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Abstract 

Carbon and water cycles are two fundamental biophysical processes in terrestrial 

ecosystems. Rain use efficiency (RUE), defined as the ratio of ecosystem productivity to 

precipitation (PPT), and water use efficiency (WUE), defined as the ratio of ecosystem 

productivity to evapotranspiration (ET), are critical metrics of ecosystem function linking 

ecosystem carbon and water cycles. Under the context of global climate change and 

climate variability, much attention has been paid to the variation in RUE or WUE across 

biomes or species, and its responses to drought, elevated atmospheric CO2 concentration, 

and other environmental changes. However, due to differences in research method, study 

areas, and complexity in definitions, there is a lack of consensus on the coupling of carbon 

and water fluxes across different ecosystems and it’s responses to climate change and 

climate variability. 

 Chapter 1 reviews the current status of carbon-water coupling studies and raises 

the major scientific questions that will be addressed in the dissertation. 

Chapter 2 examined the spatiotemporal variations in coupling of gross primary 

production (GPP) to PPT, and water fluxes (ET and T (transpiration)) at site and global 

scales. In-situ climate, and carbon and water fluxes datasets from 111 FLUXNET sites, 

global climate data, and remote sensing based GPP and ET data were combined to explore 

the relationships of GPP to PPT, ET, and T across different ecosystems and under 

different hydroclimatic conditions. Generally, GPP had a saturating relationship with 

PPT, and was linearly coupled with ET and T. This strong carbon-water flux coupling 

could be further improved by the incorporation of vapor pressure deficit (VPD) at site 

level. The sensitivity of GPP to PPT increased in severe drought years and decreased in 
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pluvial years. There was no obvious change in the sensitivity of GPP to ET or T under 

altered climate conditions. 

Chapter 3 identified extreme drought events globally based on rain-use efficiency 

[RUE; GPP/PPT]. Ecosystem RUE is expected to increase with decreasing precipitation 

to a maximum (RUEmax) during moderate drought and will likely decline when water 

shortage is beyond the tolerance of vegetation, leading to a loss of ecosystem function. In 

this chapter, the PPT at the RUEmax was identified as a threshold of extreme drought 

condition, and the deviation of the RUE in drought condition from the norms in non-

drought condition was further tested to determine if it exceeds the normal variability. 

Well-known extreme drought events were detected, e.g. 2003 drought in Europe, 2002 

and 2011 drought in the U.S., and 2010 drought in Russia. Moreover, the reduced carbon 

uptake caused by extreme droughts (0.14±0.03 PgC/yr) could explain >70% of the GPP 

anomaly in drought-affected areas. 

Chapter 4 investigated the responses of WUE to environmental change in forests 

and grasslands in Northern Hemisphere. On the basis of Chapter 1, underlying water use 

efficiency (UWUE; GPP×VPD0.5/ET) incorporated the VPD effects on carbon 

assimilation and transpiration and hence provided an optimal indicator of carbon-water 

coupling in flux tower dataset. In this chapter, the interannual trend in UWUE and its 

responses to environmental factors were analyzed across 11 evergreen needleleaf forest 

(ENF) sites, 7 deciduous broadleaf forest (DBF) sites, and 9 grassland (GRA) sites. 

Results showed that, there was an obvious increase in UWUE in forests which was 

triggered by CO2 fertilization, increasing VPD, as well as the decreasing soil moisture in 

DBF. In GRA, the positive effect of CO2 fertilization on UWUE was offset by the 
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negative effect of increasing soil moisture on UWUE, leading to no obvious trend in 

UWUE. 

Chapter 5 estimated the global ET at 8-day, 0.05° resolution from 2003 to 2015 

based on GPP from Vegetation Photosynthesis Model (VPM), VPD estimated from 

Atmospheric Infrared Sounder (AIRS), and biome-level UWUE parameters. Biome-level 

UWUE was derived from the FLUXNET2015 dataset at 8-day timescale. The ET was 

calibrated and validated at the biome level against flux tower ET. The interannual trends 

in ET, GPP, and VPD were also analyzed at the global scale. There was an increasing 

trend in global ET over the study period (1.47 mm/yr). This ET product on the basis of 

carbon-water coupling showed better performance than a traditional approach, i.e. 

Penman-Monteith equation. 

Chapter 6 briefly summarizes the conclusions and perspectives from this 

dissertation.
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Chapter 1: Introduction 

1.1 Research background 

Two main cycles of an ecosystem are the carbon cycle and the water cycle. In terrestrial 

ecosystems, gross primary productivity (GPP), the total vegetation photosynthesis, is the 

first step of carbon input from the atmosphere to the biosphere (Figure 1.1). Overall, more 

than half of GPP is respired, while the rest part is kept in the ecosystem (Chapin et al. 

2011). In past years, terrestrial ecosystems have absorbed more than 30% of 

anthropogenic CO2 emissions (Le Quéré et al. 2015). Water is the limiting factor that 

strongly constrains the productivity of the plants in most ecosystems and plays a central 

role in the dynamics of ecosystem carbon cycle (Seddon et al. 2016). The water cycle of 

an ecosystem usually begins with precipitation (PPT). PPT can be transpired to the 

atmosphere by plants, evaporated directly back to the atmosphere from soil surface and 

canopy interception, or lost as runoff and percolation to groundwater (Figure 1.1). For 

most vegetated terrestrial ecosystems, the total evapotranspiration (ET) is dominated by 

plant transpiration (T), varying from ~50% in shrublands and deserts to ~70% in tropical 

forests (Zhou et al. 2016). Ecosystem carbon and water cycles are both influenced by the 

physiological processes affecting plant photosynthesis and the physical processes 

affecting water loss from the ecosystem.  

Since pre-industrial times, the atmospheric CO2 concentration increased from 

~290 ppm to 400 ppm by 2015 and continues to increase (Keenan et al. 2016; Stocker et 

al. 2013). As a result of increase in greenhouse gases, the globally averaged temperature 

increased by 0.85 ℃ over the period of 1880~2012 (Stocker et al. 2013). In addition, the 

precipitation variability is likely becoming larger than ever, leading to more and more 
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extreme climate events (Allen et al. 2010; Mazdiyasni and AghaKouchak 2015; Stocker 

et al. 2013). Since the middle of 20th century, the frequency and intensity of heatwaves 

and droughts have substantially increased. The number of drought occurrences has almost 

doubled in Europe, Australia and most regions of Asia (Donat et al. 2013). Recent large-

scale extreme droughts have occurred in Europe in 2003 (Ciais et al. 2005), central North 

America around 2002 and 2011 (Breshears et al. 2005; Du et al. 2018), and Amazon in 

2005 and 2010 (Doughty et al. 2015). A wide range of ecosystem responses to these 

extreme droughts have been reported, from little change to major reductions in ecosystem 

productivity (Ciais et al. 2005; Jentsch et al. 2011; Schwalm et al. 2012; Zhao and 

Running 2010). On the other hand, in response to the increasing CO2 concentration in the 

atmosphere and other influences from climate change, nitrogen deposition, and land cover 

change, 25%~ 50% of the global vegetated area showed a greening trend caused by 

enhanced photosynthesis and lengthened growing season, which can increase the carbon 

sequestration of terrestrial ecosystems (Zhu et al. 2016). Thus, investigating the responses 

of carbon-water coupling to climate and environmental factors would help us understand 

future responses of terrestrial carbon and water budgets to climate change and climate 

variability. 
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Figure 1.1 Conceptual representation of ecosystem gross primary production 

(GPP), precipitation (PPT), and water flux components [evapotranspiration (ET) 

and transpiration (T)] in an ecosystem. 

 

Normally, ecosystems with certain plant communities are adapted to prevailing 

water conditions, which implies a balance between carbon gain and water availability 

(Chapin et al. 2011). Two indicators have been widely utilized to describe this tradeoff 

between carbon uptake and water loss (or water needed) in ecosystems. Rain-use 

efficiency (RUE, gC/m2/mm), usually defined as the amount of primary productivity per 

unit of PPT, provides a useful index of the interactions between vegetation and PPT, thus 

the potential tradeoffs between ecosystem’s carbon gain and water use (Hu et al. 2008). 

RUE was found to increase with decreasing mean annual PPT and Huxman et al. (2004) 

and Bai et al. (2008) reported a common maximum RUE in dry years across different 

biomes. However, subsequent studies also found that the maximum RUE varied across 

sites (Zhongmin et al. 2010). Water-use efficiency (WUE, gC/kg H2O), defined as the 

amount of carbon gained per unit of ET or T, quantifies the tradeoff between carbon gain 
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and water loss through plant stomatal and provides insight into the ecological functioning 

of the vegetated land surface (Niu et al. 2011). A large number of studies have 

concentrated on the impacts of droughts and CO2 fertilization on WUE at leaf, canopy, 

and ecosystem scales (Keenan et al. 2013; Knauer et al. 2017; Yang et al. 2016). 

Generally, WUE has been found through site-level analysis or model simulation to 

increase with elevated atmospheric CO2 concentration and during drought (Cheng et al. 

2017; Keenan et al. 2013; Peters et al. 2018). However, there are still inconsistent findings 

on the magnitude of CO2 and drought impacts on WUE. Additionally, the definition of 

WUE was developed in several formulations aiming to obtain a stable variable from leaf 

to ecosystem spatial scale and from short term (i.e. diurnal) to annual temporal scale by 

considering the effect of VPD on carbon assimilation and transpiration (Beer et al. 2009; 

Zhou et al. 2014). However, these new formulations have not been broadly evaluated. 

Thus, the spatiotemporal variation in RUE or WUE and its responses to climate change 

are still not quantified well. 

Great advances have been made in last decades in quantifying and understanding 

the patterns of terrestrial productivity and hydrological condition with ground and remote 

sensing observations. Satellite remote sensing provides an opportunity to monitor 

changes in vegetation cover at regional and global scales, and therefore has provided the 

capability to observe the long-term responses of critical ecosystem function to climate 

and environmental change. Currently, global GPP and ET can be obtained from remote 

sensing estimation (e.g. MODIS and VPM) (Zhang et al. 2017; Zhao and Running 2010), 

upscaling approaches based on FLUXNET observations (e.g. MPI-BGC) (Jung et al. 

2011), or process-based models (e.g. BESS and TRENDY) (Jiang and Ryu 2016; Sitch 
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et al. 2008). Additionally, satellite measurement of Solar-Induced Chlorophyll 

Fluorescence (SIF) opens up a new avenue for monitoring terrestrial GPP from space 

(Sun et al. 2018). Meanwhile, more than 750 eddy flux tower sites have been established 

worldwide (i.e. FLUXNET) for measurement of CO2 and H2O exchanges between the 

ecosystem and the atmosphere through the eddy covariance technique 

(http://fluxnet.fluxdata.org/). These advances allow comprehensive quantification of the 

coupling between carbon and water cycles in ecosystems from site to global scale. 

1.2 Research objectives 

The goal of this dissertation is to elucidate the responses of carbon-water coupling to 

climate change and climate variability at multiple spatial and temporal scales in order to 

improve our understanding of current and future carbon-water coupling in terrestrial 

ecosystems. 

1.3 Organization of the dissertation  

This dissertation has an introduction, four thematic chapters, and a summary. The theme 

1 manuscript (Dissertation Chapter 2) is in revision following journal review.  The theme 

2 paper (Dissertation Chapter 3) has been published in Science of the Total Environment. 

The theme 3 manuscript (Dissertation Chapter 4), and the theme 4 manuscript 

(Dissertation Chapter 5) are in preparation for later submission.   

Chapter 1 Introduction 

Chapter 2 explores the spatiotemporal variations in relationships between GPP 

and PPT, ET, and T across different biome types and under different hydroclimatic 

conditions. Both site level datasets (i.e. FLUXNET) and global gridded remote sensing 

datasets including GOME 2, MODIS, VPM, and GLEAM products were used to quantify 
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those relationships. The discussion focuses on the spatiotemporal variation in responses 

of the GPP (or SIF) to PPT and water fluxes across biome types and under different 

hydroclimatic conditions. 

Chapter 3 identifies global extreme drought events based on maximum RUE. As 

discussed in Chapter 2, ecosystem RUE increases with decreasing PPT to a maximum 

during moderate drought. RUE is assumed to decline with further water shortage. Based 

on this hypothesis, this chapter identifies the global patterns of extreme drought events 

during 2001-2011 and 2001-2015. We further explored the drought impacts on GPP 

anomaly in those drought-affected regions. The discussion focuses on the drought events 

identified and its role in carbon dynamics. 

Chapter 4 evaluates the responses of the UWUE to different environmental 

factors in forests and grasslands in the Northern Hemisphere. UWUE has been 

demonstrated to be an optimal indicator of ecosystem carbon-water coupling and has 

more physiological relevance, which was also discussed in Chapter 2. However, UWUE 

responses to environmental dynamics have not been evaluated broadly. This chapter 

investigated the trend in UWUE, as well as the trends in related environmental factors 

(i.e. temperature, soil moisture, CO2, radiation, etc.). The variation in UWUE was further 

attributed to the changes in environmental factors statistically. The discussion focuses on 

the trend in UWUE detected across sites and its attribution to environmental factors.  

Chapter 5 estimates global ET through GPP and UWUE by combing VPD. This 

chapter generated 8-day, 0.5° resolution global ET from 2003 to 2015. We first 

characterized biome-level UWUE from FLUXNET sites measurements and then 

generated ET at the global scale. The ET estimated in this study was calibrated and 
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validated against eddy flux measurements and other ET products (i.e. MODIS). We 

further analyzed the interannual trend in GPP, VPD, and ET. The discussion focuses on 

model evaluation and trend analysis. 

Chapter 6 Summary 
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Chapter 2: Examining the coupling of ecosystem carbon and water 

cycles at eddy flux site and global scales 

Abstract  

Quantifying the relationship between ecosystem carbon and water cycling is important in 

forecasting the responses of ecosystem structure and function to climate variability. 

However, there is a lack of consensus on the spatiotemporal coupling of carbon and water 

cycles across terrestrial ecosystems and under different hydroclimatic conditions. This 

study aims to quantify the relationships of annual gross primary production (GPP) and 

solar-induced chlorophyll fluorescence (SIF) to precipitation (PPT), and water flux 

components [evapotranspiration (ET), and transpiration (T)] across 111 sites using 

FLUXNET2015 dataset and at the global scale using global climate datasets from 

Climatic Research Unit (CRU), global GPP datasets from Vegetation Photosynthesis 

Model (VPM), global SIF datasets from Global Ozone Monitoring Instrument 

Experiment-2 (GOME-2), and global ET datasets from Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Global Land Evaporation Amsterdam Model 

(GLEAM). We further evaluated the sensitivity of GPP and SIF to PPT and water fluxes 

under different hydroclimatic conditions characterized by severe drought, normal, and 

pluvial periods at site and global scales. We found that GPP and SIF had a saturating 

relationship with PPT, with the highest sensitivity of GPP and SIF to PPT occurring in 

semi-arid regions with mean PPT around 473.0±170.5 mm/yr. GPP and SIF were linearly 

coupled with ET and T, and this strong carbon-water coupling was further improved by 

the incorporation of vapor pressure deficit (VPD) for the flux dataset. The sensitivity of 

GPP and SIF to PPT increased in severe drought years and decreased in pluvial years. 
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However, there was no obvious change in the sensitivity of GPP and SIF to ET or T in 

altered hydroclimatic conditions. This study comprehensively evaluated the coupling of 

the carbon and water cycles from the site level to the global scale, and improves our 

understanding of ecosystem carbon and water cycling and its response to climate 

variability.  

2.1 Introduction 

Quantifying the relationship between ecosystem carbon and water cycling is essential for 

better understanding of biological and ecological processes in the context of increasing 

climate variability (Reichstein et al. 2013; Stocker et al. 2013). Gross primary production 

(GPP), the total amount of carbon fixed by photosynthesis, is the largest sink of carbon 

from the atmosphere to the biosphere. It is constrained by precipitation (PPT) in many 

terrestrial ecosystems, and is fully coupled with ecosystem water fluxes 

[evapotranspiration (ET) and transpiration (T)] (Figure 1.1) (Chapin et al. 2011; Jung et 

al. 2017). Carbon and water cycling in terrestrial ecosystems are both controlled by plant 

physiological features that affect leaf photosynthetic rate and stomatal conductance, and 

environmental factors that affect water availability, radiation and vapor pressure deficit 

(VPD), etc.(Meyer 2018; Niu et al. 2011; Zhongmin et al. 2010). Thus, a comprehensive 

understanding of the coupling of GPP and PPT and water fluxes across terrestrial 

ecosystems and under different hydroclimatic conditions is of great importance for 

understanding and forecasting the future responses of ecosystems to climate variability. 

The relationship between ecosystem net primary production (NPP; ~half of GPP) 

and PPT and ET has been widely explored using multi-year, multi-site measurements at 

local to continental scales (Biederman et al. 2016; Huxman et al. 2004; Ponce Campos et 
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al. 2013; Wilcox et al. 2017). Across sites, ANPP had a saturating relationship to PPT 

and its sensitivity or rain-use efficiency (RUE) decreased from dry sites to mesic sites 

(Huxman et al. 2004). Over multiple years at a given site, ANPP was observed to increase 

with PPT linearly in normal climate conditions and nonlinearly during extreme climate 

variability (Hsu and Adler 2014; Knapp et al. 2017). Additionally, ANPP was found to 

have a linear relationship with ET across sites, suggesting a common ecosystem water-

use efficiency (WUE) among biomes (Ponce Campos et al. 2013).  By taking the slope 

of the ANPP~ET relationship as WUE, Ponce Campos et al. (2013) found an increase in 

WUE in the driest years and a decrease in the wettest years across biomes. However, there 

is a lack of consensus on the spatiotemporal variations of WUE across biomes and under 

contrasting hydroclimatic conditions, due to different spatial scales and definitions of 

WUE (Niu et al. 2011; Peters et al. 2018; Sun et al. 2016; Tang et al. 2014; Yang et al. 

2016; Yu et al. 2017). Moreover, there have been some efforts to quantify the relationship 

between GPP and T (or ET when soil evaporation is small) by also incorporating the 

effect of VPD on carbon assimilation and transpiration using site-level measurements, 

which is more plant physiologically relevant (Beer et al. 2009; Zhou et al. 2014). In 

general, the relationship between GPP×VPD and T is stronger than the GPP~T 

relationship on daily to annual timescales (Beer et al. 2009), and the relationship between 

GPP×VPD0.5 and T is even less variable across biomes on a daily timescale (Zhou et al. 

