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Abstract 

This research evaluates the impact of decision making and uncertainty associated with production 

forecast in shale oil and gas wells; over 11000 wells completed in the Barnett & Haynesville plays 

and more than 2000 wells from the Permian Basin. Existing studies show that unconventional 

reservoirs have complex reservoir characteristics making traditional methods for ultimate recovery 

estimation insufficient. Based on these limitations, uncertainty is increased during the estimation 

of reservoir properties, reserve quantification and, evaluation of economic viability. Thus, it is 

necessary to determine and recommend favorable conditions in which these reservoirs are 

developed.  

In this study, cumulative production is predicted using four different decline curve analysis 

(DCA) − power law exponential, stretched exponential, extended exponential and Duong models. 

A comparison between the predicted cumulative production from the models using a subset of 

historical data (0-3months) and actual production data observed over the same time period 

determines the accuracy of DCA’s; repeating the evaluation for subsequent time intervals (0-6 

months, 0-9 months,..) provides a basis to monitor the performance of each DCA with time. 

Moreover, the best predictive models as a combination of DCA’s predictions is determined via 

multivariate regression. Afterwards, uncertainty due to prediction errors excluding any bias is 

estimated and expected disappointment (ED) is calculated using probability density function on 

the results obtained. 

Using these results, uncertainty is estimated from the plot of ED versus time for all wells 

considered. ED drops for wells having a longer production history as more data are used for 

estimation. Also, the surprise/disappointment an operator experiences when using various DCA 

methods is estimated for each scenario. However, it appears that power law exponential serves as 
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the lower boundary of the forecast in the formations considered, whilst the upper boundary 

switches between stretched exponential (SE) and Duong (DNG) method. The extend exponential 

DCA model was found to demonstrate an erratic behavior crossing over actual trends multiple 

times with time. 

In conclusion, profitability zones for producing oil in the Permian basin are defined 

implicitly based on drilling and completion practices which paves the path to determine the “sweet 

spot” via optimization of fracture spacing and horizontal length in the wells. Also, it can be inferred 

that the decline rate during production is somewhat related to pore connectivity and it could be a 

good qualitative indicator of wells in which EOR might be successful although it needs to be 

investigated further. 

 The outcome of this research work helps improve the industry’s take on uncertainty 

analysis in production forecast, especially the concept of expected disappointment/pleasant 

surprise. This study suggests that effects of bias and ED due to decision making can be much 

greater than what has often regarded; ranging from 0.41 to 0.86, which can change the performance 

evaluation of shales in terms of economic feasibility. 
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Chapter 1: Introduction 

Importance of Research 

Existing studies show that unconventional oil and gas reservoirs have complex reservoir 

characteristics making traditional methods for ultimate recovery estimation insufficient. Due to 

these reservoir complexities, uncertainty is increased during the estimation of reservoir properties, 

reserve quantification and, evaluation of economic viability. It is therefore necessary to determine 

and recommend favorable conditions in which these reservoirs are developed. The motivation of 

which owes primarily to the challenge posed by existent reservoir production forecast uncertainties 

and volume prediction inaccuracies, thus resulting in sub-par field development and planning 

which are the key drivers of economics in the overall oil and gas production process. 

Irrespective of the perception of profitable income in the petroleum industry, various 

researchers have noticed that the oil and gas industry is performing routinely less than its 

expectation. This poor performance is generally ascribed to inferior project evaluation and 

selection due to lingering bias (McVay & Dossary, 2014). Knowing the normal rule for choosing 

between alternatives in a decision-making situation is to select the option with the maximum 

estimated value. Due to uncertainty, choosing the maximum induces a form of bias – a systematic 

bias which when repeated during decision making reduces the value of the estimated expected 

values obtained. Although some instances of this behavior: post-decision surprise, the optimizer’s 

curse, inevitable disappointment have been reported, its relevance in oil and gas decision making 

situations is not well established (Begg & Bratvold, 2008). 

Disappointment is a psychological reaction to an outcome that does not match up to 

expectation. The greater the disparity, the greater the disappointment as seen with optimistic 
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models and/or scenarios. If the alternative occurs, then there is an elation leading to pleasant 

surprise which occurs when the outcome exceeds expectations. 

Bell (1985) considered the effect of disappointment and elation on decision making under 

uncertainty and found that if an expected incentive is not attained, a decision maker is 

disappointed. Likewise, if an unexpected incentive is gained there would be an elation “pleasant 

surprise”. Hence, the satisfaction achieved is dependent on prior expectation which is usually made 

by the decision maker. The higher the expectations, the higher the likelihood of disappointment. 

This begs the question on how to quantify risk aversion and affinity i.e. how 

conservative/pessimistic or optimistic/over-confident a model is. 

Current methods for risk assessment try to allow for variability and uncertainty by using 

fixed safety factors as seen in different models formulated over the years. However, this fails to 

give a complete description of the full range of the possible risks or quantify the uncertainty 

associated with it, as seen in the oil and gas business. Also, it is difficult to decide how big the 

safety factors should be. This thesis focuses on eliminating disappointment in order to account for 

these uncertainties, and the best way to do this is through a process of tracking probabilistic 

predictions and comparing how actual performance turns out relative to the predictions made, and 

then adjust subsequent forecasts by using this calibration information (Capen, 1976). This would 

provide a better basis for making decisions about risks in producing or not producing a well 

because the full range of possible outcomes can be considered.  

Hypothesis 

This work hypothesizes that inclusion of uncertainty analysis into production forecast makes the 

outcome of decline curve analysis more objective; in other words, utilizing the disappointment 

index can help understand how the dynamics of the prediction error evolves.  
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Research Objectives 

This work aims to integrate concepts from economics, psychology, and petroleum engineering to 

create a resultant concept - expected disappointment, that adds objectivity to decline curve analysis 

(DCA) which is naturally a subjective technique used in oil and gas reserve estimation. 

The objectives for this study are to:  

• Predict the production performance using various DCA methods; 

• Identify the most optimistic and the most pessimistic method; 

• Introduce objectivity to production forecasting models- decline curve analysis which is a 

naturally subjective technique; 

• Evaluate the effect of bias due to decision making on EUR estimation; 

• Incorporate the concept of expected disappointment/pleasant surprise into production 

forecasting models. 
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Chapter 2: Literature Review 

Decline curve analysis (DCA) models in simple terms are regressions for historical production 

data. This is one of the most commonly used techniques in the petroleum industry to estimate 

ultimate recovery (EUR) for producing wells. This section provides an overview of classical 

decline curve analysis as a means of forecasting production data in conventional plays and modern 

techniques developed specifically to address production forecasting challenges in unconventional 

reservoir systems. 

Over the years, there exist many production estimation techniques including several 

variations of decline curve analysis (DCA), analytical and numerical simulation methods. Each 

one of these methods has its own advantages and disadvantages, but only the DCA methods can 

use available production data to forecast quickly and, to some extent, accurately. 

In conventional reservoirs, the Arps (1945) model synthesizes previous work by defining 

exponential and hyperbolic declines in mathematical terms for both rate versus time and rate versus 

cumulative production expressions using the loss ratio concept. The rate versus time exponential 

decline is given as: 

 

𝑞(𝑡) = 𝑞𝑖𝑒𝑥𝑝[−𝐷𝑖𝑡] …………………………………………………………………(1) 

 

where 𝑞𝑖 is the initial flowrate and 𝐷𝑖 is the initial nominal decline rate. The hyperbolic decline is 

given as: 
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𝑞(𝑡) =
𝑞𝑖

(1+𝑏𝐷𝑖𝑡)1/𝑏 …………………………………………………………………(2)  

     

where 𝑏 is the hyperbolic decline exponent ranging between 0 and 1. If 𝑏 = 1 in Eq. 2 then, the 

expression for the harmonic decline is expressed as: 

 

𝑞(𝑡) =
𝑞𝑖

(1+𝐷𝑖𝑡)
  …………………………………………………………………(3) 

 

The Arps model assumes that for a flowing well the bottomhole pressure and the skin factor 

is constant, and the flow regime is boundary dominated flow. Although the Arps model is simple 

and fast, it fails to accurately fit the decline curve of unconventional reservoirs and predict the 

estimated ultimate recovery (EUR) as it overestimates the EUR for shales because it assumes that 

a boundary dominated flow regime exists. Knowing that most shale wells take a long time to reach 

the boundary dominated flow regime, the Arps model cannot be applied as is without significant 

modifications. 

