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Abstract 

 
The Permian-aged, hydrocarbon-rich, mixed carbonate-siliciclastic mudrocks of 

Midland Basin Wolfcamp B2 and B3 are highly heterogeneous, making 

paleoenvironmental reconstruction difficult. The high-frequency lithologic and 

geochemical variations in the examined core often fall below a 2-inch (~ 5 cm.) vertical 

resolution, warranting a novel inorganic geochemical interval averaging approach for 

geochemical comparisons. Conventional sedimentological techniques such as core 

description, petrography, and ichnology allowed for a localized application of a regionally 

accepted 2nd order sequence-stratigraphic framework. Inorganic and organic 

geochemical techniques were then applied to further corroborate the paleoredox and 

paleoproductivity interpretation established by more sedimentologically based 

techniques.  

The influence of 2nd order eustatic sea-level fluctuations and sediment gravity flow 

events on paleoredox conditions was confirmed. Combined geochemical and ichnological 

evidence suggest that the Wolfcamp B3 and B2 mudrocks were deposited under suboxic 

conditions, with relatively more anoxic conditions during lowstand and progressively more 

oxic conditions during transgression and highstand, respectively.  
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1. Introduction 

The Midland Basin, located in West Texas, spans approximately 3,740 mi2 (9687 

km3) area and has been a proven petroleum province since its initial conventional 

hydrocarbon discovery in 1920 in the Spraberry Trend. The Wolfcamp Formation 

produced 50 million barrels of oil in 2011 alone making it one of the largest unconventional 

plays in the United States (Gaswirth, 2017). The combination of high TOC values, 

established organic nanoporosity, sufficient thermal maturity, and relative brittleness of 

the Wolfcamp Formation make it an excellent source rock and unconventional reservoir 

(Baumgardner et al., 2014).  

The Wolfcamp Formation is often subdivided into several subintervals. One of the 

most oil-rich intervals is the Wolfcamp B2. The Wolfcamp B2 is comprised of thin beds 

which commonly alternate lithology and rock properties at a 2-inch (~ 5 cm.) level, 

particularly in the more basinal sections (Murphy, 2015). These small-scale changes in 

lithofacies, petrographic microfacies, degree of bioturbation, major, minor, and trace 

metal chemical composition suggest high frequency changes in the depositional 

environment (Cortez III, 2012; Baumgardner et al., 2014). Trace metal - organic 

geochemical relationships remain relatively elusive and are thought to reflect the small 

fluctuations in intermediary redox conditions. Furthermore, the application of sequence 

stratigraphic models has been met with varying success given the complexity of the mixed 

carbonate system (Kendall and Schlager, 1981; Gianniny and Simo, 1996; McLaughlin et 

al., 2004; Zecchin and Catuneanu, 2017). 

Generalized carbonate platform sequence stratigraphic models have been 

successful in predicting highstand carbonate platform shedding and dominantly 
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siliciclastic deposition during sea level lowstand (Wilson, 1967; Brown and Fisher, 1977; 

Sarg, 1988; Hine, 2001; Moore, 2002; Hemmesch et al., 2014). However, the interplay 

between updip reef building rates, relative sea level rise during transgression, and the 

overall effect on paleoredox and the depositional environment is not fully understood. 

Sediment gravity flows are pervasive, particularly in the base-of-slope setting. 

Deciphering these stacking patterns as a function of relative sea level fluctuations is 

important for paleoenvironmental reconstruction. Wolfcamp B2 and B3 deposition 

occurred during a transitional phase in global climate, from the Late Paleozoic Icehouse 

predictable glacial cyclothem deposits of the Lower Pennsylvanian (Waite et al., 2015), 

to the global anoxic ocean event and extreme arid conditions associated with an end of 

Permian mass extinction (Grice et al., 2005; Hays et al., 2007; Sur, 2009). This transition 

in global climate further occludes the sequence stratigraphic reconstruction (Salisbury, 

2014). The interplay between organic and inorganic geochemistry coupled with a rigorous 

sedimentological analysis of a representative core could assist in teasing out the 

individual variables responsible for the high-frequency heterogeneity of the enigmatic 

Wolfcamp B2 and B3 intervals.  

  Regional Geology 

The Permian Basin extends from west Texas to southeastern New Mexico and 

consists of three main basins or sub basins – the western Delaware Basin, the eastern 

Midland Basin, and the southeastern Val Verde Basin.  The Central Basin Platform 

separates the Midland and Delaware Basins and the Ozona Arch separates the Midland 

and Val Verde Basins. The Diablo Platform and the Eastern Shelf define the western and 

eastern extent of the Permian Basin, respectively (Figure 1). The Northwestern Shelf, the 
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southern expression of the Perdernal Uplift, bounds the Permian Basin on the north. The 

Ouachita-Marathon Thrust Belt is locally expressed as the Southern Shelf, bounding it to 

the south. The Horseshoe Atoll is located north of the Midland Basin (Keller et al., 1980). 

 Permian Basin Evolution  

The evolution of the Permian Basin until the late Permian can be subdivided into 

three major phases: (1) the Lower Paleozoic ‘Passive Margin Phase’ spanning the Late 

Precambrian to Mississippian or 850 – 310 Ma., (2) the ‘Collision Phase’ spanning the 

late Mississippian through the Pennsylvanian or 310-299 Ma., and (3) the Permian ‘Basin 

Phase’ spanning the entire Permian or 299-251 Ma (Adams, 1965; Muehlberger and 

Dickerson, 1989; Ainaji, 2013). 

1.2.1. Lower Paleozoic ‘Passive Margin Phase’  

The collapse of a transcontinental arch that extended from southeastern New 

Mexico to west Texas during the Precambrian and Cambrian caused a slow subsidence 

of the area. This subsidence was too slow to produce a structural basin and instead 

created a flattened coastal plain by the Early Ordovician.  The Ellenburger Sea 

transgressed towards the northwest, depositing shelf carbonates of the Ellenburger 

Formation over the underlying nearshore clastics derived from the weathering of the 

underlying Precambrian basement (Adams, 1965).  
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Figure 1. Paleogeographic map of Permian-aged North America, roughly 275 Mya (Blakey, 2003) on left, Red rectangle 
indicates location of Permian Basin. Zoomed in view of the Permian Basin, focusing on major structural settings, modified 
from Atchley et al. (1999). Red star indicates approximate well location.
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Crustal warping divided the Lower Ordovician shelf into a series of sags and arches. 

During the mid-Ordovician, an approximately 350-mile (~ 563 km.) wide sag developed 

southwest of the North American Craton, gradually forming the shallow Tobosa Basin 

(Keller et al., 1980). 

The second-order transgression continued throughout the middle Devonian 

depositing the Simpson, Montoya, Sylvan, and Fusselman formations successively. 

Sediment was shed from the surrounding Perdernal Massif and Texas Arch highs 

(Kottlowski and Stewart, 1970). An increase in the sediment supply during the mid-

Ordovician caused the contemporaneous Simpson Formation to have significantly more 

clastic input compared to the later carbonate formations (Scotese et al., 1979). Although 

the Tobosa Basin was relatively deep by the late Ordovician, the more proximal areas 

were shallow, and well within the photic zone. This allowed for the extensive limestone 

deposition of the Montoya, Sylvan, and Fusselman carbonates up until the late Silurian 

(Adams, 1965). Over the course of these 35 million years, subsidence rates exceeded 

clastic sediment input and many areas of the basin were sediment starved. However, 

during the late Devonian and early Mississippian, sea level continued to rise, drowning 

out the shelf carbonate platform. This sea level rise deposited the regionally extensive, 

organic-rich Woodford Shale (Hemmesch et al., 2014).  

1.2.2. Carboniferous ‘Collision Phase’  

Epeirogenic uplift deepened the eastern portion of the Delaware Basin and uplifted 

the Central Basin ridge during the Mississippian. Thick carbonates like the Kinderhook, 

Meramec-Osage, and Chester groups were deposited in the early and middle 

Mississippian. Although the Tobosa Basin began to deform in the Mississippian, 
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tectonism significantly increased in the Pennsylvanian with the collision of Gondwana and 

North America, known as the Marathon-Ouachita orogeny (Mazzullo, 1995). This collision 

formally subdivided the Tobosa Basin into the sub-basins known collectively as the 

Permian Basin. The subsequent formation of Pangea not only pushed the Permian Basin 

into an equatorial latitude ideal for carbonate production but increased clastic sediment 

input from newly eroding highlands. This dynamic tectonic setting allowed for the 

successive deposition of the complex lithologies of the Morrow, Atoka and Strawn 

formations. In general, these Pennsylvanian formations varied laterally from carbonate 

platforms on the basin edges to fine-grained siliciclastics in the deeper basin. The 

proximal late Pennsylvanian Canyon and Cisco Formations are time equivalent to the 

basinal Wolfcamp D formation, though their lithologies differ entirely (Algeo and Maynard, 

2004; Waite et al., 2015).  

1.2.3. Permian ‘Basin Phase’   

 The early Permian was characterized by minimal tectonic activity, yet rapid basin 

subsidence. Thick sections of mudrock were deposited in the deeper parts of the basin 

due to the increase in accommodation space. These shales are often carbonate-rich, 

particularly in the later Leonardian series (Ewing, 2013). The three main carbonate 

platforms, the Central Basin Platform, the Northern Shelf, and the Eastern Shelf sourced 

the extensive debris flows and turbidites found throughout the Permian-aged Wolfcamp 

Formation, particularly in the Midland Basin (Figure 2).  The Wolfcampian sedimentary 

sequence is the primary focus of this study. 
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Figure 2. Midland Basin depositional block diagram depicting various depositional mechanisms, including carbonate and 
siliciclastic sediment gravity flows (modified from T. Reed, Pioneer Natural Resources, 2015). Permian Basin structural 
setting location map (top left) indicating Midland Basin in green rectangle (modified from Atchley et al., 1999) Note rotated 
orientation of block diagram. Red star indicates approximate well location.
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 Wolfcamp Stratigraphy  

The Wolfcamp Formation can generally be subdivided into the Wolfcamp D, C, B, and 

A, from oldest to youngest. The more basinal portions of the Wolfcamp B within the 

Midland Basin consist of thinly bedded successions of alternating carbonate sediments 

and clastic mudstones (Fu, 2011; Baumgardner et al., 2014). Clastic input is primarily 

clay and silt sized grains, although coarser-grained siliciclastic deposits are found towards 

the Southern Shelf. The Wolfcamp Formation decreases in carbonate content away from 

the Central Basin Platform in a proximal-to-distal transect and generally thickening 

towards the east and south where clastic sediment input was greatest. The generalized 

stratigraphy and a hypothesized regional relative sea level curve are summarized in 

Figure 3.  Within the understood regional sequence stratigraphic framework, the 

Wolfcamp B3 interval represents a relative 2nd order sea level fall and lowstand; whereas 

the Wolfcamp B2 is generally interpreted as a 2nd order transgressive systems tract 

transitioning to the highstand observed in the overlying B1 interval (Ross, 1963; Handford, 

1981; Ross and Ross, 1995; Markello et al., 2011; Murphy, 2015). Smaller 3rd order 

sequences are thought to have occurred within the overall 2nd order Wolfcamp B2 

transgression (Haq and Schutter, 2008; Rygel et al., 2008; Fu, 2011; Prochnow and 

Hinterlong, 2014). Although the regional context remains relatively well established, 

possibility that the observed sedimentological and geochemical changes within this single 

core represent a localized turbidite channel evulsion and a lateral shift in turbidite facies 

rather than a regional change in sea level and shore line trajectory cannot entirely be 

ruled out.  
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Figure 3. From left to right: Eustatic sea level curve, Midland Basin Stratigraphy, and global climate (icehouse-greenhouse) 
conditions from Pennsylvanian to Permian age and expanded regional sea level curve and Midland Wolfcamp Formation 
deposition with respective subintervals (Modified from Rygel et al., 2008). Please note that sea level curves are composite 
of second (blue solid and stippled lines) and third order cycles (filled-in blue curve). Red blocked area indicates cored 
Wolfcamp subintervals of interest, upper B3 and B2. 
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 Objectives 

The purpose of this study is to reconstruct the depositional environment within a 

sequence-stratigraphic framework from within an unnamed Wolfcamp B3 and B2 core, 

Midland County, Midland Basin, Texas utilizing a multidisciplinary approach of 

sedimentology, ichnology, petrography, and organic and inorganic geochemistry. 

Observed changes in water column conditions in the Wolfcampian Midland Basin played 

a critical role in the depositional history of the formation and the production and 

preservation potential of the organic matter. Continuous sedimentological 

characterization and trace fossil assemblage observations allowed for uninterrupted 

environmental reconstruction between geochemical sampling points. Organic 

geochemical biomarkers and inorganic trace metal composition per lithofacies were used 

to distinguish changes in the paleoredox conditions, water column structure, and organic 

source material.  

Through an inorganic and organic geochemical comparison, this study attempts to 

resolve ambiguities surrounding the redox conditions and interplay between organic 

matter production versus preservation of the hydrocarbon rich Wolfcamp B3 and B2, and 

possibly narrow the productive interval with the B2. The geochemical effects and potential 

for bottom water re-oxygenation caused by the frequent turbidity currents were also 

investigated. 
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2. Methods 

 Core Description 

Observed grain size, lithology, diagenetic alteration, and sedimentary features were 

used to develop a conventional core description. Then, six distinct lithofacies were 

identified and assigned to each preserved two-inch (~ 5 cm) interval of the core.  

Lithofacies were primarily characterized using the Dunham (1962) carbonate 

classification scheme. Both the conventional core description and the lithofacies stacking 

patterns were used to develop a working sequence stratigraphic model.  

 Petrography 

Thin sections were prepared by TPS Enterprises. Samples were first impregnated 

with fluorescent blue epoxy resin using vacuum and high-pressure techniques.  

Specimens were then mounted to slides using a light cure adhesive, cut off, then ground 

to final thickness using water or oil as appropriate.  Carbonates were ground to standard 

thickness, 30 µm, while mudstones were ground significantly thinner, (20 µm or less), to 

minimize grain overlap. Thin sections were either the smaller standard dimensions or 

oversized, depending on the amount of sampling available. Each thin section was stained 

with a 50:50 dual calcite (red) and ferroan dolomite (blue) stain.   

 Bioturbation and Ichnology 

The degree of total bioturbation and destruction of the original sedimentary fabric 

was indicated by percentage from (0 – 100%).  Furthermore, the qualitative abundance 
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of certain prevalent and environmentally diagnostic ichnofossils were denoted from 0 – 3, 

from absent to highly abundant respectively.  

 Inorganic Geochemistry 

The non-destructive Bruker Tracer IV Hand-Held Energy Dispersive X-Ray 

Fluorescence (HH-ED-XRF) measures major elements heavier than sodium, but focuses 

primarily on those elements of geologic significance such as: Si, Al, Ca, Mg, Na, K, Fe, 

Mn, Ti, P, and S. Trace metals measured include Ba, V, Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, 

Mo, Th, and U. The Bruker Tracer IV HH-ED-XRF was set to emit rhodium x-rays at 40kV 

and 29 µA over a span of 90 seconds. Major elements, which emit characteristic low 

energy K-shell x-rays between 1.25 – 7.06 kV, were measured with a vacuum pump filter 

allowing for the filtering of air between the silicon detector (SiPIN) and the sample window.  

Trace elements, which have unique x-ray signatures between 6.92 and 19.80 kV, 

were measured with a corresponding high-energy setting. Major and trace elemental data 

was collected every 2 inches where possible along the slabbed core face from the depth 

interval 9700.84 - 9534.33 ft. (2956.82 – 2906.06 m.). The core face was thoroughly 

washed in order to ensure the removal of any salts or brines which would cause the Na 

peak to strongly coelute with the Ba (Feret et al., 2003). The sample scan window is a 3 

by 4 mm area. Visually observed major lithoclasts were avoided if possible. The core 

samples were stabilized face down on a plastic platform that ensures maximum surface 

area exposure with the detector, thus more accurate and consistent measurements. 

Beanbags were used to weigh down the core face flush on the detector. 
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 Organic Geochemistry 

2.5.1. Bulk Organic Geochemistry 

Total organic content (TOC) and pyrolysis data, including S1, S2, S3, and Tmax, 

was collected by Weatherford Laboratories using standard LECO and Rock-Eval 

instrumentation, respectively. The core was sampled systematically every four feet for a 

total of 38 samples. Only a data table was provided. Pyrograms were not included.  

2.5.2. Biomarker Analysis  

2.5.2.1. Sample Selection 

Nineteen samples were taken for biomarker analysis based primarily on two 

criteria: (1) each pre-described core facies is represented, TOC abundance permitting, 

and (2) an 8 ft. systematic sampling interval for every other TOC data point (every 4 ft.) 

to ensure that not only the high TOC intervals are analyzed in order to establish a more 

complete paleoceanographic record.  

 

2.5.2.2. Sample Preparation 

Samples of interest were slabbed off the back end of the viewing core using a wet 

saw located at in the Geological Sciences Department of Texas Christian University 

(TCU). A minimum of 30 grams for each sample was collected. Samples were then stored 

in sterile cloth bags and transported to the Organic Geochemistry Group Lab at The 

University of Oklahoma (OU) for sample preparation. Samples were photographed 

scrubbed using soap and water to ensure core orientation marks were removed, then 
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rinsed again with deionized water. Samples were then rinsed with methanol, then DCM, 

and left to dry for 24 hours prior to extraction. Samples were then crushed in a porcelain 

mortar and pestle and sieved to 40- mesh size (<355 um) and weighed. 

2.5.2.3. Soxhlet Extraction 

Soxhlet extraction requires that all glassware, cellulose thimbles, glass wool, 

boiling chips and acid activated copper are cycled for 24 hours with 1:1 (v:v) mixtures of 

CH2Cl2 (DCM) and CH3OH (methanol) to ensure that they are free of organic 

contaminants. Samples were then placed in pre-extracted cellulose thimbles, packed with 

glass wool, and cycled with approximately 300 mL of a fresh 1:1 (v:v) mixture of DCM 

and methanol. Pre-extracted boiling chips were placed in 500 mL round bottom flasks to 

ensure continuous cycling of the solvent. Previously HCl activated copper balls were also 

placed in the round bottom flasks so that any sulfur in the crushed sample would complex 

to the surface as an oxide.  

Extractions were performed for at least 48 hours or more depending on the mass 

and TOC of the sample. After the 48-hour cycling period, the sample extract was filtered 

through 150 mm filter paper to remove any fine sediment particles that may have cycled 

through the packed glass wool cellulose thimble during the extraction process. A rotary 

evaporator was used to evaporate the solvent from the sample extract. The potentially 

sulfide-complexed oxide copper balls were then removed. 

2.5.2.4. Deasphalting  

The extract was then separated into soluble and insoluble fractions, maltenes and 

asphaltenes, respectively. Total sample extracts exceeding 60 mg were subsampled, 

diluted with DCM, and transferred into their respective glass vials. The DCM was then 



` 

 15 

evaporated to ensure that none of the asphaltenes were in solution prior to the addition 

of the n-pentane (C5H12). The n-pentane was added to the extract by aliquot via a pasteur 

pipette at approximately 1:50 (m:m). Vials remained partly submerged in a sonicator to 

ensure the asphaltenes did not aggregate around the soluble organic material. The 

samples were then transferred to centrifuge tubes, then transferred to a freezer for a 

minimum of 12 hours. Samples were then centrifuged to ensure adequate separation of 

asphaltene and maltene fractions. Maltenes were transferred to 100 mL round bottoms 

where excess solvent was removed using a rotary evaporator. The maltenes were then 

transferred to empty pre-weighed 4mL vials where a nitrogen evaporator was used to 

remove the remaining n-pentane. Once sufficiently dried, the samples were weighed. 

Asphaltene fractions were transferred to pre-weighed 4 mL vials using DCM. Excess 

solvent was evaporated using a nitrogen evaporator and weighed.  

2.5.2.5. High Pressure Liquid Chromatography (HPLC) 

Separation 

Maltene fractions exceeding 10 mg were diluted with n-hexane (C5H12) at a 10 

mg/60 uL ratio for HPLC separation. Each sample injection is limited to the 60 uL at the 

previously specified dilution. Hexane, DCM, and a 98:2 (v:v) chloroform: methanol mixture 

where used to separate out the saturate, aromatic, and NSO polar compounds. The 46-

minute HPLC method was adapted from by Dr. Nyguen as follows: 100% n-hexane flows 

at 4 mL/min for the first 4 minutes. From minute 4 to 5, the solvent composition 

progressively changes from 100% n-hexane to 70% n-hexane, 30% DCM. From minute 

5 to 6, the flow rate progressively increases to 5 mL/min. From minute 12 to 13, the 

solvent composition progressively changes from 70% n-hexane, 30% DCM to 100% 
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DCM. From minute 14 to 16, the solvent composition progressively changes from 100% 

DCM to 100% 98:2 (v:v) chloroform methanol mixture. From minute 21 to 23, solvent 

composition progressively changes to 100% DCM. From minute 33 to 35, the solvent 

composition progressively changes to 100% n-hexane. From minute 44 to 46, the flow 

rate progressively slows back down to 4 mL/ min.  

Fractions were collected in 100 mL round bottom flasks, which were manually 

switched out to collect fractions at their respective collection times. The saturate fraction 

was collected from the initial injection up until 4.7 min. The aromatic fraction was collected 

from 4.7 – 14.5 min. The NSO fraction was collected from 14.5 – 25.0 min. The remainder 

of the method (25.0 – 46.0 min) was used to clean the HPLC itself, particularly of polar 

compounds of the samples. Between sample runs, at least one blank run using the same 

method was executed to further ensure that the HPLC was clean and no cross 

contamination occurred. Sample fractions were then evaporated and weighed.  

2.5.2.6. Molecular Sieving – Separation of Branched and Cyclics 

Unweathered samples with maturity values less than an estimated vitrinite 

reflectance (Ro) of 1.0 tend to have saturate fractions dominated by n-alkanes. Molecular 

sieving techniques were employed in order to isolate the isoprenoids and cyclic saturate 

hydrocarbons for later analysis. Approximately half of the saturate fraction of each sample 

was sieved of the n-alkanes. A pasteur pipette was packed with pre-extracted glass wool 

and approximately 2 grams of activated HI-SiV 300. The packed molecular sieve column 

was then flushed 5 times with n-pentane with the aid of compressed air. Saturate fractions 

were diluted with n-pentane and transferred to the sieve column. The sieve column was 

then flushed with n-pentane repeatedly to ensure maximum recovery of branched and 
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cyclic saturates which were collected directly in a 4 mL vial. Excess solvent was 

evaporated with a nitrogen evaporator and the fraction weighed. The packed molecular 

sieve columns were stored and labeled in case the isolated n-alkane fraction was needed 

for analysis. 

2.5.2.7. Gas Chromatography (GC) 

Saturates were diluted with n-hexane (4 mg sample: 1 mL n-hexane) and run on a 

gas-chromatograph (Agilent 6890 series) with a split/splitless capillary injection system 

and equipped with a 30 m by 0.32 mm (i.d.) J&W scientific HP-5 Petro fused silica 

capillary column with a 0.25 μm film thickness. Samples were run using splitless injection 

mode with helium (He) as the carrier gas at a flow rate of 2 mL/min. Temperature was 

programmed and set at an initial temperature of 40°C with a 10-minute holding time; it 

increased to 300°C at a rate of 4°C/min and remained isothermal for 24 min with a 

detector temperature of 310°C. 

2.5.2.8.  Gas Chromatography – Mass Spectrometry 

The branched and cyclic fractions were analyzed using gas chromatography-mass 

spectrometry (GC-MS; Agilent 7890A GC interfaced to a 5975C mass selective detector, 

MSD) on splitless injection mode. The capillary column of the GC was a 60 m by 0.25 

mm J&W scientific DB-5MS with a 0.25 μm film thick coating. Specific ions for biomarker 

identification were analyzed using single ion monitoring (SIM). The temperature was 

programmed from an initial temperature of 40°C with 1.5-minute hold time; it increased to 

300°C at a rate of 4°C/min and then remained isothermal for 34 minutes. Helium was 

used as the carrier gas with a 1.4 mL/min flow rate. 
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3. Core Description 

 A conventional core description, based on lithology, grain size, allochem 

assemblages, sedimentary structures, and boundary type was created in order to get a 

complete sedimentological record (see Appendix A). From this core description, distinct 

lithofacies were identified and are described in the following section. The stacking 

patterns of the lithofacies were then used to identify changes in the depositional 

environment, including inferred palaeoceanographic conditions. A continuous working 

sequence stratigraphic framework was created using the continuous core descriptions 

then cross-compared with other more intermittent, discontinuous, paleoenvironmental 

and palaeoceanographic data such as petrography, bioturbation, and inorganic and 

organic geochemistry.  

 Lithofacies 

Nine discrete lithofacies were identified: black mudstone, laminated silty 

mudstone, massive gray mudstone, banded gray mudstone, truncated packstone, 

laminated packstone, massive packstone, coarse wackestone, and heavily bioturbated 

mudstone to packstone. Although there are parallel bioturbation indices, because of its 

paleoenvironmental significance, extensive bioturbated intervals were classified as their 

own facies. Observations for each lithofacies are summarized below with example images 

summarized in Figure 4. For additional core photographs and their associated lithofacies, 

see Appendix A. Lithofacies were assigned to every two inches of core for the interval 

9539.00 - 9700.84 ft. (2907.49 - 2956.82 m.). The vertical resolution was matched by the 

XRF  
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Figure 4. Representative examples of lithofacies. Lithofacies listed from left to right: black mudstone (9621.00 – 9621.17 ft), 
silty mudstone (9657.17 – 9657.33 ft.), massive gray mudstone (9660.67 – 9660.83 ft.), banded gray mudstone (9596.33 – 
9596.50 ft), truncated packstone (9539.50 – 9539.66 ft.) blue line emphasizes contact and red arrows indicate truncated 
laminae, laminated packstone (9664.50 – 9664.67 ft.), massive packstone (9679.17 – 9679.33 ft.), coarse wackestone 
(9695.00 – 9695.17 ft.), and heavily bioturbated (9565.00 – 9565.17 ft.) where green arrows show burrows. Note scale bar 
and associated facies color
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analysis for all 886 data points, which accounts for missing data points due to core breaks 

and uneven core face surfaces that impeded accurate XRF readings. Lithofacies were 

averaged over the two-inch interval rather taken at the exact inorganic geochemical 

sample depth to have a more complete record of geologic time. Although this 

classification will allow for the lithofacies to more accurately reflect the holistic geology, 

the lithofacies may not accurately reflect the inorganic geochemical sample taken within 

the 2 by 4 mm scanning window, due to the high level of heterogeneity. The conventional 

Dunham classification scheme was used to describe this mixed siliciclastic carbonate 

system (Dunham, 1962). Siliciclastic grain sizes were almost exclusively clay to silt sized 

and hence categorized generically as a “mudstone” lithofacies.  

3.1.1. Black mudstone 

The massive, non-fissile, non-laminated, black mudstone is predominately 

composed of siliciclastic sediment, with little but variable carbonate mud. There is very 

little to no macroscopic bioturbation. No macroscopic sedimentary structures are visible. 

Secondary sedimentary structures include load features, flame structures, and other 

differential compaction structures. Dark reddish-brown ash beds are present but 

uncommon. Phosphatic nodules occur, although inconsistent and varied in abundance as 

a function of stratigraphic depth. 

3.1.2. Laminated silty mudstone 

The laminated silty mudstone is composed of clay- and silt-sized siliciclastic 

material. Silt sized grains are abundant within the planar to sub-horizontal laminae that 

are diagnostic of the lithofacies. Overall, the laminated mudstone is dark gray to dark 
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brown color and moderately well sorted. It often exhibits a sharp bottom contact with a 

sharp to diffuse top contact. 

3.1.3. Massive gray mudstone 

The well-sorted gray massive mudstone contains more carbonate mud and local 

carbonate shell fragments compared to both the black mudstone and the laminated silty 

mudstone. Heavy carbonate cementation is observed. There are no macroscopically 

visible sedimentary structures, aside from very faint planar laminations, and little to 

moderate bioturbation. Contact types vary from diffuse to sharp.  

3.1.4. Banded gray wackestone 

The banded gray wackestone is lithologically similar to massive mudstone but 

slightly coarser grained and more moderately sorted. Thin bands of massive light to 

medium gray carbonate wackestone frequently alternates with black mudstone and 

laminated dark gray mudstone within a 2-inch (~ 5 cm) interval. Bottom and top contacts 

are typically sharp. The banded gray wackestone appears to be heavily cemented. This 

lithofacies is rarely observed throughout the core, however since ash beds, which play a 

significant paleoproductivity role, have been other Wolfcamp B2 cores, they were given 

their own unique lithofacies (Murphy, 2015; Wickard, 2016). 

3.1.5. Truncated packstone 

The truncated packstone is lithologically similar to laminated packstone with the 

exception of a diagnostic sharp, typically angled, top contact that truncates the underlying 

laminations. Although this appears trivial, the truncating, erosive nature of the top contact 
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may have significant paleoenvironmental implications and warrants its own discrete 

lithofacies. Locally, opposing ripple directions are observed, indicating potential 

reworking. Phosphate nodules commonly overly the sharp contact. 

3.1.6. Laminated packstone 

The laminated packstone is light gray and almost entirely composed of .05 to 1 

mm sized allochthonous carbonate skeletal fragments. Allochems are moderate to well 

sorted and include brachiopod, echinoderm, bivalve, and crinoid stem fragments. 

Allochems are deposited in laminar fashion. Planar to slightly inclined, continuous and 

discontinuous laminations occur. Small climbing ripples are rare. Common post-

depositional features include contorted bedding, slumping, and differential loading.  

3.1.7. Massive packstone 

The massive packstone is similar to both the massive gray mudstone and the 

laminated packstone in texture and grainsize, respectively. The massive packstone is 

coarser grained than the massive gray mudstone, however it has the same absence of 

primary sedimentary structures. The skeletal composition and grain size of the massive 

packstone is similar to that of the laminated packstone yet the allochems are slightly 

coarser and randomly orientated with no visible primary sedimentary structures. Heavy 

cementation is prevalent.  

3.1.8. Coarse-grained wackestone 

The coarse-grained wackestone is composed of large, mud-supported, poorly 

sorted, angular to subrounded, light gray lithoclasts and carbonate allochems. Allochems 
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include bivalves, brachiopods, bryozoan, and echinoderms. Small mm-scale carbonate 

allochems are chaotically mixed with cm scale lithoclasts. The large lithoclasts include 

eroded boundstone. Grains are predominantly randomly oriented with occasional 

subplanar orientation visible. Bottom contacts are undulate to sharp, erosive in nature, 

and exhibit differential loading. Top contacts are typically diffuse. 

3.1.9. Heavily bioturbated 

The heavily bioturbated lithofacies is similar in lithology and texture to massive 

gray mudstone but has faint color variation indicating burrowed and non-burrowed 

material. Burrow boundary definition varies from sharp in partial churned portions to 

diffuse in portions almost completely reworked. The majority of the primary sedimentary 

structures are destroyed. When distinguishable, the larger trace fossils, zoophycos and 

larger chondrites occur. Large discontinuous zoophycos burrows are parallel to 

subparallel to bedding, and often crosscut.  

 Core Lithofacies Observations  

Important changes in thicknesses and observed lithofacies as a function of depth 

spanning from the base of the core at 9701 ft. to the top at 9539 ft. (approximately 2957 

– 2907.5 m) are described in detail in the following section  (3.3 General Observed 

Stacking Patterns) and summarized in Figure 5. These lithofacies stacking patterns play 

a critical role in interpreting the associated depositional environment and mechanisms 

that underpin the sequence stratigraphic framework.
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Figure 5. Core description (left) and lithofacies assignment (right) every two inches showing upscaled features. Note the 
Wolfcamp B2 – B3 contact in red. Note core beak 9551-9565 ft. is not to scale. Lithofacies colors are corresponding to 
those delineated in Figure 4. Depth scales are to the left of each column. 
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 General Observed Stacking Patterns  

The thicker, coarse grained wackestone packages found towards the bottom of the 

core, mainly in the Wolfcamp B3 interval, were distinct from those further up section within 

the Wolfcamp B2. Lithoclasts range from 0.15–0.75 in. in diameter in the thicker packages 

compared to 0.01–0.10 in. in the thinner packages. The coarser wackestone packages 

are sparsely interbedded with mainly black mudstone.  

Massive and laminated packstones were often found interbedded with each other, 

often interrupting the more siliciclastic deposition at random.  Massive gray mudstones 

generally increased in frequency up section, and were densest between 9653–9585 ft., 

with a slight resurgence after the core break at 9551–9543 ft. These massive gray 

mudstones were mainly found interbedded with thin packages of laminated silty and 

bioturbated mudstones or overlying massive packstones.  

The bioturbated lithofacies were often interbedded with the laminated silty and 

massive gray mudstones or directly overlying coarser carbonate packages, such as 

massive and laminated packstones. Banded gray wackestone was rarely observed but 

often found overlying the laminated packstones. The truncated packstones were only 

observed from 9590–9578 ft., usually overlying laminated and massive packstones as 

well as the finer grained, calcareous wackestones of the Wolfcamp B2.  

 Lithofacies Association  

The observed stacking patterns expressed by many of the lithofacies can be 

associated with different depositional mechanisms within similar depositional 

environments. These lithofacies associations attempt to relate the descriptive lithofacies, 
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and to a lesser degree the petrographic microfacies later described, with genetic 

depositional mechanisms.  

3.4.1. Sediment Gravity Flow Deposits 

3.4.1.1. Calciturbidite  

The massive and laminated packstones are interpreted as differing Bouma divisions of 

distal calcareous turbidites, or calciturbidites. Planar-laminated packstones are mainly 

considered part of the Bouma Tb unit. However, thin more clay-rich, yet carbonate grain 

supported, discontinuous planar-laminated packstones could be interpreted as Bouma 

Te divisions. Laminations within the laminated packstone lithofacies can also be cross-

laminated and even exhibit ripples. Observed ripples are both climbing and sediment 

starved, indicating both Tc and lower Td Bouma divisions, respectively (Bouma, 1960). 

The banded gray mudstone is far more cryptic in terms of an associated depositional 

environment. However, when they are overly massive or laminated packstones, they can 

more confidently be interpreted as the upper flow regime settling out where the Bouma 

Te is observed.  This associated lithofacies interpreted as calciturbidites is summarized 

in Figure 6.   

Discrete portions of the massive packstone, laminated packstone, or banded gray 

mudstone sometimes occur without the presence of the other lithofacies. This could be 

interpreted as differing portions of the flow regime being restricted to certain locations  

along a depositional transect. Facies reflecting the lower flow regime are commonly 

deposited in more proximal settings, whereas those facies reflecting the upper 
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Figure 6. Example of small calciturbidite (<1 ft) observed at 9670.50 ft. Massive carbonate 
base interpreted as a Bouma Ta. Planar laminations interpreted as a Bouma Tb. Faint 
climbing ripples followed by discontinuous laminations interpreted as Tc and Td 
respectively. Textureless black mudstone interpreted as hemipelagic to pelagic 
background sedimentation or Bouma Te. 
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more distal setting, depending on the energy of the flow (Haughton et al., 2009). 

Therefore, interpretations can be made on the relative energy of flows if their point of 

origin remains constant (no shift in shoreline). Conversely, if isolated Bouma divisions 

and their relative frequencies are considered within the greater regional sequence 

stratigraphic framework, inferences can be made on shoreline shifts given the relative 

transport distances. Confidence in these interpretations generally decreases when 

individual lithofacies within the lithofacies assemblage are missing. Isolated carbonate 

beds may reflect deposit remobilization, not relative changes in flow energy or shifting 

shorelines 

3.4.1.1. Transitional or Hybrid Flows 

On rare occasions, the coarser massive packstones exhibit an irregular top 

contact, different from the more typical laminated packstone truncation observed towards 

the top of the B2 interval. These coarser, almost sand sized, massive packstones have 

so little clay that they border on being grainstones. The irregular top contact is draped by 

continuous black mudstone. The combination of very limited clay content, coarser and 

moderately well sorted, sand-sized carbonate lithoclasts, and non-reworked irregular top 

contact could be interpreted as a transitional sediment gravity flow, such as a grain flow 

(Haughton et al., 2009).   

3.4.1.1. Calcareous Debrite 

  The majority of the coarse grained, poorly sorted wackestones are interpreted as 

higher-energy calcareous debrites, or “linked debrites” (Haughton et al., 2003). Higher 

confidence is placed in this interpretation for the thicker, coarser wackestone packages 

observed in the Wolfcamp B3 compared to the thinner, finer-gained, wackestones 
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observed in the Wolfcamp B2. Pebble sized, carbonate lithoclasts are interpreted as 

platform rip up clasts. Large, macroscopic allochems, such as bivalves, brachiopods, 

echinoderm, multichamber forams, and bryozoan fragments, suggest the carbonate 

material origninated from a shallower, more proximal platform setting, which was later 

transported distally. The large size and high diversity of the allochem assemblage suggest 

that the platform they originated from was most likely a non-stressed environment with 

high biodiversity.  

3.4.1.2. Distal Siliciclastic Turbidites  

Laminated silty mudstone intervals are interpreted as distal siliciclastic turbidites. 

Ichnofossils planolites and phycosiphon were almost exclusively observed in the 

laminated silty mudstones and surrounding lithofacies, further indicating distal turbidite 

deposition (Follmi and Grimm, 1990; Algeo et al., 2004; Uchman et al., 2008). Faint 

laminations are composed of coarser grained silt-sized quartz grains, indicating a higher 

energy depositional mechanism than that of the black mudstone lithofacies. The 

laminated silty mudstones are generally interbedded with either a predominately 

siliciclastic lithofacies, such as black mudstone or the massive gray mudstone, suggesting 

an overall shift in sediment source.  

3.4.2. Background Sedimentation 

3.4.2.1. Hemipelagic to Pelagic Sediments  

Uninterrupted deposition of black or massive gray mudstones are interpreted as 

hemipelagic to pelagic deposition, depending on the degree of biogenic input. However, 

without petrographic support, it is difficult to distinguish the biogenic contribution to the 
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sediment or the sediment transport mechanism, such as dilute hyperpycnal flows, 

hypopycnal hemipelagic, or pelagic deposition. Subtle detrital laminations only visible 

through thin section (explained in more detail later on) demonstrate a preference towards 

hemipelagic deposition interpretation (Garrison, 1990). Furthermore, many of these 

uninterrupted mudstones also contain phosphatic nodules. Phosphatic nodules high-

nutrient conditions such as of upwelling systems and form at the oxic–anoxic boundary 

below the sediment water interface (Hatch and Leventhal, 1992).  Although these 

uninterrupted mudstones may have been deposited via the same mechanisms, the 

background redox conditions during sedimentation may have been tied to larger sea level 

related redox conditions. As mentioned in the core description observations, a discrete 

interval within the B2 contains primarily black mudstone with relatively fewer phosphatic 

nodules than the black mudstone observed up section. Therefore, although certain 

meaningful associations between lithofacies and their depositional mechanism can be 

made, environmental conditions at the time of deposition aren’t always the same.   

