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Abstract

The microwave band is well suited to wireless applications, including radar, commu-

nications, and electronic warfare. While radar operations currently have priority in a

portion of the microwave band, wireless companies are lobbying to change that; such a

change would force current operators into a smaller total bandwidth. Interference would

occur, and has already occurred at the former National Weather Radar Testbed Phased

Array Radar.

The research in this dissertation was motivated by this interference — it oc-

curred even without a change to radar’s primacy in the microwave band. If microwave

operations had to squeeze into a smaller overall bandwidth, such interference, whether

originating from other radars or some other source, would only become more common.

The radio frequency interference (RFI) present at the National Weather Radar Testbed

Phased Array Radar altered the statistical properties at certain locations, causing targets

to be erroneously detected. While harmless enough in clear air, it could affect National

Weather Service decisions if it occurred during a weather event.

The initial experiments, covered in Chapter 2, used data comprised of a single

channel of in-phase and quadrature (IQ) data, reflecting the resources available to the

National Weather Service’s weather radar surveillance network. A new algorithm, the

Interference Spike Detection Algorithm, was developed with these restrictions in mind.

This new algorithm outperforms several interference detection algorithms developed by

industry. Tests on this data examined algorithm performance quantitatively, using real

and simulated weather data and radio frequency interference. Additionally, machine

xix



learning classification algorithms were employed for the first time to the RFI classifica-

tion problem and it was found that, given enough resources, machine learning had the

potential to perform even better than the other temporal algorithms.

Subsequent experiments, covered in Chapter 3, used spatial data from phased

arrays and looked at methods of interference mitigation that leveraged this spatial data.

Specifically, adaptive beamforming techniques could be used to mitigate interference

and improve data quality. A variety of adaptive digital beamforming techniques were

evaluated in terms of their performance at interference mitigation for a communications

task. Additionally, weather radar data contaminated with ground clutter was collected

from the sidelobe canceller channels of the former National Weather Radar Testbed

Phased Array Radar and, using the reasoning that ground clutter is simply interference

from the ground, adaptive digital beamforming was successfully employed to mitigate

the impact of ground clutter and restore the data to reflect the statistics of the underlying

weather data.

Tests on digital equalization, covered in Chapter 4, used data from a prototype

receiver for Horus, a digital phased array radar under development at the University of

Oklahoma. The data suffered from significant channel mismatch, which can severely

negatively impact the performance of phased arrays. Equalization, implemented both

via older digital filter design methods and, for the first time, via newer machine learning

regression methods, was able to improve channel matching. When used before adaptive

digital beamforming, it was found that digital equalization always improved system

performance.
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Chapter 1

Radars and Radio Frequency Interference

1.1 Radar Background

In the early 1900s, an engineer in Germany proved that ships passing between his con-

tinuous wave radio transmitter and his receiver acted to interrupt the signal. Over the

next twenty years, technology developed past the ability to simply detect the presence

of objects, and in 1924 a transmitter using frequency modulations was able to determine

the range at which the ionosphere lay. Ranging with pulsed radio waves soon followed,

and in the mid 1930s British engineers successfully demonstrated radio detection and

ranging using aircraft as a target. Similar development had taken place almost in par-

allel in other countries — the word “radar” is an acronym for “RAdio Detection And

Ranging”, and was initially used by the U.S. Navy before being adopted internationally

— and the development of the magnetron, an efficient and powerful transmitter at mi-

crowave frequencies, made microwave radar feasible. This proved timely, as World War

II was underway and the Battle of Britain was soon to come, during which this technol-

ogy was used to great effect, providing early warning of approaching aircraft and giving

British pilots time to mobilize for defense against German aircraft raids on Britain.

During the war, it was noted that clouds and precipitation scattered the signal of

the microwave-wavelength radar. Wartime efforts focused on accommodating for this

attenuation so that approaching German aircraft wouldn’t be missed, but after the war

interest in these meteorological echoes waxed again and radar began to be used for de-

tection of weather echoes. In 1957, the National Weather Service began deploying a

national network of weather surveillance radars, “WSR-57”s, which gave meteorolo-

gists reflectivity data. In the 1960s and 1970s, solid state technology combined with the
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development of high-gain klystron amplifiers (which have coherent phase) made the col-

lection of Doppler data from weather signals feasible, and in 1988 the WSR-88D began

deploying across the United States, giving meteorologists data about reflectivity, radial

velocity, and spectrum width [5]. In 2010, dual polarization capability was deployed to

WSR-88D sites [6], and phased arrays — systems that use multiple antennas acting in

concert — are being explored for the next generation of weather radars [7, 8, 9, 3].

