
UNIVERSITY OF OKLAHOMA 

 

GRADUATE COLLEGE 

 

 

 

 

 

 

 

MULTI-SCALE REMOTE SENSING OF OPEN SURFACE WATER BODY  

AREA AND QUALITY 

 

 

 

 

 

A DISSERTATION 

 

SUBMITTED TO THE GRADUATE FACULTY 

 

in partial fulfillment of the requirements for the 

 

Degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

 

By 

 

ZHENHUA ZOU 

 Norman, Oklahoma 

2019 

  



 

 

 

 

 

MULTI-SCALE REMOTE SENSING OF OPEN SURFACE WATER BODY  

AREA AND QUALITY 

 

A DISSERTATION APPROVED FOR THE 

DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY 

 

 

 

 

 

 

 

 

BY 

 

 

 

 

 

 

Dr. Xiangming Xiao, Chair 

 

 

Dr. Jeffrey Basara 

 

 

Dr. Yang Hong 

 

 

Dr. Heather McCarthy 

 

 

Dr. Lara Souza 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by ZHENHUA ZOU 2019 

All Rights Reserved. 



iv 

 

 

 

 

 

 

 

 

 

 

This dissertation is dedicated to my parents, my wife, and my daughter for their 

unconditional love and support. 

 

 

 

 

 

 

 

 



v 

Acknowledgements 

Great thanks to my academic advisor Dr. Xiangming Xiao for his patient guidance, 

valuable suggestions, and unconditional support during my Ph.D. program. With 

profound knowledge, he shows me the direction when I am confused, solves the problems 

that I could not overcome, and encourages me when I am frustrated. I am also appreciated 

for the freedom he gives me in my research so that I could try all kinds of ideas and 

strategies to solve a problem. In this way, I make mistakes, learn from my mistakes, and 

develop the ability little by little to carry out independent research, which I think is the 

most valuable experience in my Ph.D. program.  

I would like to thank my committee members Dr. Jeffrey Basara, Dr. Yang Hong, 

Dr. Heather McCarthy, and Dr. Lara Souza for their unconditional service, help, and 

support in my Ph.D. program. Their insightful commons and suggestions have guided me 

through the difficulties and challenges in my Ph.D. journey.  

I would also like to thank my colleagues in EOMF lab. They are nice collaborators 

and good friends. They have made my research easier and my life happier. 

Last but not least, great thanks to my beloved family. 

 



vi 

Table of Contents 

Acknowledgements ........................................................................................................... v 

Table of Contents ............................................................................................................. vi 

List of Figures ................................................................................................................... x 

List of Tables ................................................................................................................. xiii 

Abstract .......................................................................................................................... xiv 

Chapter1: Introduction ...................................................................................................... 1 

1.1 Research background ............................................................................................ 1 

1.2 Overall research objectives ................................................................................... 4 

1.3 Organization of the dissertation ............................................................................ 4 

1.4 List of Publications from the Dissertation ............................................................ 7 

Chapter 2: Continued decrease of open surface water body area in Oklahoma during 

1984–2015 from analysis of time series Landsat images ..................................... 8 

Abstract ....................................................................................................................... 8 

2.1 Introduction ........................................................................................................... 9 

2.2 Materials and methods ........................................................................................ 13 

2.2.1 Study area .................................................................................................. 13 

2.2.2 Data ............................................................................................................ 13 

2.2.3. Algorithms to identify open surface water bodies .................................... 15 

2.2.4. Interannual variations and trends of open surface water bodies ............... 19 

2.2.5. Effects of climate and water exploitation on surface water bodies .......... 20 

2.3 Results................................................................................................................. 21 

2.3.1. Open surface water bodies in 2015 and 1984-2015 .................................. 21 



vii 

2.3.2. Interannual variation of open surface water bodies during 1984-2015 .... 23 

2.3.3. Attribution analysis of surface water body area and number ................... 26 

2.3.4. Variation of open surface water bodies in a dry and wet year .................. 28 

2.4 Discussion ........................................................................................................... 30 

2.4.1 Advantages and uncertainties of this study ............................................... 30 

2.4.2 Driving factors of water body changes ...................................................... 31 

2.4.3 Consequences of water body area shrinkage ............................................. 32 

2.5 Conclusions......................................................................................................... 34 

Supplementary materials .......................................................................................... 36 

Chapter 3: Divergent trends of open surface water body area in the contiguous US from 

1984 to 2016 from analysis of time series Landsat images ................................ 46 

Abstract ..................................................................................................................... 46 

3.1 Introduction ......................................................................................................... 47 

3.2 Materials and methods ........................................................................................ 50 

3.2.1 Landsat image ............................................................................................ 50 

3.2.2 Data on land water storage, water withdrawal, and climate. ..................... 50 

3.2.3 Water body detection. ................................................................................ 51 

3.2.4 Water body verification and application. ................................................... 53 

3.2.5 Statistical analyses. .................................................................................... 55 

3.3 Results and Discussion ....................................................................................... 56 

3.3.1 Water body frequency maps and water body areas ................................... 56 

3.3.2 Water body distribution, variation, and driving factors ............................. 59 

3.3.3 Water body area and land water storage .................................................... 64 



viii 

3.3.4 The effects of drought on water body area and land water storage ........... 65 

3.4 Conclusions and perspective............................................................................... 69 

Supplementary materials .......................................................................................... 70 

Chapter 4: Variations and trends of global surface water body area and land water 

storage in the past decades from analysis of time series Landsat images .......... 78 

Abstract ..................................................................................................................... 78 

4.1 Introduction ......................................................................................................... 78 

4.2 Materials and methods ........................................................................................ 80 

4.2.1 Data. ........................................................................................................... 80 

4.2.2 Algorithm development. ............................................................................ 82 

4.2.3 Accuracy assessment. ................................................................................ 84 

4.2.4 Surface water body maps and analysis. ..................................................... 85 

4.2.5 Interannual variations and trends. .............................................................. 86 

4.3 Results and discussion ........................................................................................ 89 

4.3.1 Surface water body frequency and area ..................................................... 89 

4.3.2 Variations and trends of surface water area ............................................... 91 

4.3.3 Land water storage and surface water area ................................................ 99 

4.4 Conclusions and perspective............................................................................. 103 

Supplementary materials ........................................................................................ 104 

Chapter 5: The potential of time series Landsat and Sentinel-2 images for estimating 

chlorophyll-a content of open surface water bodies ......................................... 120 

Abstract ................................................................................................................... 120 

5.1 Introduction ....................................................................................................... 121 



ix 

5.2 Materials and methods ...................................................................................... 123 

5.2.1 Data. ......................................................................................................... 123 

5.2.2 Regression analysis with Landsat data .................................................... 125 

5.2.3 Regression analysis with Sentinel 2 data ................................................. 125 

5.3 Results and discussion ...................................................................................... 126 

5.3.1 Chlorophyll-a estimation using Landsat data .......................................... 126 

5.3.2 Chlorophyll-a estimation using Sentinel 2 images .................................. 128 

5.4 Conclusions and perspective............................................................................. 128 

Supplementary materials ........................................................................................ 129 

Chapter 6: Conclusions and perspectives ..................................................................... 134 

References ..................................................................................................................... 138 

 



x 

List of Figures 

Figure 2.1 Landsat data. .................................................................................................. 15 

Figure 2.2 Workflow of this study. ................................................................................. 17 

Figure 2.3 Water body frequency distribution in Oklahoma. ......................................... 22 

Figure 2.4 Inter-annual variations of water body area in different water extents. .......... 24 

Figure 2.5 Inter-annual variations of the number of (a) maximum water bodies and (b) 

year-long water bodies. ................................................................................................... 25 

Figure 2.6 Water body number and area distribution at different water body size levels, 

(a) water body number distribution, and (b) water body area distribution. .................... 26 

Figure 2.7 Water body number and area distribution of the maximum water body extent 

in a dry (2006) and wet (2007) year. .............................................................................. 29 

Figure S2.1 Study area. ................................................................................................... 36 

Figure S2.2 Data availability in 2015 (left) and 1984-2015 (right).. .............................. 37 

Figure S2.3 Histograms of pixels with various annual good-quality observation numbers 

in 2015. ........................................................................................................................... 38 

Figure S2.4 Water detection in built-up area. ................................................................. 39 

Figure S2.5 Water detection in vegetated area. .............................................................. 40 

Figure S2.6 Visually interpreted water and non-water pixels. ....................................... 41 

Figure S2.7 Water body frequency threshold selection .................................................. 41 

Figure S2.8 Open surface water body maps in 2015: (a) maximum water body map, (b) 

year-long water body map, (c) seasonal water body map. ............................................. 42 

Figure 3.1 Spectral characteristics of 1.26 million sampling pixels.. ............................. 53 



xi 

Figure 3.2 Water body frequency maps and water body areas using different frequency 

thresholds in the CONUS. .............................................................................................. 57 

Figure 3.3 Year-long water body area and interannual trends in the CONUS during 1984–

2016 by states and watersheds. ....................................................................................... 60 

Figure 3.4 Multiple stepwise regression models.. .......................................................... 63 

Figure 3.5 The slopes, p-values and r-squared values of simple linear regression models 

of GRACE land water storage and year-long water body area at 0.5-degree grid cells 

during 2002–2016 with t-test at the 5% significance level. ............................................ 65 

Figure 3.6 Interannual variations of year-long water body area, GRACE land water 

storage (LWS), and annual precipitation during 1984–2016 in California (a), Kansas (b), 

Oklahoma (c), and Texas (d).. ........................................................................................ 67 

Figure S3.1 Landsat data availability within the CONUS during 1984-2016. ............... 72 

Figure S3.2 Landsat tile (path/row) and sampling plot distribution.. ............................. 73 

Figure S3.3 Spatial distribution of 3200 verification sampling points that were used to 

select ~12,000 sampling pixels for accuracy assessment. .............................................. 74 

Figure S3.4 Mixed pixel water detection rate. ................................................................ 74 

Figure S3.5 Study area. ................................................................................................... 75 

Figure S3.6 Spatial and temporal distribution of major dams constructed during 1984–

2003 within the CONUS ................................................................................................. 76 

Figure 4.1 Global water body frequency and area.. ........................................................ 90 

Figure 4.2 Changes of surface water area across the globe.. .......................................... 92 

Figure 4.3 Zoom-ins of Figure 4.2a in Asia and Europe.. .............................................. 96 



xii 

Figure 4.4 Zoom-ins of Figure 4.2a in North America, South America, Africa, and 

Australia.. ........................................................................................................................ 97 

Figure 4.5 Changes of land water storage and surface water area.. .............................. 100 

Figure S4.1 Landsat data used for water mapping. ...................................................... 104 

Figure S4.2 Water body maps of eastern Asia from OU and JRC datasets in 1997 and 

1998. ............................................................................................................................. 105 

Figure S4.3 Algorithm development.. .......................................................................... 106 

Figure S4.4 Validation. ................................................................................................. 107 

Figure S4.5 Diagram of interannual variation and multi-decadal trend analysis of surface 

water area.. .................................................................................................................... 108 

Figure S4.6 Non-frozen months and months with good observations.......................... 109 

Figure S4.7 Data used in the variation and trend analysis.. .......................................... 110 

Figure S4.8 Multiple stepwise regression models. ....................................................... 111 

Figure 5.1 Locations of 34 chlorophyll-a measurements. Each measurement has a 

corresponding Sentinel 2 image pixel within 10 days. ................................................. 126 

Figure 5.2 R squares of multiple stepwise regression models. 768 water sampling sites 

across the entire Oklahoma. .......................................................................................... 127 

 

  



xiii 

List of Tables 

Table 2.1 Multiple linear regression analyses of water body area and number with 

precipitation, temperature and surface water withdrawal in Oklahoma. ........................ 28 

Table S2.1 Water indices ................................................................................................ 43 

Table S2.2 The confusion matrix for evaluating the single-temporal water body map of 

Oklahoma in 2010. .......................................................................................................... 44 

Table S2.3 The confusion matrix for evaluating the maximum water body maps using 

GIW datasets (2000) and NLCD datasets (2001, 2006 and 2011). ................................ 44 

Table S2.4 Collinearity statistics of all input explanatory variables of each model in SPSS 

19 using the “enter” method. .......................................................................................... 45 

Table S3.1 Confusion matrix for evaluating water detection algorithms ....................... 76 

Table S3.2 Variance inflation factor (VIF) of all predictor variables. ........................... 77 

Table S4.1 Distribution of 157 sampling blocks .......................................................... 112 

Table S4.2 Confusion Matrix of algorithm development ............................................. 112 

Table S4.3 Distribution of Landsat validation pixels ................................................... 113 

Table S4.4 Maximum water body extent and water body areas by country ................. 113 

Table 5.1 Band name and wavelength of Landsat 5/7/8 and Sentinel 2 images. ......... 124 

Table 5.2 Satellite and day range of the extracted Landsat pixels ................................ 125 

Table S5.1 Multiple stepwise regression models of 165 sampling sites. ..................... 129 

 

  



xiv 

Abstract 

Water is one of the most important resources for life. Climate change and climate 

variability have caused dramatic variations and significant trends in surface water 

resources, while global population growth and increased food demand have greatly 

stressed and modified global surface water systems. These changes in surface water 

resources have huge consequences to human society, natural environment, and global 

biodiversity. Landsat satellites have scanned the entire earth in every 16 days since the 

1980s. The historical information of surface water body spatial distribution, temporal 

variation, and multi-decadal trends documented in remote sensing images can aid in water 

resource research, planning, and management, yet it is not well explored. This dissertation 

aims to develop algorithms and generate open surface water body maps at state, national, 

and global scales. Based on these maps, the interannual variations and long-term trends 

of surface water body area were analyzed while their climatic and anthropogenic drivers 

were examined. The joint analysis of both surface water body area and land water storage 

was carried out to explore the consistency and divergence between surface and land water 

resource dynamics. The potential of satellite images in water chlorophyll-a concentration 

estimation was also evaluated. Chapter 2 used ~16,000 Landsat images to analyze surface 

water body dynamics in Oklahoma and found significant decreasing trends in both 

surface water body area (the maximum, year-long, seasonal, and average water body area) 

and water body number (maximum and year-long water body numbers) during 1984–

2015. The decrease of water body area was mainly attributed to the shrinking of large 

water bodies (>1 km2) while the decrease in water body number was mainly caused by 

the vanishing of some small water bodies. Smaller water bodies have a higher risk of 



xv 

drying up under climate-warming scenarios. Chapter 3 used ~ 370,000 Landsat images 

and the Gravity Recovery and Climate Experiment (GRACE) land water storage data to 

analyze changes in surface water area and groundwater across the contiguous US 

(CONUS) during 1984–2016. Divergent trends of surface water area were found across 

the CONUS with water-poor regions of the Southwest and Northwest US getting poorer, 

while the water-rich regions of the Southeast US and far north Great Plains getting richer. 

In the 2012-2014 prolonged droughts, surface water body shrinkage had led to massive 

groundwater mining and the rapid decline of land water storage in California and the 

Southern Great Plains. Chapter 4 used ~3.8 million Landsat images and GRACE land 

water storage data to analyze surface water area and land water storage jointly during 

1984–2017 at 0.01° grid cells, 0.5° grid cells, and 5° tiles across the globe. About 8.5 

million 0.01° grid cells had significant increasing or decreasing trends in surface water 

area over the past decades, forming interesting spatial patterns in northern Greenland, 

Tibetan Plateau, western US, the Great Lakes, Gulf of Bothnia, central South America, 

etc. The interannual variations, magnitude of variability, and the multi-decadal trends of 

regional surface water area were analyzed and visualized at 5° tiles. Divergent trends 

between land water storage and regional surface water area occurred in Greenland, China, 

the Indus Basin, and central Africa, mainly driven by climate and anthropogenic 

activities. Chapter 5 used ~10,000 chlorophyll-a field measurements to evaluate the 

potential of Landsat 5/7/8 and Sentinel 2 satellite images in water chlorophyll-a content 

estimation. Regression models of Landsat data have different performance in various 

water sampling sites and water bodies across Oklahoma, with relatively good 

performance in Eufaula Lake, Keystone Lake, Copan Lake, Hugo Lake, Foss Reservoir, 
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and Atoka Reservoir. The brightness temperature band of Landsat satellites showed great 

potential in chlorophyll-a estimation, which indicated that temperature was among the 

most important factors of algal blooms in Oklahoma. The Red Edge 2 band of Sentinel 2 

Satellite also showed great potential in chlorophyll-a estimation among different water 

sampling sites and water bodies across Oklahoma. The findings in this dissertation can 

be used in water resource research, planning, and management in coping with water 

scarcity and food security associated with climate change and population growth. 
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Chapter1: Introduction 

1.1 Research background  

Terrestrial surface water resources are critical for human society, natural 

environment, and global biodiversity (Pekel et al., 2016; Vorosmarty et al., 2010). 

Climate change and increased climate variability have strong impacts on surface water 

resources (Aherne et al., 2006; Ferguson and Maxwell, 2012; Tulbure et al., 2016), 

including dramatic spatial and temporal variability (Hall et al., 2014; Mercier et al., 2002), 

and severe droughts and floods (Melillo et al., 2014), which have a variety of 

consequences on human societies and ecosystems (Bates et al., 2008; Brown and Lall, 

2006). Global population increased from about 5 billion in 1984 to 7.6 billion in 2017 

(DESA, 2017). Population growth and increased food demand have also stressed and 

modified global surface water systems through water diversion for irrigation, dam 

construction, and land reclamation (Vorosmarty et al., 2010). Agriculture development 

and domestic sewage discharge have contaminated and eutrophicate surface water bodies, 

leading to algal blooms and the decrease of water quality (Gons et al., 2008; Matsushita 

et al., 2015). Mapping terrestrial open surface water bodies is critically important to water 

resource management, agricultural and industrial production, flood and drought 

assessment, and aquatic ecosystem protection (Wood et al., 2011). Analysis of the 

interannual variation of open surface water body areas can reveal the stability of water 

resources while examining the driving factors of water body variability can reveal the 

reasons behind the significant trends of surface water body area (Zou et al., 2017; Zou et 

al., 2018). Chlorophyll-a concentration is one of the most commonly used indicators of 

water quality, including trophic status, clarity, and algal biomass (Matsushita et al., 2015). 
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Chlorophyll-a estimation using remote sensing images can serve as an alternative and 

supplement to the expensive field chlorophyll-a sampling and measurement (LaPotin et 

al., 2001; Matsushita et al., 2015). 

Satellite-based remote sensing images have been widely used to identify and map 

open surface water bodies over the past decades (Boland, 1976; Heimhuber et al., 2017; 

Pekel et al., 2016; Proulx et al., 2013; Tao et al., 2015; Xu, 2006). Many water detection 

algorithms were based on different spectral water indices (Bhagat and Sonawane, 2011; 

Crist, 1985; Feyisa et al., 2014; Fisher et al., 2016; McFeeters, 1996; Wang et al., 2015; 

Xiao et al., 2002; Xu, 2006). The modified Normalized Difference Water Index 

(mNDWI) is one of the most widely used water indices because of its good performance 

in different landscapes (Ji et al., 2009; Yamazaki et al., 2015). As United States 

Geological Survey (USGS) made all Landsat images available to the public, mapping of 

open surface water bodies was carried out in continental (Mueller et al., 2016; Tulbure et 

al., 2016) and global scales (M Feng et al., 2016; Pekel et al., 2016; Verpoorter et al., 

2014; Yamazaki et al., 2015). Google Earth Engine (GEE) cloud computing platform 

provides satellite image archives, user-friendly programing interface, and free computing 

power for the public to carry out data analyzing. It opens an unprecedented opportunity 

for the remote sensing community to explore the potential of water body mapping. 

Many water body maps were generated using single-temporal or multi-temporal 

images gathered at a specific time or period of the year, normally the wet season (Liu et 

al., 2013; Schaffer-Smith et al., 2017; Yamazaki et al., 2015). However, because of the 

seasonal variations of water bodies, these water body maps can only reveal a snapshot of 

the dynamic water body conditions. Water body maps based on water body frequency 
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within a year on the other hand can capture the water body dynamics (Mueller et al., 2016; 

Pekel et al., 2016). Water body extents detected in selected years were often used to 

indicate the inter-annual trends of water body conditions (Homer et al., 2015; Necsoiu et 

al., 2013; Tao et al., 2015). However, because of inter-annual variations of water bodies 

(Gaupp et al., 2015), the selection of comparing years may lead to misleading trends. In 

comparison, the continuous annual water body conditions over a long period can better 

reveal the inter-annual variations and changing trends of open surface water bodies (Pekel 

et al., 2016; Zou et al., 2017).  

Surface water body dynamics are affected by both climate anomalies and 

anthropogenic activities (Bates et al., 2008; Pekel et al., 2016). Precipitation and 

temperature are two significant climate drivers of water body area changes (Krueger et 

al., 2017; Liu et al., 2013; Sellinger et al., 2008; Tao et al., 2015). Various anthropogenic 

activities were also found related to the changes of surface water body areas, including 

reservoir construction (Du et al., 2012; Pekel et al., 2016), irrigation (Liu et al., 2013), 

thermoelectric power production (van Vliet et al., 2012), coal, oil and gas mining 

(Murray, 2013; Tao et al., 2015), and urbanization (Steele et al., 2014). Surface water 

bodies are also related to groundwater (Brunner et al., 2009) and total land water storage 

(Proulx et al., 2013). The withdrawal of ground water could change the surface water and 

streamflow (Dale et al., 2015; Ferguson and Maxwell, 2012; Krueger et al., 2017). 

More and more lakes are becoming eutrophic and hypereutrophic (OWRB, 2015). 

Harmful algal blooms are likely to occur in eutrophic and hypereutrophic lakes, which 

would lead to fish mortality, jeopardize drinking water quality, and cause health problems 

(Matsushita et al., 2015). Landsat images have been used to quantify water chlorophyll-
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a concentration in previous studies (Dall'Olmo et al., 2003; O'Reilly et al., 1998). 

Compared with Landsat images, the newly launched Sentinel 2 satellites have four 

additional red edge bands, designed to capture the reflectance of green vegetation and 

chlorophyll. Field sampling and laboratory analysis of chlorophyll-a concentration is 

costly and time-consuming. Satellite-image based water quality estimation has the 

potential to provide Chlorophyll-a concentration information in high temporal 

frequencies and high spatial resolution with relatively low cost.  

1.2 Overall research objectives 

The overall objectives of this dissertation are to (1) develop efficient and easy-to-use 

algorithms to identify and map open surface water bodies, (2) generate annual maps of 

open surface water body at state, national, and global scales, (3) analyze the inter-annual 

variation and long-term trends of surface water body areas, (4) examine the climatic and 

anthropogenic drivers of water body area variability and reveal the effects of severe 

droughts on surface water body area, (5) assess the interannual variations and trends of 

both surface water area and land water storage to shed new light on the consistency and 

divergence between surface and land water resource dynamics, and (6) evaluate the 

potential of Landsat 5/7/8 and Sentinel 2 satellite images in water chlorophyll-a 

concentration estimation. 

1.3 Organization of the dissertation  

This dissertation has 6 chapters, with chapter 1 as introduction and chapter 6 as summary. 

Chapters 2 and 3 have been published while chapter 4 is under review. The manuscript 

of chapter 5 is in preparation. 
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Chapter 2: Continued decrease of open surface water body area in Oklahoma 

during 1984–2015 from analysis of time series Landsat images. Oklahoma contains 

the largest number of manmade lakes and reservoirs in the U.S., but vulnerable with a 

typical spatial transition and temporal variation in climate. In the context of climate 

change and variability, how these surface water bodies changed in the past three decades 

and what consequences would these changes bring to the society and ecosystems? These 

questions have not been well addressed because studies on this subject are limited in 

Oklahoma. This chapter aims to map open surface water bodies of the entire Oklahoma 

during 1984–2015, investigate the spatiotemporal dynamics of surface water body area 

and number, and explore their relationship with climate variables (precipitation and 

temperature) and human water withdrawals. 

Chapter 3: Divergent trends of open surface water body area in the 

contiguous US from 1984 to 2016 from analysis of time series Landsat images. 

Affected by climate change and human activities, severe dynamics in open surface water 

body areas have impacted US agriculture, economy, society, and ecosystems. The 

historical information of surface water bodies stored in satellite images can aid in water 

resource planning and management, yet it is not well explored. Also, how the climate and 

human development have affected the variability of surface water body area at a state 

scale across the CONUS have not been examined. This chapter aims to map open surface 

water bodies of the CONUS during 1984–2016, analyze the interannual variations and 

trends of water body area at state and watershed scales, examine the impacts of climatic 

and anthropogenic drivers on water body area change, explore the relationships between 

water body area and GRACE land water storage, and investigate the impacts of severe 
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drought events on temporal dynamics of surface water body area and land water storage 

in California and the Southern Great Plains. 

