
 
 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

 

 

CHARACTERIZATION OF THE SYCAMORE FORMATION, VELMA FIELD, ARDMORE 

BASIN OKLAHOMA 

 

 

 

 

 

 

  

A THESIS 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

MASTER OF SCIENCE 

 

 

 

 

 

By 

SOFIA ALLBEE CAYLOR 

Norman, Oklahoma 

2019  



CHARACTERIZATION OF THE SYCAMORE FORMATION, VELMA FIELD, ARDMORE 

BASIN OKLAHOMA 

 

 

 

 

A THESIS APPROVED FOR THE 

CONOCOPHILLIPS SCHOOL OF GEOLOGY AND GEOPHYSICS 

 

 

 

 

 

BY  

 

 

 

 

 

 

 

Dr. Roger M. Slatt, Chair 

Dr. Richard Douglas Elmore 

 Dr. David DeFelice 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by SOFIA ALLBEE CAYLOR 2019 

All Rights Reserved. 

  



iv 
 

For my grandmother Magdalena, who instilled in me the importance of education from the 

beginning. I would not be here today without you and your loving care that has pushed me onto a 

bright future. Mamita, this is for you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ACKNOWLEDGEMENTS 

First, I would like to thank Dr. Roger Slatt for the opportunity to pursue a master’s degree 

under his guidance and complete a thesis project as a graduate student member of the IRC. I have 

truly learned so much from your tenacity as a geologist and your kindness as an advisor. Thank 

you for all that you have done for all of us students, for believing in us, and shaping us up. It has 

been both a pleasure and an honor. Thank you.  

I would like to thank my committee members. Dr. Doug Elmore for his guidance with my 

thesis and commitment to his students. I also thank Dr. David DeFelice for his commitment to 

my thesis as well and for his unceasing belief in investing in the oil and gas industry’s future, in 

the students.  

I would like to thank all company participants of the IRC, especially 89 Energy for 

investing in the STACK -MERGE – SCOOP consortium and for donating data to my project. I 

am forever grateful.  

I would like to thank the Oklahoma Petroleum Information Center for all their time and 

for the opportunity to observe and test my core in such detail. Special thanks go to Vyetta Jordan 

and Jeffery Dillon for all their coordination and flexibility during the core viewing process. Also 

special thanks to Dr. Abbas Seyedolali of the Oklahoma Geological Survey for his assistance 

with understanding bioturbation and sedimentary features within this core. His assistance was 

monumental for this project.  

I would also like to thank Patricio Desjardins for taking time to teach us about core 

viewing and observation processes and for pointing out some key ideas about the Sycamore 

Formation, that were critical to this project. 

Special thanks to all the professors who have supported me along the way, especially Dr. 

John Pigott, Dr. Kurt Marfurt, and Dr. Andy Madden.  

I would also like to thank Rebecca Fay for her guidance with the graduate student 

processes, and all the staff within the CPSGG office. You make the department run, and we are 

all very grateful for all that you do as a team.  



vi 
 

I would like to also thank my fellow IRC students, Emilio Torres, Jing Zhang, Benmadi 

Milad, David Duarte, Andreina Liborius, Antonio Cervantes, Austin McGlannan, Carlos 

Molinares, Richard Brito, Delcio Teixeira, Karelia La Marca, Lindy Dingmore, Dalila Jesus, 

Ryan Rosol, Muizz Matemilola, Francis Oyebanji, and Eva Perez. It has been a pleasure working 

with you all and your input has been important to the development of this project. This was 

possible with your input and I am so grateful to have walked this journey with you all. Thank 

you!  

I would also like to thank my peers, Desiree Hullaster, Carl Symcox, Brittney 

Tamborello, Gabriel Machado, and all who have contributed to this project and time during 

graduate school. 

I would also like to thank my peers and colleagues at BP Alaska. Special thanks to Keith 

Robertson and Priya Maraj. Your encouragement and guidance during summer 2018 sparked and 

fueled the furtherment of this project.  

I would like to thank the West Texas Geological Society for all their dedication and 

support over the course of my geoscience education. Your passion for rocks was contagious and 

has always pushed me to be a better geoscientist. Special thanks go to Paula Sanchez, Curtis 

Helms, Dexter Harmon, Jeff Bryden, David Thomas III, Stonnie Polluck, Ron Bianco, and 

everyone who mentored and taught me along the way. You all have played a critical role in being 

exemplary geoscientists and professionals while mentoring me. Your vision has made a real 

difference in my life, and I am most grateful! 

I would also like to thank my roommates and close friends Caitlin Schneider, Megan 

Lastra-Cruz, Desire Fletcher and Andrew Arsenault who were there for me during the process of 

this thesis.  

Lastly, I would like to thank my family and above all God, for all the blessings in my life. 

Your never-ending faith in me, continues to push me above and beyond especially in the most 

difficult moments. I love you Mom, Dad, Andrew, Analicia, Emilia, Nicholas, Christina, and 

Liam. You all are my greatest inspiration.  

  



vii 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................................ v 

ABSTRACT ................................................................................................................................... xi 

1. INTRODUCTION..................................................................................................................... 1 

1.1. Scope of Thesis ................................................................................................................ 1 

1.2. Previous Research ........................................................................................................... 4 

2. GEOLOGICAL CONTEXT ....................................................................................................... 7 

2.1. Regional Geology ............................................................................................................. 7 

2.2. Sycamore Formation ......................................................................................................... 8 

2.3. Area of Study .................................................................................................................... 9 

3. METHODOLOGY ................................................................................................................. 15 

3.1. Lithofacies Identification ............................................................................................. 15 

3.1.1. Core Analyses ..........................................................................................................15 

3.1.2. Chemostratigraphic Analysis ..................................................................................16 

3.1.3. Mineralogical Modeling Using Elemental Data ....................................................18 

3.1.4. X-ray Diffraction .....................................................................................................20 

3.1.5. Brittleness Index .....................................................................................................20 

3.1.6. Petrographic Analysis .............................................................................................21 

3.1.7. Rock Eval and TOC Analyses .................................................................................21 

3.1.8. Porosity & Permeability ..........................................................................................22 

3.2. Stratigraphic Framework ............................................................................................ 23 

3.2.1. Well-log Analysis & Correlation ............................................................................23 

3.2.2. Sequence Stratigraphic Correlation .......................................................................24 

3.3.1. XRF data-Conditioning ..........................................................................................26 

3.3.2. Multi-variate Clustering Analysis (MVCA) ...........................................................26 

4. RESULTS & DISCUSSION..................................................................................................... 28 

4.1. Lithofacies ...................................................................................................................... 28 

4.1.1. Laminated Mudstone ...............................................................................................30 

4.1.2. Bioturbated Mudstone ..............................................................................................33 

4.1.3. Laminated Bioturbated Mudstone............................................................................35 

4.1.4. Massive Siltstone .....................................................................................................37 

4.1.5. Laminated Siltstone .................................................................................................38 

4.1.6. Bioturbated Siltstone ................................................................................................40 

4.1.7. Laminated Bioturbated Siltstone..............................................................................42 

4.1.8. Massive Calcite Cemented Siltstone ........................................................................44 

4.1.9. Bioturbated Calcite Cemented Siltstone ..................................................................46 

4.1.10. Interbedded Siltstone .............................................................................................48 

4.2. Core Observations .......................................................................................................... 49 

4.3. Chemostratigraphy Classification ................................................................................... 55 



viii 
 

4.3.1. Chemostratigraphy ...................................................................................................55 

4.3.2. Elemental Compositional Variability ......................................................................59 

4.3.3. Multi-variate Clustering Analysis (MVCA) ............................................................65 

4.3.4. Rock Eval and TOC Analysis ..................................................................................72 

4.4. Sequence Stratigraphy .................................................................................................... 74 

CONCLUSIONS ......................................................................................................................... 77 

RECOMMENDATIONS FOR FUTURE WORK ................................................................... 79 

REFERENCES ............................................................................................................................ 80 

APPENDIX .................................................................................................................................. 86 

A. Mineralogical Model ....................................................................................................... 86 

 

 

  



ix 
 

LIST OF FIGURES   

 

Figure 1: Map of the STACK and SCOOP in central Oklahoma. ..................................................2 

Figure 2: Paleogeographic map of the Middle Mississippian.........................................................8 

Figure 3: An isopach map of the top of the Sycamore formation the Sholem-Velma-Tatums 

(Sho-Vel-Tum) field ......................................................................................................................11 

Figure 4: Balanced restored cross section of A- A’ from the Velma Field ..................................12 

Figure 5: Outline of the stratigraphic units featured in the X-1 well. ...........................................14 

Figure 6: Gamma ray log with arrows indicating changes in sedimentation................................25 

Figure 7: Optimal number of clusters for the MVCA ..................................................................27 

Figure 8: Laminated mudstone lithofacies ...................................................................................32 

Figure 9: Bioturbated mudstone lithofacies  .................................................................................34 

Figure 10: Laminated bioturbated mudstone lithofacies ..............................................................36 

Figure 11: Massive siltstone lithofacies .......................................................................................38 

Figure 12: Laminated siltstone lithofacies ....................................................................................39 

Figure 13: Bioturbated siltstone lithofacies ..................................................................................41 

Figure 14: Laminated bioturbated siltstone lithofacies .................................................................43 

Figure 15: Massive calcite cemented siltstone lithofacies  ...........................................................45 

Figure 16: Bioturbated calcite cemented siltstone lithofacies ......................................................47 

Figure 17: Interbedded siltstone lithofacies ..................................................................................48 

Figure 18: Core lithofacies observations with Bioturbation index and lithofacies labels ............51 

Figure 19: Core lithofacies, Bioturbation Index (BI), XRF results, and well logs .......................52 

Figure 20: Chemostratigraphic units compared to GR log and hardness .....................................58 

Figure 21: Ca vs Sr cross-plot.......................................................................................................60 

Figure 22: Ca vs Mg cross-plot.....................................................................................................61 

Figure 23: Al vs K cross-plot ........................................................................................................62 

Figure 24a: Ca vs K cross-plot .....................................................................................................63 

Figure 24b: Ca vs Al cross-plot ....................................................................................................63 

Figure 25: Si/Ti vs Zr cross-plot ...................................................................................................64 

Figure 26: MVCA dendrogram .. ..................................................................................................67 

Figure 27: Class centroid - major elements chemofacies plot. .....................................................69 

Figure 28: Class centroid - minor elements chemofacies plot ......................................................70 

Figure 29: Vertical comparison of lithofacies to chemofacies . ...................................................71 

Figure 30: Kerogen quality plot . ..................................................................................................73 

Figure 31: Core illustrating cyclicity of the Sycamore formation  ...............................................75 

Figure 32: Gamma-ray parasequences with 3rd and 4th orders of cyclicity ................................76 

Figure 33: Brumsack mineralogical model ...................................................................................86 

 

 



x 
 

 

LIST OF TABLES 

Table 1: Ranking of Bioturbation Index (BI)................................................................................16 

Table 2: XRF Elemental proxies and their corresponding origins................................................17 

Table 3: Rock Eval and TOC results.. ..........................................................................................22 

Table 4: Core plug porosity and permeability results ...................................................................23 

Table 5: Summary of the lithofacies identified in the core. ..........................................................29 

Table 6: XRD results.....................................................................................................................49 

Table 7: MVCA elemental centroids per chemofacies. ............................................................... 87   

 

 

 

 

LIST OF EQUATIONS 

Equation 1: Total for Calculation 1. .............................................................................................18 

Equation 2: % Quartz psuedo mineralogy. ...................................................................................18 

Equation 3: % Clays psuedo mineralogy. ....................................................................................18 

Equation 4: % Carbonate psuedo mineralogy. .............................................................................18 

Equation 5: Brumsack SiO2 psuedo mineralogy equation. ..........................................................19 

Equation 6: Brumsack Al2O3 psuedo mineralogy equation ........................................................19 

Equation 7: Brumsack CaO psuedo mineralogy equation. ...........................................................19 

Equation 8: Brumsack total of oxides  .........................................................................................19 

Equation 9: Brumsack % quartz psuedo mineralogy equation. ....................................................19 

Equation 10: Brumsack % clays psuedo mineralogy equation ....................................................19 

Equation 11: Brumsack % carbonates psuedo mineralogy equation. ..........................................19 

  



xi 
 

ABSTRACT 

The Velma field is located in the northwestern extent of the Ardmore Basin in southern 

Oklahoma.  Historically the combined Sholem- Velma- Tatums field area is one of the top 

producing oil and gas conventional producing fields in Oklahoma. The area has been exploited 

for conventional and Woodford Shale unconventional reservoir targets formerly. Attention is 

now being turned to potential unconventional Mississippian reservoir units, such as the 

Sycamore Formation. The Sycamore Formation was cored in the X-1 well by the Getty Oil 

Company in 1980. Unfortunately, the well was dry as a conventional reservoir target but 

fortunately a core was taken and observed during this study to consider the Sycamore in this area 

as an unconventional target.  