 

3.4.3. Potential Reworked Storm Deposits 

3.4.3.1. Contourites 

 The subplanar laminations of the truncated packstones are truncated by finer-

grained, predominantly siliciclastic material. This irregular contact is unique in that usually 

erosive contacts have coarser grained material overlying them, indicative of a higher 

energy erosive mechanism. Finer grained sediments do not have the energy to scour 

underlying sediments – thus erosion must have occurred by other means. Contourites, or 
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bottom water contour current deposits, are a viable explanation. Persistent basin scale 

currents could have reworked the underlying calcareous turbidites and created this 

irregular top contact (Stanley, 1993). Phosphatic nodules commonly overly the truncated 

packstones, providing further evidence of bottom-water mobilization, such as the 

upwelling of deeper, more nutrient rich waters (Roe et al., 1982; Ece, 1990; Trela, 2008). 

These upwelling conditions are more indicative of transgression and high stand 

conditions, as a progressive sea level rise would enable better basin-wide circulation of 

previously more restricted waters.  This progressive shift towards more highstand-like 

conditions agrees with the pre-established regional sequence stratigraphic framework 

previously mentioned (Algeo et al., 2004; Baumgardner et al., 2014). 

 

3.4.3.2. Tempestites  

An alternative depositional interpretation to the truncated packstones is that they 

are tempestites, or storm deposits. The low-angle, subplanar laminations could be 

interpreted as hummocky cross-stratification. Furthermore, the irregular top contact and 

truncated low-angle ripples and laminations may simply be wave reworked as energy 

from the event deposit dissipated (Einsele and Seilacher, 1982). Although this 

sedimentological distinction between a contourite and a tempestite may seem trivial, it 

has a significant impact on the sequence stratigraphic interpretation. While the contourite 

interpretation is in agreement with the large third order shift to progressive highstand 

conditions, the occurrence of tempestites could indirectly indicate the opposite, assuming 

there are no major changes in the sedimentary supply budget (Einsele, 1996). Since they 

first appear towards the top of the core, this may indicate a downward shift in the storm 
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wave base. A shift of that magnitude could indicate a drop in sea level, or lowstand 

conditions (Sageman, 1996; Molina et al., 1997). This drop in sea level may be reflect a 

more cryptic 3rd order sequence. Unfortunately, a large break in the core occurs just 

above of these truncated packstones, hindering a definitive interpretation. However, a 

relative drop in the storm weather wave base does not always imply a drop in sea level. 

As previously mentioned, Earth was starting to experience changes in global climate by 

the end of the early Permian. Storm intensification towards the end of icehouse conditions 

could cause progressively higher energy storm deposits to reach more distal parts of the 

Midland Basin (Ito et al., 2001). 

 Working Sequence Stratigraphic Framework 

Given the observed stacking patterns of lithofacies, interpreted associated 

depositional environments, and the background knowledge of regional Wolfcamp B2 and 

B3 sequence stratigraphy in the Midland Basin, a working 2nd order sequence 

stratigraphic framework was created (Figure 7). The thick coarse-grained wackestone 

packages, interpreted as debrites, are more closely associated with a fall in sea level, or 

a falling stage systems track (FSST), which is delineated by red arrows. This definitively 

spans from the base of the core at 9700 ft. up to 9683 ft. (2956.5 - 2951.4 m). The 

overlying section from 9683 - 9647 ft. (2951.4 - 2940.4 m) is interpreted as a relative sea 

level low, or lowstand (LST), and is delineated in orange. The appearance of thicker 

laminated silty mudstone packages and lower energy calciturbidites is indicative of the 

reciprocal clastic sedimentation and relative decrease in energy, respectively, in a 

relatively more stagnant sea level low. An overall decrease in the amount of bioturbation 

towards the end of the LST suggests relatively more anoxic conditions towards the end  
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Figure 7. Working sequence stratigraphic framework, including 2nd order FSST, LST, TST and mfz, HST, and potential 
nested 3rd order cyles. Stippled lines reflect a decrease confidence in interpretation. Stacked arrows reflect parasequence 
scale changes within and overall higher order systems tract. Note that moving forward only high confidence interpretation 
and lowest order sequence stratigraphic interpretation will be carried across to other geologic and geochemical 
interpretations. 
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of the LST. The LST – TST (transgressive systems tract) transition is marked by a 

thick continuous calciturbidite package at 9648 ft. (2940.7 m) and is considered the 

contact between the Wolfcamp B3 and B2. 

The onset of sea level rise, or transgression, is interpreted from the change in 

siliciclastic packages. Within the transgressive systems tract, calcareous and distal 

siliciclastic turbidites dominate the early and middle TST. These calciturbidites are 

progressively replaced by black, non-laminated mudstones, most likely representing 

hemipelagic or pelagic background sedimentation towards  

the end of the TST. Bioturbation is observed during the early and middle TST, indicating 

that there is an increase in oxygen after the LST. The ichnologically interpreted shift from 

relatively stagnant conditions to a progressively more open, well-circulated system with 

increased oxygen availability further supports the notion of sea level rise. The up section 

increase in the frequency of the black mudstone lithofacies coupled with a decrease in 

bioturbation is interpreted as yet another shift towards anoxic conditions and a sea level 

maximum. The six-foot zone, from 9627 – 9621 ft. (2934.3 - 2932.5 m), is the thickest 

most continuous package of interpreted pelagic or hemi pelagic deposition and is 

considered the maximum flooding zone, or mfz. The mfz is delineated by a blue arrow. 

Furthermore, the absence of potentially reoxygenating calciturbidites corroborates the 

paleoceanographic conditions of the interpreted sea level maximum. The decrease and 

then absence of the calciturbidites may indicate a progressively more distal basin setting 

associated with sea level rise and maxima, respectively.  

  An upsection increase in thin calciturbidites after the TST is indicative of highstand 

shedding from a productive carbonate platform that has caught up to sea level rise (Sarg, 
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1988). This interpreted high stand systems tract (HST) is delineated by a green arrow. 

These finer–grained HST calciturbidites are texturally distinct from the relatively coarser-

grained LST calciturbidites (Vecsei and Sanders, 1997). However, the overall amount of 

carbonate decreases after the middle HST, creating an overall decrease in carbonate 

content throughout the core. Increased levels of bioturbation indicate potentially more 

oxygenating conditions associated with better ocean circulation related to highstand 

conditions.  

The first occurrence of the truncated packstone at 9590 ft. (2923 m) could be 

interpreted in one of two ways. If the truncated packstones truly represent contourites and 

the development of strong, persistent bottom water contour currents, then this section 

would be considered continued highstand deposition. However, if the truncated 

packstones are interpreted as a series of tempestites, then a small, 3rd order sea level 

drop may be inferred. The presence of thick packages of distal siliciclastic turbidities 

overlying the potential tempestite packages further bolsters the argument for a 3rd order 

scale variation. A small fall in eustatic sea level would be followed by lowstand constituted 

by the primarily siliciclastic deposition observed from 9580 - 9570 ft. (2920 – 2917 m). 

The onset of parasequence scale transgression could then marked by the resurgence in 

frequency of the heavily bioturbated facies. These parasequence scale variations are 

marked by the stippled lines of their respective colors on the inside of the HST sequence 

scale green arrow. Due to the overlying 14 ft. (~4.3 m) core break, it is extremely difficult 

to interpret the depositional environment, and hence relative sea level, for that part of 

geologic time. The increase siliciclastic deposition coupled with a decrease in the 

frequency of thin calciturbidites, towards the end of the HST, particularly after the core 
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break, potentially suggesting a decrease in energy of system. However there heavily 

bioturbated lithofacies is frequently observed at the same interval, suggesting a continued 

oxygen rich environment.  Due to this ambiguity surrounding a potential nested 3rd order 

sequence, the 2nd order sequence stratigraphic interpretation will be used moving 

forward. It will be used to contextualize data with a lower vertical sampling rate and 

resolution, such as petrographic and geochemical data.    

 

4. Petrography  

  Petrographic Microfacies  

Thin section sampling was limited to those samples with material remaining 

after organic geochemical analysis. Additional petrographic samples were taken from 

underrepresented lithofacies without Rock-Eval data, such as those that more calcareous 

and organic lean.  Thin sections were either the smaller standard dimensions or 

oversized, depending on the amount of sampling available. Each thin section was stained 

with a 50:50 dual calcite (red) and ferroan dolomite (blue) stain. Due to the highly 

interbedded nature of the Wolfcamp Formation, multiple petrographic microfacies were 

commonly identified within a single thin section. Petrographic microfacies variation often 

fell below the 2 inch (~5 cm) vertical resolution of lithofacies assignment and inorganic 

geochemical analysis. Six major facies were identified from 21 thin sections. 

Representative samples of each petrographic microfacies are summarized in  

Figure 8. See Appendix B. Petrography for additional micrographs. 
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Figure 8. Examples of petrographic microfacies where number refers to petrographic microfacies and “a” and “b” refer to 
macroscopic and microscopic thin section images, respectively. 1) non-laminated black mudstone (9625.17 ft.), 1a) 
chondrites burrows visible, 1b) Tasmanites with organic matter infill; 2) poorly sorted coarse packstone (9697.17 ft.), 2a) 
matrix supported large lithoclast sand allochems 2b) red numbers indicate allochems as follows 1 large multichamber foram 
2. shattered multi-chamber foram 3. echinoderm spine fragment; (3) well sorted carbonate packstone (9690.84 ft.); 3b) 
cement infill and replacement 4) mixed carbonate siliciclastic wackestone (9594.66 ft.) 5) faintly laminated silty mudstone 
(9657.17 ft.); 6) bioturbated silty mudstone (9585.17 ft.) 5b) intense bioturbation only leaved OM rich discontinuous 
laminations. Note scale bars and staining. Red indicates calcite and dark blue indicates ferroan dolomite. 
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4.1.1. Faintly laminated argillaceous silty mudstone 

Faint laminations are usually visible from full thin section view and vary in thickness 

and color. Three laminations types were observed and are as follows: (1) cm thick faint 

bands of light tan or buff color, (2) mm thick white lamination of almost entirely detrital 

quartz and aligned silica rich agglutinated forams or Tasmanites, and (3) cm thick reddish-

brown colored band, with less detrital quartz relative to the previous two lamination types. 

Bioturbation is typically limited to horizontal burrows and is relatively sparse so that the 

laminations and other sedimentary structures are still preserved. Agglutinated forams are 

generally more abundant than Tasmanites. 

4.1.2. Bioturbated silty mudstone 

Bioturbation ranges from moderate to heavy, with either discontinuous wavy 

laminations to complete churning of original sedimentary structures with no evident 

laminations or banding. Large (0.5 – 1.5 cm) horizontal burrows composed of cleaner 

coarser sediment typically truncate the discontinuous laminations. Agglutinated forams, 

and more rarely Tasmanites and radiolaria occur. Organic rich layers are commonly those 

most disrupted by horizontal burrows. Samples that are heavily bioturbated appear 

cleaner and devoid of organic material. Calcareous components are commonly restricted 

to diagenetic dolomite (non-ferroan and ferroan) replacement of non-carbonate material. 

Carbonate allochems compose less than 5% of the total matrix. 
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4.1.3. Well sorted carbonate packstone 

Well-sorted carbonate allochems within the packstone exhibit varying degrees of 

abrasion. Mud constitutes up to 15% of the matrix but does not inhibit grain-to-grain 

contact with the majority of allochems. Mud was primarily observed in two main fabric 

types: (1) discrete organic rich clay rip ups often present as laminations and (2) individual 

pockets of partially micritized allochems. Heavy diagenetic alteration of replacive calcite, 

dolomite, and ferroan dolomite is commonly observed. The ferroan dolomite is commonly 

selectively zoned to clay rich laminations. Selective microcrystalline quartz, or 

chalcedony, recrystallization of certain allochems is present but limited. Oxides are 

abundant. Pyrite is visible as both small and large euhedral framboids, densely packed 

near lithologic contacts. Grain edge dissolution limited allochem identification. Allochems 

include: echinoderm spines, brachiopods, bivalves, multichamber forams, radiolara, 

sponge spicules, and to a minor extent, gastropods.  

4.1.4. Mixed carbonate siliciclastic wackestone 

The moderately well sorted carbonate allochems are matrix supported. The matrix 

is composed of argillaceous clays, micas, and minimal silt-sized detrital quartz. The 

percentage of matrix to the total sample ranges from 30% - 60%. Matrix grain size can 

range from clay to very fine silt. Allochem assemblages were less diverse relative to other 

carbonate dominant petrographic microfacies and restricted to a narrower grain size 

range of 50 to 250 um in length. Allochems include echinoderm spines, bivalve fragments, 

radiolara, and sponge spicules. Mutichamber forams are present, although not as 

abundant. Cement is typically observed as intragranular and replacive, with less common 

intergranular cement, usually limited to those allochems with grain-to-grain contact. 
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Macroscopically, a diagnostic stippled or salt and pepper fabric in the full thin section view 

identifies this petrographic microfacies. Grain boundary dissolution is relatively common, 

particularly with the more dolomitized allochems. Silty lithic fragments are present but 

uncommon. Oxides are present but infrequent.  

4.1.5. Mudstone, non-laminated 

The non-laminated organic rich mudstone has significantly less visible detrital 

quartz than the other siliciclastic dominant petrographic microfacies. No distinct 

laminations are observed, only the horizontal alignment of agglutinated forams. 

Tasmanites are partially compressed with varying amounts of organic matter infilled. 

Some of the agglutinated detrital quartz incorporated in forams is partially replaced by 

ferroan dolomite. Radiolara are present. Small (300 um) horizontal burrows are present 

but sparse. Burrows lack finer clays and organic matter. Elongate silt clasts are 

subangular and show evidence of shearing.   

4.1.6. Poorly sorted coarse packstone 

Relative to the other petrographic microfacies, the poorly sorted coarse-grained 

packstones has the most diverse allochem assemblage: large bryozoan, brachiopods, 

multichamber forams, echinoderm spines and shells, and bivalves. Notably, the 

petrographic microfacies lacks the smaller allochems abundant in other petrographic 

microfacies such as radiolara, Tasmanites, and agglutinated forams. Aside from the 

diverse fossil assemblage, large lithoclasts comprised of previously lithified carbonate 

material are abundant. Mud content and degree of cementation within the lithoclasts 

varies. Lithoclast and allochem diameters are highly variable, ranging from 100 um – 2 
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cm. Allochems and lithoclasts edges are typically abraded and sub-rounded to angular 

and with sharp clean edges. Macroscopically, differential compaction and deformation of 

underlying of clay rich material are frequently observed. The degree of grain-to-grain 

contact is variable, however, allochems and lithoclasts are generally mud supported. 

Ferroan dolomite cement is relatively sparse. Common silica replacement of internal 

carbonate allochem structure preserves original allochem texture or replaces is entirely. 

The matrix is comprised almost entirely of mud with silt-sized carbonate fragments and 

minimal detrital silt. 

 Petrographic Environmental Associations 

The observed petrographic microfacies at their respective depths are listed in  

Table 1. Given the disparity in number of samples between petrographic 

microfacies and lithofacies identifications, it is difficult to definitively say that a single 

lithofacies can be truly petrographically characterized. Furthermore, given the number of 

thin sections, not all lithofacies were sampled. Hence the petrographic microfacies 

themselves are not used to further define the lithofacies themselves but rather generally 

compared to which lithofacies they were observed within Table 2.  The depositional 

environment was also interpreted by utilizing the petrographic microfacies interpretations 

at the specific depths and comparing it to overall sedimentological interpretation based 

off the holistic core description, which will be discussed at length. 
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Table 1. Distribution of petrographic microfacies as a function of depth. 

 

 
 

Sample 
Depth       

(ft.) 

Petrographic microfacies 

Faintly 
laminated 

silty 
mudstone 

Bioturbated 
silty 

mudstone 

Well sorted 
carbonate 
packstone 

Mixed 
carbonate 

siliciclastic 
wackestone 

Non-
laminated 
mudstone 

Poorly 
sorted 
coarse 

packstone 

9577.17 X  X    

9585.17  X     

9593.17 X  X X   

9594.66    X   

9617.17 X      

9625.17     X  

9633.17  X     

9641.17    X X  

9644.67   X X   

9645.17   X    

9647.84  X     

9649.17   X    

9653.17 X  X X   

9657.17 X      

9665.34 X      

9673.17 X   X   

9681.17 X   X   

9683.17      X 

9689.17   X    

9690.84   X    

9697.17      X 
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Table 2. Petrographic microfacies observed within specific lithofacies. 

Petrographic 
Microfacies 

 Black 
Mudstone 

 Laminated 
silty 

mudstone 

Massive gray 
mudstone 

Banded gray 
Mudstone 

Truncated 
packstone 

Laminated 
Packstone 

 Massive 
Packstone 

 Poorly sorted 
coarse 

packstone 

 Heavily 
bioturbated 

Faintly 
laminated silty 

mudstone 

 6 1 1      

Bioturbated silty 
mudstone 

  1 1     1 

Well sorted 
carbonate 
packstone 

   1  4 4   

Mixed carbonate 
siltstone / 

wackestone 

 1  1  1 2 1  

 Non-laminated 
mudstone 1     1    

Poorly sorted 
coarse 

packstone 

       3  



` 

 44 

Up to three individual petrographic microfacies were observed in certain thin 

sections, reemphasizing the difficulty in characterizing the small-scale (<2 inch) variation 

in the Wolfcamp B3 and B2. The core description, lithofacies, and working sequence 

stratigraphy aided in the petrographic environmental reconstruction. The bottom four thin 

sections representing the upper middle Wolfcamp B3, spanning core depths 9697.17 to 

9683.17 ft. (2955.70 - 2951.43 m) are poorly sorted to well-sorted packstones. As 

previously mentioned, the Wolfcamp B3 is interpreted as a falling stage and relative 

lowstand, with abundant carbonate debris flows (Murphy, 2015). The poorly sorted, 

coarse packstone petrographic microfacies is often found in conjunction with the coarse-

grained wackestone lithofacies and associated with these debrites. The well-sorted 

carbonate packstone petrographic microfacies is associated with more proximal or higher 

energy turbidites, relative to those represented by the mixed carbonate-siliciclastic 

wackestone. Coupled, these petrographic microfacies represent higher energy 

environments, indicative of the carving and shedding of the adjacent unstable carbonate 

platform during relative sea level fall (Grammer and Ginsburg, 1992; Vecsei and Sanders, 

1997).  

Further up section, faintly laminated silty mudstone and mixed carbonate and 

siliciclastic wackestone are present for two samples at depths 9681.17 and 9673.17 ft. 

(2950.82 and 2948.38 m), respectively. The change in petrographic microfacies suggests 

a relative decrease in the energy of the depositional environment. Finer carbonate grains 

/ smaller allochem sizes and increased mud content in the carbonate dominate 

petrographic microfacies coupled with the first presence of a purely siliciclastic 

petrographic microfacies could be interpreted a transitional deposit and progressive shift 
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from a falling stage systems tract to a lowstand systems track (Hunt and Tucker, 1992). 

The lower energy associated with the transport of finer grain material relative to the 

underlying the debrites or the cleaner, high-energy turbidites may indicate sea level 

stabilization. Furthermore, the previous drop in sea level may have environmentally 

stressed the Central Basin Platform, reducing the carbonate sediment budget available 

for shedding (Murphy, 2015). The presence of the faintly laminated silty mudstone shows 

progressive increased siliciclastic input from the more clastic shelves. 

In the upper Wolfcamp B3, for the depths 9665.34 and 9657.17 ft. (2946.00 and 

2943.51 m), the faintly laminated silty mudstone petrographic microfacies is the only 

observed petrographic microfacies. The absence of significant carbonate sediment may 

indicate that the once stressed Central Basin Platform carbonate factory has now 

completely shut down. Therefore, the only sediment deposited is from siliciclastic 

sediment gravity flows sourced from the distant Eastern Shelf. Conventional carbonate 

platform models identify these siliciclastic packages in edge-of-slope and basinal tracts 

as reciprocal sedimentation during lowstand (Wilson, 1967; Sarg, 1988; Osleger and 

Montańez, 1996).  

Three finer-grained petrographic microfacies, the faintly laminated silty mudstone, 

the well-sorted carbonate packstone, and the mixed carbonate siliciclastic wackestone, 

are observed at 9653.17 ft. (2942.29 m). This petrographic microfacies assemblage 

represents concurring flow events from mixed lithologic sources. These interbedded, 

mixed lithology, low-energy, distal to medial turbidites may be indicating the end of 

lowstand conditions and the onset of sea level rise. Allochthonous carbonate material 

may be shedding from the updip carbonate platform which, experiencing the onset of 
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relative sea level rise, may have begun to ramp up production (Crevello and Schlager, 

1980; Andresen et al., 2003). The presence of faintly laminated silty mudstone however 

indicates that the distal siliciclastic turbidites remain the dominant mechanism for 

siliciclastic deposition to the basin. It is therefore interpreted that the degree of sediment 

bypass and subsequent siliciclastic deep-water deposition is less relative to earlier 

distinctly lowstand conditions (Murphy, 2015). The working sequence stratigraphic 

framework derived from the lithofacies stacking patterns sedimentologically corroborates 

this end of lowstand/ onset of transgression, petrographic interpretation. At the end of 

Wolfcamp B3 deposition, represented at the study area at a depth of 9649.17 ft.( 

2941.067 m), only the well sorted carbonate packstone petrographic microfacies is 

observed. As previously mentioned, the well-sorted packstone could be associated with 

a higher energy turbidity current shedding of the carbonate platform that has begun to 

catch up with the transgression (James and Macintyre, 1985).  

During the onset of Wolfcamp B2 deposition, represented stratigraphically in the 

core at a depth 9647.84 ft. (2940.66 m), the first petrographically distinct bioturbated silty 

mudstone occurs. Although bioturbation is present in almost all siliciclastic petrographic 

microfacies, the extensive laminations and matrix fabric disruption defines this 

bioturbated petrographic microfacies. As previously mentioned, the Wolfcamp B2 has 

been interpreted as the onset of a transgressive systems tract (Murphy, 2015). This 

relative or eustatic increase in sea level could lead to localized oxygenation within the 

Midland Basin in three ways: (1) with a eustatic rise in sea level, oxygenated waters from 

the Panthalassa Ocean could re-enter the restricted basin, (2) a relative sea level rise 

could reinitiate localized basin scale currents in the previously stagnant lowstand Midland 
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Basin, or (3) eustatic or localized sea level rise increased platform shedding in the way of 

oxygen entrained-turbidity currents (Cortez III, 2012). Whether due to eustatic or 

localized, autogenic processes, relative oxygenation is inferred from evidence of newly 

established hospitable conditions for borrowing aerobic organisms (Wetzel, 1984; Follmi 

and Grimm, 1990; Kozur et al., 1996).  

The transition from the observed underlying bioturbated silty mudstone 

petrographic microfacies at 9647.84 ft. (2940.66 m) to a well-sorted carbonate packstone 

petrographic microfacies at 9645.17 ft. (2939.85 m), during the independently 

sedimentologically identified early transgression, may indicate that updip carbonate 

production increased (Sarg, 1988). However, the subsequent coupled observance of the 

well-sorted carbonate packstone and mixed carbonate siliciclastic wackestone 

petrographic microfacies at 9644.67 ft. (2939.70 m) indicates more distal, lower energy, 

carbonate turbidity currents relative to previous well-sorted carbonate from edge of slope 

to basinal. Due to this shift in depositional setting and longer transport distance, finer 

grained suspended clays entrained in the carbonate dominate turbidity currents may 

settle out. This finer argillaceous material may have previously bypassed the base of 

slope setting (Sumner et al., 2012; Talling, 2014). However, a change in the rate of sea 

level rise could also have the same observed lithologic implication. The rate of sea level 

rise may have exceeded the rate of reef build up. A stressed reef updip would account 

for the observed decrease in carbonate material relative to siliciclastic material (Wilmsen, 

2000). Whether due to a basinward shift of the study area, a drowning of the carbonate 

platform, or both, the trend in increasing siliciclastic material continued as the 

transgression progressed. 
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By depth 9641.17 ft. (2938.628 m), both the mixed carbonate and siliciclastic 

wackestone and non-laminated mudstone petrographic microfacies are observed. This is 

the first observance of the non-laminated mudstone petrographic microfacies indicating 

hemipelagic to pelagic deposition of clays (Garrison, 1990; Baumgardner et al., 2014). 

This coupled petrographic microfacies is depositionally interpreted as background 

sedimentation episodically punctuated by distal carbonate turbidites. The relatively more 

clay rich mudstone is overlain at depth 9633.17 ft. (2936.19 m) by bioturbated silty 

mudstone. Episodic distal turbidites have switched from a carbonate to siliciclastic further 

highlighting the lack of carbonate production during towards the end of transgression. The 

degree of bioturbation could indicate that either the episodic turbidity currents brought 

entrained oxygenated water and opportunistic burrowing organisms down to the basinal 

areas (Follmi and Grimm, 1990; Hallworth et al., 1993; Ozalas et al., 1994; Uchman et 

al., 2008) or sea level rise allowed oxygenating ocean currents to form (Ozalas et al., 

1994).  

The non-laminated mudstone petrographic microfacies, observed at 9625.17 ft., 

stratigraphically represents the inferred maximum flooding surface within the Wolfcamp 

B2 interval. The limited carbonate material and detrital silt, lack of continuous laminations, 

and absence of abundant bioturbation indicates pelagic or hemipelagic deposition in a 

relatively oxygen limited, lower energy, deep marine environment (Garrison, 1990). 

Observed tasmanites with organic infill and sparse radiolara indicate an increase in 

biogenic primary production, and thus slightly oxygenated water column conditions 

(Kidder and Erwin, 2001; Ikeda et al., 2016). However, the degree of terrigenous organic 

material remains unknown via petrographic analysis alone and requires geochemical 
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techniques to resolve the ambiguity. Therefore, the depositional mechanisms and 

dominant organic matter origin during the relative sea level maximum remains 

undetermined. The fine-grained sediment petrographically observed could have been 

deposited by suspension settling, by extremely dilute siliciclastic sediment gravity flows, 

or both. Given the argillaceous nature of the clays and the lack of interstitial micrite in the 

non-laminated mudstone petrographic microfacies, it can be inferred there was a 

decrease in the carbonate material budget. Carbonate platform growth may have been 

unable to keep up with the rate of sea level rise towards the end of sea level rise. The 

effectively drowned reef may have unable to shed carbonate material to basinal areas 

(James and Macintyre, 1985; Wilmsen, 2000).  

At 9617.17 ft. (2931.31 m), there is an observed shift to silty laminated mudstone 

indicating higher-energy siliciclastic deposition. This shift to a coarser, siliciclastic 

petrographic microfacies may reflect the transition to sea level highstand, before 

carbonate production had ramped up. After the 5 ft. (1.5 m) thick massive packstone 

package observed in the core beginning at 9608 ft. (2928.52 m), the petrographic 

microfacies observed include a distinctly fine-grained carbonate material mixed with silty 

mudstones. Mixed carbonate-siliciclastic wackestone, observed at 9594.67 ft. (2924.46 

m), followed by combination of laminated silty mudstone, well sorted packstone, and 

mixed carbonate-siliciclastic wackestone, observed at 9593.17 ft. (2924 m), indicates an 

increase in progressively differently sourced concurrent turbidity flows (Osleger and 

Montańez, 1996). Furthermore, the progressively higher-frequency lithologic variability of 

the petrographic microfacies could indicate that both the Central Basin Platform and 

Eastern Shelf were both experiencing highstand conditions. Therefore, the hybrid 
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carbonate-siliciclastic platform model is preferred, rather than a pure carbonate model, in 

which significant siliciclastic material is deposited only as a function of reciprocal 

sedimentation during lowstands (Wilson, 1967),  

The bioturbated silty mudstone petrographic microfacies, observed at 9585.17 ft. 

(2921.56 m), is well within the core interval exhibiting an increase in the frequency of the 

bioturbated lithofacies from 9580 - 9608 ft. (2920 - 2928.5 m). This congruence indicates 

a progressively more oxygenated environment and better ocean water circulation, typical 

of highstand conditions (Ozalas et al., 1994; Taylor et al., 2003). Towards the top of the 

Wolfcamp B2 section, at a depth of 9557.17 ft. (2913.03 m), the petrographic microfacies 

combination of laminated silty mudstone and well-sorted carbonate packstone occurs. 

The presence of the two relatively cleaner, lithologically different petrographic microfacies 

may indicate highstand sediment shedding from both the carbonate platform and 

siliciclastic shelves are matched.  

Although the petrographic sampling was at a lower vertical resolution and more 

inconsistent relative to that of lithofacies and inorganic geochemistry, the three top-most 

samples did overlap with the potentially nested fourth order cycle (Figure 3). There was 

no definitive petrographic evidence of this higher order cycle; Only fine-grained carbonate 

and siliciclastic sediment was observed, limiting the possibility that a fourth order 

regression occurred. Furthermore, the bioturbated petrographic microfacies was 

observed within this ambiguous fourth order cycle, where prior to this point this 

petrographic microfacies, and its’ lithofacies counterpart, was previously observed in the 

more well-constrained third-order transgression and highstand. Although this 
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inconsistency does not definitely eliminate the possibility of the nested fourth order cycle, 

it does indicate that a lower sampling density can occlude its interpreted presence. 

 

5. Bioturbation and Ichnology 

 Bioturbation and Oxygenation Assessment  

Ichnofossils are trace fossils, or burrows, created by organisms most suited for 

their environment. Assemblages of certain ichnofossils, or ichnofacies, have long been 

associated with distinct benthic depositional environments. The development of these 

benthic communities is controlled by several ecological limiting factors, such as: oxygen 

availability, salinity, substrate consistency, turbulence and bottom water energy, rate of 

deposition, and sometimes by disturbance events (such as storms, turbidity currents, ash 

falls) (Seilacher, 2007). A reduction in species diversity and individual trace fossil size 

indicates a reduction in endobenthic activity from these ecological stresses (Taylor et al., 

2003). Hence, observations in ichnofossil diversity, abundance, and assemblage aid in 

paleoenvironmental reconstruction efforts. Each burrowing organisms’ ability to handle 

varying degrees of oxygenation is of particular importance for sequence stratigraphic 

interpretation (Pemberton and MacEachern, 2005). A completely anoxic environment, 

devoid of all dissolved oxygen, is inhospitable to macroscopic borrowing organisms. 

However, degrees of dysoxia can be interpreted by the relative oxygen depletion each 

ichnogenera can endure (Savrda and Bottjer, 1986; Taylor et al., 2003). As in most 

geologic interpretations, the presence of one line of evidence, or singular burrow, is not 

enough to make a depositional environment or redox condition interpretation. It is best 
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practice to take into account the cumulative evidence of the diversity and assemble of 

various inchofossils in conjunction with geochemical and sedimentological evidence 

(Schultz and Rimmer, 2004). There are inherent limitations and biases with an 

ichnological approach such as lack of lithologic color contrast, massive bedding or 

absence of preexisting sedimentological structures, and poor trace fossil preservation 

conditions. Erosive sediment gravity flows (and their corresponding core facies) create 

numerous biases in the ichnofossils and fabrics preserved in the rock record. Lower 

portions of tiered communities are preferentially preserved, which under-represent 

endobenthic communities that inhabit the sediment closer to the sediment – water 

interface. Furthermore, erosive flows can eliminate evidence of communities, and hence 

environmental conditions, during background (non-episodic) sedimentation. Lastly, given 

the comparative sedimentation rates of these flows and background hemipelagic fall out, 

sediment gravity flows will over-represent those ichnofauna suited for those conditions, 

regardless of the degree of erosion (Minter et al., 2016).  Well-sorted, lithologically 

homogenous facies have very little color contrast which create a separate bias in 

ichnofauna identification.  Without a disruption in linear features, such as laminations, or 

lithologic contrast (grain size and/ or color), burrows become increasingly difficult to 

identify. Therefore, lithologically homogeneous facies absent of sedimentary structures, 

such as massive portions of calcareous turbidites and non-laminated mudrock, have 

fewer recorded visible trace fossils. Petrographic methods are employed in attempts to 

mitigate these effects.  Bioturbation was observed to varying degrees almost entirely 

throughout the core. Observed trace fossils included Chondrites, Nereites, Phycosiphon, 

Planolites, Teichichnus, and Zoophycos and are summarized in Figure 9. 
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Figure 9. Schematic of observed trace fossils Chondrites, Nereites, Phycosiphon, 
Planolites, Teichichnus, and Zoophycos. Grayed out square represents visible 2D surface 
on core face (Bromley and Ekdale, 1984). 

 
 
 
 
 

 Observed Ichnogenera  

5.2.1. Chondrites  

These burrows are dendritic, equally sized, root-like tubes extending from a central 

shaft. Usually, only the branched tubes are cross cut, appearing like dark circles of equal 

diameters along bedding planes. The vertical shaft is locally cross cut in which the central 

tube is perpendicular to bedding, with branches oblique and parallel to bedding. These 

burrows are thought to have been created by deposit feeding organism in both anoxic 

and oxic environments (Bromley and Ekdale, 1984). In more oxygenated environments, 
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they comprise the lowest member of the tiered community, fatherst away for the oxidizing 

pore waters near the sediment-water interface (Savrda and Bottjer, 1986). In more anoxic 

environments, Chondrites are found usually in low diversity communities with decreased 

burrow diameters. Although stressed, Chondrites, are more suited for dysaerobic 

environments compared to other ichnogenera, and hence indicative anoxic environments 

(Bromley and Ekdale, 1984). These deposit-feeding organisms systematically mine a 

single location for unoxidized organic matter. 

5.2.2. Nereites 

Visually, Nereites are easily identified by the white halo of spreiten found around 

the edges of the oblong tubes. Nereites are differentiated from the Phycosiphon by the 

smaller burrow diameter. Nereites tube diameters rage from 0.5 mm – 1.5 cm, roughly an 

order of magnitude larger than Phycosiphon (Ekdale et al., 1984). The meandering 

Nereites trace may be densely spaced and vary from circular to more oblong depending 

on the degree of compaction and the substrate consistency. They occur in a variety of 

settings, but more commonly on the top surface of thin turbidites at the base of slope and 

abyssal plain setting (Hu et al., 1998). Discussion surrounding the nature of Nereites as 

it pertains to turbidites and rapid sedimentation centered around two schools of thought: 

that these burrowing organisms were escaping the new sediment load (Kuenen, 1957) 

and that they were opportunistically inhabiting a temporary dysoxic environment 

(Seilacher, 1962). Overwhelming evidence has since favored the later interpretation. 

Nereites is one of the primary ichnogenus found in the Nereites Ichnofacies, which will be 

explained in greater detail further on. 
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5.2.3. Phycosiphon 

Phycosiphon burrows are narrow U-shaped lobes arranged in an antler-like system 

extending from a central shaft (Wetzel, 1984; Wetzel and Uchman, 1998).  In cross-

section, these burrows are 0.8 – 1.5 mm in diameter with dark center and white spreiten 

halos. Phycosiphon are passively grazing organisms on the surface of the sea floor. 

Phycosiphon are adapted to a wide range of grain sizes and are normally absent in 

continuously accumulating fine-grained deep-sea sediment. This indicates that 

Phycosiphon is transported from the shelf or slope to deeper environments, potentially by 

sediment gravity flows (Wetzel, 1984). With higher dissolved oxygen content in these 

settings compared to of the ambient deep water, Phycosiphon, is thought to indicate a 

relative increase in bottom water oxygenation in a typically dysaerobic to anoxic setting 

(Seilacher, 1967).  

Phycosiphon has a lower probability of appearance if turbidites are less frequent 

with long reoccurrence time. It is speculated that only two turbidity currents per 1000 

years are necessary maintain the burrow forming exogenous fauna if background 

sedimentation does not exceed 50 cm/ 1000 years. More frequent turbidity currents (20-

200/ 1000 years) would be necessary to establish a reproducing, formally exogenous, 

Phycosiphon community (Wetzel, 1984). Relative sediment rate fluctuations could be 

calculated given the presence of episodic versus long standing Phycosiphon burrows. 

The presence of Phycosiphon allows the identification of low density, distal, siliciclastic 

turbidites that are more difficult to identify without the aid of photomicrographs relative to 

their carbonate counterparts. Therefore, the persistence presence of Phycosiphon could 

indicate frequent yet faint, distal siliciclastic turbidites. 
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5.2.4. Planolites 

 Planolites are simple, unbranched cylindrical burrows infilled by a different lithology 

compared to the host rock. The burrows are straight or gently curved, roughly 1-5 mm 

long, and horizontal or oblique to bedding planes (Pemberton and Frey, 1982). Burrows 

often cross cut each other. Various invertebrate could be responsible these burrows 

which are typically found in shallow and deep marine environments. However, these 

burrows have been found in alluvial, lacustrine, and aeolian environments (Ekdale et al., 

2007). In deep marine environments, the presence of Planolites indicates dysoxic to oxic 

conditions. Planolites have a lower tolerance for oxygen depletion relative to other traces 

such as Chondrites, Teichichnus, Helminthopsis, and sometimes Zoophycos (Savrda and 

Bottjer, 1986; Ekdale and Mason, 1988; Neal, 2015).  

5.2.5. Zoophycos 

Zoophycos burrows are spreiten-filled structures are comprised of numerous but 

small U- and J-shaped burrows that vary in length and orientation, depending on the 

stress on the system. Spreiten are arranged in a helix-like pattern in a circular shape 

around a central shaft. It is uncommon to find the central shaft in cross-section and 

burrows are generally lobate (Wetzel, 1984). The burrowing organisms responsible for 

Zoophycos live under dysoxic to anoxic conditions with consistent, non-episodic, 

background sedimentation rates (Olivero, 1996; Li et al., 2017). Zoophycos is found in 

both shallow and deep marine depositional settings, but is mainly associated with slope, 

base-of-slope, and basinal environments. Zoophycos is commonly associated with the 

appropriately named, Zoophycos ichnofacies however, it can be found within other 
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ichnofacies such as Cruizana and Nereites. Therefore, the presence of Zoophycos alone 

does not indicate the Zoophycos ichnofacies (MacEachern et al., 2012).  

 Ichnofacies 

Ichnofacies are an assemblage of ichnofossils that are indicative of a certain 

depositional environment. There are a total of eight marine ichnofacies: Trypanites, 

Teredolites, Glossifungites, Psilonichnus, Skolithos, Cruziana, Zoophycos, and Nereites 

(Wetzel and Uchman, 1998; Taylor et al., 2003; Gingras et al., 2011). The Zoophycos 

and Nereites ichnofacies are the dominant ichnofacies present in the edge-of-slope and 

basinal environments and therefore are emphasized in this thesis. 

5.3.1. Zoophycos Ichnofacies  

Trace fossils commonly found in the Zoophycos ichnofacies include Phycosiphon, 

Zoophycos, Chondrites, and Spirophyton. These organisms tend to burrow in firmer 

substrates formed during slow hemipelagic to pelagic background sedimentation (Miller, 

1991). Hence, the Zoophycos ichnofacies is associated with fine-grained, cohesive 

muddy to sandy substrates, with local variations in oxygen deficiency. Shallower tiers of 

the ichnofacies are found in soft grounds, whereas deeper tiers care found in stiff or hard 

grounds, depending on the depositional setting (Ekdale, 1985; MacEachern et al., 2012). 

The Zoophycos ichnofacies is usually found in low energy settings, below storm wave 

base, ranging from the shallow continental shelf to abyssal zone, but generally limited to 

the slope and abyssal plain settings (Seilacher, 1967; Frey and Seilacher, 1980; Frey et 

al., 1990). When found in the same depositional setting as the Nereites ichnofacies, the 
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Zoophycos ichnofacies is associated with slower sedimentation and less dissolved 

oxygenation relative to the Nereites Ichnofacies (Uchman and Wetzel, 2011).  