Weather radars function by sending out a series of electromagnetic pulses, spend-

ing time “listening” for the echoes from distant objects, and performing analysis on the

echoes to derive information about the statistical properties of the targets hit over the

course of the time spent in that “dwell”, looking in that particular direction in a coherent

processing interval (CPI). This CPI must be short enough that the statistical properties

of the volume being measured do not change. The time it took for an echo to return after

transmission of the pulse is used to determine the range of the target: R = c · t/2, where

R is range, c is the speed of light (3 ·108m s−1), and t is the time since the previous pulse

transmission. The pulse repetition interval (PRI) is the time between subsequent pulses;

shorter PRIs result in a shorter maximum unambiguous range. Following this conven-

tion, “fast time” is associated with range and “slow time” is associated with separate

pulses.

Up until 2010, only one polarization of electromagnetic wave was transmitted and

received by WSR-88Ds, so radar products were limited to a grid of reflectivity factor

(colloquially just “reflectivity” in weather radar circles), radial velocity, and spectrum

width, over the range of azimuths and elevations through which the radar scanned. The

reflectivity factor is proportional to the power of the received signal:

P̂ =
1
M

M−1

∑
k=0

Pk (1.1)

where M is the number of pulses and Pk is the power at sample k. Because meteorolog-

ical targets are distributed targets rather than point targets, they show up in the velocity
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spectrum as a Gaussian distribution centered around some mean; this mean velocity is

estimated using the equation:

v̂ =− λ

4πTs
argR̂(Ts) (1.2)

where λ is the wavelength, arg{·} takes the phase angle of the argument, ˆR(Ts) is the

autocorrelation of a signal with a time lag of Ts (typically 1 sample), and so argR̂(Ts)

is the phase angle of the Ts-lag autocorrelation. The negative is a convention applied so

that targets moving toward the radar will have a negative radial velocity. The spectrum

width of the velocity spectrum is estimated using the equation:

σ̂v =

(
λ

2πTs60.5

)
| ln | R̂1

R̂2
||0.5 (1.3)

where Ts is the PRI, Rk is the autocovariance evaluated at lag k. Note that if the spectrum

width ends up being calculated as negative, it is typically a sign of poor quality data —

either bad low SNR or too-narrow spectrum widths — and is set to 0 [5].

1.2 Radio Frequency Interference

The echoes that are processed by the radar can come from many sources. For weather

radar, water droplets and ice particles are the targets of interest; however, ground clutter

is particularly common close to the radar and can act to obscure the underlying weather

signal. Other sources interfere with the signal received as well. The sun, for example,

is a natural emitter of electromagnetic energy across a broad spectrum, including mi-

crowave frequencies, and thus can show up on weather radar data as “sun spikes”, as in

Figure 1.1 [1]. Additionally, other emitters can interfere with the radar signal as well.

Unfortunately, the three single-polarization variables are sensitive to data quality issues,

and the dual polarization variables and downstream algorithms that use these variables

are even more sensitive [10]. If data that is not representative of the meteorological en-

vironment is received and alters the value of these variables, it could affect algorithms
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Figure 1.1: Sun spikes are simply the manifestations of RFI from a natural source [1].

and mislead forecasters about the environment, potentially altering decisions needed to

protect lives and property.

The electromagnetic spectrum between 1 MHz and 100 GHz is a precious resource.

It has applications in communications, radionavigation, broadcasting, and radar. The

spectrum between 30 MHz and 3 GHz is especially useful, as the atmospheric opacity

is very low in that band, meaning that loss from passage through the atmosphere is

negligible (see Figure 1.2 [2]). Weather radar has a particular interest in the band around

3 GHz; the largest raindrops are around 8 mm in diameter, so having a wavelength of

10 cm allows the backscattering from the vast majority of meteorological targets to be

approximated using the Rayleigh approximation [5].

Currently, radars have primacy in the 2 – 4 GHz band, meaning that other users

can only operate in that frequency band if they do not interfere with radar operations

[11]. However, the 2012 presidential mandate to sell 100 MHz of bandwidth combined

with telecommunications lobbying for a downgrading of radar’s primacy in the 3.4 –
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Figure 1.2: Electromagnetic waves are absorbed and scattered by the atmosphere; the

amount of scattering and absorption is a function of the wavelength [2].

3.7 GHz band means that current radar systems would be forced to operate on a smaller

bandwidth. Reduced available bandwidth for radar operation reduces the quality of

data from radars, and, additionally, corrupt data caused by mutual interference between

radars and other users is a problem that will only get worse with time [12, 11].