The internal stratigraphy of the Sycamore Formation has previously been observed using 

traditional methods such as well log observation and petrography. This study utilizes traditional 

methods and employs other methods such as chemostratigraphic analysis and chemofacies 

analyses, that have not been employed to the Sycamore Formation. Present to this study, are 5 

intervals from the lower transitional Sycamore to the Middle Sycamore shale. After evaluation 

these units provided information about the richness of the intermittent shales and reservoir 

potential of the siliciclastic and carbonate driven sections in conjunction to the shales. Essentially 

the four sequences of implied relative sea level rise, provide the shale intervals which possess 

organic material and kerogen that is mostly yet to be expelled. The Sycamore within this location 

is particularly shallow (5,260-5,540 ft.), and the organic material is immature within the Velma 

field as it did not achieve the depth of burial or subsequentially the T-max required for 

hydrocarbon expulsion. The formation achieves greater depth of burial in the Sholem and 

Tatums fields which may have provided enough heat for the onset of oil generation.   
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Lithofacies identified in core were used during this study and upscaled using multivariate 

cluster analysis into 7 chemofacies. The lithofacies are: (1) laminated mudstones, (2) bioturbated 

mudstones, (3) laminated bioturbated mudstones, (4) massive siltstones, (5) laminated siltstones, 

(6) bioturbated siltstones, (7) laminated bioturbated siltstones , (8) massive calcite cemented 

siltstones, (9) bioturbated calcite cemented siltstones, and (10) interbedded siltstones. 

Chemofacies clustered these more accurately and in a way that can be incorporated in future 

electrofacies generation.  
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1. INTRODUCTION  

1.1. Scope of Thesis 

Oil and gas accounts for a large amount of the global energy available and plays a key 

role in fueling the modern world. Oklahoma energy production is currently fourth highest in the 

United States next to that of the Permian basin, the northeastern US (Marcellus shale play), and 

south Texas. Contributing to Oklahoma’s production are the Anadarko basin and the south-

central Ardmore Basin.  The Anadarko and northernmost Ardmore basins have been divided into 

three main areas of interest within industry, the STACK (Sooner Trend Anadarko Canadian & 

Kingfisher counties), Merge, and SCOOP (South Central Oklahoma Oil Province) plays. This 

study focuses on the Sycamore Formation in the southernmost extent of the SCOOP play which 

overlaps the northwesternmost extent of the Ardmore basin.  

Prior to recent advances in drilling and well completion technologies, only conventional 

oil and gas reservoirs were economically viable. Since the shale boom the Woodford Shale has 

dominated Oklahoma oil and gas production, shifting the drilling paradigm to operate mostly on 

unconventional resource plays. In November 2013, Newfield Exploration Co. unveiled the 

STACK play. During this time, they announced their priority prospect as the Woodford Shale 

and additional stacked targets in the younger Mississippian Meramec (Brown, 2013). Since then 

the Woodford Shale has been researched extensively by companies and various organizations, 

particularly by the Oklahoma Geological Survey (OGS) and also by the Institute of Reservoir 

Characterization at the University of Oklahoma, under the primary guidance of Dr. Roger Slatt. 

The Woodford has since been unlocked, a term used when “a resource play is well enough 
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understood to be developed economically and effectively with continual drilling.” (Brown, 

2013). 

 

 

 

Figure 1: Map of the STACK and SCOOP in central Oklahoma with the Ardmore basin 

outlined. Location of the Sholem-Velma-Tatums field is within the red box and the well used in 

this study is labeled the X-1 and is noted by the yellow star. 

 

The younger Sycamore Formation is of Mississippian time and is of similar age to the 

Meramec, if not of the same age. Unlike the Woodford shale, it is a mixed carbonate and 
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siliciclastic system that has not been researched as extensively and presents some unique 

problems geologically and as a resource play. In 1956 Pre-Pennsylvanian units were drilled in 

the Carter-Knox field and into the 1960’s the deeper phase of drilling included targeting the 

Sycamore Formation. Problems such as loss of circulation and low production potential were 

experienced while drilling the Sycamore, deeming the unit uneconomic. “This led to by passing 

Sycamore pay zones for over 30 years” (Coffey, 2001), until interest in the unit picked up again 

in the late 1990’s and early 2000’s. Due to modern unconventional drilling and completion 

methods, the Sycamore is no longer limited to conventional well development, and potential 

reservoir zones that may have lacked permeability for a conventional reservoir, can be accessed 

via hydraulic fracturing as an unconventional resource play. 

The Sycamore Formation has been described by several authors following traditional 

workflows of geologic and reservoir classification in various outcrop locations across the 

Arbuckle uplift and in subsurface in the Anadarko and Ardmore basins.  This study aims to 

characterize the Sycamore formation in the Velma field, an area that has not been thoroughly 

described before. It is thought to be part of the more distal setting of the Mississippian 

prograding clinoforms of the high stand systems tract. The goal is to explore this distal setting 

idea while deepening our understanding of this rock’s depositional history through careful 

observance of lithofacies within the Sycamore formation in the Velma field and relate this to 

other wells in the immediate area and to the I-35 Sycamore outcrop. By tying chemostratigraphic 

analysis and chemofacies classifications to the stratigraphic column of the Sycamore in the 

Velma field the unit may be further characterized here and provide insights that have the 

potential to influence facies prediction in future Sycamore studies. 
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1.2. Previous Research 

The Sycamore Formation of central Oklahoma is considered to be a mixed carbonate and 

siliciclastic (Duarte, 2018; Milad, 2019; Miller, 2018) marine deposit on the gently dipping slope 

of the Anadarko and Ardmore basins. The Sycamore is part of the greater Mississippian deposits 

in this region of Oklahoma and has been correlated with other Mississippian deposits up slope 

such as the Meramec formation found in the STACK oil province.  

Numerous authors have studied and written about the Sycamore Formation and several 

major sets of ideas were developed during the various periods of interest in the Sycamore. The 

first period began in 1903 when J. A. Taff encountered what appeared to be a limestone in the 

outcrop at the Sycamore Creek near Tishomingo, Oklahoma, from which he named it the 

Sycamore Lime (Taff, 1903). The next half decade of publications on the formation consisted of 

correlating the unit to other areas and classifying the age of the Sycamore using faunal age 

correlation and more detailed studies (Morgan, 1924).  Cooper in 1926 proceeded to conduct a 

petrographic study of the formation in which he made note of the presence of 40% quartz grains 

about 10 microns in diameter, iron stains and well crystalized calcite (Cooper, 1926). Later 

during the period of early studies of the Sycamore formation, Weller et al., 1948 conducted a 

larger scale project to correlate Mississippian strata across North American geologic provinces 

during which time the Sycamore was noted to possibly correlate with the Osageian Mayes 

formation (Weller et al., 1948).   

Subsequent authors worked to discern true Sycamore formation deposits from other 

Mississippian deposits such as the Mayes sand in in the various Oklahoma geologic provinces. In 

1959, Champlin produced a study in which he placed the Sycamore as Lower Maramecian in age 
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while also classifying the formation to have been deposited under shallow stable conditions. 

Prior to Champlin’s study the Sycamore had only been considered older than Meramecian. 

In 1990 Schwartzapfel published his paleontological study on radiolaria. In part of the 

study he observed the lithostratigraphy of several units, one of which is the Sycamore Formation. 

During this part of the study he noted the presence of Bouma sequence features and presents the 

idea that the depositional mechanism responsible for the Sycamore may be turbidity currents. 

Through conodont zonation data he placed the Sycamore at the youngest, middle Meramecian in 

age.   

Coffey, 2000 produced a dissertation for the Carter-Knox field. The Sycamore was a 

main component of the study. Through the study he concluded that the Sycamore was deposited 

via gravity and/or turbidity currents. He concluded as well, through detailed faunal research, that 

the Sycamore was at the oldest middle Meramecian. Schwartzapfel (1990) and Franklin (2002) 

both supported this chronostratigraphic position as well. Coffey, 2000 later published a 

condensed version of this study concerning the lithostratigraphy, reservoir properties, and their 

relationships to reservoir performance in the Sycamore formation of the Carter-Knox field 

(Coffey, 2001). Using lithostratigraphy he broke the Sycamore section into 4 stratigraphic 

sections. Lastly Coffey, 2001 mentions the importance of post depositional fractures and their 

effects on reservoir enhancement within the Sycamore featured in the Carter-Knox field.  

Franklin, 2002 published her master’s thesis interpreting the depositional history of the 

Sycamore Limestone. Using samples from the I-35 roadcut outcrop she studied the unit via 

petrography, describing and interpreting the Sycamore to contain high amounts of silt in what 

she termed the silty peloidal wackestone lithofacies. She interprets the depositional setting as an 
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outer ramp to basin environment. She attributes the carbonate grains present in the unit to deep 

surface currents or bottom surface currents.  

Interest in the Sycamore slowed once more during the early 2000’s due to the modern 

technologic advances in unconventional reservoir development and the development of the 

unconventional giant, the Woodford Shale in Oklahoma. With the announcement of the STACK 

play in 2014 and its up-section Mississippian targets the Osage and Meramec formations, interest 

in the Mississippian units within the STACK and SCOOP has been reinvigorated. The difference 

though is that the Mississippian units are being viewed not as conventional but as potential 

unconventional reservoirs.  

Several publications have been produced concerning the Mississippian aged Meramec 

formation (Duarte, 2018; Miller & Cullen, 2018; Milad, 2019; Terrell, 2019) and regional studies 

of Mississippian aged deposits are underway to understand how the Mississippian system in 

Oklahoma is related between the STACK and the SCOOP regions. One study that bridges the 

gap between the two areas is Miller & Cullen (2018). They correlate the Sycamore as a more 

distal unit that thickens to the south, referring to the sections of the Sycamore as benches, after 

Coffey (2001).  

There is a great interest in the Sycamore formation as an unconventional unit. Various 

companies and institutions such as the STACK-Merge-SCOOP consortium at the University of 

Oklahoma have various projects underway to shed light onto the complexities of the Sycamore 

Formation and how to treat and utilize this unit as an unconventional reservoir rock.   
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2. GEOLOGICAL CONTEXT 

2.1. Regional Geology 

The Anadarko and adjacent Ardmore basins are located across central Oklahoma and 

south-central Oklahoma and spans for several hundreds of square miles. Close to this is the 

Ardmore Basin to the southeast beginning in Stephens county. The Ardmore Basin occupies 

Stephens, Carter, Marshall, Garvin Murray and Johnston counties. The Ardmore Basin followed 

the depositional axis of sedimentation of the Anadarko basin prior to deformation during the 

Pennsylvanian period.  

The early history of tectonism in the present-day Anadarko basin region consisted of 

consolidation of the crust across Laurentia during the Precambrian, followed by the formation of 

a triple junction rift in southern Oklahoma between the late Precambrian to middle Cambrian 

(Franklin, 2002). The failed arm of the rift would have been what is now referred to as the 

Oklahoma Aulacogen. From the Cambrian to early Mississippian, the Oklahoma trough 

developed providing a principal axis of sedimentation parallel to the northwest to southeast trend 

of the aulacogen. The last major episode of tectonism occurred during the late Paleozoic as 

Gondwana approached Laurentia causing the Ouachita orogeny. This led to the uplift of the 

northwestern flank of the southern Oklahoma trough (Perry, 1988) to develop the asymmetric 

Anadarko basin, the Wichita orogeny (late Morrowan and early Atokan) (Johnson, 2008) 

generated the Wichita and Criner Hills uplifts that led to the development of the structurally 

complex Ardmore basin.  
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Figure 2: Paleogeographic map of the Middle Mississippian with a zoomed in map featuring the 

present day midcontinental region of North America including an outline of Oklahoma and 

surrounding states (Blakey, 2012). The yellow star represents the approximate area of this study. 