5.3.2. Nereites Ichnofacies 

Common trace fossils include Helmenthoidia, Spiroraphe, Lorenzinia, Chondrites, 

Paleodictyon, Nereites, and Cosmorhaphe (Seilacher, 2007). The main difference 

between the Nereites Ichnofacies and the Zoophycos Ichnofacies is the presence of 

organized grazing burrows with complex planar surface structures, or graphoglyptids 

(Ekdale, 1985; Uchman, 2003; MacEachern et al., 2012). Graphoglyptids have only been 

found in sediments directly after low-density distal turbidites in deep basins, and hence 

require a softer substrate and relatively more oxygenated conditions. Low-energy storm 

generated debris flows, or tempestites, are the shallow water shelf setting equivalent of 

these low energy turbidites (D’Alessandro et al., 1986).Given that these graphoglyptids 

are observed after event deposits sedimentologically sourced from proximal areas, it is 

hypothesized that the exogenous burrowing organisms originated in more proximal areas 

and were transported distally with the sediment gravity flows (Wetzel, 1984; Follmi and 

Grimm, 1990). Ichnosubfacies of the Nereites ichnofacies exist along a proximal to distal 

transect of turbiditic systems: Ophiomorpha rudis, Paleodicton, and Nereites respectively 

(Uchman, 2009). To a lesser degree, this same relationship exists along a turbiditic lobe 

axis to fringe transect (Phillips et al., 2011; Monaco et al., 2012). Therefore, the distal 

assemblage of the Zoophycos Ichnofacies overlaps with the Nereites Ichnofacies in a 

very niche depositional environment: background sedimentation punctuated by episodic, 

distal turbidity currents occurring at the base of slope and abyssal plain settings. 
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 Tiered Communities 

Tiered communities are assemblages of ichnofossils that inhabit different depths 

at or away from the sediment water interface at the same instance geologic time. These 

organisms preferentially burrow at different depths according to their respective feeding 

mechanisms and tolerances to different environmental stresses (Taylor et al., 2003). Tier 

communities can also represent overlapping ichnofacies, particularly when turbidity 

currents oscillated the bottom water and interstitial pore water dissolved oxygen content; 

Nereites and Zoophycos ichnofacies often superimpose each other, with those 

ichnofossils more tolerant of depleted oxygen towards lower portions of the tier (Uchman 

and Wetzel, 2011; MacEachern et al., 2012). Deposit-feeding, exogenous fauna brought 

in by turbidity currents may inhabit the sediment at the sediment water interface where 

dissolved oxygen content is higher (i.e. Nereites ichnofacies). Further down, away from 

newly oxidizing shallow poor waters, ichnofossils of the Zoophycos ichnofacies dominate. 

At these depths, oxygen deficient conditions are similar to that during background 

sedimentation (Seilacher, 1962, 1977). As previously mentioned, selective preservation 

of lower tier communities is especially common in reoccurring erosive turbidites. Figure 

10 is a schematic that summarizes the tiered communities observed in this study. 

  Bioturbation Observations and Interpretation  

The relative abundances of each of the observed ichnofossils were given a qualitative 

value, ranging from 0 – 3, indicating absence, present, sparse, and abundant, in 

ascending order. Furthermore, if the overall degree of bioturbation within a 2-inch (5 cm) 

interval was greater than 30%, the degree of bioturbation was recorded, as well as which  
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Figure 10. Schematic representation of idealized tiered community. Ichnofossils listed from top to bottom: Phycosiphon, 
Planolites, Nereites, Chondrites (large), Zoophycos, Teichichnus, and Chondrites (small) show increasing tolerance to low 
dissolved oxygen concentrations as distance increase from sediment water interface. 
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ichnofossils were observed. Large sections of zero values in the ichnofossil record reflect 

thick carbonate event deposits, the absence in bioturbation reflects the high energy of the 

sediment gravity flows, rather than limited oxygen availability. 

Overall, there is an observed increase in the degree of bioturbation up section. The 

average degree of bioturbation remains below 10% from 9700 – 9680 ft. (~2957 - 2951 

m), in the interpreted third-order FFST within the Wolfcamp B3. These low values most 

likely reflect the higher energy debris flows, which inhibit organisms from remaining on 

the eroded substrates. Total bioturbation remained relatively low during the lowstand 

(Wolfcamp B3) and transgression (Wolfcamp B2), with only three distinct deviations 

intervals at 9670 – 9665, 9647 – 9653, and 9628 – 9635 ft (~ 2947 - 2946, 2940 - 2942, 

2935 - 2936.7 m). The 5 – 7 ft. (1.5 - 2 m) packages sedimentologically correspond to 

packages of thin, high frequency, fine-grained, increasingly more siliciclastic turbidites. 

Within these intervals, bioturbation values exceed 50%, indicating episodic increases in 

life-sustaining organic matter and dissolved oxygen. Beginning at approximately 9595 ft. 

(2924.5 m), bioturbation levels on average exceed 50%, consistent with the interpreted 

third-order onset of highstand conditions, with the exception of intermittent thicker, 

calcareous packages. This trend of increasing bioturbation levels continues throughout 

the highstand for approximately 35 ft. (~11 m), culminating in total bioturbation exceeding 

80% around 9570 ft. (2917 m). This consistent, continuous increase in bioturbation, 

compared to the punctuated, episodic bioturbation cycles exhibited in the lowstand and 

transgression, indicates more persistent elevated oxygen levels.  After the core break, 

bioturbation levels decreased to roughly an average of 40% from the churned bioturbated 
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fabrics of >80% exhibited earlier, suggesting a decrease in the available dissolved oxygen 

at the end of the HST. 

 Individual ichnofossils and their abundances were recorded. Those ichnofossils 

more strictly associated with sediment gravity flows, such as Planolites and Phycosiphon, 

were by far the most abundant throughout the core. Planolites and Phycosiphon 

burrowing intervals exhibiting consistent qualitative abundance levels >1 within the 

interpreted lowstand and transgression correspond to the three total bioturbation intervals 

exceeding 50% and sedimentologically to the 5-7 ft. (1.5 - 2 m) packages of thin high 

frequency turbidites. Their opportunistic yet short-lived presence indicates a subtle 

increase in dissolved oxygen concentrations associated with the small, dilute, yet high 

frequency distal sediment gravity flows. Oxygen levels would then later return to the 

dysoxic-anoxic equilibrium more commonly associated with eustatic sea level controlled 

oceanographic conditions during lowstand and transgression. Planolites and 

Phycosiphon burrows were most abundant during the interpreted third-order highstand, 

consistent with previously observed total bioturbation trends and theoretical highstand 

carbonate platform shedding by means of calciturbidites.  

 Chondrites, and to a lesser degree, Zoophycos, were the dominant ichnofossils 

observed between 9680 – 9650 ft. (~2951 – 2941 m), indicative of the Zoophycos 

ichnofacies, relatively consistent background sedimentation, and suppressed dissolved 

oxygen concentrations during Wolfcamp B3 deposition.  Within this third-order lowstand, 

Planolites and Phycosiphon abundances mirrored Zoophycos abundances over the same 

previously mentioned 5 ft. (1.5 m) interval observed between 9670 – 9665 ft. (2947 -2946 

m).  This observation, coupled with the notable absence of abundant Nereites burrows, 
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is consistent with the Zoophycos ichnofacies interpretation. The presence of sediment 

gravity flow-dependent ichnofossils and the increase in burrow abundance of organisms 

more accustomed to elevated dissolved oxygen concentrations relative to Chondrites 

indicates that the dilute sediment gravity flows are only temporarily elevating oxygen 

levels during the lowstand.  

During transgression and early highstand (9650 – 9590 ft.; 2941 – 2923 m), 

Chondrites abundance generally decreases, aside from several isolated instances. 

Towards the end of the transgression and throughout highstand conditions (9630 – 9540 

ft; 2935 – 2908 m), Nereites and Zoophycos abundances closely track each other, except 

for an anomalous 10 ft. (3 m) interval (9605 – 9595 ft.; 2928 – 2925 m) towards the end 

of the early highstand, indicative of the Nereites ichnofacies, more oxygenated conditions, 

and dominantly turbiditic deposition. The overlap between the high abundances of 

Nereites and Zoophycos burrows and Chondrites burrows beginning at 9580 ft., is 

indicative of healthy, well-developed tiered communities, commonly associated with more 

oxygenated deep marine environments. However, the resurgence in abundant 

Chondrites burrows could also indicate a decrease in the overall dissolved oxygen 

concentrations. These potentially stressed, deoxygenated conditions could be attributed 

to a subtle fourth-order sea level fall nested within the third-order highstand, which was 

previously sedimentologically suggested. However, there is a notable increase in the 

overall Zoophycos burrow diameter during this same interval, favoring the well-developed 

tired community interpretation during a third-order highstand. These findings are 

summarized in Figure 11. 
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Figure 11. From left to right: Degree of total bioturbation (out of 100%), qualitative assessment (0 – 3) of presence of 
ichnofossils: Phycosiphon, Planolites, Nereites, Zoophycos, Chondrites; core description, observed lithofacies, and working 
sequence stratigraphic framework  
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6. Inorganic Geochemistry 

 Lithofacies Major Elemental Distribution 

Major elements are defined as Si, Al, Ca, Mg, K, Fe, Mn, Ti, P, and S and are 

expressed as weight percentages (wt %). Mn, Ti, and P comprised < 2 wt% of each of 

the nine lithofacies and thus were excluded. Average major element compositions were 

then renormalized to Si, Al, Ca, Mg, K, Fe, and S. Average major element composition 

per lithofacies are summarized in Figure 12. 

The texturally distinct black, non-laminated mudstone and laminated silty 

mudstones are identical in major element composition: 67% Si, 10% Al, 8% Ca, 5% Fe, 

4% K, 2% Mg, and 4% S. The dark gray massive gray mudstone has slightly less Si and 

K and exhibits a 4% increase in Ca relative to the black and laminated silty mudstones. 

The even lighter gray, banded mudstone has a greater Ca percentage, slightly greater 

Mg and Fe percentages, and a smaller Si fraction compared to all the other individual 

mudstone lithofacies.  

The truncated packstone has even more Ca than the mudstones, however, Si still 

remains the largest fraction with 50 wt. %. The large proportion of Si in the carbonate 

packstone is attributed diagenetic alteration and the Si incorporated in the clay matrix 

minerals observed above the contact (see Appendix A. Core Photos, Core Description, 

and Lithofacies and Appendix B. Petrography). Many of the XRF measurements were 

taken on the contact and hence reflect both the overlying mudstone as well as the 

underlying carbonate packstone (massive or laminated) in order to maintain the 

consistent 2-inch vertical sampling rate.   
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Figure 12. Average major element composition (Si, Al, Ca, Fe, K, Mg, and S) of each lithofacies. 
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The coarse wackestone major element distribution reflects the argillaceous 

supporting matrix rather than the coarse allochems: Si remains the dominant element 

(52%) with a larger, yet not dominate, Ca concentration of 28%. The progressively more 

carbonate rich lithofacies, such as the laminated packstone and massive packstone 

respectively, exhibit an expected progressive increase in Ca%. Silicon at 45%, remains 

the elemental contributor for the laminated packstone. This Si dominance within the 

laminated packstone, coupled with a higher Al% relative the massive packstone, may 

reflect the more siliciclastic/ clay rich laminations present within the former lithofacies. 

The laminated packstone may reflect the deposition of the upper flow regime of a turbidity 

current, which is relatively more diffuse, less dense, and hold more fine material in 

suspension than the lower flow regime, lithological represented by the massive 

packstone. This overall bulk incorporation of less dense clays, aside from the aligned 

clays represented in the laminations, may account for the Si dominance in the laminated 

packstone.  

As previously mentioned, the massive packstone was cleaner and devoid of clay 

laminations. The massive packstone lithofacies is the only lithofacies with a dominant Ca 

fraction of 48 wt. %. This increase in Ca is coupled with a significant decrease in Si and 

to a lesser extent, Al and K. The massive packstone also exhibits a significant increase 

in the Mg fraction; nearly double that of the other calcareous lithofacies (laminated 

packstone and coarse wackestone). The increase in Mg is disproportionate to the 

increase in Ca, indicating that it is not solely attributed to an increase in Ca. This non-

linear relationship between Ca and Mg may be indicating a relative increase in the amount 
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of dolomite. Overall, there is a subtle, progressive decrease in the average S%, from 4% 

to 2%, from the more argillaceous to the more calcareous lithofacies.  

 The heavily bioturbated lithofacies is independent of many of the lithologic 

constraints that defined the previous eight lithofacies. Although bioturbation occurred on 

average within finer-grained substrates, mineralogy does not play as large as a role. This 

independent relationship between bioturbation and mineralogy is further supported by the 

major element composition of the lithofacies. The heavily bioturbated lithofacies 

elemental distribution fell between that of the black and silty laminated mudstones and 

the massive gray mudstone, indicating bioturbation occurred in substrates of a mix of both 

siliciclastic and calcareous lithologies.  

 

 Lithofacies Minor and Trace Elemental Distribution 

Minor elements with a low relative wt.% (consistently <2 wt.% of the major element 

distribution for all lithofacies) and trace metals of paleo-environmental importance were 

more rigorously statistically analyzed. Median, first and third quartiles, and minimum and 

maximum values for each lithofacies were recorded. 

 Enrichment Factors and Caveats in Mixed Systems 

 Much of the trace metal literature often reports values as enrichment factors, Efs, 

which show the relative enrichment of major and trace elements relative to the Al fraction, 

(X/Al), which most directly represents the clay fraction. This enrichment factor 

methodology allows for the more accurate comparisons of trace metal concentrations 

(ppm) since their absolute concentrations change dramatically with only a small change 
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in the overall clay content. This enrichment factor methodology has been successful in 

predominantly siliciclastic, non-thinly bedded, paleo-environmental reconstruction (Algeo 

and Lyons, 2006; Scott and Lyons, 2012; Cheng et al., 2015; Turner, 2015; Turner and 

Slatt, 2016). However, mixed carbonate-siliciclastic environments pose a problem to the 

enrichment factor applications: relative enrichment of certain trace metals are dominantly 

controlled by low Al concentrations. Therefore, trace metal enrichment values express by 

large increases in the Ca fraction, rather than oceanographic, water column changes in 

redox conditions, or nutrient delivery. Preliminary application of the enrichment factor 

methodology to the Wolfcamp Formation core showed evidence of this Ca bias. Trace 

metals were reported in absolute concentrations and a simple quartile base statistical 

analysis was applied to show changes in trace metal composition as they relate to each 

lithofacies. 

 Trace Metal Paleoredox Proxies with Limited Detrital 

Influences 

Trace elements molybdenum (Mo) and vanadium (V) are established paleoredox 

proxies (Tribovillard et al., 2006, 2008; Algeo et al., 2012; Gilleaudeau and Kah, 2013; 

Corn, 2017). The ionic species of Mo and V are found in extremely low concentrations in 

seawater relative to the clay minerals (Corn, 2017). They are predominately deposited in 

the sedimentary record at the redox boundary at or below the sediment water interface at 

the time of deposition or during early, shallow diagenesis. In particular, Mo and V complex 

with free S2- in euxinic environments to form pyrite-like complexes (Vorlicek et al., 2004). 

Elevated values of Mo and V are widely used as indicators of anoxic and euxinia, that is, 
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anoxia with free H2S in the water column (Algeo and Lyons, 2006). However, these pyrite-

like complexes may be reflecting either the conditions of the overlying water column or 

that of the pore-waters below the sediment water interface. Paleoenvironmental 

reconstruction efforts of redox conditions can therefore remain relatively cryptic if these 

euxinic conditions are mutually exclusive. Without pyrite framboid dimensional analysis, 

the relative timing of pyrite formation, and therefore redox conditions, is unknown 

(Sweeney and Kaplan, 1973; Wilkin and Barnes, 1997). Furthermore, anoxic conditions 

with limited H2S, but not enough to be euxinic, would lessen the degree of Mo and V 

sulfur-complexing (Schultz and Rimmer, 2004; Tribovillard et al., 2006). Uranium (U) also 

occurs predominantly as an ionic species in seawater and is enriched in the sediment. U 

(VI) reduction to U (IV) occurs in anoxic seawater, with pH conditions similar to those 

where Fe (III) reduction to Fe (II) occurs, and is theorized to be decoupled from 

abundance of free H2S (Swanson, 1961; Tribovillard et al., 2012). Slow sedimentation 

rates allow for the downward diffusion of uranyl ions from the water column into the 

sediment. Furthermore, the presence of organic metallic ligands and humic acids 

accelerate U uptake into sediments (Crusius and Thomson, 2000). Uranium in a reduced 

state is therefore predominantly associated with non-sulfidic anoxia and limited oxygen 

penetration depth within the sediment. However, U is easily remobilized if oxygen does 

penetrate the sediment. Thus, bottom water oxygenation events, such as those created 

by turbidity currents, or reintroduction of oxygen into deeper sediments through burrowing 

and bioturbation, will remobilize U and decrease its concentration in the sedimentary 

record (McManus et al., 2005, 2006).  
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Figure 13. Paleoredox Proxies with Limited Detrital Influences: U, V, and Mo (ppm) concentration 
statistical distributions as a function of lithofacies. Minimum, Q1, median, Q3, and maximum 
shown. Note higher U maximums for black mudstone and laminated silt. 
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Mo, V, and U concentrations per lithofacies are summarized in Figure 13. Median 

U concentrations are low relative to many anoxic shale formations although maximum 

values are consistent with normal marine shale distributions, up to 250 ppm (Swanson, 

1961). Maximum U values were left off Figure 13 to better show the main distribution of 

data and are as follows: 261 and 158 ppm for the black mudstone and laminated silty 

mudstone lithofacies, respectively. Median values for all lithofacies range from 2 – 5 ppm. 

Maximum U values are significantly smaller for the more calcareous lithofacies associated 

with sediment gravity flows as well as the heavily bioturbated intervals.  

 Vanadium concentrations are relatively consistent with expected lithofacies 

relationships. Those lithofacies associated with low energy depositional systems under 

relatively more anoxic conditions (black, laminated silty, and massive gray  mudstones) 

show elevated V concentrations relative to those associated with higher energy, 

potentially more oxygenated, sediment gravity flows (banded gray mudstone and massive 

packstone). However, some calcareous lithofacies associated with the sediment gravity 

flow spectrum exhibit a higher V median (laminated packstone), larger maximum values 

(laminated packstone and coarse wackestone), or higher minimum values (truncated 

packstone).  This discrepancy could be explained in two possible ways. As previously 

mentioned, Mo and V complex with S2- to form pyrite-like complexes. 

Therefore, the availability of reduced Fe plays a distinct role in the preferential 

formation of the Mo and V sulfide complexes (Breit and Wanty, 1991; Helz et al., 2014). 

Typically, there is an inverse relationship between Ca and Fe within a system. Iron is 

generally associated with the clay mineralogy and if the argillaceous clay content 

increases, it is usually at the expense of the calcareous content and vice versa (Breit and 
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Wanty, 1991). Although the major element distributions show a relatively consistent Fe% 

regardless of lithofacies, it is unknown where this elemental fraction mineralogically 

resides. Therefore, it is plausible that the less abundant, clay-related, reduced Fe (II) 

species during the carbonate deposition eliminated the kinetically preferable ionic 

competition for S2- complexing (Tribovillard et al., 2004).  The reduced ionic competition 

may have enabled for Mo and V sulfide complexes to form although the conditions may 

have been less anoxic than during potentially more anoxic, siliciclastic deposition. The 

other possible explanation is that V was preferentially incorporated into phosphate 

nodules rather than complexing with sulfide. Vanadium more readily incorporates into 

phosphate nodules compared to Mo (Breit and Wanty, 1991). This V - phosphate 

relationship had been observed in the phosphate nodules of the Woodford Shale (Turner, 

2015). As previously mentioned, phosphate nodules were observed towards the top of 

the Wolfcamp B2 interval, where the truncated packstone lithofacies was exclusively 

found. The observed generalized stacking pattern of finer-grained coarse wackestone, 

laminated packstone, and truncated packstone observed towards the top of the core 

further supports the V – phosphate nodule incorporation argument. Although such small 

discrepancies amongst the lithofacies seems trivial, it plays an significant role in teasing 

out the fluctuating redox conditions and degrees of dysoxia during deposition since 

phosphate nodules are indicative of both upwelling, well circulated, oxygenated marine 

systems and upwelling induced and non-upwelling induced anoxia ones (Kupecz, 1974; 

Ece, 1990; Jarvis, 1992; Algeo et al., 1997; Ashckenazi-Polivoda et al., 2010). 

 Molybdenum concentrations per lithofacies are mostly consistent with associated 

depositional environment interpretations. Increases in carbonate content and increases 
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in depositional energy correspond with a progressive decrease in the Mo concentrations. 

Inversely, low energy hemipelagic to pelagic siliciclastic deposition, corresponding to 

laminated, silty mudstones and black mudstones respectively, show a progressive 

increase in Mo concentrations. The heavily bioturbated lithofacies shows lower Mo values 

relative to the black, laminated silty, and massive gray mudstones, but higher Mo values 

than those that represent sediment gravity flow deposition. This is consistent with the 

sedimentological interpretation that the heavily bioturbated intervals were relatively more 

oxygenated that the quiet, low-energy pelagic and hemipelagic mudstone deposits. The 

poorly sorted wackestone lithofacies shows slightly elevated Mo values relative to other 

lithofacies associated with different parts of the sediment gravity flow spectrum. This is 

particularly interesting since the coarse wackestone is associated with the highest energy 

facies – a debris flow. The anomalously high Mo values for the coarse, poorly sorted 

wackestone could be explained by three possible mechanisms: (1) decreased 

entrainment of oxygenated water, (2) different water column conditions during the time of 

deposition, or (3) allochthonous deposition of Mo-S complexes. 

Debris flows (associated with the coarser, poorly sorted wackestone) entrain less 

water relative to turbidity currents (associated with the cleaner packstones). Given that 

these flows are sourced from the more proximal shelf environments, entrained waters 

tend to be more oxygenated than the deep basinal waters where the flows eventually 

deposit sediment. Debris flows are composed of approximately 50% entrained ambient 

water compared to the 90% of turbidity currents (Lowe, 1979; Lowe and Guy, 2000; Amy 

et al., 2005; Talling et al., 2012). Therefore, even though the debris flows are higher 
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energy, they entrain less oxygenated water. The oxygen content of the flow, rather than 

the energy of the flow, ultimately dictates redox conditions and hence Mo precipitation.  

Although this relative decrease in the amount of entrained oxygenated water could 

explain the relative increase in Mo concentrations, it could also be attributed to more 

pervasive reducing water column conditions during debris flow deposition. As previously 

mentioned, the thickest continuous packages of coarse wackestone are found towards 

the bottom of the core, within the Wolfcamp B3 interval. It is widely accepted that the B3 

interval was deposited during of period sea level fall and lowstand. In an epeiric sea, such 

as the one observed in the Permian Basin, a sea level fall could restrict the 

communication and re-entrance of sea water from the much larger Panthalassa Ocean 

and create a relatively more stagnant, anoxic conditions (Algeo et al., 2012; Tribovillard 

et al., 2012; Gilleaudeau and Kah, 2013). Given the lower stratigraphic position of these 

debris flows, their corresponding trace metal distributions may reflect the relatively more 

anoxic equilibrium redox conditions, regardless of the degree of entrained oxygenated 

water. Alternatively, much of the mud matrix within the coarse wackestone is comprised 

of rip up clasts, which may have mineralogically recorded the redox conditions of the more 

proximal location from which it was sourced. It is entirely plausible that the Mo-S 

complexes found in coarse wackestone are as allochthonous as the carbonate allochems 

(Sweetman and Insole, 2010).  Ultimately, it is possible that the elevated Mo 

concentrations in the interpreted debris flows stem from a combination of all three 

mechanisms. 

Lastly, the discrepancy between the Mo and V values for the truncated packstone 

lithofacies supports the V-phosphate nodule incorporation interpretation over the Fe ion 
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competition interpretation. Mo does not exhibit the same preferential enrichment in certain 

calcareous lithofacies found towards the top of the core and in closer proximity to 

observed phosphatic nodules as V does. This suggests that V was preferentially 

incorporated in phosphate nodules formed during certain oceanographic conditions rather 

than an ion species competition with the limited Fe in a carbonate system that would have 

expressed itself in elevated concentrations of both the Mo and V, consistent with the 

working sequence stratigraphic framework. 

 

 Trace Metal Paleoredox Proxies with Strong Detrital 

Influences 

Chromium (Cr) and cobalt (Co) are trace metals used as paleoredox proxies that 

are strongly tied to detrital clastic sediments, thus limiting their use as pure paleoredox 

proxies (Tribovillard et al., 2006). Chromium is also found in clay and ferroan-magnesian 

minerals, regardless of seawater redox conditions. Chromium is not incorporated in 

pyrite-like sulfide complexes due to structural incompatibilities. However, reduced Cr 

species residing in anoxic sea water readily complexes with humic acids and adsorbs to 

Fe- and Mn- oxyhydroxides (Algeo and Maynard, 2004). Reduced Co complexes with 

humic acids and is found in clay minerals. Contrary to Cr, reduced Co forms sulfide 

complexes, although slow 
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Figure 14. Paleoredox Proxies with Strong Detrital Influences: Cr and Co (ppm) 
concentration statistical distributions as a function of lithofacies. Minimum, Q1, median, 
Q3, and maximum shown in box and whiskers plot. 
 
 
 
 
 

kinetics limits the extent of its incorporation (Achterberg et al., 1997; Morse and Luther, 

1999). Hence, Co concentrations reflect both detrital input and redox conditions to a 

greater extent than Cr (Algeo and Maynard, 2004).  
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Figure 14 shows the distribution of Cr and Co concentrations per lithofacies and is 

relatively intuitive given their lithology. Overall, both Cr and Co have more similar 

distributions across the different lithofacies compare to the pure anoxia- euxinia proxies. 

Furthermore, the Cr and Co distributions for the truncated packstone lithofacies are more 

similar to their siliciclastic counterparts than anticipated for a calcareous package. This 

similar in distribution may reflect the clastics associated with the clay-rich, upper contact 

that defines the truncated packstone facies. 

 

 Redox Sensitive Organometallic Trace Element 

Proxies 

In oxic marine conditions Ni, Cu, and Zn behave as micronutrients and are 

adsorbed onto humic and fulvic acids (Algeo and Maynard, 2004). Generally, humic acids 

are believed to be derived from plant matter (Swain, 1961; Flaig, 1966, 1972). Although 

their ubiquity in terrestrial and aquatic systems is thought to reflect hydrological dispersion 

(Schnitzer, 1977; Hatcher and Orem, 1986; Hedges et al., 1997), there is evidence of 

independent marine origins for some humic substrates (Nissenbaum and Kaplan, 1972; 

Hedges and Oades, 1997).  In contrast, fulvic acids are thought to be derived from 

microbial degradation of organic matter (Schnitzer, 1977; Tissot and Welte, 1978; Hatcher 

and Orem, 1986). Ni, Cu, and Zn are scavenged by acids in the water column, to which 

they complex to, and upon OM deposition, are enriched in sediment (Calvert and 

Pedersen, 1993). Once the organic material decays, Ni, Cu, and Zn are mainly released 
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from the organometallic structure into the pore water, although can remain in a porphyrin 

structure under reducing conditions (Tribovillard et al., 2006). In a weakly anoxic (oxic-

dysoxic) environment, much of the Ni, Cu, and Zn will be cycled from the sediment back 

to the overlying water column if there are no sulfides or oxides present. However, in 

relatively stronger anoxic conditions (dysoxic-intermittent anoxia / euxina),  

Ni, Cu, and Zn complex with S2- to form a pyrite like structures (Huerta-Diaz and 

Morse, 1992; Morse and Luther, 1999). Regardless of the slow kinetics in the sulfide 

complex formations, they are extremely insoluble and will remain in the sedimentary 

record, regardless of reoxygenation events. Nickel, Cu, and Zn’s organic matter 

scavenging and organometallic complexing behavior make them a particularly useful 

redox sensitive plant and algae indicators (Racka et al., 2010).  Figure 15 shows these 

redox-sensitive organometallic trace metal proxies’ concentrations by lithofacies. Trace 

metal distributions are once again consistent with the associated depositional 

environment interpretation. Relatively more anoxic conditions, or the more oxygen-limited 

end member of dysoxia, persist during pelagic and hemipelagic deposition associated 

with the mudstones. Those more calcareous lithofacies associated with the sediment 

gravity spectrum show a progressive decrease in Ni, Cu, and Zn concentrations. The 

correlation between,  
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Figure 15. Redox Sensitive Organometallic Trace Element Proxies: Ni, Cu, and Zn 
(ppm) concentration statistical distributions as a function of lithofacies. Minimum, Q1, 
median, Q3, and maximum shown. 
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these redox-sensitive organometallic proxies and finer-grained, more clay-rich lithofacies 

further indicates that OM scavenging and organometallic settling occurred more 

consistently during the slower, more persistent pelagic, hemipelagic, and distal siliciclastic 

turbidite deposition rather than during the rapid sedimentation event deposits associated 

with the calcareous lithofacies. However, Ni concentrations are greater in the calcareous 

fractions relative to Cu and Zn. The more debritic lithofacies show an increase in the 

abundance of all trace metals, either reflecting their siliciclastic matrix or less entrained 

oxygenated water. Interestingly, the heavily bioturbated lithofacies shows greater trace 

metal concentrations relative to the more calcareous sediment gravity flows, and in some 

instances, such as Ni, more siliciclastic counterparts. This preferential enrichment may 

be reflecting trace metal complexing to fulvic acids produced by means or microbial 

aerobic degradation of OM. However, from trace metal analysis alone, it remains 

relatively unclear if the humic acids are of marine or terrestrial origin. 

 

 Paleoproductivity and Nutrient Minor Element 

Proxies 

Iron is necessary for photosynthesis and is considered a limiting nutrient in marine 

systems given its insolubility in seawater. Potassium is necessary for all forms of life since 

it plays a fundamental role in many metabolic processes (Smith, 1984; Elser et al., 2007).  
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Figure 16. Paleoproductivity and Nutrient Minor Element Proxies: Fe and P (wt %) 
abundance statistical distributions as a function of lithofacies. Minimum, Q1, median, 
Q3, and maximum shown. P maximum values are cropped. See appendix for raw 
values. 
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corresponds to the anomalous V concentrations in the same lithofacies. The observed 

increase in phosphate nodules during Wolfcamp B2 deposition, towards Both Fe and P 

are considered limiting nutrients, and can be used as marine paleoproductivity indicators 

(Cullen and Tyrell, 1999; Okin et al., 2011). Furthermore, P is present in phosphate 

nodules that are commonly associated with highly productive upwelling systems. 

However, in low-productivity anoxic settings, P sorption onto iron-oxide coatings creates 

a Fe-P co-variation (Follmi, 1996). Figure 16 indicates relatively higher P wt % in the 

banded mudstone, truncated packstone, and coarse wackestone lithofacies, whicthe top 

of the section where the truncated packstones are exclusively observed, supports the 

notion that P – V co-variation may be indicating more relatively more oxic, upwelling 

conditions.  

Furthermore, the greater increase in P concentrations relative to Fe in the coarse 

wackestone lithofacies, suggests an influx in nutrients. The increase in the frequency of 

the thinly bedded debrites around the same depth as the truncated packstones (upper 

HST) may be evidence of storm deposits, as previously hypothesized, which may contain 

P from storm runoff, The elevated Fe concentrations relative to P in the calcareous 

turbiditic flow lithofacies is thought to reflect allochthonous diagenetic ferroan dolomite 

from the platform rather than an increase in paleo-productivity, as suggested by the 

petrographic investigation.  
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7. Organic Geochemistry 

 Bulk Organic Geochemistry 

General trends concerning organic matter richness, source, and maturity of the 

Wolfcamp B3 and B2 Formation were derived from LECO and Rock-Eval Pyrolysis data 

such as total organic content (TOC), S1, S2, S3, and Tmax. Calculated derivatives based 

of the original data, such as Hydrogen Index (HI), Oxygen Index (OI), Relative 

Hydrocarbon Potential (RHP), and Production Index (PI), provide addition information and 

are summarized in Table 3. Bulk organic geochemical data expressed as a function of 

depth furthers our understanding changes in the depositional environment though time 

and is the focus of the following section. 

7.1.1. Overall Organic Matter Richness, Sources, and Maturity 

The TOC expressed as mg of hydrocarbon (HC) per gram of rock (wt.%), of the 

cored Wolfcamp B3 and B2 intervals, from 9700 to 9534 ft., ranges from 0.38 to 4.10 

wt.%, with an average of 2.57 wt.%, indicative of a good, but variable, source rock. The 

HI values range from 89 - 275 mg of HC2 / g TOC, with an average of 193 mg of HC/ g 

TOC. The OI values range from 5– 44 mg of CO2/ g TOC with an average of 16 mg of 

CO2/ g TOC (Table 3).  

The cross plot of the HI and OI sample values in a pseudo Van Krevlin Diagram 

indicate a mixed Type II–III kerogen, suggesting a mix of marine and  terrestrially sourced 

organic matter, respectively (van Krevelen, 1961). 
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Table 3. Rock-Eval Pyrolysis data table. From left to right: core depth (ft.), TOC (wt. %), S1, S2, S3, Tmax, HI, OI, S2/S3, 
((S1/TOC)*100), RHP, and PI. Samples with asterisk (*) on far right indicate those samples that had further organic 
geochemical analysis performed on them. Note that some samples did not have sufficient TOC for further Rock-Eval data 
to be reported confidently by service company; these values are omitted.  

 
Core 

Depth 
(ft.) 

TOC 
(wt. %) 

S1 
(mg 

HC/ g) 

S2 
(mg 

HC/ g) 

S3 
(mg 

CO2/ g) 

Tmax 
(°C) 

HI 
((S2*100) 

/TOC) 

OI 
((S2*100) 

/TOC) 

S2/S3 (S1/TOC) 
*100 

S2/TOC RHP 
((S1+S2)/TOC) 

PI 
(S1/(S1+S2)) 

 

9534.30 4.10 4.20 10.29 0.35 451 250.73 8.53 29.40 102.34 2.51 3.53 0.29 * 

9539.10 2.45 2.13 5.42 0.35 450 221.13 14.28 15.49 86.90 2.21 3.08 0.28  

9543.10 2.84 3.41 7.24 0.24 449 255.02 8.45 30.17 120.11 2.55 3.75 0.32  

9547.25 3.48 4.60 9.34 0.19 451 268.47 5.46 49.16 132.22 2.68 4.01 0.33  

9551.10 3.79 2.03 3.42 0.44 445 90.29 11.62 7.77 53.59 0.90 1.44 0.37  

9565.10 3.80 2.32 3.37 0.31 445 88.61 8.15 10.87 61.00 0.89 1.50 0.41  

9569.50 3.83 3.22 8.40 0.50 450 219.21 13.05 16.80 84.03 2.19 3.03 0.28 * 

9573.10 1.76 1.79 3.58 0.39 448 203.06 22.12 9.18 101.53 2.03 3.05 0.33  

9577.10 2.69 2.22 4.53 0.33 449 168.40 12.27 13.73 82.53 1.68 2.51 0.33 * 

9581.10 3.43 4.70 9.43 0.28 450 275.33 8.18 33.68 137.23 2.75 4.13 0.33  

9585.15 2.09 1.68 3.59 0.41 445 171.85 19.63 8.76 80.42 1.72 2.52 0.32 * 

9589.10 1.99 2.70 6.27 0.36 450 314.92 18.08 17.42 135.61 3.15 4.51 0.30  

9593.15 3.29 2.08 5.69 0.30 452 172.74 9.11 18.97 63.15 1.73 2.36 0.27 * 

9597.10 3.25 1.56 3.23 0.30 447 99.26 9.22 10.77 47.94 0.99 1.47 0.33  

9601.35 3.24 3.43 7.34 0.18 453 226.54 5.56 40.78 105.86 2.27 3.32 0.32 * 

9605.10 1.02 1.00 1.86 0.45 445 183.07 44.29 4.13 98.43 1.83 2.81 0.35  

9609.10 3.02 2.35 6.47 0.52 451 214.24 17.22 12.44 77.81 2.14 2.92 0.27 * 

9613.15 3.32 2.66 7.60 0.70 451 229.12 21.10 10.86 80.19 2.29 3.09 0.26  

9617.10 2.24 1.86 3.94 0.31 449 175.81 13.83 12.71 83.00 1.76 2.59 0.32 * 

9621.10 0.64             

9625.10 2.47 2.00 4.73 0.32 449 191.89 12.98 14.78 81.14 1.92 2.73 0.30 * 

9629.10 1.39 0.94 1.73 0.39 448 124.10 27.98 4.44 67.43 1.24 1.92 0.35  

9633.10 1.81 1.03 2.45 0.37 449 135.43 20.45 6.62 56.94 1.35 1.92 0.30 * 
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Table 2 (continued). Rock-Eval Pyrolysis data table. From left to right: core depth (ft.), TOC (wt. %), S1, S2, S3, Tmax, HI, 
OI, S2/S3, ((S1/TOC)*100), RHP, and PI. Samples with asterisk (*) on far right indicate those samples that had further 
organic geochemical analysis performed on them. Note that some samples did not have sufficient TOC for further Rock-
Eval data to be reported confidently by service company; these values are omitted. 
 
 
 

Core 
Depth 

(ft.) 

TOC 
(wt. %) 

S1 
(mg 

HC/ g) 

S2 
(mg 

HC/ g) 

S3 
(mg 

CO2/ g) 

Tmax 
(°C) 

HI 
((S2*100) 

/TOC) 

OI 
((S2*100) 

/TOC) 

S2/S3 (S1/TOC) 
*100 

S2/TOC RHP 
((S1+S2)/TOC) 

PI 
(S1/(S1+S2))  

9637.30 3.13 1.63 4.67 0.55 451 149.11 17.56 8.49 52.04 1.49 2.01 0.26  

9641.10 3.76 3.34 9.29 0.24 453 247.40 6.39 38.71 88.95 2.47 3.36 0.26 * 

9645.20 0.46            * 

9649.10 0.38             

9653.25 1.16 0.88 1.73 0.23 450 149.27 19.84 7.52 75.93 1.49 2.25 0.34 * 

9657.15 3.53 2.59 6.23 0.32 452 176.59 9.07 19.47 73.41 1.77 2.50 0.29 * 

9661.10 2.64 2.28 5.52 0.19 452 208.77 7.19 29.05 86.23 2.09 2.95 0.29  

9665.30 2.60 1.63 3.94 0.55 450 151.83 21.19 7.16 62.81 1.52 2.15 0.29 * 

9669.05 1.40 1.14 2.28 0.35 449 163.21 25.05 6.51 81.60 1.63 2.45 0.33  

9673.15 2.76 2.10 5.30 0.39 449 191.82 14.12 13.59 76.00 1.92 2.68 0.28 * 

9677.10 3.40 3.02 8.12 0.38 451 239.10 11.19 21.37 88.93 2.39 3.28 0.27  

9681.10 3.22 2.83 8.39 0.44 448 260.88 13.68 19.07 88.00 2.61 3.49 0.25 * 

9685.20 2.69 2.27 6.55 0.47 450 243.95 17.50 13.94 84.54 2.44 3.28 0.26  

9689.10 2.68 1.73 4.54 0.58 453 169.47 21.65 7.83 64.58 1.69 2.34 0.28 * 

9693.10 2.24 1.86 3.85 0.38 449 172.11 16.99 10.13 83.15 1.72 2.55 0.33  

9697.20 2.50 2.09 4.15 0.56 445 165.80 22.37 7.41 83.50 1.66 2.49 0.33 * 

9701.10 2.18 1.85 3.87 0.42 450 177.20 19.23 9.21 84.71 1.77 2.62 0.32  
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A cross plot comparing the remaining hydrocarbon potential (S2, mg HC / g rock) versus 

TOC agrees with the mixed kerogen type interpretation ( 

Figure 17). Although the distal depositional settings would typically lend itself to more 

marine prone organic material, abundant sediment gravity flow deposits were observed 

throughout the core. These flows are thought to have transported more proximally 

sourced sediments, and plausibly terrestrial organic matter within, to distal portions of the 

Midland Basin. This hypothesized mechanism by which terrestrial organic matter was 

deposited in a base-of-slope setting be further investigated by comparing changes in HI 

and biomarker ratio values to the sedimentology as a function of depth in later sections. 

