0.052 0.947 0.746 0.729 

TVSL 

Circ. 2.29 N/min 4.42 N/min 7.92 N/min p value 
(2.29-4.42) 

p value 
(4.42-7.92) 

p value 
(2.29-7.92) 

0 1
Cλ
−  1.144 ± 0.041 1.166 ± 0.041 1.184 ± 0.044 0.712 0.773 0.521 

1 peak
Cλ
−  1.241 ± 0.026 1.195 ± 0.029 1.181 ± 0.023 0.264 0.701 0.115 

0 peak
Cλ
−  1.414 ± 0.023 1.388 ± 0.020 1.393 ± 0.027 0.404 0.888 0.549 

Rad. 2.29 N/min 4.42 N/min 7.92 N/min p value 
(2.29-4.42) 

p value 
(4.42-7.92) 

p value 
(2.29-7.92) 

0 1
Rλ
−  1.443 ± 0.076 1.487 ± 0.071 1.525 ± 0.078 0.682 0.725 0.469 

1 peak
Rλ
−  1.209 ± 0.029 1.155 ± 0.026 1.146 ± 0.024 0.186 0.796 0.117 

0 peak
Rλ
−  1.739 ± 0.081 1.716 ± 0.088 1.745 ± 0.087 0.853 0.823 0.9613 
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Figure B.6. Statistical analyses of the MVAL from the temperature effect group (n=6), 

with plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, 

and (c) the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant 

difference, p>0.10) 
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Figure B.7. Statistical analyses of the MVPL from the temperature effect group (n=6), 

with plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, 

and (c) the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant 

difference, p>0.10) 
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Figure B.8. Statistical analyses of the TVAL from the temperature effect group (n=6), with 

plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, and (c) 

the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant difference, 

p>0.10) 
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Figure B.9. Statistical analyses of the TVPL from the temperature effect group (n=6), with 

plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, and (c) 

the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant difference, 

p>0.10) 



122 

 
Figure B.1. Statistical analyses of the TVSL from the temperature effect group (n=6), with 

plots showing trends in (a) the preconditioning stretches, (b) mechanical stretches, and (c) 

the peak stretches. All bars show mean ± SEM. (N.S.: no statistically significant difference, 

p>0.10) 
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Table B.3. Statistical analysis of the temperature effect group on the preconditioning ( 0 1
Cλ
−  

and 0 1
Rλ
− ), mechanical ( 1 peak

Cλ
−  and 1 peak

Rλ
− ), and peak stretches ( 0 peak

Cλ
− and 0 peak

Rλ
− ) of 

the MVAL and MVPL tissues (n=6). All quantities are presented as mean ± SEM. 

MVAL 

Circ. 27 °C 32 °C 37 °C 
p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Cλ
−  1.046 ± 0.023 1.088 ± 0.035 1.103 ± 0.042 0.349 0.787 0.268 

1 peak
Cλ
−  1.165 ± 0.035 1.121 ± 0.019 1.114 ± 0.019 0.295 0.808 0.235 

0 peak
Cλ
−  1.218 ± 0.039 1.218 ± 0.037 1.227 ± 0.045 0.999 0.871 0.873 

Rad. 27 °C 32 °C 37 °C p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Rλ
−  1.397 ± 0.081 1.424 ± 0.079 1.480 ± 0.084 0.812 0.639 0.492 

1 peak
Rλ
−  1.175 ± 0.017 1.129 ± 0.016 1.101 ± 0.007 0.142 0.159 0.106 

0 peak
Rλ
−  1.638 ± 0.089 1.606 ± 0.090 1.630 ± 0.093 0.807 0.859 0.951 

MVPL 

Circ. 27 °C 32 °C 37 °C p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Cλ
−

 1.168 ± 0.035 1.270 ± 0.052 1.170 ± 0.045 0.134 0.178 0.973 

1 peak
Cλ
−  1.089 ± 0.008 1.105 ± 0.016 1.117 ± 0.031 0.370 0.749 0.410 

0 peak
Cλ
−  1.273 ± 0.044 1.397 ± 0.068 1.301 ± 0.074 0.154 0.358 0.749 

Rad. 27 °C 32 °C 37 °C p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Rλ
−

 1.389 ± 0.072 1.412 ± 0.059 1.375 ± 0.087 0.816 0.733 0.899 

1 peak
Rλ
−  1.099 ± 0.072 1.090 ± 0.020 1.127 ± 0.016 0.747 0.175 0.385 

0 peak
Rλ
−  1.524 ± 0.068 1.545 ± 0.059 1.558 ± 0.099 0.820 0.908 0.779 
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Table B.4. Statistical analysis of the temperature effect on the preconditioning, 

mechanical, and peak stretches of TVAL, TVPL, and TVSL tissues (n=6) (mean ± SEM). 