 

 

2.2. Sycamore Formation 

The Sycamore Formation overlies the Woodford Shale in southern Oklahoma as the 

distal portion of the Mississippian Meramec prograding clinoforms (Miller & Cullen, 2018). The 

Sycamore Formation extends into the Ardmore basin, which was once the southernmost end of 

the Anadarko basin. The southern Anadarko basin was isolated during the latest Mississippian 

and early Pennsylvanian by the Wichita-Criner Uplift. This event generated the Ardmore basin 

and the Criner Hills area, deforming up to the Mississippian and Pennsylvanian units. 

The Sycamore Formation begins above the Woodford shale and contains several major 

intervals throughout the unit. The major intervals are commonly referred to as the Sycamore 

transition zone, lower Sycamore, middle Sycamore shale, middle Sycamore siltstone, upper 

Sycamore shale, upper Sycamore siltstone and is capped by the Caney Shale. Stratigraphically 
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the Woodford into the lower Sycamore transition zone marks the end of the transgressive 

systems tract of the late Devonian and begins a period of high stand systems tract across the 

present-day mid-continent.  

The lowermost Sycamore is composed of a mixture of materials such as mudstone, shale, 

glauconites, and some sandy intervals. It is highly mixed and exhibits a serrated increasing 

upward API pattern on electric logs. The beginning of the lower Sycamore formation is 

considered to be a siltstone and exhibits a blocky gamma ray wireline log signature. This is due 

to the massive siltstone units present within this section. As will be mentioned in the methods 

and conclusions of this paper this section and the others appear with certain electric log 

characteristics but in reality, exhibit various features in core and hand sample that are too fine for 

the wireline tools to detect.  

 

2.3. Area of Study 

 The immediate area of interest to this study pertains to the Sholem, Velma, and Tatums 

(Sho-Vel-Tum) fields in the northwestern Ardmore basin in which the X-1 well is situated. This 

area is located west of the Arbuckle Mountains. As previously mentioned is structurally 

complex, deformed by the “left-reverse transpressional tectonism in the Wichita thrust system 

and subsequent Arbuckle thrust system.” (Perry, 1988). The Velma field is a structural trap 

caused by an anticlinal structure, generated during the Wichita uplift (figures 3& 4). The Velma 

fault is a reverse fault that generated an offset of several thousand feet in the location of the X-1 

well. The well exhibits the Sycamore formation from near its base at 5,670 ft. to 5,130 ft. The 

deformation is responsible for offset beds to the west of the well and highly angled dipping beds 
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within the core. Several aspects of the deformation are important, 1. The Sycamore here was not 

subjected to the same depths of burial as the majority of the Ardmore basin. 2. The Sycamore 

formation in the Velma field may have undergone different subsurface processes than the 

Sycamore formation found to the north in the famous Carter – Knox field area.    
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Figure 3: An isopach map of the top of the Sycamore formation the Sholem-Velma-Tatums (Sho-Vel-Tum) field (outlined in green) 

modified from Carpenter & Tapp (2014). The Velma field is the westernmost extension of the three fields and is in the major thrust 

faults. The cored well is marked by yellow star. 
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Figure 4: The balanced restored cross section of A- A’ (from figure 3) modified from Carpenter & Tapp (2014). The anticline (left of 

the well) illustrates the complex structure of the Velma field from thrusting. The X-1 well is dashed to the east of the Velma reverse 

fault. The Sycamore formation top is marked in red. 
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The X-1 was drilled by Jones Drilling for the Getty Oil Company in 1980 targeting a 

conventional reservoir within the Sycamore Formation in the Velma field of eastern Stephens 

County. Unfortunately, the well was dry of hydrocarbons and even water to the extent that little 

water came up during the drill stem tests. Bedding in this location also exhibited highly angled 

dipping beds due to the thrust faulting in the Velma field. The well reached total depth (TD) at 

5,700 ft at the Woodford shale and the kelly bushing (KB) was 8ft. The core was taken from 

5,548-5,270 ft (5,540-5,262 ft. with KB) representing the upper transitional Sycamore, lower 

siltstone, middle shale, middle siltstone and most of the upper shale (Figure 5). Subdivision 

names of the Sycamore followed those of Milad, 2019. Sections not featured in this core are the 

lowermost transition zone and the upper Sycamore, although they can be seen in the wireline 

logs and were correlated to nearby wells. 
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Figure 5: Outline of the stratigraphic units featured in the X-1 well and location of the core 

relative to the gamma ray log (GRR), porosity & permeability logs and naming scheme for the 

intraformational intervals found within the Sycamore.  
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3. METHODOLOGY 

3.1. Lithofacies Identification 

3.1.1. Core Analyses 

 Lithofacies identification for the Sycamore Formation in the X-1 began with core 

analysis. For proprietary reasons a generic well name was given (X-1) and well depths were 

shifted in this report but maintain original thicknesses. The base of the core was marked at 5,548 

ft and topped out at 5,270 ft core depth. Bedding orientations exhibited in the core appear low 

angled to highly dipping due to inconsistent slabbing. An offset of -8 ft was calculated to align 

the core with the electric logs, but the core depth will be used when describing the samples 

throughout this thesis. The 278 ft core was marked at a two-inch interval to note data collection 

points and a core description was completed at a 6 ft interval. Later description was provided at a 

1ft interval when generating a stratigraphic column. Features observed and noted included grain 

size (vf sand to clay), bedding features such as soft sediment deformation, grading features, 

fractures, healed fractures, identification of trace fossils, bedding terminations, sedimentary 

structures, and effervescence. A fracture analysis was not conducted because of the irregular 

slabbing of the core and the dramatically tilted beds. The analyzed features are important in that 

their qualities can be telling of depositional history. 

 An important element considered while evaluating the core was ichnofacies. The 

Sycamore Formation through most of the core, exhibited varying degrees of bioturbation. The 

importance of this comes into mind when considering the destruction of primary sedimentary 

fabrics, the environmental implications of the presence and abundance of various taxa, and the 

enhancement or destruction of porosity and permeability caused by resultant ichnofabrics. 
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Baniak et al., 2015 speaks to the enhancement of reservoir porosity and permeability possible in 

ichnofabrics. Presences of the various burrows were identified throughout the core and suggest 

certain environmental conditions. Following the methods of Lazar et al. (2015) a Bioturbation 

Index (BI) score of 0-5 was used to measure the various degrees of bioturbation throughout the 

core (see Table 1).   

 

Bioturbation 

Index, BI 
Verbal BI Description 

0  Not bioturbated No visible burrows; original sedimentary 

structures preserved  

1  Weakly bioturbated Continuous beds, some burrows 

2  Sparsely bioturbated Discontinuous beds; some burrows 

3  Moderately bioturbated Remnant bedding, common burrows, individual 

burrows mostly recognizable 

4  Strongly bioturbated Minimal bed continuity, abundant burrows, some 

distinct burrows  

5 Churned No remnant bedding, fully homogenized, hard to 

recognize individual burrows 

Table 1: Ranking of Bioturbation Index (BI) used during core analysis. Modified after Lazar et 

al. (2015) (after Reineck 1963, Potter et al. 1980, Droser and Bottjer 1986, Taylor and Goldring 

1993, and Aplin and Macquaker 2010). 

  

3.1.2. Chemostratigraphic Analysis  

A chemostratigraphic analysis was conducted to observe qualitative elemental 

compositions of the Sycamore Formation. The core was marked at a two-inch interval 

designating depths along the core that would serve as locations of both Major and Trace 

elemental analyses. Data was collected using a Bruker Traces IV-SD handheld X-ray 
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fluorescence (HHXRF) spectrometer. Major elements were measured for 90 seconds at 15 kV 

accelerating voltage, 35 mA under vacuum. Trace elements were measured under 60 second 

scanning intervals at 40 kV accelerating voltage, 17 mA with a Ti-Al filter at atmospheric 

pressure.  

Data from both major and trace analyses were converted to parts per million (ppm) via 

the mudrock parameters prescribed by Rowe et al. (2012a). A total of 30 elements were 

measured by the XRF but only 13 were used for the bulk of this study. In grouping elemental 

abundances (i.e. Ca, Mg, & Sr; see table 2) we can look at relative composition of the rock from 

base to top of the core and compare the various elemental proxy groups, reflecting carbonate, 

clay, continental, and deep marine anoxic environmental proxies.  

 

Environmental Proxy Paleoenvironmental Interpretation 

Calcium (Ca) Carbonate source 

Strontium (Sr) Carbonate source 

Magnesium (Mg) Dolomite source 

Aluminum (Al) Clay minerals & feldspars 

Potassium (K) Clay minerals & feldspars 

Silica/Aluminum (Si/Al) Quartz 

Titanium (Ti) Continentally derived 

Zirconium (Zr) Continentally derived 

Molybdenum (Mo) Bottom water anoxia 

Phosphorous (P) Organic origin (?) 

Table 2: XRF Elemental proxies and their corresponding origins (table modified from Duarte-

Coronado, 2018). 
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3.1.3. Mineralogical Modeling Using Elemental Data  

Mineralogy is commonly analyzed using X-ray diffraction but due to the generally high 

cost to analyze samples, attempts have been made to model mineralogies using XRF derived 

data. A mineralogical model was made using methods of previous authors (Ratcliffe, 2010; 

Wright et al., 2010; Stilwell et al., 2013; Thruston & Taylor, 2016; Ruppel et al., 2017). The 

model uses “empirically obtained linear regressions, highly dependent on the mineral 

associations present in each formation” (Becerra, 2017), to generate mineral models reflecting 

bulk mineralogies for siliciclastic, carbonate, and clay mineralogies. 

The calculations used in this thesis follow the Normalized Si-Al+K+Ti+Rb-

Ca+Sr+M+Mn concentrations calculation prescribed in Becerra (2017). The Si abundance 

according to Becerra (2017) was found to be related to quartz in a correlation matrix. This was 

followed by the association of Al, K, Ti, and Rb for clay minerals. And positive correlations for 

the carbonate mineralogies using Ca, Sr, Mg, and Mn. The Calculations are featured below.  

 

𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑖 + 𝐴𝑙 + 𝑇𝑖 + 𝐾 + 𝑅𝑏 + 𝐶𝑎 + 𝑆𝑟 + 𝑀𝑔 + 𝑀𝑛    (1) 

𝑄𝑢𝑎𝑟𝑡𝑧 % =
(𝑆𝑖)∗100

𝑇𝑜𝑡𝑎𝑙 
       (2) 

𝐶𝑙𝑎𝑦𝑠 % =
(𝐴𝑙+𝐾+𝑇𝑖+𝑅𝑏)∗100

𝑇𝑜𝑡𝑎𝑙 
        (3) 

𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒𝑠 % =
(𝐶𝑎+𝑆𝑟+𝑀𝑔+𝑀𝑛)∗100

𝑇𝑜𝑡𝑎𝑙 
      (4) 
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The   second approach to calculating mineralogies was derived from observing three 

major end member compositions that are common in marine deposits, SiO2 – Al2O3*5 – 

CaO*2, derived by Brumsack (1989). Based on this approach concentrations of Si, Al, and Ca 

were first converted to molecular weight percent and then to oxides (SiO2, Al2O3*5, & CaO*2) 

using the equations (equations 5, 6, & 8) from Brumsack (1989). A total for the oxides was 

calculated in equation 8 and lastly mineral compositions were calculated and normalized (100%) 

using the equations 9, 10, & 11. 

 

𝑆𝑖𝑂2 =
((𝑆𝑖%)∗60.084)

28.086
         (5) 

𝐴𝑙2𝑂3 =
(𝐴𝑙%)∗101.961

26.892
    (6) 

𝐶𝑎𝑂 =
(𝐶𝑎%)∗56.077

40.078
     (7) 

𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑖𝑜2 +   (5 ∗ 𝐴𝑙2𝑂3) + (2 ∗ 𝐶𝑎𝑂)  (8) 

𝑄𝑢𝑎𝑟𝑡𝑧 % =
(𝑆𝑖𝑂2)∗100

𝑇𝑜𝑡𝑎𝑙 
   (9) 

𝐶𝑙𝑎𝑦𝑠 % =
(5∗𝐴𝑙2𝑂3)∗100

𝑇𝑜𝑡𝑎𝑙 
   (10) 

𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒𝑠 % =
(2∗𝐶𝑎𝑂)∗100

𝑇𝑜𝑡𝑎𝑙
    (11) 
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 3.1.4. X-ray Diffraction 

 X-ray diffraction was conducted on 17 crushed rock samples to analyze for bulk 

mineralogy using the Brags Brintano methodology. One gram of material from each sample was 

placed in a micronizer canister with ceramic beads and 5-7 ml of methanol to serve as a lubricant 

in the micronizing process. The canister was loaded into the micronizer and run for 5 minutes to 

ensure uniform pulverization of the rock materials.  Samples were dried and then sieved (4-

micron mesh) over glass slides. Removal of the excess material was done using a blade, carefully 

as to not preferentially orient the grains. Powdered samples were then loaded into a Rigaku 

Ultima IV diffractometer to run analyses. 