However, the relationship between decreasing HI with increasing maturity is well 

established (van Krevelen, 1961; Banerjee et al., 1998; Okiongbo et al., 2005). Increased 

maturity, particularly around peak oil generation, will cause hydrogen loss due to thermal 

cracking. This in turn produces lower S2, and subsequently HI, values, erroneously 

decreasing the interpreted amount Type II kerogen and increasing the amount of Type III 

kerogen. This could lead to the incorrect interpretation that the high-maturity samples are 

more terrestrial in origin, rather than marine organic matter that has lost significant 

amounts of hydrogen. Therefore, Tmax data does not only provide useful information on 

the estimated maturity of the rock, but also plays an important role in contextualizing HI 

data as it pertains to organic matter source interpretations. The measured Rock Eval 

Tmax values ranged from 445 – 453 °C throughout the core, with an average of 449°C, 

indicative of a mature, although potentially somewhat variable, source rock (+/- 5°C). This 

unusual variably over a 170 ft. core is investigated in detail later. At this maturity level, 



` 

 
 

88 

some biomarkers useful for paleo-environmental reconstruction begin to thermally 

degrade 

..  
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Figure 17. Pseudo van Krevelen Diagram showing HI (mg HC/ g TOC) versus TOC (wt.%) 
(top) and remain hydrocarbon potential (mg HC/ g rock) versus TOC (bottom) both 
indicating a mixed Type II – III kerogen. 

 
Overall, these Tmax values are consistent with peak oil generation and, more 

specifically, early entrance in to the late oil window and peak oil generation (Table 3, 

Figure 18). The cross plot of HI versus Tmax also indicates a mature source rock, with a 

mixed Type II-III kerogen (Figure 18). This increases confidence in the previous Pseduo 

Van Krevlin interpretation while still accounting for decreases in HI due to cracking during 

this critical stage in maturation. Production Index (PI, S1/(S1+S2)) values range from 

0.25-0.41 with an average of 0.31, further supporting the notion of a mature source rock 

in the late oil window (Table 3, Figure 18). By cross plotting PI and Tmax values and 

comparing the data to a known theoretical kerogen to hydrocarbon conversion curve, it 

can further be established that these mature samples were not contaminated by non-

indigenous hydrocarbons. Although this is often the case with nano-porous source rock, 

ruling out even the slightest source of contamination is important, particularly when 

utilizing small changes in biomarker ratios to determine changes in the depositional 

environment over time. Furthermore, ruling out contamination from less mature, non-

indigenous hydrocarbons helps constrain the interpreted maturity of the core. Although 

theoretically a 170 ft. (52 m) section of core should be the same maturity, the measured 

Tmax varies frequently (<10 ft. / 10 m) and significantly (> +/- 2°C) as a function of depth. 

This Tmax variation over a short distance is highly unusual and the possible geologic 

processes that may cause it are highly limited and usually restricted to the exotic 

metamorphic regimes or igneous intrusions. The Tmax data is compared several 

geochemical parameters to investigate if they reflect maturity. 
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Figure 18. Rock-Eval Maturity Assessment: HI (mg HC/ g TOC) versus Tmax (°C) (top) 
and PI (S1/(S1+S2)) versus Tmax (bottom). Tmax values indicate mature samples are in 
the late oil window. HI values support previous Type II-III kerogen interpretation while 



` 

 
 

91 

also accounting for hydrogen loss during thermal cracking. PI values relative to Tmax 
indicate little to no sample contamination.

No statistical relationship between Tmax and S2 or HI was observed, suggesting 

that differential thermal cracking of H-C bonds over the small depth interval did not occur. 

Furthermore, no statistical relationship between Tmax and OI was observed, suggesting 

that oxidation events that may have left behind more thermally stable bitumen, in turn 

elevating the measured Tmax, did not occur. Finally, no statistically meaningful 

relationship between Tmax and elemental S was identified, suggesting that the potential 

thermal degradation of weaker C-S bonds broken down earlier during early oil generation 

did not cause an elevation in the measured Tmax of the remaining more thermally stable 

bitumen (Gentzis et al., 1993; Snowdon, 1995; Werne et al., 2004). Hence, although no 

pyrograms were provided by the service company, it can be said with a fair degree of 

confidence that the Tmax variability most likely does not reflect actual maturity variability 

but rather an analytical or interpretive limitation. Hence, for the purposes of this 

investigation, the core is considered iso-mature and biomarker ratio changes truly reflect 

changes in the depositional environment and source material. 

Regardless of the cause of the measured Tmax variability, it can be assumed that 

the 170 ft. section of core entered the late oil generation window. However, many organic 

compounds such as monoaromatic steroids and dibenzothiophene (DBT) used for source 

material and anoxic to sulfidic redox condition assessment, respectively, begin to 

thermally degrade at the onset of oil generation. Monoaromatic steranes begin to 

aromatize to triaromatic steranes and DBT begins to form methylated derivatives (Abbott 

and Maxwell, 1988; Dartiguelongue et al., 2005; Li et al., 2012).  Although euxinic 

conditions are not anticipated from the earlier inorganic geochemical paleoredox proxy 
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investigation, the absence of DBT and methylated derivatives from preliminary aromatic 

screenings could be attributed to the thermal maturity of the samples. Biomarker maturity 

parameters used further constrain the overall Tmax interpreted maturity of the core. 

 

7.1.2. Changes in Organic Matter as a Function of Depth  

To investigate how the organic matter type and origin changed over time, TOC, HC 

Potential, RHP, and OM Type are plotted as a function of depth next to the working 

sequence stratigraphic model for reference (Figure 19). As previously mentioned, breaks 

in the line plots indicate values that were too low to report. The HC Potential and OM 

Type plots are both based on the S2 values from Rock Eval data and therefore are 

expected to track each other. The RHP ratio is used to assess the redox conditions. Lower 

RHP values suggest that the total amount of S1 and S2 decreased because the organic 

matter present was oxidized, and potentially deposited under oxic conditions. Conversely, 

higher RHP values are thought to represent more anoxic conditions. These fluctuations 

in redox conditions have been attributed to eustatic sea level fluctuations and aided in the 

identification of parasequences in other formations, such as the Woodford and Eagleford 

Shales (Romero and Philp, 2012; Miceli Romero et al., 2018).  
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Figure 19. Bulk organic geochemical data as a function of depth. From left to right: TOC, HC Potential, RHP, and OM Type 
are plotted as a function of depth next. Lithofacies and core description for reference.  
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Generally, dramatic decreases in TOC correlate to the lithofacies associated fine-

grained calcareous turbidites (Figure 19). Higher energy calcareous turbidites with 

entrained oxygenated water could be oxidizing preexisting organic material and 

occasionally derived shelf terrestrial organic material. The calcareous turbidites are 

generally more organic lean relative to their more argillaceous counterparts. This inverse 

relationship between carbonate material and TOC has been observed in the Midland 

Basin before (Salisbury, 2014) and is somewhat intuitive. This trend can be observed in 

both thicker, singular calcareous turbidite event deposits, such as those observed around 

9650 ft. and 9605 ft. (2941.3 and 2927.6 m), and thinner, high-frequency calcareous 

turbidites throughout the interpreted highstand. However, the thick coarse wackestone 

packages in the Wolfcamp B3 interval do not cause major changes in the TOC richness 

and relative hydrocarbon potential that thinner, cleaner calcareous packstone packages 

up section do. The inability of these associated debris flows to change the redox 

conditions as dramatically as turbidity currents reflects their relative inability to entrain 

oxygenating water. Sediment gravity flows thus play a large role in the redox conditions 

recorded in the sedimentary record. Therefore, it is important to understand the causes, 

effects, and frequencies of these sediment gravity flows and not simply attribute 

fluctuation in RHP and redox values to changes in the eustatic sea level. Episodic 

sediment gravity flows causing punctuated disturbances in an overall eustatically driven 

paleoredox trend should not be over interpreted. Rather, lithofacies frequency and a multi-

proxy approach to paleoredox reconstruction could help discern isolated sediment gravity 

flows from those associated within a larger mixed siliciclastic carbonate sequence 

stratigraphic model. 
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Beginning at 9700 ft. (2956.6 m), all the bulk organic matter parameter values 

increase up until around 9681 ft. (2950.8 m), equivalent to the FSST-LST boundary. The 

increase in RHP, HI, and TOC values suggest increasingly more anoxic conditions are 

responsible for marine organic matter accumulation, respectively, during the FSST. The 

lack of terrestrial material around this FSST-LST boundary may suggest that pelagic, 

rather than hyperpycnal siliciclastic flows, are the dominant mechanism for siliciclastic 

deposition at this time.   Although the decrease in the terrestrial organic matter observed 

during sea level fall appears to counter traditional carbonate platform clastic reciprocal 

sedimentation models, there is a steady increase in the interpreted terrestrial organic 

matter as the LST progresses. All bulk organic matter parameter values begin to decrease 

from 9681 ft. (2950.8 m) to roughly 9669 ft. (2947.1 m), equivalent to the middle LST. 

These bulk geochemical decreases suggest an overall decrease in organic matter 

accumulation and a transition to more terrestrial prone OM and / or more oxic conditions. 

The transition from terrestrial marine prone OM during the early LST to terrestrial prone 

OM by the middle LST suggests a lag time between the initial arrival of the clastic 

sediments and the associated terrestrial organic material over this sequence stratigraphic 

interval. By the end of the middle LST (9669 ft.; 2947.1 m), all bulk organic geochemical 

parameters generally begin to decrease, suggesting a shift to slightly more marine 

derived OM accumulation under relatively more anoxic condition. All bulk organic 

geochemical parameters begin to decrease at around 9661.1 ft. (2944.7 m) up until 9653. 

25 ft. (2942.3 m), equivalent to the end of the middle LST and the end of the LST, 

respectively. The decrease in HI, TOC, and RHP values suggest a shift to more 

terrestrially derived OM accumulation under relatively more oxic conditions. 
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Coincidentally, calcareous turbidite deposition increases during the middle LST, 

suggesting that the calcareous turbidites may be bringing in more terrestrial material than 

their dilute siliciclastic counterparts. Furthermore,  

A thick, organic-lean calcareous turbidite (9653 - 9645 ft.; 2942.2 - 2939.8 m) 

marks the transition between the Wolfcamp B3 and B2. The absence of HC Potential and 

OM Type data points at the depths 9649.1 ft. and 9645.2 ft. (2941 & 2939.9 m) reflects 

the non-reported S1 and S2 values due to the low TOC values. Overlying this thick 

calcareous package are thin beds of silty laminated mudstone, progressively interbedded 

at a higher frequency with thin massive laminated calcareous packstone packages, up 

until 9629 ft. (2934.9 m). The initial increase in TOC after the thick calcareous turbidite 

progressively decreases throughout the TST, from 9641.1 - 9629.1 ft. (2938.6 - 2934.9 

m), most likely reflecting the increase in thin calcareous packages. The decrease in HC 

Potential over the early and middle TST suggests that the organic matter may have been 

oxidized by the frequent calcareous sediment gravity flows. After the initial increase in 

RHP values at the onset of the TST, values then decreased. However, RHP values 

remain relatively constant (RHP = 1.92 - 2.01) until 9629.1 ft. (2934.9 m), indicating a shift 

to more persistently oxic water column conditions.  

The onset of transgression could create a more well-circulated, and therefore more 

oxygenated, system. Furthermore, the aggregate of high-frequency turbidity currents 

could shift the water column conditions from episodically oxygenated to semi-persistently 

oxygenated. The low HI values over the same interval supports this interpretation and 

may also indicate a shift to more terrestrially derived OM. It isn’t until the end of the 

interpreted TST, within the maximum flooding zone (mfz), at 9625.1 ft. (2933.7 m), that 
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an increase in all bulk organic geochemical parameters is observed, indicating a more 

organic-richer, marine, anoxic setting. However, by the very end of the mfz at a depth of 

9621.1 ft. (2932.5 m), the TOC drops dramatically to 0.64 wt.%. Unfortunately, other bulk 

organic geochemical parameters are not reported for TOC values less than 1 wt. %. 

Therefore, it remains unclear if the anomalously low TOC of the black mudstone samples 

is indicative of an mfz with low preservation or low productivity potential.  Overall the mfz 

contains the most continuous segment non-laminated black mudstone, yet it is neither 

the most anoxic nor the most marine prone organic matter.  

The TOC progressively increases to about 3.32 wt.% at a depth of 9613.15 ft. 

(2930.1 m), interpreted as the onset of the HST. Over the same interval, the RHP values 

remain to be relatively stable, suggesting little variability in the degree of oxygenation, 

somewhat countering the sedimentological and ichnological derived oxygenation 

interpretations of the early HST. However, HI values remain greater than 200, suggesting 

more marine derived organic matter, consistent with the early HST interpretation. 

Interestingly, the thick, TOC lean (~1 wt.%) massive packstone around 9605.1 ft. did not 

affect RHP or HI values, suggesting that the thick calcareous package was most likely 

formed by a single event which quickly equilibrated to background redox conditions. 

These elevated RHP and HI values are at odds with the highstand sedimentological 

interpretation and indicate water column conditions and organic matter contribution more 

similar to that which is observed at of the end of the transgression. This decoupling of the 

sedimentological and associated geochemical conditions is similar to that which was 

observed at the beginning the lowstand (9680 – 9650 ft.; 2950.5 - 2941.3 m) and may 
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also reflect lag times between physical sedimentological processes and chemical 

oceanographic conditions due to sea level fluctuations.   

 All the bulk organic geochemical parameters suggest that the depositional 

environment became increasingly dynamic in the middle HST (9601.35 – 9569.5 ft.; 

2926.5 - 2916.8 m) compared to steadier redox conditions and OM type input during the 

early HST. Sedimentologically, the middle HST is characterized by the occurrence of the 

truncated packstones and the finer gained end members of the coarse grained 

wackestone. Unfortunately, these bulk geochemical shifts do little to resolve the contour-

current versus storm-derived hyperpycnal flow depositional mechanism ambiguity. Both 

mechanisms could create the observed oscillations in the productivity and redox 

conditions in the inorganic and bulk organic geochemical data. Furthermore, it remains 

unclear if this sedimentological and geochemical ambiguity within the middle 2nd order 

HST reflects a nested 3rd order sequence. Regardless, the variations in HI and RHP 

values that definite the early middle HST progressively decrease in magnitude towards 

the end of the middle HST. The TOC values over the same interval (9601.35 – 9569.5 ft.; 

2926.5 - 2916.8 m) do not show a qualitative relationship with HI or RHP variability as a 

function of depth, suggesting the interpreted redox conditions are not the dominant control 

on the amount of TOC present in the middle HST.  

Bulk geochemical interpretations of the early late HST within a sedimentological 

context are difficult due to the core gap from 9565 – 9552 ft. (2915.4 - 2911.4 m) The 

TOC values remain relatively high (~ 3.8 wt.%) from 9565 – 9551 ft. (2915.4 - 2911.1 m), 

while both HI and RHP values shift to some of the lowest observed throughout the core 

(~ 90 and 1.5, respectively). Furthermore, both early late HST samples sedimentologically 



` 

 
 

99 

correspond to highly bioturbated flow deposits which, combined with the bulk 

geochemical data, suggest more oxygenated conditions and influxes of terrestrial plant 

matter. However, little confidence can be placed in such a depositional interpretation 

since the cause of the core break is unknown and post-depositional or anthropogenic 

causes for organic matter oxidation cannot be ruled out.  

The three remaining samples thereafter, beginning at 9547.25 ft. (2910 m), are 

thought to be representative of the deposition environment in the late HST and unaffected 

by the core break. The TOC, HI, and RHP values all gradually decrease for remainder 

from 9547.25 to 9539.1 ft. (2910 - 2907.5 m), indicating a progressive shift to more 

terrestrial organic matter and a more oxic environment. An increase in the frequency of 

laminated mudstone lithofacies is also observed over the same interval, suggesting more 

oxygenating distal siliciclastic turbidity currents may be responsible for the influx of 

terrestrial organic matter. Furthermore, the only carbonate sediment gravity flow deposit 

observed over this interval is believed to be from a more dilute debris flow, carrying with 

it less entrained oxygenating water than the calcareous turbidity current counterparts. 

These sedimentological processes are thought to be working in conjunction with 

preexisting oxygenated oceanographic conditions typical during the HST. The 

constructive oxygenation signal interference would create a gradual overall geochemical 

shift compared to the punctuated, event deposit controlled redox changes observed 

earlier in the HST. Overall, the system appears more dynamic and oxygenated during the 

HST relative to other sequence stratigraphic intervals.  
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 Biomarkers  

 Biomarkers are molecular fossils of precursor biological organisms which have 

undergone alteration under the presence of certain lithologies, redox conditions, and/or 

thermal stresses. Although many of these pathways form through a combination non-

unique conditions, biomarkers remain useful in paleo-environmental reconstructions.   

Biomarkers were analyzed using GC and GC-MS techniques. Table 4 below summarizes 

the specific biomarkers analyzed in this investigation.  

 

 

 

Table 4. Biomarkers and chromatograms / fragmentograms analyzed. 

Biomarker Chromatogram / Fragmentograms 

n-alkanes Saturate fraction chromatogram 

Pristane and Phytane Saturate fraction chromatogram 

Sesquiterpanes Branched / cyclic; m/z 123 

Terpanes / Hopanes Branched / cyclic; m/z 191 

Steranes Branched / cyclic; m/z 217 
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7.2.1. Acyclic Biomarkers 

7.2.1.1. n-Alkanes 

Since samples were taken from a thermally mature, unweathered core, n-alkanes 

are the dominant compounds observed in the saturate fractions. Overall, the 

chromatograms’ fingerprints did not vary widely between samples as a function of depth, 

suggesting overall stable environmental conditions through time. n- Alkane distributions 

were predominately unimodal and centered around the lower carbon numbers (<n- C24) 

with a maximum at n-C16 (Figure 20). This distribution indicates mainly marine algae and 

phytoplankton contributions to the organic matter (Tissot and Welte, 1978; Jacobson et 

al., 1988; Wang and Philp, 1997). However, this marine organic matter interpretation 

partially conflicts with mixed marine / terrestrial kerogen (Type II / III) indicated by the 

modified van Krevelen plot. Cracking of the longer chained n-alkanes, possibly derived 

from more terrigenous material, during oil generation could cause a shift to lower carbon 

numbers. Therefore, the n-alkane unimodal distribution centered around n-C16-18 may be 

reflecting thermal maturity as well as a marine organic matter contribution. However, 

some samples showed a slight predominance of odd carbon over even numbered n-

alkanes, suggesting a higher plant matter contribution to the organic matter (Tissot and 

Welte, 1978). Alternatively, the predominance of even over odd is thought to reflect 

carbonate deposition under more reducing conditions (Moldowan et al., 1985; Wang and 

Philp, 1997). However, increasing maturity tends to decrease the predominance of one 

over another, producing values close to 1 (Wang and Philp, 1997).
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Figure 20. Example GC trace of a saturate fraction. Taken from depth 9585.2 ft. Pr: pristine, Ph: phytane; n-C17: C17 
normal alkane; n-C18: C18 normal alkane; n-C30: C30 normal alkane. Note unimodal distribution of n-alkanes, centered 
around n-C16, and odd over even carbon number predominance.



` 

 
 

103 

Bray and Evans (1961) originally proposed using the Carbon Preference Index 

(CPI) to numerically reflect the relative predominance of odd versus even carbon 

numbered n-alkanes. A modified version of the original formula is used in this study and 

is as follows (Marzi et al., 1993): 

 

𝐶𝑃𝐼 = [
𝐶23+ 𝐶25+ 𝐶27

𝐶24+ 𝐶26+ 𝐶28
] +  [

𝐶25+ 𝐶27+ 𝐶29

𝐶24+ 𝐶26+ 𝐶28
] × 

1

2
   

 

Scalan and Smith (1970) proposed an alternative equation, Odd Even 

Predominance (OEP), which considered changes in the average carbon length. However, 

a simpler version of the moving average equation was later adopted and is as follows 

(Peters et al., 2005):  

 

𝑂𝐸𝑃 = [
𝐶21 +  6𝐶23 + 𝐶25

4𝐶22 +  4𝐶24
] 

 

The terrigenous/ aquatic ratio (TAR) provides insight on the relative amount of 

organic matter from terrigenous input (Bourbonniere and Meyers, 1996). TAR was 

calculated from n-alkanes on the GC traces of the saturate with the following equation 

(Peters et al., 2005): 

 

𝑇𝐴𝑅 = [
𝐶27 + 𝐶29 +  𝐶31

𝐶15 +  𝐶17 +  𝐶19
] 
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The CPI, OEP, and TAR values are all plotted as a function of depth with the 

sequence stratigraphic framework for reference in Figure 21. TAR values range from 0.19 

- 0.68 with an average of 0.33. Terrigenous land plants contribute to high-end n-alkanes 

(>n-C27) and result in higher TAR values (Eglinton and Hamilton, 1967; Cranwell, 1973). 

Conversely, algal matter is thought to contribute to the low-end n-alkanes (<n-C19) and 

results in lower TAR value (Blumer et al., 1971; Giger et al., 1980; Cranwell et al., 1987). 

However, the unimodal distribution of the lower end member may reflect thermal 

maturation effects (Sofer, 1984; Tegelaar et al., 1989). Given that samples were taken 

from a core and uniform maturity is assumed, TAR is a relatively useful parameter for 

showing changes in organic matter input over time (Meyers, 1997).  

Beginning at a depth of 9700 ft., TAR values progressively increase from 0.32 to 

0.51 at a depth of 9681 ft. This increase in TAR values suggests an increase in terrestrial 

plant matter as the FSST progresses, reaching a localized maximum at the FSST – LST 

transition. This influx of terrestrial material at this sequence stratigraphic transition is 

expected as carbonate debris flows due to shelf instability cease and siliciclastic 

deposition begins. However, as the LST progresses, TAR values decrease, suggesting a 

decrease in terrestrial plant matter input and, conversely, an increase in the amount of 

aquatic organic material. This contradicts the HI derived organic matter type interpretation 

throughout the LST (Figure 19). However, the positive HI value excursion at the FSST – 

LST transition may be reflecting more reducing conditions rather than a shift to more 

marine derived organic matter, consistent with the sequence strat-
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Figure 21. N-alkane biomarker ratios. From left to right: terrigenous aquatic ratio (TAR), carbon preference index (CPI), and 
odd even predominance (OEP). Arrows under depth plots indicate environmental, source material, and maturity factors 
thought to influence the n-alkane ratios. Stippled arrows indicate lower confidence interpretations of controls that exert less 
influence. Note higher matures CPI and OEP centered around 1. Sequence stratigraphy on far right for reference.
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graphic redox interpretation. Although classic carbonate reciprocal sedimentation would 

lead us to believe that there would be more terrigenous material deposited during the 

LST, relatively low TAR values (< 0.3) suggest consistently little terrigenous input during 

this time.  

The TAR value then increases to 0.68 by 9653.3 ft., suggesting a sharp increase 

in the amount of terrigenous material at the LST – TST, and Wolfcamp B3 – B2, transition. 

Interestingly, the largest TAR value observed throughout the entire core comes from a 

laminated packstone sample within a calciturbidite, suggesting that the calcareous 

turbidity currents, rather their more dilute siliciclastic counterparts, may be the dominant 

mechanism by which terrigenous plant matter was transported to deeper parts of the 

basin. The TAR values remain relatively low and consistent (~0.3, ΔTAR < 0.1) throughout 

the core consistent with mainly marine organic matter input and only small, episodic 

inputs of terrestrial organic matter during the sea level high (HST).  

 Both the CPI and OEP values vary very little and are centered around one, 

reflecting the samples’ maturity within the middle to late oil generation window. The CPI 

values ranged from 1.07 – 1.20 with average of 1.12., while OEP values range from 0.98 

to 1.03 with an average of 1.01. Generally, CPI and OEP values track each other well as 

a function of depth. However, numerically the CPI values are all elevated relative to OEP 

values due to the lower carbon numbers within the OEP denominator and the samples’ 

lower carbon number (<n-C24) centered n-alkane distribution. Small oscillations in CPI 

and OEP values may reflect changes in organic matter contribution or preferential 

oxidation or preservation of shorter chained n-alkanes.  
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7.2.1.2. Pristane / Phytane   

Pristane (Pr) and phytane (Ph) are acyclic isoprenoids commonly used to evaluate 

redox conditions during deposition (Tissot and Welte, 1978; Peters et al., 2005). They are 

believed to be derived from different redox pathways from the same phytol chain of 

chlorophyll a (Brooks et al., 1969). The more oxidizing redox pathway is thought to form 

Pr while the more reducing pathway is thought to form Ph. Therefore, low Pr/Ph values 

(<1) indicate anoxic conditions whereas high  Pr/Ph (>3) values indicate oxic conditions 

(Powell and McKirdy, 1973; Didyk et al., 1978). However, increasing maturity, particularly 

around peak oil generation, is known to elevate overall Pr/Ph values (Connan, 1974; 

Albrecht et al., 1975; Connan and Cassou, 1980). Furthermore, other pristane and 

phytane precursors, such as archaebacterial lipids, tocopherols, and zooplankton, have 

been purposed (Blumer et al., 1963; Blumer and Snyder, 1965; Goossens et al., 1984; 

Risatti et al., 1984; Volkman and Maxwell, 1986). Both the uncertainty surrounding the 

precursors and the effects of maturity occlude Pr/Ph paleoredox interpretations. 

Therefore, it is imperative to consider all geochemical and sedimentological data, 

particular for Pr/Ph values between 0.8 and 3, before making a paleoredox assessment 

(Peters et al., 2005). All samples within the core are the same maturity and therefore 

relative changes in Pr/Ph values are thought to reflects changes in the paleoredox 

conditions. However, given the samples’ intermediary Pr/Ph values and relatively small 

fluctuations, and the samples elevated maturity, the following Pr/Ph paleoredox 

interpretation is contextualized with previous sedimentological and geochemical findings. 

The Ph / Ph values are displayed as a function of depth with the sequence 

stratigraphic framework for reference in Figure 22. Overall, Pr/Ph values have a narrow 
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range from 1.28 – 1.59, indicating a form of suboxia or dysoxia. These intermediate values 

are consistent with the low concentrations of redox dependent trace metals throughout 

the core. Although the Pr/Ph values consistently lie well within in the interpreted suboxia 

range, relative fluctuations may indicate subtle changes in redox conditions associated 

not only with eustatic sea level fluctuations but episodic sediment gravity flows. The Pr/Ph 

values vary most (Δ Pr/Ph = 0.31) over the first 30 ft. of core, spanning the interpreted 

FSST and the beginning of the LST in the Wolfcamp B3. Beginning at 9697 ft., the initial 

Pr/Ph of 1.47 decreases to 1.28 by 9681 ft. The initial elevated Pr/Ph values coincide with 

first debris flow and suggests a small oxygenation event which may have preequilibrated 

with the background, relatively more anoxic redox conditions. The overlying fine-grained 

section observed at 9681 ft. has the lowest measured Pr/ Ph value measured throughout 

the entire core and is interpreted to represent background sedimentation redox 

conditions. This lowest value also coincides with the FSST-LST boundary further 

suggesting that the most oxygen limited conditions occurred during the onset of the LST, 

which is corroborated by ichnological data. Interestingly, this lowest value observed in the 

entire core is proceeded by the highest value (Pr/Ph = 1.59) observed throughout the 

core, at a depth of 9673 ft. 
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Figure 22. Pristane/Phytane ratio (Pr/Ph) expressed as a function of depth with sequence 
stratigraphic framework on right for reference. Note intermediate Pr/Ph values indicating 
overall suboxic conditions. Fluctuations therein are considered relative. Arrows indicate 
environmental factors to influence the Pr/Ph ratio and how.  
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This depth coincides with the first high frequency calciturbidites in the middle LST. The 

relatively large change (although in absolute terms, quite small) emphasizes the ability of 

turbulent flows, with a significantly higher proportions of entrained water relative to their 

more debritic counterparts, to temporarily oxygenate a system. By 9665 ft., the Pr/ Ph 

values return a background sedimentation value of approximately 1.35, indicating a return 

to relatively more anoxic conditions, although not to the same degree as which was 

observed at the FSST-LST transition. Over the next 20 ft. (9665 – 9645 ft.), there is 

another Pr/Ph high-low cycle, potentially indicative of another reoxygenation sequence. 

Lower confidence is placed in this redox interpretation due to small magnitude of the 

change and its apparent contradiction to other geochemical and ichnological data, which 

suggest more anoxic conditions towards the end of the LST. Elevated Pr/Ph values may 

reflect a later oxidizing diagenetic fluid, as suggested by the heavily dolomitization 

observed over 9657 – 9659 ft. (ten Haven et al., 1987) (see Appendix C. Inorganic 

Geochemistry).  

Although there is no significant Pr/Ph oxygenation marker signifying the onset of 

the TST at 9645 ft., Pr/Ph values gradually increase over the next 12 ft., maxing out at 

1.53, before sharply decreasing at the very end of the TST, or mfz. This is interpreted as 

a gradual oxygenation due to increased sea water circulation during sea level rise, but 

more stagnant, reducing water column conditions during the sea level maximum. 

However, the degree to which sediment gravity flows effected the paleoredox redox 

record over the TST is unknown. Since the early TST contains more high-frequency 

calcareous turbidites than the mfz, it remains somewhat unclear if the sharp decrease in 

Pr/Ph values within the mfz reflects a sharp change from more constantly oxygenated 
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conditions to less oxygenated or rather that the oxygenation events finally re-equilibrated 

to the background anoxic conditions, similar to the re-equilibration observed during the 

FSST. Whatever the case may be, the Pr/Ph values suggest the early LST was relatively 

more anoxic than the end of the TST, a notion previously supported by inorganic 

geochemical, ichnological, and sedimentological data.  

 The Pr/Ph values remain relatively constant (Pr/Ph ≈ 1.6; Δ Pr/Ph <0.1) over the 

interpreted HST (9617 – 9543 ft.) with a minor exception around 9593 ft. At this depth, 

the Pr/Ph value decreases to 1.44, suggesting a slight shift to more anoxic conditions 

during an otherwise more oxygenated time. Notably, this shift in Pr/Ph values coincides 

with the first occurrence of the phosphorus-rich truncated packstone facies. This 

decrease in the Pr/Ph value is also mirrored by the rapid increase in RHP values around 

the same depth, further supporting the notion of a strengthening, yet still in absolute 

terms, weak, chemocline. However, RHP values, which have a higher sampling density 

(every 4 ft. compared to every 8 ft. for biomarker data sampling) suggest that the 

chemocline may have been erratic and unstable around the same time. Although not 

purely controlled by redox conditions, the oscillating RPH values may be shedding light 

on redox cycles that occurred at too high of a frequency to be captured by Pr/Ph alone, 

which may be relatively insensitive rapid changes in palaeoceanographic conditions.  

However, it remains unclear if this shift to relatively more anoxic conditions during the 

HST is indicating the evolution of upwelling currents and anoxic bottom waters, an influx 

of nutrient rich waters from hyperpycnal flows, and a subsequent algal bloom and die off 

cycle resulting in an anoxic episode, or a nested 4th order parasequence within the overall 

3rd order HST. This elusive depositional mechanism will be elaborated on in the 7.2.2.2.1 
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Tricyclic Terpanes section. Generally, however, Pr/Ph values remain elevated (~1.58) 

throughout the HST, signifying more oxic conditions at this time than at any other point 

during deposition, an interpretation supported by all the sedimentological, ichnological, 

and geochemical data. 

Overall, the intermediate Pr/Ph values suggest that the upper portion of the 

Wolfcamp B3 and the entirety of the Wolfcamp B2 were deposited under predominately 

suboxic conditions. Furthermore, the system became progressively more oxygenated as 

time progressed, with more anoxic conditions during the FSST and LST, and more oxic 

conditions during the TST and HST. Oscillations in Pr/Ph values decrease in magnitude 

as a function of time, suggesting the development of relatively more stable and 

oxygenated palaeoceanographic conditions. Whether this perceived redox stability is an 

artifact of lower sampling density the relative insensitivity of Pr/Ph to higher frequency 

changes in redox conditions, or due to pervasive turbidity flows during highstand shedding 

or better overall palaeoceanographic circulation remains unclear. Rapid increases in 

Pr/Ph values are thought to be linked to sediment gravity flows along a fluid entrainment 

spectrum. Smaller magnitude shifts are believed to be associated with debritic, weakly 

oxygenated flow events or overprinted by differing diagenetic conditions. Conversely, 

larger magnitude shifts are believed to be associated with the clustering of more turbulent 

oxygenated flow events. Low Pr/Ph values correlate with elevated TAR values and high 

RHP values indicating the input of terrigenous material is associated with more anoxic 

conditions. Furthermore, the thicker packages of the heavily bioturbated lithofacies 

correlate with higher Pr/Ph values and relatively more oxic conditions.  
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7.2.2. Branched and Cyclics 

7.2.2.1. Sesquiterpanes 

 Bicyclic sesquiterpanes (m/z 123) are biomarkers that can be used to determine 

the extent of terrigenous input into the organic matter as wells as microbial reworking of 

organic matter (Philp et al., 1981; Alexander et al., 1983; Philp and Gilbert, 1986). 8β(H)-

Drimane is believed to be related to bacterial contribution of organic matter through the 

degradation of hopanoids (Alexander et al., 1983). 4β-Eudesmane is derived from higher 

plant matter (Weston et al., 1989).  

A series of sesquiterpanes were identified in the Wolfcamp samples in varying 

abundance, however, 4β-eudesmane was not detected (Figure 23). Philp and Gilbert 

(1986) noted the low abundance of 4β-eudesmane in oils that largely originated from 

terrigenous material (Philp and Gilbert, 1986). More specific to this study, Salisbury noted 

the absence of 4β-eudesmane altogether in Wolfcampian source rock extracts from a 

neighboring county in the Midland Basin in 2014, even though other inorganic 

geochemical and biomarker ratios suggested plant matter input. Palynological research 

suggests that west Texas and New Mexico were marked by low diversity, spatially patchy 

vegetation during the Early Permian (DiMichele et al., 2007). Therefore, although higher 

plant matter was available during the Wolfcampian, low biodiversity, sparse availability, 

and long transport distances may have greatly reduced the amount of plant material 

available in distal marine settings. Thus, it is likely that plant matter was not present in 

sufficient quantities for 4β-eudesmane detection.  
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Figure 23. Partial framentogram of m/z 123 showing sesquiterpene distribution. Compounds are denoted on 
fragmentogram. Note absence of eudesmane. 
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7.2.2.2. Terpanes  

Terpanes are compounds commonly used for correlation, biodegradation, 

maturity, migration, organic matter input, and depositional environment assessments 

(Moldowan et al., 1983; Philp and Gilbert, 1986; Weston et al., 1989; Peters et al., 1990; 

de Grande et al., 1993; Revill et al., 1994; Meijun et al., 2014; Tao et al., 2015). However, 

this investigation is primarily concerned with paleo-environmental reconstruction and thus 

focuses on the relationship between changes in terpane distributions, depositional 

environment, and organic matter. Aiding in the strict depositional interpretation of these 

ratios are the inherent properties of the source rock itself. The effects of migration on the 

biomarker compositions are negligible in a continuous section of unfractured nano-porous 

source rock. Furthermore, the 160 ft. section of core is roughly the same maturity and 

within the late oil generation window. Terpane ratio were compared to the maturity 

assessment to ensure that the depositional interpretation was not influenced by the small 

scale maturity variability observed in the previous section Lastly, the effects of 

biodegradation are largely constrained to oils (Connan et al., 1980; Goodwin et al., 1983; 

Connan, 1984). However, evidence of biodegradation has been reported in source rock 

extracts, although it remains unclear if it is a result of migrated non-indigenous oil or some 

form of in-situ bacterial reworking during and immediately after deposition (paleo-

biodegradation) (Noble et al., 1985; Peters et al., 2005). The abundance of n-alkanes in 

the samples of this current study suggests samples are not affected by biodegradation, 

however, extensive bioturbation was observed. Therefore, terpanes distribution will be 

compared to ichnological data. 
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Terpanes are separated from the branched and cyclic portion of the saturate 

fraction into families based on number of rings they possess. The tricyclic, tetracyclic, and 

pentacyclic (hopanes) terpanes, respectively, were all examined in this study. Terpanes 

were determined using GCMS and single ion monitoring of the ion at m/z 191. 

Compounds that were identified are indicated on representative m/z 191 fragmentograms 

shown in Figure 24 and corresponding identities are listed in Table 5. Selected terpane 

ratios and their respective values are found in Table 6. Notably, the terpane 

gammacerane, a compound characteristic of hypersaline systems with pronounced water 

column stratification, is absent. The absence of gammacerane, coupled with ichnological 

and trace metal evidence of episodic suboxia, and Pr/Ph values centered around one, 

suggest that water column stratification, and associated anoxia, did not occur. 

The terpane distributions do not change substantially as a function of depth, 

suggesting that paleoceanographic conditions, source material, and lithology did not 

change significantly throughout deposition, but rather slightly fluctuated (see Appendix 

D). This is consistent with the overall low concentrations of trace metals associated with 

anoxia and Pr/Ph values centered around 1. In general, the terpanes display a bimodal 

distribution, with abundant tricyclic terpanes relative to hopanes. Small fluctuations in the 

tricyclic, tetracyclic, and pentacyclic terpanes will be rigorously assessed in the following 

sections.
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Figure 24. Partial framentogram of m/z 191 ion showing terpane distributions for two 
different samples. Sample taken from 9609.00 – 9609.17 ft. (top) and 9645.00 – 9645.33 
ft.). Peaks are identified in Table 3. Note 17α(H), 21β(H) Homohopane 22R coelutes with 
unknown tricyclic terpane 
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Peak Number Compound  

11 C19 Tricyclic Terpane 

12 C20 Tricyclic Terpane 

13 C21 Tricyclic Terpane 

14 C22 Tricyclic Terpane 

15 C23 Tricyclic Terpane 

16 C24 Tricyclic Terpane 

17 C25 Tricyclic Terpane 

18 C26 Tricyclic Terpane (22S + 22R) 

19 C24 Tetracyclic Terpane 

20 C27 Tricyclic Terpane (22S + 22R) 

21 C28 Tricyclic Terpane (22S + 22R) 

22 C29 Tricyclic Terpane (22S + 22R) 

23 17α-Trisnorhopane (C27 Ts) 

24 18α-Trisnorhopane (C27 Tm) 

25 Norhopane 

26 Norneohopane (C29 Ts) 

27 C30 Diahopane (C30 D) 

28 17β(H), 21α(H) Moretane 

29 17α(H), 21β(H) Hopane 

30 17β(H), 21α(H) Moretane 

31 17α(H), 21β(H) Homohopane (22S+22R*) 

32 17α(H), 21β(H) Bishomohopane (22S+22R) 

33 17α(H), 21β(H) Trishomohopane (22S+22R) 

34 17α(H), 21β(H) Tetrakishomohopane (22S+22R) 

35 17α(H), 21β(H) Petakishomohopane (22S+22R) 

Table 5. Terpane compound Identification (m/z 191) 
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Table 6. Selected terpane biomarker ratios for Wolfcamp B3 and B2 samples. 