Even without a loss of radar’s primacy in this band, radio frequency interference

(RFI) has manifested at the National Weather Radar Testbed (NWRT) phased array radar

(PAR), a Navy SPY-1A radar converted for weather radar applications; the NWRT PAR

is shown in Figure 1.3, and the RFI can be seen in Figure 1.4 [8, 13]. The presence

of RFI at the NWRT is due partly to the high density of radars nearby (see Figure 1.5

[3]) and partly to the fact that many of these radars operate on the same portion of the

electromagnetic spectrum, as can be seen in Table 1.1 [14]. Even in other locations

without such a high density of radar sites, if more users are forced into a smaller por-

tion of the already-crowded S-band RFI will become an issue at more locations than

just the NWRT. The data quality requirements for meteorological radar are strict. The

algorithms that calculate reflectivity, velocity, and spectrum width are already sensitive
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Figure 1.3: The NWRT PAR is a Navy SPY-1A converted for weather radar purposes.

Table 1.1: Several types of government radars have similar operating frequencies and

pulse repetition intervals.

Radar Operating Frequency Approximate PRI

WSR-88D 2.7-3 GHz 1 ms

TDWR 5.5-5.65 GHz 0.5 ms

ASR-9 2.7-2.9 GHz 1 ms

ASR-11 2.5-2.9 GHz 1 ms
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Figure 1.4: Co-channel transmitter interference manifests as spike in the magnitude of

the returned power, as seen in a PPI (a display of constant elevation and varying azimuth)

of clear air at the NWRT PAR.

to RFI, and the dual polarization product calculations are even more sensitive to inter-

ference; if RFI is present, it could potentially have a large effect on all downstream radar

products. Methods to detect and mitigate the effects of RFI are needed.

Some methods of dealing with RFI already exist. For example, the Vaisala algo-

rithms were developed to detect and mitigate RFI when only a single time series of IQ

data is available. The Vaisala algorithms examine the data in a radar coherent processing

interval and, at each range gate, look for large pulse-to-pulse variations in power [15];

these algorithms work reasonably well, but better performing alternatives are possible.

For example, a cell-averaging CFAR-type method, ISDA, was developed as an alterna-

tive to the Vaisala algorithms, and machine learning algorithms can be quite potent at

classification problems such as the detection of RFI. These temporal methods of detect-

ing RFI are the subject of Chapter 2. Similarly, some techniques already exist to deal
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Figure 1.5: The location of government radar sites that operate in or near S-band [3].

with noise-like interference, but continuous wave interference is difficult for single-

data-stream hardware to deal with without radar user intervention [16]. Fortunately,

the increasing availability of digital phased arrays allows the collection of spatial data,

which opens up the possibilities for spatial processing of radar data. Adaptive digital

beamforming is a method of mitigating interference using such spatial data, and shows

promise as a method of dealing with interference not only in weather radar applications

but in applications ranging from communications to electronic warfare. These spatial

processing methods are discussed in Chapter 3. These spatial processing techniques are

powerful, but they require well-behaved and well-calibrated radar systems, which can

be tricky if components do not behave consistently as their temperatures change. Digi-

tal equalization is a powerful technique that can be used to restore parity to these digital

phased arrays and thus enhance the performance of these spatial processing algorithms,

and is the subject of Chapter 4.
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Chapter 2

Temporal Strategies

2.1 Background and Motivation

Three types of RFI affect radars: intermittent interference, continuous wave interfer-

ence, and noise-like interference. Noise-like interference is non-coherent interference

present in every sample of a CPI, acting to generally increase noise power; “sun spikes”

are an example of noise-like interference, seen in Figure 1.1 [1]. Continuous wave in-

terference is also present at every sample, but occurs at a particular frequency and thus

manifests in the Doppler spectrum as a spike at a particular frequency bin. Intermittent

interference, also called pulsed interference, does not affect every sample of a CPI but

nonetheless can adversely affect data quality. Intermittent interference can be simulated

using the equation

Vh(m) =


√

Ih exp [ jφP], if m = k

0, otherwise.
(2.1)

where Ih is the interference power defined by the INR, φP is the random phase of the

pulsed interference uniformly distributed from 0 to 2π , m is the sample index from 1 to

M, and k is the randomly chosen integer that defines where the simulated RFI will be

injected [16].

Example manifestations of the different types of interference are shown in Figure

2.1. Continuous wave RFI or noise-like RFI affects all range bins at all pulses (Figure

2.1a). Intermittent RFI affects random range bins from random pulses with no dis-

cernible pattern (Figure 2.1b). If the PRIs are identical, intermittent RFI from another

radar can affect every pulse from a range bin in a particular CPI (Figure 2.1c). If the

PRIs are identical but the pulse length of the interfering radar is longer than that of the
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(a) Continuous wave & noise-

like

(b) Intermittent, random

(c) Intermittent, identical PRI (d) Intermittent, identical RFI,

long pulse

(e) Intermittent, multiple PRI (f) Intermittent, non-integer mul-

tiple PRI

Figure 2.1: Dwells illustrating how the different types of RFI can manifest, including

several variations on intermittent interference. In all figures, red cells are those affected

by RFI, while white cells are those that are unaffected by RFI. The X axis is fast time,

representing range, while the Y axis is slow time, representing different pulses.
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receiving radar, then such synced RFI can affect every pulse from multiple contiguous

range bins (Figure 2.1d). If the PRI of the interfering radar is an integer multiple of

the receiving radar’s PRI, then only some of the pulses from a particular range bin in a

CPI may be affected (Figure 2.1e). If the PRI of the interfering radar is not an integer

multiple of the receiving radar’s PRI, then the effect of the RFI will be spread out over

multiple range bins (Figure 2.1f).