Chapter 4: Variations and trends of global surface water body area and land 

water storage in the past decades from analysis of time series Landsat images. Under 

the impacts of climate variability and anthropogenic activities, strong variations and 

significant changes of water resources, such as the dry-up of surface water bodies and the 

loss of groundwater, has threatened municipal water supplies, reduced crop production, 

and decreased aquatic biodiversity. While global surface water body and land water 

storage have been studied, a global water resource dynamic analysis through a 

combination of the two have not been investigated yet. This chapter aims to generate a 

new global multi-decadal surface water body dataset during 1984–2017 at 30-m 

resolution using millions of Landsat images, detect locations where surface water area 

had significantly changed in the past decades, analyze and visualize the interannual 

variations and multi-decadal trends of regional surface water area, and assess the 

interannual variations and trends of both regional surface water area and land water 

storage during 2002–2016 to shed new light on the consistency and divergence between 

surface and land water resource dynamics. 

Chapter 5: The potential of time series Landsat and Sentinel-2 images for 

estimating chlorophyll-a content of open surface water bodies. Chlorophyll-a 

concentration is directly related to algal blooms, which has caused health problems, fish 

death, and the decrease of drinking water quality in Oklahoma. Oklahoma Water 

Resource Board carried out chlorophyll-a field sampling and lab measurement since 2002. 

However, the chlorophyll-a measurement is not frequent because of the time-consuming 
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and costly process. This chapter aims to evaluate the potential of Landsat 5/7/8 and 

Sentinel 2 satellite images in chlorophyll-a estimation, explore the relationships between 

chlorophyll-a field measurement and surface reflectance data from satellite images, and 

try to build robust chlorophyll-a estimation models using multiple stepwise regression 

analysis.  

1.4 List of Publications from the Dissertation 

Chapter 2  

Zou, Z., J. Dong, M. A. Menarguez, X. Xiao, Y. Qin, R. B. Doughty, K. V. Hooker, and 

K. David Hambright (2017), Continued decrease of open surface water body area in 

Oklahoma during 1984-2015, Sci Total Environ, 595, 451-460, doi: 

10.1016/j.scitotenv.2017.03.259. 

Chapter 3  

Zou, Z., X. Xiao, J. Dong, Y. Qin, R. B. Doughty, M. A. Menarguez, G. Zhang, J. Wang. 

(2018), Divergent trends of open surface water body area in the contiguous US during 

1984-2016, Proceedings of the National Academy of Sciences, 115, 3810-3815, 

https://doi.org/10.1073/pnas.1719275115. 

Chapter 4  

Zou, Z., X. Xiao., Y. Qin, J. Dong., L. Du., R. B. Doughty., X. Wang., X. Wu., R. 

Bajgain., J. Wang., Q. Chang., M. A. Menarguez. (2019), Significant trends of global 

water resources in the past decades (Under review in Nature Geoscience). 

Chapter 5 

Zou, Z., X. Xiao., Estimation of chlorophyll-a content in surface water bodies from 

Landsat and Sentinel 2 satellite images (In preparation). 
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Chapter 2: Continued decrease of open surface water body area in Oklahoma 

during 1984–2015 from analysis of time series Landsat images 

Abstract  

Oklahoma contains the largest number of manmade lakes and reservoirs in the United 

States. Despite the importance of these open surface water bodies to public water supply, 

agriculture, thermoelectric power, tourism, and recreation, it is unclear how these water 

bodies have responded to climate change and anthropogenic water exploitation in the past 

decades. In this study, we used all available Landsat 5 and 7 images (16,000 scenes) from 

1984 through 2015 and a water index- and pixel-based approach to analyze the spatial-

temporal variability of open surface water bodies and its relationship with climate and 

water exploitation. Specifically, the areas and numbers of four water body extents (the 

maximum, year-long, seasonal, and average water body extents) were analyzed to capture 

variations in water body area and number. Statistically significant downward trends were 

found in the maximum, year-long, and annual average water body areas from 1984 

through 2015. Furthermore, these decreases were mainly attributed to the continued 

shrinking of large water bodies (>1 km2). There were also significant decreases in 

maximum and year-long water body numbers, which suggested that some of the water 

bodies were vanishing year by year. However, remarkable inter-annual variations of 

water body area and number were also found. Both water body area and number were 

positively related to precipitation, and negatively related to temperature. Surface water 

withdrawals mainly influenced the year-long water bodies. The smaller water bodies have 

a higher risk of drying up under a drier climate, which suggests that small water bodies 

are more vulnerable under climate-warming scenarios. 
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2.1 Introduction 

Climate change and increased climate variability can strongly impact surface water 

resources (Aherne et al., 2006; Ferguson and Maxwell, 2012; Tulbure et al., 2016), 

causing dramatic intra-annual and inter-annual water variability (Hall et al., 2014; 

Mercier et al., 2002), which has been shown to have wide-ranging consequences on 

human societies and ecosystems (Bates et al., 2008; Brown and Lall, 2006). Previous 

studies using remote sensing approaches have documented strong relationships between 

water body extent (area and number) and both climate variability and anthropogenic 

impacts (Liu et al., 2013; Pekel et al., 2016; Tao et al., 2015; Tulbure and Broich, 2013; 

Tulbure et al., 2014). 

Water body monitoring with remote sensing techniques has advanced along with 

an increase in freely available high-resolution satellite data. Many surface water detection 

methods were developed (Table S2.1). They can be divided into general feature 

classification methods and thematic water body extraction methods (Li et al., 2013). The 

general feature classification methods include maximum likelihood classification (Henits 

et al., 2016), decision tree classification (Zhang et al., 2015), support vector machine 

classification (Li et al., 2015), artificial neural network models (Evora et al., 2008), 

genetic algorithms (Song et al., 2013), etc. General feature classification methods usually 

include data sample selection and algorithm training processes, which requires human 

expertise and knowledge of local area. Thus, these methods have difficulties to quickly 

detect water bodies in multi-temporal images at large scales (Li et al., 2013). The thematic 

water body extractions were usually based on different kinds of spectral water indices 

(Gao, 1996; Gond et al., 2004; McFeeters, 1996; Xiao et al., 2002; Xu, 2006). Different 
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spectral water indices have different emphasis according to their definition. The 

Automated Water Extraction Indexes (AWEInsh and AWEIsh) can suppress the 

classification noise from shadow and non-water dark surface (Feyisa et al., 2014). The 

Enhanced Water Index focus on the sub-pixel level analysis of water surface proportion 

mapping (Wang et al., 2015). Water Index 2015 (WI2015) can better delineate surface 

water than other water indices in eastern Australia (Fisher et al., 2016). The accuracy of 

different water indices depends on the color, turbidity, depth, size and shape of the water 

bodies, the amount of bare land and urban areas, and the presence of cloud and mountain 

shadow (Feng et al., 2016; Fisher et al., 2016; Verpoorter et al., 2012). For large study 

areas, the accuracy difference among different water indices is not large due to the 

complexity of water features and background noise. Fisher et al. (2016) compared the 

performance of seven Landsat water indices (WI2006, WI2015, AWEInsh, AWEIsh, NDWI, 

mNDWI, TCWCrist) in water classification in eastern Australia (~3 million km2) and found 

that all water indices are excellent classifiers for pure water or non-water pixels and they 

have similar accuracy in classifying the mixed pixels, with no index performing the best 

across all types of water and non-water pixels.  

McFeeters (1996) defined the Normalized Difference Water Index (NDWI) using 

green and near infrared band to delineate open water features. Xu (2006) modified the 

NDWI into mNDWI by replacing the near infrared band with short-wave infrared band 

to suppress the noise of built-up land. The mNDWI is one of the most widely used water 

indices due to its good performance in water body delineation across diverse landscapes 

(Du et al., 2012; Feyisa et al., 2014; Hui et al., 2008; Ogilvie et al., 2015; Tao et al., 

2015). 
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Previous remote sensing approaches have inconsistent capabilities of capturing 

water body variability. Many surface water bodies have strong intra-annual dynamics, 

during for example, wet and dry seasons (Alsdorf et al., 2007; Tulbure and Broich, 2013). 

But some studies estimated water body extent from satellite images gathered at a single 

time of the year, typically in the wet season (Feng et al., 2011; Homer et al., 2015; Liu et 

al., 2013). However, it is difficult to define the proper period due to uncertainties in intra-

annual variability of climate and anthropogenic effects. Some studies compared the 

difference of water body area between the same time of selected years to indicate the 

increasing or decreasing trends of water body area among those years (Du et al., 2012; 

Homer et al., 2015; Necsoiu et al., 2013; Tao et al., 2015). However, due to the strong 

interannual dynamics of open surface water bodies (Hall et al., 2014; Mercier et al., 2002; 

Tulbure et al., 2016), the selection of different years for comparison could lead to very 

different results and inaccurate inference of trends in water body area and number. Thus, 

a comprehensive analysis considering different phases or extents of surface water bodies 

is important. To get a more complete picture of water body variability in Oklahoma, USA, 

this study explored four indicators of surface water body extents based on the annual 

water body frequency: 1) the maximum water body extent in a given year, 2) the persistent 

year-long water body extent, 3) seasonal changes in water body area, which is the 

difference between the maximum and year-long water body extents, and 4) the annual 

average water body extent.  

Oklahoma is located in a climatic transition zone characterized as sub-humid in 

the south and east to cold and dry in the north and west, which causes a widely variable 

seasonal fluctuations in weather (Gibson, 1981). The few natural water bodies in 
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Oklahoma are temporary oxbows and playas (Johnson and Luza, 2008), but more than 

200 large reservoirs have been built in Oklahoma to meet current and projected water 

demand (OWRB and ODWC, 2015). Between 1985 and 2010, 47% of the total annual 

water withdrawals in Oklahoma came from these open surface water bodies (USGS, 

2010). Some water-use sectors rely more heavily on open surface water bodies as a 

percentage of their total water use than others, especially thermoelectric power (99%), 

public water supply (82%) and livestock (65%) (USGS, 2010). From 1980 to 2009, 

Oklahoma’s soil moisture had continuously declined due to decreased precipitation and 

increased land surface net radiation and temperature (Lin et al., 2013). The prevailing 

climate models have predicted more frequent and intense droughts in the Southern Great 

Plains due to changes in precipitation intensity and frequency (Shafer et al., 2014). In the 

context of climate change and variability, changes in water body area and number would 

undoubtedly affect human society and ecosystems. However, these questions have not 

been well addressed because studies on this subject are limited in Oklahoma. It is still 

unclear how open surface water bodies, mostly manmade, have and will respond to a 

changing climate. 

The objective of this study is to investigate the spatial-temporal dynamics of open 

surface water bodies and analyze their relationship with climate variability and 

anthropogenic water exploitation in Oklahoma. We used all of the Landsat 5 and 7 surface 

reflectance images and a water index- and pixel-based algorithm to detect surface water 

body changes from 1984 through 2015. Four water body extent maps (maximum, year-

long, seasonal, and average) for each year were generated based on annual water body 

frequency at the pixel level, which better represented water body status in a more 
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comprehensive way. We analyzed the trends and variations of both water body area and 

number of four different water body extents. With a continuous long record of water body 

area and number in a climatic transition zone of widely variable weather, the relationship 

between water body variability, and climate factors (precipitation and temperature) and 

anthropogenic water exploitation (surface water withdrawals) were analyzed. This study 

aims to develop a systematic approach to monitor changes in the area and number of 

water bodies in Oklahoma using remote sensing techniques and to understand the effects 

of climate change and water exploitation on water bodies.  

2.2 Materials and methods 

2.2.1 Study area 

Oklahoma is located in the south-central United States (Fig. S2.1), with an area of 

~181,000 km2 (U.S. Census Bureau, 2010). Its altitude decreases gradually from the high 

plains in the west to the forest dominated landscape of the east. Oklahoma’s temperature 

decreases from south to north while its precipitation decreases from east to west. The 

statewide long-term annual average temperature and annual total precipitation are 15.4 

℃ and 857.8 mm, respectively (Oklahoma Climatological Survey, 2016). The 147 most 

imperative lakes and reservoirs (OWRB and ODWC, 2015) were built between 1902 and 

1997. Ninety-four percent of these water bodies existed before the beginning (1984) of 

our study period. Oklahoma has approximately 3,000 lakes, reservoirs, and ponds that are 

4 ha or larger, among which, 53 lakes are larger than 400 ha (OWRB and ODWC, 2015).  

2.2.2 Data 

We made use of the Landsat 5 and 7 surface reflectance data archive in Google Earth 

Engine (GEE) (Google Earth Engine, 2017), which is ~16,000 images of our study area. 
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These datasets were computed from the Landsat standard Level 1 Terrain-corrected (L1T) 

images in USGS using Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) algorithms (USGS, 2012). Observations of unacceptable quality, caused by 

invalid pixels, cloud, and snow, were excluded in our calculation based on the 

corresponding masks in the 8-bit quality band in each image. The availability of high-

quality observations were crucial to the generation of the annual water body maps. 

Landsat tiles and the total image number of each tile in the last 32 years were shown in 

Fig. 2.1a. The numbers of available images in each year are shown in Fig. 2.1b, and the 

distribution of average annual good observations of all pixels from 1984 through 2015 

are shown in Fig. 2.1c. More than 99.9% of the pixels had 14 or more good observations 

per year. On average, there were ~25 good observations per pixel in a year. Total 

observations, total good observations, and percentage of good observations by pixel in 

2015 and 1984–2015 were shown in supplementary materials (Fig.S2.2, Fig. S2.3). 
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Figure 2.1 Landsat data. (a) Landsat tiles and total Landsat 5 and 7 image numbers 

of each tile from 1984 through 2015, (b) total Landsat 5 and 7 images of the study 

area in each year, (c) distribution of the average annual good observations from 

1984 through 2015, including pixel number percentages of good observations in red 

bars and cumulative percentages in black curve. 

 

2.2.3. Algorithms to identify open surface water bodies 

Despite the advantage of mNDWI over NDWI in the remote sensing of water bodies 

(Feyisa et al., 2014; Ji et al., 2009; Xu, 2006), the mNDWI approach still has commission 

error in the mixed pixels of water and other land cover types. In particular, vegetation 

over a wet surface is one of the major causes for commission error in open surface water 
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body mapping (Santoro et al., 2015). In this study, we combined mNDWI and vegetation 

indices (NDVI and EVI) to reduce the effects of vegetation on water body mapping 

algorithm (Equations 2.1-2.3), which has been addressed in our previous studies (Dong 

et al., 2015; Xiao et al., 2006; Xiao et al., 2005). Specifically, we detected only pixels 

with stronger water signal than vegetation signal as actual water pixels (mNDWI > NDVI 

or mNDWI > EVI). In order to further remove the noise caused by vegetation, EVI was 

applied to exclude the wetland pixels with vegetation (EVI < 0.1). Therefore, only those 

pixels that met the criteria ((mNDWI > NDVI or mNDWI > EVI) and (EVI < 0.1)) were 

classified as open surface water body pixels. The remaining pixels were classified as non-

water pixels (Fig. 2.2). The water detection algorithm ((mNDWI>NDVI or 

mNDWI>EVI) and EVI<0.1) in this study can be divided into two parts (mNDWI-

NDVI>0 and EVI<0.1) and (mNDWI-EVI>0 and EVI<0.1). A pixel meets the criteria of 

either part is classified as water pixel. Scatterplots of (mNDWI-NDVI) vs EVI and 

(mNDWI-EVI) vs EVI were used to show the pixel distribution in the built-up area (Fig. 

S2.4) and vegetated area (Fig. S2.5).  

mNDWI =  
(𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑆𝑊𝐼𝑅1)

(𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑆𝑊𝐼𝑅1)
                 (Equation 2.1) 

NDVI =  
(𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑)
                            (Equation 2.2) 

EVI = 2.5 ×  
(𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑)

(1+𝜌𝑁𝐼𝑅+6𝜌𝑅𝑒𝑑−7.5𝜌𝑏𝑙𝑢𝑒)
                                   (Equation 2.3) 

Where ρblue, ρgreen, ρred, ρNIR, and ρSWIR1 are the surface reflectance values of Landsat 

blue band (0.45–0.52), green band (0.52–0.60), red band (0.63–0.69), near-infrared 

band (0.77–0.90), and shortwave infrared band (1.55–1.75) μm, respectively. 
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Figure 2.2 Workflow of this study. 

 

The algorithm was validated using 1-m spatial resolution images as ground 

reference data in the platform of ArcMap 10.3.1. A stratified random sampling method 

was used to generate ground reference points (Fig. S2.6). One thousand water random 

points and 1500 non-water random points were generated within Oklahoma water and 

non-water boundaries from National Land Cover Database 2011 (Homer et al., 2015). 

Each of the 2500 random points was added to the single-temporal water body map and 

then extracted the 4 adjacent pixels around it. Altogether, 9942 pixels were extracted and 

added to the 1-m resolution NAIP images (when a point falls in the edge of missing data 

area, it may extract less than 4 pixels, thus the total number of extracted pixels is less than 

10,000). Each pixel was visually interpreted as water or non-water pixel according to 
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NAIP images in the platform of ArcMap 10.3.1. The 9942 water/non-water pixels served 

as ground reference data to generate the confusion matrix of the single-temporal water 

body map (Table S2.2). According to the confusion matrix, the overall accuracy of the 

water detection method is 94%, the kappa coefficient is 0.86 and the producer’s accuracy 

is 83%. 

We used these mapping methods and GEE cloud-computing platform to identify 

open surface water bodies on all of the 16,000 Landsat images during 1984-2015. For 

each pixel, we counted the number of observations within a year it was identified as open 

surface water body, and then divided it by the total number of good observations in that 

year. We termed the resultant ratio as water body frequency. When the pixel had an 

annual water body frequency greater than or equal to 0.25, it was classified as effective 

open surface water pixels. This frequency standard (>=0.25) was chosen because we need 

to reduce the potential error from the uncertainty in image data quality flags and other 

small-probability problems in image preprocessing (Fig.S.2.7). All of the effective open 

surface water pixels in a year formed the maximum water body extent. Water pixels with 

an annual water body frequency greater than or equal to 0.75 were classified as year-long 

water pixels since they have water most of the year. The remaining water pixels, with a 

water body frequency spanning from 0.25 to 0.75, were classified as seasonal water 

pixels. For each year, we generated annual maps of maximum water bodies (water body 

frequency >=0.25%), year-long water bodies (water body frequency >=75%), and 

seasonal water bodies (25% <= water body frequency <75%), respectively, and then 

calculate the areas of maximum, year-long and seasonal water bodies. Annual average 
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water body area is calculated as a product of all the effective water body pixels and the 

length of water body (water body frequency) (Equation 2.4).  

 

Annual average water body area = ∑ (𝐹𝑖)
𝑛
𝑖 × 𝐴               (Equation 2.4) 

 

Where Fi is the water body frequency of water pixel i ranging from 0.25 to 1; n is 

the total number of water pixels within Oklahoma; A is the area of one pixel, which is 

900 m2. 

We also compared these resultant maps with previous studies for the purpose of 

inter-comparison. Since most of the available water body data and maps were static or in 

a specific year (Lehner and Döll, 2004; Verpoorter et al., 2014), we used the annual 

maximum water body extent in 2000, 2001, 2006, and 2011 from our study to compare 

with the Global Inland Water (GIW) dataset of 2000 (M Feng et al., 2016), National Land 

Cover Database (NLCD) of 2001 (Homer et al., 2004; Homer et al., 2007; Vogelmann et 

al., 2001), NLCD of 2006 (Fry et al., 2011), and NLCD of 2011 (Homer et al., 2015). 

According to the confusion matrixes (Table S2.3), the maximum water body maps in this 

study showed strong agreement with GIW and NLCD, with overall accuracy > 99% and 

Kappa coefficients > 0.8.  

2.2.4. Interannual variations and trends of open surface water bodies  

The area of maximum, year-long, seasonal, and annual average water body extent in all 

years (1984-2015) were calculated. Their inter-annual variations during 1984-2015 were 

analyzed using anomaly analysis while their changing trends were analyzed through 

linear regression analysis. Water pixels adjacent to each other in the maximum and year-
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long water body raster maps were merged and converted into vectors, respectively. The 

number of maximum and year-long water bodies in each of the last 32 years were counted 

and their inter-annual variations and changing trends from 1984 to 2015 were also 

analyzed through anomaly and linear regression analysis.  

2.2.5. Effects of climate and water exploitation on surface water bodies 

Multiple linear regression analyses were conducted to explore the relationship between 

climate, anthropogenic water exploitation, and the variability in the number and area of 

water bodies. The dependent regression variables of the six regression models were 

maximum water body area and number, year-long water body area and number, seasonal 

water body area, and annual average water body area from 1985 to 2015. The climate 

factors included statewide annual total precipitation and annual average temperature from 

the Oklahoma Climatological Survey (McPherson et al., 2007). The water exploitation 

was represented by the statewide annual surface water withdrawal data, which was 

gathered every 5 years by U.S. Geological Survey (USGS, 2010). This surface water 

withdrawal data was interpolated into annual water withdrawal data spanning from 1985 

through 2015 (Equation 2.5). Water body condition of current year changes from the 

water body condition of the previous year because of the legacy effect. Thus, the 

dependent variable in the previous year of each model was used as an independent 

variable of the subsequent year, serving as the base of water body change in the 

subsequent year.  

𝑊1986 = 𝑊1985 +
(𝑊1990−𝑊1985)

5
                (Equation 2.5) 

Where W1985, W1986, and W1990 were the statewide surface water withdrawal in 1985, 

1986, and 1990, respectively. 
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2.3 Results 

2.3.1. Open surface water bodies in 2015 and 1984-2015 

There were 3.3 million water pixels in both the annual water body frequency map of 2015 

and the long-term water body frequency map of 1984-2015, which represented a 

maximum water body extent of 2980 km2 and accounted for ~1.6% of the entire state area 

of Oklahoma (Fig. 2.3a-b). The distribution of different water body frequency levels of 

2015 and 1984-2015 (Fig. 2.3c-d) showed that about 70% of the water pixels had a water 

body frequency greater than or equal to 0.75. These water pixels formed the interior 

portions of large lakes, reservoirs, and major rivers that were able to maintain water 

throughout the year. However, water at the shallow edges of these large water bodies 

would dry up at times due to fluctuations in the water level. For example, the center region 

of Keystone Lake (Fig. 2.3a-b insets) had water body frequency values close to 1, which 

meant that it always had water and is the deepest part of the lake. The upper part of the 

lake had water body frequency values around 0.7, which indicated that this portion of 

Keystone Lake could dry up at times and was not very deep. The water body frequency 

values where the river joined the lake were below 0.5, which indicated that this area only 

had water during the wet seasons and that these portions of the lake were shallow. A large 

number of small water bodies had a low water body frequency, meaning that they only 

existed for several months during the wet season or became so small that they could not 

be detected. The number of water pixels observed in each of the last 32 years were 

distributed across 8 water body frequency levels in Fig. 2.3e. The majority of water body 

pixels had a big water body frequency. There were also some interannual variations 

among different water body frequency levels. 
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Out of the 3.3 million water pixels in 2015 (Fig. S2.8), there were about 2.3 

million year-long water body pixels, which formed the central part of large lakes, 

reservoirs, and major rivers. The remaining 1.0 million pixels indicated seasonal water 

bodies, which was comprised of small ponds, minor rivers, and the edges of large water 

bodies. In 2015, 70% and 30% of the maximum water body area was year-long and 

seasonal water body area, respectively. 

 

Figure 2.3 Water body frequency distribution in Oklahoma. Water body frequency 

map of 2015 (a) and 1984-2015 (b). The distribution of different water body 

frequency levels with a bin of 0.05 in 2015 (c) and 1984-2015 (d). Distribution of 

different water body frequency levels with a bin of 0.1 in 32 years (e). 
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2.3.2. Interannual variation of open surface water bodies during 1984-2015 

The maximum, year-long, seasonal, and annual average water body areas showed similar 

patterns of variation from 1984 to 2015, which were also similar to the variability of 

precipitation (Fig. 2.4). The annual maximum water body area from 1984 through 2015 

varied between 2548 and 3224 km2, which was 14% below to 9% above its average value 

(~2966 km2). The year-long water body areas varied between -12% and 9% of its average 

value (2302 km2), while the seasonal water body areas had the largest variability, from 

23% below to 34% above its average value (665 km2). The annual average water body 

area best described the average water body extent within one year since it considered the 

length of water existence of all effective water pixels. The annual average water body 

area in the last 32 years varied between 2205 and 2758 km2, which was 12% below to 9 

% above its mean value (2520 km2). Statistically significant downward trends were found 

in the maximum water body areas (R2=0.29, p=0.001), year-long water body areas 

(R2=0.28, p=0.002), and annual average water body areas (R2=0.37, p<0.001) in the last 

32 years (Fig. 2.4). These downward trends indicated shrinkage of total statewide water 

body area. According to the linear regression model, the statewide annual average water 

body area shrank 10 km2 each year over the last three decades (Fig. 2.4d).  
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Figure 2.4 Inter-annual variations of water body area in different water extents, 

including maximum (a), year-long (b), seasonal (c), and average (d) water body 

extents. (e) Statewide annual total precipitation and annual average temperature. 
 