 The resultant data was reviewed using the MDI Jade 2010 system for XRD analysis. The 

program aided in matching mineralogies to the resultant curves. This data serves as a quantitative 

analysis of the rock samples to provide greater insight into the mineralogies of the different 

lithofacies of the Sycamore Formation. Following the ascribed mineralogical identification from 

Moore & Reynolds (1997) the results of the XRD were interpreted.  

 

3.1.5. Brittleness Index 

 Rock hardness was measured every two inches of the core using an Equotip Picolo2 

rebound hammer. The test measures the hardness based on the rebound of a tungsten carbide ball 

(3mm) following impact of 11Nmm applied by spring force on a flat sample surface (Becerra et. 

al, 2018, & Leeb, 1979). The resultant hardness (LH) value is a ratio of rebound velocity (Vr) to 

impact velocity (Vi) (Leeb, 1979). Five tests were conducted at each XRF measurement point on 
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the core and their results were averaged. The LH was measured at 1,668 locations that 

correspond to the XRF sample locations throughout the core. This set of rock hardness 

measurements was added to the overall evaluation of rock properties and chemostratigraphy.  

 

3.1.6. Petrographic Analysis 

17 core plugs were taken from the X-1 well core and thin sections of each plug was 

generously provided by 89 Energy. The petrographic investigation was conducted using a Zeiss 

AxioImager Z1TM petrographic microscope. Standard procedures such as observance through 

plain polarized light and cross polarized light were followed to identify constituents such as 

texture, composition, primary, secondary constituents, cementation, and grain characteristics in 

thin section. Reflected light was used to observe opaque minerals. Thin sections were processed 

with blue epoxy stain to view pore spaces and red alizarin dye was also used to stain calcite. Oil 

was placed on the slides along with glass cover slips. The investigation included observance of 

various minerals present and lithologic names were given based on composition and fabric. 

Previous lithofacies names were integrated in the naming process. 

 

3.1.7. Rock Eval and TOC Analyses  

Rock-Eval pyrolysis (S1, S2, S3, & T-max) and Total Organic Content (TOC) were 

measured by Weatherford Laboratories from 10 core plug samples (table 3) from more 

argillaceous sections. The samples are labeled C-1, C-2, C-3, C-5, C-10, C-11, C-15, C-16, and 

C-17. The results were used to observe the organic content of mudstone sections of the core and 
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evaluate the internal hydrocarbon generation potential of the Sycamore in this area. Total 

Organic Carbon (TOC), residual hydrocarbon content (S1; oil & gas), remaining viable organic 

content (S2), and non-productive carbon (S3) were measured and used in this evaluation. 

 

 

Table 3: Rock Eval and TOC results. 

 

3.1.8. Porosity & Permeability  

Porosity and permeability were measured by Weatherford Laboratories as well, using 15 

of the thin sectioned samples. Measurements taken observed permeability to air (mD), 

permeability to klinkenberg (mD), ambient porosity (%), porosity NCS (%), and grain density 

(gm/cc) (table 4). 
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Table 4: Core plug porosity and permeability results. 

 

3.2. Stratigraphic Framework 

3.2.1. Well-log Analysis & Correlation 

Basic well-log analysis was used to observe characteristics of the X-1 well and to 

correlate the well to nearby wells. Coffey (2001) presents the Fox Alliance #5 well as a type log 

and discusses the various sections of Sycamore deposits observed. Major lithostratigraphic 

sections of the Sycamore were correlated in the X-1 based on Coffey’s 2001 lithostratigraphic 

sections from his study of wells in the Carter-Knox field. From here nearby wells in the Sholem 
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and Tatums fields were correlated along with a correlation of the gamma ray profile taken by 

Benmadi Milad on the I-35 roadside outcrop (Milad, 2019).   

 

3.2.2. Sequence Stratigraphic Correlation 

 The Sycamore formation is a mixed siliciclastic -carbonate system with several 

argillaceous shale intervals. It overlies the Woodford shale and is overlain by the Caney Shale. 

These two major shales are considered to represent transgressive systems tracts. Moving up from 

Woodford into the lowermost Sycamore, the composition of the rock material changes 

drastically into a calcified siltstone. This has been interpreted as belonging to the start of a high 

stand systems tract (HST). The Sycamore Formation represents an overall HST and has even 

been interpreted to be of a prograding clinoformal form (Miller & Cullen, 2018). 

 The second order sequence stratigraphic cyclicity is composed of 3rd, 4th, and 5th order 

parasequences observed by wireline electric logs (figure 6). Three color coded arrows were used 

to represent ideas of the log characteristics; Red indicates a lowering of gamma log signature or 

possible coarsening of material, black represents relatively straight log signature or relatively 

stable input of material, and green indicates a rise in log signature or ‘dirtying’ upward. These 

three signature types can be used to observe changes in deposition that support the argument of 

varying internal stratigraphy in the Sycamore. 
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Figure 6: Gamma ray log with arrows indicating changes in sedimentation. Green indicates a 

dirtying upward, red a cleaning upward, and black a period of relative continuous sedimentary 

material. 
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3.3. Chemofacies Classification 

3.3.1. XRF data-Conditioning     

 XRF elemental measurements considered for the Multivariate Cluster Analysis (MVCA) 

consisted of Ca, Mg, Sr, Al, K, Th, Zr, Ti, Mo, V, S, P, U, Si/Al ratio, and the Si/Ti ratio. These 

elements were chosen based on their geologic significance and use in the chemostratigraphy 

section. The measurements were prepared and entered into an excel based statistical software, 

XLSTAT 2018, to conduct the hierarchical cluster analyses (HCA) and generate an elbow curve 

(figure 7) to determine the optimal number of clusters.  

 

3.3.2. Multi-variate Clustering Analysis (MVCA) 

 The multivariate cluster analyses were used to generate chemofacies. Chemofacies are 

units that share geochemical similarities based on a hierarchical system. “The hierarchical cluster 

analysis (HCA) calculated the chemical similarity within the groups using a Euclidian distance to 

a cluster’s centroid. The centroid of newly grouped clusters was calculated using the minimum 

variance of the original cluster, known as Ward’s Method (Ward, 1963).” (Turner et al., 2015).  

The optimal number of clusters for this analysis was 7 according to the Elbow curve 

(figure 7). The range of clusters with minimal variance is between 7 to 10 clusters. Although ten 

lithofacies were identified via core description and petrography, 7 clusters were used for the 

chemofacies because the range of variance in figure 7 does not reflect much change after 7 

classes. Also limiting the number of clusters prevents redundancy within the chemofacies 

allowing the 10 lithofacies to be upscaled. Chemically the three dominant groups of lithofacies, 
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mudstones, siltstones, and calcified siltstones, would likely exhibit features that grouped them 

more closely than the 10 lithofacies which were named incorporating qualifiers (i.e. laminated, 

bioturbated, etc.).  

 

 

Figure 7: The optimal number of clusters ranged from 7 to 10. The number of clusters chosen 

for the MVCA for the Sycamore was 7 because the variance beyond 7 is minimal. This is less 

than the number of lithofacies (10) because the lithofacies qualifiers (laminated, bioturbated, 

etc.) may not necessarily be distinguishable via chemofacies. 
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4. RESULTS & DISCUSSION 

4.1. Lithofacies 

Mentioned within the previous section are the lithofacies identified within the core. 

Lithofacies were identified primarily from core observation and further defined using several 

additional types of data including petrography, XRF, and XRD. Two major groups of facies 

types were identified as the dominant rock type, group 1 mudstones and group 2 siltstones. From 

here qualifiers were added to distinguish other reoccurring properties that were thematic to each 

lithofacies. These included the presence of laminations, bioturbation, and noticeable calcite 

cementation. To be noted is the angles of dip featured in core photos vary greatly due to 

inconsistent slabbing of the core. The well was drilled over the footwall of the reverse fault 

(figures 3 & 4) and bedding planes in the core feature highly dipping beds. They also exhibit 

discontinuous angles of the bedding planes due to a poor slabbing job.  

The lower to middle Sycamore Formation in the Velma field is composed of ten (10) 

lithofacies recognized from the X-1 well.  They consist of the following: (1) Laminated 

Mudstone (LMdst), (2) Bioturbated Mudstone (BMdst), (3) Laminated Bioturbated Mudstone 

(LBMdst), (4) Massive Siltstone (MSt), (5) Laminated Siltstone (LSt), (6) Bioturbated 

Siltstone(BSt), (7) Laminated Bioturbated Siltstone (LBSt), (8) Massive Calcite cemented 

Siltstone (MCcSt), (9) Bioturbated Calcite Cemented Siltstone (BCcSt), and (10) Interbedded 

Siltstone (ISt). Table 5 outlines the lithofacies, their main qualifications, and interpreted 

depositional processes. 
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Lithofacies 

ID  

Code 

# 
Lithofacies  Description Interpretation  

LMdst 1 
Laminated 

Mudstone 

Fabric dominated by parallel to sub-parallel 

laminations, darker in color, may be bioturbated 
Quiet deepwater setting in which finest and hemipelagic materials settled. 

BMdst 2 
Bioturbated 

Mudstone 
Burrow dominated fabric, may be faintly laminated 

Quiet deepwater setting in which organisms were able to inhibit, favorable 

conditions for the zoophycos ichnofacies 

LBMdst 3 

Laminated 

Bioturbated 

Mudstone 

Mudstone in composition featuring laminations as 

well as burrows, BI>1 

Series of low energy environment during which laminations occur via settling of 

suspended sediments. Water chemistry, temperature, and sediment supply stable 

enough for burrowing organisms to thrive. 

MSt 4 Massive Siltstone 
Massive, no visible sedimentary structures, silty, 

low effervescence 

Gravity flow or turbidity deposit, deposited at once and in massive or thick 

sequences (Bouma A), possible amalgamation of deposits.  

LSt 5 
Laminated 

Siltstone 
Laminated siltstone 

Deposited under laminar flow regime, sometimes overlying the MSt sections 

(Bouma B) 

BSt 6 
Bioturbated 

Siltstone 
Burrows present in samples, low effervescence 

Uppermost section of a massive siltstone deposit in which burrowing organisms 

extended, or prolonged periods of silt and carbonate grain sedimentation which 

allowed for inhabitation by limited species. 

LBSt 7 

Laminated 

Bioturbated 

Siltstone 

Siltstone facies exhibiting both laminations and a 

BI>1, has varying amounts of argillaceous material 

Stable sediment supply where burrowing organism present in thicker 

successions, 

MCcSt 8 

Massive Calcite 

Cemented 

Siltstone 

Massive looking siltstone, vigorous effervescence, 

lightest gray color in the core, vertical fractures 

Gravity flow or turbidity deposit (Bouma A), deposited at once and in massive 

or thick sequences with higher concentrations of carbonate materials and 

preferentially cemented with calcite. 

BCcSt 9 

Bioturbated 

Calcite Cemented 

Siltstone 

Calcite cemented siltstone with burrows present 
Uppermost sections of massive deposits burrowed into by organisms between 

depositional episodes of carbonate and silt material. 