TVAL 

Circ. 27 °C 32 °C 37 °C 
p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Cλ
−  1.192 ± 0.021 1.166 ± 0.023 1.151 ± 0.029 0.421 0.695 0.275 

1 peak
Cλ
−  1.107 ± 0.038 1.102 ± 0.018 1.123 ± 0.019 0.739 0.427 0.716 

0 peak
Cλ
−  1.321 ± 0.055 1.285 ± 0.039 1.293 ± 0.044 0.610 0.895 0.706 

Rad. 27 °C 32 °C 37 °C p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Rλ
−  1.472 ± 0.084 1.513 ± 0.073 1.417 ± 0.068 0.719 0.360 0.623 

1 peak
Rλ
−  1.119 ± 0.084 1.513 ± 0.073 1.417 ± 0.068 0.719 0.360 0.623 

0 peak
Rλ
−  1.640 ± 0.080 1.709 ± 0.112 1.603 ± 0.065 0.627 0.435 0.733 

TVPL 

Circ. 27 °C 32 °C 37 °C p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Cλ
−

 1.141 ± 0.028 1.108 ± 0.027 1.148 ± 0.021 0.421 0.268 0.832 

1 peak
Cλ
−  1.068 ± 0.020 1.082 ± 0.022 1.076 ± 0.020 0.636 0.831 0.786 

0 peak
Cλ
−  1.219 ± 0.043 1.199 ± 0.033 1.235 ± 0.025 0.711 0.403 0.760 

Rad. 27 °C 32 °C 37 °C p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Rλ
−

 1.456 ± 0.065 1.433 ± 0.098 1.515 ± 0.056 0.847 0.474 0.497 

1 peak
Rλ
−  1.108 ± 0.013 1.130 ± 0.019 1.123 ± 0.017 0.352 0.791 0.487 

0 peak
Rλ
−  1.611 ± 0.067 1.618 ± 0.107 1.701 ± 0.057 0.960 0.507 0.330 

TVSL 

Circ. 27 °C 32 °C 37 °C p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Cλ
−

 1.227 ± 0.046 1.201 ± 0.039 1.804 ± 0.049 0.670 0.753 0.505 
1 peak
Cλ
−  1.079 ± 0.028 1.104 ± 0.043 1.105 ± 0.035 0.630 0.987 0.569 

0 peak
Cλ
−  1.326 ± 0.066 1.323 ± 0.054 1.305 ± 0.065 0.979 0.829 0.825 

Rad. 27 °C 32 °C 37 °C p value 
(27-32) 

p value 
(32-37) 

p value 
(27-37) 

0 1
Rλ
−

 1.462 ± 0.075 1.475 ± 0.080 1.486 ± 0.078 0.907 0.924 0.829 

1 peak
Rλ
−  1.087 ± 0.017 1.101 ± 0.016 1.093 ± 0.021 0.550 0.770 0.820 

0 peak
Rλ
−  1.589 ± 0.087 1.625 ± 0.096 1.629 ± 0.107 0.787 0.978 0.777 
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Table B.5. Statistical analysis results of the species effect group on the preconditioning (

0 1
Cλ
−  and 0 1

Rλ
− ), mechanical ( 1 peak

Cλ
−  and 1 peak

Rλ
− ), and peak stretches ( 0 peak

Cλ
− and 0 peak

Rλ
−

) of the MVAL tissue (n=6). All quantities are presented as mean ± SEM. 

Circ. Porcine 
(P) 

Adult Ovine 
(AO) 

Juvenile 
Ovine (JO) 

p value  
(P-AO) 

p value 
(AO-JO) 

p value  
(P-JO) 

0 1
Cλ
−

 1.086 ± 0.032 1.149 ± 0.057 1.196 ± 0.087 0.355 0.662 0.262 

1 peak
Cλ
−

 1.088 ± 0.019 1.113 ± 0.014 1.073 ± 0.075 0.314 0.614 0.854 

0 peak
Cλ
−

 1.181 ± 0.042 1.280 ± 0.069 1.270 ± 0.094 0.248 0.929 0.409 

Rad. Porcine 
(P) 

Adult Ovine 
(AO) 

Juvenile 
Ovine (JO) 

p value  
(P-AO) 

p value 
(AO-JO) 

p value  
(P-JO) 

0 1
Rλ
−

 1.399 ± 0.053 1.443 ± 0.105 1.449 ± 0.102 0.717 0.967 0.372 

1 peak
Rλ
−

 1.118 ± 0.017 1.146 ± 0.031 1.074 ± 0.012 0.446 0.052 0.059 

0 peak
Rλ
−

 1.564 ± 0.061 1.654 ± 0.123 1.552 ± 0.104 0.527 0.542 0.925 

 

Table B.6. Statistical analysis results of the species effect group on the preconditioning (

0 1
Cλ
−  and 0 1

Rλ
− ), mechanical ( 1 peak

Cλ
−  and 1 peak

Rλ
− ), and peak stretches ( 0 peak

Cλ
− and 0 peak

Rλ
−

) of the TVAL tissue (n=6). All quantities are presented as mean ± SEM. 