 

 

The number of maximum and year-long water bodies showed similar patterns of 

variation from 1984 through 2015 (Fig. 2.5), which again was similar with those of water 

body area variations (Fig. 2.4). The annual maximum water body number in the last 32 

years varied between 54,000 and 92,000, which was 32% below to 16% above the average 

value (79,000). The average year-long water body number from 1984 through 2015 was 

36,000, varying between 24,000 and 45,000, which was 33% below to 25% above its 
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average. Statistically significant downward trends were found in the maximum water 

body numbers (R2 = 0.48, p < 0.001) and year-long water body numbers (R2 = 0.28, p = 

0.002) over the last 3 decades. These decreasing trends in water body number indicated 

that some water bodies were disappearing year by year.  

 

Figure 2.5 Inter-annual variations of the number of (a) maximum water bodies and 

(b) year-long water bodies. 

 

All of the water bodies in the maximum water extent of each year were classified 

into 10 ranges based on water body size. The distribution of water body number and area 

in different classifications were shown in Fig. 2.6a, b. On average, the number of water 

bodies larger than 100 ha was 138, which made up ~ 0.18% of the total number of water 

bodies. However, these larger water bodies contributed 80% of the total water body area 

on average. The inter-annual variation in area of these large water bodies contributed 

~68% of the statewide water body area variation. In comparison, water bodies smaller 

than 0.5 ha accounted for 77% of the total number of water bodies on average, but they 

comprised only 3.6% of the total water body area. These small water bodies accounted 
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for ~71% of the statewide interannual variation in the number of water bodies. Therefore, 

variability in water body area was influenced mostly by the large water bodies while the 

variation in the number of water bodies statewide was mainly caused by the small water 

bodies. 

 

Figure 2.6 Water body number and area distribution at different water body size 

levels, (a) water body number distribution, and (b) water body area distribution. 

 

2.3.3. Attribution analysis of surface water body area and number 

Multiple linear regression was performed with SPSS Statistics 19 using the “stepwise” 

method for explanatory variable selection. The variance inflation factor (VIF) was used 

as the collinearity index. The VIFs for all input explanatory variables of each model were 

below 2.4 (Table S2.4). The results of multiple linear regression analysis were shown in 

Table 2.1. Precipitation had statistically significant positive effects on all six analyses. 

Precipitation is the major water source for Oklahoma open surface water bodies. 
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Basically, more precipitation leads to more water bodies and a larger water body area. 

Temperature had statistically significant negative effects on the annual average water 

body area, year-long water body area and number. Higher temperature will increase 

evaporation in addition to other factors, such as higher wind speed, lower concentration 

of water vapor in the air, lower air pressure, larger surface area, etc. Higher temperature 

may also increase agricultural water demands. Thus, higher temperature may reduce 

water body area and number. Surface water withdrawal had negative effects on the annual 

average water body area, year-long water body area and number. In Oklahoma, total 

surface water withdrawal increased from 707 million gallons per day (Mgal/day) in 1985 

to 1140 (Mgal/day) in 2010 (USGS, 2010). The surface water was mainly used for public 

supply (55%), thermoelectric power (18%), irrigation (13%), and livestock (9%). The 

surface water withdrawal for public supply, irrigation, and livestock increased gradually 

from 1985 to 2000 and then decreased gradually from 2000 to 2010. In comparison, the 

surface water withdrawal for thermoelectric power before 2000 was relatively stable but 

increased rapidly from 143 (Mgal/day) in 2000 to 384 (Mgal/day) in 2010. Generally, 

these sectors divert water from year-long water bodies (large lakes, reservoirs, and major 

rivers), thus having more direct effects on the variability of these large year-long water 

bodies.  

The water body area and number of the previous year had statistically significant 

positive effects on all six analyses, except the seasonal water body area. The water body 

extent of one year is gradually changed from the water body extent of the previous year. 

The water bodies that exist through one year will become the water bodies of the next 

year, positively affecting the water body extents of the subsequent year. As for seasonal 
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water bodies, they last shorter than 9 months by definition. Thus, seasonal water bodies 

in one year may dry up some time within that year and have no significant effect on the 

water bodies of the subsequent year.  

Table 2.1 Multiple linear regression analyses of water body area and number with 

precipitation, temperature and surface water withdrawal in Oklahoma. 

 
The six dependent variables are maximum water body area (MWBA), maximum water 

body number (MWBN), year-long water body area (YWBA), year-long water body 

number (YWBN), seasonal water body area (SWBA) and annual average water body area 

(AAWBA). P and T are the statewide annual total precipitation and annual average 

temperature respectively. SWW is the statewide surface water withdrawal in million 

gallons per day. MWBAp, MWBNp, YWBAp, YWBNp, SWBAp, and AAWBAp denote 

the water body status in the previous year. R2 is the proportion of variance in the 

dependent variable which can be explained by the selected explanatory variables. SEE is 

the standard error of the estimate. F and Sig. are the F-statistic and the p-value associated 

with it. 

 

2.3.4. Variation of open surface water bodies in a dry and wet year  

Precipitation is one of the most dominant climate drivers of water availability (Bates et 

al., 2008). Therefore, precipitation has strong effects on the water body area and number. 

Statewide annual total precipitation in 2006 and 2007 was 780 mm and 1150 mm, 

respectively. Compared with the average precipitation over the 32 years (934 mm), 2006 

was a dry year while 2007 was a wet year. Figure 2.7 shows the distribution of statewide 

water body area and number at the maximum water body extent for 2006 and 2007. In 

the wet year of 2007, the area and number of water bodies were much larger than those 
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in the dry year of 2006. The number of water bodies in 2006 was about 60,000, which 

was 27,000 less than that of 2007 (87,000). The additional 27,000 water bodies in 2007 

were mainly small water bodies, of which 21,000 were smaller than 0.5 ha, 3,000 were 

between 0.5 and 1 ha, and 2,000 were between 1 and 5 ha. Accordingly, the changes in 

total number of water bodies in each year were mainly caused by changes in the number 

of small water bodies. The existence and detection of these small water bodies were 

strongly affected by the amount of precipitation. The maximum water body area in 2006 

was about 2596 km2, which was about 550 km2 less than that of 2007 (3,143 km2). Of the 

additional 550 km2 water area in 2007, 68% was attributed to the increase in area of 148 

large water bodies (> 100 ha). Thus, the variability in water body area was mainly caused 

by variations in the surface area of large water bodies. 

 
Figure 2.7 Water body number and area distribution of the maximum water body 

extent in a dry (2006) and wet (2007) year, (a) water body number distribution, (b) 

water body area distribution. 
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2.4 Discussion 

2.4.1 Advantages and uncertainties of this study 

Oklahoma has a large number of small ponds and lakes, and these small water bodies 

tend to have large temporal variability in extent (i.e., size and water body frequency). In 

order to characterize the intraannual and interannual variations of the water bodies, we 

proposed four water body extent related indicators derived from water body frequency 

maps (maximum = sum area of all effective water body pixels within a year; year-long = 

pixels covered by water for at least 75% of year, seasonal = pixels covered by water 

between 25 and 75% of the year, and average = all the effective water body pixels, 

weighted by the water body frequency). Together, these indicators captured a more 

complete picture of the variability of surface water bodies. A recent global water body 

mapping study provided the time of water presence and location of water change in terms 

of seasonality and persistence (Pekel et al., 2016). However, because of the global scale 

involved, Pekel et al. (2016) didn’t include such detail as the annual change in water body 

area and number of different water extents, nor any information regarding the annual 

average water body extent. In addition, our algorithm had a robust performance based on 

the combined relationships for mNDWI and EVI/NDVI, instead of a certain threshold. 

The constant thresholds in previous studies could be subjective and time-consuming 

(Feyisa et al., 2014), and also difficult to extrapolate to other regions due to the difference 

in different images and locations (Ji et al., 2009).  

The classification error of this study was mainly caused by omission error (Table 

S2.2). Omission error was reported greater than commission error in most water indices 

(Feyisa et al., 2014; Fisher et al., 2016; Li et al., 2013). Mixed pixels at the edge of water 
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bodies could be a major reason for water pixel omission (Fisher et al., 2016). Narrow 

rivers and streams were often not or only partially detected because of the weak water 

signal in the mixed pixels (Feng et al., 2016). For a single Landsat 5/7/8 image, a river 

needs to be at least 60-m wide to make sure that it can be detected from that image because 

smaller rivers may end up in two mixed pixels. However, a river as small as 30-m wide 

could be captured in the annual or 32-year water body frequency map as seasonal water 

because it can be captured in some of the images within the study period. The major rivers 

in Oklahoma often have broad, sand-filled channels with active water courses occupying 

a small portion of the river bed (Johnson and Luza, 2008). Thus, many rivers and streams 

had low water body frequency in our study and appeared in the seasonal water body maps 

rather than year-long water body maps. The low albedo surfaces, including asphalt roads, 

shadows of mountains, buildings, trees, and clouds are the major source for commission 

error in water classification (Feng et al., 2016; Feyisa et al., 2014; Verpoorter et al., 2012). 

Although the cloud mask band was applied in data preprocessing, the undetected residual 

cloud and cloud shadows would still lead to commission error. The water body frequency 

threshold (0.25) used here could remove most of the temporal noise out of the water body 

frequency maps. However, while removing the noise, the frequency threshold also 

removed some temporary water signals, which may have led to the underestimation of 

water body area. 

2.4.2 Driving factors of water body changes 

Before 2011, anytime the maximum water body area had a drop of more than 200 km2 

(1996, 1999 and 2006), it began to recover in the following year (Figure 2.4). However, 

in 2011, when the maximum water body area dropped 300 km2, it continued dropping in 
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2012 and remained low through 2013 and 2014. The shrunken water body area from 2011 

to 2014 was very likely caused by the long-lasting drought in Oklahoma from 2011 to 

2014 (Hoerling et al., 2014; Kogan and Guo, 2015). In 2012, when the statewide annual 

precipitation was the second lowest (653 mm) in the last 32 years (Figure 2.4e), the 

maximum water body area was the smallest (2,548 km2). The Southern Great Plains of 

the US are expected to have more frequent and more intense droughts in the future (Shafer 

et al., 2014). Thus, there is a higher probability for the total water body area to be smaller 

and a higher chance for the water body area to decline to a new low record – both issues 

will pose more challenges to the human society and the affected ecosystems. In addition 

to the climate-based driving factors, anthropogenic activities, including agricultural 

irrigation, energy production, consumptive water use and water management can also 

cause changes in open surface water bodies (Liu et al., 2013; Tao et al., 2015). More 

analysis regarding the influence of human activities on surface water bodies should be 

considered in future studies. It is also worth to mention that the significant trends of both 

surface water body area and number are based on current data during 1984–2015. These 

trends might change in the future if prolonged wet periods occur. 

2.4.3 Consequences of water body area shrinkage 

Statistically significant downward trends were found in water body area and number over 

the last 32 years, which indicated the shrinkage of water body area and the gradual 

vanishing of some water bodies. Open surface water bodies are the major water source 

for public supply, thermal electric power industry, and livestock production in Oklahoma. 

The shrinkage of water body area could have a huge influence on Oklahoma’s 

socioeconomic systems. The prolonged drought in 2011 and 2012 reduced the water body 
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area of Oklahoma to a great degree. For example, the water levels of Oklahoma City's 

Lake Hefner was at an all-time low and water from other lakes had to be siphoned for 

public supply (Campfield, 2013). Thermoelectric plants depend on surface water for 

cooling, fuel processing, and emission control. Water withdrawals for thermoelectric 

power in Oklahoma increased 170% from 2000 to 2010 (USGS, 2010). The shrinkage of 

water area could limit the availability of water for withdrawal, expose the water intake 

structures, and increase water temperatures beyond regulations (Argonne National 

Laboratory, 2012). Similarly, decreased surface water supplies can threaten Oklahoma’s 

8 hydroelectric projects, which supplies electricity to about 2 million users across 

Oklahoma and 5 bordering states (USACE, 2017). The cattle market is the dominant 

livestock industry in Oklahoma, with approximately 5.5 million cattle and calves on 

farms and ranches, ranking the state third in the nation for beef cow production 

(Oklahoma Water Resources Board, 2011). Oklahoma accounts for about 9% of the total 

freshwater withdrawals for livestock in the US, ranking the state third behind California 

and Texas (Oklahoma Water Resources Board, 2011). Sixty-five percent of this 

freshwater in Oklahoma was obtained from open surface water bodies (USGS, 2010). 

Oklahoma’s livestock industry is sensitive to the availability of water resources, as seen 

after the 2011 drought, when the number of cattle and calves in 2012 decreased about 

20% to 4.2 million compared to 2007 (5.4 million) (USDA-NASS, 2014). Thus, the 

trends in water variability discovered in this study should be considered in Oklahoma 

water resource planning, especially in the sectors of public water supply, hydroelectric 

and thermoelectric power, and livestock. 
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Oklahoma is one of the most ecologically diverse states in the nation. It is one of 

the four states to have more than ten Level III ecological regions (Woods et al., 2005). 

The shrinkage of water area could also pose threats to these diverse ecosystems. The 2011 

drought decreased the flow of the Kiamichi River, Little River, and Mountain Fork Rivers 

in southeastern Oklahoma substantially and changed the typical continuous flow to 

discontinuous flow, resulting in the creation of a series of shallow pools along the river 

channels (Atkinson et al., 2014). From 1992 to 2011, the drought-induced reductions in 

stream flow and surface water area of Kiamichi River had led to a > 60% decline in 

mussel populations (Vaughn et al., 2015). These changes caused the decrease of mussel 

density and biomass, and a subsequent loss of mussel-provided ecosystem services 

(Atkinson et al., 2014). There are a large number of small water bodies distributed across 

the entire state of Oklahoma. A reduction in the size and number of these small water 

bodies could lead to the loss of wetlands and threaten the aquatic species that depend on 

these small water bodies, although the disappeared small water bodies may reappear in 

the future pluvial years.  The annual water body frequency map of the last 32 years and 

the cumulated water body frequency map of 1984 through 2015 could be used to identify 

vulnerable aquatic ecosystems that may be subject to drying in future drought years. Thus, 

actions could be taken to protect endangered aquatic species.   

2.5 Conclusions 

Oklahoma has the largest number of artificial lakes in the United States. Therefore, this 

water body variation study is helpful to private and public natural resource managers and 

improves our understanding of water resource vulnerability in the Southern Great Plains, 

which is experiencing increased variability in climate. In this study, the Landsat 5 and 7 
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surface reflectance archives from 1984 through 2015 was used to characterize water body 

variations at 30-mm spatial resolution. Using these data, both the area and number of 

different water body extent indicators were analyzed to investigate the water body 

variability and determine trends over the last 32 years. The water body area of the 

maximum, year-long, and average water extents showed significant downward trends 

over the last three decades, indicating that open surface water bodies are gradually 

shrinking in Oklahoma. Statistically significant downward trends were also found in the 

number of water bodies in the maximum and year-long water extents in the same period, 

suggesting that water bodies were vanishing gradually. Both the water body area and 

number underwent obvious variations over the study period. The variability in statewide 

water body area was mainly influenced by changes in the spatial extent of large water 

bodies, while the variability in the total number of water bodies was mainly influenced 

by the small water bodies. Precipitation had statistically significant positive effects on 

water body area and number while temperature had negative effects. Surface water 

withdrawals mainly impacted the year-long water bodies. The datasets generated by this 

study are useful in water resource management, agricultural irrigation, livestock 

production, and ecological conservation.  
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Supplementary materials 

 

Figure S2.1 Study area. (a) the location of Oklahoma in U.S., (b) digital elevation 

model (DEM), (c) annual average temperature during 1981-2010, (d) annual total 

precipitation during 1981-2010. DEM is from USGS EarthExplorer 

(http://earthexplorer.usgs.gov/) while the temperature and precipitation data are 

from Oregon State University (http://prism.oregonstate.edu/). 

 

http://earthexplorer.usgs.gov/
http://prism.oregonstate.edu/
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Figure S2.2 Data availability in 2015 (left) and 1984-2015 (right). (a) total 

observations in 2015, (b) good observations in 2015, (c) good observation percentage 

in 2015, which is the ratio of good observation to total observation in 2015 (d) total 

observations in 1984-2015, (e) good observations in 1984-2015, (f) good observation 

percentage in 1984-2015, which is the ratio of good observation to total observation 

in 1984-2015. 
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Figure S2.3 Histograms of pixels with various annual good-quality observation 

numbers in 2015, including (1) frequency distribution (percentage) in red bars and 

(2) cumulative percentages of pixels with good observations in black curve. 
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Figure S2.4 Water detection in built-up area. (a) Landsat 7 surface reflectance 

image (list bands in the false color composite), (b) Final water detection in blue color 

((mNDWI>NDVI or mNDWI>EVI) and (EVI<0.1)), (c) EVI, (d) Scatter plot 

((mNDWI-NDVI) vs EVI), (e) Scatter plot ((mNDWI-NDVI) vs EVI) with water 

detection marked red, (f) Surface water in red corresponding to water detection in 

scatter plot e, (g) Scatter plot ((mNDWI-EVI) vs EVI), (h) Scatter plot ((mNDWI-

EVI) vs EVI) with water detection marked red, (i) Surface water in red 

corresponding to water detection in scatter plot h. 
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Figure S2.5 Water detection in vegetated area. (a) Landsat 7 surface reflectance 

image (list bands in the false color composite), (b) Final water detection in blue color 

((mNDWI>NDVI or mNDWI>EVI) and (EVI<0.1)), (c) EVI, (d) Scatter plot 

((mNDWI-NDVI) vs EVI), (e) Scatter plot ((mNDWI-NDVI) vs EVI) with water 

detection marked red, (f) Surface water in red corresponding to water detection in 

scatter plot e,  (g) Scatter plot ((mNDWI-EVI) vs EVI), (h) Scatter plot ((mNDWI-

EVI) vs EVI) with water detection marked red, (i) Surface water in red 

corresponding to water detection in scatter plot h. 
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Figure S2.6 Visually interpreted water and non-water pixels. 

 

 

Figure S2.7 Water body frequency threshold selection, (a) maximum water body 

area using 14 different water body frequency thresholds, (b) Noise conditions of 

insets in the 1984 maximum water body maps using different water body frequency 

thresholds: 0.1, 0.15, 0.2, 0.25. 
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Figure S2.8 Open surface water body maps in 2015: (a) maximum water body map, 

(b) year-long water body map, (c) seasonal water body map. 
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Table S2.1 Water indices 

Index Definition Source 

Band-ratio Band-ratio = Red/NIR a (Boland, 1976) 

Normalized difference 

vegetation index 

NDVI = (NIR - Red) / (NIR + Red) (Rouse Jr et 

al., 1974) 

Normalized difference 

water index 

NDWI = (Green - NIR)/(Green + NIR) (McFeeters, 

1996) 

Modified normalized 

difference water index 

mNDWI = (Green - SWIR1)/(Green + SWIR1) (Xu, 2006) 

 

Land surface water index LSWI = (NIR - SWIR1)/(NIR + SWIR1) (Xiao et al., 

2002) 

Difference between 

vegetation and water 

NDVI - NDWI (Gond et al., 

2004) 

Tasselled cap wetness TCW = 0.0315×Blue+0.2021×Green+0.3102×Red-

0.1594×NIR-0.6806×SWIR1-0.6109×SWIR2 

(Crist, 1985) 

Surface wetness index SWI = 0.2626×Blue+0.2141×Green+0.0926×Red-

0.0656×NIR-0.7629×SWIR1-0.5388×SWIR2 

(Bhagat and 

Sonawane, 

2011) 

Automated water 

extraction index without 

shadows 

AWEInsh = 4×(Green-SWIR1)-(0.25×NIR+2.75×SWIR2) (Feyisa et al., 

2014) 

Automated water 

extraction index with 

shadows 

AWEIsh = Blue + 2.5×Green-1.5×(NIR+SWIR1)-

0.25×SWIR2  

 

(Feyisa et al., 

2014) 

Enhanced Water Index EWI = (Green-SWIR1+m)/[(Green + SWIR1)×(NDVI + 

n) ] 

(Wang et al., 

2015) 

Water Index 2015 WI2015 = 1.7204 + 171×Green+3×Red-70×NIR-

45×SWIR1-71×SWIR2 

(Fisher et al., 

2016) 

a Landsat 5/7 bands: Blue (0.45-0.52 μm), Green (0.52-0.60), Red (0.63-0.69), NIR 

(0.77-0.90), SWIR1 (1.55-1.75), SWIR2 (2.09-2.35) 
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Table S2.2 The confusion matrix for evaluating the single-temporal water body 

map of Oklahoma in 2010. 

 

 

Single-temple water body 

map (2010) 

 Ground Reference pixels 

Sum of classified 

pixels 

User accuracy 

(%) 

Water Non-water  

Water 2680 71 2751 97.42% 

Non-water 536 6655 7191 92.55% 

Sum of ground reference 

pixels 
3216 6726 9942 OA=94% 

Producer accuracy (%) 83.33% 98.94%  Kappa=0.86 

 

 

Table S2.3 The confusion matrix for evaluating the maximum water body maps 

using GIW datasets (2000) and NLCD datasets (2001, 2006 and 2011). 

  
Maximum water body maps 

(2000, 2001, 2006, 2011) 
  

Reference datasets 
Water 

(km2) 

Non-water 

(km2)  

Reference 

Area (km2) 

Agreement 

(%) 

GIW 

2000 

Water (km2) 2569 264 2833 90.68% 

Non-water (km2) 461 177720 178181 99.74% 

Estimated area (km2) 3030 177984 181014  

Agreement (%) 84.78% 99.85% OA=99.60 Kappa=0.87 

NLCD 

2001 

Water (km2) 2778 865 3642 76.26% 

Non-water (km2) 247 177125 177372 99.86% 

Estimated area (km2) 3024 177990 181014  

Agreement (%) 91.84% 99.51% OA=99.3% Kappa=0.83 

NLCD 

2006 

Water (km2) 2428 1091 3518 69.00% 

Non-water (km2) 161 177334 177496 99.91% 

Estimated area (km2) 2589 178425 181014  

Agreement (%) 93.77% 99.39% OA=99.3% Kappa=0.79 

NLCD 

2011 

Water (km2) 2418 1094      3512 68.86% 

Non-water (km2) 201 177302 177502 99.89% 

Estimated area (km2) 2619 178395 181014  

Agreement (%) 92.34% 99.39% OA=99.2% Kappa=0.79 
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Table S2.4 Collinearity statistics of all input explanatory variables of each model 

in SPSS 19 using the “enter” method. 

 

The six dependent variables are maximum water body area (MWBA), maximum water 

body number (MWBN), year-long water body area (YWBA), year-long water body 

number (YWBN), seasonal water body area (SWBA) and annual average water body area 

(AAWBA). P and T are the statewide annual total precipitation and annual average 

temperature respectively. SWW is the statewide surface water withdrawal in million 

gallons per day. MWBAp, MWBNp, YWBAp, YWBNp, SWBAp, AAWBAp are the water 

body status in the previous year. VIF is short for variance inflation factor, which is the 

index that measures how much the variance of an estimated regression coefficient is 

increased because of collinearity.  
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Chapter 3: Divergent trends of open surface water body area in the contiguous US 

from 1984 to 2016 from analysis of time series Landsat images 

Abstract  

The contiguous US (CONUS), especially the West, faces challenges of increasing water 

stress and uncertain impacts of climate change. The historical information of surface 

water body distribution, variation, and multi-decadal trends documented in remote 

sensing images can aid in water resource planning and management, yet it is not well 

explored. This study detected open surface water bodies in all Landsat 5, 7, and 8 images 

(~370,000 images, >200 TB) of the CONUS and generated 30-m annual water body 

frequency maps for 1984–2016. This study also analyzed the interannual variations and 

trends of year-long water body area, examined the impacts of climatic and anthropogenic 

drivers on water body area dynamics, and explored the relationships between water body 

area and land water storage (LWS). Generally, the western half of the US is prone to 

water stress with small water body area and large interannual variability. During 1984–

2016, water-poor regions of Southwest and Northwest US had decreasing trends in water 

body area, while water-rich regions of Southeast US and far north Great Plains had 

increasing trends. These divergent trends, mainly driven by climate, enlarged water 

resource gaps and are likely to continue according to climate projections. Water body 

area change is a good indicator of LWS dynamics in 58% of the CONUS. Following the 

2012 prolonged drought, LWS in California and Southern Great Plains had a larger 

decrease than surface water body area, likely caused by massive groundwater 

withdrawals. Our findings provide valuable information for surface water resource 

planning and management across the CONUS. 
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3.1 Introduction 

Terrestrial open surface water bodies, including lakes, reservoirs, rivers, streams, and 

ponds, are critically important water resources for agriculture, aquiculture, industrial 

production, and aquatic and terrestrial ecosystems (Bates et al., 2008; Wood et al., 2011). 

Numerous open surface water bodies are distributed across the contiguous United States 

(CONUS), providing 99%, 57%, and 63% of the water used in thermoelectric-power 

production, agricultural irrigation, and public water supply, respectively (USGS, 2010). 