ISt 10 
Interbedded 

Siltstone 

Alternating siltstones and mudstones within a 

narrow interval (<1’) 

Alternating episodes of silt with carbonate deposition to more argillaceous or 

hemipelagic deposition. Deposited via slow sedimentation in deep-sea 

environments from nepheloid layers (Boggs, 1995).  
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4.1.1. Laminated Mudstone 

 The laminated mudstones present in the Sycamore Formation are found in the lower 

transitional zone, middle shaley section, and upper shaley section, and in many minor intervals in 

the silt dominated sections. This lithofacies was identified based on first core observations then 

further characterized via petrography, XRF, and XRD (figure 8). This facies is highly 

argillaceous and breaks along laminations. Laminations are parallel planar and in hand sample 

the material is the darkest of the core and looks chocolatey. In thin section the material is 

dominated by clay mineral matrix ( >30%) but still contains some siliciclastic material although 

in significantly lesser amounts than in other facies (<60%). Carbonate mineralogies are minimal 

in this facies (<5%) and heavy minerals are present in the form of pyrite and several other 

undistinguished oxides. 

 Silt grains present in this sample are angular and of 60 microns to 4 microns in size. Clay 

minerals dominate the sample, with XRD results revealing greater than 30% of the rock 

composition as phyllosilicate minerals. The tectosilicate abundance ranges between 54-56% 

within the tested samples. Carbonate content is relatively low with a maximum of 9.8%, and 

additional minerals account for 6% or less within each of the samples (table 6). Samples C-1, C-

10, and C-15 were noted as Laminated Mudstones in core observation and match this lithofacies 

in thin section.   

The depositional interpretation for Laminated Mudstones is that of lesser order (unlike 

the major Woodford shale) than major mud transgressional facies tract during which time clay 

rich, very fine silt, and organic material settled out of suspension as a hemipelagic mud on the 
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ocean floor or in some cases as hyperpycnites (Slatt, 2013). Several feet of accumulated material 

would imply a longer period of clay rich sedimentation and less detrital input. 
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Figure 8: Laminated Mudstone lithofacies in core and thin-section compared to XRD mineralogical composition. In sample C-1 the 

mudstone exhibits lamination and openings which may look like fractures but are from the thin sectioning process. The Leeb hardness 

(LH) of 445 is low compared to the hardness of other lithofacies. The C-10 sample shows laminated argillaceous material and angular 

quartz grains thought to be detrital in origin (Schieber, 2009; after Blatt, 1992 and Schieber, 2000). The feature circled is identified as 

a collapsed agglutinated benthic foraminifera.



33 
 

4.1.2. Bioturbated Mudstone  

 The bioturbated mudstone facies exhibits bioturbation greater than 1 on the bioturbation 

index and a more argillaceous composition than the siltstones. This lithofacies was identified in 

core by the lack of visible lamination and typically heavier bioturbation (BI of 3-5) (figure 9). It 

is interpreted to be deposited during quiet calm periods in a marginal marine setting during 

which there is oxygen in the system.  
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Figure 9: Bioturbated mudstone lithofacies represented by the C-2 and C-3 samples exhibits burrows in hand sample that are 

particularly distinguishable when the core is wet. Laminations are faint and burros can easily be found with a bioturbation index of >2. 

The hardness of this lithofacies is lower resembling that of a mudstone. Where the material is more quartz driven (C-3) the hardness 

increases. Angular quartz grains are present in these samples along with some lamina of siliciclastic grains (outlined in C-2 

photomicrograph). Burrows seem to concentrate quartz grains and flocculate clays (C-2 and C-3). In C-3 two photos (far right) exhibit 

pyrite spherules in plane and reflected light. These are indicative of early diagenesis.
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4.1.3. Laminated Bioturbated Mudstone  

 Laminated Bioturbated Mudstones are distinguished by their darker color, often near 

richer laminated mudstone sections, with visible laminations and burrows that are present and/or 

nearly destroy the primary sedimentary fabric (BI>2). The thin section C-17 represents this 

facies and exhibits some accumulations of argillaceous material and of silt grains (figure 10). 

The concentrated argillaceous material appears to be planar in some instances, and eye shaped or 

channeled in others with silt grains collected nearby. Calcite is present in the sample but does not 

control the matrix or cement.  Mineralogically, the sample contains 48.9% silt and feldspars, 

24.5% carbonate material, 24.3% clay material and 2.4% additional minerals such as pyrite.   

This lithofacies is representative of a transgressive systems tract with a steady rate of 

sedimentation. Siltstone lithofacies grade up into the laminated bioturbated mudstones implying 

a transition from mixed clastic-carbonate deposition into a quieter or possibly deeper setting 

from which suspended argillaceous materials settled. The presence of burrows is indicative of a 

more stable time of deposition in which organisms could comfortably inhabit the sediment. The 

lithofacies is of the Cruziana ichnofacies, evident by the presence of Teichichnus, Phycosiphon, 

and other visible but undistinguished burrows.  
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Figure 10: The laminated bioturbated mudstone lithofacies represented by the C-17 sample. 

Thin section images are outlined in red corresponding to the location in the red box over the core 

image. Thin section images A and B were taken in plane and reflected light at 10x magnification. 

A shows the angular sized silt grains and opaque martials in a dominantly clay matrix, reflected 

by the XRD clay mineralogy. There is 17% calcite within this sample which is intergranular and 

seems to be secondary. Thin section image B was taken at 10x magnification and illustrates the 

pyrite (golden color) within the sample. Thin section image C was taken at 2.5x magnification in 

plane polarized light. It illustrates clay floccules (white arrows) and silicate grain floccules 

(green arrows) around them. These are interpreted to be the burrows previously observed in hand 

sample. 
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4.1.4. Massive Siltstone  

Massive siltstone sections are identified as lacking in sedimentary structure, lacking in 

bioturbation (BI:0), contain silt material that is not visible other than under microscope, and 

contain minimal argillaceous material. These sections dominate the lower and middle silt-based 

sections of the core, have a weak or delayed effervescence to 10% hydrochloric acid when 

compared to the vigorous reaction observed in a calcite cemented section (figure 11). The 

mineralogy as confirmed by XRD showed the sample C-8 is composed of 46.2% tectosilicates, 

50.1% carbonate material, 3.7% phyllosilicates and 0% additional mineralogies. The lithofacies 

is represented by the C-8 thin section and XRD results. 

Within the lower and middle silt sections, massive siltstone sections can be found with a 

2 - 6-inch section of overlying bioturbated siltstone and a hemipelagic layer of mud often 

bioturbated as well. The section is interpreted to be more of a gravity or density flow, as in 

sections within the middle Sycamore silty section there are flame structures over the hemipelagic 

or laminated mud layer. When describing the unit as part of a Bouma Sequence it would be 

considered a Bouma A section for its massiveness and eventual fining upward character. Bouma 

C features were sometimes present. 
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Figure 11: Massive siltstone lithofacies in core, thin section, XRD bulk mineralogical 

composition, and reservoir properties. The lithofacies were observed in core first and then in thin 

section and XRD. The red square represents the location of the thin section and the electric log 

depth is labeled above. The laboratory results of this lithofacies reveal a higher amount of calcite 

and dolomite than were observable in core. This sample has the one of the highest porosities of 

the 17 tested samples and a high permeability as well. The core exhibits several bedding angles 

due to discontinuous slabbing.  

 

4.1.5. Laminated Siltstone  

The laminated siltstone facies is present in the lower Sycamore transition zone, lower 

silty section, and middle Sycamore silty section. The unit exhibits laminations, has no 
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bioturbation (BI: <1), and appears in lighter to darker shades of grey in core. It is represented by 

thin section C-13 (figure 12) and contains 38.3% tectosilicates, 57.7% carbonate minerals, 3.1% 

phyllosilicate mineralogy, and 0.9% additional minerals. This section carries vertical fractures 

which seems to be associated with higher calcite content. This will be discussed in greater detail 

in Section 4.1.8. 

 

 

Figure 12: Sample C-13 taken from the laminated siltstone section of core (left) with 

corresponding results. Laminations visible in core are represented in thin section 

(photomicrograph A). The red alizarin stain shows where the calcite is concentrated as opposed 

to where silt grains are concentrated. Upon closer review (photomicrographs B and C) the calcite 

becomes more apparent as a cement present in B and not as present in C. Porosity and 

permeability values are medium to low compared to other siltstone lithofacies.   
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4.1.6. Bioturbated Siltstone  

 The bioturbated siltstone lithofacies appears to have no sedimentary structure but does 

have burrows and is commonly overlain by a laminated and/or burrowed thin layer of mud at the 

top of each interval. Massive siltstones commonly grade up into bioturbated siltstones where the 

mud layers are present. Bioturbated siltstones appear massive and have burrows, usually subtle 

in appearance (BI: >1). This lithofacies was further observed petrographically in two thin 

sections, C-7 and C-9 (figure 13).   

The core looks similar where these two samples were taken, but during petrographic 

work and further review of the XRD results a significant difference was noticed between the two. 

The first sample C-7 has a higher carbonate content which is apparent in thin section and in the 

XRD results. Dolomite accounts for 20.5%, with calcite 39.2%, 33.4% quartz, and 3% feldspar.  

The sample has a porosity of 8.3% with a density of 2.71 g/cc. The second sample C-9 has less 

calcite cement than C-7, and has similar character of angular silt grains. The lesser calcite 

composition is likely because the sample has less calcite cement and possess moldic porosity. 

The porosity is 14.7% in C-9 and grain density is 2.65 g/cc, which is less dense than the 

cemented C-7 sample. Both samples contain allochem constituents such as echinoderm and 

bryozoan fragments of varying sizes which exhibit varying degrees of remineralization.  

The varying amounts of calcite and dolomite between the two sections is an example of 

various degrees of cementation within the same lithofacies. This is important to note, although 

hand samples look similar, differences in diagenetic events affected the porosity and 

permeability of the sections. The section represented by C-9 seems to be more favorable to host 

fluids due to higher porosity and could, if charged, be more likely a candidate to be a reservoir 
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rock. However, the section containing more calcite in C-7 may likely be more favorable in terms 

of frackability. In core, sections with a higher calcite content often exhibits vertical fractures 

with calcite cement.  

 

 

 

Figure 13: The bioturbated siltstone lithofacies is represented by samples C-7 and C-9. The 

defining component for this lithofacies in hand sample is a massive appearance with a 

bioturbation index of greater than or equal to one. The samples exhibit varying degrees of calcite 

cementation, but the presence of burrows drive their label. Systematic to the features in the core 

are the overlying muddy sections. Within thin section the C-7 sample shows calcite cement and 

biogenic grains (echinoid) along with the angular silt grains. In Sample C-9 higher porosity is 

visible (blue spaces) amongst the angular silt grains and minimal calcite cement. The pore spaces 

appear moldic, implying secondary porosity.  
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4.1.7. Laminated Bioturbated Siltstone  

The laminated bioturbated siltstone lithofacies are identified in core samples as 

simultaneously containing both classifiers. The laminations within this facies are visible and 

were overprinted by burrows with a BI of 2 or greater. This facies also appears more 

argillaceous, as it is a darker gray to brown in core sample.  

 Six thin sections were identified within this lithofacies; C-2, C-3, C-5, C-6, C-11, and C-

16 (figure 14). The grains in thin section appeared oriented along laminations. Laminations and 

planar burrows exhibit flocculated silt grains and flocculated clay, distinguishing the sorted 

material. Within the angular quartz dominated burrows, the grain sizes range from coarse (0.063 

mm) to fine (0.002 mm) silt with minimal clay material (figure 14). The clay floccules contain 

over 85% clay and the medium to finer silt grains remain. Calcite cementation is minimal, and 

some pore space is preserved on the grain floccules. Present within this lithofacies as well are 

silicified shell fragments, pyrite spherules, and some blocky calcite cement. The mineralogical 

percentages for quartz range 30-45%, 7-13.6% feldspars, 0-11.4% calcite, 7.4-23.4% dolomite, 

24.6-34% clay, and 1-3.4% pyrite. The samples considered in this lithofacies probably have the 

greatest range in mineralogical composition because of the broad classifiers.  