 
Core 
Depth 

(ft.) 

C19/C23 
TT 

C20/C23 
TT 

C23 TT/ 
(C23 TT 
+C30 H) 

C26/C25 
TT 

C24 
Tet 
/C26 
TT 

C28+C29 
TT/C30 

H 

C29/C30 
H 

C30 D/ 
29 Ts 

Ts/ 
(Ts/Tm) 

C31 S/ 
(S+R) 

C32 S/ 
(S+R) 

C35/C34 
HH 

9543.10 0.03 0.19 0.44 1.31 0.16 1.11 0.55 0.80 0.43 0.46 0.66 0.61 

9569.50 0.03 0.20 0.46 1.03 0.19 1.14 0.51 0.91 0.44 0.43 0.67 0.58 

9577.10 0.03 0.19 0.45 1.38 0.18 1.32 0.51 0.98 0.41 0.43 0.61 0.65 

9585.20 0.03 0.19 0.44 0.98 0.19 1.17 0.54 0.96 0.43 0.43 0.65 0.67 

9593.20 0.03 0.19 0.42 1.03 0.18 1.05 0.51 0.84 0.45 0.42 0.67 0.68 

9601.40 0.03 0.19 0.43 1.37 0.18 1.11 0.50 1.11 0.43 0.45 0.65 0.55 

9609.10 0.03 0.19 0.43 1.38 0.18 1.17 0.55 1.15 0.43 0.40 0.66 0.6 

9617.10 0.04 0.17 0.42 1.37 0.18 1.08 0.49 1.02 0.49 0.43 0.63 0.63 

9625.10 0.04 0.18 0.42 1.03 0.22 0.98 0.43 0.81 0.54 0.44 0.65 0.47 

9633.10 0.04 0.18 0.40 1.17 0.22 0.96 0.43 0.93 0.51 0.46 0.68 0.43 

9641.10 0.04 0.18 0.38 0.99 0.20 0.87 0.43 0.86 0.54 0.46 0.67 0.53 

9645.20 0.03 0.20 0.42 1.26 0.25 1.04 0.54 0.72 0.48 0.41 0.67 0.67 

9653.30 0.02 0.16 0.41 1.02 0.28 0.88 0.45 0.90 0.55 0.47 0.65 0.64 

9657.15 0.04 0.17 0.42 0.96 0.23 0.93 0.52 0.81 0.54 0.44 0.67 0.52 

9665.20 0.04 0.19 0.41 1.32 0.30 0.98 0.43 0.83 0.56 0.44 0.65 0.55 

9673.20 0.03 0.18 0.39 1.03 0.24 0.93 0.47 0.87 0.59 0.46 0.66 0.54 

9681.10 0.04 0.15 0.38 1.03 0.29 0.85 0.37 0.68 0.61 0.49 0.67 0.45 

9689.10 0.04 0.18 0.37 1.04 0.24 0.94 0.40 0.69 0.58 0.45 0.60 0.61 

9697.20 0.04 0.17 0.36 1.02 0.31 0.85 0.47 0.87 0.61 0.48 0.60 0.51 
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7.2.2.2.1. Tricyclic Terpanes 

Tricyclic terpanes begin at C19 and extend out to at least C54, although the higher 

members of the series beyond C29 are often occluded by the hopanes, which begin to 

appear at the same retention time (Moldowan et al., 1983; de Grande et al., 1993; Peters, 

2000; Tao et al., 2015). Although tricyclic terpanes are pervasive in both source rock 

extracts and oils, their specific biological precursors and diagenetic pathways are diverse 

and enigmatic. Many tricyclic terpanes (TT) are believed to be derived from regular C30 

isoprenoids originating from prokaryotic bacterial membranes (Ourisson et al., 1982; 

Aquino Neto et al., 1983). However, high concentrations of tricyclic terpanes have been 

found in Tasmanites rich rocks, suggesting that the primitive marine algae may be their 

biological precursor as well (Aquino Neto et al., 1983; Volkman et al., 1989; Azevedo et 

al., 1992; de Grande et al., 1993; Revill et al., 1994). In particular, the abundances of the 

C28 and C29 TT relative to the C30 hopane, the dominant terpane in marine siliciclastic 

settings, are examined in order to observe changes in the organic matter input of the 

marine algae Tasmanites (C28+C29 TT/C30 Hopane). However, hopanes begin to thermally 

degrade earlier than tricyclic terpanes, causing the ratio of tricyclic terpanes to hopanes 

to increase as a function of maturity (Farrimond et al., 1999; Tao et al., 2015). Caution 

should be taken when interpreting changes in tricyclic terpane to hopane ratios, 

particularly in the later stages of oil generation, since they may not be reflecting changes 

in the organic matter input alone.  

Both C19 and C20 tricyclic terpanes are thought to be derived from diterpenoids 

produced from vascular plants (Reed, 1977; Simoneit, 1977; Barnes and Barnes, 1983; 

Palmer, 1984; Noble et al., 1986; Zumberge, 1987; Peters et al., 1993). Their abundance 
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relative to the C23 tricyclic terpane, a strong marine indicator, is thought to reflect changes 

in the organic matter source over time (C19/ C23 TT, C20/C23 TT) (Ourisson et al., 1982; 

Peters et al., 1993; Tao et al., 2015). However, structural dissimilarities between 

diterpenoids and the tricyclic terpanes in the homologues series have been observed, 

while different precursors altogether, such as the marine algae Tasmanites, have been 

proposed, limiting the utility of the C19-20 TT as plant matter indicators (Simoneit et al., 

1990; Greenwood and George, 1999). Furthermore, it has been suggested that the 

relative abundances of the C19 and C20 TT may differ from one another due to changes 

in oxicity and microbial degradation (Cassani and Eglinton, 1991; Cuny et al., 2011; 

French et al., 2014; Cheng et al., 2016; Pan et al., 2017). 

The ratio of the C26 to the C25 tricyclic terpane (C26/C25 TT) is thought to reflect the 

salinity of the system (Burwood et al., 1992; Hanson et al., 2000). Values greater than 1 

are associated with less saline, freshwater, typical of lacustrine systems, whereas values 

less than one are associated with more saline, marine environments (Hanson et al., 2000; 

Tao et al., 2015).  

Tricyclic terpane biomarker ratios were plotted as a function of depth and 

compared to the working sequence stratigraphic model (Figure 25). First, the C20/ C23 TT 

and C20/C23 TT ratio, their discrepancies, and their source material and redox implications 

will be discussed. Then, fluctuations in the salinity of the system will be assed using the 

C26/C25 TT ratio. Finally, the C28+C29 TT / C30 Hopane ratio will be discussed and 

compared to petrographic evidence of Tasmanites. 
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Figure 25. Tricyclic terpane depth plots. Ratios from left to right: C19/C23, C20/C23, and C26/C25 tricyclic terpanes and (C28+C29 
tricyclic terpanes)/C30 hopane. Arrows indicate environmental factors and source material precursors thought to influence 
the biomarker ratios and how. Stippled arrows indicate lower confidence interpretations of those controls that exert less 
influence on their respective biomarker ratios.
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7.2.2.2.1.1. C19-20 and C23 Tricyclic Terpanes 

The C19/C23 and C20/C23 TT ratios’ averages are 0.04 and 0.18, respectively. These 

low values are consistent with a predominately marine depositional setting with little 

terrigenous plant matter input (Tao et al., 2015). Both the C19/C23 TT and C20/C23 TT ratio 

values vary little throughout the core (0.02-0.04, 0.15-0.20, respectively) and in all but 2 

samples, C20 TT abundances are one order of magnitude greater than C19 TT. 

Furthermore, the two ratios do not track each other well as a function of depth, often 

decoupling at important sequence stratigraphic intervals. However, the overall C20 and 

C23 TT values and ranges as well as the C19/C23 and C20/C23 TT ratio depth plot 

discrepancies are consistent with previous Wolfcamp Formation studies (Salisbury, 

2014). This implies that there may be factors other than plant matter input influencing the 

relative abundances of C19 and C20 TT in the Wolfcamp Formation. Although other useful 

organic matter source and paleoredox information can be extracted from the C19/C23 TT 

and C20/C23 TT ratios, little confidence can be placed in these paleoenvironmental 

interpretations due to the analytical uncertainty surrounding such low concentrations, 

particularly in the case of the C19 TT.  

Beginning at 9697 ft., the C19/C23 TT ratio progressively decrease from 0.04 to 0.03 

by 9673 ft., just above the FSST – LST boundary, before increasing again to 0.04 by 9657 

ft., towards the late middle LST. The C19/C23 TT values then drop off to 0.02 by 9653 ft., 

equivalent to the end of the LST. The change in C19/C23 TT over this depth interval are 

thought to weakly reflect changes in the plant matter input with a potential redox overprint. 

However, TAR values show large influxes of terrigenous material over different sequence 

stratigraphic intervals, particularly the FSST-LST transition and at the onset of the TST. 
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Elevated C19/C23 TT values during the early FSST and late middle LST may therefore may 

reflect influxes of terrestrial material that were subject to less bioturbation and microbial 

oxidation (French et al., 2014; Cheng et al., 2016). Increased bioturbation during the late 

early LST combined with low HI values, interpreted as more terrestrially prone organic 

matter, during the early FSST and late middle LST support the C19/C23 TT interpretation. 

The drop in C19/C23 TT at the very end of the LST poses a greater problem for the organic 

matter source and redox indicator interpretation since HI values at this depth suggest an 

increase in terrigenous contribution to the organic matter, and there is a marked absence 

in bioturbation. Interestingly however, the CPI and OEP values, although centered around 

1 due to maturation, exhibit similar depth patterns to the C19/C23 TT ratio. Given that a 

slight odd over even predominance in is thought to reflect more terrigenous, the 

agreement of the of the CPI, OEP, and C19/C23 TT depth plots suggests that the later may 

reflect plant matter input.  

The C20/C23 TT ratio exhibits a different depth compared to the C19/C23 TT ratio 

over the Wolfcamp B3, with elevated values (~0.18) center around 9681.1 and 9665.2 ft. 

However, the C20/C23 TT looks markedly similar to that of the C28+C29 TT/ C30 Hopane 

ratio depth plot, indicating that it may reflect marine algae input of Tasmanites more so 

than that of plant matter during the FSST and LST. The depositional and 

paleoceanographic significance of increase Tasmanites algal input is expanded upon in 

a later section.  

The C19/C23 TT and C20/C23 TT depth plots track each other fairly well for the 

remainder of the core, with the exception of the early and middle HST (~9609-9585 ft. 

2928.8-2921.5 ft.). At the onset of the TST (~9645.2 ft.; 2939.9 m), both the C19/C23 TT 
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and C20/C23 TT ratios increase suggesting a potential increase in plant and algal 

contribution to the OM, respectively. Beginning at 9641.1 ft. (2938.6 m), both the C19/C23 

TT and C20/C23 TT ratios begin to decrease and continue to do so for the remainder of the 

TST, suggesting a decrease in plant matter material as sea level rises. It is also at this 

depth that the C20/C23 TT and C28+C29 TT/ C30 Hopane ratios become notably decoupled, 

suggesting that for that the C20/C23 TT ratio may not be entirely reflecting marine algae 

input during Wolfcamp B2 deposition. However, the geochemical controls by which the 

C20/C23 TT ratio reflects plant matter versus marine algal contribution to the OM remains 

unknown. Elevated Pr/Ph values and increased bioturbation suggest increased oxicity 

during Wolfcamp B2 deposition may be playing a role, however, this is highly speculative. 

Regardless of the cause, beginning around 9609 ft. (2928.8 m), or the interpreted onset 

of the HST, the C19/C23 TT ratio exhibits an initial decrease while the C20/C23 TT ratio 

exhibits and initial increase.  In both cases, the values remain relatively constant 

throughout the early and middle HST, signifying a relatively constant influx of plant 

material throughout this time. However, it remains unclear if the constant influx of higher 

plant matter observed in the HST is a relative decrease or increase from the previous 

TST. Both the C19/C23 TT and C20/C23 TT ratios increase at the very end of the HST 

suggesting an increase in plant matter input towards the end of Wolfcamp B2 deposition.  

Overall, the ambiguity surrounding the diterpenoid precursor to C19 and C20 TT 

make high resolution paleoenvironmental reconstruction based on these compounds 

difficult, but, the agreement of both proxies, amongst other geochemical source material 

parameters, gives us a general understanding of the system during Wolfcamp B3 and B2 

deposition. That being said, there is most likely an influx of terrestrial material towards the 
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end of the middle LST, before a decrease at the very end of the LST. Both proxies as well 

as TAR values suggest an initial influx of terrestrial plant matter at the onset of the TST, 

which decreases as the TST proceeds. The HST can generally be characterized as 

having a relatively constant influx of plant material with small oscillations therein. This 

cryptic relationship between redox conditions and humic and fulvic acids, potential 

derived from higher plant matter, will be examined in greater detail later on. 

 

7.2.2.2.1.2. C25-26 Tricyclic Terpanes 

The ratio of the C26 to the C25 the tricyclic terpane (C26 / C25 TT) is thought to reflect 

salinity (Burwood et al., 1992; Hanson et al., 2000). Values greater than one are 

associated with less saline, typical freshwater systems, whereas values less than one are 

associated with more saline, marine environments (Hanson et al., 2000; Tao et al., 2015). 

The C26 / C25 TT ratio values ranged from 0.96 -1.38, with an average 1.12, suggesting a 

non-saline or weakly saline environment throughout Wolfcamp B3 and B2 deposition. At 

first glance, the notion of a significant amount of freshwater in the marine setting of the 

Wolfcampian Permian Basin is somewhat surprising. However, if one considers the 

abundance of sediment gravity flows observed throughout the core, and the entrained 

oxygenated water therein, the notion becomes more reasonable. The C26 / C25 TT ratio 

as a function of depth is plotted next to the working sequence stratigraphic framework 

and core description in Figure 25. 

Throughout the FSST, the C26 / C25 TT values remain relatively constant, (0.96-

1.38), averaging 1.03, indicating a weakly saline setting. However. it is important to note 

that in relative terms, the FSST exhibits the most consistently low values throughout the 
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core. Each sequence stratigraphic tract contains samples with C26 / C25 TT values lower 

than the FSST average, however, they do not stay that low for more than 16 ft. This 

suggests that paleogeographic conditions were relatively stable and saline during the 

FSST and initial parts LST. The lack of variation in the relatively low C26 / C25 TT ratio 

provides geochemical evidence for sedimentological theory debris flows, characteristic of 

the FSST, do not entrain as much water as their more turbiditic counterparts. It is not until 

the middle of the LST, at 9665 ft. (2945.9 m), that there is a dramatic increase in the C26 

/ C25 TT ratio, jumping to 1.32. Although the sample taken at 9665 ft. (2945.9 m) is mainly 

comprised of siliciclastic material, the influence of numerous underlying and overlying 

calciturbidites, containing mainly laminated packstones, cannot be overlooked. It is 

thought that the series of calciturbidites beginning at around 9670 ft. (2947.4 m) were 

bringing in oxygenated waters to the distal part of the basin. The C26 / C25 TT ratio goes 

further to suggest that this oxygenated water was also less saline. Furthermore, the influx 

of freshwater correlates with the increase in terrigenous plant matter indicated by the C20 

/ C23 TT ratio. This increase in both tricyclic terpane ratios centered around the series of 

calciturbidites in the LST compared to the ratios decoupling around the rather isolated 

calciturbidite package in the FSST (9697 ft.; 2955.6 m) is also telling. The increase in the 

C26 / C25 TT ratio for the former suggests that a threshold number of calciturbidites is 

necessary to geochemically record the change in salinity of system. Both the calciturbidite 

intervals, in the FSST and LST, brought in more terrigenous material than their debritic 

counterparts, however, only the higher frequency calciturbidites of the LST manage to 

record the changes in salinity, a tend that will be further highlighted in the highstand. 

Towards the end of the LST, the C26 / C25 TT ratio drops significantly to 0.96 at 9657 ft. 
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(2943.5 m), the lowest in the entire core. The C26 / C25 TT ratio increases only slightly to 

1.02 by 9653 ft. (2942.2 m), suggesting that towards the end of the LST, 

palaeoceanographic conditions remained relatively saline.  

Overall, the salinity during the TST is more dynamic than previous sequence 

stratigraphic tracts. The onset of the TST is marked by an increase in the C26 / C25 TT 

ratio, jumping to 1.26 by 9645 ft. (2939.8 m). The laminated packstone at this depth has 

also be marked by an influx of terrigenous material brought in by the calcareous flow 

event, as well as a rapid drop in sulfur content. However, the Pr/Ph value at 9645 ft. does 

not reflect the influx of oxygenated freshwater that other geochemical parameters 

suggest, highlighting the insensitivity of Pr/Ph to relatively small fluctuations in 

depositional redox conditions. It also important to reiterate that particularly for 

intermediate values in mature samples, Pr/Ph  values often times also reflect diagenetic 

redox conditions and source material (Rashid and Leonard, 1973; ten Haven et al., 1987; 

Sinninghe Damsté et al., 1995). The C26 / C25 TT ratio then decreases to 0.99 at 9641 ft. 

(2938.6 m), only to increase to 1.67 by 9633 ft. (2936.1 m). This oscillation in the C26 / 

C25 TT ratio exemplifies the influence calcareous sediment gravity flows, with the 

stratigraphically lower sample being deposited before a series of small calciturbidites with 

and the stratigraphically higher, heavily bioturbated sample after. The TST ends with a 

drop in the C26 / C25 TT ratio to 1.03 by 9625 ft. (2933.7 m). Although there is a decrease 

in the C26 / C25 TT ratio within the mfz, the C26 / C25 TT value is neither the lowest exhibited 

throughout the core, nor even within the TST, suggesting that even at the sea level high, 

high salinity, and the associated water column stratification, had not been developed.  



` 

 
 

129 

The onset of the highstand is marked by sharp increase in the C26 / C25 TT ratio 

(ΔC26 / C25 TT = 0.33), with a value of 1.37 at 9617 ft. (2931.3 m). The C26 / C25 TT ratio 

remains relatively constant over the next 16 ft. (ΔC26 / C25 TT = 0.33), with the highest 

value throughout the entire core of 1.39 centered around 9609 ft. (2928.8 m). An influx of 

freshwater agrees with the sedimentological, ichnological, and geochemical interpretation 

of a more well-oxygenated highstand. Interestingly, there is a notable decrease in the C26 

/ C25 TT ratio beginning around 9593 ft. (2923.9 m), dropping to 1.03, and remaining 

relatively low (C26 / C25 TT = 0.98) until 9585 ft. This departure from the relatively high C26 

/ C25 TT values of the early HST comes at a somewhat stratigraphically significant position 

– the first observance of the truncated packstones. Although individual oscillations 

between Pr/Ph are difficult to solely attribute to changes in depositional redox, particularly 

for intermediate values, confidence can be placed in the redox interpretations for the 

overall trends. Generally, the Pr/Ph values increase throughout the core, and remain 

relatively high during the HST, suggesting an overall oxygenation of the system. 

Furthermore, low sulfur content and increase bioturbation support the oxygenated HST 

interpretation. For the previous sequence stratigraphic intervals, oxygenation has 

coincided with freshwater influxes, however, this relationship does not appear to hold up 

in the upper highstand. The inferred decoupling of oxygenation and freshwater input is 

thought to most likely be attributed to either a nested 4th order cycle or the development 

of contourites.  

Ambiguities concerning a potential 3rd order cycle within the 2nd order HST was 

first mentioned when developing the initial sequence stratigraphic framework. This 

inferred 3rd order cycle coincidentally begins around the same depth as the drop in the 
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C26 / C25 TT values, at 9590 ft. (2923 m). It is entirely plausible that the 3rd order cycle, 

beginning with an FSST, would cause a decrease in the freshwater input, similar to that 

observed by the 2nd order FSST approximately 100 ft. (3.5 m) further down section. 

However, changes in salinity become increasingly harder to reconcile with the effect of a 

nested 3rd order cycle in another sequence stratigraphic intervals, mostly because of 

sampling limitation. The C26 / C25 TT ratio increases to 1.35 by 9577 ft. (2919.1 m), 

hypothetically interpreted as the 3rd order LST within the 2nd order HST. Although it is 

difficult, if not scientifically improper, to characterize an interval solely off a single sample, 

the decrease in salinity during this questionable 3rd order LST is somewhat problematic. 

Although geochemical evidence suggests that the LST, particularly the latter portion of 

the LST, is characterized by relatively more anoxic, saline conditions, calciturbidites can 

still bring in enough oxygenated fresh water to leave a mark on the geochemical record. 

Therefore, this more freshwater prone 3rd order LST may be an isolated incident similar 

to that observed in the middle of the 2nd order LST. The sample taken at 9577 ft. (2919.1 

m) is also interpreted as a heavily bioturbated lithofacies, leaving open the possibility that 

a series of small flow events capped by an abundance of bioturbation is more closely 

associated with event deposits rather than background palaeoceanographic conditions 

during a sea level low. With only one sample taken over potential 3rd order LST, any 

interpretation is tenuous at best. The same sampling issue arises during the potential 3rd 

order transgression. The C26 / C25 TT ratio decreases to 1.03 at 9569.5 ft. (2916.8 m), 

suggesting more saline conditions during the potential 3rd order transgression. Although 

this is consistent with conventional sequence stratigraphic theory, which would support 

the claim of a geochemical signal for a 3rd order cycle, the previous 2nd order 
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transgression proved to be markedly more dynamic. Once again, palaeoceanographic 

analysis of hypothetical 3rd order transgression, and its potential variability, is limited by 

the sampling density.  

The decrease in the C26 / C25 TT ratio beginning at 9653 ft. (2942.2 m) can also be 

interpreted as the development of contour currents. Bottom water currents, while 

oxygenating, are inherently denser, and more saline. Therefore, the interpretation of the 

truncated packstones as contourites, rather than tempestites, reconciles the increase in 

salinity with more persistent oxygenating conditions. Conversely, tempestites are more 

typically associated with a decrease in salinity since storms tend to increase the amount 

of freshwater run off. Furthermore, the increase salinity towards the end of the middle 

HST suggests that potential greenhouse conditions, typical of the late Permian, may not 

be playing a significant palaeoceanographic role during Wolfcamp B2 deposition. Waning 

icehouse conditions, and the associated increase in storm activity, would likely cause a 

decrease in salinity, not increase. Therefore, the decrease in the C26 / C25 TT ratio from 

9593 – 9585 ft. (2923.9 - 2921.5 m) is mostly likely reflecting the temporary development 

of contouring currents rather than tempestites or a 3rd order sequence cycle. Although the 

tempestites are sedimentologically plausible, the organic geochemistry suggests that 

they are most likely not the culprits. However, a 3rd order sequence cycle cannot be 

entirely ruled out but is hindered as an acceptable interpretation due to sampling 

limitations of such a high-frequency, small scaled event. The increase in the C26 / C25 TT 

ratio to 1.38 at 9577 ft. (2919.1 m) is therefore considered a return to typical highstand 

conditions. The highly bioturbated sample is associated with an increase in freshwater 

input associated with the sediment gravity flows characteristic of the highstand. The last 
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two samples are somewhat problematic to the working sequence stratigraphic model. The 

C26 / C25 TT ratio decreases to 1.03 by 9569.5 ft. (2916.8 m) and remains relatively 

constant (ΔC26 / C25 TT < 0.01) for the remainder of the core. These low values suggest 

an increase in salinity at the end of the highstand. From a purely sedimentological 

perspective, the decrease in freshwater input is intuitive. The end of the highstand is 

marked by a decrease in frequency of sediment gravity flows which in turn would 

decrease the amount of freshwater in the system. Although the sample at 9569 ft. (2916.6 

m) is as laminated packstone, it is somewhat isolated and a measurable increase in the 

C26 / C25 TT ratio is not expected. However, the sulfur content at 9569.5 ft. (2916.8 m) is 

relatively low (S < 2 wt. %) before jumping significantly by 9543 ft. (S = 6.69 wt. %). The 

decrease in sulfur by 9543 ft. coupled with a notable decrease in bioturbation over the 

same interval suggests that the end of the HST may have been more oxygen limited than 

earlier in the HST. Therefore, it is reasonable to suggest that a decrease in salinity had 

to be established prior to the development of relatively more anoxic conditions. 

Unfortunately, due to the significant underlying core gap and subsequent missing section, 

potential parasequence postulation must be forgone. 

  

7.2.2.2.1.3. C28-29 Tricyclic Terpanes 

Tasmanites were petrographically observed in the more argillaceous petrographic 

microfacies, warranting a geochemical evaluation of marine algae input. The ratio of the 

sum of the C28 and C29 tricyclic terpanes relative to the C30 hopane ((C28+C29 TT) / C30 H) 

is used to evaluate the degree of Tasmanites input. Although it is often the case to use a 

muti-proxy approach for paleoenvironmental reconstruction efforts, inorganic 
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geochemical evidence supporting changes in the Tasmanites contribution to the organic 

matter is temporary omitted for a more rigorous investigation later on Changes in the 

(C28+C29 TT) / C30 H ratio were plotted as a function of depth and summarized in the 

tricyclic terpane plots of Figure 25.  

Overall, the (C28+C29 TT) / C30 H ratio shows decreases as one moves up section, 

indicating a progressive increase in the marine algae contribution to the organic matter 

over time. This increase is consistent with the sequence stratigraphic interpretation and 

overall sea level rise. Confidence can be placed in this interpretation since a maturity 

overprint would preferentially degrade the hopanes, causing the ratio to increase as a 

function of depth, which is the inverse of the relationship observed. The (C28+C29 TT) / 

C30 H ratio average is 1.02, with a minimum of 0.85 at the bottom of the core and a 

maximum at 1.32 toward the end of the highstand. Minor fluctuation in the (C28+C29 TT) / 

C30 H ratio occur at sequence stratigraphically important intervals and coincide with other 

tricyclic terpane ratio fluctuations. The (C28+C29 TT) / C30 H ratio most closely tracts the 

C26 / C25 TT ratio as function of depth. Although the magnitude of changes exhibited by 

the (C28+C29 TT) / C30 H ratio are smaller than of the C26 / C25 TT, their agreement is 

extremely geochemically significant, particularly for paleoenvironmental reconstruction 

efforts. Tasmanites are thought to inhabit low salinity marine to brackish lacustrine 

environments in high paleolatitudes, thriving on nutrient influxes which cause their algal 

blooms (Parke and Hartog-Adams, 1965; Ackman et al., 1970; Calver et al., 1984; Revill 

et al., 1994). Although they are thought to dominate shallow water marine environments, 

their abundance in a deeper base of slope setting is most likely facilitated by the 

oxygenated freshwater entrained in the abundant sediment gravity flows. The influxes of 
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less saline water as a function of the frequency of sediment gravity flows within a 

sequence stratigraphic framework were rigorously examined in the previous section and 

will not be elaborated on in this section. However, certain discrepancies, and their 

palaeoceanographic significance, will be.  

During the FSST, around 9689 ft. (2953.2 m), the (C28+C29 TT) / C30 H ratio shows 

a relatively larger increase than the negligible increase in the C26 / C25 TT ratio. Although 

the associated turbiditic flow probably contained both oxygenated freshwater, the 

decrease in salinity appears to have equilibrated to the more persistent saline and oxygen 

limited background conditions quite quickly. This re-equilibration of redox conditions most 

likely only left geochemical evidence of the short lived Tasmanites algal bloom, which 

was readily preserved. The last discrepancy between the (C28+C29 TT) / C30 H and C26 / 

C25 TT ratios of paleoenvironmental significance occurs during the latter part TST (9633 

– 9625 ft.; 9633 - 2933.7 m). The (C28+C29 TT) / C30 H ratio suggests a gradual increase 

in the contribution of Tasmanites to the organic matter throughout the TST, beginning at 

9641 ft. (2938.6 m) while the C26 / C25 TT ratio suggests a major influx of freshwater of at 

9633 ft., which then decreases at 9625 ft. (2933.7 m), within the interpreted mfz. The 

overall relationship between the (C28+C29 TT) / C30 H and C26 / C25 TT ratios suggests 

that pulses of freshwater are linked to an increase in the abundance of Tasmanites, 

suggesting an inherently “productivity” based relationship. However, the importance of 

preservation is highlighted by the relationship of the two ratios in the more oxygen limited 

FSST. Therefore, the small increase in the (C28+C29 TT) / C30 H ratio at 9633 ft. (2936.1 

m) is thought to reflect a boost in productivity due to an influx of freshwater at the same 

time. In contrast, the slight increase in the (C28+C29 TT) / C30 H ratio, just 8 ft. (2.4 m) 
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further up section, is thought to reflect better preservation due more saline, oxygen limited 

conditions. Aside from the discrepancies observed in the FSST and the mfz, which are 

thought to reflect palaeoceanographic conditions more favorable for preservation, the 

(C28+C29 TT) /C30 H and C26/C25 TT ratios track each other very well. This unique 

relationship between freshwater influxes and algal blooms further supports the notion of 

an overall weakly suboxic system, heavily influenced by the geochemical implications of 

sediment gravity flows, particularly in the more oxygenated HST.  

 

7.2.2.2.2. Tetracyclic and Pentacyclic Terpanes 

Tetracyclic terpanes are thought to originate by thermal or microbial degradation 

of a precursor hopane or hopanoid, although an independent bacterial biosynthetic 

pathway may exist (Grice et al., 2001; Peters et al., 2005). The C24 tetracyclic terpane 

(C24 Tet) is commonly associated with carbonate and anoxic to evaporitic source rock 

settings (Palacas et al., 1984; Connan et al., 1986; Connan and Dessort, 1987; Clark and 

Philp, 1989). Furthermore, caution should be taken when utilizing tetracyclic terpane to 

hopane rations for paleoenvironmental reconstruction interpretations since tetracyclic 

terpanes are thought to be more resistant to biodegradation and thermal degradation than 

hopanes (Aquino Neto et al., 1983).  

Pentacyclic terpanes, or hopanes, are thought to originate from the membranes of 

prokaryotic organisms, such as bacteria, and higher plant matter, but are absent in 

eukaryotic algae (Ourisson et al., 1987). Bacterially derived compounds are ubiquitous in 

all oils and sedimentary rocks, suggesting that they are the most abundant source of 

organic matter on Earth (Ourisson and Albrecht, 1992). The ratio of the C29 to the C30 
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hopane (C29 / C30 hopane) is used to distinguish lithology, and to a lesser degree, redox 

conditions. The C29 / C30 hopane values can be used as a scale for carbonate richness, 

with higher values indicating more carbonate, and when values are greater than one, 

indicate both anoxia and a carbonate-rich environment (Connan et al., 1986). 

The C31 – C35 extended hopanes, or homohopanes, are also thought to originate 

from hopanoids common in prokaryotic microorganism, such as bacteria (Ourisson et al., 

1979 and 1987; Rohmer et al., 1984). The relative distributions of the C31 – C35 17α 22S 

and 22R homohopanes are used as an indicator of lithology and redox conditions during 

deposition. In particular, elevated amounts of C35 homohopane indicate anoxic carbonate 

deposition (Boon et al., 1979; Connan et al., 1986; Mello et al., 1988; ten Haven et al., 

1988; Clark and Philp, 1989). However, ambiguity still exists as to degree to which the 

ratios reflect lithology or redox conditions (Peters et al., 2005). Peters et al. (2005) argued 

for a stricter, more redox dependent, interpretation of the C35 homohopane, citing 

evidence of high abundances of the C35 homohopane in some anoxic marine clay-rich 

sediments. Both the Homohopane Index (C35 / (C31 – C35) HH) and the simpler C35 to C34 

homohopane ratio (C35 / C34 HH) can be used to decipher depositional environment, 

although only latter is used in this investigation. Typically, resinous coaly source rock 

extracts have a C35 / C34 HH ratio value less than 0.6, lower than the typical marine, 

carbonate or clastic, source rock (Peters et al., 2005). Conversely, extracts and oils from 

marine carbonate source rocks typically have a C35 / C34 homohopane ratio value greater 

than 0.8 combined with a C29 / C30 hopane ratio value greater than 0.6. Regardless of 

lithology, C35 / C34 HH values > 1 indicate anoxic depiction, regardless of lithology (Peters 

et al., 2005).  
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Rearranged hopanes, such as the norneohopanes or diahopanes, are believed to 

provide valuable information about the redox conditions during deposition and early 

diagenesis (Farrimond and TelnÆS, 1996; Peters et al., 2005). Although there have been 

many studies regarding the depositional significance of 17α(H)-diahopane (also referred 

as C30 diahopane or C30 D), their origin and significance is still disputed (Jiang et al., 

2018). The occurrence of rearranged hopanes were originally attributed to land plant 

sources after they were found in coals and terrigenous oils (Philp and Gilbert, 1986). 

However, their isotopic similarity to regular hopanes suggest a similar bacterial origin 

(Moldowan et al., 1991; Peters et al., 2005). Alternatively, marine red algae has been 

proposed as a potential precursor (Zhang et al., 2007 and 2009). The most widely 

accepted interpretation of the presence of 17α(H)-diahopane is the hopane 

rearrangement facilitated by clay-rich, brackish water environments under suboxic to oxic 

conditions during deposition and early diagenesis (Moldowan et al., 1991; Farrimond and 

TelnÆS, 1996; Peters et al., 2005; Zhang et al., 2009; Jiang et al., 2018). Conversely, 

18α(H)-30-norneohopane (C29 Ts) is thought to have a similar geochemical character as 

Ts and is widespread in crude oils (Moldowan et al., 1991; Peters et al., 2005). Therefore, 

the ratio of 17(α)-diahopane to 18(α)-30-norneohopane (C30 D / C29 Ts) reflects both in 

lithology and redox conditions, where higher values suggest more clay and oxygenated 

conditions. Aside from depositional controls on the C30 D/ C29 Ts ratio, higher values can 

also reflect higher maturity since C30 D is more thermally stable than C29 Ts (Horstad et 

al., 1990; Kolaczkowska et al., 1990).  

Strict paleoenvironmental reconstruction is imbedded by the influence of both 

depositional redox conditions and lithology on tetracyclic and pentacyclic terpane 
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abundances. Anoxia, salinity, and carbonate content are often conflated with the C29 / C30 

H, C35 / C34 HH, and the C24 Tet/ C30 H ratios. Likewise, oxygenation and clay content 

often pull biomarker ratios in the same direction, such as with the C30* / C29 Ts ratio. 

Although lithology and redox controls typically work in concert with one another in many 

systems, the Wolfcampian Permian Basin appears to be a notable exception.  

Prior sedimentological and geochemical assessments within this study have 

suggested that increases in carbonate content is usually by means of oxygenating 

sediment gravity flows. Conversely, much of the siliciclastic deposition is by means of 

hemipelagic to pelagic sedimentation under more oxygen limiting conditions or by weakly 

oxidizing dilute siliciclastic sediment gravity flows. Therefore, the relationship between 

lithology and redox conditions in a mixed carbonate siliciclastic system limits the utility of 

tetracyclic terpanes and hopanes for paleoenvironmental reconstruction. Therefore, 

depositional environment interpretations utilizing tetracyclic terpane and hopane 

biomarker ratios as a function of depth will be tenuous, since they often conflict. 

Interpretations will be supported by other geochemical, ichnological, and 

sedimentological date. The tetracyclic terpane and hopane biomarker ratios are plotted 

as a function of depth along with the core description and working sequence stratigraphic 

framework in Figure 26.   
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Figure 26. Tetracyclic and pentacyclic terpane ratios plotted as a function of depth. From left to right: C30*/ C29 Ts, C29 / C30 
Hopane, C35 / C34 Homohopane, and the C24 Tetracyclic / C30 Hopane. Arrows below depth plot indicate controls on 
biomarker ratio and the direction it pulls the value. The sequence stratigraphic framework, including the lithofacies and core 
description are shown for reference. 



` 

 
 

140 

7.2.2.2.2.1. C30 Diahopane and C29 TS 

Intermediate values for the C30 D / C29 Ts ratio (0.68 – 1.15) suggest suboxic 

deposition (Peters et al., 2005). Overall, the C30 D / C29 Ts ratio increases up section, 

suggesting increasingly oxygenated redox conditions as a function of time (Figure 26). 

However, attempting to parse out individual fluctuations and attributing them to 

oxygenation events proves difficult due the destructive lithologic signal interference. The 

decreasing C30 D / C29 Ts values during the FSST are intuitive and supported by low 

bioturbation, sulfur, Pr / Ph, and C26 / C25TT values. The C30 D / C29 Ts ratio then increases 

to 0.87 by 9673 ft. (2948.3 m), sequence stratigraphically equivalent to the onset of the 

LST. The C30 D / C29 Ts ratio then gradually decreases over the next 16 ft. (ΔC30 D / C29 

Ts = 0.06), until slightly increasing again to 0.90 at the end of the LST (9653 ft.; 2942.2 

m). The increased oxicity during the early to middle LST relative to the FSST has been 

supported by other geochemical parameters. However, ichnological, inorganic 

geochemical, and tricyclic terpane biomarker data suggests that the end of the LST is 

relatively more oxygen limited. Thus, the minor increase in the C30 D/ C29 Ts ratio 

observed at 9657 ft. is thought to reflect the relative increase in siliciclastic material 

towards the end of the LST rather than an increase in oxygen. 

 The onset of the TST is lithologically marked by the observance of a laminated 

packstone at 9645 ft. The decrease in C30 D / C29 Ts ratio at this same depth therefore 

thought to reflect the decrease in clay rather than oxygen. The increase in the C30 D / C29 

Ts ratio observed in the middle TST (9641 – 9633 ft.; 2938.6 - 2936.1 m) is thought to 

reflect an increase in oxygen rather than an increase in clay since given the abundance 

of calciturbidites over this interval and the calcareous nature of the samples themselves. 
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Similarly, the decrease in the C30 D / C29 Ts ratio to 0.81 at the end of the TST reflects 

the decrease in oxygen since the sample, and most of the stratigraphic section in the mfz, 

is comprised of siliciclastic material. This redox interpretation is supported by the 

ichnological data, Pr/Ph values, and the C26 / C25 TT ratio. However, it is important to note 

that the consistent decrease in sulfur throughout the entire TST continues into the mfz, 

contradicting serval other redox parameters, including the C30 D / C29 Ts. 

The beginning of the HST is marked by a progressive increase in the C30 D / C29 

Ts ratio, maxing out at 1.15 at a depth of 9609 ft. (2928.8 m). These relatively high C30 D 

/ C29 Ts values are in fact the highest observed throughout the core yet come from an 

stratigraphic interval characterized by abundant calciturbidites. This seeming 

contradiction between the geochemistry and the sedimentology exemplifies the 

conflicting variables that control the ratio itself. Sedimentological, ichnological, and 

previous biomarker data indicate that these calcareous flows oxygenated the systems. 

Therefore, the high C30 D / C29 Ts values observed in the early highstand are thought to 

reflect an increase in oxygen in the system rather than an increase in argillaceous 

material. The C30 D / C29 Ts ratio decrease to 0.84 before progressively increasing to 0.98 

by 9577 ft. (2919.1 m), stratigraphically equivalent to where the truncated packstones are 

observed. This slight increase in the C30 D / C29 Ts ratio is thought to reflect the 

development of oxygenating contouring currents. The C30* / C29 Ts then decrease to 0.91 

by 9569.5 (2916.8 m) ft., the same depth where an isolated calciturbidite is observed. 