According to the water supply stress index (WaSSI) model, surface water stress was 

found in over 9% of the 2103 CONUS watersheds, mostly distributed in the western half 

of the US (Averyt et al., 2013). Climate change models predicted a general increase of 

water stress across the US, with the largest increases in Southwest US through 2050 

(Blanc et al., 2014). Southwestern states experienced a spate of dryness in the early 21st 

century (MacDonald et al., 2008) and are projected to become drier and experience more 

severe droughts in the latter half of the 21st century by various climate and hydrology 

models (Cayan et al., 2010; Melillo et al., 2014; Scheff and Frierson, 2012). Water 

resource managers in the Western US face the challenges of adapting to unprecedented 

droughts and uncertain impacts of climate change (Miller and Piechota, 2011). The spatial 

distribution, temporal dynamics, and long-term trends of CONUS surface water bodies, 

documented in remote sensing images in the last three decades, can provide valuable 

information for water resource managers in water resource planning and management in 

coping with drought and climate change, yet the information has not been well explored. 

Strong interannual variability of surface water bodies caused by severe drought 

events have substantially impacted US socioeconomic systems (Hall et al., 2014; 
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Hoerling et al., 2014). In July 2012, US nuclear-power production hit its lowest seasonal 

levels in nine years because of a water shortage and high water temperature (Argonne 

National Laboratory, 2012). The lack of timely rainfall and the scarcity of irrigation water 

in 2012 caused widespread crop failure across the Great Plains and Midwestern US (Wolf 

et al., 2016). Corn and soybean yields in 2012 were 26% and 10%, respectively, below 

the yields forecasted by the USDA at the beginning of the crop growing season (Hoerling 

et al., 2013). Many reservoirs in the arid and semi-arid western regions were depleted 

during the 2012 drought (Hoerling et al., 2013), and contingency plans were activated to 

maintain public water supply (Murti et al., 2016). Reduced water body area due to severe 

droughts also dramatically impacted ecosystems (Atkinson et al., 2014; Walls et al., 

2013). For example, decreased pond water in Southeastern US led to the rapid decline of 

salamander occupancy from 22.3% in spring 2009 to 9.9% in fall 2012 (Walls et al., 

2013). The drought-induced reduction of stream flow and water coverage of the Kiamichi 

River in Southeastern Oklahoma had substantially reduced the freshwater mussel 

abundance by over 60% from 1992 to 2011 (Vaughn et al., 2015). Although the 

consequences of strong water body variations are evident, the interannual variability and 

trends of open surface water body area across the CONUS in the last three decades have 

remained unknown. 

The spatial distribution and temporal variation of open surface water bodies are 

affected by both climate and anthropogenic activities (Bates et al., 2008; Pekel et al., 

2016). Precipitation and temperature are two dominant climatic factors that affect the 

changes of open surface water body area (Krueger et al., 2017; Tao et al., 2015). Various 

anthropogenic activities were also found related to the change of open surface water 
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bodies, including dam construction (Pekel et al., 2016), water withdrawals for public 

water supply (Zou et al., 2017), agricultural irrigation (Tao et al., 2015), thermoelectric 

power production (van Vliet et al., 2012), and coal, oil, and gas mining (Murray, 2013; 

Tao et al., 2015). Climate change and enhanced demand for public water supply, 

irrigation, and industrial production in the last three decades have affected US water 

resources (Bates et al., 2008; Melillo et al., 2014). However, how the climate and human 

development have affected the variability of surface water body area in individual states 

across the CONUS have not been examined. 

The objective of this study was to fill the above-mentioned knowledge gaps by 

investigating the interannual variations and trends of surface water body area and how it 

is affected by climate and anthropogenic factors across the CONUS during 1984–2016. 

First, we used all available Landsat image archives (~ 370,000 images, >200 terabytes of 

data) and a spectral index- and pixel-based approach (Zou et al., 2017) to detect water 

bodies and generate annual frequency maps of surface water bodies of the entire CONUS. 

Second, using these annual frequency maps, we generated annual maps of year-long, 

seasonal, and ephemeral water bodies. Third, we analyzed the interannual variability of 

year-long water body area for each state by calculating their standard deviations and 

analyzed their multi-decadal trends through linear regressions. Fourth, multiple stepwise 

regression models were used to assess four primary factors that affect the interannual 

variability of water body area: precipitation, temperature, surface water withdrawal, and 

the water body area in the previous year. Fifth, the relationships between open surface 

water body area and land water storage (LWS), derived from the Gravity Recovery and 

Climate Experiment (GRACE) liquid water equivalent thickness (LWET) data (Wiese et 
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al., 2018), were analyzed. Finally, we investigated the impacts of severe drought events 

on temporal dynamics of surface water body area and LWS in California and the Southern 

Great Plains.  

3.2 Materials and methods  

3.2.1 Landsat image 

This study used all Landsat 5, 7, and 8 surface reflectance images of the entire CONUS 

(~ 370,000 images, >200 terabytes of data) in the Google Earth Engine platform (Google 

Earth Engine, 2017), which were originally from USGS EDC (USGS, 2017a; b). The 

number of images used in a year ranged from 3501 in 1984 to 17409 in 2014, with more 

images after the launch of Landsat 7 in 1999 (Figure S3.1a). For each image, the CFmask 

band was used as a quality control band to remove the cloud, cloud shadow, and snow 

pixels. The solar azimuth and zenith angles of each image were used along with the 

Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) (Farr et al., 

2007) to simulate terrain shadows and remove them. The remaining pixels were 

considered as good observations that can be used for water body detection. The pixels 

with 0 good observations in a year account for 0.27% on average during 1984–1998 and 

0.04% during 1999–2016 (Figure S3.1b). More than 99.95% of the pixels within the 

CONUS had a total number of good observations ≥ 33 in the last 33 years while the 

majority of the pixels have a total number of good observations ranging from 300 to 1200 

(Figure S3.1c). 

3.2.2 Data on land water storage, water withdrawal, and climate. 

The GRACE monthly liquid water equivalent thickness (LWET) products during 2002–

2016 were the anomalies relative to the 2004.0–2009.999 time-mean baseline (Wiese et 
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al., 2018). The mascon-set of 0.5-degree gain factors were applied to the LWET data over 

land before further analysis. Monthly LWET data were used to calculate annual average 

LWET data, which were then used as the land water storage (LWS) values to explore its 

relationships with surface water body area. State-level water withdrawals, gathered every 

five years by the US Geological Survey (USGS, 2010), were interpolated into annual 

water withdrawal data (Equation 2.5) and used as a predictor variable in the multiple 

stepwise regression models for interannual variations of water body area. Statewide 

annual precipitation and annual average temperature data were gathered from National 

Centers for Environmental Information (NOAA, 2017) and also used as predictor 

variables.  

3.2.3 Water body detection. 

The relationship between water and vegetation indices can be used to detect open surface 

water bodies (Dong et al., 2015; Xiao et al., 2006), and the water body mapping algorithm 

with analysis of time series Landsat images was reported in a study for Oklahoma, USA 

(Zou et al., 2017). Thirty-one out of 459 Landsat tiles that overlap with the CONUS were 

selected (Figure S3.2). For each tile, 1–2 rectangle sampling plots were randomly selected 

in the locations that have both a Landsat image and a high-resolution Google Earth image 

within a time window of about one month. Each sampling plot should consist of ~50% 

water and ~50% other land cover pixels. The total sampling pixels of each tile is ~ 40,000. 

Altogether, 32 sampling plots were selected, of which 14, 9 and 9 were from Landsat 5, 

7 and 8, respectively (Figure S3.2a). In terms of time distribution, the sampling plots were 

selected across the time range of each satellite (Figure S3.2b). In terms of land cover, 18 

had the major land cover types of vegetation and water, 7 had built-up land and water, 5 
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had cropland and water, and 2 had bare land and water (Figure S3.2c).  In terms of terrain, 

5 sampling plots were in mountainous areas while 27 were in relatively flat areas (Figure 

S3.2d). For each rectangle sampling plot, all water features and non-water features were 

visually delineated referring to the high-resolution image in Google Earth. The 32 

sampling plots contained ~1.26 million pixels, of which 368,850 were water and 886,496 

were non-water according to visual delineation. 

Water and non-water frequency curves cross each other around 0 in the 

distribution of mNDWI-EVI values of 1.26 million sampling pixels across the US (Figure 

3.1). 97.36% of the water pixels show mNDWI > EVI while 99.29% of the non-water 

pixels show mNDWI < EVI. Thus, mNDWI >EVI is a good criterion to detect water. 

Also, 93.2% of the water pixels show mNDWI > NDVI while 99.44% of the non-water 

pixels show mNDWI < NDVI (Figure 3.1b). Therefore, mNDWI > NDVI can be used as 

a supplementary criterion to separate water from non-water pixels. Furthermore, 98.4% 

of the water pixels show EVI < 0.1. Thus, EVI < 0.1 can be used to exclude mixed pixels 

of water and vegetation. The final water detection formula is ((mNDWI > EVI or mNDWI 

> NDVI) and EVI < 0.1). This formula can be divided into two parts, (mNDWI > EVI 

and EVI < 0.1) and (mNDWI > NDVI and EVI < 0.1), whose scatter density plots of 1.26 

million sampling pixels were shown in Figure 3.1d and e, respectively.  
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Figure 3.1 Spectral characteristics of 1.26 million sampling pixels. (a) Frequency 

distribution of (mNDWI-EVI) for water and non-water sampling pixels. (b) 

Frequency distribution of (mNDWI-NDVI) for water and non-water sampling 

pixels. (c) Frequency distribution of EVI for water sampling pixels. (d) Scatter 

density plots of EVI VS (mNDWI-EVI) of all sampling pixels. (e) Scatter density 

plots of EVI VS (mNDWI-NDVI) of all sampling pixels. 

 

3.2.4 Water body verification and application. 

The annual water body maps were based on water frequency, which made use of all good 

observations across the year. However, it is very difficult to directly verify the annual 

water frequency maps. Thus, we verify the algorithms instead. According to the water 

and non-water boundaries from the National Land Cover Database 2011 (Homer et al., 

2015), 1600 water and 1600 non-water sampling points were randomly selected within 

the CONUS, among which 200 were selected in Great Lake Region of the 2-digit 
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Hydrologic Units Code (HUC-2), while 3000 were selected in the rest of the CONUS 

(Figure S3.3). In the Google Earth Engine platform, all available high-resolution images 

from US National Agriculture Imagery Program (NAIP) at the specific location for each 

point were selected. For each NAIP image, one Landsat image was randomly selected 

from all Landsat images (TM, ETM+, OLI) acquired within ±5 days of the NAIP image. 

Each sampling point had up to 10 pairs of NAIP and Landsat images distributing across 

2003–2016. One pair of those images was randomly selected. Water detection algorithms 

were performed on the Landsat image while the NAIP image was used as ground 

reference data to verify the water detection. At each sampling point location, 4 adjacent 

Landsat pixels were selected. For each Landsat pixel, its boundary was added to the NAIP 

image and then record the water covering percentage in reference to the NAIP image and 

record whether this pixel was classified as water or not in our algorithms. Among the 

3200 sampling points, 3197 were able to find adequate NAIP and Landsat data for 

verification. Out of the 3197 Landsat images, 1623 were from Landsat 5 (51%), 899 were 

from Landsat 7 (28%), and 675 were from Landsat 8 (21%). The selected images 

distributed evenly across 2003–2016. The 3197 sampling points correspond to 12,788 

Landsat pixels. According to NAIP image, there were 4767 pure water pixels (37%), 7084 

pure non-water pixels (56%), and 937 mixed pixels of water and other land cover types 

(7%). 

The confusion matrix of water detection at 11851 pure water and non-water pixels 

is shown in Table S3.1. The producer accuracies of water and non-water were 93.39% 

and 99.28%, respectively. The overall accuracy is 96.91% with a kappa coefficient equal 

to 0.94 (Table S3.1). Among the 937 mixed pixels, 843 contained water and vegetation 
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(90%), 77 contained water and bare land or sand (8%), and 17 contained water and built-

up area (2%). The water detection rates of mixed pixels with various non-water coverage 

were shown in Figure S3.4. Generally, as water coverage increased, water detection rates 

(pixel percentage classified as water) increased. The water detection rates of mixed pixels 

of water and vegetation were all very low because water detection had to meet the criteria, 

“EVI < 0.1”. The unstable trends of water detection rates of mixed pixels of water and 

bare land, sand, and built-up area were probably caused by limited sampling pixels. 

The water detection algorithms were performed on every good observation pixel 

in the ~370,000 Landsat images in the platform of Google Earth Engine, a cloud-based 

geospatial processing platform with large storage and processing power 

(https://developers.google.com/earth-engine/). For each pixel, its annual and 33-year 

water body frequency was defined as the ratio of water observations to total good 

observations (water and non-water observations) in a year and in 1984–2016, 

respectively. The 33-year water body frequency map was used to generate a non-water 

mask (33-year water body frequency<0.01) and a permanent water mask (33-year water 

body frequency ≥ 0.95), which were then applied to the annual water frequency maps to 

remove low-frequency noise caused by residual cloud, cloud shadow, and to fill the no 

data values. In each year, the annual water body frequency of pixels masked by the non-

water mask and permanent water mask were set to 0 and 1, respectively. 

3.2.5 Statistical analyses. 

Based on annual water body frequency maps, year-long water body areas were calculated 

for each of the last 33 years. The interannual variability and trends of water body area 

during 1984–2016 by individual states and watersheds were calculated and analyzed 
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through linear regression models with t-test at the 5% significance level. The year-long 

water body areas within 0.5-degree grid cells were summed in each year of 2002-2016, 

and their linear relationships with LWS were examined in each of the 2818 0.5-degree 

grid cells across the CONUS. Multiple stepwise linear regressions were carried out in the 

platform of MATLAB R2014a to analyze the relationships between statewide year-long 

water body areas and four predictor variables, including annual precipitation, annual 

average temperature, annual surface water withdrawal, and the year-long water body area 

of the previous year. Water body area of the previous year was included as a predictor 

variable because of the legacy effect. No strong collinearity among the predictor variables 

was found (Table S3.2). 

3.3 Results and Discussion 

3.3.1 Water body frequency maps and water body areas  

There were ~428 million 30-m pixels with annual water body frequencies > 0 in the 

CONUS in 2016 (Figure 3.2a), corresponding to ~385,000 km2 maximum surface water 

body area. Water pixels with annual water frequencies ≥ 0.75 were defined as year-long 

water bodies while the other water pixels were classified as seasonal water bodies (≥ 5%) 

or ephemeral water bodies (< 5%) (Zou et al., 2017) (Text S1). There were about 285 

million year-long water pixels (~257,000 km2) within the CONUS in 2016, comprising 

the central portions of lakes, reservoirs, and large rivers (Figure 3.2b), which serve as the 

major sources for surface water withdrawals. The remaining 143 million seasonal and 

ephemeral water pixels (~128,000 km2) are the small streams, ponds, and the edges of 

large surface water bodies (Figure 3.2b). The 33-year frequency map of surface water 

body over 1984-2016 had very similar spatial patterns to the annual water body frequency 



57 

map of 2016 (Figure 3.2b, d). According to the 33-year frequency map (Figure 3.2c), 

there were 277 million pixels with water frequencies ≥ 0.75, corresponding to ~250,000 

km2, which is close to the year-long surface water body area in 2016.  

 

Figure 3.2 Water body frequency maps and water body areas using different 

frequency thresholds in the CONUS. (a) Annual water body frequency map in 2016 

and (b) its zoom-in view of Eastern Oklahoma. (c) 33-year water body frequency 

map during 1984–2016 and (d) its zoom-in view of Eastern Oklahoma. (e) Total 

water body area of all pixels within CONUS with water body frequencies >0, ≥ 0.05, 

≥ 0.1, ≥ 0.15,  ≥ 0.35, ≥ 0.55, and ≥ 0.75, respectively, in our datasets, the permanent 

water body areas from the Joint Research Centre (JRC) dataset during 1984–2015, 

and the water body area from National Land Cover Database (NLCD) in 2001, 2006, 

and 2011. Water body frequency is the ratio of water body observations to total good 

observations in a year (a) or all 33 years during 1984–2016 (c). 
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Using different frequency thresholds can yield different estimates of surface water 

body areas (Figure 3.2e), such as the year-long (≥ 0.75), seasonal (0.05–0.75) and 

ephemeral (<0.05) water body areas during 1984–2016. At the CONUS scale, the year-

long water body area varied from 246,641 km2 to 261,328 km2 in the last three decades, 

with small variability according to its standard deviation (2977 km2). Year-long water 

body areas at the CONUS scale have no significant trends during 1984–2016. However, 

significant increasing trends were found in both seasonal (R2=0.34, P<0.001) and 

ephemeral (R2=0.59, P<0.001) water body areas, which might be related to the increase 

of large rainfall events and rainfall intensity in the CONUS (Z Feng et al., 2016; Melillo 

et al., 2014).  

We compared the year-long water body areas in the CONUS from our dataset 

with those from the Joint Research Centre (JRC) (Pekel et al., 2016) and National Land 

Cover Database (NLCD) (Homer et al., 2015) (Figure 3.2e). The total area and 

interannual variability of year-long water bodies from our dataset agreed well with those 

from JRC permanent water bodies (Figure 3.2e), which were derived from analysis of all 

available Landsat top-of-atmosphere reflectance images during 1984–2015 (Pekel et al., 

2016). It is interesting to note that total CONUS water body areas from the NLCD in 

2001, 2006 and 2011 (Homer et al., 2015) were much higher than our year-long water 

body area and JRC permanent water body area (Figure 3.2e). The water body areas of 

NLCD could include some seasonal or ephemeral water bodies as the NLCD project used 

only a few good quality Landsat images taken during the plant growing season (Homer 

et al., 2015), which is often the wet season when more of the land surface is inundated 

with water. The good agreement between the year-long water body area from our dataset 
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and the permanent water body area from the JRC dataset clearly demonstrates the value 

of analyzing all available Landsat images in the study of land and water dynamics.  

3.3.2 Water body distribution, variation, and driving factors  

Surface water bodies are distributed unevenly across the CONUS with various 

interannual variabilities (Figure 3.3a). The average water body area (ha) per unit land 

(km2) during 1984–2016 ranged from 0.2 ha/km2 in Arizona and New Mexico to 40.7 

ha/km2 in Michigan, while its standard deviation ranged from 0.0001 ha/km2 in 

Washington DC to 0.8ha/km2 in Utah. Most of the Western half of the US have surface 

water body areas < 1 ha/km2. Water resources in these regions have strong interannual 

variability based on the various standard deviations of water body area during 1984–2016 

(Figure 3.3a). The Western, especially Southwestern, US was identified as a hotspot for 

water shortages in various hydrological model assessments and projections (Averyt et al., 

2013; Gaupp et al., 2015; Strzepek and Boehlert, 2010). Water shortages in these areas 

were aggravated by large water withdrawals for agriculture (Caldwell et al., 2012) and 

thermal electric power plants (Melillo et al., 2014). Because of the limited water 

resources, many regions in the Southwest and Northwest US have to import water from 

beyond their watersheds (Good et al., 2014). The water body area in the Southeastern US 

is ~1 ha/km2 higher than those of the Western half of the US and had relatively small 

interannual variations based on their small standard deviations (Figure 3.3a). Despite the 

abundance in water resources, the Southeastern US remains vulnerable to changes in 

water supply and demand (Melillo et al., 2014). Utah has a much larger water body area 

than its neighboring states because of the Great Salt Lake, and the states in the Great 

Lakes Region have the highest surface water body areas because of the Great Lakes. 
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Overall, the eastern half of the US has more water body area and less variability than the 

western half, which is similar with the annual precipitation pattern (Figure S3.5c). 

 

Figure 3.3 Year-long water body area and interannual trends in the CONUS during 

1984–2016 by states and watersheds. (a) Average and standard deviation of year-

long water body area (ha) per unit land (km2) during 1984–2016 by states (the region 
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boundary was based on the Third National Climate Assessment (Melillo et al., 2014) 

The middle region is the Great Plains, while on its left are the Northwest and 

Southwest, and on its right are the Midwest, Northeast, and Southeast. The Western 

half of the US in this study consists of the Northwest, Southwest, and the Great 

Plains, while the Eastern half of the US consists of the Midwest, Northeast, and 

Southeast). Interannual trends of year-long water body area (m2) per unit land 

(km2) during 1984–2016 with t-test at the 5% significance level by states (b) and by 

watersheds (6-digit Hydrologic Units Code (HUC-6)) (c). The intercepts of simple 

linear regression models in (b) are not shown because of limited space. Slope is the 

coefficient of independent variable x, which is the year. 

 

The year-long water body areas by individual states during 1984–2016 showed 

remarkably divergent trends over years (Figure 3.3b). All eight states in the Southwest 

and Northwest, plus Oklahoma and Washington DC, had significant decreasing trends in 

their year-long water body areas during 1984–2016. According to the slopes of simple 

linear regression models, the decreasing rates of year-long water body area (m2) per unit 

land area (km2) ranged from 18 m2/km2 per year in Colorado to 465 m2/km2 per year in 

Utah. In contrast, twenty states in the Southeast, far north Great Plains, and Southern 

Midwest had significant increasing trends in their year-long water body areas during 

1984-2016. The increasing rates ranged from 14 m2/km2 per year in Iowa to 458 m2/km2 

per year in North Dakota. The remarkable inter-annual divergent trends of year-long 

water body area were also found among the 336 watersheds within the CONUS (Figure 

3.3c). Eighty-one watersheds, mostly in the Southwest and Northwest, had significant 

decreasing trends ranging from 3 m2/km2 per year in Rio De Bavispe Watershed of 

Arizona to 1355 m2/km2 per year in the Carson Watershed of Nevada (Figure 3.3c). 

Ninety-seven watersheds, mostly in the Southeast and far north Great Plains, had 

significant increasing trends, ranging from 3 m2/km2 per year in the Mimbres Watershed 

of New Mexico to 1799 m2/km2 per year in Central Louisiana Coastal Watershed of 
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Louisiana (Figure 3.3c). Most of the significant decreasing trends of surface water body 

area were found in states and watersheds that have relatively small water body areas and 

large interannual variabilities, while most of the significant increasing trends were found 

in states and watersheds that have relatively large water body areas and small variabilities. 

Thus, in general, the water-poor regions of Southwest and Northwest US were becoming 

poorer, while the water-rich regions of Southeast US and far north Great Plains were 

becoming richer over the last three decades. 

Climate is the main factor contributing to the interannual variations of surface 

water body area. Annual precipitation was a significant variable in multiple stepwise 

regression models for most of states (Figure 3.4c), demonstrating its influence on water 

body area decrease in the Northwest and Southwest, and the water body area increase in 

the Southeast and far north Great Plains. Annual average temperature was a significant 

variable for the water body area decrease in the Northwest, as well as New Mexico, 

Oklahoma and Mississippi (Figure 3.4d). Surface water withdrawals showed significant 

influences in only a few states (Figure 3.4e), which could be caused by the water 

withdrawal regulations associated with water availability, and the infrequent water 

withdrawal data – reported every five years (USGS, 2010). Water body area in the 

previous year had significant positive impact in most multiple stepwise regression models, 

indicating strong legacy effects, especially in the western half of the US (Figure 3.4f). It 

is also worth noting that about 90% of the ~8000 major dams within the CONUS were 

constructed before 1984 (National Atlas of the United States, 2006), while the 735 dams 

constructed during 1984–2003 had an even spatial and temporal distribution (Figure 

S3.6). Thus, the observed divergent trends of open surface water body area during 1984–
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2016 were largely driven by climate factors rather than by human water withdrawals or 

dam construction. The divergent trends are likely to continue in the future given the strong 

drying forecast in the Southwest and strong wetting forecast in the Eastern US by climate 

model simulations (Strzepek et al., 2015).  

 

Figure 3.4 Multiple stepwise regression models. (a) R square of regression models. (b) F 

test and p value of regression models (the filled color is F, while the number is p value). 

Coefficient (slope) and p value of factor annual precipitation (c), annual average 

temperature (d), surface water withdrawal (e), and year-long water body area in the 

previous year (f) (the filled color is coefficient, while the number is p value). 
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3.3.3 Water body area and land water storage 

We investigated spatial-temporal variability of year-long water body area in relation to 

land water storage (LWS) dynamics as observed by the GRACE satellite in the CONUS. 

GRACE LWS during 2002–2016 showed that large areas of ten states in the Southwest, 

Southern Great Plains, and north Midwest had significant decreasing trends (Figure 3.5a). 