Circ. Porcine 
(P) 

Adult Ovine 
(AO) 

Juvenile 
Ovine (JO) 

p value  
(P-AO) 

p value 
(AO-JO) 

p value  
(P-JO) 

0 1
Cλ
−

 1.151 ± 0.029 1.379 ± 0.084 1.463 ± 0.095 0.028 0.522 0.010 

1 peak
Cλ
−

 1.123 ± 0.019 1.071 ± 0.016 1.023 ± 0.007 0.065 0.021 0.0005 

0 peak
Cλ
−

 1.293 ± 0.044 1.476 ± 0.044 1.495 ± 0.096 0.090 0.880 0.084 

Rad. Porcine 
(P) 

Adult Ovine 
(AO) 

Juvenile 
Ovine (JO) 

p value  
(P-AO) 

p value 
(AO-JO) 

p value  
(P-JO) 

0 1
Rλ
−

 1.417 ± 0.068 1.601 ± 0.052 1.657 ± 0.076 0.057 0.555 0.040 

1 peak
Rλ
−

 1.137 ± 0.029 1.073 ± 0.014 1.038 ± 0.018 0.077 0.147 0.016 

0 peak
Rλ
−

 1.606 ± 0.064 1.716 ± 0.046 1.716 ± 0.061 0.181 0.999 0.239 
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APPENDIX C: DERIVATIONS OF PSFDI FUNDAMENTAL 
EQUATIONS  

C.1 Derivation of pSFDI reflected intensity (Eq. (5.1)) from birefringent 
scattering theory 

In this section, we describe the polarization of light as it passes through the pSFDI system, 

in the process deriving the Fourier cosine series form used to fit the reflected intensity 

curves (Eq. (5.1)) and relating sample optical properties to the Fourier fitting terms.  

To illustrate changes to light polarization in the pSFDI system, we employ a standard 

Stokes/Mueller approach wherein the intensity and polarization state of light is contained 

within a 4x1 Stokes vector S
 . The first element of S

 denotes the light intensity and the 

subsequent 3 elements represent the light polarization. In the system, the action of each 

optical component is represented by a corresponding Mueller matrix (M4x4). At each 

interface, the incident Stokes vector is multiplied by the component’s Mueller matrix to 

yield a modified Stokes vector describing the light after interaction. Due to the simplicity 

of the Stokes/Mueller formalism, the optical behavior of any system can be condensed via 

multiplication of sequential Mueller matrices to reduce to a single system matrix. For 

example, the entire polarization behavior of the pSFDI system can be condensed into a 

single expression, considering a local reference frame and a polarization angle of θp: 

 
 

out pSFDI f p inS , S  M ,                                               (C.1) 

In this representation, inS


 and outS


 denote the Stokes vectors of the incident and output 

light, respectively, and MpSFDIl(θf,θp) is the Mueller matrix describing the behavior of the 
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pSFDI system with polarizer transmission axis at θp and sample with fiber angle of θf. To 

derive the full behavior of the pSFDI system, we can decompose the Mueller matrix into 

constituent components: 

( ) (- ) ( ) ( )p SFDI f p pol p sample f pol p,    M M M M                           (C.2) 

where Mpol(θp) denotes the Mueller matrix of the linear polarizer at angle θp, and Msample(θf) 

is the Mueller matrix of reflection from the fibrous sample considering fibers with angle 

θf. Note, as light passes through the polarizer the second time, θf is reversed to account for 

the reflected reference frame. For mathematical simplicity, we can modify the previous 

equation by adopting the rotating polarizer as our reference to yield a new Mueller form 

for the pSFDI system: 

 
 

out pol sample f p pol inS , S  M M M ,                                     (C.3) 

To solve this equation, we must quantify the Mueller matrices of the linear polarizer (Mpol), 

oriented along the x-axis, and the fibrous sample (Msample) with fibers/optical anisotropy 

aligned along the same direction: 

1 1 0 0
1 1 0 01
0 0 0 02
0 0 0 0

pol
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D sin D cos

M
 

 

 
 
 
   

  
 
    

,   (C.4) 

where R is the average reflectance from the sample, and D and δ are the sample 

diattenuation and phase retardance, respectively, arising from the fiber geometry and 
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considering principal diattenuation and retardance axes aligned with the x- and y-

directions, respectively.  