This isolated sediment gravity flow, unlike its higher frequency counterparts, most likely 

did not oxygenate the system. Therefore, the decrease in the C30 D / C29 Ts at 9569.5 ft. 

(2916.8 m) reflects a decrease in the amount of clay. Lastly, the increase in the C30 D / 
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C29 Ts ratio to 1.02 at the top of the core is thought to reflect both the increase in clay 

content and the overall oxygenated highstand. Although one would expect the coupling 

of argillaceous material and oxygenation to constructively interfere and produce C30 D / 

C29 Ts values higher than those observed in the early HST, ichnological data suggests 

that there is a slight decrease in the amount of oxygen towards the very end of the 

highstand, producing this relatively intermediate C30 D / C29 Ts value. 

 

7.2.2.2.2.2. C29-30 Hopanes 

All C29 / C30 hopane ratio values are less than one, indicating an overall siliciclastic, 

clay-rich source rock. Given known suboxic conditions, changes in the C29 / C30 hopane 

ratio are interpreted to reflect changes in the carbonate content. However, caution should 

be taken when interpreting increases in the C29 / C30 hopane ratio as increases in the 

carbonate content for C29 / C30 hopane ratio values are < 1 (Riva et al., 1988). The C29 / 

C30 hopane ratio ranges from 0.52 to 0.68 with an average of 0.60. The C29 / C30 hopane 

ratio generally increases up section, suggesting an overall increase in the carbonate 

content, differing from the previous sedimentological and inorganic geochemical 

assessment (Figure 26). Furthermore, individual C29 / C30 hopane fluctuations within the 

overall trend do not appear to reflect changes in carbonate content well. The C29 / C30 

hopane ratio progressively decreases throughout the FSST, omitting the increase in 

calcareous material from the calciturbidite in at 9689 ft. (2953.2 m). The C29 / C30 hopane 

ratio over the LST is very dynamic, oscillating on average 0.07. However, these 

oscillations do not coincide with any lithologic changes, in fact often conflict them. The 

Wolfcamp B3-B2 and LST-TST boundary is marked by a thick calcareous bed, which may 
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be reflected in the increase of the C29 / C30 hopane ratio to 0.54 at 9645 ft. (2939.8 m). 

The subsequent drop in the C29 / C30 hopane ratio to 0.43 at 9641 (2938.6 m) 

underestimates the amount of carbonate toward the bottom of the TST. However, the C29 

/ C30 hopane ratio remains relatively low and consistent throughout the TST (ΔC29 / C30 

hopane < 0.01), at least in part accurately reflecting the decrease in carbonate material 

towards the end of the TST. Interestingly, the C29 / C30 hopane ratio more accurately 

reflects the carbonate content in the highstand, exhibiting higher values centered around 

9609 and 9585 ft. (2928.8 and 2921.5 m).  The former coincides with an increase in the 

C30* / C29 Ts ratio over the interval, suggesting that the calciturbidites were bringing in 

oxygenated water as well.  Although C29 / C30 hopane values less than one theoretically 

only reflect carbonate content, potential redox influence on the ratio were investigated in 

order to attempt to reconcile the disparity between the C29 / C30 hopane ratio and lithology, 

Unfortunately, higher C29 / C30 hopane ratios that could potentially reflect more anoxic 

conditions often coincided with more oxygenated intervals.  

 

7.2.2.2.2.3. C34-35 Homohopanes 

All C35 / C34 HH ratio values are less than 1, suggesting that anoxic conditions did 

not occur throughout Wolfcamp B3 and B2 deposition, an assertion consistent with 

ichnological and geochemical assessments. Under the guidelines proposed by Peters et 

al. in 2005, those C35 / C34 HH values <0.6 reflect siliciclastic marine deposition under 

more suboxic conditions while values >0.8 reflect carbonate deposition under slightly 

more anoxic conditions. The C35 / C34 HH ratio values range from 0.43 – 0.68, with an 

average of 0.57. These intermediate C35 / C34 HH ratio values indicate a predominately 
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suboxic siliciclastic deposition with varying amounts of calcareous material. Changes in 

the C35 / C34 HH ratio is thought to most accurately reflect changes in carbonate content, 

a finding that will later be expanded on later. Interestingly, individual fluctuations in redox 

conditions do not seem to affect the C35 / C34 HH ratio, since carbonate packages with 

elevated C35 / C34 HH values are typically induced more oxic conditions. Changes in the 

C35 / C34 HH ratio as a function of depth are depicted in Figure 26. 

Overall, the C35 / C34 HH values do not show a simple depth trend but rather fluctuates 

at sequence stratigraphically significant intervals. The FSST is characterized by a small 

increase in the C35 / C34 HH ratio to 0.61, centered around 9689 ft. (2953.2 m), which most 

likely reflects the change from less calcareous debrites to more calcareous calciturbidites. 

The C35 / C34 HH then decrease to 0.45 at 9689 ft. (2953.2 m), representing the slight increase 

in siliciclastic material at the FSST – LST transition. The progressive yet slight increase in the 

C35 / C34 HH ratio to 0.55 at 9665 ft. (2945.9 m) accurately reflects increase in calcareous 

material observed in the early and middle LST. The slight decrease in the C35 / C34 HH ratio 

at 9657 ft. (2943.5 m) reflects the slight increase in siliciclastic towards the end of the LST. 

The C35 / C34 HH ratio then increases to 0.64 at 9653 ft. (2942.2 m) remaining relatively 

constant (ΔC35 / C34 HH = 0.03) through 9645 ft. (2939.8 m). This most likely reflects the thick 

carbonate package at the LST – TST boundary as well as the calciturbidite overlying them. 

However, the elevated value at 9653 ft. (2942.2 m) may also be influenced by the relatively 

more anoxic conditions at the end of the LST, since the sample at this depth is more clay rich 

than other calciturbidites.  

The C35 / C34 HH ratio progressively decreases (ΔC35 / C34 HH = - 0.24) over the 

course of the TST (9645 - 9633 ft.; 2939.8 - 2936.1 m), consistent with the overall 
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sedimentological assessment of the TST. However, the C35 / C34 HH taper off relatively 

quickly, somewhat under emphasizes the amount of calcareous material deposited in the 

early LST. It is entirely plausible that the relatively more oxic conditions during the early 

and middle TST amplified the decrease in the C35 / C34 HH values, although sampling 

bias cannot be ruled out. The C35 / C34 HH ratio then slightly increases (ΔC35 / C34 HH = 

0.05) to 0.47 by the end of the TST (9625 ft.; 2933.7 m). The mfz is characterized slightly 

more anoxic conditions yet significant increase in the clay content. Therefore, this 

negligible increase is the C35 / C34 HH ratio may be reflecting the constructive interference 

of two conflicting biomarker ratio controls.  Constructive signal interference is observed 

during the early HST as well. The onset of the HST is marked by an increase in the 

amount of calcareous material, particularly around 9609 ft. (2928.8 m). Although the C35 

/ C34 HH ratio initially increases to 0.63 at the onset HST (ΔC35 / C34 HH = 0.16), it declines 

slightly to 0.6 by 9609 ft. (2928.8 m), even though the amount of carbonate increases. 

The constructive signal interference can be slightly deconvoluted by comparing it to the 

C30 D/ C29 Ts and C29 / C30 hopane ratios, both of which show an increase at 9609 ft 

(2928.8 m). The latter suggests there is an increase in calcareous material, which agrees 

with the sedimentology, while the former suggests there is an increase in the amount of 

oxygen in the system, which is supported by the increase in bioturbation over the same 

interval. This combination of both calcareous material and relatively more oxygenated 

conditions produced the intermediate C35 / C34 HH value observed at 9609 ft. (2928.8 m). 

The C35 / C34 HH ratio decreases to 0.55 by 9601 ft. (2926.4 m), reflecting an increase in 

the clay content. The C35 / C34 HH ratio then increases to 0.68 by 9593 ft. (2923.9 m) and 

remains relatively constant until 9577 ft. The increase in the C35 / C34 HH ratio coincides 
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with elevated C29 / C30 hopane values, suggesting an increase in the carbonate content, 

which is sedimentologically supported by the truncated packstones. Furthermore, the 

elevated C30 D / C29 Ts value observed up section (9577 ft.; 2919.1 m) coincides with the 

slight decrease in the C35 / C34 HH ratio, suggesting that the relatively more oxygenated 

conditions may have reduced the C35 / C34 HH ratio even further. The C35 / C34 HH ratio 

then decreases to 0.58 by 9569.5 ft. (2916.8 m), potentially reflecting an increase in clay 

towards the end of the HST. The slight increase in the C35 / C34 HH ratio at 9543 ft. (ΔC35 

/ C34 HH = 0.03) most likely reflects the more reducing conditions towards the very end 

of the HST, as suggested by the decrease in bioturbation after the core gap decrease in 

bioturbation after the core gap. 

 

7.2.2.2.2.4. C24 Tetracyclic Terpane 

Although the core is considered uniformly mature, the increase in the C24 Tet / C30 

H values as a function of depth may be reflecting the preferential thermal degradation of 

the C30 hopane relative to the more thermally stable tetracyclics, particularly since the 

absolute values of the ratio in this study are very small. Therefore, the preferential thermal 

degradation of the hopanes may limit the C24 Tet / C30 H ratio’s utility as a paleoredox and 

lithology indicator. However, it is important to point out that tricyclic terpanes are also 

more thermally stable than hopanes, yet the (C28 + C29 TT) / C30 hopane ratio decreases 

as a function of depth, suggesting that the C30 hopane has not thermally degraded to any 

appreciable degree. This increases our confidence in the C24 Tet / C30 H depth trend, 

although the ratio itself is still susceptible to the same destructive inferences of two 

conflicting ratio variables – carbonate content and salinity. 
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The C24 Tet / C30 H ratio values are low and do not vary much, ranging from 0.04 

–0.06, with an average of 0.05. High concentrations of C24 Tet are thought to reflect more 

evaporitic carbonate deposition rather than simply carbonate deposition, particularly 

when the abundance of the tetracyclics is greater than that of the tricyclics (Aquino Neto 

et al., 1981; Connan et al., 1986; Clark and Philp, 1989). The low C24 Tet / C30 H ratio 

values suggest that the Wolfcamp B3 and B2 was not deposited under anoxic conditions 

and has a significant siliciclastic component (Hanson et al., 2000; Tao et al., 2015). The 

overall low concentrations of C24 Tet coupled with the higher abundance of tricyclic 

terpanes suggest that the increases in the C24 Tet / C30 H ratio may not reflect changes 

in salinity. The lack of gammacerane and relatively high C26 / C25 TT values throughout 

the core casts further doubt on oscillations in the generally low C24 Tet / C30 H reflecting 

changes in salinity. 

Overall, the C24 Tet / C30 H ratio decreases up section, suggesting either a 

decrease in the carbonate content or salinity over time (Figure 26). This overall decrease 

in carbonate content is at odds with the C29/C30 hopane and C35/C34 HH biomarker ratio 

interpretations, but somewhat consistent with the C30 D / C29 Ts ratio and sedimentological 

and XRF derived calcium data. However, in absolute terms the C24 Tet / C30 H ratio varies 

very little throughout the core, suggesting no significant changes in the carbonate content 

through time. Increases in the C26/ C25 TT ratio, a freshwater input indicator, were 

compared to the C24 Tet / C30 H ratio to see if high C24 Tet / C30 H coincided with low C26 

/ C25 TT ratio values. Interestingly, increases in C26 / C25 TT correlates with increases in 

the C24 Tet / C30 H ratio at various depths (9665, 9645, 9633, 9609, and 9557 ft.; 2945.9, 

2939.8, 2936.1, 2928.8, and 2913 m), suggesting that at these depths the C24 Tet / C30 H 
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ratio definitively does not reflect increases in salinity. The coupling of these two ratios 

suggests that the C24 Tet / C30 H ratio mainly reflects changes in carbonate content and 

that increases in carbonate content are often coupled with influxes of freshwater, probably 

by means of entrained fluid in the calcareous turbidity currents. This claim is further 

supported by increases in the C35 / C34 HH at the same depths. Conversely, when the C26 

/ C25 TT and C24 Tet / C30 H are decoupled, increases in the C24 Tet / C30 H ratio generally 

reflect increases in salinity, such as those observed at the end of the LST (9653 ft.; 2913 

m) and the mfz (9625 ft.; 2933.7 m). Although the majority of biomarker ratios plotted as 

a function of depth are described from bottom to top in order to fully understand the 

changes in the paleoenvironment over time, the various controls on the C24 Tet / C30 H 

ratio and low measured values somewhat limit the utility of this practice. 

 

7.2.2.3. Steranes  

Steranes were identified using GCMS and single ion monitoring of the ion at m/z 

217. A representative m/z 217 fragmentogram is shown in Figure 27 and the identity of 

the labeled peaks are listed in Table 7. Selected sterane ratios and their respective values 

are found in  

Table 8.  Steranes are derived from sterols, which are vital components to all 

eukaryotic cells (Volkman, 2003). Sterols are believed to reflect organic matter derived 

from specific ecological systems (Huang and Meinschein, 1979). There are four main 

families of sterols with differing carbon numbers, C27, C28, C29, and C30. The C27 sterols 

are believed to be primarily derived from marine phytoplankton and are indicators of red 
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algae. The C28 sterols are dominant in green algae, which are common in lacustrine 

environments. The C29 sterols were initially thought to be derived from terrestrial plant 

 

 

 

Figure 27. Partial fragmentograms of m/z 217 showing differing sterane distributions in 
samples taken from 9633.00 – 9633.33 ft. (top) and 9653.00 – 9653.33 ft. (bottom). 
Identification of labelled peaks are listed in Table 7.  
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Table 7. Sterane compound identification (m/z 217) 

Peak 

 

Compound 

1 5α(H), 14α(H), 17β(H) Pregnane 

2 5α(H), 14α(H), 17β(H) Homopregnane 

3 13β(H), 17α(H) Diacholestane (20S) 

4 13β(H), 17α(H) Diacholestane (20R) 

5 13α (H), 17β(H) Diacholestane (20S) 

6 13α (H), 17β(H) Diacholestane (20R) 

7 24-methyl-13β(H), 17α(H) Diacholestane (20S)  

8 24-methyl-13β(H), 17α(H) Diacholestane (20R) 

9 5α(H), 14α(H), 17α(H) Cholestane (20S) + C28 24-methyl-13α(H), 17β(H) Diacholestane (20S)  

10 5α(H), 14β(H), 17β(H) Cholestane (20R) +   C28 24-ethyl-13β (H), 17α(H) Diacholestane (20S)  

11  5α(H), 14β(H), 17β(H) Cholestane (20S) + C28 24-Methyl-13α(H), 17β(H) Diacholestane (20R)  

12 5α(H), 14α(H), 17α(H) Cholestane (20R)  
 

13 24-ethyl-13β(H), 17 α(H) Diacholestane (20R) 

14 24-ethyl-13α(H), 17β(H) Diacholestane (20S) +C30 24-propyl-13β(H), 17α(H) Diacholestane (20S)  
 

15  5α(H), 14α(H), 17α(H) Cholestane (20S) + C29 24-methyl-13α(H), 17β(H) Diacholestane (20S)  

 
16 24-methyl-5α(H), 14β(H), 17β(H) Cholestane (20R) 

17 24-methyl-5α(H), 14β(H), 17β(H) Cholestane (20S) 

18 24-methyl-5α(H), 14α (H), 17α (H) Cholestane (20R) 

19 24-ethyl-5α(H), 14α (H), 17α (H) Cholestane (20S) 
 

20 24-ethyl-5α (H), 14β (H),17 β(H) Cholestane (20R) + C30 24-propyl-13α(H), 17β(H),  Dicholestane (20R) 

 

21 24-ethyl-5α (H), 14β (H), 17 β(H) Cholestane (20S) 
 

22 24-ethyl-5α(H), 14α(H), 17α(H) Cholestane (20R) 
 

23  24-propyl-5α(H), 14α(H), 17α(H) Cholestane (20S) 
 

24  24-propyl-5α (H), 14β (H), 17 β(H) Cholestane (20R) 
 

25  24-propyl-5α (H), 14β (H), 17 β(H) Cholestane (20S) 
 

26  24-propyl-5α(H), 14α(H), 17α(H) Cholestane (20R) 
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Table 8. Selected sterane biomarker ratios for Wolfcamp B3 and B2 samples. 

 
Core 
Depth 

(ft.)  

ΣC27-30 

regular 
steranes / 

ΣC29-33 

hopanes 

C27 
Regular 
Steranes 

(f) 

C28 
Regular 
Steranes 

(f) 

C29 
Regular 
Steranes 

(f) 

C30/ 
(ΣC27-30) 
steranes 

ΣC27-29 
diacholestane/ 

ΣC27-29 reg 
steranes 

(C27αααSR 
+C27αββSR) 
/ (C29αααSR 
+C29αββSR) 

steranes 

C29 
20αααS / 
(20αααS 

+20αααR) 
sterane 

9543.10 0.79 0.44 0.21 0.62 0.15 0.54 1.79 0.46 

9569.50 0.79 0.46 0.21 0.62 0.15 0.54 1.62 0.48 

9577.10 0.81 0.45 0.21 0.62 0.15 0.55 1.52 0.48 

9585.20 0.76 0.44 0.21 0.62 0.15 0.56 1.57 0.48 

9593.20 0.76 0.43 0.22 0.61 0.17 0.57 1.39 0.41 

9601.40 0.78 0.44 0.22 0.61 0.16 0.56 1.40 0.48 

9609.10 0.76 0.44 0.21 0.63 0.15 0.57 1.36 0.48 

9617.10 0.75 0.45 0.21 0.61 0.16 0.62 1.36 0.47 

9625.10 0.74 0.45 0.21 0.61 0.15 0.60 1.33 0.43 

9633.10 0.71 0.46 0.21 0.61 0.17 0.64 1.27 0.46 

9641.10 0.75 0.45 0.20 0.63 0.15 0.59 1.27 0.46 

9645.20 0.98 0.47 0.20 0.63 0.15 0.59 1.26 0.44 

9653.30 0.76 0.42 0.25 0.57 0.13 0.52 1.28 0.32 

9657.15 0.72 0.47 0.21 0.59 0.15 0.60 1.32 0.43 

9665.20 0.72 0.47 0.23 0.56 0.16 0.63 1.35 0.44 

9673.20 0.66 0.48 0.23 0.57 0.15 0.63 1.34 0.46 

9681.10 0.66 0.50 0.22 0.56 0.15 0.65 1.36 0.44 

9689.10 0.61 0.48 0.21 0.59 0.16 0.66 1.57 0.47 

9697.20 0.57 0.48 0.22 0.57 0.16 0.68 1.65 0.52 
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matter, but were later show to also be found in brown and green algae. (Huang and 

Meinschein, 1979; Moldowan et al., 1985; Volkman, 1986) . The relative proportions of 

the C27 – C29 sterols provides valuable insight into the specific biological precursors of the 

organic matter itself. Unfortunately, steranes often lose this specificity during their 

diagenetic conversion from sterols. However, plotting the relative proportion the C27, C28, 

and C29 regular steranes is common practice in most organic geochemical investigations, 

providing useful information of organic matter source and depositional environment. The 

distribution C27 – C29 regular sterane distributions for the Wolfcamp B3 and B2 are 

summarized in Figure 28. Overall, the C27 – C29 regular steranes have a narrow 

distribution with values consistent with an open marine depositional environment with 

potentially some lacustrine influence. This is consistent with the tricyclic terpane 

distributions, which indicates influxes of freshwater and Tasmanites algal blooms. 

diacholestane/ C27-C29 regular steranes ratio are plotted as a function of depth in Figure 

29. Overall, C30 / ΣC27-30 steranes ratio ranged from 0.12 to 0.17, indicating a significant 

contribution of marine algae to the organic matter.  There is no clear C30 / ΣC27-30 steranes 

depth trend, but significant shifts did occur at sequence stratigraphically significant 

positions. The C30 / ΣC27-30 steranes ratio remains relatively constant over FSST, slightly 

decreasing into the LST (Δ C30 / ΣC27-30 steranes = - 0.01). However, the C30 / ΣC27-30 

steranes ratio then increases from 0.15 at 9673 ft. (2948.3 m) to 0.16 at 9665 ft. (2945.9 

m). This increase in the C30 / ΣC27-30 steranes ratio suggests that there is an increase in 

the marine algae contribution as the LST progresses. This interpreted increase in the 

marine algae contribution is supported by an increase in the (C28 + C29 TT) / C30 H ratio, 

which indicates an increase in Tasmanites. 
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Figure 28. Ternary diagram for C27, C28, and C29 regular sterane distribution Based on 
original diagram produced by Huang and Meinschein, 1979 for sterol distributions from 
different depositional environments. 

 
 

The C30 steranes have been linked to Chrysophyte marine algae (Moldowan et al., 

1990) and the relative proportion of C30 steranes to C27-29 steranes (C30 / C27-30 steranes) 

is indicative of algal marine input.  Values greater than 0.04 (or 4%) indicate significant 

marine contribution (Hays et al., 2012). Diacholestanes are rearranged regular 

cholestanes formed via a clay catalyzed redox reaction (Rubinstein et al., 1975; van 

Kaam-Peters et al., 1998). Therefore, the ratio of clay rearranged diacholestanes relative 

to regular steranes (C27-C29 diacholestane/ C27-C29 regular steranes) indicates a relative 

increase in clay and oxygen.  Both the C30 / C27-30 steranes and C27-C29 diacholestane/ 

C27-C29 regular steranes ratio are plotted as a function of depth in Figure 29.
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Figure 29. Sterane depth plots. From left to right: C30/ΣC27-30 steranes indicating marine algae input, ΣC27-29 diacholestanes/ 

ΣC27-29 regular steranes, reflecting changes in clay content and redox conditions, and the sequence stratigraphic framework 

for reference.  Arrows below biomarker depth plots indicate factors controlling ratios and how.
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However, the (C28 + C29 TT) / C30 H ratio increase begins earlier on in the LST and 

does not appear to be as large of an increase as the one depicted by the C30 / C27-30 

steranes ratio. Furthermore, the increase in C30 / C27-30 steranes ratio contradicts the HI 

and C20 TT data, which suggest an increase in terrestrial plant matter input during the 

middle LST. The disagreement between the different parameters decreases our 

confidence in higher plant matter source interpretation for the middle to late LST. The C30 

/ ΣC27-30 steranes ratio then decreases to 0.13 by 9653 ft. (2942.2 m), (Δ C30 /Σ C27-30 

steranes = -0.03), suggesting a relatively rapid decrease in marine algae toward the end 

of the LST, consistent with decrease in the (C28 + C29 TT) / C30 H Tasmanites indicator. 

The C30 / ΣC27-30 steranes ratio increases after the onset of the TST, reaching a 

value of 0.17 by 9633 ft. (2936.1 m)., right below the mfz. The C30 / ΣC27-30 steranes ratio 

then decreases slightly to 0.15 by 9625 ft. (2933.7 m), counterintuitively indicating a 

decrease in marine algae at the sea level maximum. However, the sample at 9625 ft. 

(2933.7 m) was taken from a silty laminated mudstone, which differs from the black 

mudstone primarily observed throughout the mfz. Hence the slight decrease in the C30 / 

ΣC27-30 steranes ratio may be reflecting a decrease in marine algae contribution within a 

more proximally source event deposit rather than a change in predominate organic matter 

source during the overall sea level maximum.  

. The C30 / ΣC27-30 steranes ratio then increases again slightly to 0.17 at the onset 

of the HST before decreasing again to 0.15 by 9609 ft (2928.8 m). The C30 / ΣC27-30 

steranes ratio then increase to 0.17 by 9593 ft (2923.9 m). This increase occurs after the 

first occurrence of the truncated packstones, which are tentatively interpreted as either 

storm deposits or contourites, suggesting that the influx of proximal nutrients or 
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development of basin wide nutrient rich currents may have spurred these marine algal 

blooms. The C30 / ΣC27-30 steranes ratio decreases to 0.15, where it remains relatively 

constant for the remainder of the core. Overall, the C30 / ΣC27-30 steranes ratio decreases 

at sequence stratigraphic intervals that are interpreted to represent more anoxic 

conditions. Interestingly, the C30 / ΣC27-30 steranes ratio tracks ΣC27-C29 diacholestane/ 

ΣC27-C29 regular steranes ratio quite well, further suggesting increases in marine algae 

under more oxic conditions. 

The ΣC27-C29 diacholestanes/ ΣC27-C29 regular steranes ratio ranges from 0.52 - 

0.68, with an average value of 0.60, suggesting a significant degree of sterane 

rearrangement, consistent with suboxic deposition. Overall, the ΣC27-C29 diacholestanes/ 

ΣC27-C29 regular steranes ratio decreases up section, indicating   either an overall 

increase in carbonate content or increasingly reducing conditions over time. The latter is 

inconsistent with almost all the sedimentologic, ichnologic, and organic and inorganic 

geochemical data and thus does not seem like a reasonable interpretation. Therefore, the 

overall decrease of this ratio is interpreted as an increase in the amount of carbonate over 

time, consistent with the overall increase in the C29 / C30 hopane ratio. Although the overall 

C27-C29 diacholestane/ C27-C29 regular steranes ratio appears to more closely follow 

lithology, individual fluctuations in the ratio are thought to more closely reflect changes in 

redox conditions. The ΣC27-C29 diacholestane/ ΣC27-C29 regular steranes ratio decreases 

throughout the FSST and LST, reaching the lowest value observed throughout the core 

at the end of the LST.  

 The ratio then progressively increases throughout the TST, reaching one of the 

highest values observed throughout the core, 0.65, by 9633 ft (2936.1 m). This increase 
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in the ΣC27-C29 diacholestanes/ ΣC27-C29 regular steranes ratio suggests the development 

of more oxygenated conditions as sea level rose. However, the ratio decreases to 0.60 

at 9635 ft. (2936.7 m), a depth interpreted to represent the mfz, suggesting the 

development of slightly more reducing conditions during sea level maxima, although not 

to the same degree that was experienced in the more stagnant LST.   

The ΣC27-C29 diacholestanes/ ΣC27-C29 regular steranes ratio then increases slightly 

to 0.62 at a depth of 9617 ft. (2931.3 m). The sample taken at this depth was highly 

bioturbated, which is consistent with increased oxicity. The decrease in the ΣC27-C29 

diacholestanes/ ΣC27-C29 regular steranes ratio from 9609 – 9601 ft. (2928.8 - 2926.4 m) 

appears to reflect the increase in carbonate content over the associated increase in 

oxygen brought down by the turbiditic flow itself. The ΣC27-C29 diacholestanes/ ΣC27-C29 

regular steranes ratio then increases to 0.57 at 9593 ft. (2923.9 m) before decreasing to 

0.56 by 9585 ft. (2921.5 m). The ΣC27-C29 diacholestanes/ ΣC27-C29 regular steranes ratio 

remains relatively constant before lightly increasing again at the end of the core, most 

likely reflecting an increase in clay at the very end of the HST. Interestingly, the ΣC27-C29 

diacholestanes/ ΣC27-C29 regular steranes depth trend differs greatly from the clay-

catalyzed, rearranged hopane ratio (C30 D / C29 Ts), which conversely appears to track 

redox conditions overall, with minor fluctuations reflecting lithologic changes.   
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8. Integrated Organic - Inorganic Geochemistry 

  Theoretical Refinement of Organic - Inorganic 

Geochemical Comparisons 

Suboxia throughout the Wolfcamp B3 and B2 deposition, with small fluctuations to 

relatively more anoxic or oxic conditions has been established through a multiproxy 

approach to paleoredox reconstruction. Sedimentological and petrographic data reflects 

a highly heterogenous source rock, with depositional conditions that varied substantial 

over 2-inch sections. Furthermore, during weakly anoxic conditions, trace metals 

indicative of anoxia may be more variably distributed amongst the sediment in 

accordance to upward diffusing pathways between the sediment and the overlying water 

column. Since organic geochemical samples often represented more than 2 inches of 

deposition, individual, 2 inch evenly spaced XRF data points did not accurately reflect 

organic geochemical changes. Therefore, an inorganic interval averaging technique was 

developed to more accurately compare inorganic and organic geochemical data. Since 

the largest organic geochemical sample was approximately 6 inches thick, XRF data was 

averaged over 6 inches to more accurately reflect the organic geochemical samples. 

Furthermore, TOC data was collected on the other, thicker slab (butt end) of the core, 

inherently limiting a 1:1 depth comparison of the inorganic and TOC data. Therefore, 

inorganic geochemical data averaged over 6 inches was compared to TOC and biomarker 

data at the closest depth. This technique proved successful for inorganic geochemical 

comparisons with both biomarker and TOC data, which is imperative to better 

understanding the role of preservation and productivity in TOC richness. 
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8.1.1. Mo and Paleoredox Proxy - TOC Covariance 

Molybdenum (Mo) concentrations (ppm) are often plotted against TOC in order to 

better understand paleoceanographic conditions, particularly anoxia and euxinia, and its 

role in organic matter preservation (Algeo and Lyons, 2006; Tribovillard et al., 2006, 2008, 

2012; Gilleaudeau and Kah, 2013; Baumgardner et al., 2014; Turner and Slatt, 2016). 

Molybdenum concentrations averaged over 6 inch intervals are cross plotted with TOC 

(wt. %) in Figure 30.  

Even with the aid of the interval averaging, Mo does not correlate well with TOC 

(R2 = 0.24), indicating overall suboxia during Wolfcamp B3 and B2 deposition. However, 

when the data is segregated by sequence stratigraphic tracts, trends begin to appear. In 

particular, Mo correlates extremely well with TOC over the FSST and LST (R2 = 0.94), 

although the sample size is limited. This high correlation value not only suggests that 

relatively more anoxic conditions persisted during the FSST and LST compared to the 

TST and HST, but that preservation is the dominant control for TOC richness during the 

FSST and LST. This interpretation of more persistent oxygen limited conditions during 

the FSST and LST is supported by both ichnological and biomarker data. Therefore, TOC 

values from samples in the Wolfcamp B3 may co-vary better with anoxia and euxinia trace 

proxies. Combining  these two principles, Mo values averaged over 6 inch intervals were 

plotted against TOC values. There does not appear to be a clear relationship between 

Mo and TOC during the HST, suggesting that more oxygenated conditions persisted in 
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Figure 30. Half-foot averaged molybdenum (Mo) concentration cross plotted with corresponding TOC wt.% for the Wolfcamp 
B2 and B3 samples, segregated by 2nd order sequence stratigraphic position. From top to bottom, left to right: all samples; 
samples taken from the interpreted HST (marked in green); samples taken from the interpreted TST (marked in blue); and 
samples taken from the interpreted FSST and LST (marked in red and orange, respectively). Note varying correlation values.
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the highstand, an interpretation that is supported by a significant increase in bioturbation 

at the onset and of the HST and the occurrence of the at the end of the HST. 

 

8.1.2. Ni and Redox Sensitive Organometallic Proxy - TOC 

Covariance 

Nickel (Ni) concentrations (ppm) are often plotted against TOC (wt.%) to better 

understand paleoceanographic conditions and organic matter source material, in 

particular the relationship between suboxia and humic and fulvic acids in organometallic 

complexing (Tribovillard et al., 2006 and 2008). Nickel concentrations averaged over a 

half foot interval are cross plotted with TOC (wt. %) in Figure 31. 

 Overall, Ni correlates better with TOC than Mo, but still show a relatively weak 

positive linear relationship (Ni R2 = 0.39; Mo R2 = 0.24). The Ni – TOC data was 

segregated by interpreted 2nd order sequence stratigraphic tracts, revealing more 

significant geochemical trends. Nickel and TOC exhibit a very strong linear relationship 

over the TST (R2 = 0.98) compared to any other point in time. This strong correlation 

suggests that conditions were more oxygenated during the TST than during the LST and 

FSST (R2 = 0.49). However, Ni concentrations are influenced by redox conditions as well 

as humic and fulvic acid availability in the water column. Hence, the stronger correlation 

between Ni and 
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Figure 31. Half-foot averaged molybdenum (Ni) concentration cross plotted with corresponding TOC wt.% for the Wolfcamp 
B2 and B3 samples, segregated by 2nd order sequence stratigraphic position. From top to bottom, left to right: all samples; 
samples taken from the interpreted HST (marked in green); samples taken from the interpreted TST (marked in blue); and 
samples taken from the interpreted FSST and TST (marked in red and orange, respectively). Note varying correlation values 
and absolute ppm concentrations relative to Mo.
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TOC during the TST may be reflecting an increase in plant matter contribution, microbial 

degradation by-products, or increased contribution from some forms of marine algae 

(Hatcher and Orem, 1986; Münster and Chróst, 1990; Tribovillard et al., 2006). Organic 

matter source-specific biomarkers help resolve this ambiguity and are investigated in the 

following section. Whatever the source may be, there appears to be an increase in the 

overall amount of organic matter during the relatively more suboxic TST, indicating that 

paleo-productivity played a larger role in the development of TOC richness during the 

TST. Although there should be a theoretical increase in the amount of plant matter 

delivered to distal parts of the basin during the HST due to shoreline progradation in mixed 

carbonate-siliciclastic shelves, more oxic conditions most likely limited Ni incorporation 

into sediments, creating the dispersed Ni – TOC data observed over the HST. 

 

 Novel biomarker-elemental proxy correlations 

8.2.1. Biogenic Silica and Tasmanites Biomarker Ratio 

It has been well documented that Tasmanites-rich rocks are enriched in higher 

carbon numbered tricyclic terpanes (Volkman et al., 1989; Greenwood et al., 2000; Vigran 

et al., 2008). Since siliceous Tasmanites were observed petrographically, they are 

thought to contribute to the biogenic silica fraction in the Wolfcamp B3 and B2. Biogenic 

silica was assessed in two ways – the conventional enrichment factor approach of Si / Al, 

as well as slightly more indirect proxy, the relative enrichment of Zr / Si. Since Al 

enrichment factors can vary dramatically with Ca abundance, a second proxy was used 

to check for this inherent pitfall when working in a mixed carbonate-siliciclastic 
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environment. Low Zr / Si values should indicate non-detrital Si, potentially biogenic. Silica 

(Si) and zirconium (Zr) concentrations (wt. %, and ppm respectively) averaged over 6 inch 

interval are plotted against the (C28 + C29 TT) / C30 H biomarker ratio in Figure 32. Both 

inorganic biogenic silica proxies track the Tasmanites biomarker indicator well. The 

sequence stratigraphic implications of changes in the abundance of Tasmanites is 

explained in detail in the previous organic geochemical section. Thus, the focus of this 

section is to compare the inorganic and organic geochemical proxies for biogenic silica.  

Interestingly, Zr / Si values correlated better with the (C28 + C29 TT) / C30 H ratio 

over the FSST, particularly for the laminated packstone samples. This suggests that the 

Zr / Si ratio may be less influenced by changes in the Ca abundance. However, the (C28 

+ C29 TT) / C30 H ratio begins to increase earlier than either the inorganic ratios would 

suggest. The decoupling of the biomarker and Zi / Si ratios over the LST may be reflecting 

the increase in detrital siliciclastic material during reciprocal sedimentation. Although all 

the ratios indicate an increase in the amount of biogenic silica at the onset of the TST, 

the inorganic ratios appear to over estimate the amount of biogenic silica, particularly the 

Si / Al ratio, which is more influenced by increases in Ca. This increase in Ca, with a 

reciprocal decrease in Al values, can cause an over estimation in the amount of biogenic 

silica, further highlighting enrichment factors issues in mixed carbonate siliciclastic 

systems. Overall, the (C28 + C29 TT) / C30 H ratio increases up section,  
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s  

Figure 32. Inorganic and organic biogenic silica indicators. From left to right: Si / Al averaged over 0.5 ft., Zr / Si averaged 
over 0.5 ft. with axis reversed to indicate non-detrital Si, and (C28 + C29 tricyclic terpanes) / C30 hopane, an organic 
geochemical indicator for the silica rich marine algae Tasmanites.  Sequence stratigraphic framework on right for reference. 
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while the inorganic ratios do not show a similar overall depth trend. This upward 

decoupling is interpreted as an overall increase in the amount of clay towards the end of 

the HST which may be suppressing the inorganic biogenic silica signal. 

 

8.2.2.  Organometallic Trace Metal and Plant Matter Biomarker 

Ratios 

As previously stated, Ni forms organic metallic complexes with humic and fulvic 

acids and is hence an indicator of both redox conditions and OM fluxes into the system. 

The C19 / C23 TT ratios is also thought to reflect relative changes in terrestrial plant matter 

contribution and redox conditions more so than the C20 / C23 TT ratio. Therefore, the C19 

/ C23 TT ratio is thought to reflect increases the relative anoxia as well as terrigenous plant 

matter contribution to the OM.  

Both the Ni concentrations averaged over 6 inch intervals and the C19 / C23 TT ratio 

were plotted as a function of depth in Figure 33. Overall the two ratios track each other 

fairly well, particularly over the LST – TST transition. However, Ni is thought to more 

strongly reflect redox conditions relative to C19 / C23 TT given its relative increase at two 

sequence stratigraphically significant locations: 1) the FSST – LST transition and 2) the 

middle and late TST. The discrepancy at the mfz further highlights the slightly more 

reducing conditions towards the end of the TST, relative to higher energy and more 

oxygenated conditions associated with the initiation of sea level rise. However, it is also 

possible that the Ni concentrations are reflecting an increase in humic acids from other 

marine algae which may have  
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Figure 33. Organic and inorganic redox sensitive plant matter indicators. C19 / C23 tricyclic terpane ratio (left) compared to 
averaged Ni concentrations averaged over 0.5 ft.  (ppm) (right). Controls on relative abundances indicated by arrows below 
respective depth plots, tenuous interpretations in stippled arrows. Sequence stratigraphic framework on far right for 
reference.
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been more ubiquitous at the sea level maximum (Nissenbaum and Kaplan, 1972; Hedges 

and Oades, 1997).  

8.2.3. Ca Elemental Abundance and the Homohopane Index 

 In the early terpane analysis, certain biomarker ratios more closely related to either 

anoxia or carbonate content, such as Pr/Ph or C29/C30 hopane ratios respectively, were 

compared to the C35 / C34 HH ratio. The C35 / C34 HH ratio more closely tracked pure 

carbonate content indicators, such as C29/C30 hopane, which suggests that changes in 

the C35 / C34 HH ratio more closely reflect changes in the carbonate content rather than 

redox conditions. In order to further investigate this relationship, the Ca content (wt.%) 

averaged over 6 inch intervals and the C35 / C34 HH ratio are plotted as function of depth 

in Figure 34. Both geochemical depth plots tracked each other well, further supporting a 

predominately carbonate content control on the C35 / C34 HH ratio. This observation is 

interesting, if not geochemically counterintuitive, because during Wolfcamp B3 and B2 

deposition carbonate content and relative anoxia are inversely related: generally, the 

more carbonate material, the less anoxic the environment. This however is 

sedimentologically and ichnologically intuitive because oxygenating calcareous sediment 

gravity flows were the dominant mechanism for carbonate deposition in the Wolfcamp B3 

and B2. Although the geochemical specificities and mechanisms that would cause the 

C35 / C34 HH ratio to be primarily controlled by carbonate content rather than both 

carbonate content and anoxia remains unknown, this unique relationship is clearly 

observed. Since all the C35 / C34 HH  
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Figure 34. Inorganic and organic carbonate indicators. Calcium abundance averaged over 0.5 ft (w.t%) on the left and C35 
/ C34 homohopane ratio on right. Controls on relative abundances indicated by arrows below respective depth plots, with 
more minor controls in stippled arrows. Working sequence stratigraphic framework on far right for reference.
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ratio values are <1, it is hypothesized that the C35 / C34 HH ratio more closely reflects 

carbonate content in overall more suboxic conditions. The two carbonate parameters 

track each other fairly well, however, discrepancies between the C35 / C34 HH ratio and 

the Ca wt. % are observed. These discrepancies are thought reflect the limitations of the 

interval averaging technique, particularly over 9577 – 9593 ft. This interval is dominated 

by thin bedded calcareous beds (< 6 inches thick), and although individual XRF data 

points accurately reflect the Ca content, once averaged out over a half foot interval, their 

Ca signal is greatly reduced. This happened to a lesser degree over the early to middle 

LST. However, the interval averaging technique more accurately reflects changes in the 

C35 / C34 HH ratio than a 1:1 comparison alone, suggesting that the technique itself, 

although useful, needs refinement. 