 Based on these limitations, various models such as; power law exponential, stretched 

exponential, extended exponential etc. have been developed for unconventional reservoirs. 

However, failure to choose the best fit DCA method in each shale play for a particular period may 

lead to wrong EUR estimation which increases technical uncertainty and in turn, greatly affects 

profitability. 

Lewis & Beal (1918) recognized the importance of developing a dependable and easily 

applied forecasting tool for estimating reserves for a field. The authors observed that the 
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percentage decline rate was constant when plotted versus time and if plotted on Cartesian and 

logarithmic coordinates, power-law and straight-line trends were exhibited respectively.  

Cutler (1924) later provided an extensive overview of production forecasting techniques 

which was similar to Lewis & Beal, he observed that the percentage decline rate was often variable 

which contrasted with their findings. Thus, concluding that the decline rate could be modelled by 

a hyperbolic mathematical equation using a trial and error method on production data until a 

straight-line trend is established. 

Johnson & Bollens (1927) introduced the concept of the loss-ratio and its derivative. They 

were the first authors to give the observations found by prior researchers a mathematical context 

as shown below: 

 

1

𝐷(𝑡)
= − 

𝑞(𝑡)

𝑑𝑞(𝑡)/𝑑𝑡
 …………………………………………………………………(4)  

      

where 
1

𝐷(𝑡)
 is the loss ratio, 𝑞(𝑡) is the flowrate, and 𝑡 is the production time. By extension, the 

derivative of the loss ratio is defined as: 

 

𝑏(𝑡) =
𝑑

𝑑𝑡
[

1

𝐷(𝑡)
] = −

𝑑

𝑑𝑡
[

𝑞(𝑡)

𝑑𝑞(𝑡)/𝑑𝑡
]      ……………………………………………………(5)  

    

where 𝑏 is the derivative of the loss ratio. 

The revelations from Johnson & Bollens (1927) provided the foundation for the classical 

DCA model proposed by Arps (1945) as seen in Eq. 1, 2, 3.  Based on these findings, various new 

models were proposed to account for the Arps’ limitation as seen in Maley (1985) which 
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demonstrated that a b value greater than unity could be obtained as it fits production data from 

tight gas well. This observation while empirical, was the first to address the applicability of 

classical decline curve analysis for unconventional reservoirs. The author noted that due to the 

unbounded nature of the mathematical model, unreasonable estimates of ultimate recovery (EUR) 

could be obtained.  

Rushing et al. (2007) carried out further studies on the forecasting of production data in 

tight sandstone reservoirs where it was observed that extrapolating rates during the transient flow 

using an unbounded hyperbolic equation (b>1 from the Arps equation) significantly overestimated 

the EUR. These findings were further explained in Lee & Sidle (2010) which discussed the 

significance of the observations and how it relates to reserve estimation.  

Recently, Ilk et al (2008, 2009) derived the power law exponential (PLE) decline model 

which assumes that the b-factor trend declines as a function of time to properly model fracture 

dominated flow in low permeability reservoirs. This model is developed specifically for shale gas 

wells and it claims to be capable of efficiently modeling the transition period and boundary 

dominated flow.  

Its expression is given as: 

 

𝑞(𝑡) = 𝑞𝑖𝑒𝑥𝑝[−𝐷�̂�𝑡
�̂� − 𝐷∞𝑡]     ………………………………………………………(6) 

     

where �̂�𝑖 is the decline coefficient, �̂� is the time exponent, and 𝐷∞ the terminal decline coefficient.  

Alternatively, Valko (2009) introduced the stretched exponential (SE) decline model that 

determines the actual production decline by a great number of contributing volumes which have 

exponential decay rates, but with a specific distribution of characteristic time constants. The 
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difference between this model and that proposed by Ilk et al. (2008) is the removal of the 𝐷∞ from 

the stretched exponential decline. The rate-time formulation for the SE model is given in Eq. 7: 

 

𝑞(𝑡) = 𝑞𝑖𝑒𝑥𝑝[−(𝑡/𝜏)�̂�]     …..…………………………………………………………(7) 

 

where �̂� is the exponent, 𝜏 is the characteristic time constant.  

Duong (2011) developed the Duong decline curve model (DNG) to describe the long-term 

linear flow performance associated with unconventional reservoirs. This model is based on the 

log-log plot of 𝑞/𝐺𝑝 (𝐺𝑝 is the cumulative gas production) versus time forms a straight line, which 

is an empirically derived rule. The model is written as follows: 

 

𝑞(𝑡) = 𝑞𝑖𝑡
−𝑚𝐷𝑛𝑔𝑒𝑥𝑝 [

𝑎𝐷𝑛𝑔

(1−𝑚𝐷𝑛𝑔)
[𝑡(1−𝑚𝐷𝑛𝑔) − 1]]      ……..……………………………(8) 

     

where 𝑚𝐷𝑛𝑔 is the slope of the log-log plot, and 𝑎𝐷𝑛𝑔 is the intercept coefficient.  

Zhang et al. (2016) proposed a new method called the extended exponential (EE) decline 

curve analysis which captures both the early and late production profile. The rate-time expression 

is written as: 

𝑞 = 𝑞𝑖𝑒𝑥𝑝[−𝛽𝑙𝑡 − 𝛽𝑒𝑡𝑒−𝑡𝑛
]      ………..………………………………………………(9) 

        

where 𝛽𝑙 and 𝛽𝑒 are constants accounting for the late-life period and the early period respectively. 

It should be noted that in early time, the term 𝛽𝑒𝑡𝑒−𝑡𝑛
 has a governing impact, but over time it 

reduces and the impact of 𝛽𝑙𝑡 term increases. 
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Chapter 3:  Methodology 

In this section, shale oil production from the Permian basin and shale gas produced from the 

Barnett & Haynesville plays were analyzed using decline curve analysis. Individual wells from 

2010 up to 2017 was studied to determine the first- and second-years production, bias involved, 

estimated ultimate recovery (EUR) and expected disappointment/pleasant surprise associated. The 

following assumptions were made for all analysis carried out in this research work: 

a) Wells chosen for analysis were void of rapid fluctuations in production rates resulting from 

completion practices, well shut-in periods leading to noisy data and varying decline rates 

or worse inaccurate forecasts. 

b) An average of 3 data points i.e. 3 months’ worth of production data was removed due to 

flowback in each well. 

c) No more than 10% of the wells were multi-lateral wells, and the rest produced from a single 

pad for the shale oil system. Hence, a mean lateral was chosen as an equivalent lateral 

length for multilateral wells. 

 

 Based on the various assumptions governing the DCA models considered; power law 

exponential, stretched exponential, Duong model, and extended exponential as highlighted in the 

literature review were used for analysis. Following Mabadeje & Ghanbarnezhad Moghanloo 

(2019a) and Mabadeje & Ghanbarnezhad Moghanloo (2019b) work on uncertainty quantification 

of production forecast in oil and gas systems using a three-step procedure – data preparation, 

workflow and data analysis of wells in the Permian basin, the ensuing procedures were followed. 
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Step 1: Data Preparation 

 For the shale gas system, production data was obtained from www.info.drillinginfo.com  

for a total of 12000 active wells from both the Barnett and Haynesville shale plays. Also, for the 

shale oil system, 3000 active wells were selected from the Permian. The data obtained was filtered 

based on the following criteria:  

a) Production history with enough time length, 

b) Fluctuations in production rates resulting from flowback in the first 2 to 4 months of 

production was corrected for using signal processing techniques shown in Figure 1 

 

Figure 1: Sample of flowback portion removal in production forecast for well ID-

103004447 in the Barnett 

 

c) Cluster regions in the areas of interest were chosen as a sample representation of the entire 

play as shown in Figures 2, 3, and 4. Afterwards, over 11000 gas wells and more than 

2000 oil wells with good production data are selected for further analysis. 
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Figure 2: Wells in Barnett shale play and its location 

Source: https://info.drillinginfo.com 

 

 

Figure 3: Wells in Haynesville shale play and its location 

Source: https://info.drillinginfo.com 

https://info.drillinginfo.com/
https://info.drillinginfo.com/
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Figure 4: Wells in the Permian basin and its location 

Source: https://info.drillinginfo.com 

 

Step 2: Workflow for PLE, SE, DNG, and EE models 

a) Production data from the results in the first step (a-c) is inputted per well name, date and 

production rate into the R code generated (See Appendix A) starting at three months’ 

interval. 

b) Using the non-linear least squares method on real production data, the variables; �̂�𝑖, �̂�, and 

𝐷∞ from Eq. 6, �̂�, 𝜏, from Eq. 7,  𝑎𝐷𝑛𝑔 , 𝑚𝐷𝑛𝑔 from Eq. 9, 𝑛, 𝛽𝑙, and 𝛽𝑒  from Eq. 8 are 

determined as outputs. 

c) Predicted production flowrate values for all models were generated by inputting the output 

variables obtained in step “b” into Eq. 6, 7, 8, & 9 for the entire data set whilst forecast 

and analysis were carried out for a certain time interval as seen in Figures 5 & 6. 