2015). However, due to the difficulty in partitioning T from ET, the relationship between 

GPP and T with VPD has not been broadly evaluated across ecosystems. Even less well-

known is the GPP~T relationship under different hydroclimatic conditions. Thus, the 
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spatiotemporal relationships between GPP and PPT, ET, and T across terrestrial 

ecosystems and their responses to climate have not been well evaluated. 

Substantial advances have been made in the last decade in estimating global 

patterns of the terrestrial carbon and water cycles using ground and remote sensing 

observations. More than 750 ground-based flux tower stations (i.e. FLUXNET) have been 

established worldwide to measure the CO2 and H2O exchange between terrestrial 

ecosystems and the atmosphere (http://fluxnet.fluxdata.org/) (Baldocchi et al. 2001). 

Also, satellite measurements of optical parameters related to vegetation activity and water 

content on the Earth’s surface make it possible to quantify global GPP and water fluxes 

over a long period and at high spatial resolution, e.g. VPM (Vegetation Photosynthesis 

Model) GPP and MODIS (Moderate Resolution Imaging Spectroradiometer) ET (Mu et 

al. 2011; Zhang et al. 2017). Satellite measurement of solar-induced chlorophyll 

fluorescence (SIF), energy emitted by vegetation during photosynthesis, opens up another 

avenue for estimating GPP from space (Sun et al. 2017). Satellite SIF is highly correlated 

with GPP and has been considered to be the most direct, remotely sensed measure of 

terrestrial photosynthesis at large spatial scales (Frankenberg et al. 2011; Joiner et al. 

2014). The combination of highly accurate, ground-based flux tower measurements and 

global space-borne remote sensing observations can be used to comprehensively quantify 

the spatiotemporal coupling of the terrestrial carbon and water cycles. 

The objective of this study was to examine the relationships between annual GPP, 

SIF and PPT, ET, and T across all terrestrial ecosystems and under different 

hydroclimatic conditions using FLUXNET and global datasets. SIF was used as a proxy 

of GPP in our study to reduce the uncertainty of using a single global GPP product. We 
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used monthly site-level data from eddy flux tower sites and monthly global gridded data 

from remote sensing and climate datasets to generate annual GPP, SIF, PPT, ET, and T 

datasets (Table 2.1). Annual T was partitioned from ET in the flux and global datasets. In 

our study, we first characterized the spatiotemporal relationships between GPP, SIF and 

PPT, and water flux components across sites and the globe. Second, we focused on the 

temporal variations in sensitivity of GPP and SIF to PPT and water fluxes under severe 

drought, normal, and pluvial periods at the site and global scales. In our analysis, the 

sensitivity was represented by the slope of a simple linear regression model between GPP 

(and SIF) and  PPT or water fluxes, which might be slightly different from the estimates 

of WUE or RUE defined by ratios in previous studies when there is a non-zero y-intercept 

(Veron et al. 2005). 

2.2 Materials and methods 

2.2.1 Study area 

This study focuses on 111 FLUXNET sites and global vegetated land area (~120 million 

km2). Figure S2.1 shows the dominant land cover type map in 2001-2016 based on 

MODIS land cover product (MCD12C1.006) with 0.5° resolution. The dominant land 

cover type in a pixel is defined as a land cover occupying more than 70% of the grid cell 

in each year during the period 2001-2016. Pixels with water proportion > 10% were not 

used in this study. 

2.2.2 In-situ climate, carbon, and water flux datasets 

We used 2000-2014 monthly eddy flux data from the FLUXNET 2015 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). Out of 166 sites, we identified 111 

eddy covariance flux sites that had >=4 years of measurements (mean of 9 years) (Table 
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S2.1). The major ecosystem types at these sites were shown in Table S2.1. Monthly GPP, 

PPT, and latent heat flux (LE) data were used to generate annual GPP, PPT, ET, and T 

for each site. Monthly ET was converted from LE (w/m2) using the method in Tang et al. 

(2014). Monthly T was partitioned from ET using the approach developed by Wei et al. 

(2017) (see following sections). In addition, monthly VPD measurements were used to 

evaluate VPD effects on carbon-water coupling at the site scale.  

2.2.3 Global climate datasets 

We used global gridded climate data from Climatic Research Unit (CRU) TS 4.01 for 

1987-2016 (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/), including PPT, 

temperature (TMP), minimum temperature (TMN), and vapor pressure (VAP) at 

monthly, 0.5° resolution. Monthly PPT was summed annually to estimate annual PPT. 

The mean ± standard deviation (SD) of annual PPT during 1987-2016 (30 years) was 

selected as the baseline of hydroclimatic conditions for the beginning of the 21st century 

for each grid. Severe drought years and pluvial years were defined as years with PPT < 

mean - SD and PPT > mean + SD, respectively. Using the Magus Equation, monthly 

TMP, TMN, and VAP were used to calculate monthly VPD, in order to evaluate the VPD 

effects on carbon-water coupling at the global scale. 

2.2.4 Global GPP dataset 

The global GPP data came from VPM simulations, which is a light-use efficiency model 

driven by MODIS vegetation indices, land cover maps, and NCEP Reanalysis II climate 

data (Xiao et al. 2004; Xiao et al. 2005). VPM GPP is available for 2000-2017 with a 

500m, 8-day resolution (Zhang et al. 2017). This GPP product showed a strong 

spatiotemporal consistency with in situ GPP estimates across biomes (Ma et al. 2018; 



14 

Zhang et al. 2017). For this study, we aggregated the 8-day, 500m VPM product into 

monthly GPP at 0.5° resolution for 2001-2016 to match the coarse spatial resolution of 

the SIF data. Annual total GPP was calculated by summing the monthly totals 

2.2.5 Global SIF dataset 

We used the latest version (v27) SIF data from the Global Ozone Monitoring Instrument 

2 (GOME-2) in this study as a proxy for GPP (https://avdc.gsfc.nasa.gov/ 

pub/data/satellite/MetOp/GOME_F/v27/). SIF was retrieved at far-red wavelengths ~ 740 

nm based on a principal component analysis approach (Joiner et al. 2013). In this study, 

we used the level-2 monthly SIF data at 0.5° spatial resolution for 2007-2016. Annual 

SIF was calculated as an average of all months in a calendar year. 

2.2.6 Global ET datasets 

The MODIS ET (MOD16A2.006) product is based on the Penman-Monteith algorithm 

using daily GMAO climate data, MODIS land cover, albedo, LAI and EVI as input (Mu 

et al. 2011). The MODIS ET data were obtained through NASA LPDAAC with 500m, 

8-day resolution (https://lpdaac.usgs.gov). In our study, MODIS ET was aggregated into 

monthly, 0.5° resolution for the period of 2001-2016. Monthly MODIS T was partitioned 

from MODIS ET using the approach developed by Wei et al. (2017). All monthly ET and 

T were summed to annual values for each year during 2001-2016 to match the VPM GPP 

dataset. 

GLEAM (Global Land Evaporation Amsterdam Model) (v3.2a) was designed to 

maximize the advantages of remote sensing and climate data to estimate the different 

components of land evaporation (Martens et al. 2017; Miralles et al. 2011). It relies on a 

modified Priestley and Taylor approach using meteorological data, microwave 
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Vegetation Optical Depth, and soil moisture as inputs. This product derived land ET, T, 

and canopy evaporation at daily, 0.25° resolution for 1980-2017. For our study, we 

aggregated daily ET and T data to monthly, 0.5° resolution for 2007-2016. All monthly 

ET and T data were summed to annual values for each year from 2007 to 2016 to match 

the SIF dataset. 

2.2.7 Partitioning T from ET datasets 

The T/ET ratio is logarithmically related to LAI (Wang et al. 2014; Wei et al. 2017). 

Given the strong relationship between LAI and T/ET, we used the approach developed 

by Wei et al. (2017) to partition T from ET at monthly timescale using flux tower ET and 

MODIS ET data (Equation 2.1). 

                         𝑇 = ∑ 𝐸𝑇𝑛
𝑖=1  ×  𝑓𝑖  ×  𝑎𝐿𝐴𝐼𝑏                                                (2.1) 

where a and b are two coefficients related to specific land cover type i (Table S2.2),  𝑓𝑖 is 

the proportion of each land cover type in a site or pixel. For the flux tower dataset, 𝑓𝑖 

equals 1, as flux towers were located in pure land cover types. For the MODIS ET dataset, 

𝑓𝑖  equals the yearly proportion of each land cover type in a 0.5° pixel, which was 

recalculated from the sub-pixel proportion of each land cover type with 0.05°resolution 

from MODIS land cover (MCD12C1.006) (Table 2.1). LAI in the equation came from 

the MODIS LAI product (MOD15A2H.006), which has an 8-day, 500m resolution (Table 

2.1). For the flux tower dataset, we used the 500m monthly averaged LAI to represent the 

site-level LAI. For the MODIS ET dataset, we generated the 0.5° monthly averaged LAI 

to represent the grid-level LAI. In our study, we only focused on those dominant land 

cover types with water proportion in a pixel <10% (Figure S2.1). 
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Table 2.1 Datasets used in this study. 

Variable Description Temporal 

resolution 

Spatial 

resolutio

n 

Reference 

GPPEC, PPTEC, 

LEEC 

Gross primary production, 

precipitation, and latent heat 

from FLUXNET 2015 

Monthly 

1999-

2014 

100~100

0m 

 

PPTCRU, 

TMPCRU, 

TMNCRU,VAPC

RU 

Precipitation, temperature, 

minimum temperature, and 

vapor pressure from CRU TS 

4.01 

Monthly 

1901-

2016 

0.5° (Harris et 

al. 2014) 

GPPVPM Gross primary production 

from VPM 

8-day 

2000-

2017 

500m (Zhang et 

al. 2017) 

SIFGOME-2 Sun-induced chlorophyll 

fluorescence from GOME-2 

v27 

Monthly 

2007-

2017 

0.5° (Joiner et 

al. 2013) 

ETMODIS Evapotranspiration from 

MODIS (MOD16A2.006)  

8-day 

2001-

2017 

500m (Running 

et al. 2017) 

ETGLEAM, 

TGLEAM 

Evapotranspiration and 

transpiration from GLEAM 

3.2a 

Monthly 

1980-

2017 

0.25° (Martens 

et al. 2017) 

LAIMODIS Leaf area index from MODIS 

(MOD15A2H.006) 

8-day 

2000-

2017 

500m (Myneni et 

al. 2015) 

Land cover Sub-pixel proportions of land 

cover types from 

MCD12C1.006 

Yearly, 

2001-

2016 

0.05° (Friedl and 

Sulla-

Menashe 

2015) 

 

2.3 Results 

2.3.1 Spatial distributions of mean annual GPP, SIF, PPT, and water fluxes 

Across 111 FLUXNET sites, there was a general spatial consistency between mean 

annual GPPVPM, SIFGOME-2, and mean annual GPPEC from flux tower sites (Figure 2.1a-

b, Figure S2.2a,d). However, ET and T from MODIS and GLEAM were underestimated 
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relative to flux tower estimates (Figure S2.3b,c,e,f). According to site- and global-scale 

results, ET was found to saturate with increasing PPT (Figure S2.3a-c). However, T 

increased linearly with ET for all datasets (Figure S2.3d-f). The slope of the linear 

regression between T and ET was stable at ~ 0.8 (Figure S2.3d-f). On average, ET 

accounted for 64%±1% of PPT, and T accounted for 71%±3% based on all datasets. 

Across 111 FLUXNET sites during 2000-2014, average annual GPPEC was 1260 

gC/m2/yr, and average annual PPTEC, ETEC, and TEC estimates were 767mm/yr, 

498mm/yr, and 339 mm/yr, respectively. Across the global vegetated land area (~114 

million km2) during 2001-2016, average annual GPPVPM was 1035 gC/m2/yr; average 

annual PPTCRU was 847mm/yr; and average annual ETMODIS and TMODIS were 524 mm/yr, 

and 376mm/yr, respectively. During 2007-2016, average annual SIFGOME-2 was 0.5 

mW/m2/nm/sr; average annual PPTCRU was 811 mm/yr; and average annual ETGLEAM and 

TGLEAM were 519 mm/yr, and 379mm/yr, respectively. 
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Figure 2.1 Geographical distribution of mean annual GPP, SIF, ET and T at the site 

and global scales. The left panels are mean estimates of annual GPPVPM (a), ETMODIS 

(c), and TMODIS (e) for 2001-2016. Black outlined circles represent ground estimates 

of mean annual GPPEC (a), ETEC (c), and TEC (e) from 111 FLUXNET sites for 2000-

2014. The right panels are mean annual estimates of SIFGOME-2 (b), ETGLEAM (d), 

and TGLEAM (f) for 2007-2016. 

 

2.3.2 The relationships between annual GPP, SIF and PPT, ET, and T across terrestrial 

ecosystems 

The relationships between annual GPP, SIF and PPT were nonlinear with different 

saturating points from the site level to the global scale (Figure 2.2a,d,g). At the site level, 

GPPEC increased with PPTEC positively and roughly saturated when PPTEC exceeded 

1463 mm/yr. At the global scale, GPPVPM and SIFGOME-2 became saturated when PPTCRU 

exceeded 3219 mm/yr and 2299 mm/yr, respectively. Here, the saturation point was 
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selected at the curvature deviated more than 80% from the initial point (x=0). There was 

substantial variation in sensitivity of GPP (or SIF) to PPT interannual variability across 

terrestrial ecosystems (Figure 2.2a,d,g, Figure S2.4a,d).  Semi-arid regions where mean 

PPT was 473.0±170.5  mm/yr, e.g. central North America, Kazakhstan and Mongolia, 

had the highest sensitivity of GPP (or SIF) to PPT (slope>=1.6 g C/kg H2O or 1.0 

mW/nm/sr/kg H2O) (Figure S2.4a,d). Also, the mean sensitivity of GPP and SIF to PPT 

was highly variable across biomes (Figure 2.3). Generally, savannas showed the highest 

sensitivity of GPP to PPT and forests showed the lowest sensitivity to PPT in the flux 

tower dataset (Figure 2.3a).  Grasslands showed a consistently high sensitivity of GPP 

and SIF to PPT and forests showed the lowest sensitivity to PPT in global datasets (Figure 

2.3d,g).  

    The relationships between annual GPP, SIF and ET or T were linear across sites 

and the globe (Figure 2.2b-c,e-f,h-i). Higher coefficients of determination (R2) were 

estimated for the relationship between GPP (and SIF) and ET (or T) in comparison with 

the GPP (and SIF)~PPT relationship. Unlike PPT, the mean sensitivity of GPP and SIF 

to ET and T showed moderate changes across all ecosystems (Figure 2.2b-c,e-f,h-i).  

Also, the mean sensitivity of GPP and SIF to ET and T exhibited less variation across 

biomes as shown by a smaller CV (Figure 2.3). In general, grassland and cropland GPP 

and SIF was highly sensitive to ET and T, and forest GPP and SIF were least sensitive to 

ET and T in the global datasets (Figure 2.3e-f, h-i). However, in the flux tower dataset, 

cropland GPP was least sensitive to ET and T (Figure 2.3b-c). 

    To assess the impact of VPD on carbon-water coupling, we multiplied GPP and 

SIF by the square root of VPD (annual sums of monthly GPP×VPD0.5 or SIF×VPD0.5), a 
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term developed by Zhou et al. (2015) (Figure S2.5j-l). We found that the linear 

relationship between GPP×VPD0.5
EC and TEC in the flux tower dataset was stronger than 

the GPPEC~TEC relationship, with the R2 increasing from 0.46 to 0.62 (Figure S2.5j). 

However, this stronger carbon-water coupling when incorporating VPD was not shown 

in the global results (Figure S2.5k,l). 

 

Figure 2.2 Spatiotemporal relationships between annual GPP, SIF and PPT, ET, 

and T across 111 FLUXNET sites (a-c) and the global vegetated land (d-i). 983 site-

year data with >=4 years’ measurements in 2000-2014 were used for a-c. All grid-

year data during 2001-2016 and 2007-2016 from global datasets were used for d-f 
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and g-i, respectively. The spatial relationships between mean annual GPP (and SIF) 

and PPT are described by a negative exponential model, while the spatial 

relationships between mean annual GPP (and SIF) and ET, and T are linear (black 

bold lines). Black dashed lines show the 95 percent prediction level. All fitted models 

are significant (p<0.0001). The temporal (or the interannual) relationship at each 

site or pixel was fitted linearly and each color shows the sensitivity (slope of the 

linear regression). The insets show the respective distribution of GPP and SIF 

sensitivities to PPT, ET, and T (the x-axis represents PPT, ET, or T and the y-axis 

represents the sensitivity of GPP or SIF to PPT, ET or T). 

 

Figure 2.3 Comparison of the sensitivity of GPP and SIF to PPT, ET, and T for 

different biomes. Sensitivity of GPPEC across 111 FLUXNET sites for 2000-2014 (a-

c), global GPPVPM for 2001-2016 (d-f), and global SIFGOME2 for 2007-2016 (g-i). CV 

represents the coefficient of variation of mean GPP or SIF sensitivity to PPT and 

water fluxes across biomes (FOR=Evergreen Needleleaf forest, Evergreen Broadleaf 

forest, Deciduous Needleleaf Forest, Deciduous Broadleaf Forest, Mixed Forest, 

SHR= Open Shrublands, Closed Shrublands, SAV=Woody Savannas, Savannas, 

GRA=Grasslands, Wetlands, CRO=Croplands). 
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2.3.3 The relationships between annual GPP, SIF and PPT, ET, and T in severe 

drought and pluvial years 

To explore the responses of GPP and SIF to PPT and water fluxes under different 

hydroclimatic conditions, we analyzed the relationships between GPP, and SIF and PPT, 

ET, and T during extreme drought, normal, and pluvial years by evaluating the temporal 

variation in regression slopes across these years. In total, 57 FLUXNET sites, 

concentrated in the U.S. and central Europe, experienced all three climate conditions 

during 2001-2014 (Figure S2.6a). Approximately 89% and 64% of global vegetated land 

area experienced all three climate conditions during 2001-2016 and 2007-2016, 

respectively (Figure S2.6b,c).  
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Figure 2.4 Relationships between GPP, and SIF and PPT, ET, and T under different 

hydroclimatic conditions (severe drought, normal and pluvial years) across 57 

FLUXNET sites and the globe. Each point represents multi-year mean annual 

estimates of a hydroclimatic period. The solid lines represent the linear regressions 

of GPP and SIF to PPT or water fluxes. The numbers in each subplot are the 

regression slopes representing the sensitivity of GPP and SIF to PPT and water 

fluxes in normal (black), drought (red), and pluvial (blue) years. 