When examining rotations of the sample fibers from the polarizer’s reference frame, we 

first note that increases in the fiber angle (θf) are equivalent to rotations of the Msample by 

an angle of θf. Furthermore, we observe that polarizer rotation by θp can be equivalently 

represented by rotations to Msample by an angle of -θp, when viewed from the polarizer’s 

reference frame. These observations lead to a modified Mueller form: 

( , ) ( ) (- )( ) ( ) (- )
 = (-( ))( ) ( )

sample f p rot p rot f sample rot f rot p

rot f p sample rot f p

=     

    

M R R M R R
R M R

,                  (C.5) 

where Rrot is the planar rotation matrix: 

 
   
   

1 0 0 0
0 2 2 0
0 2 2 0
0 0 0 1

rot

cos sin
sin cos

R
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 ,                                  (C.6) 

Using these forms, and assuming unpolarized incident light (  1 0 0 0 T
inS , , ,


 ), we can solve 

Eqn. (C.5) for outS


: 
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,(C.7) 



129 

where τsys is a systemic coefficient encompassing the sample reflectance R, the polarizer 

attenuation, the aperture of the camera, and other non-birefringent optical modifiers.  The 

first term of outS


 describes the intensity Iout captured by pSFDI system; with term 

substitution, Iout can be readily represented as a 3-term Fourier cosine series: 

     0 2 42 2out sys f p f pI a a cos a cos           
,                (C.8) 

This final form of Iout, as mentioned in the main text in Section 5.2.1 (Eq. (5.1)), allows 

quantification of sample fiber orientation via Fourier fitting of experimental intensity data. 

However, it is important to note how the sample optical properties, i.e., D and δ, are 

incorporated into the Fourier coefficients: 

 2
0

11 1 1
2

a D cos       
 , 2 2a D  , and  2

4
1 1 1
2

a D cos      
.   (C.9) 

Given this representation, and the recognition that a0+a4=2, it follows that the diattenuation 

and sample retardance can be easily expressed in terms of the Fourier coefficients through 

algebraic manipulation of (C.8) and (C.9): 

2

0 4

aD
a a




, and 
 

1 0 4
2 2

0 4 2

3a acos
a a a

 

          
,                      (C.10) 

By clarifying the relationships between sample diattenuation and retardance and the three 

Fourier terms, we establish the basis and validity of the Fourier approximation provided in 

Eq. (5.1) in Section 5.2.1. 
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Remark: The light reflection at the sample interface was neglected in the Mueller 

formulation described in Eq. (C.5). Because the Mueller matrix of a fibrous sample Msample  

is equivalent in both transmission and reflection modes, leading to the same form of Iout, it 

is trivial to consider reflection of the light coordinate system at the sample interface. If 

interested, the reader is encouraged to follow the aforementioned formulaic approach with 

inverted Rrot to consider reflection at the sample interface, and note the same form for Iout 

C.2 Illustration of AC image penetration depth relationship (Eq. (5.2)) 
from the SFDI theory 

SFDI is a near-infrared planar imaging technique that enables rapid quantification of tissue 

properties over a broad FOV. Although SFDI has been widely used toward quantification 

of tissue optical properties and oxygenation biomarkers [136-138], our study implements 

SFDI to modulate the depth of our microstructural investigations [155]. Our 

implementation of SFDI entails projection of three spatially-modulated unidimensional 

sinusoidal intensity patterns over a large region (cm-scale). The patterns share the desired 

spatial frequency fx, but each contain unique linear phase shifts of 0°, 120°, and 240°. The 

reflected images from each projection pattern are then sequentially captured by a CCD 

camera and denoted as pixelwise I0°, I120°, and I240°, named according to the phase shift of 

the projection. Then, the pixel-wise intensities extracted from the images are combined 

according to two conventions: DC intensity IDC which provides equal weighting for each 

reflected photon, capturing the conventional diffuse reflectance image, and AC Intensity 

IAC, which emphasizes the differences between I0°, I120°, and I240°, thus neglecting highly 

diffuse photons: 
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  0 120 240

3DC
I I II    

 , and 
      2 2 2

0 120 120 240 0 2402

3AC

I I I I I I
I

         
 .  (C.11) 

Due to photon absorption and scattering events within the sample, both DC and AC spatial 

intensity maps, or images, predominantly contain information above an effective 

penetration depth ( DC
eff and AC

eff , respectively). These two penetration depths correspond 

to the positions where the intensity of electromagnetic radiation inside a sample falls to 

1/e≈37% of its incident value, with the light attenuation rate described by the Beer-Lambert 

law. Like typical planar projections, the DC
eff  exhibits a simple dependence on strictly 

sample optical properties: 

 
1

3
AC
eff

a a s '


  



,                                          (C.12) 

More concretely, the DC penetration is solely limited by the photons’ ability to penetrate 

the sample and is quantified by the tissue bulk optical properties, i.e., μa, the absorption 

coefficient, and μs′, the reduced scattering coefficient. This simple dependence renders the 

DC convention ineffective for interrogating a given tissue sample at varied imaging depths, 

because the effective depth of the DC image has no dependence on the projected pattern. 

Conversely, the AC
eff  exhibits dependence on both tissue optical properties and the spatial 

frequency fx of the incident projection pattern: 

   2

1

3 2
AC
eff

a a s x' f


   


 
,                                    (C.13) 
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This multivariate depth dependence arises from two factors: (i) AC intensity’s propensity 

to capture reflected photons that retain the incident spatial pattern, as reflected in the form 

of Eqn. (C.11), and (ii) the dependence of the rate of signal attenuation on the spatial 

frequency of the incident pattern (Fig. C.1a and Fig. C.1b).  