 Sequences of the laminated bioturbated lithofacies were likely deposited under quieter 

conditions, implied by the very presence of vertical bioturbated silt. The laminations speak to a 

quieter or more consistent flow regime that supported the system with mixed materials. The 

increased amount of clay material may imply more distal disposition along with the presence of 

the Cruziana ichnofacies. 
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Figure 14: The laminated bioturbated siltstone lithofacies featured in core and thin section, is the most common within the samples 

taken from the core. The composition is revealed by bulk XRD as having high 35-50% tectosilicate (quartz and feldspar) material, 

about 30% carbonate (calcite and dolomite) material, and 30% or less phyllosilicate (micas and clays) material. Silt grains can be seen 

as coarse to fine silt within all three photos. In some areas the silt grains are concentrated amongst argillaceous matrix in 

photomicrograph A. In photomicrograph C flocculated clay material can be seen (green arrows) and below this concentrated silt grains 

underlain by more argillaceous material. In photomicrograph B the white arrow points to a collapsed agglutinated foram indicative of 

a benthic environment.
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4.1.8. Massive Calcite Cemented Siltstone  

 The massive calcite cemented lithofacies is a grey color, structureless in hand sample, not 

bioturbated (BI = 0), and vigorously effervescent in core. The C-4, C-12, and C-14 thin sections 

(figure 15) represent this lithofacies. The common characteristics of all three thin sections 

include angular quartz grains of coarse silt size, some angular to sub-rounded grains of very fine 

sand size, pelloids, allochem grains, and a matrix that is dominated by calcite cement. One 

difference about C-4 that was noted was the presence of medium sand sized allochem grains 

(500-600 microns). The sand sized allochem grains appeared damaged and the grain fabric was 

somewhat chaotic as opposed to massive to ordered as in C-12 and C-14.  

 Mineralogically there are two groups of mineral percentages. In C-12 and C-14 the 

mineralogy is dominated by calcite at 71.5-77.4%. Quartz is present from 17.7-19.4%, feldspars 

3.3-3.4%, dolomite 1.4-5.3%, clay minerals <0.2%, and less than 0.4% pyrite. The porosities for 

these samples range from 2.9-5.8% with densities of 2.68 g/cc and low permeabilities. Sample C-

4 contains a lesser amount of calcite at 40.4%, higher quartz 41.9%, feldspars at 5.6% dolomite 

at 8.5%, clay minerals at 2.6%, and no pyrite. It had a porosity of 8%, similar density of 2.68 

g/cc and higher permeability. The presence of higher amounts of dolomite higher porosity and 

lack of calcite, when compared to C-12 and C-14, allude to the possibility that C-4 was not as 

thoroughly cemented and/or minerals were leached out providing the moldic porosity within C-4 

and the space for later dolomite to crystalize. An idea regarding the process of deposition of C-4 

may be a density or gravity flow. This is hypothesized by information previously stated and the 

poor sorting of the constituents such as the allochem grains of 600 microns oriented 
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perpendicular to other allochem grains of smaller (300 microns) size amongst a chaotic matrix 

(figure 15). 

 

 

Figure 15: The massive calcite cemented siltstone lithofacies is distinguished in core as having a 

light gray-blueish color that reveals heavy calcite cement in thin section. Siliciclastic grains are 

angular to sub-angular amongst carbonate grains (allochems) of shell fragments, bryozoans, 

fusulinids, and pelloids. Little dolomite and virtually no argillaceous material are present in this 

lithofacies. Rock property tests reveal low porosity and permeability. Fractures are common in 

this lithofacies and a vertical calcite filled fracture can be seen in above the C-12 location.   
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4.1.9. Bioturbated Calcite Cemented Siltstone  

The bioturbated Calcite Cemented Siltstone was identified in core only. The main 

attributes for this blue-grey colored rock consists of vigorous effervescence mostly massive in 

appearance except for the burrows present. This lithofacies, similar to the massive calcite 

cemented siltstone lithofacies, exhibit fractures sub-vertical to the bedding plane (figure 16). In 

some cases, it also exhibits calcite cemented fractures that are vertical like those found 

commonly in the previously stated lithofacies. Although one thing unique to the presence of 

bioturbation is the fact that the fractures commonly stem or are relayed through the burrows. The 

importance of this note is the possibility of fracture propagation in a vertical manner through 

vertical to sub horizontal burrows. The depositional interpretation of these units is that they were 

deposited in a setting stable enough to allow burrowing organisms to inhabit the zones. They 

possess similar amounts of carbonate materials as the massive calcite cemented siltstones that 

were re-mineralized during diagenesis. 
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Figure 16: The bioturbated calcite cemented siltstone (BCcSt) appears with a bioturbation index 

of > 1. The white arrows parallel the burrows and point to the upward direction. Also, fractures 

propagate through the burrows which are abundant in this lithofacies and in the MCcSt 

lithofacies.  
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4.1.10. Interbedded Siltstone   

The interbedded siltstone lithofacies was applied to sections of the core where laminated 

siltstone material and laminated mudstone material were highly alternating. These sections are 

mixed (figure 17) and they were only identified in core, as a sample was not taken in these 

intervals. 

 

Figure 17: The interbedded siltstone (ISt) lithofacies is a series of siltstone to laminated 

mudstones. These are found at the top of sequence boundaries and represent periods of 

alternating sediment supplies.  
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Table 6: XRD results  

 

4.2. Core Observations 

The X-1 core exhibits 5 major sections of the Sycamore Formation, (1) the Lower 

Transition Zone (LSyT), (2) the Lower silty section (LSySt), (3) the Middle Sycamore Shale 

Section (MSySh), (4) the Middle Sycamore Siltstone Section (MSySt), and (5) the Upper 

Sycamore shale (USySh) (figure 18). Sections not featured in this core are the lowermost 

transition zone and the upper Sycamore, although they can be seen and correlated in well logs. 

Well depths were shifted in this thesis for proprietary purposes. The X-1 was drilled in the 1980s 

targeting a prospective conventional reservoir within the Sycamore Formation in the Velma field 

of eastern Stephens County. Unfortunately, the well was dry, devoid of both hydrocarbons and 

water, to the extent that little water came up during drill stem tests. The well reached total depth 
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(TD) at 5,700 ft. at the Woodford shale and the kelly bushing (KB) was 8 ft. The core was taken 

from 5,548-5,270 ft. (5,540-5,262 ft. with KB).  

The core taken for the X-1 well represents the upper transitional Sycamore, lower 

siltstone, middle shale, middle siltstone and most of the upper shale. Sections were determined 

by tying the gamma ray log to the Fox Alliance #1 well from Coffey (2001), to the outcrop 

sections observed by Milad 2019, and by using the stratigraphic column from core observation. 

Unfortunately, the core does not contain the Upper Sycamore nor the Caney Shale, but these 

were correlated to nearby wells using electric logs.  
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Figure 18: Core log featuring (left to right) sections of the Sycamore Formation, core 

description profile, bioturbation index, lithology column and Lithofacies ID column. This figure 

most importantly represents the variability featured within the 5 sections of the Sycamore 

observed in the X-1 core. Individual (massive siltstone to laminated mudstones) beds are thought 

to be single gravity flows in the lower siltstone and middle siltstone sections due to the presence 

of Bouma A, B, D, and /or E in certain intervals.
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Figure 19: Core lithofacies, Bioturbation Index (BI), XRF results, and well logs. 
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The Lower transition zone highly varies in lithology. In well logs it is marked by the 

abrupt decrease in log signature (down to around 30 API) at the base of the Sycamore and top of 

the Woodford Shale. The upward log signature has an increasing trend (up to 150 API). The top 

of the Lower Sycamore Transition zone is marked by decreasing API along with an abrupt 

decrease in porosity and increase in permeability. The lithofacies observed in this section of the 

core was dominated by the Laminated Bioturbated Siltstone (LBSt) and included the following 

lithologies as well, LSt, BCcSt, MCcSt, MSt, BSt, and LBMdst. The bioturbation index ranged 

from a scale of 0 to 5, zero being void of bioturbation and five being completely overprinted by 

bioturbation. This section accounted for 34 ft. (5,540-5,506 ft. WL depth) within the core but 

only represents the uppermost extent of the Lower Sycamore Transitional Section.  

The Lower Sycamore Siltstone Section consists of more siltstone-based sections that 

have several lithologic variations and different sedimentary features such as laminations, varying 

degrees of bioturbation, both, allochem grains, etc. This section has a blocky gamma ray log 

signature in electric logs with a lower API. It is dominantly the Massive Siltstone lithofacies but 

also features Laminated Bioturbated Siltstone, Laminated Siltstone, Bioturbated Siltstone, 

Massive Calcite Cemented Siltstone, Interbedded Siltstones, and Bioturbated Calcite Cemented 

Siltstone. Towards the middle of this section the facies changes to a Laminated Bioturbated 

Siltstone (LBSt) for about 10 ft. and appears in the well log as a section of higher API. Above 

this there are more massive siltstone intervals with fine mud veneers (LMdst) that commonly 

exhibit burrows (LBMdst). Within several of the Massive Siltstone sections there are allochem 

grain constituents (crinoid and shell fragments) observed within Massive Siltstone (MSt) 

sections. The interval makes up 115 ft. of the core. 
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The Middle Sycamore Shaley Section consists of several sections of laminated 

bioturbated siltstone that transitions into mudstones.  This section is 25 ft. thick beginning at 

5,400 ft. core depth (CD) (5,392 ft. drillers depth (DD)) up to 5,374 CD (5,366 ft. DD). The 

section begins with Laminated Bioturbated siltstones (LBSt) with semi preserved laminations 

and high degrees of bioturbation (3-4 bioturbation index) which partially to almost fully 

overprint the laminated fabric of the rock. The section climbs to about 90 API in the LBSt 

section and spikes to a peak of 200 API in GR response in the upper half of the section. In this 

zone there is also a lithofacies change to alternating Laminated Mudstones (LMdst) and 

Laminated Bioturbated Mudstones (LBMdst). In the peak zone (5,386 ft. CD; 5,378 ft. DD) the 

Laminated Mudstone (LMdst) facies exhibits blocky pyrite within the rock and acicular pyrite 

around nodules. Within the rest of the section (5,374-5,386 ft. CD) the unit exhibits oval and eye 

shaped nodules of several inches in size within the mudstone sections, then transitions into the 

Laminated Bioturbated Siltstone (LBSt) facies and finally into the Middle Sycamore Silty 

Section.  

The Middle Sycamore Silty Section consists of silt dominated lithofacies. In gamma ray 

log the section exhibits a lowered blocky signature with an average API of 40. This lowered 

signature can be attributed to the dominant lithofacies; Massive Siltstones (MSt), Bioturbated 

Siltstones (BSt), and Massive Calcareous Siltstones (MCcSt). Within the top 17 ft. (5,285-5,302 

ft. CD) of the section the rock becomes dominantly Laminated Bioturbated Siltstones LBSt) with 

a bioturbation index average of 3. Within this upper portion of the Middle Sycamore Silty 

Section the unit is topped by Massive Siltstones and Massive Calcite Cemented Siltstones 

(MCcSt).  
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The Upper Sycamore Shaley Section is the last section featured in the core. It occupies 

the remaining 14 ft. of core (5,284-5,270 ft. CD) and is dominated by the mudstone lithofacies 

group. The prominent lithofacies being Laminated Bioturbated Mudstones (LBMdst) and 

Laminated Mudstones (LMdst). Laminated Bioturbated Siltstones are present as well. It should 

be noted that the core is directly underlying the onset of LBMdst lithofacies, there is a series of 

alternating Massive Siltstones (MSt) and Massive Calcite Cemented Siltstones (MCcSt). 

 

4.3. Chemostratigraphy Classification 

4.3.1. Chemostratigraphy 

Chemical signatures visible through the XRF results provided the data to consider 

chemostratigraphic relationships marked by the presence and/or absence of 13 elemental 

abundances (figure 20). In the basal section of the Sycamore previously referred to as the 

transition zone, the elemental abundances vary and host several intervals of clay proxy rich 

material along with high amounts of S, P, and several smaller Mo rich zones. Concentrations for 

Ca and Sr are low while Mg varies and is high in the S and P rich zones. In particular the 

heightened Sr signature may indicate calcite replaced aragonite. The top of this section is 

identified by a large drop in clay proxy elements, heightened Ca and Sr, and a sudden spike in 

the Si/Ti ratio below the other changes. A high Si/Ti is thought to be indicative of an increase in 

non-detrital quartz, and the character of the sudden spike of Si/Ti is thought to represent an algal 

bloom which deposited biogenic silica.  
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The second interval is within the section previously referred to as the lower Sycamore 

siltstone. The characteristics of this section include higher amounts of Ca, Sr, and in the lower 

half a heightened section of Si/Ti. Al, K, Mo, S, and P are low in this section, indicating a 

lowered amount of clay input. These observations match the core description.  