 

The sensitivities of GPP and SIF to PPT and water fluxes exhibited less variation 

across altered hydroclimatic conditions from PPT to ET and T, as presented by smaller 

coefficients of variation (CV) of regression slopes (Figure 2.4). Specifically, the 

sensitivities of GPP and SIF to PPT increases noticeably in severe drought years and 

decreases in pluvial years in all datasets (Figure 2.4a,d,g). However, there was no obvious 
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change in the sensitivity of GPP and SIF to ET or T in altered hydroclimatic conditions 

(Figure 2.4b-c, e-f, h-i).   

2.4 Discussion 

2.4.1 Spatiotemporal relationships between GPP, SIF and PPT, ET, and T 

In this study, the spatiotemporal relationships between annual GPP, SIF and PPT, ET, 

and T were quantified at both the site and global scales by combining FLUXNET2015 

dataset with spatially continuous remote sensing and climate datasets. The sensitivities of 

annual GPP and SIF to PPT and each water flux were further evaluated across biomes 

and under contrasting hydroclimatic conditions (severe drought to pluvial periods). Thus 

far, ecosystem carbon-water coupling has been widely studied based on site-level 

measurements with a limited number of sites and was focused on the responses of NPP 

to PPT or ET (Huxman et al. 2004; Knapp et al. 2017; Ponce Campos et al. 2013). 

However, there is no consensus on the spatiotemporal variations in carbon-water coupling 

across ecosystems and under different levels of water stress (Ponce Campos et al. 2013; 

Tang et al. 2014; Yang et al. 2016; Yu et al. 2017). In our study, there was a relatively 

large spatial variation in the sensitivity of GPP and SIF to PPT and a small variation to 

ET and T across terrestrial ecosystems. Also, there were no obvious changes in the 

responses of GPP and SIF to ET or T in different hydroclimatic conditions, which might 

conflict with previous findings. Our study comprehensively evaluated the coupling of the 

carbon and water cycles from the site to global scale and found a generally common 

response of carbon uptake to water use among different biomes and in climate extremes. 

Across 111 FLUXNET sites and the globe, ecosystem carbon-water coupling is 

stronger and more linear with ET and T than PPT, reflecting the intrinsic stomatal control 
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on carbon-water exchange at leaf scale (Figure 2.2). In our results, GPP and SIF increased 

nonlinearly with PPT, with different saturation values across datasets (Figure 2.2a,d,g). 

The highest sensitivity of GPP and SIF to PPT occurred around PPT at 473.0±170.5  

mm/yr in semi-arid regions and the lowest sensitivity occurred in tropical forests (Figure 

2.2a,d,g Figure S2.4a,d), matching the previous findings that ecosystem RUE peaks when 

mean annual PPT is ~500 mm (Hsu et al. 2012; Paruelo et al. 1999). The varying 

sensitivity between semi-arid regions and tropical regions reflects the different climatic 

controls on GPP and PPT (Ahlstrom et al. 2017; Huxman et al. 2004). GPP and SIF were 

linearly coupled with ET and T and the spatial variation of mean sensitivities among 

biomes decreased, which indicated that WUE was generally consistent across vegetation 

types (Figure 2.2b-c,e-f,h-i, Figure 2.3). At the biome level, forest GPP and SIF was the 

least sensitive to ET and T, and croplands were the most sensitive in the global results, 

which is in conflict with model simulations that estimate that tropical forests have the 

highest WUE (Cheng et al. 2017; Sun et al. 2016). However, cropland GPP was the least 

sensitive to ET and T in flux dataset, which agreed with previous findings from flux tower 

sites (Tang et al. 2014). The different spatiotemporal scales between flux tower and global 

datasets could be a major cause for the different results generated from the datasets 

(Figure 2.3). In addition, results from the flux tower dataset showed an improved 

relationship between GPP×VPD0.5 and T (Figure S2.5j), suggesting a more convergent 

physiological response of carbon assimilation to water loss across ecosystems. However, 

we failed to see a stronger relationship when incorporating VPD0.5 in global datasets 

(Figure S2.5k-l), which was possibly due to the uncertainties in CRU climate data and 

the failure to capture VPD effects in GPPVPM. Also, SIF has a close relationship with the 
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amount of photosynthetically active radiation absorbed by chlorophyll (APAR), and 

might not be as sensitive to VPD as photosynthesis (Yang et al. 2018; Yang et al. 2015). 

Under different hydroclimatic conditions, the variation in the carbon-water 

coupling was also smaller with ET and T than PPT, suggesting a common responses of 

carbon uptake to plant water use under different levels of water stress (Figure 2.4). GPP 

and SIF showed an increasing sensitivity to PPT in severe drought years and decreasing 

sensitivity in pluvial years (Figure 2.4 a,d,g), which is consistent with previous studies 

that RUE increases with drought due to the reduced water availability and reduction in 

runoff (Huxman et al. 2004). However, there is no obvious increase or decrease of 

sensitivity in severe drought or pluvial years, which is contrary to previous site-level 

findings that ecosystem WUE  increases significantly with drought to a maximum across 

all biomes (Ponce Campos et al. 2013), or that responses of ecosystem WUE to drought 

varies for different regions on the Earth (Yang et al. 2016). In this study, the large number 

of sites and spatial scale (i.e. globe) could average the plant community-level responses 

and result in a common response of GPP and SIF to ET or T in an altered water condition, 

to some degree. Also, the definitions of severe drought, normal, and pluvial periods were 

solely based on the distribution of PPT. An extreme drought year with low PPT may still 

have large ET or T estimates in our datasets, resulting lower sensitivity of GPP and SIF 

to ET or T in dry years.  

2.4.2 Data uncertainties and limitations 

This study employed both site-level and global datasets, in order to examine the 

spatiotemporal relationships of carbon-water cycling, which largely rely on the data 

quality. We used all the latest version of each data product to reduce the data uncertainty 
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shown in prior literature. For example, it has been demonstrated that collection 6 MODIS 

data (i.e. ET and LAI) has a higher accuracy than collection 5 (Yan et al. 2016). And the 

v27 SIF from GOME-2 provided improved bias corrections and calibration over v26. 

However, several data issues could still have minor impacts on our results. First, the 

GOME-2 instruments have exhibited a strong decreasing trend in SIF that is caused by 

sensor degradation, which would involve large uncertainty in any temporal analysis 

(Zhang et al. 2018c). In this study, the degradation could influence the absolute estimate 

of SIF sensitivity to PPT or water fluxes at a single site or a pixel, while the relative 

spatial variation of the sensitivity across biomes would not be influenced, since the 

degradation issue occurs in each site and pixel systematically. Second, the GPPEC~ETEC 

relationship (R2=0.38) is weak in the flux tower dataset, which could be induced by lack 

of closure of the energy budget in flux tower dataset. In this study, we used the original 

LE data without energy balancing approach to estimate ET. Third, partitioning T from 

ET is still a challenge in hydrological field. In our study, we used the algorithm from Wei 

et al. (2017) to partition T from ET. In equation 2.1, ET was the sum of E and T in Wei 

et al. (2017), which doesn’t count canopy interception. However, we didn’t exclude the 

interception from ETMODIS and ETEC. In spite of these data issues, the results are generally 

consistent and robust across all datasets in our study. 

2.5 Conclusion 

A comprehensive understanding of the carbon-water coupling in ecosystems is important 

for predicting future ecosystem responses to climate variability.  Using observations from 

flux tower sites and remote sensing estimates, this study quantified the relationships 

between GPP, SIF and PPT, and water fluxes across all terrestrial ecosystems and under 
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different hydroclimatic conditions. Our analysis showed that GPP and SIF have a 

saturating spatial relationship with PPT and have strong, linear relationships with ET and 

T. In comparison with PPT, there were no substantial changes in the mean sensitivity of 

GPP and SIF to ET and T across terrestrial ecosystems and different hydroclimatic 

conditions, which suggested that the response of carbon uptake to water use of vegetation 

was generally consistent across biomes and climate extremes.  

Supplementary materials 

 

Figure S2.1 Dominant land cover type map in 2001-2016 based on MCD12C1.006 

with 0.5° resolution. The dominant land cover type in a pixel is defined as a land 

cover occupying more than 70% of the grid cell in each year during the period 2001-

2016. Pixels with water proportion > 10% were excluded. This map created in 

ArcMap 10.2. 
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Figure S2.2 Comparison of GPP, SIF, ET, and T estimates from remote sensing 

datasets (0.5° spatial resolution) with GPP, ET, and T derived from 111 flux tower 

sites. All linear regression were significant (p<0.0001). 

 

 

Figure S2.3 Relationships between ET and PPT (a-c), and T and ET (d-f) at eddy 

flux sites and the global scale. The relationship between ET and PPT is described by 

a negative exponential model, while the relationship between T and ET is described 

by a linear regression model. All fitted models are significant (p<0.0001). 
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Figure S2.4 Geographical distribution of the sensitivity of GPP and SIF to PPT, ET, 

and T interannual variability at 111 FLUXNET sites for 2000-2014 (black outlined 

circles in a-c) and across the globe during 2001-2016 (a-c) and 2007-2016 (d-f). 
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Figure S2.5 Spatiotemporal relationships between annual GPP, SIF and PPT, ET, 

and T by incorporating the VPD effect across 111 FLUXNET sites (a-c) and the 

global vegetated land (d-l). 
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Figure S2.6 Sites or pixels experienced severe drought and pluvial years during the 

period of 2000-2014 (a), 2001-2016 (b), and 2007-2016 (c) using PPTCRU in 1987-2016 

as baseline. 
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Table S2.1 111 Flux tower sites and corresponding years used in this study. 

ID Site ID Latitude Longitude IGBP type Years used Number 

of years 

1 AT-Neu 47.1167 11.3175 GRA 2002-2012 11 

2 AU-ASM -22.283 133.249 ENF 2010-2013 4 

3 AU-Cpr -34.0021 140.5891 SAV 2010-2014 5 

4 AU-DaP -14.0633 131.3181 GRA 2007-2013 7 

5 AU-DaS -14.1593 131.3881 SAV 2008-2014 7 

6 AU-Dry -15.2588 132.3706 SAV 2008-2014 7 

7 AU-Gin -31.3764 115.7138 WSA 2011-2014 4 

8 AU-How -12.4943 131.1523 WSA 2001-2014 14 

9 AU-Rig -36.6499 145.5759 GRA 2011-2014 4 

10 AU-Stp -17.1507 133.3502 GRA 2008-2014 7 

11 AU-Tum -35.6566 148.1517 EBF 2001-2014 14 

12 AU-Wac -37.4259 145.1878 EBF 2005-2008 4 

13 AU-Whr -36.6732 145.0294 EBF 2011-2014 4 

14 BE-Bra 51.3092 4.5206 MF 2000-2014 14 

15 BE-Lon 50.5516 4.7461 CRO 2004-2014 11 

16 BE-Vie 50.3051 5.9981 MF 2000-2014 15 

17 BR-Sa3 -3.018 -54.9714 EBF 2000-2004 5 

18 CA-Man 55.8796 -98.4808 ENF 2000-2008 9 

19 CA-NS1 55.8792 -98.4839 ENF 2002-2005 4 

20 CA-NS2 55.9058 -98.5247 ENF 2001-2005 5 

21 CA-NS3 55.9117 -98.3822 ENF 2001-2005 5 

22 CA-NS4 55.9144 -98.3806 ENF 2002-2005 4 

23 CA-NS5 55.8631 -98.485 ENF 2001-2005 5 

24 CA-NS6 55.9167 -98.9644 OSH 2001-2005 5 

25 CA-NS7 56.6358 -99.9483 OSH 2002-2005 4 

26 CA-Qfo 49.6925 -74.3421 ENF 2003-2010 8 

27 CA-SF1 54.485 -105.8176 ENF 2003-2006 4 

28 CA-SF2 54.2539 -105.8775 ENF 2001-2005 5 

29 CA-SF3 54.0916 -106.0053 OSH 2001-2006 6 

30 CH-Cha 47.2102 8.4104 GRA 2005-2014 10 

31 CH-Dav 46.8153 9.8559 ENF 2000-2014 15 

32 CH-Fru 47.1158 8.5378 GRA 2005-2014 10 

33 CH-Lae 47.4781 8.365 MF 2004-2014 11 

34 CH-Oe1 47.2858 7.7319 GRA 2002-2008 7 

35 CH-Oe2 47.2863 7.7343 CRO 2004-2014 11 

36 CN-Cng 44.5934 123.5092 GRA 2007-2010 4 

37 CZ-wet 49.0247 14.7704 WET 2006-2014 9 

38 CZ-BK1 49.5021 18.5369 ENF 2004-2008 5 

39 DE-Geb 51.1001 10.9143 CRO 2001-2014 14 

40 DE-Gri 50.9495 13.5125 GRA 2004-2014 11 

41 DE-Hai 51.0792 10.453 DBF 2000-2012 13 

42 DE-Kli 50.8929 13.5225 CRO 2004-2014 11 

43 DE-Lkb 49.0996 13.3047 ENF 2009-2013 5 
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44 DE-Obe 50.7836 13.7196 ENF 2008-2014 7 

45 DE-RuR 50.6219 6.3041 GRA 2011-2014 4 

46 DE-Seh 50.8706 6.4497 CRO 2007-2010 4 

47 DE-Spw 51.8923 14.0337 WET 2010-2014 5 

48 DE-Tha 50.9636 13.5669 ENF 2000-2014 15 

49 DK-NuF 64.1308 -51.3861 WET 2008-2014 7 

50 DK-Sor 55.4859 11.6446 DBF 2000-2014 15 

51 FI-Hyy 61.8475 24.295 ENF 2000-2014 15 

52 FI-Jok 60.8986 23.5135 CRO 2000-2003 4 

53 FI-Sod 67.3619 26.6378 ENF 2001-2014 14 

54 FR-Fon 48.4764 2.7801 DBF 2005-2014 10 

55 FR-Gri 48.8442 1.9519 CRO 2004-2013 10 

56 FR-LBr 44.7171 -0.7693 ENF 2000-2001, 

2003-2008 

8 

57 FR-Pue 43.7414 3.5958 EBF 2000-2014 15 

58 GF-Guy 5.2788 -52.9249 EBF 2004-2014 11 

59 IT-BCi 40.5238 14.9574 CRO 2004-2014 11 

60 IT-CA1 42.3804 12.0266 DBF 2011-2014 4 

61 IT-CA2 42.3772 12.026 CRO 2011-2014 4 

62 IT-CA3 42.38 12.0222 DBF 2011-2014 4 

63 IT-Col 41.8494 13.5881 DBF 2000-2014 15 

64 IT-Cpz 41.7052 12.3761 EBF 2000-2008 9 

65 IT-Lav 45.9562 11.2813 ENF 2003-2014 12 

66 IT-MBo 46.0147 11.0458 GRA 2003-2013 11 

67 IT-Noe 40.6061 8.1515 CSH 2004-2014 11 

68 IT-Ren 46.5869 11.4337 ENF 2000-2013 14 

69 IT-Ro2 42.3903 11.9209 DBF 2002-2008, 

2010-2012 

10 

70 IT-SRo 43.7279 10.2844 ENF 2000-2012 13 

71 IT-Tor 45.8444 7.5781 GRA 2008-2014 7 

72 JP-SMF 35.2617 137.0788 MF 2002-2006 5 

73 NL-Hor 52.2404 5.0713 GRA 2004-2011 8 

74 NL-Loo 52.1666 5.7436 ENF 2000-2013 14 

75 RU-Che 68.613 161.3414 WET 2002-2005 4 

76 RU-Cok 70.8291 147.4943 OSH 2003-2013 11 

77 RU-Fyo 56.4615 32.9221 ENF 2000-2014 15 

78 SD-Dem 13.2829 30.4783 SAV 2005, 

2007-2009 

4 

79 SN-Dhr 15.4028 -15.4322 SAV 2010-2013 4 

80 US-AR1 36.4267 -99.42 GRA 2009-2012 4 

81 US-AR2 36.6358 -99.5975 GRA 2009-2012 4 

82 US-ARM 36.6058 -97.4888 CRO 2003-2012 10 

83 US-Blo 38.8953 -120.6328 ENF 2000-2007 8 

84 US-Cop 38.09 -109.39 GRA 2001-2003, 

2006, 2007 

5 

85 US-GLE 41.3665 -106.2399 ENF 2005-2014 10 
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86 US-Ha1 42.5378 -72.1715 DBF 2000-2012 13 

87 US-KS2 28.6086 -80.6715 CSH 2003-2006 4 

88 US-Los 46.0827 -89.9792 WET 2000-2008, 

2010, 2014 

11 

89 US-Me2 44.4523 -121.5574 ENF 2002-2014 13 

90 US-Me6 44.3233 -121.6078 ENF 2010-2014 5 

91 US-MMS 39.3232 -86.4131 DBF 2000-2014 15 

92 US-Myb 38.0498 -121.7651 WET 2011-2014 4 

93 US-Ne1 41.1651 -96.4766 CRO 2001-2013 13 

94 US-Ne2 41.1649 -96.4701 CRO 2001-2013 13 

95 US-Ne3 41.1797 -96.4397 CRO 2001-2013 13 

96 US-NR1 40.0329 -105.5464 ENF 2000-2014 15 

97 US-PFa 45.9459 -90.2723 MF 2000-2014 15 

98 US-SRG 31.7894 -110.8277 GRA 2008-2014 7 

99 US-SRM 31.8214 -110.8661 WSA 2004-2014 11 

100 US-Syv 46.242 -89.3477 MF 2001-2008, 

2012-2014 

11 

101 US-Ton 38.4316 -120.966 WSA 2001-2014 14 

102 US-Twt 38.1087 -121.653 CRO 2009-2014 6 

103 US-UMB 45.5598 -84.7138 DBF 2000-2014 15 

104 US-UMd 45.5625 -84.6975 DBF 2007-2014 8 

105 US-Var 38.4133 -120.9507 GRA 2000-2014 15 

106 US-WCr 45.8059 -90.0799 DBF 2000-2006, 

2010-2014 

12 

107 US-Whs 31.7438 -110.0522 OSH 2007-2014 8 

108 US-Wi4 46.7393 -91.1663 ENF 2002-2005 4 

109 US-Wkg 31.7365 -109.9419 GRA 2004-2014 11 

110 ZA-Kru -25.0197 31.4969 SAV 2000-2010 11 

111 ZM-Mon -15.4378 23.2528 DBF 2000-2009 4 
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Table S2.2 Coefficients (a and b) of each IGBP land cover type in Equation 1 

adopted from Wei et al, 2017. Land cover types in parenthesis are the classes 

grouped by Wei et al, 2017. 