 

Figure C.1. Diagrams exploring the relationship between 𝑓𝑓𝑥𝑥 and AC
eff . The varied 

attenuation of three spatial frequency (fx,1-3) intensity patterns showing the AC penetration 

depths ( 1 3
AC
eff ,  ) according to Eq. (C.14) from the (a) trimetric and (b) side view. (c) Plot 

comparing estimated penetration depths from the exact model (Eq. (C.13)) for selected 

tissues [156, 157] and the approximate model (Eq. (C.14)), highlighting the fx range used 

in this study (Fig. 5.7). 
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Furthermore, at high spatial frequencies relative to the tissue optical properties, the AC 

penetration depth depends solely on the spatial frequency of the incident pattern: 

1
2

AC
eff

xf



 ,                                                   (C.14) 

This equation provides the approximate image penetration depth independent of the 

sample’s optical properties. If shown to be valid for a class of tissues with known ranges 

of bulk optical properties, this valuable simplification allows command of image 

penetration depth via control of the fx of the projected pattern. For example, to examine the 

validity of the imaging depth approximation for the HV leaflets analyzed in this study, we 

compared Eqns. (C.13) & (C.14) graphically using previously-obtained optical properties 

of μa=0.07 mm-1 and μs′=3.00 mm-1 for tendon tissues, μa=0.08 mm-1 and μs′=1.96 mm-1 

for skin tissues,  and μa=0.03 mm-1 and μs′=2.19 mm-1 for pericardial tissues (Fig. C.1c) 

[156, 157]. Note that the tissue optical properties used in this example are taken from 

similar tissues, because valve leaflet properties were not found in existing literature. As 

shown in the figure, the approximation for imaging depth proves valid over the SF ranges 

projected. In this study, we utilize the simpler approximation, Eq. (C.14), to examine 

unloaded and loaded HV leaflet tissue at a variety of penetration depths.
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APPENDIX D: BIAXIAL MECHANICAL TESTING 
PROCEDURES 

In this appendix, we present a rigorous description of the mechanical testing procedures 

used to obtain the mechanical responses presented in Chapter 3 and Chapter 4. 

D.1 Tissue Acquisition and Preparation 

The first step in the mechanical testing process is the acquisition of an appropriate heart; 

for these studies, porcine and ovine hearts were used. When dissecting the heart, the atria 

are first excised and disposed of to access the atrioventricular valves (Fig. D.1a). Then, 

axial incisions are made at the posterior commissure of the MV and the postero-septal 

commissure of the TV (Fig. D.1a and Fig. D.1b). The incisions are continued through the 

ventricles toward the heart apex to open the valves (Fig. D.1c and Fig. D.1d).  

 
Figure D.1. Depictions of the appropriate cut line positions on (a) a porcine heart with atria 

removed and (b) a schematic of the atrioventricular heart valves. (c, d) show the mitral and 

tricuspid valves, respectively, fully opened and allowing leaflet excision. 
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The leaflets are then excised from the opened valves through: (i) severing the attached 

chordae tendineae near their leaflet attachment, (ii) grasping the leaflet and holding it 

taught orthogonal to the ventricular surface, and (iii) slicing the leaflet along the annular 

attachment from commissure to commissure, taking care to preserve the intact leaflet 

tissue(s) in their entirety. Once excised, the principal directions of the extracted tissue can 

be established by noting that the leaflet cut edge coincides with the circumferential 

direction of the tissue. With these directions considered, the desired testing sample can be 

sectioned from the tissue. This procedure can vary by study but should result in an arbitrary 

number (1,…,n) of square tissue samples. The circumferential direction of each tissue 

sample should be indicated by marks placed along the circumferential axis at the edge 

midpoints (Fig. D.2b and Fig. D.2e), and the sample should be uniquely labelled. 

 
Figure D.2. Illustrations of the sample sectioning and mounting procedures for leaflet 

tissues. (a-c) show schematic representations of the excised leaflet, the sample sectioning 

and marking process, and the sample mounting procedure, respectively, while (d-f) show 

images from the same respective procedures. Small ticks in (d) show mm. 
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The thickness of each sample should be captured via placement onto an incompressible 

tool with a uniform thickness and flat surface, and the use of calipers to measure the 

combined thickness of sample and tool. The measurement accuracy can and should be 

refined by repeating the measurement at multiple sample regions, typically three, then 

averaging the measurements before subtracting the tool’s thickness. With sample 

thicknesses recorded, the marked samples may be stored in labelled individual containers 

in a standard refrigerator (4 °C) but should be tested within 2 days of excision. 