Temporal strategies of RFI mitigation use the information contained in the complex

IQ data received by the radar during a CPI. If the statistics of the RFI are markedly

different from the statistics of the weather, the RFI can be flagged as such and dealt with

[15]. There are two steps in temporal RFI mitigation algorithms: detection and data

recovery. The detection step is an important step and the more interesting one. Several

algorithms were considered: the Vaisala algorithms, the Electromagnetic Interference

Filter, and the Interference Spike Detection Algorithm [15, 13, 17].

This chapter is organized as follows: Section 2.2 gives an overview of several RFI

mitigation algorithms and of different data recovery options, and Section 2.3 goes over

the results of several experiments performed to explore the performance of these algo-

rithms. The experiment in Subsection 2.3.1 first looks at how the probability of false

alarm of ISDA varies with different parameters, and then examines the performance

of all the temporal algorithms on white noise embedded with simulated RFI; the ex-

periment in Subsection 2.3.2 looks at the performance of the algorithms on some data

collected with RFI; the experiment in Subsection 2.3.3 takes some weather data without

RFI and adds simulated RFI, allowing both the effects of RFI and the alleviating in-

fluence of the algorithms on meteorological parameters to be quantified; and finally, the

experiment in Subsection 2.3.4 uses a method of simulating weather data to examine the

performance of the algorithms in a wide variety of meteorological conditions, and also

compares the performance of these algorithms to that of some more complex machine

learning methods.
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2.2 RFI Detection Algorithms

2.2.1 Vaisala Algorithms

The Vaisala algorithms (sometimes called the Sigmet algorithms) were developed to

eliminate strong intermittent RFI originating from man-made emitters. The detection

phase works by examining the variation in pulse power between the cell under test

(CUT) and power of the cells from one and two pulses prior to the CUT, as shown

in Figure 2.2. There are three variations of the algorithm, and all are very similar in

Figure 2.2: Cells used in the Vaisala algorithms, with the CUT in green.
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form:

Vaisala 1
|Pn−1−Pn−2| <C1 and

|Pn−Pn−1| >C2

(2.2)

Vaisala 2
|Pn−1−Pn−2| <C1 and

Pn−Pn−1 >C2

(2.3)

Vaisala 3
|Pn−1−Pn−2| <C1 and

Pn− Pn−1+Pn−2
2 >C2

(2.4)

where Pn,Pn−1, and Pn−2 are the powers (in dB) at the current pulse, at one pulse before

the current pulse, and at two pulses before the current pulse respectively; C1 and C2 are

user defined constants, typically between 5 and 20 dB and often equal to each other.

The data recovery phase of the Vaisala algorithms is simple replacement: the interference-

flagged data IQ data {In,Qn} at the CUT is replaced with the IQ data from the previous

pulse {In−1,Qn−1} [15].

2.2.2 Electromagnetic Interference Filter

The Electromagnetic Interference Filter (EMI) is an algorithm developed internally by

Chris Curtis of CIMMS. The detection stage of the EMI filter does an initial statistical

analysis of the data and flags as RFI any point at which the power is significantly larger

than the median power. The user is able to specify the desired PFA of the detection stage.

The data recovery stage of the EMI filter is linear interpolation of the IQ data in fast

time using data from the range gate before and the range gate after the CUT [13, 17].
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2.2.3 Interference Spike Detection Algorithm

The Interference Spike Detection Algorithm (ISDA) was initially developed to help mit-

igate the intermittent RFI that presented at the NWRT PAR, as shown in Figure 1.4. The

detection stage of ISDA is, in essence, a cell-averaging constant false alarm rate algo-

rithm [18]. For each cell-under-test (CUT) in a dwell, a set of “neighbor cells” is defined

by the user; by default, and hereafter unless otherwise specified, the neighbors used by

ISDA are the cells at the same range gate and from the pulse before and after, as shown

in Figure 2.3a. The power in each of these neighbor cells is calculated and subsequently

(a) Default setup for the ISDA Algorithm (b) Example customization of the ISDA al-

gorithm

Figure 2.3: The neighbor set of ISDA can be defined by the user. The CUT is shown in

green, and the neighbor cells are in red. By default (left) the neighbor set is comprised

of the data from the cell before and the cell after the CUT.

averaged, giving the mean power of the neighboring cells. A ratio of the power of the

CUT to the mean power of the neighbor cells is taken; if this number exceeds a certain

threshold, it is flagged as RFI. In equation form:

ISDA{
P(Vn)

P(Vneighbors)
> threshold (2.5)
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where P(V ) is the power (not in dB) of whatever term is inside the parentheses; Vn is

the IQ data at the CUT; P
(
Vneighbors

)
is the linear average of the powers (again, not in

dB), calculated from the IQ data from all points in the (user-defined) set of neighbors;

and threshold is a user defined detection threshold[13, 17].