Type ID IGBP land cover types in this study a b 

1 Evergreen Needleleaf Forest (Needle leave Forests) 0.48 0.32 

3 Deciduous Needleleaf Forest (Needle leave Forests) 

2 Evergreen Broadleaf Forest (Broad leave Forests) 0.64 0.15 

4 Deciduous Broadleaf Forest (Broad leave Forests) 

5 Mixed Forest (Mixed Forests) 0.52 0.26 

6 Closed Shrublands (Shrublands and Grasslands) 0.69 0.28 

7 Open Shrublands (Shrublands and Grasslands) 

8 Woody Savannas (Shrublands and Grasslands) 

9 Savannas (Shrublands and Grasslands) 

10 Grasslands (Shrublands and Grasslands) 

16 Barren or Sparsely Vegetated (Shrublands and 

Grasslands) 

11 Permanent Wetlands (Wetlands) 0.65 0.21 

12 Croplands (Croplands) 0.66 0.18 

14 Cropland/Natural Vegetation Mosaic (Croplands) 

13 Urban and Built-Up (Others) - - 

15 Snow and Ice (Others) 

17 Unclassified (Others) 

0 Water surface (Others) 
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Chapter 3: Global patterns of extreme drought-induced loss in land 

primary production: identifying ecological extremes from rain-use 

efficiency 

Abstract  

Quantifying the ecological patterns of loss of ecosystem function in extreme drought is 

important to understand the carbon exchange between the land and atmosphere. Rain-use 

efficiency [RUE; gross primary production (GPP)/precipitation] acts as a typical indicator 

of ecosystem function. In this study, a novel method based on maximum rain-use 

efficiency (RUEmax) was developed to detect losses of ecosystem function globally. 

Three global GPP datasets from the MODIS remote sensing data (MOD17), ground 

upscaling FLUXNET observations (MPI-BGC), and process-based model simulations 

(BESS), and a global gridded precipitation product (CRU) were used to develop annual 

global RUE datasets for 2001-2011.  Large, well-known extreme drought events were 

detected, e.g. 2003 drought in Europe, 2002 and 2011 drought in the U.S., and 2010 

drought in Russia. Our results show that extreme drought-induced loss of ecosystem 

function could impact 0.9%±0.1% of earth’s vegetated land per year and was mainly 

distributed in semi-arid regions. The reduced carbon uptake caused by functional loss 

(0.14±0.03 PgC/yr) could explain more than 70% of the interannual variation in GPP in 

drought-affected areas (p≤0.001). Our results highlight the impact of ecosystem function 

loss in semi-arid regions with increasing precipitation variability and dry land expansion 

expected in the future. 
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3.1 Introduction 

Climate change is projected to increase the frequency and intensity of drought in the mid- 

to late 21st century (Stocker et al. 2013). Droughts can alter the terrestrial carbon cycle 

by affecting the composition, structure and functioning of ecosystems. Under extreme 

climate conditions, enhanced droughts and heat waves could fundamentally alter the 

structure or function of terrestrial ecosystems, outside the bounds of what is typical or 

normal variability (Reichstein et al. 2013; Smith 2011). Currently, the methods to 

investigate extreme ecological responses to extreme climate events, as well as the 

mechanisms and processes determining ecosystem responses are still lacking (Smith 

2011). Thus, quantifying the spatiotemporal patterns of ecological responses to extreme 

drought is critical to predict future drought impacts under climate change. 

Ecological responses to droughts has been observed variable ranging from little 

ecosystem impacts to major alteration of ecosystem structure and function (Smith 2011). 

The ability of an ecosystem to maintain its normal function during droughts greatly relies 

on the resistance of the ecosystem to environmental stresses, which is fundamentally 

determined by processes of drought tolerance and functionality of plant communities and 

the availability of water in the ecosystem (Mariotte et al. 2013). Extreme drought-induced 

loss of ecosystem function may occur when drought-resistant measures utilized by plant 

communities (e.g. closure of stomata, favoring drought-resistant plants) become 

overwhelmed by plant hydraulic limitations or mortality with further stress (Reyer et al. 

2013). Loss of ecosystem function during extreme drought could cause an ecosystem to 

shift from carbon sink to carbon source, which can strongly influence the carbon 

exchange between the land and atmosphere (Frank et al. 2015a).  



39 

At the beginning of the 21st century, large-scale, extreme droughts have occurred 

throughout the world, attracting the attention of scientists (Breshears et al. 2005; Ciais et 

al. 2005; Doughty et al. 2015; Schwalm et al. 2012). Many studies have examined the 

regional or global impacts of droughts on terrestrial ecosystems and the carbon cycle by 

identifying drought events from a meteorological perspective (Ciais et al. 2005; Huang et 

al. 2016; Schwalm et al. 2012; Zhao and Running 2010). In these studies, droughts were 

usually identified by climate variables or other environmental drivers (e.g. precipitation, 

drought indices). There have also been some efforts to quantify the spatiotemporal 

ecological extremes using statistical techniques (Hoover et al. 2014; Liu et al. 2013; 

Zscheischler et al. 2014). Extreme ecological responses were identified by classifying the 

deviation of ecosystem variables (e.g. GPP, NDVI) from the norms derived from long-

term datasets. A wide range of ecosystem responses to drought has been identified, from 

little impact on vegetation function in some instances, to major reductions in primary 

production in others (Ciais et al. 2005; Jentsch et al. 2011; Zhao and Running 2010; 

Zscheischler et al. 2014).  However, integrating ecological processes of how ecosystems 

functionally respond to extreme droughts have not been broadly considered in identifying 

drought impacts. Thus, the patterns of extreme ecological responses to droughts have not 

been well quantified globally from the ecological perspective. 

On a global scale, it is widely reported that severe droughts caused by 

precipitation reduction can induce extensive plant mortality and an associated reduction 

in productivity (Allen et al. 2010; Doughty et al. 2015; Peng et al. 2011). How ecosystems 

respond to greater precipitation variability is a new frontier for ecologists (Knapp et al. 

2017; Luo et al. 2017). Generally, ecosystems are composed of plant communities that 
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have adapted to current water conditions to be fully functional under a wide range of 

conditions. Thus, ecosystems can withstand the effects of moderate water shortage and 

sustain productivity by increasing plant water-use efficiency through the closure of 

stomata or favoring high water-use efficiency species, and less water is lost through 

runoff and evaporation (Mariotte et al. 2013; Ponce Campos et al. 2013). However, when 

water shortage becomes more severe (i.e. extreme drought), more water could be lost 

through evaporation resulting from increasing ratio between evaporation and carbon 

uptake or plant mortalities due to carbon starvation or hydraulic failure) (Choat et al. 

2012; McDowell et al. 2008). Thus, loss of ecosystem function could occur when the 

plant communities are not able to use the existing water resources to maintain resistance 

(e.g. increasing water-use efficiency) during extreme drought. And there must exist 

thresholds at which ecosystems function turns to decline in extreme drought, which is 

still largely unknown and has great scientific significance (Estiarte et al. 2016). 

Here, we developed a new method to detect the extreme drought-induced loss of 

ecosystem function globally from an ecological perspective. In this study, rain-use 

efficiency (RUE; GPP/precipitation) was utilized as the typical indicator of ecosystem 

function. We assumed that RUE increases with decreasing precipitation to a maximum 

(RUEmax) during moderate drought (Huxman et al. 2004; Ponce Campos et al. 2013), and 

that RUE will decline when water shortage is beyond the tolerance of current vegetation, 

leading to loss of ecosystem function. The main objective of this study was to detect the 

ecological patterns of extreme drought-induced loss of ecosystem function globally for 

the beginning of this century (2001-2011) and understand its implications for the carbon 

cycle. Three global GPP datasets were used to establish three RUE datasets and each RUE 
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dataset was used to detect loss of ecosystem function individually. The spatiotemporal 

extent of ecosystem function loss and its impact on the terrestrial carbon cycle were 

further analyzed in this study. 

3.2 Materials and methods 

3.2.1 Data sources 

We used three different GPP datasets and a precipitation dataset to establish three global 

RUE datasets. All datasets used are listed in Table 3.1. 

The MODIS GPP product (MOD17.055) was produced by the Numerical 

Terradynamic Simulation Group (NTSG)/University of Montana (UMT) 

(http://www.ntsg.umt.edu/project/mod17). It provides monthly GPP data with a 0.05° 

spatial resolution for the period 2000-2015 (Zhao and Running 2010). This product was 

developed from production efficiency model using MODIS vegetation indices and 

meteorological information as inputs. Its accuracy has been independently assessed for 

scientific research and it is a primary data source used to evaluate the spatial distribution 

and long term trend of vegetation productivity (Anav et al. 2015). 

The BESS GPP product was generated from a simplified process-based model 

(Breathing Earth System Simulator) which couples atmosphere and canopy radiative 

transfers, photosynthesis, evapotranspiration, and energy balance (Jiang and Ryu 2016). 

It provides monthly GPP data at 0.5° spatial resolution from 2001 to 2015 

(http://environment.snu.ac.kr/bess/). This new process model-based GPP product serves 

as a dataset independent from remote sensing and ground observations. 

The MPI-BGC GPP product from the Max Planck Institute for Biogeochemistry 

were up-scaled from ground FLUXNET observations of CO2, water, and energy fluxes 



42 

to global scale using the model tree ensemble (MTE) technique (Jung et al. 2011). The 

MTE model was first trained to predict site-level GPP based on remote sensing indices 

and meteorological data, and then it was applied globally to generate GPP at a 0.5 ° spatial 

resolution and a monthly temporal resolution from 1982 to 2011 (http://www.bgc-

jena.mpg.de/geodb/). As a proxy for FLUXNET observations, this empirically derived 

GPP product has been commonly considered as the benchmark or reference for 

calibration and evaluation of other model results (Anav et al. 2015; Piao et al. 2013). 

Nevertheless, large uncertainties still exist in the regions with few observation stations 

(e.g. South America, Africa).  

The global gridded precipitation dataset used in this study was from Climate 

Research Unit (CRU), version TS 3.24.01 (Harris et al. 2014). It provides monthly 

precipitation at 0.5° spatial resolution spanning from 1901 to 2015 

(https://crudata.uea.ac.uk/cru/data/hrg/). The global precipitation dataset is based on 

analysis of more than 4000 individual meteorological station records and spatially 

interpolated using autocorrelation functions. This precipitation product has been widely 

evaluated and used in global change studies (de Jong et al. 2013; Wu et al. 2015). 

Table 3.1 Datasets used in this study. 

Variable Description Temporal 

resolution 

Spatial 

resolution 

Reference 

MODIS GPP Gross primary productivity 

derived from MODIS 

(MOD17.055) remote 

sensing observations 

Monthly 

2000-2015 

0.05° (Zhao and 

Running 

2010) 

BESS GPP Gross primary productivity 

derived from process-based 

model 

Monthly 

2001-2015 

0.5° (Jiang and 

Ryu 2016) 

MPI-BGC 

GPP 

Gross primary productivity 

derived from ground 

FLUXNET observations 

Monthly 

1982-2011 

0.5° (Jung et al. 

2011) 



43 

CRU PRE Precipitation from CRU TS 

3.24.01 (Climatic Research 

Unit at the University of 

East Anglia) 

Monthly 

1901-2015 

0.5° (Harris et 

al. 2014) 

 

3.2.2 Rain-use efficiency datasets 

In our study, the common time period of the three GPP datasets (2001-2011) was chosen 

as the study period. The MODIS GPP product were aggregated to a 0.5 ° spatial resolution 

to match the other two GPP datasets. The monthly data of all three GPP datasets were 

respectively summed annually to estimate the annual GPP datasets. In order to match the 

three GPP datasets, monthly precipitation data were also summed annually for 2001-

2011. 

Based on the definition of rain-use efficiency (productivity per unit of 

precipitation, gC/mm/m2), three annual GPP datasets were divided by the annual 

precipitation dataset to generate three global RUE datasets (MODIS RUE, BESS RUE, 

and MPI-BGC RUE) at 0.5° spatial resolution during 2001-2011. Due to the longer-time 

data availability of MODIS GPP and BESS GPP, we also generated an annual average 

RUE dataset (AVE RUE) for 2001-2015 using the average of MODIS GPP and BESS 

GPP for longer term analysis.  

3.2.3 Detecting ecosystem function loss 

For each RUE dataset during 2001-2011, the detection of ecosystem function loss was 

implemented pixel by pixel globally based on the relationship between RUE and 

precipitation. For each pixel, we assumed that the RUE of an ecosystem increases 

gradually to a maximum (RUEmax) as precipitation decreases, and then declines when the 

water shortage exceeds the plant community tolerance (ecosystem resistance) to the 
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extent that ecosystem function declines. To characterize ecosystem responses to extreme 

drought, we first identified RUEmax during the study period. Numerically, we identified 

the greatest value of the 11-year RUE estimates as the RUEmax. Then, the precipitation at 

RUEmax was selected as a threshold at which abrupt changes in ecosystem function could 

occur with further precipitation reductions. Using this threshold, each RUE dataset was 

separated into two parts at the pixel level: 1) Data with precipitation at or above the 

threshold for normal years; and 2) data with precipitation below the threshold for possible 

drought years. For the data points in normal years, the precipitation and corresponding 

RUE estimates were used to build a linear regression model (Figure 3.1). The regression 

model was further extended to data points below the precipitation threshold in drought 

years with 95% confidence bound. If the data points during drought years were below the 

lower 95% confidence bound of the regression (the lower limit of ecosystem variability), 

loss of ecosystem function had occurred (Figure 3.1). This algorithm was applied to 

obtain the global spatial patterns of ecosystem function loss for 2001-2011 and 2001-

2015, respectively. 

In this study, only the pixels with more than 6 data points (8 data points for 2001-

2015) in normal years were selected to build the linear regression model, since this 

represents the majority of years in the study period (Figure S3.1). Furthermore, only the 

pixels with statistically significant regressions between RUE and precipitation (p < 0.05) 

were used to identify ecosystem function loss (Figure S3.1 and Figure S3.2). Overall, 

more than 85%, 91%, and 82% of the earth vegetated land surface, respectively, in 

MODIS RUE, BESS RUE, and MPI-BGC RUE datasets showed significant correlations 
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between RUE and precipitation. Thus, more than 80% of the vegetated land was available 

to analyze the global patterns of extreme drought-induced ecosystem function loss. 

3.2.4 Estimation of GPP reduction and its spatiotemporal variation 

In this study, for each pixel, the years with ecosystem function losses were detected and 

recorded based on the method shown in Figure 3.1. Using the average of GPP values in 

non-drought years as the baseline, the GPP reduction due to ecosystem function loss in 

each pixel was calculated as the difference of the GPP value of current drought year and 

the baseline. Through the spatial integration of GPP reduction pixel by pixel, annual 

regional and global GPP reductions could be estimated. To evaluate the impact of 

ecosystem function loss on the terrestrial carbon cycle, the GPP reduction was then 

compared with the GPP anomaly in drought-affected areas. Additionally, we also 

estimated the GPP reductions across biomes to analyze the extreme drought impacts on 

different terrestrial ecosystems. 
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Figure 3.1 Examples of ecosystem function loss at a forest site and a grassland site 

for 2001-2011 using MODIS RUE (a, and b), BESS RUE (c and d), and MPI-BGC 

RUE (e and f) datasets respectively. The forest site was in Europe (3.54° N, 46.48°E) 

while the grassland site was in southern U.S. (36.23°N, 98.74°W) (Red triangles). 

The distribution of forest and grassland was based on Commonwealth Scientific and 

Industrial Research Organisation (CSIRO) vegetation types used by Community 

Atmosphere Biosphere Land Exchange (CABLE) model. Red dashed lines represent 

the precipitation threshold based on the maximum of RUE (RUEmax), blue solid lines 
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represent the linear regression models built using data points in normal years, black 

dashed lines represent the lower 95% confidence boundary of the regression, and 

blue points represent data points in normal years while red points represent data 

points in possible drought years. The red points that fall below the lower 95% 

confidence boundary were identified as ecosystem function losses (data points 2011 

and 2003). 

 

3.3 Results 

3.3.1 Precipitation threshold of ecosystem function loss based on RUEmax 

The precipitation at RUEmax was selected as the threshold at which abrupt alteration of 

ecosystem function could occur with further water shortage. In each pixel, the greatest 

value of RUE estimates (RUEmax) was first identified during 2001-2011 and then the 

precipitation at the RUEmax was recorded as the threshold. The spatial distributions of the 

precipitation threshold in 2001-2011 were extracted based on three RUE datasets 

respectively (Figure 3.2). The general patterns of the precipitation threshold were similar 

in all three RUE datasets. For example, the precipitation thresholds at the forest site in 

Europe (3.54° N, 46.48°E) were identified as 673.4 mm in three datasets, and the 

precipitation thresholds at the grassland site in southern U.S. (36.23°N, 98.74°W) were 

identified 469.1 mm in three datasets (Figure 3.1). 

At the global scale, the distribution of the precipitation threshold follows a 

latitudinal gradient. It decreases from low latitude to high latitude and from wet areas to 

dry areas. In addition, the spatial variation of the precipitation threshold largely depends 

on the distribution of land cover types. Tropical forest areas, e.g. the Amazon, have the 

highest precipitation threshold, which could be more than 1600 mm/yr. However, the 

precipitation threshold in semi-arid and arid areas could be as low as 200 mm/yr, e.g. 