In contrast, significant increasing trends of LWS were found in more than twenty states 

in the Northwest, Northern Great Plains, Midwest, and Northeast. The changes of LWS 

in a grid cell is affected by surface water body, soil moisture, groundwater, and water in 

vegetation (Famiglietti, 2004). We aggregated the annual maps of year-long water bodies 

at 30-m resolution into 0.5-degree (latitude and longitude) grid cells (Figure 3.5b). The 

trends of year-long water body area during 2002–2016 were more dispersive, with 

significant decreasing trends mostly distributed in California and northern Minnesota, 

and significant increasing trends mostly concentrated in the Northern Great Plains and 

Southeastern US (Figure 3.5b). The linear regression models between LWS and year-

long water body areas during 2002–2016 showed significant positive correlations 

(Slope>0 and P<0.05) in 58% of the 2818 0.5-degree grid cells within the CONUS 

(Figure 3.5c, d), mostly in California, the Great Plains, and the Southeast. Open surface 

water bodies (lakes, reservoirs, rivers, and ponds) were found to be related to the 

dynamics of groundwater (Brunner et al., 2009) and total land water storage (Proulx et 

al., 2013). In the water body abundant Prairie Coteau (38,000 km2), surface water bodies 

accounted for a significant fraction of GRACE LWS and improved the water budget 

closure estimation (Proulx et al., 2013). The significant positive correlations between 
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surface water body area and LWS suggested that the change in year-long water body area 

is a strong indicator of LWS dynamics.  

 

Figure 3.5 The slopes, p-values and r-squared values of simple linear regression 

models of GRACE land water storage and year-long water body area at 0.5-degree 

grid cells during 2002–2016 with t-test at the 5% significance level. (a) GRACE land 

water storage over years. (b) year-long water body area from our datasets (OU 

datasets) over years. (c) and (d) GRACE land water storage (dependent variable) 

over OU year-long water body area (independent variable). 

 

3.3.4 The effects of drought on water body area and land water storage 

Severe and prolonged droughts can substantially reduce surface water body area. 

California and the Southern Great Plains are among the top agricultural producing states, 

where surface water withdrawals play an important role in crop irrigation and livestock 

production (USGS, 2010). The interannual variation of year-long water body area in 

California clearly showed four multi-year dry and pluvial rotation events (Figure 3.6a), 

three of which corresponded to documented drought events in 1986–1992, 2007–2009, 

and 2012–2015 (California Department of Water Resources, 2015). Surface water body 
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areas had substantial drops at the beginning of drought events in 1986, 2007, and 2012, 

reached their lows at the end of these drought events in 1992, 2009, and 2015, and took 

several more years for the first two drought events to recover fully in 1995, and 2011. As 

of 2016, surface water body area had not yet recovered from the most recent drought 

event. The 2012–2015 drought caused the surface water body areas to drop to their lowest 

levels in 33 years (Figure 3.6a). Precipitation of California in 2016 was above the average 

value during 1984-2016, but it only resulted in only a minor recovery of surface water 

body area. In contrast, the Southern Great Plains were dominated by 1- to 2-year drought 

events. For example, the 2006 drought in Kansas, Oklahoma, and Texas (Dong et al., 

2011), the 2011 and 2012 drought in Oklahoma and Texas, and the 2012 drought in 

Kansas (Hoerling et al., 2014). Surface water body areas in Kansas, Oklahoma, and Texas 

dropped in the dry year of 2006 and recovered quickly in the subsequent pluvial year of 

2007 (Figure 3.6b-d). The Southern Great Plains suffered a prolonged drought that 

developed in 2011 and reached peak intensity in August 2012 (Hoerling et al., 2014). The 

year-long water body areas in these three states dropped during 2011–2012, stayed low 

through 2014, and recovered gradually to their normal condition in 2016. The Southern 

Great Plains had an extremely pluvial year of 2015 because of El Nino teleconnection 

(Wang et al., 2015), which aided the recovery of surface water body area.  
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Figure 3.6 Interannual variations of year-long water body area, GRACE land water 

storage (LWS), and annual precipitation during 1984–2016 in California (a), Kansas 

(b), Oklahoma (c), and Texas (d). The dashed pink box indicates documented 

drought events, including 1986–1992, 2007–2009, and 2012–2015 droughts in 

California, 2006 drought in Kansas, Oklahoma and Texas, 2011–2012 drought in 

Oklahoma and Texas, and 2012 drought in Kansas. 

 

Prolonged droughts can result in a larger decline of LWS than surface water body 

area. In California and the Southern Great Plains, the interannual variability of surface 

water body areas during 2002–2012 agreed well with those of LWS (Figure 3.6a-d). 

However, because of prolonged droughts, LWS had a much larger decline than surface 

water body areas in California and Southern Great Plains during 2014–2015 and 2013–

2014, respectively. California Central Valley relied heavily on groundwater to mitigate 
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droughts (Howitt et al., 2014). The 2014-2016 droughts reduced surface water availability 

by 7.6 km3/year and increased groundwater use by 6.2 km3/year compared to an average 

water year (Howitt et al., 2014). The rate of groundwater decline in California Central 

Valley predicted by the water balance models (10.0 km3/yr) that used a large amount of 

in-situ observations was quite close to that inferred from GRACE (11.2 km3/yr) during 

the 2012-2016 droughts (Xiao et al., 2017). Observation data from 497 wells in the 

California Central Valley showed that droughts played a major role in the depletion of 

groundwater through increased well drilling and water extraction (Wang et al., 2016). 

The shrinkage of surface water bodies in drought years had forced water users to drill and 

mine groundwater (California Department of Water Resources, 2015; Thomas et al., 

2017), which could have caused the larger decrease of LWS. Groundwater in California 

Central Valley was being pumped at far greater rates (20.4 mm yr-1) than it can be 

naturally replenished, which may raise economic and food security challenges for the US 

(Famiglietti, 2014). The in-situ observation data from ~10,000 High Plains Aquifer wells 

also indicated severe drought induced groundwater declines in Southern and Central High 

Plains Aquifers in 2012 (Brena-Naranjo et al., 2014). Based on the water level data from 

7460 wells during 2011 to 2013, the area-weighted, average water-level in the High Plains 

aquifer declined by 0.64 m, with major declines in the South and Central High Plains, 

Texas (1.1m), Kansas (0.9m), Colorado (0.7m), and Oklahoma (0.6m) (McGuire, 2014). 

Groundwater depletion in the irrigated Southern Great Plains and California Central 

Valley accounted for ~50% of groundwater depletion of the entire US since 1900 

(Scanlon et al., 2012). With the low recharge rate in Central and Southern High Plains 

Aquifer, the current depletion rate would result in 35% of the Southern High Plains 
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lacking sufficient irrigation water in the next 30 years (Scanlon et al., 2012). The 

depletion of groundwater could in turn decrease the discharge to surface water bodies 

(Krueger et al., 2017), aggravating surface water scarcity in these regions. Although the 

findings in this study and the literatures demonstrated that farmers will switch from using 

surface water to using groundwater during the prolonged droughts. It is unclear when will 

the farmers switch. In other words, it is difficult to determine at what degree into the 

drought will the farmers decide to use groundwater. 

3.4 Conclusions and perspective 

Consistent with previous studies (Averyt et al., 2013; Blanc et al., 2014), the Western half 

of the US was identified as a hotspot of water stress with small water body area and large 

interannual variability in this study. Mainly driven by climate, year-long water body areas 

were shrinking in water-poor regions of Southwest and Northwest US but expanding in 

water-rich regions of the Southeast and far north Great Plains. These divergent changes 

have enlarged the water resource gaps across the CONUS in the last three decades. Thus, 

water resource management is becoming more and more challenging in Western US, 

especially during the 2012 prolonged droughts (Hoerling et al., 2013). Various climate 

and hydrological models have predicted the Southwest to be drier and face more severe 

droughts in the second half of the 21th century (Melillo et al., 2014; Scheff and Frierson, 

2012; Strzepek et al., 2015), aggravating the challenges in water resource planning and 

management. The results from the analyses of historical Landsat images during 1984–

2016 clearly shed new insight on the spatial distribution, temporal dynamics, and long-

term trends of open surface water bodies in the CONUS and highlight the unoptimistic 

surface water body conditions in the Southwest and Northwest. These findings can be 
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used to assist decision makers and stakeholders across the CONUS, especially in the 

West, to develop and implement water resource planning and management in coping with 

the increasing water stress, unprecedented droughts, and uncertain impacts of climate 

change.  

Supplementary materials 

Text S1. Thresholds to classify year-long, seasonal and ephemeral water bodies 

Year-long water bodies should have an annual water frequency of 100% when we observe 

them from the ground. However, when we detect water using observations from space-

borne satellites (e.g., Landsat, ~795 km above the ground), the water frequency of year-

long water bodies could be decreased by many factors. First, cloud cover and shadow can 

affect observations. Some of the clouds, especially optically thin clouds, have a chance 

of being omitted by the CFMask cloud-screening algorithm (USGS, 2017b). Thus, the 

omitted clouds over the surface water body will be classified as non-water and eventually 

reduce the annual water frequency of year-long water pixels. Second, although the L1T 

(terrain corrected, mismatch < 12m) surface reflectance product used for water detection 

are suitable for pixel-level time series analysis, for the year-long water pixels close to 

shorelines, the small geometric mismatch may introduce some mixed pixels into the time 

series data in a year and reduce the annual water frequency. Third, the surface reflectance 

data are affected by atmospheric correction algorithm. For example, the Landsat 8 SR 

algorithm may introduce some artifacts over certain geographic areas, including inland 

water bodies, area of high relief, and areas with high aerosols (Google Earth Engine, 

2017; USGS, 2017a; b). These artifacts in the surface reflectance data may also reduce 

the annual water frequency of year-long water pixels.  
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There are a couple approaches to deal with this issue. One approach is used in the 

“permanent water body map” by the JRC group. They used the frequency with which a 

pixel occupies the unequivocal portion of the water hull to estimate the likelihood of it 

actually being water (Pekel et al., 2016). Specifically, “If a pixel sits unequivocally within 

a water hull for some of the time, then there is a high likelihood it will actually be water 

even if it occasionally occupies a hull where overlap occurs with other cover types.” Their 

approach manually adjusts the annual water frequency, which may increase the water 

frequency of some pixels to 100%. In comparison, our approach is to keep the original 

frequency values and assume a maximum error range (25%) in classifying year-long 

water bodies. In other words, we used 75% as a threshold to classify the pixels that have 

water most of the time in a year as year-long water pixels. As shown in Figure 3.2e, the 

surface water body area within CONUS and its inter-annual variations using 75% 

threshold value are quite similar with those from JRC permanent water body area. In 

addition, we reported detailed analyses on the annual frequency of surface water body in 

Oklahoma (Zou et al., 2017), and the 75% threshold value was appropriate for year-long 

water bodies.  Also, we used 5% as a threshold to separate ephemeral water bodies 

(annual water frequency < 0.05) from seasonal water bodies (0.05 ≤ annual water 

frequency < 0.75). 
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Figure S3.1 Landsat data availability within the CONUS during 1984-2016. (a) 

Number of Landsat 5, 7 and 8 images in each year. (b) Cumulative percentage of 

pixels with good observations of 0, 1, 2, 3, 4, [5, 10), [10, 20), [20, 40), [40, 80), and 

[80, 160), respectively. (c) Number of pixels with good observations of 0, [1, 10), [10, 

33), [33, 50), [50, 100), [100, 300), [300, 600), [600, 900), [900, 1200), [1200, 1500), 

[1500, 2000), and [2000, 2500), respectively, in 33 years. 
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Figure S3.2 Landsat tile (path/row) and sampling plot distribution. (a) Distribution 

of selected Landsat tiles (path/row) by satellites. (b) Distribution of years of 

sampling plots. (c) Distribution of land cover types of sampling plots. (d) 

Distribution of terrain types of sampling plots. These sampling plots were used for 

visual delineation of water body and non-water features, which were further used 

to analyze their spectral characteristics. 
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Figure S3.3 Spatial distribution of 3200 verification sampling points that were used 

to select ~12,000 sampling pixels for accuracy assessment. 

 

 

Figure S3.4 Mixed pixel water detection rate. 
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Figure S3.5 Study area. (a) State and CONUS boundary. (b) Digital elevation model 

(DEM). (c) Annual precipitation (PCP) during 1981–2010. (d) Annual mean 

temperature (TMP) during 1981–2010. DEM is from USGS EarthExplorer 

(http://earthexplorer.usgs.gov/), while the precipitation and temperature are from 

the Parameter-elevation Relationships on Independent Slopes Model (PRISM) 

Climate Group, Oregon State University (http://prism.oregonstate.edu/). 

http://earthexplorer.usgs.gov/
http://prism.oregonstate.edu/
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Figure S3.6 Spatial and temporal distribution of major dams constructed during 

1984–2003 within the CONUS (National Atlas of the United States, 2006) (the circle 

filled color represents dam constructed year, while the circle size represents the 

surface water body area of the impoundment at its normal retention level). 

 

 

 

 

Table S3.1 Confusion matrix for evaluating water detection algorithms 

 

 

      Classification 

 Ground Reference  

Sum  

 

User accuracy 

(%) 
Water Non-water  

Water 4452 51 4503 98.87% 

Non-water 315 7033 7348 95.71% 

Sum  4767 7084 11851 OA=96.91% 

Producer accuracy (%) 93.39% 99.28%  Kappa = 0.94 
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Table S3.2 Variance inflation factor (VIF) of all predictor variables. 

State V1 V2 V3 V4 
 

State V1 V2 V3 V4 

Arkansas 1.1 1.1 1.1 1.1  Louisiana 1.2 1.1 1.7 1.7 

Arizona 1.7 1.8 1.1 1.2  Mississippi 1.0 1.1 1.2 1.2 

Colorado 1.2 1.3 1.2 1.1  South Carolina 1.2 1.1 1.2 1.1 

Iowa 1.0 1.1 1.0 1.1  California 1.1 1.4 2.2 1.8 

Illinois 1.1 1.2 1.3 1.3  Connecticut 1.1 1.1 1.2 1.0 

Indiana 1.1 1.2 1.0 1.2  Washington DC 1.9 1.6 1.3 1.5 

Kansas 1.2 1.3 1.1 1.2  Delaware 1.2 1.5 3.0 2.5 

Missouri 1.1 1.2 1.1 1.1  Kentucky 1.1 1.3 1.1 1.3 

Nebraska 1.3 1.2 1.1 1.2  Massachusetts 1.2 1.4 1.4 1.1 

New Mexico 1.6 1.9 3.1 3.3  Maryland 1.2 1.2 1.4 1.4 

Nevada 1.1 1.1 2.6 2.5  North Carolina 1.0 1.1 1.9 1.9 

Oklahoma 1.2 1.3 1.7 1.5  New Jersey 1.1 1.1 1.4 1.4 

Tennessee 1.2 1.3 1.3 1.6  New York 1.0 1.1 1.3 1.1 

Utah 1.2 1.3 1.1 1.3  Ohio 1.0 1.2 1.4 1.6 

West Virginia 1.0 1.1 1.2 1.2  Pennsylvania 1.0 1.1 1.1 1.1 

Idaho 1.1 1.1 1.3 1.2  Rhode Island 1.4 1.2 1.2 1.5 

Montana 1.5 1.3 1.4 1.3  Virginia 1.0 1.1 1.0 1.0 

North Dakota 1.3 1.4 4.0 3.7  Wisconsin 1.2 1.1 1.2 1.1 

South Dakota 1.2 1.3 1.0 1.1  Michigan 1.1 1.4 1.2 1.2 

Vermont 1.2 1.1 1.1 1.1  Maine 1.3 1.4 1.3 1.1 

Wyoming 1.1 1.3 1.1 1.0  Minnesota 1.0 1.1 1.1 1.0 

Florida 1.4 1.2 1.2 1.6  New Hampshire 1.3 1.1 1.1 1.3 

Texas 1.2 1.1 1.2 1.2  Oregon 1.1 1.2 1.2 1.4 

Alabama 1.2 1.2 1.6 1.6  Washington 1.1 1.2 1.1 1.2 

Georgia 1.1 1.3 1.2 1.3  
 

    

Multiple stepwise regression models between year-long water body area and four 

predictor variables by states (Y=f (V1, V2, V3, V4). V1: annual precipitation (mm), 

V2: annual average temperature (℃), V3: annual total surface water withdraw 

(million gallons per day), V4: year-long water body area of the previous year (km2). 
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Chapter 4: Variations and trends of global surface water body area and land 

water storage in the past decades from analysis of time series Landsat images 

Abstract  

Changes in terrestrial water resources affect social, economic, and environmental systems, 

yet these changes have not been analyzed thoroughly across the globe using both surface 

water area and land water storage data. We generated a new global multi-decadal surface 

water body dataset at 30-m resolution using 3.8 million Landsat images during 1984–

2017. About 8.5 million 0.01° grid cells had significant increasing or decreasing trends 

in surface water area over the past decades, forming interesting spatial patterns in northern 

Greenland, Tibetan Plateau, western US, the Great Lakes, Gulf of Bothnia, central South 

America, etc. The regional curves of surface water area at 5° tiles revealed its interannual 

variations, the magnitude of variability, and the multi-decadal trends. There were 189 and 

170 tiles with significant increasing and decreasing trends, respectively. Divergent trends 

between land water storage and regional surface water area occurred in Greenland, China, 

the Indus Basin, and central Africa, mainly driven by climate and anthropogenic activities. 

Our dataset and findings uncovered unprecedented spatial and temporal details of global 

water resource dynamics, critical for water resource research, planning, and management. 

4.1 Introduction 

Terrestrial water resources are critical for human society, natural environment, and global 

biodiversity (Pekel et al., 2016; Rodell et al., 2018; Vorosmarty et al., 2010). Global 

population increased from about 5 billion in 1984 to 7.6 billion in 2017 (DESA, 2017). 

Population growth and increased food demand have stressed and modified global water 

systems through water diversion for irrigation, dam construction, land reclamation, and 
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groundwater mining (Rodell et al., 2018; Vorosmarty et al., 2010). Under the impacts of 

climate variability and anthropogenic activities, strong variations and significant changes 

of water resources, such as the dry-up of surface water bodies and the loss of groundwater, 

has threatened municipal water supplies, reduced crop production, and decreased aquatic 

biodiversity (Zou et al., 2018).  

Global surface water bodies were recently mapped using Landsat images in a 

single year (M Feng et al., 2016; Verpoorter et al., 2014), multiple years (Liao et al., 2014; 

Yamazaki et al., 2015), and multi-decadal period (Pekel et al., 2016). Currently, there has 

been only one global multi-decadal surface water body dataset (1984-2015), which was 

released by the Joint Research Center (JRC) in 2016 (Pekel et al., 2016). The variations 

and trends of surface water area in a few regions were reported in some selected years 

where the unobserved area was less than 5% (Pekel et al., 2016). To date, the time-series 

variations and trends of surface water area in the past decades were not investigated 

thoroughly at local and regional scales across the globe. Land water storage, derived from 

the Gravity Recovery and Climate Experiment (GRACE) satellite mission, can be used 

to reveal the integrated change of land water resources, including surface water, 

groundwater, soil moisture, snow, and ice (Rodell et al., 2018). A previous study used 

GRACE land water storage data during 2002–2016 to illustrate emerging trends in 

freshwater availability across the globe (Rodell et al., 2018).  To date, no studies have 

investigated surface water area and land water storage jointly to better characterize the 

spatial distribution, temporal variability, and multi-decadal trends of global water 

resources.  
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We used 3.8 million Landsat images during 1984–2017 to generate a new global 

multi-decadal surface water body dataset at 30-m resolution, with a slightly longer time 

series, a slightly larger spatial extent, and more Landsat data input compared to the JRC 

dataset (Pekel et al., 2016). Global surface water body frequency and area were derived 

from the new dataset and compared with those from JRC. Globally, we detected locations 

where surface water area had significantly changed during 1984–2017 in 0.01°grid cells. 

We analyzed and visualized the interannual variations and multi-decadal trends of 

regional surface water area in 5° tiles. Multiple stepwise regression models were used to 

examine how varying precipitation and temperature impact the multi-decadal dynamics 

of regional surface water area. Finally, we assessed the interannual variations and trends 

of both regional surface water area and land water storage during 2002–2016 to shed new 

light on the consistency and divergence between surface and land water resource 

dynamics. 

4.2 Materials and methods 

4.2.1 Data.  

This study used all Landsat 5, 7, and 8 calibrated top-of-atmosphere (TOA) reflectance 

images from Collection 1 Tier 1 in Google Earth Engine (GEE) (Chander et al., 2009) to 

identify and map terrestrial open surface water bodies within 60°S–85°N. A total of ~3.8 

million Landsat images (~ 2.2 petabytes of data) during 1984–2017 were used in this 

study (Figure S4.1), which is ~24% more than the images (3.1 million) used in the JRC 

study (Pekel et al., 2016), or 7% (~215,000 images) more in the overlapping study period 

1984–2015.  Some of the data gaps in the JRC dataset were filled with data brought from 

the international image receiving stations by the United State Geological Survey Landsat 
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Global Archive Consolidation (Wulder et al., 2016) (Figure S4.2). The Quality 

Assessment 16-bit Band (US Geological Survey, 2018) in each image was used to remove 

cloud, cloud shadow, snow/ice, designated fill, and radiometric saturation. The solar 

azimuth and zenith angles in each image were also used along with the digital elevation 

models (Farr et al., 2007; Hulley et al., 2015) to simulate terrain shadows and remove 

them. The remaining pixels were considered as good observations suitable for surface 

water body detection.  

Given that the revisit cycle of the Landsat satellites is 16 days and there are two 

satellites in most of the study period, we divided a year into forty-six 8-day intervals (day 

1-8, day 9-16…). For each 8-day interval, a binary quality mask was set as good if there 

are any good observations within the interval. Forty-six binary quality masks in a year 

were converted into one 64-bit quality band at 30-m resolution and output from GEE to 

local high-performance computers. In the last 34 years, central Greenland, mountainous 

permafrost, and tropical cloudy regions had no or small number of good observations 

(Figure S4.1). Approximately 93% of the total ~212 billion 30-m pixels across the global 

land surface had at least fifty 8-day intervals with good observations during 1984-2017 

(Figure S4.1).  

The Gravity Recovery and Climate Experiment (GRACE) monthly liquid water-

equivalent thickness (LWET) product at 0.5° resolution were anomalies relative to the 

time-mean baseline of 2004.0–2009.999 (Watkins et al., 2015).  Monthly LWET from 

April 2002 to December 2016 were used to calculate annual average LWET, which were 

used as annual land water storage values to analyze interannual dynamics of total land 

water resources. The year 2017 was not included because of the failure of GRACE sensor. 
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In calculation of annual average land water storage, the data gaps in the first three months 

of 2002 were filled by the data in the same months of 2003. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) monthly average 

land surface temperature product (MOD11C3) during 2000–2017 in the spatial resolution 

of 0.05° (Wan et al., 2015) were resampled into 0.01°, in an effort to estimate the number 

of months in a year surface water was in a liquid state at high-latitude or high-altitude 

regions. Monthly mean precipitation rate at surface and monthly mean air temperature at 

2-m in Gaussian grid of 192 by 94 from 1984 to 2017 were obtained from NCEP-DOE 

Atmospheric Model Inter-comparison Project (AMIP-II) reanalysis (R-2) (Kanamitsu et 

al., 2002). These datasets were interpolated into a geographic grid of 0.5°. The annual 

average values within 5° x 5° (latitude/longitude) tiles were calculated and used as 

climatic factors in the multiple stepwise regression models to explain the interannual 

variations of regional surface water area.  

4.2.2 Algorithm development.  

We developed the surface water body mapping algorithms based on the relationships 

between water index and vegetation indices [((mNDWI-NDVI) > 0 or (mNDWI-EVI) > 

0) and (EVI < 0.1)] using surface reflectance images. The algorithms were applied in 

Oklahoma, US (Zou et al., 2017), and the contiguous United States (Zou et al., 2018). In 

this study, we modified the algorithms for Landsat TOA reflectance data because the 

surface reflectance data did not have the global coverage when we carried out the study. 

Systematic sampling method was used and 162 Landsat tiles (path/row) were selected 

over the global land area (Figure S4.3). Within each Landsat tile boundary, a very high-

resolution image in Google Earth was randomly selected as reference image, and then a 
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Landsat TOA image, which has an acquisition date close to the date of very high-

resolution image, was also selected. One or two sampling blocks, covering half water and 

half non-water features, were extracted from the selected Landsat image. Approximately 

10,000 sampling pixels were extracted from one Landsat tile. In eight Landsat tiles, 

sampling blocks cannot be obtained for reasons such as no Landsat images in some ocean 

islands, no liquid water in icecaps, and no water in deserts. A total of 157 sampling blocks 

from 154 Landsat tiles were obtained, and they were distributed across different terrains, 

land cover types, altitudes, and satellites (Landsat 5, 7, and 8) (Table S4.1). 

All water and non-water features in the sampling blocks were manually delineated 

in reference to the very high-resolution image in Google Earth. There were 1,641,461 

sampling pixels delineated from the 157 sampling blocks, with 709,912 water pixels, and 

931,549 non-water pixels. According to the frequency distribution curves of water and 

non-water sampling pixels (Figure S4.3), our previous algorithms were modified into 

[((mNDWI-EVI) > 0.25 or (mNDWI-NDVI) > 0.25) and (EVI < 0.1 or NDVI < 0.1)]. 