 

https://info.drillinginfo.com/
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Figure 5: Sample of production forecast obtained from well ID-103004447 in the Barnett 

for 6 months interval 

 

 

Figure 6: Sample of production forecast obtained from a well in the Permian for 12 months 

interval 
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d) The forecasted data was compared with actual production data obtained from Drillinginfo 

then, observed over the same time period and the percentage error was estimated. 

e) Steps (a to d) was repeated for the different time intervals; 6, 9, and 12 months to determine 

the best-fit model.  

 

Step 3: Data Analysis 

a) The bias, �̂� was determined using Eq. 10 and uncertainty was quantified using a probability 

density function consisting of the predicted production flowrates from the DCA models 

and actual production flowrates coupled with the prediction errors quantified in step 2 – 

workflow to calculate the expected disappointment for PLE, EE, SE, and DNG DCA’s 

during time intervals 3, 6, 9, and 12 months. 

�̂� = 𝐸[𝜃] − 𝜃          (10) 

 

where �̂� is the bias, 𝐸[𝜃] is the estimator of 𝜃 and 𝜃 is the true parameter  

 

Due to unavailability of matching completion data such as: injected fluids, amount of proppant 

used, and lateral lengths for selected wells in Barnett and Haynesville plays from FracFocus.  The 

following procedure was carried out specifically on the shale oil system; wells from the Permian: 

 

b) The estimated ultimate recovery (EUR) was determined for each DCA in each time interval 

using its corresponding production history. (See Appendix B) Oil production was used as a 

proxy for income generated by each well. So, the EUR obtained was categorized using the 
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following classification: very poor (0 – 50Mbbl), poor (50 – 100Mbbl), good (100 – 

200Mbbl), and excellent (> 200Mbbl) to determine the best measure of well profitability 

given since there was no access to economic data.  

c) The EUR of the classified wells was obtained for all DCA models then normalized using 

its respective lateral length and plotted versus amount of proppant used per foot. 

d)  These statistics were then transformed using a suitable scale using logarithms in order to 

create an approximate normal distribution of the variable i.e. EUR/ft and proppant/ft as 

shown in Figures 7 & 8. 

 

Figure 7: Sample of skewed statistic - EUR/ft using PLE DCA 

 

 

𝑎 = log(𝑏)   ……………………………………….………………………….(11) 

𝑏𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 =  
𝑎−𝜇𝑎

𝜎𝑎
     ………………………………………………………(12) 
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where: 𝑏 is the original variable in the data set that needs scaling i.e. EUR/ft from any DCA 

method and proppant/ft, 𝑎 is the transformed variable used for clustering, 𝜇𝑎 and  𝜎𝑎 is the 

mean and standard deviation of  𝑎 respectively. 

 

Figure 8: Sample of approximate normal distribution of EUR/ft statistic using PLE DCA 

 

e) Afterwards, density-based clustering was applied to smooth over the data sets for 12 

months’ time interval and hierarchical clustering was applied to find the number of clusters 

and inadvertently determine the sweet spot.  
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Chapter 4: Results & Discussion 

By applying the procedure explained in chapter 3, further analysis was carried out on the data sets 

and the following results were obtained for the shale oil and shale gas systems.  

Shale oil system 

The results from the shale oil system consisting of over 2000 wells drilled and completed in the 

Permian basin are explained in threefold as shown in each subsection.  

Section 1 

From Figure 9, it is seen that as the time interval increases, the standard deviation (SD) of the bias 

involved in each prediction decreases. 

 

Figure 9: Standard deviation of bias involved in all DCA’s in the Permian 

  

To fully understand the effect of the bias in the production forecast using different decline 

curve analysis models Figures 10 & 11 shows the standard deviation and average of the percentage 

error obtained during prediction respectively.  
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Figure 10: Standard deviation of average errors for all DCA models in the Permian 

 

 

Figure 11: Average errors for all DCA models in the Permian 
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Looking at both schematics simultaneously shows that SE is the best-fit model for 

production of oil during the first three months of forecast which coincides with the findings of 

Akbarnejaj-Nesheli et al. (2012) and Zuo et al. (2016) whose work suggests that SE predicts the 

transient flow regime rather than boundary dominated flow. However, in the 6, 9, and 12 months’ 

time interval there is a switch in the DCA model from PLE to EE then back to PLE. The crossing 

over of these models gives the evidence that one DCA cannot be used to forecast the production 

rate continuously for the Permian and this is expected to hold true for other formations.  

 

Section 2 

The results from section 1 shows that as the standard deviation of the errors decrease, the expected 

disappointment (ED) associated with each DCA model in Figure 12 decreases. This follows the 

conclusion from Begg & Bratvold (2008) that as the standard deviation of error of any value 

considered in their case; Net Present Value decreases, its ED decreases simultaneously for a 

scenario under evaluation.  
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Figure 12: Expected disappointment for all DCA’s in the Permian 

 

Also, in Figure 12 PLE has the lowest ED values (0.54 – 0.44) over the time intervals 

indicating that it is the closest to reality although it also overpredicts the production flowrate while 

the ED for Duong’s DCA (0.86 – 0.71) is significantly higher and it erroneously overpredicts the 

production rates due to its inherent bias shown in section 1. Thus, making the power law 

exponential and Duong’s decline curve methods serve as the lower and upper extremities of the 

predictions whilst the EE and SE methods lie between spectrum with ED values ranging between 

(0.79 – 0.70) and (0.76 – 0.54) respectively. 

From Figure 13 PLE has the highest PS values (0.39 – 0.28) indicating that it is a very 

pessimistic model while that of Duong method (0.06 – 0.13) suggests that it is an optimistic model 

which is buttressed by its severe overprediction.  
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Figure 13: Pleasant surprise for all DCA’s in the Permian 

 

Meanwhile, SE tends to have an inherent PS value ballparked at 0.2 irrespective of the time 

interval and the PS increases linearly for EE with values ranging between (0.14 – 0.25). These 

concepts – ED and PS are crucial in the decision-making techniques involved in the evaluation of 

reservoirs because it is inherent for a decision maker to choose the project alternative with the 

maximum outcome whilst disregarding the alternative with the minimum outcome thus creating a 

false sense of confidence which leads to an eventual disappointment and loss in revenue if the 

maximum outcome is chosen. 

In totality, from the 12 month interval which is proposed to be the minimum amount of 

data required for a good  forecast (Gupta et al., 2018) it is seen that the slope of the DCA plot 
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Section 3 

Considering that different DCA techniques somewhat fit the production history satisfactorily as 

shown in the figures from section 1 and 2. The obvious differences in these techniques arises from 

how the EUR was predicted and its governing assumption, this discrepancy begs the question 

which DCA is truly better and suitable for use at a given time since there is a noticeable 

inconsistency in the prediction of EUR. 

From the previous sections, it is found that the best-fit DCA method for production 

forecasting changes over time from one model to the other alongside a decrease in the prediction 

error. The EUR was predicted using historic data via power law exponential, extended exponential, 

stretched exponential, and Duong decline curve models for all wells.  

Comparing Figures 14, 15, 16, and 17 it is seen that, the quality of wells defined by EUR 

prediction using PLE, SE, and DNG decline curve models changes over time.  So, very poor wells 

can become good/excellent wells as more production data is available for forecast. It should be 

noted that the opposite of the above phenomena (i.e. the number of good wells decreases over 

time) occurs using EE method which is characterized by a hump during the 6- and 9-months 

duration in Figure 10. 
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Figure 14:Well quality and performance for 3 months’ time interval in the Permian 

 

 

Figure 15: Well quality and performance for 6 months’ time interval in the Permian 
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Figure 16: Well quality and performance for 9 months’ time interval in the Permian 

 

 

Figure 17: Well quality and performance for 12 months’ time interval in the Permian 
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Using a methodology adaptation from Lolon (2016) to further corroborate these findings, 

Figure 18 shows the visualization of four clusters gotten from the 12 month plot of EUR/lateral 

length versus proppant per lateral length for PLE which demonstrates the profitability zones in the 

Permian are implicitly based on drilling and completion practices whilst paving the path to 

determine the “sweet spot” via optimization of fracture spacing and horizontal length in the wells.  