D.2 Tissue Mounting 

Tissue samples are mounted onto the biaxial tester using BioRakes (Cellscale, Canada), 

where the rake size is determined by the sample edge length; typically, the difference 

between the sample edge length and the width of the rake (edge tine – edge tine) should be 

1500 μm or larger for proper mounting. To mount the tissue, the sample is first placed on 

a larger square of rubber backing material. The backing square is then used to mount the 

sample onto the biaxial tester such that the circumferential and radial tissue directions 

correspond to the x- and y-directions of the biaxial tester, respectively. The rakes are 

sequentially pushed through the tissue and into the backing material, typically with the 

edge of spatula tool. Subsequent removal of the backing material leaves the tissue 

suspended and supported by the rakes. Four fiducial markers are then placed onto the 

sample at the vertices of a square representing the central 1/9th of the mounted region (Fig. 

D.2c). Two marker types have been used; the study presented in Chapter 3 used glass beads, 

with diameters of 300-500 μm, carefully glued onto the tissue, whereas the regional study 

presented in Chapter 4 employed a surgical pen to create the fiducial markers. Although 

the glass beads provide a more robust measurement, the use of the surgical pen-based 
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markings for the regional study was required by the smaller sample size (4.5 mm active 

region).  After the application of fiducial markers, the tissue is prepared for testing. 

Remark: The tissue mounting process is as much a skill as it is a procedure. Like all skills, 

practice is required to mount a tissue effectively for obtaining accurate material properties. 

D.3 Biaxial Testing Procedures 

This thesis presented the results of various biaxial mechanical studies – the baseline/force-

controlled study, the strain-rate effect study, the temperature effect study, the species/donor 

age study, the regional variance in mechanical response study, and the stress relaxation 

study. In this section, biaxial mechanical testing procedures are separated into two groups: 

(i) uniform procedures across studies and (ii) study-distinct procedures. 

D.3.1 Study agnostic tools and utilities 

The Labjoy testing interface includes several standard, broadly-required commands and 

properties for navigating the tissue mounting and testing process (Fig. D.3). 
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Figure D.3. Decomposition of the LabJoy testing graphical interface. (a) Shows, from left 

to right, the Start, Stop, Reset Actuators, Zero Load Cells, Move to Size, and Move to Force 

buttons, while (b) highlights input boxes for specification of desired size in x, y directions. 

(c) includes a dynamic overhead visualization of the testing sample, while (d) encloses 

real-time graphs of the sample temporal applied forces and deformations, and (e) displays 

outputs of the current sample applied forces and sizes in the x- and y-directions. 
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Briefly, the essential interface commands include: 

- Start the Test: Starts the currently loaded testing sequence. 

- Stop the Test: Stops the currently running test. 

- Reset Actuators: Resets the actuators to their “home”, fully-retracted state. 

- Zero Load Cells: Calibrates the load cells by using the current load as a Tare, or 

zero-load, reference state. 

- Move to Size: Moves the tines to the Specified Size in the x- and y-directions.  

- Move to Force: Prompts for forces in the x- and y-directions, then adjusts the 

actuators until the desired force is sustained by the load cells. 

Important properties for the biaxial tester interface include: 

- Specified Size (x,y): Allow specification of the user-desired sample sizes.  

- Current Force (x,y): Provides a readout of the current applied force in x- and y-

directions, determined from the load cells.  

- Current Size (x,y) : Provides a readout of the current “sample size”, as determined 

from the distance between tines. 

In addition to these, the LabJoy interface will also display the current tissue state (Fig. 

D.3c), along with graphs of the tissue loading and deformation (Fig. D.3d). These 

indicators improve ability to assess the test in real-time and to stop tests that have incurred 

errors, such as tines slipping or markers delaminating from the tissue surface. After testing, 

digital image correlation methods were employed through the LabJoy software to capture 

the marker nodal deformations. These nodal deformations were then used to compute the 

tissue stretches, as described in Section 3.2.4. 
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D.3.2 Study specific testing procedures 

Study-specific procedures were implemented through template (.tmt) files inside of 

Labjoy, the proprietary software for the CellScale biaxial tester. During testing, templates 

are rendered into test files (.tst), which describe the testing parameters and sequence. An 

example of the test file from the baseline/force-controlled testing is shown in Figure D.4. 

 
Figure D.4. Example test file from the baseline/force-controlled biaxial mechanical study 

(cf. Section 3.3.1). (a) highlights the settings applied to the entire test, such as the testing 

temperature, camera settings, and display settings, while (b) contains the specific details 

for the testing sequence. 
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The precise modifications made to the testing template to develop the various biaxial 

mechanical testing procedures used in this study are included below: 

- Loading-Rate Effect Study (cf. Section 3.3.2): Each tissue in this study group 

required three separate tests, using templates like the one above at different testing 

velocities. Inside LabJoy, the velocities were dictated as 3, 4, and 5, from a 1-10 

scale. By examining the ensuing loads, we observed the velocities of 3, 4, and 5 

were correlated with average loading rates of 2.29 N/min, 4.42 N/min, and 7.92 

N/m, respectively.  

- Temperature Effect Study (cf. Section 3.3.3): Similarly, each tissue in the 

temperature effect study required three separate tests, using templates like the one 

shown above. The tests were conducted with the PBS solution at 27 °C, then 32 °C, 

and finally 37 °C, with the solution heated between tests and the preconditioning 

protocol performed to begin each test. 