Compared with the previous algorithms, the thresholds were changed because of the use 

of TOA data instead of surface reflectance data. Also, NDVI < 0.1 was added to the 

algorithms because some EVI values of surface water bodies, derived from a few Landsat 

8 TOA images, showed anomalies while the corresponding NDVI values were normal 

(Figure S4.3). Besides the changes of some thresholds, the essence of the algorithms 

remains the same with the Oklahoma and CONUS studies, which is that only pixels with 

stronger water signal than vegetation signal were classified as water pixels and the 

vegetation noise was further removed. Running these algorithms on the above visually 
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interpreted 1,641,461 pixels resulted in a water detection producer accuracy of 98.3%, a 

water detection user accuracy of 97.33%, and an overall accuracy of 98.1% (Table S4.2). 

The world was divided into 2,592 tiles (5° x 5°) and 1,076 tiles were included in 

the study because other tiles had no land area. The water detection algorithms were run 

tile by tile in GEE. For each 8-day interval, a binary water mask was set as water if there 

are any water detections from the good observations within this interval. Forty-six binary 

water masks in a year were converted into one 64-bit water band at 30-m resolution and 

output from GEE to local high-performance computers. The entire output dataset 

included 36,584 water images and 36,584 quality images, covering the globe during 

1984–2017.  

4.2.3 Accuracy assessment.  

The strategies of accuracy assessment were similar with those used in the JRC study 

(Pekel et al., 2016). We divided the entire Earth into 28,800 grid cells (1.5° x 1.5°, 

latitude/longitude) and removed the grid cells in ocean and central Greenland ice sheet. 

There were 8,904 grid cells overlapping with landmass, from which 8,904 sampling 

points were randomly selected, with an even distribution in non-water, seasonal water, 

and permanent water in reference of the JRC water occurrence map (Pekel et al., 2016). 

For each sampling point, a very high-resolution image from Google Earth or ESRI World 

Imagery was selected as a reference image. Then a Landsat image, whose acquisition 

time was close to the date of the very high-resolution image, was also selected. Four 

Landsat pixels around the sampling point were selected and water detection algorithms 

were performed to classify them into water or non-water pixels. The water coverage 

percentage within each Landsat pixel boundary was recorded in reference to very high-
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resolution image, with 100% as pure water pixel, 0% as pure non-water pixel, and the rest 

(10%, 20%...90%) as mixed pixels. The validation sampling pixels distributed across the 

last three decades and across different satellites (Table S4.3). A total of 35,616 Landsat 

pixels were validated, out of which 15,255 were pure non-water pixels, 15,098 were pure 

water pixels, 3,506 were mixed pixels of water and non-water features, 381 were masked 

out by quality band, and 1,376 had no Landsat images (Figure S4.4). According to the 

confusion matrix for 30,353 pure water and non-water pixels (Figure S4.4), the 

algorithms had a water detection producer accuracy of 98.63%, a water detection user 

accuracy of 99.10%, and an overall accuracy of 98.86%. Including the 3,506 mixed pixels 

(mixed pixels with water percentage > 50% were classified as water, while ≤ 50% were 

classified as non-water), the producer accuracy, user accuracy, and overall accuracy were 

93.44%, 97.36%, and 95.49%, respectively (Figure S4.4). Mixed pixels are one of the 

biggest challenges in water detection using remote sensing data. Specifically, mixed 

pixels are one of the major sources of omission error in water detection. 

4.2.4 Surface water body maps and analysis.  

The 8-day global surface water body map and good observation (quality) map at 30-m 

resolution can be derived by converting the annual 64-bit binary outputs into decimal 

format. Monthly water body frequency map was generated by dividing the number of 8-

days with water observations to the number of 8-days with good observations in a month. 

Annual water body frequency map was generated by averaging monthly water body 

frequency in a year. To get the 34-year water body frequency map, first, 8-day water body 

frequency was calculated as the ratio of water observations to good observations of the 

same 8-day in the last 34 years. Then, only those 8-day water body frequencies with good 
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observations ≥ 5 in the last 34 years were averaged to generate the 34-year water body 

frequency map. 

To exclude non-water features and potential commission errors caused by omitted 

cloud shadows and terrain shadows, pixels that meet three conditions (34-year water body 

frequency ≥ 0.05, 34-year water observations ≥ 2, and 34-year good observations ≥ 5) 

formed the maximum water body extent and only these pixels were included in the further 

analysis (Figure S4.5). In this way, some of the extremely ephemeral water bodies 

captured by water body maps, such as flash floods, were not included in variation and 

trend analysis across time. The interannual dynamics of surface water area were analyzed 

in 0.01° grid cells, 0.5° grid cells, and 5° tiles, respectively. Data gaps caused by bad 

weather and the incomplete Landsat data archive are the biggest challenges for the change 

analysis of surface water area across time. To avoid bias and make full use of the data, 

change analysis of surface water area was based on the common regions with valid 

observations across all selected years (Figure S4.5).  

4.2.5 Interannual variations and trends.  

To study interannual dynamics of surface water area in the past 34 years, we first selected 

annual valid observation pixels, those with enough good observations to represent water 

body conditions in a year (Figure S4.5). Water bodies at high-latitude and high-altitude 

regions freeze in cold seasons, reducing the number of months with good observations 

(Figure S4.1, S4.6). In these regions, annual water body conditions were represented by 

good observations in the non-frozen months. Good observations were also reduced across 

the globe because of cloud coverage, especially the regions with long rainy seasons, such 

as the tropics (Figure S4.1, S4.6). Good observations in mountainous regions, especially 
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in high latitudes, were reduced in the months and seasons with low sun elevation angles 

because of terrain shadows (Figure S4.1). Thus, one condition to select the annual valid 

observations is that they should have good observations in at least half number of the 

non-frozen months (Figure S4.5). An alternative condition is that they should have good 

observations in multiple seasons (Figure S4.5). For each year, annual valid observations 

will be classified as annual water body pixels if their annual water body frequency ≥ 0.5. 

The threshold of 0.5 was selected because it can best mitigate the impacts from both 

commission and omission errors in regions with limited good observations, such as the 

tropical, high-latitude, and high-altitude regions. It is worth to mention that the 

interannual variation patterns of surface water areas in large regions don’t change across 

different frequency thresholds (Zou et al., 2018). The maximum annual water body extent 

was the union of annual water body pixels in each of the past 34 years. Surface water area 

dynamics at various scales were analyzed within the maximum annual water body extent. 

For 0.01o grid cells, the years with common annual valid observation pixels 

covering 100% of the maximum annual water body extent were selected (Figure S4.5). 

Annual surface water area in each selected year was derived from the common valid 

observation pixels. If the selected number of years ≥ 10 (Figure S4.7), trend analysis was 

carried out and this grid cell was marked as a location whether surface water area had 

significantly changed or not. For 5o tiles, select the years with common annual valid 

observation pixels covering at least 25% of the maximum annual water body extent 

(Figure S4.7). Regional surface water area in each selected year was also derived within 

the common valid observation pixels. Interannual variation of regional surface water area 

was analyzed and the long-term trend analysis was carried out if the selected number of 
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years ≥ 10 (Figure S4.5). For regional surface water area in the past decades within a 5o 

tile, its interannual variability, defined as the ratio of its range to its mean, was displayed 

as the amplitude of y axis in its curve. The regional water area coverage, defined as the 

ratio of surface water area to the total land area within a 5° tile, was displayed as linewidth. 

Long-term trend analysis of surface water area at 0.01° grid cells and 5° tiles were carried 

out through simple linear regression models (annual surface water area as dependent 

variable while year as independent variable) with t-test at the 5% significance level using 

Python module Statsmodels. 

Interannual trends of land water storage from 2002 to 2016 were analyzed at 0.5° 

grid cells using simple linear regression models (annual land water storage as dependent 

variable while year as independent variable). Surface water areas during 2002-2016 at 

0.5° grid cells were derived using the same methods as those used in 5o tiles. 

Relationships between annual land water storage and surface water area were also 

explored at 0.5° grid cells using simple linear regression models (annual land water 

storage as dependent variable while surface water area as independent variable). Annual 

land water storage data at 5° tiles were averaged from those at 0.5° grid cells. Interannual 

variations and linear regression trends of both surface water area and land water storage 

were shown at 5° tiles across the globe to indicate the consistent and divergent changes 

of surface and land water resources during 2002–2016.  

Ocean water, outside the boundaries of world countries (ESRI, 2018), was not 

included in the statistics or change analysis of surface water area and land water storage. 

Multiple stepwise linear regression models were used in the platform of MATLAB 

R2014a to examine the impact of annual precipitation and annual temperature on the 
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interannual variations of regional surface water areas during 1984–2017 at 5o tiles (Figure 

S4.8). The statistics of maximum water body extent and surface water areas in 2017 by 

country (ESRI, 2018) were provided in Table S4.4.  

4.3 Results and discussion 

4.3.1 Surface water body frequency and area 

Our global 34-year surface water body frequency map provides the location and extent 

of surface water bodies and illustrates the stability of surface water resources over the 

past three decades (Figure 4.1a). High frequency values represent consistent multi-

decadal water bodies, while low frequency values represent discontinuous inundation, 

such as seasonal water bodies and newly constructed reservoirs (Figure 4.1b). According 

to this 34-year frequency map, there are 5.6, 3.5, 2.9, and 2.6 million km2 global surface 

water areas with water body frequencies ≥ 0.05, ≥ 0.25, ≥ 0.5, and ≥ 0.75, respectively, 

which were larger than those derived from the JRC global water occurrence map (4.1, 3.3, 

2.8, and 2.5 million km2) (Pekel et al., 2016). We compared surface water areas from 

these two datasets over 1,042 overlapping 5° tiles (Figure 4.1c), and the results showed 

that our dataset (University of Oklahoma, OU) captured more surface water bodies, 

especially those with low water body frequencies. Global maximum surface water body 

extent from the OU dataset (5.6 million km2) was ~30% bigger than that of the JRC 

dataset (4.3 million km2) (Figure 4.1d), attributed in part to a slightly longer study period 

(1984–2017 vs 1984–2015), a slightly larger spatial extent (60°S–85°N vs 60°S–78°N), 

more Landsat data input (3.8 vs 3.1 million images) (Figure S4.1, Figure S4.2), and the 

difference in water detection and post-processing algorithms.  
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Annual total global surface water area from the OU and JRC datasets were 

sensitive to the total area with valid observations each year (Figure 4.1d), which was 

related to the number of available Landsat images (Figure S4.1a). Thus, to avoid the bias 

of data gaps, interannual change analysis of surface water area in this study was based on 

the common regions with valid observations across all selected years. Three global annual 

surface water area estimates, derived from the OU dataset using annual water body 

frequency ≥ 0.25, 0.5, 0.75, respectively, had very similar temporal variation patterns in 

the past decades (Figure 4.1d). The annual surface water area with annual water body 

frequency ≥ 0.5 was chosen for the interannual change analysis in this study because it 

can best mitigate the impacts of both omission and commission errors in regions with 

limited good observations, such as tropical, high-latitude, and high-altitude regions. 

 

Figure 4.1 Global water body frequency and area. Global 34-year water body 

frequency map in 1984–2017 (a), and its zoom-in of Aral Sea (b). (c), Comparison of 

surface water areas from the OU 34-year water body frequency map and JRC water 

occurrence map in 1042 overlapping 5° tiles across the globe. (d), Global maximum 

surface water body extent, valid observation area, and surface water area from the 

OU and JRC datasets over the past decades. 
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4.3.2 Variations and trends of surface water area 

Multi-decadal trends of surface water area within 0.01° grid cells provide the locations 

where surface water area had significantly increased or decreased during 1984–2017 

(Figure 4.2a and its zoom-ins in Figures 4.3,4.4). Among the 36.7 million 0.01° grid cells 

across the globe that had surface water bodies and enough valid observations for the trend 

analysis, 4.0 million had significant increasing trends while 4.5 million had significant 

decreasing trends. The interannual variations, amplitude of variability, and long-term 

trends of regional surface water area were shown in 5° tiles (Figure 4.2b). Among the 880 

five-degree tiles with enough valid observations for trend analysis, 189 and 170 had 

significant increasing and decreasing trends, respectively.  

In Asia, significant increasing trends of surface water area occurred in the Tibetan 

Plateau, eastern China, and parts of India, Myanmar, Thailand, and Laos, while 

significant decreasing trends were found in the northern Caspian Sea and Aral Sea region, 

Lake Baikal region, and southern Japan (Figure 4.2a, Figures 4.3). Most lakes on the 

Tibetan Plateau, especially in its northern region, expanded substantially (Figure 4.3c), 

which increased the regional surface water area (Figure 4.2b). Glacial meltwater has 

contributed to the increase in surface water area (Song et al., 2013), and our regression 

models showed that precipitation also contributed significantly to the increase (Figure 

S4.8). In eastern China, grid cells with increasing trends of surface water area were 

clustered in river channels and new reservoirs (Figure 4.3d). This could be explained by 

the construction of more than 200 large reservoirs in China between 1984 and 2011, with 

a total capacity of ~250 km3 (Ministry of Water Resources, 2013; Yang and Lu, 2014). 

The Three Gorges Dam alone created a surface water area of ~1,000 km2 in this region 
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(Zhao et al., 2000). While man-made reservoirs increased, many natural lakes in eastern 

China shrank and disappeared because of land reclamation, lake isolation, and dam 

construction (Du et al., 2011; Mei et al., 2015). Thus, a large number of grid cells in this 

region had decreasing trends in surface water area. In mid-western India and parts of 

Myanmar, Thailand, and Laos (Figure 4.3e, f), many large reservoirs were created by 

high dams, such as the Indira Sagar Dam constructed in 2005, the Yeywa Dam 

constructed in 2010, and the Nam Ngum 2 Dam constructed in 2011. These new 

reservoirs had remarkably increased the regional surface water area (Figure 4.2b).  

 
Figure 4.2 Changes of surface water area across the globe. (a), Locations where 
surface water area had significantly changed during 1984–2017 at 0.01° grid cells. 
(b), Interannual variations and multi-decadal trends of regional surface water area 
during 1984-2017 at 5° tiles. 
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Regional surface water area had a small decrease in northern Caspian Sea region 

and a large decrease in the Aral Sea region (Figure 4.2b). The Aral Sea shrank from 

39,734 km2 in 1989 to 17,382 km2 in 2006 due to upstream water diversions for irrigation 

(Micklin, 2007) (Figure 4.3i). In Lake Baikal region, surface water area in all river 

channels and the Selenga River Delta had decreasing trends (Figure 4.3g). The flow of 

the Selenga River near its delta was greatly diminished during 1996–2015 because of 

reduced precipitation, especially during the summer (Frolova et al., 2017). Regional 

surface water area had a large decrease in southern Japan with decreasing grid cells 

clustering along the coastal areas (Figure 4.2b, Figure 4.3h). Over the past decades, 

urbanization in Japan has expanded into deltas, flood plains, and coastal plains 

(Yoshimura et al., 2005). Sea enclosing and land reclamation were the major reasons for 

surface water area decrease in Japanese coastal regions, such as Tokyo Bay, Osaka Bay, 

Ise Bay, and Hakata Bay (Figure 4.3h).  

In Europe, surface water area had significant decreasing trends in Novaya Zemlya 

Archipelago and Gulf of Bothnia, but significant increasing trends in lower Europe 

(Figure 4.2b, Figure 4.3). Grid cells with decreasing trends were clustered in the outlet 

glaciers in Novaya Zemlya Archipelago (Figure 4.3b), while the regional surface water 

area had a weak decreasing trend with strong temporal variations (Figure 4.2b). Most of 

the outlet glaciers were found to be retreating in recent decades due to global warming 

(Carr et al., 2014). Grid cells with decreasing trends were clustered at the shorelines of 

the Gulf of Bothnia (Figure 4.3j), resulting in a slight decrease in regional surface water 

area (Figure 4.2b). The decrease of coastal surface water area was likely caused by the 

Fennoscandian land uplift with a speed of up to 10 mm/year in some areas (Muller et al., 
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2012). Based on 13 Finnish tide gauges, the Finnish coast had an average rise of 5.3 

mm/year after subtracting sea level rise (Johansson et al., 2004), which cumulated in a 

total rise of ~180 mm over the last 34 years. Regional surface water areas in southern 

Europe showed a small increase along with some variations and data gaps (Figure 4.2b). 

The increasing grid cells had a relatively dense distribution in central France and where 

some new reservoirs have been constructed in the southwestern region of Spain and 

Portugal (Figure 4.3k), such as Alqueva Reservoir constructed in 2002 and Alange 

Reservoir constructed in 1990. 

In North America, surface water area significantly increased in northern 

Greenland, central North America, and the southeastern US, but significantly decreased 

in the western US and Great Lakes (Figure 4.2b, Figure 4.4). Grid cells with increasing 

trends were clustered in the outlet glaciers and the edges of ice sheet in northern 

Greenland while the regional surface water area increased dramatically in the last decade 

(Figure 4.2b, Figure 4.4b). Global warming has led to the melting of glaciers and an 

increase of surface meltwater (Fettweis, 2007). In the record melt years of 2010, 2012, 

and 2016 (van As et al., 2018), the surface area of supraglacial lakes expanded and new 

lakes formed at higher elevations (Fitzpatrick et al., 2014), which could have caused the 

peaks in regional surface water area (Figure 4.2b). A large number of grid cells with 

increasing trends were concentrated in central North America (Figure 4.4c). The increase 

in regional surface water area on Canada side was slow and steady while the increase on 

the US side was accompanied by multi-year, fluctuating cycles (Figure 4.2b). Regression 

models showed that precipitation was the major factor behind the water area increase in 

this region (Figure S4.8). Grid cells with increasing trends were scattered across the entire 
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eastern US and clustered in the Mississippi River Delta and the East Coast (Figure 4.4d). 

The increase of surface water area in the interior region was likely caused by precipitation 

according to regression models (Figure S4.8), while the increase in the Mississippi River 

Delta and the East Coast was caused by sea level rise (Ezer, 2013) and the reduction of 

sediment load due to dam construction (Blum and Roberts, 2009).  
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Figure 4.3 Zoom-ins of Figure 4.2a in Asia and Europe. (a), Locations of the zoom-
ins. (b), Novaya Zemlya Archipelago. (c), Tibetan Plateau. (d), Eastern China. (e), 
Middle western India. (f), Myanmar, Thailand, and Laos. (g), Lake Baikal region. 
(h), southern Japan. (i), Northern Caspian Sea and Aral Sea region. (j), Gulf of 
Bothnia. (k), Southern Europe. 
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Figure 4.4 Zoom-ins of Figure 4.2a in North America, South America, Africa, and 
Australia. (a), Locations of the zoom-ins. (b), Northern Greenland. (c), Central 
North America. (d), Southeastern US. (e), Western US.  (f), Great Lakes. (g), Central 
South America. (h), Lower Africa. (i), Northern Australia. (j), Southeastern 
Australia. 
 

Most of the large water bodies in western US shrank remarkably in the past 

decades (Figure 4.4e), forming decreasing trends in nine 5° tiles (Figure 4.2b). The 
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Western US has been a hotspot of water stress (Melillo et al., 2014). Drought and 

increased warming has caused water scarcity in the southwestern US, and changes in the 

timing of streamflow reduced summer water supply in the northwest (Melillo et al., 2014). 

Grid cells with decreasing trends were clustered at the edges of Great Lakes, especially 

the northern shores of Lake Huron, leading to a minor decrease in regional surface water 

area (Figure 4.2b, Figure 4.4f). Two major water-level lowering episodes occurred in 

Lake Michigan-Huron, Superior, and Erie in late 1980s and in 1997–2000, with low 

inflow, low precipitation, and high lake evaporation as the major reasons for the latter 

episode (Assel et al., 2004). The water level of Lake Superior and Erie recovered around 

2002 and 2005, respectively, while Lake Michigan-Huron did not recover by the end of 

2012 (Gronewold et al., 2013).  

In South America, we found variable increasing and decreasing trends of regional 

surface water area in the central region of this continent (Figure 4.2b). Grid cells with 

increasing trends were scattered across the region and were clustered in the newly 

constructed reservoirs, while grid cells with decreasing trends were concentrated in the 

Pantanal wetlands and most river channels (Figure 4.4g). While new reservoirs had 

created large surface water area in this region, they had also decreased surface water area 

in downstream rivers and reservoirs. The shrinkage of three large reservoirs in the lower 

reaches of the Paranaíba River (São Simão Reservoir, Itumbiara Reservoir, and 

Emborcação Reservoir, constructed before 1984) were likely related to the construction 

of nine large upstream reservoirs after 1993 (Figure 4.4g). Reservoir construction and 

canalization are among the top threats to Pantanal wetland (Junk and de Cunha, 2005). 
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In Africa, many grid cells with significant trends were concentrated at the edges 

of large lakes in the lower region of the continent, forming steady decreasing trends in 

the north and variable increasing trends in the south (Figure 4.2b, Figure 4.4h). Lake 

Rukwa had the largest decrease in surface water area in this region, which was mainly 

caused by water withdrawal from its tributary, the Katuma River, for rice irrigation (Elisa 

et al., 2010). The area of numerous water bodies in Lukanga Swamp Ramsar site had 

shrunk, which could be related to low rainfall, deforestation, and the expansion of 

agricultural activities (Chabwela et al., 2017). 

In Australia, grid cells in river channels and shorelines of northern Australia had 

increasing trends while grid cells in lakes, reservoirs, and river channels of southeastern 

Australia had decreasing trends (Figure 4.4i, j).  In southeastern Australia, we found 

smaller regional surface water area during the Millennium Drought (2001–2009) (Figure 

4.2b), a period with many years of below median rainfall (van Dijk et al., 2013). The peak 

of the regional surface water area in 2011 was related to a strong La Niña event during 

2010–2011 (Beard et al., 2011). 

4.3.3 Land water storage and surface water area 

Trend analysis of land water storage during 2002–2016 at 0.5° grid cells showed that, 

among the 71,000 grid cells across the globe, 18,000 had significant decreasing trends 

while 21,000 had significant increasing trends (Figure 4.5a). Surface water area had a 

significant positive relationship with land water storage in ~28% of the 52,000 half-

degree grid cells that have enough data for regression analysis (Figure 4.5b). Change of 

surface water area in these regions is a good indicator of land water storage dynamic.  
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Figure 4.5 Changes of land water storage and surface water area. (a), 15-year trends 

of land water storage (LWS) at 0.5° grid cells during 2002–2016. (b), Regression 

analysis with land water storage as dependent variable and surface water area 

(SWA) as independent variable at 0.5° grid cells during 2002–2016 (regression was 

not analyzed when data < 10 years). (c), Interannual variations and 15-year trends 

of land water storage and surface water area at 5° tiles during 2002–2016 (land 

water storage or surface water area was considered as no trend when data < 10 

years). 

 

The interannual variations and trends of both regional surface water area and land 

water storage at 5° tile from 2002 to 2016 revealed the consistent and divergent trends of 

surface and land water resources (Figure 4.5c). Consistent increasing trends of both 

regional surface water area and land water storage indicated a general increase of surface 

and land water resources in central North America, Scandinavia, central and northern 

Tibetan Plateau, central China, central South America, and eastern Australia (Figure 4.5c). 

In these regions, surface water area and land water storage had similar interannual 

variation patterns, suggesting that they might be driven by some common factors. For 

example, a progression from a dry to a wet period in central North America and eastern 
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Australia (Rodell et al., 2018), water level increase in surface water bodies and 

groundwater in Scandinavia (Wang et al., 2013), temperature and precipitation increase 

in Tibetan Plateau (Kuang and Jiao, 2016), reservoir construction in central China 

(Ministry of Water Resources, 2013), and the recovery from early period drought in 

central South America (Rodell et al., 2018). 

Consistent decreasing trends of both regional surface water area and land water 

storage indicated a general decrease of surface and land water resources in lower South 

America, the upper Red Sea surrounding region, and the Caspian Sea surrounding region 

(Figure 4.5c). Similar interannual variation patterns also existed in these consistent trends 

and could be driven by some common factors, such as ice-field melt and a progression 

from a wet to a dry period in lower South America (Rodell et al., 2018), a decline in 

groundwater and regional rainfall in upper Red Sea surrounding region (Fallatah et al., 

2017), and groundwater depletion, precipitation decline, and Caspian Sea decline in 

Caspian Sea surrounding region (Chen et al., 2017; Deng and Chen, 2017). 

Divergent trends with decreased land water storage but increased regional surface 

water area occurred in the edges of Greenland, a vast region of northern China, and the 

Indus Basin (Figure 4.5c). The Greenland ice sheet had a big decreasing rate in mass (-

279.0±23.2 Gt yr-1) because of melting during 2002–2016 (Rodell et al., 2018), and its 

meltwater expanded the supraglacial lakes (Fitzpatrick et al., 2014). In the vast arid and 

semiarid region of northern China, ground water pumping for food production was one 

of the major reasons of land water storage decrease in North China Plain (Rodell et al., 

2018), the Loess Plateau (Zhao et al., 2013), and the lower Mongolia Plateau (Zhang et 

al., 2018). Groundwater pumping for afforestation projects in the lower Mongolia Plateau 
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might have also contributed to the local decrease in land water storage (Zhang et al., 2018). 