The data recovery stage of ISDA is linear interpolation of the IQ data in slow time

using data at the same range gate and from the pulse before and the pulse after the CUT.

2.2.4 Data Recovery Options

Three types of data recovery methods are used: simple replacement, used by the Vaisala

algorithms; slow time interpolation, used by default by ISDA; and fast time interpola-

tion, used by the EMI filter. Examples are shown in Figure 2.4

2.3 Temporal Algorithm Results

2.3.1 Testing White Noise

The performance of the algorithms on white noise was explored in the experiments out-

lined in the next two sub-subsections. First, the performance of ISDA as a function of

which cells were included as part of its neighbor set was explored in Section 2.3.1.1.

Next, the performance of ISDA, EMI, and the Vaisala algorithms in terms of the proba-

bility of false alarm when executed on white noise was examined in Section 2.3.1.2.

2.3.1.1 Exploring ISDA Parameters

The three adjustable parameters of the ISDA are the threshold, the width, and the number

of guard cells; the latter two work together to define the the set of neighbors. The impact

of adjustments to these parameters was calculated by populating a matrix with uncor-

related, complex, zero-mean, white Gaussian noise. Since the Central Limit Theorem

is applicable to meteorological data, any anomalous spikes in this Gaussian distribution
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would also be present in real meteorological data, meaning that any spike detections

found in this noise would be by definition false alarms. The ISDA was then executed on

the matrix. The total number of interference spike flags was calculated and divided by

the total number of data entries, yielding the probability of false alarm (PFA). This was

done for varied values of the threshold, the width, and the number of guard cells, and

the results are shown as surface plots in Figures 2.5a and 2.5b.

Varying the number of guard cells had virtually no impact on the PFA. This is ex-

pected, as the PFA was calculated using uncorrelated zero-mean complex white Gaussian

noise; the lack of correlation means that the neighbor cells’ location does not affect the

probability of finding a specific number at that location, and thus the average power of

the neighbors is independent of location.

Increasing the width lowered the PFA at any specific threshold. This makes sense:

as more numbers are considered, the distribution of the samples approaches the distri-

bution of the random process generating the samples, and thus the mean of the samples

approaches the mean of the random process. Therefore, with increasing width in the PFA

test, the average of the neighbors’ power approaches the expected value at the point in

question and thus the probability that the power at the point in question normalized by

the neighbors’ power is more than the threshold is reduced.

Varying the threshold had the most impact on the PFA. Calculating how the PFA

varied by threshold for a width of 1 and 0 guard cells using a least-squares fit yielded

the relation:

PFA = 1.7628 ·T−1.835 (2.6)

where PFA is in linear units and T is the threshold; this relation is shown in Figure 2.6.

Integer thresholds for some PFAs of interest are included in the figure, but in summary,

the PFA can be manipulated to be anywhere between 0.5 and 10−4 using the proper

threshold values.
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2.3.1.2 Validating Algorithm Parameters

The RFI detection algorithms were next tested on a matrix with injected interference

spikes as a diagnostic test to verify settings. The matrix was first populated with un-

correlated, complex, zero-mean, white Gaussian noise, then at known locations additive

interference spikes were introduced. The algorithms were then executed on this theoret-

ical data. Because the location of the spikes was known, values for the probabilities of

true positives, false positives, and false negatives were able to be determined. Graphs

of these probabilities are shown in Figures 2.7 and 2.8. Varying the threshold parameter

(for ISDA) and the PFA parameter (for EMI) resulted in relatively constant PFAs as the

interference spike power varied, and the PFAs could be coaxed down as low as 10−4. The

C1 and C2 algorithms were varied over a variety of values and the values that yielded an

experimental PFA that most closely matched the desired PFA at each interference spike

power level were shown above; despite this effort to glean the best possible performance

from the Vaisala algorithms, the chart above shows that they were less steady and un-

able to reach as low of a PFA as ISDA and EMI. As can be seen, the ISDA detects every

interference spike for PFA of 10−2 (10−3, 10−4) once the spike powers are 11 dB (14

dB, 16dB), respectively. The EMI algorithm performs even better, reaching near 100%

probability of detection once the interferer spike power is about 8 dB no matter the spec-

ified PFA. The Vaisala algorithms perform less well, typically maxing out at around 96%

detection; this is likely because the Vaisala algorithms intrinsically cannot detect RFI in

the first two pulses of a particular dwell. The data at two points are summarized in Table

2.1.