Within the lower siltstone section an interval of about 10 ft. is dominated by more 

argillaceous material and exhibits a sudden drop in Ca, Al, and a lower Si/Ti ratio. Inversely the 

Al, K, and Th elemental abundances spike along with heightened amounts of Mo, S, P, Zr, and 

Ti. One special component to this interval is the heightened Mg thought to be attributed to higher 

dolomite.  

The upper half of the lower siltstone section is similar to the bottom half except with a 

sudden spike in Zr and Ti (5,407 ft). The top of the interval ends with a rise in Si/Ti ratio 

showing another possible location of non-detrital silica present. The Zr ratio remains low at the 

same depths. The Zr is a valuable proxy because of its association with detrital input.  Overall 

the section appears carbonate proxy dominated with several thinner intervals with input of 

detrital and non-detrital silica. 

The middle Sycamore shale is dominated by heightened Al, K, Th, Mo, S, P, and Mg. 

Lowered amounts of calcite are present and the Si/Ti ratio is also lower in this section. 

Corresponding to the highest peak on the gamma ray profile from 5,378-5,370 ft. depth, the Mo 

peak reaches its highest concentrations. At the top of the middle shale interval is a dramatic 

change from higher amounts of clay proxy elements, S, and P. the Sulphur and Phosphorous are 

particularly interesting because they are attributed to anoxic and reducing environments. Within 

core observation phosphate nodules were observed throughout this interval. A sudden spike in 
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the Si/Ti ratio marks the boundary of the middle shale and the middle Sycamore siltstone. The 

presence of a thin Si/Ti interval like this may mark a period of non-deposition at the end of the 

middle shale section as it also coincides with high S, P, and Mg. All values suddenly drop as the 

Si/Ti drops at the start of the middle siltstone.  

The middle Sycamore siltstone exhibits a serrated pattern across the elements reflecting 

the cyclicity within, as was described in the core observation results. The section has an overall 

higher and more continuous Si/Ti ratio than previous sections and the most Mo peaks of the two 

major siltstone sections. It possesses high Ca and Sr counts although serrated in profile. Mg 

concentrations are highest in clay proxy rich sections, along with Mo, S, and P. The uppermost 

part of this section is marked by heightened Al, K, Th, Zr, S, and P with lowered Ca and Sr.  

The upper Sycamore shale exhibits heightened clay proxies along with lower Si/Ti ratio 

and lower Ca and Sr. Mo increases to the uppermost extent of the core along with increasing Al, 

K, and Th. This interval is highly argillaceous in core and exhibits phosphate nodules with 

sulfides in hand sample which is reflected in the chemostratigraphic column.  

Within chemostratigraphic observations several major themes were noted. Sections with 

heightened concentrations of Al, K, and Th often exhibit higher Mg which when compared to the 

XRD and thin section observations can be attributed to the presence of dolomite in argillaceous 

sections of the Sycamore. Ca and Si/Ti appear to have an inverse relationship. For example, a 

high count of Ca decreases towards the top of the interval at 5,496-5,474 ft. (WL depth) and the 

Si/Ti ratio increases. 
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Figure 20: The chemostratigraphic columns labeled by section and compared to the GR log and hardness. 
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4.3.2. Elemental Compositional Variability 

The elemental composition throughout the core was plotted and relationships between 

elements were compared in relation to lithofacies to observe possible trends. This was done to 

look at relationships between environmental proxies such as Al and K. These two proxies relate 

to the clay mineralogies and when high can suggest higher amounts of clay material. Likewise, 

Ca and Sr are two related elemental proxies that trend positive when carbonate mineral 

assemblages are present. Relationships between proxies were observed for trends to understand 

relationships between materials. The main characteristics were positive trends, negative, dual, 

and no visible trends.  

Elements with positive visible trends represent the major mineral groups. Ca, Mg and Sr 

are major constituents of the carbonate minerals. The trends anticipated should reflect positively 

between Ca and Sr and Ca and Mg. The first was positive and showed groupings of the 

lithofacies that were reasonable to observations made in core, petrographic, and XRD analyses 

(figure 21). The overall trend was positive with a main and branched trend in the measurements 

with higher values.  

Although Ca and Mg are both carbonate mineral proxies the heightened presence of Mg 

is a proxy associated with dolomite. Ca is present in both calcite and dolomite but where Mg is 

higher can suggest dolomite. In figure 22 there are two trends. The first is steep and the LBSt, 

LMdst, BMdst, and LBMdst lithofacies dominate this trend. Then secondly the MSt, MCcSt, 

BSt, LSt, and BCcSt lithofacies compose a gently climbing trend with much higher Ca ppm 

counts and low Mg. It reveals that the siltstones have increased amounts of Ca over the mudstone 

lithofacies and occasional higher amounts of Mg. The one lithofacies that appears to plot 
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between the two trends is the ISt. This is expected as the lithofacies consists of both muddier and 

siltier materials as observed in core, thus it respectfully should plot as both.  

 

 

Figure 21: Ca vs Sr cross plot with coloration of the 10 lithofacies. The Carbonate proxies Ca 

and Sr show a positive trend. Lithofacies which exhibited higher clay content in hand sample, 

petrographic analyses, and XRD include LBSt, LMdst, BMdst, and LBMdst. These plot low 

toward the base of the axes with lesser amounts of carbonate proxy elements. The lithofacies 

MSt, LSt, BSt, MCcSt, BCcSt plot higher counts of Ca and Sr which is matched with 

observations in other sections of this study. These have more calcite grains and cement.   
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Figure 22: Ca vs Mg cross plot with coloration of the 10 lithofacies. Although the Ca proxy and 

Mg proxy are both associated with carbonate mineralogies the relationship in this cross plot 

reveals a higher Mg to lower Ca for the LBSt, LMdst, BMdst, and LBMdst lithofacies. This can 

be attributed to the presence of dolomite and in general lesser amounts of calcite grains and/or 

calcite cementation. The second trend shows higher amounts of Ca to overall lower amounts of 

Mg revealing a higher presence of calcite within the MSt, MCcSt, BSt, LSt, and BCcSt.    

 

Also, positive trending are the Al and K, and Al vs Th plots which serve as clay proxies. 

Plots for both were observed and showed positive trends. Lithofacies color coding revealed the 

mudstone grouped lithofacies to plot upwards with the highest values in these plots. High and 

central to the trend is the LBSt lithofacies underlain by the MSt, LSt and BSt lithofacies. The 

LBSt lithofacies as previously alluded to and shown in hand sample and thin section contains 

more argillaceous material while still qualifying as a siltstone by core observation. The siltstone 
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lithofacies are characterized in this plot as having lower Al, K, and Th counts. The counts 

become even least for the MCcSt and BCcSt lithofacies. The ISt lithofacies has a separate 

positive trend in the Al vs K cross plot. This once again is reasonable because the lithofacies is 

classified by its thin mixed lithologies.  

 

Figure 23: Al vs K plot (ppm) with coloration of the 10 lithofacies. Al and K are proxy elements 

to clay minerals and in this plot trend positively. The groupings of lithofacies within this plot 

reveal LMdst, BMdst, and LBMdst as having the highest counts of Al and K. This is followed by 

the LBSt lithofacies. The MSt, LSt and BSt lithofacies are next and followed by the lowest 

plotting lithofacies, the calcite cemented siltstones, MCcSt and BCcSt. The ISt lithofacies plots 

on a separate, steeper positive trend, exhibiting higher amounts of potassium than the MSt and 

MCcSt.  
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Negative trending relationships between elements were present in various proxies. 

Between carbonate and clay proxies (i.e. Ca, Mg, or Sr vs Al, K, or Th) these trends were 

obvious. For Ca vs K the plot trends steeply negatively with lithofacies LMdst, BMdst, LBMdst, 

and within the LBSt lithofacies. Lesser amounts of K and Al are observed as decreasing as the 

Ca concentrations increase (figures 24a & 24b).  

a)  

b)  

Figure 24: a) Ca vs K and b) Ca vs Al show the negative trending relationships between 

carbonate and clay proxies. The mudstone based lithofacies and the LBSt lithofacies reveal the 

heightened amounts of Al and K within these facies.    
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Negative trends were also observed between Si/Ti vs Zr plot. The mention of this plot 

specifically is to observe the detrital influence within the units. The muddier lithofacies 

contained lower Si/Ti concentrations while possessing higher Zr concentrations while siltier and 

carbonate driven lithofacies were lesser in the amounts of Zr present, except for the BCcSt 

lithofacies which plotted with the lesser Si/Ti values and higher Zr (figure 25). This particular 

trend is interpreted to represent a decreasing amount of detrital input, represented by the Zr 

proxy, as the biogenic silica represented by the Si/Ti proxy increases.   

 

Figure 25: a) Si/Ti (v/v) vs Zr (ppm) shows the negative trending relationships between biogenic 

silica and allogenic proxies. The mudstones plot low Si/Ti values and higher Zr values. This 

hypothesized to be related to high detrital input and low biogenic input for the mudstone 

lithofacies. The MSt, LSt, and BCcSt lithofacies observe medium to high Zr with higher Si/Ti 

values. This is interpreted to relate to higher detrital input. 
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Three main groupings were observed through the elemental relationships. Clay, 

carbonate, and siliciclastic XRF proxies support the presence of these groups. The mudstone 

lithofacies (LMdst, BMdst, & LBMdst) showed higher elemental abundances that relate to 

argillaceous materials, with low amounts of carbonate related materials. The siltstone lithofacies 

(MSt, LSt, BSt, MCcSt, and BCcSt) reveal elemental abundances that reflect two groupings, one 

higher in siliciclastic material and the other (MCcSt & BCcSt) more carbonate driven. The LBSt 

and ISt lithofacies plotted between the mudstone and siltstone lithofacies revealing a mix or 

range within these lithofacies IDs. 

 

4.3.3. Multi-variate Clustering Analysis (MVCA) 

Multivariate cluster analysis was conducted using 7 clusters (figure 26). Upon review of 

the cluster analysis results, chemofacies identified carried various elemental characteristics that 

distinguished them form one another. A centroid was calculated for each element within the 7 

clusters and show the average value for each of the 16 variables. The goal of the MVCA was to 

quantitatively characterize sections of the core and relate the chemofacies back to the lithofacies 

identified. The three major groupings thought to be present were hypothesized to reflect 

mudstones, siliciclastic to mixed and carbonate driven. The following descriptions are the 

observed differences between identified chemofacies.  

The class 1 grouping possesses the highest values of Magnesium with low Ca and Sr. it 

possesses low Al, low K, and a moderate value of Th. It has the lowest Si/Ti and lowest Si/Al 

values. It has high values of S and P, the highest Zr and U values along with high Mo and low V. 

When observing these elemental relationships via the lens of elemental proxies it suggests the 
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chemofacies represents a dolomitized mudstone facies with high S and P and U. In the lithofacies 

description process such rock was observed where phosphate nodules were present. The 

interesting point with this chemofacies is the high Mo values relative to low clay proxy elements 

(Al, K, and Th), high S, P, and U.  
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Figure 26: The dendrogram for geochemical data showing the elemental data clustered into 7 groupings. Each cluster represents a 

chemofacies and possesses unique chemical characteristics. The x-axis represents the number of observations or data points within 

each cluster. The phenon line is an arbitrary line that marks “the boundary of similarity below which a group will form a cluster” 

(Turner et al., 2015 after Guler et al. 2002). 
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The class 2 chemofacies has the highest average values for Al, K, Mo, and V. It possesses 

high clay proxy values and low values for carbonate mineral proxies. This chemofacies has the 

highest values for Mo and V. Mo is related to high TOC in the chemostratigraphic section. The 

class has the least number of objects in the MVCA results. This chemofacies is thought to relate 

to the mudstone lithofacies.  

The class 3 chemofacies has the second lowest and third lowest Ca and Sr values along 

with the second highest value for Mg. It contains low amounts of carbonate materials and has 

some dolomite. This chemofacies has the second highest Al and K values with a high amount of 

Th, representing a high amount of clay material present and a low Si/Ti ratio. The low Si/Ti 

suggests a higher amount of detrital silica to biogenic material. This is interpreted as correlating 

to one of the mudstone lithofacies. Present in this class are 171 objects.  

The class 4 groupings major characteristic is that it contains medium amounts of the 

various elemental concentrations except for having the highest value for the Si/Ti ratio. This 

suggests a mixed composition with a higher presence of biogenic silica. 203 objects are present 

to this chemofacies.  