Northwestern China, where shrubland and grassland are largely distributed. 
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Figure 3.2 Spatial distribution of precipitation thresholds based on maximum rain-

use efficiency (RUEmax) during 2001-2011 using MODIS dataset (a), BESS dataset 

(b), and MPI-BGC dataset (c). Extreme drought-induced ecosystem function loss is 

expected to occur if the precipitation in a given year decreases below the threshold 

on the map. 
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3.3.2 Spatial distributions of extreme drought-induced loss of ecosystem function 

In this study, annual global distributions of ecosystem function loss due to extreme 

drought were captured during 2001-2011 based on MODIS, BESS, and MPI-BGC 

datasets. Additionally, the driest year of ecosystem function loss with the largest 

deviation from the regression model was also identified in each pixel for each GPP 

dataset, representing the most extreme loss of ecosystem function (Figure 3.3). Large 

well-known extreme drought events during 2001-2011 were successfully captured in all 

three RUE datasets (Figure 3.3). Extreme drought-induced loss of ecosystem function 

was mainly concentrated in semi-arid regions. For example, the 2001 seasonal drought in 

North China (Liu et al. 2014), the prolonged droughts around 2002 in central North 

America (Michaelian et al. 2011; Schwalm et al. 2012), the 2003 Europe drought induced 

by heat wave (Ciais et al. 2005), the 2010 drought in Russian (Barriopedro et al. 2011), 

and the 2011 Southern Great Plains drought in the U.S (Tadesse et al. 2015). In particular, 

the 2010 Russian drought was identified as the largest ecological response to extreme 

drought in the study period, which caused approximately 520,000 km2 of area to lose 

function on average, over 60% of which was cropland. Based on the global patterns of 

ecosystem function loss for the period of 2001-2015 (Figure S3.3), more recent extreme 

drought events with ecosystem function loss were also captured, such as the 2012 drought 

in northern central U.S. following the 2011 drought in southern U.S. 

(http://www.ncdc.noaa.gov/sotc/briefings/201209.pdf), and the 2015 drought in Europe 

after the 2003 drought (Ionita et al. 2017). 

We quantitatively compared the distribution and years of ecosystem function loss 

in this study with the drought-induced plant mortality events reviewed in Allen et al. 
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(2010) before 2010 for validation (Table S1). We overlapped 42 forest mortality cases 

occurred in 1999-2010 from Allen et al. (2010) with our results (Figure S3.4). Specific 

latitude and longitude information for each mortality case were collected based on 

references noted in Allen et al. (2010). For those drought cases without exact latitude and 

longitude, we located their position by using the specific name of the drought location 

and Google Earth. Generally, our method matched the extreme droughts very well in Asia 

(e.g. North China, 2001), Europe (e.g. Central Europe, 2003) and North America (e.g. 

Central North America, 2002), where the drought year of major ecosystem function loss 

in this study was within the range of documented years of drought-induced plant mortality 

events in Allen et al. (2010) (Table S3.1). However, in this study, the tropical forest areas 

did not show much extreme drought signal, e.g. the Amazon drought in 2005 and 2010 

were not well detected. 
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Figure 3.3 Spatiotemporal distribution of extreme drought-induced loss of 

ecosystem function during 2001-2011. Each color on the maps represents the driest 

year of ecosystem function loss with the largest deviation from the regression model. 

Extreme droughts in North China (2001), central North America (2002), central 

Europe (2003), western Russia (2010), and southern U.S. (2011) stand out as 

exceptional instances of ecosystem function loss in the MODIS (a), BESS (b), and 

MPI-BGC (c) datasets. 
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3.3.3 Spatiotemporal variation of ecosystem function loss and its impact on carbon 

cycle 

In the study period of 2001-2011, extreme drought-induced loss of ecosystem function 

affected 8%±1% of global vegetated land area (9.28±1.33 million km2), an area roughly 

the size of China, which resulted in GPP reduction of 1.5±0.3 PgC in total. Here, the 

vegetated land area estimated in this study was ~120 million km2. On average, up to 

0.9%±0.1% of earth’s vegetated land (1.13±0.17 million km2) experienced loss of 

ecosystem function and 0.14±0.03 PgC GPP was reduced per year. Thus, there was an 

average decrease in carbon uptake of 120.5±9.9 gC/m2/yr. In this study, 2002 and 2010 

were shown as the major ecological drought years based on the three RUE datasets 

(Figure 3.4a-b), which were mainly attributed to the loss of ecosystem function in central 

North America (2002) and the droughts in Russia (2010) respectively. In addition, we 

also analyzed the annual drought-affected area and GPP reduction at the biome level 

(Figure 3.4c-d). Based on the results from the three RUE datasets, cropland and C3 

grassland showed relatively high values of affected area and GPP reduction while 

deciduous needle leaf forest (DNF) and shrubland displayed the lowest values of affected 

area and GPP reduction. 

Ecosystem function loss was distributed mostly in semi-arid regions and exhibited 

strong interannual variation. We compared the variation in GPP reduction with the 

variation in GPP anomaly in drought-affected areas (8%±1% of vegetated land area). The 

GPP reductions estimated from the three GPP datasets all showed significant correlation 

with their GPP anomalies (R2=0.70~0.91, p≤0.001) (Figure 3.5). Additionally, the GPP 

reduction during 2001-2015 based on the average of MODIS GPP and BESS GPP also 
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showed significant correlation with its GPP anomaly in drought-affected areas (R2=0.60, 

p<0.001). 

 
Figure 3.4 Mean drought-affected area and GPP reduction caused by ecosystem 

function loss at annual global scale (a and b) and biome level (c and d) based on 

three GPP products. 

 

 
Figure 3.5 Interannual variation in GPP reduction (Red lines) and inverted GPP 

anomaly (Black lines) in drought-affected areas from 2001 to 2011. GPP reductions 

and anomalies were estimated from MODIS datasets (a), BESS datasets (b), and 

MPI-BGC datasets (c) respectively. GPP anomaly in each year was calculated as the 
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difference of the GPP value of current year and the average of the study period. R2 

is the determination coefficient which represents the percentage of GPP anomaly 

explained by reduced carbon uptake due to drought. 

 

3.4 Discussion 

3.4.1 Advantages and limitations of the method 

In this study, the relationship between RUE and precipitation was used to identify the 

global patterns of extreme drought-induced ecosystem function loss. Based on this, the 

impacts of ecosystem function loss on carbon uptake were further analyzed. Our detection 

of losses of ecosystem function was based on the assumption that RUE of an ecosystem 

increases to a maximum during moderate drought and then declines during extreme 

drought, which is more ecologically relevant than traditional approaches which rely on 

meteorological variables and statistical techniques and can further improve our 

understanding of ecosystem responses to climate extremes (Ciais et al. 2005; Hoover et 

al. 2014; Liu et al. 2013; Zhao and Running 2010; Zscheischler et al. 2014). Our results 

showed that semi-arid regions were hot spots of ecosystem function loss. There was an 

average decrease in carbon uptake of 120.5±9.9 gC/m2/yr, which is comparable with 

multi-year regional averages of drought impact in western America of 116 gC/m2/yr 

(Schwalm et al. 2012) and in Europe of 195 gC/m2/yr (Ciais et al. 2005). The reduced 

carbon uptake due to ecosystem function loss could strongly influence the regional carbon 

cycle. The simplicity of the method and integration of an ecological perspective to 

identify climate extremes are the primary advantages of this study. 

In our method, the lower 95% confidence bound of a regression model estimated 

during normal conditions was used to identify the ecosystem function loss induced by 

extreme drought, which fits the definition proposed by Smith (2011) of “an extreme 
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climatic event is an episode or occurrence in which a statistically rare or unusual climatic 

period alters ecosystem structure and/or functions well outside the bounds of normal 

variability” (Smith 2011). In addition, the exploration of precipitation thresholds provides 

useful information for the setup of field rainfall manipulation experiments (Figure 3.2). 

For example, at a given location, we provide references for what level of precipitation 

could be set as the extreme drought condition in a gradient precipitation experiment. 

While these thresholds are merely starting points with little published literature to 

compare with, Verbesselt et al. (2016)found a threshold for ecosystem collapse in 

Amazon forests during drought to be 1500 mm/yr, which is comparable with the 

precipitation threshold identified in our study (more than 1600mm/yr) (Verbesselt et al. 

2016). Using RUE as a metric of ecosystem function, we were also able to connect the 

estimates derived from remote sensing and model simulations to field experiments where 

RUE is most commonly used (Huxman et al. 2004; Yan et al. 2014; Yang et al. 2010). 

Significant relationships between RUE and precipitation (p<0.05) were found in 

more than 80% of earth’s vegetated area, and were further used to analyze ecosystem 

function loss. Most of the insignificant (p≥0.05) RUE-precipitation relationships were 

concentrated in semi-arid regions. Irrigation, which is quite common in semi-arid regions 

(e.g. Central U.S. and Inner Mongolia, China), could be one of the reasons for 

insignificant regressions. Also, the accuracy of precipitation data in those regions needs 

to be improved (Schneider et al. 2013). In this study, short-term, seasonal droughts within 

a year may not be well detected from the relationship between RUE and precipitation 

since these variables are estimated at the annual scale. Moreover, in Figure 3.1, a spurious 

pattern could emerge in the correlation between RUE and precipitation if GPP and 
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precipitation were unrelated in this study (Brett 2004). All global estimates in our results 

could be conservative due to the limitations in the method and the available analyzed 

pixels (Figure S3.1). 

3.4.2 Well-known extreme drought events in this study 

Ecosystem function loss was detected in many well-known extreme drought events, 

especially in semi-arid areas (e.g. central North America, central Africa, and northwestern 

China, where cropland and C3 grassland are largely distributed) (Figure 3.3). However, 

for tropical areas, e.g. Amazon forest, we didn’t see much extreme drought signal (e.g. 

2005 drought or 2010 drought) from any of the three GPP RUE datasets, which could 

also result in underestimation of ecosystem function loss in this study. Because of the 

cloudy weather in tropical areas, optical remote sensing images usually have low quality, 

which may impact the quality of GPP derived from remote sensing (Anav et al. 2015). 

For the up-scaled GPP from FLUXNET, due to the few flux towers located in tropical 

forests, high error exists in the GPP estimates (Kumar et al. 2016). Additionally, process 

model-based GPP simulations in tropical areas still remains a challenge due to the 

uncertainty caused by climatic forcing data (Wu et al. 2017). In this study, tundra areas 

also showed a strong signal of ecosystem function loss, especially in 2004 (Figure 3.3). 

Due to large amounts of peatland distributed in tundra, fire frequently occurs in the dry 

season (Mack et al. 2011). The high carbon content of the peatland may largely contribute 

to the fire occurrence in association with extreme drought (Turetsky et al. 2014). In this 

study, those fire occurrences were recognized as ecosystem function loss due to extreme 

droughts, as drought likely initiated higher fire probability. For cropland, human 

management also has strong influence on the production of plants (i.e. harvest) and may 
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thus influence drought detection. However, we didn’t remove the cropland in this study. 

Usually, at a cropland site, the timing of seeding, growing and harvesting remains the 

same, thus the GPP estimates of this site are still comparable at the annual scale. 

3.4.3 Implication of ecosystem function loss on carbon cycle 

In this study, semi-arid regions were shown to be hot spots of ecosystem function loss, 

and contributed to more than 70% of the annual GPP variation in drought-affected areas 

(Figure 3.5). However, the extreme drought-induced ecosystem function loss was found 

to have little impact on global GPP variability. In semi-arid regions, GPP variability is 

strongly controlled by precipitation variability, which could be one of the reasons that 

local ecosystems are more predisposed to loss of ecosystem function. Also, studies have 

shown that the productivity in semi-arid regions strongly contributes to the interannual 

variability of global GPP or NPP (Huang et al. 2016; Zhang et al. 2016c). In our results, 

even though 0.14±0.03 PgC/yr GPP reduction due to ecosystem functional loss didn’t 

show a strong impact on the global carbon cycle (results not shown), it was still a major 

threat at the regional scale and could potentially influence the global carbon cycle. No 

increasing trend of GPP reduction was found in this study, and there was even a 

decreasing trend in ecosystem function loss from 2001 to 2015 (Figure S3.5). The 

continually increasing atmospheric CO2 concentration may stimulate higher water-use 

efficiency of ecosystems despite the warming during the period (Keenan et al. 2013). 

However, as ecosystem function loss still largely depends on the climate variability, 

considering the increasing precipitation variability and expansion of dry land (Huang et 

al. 2015), extreme drought-induced ecosystem function loss may have a larger effect on 

the future of regional and global carbon cycles. 
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3.5 Conclusion 

Quantifying the ecological patterns of extreme drought-induced ecosystem function loss 

is an important first step to understand how ecosystems respond to ecological drought 

against the background of climate change. Here, we developed a novel method based on 

plant community rain-use efficiency to detect ecosystem function loss globally. We 

produced spatial patterns of extreme drought-induced ecosystem function loss during 

2001-2011 based on three different GPP products. Large well-known extreme drought 

events with ecosystem function loss were well captured in semi-arid regions. Extreme 

drought-induced loss of ecosystem function could explain more than 70% of the GPP 

variability in drought-affected areas. Our study demonstrates the importance of semi-arid 

regions in terrestrial carbon cycle studies and provides a new simple way to quantify 

extreme droughts from the ecological perspective. 
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Supplementary materials 

 

Figure S3.1 Spatial distribution of available analyzed area for each RUE dataset 

after masking those insignificant areas. (a) 85% of MODIS vegetated area, (b) 91% 

of BESS vegetated area, and (c) 82% of MPI-BGC vegetated area were analyzed 

respectively in this study. 
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Figure S3.2 The correlation coefficient (r value) and significance level (p value) of 

the relationship between RUE and precipitation above the RUEmax based 

precipitation threshold in normal years. The r and p values of MODIS RUE dataset 

are shown in (a) and (b) respectively. The r and p values of BESS RUE dataset are 

shown in (c) and (d) respectively. The r and p values of MPI BGC RUE dataset are 

shown in (e) and (f) respectively. 
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Figure S3.3 Spatiotemporal distribution of extreme drought-induced loss of 

ecosystem function during 2001-2015 based on average of MODIS and BESS GPP 

datasets. Each color on the maps represents the driest year in which a loss of 

ecosystem function occurred. 

 

 
Figure S3.4 Comparison of extreme-drought induced ecosystem function loss with 

documented drought-induced forest mortality from Allen et al. (2010). Each color 

on the maps represents the driest year in which a loss of ecosystem function occurred 

except the blue cross signs. 
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Figure S3.5 Interannual variation in GPP reduction (Red line) and inverted GPP 

anomaly (Black line) in drought-affected areas from 2001 to 2015. GPP reduction 

and GPP anomaly were estimated from the average of MODIS GPP and BESS GPP 

datasets. GPP anomaly in each year was calculated as the difference of the GPP 

value of current year and the average of the study period (2000-2015). R2 is the 

determination coefficient which represents the percentage of GPP anomaly 

explained by reduced carbon uptake due to drought. 
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Table S3.1 Literature comparison with Allen et al. (2010). ID numbers refer to locations 

of drought-induced forest mortality events mapped in Figure S3.4. 
Continen

t 

ID Location Drought type Allen et al. 

(2010) 

This study 

    
Year(s) of 

mortality 

Year of 

extreme 

ecosystem 

function 

loss 

Africa 7 Uganda(Western) Seasonal drought 1999 - 

8 Namibia, South 

Africa 

Multi-year drought, 

high temperatures 

1904-2002 - 

9 Algeria Multi-year drought 2000-2008 - 

10 Morocco Multi-year drought 2002-2008 2003 

Asia 10 China(Shanxi,Hebei,

Henan) 

Seasonal drought 1998-2001 2001 

11 China (Yunnan) Seasonal drought 2003-2005 2003 

12 Turkey (Central 

Anatolia) 

Drought 2002-2007 2008 

13 South Korea Warm winters/springs, 

possibly drought 

2003-2008 - 

14 Russia Drought 2005-2008 2010 

Australia 4 Australia 

(Queensland) 

Multi-year drought 1990-2002 - 

5 Australia 

(Queensland) 

Multi-year drought 2004 - 

6 Australia 

(Queensland) 

Multi-year drought 2005 - 

Europe 12 Norway Multi-year summer 

droughts, high summer 

temperatures 

1992-2000 - 

13 Greece(Samos) Multi-year drought 2000 - 

14 Austria(Tyrol) Seasonal droughts 2001 2003 

15 Greece (South, 

Central) 

Multi-year drought 2000-2002 - 

16 Switzerland Drought, high 

temperatures 

2003 2003 

17 Switzerland (Valais) Seasonal and multi-

year droughts, high 

temperatures 

2000-2004 2003 

18 Germany (Baden-

Württemberg) 

Drought, high 

temperatures 

2003-2006 2003 

19 Spain Multi-year drought 2004-2006 2005 

20 Russia(Northwest) Drought, high 

temperatures 

2004-2006 2002 

21 Swuzerland(Grisons) Drought, high 

temperatures 

2003-2007 - 

22 France (Provence, 

Southern Alps) 

Multi-year drought, 

high temperatures 

2003-2008 - 
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23 France Spring and summer 

drought, scorching 

heat 

2003-2008 2003 

24 France (Eastern 

Pyrénées) 

Recurrent drought, 

high temperatures 

2003-2008 2003 

25 France (Provence, 

Maures Mountains) 

Multi-year drought 2006-2008 - 

North 

America 

14 USA (Midwest, 

Southeast) 

Multi-year drought 1990-2002 - 

15 USA (California) Drought, high 

temperatures 

1983-2004 - 

16 USA and Canada 

(Alaska, Yukon) 

Drought, high summer 

temperatures 

1989-2004 2001 

17 USA (Southwest) Multi-year drought 2000-2004 2002 

18 Southwest, USA 

(New Mexico, 

Arizona, Colorado, 

Utah, Nevada) 

Multi-year drought, 

high spring and 

summer temperatures 

2000-2004 2002 

19 USA (Arizona) Multi-year drought, 

high temperatures 

2001-2004 2002 

20 Canada 

(Saskatchewan and 

Alberta) 

Multi-year drought 2002-2004 2002 

21 Canada (British 

Columbia) 

Drought, high spring 

and summer 

temperatures 

2000-2006 2002 

22 USA (Colorado) Multi-year drought, 

high spring and 

summer temperatures 

2005-2006 2002 

23 USA (Western 

States) 

High temperatures 1955-2007 2002 

24 Western North 

America 

Drought, high 

temperatures 

1997-2007 2008 

25 USA (Minnesota) Drought 2004-2007 2006 

26 USA (California) Drought preceded by 

wet, warm episodes 

2005-2008 - 

27 Canada and USA 

(Alaska, British 

Columbia) 

Warmer winters and 

springs 

1880-2008 2002 

South 

America 

5 Argentina (western 

Neuquén, Rio 

Negro) 

Seasonal drought, high 

temperatures 

1998-1999 - 

6 Amazon Basin Single year drought 2005 - 
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Chapter 4: Response of underlying water use efficiency to 

environmental change in forests and grasslands in the Northern 

Hemisphere 

Abstract 

Analysis of ecosystem carbon and water coupling often involves a C:H2O efficiency 

approach based on ecosystem productivity to represent the C term and evapotranspiration 

or transpiration to represent the water term. Apparent underlying water use efficiency 

(UWUE) provides an optimal indicator of ecosystem function by incorporating the vapor 

pressure deficit (VPD) effect. However, its responses to environmental changes such as 

the increasing atmospheric CO2 concentration or drought have not been evaluated 

broadly. Here, we investigated the long-term trend in annual apparent UWUE (UWUEa) 

across 18 forest sites and 9 grassland sites in the Northern Hemisphere using the 

FLUXNET2015 dataset. We attributed the variation in UWUEa to variations in potential 

UWUE (UWUEp) and the ratio of transpiration to evapotranspiration (T/ET). We found 

that forests showed increases in UWUEa, which was mostly contributed by increasing 

UWUEp; whereas grasslands showed no obvious changes in UWUEa or UWUEp. The 

T/ET of all biomes showed little changes over time. The increase in UWUEp was 

triggered by CO2 fertilization and increasing VPD in forests, as well as the decreasing 

soil water content (SWC) in deciduous broadleaf forests. The positive effect of CO2 

fertilization on UWUEp was offset by the negative effect of increasing SWC in 

grasslands. 
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4.1 Introduction 

Plants absorb CO2 from the atmosphere during photosynthesis, at the cost of losing water 

through leaf stomatal. Water use efficiency (WUE), the ratio of carbon assimilation to 

transpiration, is a critical metric of plant function that describes the tradeoff between 

carbon gain and water loss in response to environmental changes (Niu et al. 2011). Plant 

WUE is jointly controlled by biotic (stoma aperture) and abiotic factors (environment 

factors) which influence the carbon uptake and transpiration. Since pre-industrial times, 

the atmospheric CO2 concentration increased from ~290 ppm to 400 ppm by 2015 and is 

predicted to be 421-963 ppm by 2100 (Keenan et al. 2016; Stocker et al. 2013). As a 

result of elevated greenhouse gases, the globally averaged temperature increased by 0.85 

℃ over the period of 1880~2012 (Stocker et al. 2013). In addition, the global precipitation 

regime changes substantially, leading to more and more extreme drought events (Allen et 

al. 2010; Stocker et al. 2013). Thus, investigating the responses of WUE to different 

environmental factors would help understand future terrestrial carbon and water budgets 

in response to environmental change. 