2.3.2 NWRT PAR Data Observed with RFI

The ISDA was tested on a singled dwell from the NWRT PAR data shown in Figure

1.4, using a width of one and no guard cells. The ISDA has varying results based on

the threshold chosen. If an aggressive threshold, like PFA = 10−1, is used, all of the
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Table 2.1: Algorithm Performance Comparison on White Gaussian Noise with RFI

Added

Power: 5 dB ISDA EMI Vaisala 1 Vaisala 2 Vaisala 3

PFA 0.0108 0.0084 0.0102 0.0090 0.0110

PD 0.171 0.544 0.031 0.088 0.164

Power: 5 dB ISDA EMI Vaisala 1 Vaisala 2 Vaisala 3

PFA 0.0010 0.0080 N/A 0.0015 0.0016

PD 0.022 0.247 N/A 0.014 0.039

Power: 15 dB ISDA EMI Vaisala 1 Vaisala 2 Vaisala 3

PFA 0.0108 0.0084 0.0102 0.0090 0.0077

PD 1 0.999 0.945 0.959 0.920

Power: 15 dB ISDA EMI Vaisala 1 Vaisala 2 Vaisala 3

PFA 0.0010 0.0080 N/A 0.0015 0.0011

PD 1 0.999 N/A 0.792 0.965
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noticeable spikes are removed, but there are numerous points flagged as interference

spikes that to cursory examination do not appear to be RFI; the effects of this can be

seen in Figure 2.9b. This alters the noise power and can affect the values of meteoro-

logical products which use the noise power in their calculation. If a more conservative

threshold, like PFA = 10−3, is used, then some smaller spikes are left, though the most

noticeable spikes are still removed, and the noise power is less affected; this can be seen

in Figure 2.9c.

The ISDA was then tested on the whole of the PPI of the NWRT PAR data. The data

before and after ISDA application can be seen in Figures 2.10a and 2.10b. Some RFI,

including the RFI in the dwell shown in Figure 2.9, is clearly mitigated; for example, it is

easily seen by looking at the change in the datapoint in the green circle between Figures

2.10c and 2.10d. However, other points that are likely afflicted with RFI remain, e.g.

the data points to either side of that in the green circle in the figures. Examining the

dwell at the location above the green circle in Figure 2.11 gives insight into why the

RFI was unmitigated. In this area of the dwell, RFI is detected only at one point: at

range gate 767 and pulse 32. ISDA (and the other algorithms) fail to detect RFI at other

points on the dwell. This is because the PRI of the interferer (likely a nearby Airport

Surveillance Radar) is synced with the PRI of the receiving radar, the NWRT, so the RFI

is present in every pulse during the first 25 pulses, after which the PRI swaps to being

approximately four times the receiving radar’s PRI. The means that, for most of the

dwell, the power at the previous pulses (for Vaisala) and neighbor pulses (for ISDA) do

not differ significantly from the power at the current pulse. ISDA operates by comparing

the neighbors’ mean power to the power at the cell in question, an approach that only

works if the neighbors are not themselves home to an interference spike. If the spike

is persistent between pulses at a single location, ISDA does not see an abnormal jump

in power and will not flag this location as interference. These slow-time-continuous

interference patterns are difficult to distinguish from point targets; this case has the PRI
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switch in the middle of a CPI, but this will not always be the case. In Figure 2.11, the

sharp drop-off in power in the later pulses is indicative that the return from that location

is not from a point target but is instead interference; other nearby locations do not have

this sharp dropoff in power at later pulses, and so could theoretically be point targets.

Methods to identify RFI that is not intermittent are needed.

2.3.3 NWRT PAR Data Corrupted with Simulated RFI

The experiment covered in Section 2.3.2 did a quantitative examination of algorithm

performance on white Gaussian noise with and without simulated RFI and a qualitative

examination of algorithm performance on real weather data afflicted with real RFI. To

more quantitatively explore algorithm performance on real meteorological data, a re-

gion of weather observed by the NWRT and unaffected by RFI (at least to the naked

eye) was selected. This data, shown in Figure 2.12, was then additively corrupted with

RFI generated according to equation 2.1 for INRs between -30 and 60 dB. To follow the

convention of the real RFI observed in Section 2.3.2, if a particular range bin and az-

imuth was chosen to be afflicted with RFI, then multiple pulses at that range bin of that

dwell were corrupted with RFI. Next, each of the detection algorithms was executed on

the RFI corrupted weather data; ISDA was executed twice, once with the simple replace-

ment data recovery scheme and once with the linear averaging data recovery scheme.

Constants and thresholds were selected such that the PFAs between the Vaisala algo-

rithms, EMI, and ISDA were comparable for this data. Finally, the data was analyzed.