 

  
Figure 18: Representation of wells using clusters to show the performance of each well 

using PLE in the Permian basin 

 

This can be seen in the two zones; zone 2 and zone 4, zone 2 characterizes good wells that 

have high EUR/ft values using a small amount of proppant per ft during the completion practices 

of these wells i.e. the sweet spot whilst zone 4 characterizes wells that behave poorly having a low 

EUR/ft value and very high amount of proppant per lateral length and the remaining wells fall 

between zones 2 and 4 i.e. zones 1 and 3. 
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Although the correlation between the variables in these clusters have a weak correlation 

as shown in Figure 18, this might be an indication of the coupling effect that exists between 

lateral length, proppant amount used, amount of fluid injected, formation type, location and the 

petrophysical properties of the formation as discussed in King (2010) & Yuan et al. (2017). The 

same analysis was carried out for all DCA methods considered and similar results were obtained 

although, the number of wells in these clusters i.e. zone 2 and 4 changes significantly with each 

method.  (See Appendix D for clustering results using other DCA models) 

 

Shale gas system 

The results from the shale gas system consisting of over 11000 wells in both Barnett and 

Haynesville plays are elucidated in threefold as shown in each subsection.  

 

Section 1 

In Figures 19 & 20, it is seen that as the time interval increases, the standard deviation (SD) of the 

bias involved in each prediction decreases in both gas plays. When extrapolated, it plateaus after 

the 30 and 16-month mark in Barnett and Haynesville respectively for all DCA models. Also, the 

magnitude of the SD of bias in Haynesville is higher than Barnett indicating that there is more 

variability in its prediction. 
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Figure 19: Standard deviation of bias involved in all DCA’s in the Barnett play 

 

 

Figure 20: Standard deviation of bias involved in all DCA’s in the Haynesville play 
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To fully understand the effect of the bias in the production forecast using different decline 

curve analysis models in gas systems, Figures 21, 22 & 23, 24 shows the standard deviation and 

mean error obtained during prediction in Barnett and Haynesville. Coupling Figures 21, 22 & 23, 

24 with Figures 19 and 20 respectively for these plays, shows that during all time intervals 

considered PLE is the best-fit although it overestimates the cumulative production while SE, DNG 

significantly overpredicts in Barnett and Haynesville.  

 

 

Figure 21: Standard deviation of average errors for all DCA models  

in the Barnett play 
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Figure 22: Average errors for all DCA models in the Barnett play 

 

 

Figure 23: Standard deviation of average errors for all DCA models 

 in Haynesville play 

0.0

0.2

0.4

0.6

0.8

1.0

0 3 6 9 12 15

A
v
er

a
g
e 

er
ro

r

time, months

PLE EE SE DNG

0.0

0.4

0.8

1.2

1.6

0 3 6 9 12 15

S
D

, 
 %

 e
rr

o
r

time, months

PLE EE SE DNG



30 

 

 

Figure 24: Average errors for all DCA models in the Haynesville play 

 

Section 2 

The results from the previous section show that as the standard deviation of the errors decreases, 

the expected disappointment associated with each DCA model in Figures 25 and 26 decreases, 

this follows the conclusion from Begg & Bratvold (2008). Also, in Figures 25 & 26 PLE has the 

lowest ED values (0.52 – 0.59) and (0.41 – 0.60) then, the highest ED values SE (0.59 – 0.84) and 

DNG (0.68 – 0.77) in the Barnett & Haynesville plays respectively. Thus, making the power law 

exponential and stretched exponential decline curve methods the lower and upper bands of the 

predictions in the Barnett whilst the PLE and Duong’s methods are the lower and upper boundaries 

of the predictions in Haynesville. This trend was also depicted clearly in the average errors reported 

in the last section. 
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Figure 25: Expected disappointment for all DCA models in the Barnett play 

 

 

Figure 26: Expected disappointment for all DCA models in the Haynesville play 
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The concept of expected disappointment is crucial in decision-making techniques involved 

in the evaluation of reservoirs because it is inherent for a decision maker to choose the project 

alternative with the maximum outcome whilst disregarding the alternative with the minimum 

outcome thus creating a false sense of confidence which leads to an eventual disappointment and 

loss in revenue if the maximum outcome is chosen.  

 

Section 3 

From the analysis in section 1 and 2, it is seen that the DCA techniques fit the gas production 

history somewhat satisfactorily. The obvious differences and inaccuracies in these techniques arise 

mainly from its governing assumption and reservoir attributes, making it imperative to discuss its 

petrophysical properties. To have further insight, the decline rates (Di) of the 7000 Barnett wells 

and 4361 Haynesville wells was compared. 

From Figure 27, it is observed that wells in Haynesville have an average decline rate of 

0.22 𝑚𝑜𝑛𝑡ℎ−1 which is higher relative to Barnett’s average of 0.16 𝑚𝑜𝑛𝑡ℎ−1. 
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Figure 27: The decline rates in Barnett and Haynesville plays 
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which is a function of its petrophysical properties such as pore type & shape.  Usually observed 

orders of magnitude reduction in matrix permeability can be related to pore connectivity loss and 

microfractures inside the matrix (Davudov & Moghanloo 2018). It should be noted that depending 

on the formation under consideration, one of these effects might be dominant or weak. 

Additionally, hydraulic fracture closure would also have a significant impact on production 

decline. 

Knowing that the pores type in Haynesville are slit-shaped, dispersed and inorganic whilst 

that of Barnett is cylindrical, close to each other and organic as shown in Figures 28 & 29 
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Figure 28: a) Energy dispersive spectroscopy map b) Backscattered electrons of the 

Haynesville shale 

(Curtis et al., 2010) 

 

 

Figure 29: a) Energy dispersive spectroscopy map b) Backscattered electrons of the Barnett 

shale 

 (Curtis et al., 2010) 

Davudov & Moghanloo (2017) have found that pores in Haynesville have a higher aspect 

ratio in comparison to pores in Barnett. Therefore, the slit pores observed in Haynesville is 

susceptible to rapid pore collapse under effective stress that occurs during depletion/production. 

Consequently, reservoir deliverability is impaired as seen in the production forecasts made. 

This discussion also explains why the bias & rate of decline is much higher and the 

connectivity of the matrix is declining much faster in Haynesville when compared to Barnett. This 

a) b) 

b) a) 
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might have an impact on future EOR applications since there are two major factors affecting the 

EOR in shales: good fracture network which will increase the surface area, and connectivity so 

CO2 can pass through. Therefore, it can be inferred that since the decline rate during production is 

somewhat related to pore shape and connectivity. It could be a good qualitative indicator of wells 

in which EOR might be successful although this needs to be further investigated. 
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Chapter 5: Conclusions 

Although there are various types of DCA models for unconventional reservoirs, this work focuses 

on only four; power law exponential, stretched exponential, Duong, and extended exponential 

methods. Existing uncertainty in the production forecast and prediction of EUR in unconventional 

reservoirs – shales can result in sub-par field development and appraisal plan which is a key driver 

in the economics involved during production. In this study, 11000+ gas wells from Barnett & 

Haynesville plays and 2000+ oil wells from the Permian are classified based on its performance 

over 3, 6, 9 and 12 months. The results obtained shows that as the time interval increases the 

estimated error decreases for all DCA methods.  

From Table 1, it is shown that the best-fit DCA model for time intervals – 3, 6, 9, and 12 

months is relative and choosing one DCA model for forecast during all time intervals favors a set 

of parameters over the other which unknowingly introduces a bias in the decision-making process.  

However, it appears that in the gas plays considered, power law exponential serves as the lower 

boundary of the forecast whilst the upper boundary – stretched exponential (SE) and Duong (DNG) 

method always significantly overpredicts the cumulative production as seen in Barnett and 

Haynesville respectively. 

Table 1: Summary of results showing DCA boundaries an operator should use in the 

Permian, Barnett, and Haynesville plays. 