The increased surface water area in northern China could be related to dam construction, 

water regulation, and water diversion projects (Ministry of Water Resources, 2013). The 

annual average runoff at lower reaches of Yellow River increased during 2003–2011 

because of water regulation and sediment flushing operations (Kong et al., 2015).  In the 

lower Mongolia Plateau, a government ecological water diversion project was carried out 

to recover rivers and lakes in the lower reaches of Heihe River since 2000 (Cheng et al., 

2014). In the Indus Basin region, land water storage decrease was caused by groundwater 

depletion (Rodell et al., 2018), while surface water area increase was caused by an 

increase in upstream rainfall (Laghari et al., 2012). 

Divergent trends with increasing land water storage but decreasing regional 

surface water area occurred in a few 5° tiles of eastern China and central Africa (Figure 

4.5c). The increase of land water resource in these regions could have been driven by 

changes in climate (Rodell et al., 2018) and anthropogenic activities, such as reservoir 

construction (Ministry of Water Resources, 2013). The decrease of surface water area in 

the coastal region of Zhejiang and Guangdong Provinces in eastern China was mainly 

caused by large-scale sea enclosing and land reclamation for the expansion of cities, ports, 

and industries (Wang et al., 2014). According to the reclamation plans approved by 

China’s State Council, Zhejiang and Guangdong Provinces will reclaim 506 and 230 km2 

of coastal area during 2011-2020, respectively (Wang et al., 2014). In central Africa, the 

decrease of regional surface water area in the southeastern Democratic Republic of the 

Congo was mainly caused by the shrinkage of Lake Mweru, Mweru-Wantipa, Upemba, 



103 

and Tanganyika (Figure 4.4h), while the decrease in Uganda was caused by the water-

level decline of Lake Kyoga, Victoria, and Albert (Moore and Williams, 2014). 

4.4 Conclusions and perspective 

Data gaps due to the incomplete Landsat data archive and bad weather remain the biggest 

challenge in the multi-decadal remote sensing analysis of surface water bodies (Pekel et 

al., 2016). Here we generated a new multi-decadal global surface water body dataset with 

more Landsat data input and relatively fewer data gaps compared with the JRC dataset 

(Figure S4.2). Compared with the JRC study, our algorithms are simple and easy to be 

sued in large scale studies. Moreover, our dataset has a longer study period (1984–2017 

vs 1984–2015) and a bigger spatial extent (60°S–85°N vs 60°S–78°N), which is more 

suitable for time series trend analysis. To avoid the bias of data gaps, change analysis in 

this study was based on the common regions with valid observations across all selected 

years. Through this strategy, locations where surface water area had significantly changed 

in the past decades were provided in 0.01° grid cells, while the interannual variations and 

multi-decadal trends of regional surface water area were shown in 5° tiles globally. This 

study carried out a joint analysis of surface water area and land water storage at 5° tiles 

across the globe for the first time. The consistent and divergent trends between surface 

and land water resources, driven by climate and anthropogenic activities, were revealed. 

Global population is projected to increase from 7.6 billion in 2017 to ~10 billion in 2050 

(DESA, 2017), which will further aggravate water scarcity, stress the environment, and 

threaten global biodiversity. The unprecedented spatial and temporal details of global 

water resource dynamics, uncovered by this study, are useful in water resource research, 
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planning, and management in coping with water scarcity and food security associated 

with population growth. 

Supplementary materials 

 

Figure S4.1 Landsat data used for water mapping. (a), Number of Landsat images 

from different satellites (Landsat 5, 7, and 8) in each year. (b), Number of 8-days 

with good observations at 30-m pixel scale. (c), Number of 30-m pixels with different 

good observations. 
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Figure S4.2 Water body maps of eastern Asia from OU and JRC datasets in 1997 

and 1998. (a), OU water body map of 1997. (b), JRC water body map of 1997.  (c), 

OU water body map of 1998. (d), JRC water body map of 1998. JRC water body 

maps in 1997 and 1998 did not captured water bodies in large regions of eastern 

Asia because no Landsat data in these regions when they carried out the research. 
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Figure S4.3 Algorithm development. (a), Landsat tiles selected. (b), Frequency 

distribution of (mNDWI-EVI) for water and non-water sampling pixels. (c), 

Frequency distribution of (mNDWI-NDVI) for water and non-water sampling 

pixels. (d), Frequency distribution of EVI and NDVI for water sampling pixels. 

Scatter density plots for all sampling pixels of EVI vs (mNDWI-EVI) (e), EVI vs 

(mNDWI-NDVI) (f), NDVI vs (mNDWI-EVI) (g), and NDVI vs (mNDWI-NDVI) 

(h). 
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Figure S4.4 Validation. (a), Validation pixel distribution. (b), Validation against 

pure water and non-water reference pixels only. (c), Validation against all reference 

pixels (mixed pixels with water percentage > 50% were classified as water pixels, 

while ≤ 50% were classified as non-water pixels). 
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Figure S4.5 Diagram of interannual variation and multi-decadal trend analysis of 

surface water area. TMP, Num., Max., Obs., and Freq. are short for temperature, 

number, maximum, observation, and frequency, respectively. 
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Figure S4.6 Non-frozen months and months with good observations. (a), Number of 

months in a year with an average surface temperature > 0 °C . (b), Number of 

months in a year with good observations. Monthly average surface temperature was 

defined as the mean of the same month across 2000–2017. 
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Figure S4.7 Data used in the variation and trend analysis. (a), Number of years 

selected in multi-decadal trend analysis of 0.01° grid cells. (b), Percentage of 

maximum annual water body extent within 5° tile selected in interannual variation 

and trend analysis (The number of years selected in variation and trend analysis 

was the same as the number of years included in regression models, which was 

shown in Figure S4.8a). 
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Figure S4.8 Multiple stepwise regression models. (a), Number of years with regional 

surface water area data to build regression models. (b), R squares of regression 

models. (c), Coefficients of factor annual average precipitation. (d), Coefficients of 

factor annual average temperature.   
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Table S4.1 Distribution of 157 sampling blocks 

Terrain Major land cover DEM range Satellite 

Day range  

with very high-

resolution image 

Type Num. Type Num. Range Num. Type Num. Range Num. 

Rolling 60 Vegetation 121 <100 61 L5 50 0 7 

Flat 97 Crop 10 [100,500) 56 L7 33 [1-5) 40 

  Urban 10 [500,1000) 18 L8 74 [5-10) 40 

  Bare land 16 [1000,2000) 17   [10,15) 43 

    [2000,3000) 3   [15,27] 20 

    [3000,4000) 0     

    [4000,5000) 2     

Sum 157  157  157  157  150 

DEM is short for digital elevation model. Seven sampling blocks close to North Pole have 

no very-high resolution image as reference, visual delineation in these sampling blocks 

was based on Landsat image itself. 

 

 

Table S4.2 Confusion Matrix of algorithm development 

 

 

 

 Ground Reference pixels 

Sum  

 

User accuracy 

(%) Water Non-water  

Water 697,812 19,158 716,970 97.33% 

Non-water 12,100 912,391 924,491 98.69% 

Sum  709,912 931,549 1,641,461 OA=98.10% 

Producer accuracy (%) 98.30% 97.94%  Kappa = 0.9613 

 

 

 

 

 

 

 



113 

Table S4.3 Distribution of Landsat validation pixels 

                  Satellite                      Year 

Satellite Num. Year range Num. 

Landsat 5 15444 <1990 3708 

Landsat 7 13436 [1990-1995) 3908 

Landsat 8 5360 [1995-2000) 3820 

  [2000-2005) 4824 

  [2005-2010) 4912 

  [2010-2015) 8648 

  ≥2015 4420 

Sum 34240 Sum 34240 

 

Table S4.4 Maximum water body extent and water body areas by country 

Country 

Maximum water 

body extent/area 

(km2) 

2017 

valid observation 

area percentage 

2017 

annual water body area 

(Freq. ≥0.25, km2) 

2017 

annual water body 

area 

(Freq. ≥0.5, km2) 

2017 

annual water body 

area 

(Freq. ≥0.75, km2) 

Canada 1489811 0.98 1172263 1049350 966443 

Russian Federation 939405 0.96 574406 455270 387537 

United States 508551 0.98 376405 336108 310690 

China 380532 0.95 185602 147731 124694 

Brazil 178116 0.96 120449 108150 90020 

Greenland 174830 0.98 124038 85954 60091 

India 132180 0.97 63100 41652 26946 

Kazakhstan 129393 1.00 76107 63880 58957 

Argentina 127725 0.98 65996 50114 40061 

Australia 108340 1.00 43034 30341 22742 

Tanzania 64150 1.00 58812 57729 56526 

Chile 49420 0.86 20510 14706 12855 

Congo DRC 45514 1.00 41519 40450 38596 

Sweden 44524 0.97 38562 35831 33368 

Indonesia 44334 0.92 22938 18145 13776 

Mongolia 43990 0.98 18868 14432 13833 

Pakistan 43054 0.92 14225 8220 4647 

Bolivia 41785 0.84 18902 16924 14991 

Iran 41042 1.00 13393 8443 5954 

Uganda 37661 1.00 37089 36893 36560 

Vietnam 36613 0.99 16143 8568 5466 

Uzbekistan 36532 1.00 16088 13570 11962 

Finland 36445 0.97 31775 30150 28654 
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Bangladesh 35343 1.00 15996 10539 5076 

Iceland 33407 0.90 23046 15235 8505 

Norway 31940 0.90 21726 17627 15106 

Mexico 29288 1.00 17956 14609 11630 

Peru 28290 0.94 18230 16421 13820 

Malawi 24947 1.00 24249 24167 23805 

Cambodia 24498 1.00 10248 5537 4102 

Thailand 23824 1.00 12164 7430 5679 

Zambia 23754 1.00 14206 12884 12375 

Myanmar 22955 0.99 11424 8163 6270 

Venezuela 22600 0.99 15500 12671 10361 

Colombia 21645 0.97 13859 11641 9117 

Turkey 19801 0.97 13346 12117 11414 

Afghanistan 17019 0.94 4071 1552 854 

Iraq 17000 1.00 6814 5220 4385 

Tajikistan 16370 0.81 6587 3422 2271 

Ukraine 15917 0.99 11790 10986 10276 

Kyrgyzstan 15764 0.87 10554 8319 7496 

Mozambique 15705 1.00 12465 11687 11116 

Kenya 13340 1.00 12278 12015 11806 

Ethiopia 12282 1.00 8865 8000 7336 

Japan 12023 0.98 4567 3712 3191 

Egypt 12022 1.00 7921 7236 6408 

Nigeria 11559 0.92 5533 4355 3476 

Philippines 11021 0.97 5616 4775 3973 

Turkmenistan 10852 1.00 7046 6314 5552 

North Korea 10311 1.00 2689 1551 1249 

Mali 10293 1.00 3868 2550 1341 

Nicaragua 10292 0.99 9598 9415 9239 

New Zealand 9434 0.90 5634 4823 4344 

Madagascar 9261 1.00 4057 2917 2223 

Paraguay 8712 1.00 5389 4705 4424 

South Africa 8675 1.00 4698 3949 3343 

Ghana 8285 1.00 6189 5857 5407 

Namibia 8093 1.00 1984 816 485 

Angola 7721 0.97 1953 1400 1069 

Papua New Guinea 7471 0.87 4391 3732 2839 

Sudan 7354 1.00 5256 4353 3307 

Chad 6734 1.00 3112 2216 1691 
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Ecuador 6618 0.89 3988 3276 2346 

France 6503 0.95 4063 3271 2614 

South Korea 6367 1.00 1993 1511 1220 

Botswana 6284 1.00 4120 2909 1496 

Italy 6090 0.92 3136 2797 2532 

Uruguay 6033 1.00 4535 4180 3970 

Germany 5936 0.97 4383 3921 3493 

Spain 5875 0.99 3235 2423 1972 

Romania 5619 0.96 3207 2927 2706 

Malaysia 5609 0.99 3523 3014 2599 

United Kingdom 5432 0.96 3415 2828 2324 

Poland 5312 0.97 4168 3664 3233 

Algeria 5036 1.00 1699 1084 651 

Zimbabwe 5016 1.00 4398 4152 3912 

Cuba 4856 1.00 3428 2827 2345 

Nepal 4615 0.84 1229 552 296 

Belarus 4589 0.99 2608 2053 1812 

Cameroon 4485 0.96 3080 2561 2050 

Bahamas 4381 1.00 3404 2835 2345 

Congo 3766 0.97 2851 2615 2276 

Laos 3762 1.00 3141 2838 2541 

Senegal 3741 1.00 1664 962 473 

South Sudan 3356 1.00 1366 946 497 

Azerbaijan 3180 0.96 1684 1218 942 

Saudi Arabia 2726 1.00 1028 584 367 

Suriname 2715 0.92 2099 1944 1756 

Tunisia 2684 1.00 1535 980 715 

Greece 2542 0.98 1830 1683 1547 

Estonia 2492 1.00 2262 2186 2132 

Sri Lanka 2439 1.00 1305 1022 741 

Mauritania 2377 1.00 862 459 230 

Switzerland 2279 0.82 1598 1515 1460 

Ireland 2231 0.95 1483 1300 1123 

Guyana 2220 0.83 1067 892 744 

Morocco 2212 1.00 947 726 578 

Niger 2204 1.00 741 467 213 

Hungary 2121 0.99 1491 1371 1256 

C??te d'Ivoire 2110 0.82 1328 1152 886 

Burundi 2090 1.00 2058 2053 2045 
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Austria 1973 0.78 857 721 655 

Syria 1899 1.00 1286 1124 1025 

Armenia 1692 0.98 1409 1358 1330 

Rwanda 1631 1.00 1577 1561 1532 

Georgia 1592 0.72 545 372 267 

Bhutan 1587 0.69 262 111 64 

Honduras 1568 1.00 1037 917 768 

Bulgaria 1508 0.97 1001 929 855 

Latvia 1482 0.99 1209 1053 905 

Burkina Faso 1466 1.00 918 720 450 

Lithuania 1425 0.96 1177 1033 897 

Netherlands 1420 0.98 1125 973 832 

Portugal 1389 1.00 873 699 579 

Central African 

Republic 1361 1.00 1104 945 703 

Guinea 1260 1.00 606 350 154 

Denmark 1195 0.99 1062 954 869 

Serbia 1189 0.97 838 766 695 

Oman 1157 1.00 353 192 138 

Guinea-Bissau 1122 1.00 507 276 143 

Libya 1116 1.00 598 354 253 

Panama 1045 0.98 783 664 504 

Guatemala 1040 1.00 680 582 494 

Croatia 1009 0.99 670 557 488 

Falkland Islands 984 0.99 578 486 374 

Albania 934 0.98 704 655 608 

Somalia 926 1.00 302 224 159 

Czech Republic 900 0.96 653 582 511 

Eritrea 852 1.00 391 297 207 

Gabon 849 0.85 639 606 536 

Dominican Republic 809 0.99 622 590 555 

Belize 808 1.00 565 496 451 

Sierra Leone 752 0.94 411 280 160 

United Arab 

Emirates 750 1.00 321 207 138 

Jordan 711 1.00 557 499 485 

French Guiana 706 0.42 249 229 201 

Moldova 671 1.00 425 379 330 

The Former 

Yugoslav Republic 

of Macedonia 608 0.99 540 530 519 

Yemen 608 1.00 333 269 214 

Israel 606 1.00 516 502 485 
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Bosnia and 

Herzegovina 601 0.97 322 276 231 

Slovakia 598 0.88 346 302 274 

French Southern 

Territories 502 0.97 192 153 133 

Costa Rica 501 0.97 319 269 210 

Haiti 488 1.00 336 306 275 

Turks and Caicos 

Islands 476 0.92 330 267 202 

Montenegro 471 0.98 352 296 276 

El Salvador 467 1.00 386 340 267 

Djibouti 461 1.00 225 190 153 

Gambia 426 1.00 204 135 89 

Canarias 399 0.99 206 151 116 

Benin 389 0.93 196 168 134 

Belgium 359 0.99 197 148 114 

Solomon Islands 320 0.95 259 243 207 

Togo 320 0.96 206 160 110 

New Caledonia 301 1.00 183 152 125 

Svalbard 300 1.00 146 93 75 

Kuwait 278 1.00 129 76 41 

Palestinian Territory 247 1.00 221 220 219 

Liberia 219 0.62 82 50 20 

Lesotho 208 0.99 89 59 44 

Fiji 199 0.99 158 141 110 

Slovenia 198 0.89 88 58 45 

Qatar 175 1.00 76 56 45 

Timor-Leste 157 1.00 62 39 29 

Puerto Rico 145 0.99 110 97 83 

Singapore 120 0.95 27 24 20 

Swaziland 108 1.00 58 51 43 

Kiribati 104 0.96 84 81 77 

Jamaica 103 1.00 72 63 54 

Cabo Verde 102 0.99 69 60 47 

Cyprus 96 0.97 57 47 39 

Bahrain 77 1.00 17 13 10 

South Georgia and 

South Sandwich 

Islands 74 0.65 28 24 21 

Trinidad and Tobago 61 0.89 34 30 23 

Brunei Darussalam 58 1.00 36 30 22 

Lebanon 50 0.98 27 21 18 

Vanuatu 49 0.98 42 38 30 

Bonaire 47 1.00 42 40 38 
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French Polynesia 43 0.92 28 25 21 

Antigua and Barbuda 36 0.97 26 24 21 

Comoros 34 0.99 22 19 15 

R??union 31 0.99 19 16 14 

Guadeloupe 31 0.99 21 19 15 

Equatorial Guinea 30 0.62 12 9 4 

British Virgin Islands 30 0.99 24 22 19 

US Virgin Islands 27 0.98 19 17 14 

Seychelles 24 1.00 17 16 13 

Samoa 23 0.98 19 17 15 

Curacao 22 1.00 16 14 11 

Martinique 21 1.00 14 13 8 

Mauritius 19 0.89 15 14 13 

Azores 19 0.97 15 14 12 

Saint Lucia 17 1.00 14 12 9 

Saint Pierre and 

Miquelon 17 0.99 14 13 11 

Grenada 15 0.99 9 8 6 

Bermuda 14 0.99 12 11 10 

Cayman Islands 14 1.00 10 8 6 

Isle of Man 14 0.95 9 7 4 

Saint Martin 13 1.00 11 11 9 

Malta 13 0.99 10 9 8 

Andorra 13 0.89 4 1 1 

Luxembourg 13 0.98 9 7 5 

Mayotte 12 1.00 11 10 8 

Guernsey 11 0.98 9 8 5 

Saint Vincent and the 

Grenadines 11 1.00 8 8 5 

Saint Kitts and Nevis 11 0.98 9 8 7 

Glorioso Islands 10 0.98 6 4 3 

Sint Maarten 10 1.00 8 8 7 

Anguilla 9 1.00 8 7 7 

Dominica 9 0.90 6 6 4 

Palau 8 1.00 7 6 5 

Aruba 6 1.00 5 5 4 

Saint Barthelemy 6 1.00 5 5 5 

Jersey 6 0.88 4 3 2 

Tonga 5 1.00 5 5 4 

Liechtenstein 4 0.76 2 2 1 

Montserrat 4 1.00 1 1 1 
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Barbados 4 0.84 3 2 2 

Guam 4 0.96 3 3 2 

Northern Mariana 

Islands 4 0.99 3 3 2 

Saint Eustatius 3 1.00 3 3 3 

Maldives 2 1.00 2 2 2 

Martinique 2 1.00 1 1 1 

Madeira 1 0.98 1 1 1 

Saba 1 1.00 1 1 0 

Gibraltar 1 1.00 0 0 0 

Tuvalu 1 1.00 1 0 0 

United States Minor 

Outlying Islands 1 1.00 1 1 0 

Monaco 1 1.00 0 0 0 

San Marino 0 0.95 0 0 0 

British Indian Ocean 

Territory 0 0.91 0 0 0 

Vatican City 0 1.00 0 0 0 

American Samoa 0 0.00 0 0 0 

Bouvet Island 0 0.00 0 0 0 

Heard Island and 

McDonald Islands 0 0.00 0 0 0 

Nauru 0 0.00 0 0 0 

Norfolk Island 0 0.00 0 0 0 

Christmas Island 0 0.00 0 0 0 

Cocos Islands 0 0.00 0 0 0 

Saint Helena 0 0.00 0 0 0 

Sao Tome and 

Principe 0 0.00 0 0 0 

Pitcairn 0 0.00 0 0 0 

Clipperton 0 0.00 0 0 0 

Cook Islands 0 0.00 0 0 0 

Niue 0 0.00 0 0 0 

Tokelau 0 0.00 0 0 0 

Wallis and Futuna 0 0.00 0 0 0 

Asian very small 

islands 0 0.00 0 0 0 

Marshall Islands 0 0.00 0 0 0 

Micronesia 0 0.00 0 0 0 

Faroe Islands 0 0.00 0 0 0 

Jan Mayen 0 0.00 0 0 0 

Juan De Nova Island 0 0.00 0 0 0 
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Chapter 5: The potential of time series Landsat and Sentinel-2 images for 

estimating chlorophyll-a content of open surface water bodies 

Abstract  

Algal blooms and the associated algal toxins, fish death and decrease of water quality 

have become a problem in Oklahoma, affecting the tourism industry, drinking water 

safety, and aquatic ecosystems. Chlorophyll-a concentration is an important indicator of 

algal blooms and water quality. However, field sampling and lab measurement of 

chlorophyll-a content is time-consuming and costly. Here, we evaluate the potential of 

time series Landsat and Sentinel 2 images for chlorophyll-a concentration estimation. 

Multiple stepwise regression analysis was used to explore the relationships between 

chlorophyll-a measurement and surface reflectance of satellite images. Regression 

models of Landsat data showed various performance in different water bodies across 

Oklahoma, with relatively good performance in Eufaula Lake, Keystone Lake, Copan 

Lake, Hugo Lake, Foss Reservoir, and Atoka Reservoir. The brightness temperature band 

of Landsat images was selected in one third of chlorophyll-a estimation models, 

indicating that temperature is among the most important factors of algal bloom in 

Oklahoma. The Red Edge 2 band of Sentinel 2 image showed great potential in 

chlorophyll-a estimation among different water sampling sites and water bodies across 

Oklahoma. Chlorophyll-a estimation using Landsat 5/7/8 and Sentinel 2 satellite images 

can serve as a supplement to the expensive in-situ field measurement in some lakes and 

reservoirs of Oklahoma. 
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5.1 Introduction 

Chlorophyll-a concentration is one of the most important indicators of water quality. 

Oklahoma Water Resource Board uses the Carlson’s Trophic State Index (TSI), derived 

from Chlorophyll-a concentration (Carlson, 1977), to represent the trophic status in lakes, 

reservoirs, and major rivers. According to the 2015 Oklahoma Lake Report of the 

Beneficial Use Monitoring Program (OWRB, 2015), during 2014–2015, six lakes 

(including Lake Thunderbird) were hypereutrophic (TSI ≥ 61) and 22 lakes were 

eutrophic (60 ≥ TSI ≥ 51), covering 7% and 88% of the total water bodies sampled, 

respectively. Harmful algal blooms are likely to occur in eutrophic and hypereutrophic 

lakes, which might cause fish mortality, jeopardize drinking water quality, and cause 

health problems. The invasive, toxigenic golden alga (Prymnesium parvum) is dispersed 

throughout the Lake Texoma with algal blooms and fish kills happening in specific parts 

of the lake (Hambright et al., 2010). The United States Army Corps of Engineers 

(USACE) had issued a warning of exposure to blue-green algal toxins (blue-green algae 

> 100,000 cells mL-1) in many areas of Lake Texoma during Aug.25-31, 2011. According 

to the Grand River Dam Authority, Grand Lake experienced a harmful algal bloom event 

in the summer of 2010 and a lake-wide cyanobacteria monitoring program has been 

established since then.  

While lab measurement of Chlorophyll-a concentration using water samples 

collected from the field can get the accurate results, this approach is time consuming and 

expensive. Thus, the Beneficial Use Monitoring Program collects water samples from the 

same sampling site in every year or every two to three years. This strategy might miss the 

algal blooms and fail to capture the seasonality of Chlorophyll-a concentration. Landsat 
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satellites scan the entire earth in every 16 days since 1980s while Sentinel 2 satellites scan 

the entire earth in every 10 days since Jun. 2015. If robust relationships can be found 

between chlorophyll-a field measurements and satellite remote sensing data, we can 

estimate chlorophyll-a concentration directly using Landsat and Sentinel 2 images. 

Satellite-image based water quality detection has the potential to provide Chlorophyll-a 

concentration information of the entire state in high temporal frequencies and spatial 

resolution, which could provide an alternative and supplement to the expensive in-situ 

water sample collection and lab measurement. 