- Species and Donor Age Study (cf. Section 3.3.4): The only varying factor in this 

study was the size of the testing specimen. Because juvenile ovine leaflets were 

much smaller than their adult ovine counterparts, which were in turn smaller than 

comparable porcine tissues, a range of specimen sizes – typically from 6500 μm to 

5500 μm – were used to capture the mechanical responses of these tissues.  

- Regional Variance in Biaxial Mechanical Response Study (cf. Section 4.3.2): A 

similar template was used to conduct this study, with the chief difference being the 

smaller sample size (~4500 μm) implemented via the Specified Size and Move to 

Size functionality within LabJoy. 
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- Regional Variance in Stress Relaxation Study (cf. Section 4.3.3): The testing 

sequence (Fig. D.4b) used in this study was unique and disparate. Briefly, this study 

included a preconditioning protocol followed by a Move to Force step to determine 

the tissue deformation at maximum physiological load. Then, the biaxial 

deformations were used to build a displacement-controlled testing sequence, where 

the tissue was stretched to maximum load and held for a 30-minute period while 

the temporal biaxial forces were captured, allowing for calculation of the stress-

relaxation response of the tissue samples. 

  



143 

APPENDIX E: PSFDI TESTING AND DATA ANALYSIS 
PROCEDURES  

While the theoretical basis for the pSFDI procedure is presented in Chapter 5, this appendix 

includes details of the practical application of this technology, and discusses the steps 

needed to acquire collagen fiber architecture data from the pSFDI system. Briefly, this 

appendix is broken up into three sections: (i) the system calibration and preparation, (ii) 

the system testing procedure, and (iii) the post-processing/data analysis steps.  

E.1 pSFDI System Calibration 

The calibration procedure for the pSFDI system assumes proper assembly of the device 

and appropriate placement of the distinct optical components. In this case, the two system 

components which will require calibration prior to testing are the digital light processor 

(DLP) (DLP4500EVM, Texas Instruments, TX, USA) and the camera lens (HF35XA-1, 

Fujinon, Fujifilm, Tokyo, Japan). The DLP device’s projector lens must be focused in order 

to project a resolved image at the focal distance of the object (Fig. E.1). 
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Figure E.1. Calibration of the DLP projector lens. (a) shows the projection focal distance 

adjustment via linear translation of the lens, while (b,c) depict examples of unresolved and 

properly resolved projections, respectively, of an example image. 

The appropriate calibration of the projector lens is important to maintain resolved spatial 

frequency patterns in the projected images. Typically, the DLP projection can be resolved 

adequately by examining the illuminated sample and tuning the projector lens until the 

spatial frequency appears resolved.  

Unlike the DLP adjustment, the camera lens adjustment requires the camera visualization 

software to visualize the effects of the adjustments; for Basler cameras, like the one used 

in these studies, this software is called Pylon. The camera lens should be adjusted while 

the software is displaying the real-time images captured by the camera. An example of the 

lens adjustment and the corresponding change in the captured image is shown (Fig. E.2).  
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Figure E.2. Calibration of the camera lens. (a) shows the working distance adjustment ring 

of the lens, while (b) shows the aperture adjustment ring, permitting control of image 

brightness. (c) depicts an underexposed and unresolved image, (d) shows a properly 

resolved and illuminated image, and (e) depicts a resolved but overexposed image. 

The camera lens has two adjustment rings: the working distance adjustment ring and the 

aperture adjustment ring. The working distance adjustment allows control of the resolution 

of the image, while the aperture dictates the amount of light the lens accepts and the 

apparent brightness of the image. Appropriate calibration of the lens working distance and 

lens aperture is essential for obtaining accurate fiber architectures from a tissue sample, as 

poorly-focused images (Fig. E.2c) degrade prediction resolution and over or underexposed 

images (Fig. E.2c and Fig. E.2e) cause incorrect fiber architecture predictions.  

E.2 pSFDI System Testing 

This section presents the pSFDI testing controls for a non-integrated system; Recently, 

testing control systems that integrate with the biaxial tester functionality have been 



146 

developed, but these controls were not used in the results presented in this thesis, and are 

therefore not presented in this appendix. Briefly, the pSFDI system control interface for 

the non-integrated system is shown in Figure E.3. 

  
Figure E.3. Image of the LabVIEW testing control program interface. (a) shows output of 

the automated testing folder generation, while (b, c, d) show the boxes allowing input of 

the test name, spatial frequency, and camera, respectively. (e) displays the real-time testing 

images at each phase shift, and (f) shows the state of the rotational polarizer mount, while 

(g) allows input of step size and final polarizer angle (typically 5º and 180º, respectively). 