Permian Barnett Haynesville 

Lower 

bound 

DCA 

Upper 

bound 

DCA 

Lower 

bound 

DCA 

Upper 

bound 

DCA 

Lower 

bound 

DCA 

Upper 

bound 

DCA 

PLE DNG PLE SE PLE DNG 
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Meanwhile the oil system; Permian follows the same boundary trend as the Haynesville 

play. Also, the quality of wells defined by cumulative oil production and the amount of proppant 

used per lateral length changes over time so, very poor wells may become good or excellent wells 

in the later stage of production when more data become available as input for the production 

forecast and vice versa. 

In conclusion, my research attempts to add some objectivity to DCA which is naturally a 

subjective technique. It is hoped that the outcome of this work will prompt reservoir evaluators to 

reliably quantify uncertainty by reducing or eliminating expected disappointment and bias 

associated with decline curve analysis. Also, it will enable financial institutions to factor 

uncertainty in loan proposals from oil and gas companies for well development by affixing a 

number to uncertainty in shale formations. This is necessary in order to avoid overpredicting and 

underpredicting the production forecast since it implicitly affects profitability. 
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Chapter 6: Recommendations for Future Work 

Knowing that DCA models are not entirely enough to forecast production in unconventional 

reservoirs due to the variation in characteristics, operational conditions, and time rate equation of 

each shale play. It is crucial to understand the behavior of each model and apply it properly since 

one DCA method does not fit all. Hence the following recommendations can be implemented: 

1. Creating forecasting models that are not only empirical but can be significantly improved 

by applying relevant data mining and data science techniques incorporating bias and 

uncertainty in its workings to increase its capability. These techniques would help find and 

decouple existing patterns and trends that are implicitly involved with the production data: 

such as reservoir parameters etc and help mitigate expected disappointment. 

2. Investigating the relationship between decline rates during oil and gas production and 

connectivity of pores as a possible qualitative indicator of potential EOR success in wells. 
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 Appendix A: R Code Generated for Production Forecast 

The R code written using the procedure explained to carry out decline curve analysis using the 

PLE, EE, SE, and DNG methods as explained in chapter 3 are as follows: 

 

#' title: "Production Forecasting Using Decline Curve Analysis in Shales" 

#' author: "Ademide Mabadeje" 

#' date created: September 7th, 2018 

#' last date edited: January 14th, 2019 

 

library("plyr") 

library("ggplot2") 

library("dplyr") 

library("qpcR") 

# library("caret") 

 

# set working directory to desktop 

setwd("~/Desktop/R script") 

 

# call functions 

source("functions.R") 

 

# choose data file and specify snapshot for modelling 

fileName = "Reservoirname.CSV" 
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threshold = 5   #Economic limit for oil/gas production during forecast 

timeStart = 1   #Start time for data fitting part 

timeStop = 12   #Last data point used for data fitting part 

 

# read in data file 

play=read.csv(fileName) 

 

# check for missingness 

totalMissing = function(x) sum(is.na(x)) 

apply(play,2,totalMissing) 

 

missingInd = which(is.na(play$Monthly.Gas) == TRUE) 

 

if (length(missingInd) > 0) 

{ 

  play = play[-missingInd,] 

} 

 

 

# create output filename 

pleSol = paste("PLE Full solution for times(t)",timeStart,"to", timeStop, fileName, sep = " ") 

agPleSol = paste("PLE aggregated for times(t)",timeStart,"to", timeStop, fileName, sep = " ") 

eeSol = paste("EE Full solution for times(t)",timeStart,"to", timeStop, fileName, sep = " ") 
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agEeSol = paste("EE aggregated for times(t)",timeStart,"to", timeStop, fileName, sep = " ") 

seSol = paste("SE Full solution for times(t)",timeStart,"to", timeStop, fileName, sep = " ") 

agSeSol = paste("SE aggregated for times(t)",timeStart,"to", timeStop, fileName, sep = " ") 

dngSol = paste("Doung Full solution for times(t)",timeStart,"to", timeStop, fileName, sep = " ") 

agDngSol = paste("Doung aggregated for times(t)",timeStart,"to", timeStop, fileName, sep = " ") 

 

 

# Prepare data 

# Note: Input data should be sorted by Entity.ID 

# idsorted = sort(unique(play$Entity.ID)) 

ids = as.factor(unique(play$Entity.ID)) # 5362 wells 

play=play[,c("Entity.ID","Monthly.Production.Date","Monthly.Gas")] 

# convert entity id to factor 

play$Entity.ID = as.factor(play$Entity.ID) 

 

# check for missingness 

totalMissing = function (x) sum(x == 0) 

apply(play,2, totalMissing) 

 

# remove monthly gas values that are <= 5 

zeroMonthlyGas = which(play$Monthly.Gas <= threshold) 

play = play[-zeroMonthlyGas,] 
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# remove initial increasing points 

playClean = mainClean(play, ids, minDays = 3, maxDays = 1000) 

 

# update ids 

ids = as.factor(unique(playClean$Entity.ID)) # 5362 wells 

 

 

## MODELLING 

# nlsPLE 

playNls = nlsPowerLaw(playClean, ids, timeStart, timeStop) 

 

# nlsEE 

playEE = nlsEE(playClean, ids, timeStart, timeStop) 

 

# nlsSE 

playSE = nlsSE(playClean, ids, timeStart, timeStop) 

 

# nlsDoung 

playDoung = nlsDoung(playClean, ids, timeStart, timeStop) 

 

idNls = unique(playNls$Entity.ID) 

playNls = rmsePredict(playNls,idNls, timeStop, "PLE") 
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idNlsEE = unique(playEE$Entity.ID) 

playEE = rmsePredict(playEE,idNlsEE, timeStop, "EE") 

 

idNlsSE = unique(playSE$Entity.ID) 

playSE = rmsePredict(playSE,idNlsSE, timeStop, "SE") 

 

idNlsDoung =  unique(playDoung$Entity.ID) 

playDoung = rmsePredict(playDoung,idNlsDoung, timeStop, "Doung") 

## OUTPUT TO EXCEL 

 

# nlsPLE 

# write full solution to excel 

write.csv(playNls, pleSol) 

 

# write aggregate df 

agplayNls =  aggregate(. ~ Entity.ID, playNls, mean) 

agplayNls = agplayNls[, -which(colnames(agplayNls) == "Monthly.Production.Date")] 

agplayNls = agplayNls[, -which(colnames(agplayNls) == "newDate")] 

 

# write aggregate df to excel 

write.csv(agplayNls, agPleSol) 
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## nlsEE 

# write full data set to excel 

write.csv(playEE, eeSol) 

 

# write aggregate df to excel 

agplayEE =  aggregate(. ~ Entity.ID, playEE, mean) 

agplayEE = agplayEE[, -which(colnames(agplayEE) == "Monthly.Production.Date")] 

agplayEE = agplayEE[, -which(colnames(agplayEE) == "newDate")] 

 

# write aggregate df to excel 

write.csv(agplayEE, agEeSol) 

 

## nlsSE 

# write full data set to excel 

write.csv(playSE, seSol) 

 

# write aggregate df to excel 

agplaySE =  aggregate(. ~ Entity.ID, playSE, mean) 

agplaySE = agplaySE[, -which(colnames(agplaySE) == "Monthly.Production.Date")] 

agplaySE = agplaySE[, -which(colnames(agplaySE) == "newDate")] 

 

write.csv(agplaySE, agSeSol) 
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## nlsDuong 

# write full data set to excel 

write.csv(playDoung, dngSol) 

 

# write aggregate df to excel 

agplayDoung =  aggregate(. ~ Entity.ID, playDoung, mean) 

agplayDoung = agplayDoung[, -which(colnames(agplayDoung) == "Monthly.Production.Date")] 

agplayDoung = agplayDoung[, -which(colnames(agplayDoung) == "newDate")] 

 

write.csv(agplayDoung, agDngSol) 
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Appendix B: R Code Generated for Cumulative Production & EUR 

To estimate the cumulative production up to a certain time duration and estimate the EUR for each 

well in the play of interest, the full dataset output for each DCA model from appendix A was 

inputted using following codes: 

 

#' title: "Cummulative Production and EUR determination" 

#' author: "Ademide Mabadeje" 

#' date created: December 3rd, 2018 

#' last date edited: January 14th, 2019 

 

# inputs:  

# output: return results 

source("functions.R") 

 

inputData = read.csv("EE Full solution for times(t) 1 to 12 use Producing Entity Monthly 