 

9. Conclusions 

 The assessment of subtle fluctuations in redox conditions proved to be very cryptic 

for the suboxic Wolfcamp B3 and B2 intervals on the edge of slope setting of the Midland 

Basin. A deep sedimentological understanding of the core was necessary to build a 

working sequence stratigraphic framework and contextualize the geochemical data. 

Larger overall trends in redox conditions typically associated with sequence stratigraphic 

interpretations were sometimes occluded by the redox fluctuations associated with the 

entrained oxygenated waters of sediment gravity flows. However, sediment gravity flow 

types and frequency were generally dependent on the changes in energy associated with 

sea level fall and rise. Large-scale sequence stratigraphic trends in redox conditions were 

consistent between the vast multi-proxy approach and are as follows: (1) relatively more 
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anoxic conditions persisted during Wolfcamp B3, or during the FSST and LST and (2) 

relatively more oxic conditions persisted during Wolfcamp B2, or TST and HST, 

deposition. However, it cannot be understated that these relative changes in redox fall 

within the larger context of general suboxia. As observed from this study, there is at no 

point any clear, well established anoxia. Furthermore, the LST, and to some degree the 

FSST, demonstrate more anoxic conditions than the interpreted mfz. The generalization 

that sea level highs are marked by water column stratification and more anoxic conditions 

does not apply for the Wolfcampian B3 and B2 deposition at this location.  

 Calcareous sediment gravity flows are interpreted to have brought oxygenated 

waters to the distal parts of the basin. This relationship is best observed by the established 

ichnological relationships with turbidites. This argument was further supported by both 

inorganic and organic geochemical proxies. The variations in degrees of suboxia proved 

useful in identifying what was the dominant control on many of the multivariable biomarker 

redox proxy ratios. Terrigenous plant matter was the dominant contributor to the OM 

during more reducing conditions, while marine algae was the dominant contributor during 

more oxic conditions. Furthermore, a clear relationship between freshwater influxes and 

Tasmanites algal blooms was established. Overall, heavily bioturbated and truncated 

packstone lithofacies correlated well with more oxygenated highstand conditions. These 

relationships are summarized in Figure 35. 

Potential subtle parasequence variations towards the top of the Wolfcamp B2 

interval were not interpreted in the geochemical data. This either reflects the limited 

vertical resolution of organic geochemical techniques or established tha the redox 

fluctuations associated with the parasequence were either too subtle or nonexistent.
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Figure 35.  Summary figure showing changes in sedimentology, ichnology, inorganic geochemistry, and organic 
geochemistry in a sequence stratigraphic framework. From left to right: lithofacies log; core description; 2nd order sequence 
stratigraphic interpretation; total bioturbation; Zoophycus ichnofossil; Chondrites ichnofossil; Pr/ Ph; C26/C25 TT; Si / Al 
averaged over 0.5 ft.; (C28 + C29 TT) / C30 hopane; C19 / C23 TT; and Ni concentrations averaged over 0.5 ft
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Therefore, the preferred interpretation is that the series of truncated packstones towards 

the top of the B2 interval are most likely contourites or storm deposits reflecting highstand 

conditions rather than a drop in relative sea level.  Aside from findings concerning 

fluctuations in redox condition due to sea level change or oxygenated sediment gravity 

flows, which appear to be relatively intertwined, novel refinements to trace metal – TOC 

proxies proved valuable. Interval averaging techniques helped bridge the gap between 

theoretical organic-inorganic geochemical relationships and observed ones. 

 

10. Future Work 

Although the core was rigorously analyzed using various redox proxies, a 

comprehensive diagenetic history was not established. Hence the potential effects of 

diagenesis on observed changes in redox conditions were not investigated. All redox 

proxies were assumed to reflect conditions at or near the sediment water interface at the 

time of deposition. Unfortunately, petrographic analysis established that much of the core 

experienced complex multistage diagenesis. This limitation of the study should be further 

investigated since many diagenetic fluid fronts have oxidizing potential. Pyrite framboid 

dimensional analysis could help aid in discerning reducing conditions during later abiotic 

diagenesis versus microbially induced reducing conditions in the pore waters of near 

surface sediments. The development of a more mathematically based, systematic 

approach to calculating the frequency of calciturbidites could allow for a more quantitative 

assessment of the interplay between oxygenation and sediment gravity flows. X-ray 

diffraction (XRD) analysis could expand our understanding of the incorporation of certain 

elements into mineral phases, particularly Fe in ferroan dolomite, which could shed light 
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on geochemical conditions farther up slope. Further application of the interval averaging 

approach to the previously disregarded enrichment factor technique have allowed for a 

more robust use of the inorganic geochemical data. Although visualizing the major and 

trace metal compositions of each lithofacies proved valuable for the purpose of this study, 

a more in-depth look into changes in trace metal fluctuations as a function of time would 

have helped parse out palaeoceanographic changes independent of certain lithologies or 

sedimentary textures.  

A more in-depth investigation into organic geochemical evidence for microbial 

degradation, particularly when compared to the ichnological data as a function of depth, 

would shed light on potential geochemical evidence for bioturbation induced paleo-

biodegradation. Analysis of the aromatic fraction for plant matter indicators, such as 

polyaromatic hydrocarbons (PAH) like retene, trimethylnaphthalenes (TMN), and 

dibenzofuran (DBF), could help refine our understanding of the fluctuation in terrigenous 

plant input over time. Further analysis of a single core however will only expand ones 

understanding of Wolfcamp B3 and B2 deposition at one discrete point along the base of 

slope setting. To fully understand the changes of redox conditions for the formation, other 

nearby cores should be examined. This would shed light on the redox condition 

fluctuations along turbidity current channel axial and lateral transects. As of now it is not 

fully understood if observed changes in redox conditions are truly attributable to more 

regional sequence stratigraphic model, or simply a localized avulsion of a submarine 

channel complex.  
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Appendix A. Core Photos, Core Description, and Lithofacies  
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Fining upwards, pyrite coating lithoclast . Helmenthopsis burrows - doomed pioneers

BASE OF CORE

Shale base - medium gray calcareous mudstone

Sharp angular base contact

Pebble - small cobble sized lithoclasts, pyrite coatings, salt and pepper colored 

Crinoidally dominated - bivalves and fussilinids  DF, argillaceous matrix

Finely laminated, silty lithoclasts 

Lithoclasts randomly oriented, more light gray, some Rugose(?) coral and 
bivalve rich carbonate, post depositional slumping

Phosphate nodules 

Erosional contact

Very tight bed, pyrite coated grains and compacted

Salt and pepper colored DF  - progressively more lithoclastic, grading upwards 
from randomly to more horizontally oriented 

Finely laminated oriented grains

Erosive contact with carbonate stringers, light gray and more uniform grain size 

Irregular sponge bored hard ground
Flame structures

Inclined lamination f attening gradually upwards. Load features.

Cryptic bioturbation throughout 

Two <2 inch laminated DF – crinoidally dominated

Black massive shale – no visible bioclasts

Sharp planar contact
Dark gray matrix supported DF
Erosive irregular contact

Light gray and slumped DF

Dark gray slightly calcareous shale, increasingly black (in small in tervals) upwards

Partially healed fracture

Rip up clasts

Fine laminations, pyritized 

Thin carbonate beds
Phosphate nodules
Black Shale, massive

Finely laminated

Dark gray

Turbidite - pyrite coated lithoclasts

Climbing ripples, laminations grading to ripples upwards - turbidite

Bioturbated - helmenthopsis, doomed pioneer

Slightly calcareous
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Loading feature 

Turbidite - erosive bottom contact
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Higher clay content upwards 
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Ripple / laminated small turbidite 
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Partially healed vertical fracture 
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Erosive contact - coarse grained crinoids, bivalve fragments DF
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Dark gray grading to medium gray shale
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Soft sediment deformations

Fluid escape

Contorted baedding, nodule formation (cobble size),
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Gradational contact, dolomitized
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Lithoclasts randomly oriented, more light gray, some Rugose(?) coral and 
bivalve rich carbonate, post depositional slumping

Phosphate nodules 

Erosional contact
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Salt and pepper colored DF  - progressively more lithoclastic, grading upwards 
from randomly to more horizontally oriented 

Finely laminated oriented grains

Erosive contact with carbonate stringers, light gray and more uniform grain size 

Irregular sponge bored hard ground
Flame structures

Inclined lamination f attening gradually upwards. Load features.

Cryptic bioturbation throughout 

Two <2 inch laminated DF – crinoidally dominated

Black massive shale – no visible bioclasts

Sharp planar contact
Dark gray matrix supported DF
Erosive irregular contact

Light gray and slumped DF

Dark gray slightly calcareous shale, increasingly black (in small in tervals) upwards

Partially healed fracture

Rip up clasts

Fine laminations, pyritized 

Thin carbonate beds
Phosphate nodules
Black Shale, massive

Finely laminated

Dark gray

Turbidite - pyrite coated lithoclasts

Climbing ripples, laminations grading to ripples upwards - turbidite

Bioturbated - helmenthopsis, doomed pioneer

Slightly calcareous
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Loading feature 

Turbidite - erosive bottom contact

Laminate turbidite - pyritized clasts

Turbidite - alternating massive and laminated - seperate f ow events
Higher clay content upwards 

Soft sediment deformation

Ripple / laminated small turbidite 
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Erosive turbidite, helmenthopsis burrows
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Dark to medium gray in lower portion
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Healed horizontal fractures present parallel to bedding planes

Erosive contact - coarse grained crinoids, bivalve fragments DF

Small carbonate f ow

Dark gray grading to medium gray shale

Alternating dark gray wavy subtle laminations - distorted bedding 

Soft sediment deformations

Fluid escape

Contorted baedding, nodule formation (cobble size),
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Gradational contact, dolomitized
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Irregular top contact - hardground

Erosive f ow contact, slight bioturbation

Dark gray

DF and turbidite f ows- bioturbation towards massive top, pyrite present

Carbonate lense grading upward to massive black shale

Erosive angular contact - ripples towards top
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Bioclast rich DF, compacted, gradational top contact
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Dark gray and black shale interbedded

Stair step slumped and biturbated massive carbonate turbidite
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Finely laminated, silty lithoclasts 

Lithoclasts randomly oriented, more light gray, some Rugose(?) coral and 
bivalve rich carbonate, post depositional slumping

Phosphate nodules 

Erosional contact

Very tight bed, pyrite coated grains and compacted

Salt and pepper colored DF  - progressively more lithoclastic, grading upwards 
from randomly to more horizontally oriented 

Finely laminated oriented grains

Erosive contact with carbonate stringers, light gray and more uniform grain size 

Irregular sponge bored hard ground
Flame structures

Inclined lamination f attening gradually upwards. Load features.

Cryptic bioturbation throughout 

Two <2 inch laminated DF – crinoidally dominated

Black massive shale – no visible bioclasts

Sharp planar contact
Dark gray matrix supported DF
Erosive irregular contact

Light gray and slumped DF
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Partially healed fracture

Rip up clasts

Fine laminations, pyritized 

Thin carbonate beds
Phosphate nodules
Black Shale, massive

Finely laminated
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Turbidite - pyrite coated lithoclasts

Climbing ripples, laminations grading to ripples upwards - turbidite

Bioturbated - helmenthopsis, doomed pioneer
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Higher clay content upwards 

Soft sediment deformation
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Alternating dark gray wavy subtle laminations - distorted bedding 

Soft sediment deformations

Fluid escape

Contorted baedding, nodule formation (cobble size),
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Carbonate lense grading upward to massive black shale
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Crinoidally dominated - bivalves and fussilinids  DF, argillaceous matrix

Finely laminated, silty lithoclasts 

Lithoclasts randomly oriented, more light gray, some Rugose(?) coral and 
bivalve rich carbonate, post depositional slumping

Phosphate nodules 

Erosional contact

Very tight bed, pyrite coated grains and compacted

Salt and pepper colored DF  - progressively more lithoclastic, grading upwards 
from randomly to more horizontally oriented 

Finely laminated oriented grains

Erosive contact with carbonate stringers, light gray and more uniform grain size 

Irregular sponge bored hard ground
Flame structures

Inclined lamination f attening gradually upwards. Load features.

Cryptic bioturbation throughout 

Two <2 inch laminated DF – crinoidally dominated

Black massive shale – no visible bioclasts

Sharp planar contact
Dark gray matrix supported DF
Erosive irregular contact

Light gray and slumped DF

Dark gray slightly calcareous shale, increasingly black (in small in tervals) upwards

Partially healed fracture

Rip up clasts

Fine laminations, pyritized 

Thin carbonate beds
Phosphate nodules
Black Shale, massive

Finely laminated

Dark gray

Turbidite - pyrite coated lithoclasts

Climbing ripples, laminations grading to ripples upwards - turbidite

Bioturbated - helmenthopsis, doomed pioneer
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Loading feature 

Turbidite - erosive bottom contact
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Higher clay content upwards 
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Appendix B. Petrography 

 

 
 

Sample 
Depth       

(ft) 

Petrographic microfacies 

Faintly 
laminated 

silty 
mudstone 

Bioturbated 
silty 

mudstone 

Well sorted 
carbonate 
packstone 

Mixed 
carbonate 
siliciclastic 

wackestone 

Non-
laminated 
mudstone 

Poorly 
sorted 
coarse 

packstone 

9577.17 X  X    

9585.17  X     

9593.17 X  X X   

9594.66    X   

9617.17 X      

9625.17     X  

9633.17  X     

9641.17    X X  

9644.67   X X   

9645.17   X    

9647.84  X     

9649.17   X    

9653.17 X  X X   

9657.17 X      

9665.34 X      

9673.17 X   X   

9681.17 X   X   

9683.17      X 

9689.17   X    

9690.84   X    

9697.17      X 
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Figure 36. Sample Depth: 9577.17 ft. (A) Thin section: 3 distinct layers based on lithologic alternation observed: 1) clay laminated carbonate 
packstone with contorted pyrite bed. Dolomite below pyrite contact. Laminated finer grained carbonate above. Slightly dipping laminations/ cross 
stratification, 2) faintly laminated mudstone, 3) laminated and bioturbated siltstone – horizontal burrows create discontinuations in horizontal 
laminae. 
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Figure 37. Sample Depth: 9577.17 ft.  10 x PPL – Partial micritization (stippled texture) and dolomitization (equant beige crystals) of grains and 
amorphous silica replacement of allochems. Clay and organic material laminations. 
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Figure 38. Sample Depth: 9577.17 ft. 2.5 XPL – Skeletal fragments include small bivalves, echinoderms spines, and radiolaria. Allochem grain 
boundary dissolution from cement overprint. Large euhedral pyrite framboids, most likely formed during later diagenesis. Diffuse laminations 
composed of clay rip up fragments. Ferroan dolomite intergranular cement, rarely large rhombic crystals overprinting entire grains. Allochems 
predominately calcite, some abrasion and rounding. Elongate allochems aligned. 
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Figure 39. Sample Depth: 9577.17 ft. 10x XPL – Agglutinated foram, outlined in yellow, with incorporated detrital quartz and replacive dolomitized 
grains 
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Figure 40. Sample Depth: 9577.17 ft. 2.5x PPL – Large unidentified horizontal burrow: Cleaner silt inside burrow 
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Figure 41. Sample depth: 9585.17 ft. Light brown silt sized detrital quartz matrix. Discontinuous and 
inclined laminations of darker brown clays and some lighter tan carbonate material. Churned texture. 
Small ripples observed. Diffuse areas of cleaner sediment absent of clay, most likely horizontal burrows. 
Moderately sorted. Radiolaria are sparse and only allochems observed.
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Figure 42. Sample depth: 9585.17 ft. 2.5x PPL – Bands of cleaner sediment, interpreted as horizontal burrows. Organic rich clay laminations 
distorted and discontinuous. 
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Figure 43. Sample depth: 9585.17 ft. 40 x XPL – Magnification of matrix – Abundant subrounded detrital quartz with elongate micas. Micrite 
present but in very low quantities. Deformed clay and organic matter. 
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Figure 44. Sample Depth: 9593.17 ft. Mineralogically and texturally can be separated into 3 distinct layers, listed from top to bottom, Mineralogy: 
(1) clays, OM, detrital quartz (2) minimal clay, calcite replacement and org. calcareous fossil fragments, silica replacement and pore cement, 
oxides (3) detrital quartz, siliceous radiolaria and calc. replacement of radiolaria, clays. Texture: (1) lower almost entirely detrital part begins with 
abundant bioturbation which gradually decreases upwards until the contact with the carbonate flow. OM content increases upwards as well 
although not very present. (2) Carbonate flow – heavy diagenetic alteration, carbonate skeletal fragments abundant and diverse, although hard to 
see original fauna over abrasion from transport + dissolution of edges and internal structure, silica replacement prevalent and abundant, not totally 
cemented but present as silica; (3) upper mixed part shows abundant bioturbation and calcareous replacement of radiolaria, detrital quartz 
present, larger grain size compared to (1) Bioturbation: small horizontal burrows in (1) and (3), Fauna: (1) agglutinated forams, radiolaria abundant 
(2) bivalves, echinoderm spines, skeletal fragments hard to identify due to replacement (3) radiolaria (calc replacement), echinoderm spines, 
sponge spicules, agglutinated foram rare to absent, skeletal fragments from flow. 
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Figure 45. Sample Depth: 9593.17 ft. 10 x PPL – Top third of thin section (3) – Silt and detrital quartz grains intermixed with carbonate grains and 
allochems. Small silt lithoclasts also exhibit elongated shape.  Note zonation of ferroan dolomite. Calcite center of carbonate grains, ferroan 
dolomitization of edges. Abraded dolomite indicated potential dolomitization before transport. Radiolaria, sponge spicule, and agglutinated foram 
present. 
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Figure 46. Sample Depth: 9593.17 ft. 10x XPL – Middle portion (2) – Various cement types and textures visible. Equant and sparry silica cement 
with low (light to dark gray) birefringence and optical relief. Dissolution and grain edge growth of dolomite visible – small un-abraded rhombohedra 
crystals. Sometimes bladed. 
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Figure 47. Sample Depth: 9593.17 ft. 5x XPL with gypsum plate – Bottom third of thin section (1) – small elongated horizontal burrows parallel to 
bedding (750 nm), cleaner sediment in interior of burrow. Bioturbation decreasing upwards. Organic material and clay content increasing upwards. 
Agglutinated forams (700 – 500 nm) present towards top, absent when bioturbation is abundant. Agglutinated forams (orange stippled line) 
distinguishable from burrows (green stippled line) via the larger well sorted interlocking quartz grains (no silt or clay). 
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Figure 48. Sample Depth: 9594.66 ft. Mineralogy: argillaceous (potentially phosphatic) rip up clast, clay matrix, calcareous shell fragments, calcite 
replacement and cement in diagenetic band (abundant), dolomite replacement of skeletal material (minimal), ferroan dolomite replacement 
(abundant). Texture: shale rip up clasts, diagenetic alteration “band” w/ heavy calcite replacement and cement – edge dissolution difficult to see 
fauna and regular “white” dolomite replacement; lots of ferroan dolomite replacement, shale matrix (<25%); more ferroan dolomite outside of 
diagenetic alteration or fluid front, random grain orientation and skeletal fragment assemblage + abrasion indicate transport of material. No 
bioturbation. Fauna: echinoderm spine fragments, sponge spicules, abraded shell and lithoclast fragments, bivalve shells fragments 
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Figure 49. Sample Depth: 9594.66 ft. 10x PPL – Large rounded, elongated silty lithoclast in top left. Original allochems difficult to 
distinguish due to ferroan dolomite replacement and dissolution of internal skeletal structure. Non-ferroan dolomite . Ferroan dolomite 
replacement either limited to grain edges or complete. Matrix composed of clays, relatively free of silt size particle. Wide grain size 
distribution. 
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Figure 50. Sample Depth: 9594.66 ft. 10x PPL – Cement zonation: Calcite in center of allochems (original mineralogy?), ferroan 
dolomite towards grain edge, and less often pure dolomite on edge. Carbonate material equally mixed with siliciclastic clay and organic 
material. Silt sized particles and detrital quartz absent. 
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Figure 51. Sample Depth: 9617.17 ft. Mineralogy – clays, detrital qtz, pyrite, OM, minor Fe-
dolomite replacement, no calcite present. Texture – faint planar laminations, disrupted by 
bioturbation. Bioturbation - Faint vertical bioturbation into more organic rich material, coarser 
grains inside burrow. Horizontal bioturbation, coarser slit sized particles in burrow, OM 
depletion inside relative to matrix, cleaner (abundant). Homogenous matrix composition of 
very fine detrital quartz (sand?) and silt. Minimal clay material. Macroscopic lobe like 
horizontal burrows with clean infill. Discontinuous laminations of fine sediment. White grains 
are quartz silt particles and Tasmanties. 
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Figure 52. Sample Depth: 9617.17 ft. 40x  PPL – Compressed tasmanites with organic matter infill. Silty matrix with detrital quartz. Oxides 
present. Ferroan dolomitization of some grains and edge of tasmanites. 
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Figure 53.  Sample Depth: 9617.17 ft. 10x PPL – 600 um horizontal burrow outlined in red with cleaner sediment on inside. Radiolaria in 
yellow, ~75 um long. No visible carbonate (dolomite and calcite). Clay and organic material in wavy discontinuous laminations. 
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Figure 54. Sample Depth: 9617.17 ft. 20x PPL – Radiolaria with organic matter infill outlined in red. Bladed calcite crystals growing from grain 
edge towards center of radiolaria. Other radiolaria with partially preserved internal structure, outlined in orange. Evidence of compaction due to 
elongation in direction of bedding plane of ideally circular radiolaria. Partial dissolution of edges. Compacted agglutinated foram in bottom left 
outlined in yellow. Mostly detrital quartz silt with some finer clays present in discontinuous laminations with organic material (center left). 
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Figure 55. Sample Depth: 9617.17 ft. 40x PPL – Radiolaria with concentric internal structure still preserved. Partial grain edge dissolution, 
Matrix composed of detrital quartz silt with minor clay component. 
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Figure 56. Sample Depth: 9617.17 ft. 40x PPL – Partial ferroan dolomite replacement of compacted radiolaria. High optic relief of 
rhombohedra, blue dye indicating ferroan dolomite. Primary internal structure of radiolaria destroyed. Silt and detrital quartz matrix also 
exhibit partial dolomitization. 

 



` 

 
 

241 

 
Figure 57. Sample Depth: 9617.17 ft. 20x XPL – Sparry equant calcite replaced echinoderm spine cross-section outlined in yellow. 
Clays and detrital quartz wrapping around (?) echinoderm spine. Siliceous radiolaria ~ 100 um below in orange. Internal structure and 
texture still preserved. Detrital quartz, elongated micas and sponge spicule fragments visible. 
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Figure 58. Sample Depth: 9625.17 ft. Mineralogy –small dolomite replacement, little calcite present, mostly as small fragments in matrix, detrital 
subrounded quartz, clays and micas, OM high. Texture – subtle planar bedding of clays. Bioturbation - Small horizontal burrows (abundant), 2 
macroscopic horizontal burrows, filled with siliceous shell fragments. Fauna – tasmanites, partially compressed, OM matter infill, siliceous (few), 
radiolaria, very few almost absent, abundant agglutinated forams. 
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Figure 59. Sample Depth: 9625.17 ft. 20x PPL – Compacted tasmanites ~400 um with clay infill. Detrital silt and clay matrix. Partial 
ferroan dolomite replacement of siliceous grains. 

 

 



` 

 
 

244 

 
Figure 60. Sample Depth: 9625.17 ft. 2.5 x PPL of large horizontal burrow? macroscopically observed in thin section. 
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Figure 61. Sample Depth: 9625.17 ft. 5x XPL – Matrix dominated by clay and organic matter dominate. Small 500 nm horizontal burrows infilled 
with cleaner sediment – partial dolomite replacement visible in burrows. Unlaminated detrital quartz, no evident grain orientation or flow direction, 
lacks evidence of event deposit 
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Figure 62. Sample Depth: 9633.17 ft. Mineralogy – lots of detrital quartz and clay, no carbonate, faint dolomite replacement, little OM. Heavily 
bioturbated, disruption of original lamination. Sub-horizontal burrows defined by cleaner sediment with small lithic fragments. Original sedimentary 
structures destroyed by bioturbation. Almost entirely silt and detrital quartz. Light brown in color 
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Figure 63. Sample Depth: 9633.17 ft. 2.5x PPL – Clay rich wavy lenses and discontinuous sub-horizontal laminations are unbioturbated portions. 
Majority of original depositional fabric lost. Minor oxides present. Well rounded detrital quartz, elongated / compacted along bedding plane. 
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Figure 64. Sample Depth: 9641.17 ft. Mineralogy: (3) argillaceous portion - clay matrix, OM rich, detrital quartz abundant, minimal ferroan dolomite 
replacement, no calcite (1& 2) calcareous flows – calcareous skeletal fragments, minor OM, oxides (maybe pyrite?). Texture: calcareous flow (1) – 
coarser grained, larger skeletal fragments more abundant, less clay, coarse contact marking beginning of flow? normal grading. calcareous flow 
(2) – finer grained, less and smaller skeletal fragments, less clay, micrite matrix? coarse contact marking beginning of flow? normal grading. (1) 
argillaceous dominant – horizontal parallel orientation of agglutinated fauna and burrows, very fine grained clay, OM in planar lamination under, 
more abundant right below calcareous flows (may be a function of too thin of a TS towards bottom). Bioturbation: calcareous flow (2) – vertical 
burrows, cleaner, finer grained material, dendritic downwards pattern (3) argillaceous dominant –silt/ cleaner, coarser sediment horizontal burrows. 
Fauna: argillaceous portion (3) - agglutinated forams (abundant), Tasmanites. calcareous flows (1 & 2) – echinoderm spines, micritized 
radiolaria?, undifferentiated skeletal fragments – calcite replacement obliterating internal structure, sub rounded to rounded from transport, lithic 
fragments – sub rounded, rare siliceous radiolaria 

2 

1 

3 
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Figure 65. Sample Depth: 9641.17 ft. 20x PPL – Bottom 1/3 of slide. Packed biomicrite - Cross-section of calcareous sponge spicule 200 um 
across with diagnostic “t” shape. Well rounded, abraded calcareous fragments - echinoderm spines and radiolaria(?). Difficult to identify skeletal 
remains due to extensive abrasion. Partial dolomitization of entire grains and grain edges. Ferroan dolomite present but in trace quantities. 
Cement present but not heavy due to amount of clays / micrite present. 
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Figure 66. Sample Depth: 9641.17 ft. 20x PPL – Top 1/3 of thin section. 200 um Tasmanites infilled with organic matter adjacent to detrital quartz 
lithoclast. Matrix rich in clay and organic material. Subrounded to well rounded, silt-sized, and elongate detrital quartz. 
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Figure 67. Sample Depth: 9641.17 ft. 20x XPL – Cross-polarized version of previous photograph. Adjacent lithoclast (?) comprised of mainly 
detrital quartz and equant feldspars. Tasmanites comprised of amorphous silica/ chert. Matrix comprised of detrital fine grained silt sized  quarts, 
clays (elongate micas visible), and organic matter. 
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Figure 68. Sample Depth: 9641.17 ft. 10x PPL - Top 1/3 of thin section. Large agglutinated foram (~800 um) in same detrital quartz, clay, and 
organic matter rich matrix. Ferroan dolomite replacement of some detrital quartz grains and radiolaria. 
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Figure 69. Sample Depth: 9641.17 ft. 10x XPL - Cross-polarized version of previous photograph. Agglutinated foram composition visible: grain to 
grain contact of subrounded detrital quartz. Differentiated from tasmanites via scale and crystal structure (or lack there of) of silica. 
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Figure 70. Sample Depth: 9641.17 ft. 2.5x PPL - Middle1/3 of thin section, second calcareous flow event. More clay particles in second flow event 
relative to bottom 1/3 of thin section. Faint vertical, dendritic burrows (?) or potentially fluid escape or dewatering structures. Reverse grading 
visible – coarser towards top of event. Well rounded undifferentiated carbonate skeletal fragments. 
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Figure 71. Sample Depth: 9644.67 ft. Mineralogy – Carbonate flow: highly cemented, predominately calcite, 
but some random banding of dolomite – diagenetic front? OM present towards bottom of flow as 
discontinuous bands. No quartz. Small pyrite crystals  Non calcareous flow? – increased clay content, 
decreased grain size. Diagenetic replacement of fragments however matrix not cemented like flow below, 
no visible quartz although diagenetic replacement of detrital grains possible. Texture – Carbonate flow 
below visible – highly diagenetically altered – about 2 faint flows above main flow (scan entire TS to see), 
coarsening upwards, better sorting with no fines upwards, more prevalent dolomitization  Less calcareous 
flow on top? – micritic but definitely more arg. Clay present, more OM present Bioturbation: Faint 
bioturbation / horizontal burrows towards top above carbonate flow – different grain size inside burrow? 
Fauna – very diagenetically altered– difficult to pinpoint fauna but multichambered forams, high diversity, 
echinoderm spines, brachiopod shell fragments; other more clay rich flow? above has diagenetically alter 
clasts but brachiopod shells, echinoderm spines visible. 
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Figure 72. Sample Depth: 9644.67 ft. 2.5x XPL – Banded portion in upper half of thin section. Matrix composed of small abraded, subrounded 
calcareous lithoclasts, detrital quartz, and clays with ferroan dolomite replacive cement. Distorted discontinuous clay lamination in center. Small 
oxides prevalent. 
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Figure 73. Sample Depth: 9644.67 ft. 10x PPL – Magnified laminated upper portion of thin section – Carbonate (dolomite, calcite and ferroan 
dolomite) allochems and silt sized lithoclasts mud supported. Grain boundary dissolution extensive, difficult to identify certain allochems with minor 
exceptions – dolomitized 100 um foram in center. 
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Figure 74. Sample Depth: 9644.67 ft. 2.5x XPL – Contact between calcareous lower half of thin section and upper mixed siliciclastic and 
carbonate portion. Inclined discontinuous clay laminations. Small clay rip ups and oxides present to lower degree in bottom portion. Clays limiting 
the extent of matrix cement in upper portion. 
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Figure 75. Sample Depth: 9644.67 ft. 2.5x PPL – Extensive ferroan dolomite intergranular and replacive cement band / fluid front in blue stain 
along mixed carbonate (dolomite, calcite and ferroan dolomite) allochems. 
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Figure 76. Sample Depth: 9645.17 ft. Mineralogy – highly cemented, predominately dolomite interclast 
infill (blue), calcite intraclast are cement, lots of dissolution on shell fragment edges, hard to identify fauna 
and taxa, very little OM present but visible, no clays visible, very little to absent. Texture – Clay 
laminations visible macroscopically. Grains and skeletal fragments very difficult to distinguished – 
diagenetic overprint, randomly oriented grains and shell fragments, evidence of transport, well sorted. 
Bioturbation: none. Fauna – multichambered forams, high diversity, echinoderm spines, brachiopod shell 
fragments 
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Figure 77. Sample Depth: 9645.17 ft. 10x XPL – Heavy intergranular, equant sparry predominately ferroan dolomite cement. Allochem 
identification difficult due to heavy grain boundary dissolution. Multichapter forams and echinoderm spines visible. Small angular oxides and 
potential organic material. Minor amounts of mud – packstone to poorly washed packed biosparite 
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Figure 78. Sample Depth: 9645.17 ft. 20x XPL – Aragonite ooid (“maltese cross” / aragonite extinction pattern) with late rhombic intragranular 
ferroan dolomite cement in center – potentially long transport distance. Heavy grain edge dissolution and replacive cement – difficult to distinguish 
allochems. Calcite and ferroan dolomite cement. 
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Figure 79. Sample Depth: 9645.17 ft.  20x XPL – Calcite foram with sparry ferroan dolomite and calcite intragranular cement in chamber interior. 
Grain boundary dissolution pervasive. Heavily cemented, much of primary fabric destroyed besides partial allochem preservation. Amorphous 
oxides present, no distinct framboids visible.
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Figure 80. Sample Depth: 9647.84 ft. Mineralogy: volcanic ash converted to some clay mineral? Dolomite 
and calcite replacement, minor clay and OM, oxides, minor quartz component. Texture: banded clay/ 
volcanic ash – grain on grain contact due to alteration, silty interbeds. Bioturbation: potential horizontal 
burrows in non (ash?) banded areas, coarser grained on inside. From ash beds into silt rich finer grained 
material, vertical burrows?? Or fluid escape – unknown since both extending up and down. Fauna: 
radiolaria (diagenetically altered – ferroan dolomite mostly 
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Figure 81. Sample Depth: 9647.84 ft. 2.5x XPL – potentially vertical burrow or downward fluid escape structure(?) interpreted from upward 
direction of other vertical perturbation from band well-sorted fine-grained material (see previous full thin section scan). Cleaner, homogeneous 
grains in bands light tan bands. Darker brown bands consist of more heterogenous matrix – clay rip ups and high clay content in matrix. Ferroan 
dolomite replace radiolaria and other rounded skeletal fragment allochems. Partial isolated portions of homogeneous cleaner material, ~ 1000 um 
in width. 
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Figure 82. Sample Depth: 9647.84 ft. 20x XPL – Light brown homogenous cleaner band. Potentially alteration of some volcanic ashes or silts? 
Completely cemented with dolomite and ferroan dolomite. Partial grain boundary dissolution. 
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Figure 83. Sample Depth: 9647.84 ft. 10x XPL – Dark brown heterogeneous bands. Intergranular ferroan dolomite cement more pervasive. Clay 
and organic material in matrix. Interlocking ferroan dolomite replaced(?) grains. 
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Figure 84. Sample Depth: 9647.84 ft. 5x XPL – ~1000 um lobes (probably lithoclasts but potentially unidentifiable horizontal burrows) of cleaner 
homogenous grains (as visible in light brown bands) mixed in with dark brown clay and organic rich material. Ferroan dolomite replacive cement 
more apparent in darker brown bands. 
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Figure 85.Sample Depth: 9649.17 ft. Mineralogy: Ferroan dolomite (white), calcite (pink), clays (brown), 
and micrite cements. Bottom quarter mostly comprised of calcite and ferroan dolomite. Upper portion 
contains more clays and rounded and elongate peloids? Contact between Lower quarter and upper 
portion relatively diffuse. Upper portion grains exhibit planar to subplanar inclinations, Grain boundaries 
diffuse due to heavy cementation / diagenetic overprint.  
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Figure 86. Sample Depth: 9649.17 ft. 5x PPL – Lighter colored bottom ¼ of thin section. Heavy ferroan dolomite cementation (white) overprinting 
original fabric. Allochem grain boundaries diffuse and overprinted, difficult to discern allochem types and origins. Sub rounded to rounded peloids 
(?) present but not abundant. Random grain orientation.  
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Figure 87. Sample Depth: 9649.17 ft. 2.5x PPL – Darker colored upper ¾ of thin section. Echinoderm spines on right of image. Abundant possible 
peloids or rounded rip up clasts with organic matter and clay. Significantly more clay than bottom ¼ of thin section. 
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Figure 88. Sample Depth: 9649.17 ft. 10x PPL – Darker colored upper ¾ of thin section. Large diffuse grains, potentially peloids. Micritized internal 
structure and abundant organic matter. Calcite and ferroan dolomite interparticle cements. Allochems are readily distinguishable due to heavy 
diagenetic overprint. 
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Figure 89. Sample Depth: 9649.17 ft. 40x PPL – Darker colored upper ¾ of thin section. Approximately 110 um diameter radiolara with partially 
preserved intimal structure. Calcite mineralogy with some ferroan dolomite overprint. Diffuse edges due to cementation. Matrix overprinted with 
cement. Diffuse brown areas may reflect original peloids that were cemented over. Stippled internal texture of some allochems may reflect partial 
grain dissolution and internal porosity.   
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Figure 90. Sample Depth: 9653.17 ft. Mineralogy: Bottom portion: matrix micritic (or patchy carbonate 
cement?)  with very little clays, some OM discontinuous fragments calcareous shell fragments with grain 
dissolution, cement overprint. Partially dolomitize fragments. Top portion: clay matrix and dolomite lithic 
fragments and Tasmanites. Texture – changes from predominately calcareous with clay content present, 
abundant shell fragments to clay and OM dominant - somewhat sharp contact towards (non-erosive). For 
calcareous portion – calcareous shell fragments increase towards top, changes from random orientation 
to parallel laminations of fragments as you go upwards. Bioturbation: n/a Fauna: Top siliciclastic portion – 
Tasmanites Bottom portion – radiolara – internal structure obliterated by diagenetic overprint, brachiopod 
shell fragments (small) 
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Figure 91. Sample Depth: 9653.17 ft. 40x XPL – Dark brown top 1/5 of thin section. Small 150 um tasmanites with organic matter infill. Original 
silica algal wall partially replaced by ferroan dolomite (blue). Detrital silt-sized quartz and clay matrix. Abundant oxides. Ferroan dolomite 
replacement of detrital quartz grains. 
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Figure 92. Sample Depth: 9653.17 ft. 64x XPL – 64x magnification of matrix of top 1/5 of thin section. Fine silt sized detrital quartz and clays 
(elongate micas visible) both diagenetically altered. Ferroan dolomite cement. Black organic matter (?) visible. Diagenetically altered sponge 
spicules ~ 50 um. 