Because uncorrupted data was available, the probabilities of detection could be found,

and any biases introduced by the RFI or by the RFI mitigation algorithms to the weather

data could be measured.

An example execution of the RFI corruption is shown in Figure 2.13. In this exam-

ple, the RFI is very strong - the interference-to-noise ratio is approximately 60 dB - and
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quite apparent in the received power. Once afflicted with RFI, the RFI mitigation algo-

rithms were executed on the data and allowed to mitigate the RFI; an example output is

shown in the right column of Figure 2.13. To the eye, the RFI seems to be dealt with.

However, an answer that is more quantitative than qualitative is desired. Because the

“truth” of the data is available, the probability of detection, probability of false alarm,

and the bias introduced by the RFI and the leftover bias after RFI mitigation to both

reflectivity and radial velocity can be calculated.

Figure 2.14 shows how the probability of detection varied with INR and PFA for

ISDA, EMI, and the Vaisala algorithms. As the PFA became more strict, the probability

of detection of ISDA at a particular INR dropped. The Vaisala algorithms did not per-

form as well as ISDA at any of the tested PFA values, but their performance did improve

and become comparable to ISDA as the PFA became more strict. By contrast, the per-

formance of EMI did not vary much with the PFA value, remaining relatively constant

for a specific INR. This performance was worse than ISDA and some of the Vaisala al-

gorithms at less strict PFA values, but at the strictest PFA values EMI outperformed both

ISDA and the Vaisala algorithms.

The bias introduced by the RFI to the reflectivity field is shown in Figure 2.15, and

the standard deviation of that bias is shown in Figure 2.16 . The bias introduced by the

RFI to the radial velocity field is shown in Figure 2.17, and the standard deviation of

that bias is shown in Figure 2.18. The plots show that the bias in power introduced

by the RFI varies with the INR, as expected; the random phase component of equation

2.1 means that the relation is not one-to-one, but the introduced bias varies from 0 dB

to about 45 dB for INRs between -30 dB and 60 dB. After the Vaisala algorithms, EMI,

and ISDA are executed on the RFI corrupted data, the bias is greatly reduced. Bias

after the Vaisala algorithms varied between about 0 dB at low INRs and between 0.7 dB

and 2 dB at high INRs; bias after EMI and ISDA was generally between 0 and 0.5 dB

and did not vary noticeably with INR. ISDA using the simple replacement mitigation
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scheme increased the bias by around 0.1 dB, but still performed better than the Vaisala

algorithms did, indicating that removal of the RFI is more important than the method of

recovery of the corrupted data. The bias in radial velocity was much less dependent on

INR. This is expected, since radial velocity is a function of the phase of the signal rather

than its power, and the phase of the RFI was uniformly distributed. All the algorithms

did a good job at reducing the bias in the radial velocity to near 0 meters per second.

2.3.4 Simulated RFI on Simulated Weather Data

The experiment covered in Section 2.3.3 examined the performance of the RFI mitiga-

tion algorithms at detecting RFI and their ability to restore the data to its true value.

Evidence indicated there that the detection problem was more important, and that, when

RFI was reliably detected, both linear interpolation or simple replacement were able to

restore the data; thus, the detection problem was focused on for this experiment. There

were two weaknesses in that experiment: first, the weather data was relatively uniform

across the domain, and second, getting the desired PFAs required the user to vary algo-

rithm parameters and use their knowledge of the truth data to get the desired PFA, rather

than being able to set the algorithm parameters based on the environment.

2.3.4.1 Characterizing Algorithm Parameters

Getting a characterization of algorithm performance in terms of PFA and probability of

detection that was valid for a wide variety of meteorological environments would be

ideal for an operational algorithm. Meteorological data with a variety of signal powers,

signal-to-noise ratios, ambiguous velocities, radial velocities, and spectrum widths was

simulated using the formula developed by Zrnić:

I(i)+ jQ(i) = IFFT [−(Sk +N) lnXk] (2.7)

22



where there are k frequency bins, Sk is the signal power spectrum (typically a Gaussian

distribution), N is the noise power, and Xk is a random number between zero and one

[19].

The PFA of ISDA and the Vaisala algorithms was calculated for this data and used as

a training data set for elastic net regularization, a machine learning regression algorithm.

Elastic net regularization linearly combines the L1 and L2 penalties of LASSO and

Ridge regression. Ridge regression, also known as Tikhonov regularization or L2 regu-

larization, is defined as

min
β

[
||y−Xβ ||2 + ||Γβ ||22

]
= min

β0,β

[
N

∑
i=1

(
y−β0− xT

i β
)2
]

subject to
p

∑
j=1
|β j|2 ≤ t (2.8)

Setting Γ = λ I, where λ is a penalty parameter, serves to prioritize solutions with

smaller coefficients [20].