The class 5 grouping is second highest in Ca, Sr, Si/Al, and second lowest in Al, K, and 

Th. This suggests a higher carbonate concentration and relatively low amounts of clay material. 

Concentrations of Mo are negligible, and low S, P, U further suggest an environment of minimal 

organic material and presence. This class has the second highest number (217 objects) of objects 

within the population of the whole MVCA analysis. 

Class 6 contains high amounts of Ca and Sr with low Mg, representing a presence of high 

carbonate composition and low dolomite content. The Al, K and Th concentrations are low with 
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a high Si/Al ratio. The chemofacies class possesses the second highest Si/Ti ratio. This suggests 

a higher amount of non-detrital silica. It also has low S, P, & U concentrations along with 

negligible Mo concentrations. This chemofacies is interpreted to be siliciclastic – carbonate 

mixed with little clay material. The class is represented by 191 objects.  

The class 7 chemofacies is the highest in Ca and Sr, lowest in Al, K, Th, Si, Ti, S, P, Zr, 

Mo, V, and U. This chemofacies has highest concentrations for carbonate materials and minimal 

concentrations for clay, detrital, and reducing environment materials. Having the highest 

concentrations for the carbonate elemental proxies and the lowest for clay proxies the class is 

hypothesized to relate to the calcite cemented lithofacies. Class 7 also contains the greatest 

number of objects (370 objects). This chemofacies likely upscales several of the lithofacies 

observed in core.  

 

Figure 27: Chemofacies (classes) major elemental abundances. 
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Figure 28: Chemofacies (classes) minor and lesser elemental abundances. 
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Figure 29: Vertical section of the classes clustered in the MVCA analysis compared to the 

lithofacies identified in core analysis and average LH. The class color scheme and lithofacies 

color scheme are not equivalent in value. The primary objective of this figure is to show the 

detail and chemical variation detected in the chemofacies analysis. In sections like 5,520-5,530 

ft. the chemofacies column distinguishes several chemofacies whereas the core analysis 

distinguishes one main lithofacies. 



72 
 

4.3.4. Rock Eval and TOC Analysis  

After rock eval on samples from the shalier intervals of the Sycamore, a more complete 

picture was painted of the Sycamore shales as internal sources for hydrocarbon generation. The 

highest Leco TOC measured was 12% and the majority of samples measured between 1.6 to 

4.30% TOC. The shallower samples had T-max values less than 435°C, just under the start of 

hydrocarbon generation. Four of the nine samples possessed a T-max of 435°C and greater. 

These combined with TOC values ranging from 1.6 to 2.53 have low S1 values and higher S2 

values showing the hydrocarbon generation potential is still present within the shaley intervals.   

When observing characteristics of the Rock Eval results a trend was observed. Firstly, the 

presence of organic matter occurred in significant amounts within the shalier intervals. Secondly, 

the TOC was highest in the shallowest sample and seemed to start out in lesser amounts and 

increase in the higher GR (API) peaks when matched to the gamma ray log. Thirdly, the deeper 

samples achieved a T-max sufficient for hydrocarbon generation while the shallower intervals 

did not achieve this T-max but exhibited good TOC. And fourthly, samples plotted as type two 

kerogen, matching the environmental observations and exhibiting a decent kerogen quality to 

hydrocarbon potential (figure 30). 
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Figure 30: Kerogen Quality plot with samples labeled.  

 

Essentially, the four shalier sequences within the lower to upper Sycamore imply a rise in 

relative sea level. These intervals provide organic material to the system, but the immature state 

of the kerogen indicates minimal to no expulsion. The Sycamore within this location is 

particularly shallow (5,260-5,540 ft.) and organic material is immature within the Velma field as 

it did not achieve the depth of burial or subsequentially the T-max required for expulsion. The 

formation achieves greater depth of burial in the nearby Sholem and Tatums fields which may 

have provided favorable conditions required for oil generation.   
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4.4. Sequence Stratigraphy 

The Sycamore Formation is underlain by the Woodford Shale and overlain by the Caney 

Shale. Based on gamma ray parasequence (GRP) observations 3rd and 4th order cyclicity was 

observed. Within the core, sections dominated by siltstone as marked by the black arrows in 

figure 33 contain an element of cyclicity. The MCcSt lithofacies and the MSt lithofacies 

transition into the LBSt and ISt lithofacies, followed by the ISt or LSt and are terminated. The 

terminal boundaries mark the end of a parasequence of 4th or 5th order within the Sycamore.  

The GRP observations resulted in 4, 3rd order sequences and numerous 4th and or 5th 

order GRPs. Figure 33 illustrates these GRPs. GRP 1 trends generally upward in API with many 

smaller cycles exhibited in the higher order column. The section corresponds to the lower 

Sycamore transition zone.  The upper limit to the section is marked by the last high GR peak. 

GRP2 begins with the decreased gamma signature and remains relatively low for the section. 

Internal are two shale intervals, the upper shale marking the top of GRP2. The GPR3 is marked 

by the low GR signature above the boundary of GPR2. This parasequence exhibits a constant log 

signature until it begins to fine upwards in the upper half. The upper parasequence boundary is 

marked by the sudden decrease in log signature. GPR4 is the upper Sycamore siltstone in which 

the intervals are fairly clean in their log signature. On a 4th order note there is a shaley interval 

present in the middle of this section but as a 3rd order sequence we observe this sequence up to 

the boundary of the Caney Shale.  
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Figure 31: Cycles of the Sycamore within the siltstone sections of the X-1 core. The MSt, 

MCcSt, and BCcSt lithofacies can be observed as beginning with sharp contacts and grading into 

the more argilaceous ISt, LBSt and LSt.  
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Figure 32: Gamma ray parasequences and hypothesized third and fourth-order sequences. 3rd 

order parasequences were derrived from major sequence boundaries visible in the 

chemostratigraphic profiles and those observed in the gamma ray profile. 4th order sequences 

were derrived using the smaller and shorter lived chemostratigraphic boundaries between Grp1, 

GRP2, GRP3, and GRP4.  
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CONCLUSIONS 

The Sycamore formation in the Velma field in southern Oklahoma is composed of 10 

lithofacies representative of gravity flows, waning sedimentation, and hemipelagic settling or 

quieter times of deposition. The lithofacies are: (1) laminated mudstones, (2) bioturbated 

mudstones, (3) laminated bioturbated mudstones, (4) massive siltstones, (5) laminated siltstones, 

(6) bioturbated siltstones, (7) laminated bioturbated siltstones , (8) massive calcite cemented 

siltstones, (9) bioturbated calcite cemented siltstones, and (10) interbedded siltstones. 

Occurrence of these lithofacies is cyclic in nature and suggests compartmentalization internal to 

the Sycamore formation.   

The presence of argillaceous materials and shelf edge ichnofacies, especially in thicker 

intervals places this section of the Mississippian deposit in a more distal setting.  Depositional 

packages were likely affected by pulses of sedimentation from the Mississippian carbonate 

system to the north as well as a detrital source that provided the clays and the silt. The fluxes 

between higher clay supply versus higher silt and carbonate supplies is represented by the 

variability throughout the rock and in the cyclicity discussed previously, designating the sections 

internal to the Sycamore. 

The system contains some TOC within this region but it is immature. Underlying the 

Sycamore is the Woodford Shale source rock. The Woodford in this area is viable and charged 

the shallower Pennsylvanian units, bypassing the Sycamore in the Velma field. The potential of 

the Sycamore to be charged in deeper settings like the Sholem and Tatums fields remains a 

question. In this location the Sycamore mudstones with TOC are immature, not contributing to 

the overall oil generation for the Velma field.  
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Multivariate cluster analysis shows 7 chemofacies present in the lower to upper 

Sycamore formation. The precision of the chemofacies is much tighter than that of more 

traditional methods revealing the degrees to which sections deemed siltstones, in the lithofacies 

classification, vary chemically. Significant to the idea of calcite dominance within a section is 

the presence of fractures. Carbonate proxy driven chemofacies reveal denser fracture networks 

when compared to core observations. 

Following the end of the transgressive systems tract that generated the Woodford the 

Sycamore formation belongs to the distal section of a highstand systems tract that is capped by 

another transgressive systems tract deposit, the Caney Shale.  Internally the Sycamore is 

compartmentalized by various shale sections and parasequence sets. The units exhibiting greater 

porosity and permeability are mixed in composition, shale and silt and possess minimal calcite 

cementation. They do, however, contain dolomite. These units are also the same ones that 

contain some amounts of TOC (1-2%). If these were subjected to the right temperature, they may 

be viable source rocks, however the intervals in which they occur are relatively thin (~20 ft. or 

less) making narrow targets for directional drilling. The upper Sycamore exhibits higher 

permeability in induction logs and moderate porosity making it a possible reservoir target in an 

area with petroleum system elements in place.  

An alternative interpretation to the characterization of the Sycamore is could be that it 

was deposited during an overall high stand systems tract phase which had higher orders of 

cyclicity representing intermediate lowstand and transgressive systems tracts. The well log 

characteristics for well X-1 resemble those of turbidite deposits in a prograding parasequence set, 

similar to those described by Slatt, 2013.  
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RECOMMENDATIONS FOR FUTURE WORK 

Moving forward, observance of electrofacies would be useful to relate the chemofacies 

and lithofacies to electric logs allowing the full upscaling of the analyses. Also incorporating a 

set of uniaxial confined stress tests would be recommended to understand the rheology of the 

calcite cemented sections of the Sycamore for fracking purposes.  

A spot permeametry study conducted over a breadth of cores from the Ardmore Basin 

and southern Anadarko Basin areas would be a good future study to begin modeling or mapping 

the Sycamore. A study to observe specifically calcite cementation and relative locations of 

higher degrees of cementation would also be useful. These various elements could all also be 

used in conjunction with mapping to generate a reservoir model for the area further evaluating 

sections of the Sycamore for potential. 

Lastly, an in-depth TOC and Rock Eval analyses are in order for the Sycamore 

formation’s shale intervals. A model for maturity should be generated specifically for the 

Sycamore mirroring Jarvie’s workflow for maturity and hydrocarbon generation potential. This 

is already discovered for the Barnett and the Woodford. It would be reasonable to consider this 

for the Sycamore.  
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APPENDIX 

A. Mineralogical Model 

 

Figure 33: Mineralogical model of the dominant three mineralogies derived from the XRF data. 

Values here are proxy mineralogies. The values were calculated using the XRF data (in ppm) and 

equations 5-11 in section 3.1.3. 
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B. Multivariate Cluster Analyses Results 

 

Class Ca (ppm) Mg (ppm) Al (ppm) K (ppm) Si (ppm) Ti (ppm) S (ppm) P (ppm) 
Sr 

(ppm) 
Th 

(ppm) 
Si/Al 
(v/v) 

Si/Ti 
(v/v) 

Zr 
(ppm) 

Mo 
(ppm) 

V 
(ppm) 

U 
(ppm) 

1 95,689.40 22,031.94 19,723.84 6,179.45 91,473.65 1,593.01 163,056.15 3,644.36 320.11 8.93 4.76 60.20 203.91 7.79 17.09 11.20 
2 45,902.92 3,742.69 38,147.94 14,209.31 231,020.06 3,022.09 41,802.64 897.36 391.93 7.53 8.29 103.28 173.26 11.92 58.30 8.70 
3 73,400.28 8,053.91 29,444.82 9,899.13 142,883.89 2,337.34 92,539.13 1,958.88 405.77 8.20 5.16 67.19 189.74 5.81 15.94 10.18 
4 125,636.49 2,747.00 14,709.46 4,155.11 188,191.65 1,648.67 14,425.05 1,070.20 633.85 4.13 13.94 134.34 162.42 2.01 56.27 7.31 
5 203,425.31 2,166.38 7,663.06 2,463.98 108,674.10 1,454.55 7,994.51 229.65 848.57 3.36 17.96 103.79 111.35 0.49 48.11 6.80 
6 178,597.42 3,904.11 12,299.70 3,230.34 158,880.36 1,437.90 8,394.01 521.51 771.49 3.56 13.57 123.54 133.73 0.50 53.36 6.67 
7 265,870.29 3,129.60 5,627.63 1,809.11 86,062.75 1,051.54 5,333.73 82.76 944.97 3.05 21.95 95.11 92.57 0.03 52.12 6.53 

 

Table 7:  Elemental averages for each cluster. 