Landsat images have been used to quantify water chlorophyll-a concentration in 

previous studies (Dall'Olmo et al., 2003; O'Reilly et al., 1998). Compared with Landsat 

images, Sentinel 2 images have four additional red edge bands, designed to capture the 

reflectance of green vegetation and chlorophyll. Therefore, sentinel 2 images have the 

potential of chlorophyll-a estimation. Chlorophyll-a estimation algorithms can be 

different across different lakes, regulated by different optical properties, such as turbidity, 

suspended solids, and colored dissolved organic matter (Matsushita et al., 2015). For clear 

water, remote sensing reflectance at blue and green bands were used to estimate 

chlorophyll-a because they have a high signal-to-noise ratio at the first absorption peak 

of chlorophyll-a (O'Reilly et al., 1998). For turbid water, the red and near-infrared bands 

can better estimate chlorophyll-a concentration because they can provide a sufficient 

signal-to-noise ratio at the second absorption peak of chlorophyll-a (Dall'Olmo et al., 

2003). However, if the water body contains significant amount of suspended solids and 

colored dissolved organic matters, chlorophyll-a estimation algorithms could be very 

different (Matsushita et al., 2015). This study aims to explore the potential of Landsat 
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5/7/8 and Sentinel 2 surface reflectance images in chlorophyll-a estimation at various 

Oklahoma lakes. 

5.2 Materials and methods 

5.2.1 Data.  

We received 11,851 chlorophyll-a concentration field measurement records from 

Oklahoma Water Resource Board. These measurements were taken from the major lakes, 

reservoirs, and rivers during 2002–2016 by the Beneficial Use Monitoring Program in 

Oklahoma Water Resource Board. Most of the water samples were collected from ~0.5m 

depth. There were 908 water sample collection sites, distributing across the entire 

Oklahoma.  

For each chlorophyll-a measurement record, its geographic coordinates of water 

sampling site were added to google earth engine. The pixel at the water sampling site was 

extracted from a Landsat image (Table 5.1), which has the closest acquisition date to the 

water sampling date compared to other Landsat images. In similar approach, a pixel was 

also extracted from a Sentinel 2 image (Table 5.1). Out of the 11,851 chlorophyll-a 

measurement records, we successfully extracted 11,369 Landsat pixels, of which 4938 

were from Landsat 5, 5507 were from Landsat 7, and 924 were from Landsat 8. About 

7% (816) of the extracted Landsat pixels were acquired by the satellites within 1 day of 

the field water sample collection, while ~80% (9082) of the extracted Landsat pixels were 

acquired by the satellites within 10 days of the field water sample collection (Table 5.2). 

In similar approach, we successfully extracted 176 Sentinel 2 pixels, of which 19% (34) 

were acquired by the satellites within 10 days of the field water sample collection. There 

were much less Sentinel 2 pixels because Sentinel 2A satellite was launched in Jun. 2015 
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and only a small portion of the chlorophyll-a measurements were acquired after that. In 

comparison, there are two Landsat satellites at work in most of the chlorophyll-a 

measurement period (2002–2016). 

Table 5.1 Band name and wavelength of Landsat 5/7/8 and Sentinel 2 images. 

Landsat 5/7 Landsat8 Sentinel 2A 

Band name Wavelength 

(μm) 

Band name Wavelength 

(μm) 

Band name Wavelength 

(μm) 

B1 (blue) 0.45-0.52  B1 (ultra-blue) 0.435-0.451  B1 (Aerosols) 0.4292-0.4562 

B2 (green) 0.52-0.60  B2 (blue) 0.452-0.512 B2 (blue) 0.4434-0.5414 

B3 (red) 0.63-0.69  B3 (green) 0.533-0.590  B3 (green) 0.5373-0.5823  

B4 (near 

infrared) 

0.77-0.90  B4 (red) 0.636-0.673 B4 (red) 0.6456-0.6836 

B5 (shortwave 

infrared 1) 

1.55-1.75 B5 (near 

infrared) 

0.851-0.879 B5  

(red edge 1) 

0.6946-0.7136 

B6 (brightness 

temperature) 

10.40-12.50 B6 (shortwave 

infrared 1) 

1.566-1.651 B6  

(red edge 2) 

0.7315-0.7495 

B7 (shortwave 

infrared 2) 

2.08-2.35  B7 (shortwave 

infrared 2) 

2.107-2.294 B7  

(red edge 3) 

0.7688-0.7968 

  B10 (brightness 

temperature 1) 

10.60-11.19 B8 (near 

infrared) 

0.7603-0.9053 

  B11 (brightness 

temperature 2) 

11.50-12.51 B8A  

(red edge 4) 

0.8482-0.8812 

    B11 (shortwave 

infrared 1) 

1.5422-1.6852 

    B12 (shortwave 

infrared 2) 

2.0814-2.3234 
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Table 5.2 Satellite and day range of the extracted Landsat pixels 

Satellite 
Day range between satellite image and 

chlorophyll-a measurement 

Type Num. Range (day) Num. 

L5 4,938 0 816 

L7 5,507 [1-5] 5,837 

L8 924 [6-10] 2,429 

  [11,15] 1,107 

  [16,20] 614 

  [21, 25] 233 

  [25, 30] 143 

  [31,94] 190 

Sum 11,369 Sum 11,369 

 

5.2.2 Regression analysis with Landsat data 

Chlorophyll-a concentration associated with algal blooms changes across the seasons, 

affected by nutrients, temperature, sunlight, water chemistry, etc. Thus, satellite pixels 

acquired closer with the chlorophyll-a field measurement date could better represent the 

actual chlorophyll-a concentration. This study classified the chlorophyll-a measurements 

with a corresponding satellite pixel within 10 days as measurements qualified for further 

analysis. Out of the 908 water sampling sites, 768 have at least one qualified 

measurement. There were 420 water sampling sites that have at least 10 qualified 

measurements and only these sites were included into the stepwise multiple regression 

analysis in MATLAB R2014 a. 

5.2.3 Regression analysis with Sentinel 2 data 

Considering there were only 34 chlorophyll-a field measurements with corresponding 

satellite pixels within 10 days (Figure 5.1). We included these 34 measurements, from 

different water sampling sites across Oklahoma, into the multiple regression models 

with all the reflectance bands of Sentinel 2 pixels as potential factors (Table 5.1).  
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Figure 5.1 Locations of 34 chlorophyll-a measurements. Each measurement has a 

corresponding Sentinel 2 image pixel within 10 days. 

 

5.3 Results and discussion 

5.3.1 Chlorophyll-a estimation using Landsat data 

Among the 420 water sampling sites qualified for stepwise multiple regression analysis, 

only 165 successfully built the regression models. Nine (5%) regression models had R 

squares <0.25, 77 (47%) had R squares between 0.25 and 0.5, 53 (32%) had R squares 

between 0.5 and 0.75, and 26 (16%) had R squares >0.75 (Figure 5.2, Table S5.1). The 

performance of regression models varies substantially across Oklahoma, with relatively 

good performance in Eufaula Lake, Keystone Lake, Copan Lake, Hugo Lake, Foss 

Reservoir, and Atoka Reservoir. The performance even varies across different water 

sampling sites within a lake. For example, model performance in northern Grand Lake 

and southern Oologah Lake was much better than the other portions of these two lakes. 

For different water sampling sites, the significant influencing bands selected by the 
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multiple stepwise regression models were also different (Table S5.1). Among the 165 

multiple regression models, blue band was selected by 24 models, green band 31 models, 

red band 36 models, Near infrared band 34 models, Shortwave infrared-1 band 38 models, 

brightness temperature band 51 models, and shortwave infrared-2 band 21 models. These 

phenomena were likely caused by the difference in nutrients, temperature, suspended 

matters, and water chemistry (Matsushita et al., 2015) among different water bodies 

across Oklahoma. However, the specific influencing factors of chlorophyll-a 

concentration in each water body of Oklahoma remains unknown. Further studies will be 

required to solve this problem. It is worth to mention that brightness temperature band 

was included in about one third of all the regression models, more than any other bands, 

indicating that water temperature is one of the most important factors of algal bloom in 

Oklahoma and that this band has great potential in water chlorophyll-a estimation. 

 
Figure 5.2 R squares of multiple stepwise regression models. 768 water sampling 

sites across the entire Oklahoma. 
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5.3.2 Chlorophyll-a estimation using Sentinel 2 images 

A regression model was built using chlorophyll-a measurement and sentinel 2 data 

(Equation 5.1). Only the reflectance of Red Edge-2 band (Table 5.1) was selected by 

stepwise regression model. The R square of the regression model is 0.313, standard error 

of the estimate is 5.85, and the F value is 14.61 (P=0.001).  

Chol. A = 372.392 × 𝜌𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 2 − 3.617               (Equation 5.1) 

Where Chol. A is Chlorophyll-a concentration (mg/m3), 𝜌𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 2  is surface 

reflectance of Red Edge 2 band (0.7315-0.7495 μm). 

The model performance is not very good (R2 =0.313), which is likely affected by 

the various water optical properties among the different water sampling sites and different 

lakes across Oklahoma (Figure 5.1). On the other hand, the Red Edge-2 Band showed 

significant linear relationships with chlorophyll-a concentration across different water 

bodies, indicating its great potential in chlorophyll-a content estimation. 

5.4 Conclusions and perspective 

Thousands of chlorophyll-a field measurements were used to evaluate the potential of 

Landsat 5/7/8 and Sentinel 2 images in chlorophyll-a estimation. Regression models were 

built in 165 water sampling sites with at least 10 measurements that have corresponding 

satellite data within 10 days. Regression models have various performance among 

different water sampling sites and water bodies across Oklahoma, with relatively good 

performance in Eufaula Lake, Keystone Lake, Copan Lake, Hugo Lake, Foss Reservoir, 

and Atoka Reservoir. The brightness temperature band of Landsat images was selected 

by one third of the regression models, indicating its great potential in chlorophyll-a 

estimation. It also indicates that temperature is one of the most important factors of algal 
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bloom in Oklahoma. The Red Edge-2 band of Sentinel 2 was selected as the only 

significant factor in the regression model built using 43 chlorophyll-a measurements from 

different water bodies across Oklahoma. This indicated the great potential of Red Edge 2 

band in chlorophyll-a estimation. Sentinel 2A was launched in Jun. 2015 and Sentinel 2B 

was launched in Mar. 2017. There were only a few Sentinel 2A images overlapped with 

the chlorophyll-a field measurement data, collected during 2002-2016. The potential of 

Sentinel 2 data in chlorophyll-a estimation was not well evaluated because of the limited 

satellite images in our study period.  

 

Supplementary materials 

Table S5.1 Multiple stepwise regression models of 165 sampling sites. 

ID Num. R2 P Inter. Blue Green Red NearIn ShortIn1 TemC ShortIn2 

1 51 0.08 0.040 30.54 -298.93       

2 81 0.09 0.007 4.64      0.94  

3 85 0.22 0.000 10.66  -187.55    1.12  

4 20 0.22 0.039 2.82     60.61   

5 19 0.22 0.042 10.25     436.35   

6 35 0.23 0.004 -1.04   469.85     

7 46 0.23 0.003 5.78     -216.88 1.58  

8 20 0.24 0.030 3.00     99.93   

9 17 0.24 0.048 36.92       -840.22 

10 16 0.25 0.048 25.06   -267.89     

11 16 0.25 0.048 7.83      -0.04  

12 17 0.25 0.039 8.45       663.43 

13 18 0.25 0.033 12.84     614.41   

14 16 0.26 0.045 37.72 -507.59       

15 17 0.26 0.037 2.01     75.60   

16 19 0.26 0.024 10.46      -0.04  

17 17 0.26 0.035 0.87      0.15  

18 19 0.27 0.024 59.37   -480.68     

19 16 0.27 0.038 23.88   -162.89     

20 15 0.27 0.045 14.82 -172.77       
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21 84 0.28 0.000 54.39 -751.93 -347.60  735.15    

22 17 0.28 0.030 3.95      0.01  

23 86 0.28 0.000 45.53  -501.63   457.89   

24 16 0.29 0.030 15.06   -80.80     

25 16 0.30 0.028 73.52   -575.11     

26 17 0.30 0.022 15.00 -169.46       

27 14 0.31 0.038 6.18     500.79   

28 14 0.32 0.036 21.38      -0.06  

29 13 0.33 0.039 3.56    113.52    

30 32 0.34 0.003 33.92  -428.91  315.67    

31 16 0.34 0.018 5.81      -0.04  

32 12 0.35 0.044 24.14 -223.72       

33 18 0.35 0.010 35.48 -414.20       

34 15 0.36 0.019 66.68    -862.70    

35 16 0.36 0.014 7.59     516.27   

36 34 0.36 0.001 27.85   -369.86  292.04   

37 17 0.37 0.010 26.73      -0.19  

38 13 0.37 0.028 26.32    -382.82    

39 18 0.37 0.007 -1.40    346.81    

40 16 0.37 0.012 63.72 -940.70       

41 19 0.37 0.005 0.58   70.59     

42 13 0.38 0.026 -0.06      0.65  

43 13 0.38 0.026 13.88      -0.07  

44 14 0.38 0.018 12.06       549.30 

45 17 0.39 0.007 0.05      0.41  

46 11 0.39 0.039 63.44 -1007.45       

47 20 0.39 0.014 7.52  -91.91   153.47   

48 12 0.39 0.029 10.36      -0.06  

49 11 0.39 0.038 0.14      1.08  

50 15 0.40 0.012 30.08 -283.59       

51 18 0.40 0.005 2.68      -0.02  

52 13 0.40 0.020 10.43     264.93   

53 13 0.40 0.020 38.47   -319.28     

54 13 0.40 0.020 59.64  -616.21      

55 14 0.40 0.015 1.35     168.50   

56 19 0.41 0.003 -0.35    257.45    

57 27 0.41 0.002 7.70 -129.10   237.60    

58 11 0.41 0.034 10.52       -101.13 

59 14 0.41 0.013 1.77      0.78  
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60 11 0.41 0.033 5.60    83.69    

61 18 0.42 0.004 45.41  -438.98      

62 12 0.42 0.022 34.93 -429.43       

63 17 0.43 0.004 15.57   -91.88     

64 15 0.43 0.008 5.64      1.75  

65 19 0.43 0.011 26.41 -433.58   276.36    

66 13 0.44 0.014 62.01  -475.79      

67 14 0.44 0.009 -1.18      1.03  

68 32 0.45 0.000 51.98  -645.54  373.54    

69 14 0.45 0.009 38.34  -376.47      

70 17 0.45 0.003 29.38      -0.20  

71 11 0.46 0.022 22.88  -111.25      

72 11 0.47 0.021 44.11  -492.73      

73 15 0.47 0.005 14.85      1.94  

74 16 0.48 0.015 39.81  -470.10  273.97    

75 13 0.48 0.009 7.96     460.53   

76 17 0.48 0.002 22.16   -132.73     

77 35 0.48 0.000 40.14  -477.09  275.59    

78 15 0.49 0.004 27.47      -0.21  

79 17 0.49 0.002 35.03  -295.55      

80 14 0.49 0.005 19.17      0.06  

81 18 0.49 0.006 28.96  -353.92  240.10    

82 19 0.49 0.004 9.22  -118.88     201.10 

83 18 0.49 0.006 49.72   -602.81  455.25   

84 19 0.50 0.001 50.33  -451.64      

85 18 0.50 0.006 12.96 -122.83      319.30 

86 12 0.50 0.010 8.67     402.16   

87 14 0.50 0.004 11.74       508.30 

88 10 0.51 0.021 2.19     98.66   

89 17 0.51 0.001 1.68      0.77  

90 18 0.51 0.004 6.51   -183.11    339.58 

91 13 0.52 0.006 3.74     855.63   

92 22 0.52 0.001 56.72   -2108.12 1734.11    

93 11 0.53 0.012 1.35    85.30    

94 13 0.53 0.005 23.96  -165.02      

95 25 0.53 0.001 30.31 -385.03      -1323.36 

96 12 0.53 0.007 10.97      -0.08  

97 16 0.54 0.001 -0.48       1522.94 

98 15 0.54 0.002 8.62      -0.05  
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99 10 0.55 0.014 2.88     606.57   

100 10 0.56 0.013 2.87    -44.73    

101 14 0.56 0.002 16.62      0.05  

102 14 0.56 0.002 67.08  -652.25      

103 16 0.56 0.005 13.48   -219.40  554.99   

104 14 0.56 0.002 1.79       127.28 

105 11 0.57 0.007 2.47      0.78  

106 100 0.57 0.000 30.53 989.64 -2344.13 1396.67   1.19  

107 20 0.57 0.001 103.05  -1836.71  1291.41    

108 14 0.57 0.002 14.52      0.05  

109 13 0.58 0.002 0.95      0.58  

110 16 0.59 0.003 1.21      0.58 -255.59 

111 11 0.59 0.006 0.83    93.44    

112 20 0.60 0.000 49.01  -613.41   664.23   

113 15 0.60 0.004 4.40     1958.17  -1406.61 

114 17 0.61 0.001 12.90   394.93 -298.79    

115 18 0.61 0.001 16.03 -160.91      232.93 

116 13 0.61 0.009 30.19  -410.98    1.84  

117 11 0.62 0.004 2.56    126.47    

118 13 0.62 0.001 80.32   -649.61     

119 10 0.62 0.007 4.78    -62.02    

120 14 0.62 0.005 19.73   -274.85 425.91    

121 10 0.63 0.006 26.01   -154.14     

122 16 0.64 0.000 31.67   -178.74     

123 51 0.64 0.000 37.05  -468.49  238.52  -0.02  

124 17 0.65 0.001 62.24  -606.39     495.34 

125 14 0.65 0.000 28.07    -417.35    

126 13 0.66 0.005 27.46   -416.33 381.38    

127 12 0.66 0.001 11.70      -0.10  

128 12 0.68 0.001 21.35      -0.09  

129 10 0.69 0.003 -0.90      2.32  

130 11 0.70 0.001 2.55     199.74   

131 15 0.70 0.000 0.19     517.15   

132 10 0.71 0.002 3.52      -0.02  

133 12 0.71 0.004 15.18  -218.23  283.59    

134 16 0.71 0.000 15.30  -119.76   204.61   

135 16 0.71 0.001 8.41     -1036.41 0.31  

136 17 0.72 0.001 16.33   -270.48 482.31 -311.86   

137 16 0.72 0.000 -15.51 355.94      -238.26 
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138 12 0.73 0.003 -0.98   64.52   -0.01  

139 11 0.74 0.001 15.06   -70.68     

140 13 0.77 0.000 30.99    -520.84    

141 12 0.77 0.001 11.99   -88.00  324.64   

142 10 0.77 0.001 4.64      -0.03  

143 12 0.77 0.001 16.84   -158.46    1000.63 

144 10 0.77 0.001 -12.16    482.98    

145 13 0.78 0.000 -2.05      0.83  

146 16 0.79 0.000 61.78   -792.72 -481.28    

147 12 0.79 0.004 9.49   -85.01  659.14  -542.67 

148 11 0.79 0.000 3.62     252.65   

149 11 0.80 0.002 2.45     111.11 -0.02  

150 23 0.80 0.000 17.67      -0.26 -712.63 

151 17 0.81 0.000 15.16   -96.30    134.64 

152 10 0.83 0.000 -11.88     973.36   

153 12 0.85 0.000 1.24     41.95 0.00  

154 17 0.85 0.000 7.07   -23.27  1432.00  -520.33 

155 14 0.86 0.000 32.43  -403.33   680.73   

156 11 0.86 0.000 10.56 -230.10     0.65  

157 10 0.87 0.000 -6.72      0.96  

158 12 0.91 0.000 0.73     -236.81 0.95  

159 10 0.92 0.001 5.24 -197.75  115.81   0.00  

160 13 0.94 0.000 11.40  1136.62 -1198.21  328.67   

161 12 0.95 0.000 18.83 -636.14  416.63   0.30  

162 10 0.95 0.000 18.06 -555.81  147.34 188.00    

163 10 0.96 0.000 8.13    338.37  0.51  

164 11 0.97 0.000 -2382.2 42498.97 -3093.11 35746.46     

165 10 0.97 0.000 54.22 -1349.40   824.83 -657.72   

ID is sampling site ID. Num. is short for sample number at each site. R2 and P are from 

regression model summary. Inter. is short for intercept. Blue, Green, Red, NearIn, 

ShortIn1, TemC, and ShortIn2 are Landsat 5/7/8 bands of Blue, Green, Red, Near infrared, 

Shortwave infrared 1, brightness temperature, and shortwave infrared 2. 
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Chapter 6: Conclusions and perspectives 

This dissertation used remote sensing data and techniques to map open surface water 

bodies at state, national, and global scales and analyzed their interannual variations and 

multi-decadal trends. Under the impact of climate change and anthropogenic activities, 

surface water area had changed significantly in the past three decades across the globe, 

threatening human society, natural environment, and global biodiversity. Divergent 

trends between surface water area and GRACE land water storage were found across the 

globe because of climate change, agriculture irrigation, dam construction, land 

reclamation, groundwater mining, etc. The Landsat 5/7/8 and Sentinel 2 satellite images 

were used to estimate water chlorophyll-a content across various lakes, reservoirs, and 

major rivers in Oklahoma. Great potential was found in remote sensing estimation of 

water chlorophyll-a concentration. 

Chapter 2 developed robust water body mapping algorithms using the 

relationships between water and vegetation indices and apply them to Oklahoma to 

generate water body maps. Change analysis of water body area and number was carried 

out in four types of annual water body extents (the maximum, year-long, seasonal, and 

annual average extents). Statistically significant downward trends were found in both 

water body area (the maximum, year-long, and annual average water body area) and water 

body number (maximum and year-long water body number) from 1984 to 2015. The 

decrease in water body area was mainly attributed to the continued shrinking of large 

water bodies, while the decrease of water body number was caused by the vanishing of 

some small water bodies. Besides significant decreasing trends, remarkable inter-annual 

variations of water body area and number were also found. Precipitation had positive 
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effects on water body area and number dynamics while temperature had negative effects. 

Small water bodies are more vulnerable under climate-warming scenarios.  

Chapter 3 modified the water body mapping algorithms and applied them to the 

CONUS to generate water body maps for further analysis. This chapter found the uneven 

water resource distribution across the CONUS with the western half US having less water 

body area but stronger interannual variability compared with the eastern half. Divergent 

trends of open surface water body area in the last three decades, mainly driven by climate, 

have made the water-poor regions of Southwest and Northwest US poorer, while the 

water-rich regions of Southeast US and far north Great Plains richer. Water resource gaps 

across the CONUS were enlarged by these divergent trends. Water body area change is a 

good indicator of land water storage dynamics in 58% of the CONUS. Surface water body 

shrinkage in prolonged drought years had led to massive groundwater mining and the 

rapid decrease of land water storage in California and the Southern Great Plains. These 

findings can aid decision makers and stakeholders across the CONUS, especially in the 

West, to develop and implement water resource planning and management in coping with 

the increasing water stress, unprecedented droughts, and uncertain impacts of climate 

change.  

Chapter 4 further modified the water mapping algorithms and applied them to the 

entire world to generate a new multi-decadal surface water body dataset. Compared to 

the only existing multi-decadal water body dataset (1984–2015), released by the Joint 

Research Center (JRC) in 2016, our new dataset has a longer study period (1984–2017 vs 

1984–2015), a larger spatial extent (60°S–85°N vs 60°S–78°N), and more Landsat data 

input (3.8 vs 3.1 million images). During 1984–2017, 8.5 million 0.01° grid cells had 
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significant increasing or decreasing trends in surface water area. These grid cells were 

distributed across the globe and formed interesting and surprising spatial patterns in many 

regions, such as northern Greenland, the Tibetan Plateau, central North America, the 

western US, the Great Lakes, the Gulf of Bothnia, and central South America. These 

interesting spatial patterns across large regions revealed unprecedented details of surface 

water dynamics, which were not reported in previous studies. The time-series curves of 

regional surface water area at 5° tiles during 1984–2017 revealed the interannual 

variations, the magnitude of variability, and multi-decadal trends. There were 189 five-

degree tiles with significant increasing trends and 170 tiles with significant decreasing 

trends. Divergent trends between land water storage and regional surface water area were 

found in Greenland, China, the Indus Basin, and central Africa. The significant changes 

in surface water area and land water storage were mainly driven by climate and 

anthropogenic activities, which will be further aggravated by population growth and 

increasing food demand. The dataset and findings of this study are critical for water 

resource research, planning, and management in coping with water scarcity and food 

security associated with climate change and population growth. 

Chapter 5 explored the relationship between chlorophyll-a field measurements 

and surface reflectance data from Landsat 5/7/8 and Sentinel 2 satellites using multiple 

stepwise regression analysis. Regressions models derived from Landsat data changed 

among water sampling sites and water bodies across Oklahoma, regulated by nutrients, 

temperature, water chemistry, etc. The brightness temperature band of Landsat satellites 

showed great potential in chlorophyll-a estimation. This indicated that temperature was 

among the most important factors of algal blooms in Oklahoma. The Red Edge-2 band of 
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Sentinel 2 Satellite showed great potential in chlorophyll-a estimation among different 

water sampling sites and water bodies across Oklahoma. Our results indicated that 

Landsat 5/7/8 and Sentinel 2 Satellite images have great potential in chlorophyll-a 

estimation, which can serve as an alternative and supplement to the expensive field 

chlorophyll-a sampling and measurement. 
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