Production copy.CSV", header = T) 

tInf = 5000 #the time frame in months required to estimate EUR 

 

npStart = 1 #the start date in months for cumulative production 

npStop = 3 #the end date in months for cumulative production 

 

#' The results and write section should be changed simultaneously for the DCA under use 

#resultsPle = npEurPle(inputData,tInf, npStart, npStop) 
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#resultsSe = npEurSe(inputData,tInf, npStart, npStop) 

resultsEe = npEurEe(inputData,tInf, npStart, npStop) 

#resultsDoung = npEurDoung(inputData,tInf, npStart, npStop) 

 

# plot 

#with(resultsDoung,plot(eurDoung,NpDoung))# xlim = c(0,2e7))) # change 2e7 to sweet you 

 

write.csv(resultsEe, "Ee 1 to 3.CSV") 

#write.csv(resultsPle, "Ple 1 to 3.CSV") 

#write.csv(resultsSe, "Se 1 to 3.CSV") 

#write.csv(resultsDoung,"Duong 1 to 3.CSV") 

 

#windows() 

#plot(cleanData$Monthly.Gas, cleanData$qDng) 
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Appendix C: R Code Functions Created for Call-backs 

## cleaner algorithm 

# input: original data, unique ids, minDay, maxDay 

# output: cleaned data 

# initialize deleteRow 

 

#  declare variable deleteRows to store index of all rows to be deleted 

## function cleanData (completed)   # retuns index of points to be deleted 

# a. For each id 

# 1. Find corresponding row indices 

# 2. load month gas values for this row index 

 

# 3. ## function findInitialIncrease (completed)   # returns index of last increase point 

# if monthly gas in step 2 is greater than  

# Run dca (find initial increasing points and return index) 

# else return index of all monthly data 

 

# 4. Delete all rows corresponding to index in 3 

# 5. Repeat step 1 to 4 for each id 

 

# return cleanData 

 

# function prepareNewDate (completed) 
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# 6. update unique ids for cleaned data 

# 7. create new variable => newDate 

# b. for each id 

# 1. find corresponding row indices 

# 2. if number is indices in b.1 is < minDay or >maxDay 

# save index  

# else set newDate => row index normalized to start at 1 

# 7. delete all saved indices in b.2 

# return data 

 

# mainClean 

# 1. cleanData :: findInitialIncrease :: updateRowsToDelete 

#     return index 

# 2. delete rows returned by cleanData 

# 3. prepare new Date() 

#     returns  modified data 

 

# function findInitialIncrease 

findInitialIncrease = function (monthlyGas) # returns last index  of increase 

{ 

  # function finds initial increase trend and returns index of these points 

  # Note:   function returns 0 for non increasing data. remove this index from 

  #         output before use to adjust any matrix 
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  # status: tested with 3 inputs. Performs as expected 

   

  if (length(monthlyGas) == 0) 

  { 

    print("Wrong Input to findInitialIncrease. length (input) is zero. Function will return null ") 

    return(NULL) 

  } 

  else if (length(monthlyGas) <= 2) 

  { 

    print("Wrong Input to findInitialIncrease. length (input) is less than 2. Function will return 

null ") 

    return(NULL) 

  } 

  else 

  { 

    i = 1 

    check1stRun = 0 

     

    print(length(monthlyGas)) 

     

    while(monthlyGas[i] < monthlyGas[i + 1] && length(monthlyGas) >= (i + 1)) 

    { 

      i = i + 1 
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      check1stRun = check1stRun + 1 

      print("here") 

    } 

    # at this point i is the beginning of well decrease 

     

     

    # run second time starting after first decrease 

    j = i + 1 

    check2ndRun = 0; 

    # print(paste("here. j is ", j)) 

     

    while(monthlyGas[j] < monthlyGas[j + 1] && length(monthlyGas) >= (j + 1)) 

    { 

      # print(monthlyGas[j]) 

      # print(monthlyGas[j + 1]) 

      j = j + 1 

      check2ndRun = check2ndRun + 1; 

    } 

     

    if (check2ndRun > 0) # means another increase was found after first decrease 

    { 

      return(j - 1) 

    } 
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    else  

    { 

      if (check1stRun > 0) 

        return(i - 1) 

      else 

        return(i) 

    } 

     

  } 

} 

 

 

# function CleanData 

cleanData = function(data, idlist, end) # returns index of points to be deleted 

{ 

  deleteRow = numeric() 

   

  for (i in 1:length(idlist)) 

  { 

     

    # a. For each id 

    # 1. Find corresponding row indices 

    rowInd = which(data$Entity.ID == idlist[i]) 
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    # 2. load month gas values for this row index 

    mg = data$Monthly.Gas[rowInd]; 

    # 3. if length of monthly gas in step 2 is greater than 2 

    if (length(mg) > 2) 

    { 

      # Run dca (find initial increasing points and return index) 

      print(paste("ID:" ,idlist[i], "length of well is ", length(rowInd), sep = " ")) 

      endIndRowInd = findInitialIncrease(mg) 

      # print(endIndRowInd) 

      # print(">2") 

       

      if (endIndRowInd >= 1 ) 

      { 

        deleteMgInd = rowInd[1:endIndRowInd] 

        # print(deleteMgInd) 

        deleteRow = updateRowsToDelete(deleteRow, deleteMgInd) 

      } 

       

    } 

    # else return index of all monthly data 

    else 

    { 

      # print("<=2") 
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      deleteRow = updateRowsToDelete(deleteRow, rowInd) 

    } 

     

     

  } 

   

  # print(deleteRow) 

  return(deleteRow) 

} 

 

 

# function updateRowsToDelete 

updateRowsToDelete = function(deleteRow, addRow) 

{ 

  deleteRow = c(deleteRow, addRow) 

   

  return(deleteRow) 

} 

 

 

# function prepareNewDate () 

prepareNewDate = function (data, idlist, minDays, maxDays) # adds new Date and number of 

days field to data 



59 

 

{ 

  # create new variable newDate and numDays 

  data$newDate = 0 

  data$numDays = 0 

  deleteRow = numeric() 

   

  # for each id 

  for (i in 1:length(idlist)) 

  { 

    # find row number 

    rowInd = which(data$Entity.ID == idlist[i]) 

     

    if (length(rowInd) == 0) 

    { 

      print(paste(idlist[i], "Well ID has no data point. Returning Null...", sep = " ")) 

      return (NULL) 

    } 

    # if current well production days is between minDays and maxDays 

    else if (length(rowInd) >= minDays && length(rowInd) <= maxDays) 

    { 

      # set newDate to row number normalized to start at 1 

       

      print(paste("Current well length is ",length(rowInd), sep = " ")) 
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      data$newDate[rowInd] = rowInd - min (rowInd) + 1 

      data$numDays[rowInd] = length(rowInd) 

    } 

    else 

    { 

      # wells don't meet user defined constraints. store index for deletion 

      deleteRow = updateRowsToDelete(deleteRow,rowInd) 

    } 

     

  } 

   

  if (length(deleteRow) > 0) 

  { 

    data = data[-deleteRow,] 

  } 

   

  return (data) 

} 

 

 

## function mainClean 

mainClean = function(data, idlist, minDays, maxDays) 

{ 
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  # 1. cleanData :: findInitialIncrease :: updateRowsToDelete 

  #     return index 

  rowDelete =  cleanData(data, idlist) 

   

  # 2. delete rows returned by cleanData 

  data = data[-rowDelete,] 

   

  # 3. update idlist 

  idlist = unique(data$Entity.ID) 

   

  # 3. prepare new Date() 

  #     returns  modified data 

  data = prepareNewDate(data, idlist, minDays, maxDays) 

   

  return(data) 

} 

 

 

## modelling algorithm 

# initialize parameters to be estimated by nls 

# for each id 

  # find row index 

  # select t1 to t2 of row index 
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  # extract data from monthly gas for above index 

  # set qi, build train model on monthy gas extracted above 

  # assign nls parameters to variables in data frame 

 

# use given law to predict production rate 

 

# function nlsPowerLaw 

nlsPowerLaw = function ( cleanData, idlist, firstDayIndex,lastDayIndex ) 

{ 

   

  cleanData$Di = 0 

  cleanData$Dinf = 0 

  cleanData$n = 0 

  cleanData$qInitial = 0 

  cleanData$AIC = 0 

  cleanData$RMSEmodel = 0 

  cleanData$qPLE = 0 

  deleteRows = numeric() 