The LabVIEW testing control program, named psfdi_control_v4.vi inside of the LabVIEW 

project PSFDI.lvproj, allows the user to examine the microstructure of a tissue. The 

program requires inputs of the desired Test Name, Spatial Frequency (at discrete steps 

indexed from 0-21, cf. Table E1), Camera (if multiple are connected to the desktop, e.g. 

for biaxial tester camera), Step Size (degrees between imaging), and End Position (final 

degree measure for test). Typically, the test name and spatial frequency are the only 
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parameters modified on a test-by-test basis. The spatial frequencies are denoted by indexed 

values from 0-21, corresponding to spatial frequencies and imaging depths (according to 

Eq. (5.3)) as shown in Table E1. 

Table E.1. Spatial frequency index values, with corresponding penetration depths and 

actual spatial frequency values. Index values are input to the testing script to permit control 

of actual spatial frequency and subsequent penetration depth. 

Index Depth (mm) SF (mm-1) 
1 0.10 1.592 
2 0.13 1.273 
3 0.15 1.061 
4 0.18 0.909 
5 0.20 0.796 
6 0.23 0.707 
7 0.25 0.637 
8 0.28 0.579 
9 0.30 0.531 
10 0.33 0.490 
11 0.35 0.455 
12 0.38 0.424 
13 0.40 0.398 
14 0.45 0.354 
15 0.50 0.318 
16 0.55 0.289 
17 0.60 0.265 
18 0.65 0.245 
19 0.70 0.227 
20 0.75 0.212 
21 0.80 0.199 
0 Full Optical Thickness No Pattern 

 

In addition to inputs, the Labview interface includes displays of the real-time images 

acquired (Fig. E.3e) and the state of the rotational polarizer mount (Fig. E.3f), in addition 
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to the result of the folder generation, which can prevent users from overwriting data 

through an error message. These displays allow real-time assessment of the validity of a 

pSFDI test, and a rapid feedback for testing errors.  

E.3 pSFDI Post-Processing and Data Analysis 

A variety of Python programs have been developed to analyze the pSFDI tests. These 

programs perform a few vital functions: (i) serialization of the image data, (ii) computation, 

smoothing, and storage of the DC and AC intensities for each test according to Eq. (C.11)

, (iii) curve fitting for the intensities according to Eq. (5.1) in order to extract the fitting 

parameters (a0, a2, a4), along with the fiber orientation (θfiber) and DOA for each test, and 

storage of the fitting parameters, (iv) plotting fiber orientation and DOA predictions and 

intensity curves over the full sample region, (v) permitting input of a region of interest 

(ROI) to allow cropping, and storing the ROI, and (vi) plotting and storing histograms and 

illustrations of the cropped region over the ROI. Briefly, these functions have been broken 

into two discrete analysis steps, due to the need for user input to define the appropriate crop 

region. In the analysis, Step 1 performs functions (i-iv) and Step 2 handles functions (v-

vi) for a specific test. These data analysis programs are reduced into a simple user interface 

via a Jupyter Notebook program in the custom PSFDI repository (analyze_tests.ipynb, Fig. 

E.4). 
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Figure E.4. Image of the data analysis interface. (a) denotes the user input box to specify 

lists of the test names and spatial frequencies of the tests to be analyzed during Step 1 of 

the analysis, while (b) shows the corresponding Step 1 output, including indications of the 

program state and resulting figures. (c) displays the input for Step 2 of the analysis, and 

(d) provides an interactive textual cropping tool for the user to specify the region of interest. 
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The steps can be run concurrently for different tissue samples by opening multiple 

instances of the analyze_tests.ipynb file. Dependent upon the desktop, Step 1 usually takes 

approximately 10 minutes to complete, while Step 2 takes roughly 1 minute for a user to 

crop a test, and another 10 seconds to compute and plot the histogram analyses. Example 

results of the Step 1 analysis for a TV posterior leaflet tissue are included in Figure E.5. 

 
Figure E.5. Results from Step 1 of the analysis for a TVPL tissue under equibiaxial 

loading. (a) shows the fiber orientations (–) on a background of DOA, while (b, c) illustrate 

4 spatial points and the DC intensity curves (Intensity vs Polarization angle) at these points. 

The curves shown in Figure E.5c describe the basis for the fiber architecture predictions, 

and the full spatial view shown in Figure E.5a helps to assess spatial variance in the 

predictions. Similarly, the establishment of a valid region of interest in Step 2 of the 

analysis permits further assessment of the fiber architecture distributions (Fig. E.6). 
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Figure E.6. Results from Step 2 of the analysis for a TVPL tissue under equibiaxial 

loading. (a) denotes the sample’s region of interest (ROI) over a combined DC image, 

while (b) shows the fiber orientations (white lines) on a background of DOA. (c,d) show 

histograms of the fiber orientation and DOA, respectively, while (e) shows the combined 

distributions of fiber orientation and DOA. 

As depicted in the above figure, a variety of analyses are possible through establishing an 

ROI for the tissue. Specifically, the different histograms allow analysis of the distributions 

of the collagen fiber architectural metrics, while the fiber tracing plot allows improved 

visualizations of the collagen fiber architectures throughout the tissue domain.   
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