Several formulations of WUE have been established to describe the carbon-water 

tradeoff from the leaf to ecosystem scale (Beer et al. 2009; Law et al. 2002; Zhou et al. 

2014; Zhou et al. 2017). At the leaf scale, WUE is defined as the ratio of carbon 

assimilation to transpiration (WUE=A/T); and at the ecosystem scale, it is represented as 

the ratio of gross primary production over evapotranspiration (WUE=GPP/ET) (Law et 

al. 2002). Given the strong effect of VPD on transpiration, Beer et al. (2009) proposed 

the inherent WUE (IWUE=GPP×VPD/ET) which is more stable than WUE to describe 

the ecosystem carbon-water coupling on daily to annual timescales. IWUE also 
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corresponds to the intrinsic WUE (iWUE), the ratio of carbon assimilation over stomatal 

conductance, at the leaf scale. However, IWUE and iWUE rely on an assumption that the 

ratio of inner leaf CO2 concentration to the ambient CO2 concentration (ci/ca) is relatively 

constant. Some studies found that the ci/ca varies with VPD at diurnal and seasonal 

timescales and hence has nonlinear effect on IWUE (Lloyd 1994; Zhou et al. 2014). Given 

the nonlinear effect of VPD on ci/ca, Zhou et al. (2014) introduced the underlying water 

use efficiency (UWUE=GPP×VPD0.5/ET), by combing IWUE and an optimal 

relationship between ci/ca and VPD from Lloyd (1994), which is more stable and 

physiological relevant than other WUE formulations at sub-daily and daily timescales 

(Zhou et al. 2015). UWUE assumes that T dominants ET at the ecosystem scale. Hence, 

the ecosystem UWUE, or apparent UWUE (UWUEa), can be separated into two 

components: potential WUE (UWUEp=GPP×VPD0.5/T) which is only sensitive to 

atmospheric CO2 concentration and plant functional type, and a ratio, T/ET, which is 

controlled by both physiological (e.g. leaf area index) and environmental factors (Zhou 

et al. 2017; Zhou et al. 2016). 

Many studies have reported the responses of ecosystem WUE or IWUE to 

elevated atmospheric CO2 concentration in forests using flux tower measurements, tree 

ring isotope measurements, or process-based models (Cheng et al. 2017; Frank et al. 

2015b; Keenan et al. 2013; Peters et al. 2018; Wang et al. 2018). Less is known about 

grassland responses of WUE to the atmospheric CO2 concentration. By regulating the 

stomatal aperture, plants are expected to benefit from the elevated atmospheric CO2 

concentration by enhancing the photosynthesis at a lower rate of water loss, which leads 

to an increased WUE or IWUE (Keenan et al. 2013; van der Sleen et al. 2014). In addition 
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to atmospheric CO2, WUE is also impacted by other climate or environmental drivers 

(e.g. water availability, temperature, and nutrients). WUE is expected increase by partial 

stomatal closure during drought to limit the water loss at the expense of a reduced carbon 

uptake in photosynthesis, which has been observed using isotope measurements (Peters 

et al. 2018). However, due to the nonlinear effect of ci/ca on carbon assimilation, the 

results relying on responses of WUE or IWUE to each environmental factor are not well 

understood. Zhou et al. (2017) investigated the long-term trend in global UWUEa and 

separately attributed its variation to variations in UWUEp and T/ET using model outputs. 

They found that the increase in UWUE was mostly attributed to the increasing UWUEp, 

which was ultimately triggered by increasing atmospheric CO2, followed by the positive 

trends in nitrogen deposition and climate. However, the responses of UWUE to 

environmental change have not been investigated using the eddy covariance (EC) flux 

tower observations.  

The aim of this study is to investigate the responses of UWUEa to environmental 

changes across forests (deciduous broadleaf forests (DBF) and evergreen needleleaf 

forests (ENF)) and grasslands (GRA) sites in the Northern Hemisphere using 

FLUXNET2015 dataset which provides long-term records of CO2 and H2O exchanges 

and environmental factors. We separated the UWUEa into two components: UWUEp and 

T/ET and analyzed their long-term trends. We further attributed the variations in UWUEp 

and T/ET to variations in vapor pressure deficit (VPD), atmospheric CO2 concentration 

(CO2), incoming shortwave radiation (SW), air temperature (TA), and soil water content 

(SWC). 
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4.2 Data and methods 

4.2.1 EC flux tower and remote sensing datasets 

We used 2000-2014 half hourly/hourly EC flux data from the FLUXNET2015 dataset 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/), including gross primary 

production (GPP), latent heat (LE), sensible heat (H), relative humidity (RH), vapor 

pressure deficit (VPD), atmospheric CO2 concentration (CO2), incoming shortwave 

radiation (SW), air temperature (TA), and soil water content (SWC) of the surface soil. 

Only records labeled with good quality or direct measurement were used in this study. 

Data screening were performed to select half hourly/hourly records following 

similar criteria in previous studies (Li et al. 2019; Medlyn et al. 2017; Wang et al. 2018): 

1) only daytime data with incoming shortwave radiation >=50 W·m-2 and sensible heat 

>= 5W·m-2 were selected; 2) data during rainfall events and for 24 hours after rainfall 

event were excluded to minimize canopy interception evaporation; 3) data with relative 

humidity exceeding 95% were excluded to avoid dew evaporation; 4) negative GPP, LE, 

and VPD records were excluded. After the variables were selected, all half hourly data 

were aggregated to hourly data to reduce noise in measurements. Finally, hourly data 

were aggregated to means over the entire year for each site in each year. Only sites with 

a continual yearly estimates length ≥7 years were used for further analysis. Number of 

years used in each site is given in Table S4.1. In total, we identified 11 evergreen 

needleleaf forest (ENF) sites, 7 deciduous broadleaf forest (DBF) sites, and 9 grassland 

(GRA) sites from the Northern Hemisphere (Figure 4.1 and Table S4.1).  

We used the satellite LAI product (MOD15A2H.006) from Moderate Resolution 

Imaging Spectroradiometer (MODIS) (https://lpdaacsvc.cr.usgs.gov/), which has an 8-
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day, 500m resolution. The daily LAI corresponding to hourly EC flux estimates were 

obtained using the latest 8-day LAI for a given EC measurement day. Daily LAI obtained 

for hourly EC records were also averaged to generate yearly LAI for each site.  

 

Figure 4.1 Study sites from FLUXNET2015 dataset including 11 evergreen 

needleleaf forest (ENF) sites, 7 deciduous broadleaf forest (DBF) sites, and 9 

grassland (GRA) sites from the Northern Hemisphere. 

 

4.2.2 Underlying water use efficiency 

At the ecosystem level, ecosystem UWUE or apparent UWUE (UWUEa) (g C· kPa0.5·kg 

H2O
-1) is defined in equation (4.1) (Zhou et al. 2014). 

                                   𝑈𝑊𝑈𝐸𝑎 =
𝐺𝑃𝑃×√𝑉𝑃𝐷

𝐸𝑇
                                                                    (4.1)  

where GPP (g C·m-2·hour-1) is the gross primary production partitioned from net 

ecosystem exchange partitioning, VPD (kPa) is vapor pressure deficit, ET (kg H2O·m-

2·hour-1) is evapotranspiration derived from LE (W·m-2) using the method in Tang et al. 

(2014). 

Ecosystem potential UWUE (UWUEp) (g C·kPa0.5·kg H2O
-1) is defined in 

equation (4.2). As indicated by Zhou et al. (2016), ecosystem UWUEp corresponds to the 

UWUE at the leaf scale (UWUEi) under steady conditions (Equation 4.3). 

                                  𝑈𝑊𝑈𝐸𝑝 =
𝐺𝑃𝑃×√𝑉𝑃𝐷

𝑇
                                                                    (4.2) 
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                               𝑈𝑊𝑈𝐸𝑝 = 𝑈𝑊𝑈𝐸𝑖 = √
𝐶𝑂2−𝛤

1.6𝜆
                                                     (4.3) 

where T (kg H2O·m-2·hour-1) is transpiration partitioned from ET based on a 

logarithmical relationship between LAI and T/ET (𝑇 = 𝐸𝑇 × 𝑎𝐿𝐴𝐼𝑏; a, and b are biome 

specific coefficients obtained from Wei et al. (2017) (Table S2.2)). In equation 4.3, CO2 

(umol CO2·mol-1) represents the atmospheric CO2 concentration, Γ is the leaf CO2 

compensation point, and λ represents the marginal water loss of carbon gain which is 

assumed as constant within a given vegetation type. 

Thus, at the ecosystem level, UWUEa can be partitioned into UWUEp and T/ET 

(Equation 4.4).  

                                 𝑈𝑊𝑈𝐸𝑎 = 𝑈𝑊𝑈𝐸𝑝 ×
𝑇

𝐸𝑇
                                                              (4.4) 

4.2.3 Trend and attribution analyses 

At the site level, we employed the Mann-Kendall test method to detect the upward or 

downward trends in annual UWUEa, UWUEp, T/ET, GPP, LE, VPD, CO2, SW, TA, 

SWC, and LAI, with a p value output indicating the significance of the trend. We used 

the Sen’s slope estimator on the Mann-Kendall method to estimate the absolute slope of 

each variable over the period of records in each site. Sen’s slope estimator reduces the 

influences from outliers by choosing the median of all linear slopes. In order to directly 

compare the trend in different variables, all annual estimates of each variable were 

transformed to relative changes (%, ratio of anomalies to mean values of each site) before 

trend analysis as previous studies did (Keenan et al. 2013; Wang et al. 2018). At biome 

level, the mean trend of each variable across all sites were calculated by the average of 

slopes over all sites, and the 95% confidence intervals for the mean trend were estimated 
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using the bootstrap method with 10,000 replications among those slopes following 

previous studies (Keenan et al. 2013; Wang et al. 2018). 

In this study, the annual trend of UWUEa for each biome was partitioned to the 

trends in UWUEp and T/ET (Equation 4.4). We further attributed the variations in 

UWUEp and T/ET to variations in different environmental factors using the partial least 

square regression (PLSR), which has been widely used to establish relations between the 

response variables and independent variables, especially, when observations are few and 

large collinearity exists in independent variables (Martens and Næs 1989). However, 

PLSR can be severely affected by the presence of outliers (Serneels et al. 2005). We 

excluded those extreme outliers and leverage points which were identified through 

Minitab 18 statistical software (https://www.minitab.com/en-us/products/minitab/). 

Records with the absolute value of residual standard error > 2 or leverage > 3m/n (m is 

the number of components; n is the number of records) were considered as outliers or 

leverage points. The normalized regression coefficient from PLSR, and the p value on the 

basis of the Jackknife test indicate the contribution of each independent variable on the 

response variable. 

4.3 Results 

4.3.1 Annual trend in UWUEa, UWUEp, and T/ET 

The ENF and DBF biome sites showed obvious positive mean trends in UWUEa, while 

GRA sites showed little mean trend in UWUEa (Figure 4.2a-c, Figure 4.3). In ENF, the 

mean trend (with the 95% confidence interval) across all sites was 0.6%·yr-1 (-

0.4%~1.7%) (Figure 4.2a and Figure 4.3a). The mean trend (with the 95% confidence 

interval) in UWUEa across all DBF sites was 1.1%·yr-1 (-0.8%~1.7%) (Figure 4.2b and 
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Figure 4.3b). Two of the 11 ENF sites and three of the 7 DBF sites showed increases in 

UWUEa with p<0.15 over the period of record. There’s no significant difference in trends 

in UWUEa between DBF and ENF sites (p=0.68, t test). The mean trend in UWUEa 

across all GRA sites was 0.0 %·yr-1 with a relatively large 95% confidence interval (-

1.2% ~1.9%) (Figure 4.2c and Figure 4.3c). 

The magnitude of the mean trend in UWUEp was higher than the mean trend in 

T/ET in ENF and DBF (Figure 4.2 and Figure 4.3). For example, in DBF, the mean trend 

in UWUEp was 1.1%·yr-1 with a 95% confidence interval from -0.7%to 1.7%, which 

almost equals the mean trend in UWUEa (Figure 4.2b,e and Figure 4.3b). However, the 

mean trend in T/ET for DBF was 0.1%·yr-1. For GRA, neither UWUEp nor T/ET showed 

obvious trend over the study period (Figure 4.2f,i and Figure 4.3c). 
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Figure 4.2 Trends in apparent underlying water use efficiency (UWUEa), potential 

underlying water use efficiency (UWUEp), and the ratio of transpiration to 

evapotranspiration (T/ET) for evergreen needleleaf forests (ENF; a, d, and g), 

deciduous broadleaf forests (DBF; b, e, and h), and grasslands (GRA; c, f, i). Short 

black lines are the annual trends for individual sites. Individual site names, and site 

years are given in the Table S4.1. Bold red lines are the mean trends across all sites 

in each biome. The red area shows trends within bootstrapped 95% confidence 

intervals for the mean trend. The inset shows the distribution of the site-level slopes 

in each biome. Dashed red lines represent bootstrapped 95% confidence intervals 

for the mean slope. 

 

4.3.2 Attribution analyses for UWUEp and T/ET variation to environmental factors 

The annual trends in UWUEa, UWUEp, T/ET, GPP, LE, and LAI, associated with the 

trends in environmental variables were shown in Figure 4.3. Generally, SW and TA 

showed little changes over the study period in each biome from the Northern Hemisphere. 

However, all sites showed a positive trend in the atmospheric CO2 concentration with a 
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mean trend of 0.6%·yr-1 in forests and 1.0%·yr-1 in grasslands. In addition, ENF and DBF 

sites showed a great increase in VPD with a mean trend of 0.8%·yr-1 in ENF and 2.2%·yr-

1 in DBF. For SWC, DBF showed a substantial decrease with a mean trend of -2.1%·yr-

1, while ENF showed no obvious change and GRA showed an increase (0.8%·yr-1) in the 

study period. Moreover, only in DBF did LAI showed a slight increase (0.5%·yr-1). 

The responses of UWUEp and T/ET to each environmental factor are shown in 

Figure 4.4. For each biome, the UWUEp showed strong positive correlations with CO2 

and VPD with normalized regression coefficient >0.15, and the T/ET was positively 

correlated with TA and SW (Figure 4.4), although TA and SW showed no trend over the 

study period (Figure 4.3). In addition, the UWUEp in DBF and GRA showed a negative 

response to SWC with a normalized regression coefficient at -0.20 (p<0.05) and -0.25 

(p<0.01), respectively. The T/ET in DBF and GRA showed a significant negative 

correlation with CO2 (p<0.05). 

 

Figure 4.3 Mean trends in underlying water use efficiency (UWUEa, and UWUEp), 

ratio of transpiration to evapotranspiration (T/ET), gross primary production 

(GPP), latent heat (LE), vapor pressure deficit (VPD), atmospheric CO2 

concentration (CO2), incoming shortwave radiation (SW), air temperature (TA), 

soil water content (SWC), and Leaf area index (LAI)) in evergreen needleleaf forests 

(ENF; a), deciduous broadleaf forests (DBF; b), and grasslands (GRA; c). The error 

bars represent the bootstrapped 95% confidence intervals for the mean trend. 
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Figure 4.4 Normalized regression coefficients from the partial least squares 

regression between annual changes in potential underlying water use efficiency 

(UWUEp) or the ratio of transpiration to evapotranspiration (T/ET) and annual 

changes in environmental variables. Environmental variables include vapor 

pressure deficit (VPD), atmospheric CO2 concentration (CO2), incoming shortwave 

radiation (SW), air temperature (TA), and soil water content (SWC). The star 

marks above the bars indicate the significance of the regression: * indicates p<0.05, 

** indicates p<0.01, and *** indicates p<0.001. n indicates the number of records 

used in the regression analysis for each biome. 

 

4.4 Discussion  

Our study investigated the responses of UWUE to different environmental factors in 

forests and grasslands in the Northern Hemisphere. Based on the formulation of UWUE, 

the trends in UWUEa can be attributed to UWUEp, and T/ET trajectories (Zhou et al. 

2017). We further analyzed the responses of UWUEp and T/ET to different 

environmental factors to evaluate the contribution of environmental changes on carbon-

water coupling. Our results showed that ENF and DBF showed an obvious increase in 

UWUEa, while GRA showed no obvious changes in UWUEa. The increase in UWUEa 

in forests was mainly contributed by the increasing UWUEp which was triggered by 

increasing CO2 and VPD, as well as the decreasing SWC in DBF. For GRA, neither 

UWUEp nor T/ET showed obvious trends. The positive effect of increasing CO2 on 

UWUEp might be offset by the negative effect of increasing SWC on UWUEp in GRA. 
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The T/ET which was primarily controlled by SW and TA in all biomes showed little trend 

in our study. Our study highlights the combined effects of increasing atmospheric CO2 

and water stress (i.e. increasing VPD or decreasing SWC) on UWUE.  