   

  varNames = colnames(cleanData) 

   

  for (i in 1:length(idlist)) 

  {     
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    id1Ind = which(cleanData$Entity.ID == idlist[i]) # index of current ID 

    # print(id1Ind) 

     

    if (firstDayIndex >= 1 && firstDayIndex <= length(id1Ind) && 

        lastDayIndex >= 1 && lastDayIndex <= length(id1Ind) ) 

    { 

      qi = cleanData$Monthly.Gas[id1Ind[1]] 

       

      # print(length(cleanData$Entity.ID)) 

       

      modelData = cleanData[id1Ind[firstDayIndex:lastDayIndex],] 

      # print(modelData) 

      print(paste("model is being built from time index ", firstDayIndex, "to", lastDayIndex, 

                  "ID: ",idlist[i],sep = " ")) 

      colnames(modelData) = varNames 

       

      # print(i) 

      nls.model = nls(data = modelData , log(Monthly.Gas/qi) ~ -Di*newDate^n -Dinf*newDate, 

                      start = list(Di = 0.5 , Dinf = 0.5, n = 0.5), control = list(warnOnly = T), 

                      algorithm = "port",lower = c(0,0,0), upper = c(1,Inf,1)) 

       

      x = coef(nls.model) 

      cleanData$Di[id1Ind] = x[1] # Di 
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      cleanData$Dinf[id1Ind] = x[2] # Dinf 

      cleanData$n[id1Ind] =  x[3] # n 

      cleanData$qInitial[id1Ind] = qi 

      cleanData$AIC[id1Ind] = AIC(nls.model) 

      cleanData$RMSEmodel = RMSE(nls.model) 

       

       

      print("here") 

       

    } 

    else 

    { 

      deleteRows = updateRowsToDelete(deleteRows,id1Ind) 

       

    } 

     

  }  

   

  print(deleteRows) 

   

  if (length(deleteRows) > 0) 

  { 

    print("deleteRows") 
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    cleanData = cleanData[-deleteRows,] 

  } 

   

  cleanData$qPLE = with(cleanData,qInitial*exp(-Di*newDate^n - Dinf*newDate)) 

   

  print("Power Law Modelling complete...") 

  return(cleanData) 

   

} 

 

 

## function nlsEE 

nlsEE = function(cleanData, idlist, firstDayIndex,lastDayIndex) 

{ 

  # initialize parameters to be estimated by nls 

  cleanData$Bi = 0 

  cleanData$Be = 0 

  cleanData$nEE = 0 

  cleanData$qEE = 0 

  cleanData$qInitial = 0 

  cleanData$AIC = 0 

  cleanData$RMSEmodel = 0 
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  varNames = colnames(cleanData) 

   

  # for each id 

  for (i in 1:length(idlist)) 

  { 

    # find row index 

    id1Ind = which(cleanData$Entity.ID == idlist[i]) # index of current ID 

     

    if (firstDayIndex >= 1 && firstDayIndex <= length(id1Ind) && 

        lastDayIndex >= 1 && lastDayIndex <= length(id1Ind) ) 

    { 

      # set qi 

      qi = cleanData$Monthly.Gas[id1Ind[1]] 

       

      # extract data from monthly gas for above index 

      modelData = cleanData[id1Ind[firstDayIndex:lastDayIndex],] 

      # print(length(modelData)) 

       

      print(paste("model is being built from time index ", firstDayIndex, "to", lastDayIndex, 

                  "ID: ",idlist[i],sep = " ")) 

      colnames(modelData) = varNames 

       

      # build train model on monthy gas extracted above 
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      nls.model = nls(data = modelData , log(Monthly.Gas/qi) ~ -Bi*newDate - 

Be*newDate*exp(-newDate^nEE), 

                      start = list(Bi = 0.5 , Be = 0.5, nEE = 0.5), control = list(warnOnly = T), 

                      algorithm = "port",lower = c(0,0,0), upper = c(1,Inf,1)) 

       

      # assign nls parameters to variables in data frame 

      x = coef(nls.model) 

      cleanData$Bi[id1Ind] =  x[1] # Bi 

      cleanData$Be[id1Ind] =  x[2] # Be 

      cleanData$nEE[id1Ind] =  x[3] # nEE 

      cleanData$qInitial[id1Ind] = qi 

      cleanData$AIC[id1Ind] = AIC(nls.model) 

      cleanData$RMSEmodel[id1Ind] = RMSE(nls.model) 

       

    } 

     

  } 

   

  # use Extended Exponential law to predict production rate 

  cleanData$qEE = with(cleanData,qInitial*exp(-Bi*newDate - Be*newDate*exp(-

newDate^nEE))) 

  print("Extended Exponential Modelling complete...") 

  return(cleanData)  
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} 

## nlsSE 

nlsSE = function(cleanData, idlist, firstDayIndex,lastDayIndex) 

{ 

  # initialize parameters to be estimated by nls 

  cleanData$tau = 0 

  cleanData$nSE = 0 

  cleanData$qSE = 0 

  cleanData$qInitial = 0 

  cleanData$AIC = 0 

  cleanData$RMSEmodel = 0 

   

  varNames = colnames(cleanData) 

   

  # for each id 

  for (i in 1:length(idlist)) 

  { 

    # find row index 

    id1Ind = which(cleanData$Entity.ID == idlist[i]) # index of current ID 

    #print(length(id1Ind)) 

     

    if (firstDayIndex >= 1 && firstDayIndex <= length(id1Ind) && 

        lastDayIndex >= 1 && lastDayIndex <= length(id1Ind) ) 
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    { 

      # set qi 

      qi = cleanData$Monthly.Gas[id1Ind[1]] 

       

      # extract data from monthly gas for above index 

      modelData = cleanData[id1Ind[firstDayIndex:lastDayIndex],] 

      print(length(modelData)) 

       

      print(paste("model is being built from time index ", firstDayIndex, "to", lastDayIndex, 

                  "ID: ",idlist[i],sep = " ")) 

      colnames(modelData) = varNames 

       

      # build train model on monthy gas extracted above 

      nls.model = nls(data = modelData , Monthly.Gas ~ qi*exp(-(newDate/tau)^nSE), 

                      start = list(tau = 0.5, nSE = 0.5), control = list(warnOnly = T), 

                      algorithm = "port",lower = c(0,0), upper = c(Inf,1)) 

       

      # assign nls parameters to variables in data frame 

      x = coef(nls.model) 

      cleanData$tau[id1Ind] =  x[1] # tau 

      cleanData$nSE[id1Ind] =  x[2] # nSE 

      cleanData$qInitial[id1Ind] = qi 

      cleanData$AIC[id1Ind] = AIC(nls.model) 
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      cleanData$RMSEmodel[id1Ind] = RMSE(nls.model) 

       

    } 

     

  } 

   

  # use Extended Exponential law to predict production rate 

  cleanData$qSE = with(cleanData,qInitial*exp(-(newDate/tau)^nSE)) 

  print("SE Modelling complete...") 

  return(cleanData)  

} 

 

# nlsDoung 

nlsDoung = function(cleanData, idlist, firstDayIndex,lastDayIndex) 

{ 

  # initialize parameters to be estimated by nls 

  cleanData$aDng = 0 

  cleanData$mDng = 0 

  cleanData$qDng = 0 

  cleanData$qInitial = 0 

  cleanData$AIC = 0 

  cleanData$RMSEmodel = 0 
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  varNames = colnames(cleanData) 

   

  # for each id 

  for (i in 1:length(idlist)) #FIXME_adjust 

  { 

    # find row index 

    id1Ind = which(cleanData$Entity.ID == idlist[i]) # index of current ID 

    # print(length(id1Ind)) 

     

    if (firstDayIndex >= 1 && firstDayIndex <= length(id1Ind) && 

        lastDayIndex >= 1 && lastDayIndex <= length(id1Ind) ) 

    { 

      # set qi 

      qi = cleanData$Monthly.Gas[id1Ind[1]] 

       

      # extract data from monthly gas for above index 

      modelData = cleanData[id1Ind[firstDayIndex:lastDayIndex],] 

      print(nrow(modelData)) 

       

      print(paste("model is being built from time index ", firstDayIndex, "to", lastDayIndex, 