` 

 
 

277 

 
Figure 93. Sample Depth: 9653.17 ft. 2.5x PPL – Gradational contact between carbonate rich bottom 4/5th of slide and top siliciclastic rich 1/5th of 
slide. Coarser carbonate allochems exhibit faint laminations. Small cleaner silt sized horizontal burrows ~300 um in length. 
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Figure 94. Sample Depth: 9653.17 ft. 20x XPL – Bottom 4/5 of thin section. Replacive dolomite, ferroan dolomite, and calcite present. Allochems 
very difficult to identify due to grain boundary dissolution. Clay rip up clasts <50 um in length comprising 30% of matrix. Mostly carbonate allochem 
grain to grain contact. 
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Figure 95. Sample Depth: 9653.17 ft. 20x XPL – Ferroan dolomite replacement of 50 um radiolaria pervasive. Dolomite, calcite, and ferroan 
dolomite replacive cement. Ferroan and regular dolomite restricted to intragranular replacement. Heavy intergranular calcite cement with partial 
micritization of smaller allochems. 
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Figure 96. Sample Depth: 9657.17 ft. Mineralogy:  minimal calcite, mostly clay and detrital quartz, faint 
dolomite replacement, abundant OM. Texture: faint banding, prevalent laminations, normal grading 
(check orientation), OM predominantly. Bioturbation: horizontal burrows towards top. Fauna: agglutinated 
foram (abundant), Tasmanites (present) 
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Figure 97. Sample Depth: 9657.17 ft. 2.5x PPL  - Upper portion of thin section. Silty and clay rich matrix with some discontinuous organic rich 
laminae. Clean sub-horizontal burrow >1000 um long. Compacted tasmanites abundant. 
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Figure 98. Sample Depth: 9657.17 ft. 2.5x PPL – Agglutinated foram (500 um), elongated clay rip ups (~600 um),  and detrital quartz dominant in 
matrix before laminations. Thin laminations of detrital quartz indicating flow event. Clay content decreases and small oxides and detrital quartz 
increase after laminations. Band of reddish brown has more bimodal grain size distribution. Finer reddish mud more homogenous and generally 
less detrital quartz. 
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Figure 99. Sample Depth: 9657.17 ft. 40x PPL – Algal wall of ~250 Tasmanites partially destroyed / abscessed. Internal organic matter partially 
expelled. Abundant silt sized detrital quarts. Moderate amount of clays. Oxides present. Silty 100 um lithoclast above tasmanites. 
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Figure 100. Sample Depth: 9665.34 ft. Mineralogy:  minimal calcite, minimal dolomite replacement mostly clay and abundant detrital quartz, OM 
present. Texture: almost no lamination, some potential horizontal macroscopic burrows, may have removed OM. OM patchy but abundant, may 
not be evenly distributed due to selective bioturbation. Faint irregular bands of cleaner sediment – potential macroscopic horizontal burrows or soft 
sediment deformation of original banding. Mainly silt and clay sized particles. Isolated patch of clay rip ups and organics on center left indicate that 
area not entirely churned / bioturbated. Bioturbation: large but sparse horizontal burrows visible, visibly cleaner inside burrow – coarser grained 
and less OM inside - created patchy OM distribution. Fauna: radiolarian (present) Tasmanites (sparse/ few) 
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Figure 101. Sample Depth: 9665.34 ft. 40x XPL – Slightly compressed and deformed along bedding plane siliceous radiolaria in silt sized detrital 
quartz, clay fragments, and organics rich matrix. 
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Figure 102. Sample Depth: 9665.34 ft. 2.5x XPL – Partially ferroan dolomite replacement of scattered radiolaria. ~ 1000 um long clay fragments 
horizontally oriented.  Mostly detrital silt sized quartz and clay particles. 
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Figure 103. Sample Depth: 9673.17 ft. Mineralogy:  lots of calcite (shell fragments and in cement of lower flow), can see it as diagenetic overprint, 
lose a lot of texture, minimal to absent dolomite throughout. Texture: separated into flow events – lower an potentially upper. Lower flow event – 
calcareous, calcareous shell fragments (see fauna) in clay (not micrite?) matrix. Dissolution along edges of shell and lithic fragments – diagenetic 
calcite replacement prevalent, coarsening upwards flow – more chaotic and randomly oriented towards the bottom with more laminations and 
larger shell fragments towards top/ detrital (silt sized) quartz still present. Clay content decreasing upwards but more OM? Rare silica replacement 
of radiolaria .Upper section – silt sized, detrital quartz content increases significantly, although grain size decreases. Considerably less clay. Not 
laminations. Bioturbation: no visible bioturbation in lower flow, upper silty less calc – some silty small horizontal burrows potentially? Fauna: Lower 
carbonate flow: echinoderm spines (very abundant), benthic multichamber forams, brachiopod shell fragments, echinoderm spines?, siliceous 
radiolara (rare). Upper siliceous – calcareous shell fragments absent – agglutinated forams? 
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Figure 104. Sample Depth: 9673.17 ft. 2.5x PPL – Gradational contact between calcareous lower portion and silty siliciclastic upper portion. Lower 
calcareous portion has bimodal grain size distribution, more heterogeneous. Calcite allochems in clay and organic matter rich matrix. Very little 
detrital quartz or silt sized particles. Upper siliciclastic portion shows a relative decrease in clay and organic fraction and an increase in detrital 
quartz (very fine grained sand to silt sized). Tasmanites and agglutinated forams relatively abundant.  Vertical calcite vein exhibiting beef texture. 
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Figure 105. Sample Depth: 9673.17 ft. 20x XPL – Calcite vein in lower calcareous portion. Large (30 -100 um) interlocking equant calcite grains. 
Infilled and cemented fracture – evidence of diagenetic fluid. Matrix abundant in clays, opaque oxides, and diagenetically altered carbonate 
allochem: echinoderm spines (very abundant), and brachiopod shell fragments. Partial and complete ferroan dolomite replacement observed in 
purple and blue staining respectively. 
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Figure 106. Sample Depth: 9673.17 ft. 2.5x XPL – Gradational contact between lower carbonate rich portion and upper siliciclastic portion. 
Coarsening upwards  within carbonate rich portion – reverse grading. Carbonate rich portion with more clays and organics compared to upper 
siliciclastic 
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Figure 107. Sample Depth: 9673.17 ft. 20x XPL – Calcite multichamber foraminifera (~140 um) exhibiting grain boundary dissolution. Some 
remaining organic matter in internal skeletal structure with fibrous calcite infilling cement. Rounded and elongated cherty lithoclast (potentially 
compressed tasmanites ?) ~120 um. Abundant abraded undifferentiated skeletal fragments (20-50 um). Oxides and clays inhibiting grain to grain 
contact of carbonate allochems. 
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Figure 108. Sample Depth: 9673.17 ft. 20x XPL – Bivalve fragment, cross-sectional view of echinoderms spines. Extensive grain boundary 
dissolution. Partial intergranular calcite and silica cement? Intragranular replacive cement limited to calcite and ferroan dolomite. 20 um 
amalgamation of undifferentiated oxides. Clay rich in organic matter in discontinuous wavy planar laminations. 
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Figure 109. Sample Depth: 9673.17 ft. 20x XPL – Brachiopod fragments ~400 um long exhibiting grain boundary dissolution and partial 
micritization. Lower right brachiopod shell fragment shows partial ferroan dolomitization. Upper left brachiopod fragment shows partial micritization 
in center  (stippled brown texture) and only calcite replacement. Background matrix includes skeletal fragments such as cross-sectional cut of 
echinoderm spines <40 um and small less abundant radiolara (?) 
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Figure 110. Sample Depth: 9673.17 ft. 20x XPL – Silica and ferroan dolomite agglutinated foram (tasmanites?) ~300 um – aggregated detrital 
original and replaced quartz grains with organic material in center. Minor ferroan dolomite replacement. Silt sized detrital quartz particles. 



` 

 
 

295 

 
Figure 111. Sample Depth: 9673.17 ft. 10x PPL – Agglutinated foram >1000 um in detrital silt sized quartz matrix. Minor ferroan dolomite replace 
of some quartz grains. Less clay relative to silt. Abundant oxides. 
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Figure 112. Sample Depth: 9673.17 ft. 10x XPL – Agglutinated foram in previous figure in cross polarized light 0 showing previously aggregated 
detrital quartz crystals replaced my microcrystalline quartz cement. Abundant detrital quartz in matrix. 
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Figure 113. Sample Depth: 9681.17 ft. Mineralogy: calcite shell fragments in heavily clay matrix so minimal actual calcite, some dolomite 
replacement in both fractions. detrital quartz in separate event in minor clay. no calcite above. OM in detrital fraction. Texture: contact between 
faint calcareous flow event(s?) and more detrital event, with planar orientation.  Random orientation of grains shell fragments in calc flows with 
initial increase in reddish clay content then increasing detrital grains concentration (relative to clay fraction) towards detrital event. Calc flows have 
more clay, detrital portion has more detrital quartz and less clay, OM in detrital fraction, discontinuous OM lams. Bioturbation: potential small 
horizontal burrows in detrital fraction, none on calcareous flow events? Fauna: Mainly calc flows - echinoderm spines, brachiopod shells, 
agglutinated forams (siliceous still), well rounded lithic fragments, ooids, crinoid button? Heavy replacement and dissolution on edges – hard to 
identify. Detrital fraction – agglutinated foram 
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Figure 114. Sample Depth: 9681.17 ft. 2.5x XPL – Abundant small (~700 um) horizontal burrows in topmost portion of thin section. Silt sized 
detrital quartz and organics. 
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Figure 115. Sample Depth: 9681.17 ft. 10x XPL – Abundant horizontal burrows (?) or agglutinated forams of varied sizes <700 um long. Cleaner 
coarser grained quartz infill compared to matrix. Muddy matrix with organics and oxides. 
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Figure 116. Sample Depth: 9681.17 ft . 20x XPL – 20x magnification of silty matrix in bioturbated portion. Elongate micas present but minor matrix 
component. Detrital quartz dominant mineralogy. Oxides and organics abundant, No evident grain orientation, somewhat chaotic. Sparse 
carbonate allochems. 
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Figure 117. Sample Depth: 9681.17 ft  2.5x XPL – Description from top to bottom: (1) carbonate (mostly calcite) allochems in red brown clay 
matrix, bimodal grain size distribution (2) 0.05 cm band of detrital silt sized quarts almost entirely absent of clay (3) Reddish brown silt sized 
detrital quartz grains mixed with clay and oxides. Relatively more clays than (2) but less than (3). Agglutinated forams and horizontal burrows 
abundant 
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Figure 118. Sample Depth: 9681.17 ft.  2.5x. 10x PPL -10x magnification of carbonate and clay matrix below reddish brown band. Cross-section 
view of calcite echinoderm spine exhibiting partial ferroan dolomitization. Ferroan dolomite replacement of radiolara in top right quadrant. Clay 
dominated matrix with some small detrital quartz grains. 
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Figure 119. Sample Depth: 9681.17 ft.  10x PPL – Compressed and deformed agglutinated foram(?) approximately 400 um long. Allochems 
include echinoderm spine and bivalve fragments. Abraded carbonate lithoclasts are well rounded. Clay rich matrix with minimal detrital quartz. 
Partial ferroan dolomite replacement. 
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Figure 120. Sample Depth: 9681.17 ft.  10x XPL - 100 um brachiopod shell fragment exhibiting feather calcite texture. Individual detrital silt grains 
in agglutinated foram visible. Echinoderm spine (long and short axial cross-sectional view) and bivalve fragments. Minimal silt sized detrital quartz 
in matrix. 
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Figure 121. Sample Depth: 9683.17 ft. Mineralogy: calcite and clays matrix, minor silica replacement – no ferroan dolomite or regular dolomite 
visible, no visible detrital quartz. Texture: packstone, large skeletal fragments randomly oriented and subrounded, large lithic fragments of 
aggregated skeletal material, subrounded clay rip up clasts, high energy debris flow, differential compaction visible. Bioturbation: n/a. Fauna: large 
multichamber forams, echinoderm shell / plate fragments, echinoderm spines, brachiopods, bivalves, bryozoan, complex assemblage of large 
fossil fragments - diversity 



` 

 
 

306 

 
Figure 122. Sample Depth: 9683.17’ ft. 2.5x XPL – Brachiopod (bivalve?) (3500 um length) with partially preserved internal original feather texture. 
Partial replacive sparry calcite cement. Multichamber foram (1500 um) with sparry calcite cement infill in internal void. Partial micritization of 
internal foram structure. Large 2000 um lithoclast – small cross-sectional cut of echinoderm spine inside. Small (500 um) echinoderm shell 
fragment. Partial intergranular / inter-allochem cement between foram and dark gray lithoclast. Carbonate, mostly calcite mud, matrix with small 
well rounded carbonate clast. No visible ferroan dolomite. Very chaotic shell fragment orientation and no visible sediment size grading. 
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Figure 123. Sample Depth: 9683.17’ ft. 2.5x XPL – Brachiopod (bivalve?) (3500 um length) with partially preserved internal original feather texture. 
Partial replacive sparry calcite cement. Multichamber foram (1500 um) with sparry calcite cement infill in internal void. Partial micritization of 
internal foram structure. Large 2000 um lithoclast – small cross-sectional cut of echinoderm spine inside. Small (500 um) echinoderm shell 
fragment. Partial intergranular / inter-allochem cement between foram and dark gray lithoclast. Carbonate, mostly calcite mud, matrix with small 
well rounded carbonate clast. No visible ferroan dolomite. Very chaotic shell fragment orientation and no visible sediment size grading. 
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Figure 124. Sample Depth: 9683.17’ ft. 2.5x XPL – Large light gray (4000 um) angular lithoclast composed of well-rounded lithic fragments (200 – 
1100 um). Large well rounded black mud clast to immediate left. Small amorphous oxides. Well rounded carbonate silt sized grains in matrix with 
organic material. 



` 

 
 

309 

 
Figure 125. Sample Depth: 9683.17’ ft.  2.5x XPL – Calcite brachiopod shell fragment showing original corrugated / feathery texture. Allochem 
boundary showing sparry calcite replacement. Dark gray echinoderm fragment with uniform extinction pattern (crinoid stem fragment). 
Heterogeneous and compartmentalized carbonate matrix grain size: coarser between echinoderm and brachiopod, organic lean; finer and more 
organic rich to the right of brachiopod. 



` 

 
 

310 

 
Figure 126. Sample Depth: 9683.17’ ft. 2.5x PPL – (1) Large bryozoan (3000 um) fragment. Mud infill of internal void space. (2) Partially visible 
carbonate lithoclast comprised of angular lithic shards (3) Allochem of unknown origin showing heavily abraded spine edges or saw tooth grain 
boundary. Calcite twinning visible – uniform calcite replacement. Potential semicircle hallo of now replace internal structure, 
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Figure 127. Sample Depth: 9689.17 ft. Mineralogy: calcite dominant (over 80%), dolomite cement towards top ferro and regular, clay and OM 
together, although not abundant (~30%). Texture: carbonate turbidite, heavily cemented over, clay and OM in inclined lamination indicating flow 
direction? Poorly sorted, faunal diversity, large lithic fragments, dissolved edges. Bioturbation: none visible. Fauna: brachiopod shells (abundant), 
multichamber forams (present), radiolara (rare), deformed calcareous fragments (abundant) 
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Figure 128. Sample Depth: 9689.17 ft. 5x XPL – Grain boundary dissolution of well rounded large (600 um) calcite echinoderm fragment with 
continuous optical extinction. Crinoid, bivalve, brachiopod, and echinoderm shell fragments. Mostly replacive intragranular calcite cement with 
minor intergranular silica cement. Euhedral pyrite and other small amorphous oxides present. Isolated selective oxide replacement visible. Mottled 
texture showing partial micritization. Very well cemented with abundant grain boundary dissolution. Overall poorly sorted. 
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Figure 129. Sample Depth: 9689.17 ft. 2.5x XPL – 2.5x magnification of inclined discontinuous clay laminations composed of diffuse rip up clasts. 
Calcite lithoclasts and allochems well cemented compared to clay fragments. Moderately well sorted along laminations relative to more grainstone 
(devoid of mud) potions previously seen. 
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Figure 130. Sample Depth: 9689.17 ft. 10x XPL – 10x magnification of isolated clay rip up within clay lamination. Abundant organic matter inferred 
from oil staining. Mixed calcite and silica cement. Intra- vs inter-  granular cement specificity difficult to discern due to extensive grain boundary 
dissolution 
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Figure 131. Sample Depth: 9690.84 ft.  Mineralogy: within grain flow - calcite, no clay or OM visible, ferroan dolomite rhombs (not really 
replacement following skeletal fragments, just overprint?) quartz cement and replacement (some microcrystalline and chalcedony); above grain 
flow – clay and OM dominant, very little to absent detrital quartz, quartz present in agglutinated foram. Texture: white pore space near bottom 
indicating silica (microcrystalline) cement, patchy, mostly calcite cement towards top of low, grain to grain contact visible – grainstone, very well 
cemented, above grain flow, very clay rich, little detrital quartz, quartz present in agglutinated foram. Bioturbation: no bores or /burrows. Fauna: 
echinoderm shell fragments and spines, large forams, gastropods, brachiopods, bivalves, all skeletal material, no lithic fragments. 
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Figure 132. Sample Depth: 9690.84 ft. 2.5x PPL – Rounded and subrounded calcite allochems. (1) Replacive ferroan dolomite and overgrowth of 
previously dolomitized allochem. (2) Non ferroan dolomite allochem with edge replacive cement, most likely silica. (3) Complete silica overgrowth 
on silica replaced allochems (4) Partial silica replacement of previously carbonate allochems. Most likely multiple diagenetic fluid fronts recorded 
complex diagenetic history or fluid front. 
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Figure 133. Sample Depth: 9690.84 ft. 2.5x XPL – Abundant dark gray stippled with white intergranular and replacive intragranular microcrystalline 
quartz cement – (1) halos of previous grain boundaries prior to silica cement overprint visible. (2) Calcite grain exhibiting calcite cement 
overgrowth. (3) Indiscriminate replacive ferroan dolomite with individual rhombs approximately 200 um. (4) Intergranular pore filling ferroan 
dolomite cement (5) Original calcite allochems with intergranular non ferroan dolomite and calcite cement. 
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Figure 134. Sample Depth: 9690.84 ft. 10x PPL – Different carbonate forms all exhibit higher optical relief than surrounding silica / chert cement. 
Very well defined dolomite rhomb, mainly indiscriminate replacement. 
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Figure 135. Sample Depth: 9690.84 ft. 10x XPL – Multiple cement types and zonation visible. Mottled calcite grain interior with dolomitized rim. 
Non ferroan dolomite gray white rim high optical relief. Edge dolomite rhombohedrals small and poorly defined. Either replacive or showing 
syntaxial growth off of central calcite allochem. Replacive ferroan dolomite over dolomite overgrowth and randomly within intergranular cement. 
Large ferroan rhombs (> 200 um long). Microcrystalline quartz cement surrounding majority of carbonate allochem – note low birefringence and 
undulose extinction. 
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Figure 136. Sample Depth: 9690.84 ft. 2.5x PPL – Contact between calcareous portion and overlying argillaceous section. Lower calcareous 
portion, predominately calcite (red from staining), well cemented grainstone, lacking mud entirely. Randomly oriented moderately sorted sub 
angular carbonate allochems. Argillaceous portion above fine grained with minimal detrital quartz, primarily clays. White 200 um long tasmanites. 
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Figure 137. Sample Depth: 9697.17 ft.  Mineralogy:  little dolomitization, calcareous lithic and shell fragments, clay matrix, small detrital quartz 
grains (very rarely in matrix), microcrystalline quartz abundant in chert in fossil fragments, large clay and micrite lithic fragment present. Texture: 
large rounded lithic fragments – visible intraclasts – well rounded, longer transport distance?? Fine grained matrix, matrix dominated, clasts and 
fragments rarely have grain contact. No bioturbation. Allochems- bryozoan, echinoderms, brachiopods, large multi-chamber forams (diverse 
assemblage), indistinguishable fossil fragments 
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Figure 138. Sample Depth: 9697.17 ft.  10x XPL -  Longitudinal section of calcite pseudopunctate (small 30 um circular openings for spines) 
brachiopod shell fragment (~250 um wide and >300 um). Partial microcrystalline replacive cement aligning to original feathery internal stricture. 
150 um long bryozoa fragment with some silica cement along edge, internally void cement primarily equant sparry calcite. Elongate subangular to 
spherical subrounded carbonate allochems. Matrix primarily clay rich with minor detrital quartz fraction. 
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Figure 139. Sample Depth: 9697.17 ft.  20x XPL – 20x magnification of bryozoan from previous slide: Bryozoan with calcite infill in void space. 
Original calcite mesh structure preserved. (1) Partial organic matter infill of void space with surrounding silica cement (2) Partial silica overgrowth 
and allochem coating. 
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Figure 140. Sample Depth: 9697.17 ft. 5x XPL – 700 um well rounded calcite echinoderm fragment, potentially abraded spine. Radiating mesh 
texture preserved. Matrix composed of mainly clay size particles with minor mix of rounded fine silt sized undifferentiated carbonate clasts and 
detrital quartz. 
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Figure 141. Sample Depth: 9697.17 ft.  2.5x XPL – Contact between subrounded carbonate fragment lithoclast composed of clay and carbonate 
skeletal fragments. Organic material in clay fragments of lithoclast more so than matrix. Matrix coarser grained with more detrital quartz than clay 
fragments within lithoclasts. Partial micritization of carbonate allochems within lithoclast visible – mottled texture. 
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Figure 142. Sample Depth: 9697.17 ft. 2.5x XPL – (non-stained half of thin section) (1) Large multichamber foram (1000 um long) with high 
birefringence calcite chamber infill. Clay matrix with silt sized allochthonous carbonate and detrital quartz clasts. (2) Shattered multi-chamber 
foram with sparry calcite infill – indicating high energy environment. (3) Echinoderm spine fragment 
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Appendix C. Inorganic Geochemistry  

Major and Minor Elements at TOC Data Points – Major elements expressed in weight percent % 
 

DEPTH 
(FT.) 

AL% CA% FE% K% MG% MN% NA% P% SI% S% TOC S1 S2 S3 TMAX HI OI 

9539.17 13.79 1.69 4.80 4.97 1.42 0.06 0.92 0.08 67.65 2.55 2.45 2.13 5.42 0.35 450 221.13 14.28 

9543.17 10.50 2.35 5.33 3.80 1.88 0.06 0.78 0.19 66.63 6.69 2.84 3.41 7.24 0.24 449 255.02 8.45 

9547.17 9.98 3.41 4.24 3.65 0.57 0.06 0.94 0.12 69.32 6.09 3.48 4.60 9.34 0.19 451 268.47 5.46 

9551.17 0.00 11.88 0.72 0.00 2.11 0.02 0.00 76.56 8.70 0.00 3.79 2.03 3.42 0.44 445 90.29 11.62 

9565.17 8.85 2.26 3.42 3.08 1.03 0.06 0.96 0.10 76.38 2.48 3.80 2.32 3.37 0.31 445 88.61 8.15 

9569.50 12.40 2.85 5.04 4.28 0.60 0.06 1.13 0.09 68.78 2.81 3.83 3.22 8.40 0.50 450 219.21 13.05 

9573.17 10.96 1.55 4.11 3.96 1.06 0.06 0.95 0.10 72.64 2.62 1.76 1.79 3.58 0.39 448 203.06 22.12 

9577.17 10.60 0.64 4.04 3.89 1.09 0.06 0.87 0.10 74.19 2.72 2.69 2.22 4.53 0.33 449 168.40 12.27 

9581.17 11.14 1.95 5.15 3.96 1.76 0.05 0.77 0.12 69.54 3.72 3.43 4.70 9.43 0.28 450 275.33 8.18 

9585.17 10.46 2.28 4.19 3.75 1.81 0.06 0.79 0.11 71.89 2.82 2.09 1.68 3.59 0.41 445 171.85 19.63 

9589.17 18.58 5.89 8.66 6.45 2.47 0.05 0.90 0.28 48.29 6.56 1.99 2.70 6.27 0.36 450 314.92 18.08 

9593.17 8.99 6.56 6.42 2.94 2.71 0.06 0.66 0.15 67.06 2.81 3.29 2.08 5.69 0.30 452 172.74 9.11 

9597.17 11.47 1.56 5.49 4.30 1.40 0.06 0.87 0.09 69.74 3.31 3.25 1.56 3.23 0.30 447 99.26 9.22 

9601.33 6.19 25.48 4.51 1.60 2.51 0.05 0.50 0.36 54.57 3.24 3.24 3.43 7.34 0.18 453 226.54 5.56 

9605.17 1.48 72.42 4.31 0.30 11.87 0.06 0.58 0.00 7.90 0.73 1.02 1.00 1.86 0.45 445 183.07 44.29 

9609.17 11.13 2.55 4.85 3.94 1.11 0.06 0.78 0.12 68.86 4.88 3.02 2.35 6.47 0.52 451 214.24 17.22 

9613.17 1.91 58.06 10.63 0.45 16.55 0.10 0.83 0.00 10.12 0.75 3.32 2.66 7.60 0.70 451 229.12 21.10 

9617.17 9.17 3.54 4.79 3.32 1.59 0.06 0.85 0.12 72.41 2.61 2.24 1.86 3.94 0.31 449 175.81 13.83 

9621.17 1.42 55.75 3.36 0.16 3.11 0.05 0.45 0.44 32.16 2.75 0.64             

9625.17 14.05 1.05 5.77 5.12 0.83 0.06 1.10 0.07 66.35 3.52 2.47 2.00 4.73 0.32 449 191.89 12.98 

9629.17 11.04 4.42 6.29 4.10 0.00 0.06 1.26 0.09 66.44 4.44 1.39 0.94 1.73 0.39 448 124.10 27.98 

9631.17 11.46 2.96 6.35 4.00 1.76 0.05 0.71 0.14 65.37 5.38 1.81 1.03 2.45 0.37 449 135.43 20.45 

9637.34 14.86 2.99 5.93 5.45 1.85 0.05 0.79 0.14 59.74 6.22 3.13 1.63 4.67 0.55 451 149.11 17.56 

9641.17 9.93 3.20 4.57 3.58 1.86 0.06 0.79 0.17 67.69 6.37 3.76 3.34 9.29 0.24 453 247.40 6.39 

9645.17 0.12 72.01 6.11 0.03 8.62 0.04 0.54 0.00 11.78 0.54 0.46             

9649.17 0.00 78.33 2.75 0.04 5.71 0.08 0.76 0.00 11.76 0.35 0.38             

9653.17 10.74 4.29 4.73 3.98 2.19 0.05 0.46 0.22 61.50 10.27 1.16 0.88 1.73 0.23 450 149.27 19.84 

9657.17 5.35 11.08 5.26 2.53 2.87 0.05 0.36 7.44 58.76 5.21 3.53 2.59 6.23 0.32 452 176.59 9.07 

9661.17 10.48 3.05 3.82 3.68 1.93 0.07 0.70 0.16 68.11 6.47 2.64 2.28 5.52 0.19 452 208.77 7.19 
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9665.34 9.17 8.42 4.01 3.39 1.12 0.07 0.94 0.12 67.84 3.39 2.60 1.63 3.94 0.55 450 151.83 21.19 

9669.00 2.29 65.05 2.83 0.48 3.20 0.05 0.42 0.17 23.98 1.09 1.40 1.14 2.28 0.35 449 163.21 25.05 

9673.17 10.61 2.69 4.42 3.50 1.11 0.06 0.88 0.12 71.10 3.73 2.76 2.10 5.30 0.39 449 191.82 14.12 

9677.17 9.54 8.40 4.57 3.01 1.52 0.06 0.86 0.20 66.96 3.25 3.40 3.02 8.12 0.38 451 239.10 11.19 

9681.17 11.93 5.39 5.48 3.99 1.90 0.06 0.87 0.14 63.92 4.34 3.22 2.83 8.39 0.44 448 260.88 13.68 

9685.17 11.71 3.61 4.87 3.86 0.75 0.06 0.93 0.12 67.30 4.92 2.69 2.27 6.55 0.47 450 243.95 17.50 

9689.17 9.23 19.69 5.87 2.90 2.00 0.06 0.89 0.19 55.31 2.41 2.68 1.73 4.54 0.58 453 169.47 21.65 

9693.17 7.54 27.28 4.19 2.01 2.63 0.05 0.64 0.31 51.18 2.87 2.24 1.86 3.85 0.38 449 172.11 16.99 

9697.17 7.05 13.29 4.00 2.02 1.13 0.07 0.99 0.22 68.03 1.98 2.50 2.09 4.15 0.56 445 165.80 22.37 

 
 
  
 
 
Trace Element Concentrations at TOC Data Points – Trace elements expressed in parts per million (ppm) 
 
  

DEPTH 

(FT.) 

CO CR CU MO NI RB SR TH U V ZN ZR TOC S1 S2 S3 TMAX HI OI 

9539.17 10.35 221.21 51.64 22.82 161.31 122.65 105.81 7.98 0.00 84.80 348.21 112.50 2.45 2.13 5.42 0.35 450 221.13 14.28 

9543.17 12.51 126.60 42.04 21.83 123.56 105.15 135.58 7.69 1.91 68.83 170.65 112.75 2.84 3.41 7.24 0.24 449 255.02 8.45 

9547.17 10.54 62.90 23.17 19.75 91.43 102.14 141.73 7.46 7.29 78.37 59.29 116.61 3.48 4.60 9.34 0.19 451 268.47 5.46 

9551.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 88.77 0.00 0.00 3.79 2.03 3.42 0.44 445 90.29 11.62 

9565.17 9.62 39.64 28.86 19.98 80.99 99.32 143.17 7.84 0.00 71.81 178.49 104.65 3.80 2.32 3.37 0.31 445 88.61 8.15 

9569.50 11.57 96.96 17.70 17.90 82.70 108.92 150.31 8.12 2.41 36.86 34.09 146.58 3.83 3.22 8.40 0.50 450 219.21 13.05 

9573.17 10.52 92.73 7.93 16.39 68.19 111.53 148.86 8.05 9.15 58.52 27.96 146.36 1.76 1.79 3.58 0.39 448 203.06 22.12 

9577.17 9.87 181.65 21.29 28.93 105.16 102.23 99.28 7.40 1.20 73.16 142.48 110.06 2.69 2.22 4.53 0.33 449 168.40 12.27 

9581.17 10.42 169.16 13.61 27.53 92.88 104.07 110.18 6.87 0.00 122.01 78.18 107.15 3.43 4.70 9.43 0.28 450 275.33 8.18 

9585.17 10.53 142.59 11.38 27.49 84.29 93.41 136.69 6.47 0.00 108.99 44.56 98.20 2.09 1.68 3.59 0.41 445 171.85 19.63 

9589.17 20.20 189.67 20.53 10.57 62.95 166.92 423.53 11.56 6.28 0.00 48.89 91.08 1.99 2.70 6.27 0.36 450 314.92 18.08 

9593.17 15.53 122.36 8.70 19.02 69.83 78.36 225.10 5.99 0.00 97.91 49.63 101.08 3.29 2.08 5.69 0.30 452 172.74 9.11 

9597.17 10.75 207.34 16.48 22.05 107.58 124.90 135.86 8.65 6.47 87.69 144.67 99.90 3.25 1.56 3.23 0.30 447 99.26 9.22 

9601.33 4.77 157.69 12.30 12.83 78.31 49.39 592.71 3.91 1.15 122.31 84.36 40.42 3.24 3.43 7.34 0.18 453 226.54 5.56 

9605.17 5.59 33.13 0.00 0.00 23.69 9.94 862.14 2.46 8.38 64.01 0.00 19.18 1.02 1.00 1.86 0.45 445 183.07 44.29 

9609.17 14.41 86.09 27.82 25.34 120.70 112.01 131.52 7.80 6.13 104.11 204.51 108.83 3.02 2.35 6.47 0.52 451 214.24 17.22 

9613.17 7.19 78.34 0.00 0.00 13.71 3.77 574.45 2.48 0.00 102.72 3.45 26.66 3.32 2.66 7.60 0.70 451 229.12 21.10 

9617.17 9.39 61.54 23.20 19.62 68.88 94.68 188.62 7.39 4.72 113.92 61.53 105.84 2.24 1.86 3.94 0.31 449 175.81 13.83 
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9621.17 6.92 45.58 25.88 0.00 36.11 12.30 2058.94 2.67 25.56 119.77 222.19 2.99 0.64             

9625.17 14.26 153.54 32.18 25.67 126.61 135.12 114.68 9.07 5.48 60.09 195.54 112.05 2.47 2.00 4.73 0.32 449 191.89 12.98 

9629.17 14.62 177.58 26.55 27.57 106.75 107.75 127.21 7.36 4.46 65.42 110.34 94.86 1.39 0.94 1.73 0.39 448 124.10 27.98 

9631.17 15.48 114.79 15.56 27.60 79.80 106.18 148.80 7.27 1.63 72.86 67.77 105.33 1.81 1.03 2.45 0.37 449 135.43 20.45 

9637.34 13.90 90.09 34.86 19.90 120.17 159.60 225.47 11.28 2.59 19.71 167.14 120.24 3.13 1.63 4.67 0.55 451 149.11 17.56 

9641.17 10.92 54.02 43.74 19.82 74.41 108.70 198.64 7.84 6.27 56.68 232.96 109.68 3.76 3.34 9.29 0.24 453 247.40 6.39 

9645.17 5.53 63.87 0.00 0.00 13.92 0.00 1198.37 2.03 4.93 90.08 0.00 0.90 0.46             

9649.17 6.46 0.00 0.00 0.00 12.16 2.71 1218.29 2.01 14.20 73.54 0.00 6.54 0.38             

9653.17 11.68 95.44 33.14 22.35 114.39 123.00 209.58 9.36 0.00 67.43 181.06 98.30 1.16 0.88 1.73 0.23 450 149.27 19.84 

9657.17 17.44 113.83 0.00 36.06 501.01 99.87 121.53 6.58 0.00 98.40 250.02 70.39 3.53 2.59 6.23 0.32 452 176.59 9.07 

9661.17 10.26 78.47 42.07 25.29 99.12 115.39 204.62 8.49 8.01 77.13 153.96 96.73 2.64 2.28 5.52 0.19 452 208.77 7.19 

9665.34 9.02 49.07 26.00 10.68 89.12 79.72 801.96 6.86 13.18 92.77 138.33 74.65 2.60 1.63 3.94 0.55 450 151.83 21.19 

9669.00 6.16 73.00 12.18 0.00 37.21 10.19 819.94 2.92 5.15 90.94 57.11 22.05 1.40 1.14 2.28 0.35 449 163.21 25.05 

9673.17 13.13 85.56 8.08 22.83 99.20 101.94 225.29 7.77 0.00 87.58 71.24 125.61 2.76 2.10 5.30 0.39 449 191.82 14.12 

9677.17 10.94 61.11 26.11 19.00 111.54 82.81 309.34 6.12 5.80 91.84 124.98 98.76 3.40 3.02 8.12 0.38 451 239.10 11.19 

9681.17 11.11 202.58 32.83 18.46 129.79 93.36 302.51 6.90 1.35 126.83 170.46 95.97 3.22 2.83 8.39 0.44 448 260.88 13.68 

9685.17 13.14 147.17 38.27 21.67 127.69 117.25 147.92 8.34 9.70 84.20 209.96 113.08 2.69 2.27 6.55 0.47 450 243.95 17.50 

9689.17 13.07 95.75 16.63 11.01 68.60 85.30 338.16 6.74 11.31 92.66 88.05 73.54 2.68 1.73 4.54 0.58 453 169.47 21.65 

9693.17 9.88 83.47 18.16 10.19 71.53 60.25 428.91 5.30 4.57 80.65 73.76 73.79 2.24 1.86 3.85 0.38 449 172.11 16.99 

9697.17 6.32 89.12 11.92 17.03 70.25 61.11 365.64 5.36 11.37 127.37 86.15 69.85 2.50 2.09 4.15 0.56 445 165.80 22.37 
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Appendix D. Biomarker fractions, m/z 191 and 217 chromatograms 

Sample Depth (ft.) TOC 
depth 
(ft.) 

TOC 
(wt. 
%) 

Rock 
(g) 

Total 
Extract 
(mg) 

Maltene 
(% of 
total 

extract) 

Asphaltene 
(% of total 

extract) 

Saturate 
(% of 

maltene) 

Aromatic 
(% of 

maltene) 

Polars 
(% of 

malten
e) Top Bottom 

9543.00 9543.33 9543.10 2.84 27.1 165.85 83.78 16.22 67.59 21.04 11.36 

9569.33 9569.67 9569.50 3.83 28.2 185.24 82.86 17.14 64.04 24.54 11.41 

9577.00 9577.33 9577.10 2.69 60.0 497.29 77.48 22.52 66.57 21.83 11.60 

9585.00 9585.50 9585.20 2.09 36.4 269.97 85.68 14.32 61.27 27.18 11.55 

9593.08 9593.25 9593.20 3.29 32.6 233.15 80.82 19.18 59.04 27.15 13.81 

9601.36 9601.67 9601.40 3.24 13.0 94.16 85.43 14.57 61.17 28.46 10.38 

9609.00 9609.17 9609.10 3.02 34.8 284.28 83.78 16.22 61.21 25.52 13.27 

9617.00 9617.33 9617.10 2.24 55.5 384.57 89.88 10.12 63.63 25.25 11.12 

9625.00 9625.17 9625.10 2.47 43.9 371.14 80.67 19.33 57.82 29.58 12.60 

9633.00 9633.33 9633.10 1.81 43.0 242.84 80.29 19.71 64.38 22.94 12.68 

9641.00 9641.33 9641.10 3.76 54.3 273.58 91.14 8.86 58.81 25.87 15.31 

9645.00 9645.33 9645.20 0.46 38.5 31.87 65.52 34.48 65.63 23.85 10.52 

9653.00 9653.33 9653.30 1.16 42.6 44.62 78.05 21.95 56.38 29.65 13.97 

9657.00 9657.33 9657.15 3.53 36.4 290.81 82.07 17.93 56.67 30.73 12.60 

9665.00 9665.42 9665.20 2.60 36.1 236.63 85.87 14.13 60.93 27.32 11.75 
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9673.20 9673.67 9673.20 2.76 17.5 127.67 84.52 15.48 63.00 25.75 11.25 

9681.00 9681.25 9681.10 3.22 47.3 311.82 74.40 25.60 60.73 28.37 10.89 

9689.00 9689.50 9689.10 2.68 24.2 19.01 69.93 30.07 65.30 25.07 9.63 

9697.17 9697.42 9697.20 2.50 36.9 274.09 87.78 12.22 64.35 25.53 10.12 



` 

 
 

332 

m/z 191 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

9543.00 – 9543.33 ft. 

9569.33 – 9569.67 ft. 

9577.00 – 9569.67 ft. 



` 
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m/z 191 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

9585.00 – 9585.50 ft. 

9593.08 – 9593.25 ft. 

9601.36 – 9601.67 ft. 



` 
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m/z 191 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9609.00 – 9609.17 ft. 

9617.00 – 9617.33 ft. 

9625.00 – 9625.17 ft. 



` 
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m/z 191 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9633.00 – 9633.33 ft. 

9641.00 – 9641.33 ft. 

9645.00 – 9645.33 ft. 



` 
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m/z 191 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9653.00 – 9653.33 ft. 

9657.00 – 9657.33 ft. 

9665.00 – 9653.33 ft. 



` 
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m/z 191 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9673.20 – 9673.67 ft. 

9681.00 – 9681.25 ft. 

9689.00 – 9680.50 ft. 



` 
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m/z 191 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9697.17 – 9697.42 ft. 



` 
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m/z 217 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9543.00 – 9543.33 ft. 

9569.33 – 9569.67 ft. 

9577.00 – 9569.67 ft. 

  



` 
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m/z 217 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9585.00 – 9585.50 ft. 

9593.08 – 9593.25 ft. 

9601.36 – 9601.67 ft. 



` 
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m/z 217 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

9609.00 – 9609.17 ft. 

9617.00 – 9617.33 ft. 

9625.00 – 9625.17 ft. 



` 
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m/z 217 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9633.00 – 9633.33 ft. 

9641.00 – 9641.33 ft. 

9645.00 – 9645.33 ft. 



` 
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m/z 217 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9665.00 – 9653.33 ft. 

9657.00 – 9657.33 ft. 

9653.00 – 9653.33 ft. 



` 
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m/z 217 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9689.00 – 9680.50 ft. 

9681.00 – 9681.25 ft. 

9673.20 – 9673.67 ft. 



` 
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m/z 217 of branched and cyclic saturate fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9697.17 – 9697.42 ft. 