In our study, we found an general positive trend in UWUEa in forest sites, which 

is consistent with previous findings by Keenan et al. (2013) and Wang et al. (2018). The 

magnitude of the trends in UWUEp in both ENF and DBF are slightly smaller than the 

trends in intrinsic WUE (iWUE) in Wang et al. (2018). In comparison with UWUEp, 

iWUE includes the nonlinear VPD effect on ci/ca, which leads to a slight overestimate of 

WUE trends. Also, there were no significant differences in the trends of UWUEa between 

ENF and DBF sites, which differs from previous studies. The differences in length of 

study period for each site and the timescale of WUE used between previous studies and 

our study might influence the absolute magnitude of trends in WUE. However, the causes 

of the increasing UWUEa were also biome-dependent in our study, which supports 

previous results in Wang et al. (2018). In our study, among all biomes, the changes in 

UWUEa could be attributed to changes in UWUEp, since the T/ET was almost constant 

in the study period (Figure 4.2). The SW and TA showed strong correlations with T/ET 

but had little trend over time (Figure 4.3-4.4), resulting in a relative constant T/ET over 

time. In ENF, the increase in VPD and CO2 triggered the increase in UWUEp, which was 

also reflected by enhanced GPP (Figure 4.3a, and Figure 4.4a). In DBF, the secular 

increase in CO2 and large increase in VPD, associated with the decreased SWC jointly 

induced the increase in UWUEp (Figure 4.3b, Figure 4.4b). The positive CO2 fertilization 

effect on carbon uptake might be offset by negative effect of water stress on carbon uptake 

in DBF, resulting in no obvious change in GPP though there’s a slight increase in LAI 
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(Figure 4.3b). Fewer studies have examined the responses of WUE to environment 

changes in GRA. The existence of large proportion of soil evaporation in grassland ET is 

a large challenge in WUE analyses. In our study, by partitioning T from ET using LAI, 

we found that there was no obvious change in either UWUEp or T/ET in GRA though 

the UWUEp was also positively correlated with the CO2 and VPD and negatively 

correlated with the SWC (Figure 4.3c, and Figure 4.4c). The increasing SWC might has 

reduced the positive effect of increasing CO2 on UWUEp in GRA. The GPP in GRA was 

expected to increase with the increase in CO2 and SWC; however, we did not observe an 

increase in GPP and there was even a decreasing trend in LAI from GRA (Figure 4.3c), 

which might be regulated by other environmental factors. 

According to equation 4.3, ecosystem UWUEp corresponds to the UWUEi at the 

leaf scale under steady conditions, which has excluded all VPD effects and is only 

sensitive to the atmospheric CO2 concentration and plant functional type (λ). In our 

results, UWUEp was not only positively correlated with CO2 but also positively 

correlated with VPD (Figure 4.4), which is consistent with results using iWUE from 

Wang et al. (2018). In addition, UWUEp also showed a negative correlation with SWC 

in DBF, and GRA in our study. Leaf-level WUE is expected to increase under elevated 

CO2 concentration by enhancing the carbon uptake and reducing water loss through 

partial stomatal closures. The additional VPD or SWC effect on UWUEp might be 

reflected by changes in λ, which indicates some changes in vegetation composition or 

structure occur in the study period. A recent study showed that the water stress tends to 

induce a shift in tree species composition from less drought-tolerant species to species 

that are more tolerant to drought in eastern U.S. from 1980s to 2000s (Zhang et al. 2018a). 
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In our results, the increasing VPD in ENF and DBF associated with the decreasing SWC 

in DBF also represent increased water stress in forests in the Northern Hemisphere. It 

might be helpful to further explore what happened in forest structure or species 

composition across those sites.   

Some limitations also exist in our study. First, we used a simplified algorithm 

based on Wei et al. (2017) to partition T from ET using LAI, in order to separate the 

UWUEp and T/ET components from UWUEa. There are uncertainties in this empirical 

relationships between T/ET and LAI. Second, nitrogen deposition and land use change 

have also been found to potentially influence the UWUEp and T/ET (Fleischer et al. 2013; 

Zhou et al. 2017). Fleischer et al. (2013) found that nitrogen deposition was nonlinearly 

related to photosynthetic capacity in ENF and exhibited little response to photosynthetic 

capacity in DBF using GPP data from EC flux sites and nitrogen deposition data from 

model output. In this study, all sites are from natural ecosystems, hence, we didn’t 

consider land use changes. However, site-level N deposition measurements were not 

available in this study and its’s influence on UWUE was not evaluated.  

4.5 Conclusion  

Ecosystem UWUE provides an optimal indicator for responses of ecosystem carbon-

water coupling to environmental changes. By partitioning ecosystem UWUEa into 

UWUEp and T/ET, we further attributed the responses of UWUEp and T/ET to different 

environmental factors. Over past decade, both ENF and DBF showed an obvious increase 

in UWUEa, while GRA showed little changes in UWUEa. The changes in UWUEa were 

attributed to the changes in UWUEp, with little trend found in T/ET across all biomes. 

The increase in UWUEp in ENF was primarily triggered by increasing CO2 and VPD. 
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The increase in UWUEp in DBF was triggered by increasing CO2 and VPD, as well as 

decreasing SWC. For GRA, neither UWUEp nor T/ET exhibited a trend. The positive 

effect of CO2 fertilization on UWUEa might be offset by the negative effect of increasing 

SWC in GRA. Our study applied a new way to evaluate the responses of ecosystem WUE 

to different environment factors using flux tower datasets.  

 

Supplementary materials 

Table S4.1 Flux tower sites and corresponding years used in this study. 

ID Site ID Latitude Longitude IGBP type Years used Number of 

years 

1 AT-Neu 47.1167 11.3175 GRA 2002-2012 11 

2 CA-Qfo 49.6925 -74.342 ENF 2004-2010 7 

3 CH-Cha 47.2102 8.4104 GRA 2006-2011, 

2013-2014 

8 

4 CH-Dav 46.8153 9.8559 ENF 2007-2014 8 

5 CH-Fru 47.1158 8.5378 GRA 2006-2014 9 

6 CH-Oe1 47.2858 7.7319 GRA 2002-2008 7 

7 DE-Gri 50.9495 13.5125 GRA 2007-2014 8 

8 DE-Hai 51.0792 10.453 DBF 2000-2009 10 

9 DE-Tha 50.9636 13.5669 ENF 2000-2014 15 

10 DK-Sor 55.4859 11.6446 DBF 2000-2007, 

2014 

9 

11 FI-Hyy 61.8475 24.295 ENF 2000-2013 14 

12 FI-Sod 67.3619 26.6378 ENF 2008-2014 7 

13 IT-Col 41.8494 13.5881 DBF 2005-2009, 

2011-2014 

9 

14 IT-Lav 45.9562 11.2813 ENF 2004-2014 11 

15 IT-MBo 46.0147 11.0458 GRA 2004-2013 10 

16 IT-Ro2 42.3903 11.9209 DBF 2004-2008, 

2010-2012 

8 

17 IT-SRo 43.7279 10.2844 ENF 2002-2012 11 

18 NL-Loo 52.1666 5.7436 ENF 2000, 

2002-2013 

13 

19 US-Blo 38.8953 -120.63 ENF 2000-2007 8 

20 US-Me2 44.4523 -121.56 ENF 2002-2014 13 

21 US-

MMS 

39.3232 -86.413 DBF 2000-2014 15 
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22 US-NR1 40.0329 -105.55 ENF 2006-2014 9 

23 US-SRG 31.7894 -110.83 GRA 2008-2014 7 

24 US-

UMB 

45.5598 -84.714 DBF 2001-2014 14 

25 US-Var 38.4133 -120.95 GRA 2000-2014 15 

26 US-WCr 45.8059 -90.08 DBF 2000-2006, 

2011-2014 

11 

27 US-Wkg 31.7365 -109.94 GRA 2004-2014 11 
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Chapter 5: Global evapotranspiration over the past decade: estimation 

based on underlying water use efficiency combined with land primary 

production 

Abstract  

Evapotranspiration (ET) is a major water flux in the land water cycle and is tightly linked 

to ecosystem primary productivity. Given the strong coupling of ecosystem carbon and 

water fluxes, knowing one component provides information about the other. At present, 

ET estimation largely relies on hydroclimatic models, e.g. Penman-Monteith equation, 

which needs to quantify large sets of driving factors and hence have large uncertainties. 

However, ecosystem gross primary production (GPP) driven by light-use efficiency 

model showed better performances against flux tower measurements. In this study, we 

derived a global 8-day, 0.5° resolution ET product for 2003-2015 using GPP from the 

vegetation photosynthesis model (VPM), vapor pressure deficit (VPD) data derived from 

Atmospheric Infrared Sounder (AIRS), and ecosystem underlying water use efficiency 

(UWUE) derived from the FLUXNET2015 dataset. ET was calibrated and validated at 

the site level using eddy covariance measurements, and was also compared with MODIS 

ET product (MOD16A2.006). Our ET estimates explained ~48% of tower-measured ET, 

while MODIS ET explained ~42% of tower-measured ET. On a global scale, ET showed 

similar spatial pattern and interannual trend as GPP. There was a significant increase in 

ET in many regions in the Northern Hemisphere and a significant decrease in ET in 

amazon regions. This study highlighted the potential and simplicity of estimating ET 

through carbon-centric approaches based on UWUE. 
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5.1 Introduction 

Evapotranspiration (ET) is one of the most important water fluxes in terrestrial 

ecosystems. More than 60% of precipitation is evaporated or transpired to the atmosphere 

from the land surface (Oki and Kanae 2006). The changes in ET indicates the water, 

energy, and carbon cycle dynamics in terrestrial ecosystems. Evapotranspiration also 

provides a good indicator of land cover and land use changes (Fisher et al. 2011). Thus, 

accurately estimating the spatiotemporal dynamics of global ET is critical for better 

predicting future global carbon, water, and energy budgets and understanding how they 

respond to climate change. 

In an ecosystem, carbon and water cycles are tightly linked (Chapin et al. 2011; 

Law et al. 2002). Plants uptake carbon from the atmosphere while simultaneously losing 

water through stomatal (Medlyn et al. 2011). Ecosystem water use efficiency (WUE; 

GPP/ET), defined as the ratio of gross primary production (GPP) to ET, has been widely 

used to characterize the tradeoff between carbon gain and water loss at ecosystem scale 

(Niu et al. 2011). Thus, based on a given WUE, knowing either one of GPP and ET 

provides information about the other (Beer et al. 2010; Sun et al. 2011b; Zhang et al. 

2016b). Mover, recent studies found that VPD has strong effects on carbon-water 

coupling (Beer et al. 2009; Medlyn et al. 2011; Zhou et al. 2014). By incorporating the 

linear effect of VPD on transpiration, the inherent WUE (IWUE; GPP×VPD/ET) 

proposed by Beer et al. (2009) was found to be more stable than WUE on a daily to annual 

timescales. By further incorporating the nonlinear effect of VPD on carbon assimilation, 

Zhou et al. (2014) proposed the underlying WUE (UWUE; GPP×VPD0.5/ET), which was 
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demonstrated as an optimal formulation of carbon-water coupling on sub-daily to daily 

timescale (Zhou et al. 2014, 2015).  

Several studies have used ET to estimate GPP through WUE, a water-centric 

approach (Beer et al. 2010; Cheng et al. 2017; Sun et al. 2011b). Those studies depended 

on the assumption that ET could be better determined through hydrological observation 

or model simulations e.g. Penman-Monteith equation (Mu et al. 2011) and Priestley and 

Taylor equation (Martens et al. 2017), while GPP was harder to determine in the systems 

of interest. However, advances have been made in estimating global GPP based on 

measurements of optical parameters related to vegetation structure or function (e.g. 

vegetation indices, solar-induced chlorophyll fluorescence (SIF)) (Anav et al. 2015; Sun 

et al. 2018; Zhang et al. 2018b). There has been a good agreement between GPP derived 

from remote sensing and flux tower measured GPP (Ma et al. 2018; Zhang et al. 2017). 

Compared to GPP estimation, ET estimation is less reliable due to challenges in 

quantifying all parameters that govern energy exchange and corresponding latent heat 

flux from vegetated land surface (Sun et al. 2011a; Zhang et al. 2016a; Zhang et al. 

2016b). Thus, carbon-centric models could be preferable to estimate ET from GPP and 

may provide better accuracy than water-centric approaches. Based on this, Zhang et al. 

(2016b) estimated the global monthly ET for the year of 2001 using GPP derived by a 

light-use efficiency model and UWUE derived from flux tower measurements and found 

that ET estimated by carbon-centric model matches tower-measured ET well. However, 

they only generated ET for one single year and the ET dynamics over time were unknown. 

The aim of this study is to develop an 8-day, 0.5° resolution ET data product 

globally for 2003-2015 using the carbon-centric approach relying on UWUE. We utilized 
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GPP data from VPM and VPD data derived from Atmospheric Infrared Sounder (AIRS) 

as model input. ET was calibrated and validated against flux tower measured ET, as well 

as moderate Resolution Imaging Spectroradiometer (MODIS) ET. The interannual trends 

in ET, GPP, and VPD for 2003-2015 were characterized at the global scale finally. 

5.2 Materials and methods 

5.2.1 EC flux tower datasets 

We used 1991-2014 daily EC flux data from the FLUXNET2015 dataset 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/), including gross primary 

production (GPP, hereafter GPPEC), latent heat (LE), and vapor pressure deficit (VPD). 

Flux tower measured ET (hereafter ETEC) was converted from LE (W/m2) using the 

method in Tang et al. (2014). In this study, only daily records labeled with percentage of 

measured and good quality gap fill data >80% were used in this study. Some extreme 

records with daily WUE > 6.0 g C/kg H2O were also removed following Zhang et al. 

(2016b). Finally, daily records were aggregated to 8-day timescale estimates for each year 

in each site to correspond the 8-day MODIS product. In total, we identified 161 sites 

distributed across 11 biomes globally totaling 28784 8-day records (Table 5.1). The major 

ecosystem types in these sites are evergreen needleleaf forests (ENF), evergreen 

broadleaf forests (EBF), deciduous broadleaf forest (DBF), mixed forests (MF), closed 

shrublands (CSH), open shrublands (OSH), woody savannas (WSA), savannas (SAV), 

grasslands (GRA), wetlands (WET), and croplands (CRO) based on the IGBP 

classification scheme.  
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Table 5.1 Data usage in this study. 

Biome 

type 

Num. of 

sites  

Total 

records 

Calibration 

records 

Validation 

records 

ENF 37 7868 3934 3934 

EBF 12 2530 1265 1265 

DBF 19 4042 2021 2021 

MF 8 2010 1005 1005 

CSH 2 430 215 215 

OSH 9 545 273 272 

WSA 6 1585 793 792 

SAV 7 1118 559 559 

GRA 29 4174 2087 2087 

WET 16 1557 779 778 

CRO 16 2925 1463 1462 

ALL 161 28784 14394 14390 

 

5.2.2 VPM GPP dataset 

We used global GPP data from VPM simulations (hereafter GPPVPM), which is a light-

use efficiency model driven by MODIS vegetation indices, land cover maps, and NCEP 

Reanalysis II climate data (Xiao et al., 2004, Xiao et al., 2005). GPPVPM is available for 

2000-2017 with a 500m, 8-day resolution (Zhang et al., 2017). This GPP product showed 

a strong spatiotemporal consistency with in situ GPP estimates across biomes (Ma et al., 

2018, Zhang et al., 2017). For this study, we used the 8-day, 500m GPP, and the 8-day, 

0.5° GPPVPM for 2003-2015. 

5.2.3 Global VPD dataset 

We used daily meteorological data from Atmospheric Infrared Sounder (AIRS) level 3 

(https://airs.jpl.nasa.gov/data/products) to generate VPD at daily temporal resolution and 

1° spatial resolution for 2003-2015. The AIRS instrument suite was launched aboard 

NASA's Aqua Earth Observing System satellite on May 4, 2002. The satellite equatorial 

crossing local times are 1:30 a.m. in a descending orbit, and 1:30 p.m. in an ascending 

orbit. We used the average of the VPD estimates from descending and ascending orbits 
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as the daily VPD. For this study, we aggregated the daily VPD to 8-day timescale and 

resampled the 1° resolution to 0.5° resolution to match GPPVPM data. 

5.2.4 MODIS datasets 

We used MODIS GPP data (MOD17A2H.006) (hereafter GPPMOD17) produced by NASA 

Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov). It provides 

8-day, 500m GPP data from 2000 to present. This product was developed from a light 

use efficiency model using MODIS vegetation indices and meteorological information as 

inputs (Zhao and Running 2010).  

We used MODIS ET data (MOD16A2.006) product (hereafter ETMOD16) 

produced by NASA Land Processes Distributed Active Archive Center 

(https://lpdaac.usgs.gov). It provides 8-day, 500m ET data from 2000 to present. This 

product was based on the Penman-Monteith algorithm using daily GMAO climate data, 

MODIS land cover, albedo, LAI and EVI as input (Mu et al. 2011). 

 We used the IGBP land cover data from MODIS (MCD12C1.006), which is at 

yearly, 0.05° resolution. It produced the sub-pixel proportions of each land cover type. In 

our study, we aggregated the product to 0.5° resolution and re-identified the dominant 

land cover type in each pixel. 

5.2.5 ET Calibration and validation 

We randomly divided the 28784 records screened from 161 sites into two group, one for 

calibration (14390 records) and the other for validation (14394 records) (Table 5.1). The 

calibration dataset was used to estimate the UWUE (Equation 5.1) at the biome level. 

Then we generated the ET using 500m GPPVPM for each site-8-day record based on the 

UWUE. To validate the performance of ET estimated through GPPVPM, we compared the 
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ET estimated through GPPVPM and the ETMODIS against the ETEC in both calibration and 

validation datasets. 

According to the ratio representation of UWUE (Equation 5.1), UWUE was 

calculated as the slope of linear regression between GPP×VPD0.5 and ET by forcing the 

intercept to 0 following Zhang et al. (2016b) during calibration (Figure 5.1). Hence, the 

estimates of UWUE derived from the slope method could also be compared with ratio 

estimates in other studies. The root mean square error (RMSE) from the linear regression 

without intercept was used to describe the model performance. For the DNF, as we lack 

data in flux tower dataset, we used UWUE of MF as a substitute. Because DNF and MF 

were shown having similar parameters in a model analysis (Zhao and Running 2010). 