                  "ID: ",idlist[i],sep = " ")) 

      colnames(modelData) = varNames 
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      # build train model on monthy gas extracted above 

      nls.model = nls(data = modelData , log(Monthly.Gas/qi) ~ log(newDate^(-mDng)) + 

(aDng/(1-mDng))*(newDate^(1-mDng) - 1), 

                      start = list(aDng = 0.1, mDng = 1.1), control = list(warnOnly = T), 

                      algorithm = "port",lower = c(0.01,1.01), upper = c(1.99,1.99)) 

       

      # assign nls parameters to variables in data frame 

      x = coef(nls.model) 

      cleanData$aDng[id1Ind] =  x[1] # tau 

      cleanData$mDng[id1Ind] =  x[2] # nSE 

      cleanData$qInitial[id1Ind] = qi 

      cleanData$AIC[id1Ind] = AIC(nls.model) 

      cleanData$RMSEmodel[id1Ind] = RMSE(nls.model) 

       

    } 

     

  } 

   

  # use Extended Exponential law to predict production rate 

  cleanData$qDng = with(cleanData,qInitial * newDate^(-mDng) * exp((aDng/(1-

mDng))*(newDate^(1-mDng)-1))) 

  print("Duong Modelling complete...") 

  return(cleanData)  



73 

 

} 

 

# function RMSEpredict 

rmsePredict = function (dataNls, idlist, timeStop, method) 

{ 

  dataNls$RMSEpred = 0 

  numPoints = length(dataNls$RMSEpred) 

  print(numPoints) 

  # for each id 

  for (i in 1:length(idlist)) 

  { 

    # extract rowInd for timeStop to end 

    rowInd = which(dataNls$Entity.ID == idlist[i]) # index of current ID 

    predInd = rowInd[timeStop:length(rowInd)] 

     

    # use monthlyGas and qPLE from above to create a new data frame 

    # add conditional for method 

    if (method == "PLE") 

    { 

      temp = data.frame(obs = dataNls$Monthly.Gas[predInd], pred = dataNls$qPLE[predInd]) 

      print(method) 

    } 

    else if (method == "SE") 
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    { 

      temp = data.frame(obs = dataNls$Monthly.Gas[predInd], pred = dataNls$qSE[predInd]) 

      print(method) 

    } 

    else if (method == "EE") 

    { 

      temp = data.frame(obs = dataNls$Monthly.Gas[predInd], pred = dataNls$qEE[predInd]) 

      print(method) 

    } 

    else if (method == "Doung") 

    { 

      temp = data.frame(obs = dataNls$Monthly.Gas[predInd], pred = dataNls$qDng[predInd]) 

      print(method) 

    } 

     

     

     

    colnames(temp) = c("obs","pred") 

    # find RMSEpred 

    dataNls$RMSEpred[rowInd] = myRMSE(temp, numPoints) 

     

  } 

   



75 

 

  return(dataNls) 

} 

 

 

myRMSE = function(pred.df, numPoints)  

{ 

  result = sqrt((sum((log(pred.df$pred) - log(pred.df$obs))^2))/numPoints) 

  return(result) 

} 

 

 

npEurPle = function(inputData,tInf, npStart, npStop) 

{ 

  ids = unique(inputData$Entity.ID) 

   

  results = as.data.frame(ids) # create output data frame 

  results$NpPle = 0 

  results$eurPle = 0 

  results$NpActual = 0 

   

  for (indId in 1:length(ids)) 

  { 

    # select each well 
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    currId = ids[indId] 

    rowInd = which(inputData$Entity.ID == currId) 

     

    # set variables 

    n = inputData$n[rowInd[1]] 

    Di = inputData$Di[rowInd[1]] 

    Dinf = inputData$Dinf[rowInd[1]] 

    qInitial = inputData$qInitial[rowInd[1]] 

     

     

    # results 

    # Np 

    npInd = rowInd[max(npStart,1):min(npStop, length(rowInd))] 

    results$NpPle[indId] = sum(inputData$qPLE[npInd]) # should be for each well 

    results$NpActual[indId] = sum(inputData$Monthly.Gas[npInd]) # should be for each well 

     

    # Eur 

    # calculate qPle at each well 

    currEur = numeric(tInf) 

     

    for (tTime in 1:tInf) 

    { 

      currEur[tTime] = qInitial*exp(-Di*tTime^n - Dinf*tTime) 
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    } 

     

    # sum up the values 

    results$eurPle[indId] = sum(currEur) 

     

  } 

   

  return(results)   

} 

 

 

npEurSe = function(inputData,tInf, npStart, npStop) 

{ 

  ids = unique(inputData$Entity.ID) 

   

  results = as.data.frame(ids) # create output data frame 

  results$NpSe = 0 

  results$eurSe = 0 

   

  for (indId in 1:length(ids)) 

  { 

    # select each well 

    currId = ids[indId] 
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    rowInd = which(inputData$Entity.ID == currId) 

     

    # set variables 

    nSE = inputData$nSE[rowInd[1]] 

    tau = inputData$tau[rowInd[1]] 

    Dinf = inputData$Dinf[rowInd[1]] 

    qInitial = inputData$qInitial[rowInd[1]] 

     

     

    # results 

    # Np 

    npInd = rowInd[max(npStart,1):min(npStop, length(rowInd))] 

    results$NpSe[indId] = sum(inputData$qSE[npInd]) # should be for each well 

     

    # Eur 

    # calculate qPle at each well 

    currEur = numeric(tInf) 

     

    for (tTime in 1:tInf) 

    { 

      currEur[tTime] = qInitial*exp(-(tTime/tau)^nSE) 

    } 
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    # sum up the values 

    results$eurSe[indId] = sum(currEur) 

     

  } 

  return(results)   

} 

 

npEurEe = function(inputData,tInf, npStart, npStop) 

{ 

  ids = unique(inputData$Entity.ID) 

   

  results = as.data.frame(ids) # create output data frame 

  results$NpEe = 0 

  results$eurEe = 0 

   

  for (indId in 1:length(ids)) 

  { 

    # select each well 

    currId = ids[indId] 

    rowInd = which(inputData$Entity.ID == currId) 

     

    # set variables 

    nEE = inputData$nEE[rowInd[1]] 
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    Bi = inputData$Bi[rowInd[1]] 

    Be = inputData$Be[rowInd[1]] 

    qInitial = inputData$qInitial[rowInd[1]] 

     

     

    # results 

    # Np 

    npInd = rowInd[max(npStart,1):min(npStop, length(rowInd))] 

    results$NpEe[indId] = sum(inputData$qEE[npInd]) # should be for each well 

     

    # Eur 

    # calculate qPle at each well 

    currEur = numeric(tInf) 

     

    for (tTime in 1:tInf) 

    { 

      currEur[tTime] = qInitial*exp(-Bi*tTime - Be*tTime*exp(-tTime^nEE)) 

    } 

     

    # sum up the values 

    results$eurEe[indId] = sum(currEur) 

     

  } 
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  return(results)   

} 

 

npEurDoung = function(inputData,tInf, npStart, npStop) 

{ 

  ids = unique(inputData$Entity.ID) 

   

  results = as.data.frame(ids) # create output data frame 

  results$NpDoung = 0 

  results$eurDoung = 0 

   

  for (indId in 1:length(ids)) 

  { 

    # select each well 

    currId = ids[indId] 

    rowInd = which(inputData$Entity.ID == currId) 

     

    # set variables 

    aDng = inputData$aDng[rowInd[1]] 

    mDng = inputData$mDng[rowInd[1]] 

    qInitial = inputData$qInitial[rowInd[1]] 
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    # results 

    # Np 

    npInd = rowInd[max(npStart,1):min(npStop, length(rowInd))] 

    results$NpDoung[indId] = sum(inputData$qDng[npInd]) # should be for each well 

     

    # Eur 

    # calculate qDoung at each well 

    currEur = numeric(tInf) 

     

    for (tTime in 1:tInf) 

    { 

      currEur[tTime] = qInitial * tTime^(-mDng) * exp((aDng/(1-mDng))*(tTime^(1-mDng)-1)) 

    } 

     

    # sum up the values 

    results$eurDoung[indId] = sum(currEur) 

     

  } 

  return(results)   

} 
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Appendix D: Clustering results using EE, SE, DNG DCA’s in Permian 

 

Figure 30: Representation of wells using clusters to show the performance of each well 

using EE in the Permian basin 
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Figure 31: Representation of wells using clusters to show the performance of each well 

using SE in the Permian basin 
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Figure 32: Representation of wells using clusters to show the performance of each well 

using DNG in the Permian basin 
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