                                    UWUE =
𝐺𝑃𝑃×√𝑉𝑃𝐷

𝐸𝑇
                                                 (5.1) 

5.2.6 Estimating global ET 

After we completed the validation of ET at site level. We used the global gridded GPPVPM, 

VPD, and biome-level UWUE to estimate the global ET at 8-day, 0.5° resolution from 

2003 to 2015. The MODIS IGBP land cover data were used to identify the distribution of 

different biomes. 

5.2.7 Trend analysis 

To characterize the interannual trend of annual GPP, VPD, and ET, we aggregated the 8-

day GPP, VPD, and ET to annual estimates. We employed the Mann-Kendall test method 

to detect the upward or downward trends in annual GPP, VPD, and ET for each pixel. 

The Mann-Kendall test is a nonparametric way to detect a trend in a series of values 

regardless of whether the trend is linear. The p value on the basis of the Mann-Kendall 

test indicates the significance of the trend. We used the Sen’s slope estimator on the 
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Mann-Kendall method to estimate the absolute slope of each variable in each pixel. Sen’s 

slope estimator could effectively reduce the influences from outliers by using the median 

of all linear slopes. In order to directly compare the magnitude of trends in different 

variables, all annual estimates of each variable were transformed to relative changes (%, 

ratio of anomalies to mean values of each pixel) before trend analysis as previous studies 

suggested (Keenan et al. 2013; Wang et al. 2018). Thus, the trends (%/yr) estimated for 

different variables could be compared. 

5.3 Results 

5.3.1 Modelled sited-level ET 

Biome-level UWUE estimated from the calibration flux dataset is shown in Figure 5.1. 

GPP·VPD0.5 showed the strongest linear relationship with ET in comparison with the 

relationship between GPP (or GPP·VPD) and ET (Table 5.2). Among all biomes, CSH, 

OSH, WSA, and SAV sites showed the strongest linear regression between GPP·VPD0.5 

and ET with RMSE<11. While WET and CRO sites showed the weakest linear regression 

between GPP·VPD0.5 and ET with RMSE>18. In addition, all forests and CRO showed 

higher UWUE than other biomes, e.g. the UWUE in DBF was 2.74 gC·kPa0.5/kg H2O; 

the UWUE in CRO was 2.26 gC·kPa0.5/kg H2O. 
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Figure 5.1 Biome-level UWUE estimated from the calibration dataset from 

FLUXNET2015. Each point represents the 8-day estimate of GPP×VPD0.5 and ET 

in each site year. Gray line is the linear regression with intercept. Red line is the 

linear regression by forcing the intercept to 0. Red texts showed the absolute value 

of the slope without intercept and corresponding RMSE. 

 

Table 5.2 Biome-specific water use efficiency (WUE; g C/kg H2O), inherent water-

use efficiency (IWUE; g C·kPa/kg H2O), and underlying water-use efficiency 

(UWUE; g C·kPa0.5/kg H2O) from calibration flux dataset. The slope and RMSE 

were estimated from the linear regression by forcing the intercept to 0. 

Biome type WUE 

(ET vs GPP) 

IWUE 

(ET vs GPP×VPD) 

UWUE 

(ET vs GPP×VPD0.5)  
Slope RMSE Slope RMSE Slope RMSE 

ENF 2.85 16.58 1.86 17.73 2.21 14.80 

EBF 2.80 15.40 1.91 19.54 2.25 14.59 

DBF 3.40 16.82 2.32 17.51 2.74 14.03 

MF 3.11 17.47 1.92 17.64 2.38 15.28 

CSH 2.06 9.80 1.40 7.70 1.67 7.47 

OSH 1.51 9.32 1.27 8.33 1.34 7.79 

WSA 1.79 9.10 2.05 14.64 1.88 9.36 

SAV 1.85 9.60 2.53 15.88 2.12 10.36 

GRA 2.57 19.59 1.63 14.49 1.95 13.78 

WET 1.82 22.86 1.35 18.37 1.53 18.95 

CRO 2.69 24.09 1.99 21.41 2.26 20.52 

ALL 2.69 19.60 1.91 18.10 2.187 15.90 
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To validate the performance of ET, we compared the 8-day, 500m ET estimated 

in our study and ETMOD16 against flux tower measurements (Figure 5.2, Table S5.1). 

Overall, ET estimated in our study explained 48% of tower measured ET in validation 

dataset and 49% of tower measured ET in calibration dataset. As a reference data for ET 

validation, ETMOD16 could explained 42%, and 43% of tower-measured ET in validation 

and calibration dataset, respectively. In comparison with ET estimated in our study, 

ETMOD16 has an underestimation in ETEC (Figure 5.2, Table S5.1). 

 Since ET estimation in this study largely relies on the accuracy of GPP input, we 

also compared the 8-day, 500m GPPVPM and GPPMOD17 against GPPEC (Figure 5.3, Table 

S5.2). Overall, GPPVPM explained 60% and 61% of GPPEC in validation and calibration 

dataset, respectively. GPPMOD17 explained 54% of GPPEC in both validation and 

calibration datasets. In comparison with GPPVPM, GPPMOD17 also has an underestimation 

in GPPEC (Figure 5.3, Table S5.2). 
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Figure 5.2 Comparison of ET estimated at 8-day, 500m resolution against flux tower 

measured ET. a and b are results for the validation dataset, and c and d are results 

for calibration dataset. 
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Figure 5.3 Comparison of VPM GPP at 8-day, 500m resolution against flux tower 

measured GPP. a and b are results for the validation dataset, and c and d are results 

for calibration dataset. 

 

5.3.2 Modeled global ET 

The total global ET over vegetated land was 545±8 mm/yr in this study. The spatial 

variation of annual mean ET was very similar to the distribution of GPP (Figure 5.4). 

Annual ET estimated in this study showed high values in tropical zones, especially in the 

Amazon regions, and low values in arid and semiarid regions, e.g. central Australia, and 

high latitude regions, which matches the annual GPP patterns. In summer, e.g. during 

2015/7/12-2015/07/19, high ET values and GPP values both occurred in those crop zones 

and boreal forests in the Northern Hemisphere (Figure 5.5). The Highest annual mean 
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VPD was located in Sahara desert, and central Australia. Lowest mean annual VPD were 

found in high latitude areas and Tibetan plateau (Figure 5.4b). 

 

Figure 5.4 Global distribution of mean annual GPP, VPD, and ET during 2003-2015. 
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Figure 5.5 Global distribution of GPP, VPD and ET on 25th 8-day in 2015 at 0.5° 

resolution. Each pixel represents the 8-day mean in 2015/7/12-2015/07/19. 

 

 



96 

5.3.3 Trend in global ET 

Overall, the annual ET estimated over the global vegetated area showed an increasing 

trend at 1.47 mm/yr or 1.47 kg H2O/m2/yr) over the study period (Figure 5.6). The 

interannual trends in GPP, VPD, and ET for each pixel were shown in Figure 5.6 by 

absolute values and in Figure 5.7 by relative changes. Generally, the spatial variation in 

trend of ET was also consistent with that of GPP. Most regions in the Northern 

Hemisphere showed an increasing trend in GPP and ET, e.g., central Europe, northern 

North America, and eastern Asia (Figure 5.7-5.8). The tropical regions in central Africa 

also showed increasing GPP and ET. However, Amazon regions showed a significant 

decreasing trend in both GPP and ET. For the VPD, it also showed increasing trend in 

central Europe and eastern Asia except India. Generally, it showed a decreasing trend in 

deserts in Africa and Australia, and India. 

 

Figure 5.6 Interannual trend of global averaged ET estimated during 2003-2015 in 

this study. 
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Figure 5.7 Interannual trend in absolute GPP, VPD and ET for 2003-2015 at global 

scale. Left panels showed the trend of each variable derived from Sen’s Slope. Right 

panels showed the significance of the trend on the basis of Mann-kendall test. 
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Figure 5.8 Interannual trend (%) in GPP, VPD and ET anomalies for 2003-2015 at 

global scale. Left panels showed the trend of each variable derived from Sen’s Slope. 

Right panels showed the significance of the trend on the basis of Mann-kendall test. 

 

5.4 Discussion  

5.4.1 Model performances 

Our results showed that ET estimated through this carbon-centric approach performed 

better relative to tower-measured ET than ETMOD16. This improvement was largely due 

to the improved GPP estimates from VPM compared to GPPMOD17. The spatial variation 

in ET and its interannual trend match the spatial patterns of GPPVPM. This study 

highlighted the potential and simplicity of estimating ET through ecosystem carbon-water 
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coupling (i.e. UWUE) when the remote sensing data and biome specific parameters are 

available. 

The total global ET over vegetated land was 545±8 mm/yr in this study, which is 

similar to ET from MODIS (554±374 mm/yr) (Mu et al. 2011) and is lower than ET 

estimated from water balance equation (558-650 mm/yr) (Zeng et al. 2012). Global ET 

was found to increase at a rate of 1.47 mm/yr from 2003 to 2015 (Figure 5.6), which is 

slightly faster than the increase rate reported for 1982-2009 (1.1 mm/yr) (Zeng et al. 

2012). The biome-level UWUE derived from 8-day records is consistent with that derived 

from monthly records using FLUXNET datasets during 2000-2007 (Zhang et al. 2016b), 

with high UWUE values in forests and croplands and low UWUE values in shrublands 

(Figure 5.1 and Table 5.2). In comparison with flux tower ET, ET estimated in this study 

explained ~48% of tower ET, which is lower than the ET performance from Zhang et al. 

(2016b) (R2>0.60). However, the number of 8-day records we employed was nearly seven 

times bigger than those monthly records they used for the same biomes. 

5.4.2 Model advantages and limitations 

Currently, ET from flux tower sites have large uncertainties due to the lack of closure of 

the energy budget using the eddy covariance technique. In this study, we used the reported 

LE measurements without energy balance adjustment to estimate ETEC. In addition, this 

carbon-centric model relies on the accuracy of GPP data. In our study, GPPVPM showed 

better consistence with flux tower observations (R2≈0.60), in comparison with GPPMOD17 

(R2=0.54) (Figure 5.3). The improvement in GPPVPM was largely contributed by CRO in 

which the composition of C3/C4 species were considered. However, the GPPVPM in EBF 

showed a large underestimation against the flux tower estimates with R2=0.18 in 
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validation dataset, which further induced the underestimation in ET in EBF in this study 

(Figure 5.2, Table S5.1-S5.2). Because of the cloudy weather in tropical areas, optical 

remote sensing images and climate input usually have low quality, which may impact the 

quality of GPP derived from light use efficiency model (Anav et al. 2015). In addition, 

UWUE incorporated the VPD effect on both carbon uptake and transpiration. However, 

the VPD effect on GPP might not be captured by VPM due to the different water scaler 

(i.e. LSWI) used in VPM. 

In this study, UWUE best described the relationship between GPP and ET by 

incorporating the VPD effect on carbon uptake and transpiration, which supported 

previous study by Zhang et al. (2016b) (Table 5.2). However, at the ecosystem scale, GPP 

is actually coupled with transpiration, not evaporation (E) produced from soil or canopy 

surface. In our study, we used the GPP to derive ET directly at ecosystem scale, which 

introduces inevitable uncertainties. However, we accounted for E during the calibration 

process and we can provide better ET estimates at site level than ETMOD16 which is 

derived from more complicated model. Zhou et al. (2015) also showed a much stronger 

relationship between GPP·VPD0.5 and ET at daily timescale (R2=0.70). Thus this carbon-

centric approach based on UWUE is still an effective way to estimate ET at ecosystem 

scale. 

5.5 Conclusion 

We developed an 8-day, 0.5° global ET datasets based on GPP from VPM and UWUE 

derived at biome level. Our ET results was calibrated and validated at site level against 

flux tower measurements and was also compared with MODIS ET products. Overall, the 

8-day ET estimated in our study explained ~48% of tower-measured ET, which performs 
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better than MODIS ET (~42%). The spatial variation in ET matches well with the GPP. 

The global ET estimated in our study is 545±8 mm/yr and showed an increasing trend 

(1.47 mm/yr) over the study period. There was a significant increase in ET in the Northern 

Hemisphere, e.g. central Europe, eastern Asia and a significant decrease in ET in the 

amazon forests. 

 

Supplementary materials 

Table S5.1 Comparison of ET estimated in our study (i.e. ETVPM) and ET from 

MODIS (i.e. ETMOD16) with ET from eddy flux tower (i.e. ETEC) for different 

biomes based on validation and calibration datasets. 

Biome 

types 
Validation dataset Calibration dataset 

ETEC vs ETVPM ETEC vs ETMOD16 ETEC vs ETVPM ETEC vs ETMOD16 

Slope R2 Slope R2 Slope R2 Slope R2 

ENF 0.87 0.48 0.68 0.38 0.93 0.51 0.68 0.38 

EBF 0.49 0.18 1.04 0.71 0.50 0.18 1.04 0.69 

DBF 1.11 0.62 0.89 0.50 1.10 0.62 0.88 0.51 

MF 1.10 0.56 0.88 0.49 1.22 0.60 1.03 0.55 

CSH 0.79 0.46 0.69 0.39 0.86 0.48 0.84 0.46 

OSH 1.19 0.33 0.53 0.16 0.98 0.27 0.45 0.13 

WSA 0.70 0.55 0.72 0.65 0.69 0.57 0.74 0.65 

SAV 0.83 0.48 0.67 0.54 0.97 0.56 0.67 0.54 

GRA 1.02 0.58 0.80 0.51 0.97 0.53 0.85 0.51 

WET 0.75 0.36 0.22 0.06 0.78 0.37 0.25 0.08 

CRO 1.00 0.64 0.54 0.42 1.03 0.65 0.56 0.42 

ALL 0.89 0.48 0.73 0.42 0.91 0.49 0.75 0.43 
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Table S5.2 Comparison of GPP from VPM (i.e. GPPVPM) and GPP from MODIS 

(i.e. GPPMOD17) with GPP from eddy flux tower (i.e. GPPEC) for different biomes 

based on validation and calibration datasets. 

Biome 

types 
Validation dataset Calibration dataset 

GPPEC vs 

GPPVPM 

GPPEC vs 

GPPMOD17 

GPPEC vs 

GPPVPM 

GPPEC vs 

GPPMOD17 

Slope R2 Slope R2 Slope R2 Slope R2 

ENF 0.72 0.60 0.63 0.54 0.74 0.63 0.65 0.57 

EBF 0.33 0.18 0.69 0.60 0.32 0.16 0.66 0.57 

DBF 0.99 0.76 0.62 0.62 0.97 0.74 0.59 0.60 

MF 1.10 0.66 0.71 0.62 1.08 0.68 0.70 0.62 

CSH 0.78 0.55 0.62 0.33 0.82 0.56 0.63 0.30 

OSH 1.17 0.70 1.10 0.58 0.96 0.59 0.90 0.55 

WSA 0.72 0.69 0.66 0.60 0.73 0.73 0.61 0.57 

SAV 0.85 0.59 0.50 0.41 0.88 0.61 0.52 0.43 

GRA 0.79 0.68 0.50 0.61 0.78 0.69 0.51 0.62 

WET 0.81 0.51 0.50 0.39 0.83 0.54 0.53 0.43 

CRO 0.70 0.66 0.29 0.43 0.67 0.64 0.28 0.41 

ALL 0.78 0.60 0.57 0.54 0.78 0.61 0.57 0.54 
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Chapter 6: Conclusions and perspectives 

Ecosystem carbon and water cycles are tightly interconnected. The interaction of carbon 

and water exchanges is an important ecosystem function that could substantially influence 

the global carbon, water, and energy budgets. Thus, quantifying the carbon-water 

coupling of terrestrial ecosystems and understanding how climate change and climate 

variability affect the coupled processes are critical for predicting future ecosystem 

responses and evaluated the global carbon and water budgets.  

As the atmospheric carbon fixed by vegetation through photosynthesis, terrestrial 

gross primary production (GPP) is a primary driver of global carbon cycle. It is driven by 

temperature and precipitation in most terrestrial ecosystems, but ecosystem carbon cycles 

are fully coupled with ecosystem water fluxes (evapotranspiration and transpiration). My 

dissertation 1) quantified the overall relationship of GPP to precipitation and water fluxes 

at the site and the global scales in Chapter 2; 2) explored the coupling of GPP and 

precipitation (i.e. rain-use efficiency) in responses to precipitation variability and extreme 

drought in Chapter 3; 3) explored the coupling of GPP and evapotranspiration (i.e. water 

use efficiency) in response to CO2 fertilization and other climate factors in Chapter 4; and 

4) developed global ET maps based on the strong coupling of GPP and ET in Chapter 5. 

Major findings in my dissertation include: 1) ecosystem GPP was more strongly 

coupled with evapotranspiration or transpiration than precipitation. This strong coupling 

relationship was further improved by incorporating the effect of vapor pressure deficit 

(VPD) on carbon uptake and transpiration; 2) extreme drought impacts on terrestrial 

ecosystems were identified by using the relationship between rain use efficiency and 

precipitation. Ecosystem rain use efficiency increased during moderate drought but will 
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likely decline with further water shortage, leading to ecosystem function loss; 3) 

underlying water use efficiency incorporated VPD effects on carbon-water coupling and 

is better metric than other C:H2O efficiency terms to explain the responses of ecosystem 

to increasing CO2. Underlying water use efficiency showed increasing trend in forests 

and no obvious trend in grasslands in the Northern Hemisphere. The variation in 

underlying water use efficiency was strongly regulated by CO2 fertilization, VPD, and 

soil moisture; 4) ecosystem underlying use efficiency can be utilized to provide a better 

estimate of evapotranspiration in comparison traditional approaches. Global ET showed 

increasing trend in past decades. 

Future, efforts should address the following scientific questions: 1) what’s the 

range of water use efficiency between biome types or plant species; 2) how does plant or 

ecosystem carbon-water coupling respond to extreme climate conditions; 3) given that 

plant or ecosystem water use efficiency has been consistently reported to increase with 

elevated atmospheric CO2 concentration or during drought,  what is the magnitude of CO2 

fertilization and drought impacts on water use efficiency; 4) tropical regions still have 

large uncertainties in GPP and water flux estimation through remote sensing methods. 

Advances in remote sensing technique are needed to solve this issue. 
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