Least Absolute Shrinkage and Selection Operator Regression, also known as L1

regularization, is defined as

min
β

[
||y−Xβ ||2 + ||Γβ ||1

]
= min

β0,β

[
N

∑
i=1

(
yi−β0− xT

i β
)2
]

subject to
p

∑
j=1
|β j|2 ≤ t

(2.9)

Because the penalty term is linear instead of quadratic, it tries to set some coefficients

to zero, acting to excise unimportant coefficients [20].

The following relations were found:

• For ISDA: log(PFA) = −2.04− 2.35 · 10−10 · sigPow+ 4.30 · 10−10 · noisePow+

−5.80 · 10−2 · vr + 0 ·σv +−1.22 · 10−1 · vam + 1.47 · 10−3 · log(sigPow)+ 1.37 ·

10−6 · SNR+−3.93 · 10−2 · log(SNR)+−1.33 · log(threshold)+−3.18 · 10−2 ·

threshold

• For Vaisala 1: log(PFA)=−1.76−1.10 ·10−10 ·sigPow+1.85 ·10−10 ·noisePow+

−1.39 ·10−2 ·vr+4.83 ·10−1 ·σv+−1.33 ·10−1 ·vam+7.49 ·10−4 · log(sigPow)+
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6.09 · 10−7 · SNR+−1.83 · 10−2 · log(SNR)+−1.82 · 10−1 ·C1 +−6.55 · 10−1 ·

C2 +4.20 ·10−1 · (C1−C2)

• For Vaisala 2: log(PFA)=−6.12−1.29 ·10−10 ·sigPow+2.11 ·10−10 ·noisePow+

−1.49 ·10−2 ·vr+3.21 ·10−1 ·σv+−8.66 ·10−2 ·vam+8.91 ·10−4 · log(sigPow)+

6.49 · 10−7 · SNR+−1.93 · 10−2 · log(SNR)+−9.35 · 10−2 ·C1 +−7.95 · 10−1 ·

C2 +6.50 ·10−1 · (C1−C2)

• For Vaisala 3: log(PFA)=−3.13−1.28 ·10−10 ·sigPow+2.08 ·10−10 ·noisePow+

−1.86 ·10−2 ·vr+3.97 ·10−1 ·σv+−1.24 ·10−1 ·vam+8.20 ·10−4 · log(sigPow)+

8.67 ·10−7 ·SNR+−2.70 ·10−2 · log(SNR)+−3.72 ·10−1 ·C1+−1.00 ·C2+5.81 ·

10−1 · (C1−C2)

where PFA is the calculated probability of false alarm for this data, sigPow is the sig-

nal power, noisePow is the noise power, vr is the radial velocity, σv is the spectrum

width, vam is the ambiguous velocity, SNR is the signal-to-noise ratio, threshold is the

ISDA parameter, and C1 and C2 are the Vaisala parameters. These relations can all be

inverted, meaning that, given some information about the environment, a user can auto-

matically find the algorithm parameter required to attain a specific probability of false

alarm. These parameterizations were then tested on another set of simulated data that

comprised the test set; the results can be seen in Figure 2.19. The fits are not ideal but

are far better and easier than guesswork.

2.3.4.2 Machine Learning Detection Algorithms

The detection of RFI is, at its heart, a classification problem: the algorithms are try-

ing to classify a point as either interference or not interference. Two machine learning
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algorithms, decision trees and random forest classification trees, are well suited to the

classification problem. Additionally, the internal workings of both algorithms are not

obfuscated - they are relatively straightforward to interpret and thus wouldn’t be overly

complicated to implement in an operational setting. While other algorithms, such as

neural networks or support vector machines, could likely have performed well, the mo-

tivator behind the experiment was to find an algorithm whose inner workings were easily

understood and interpretable and which could be easily exported to an FPGA or other-

wise simply implemented in hardware.

Decision trees are a machine learning method used primarily for classification, though

they can be applied to regression problems. They function by partitioning the learning

space of the data into smaller and smaller segments until no information remains. The

feature used to partition the data is chosen based on which partition would yield the best

information gain. One of the distinct advantages of decision trees is that they are easy

to interpret: the decision tree is easily represented as a flowchart. Drawbacks include

that a single decision tree can overfit the data quite easily, resulting in trees that perform

well for training data but not for new data [21]. This problem can be mitigated using an

ensemble of trees, such as a random forest [22].

Random forests are an extension of decision trees. They are an ensemble of indi-

vidual decision trees functioning in a perturb-and-combine setup. Each tree’s training

dataset is bootstrapped from the original dataset, meaning that each tree will be trained

on a slightly different set of data, ideally making it more robust. Additionally, the fea-

tures that each tree has available to partition upon are randomly chosen from the set of

all features, again working to avoid duplicate trees. Overall, random forest classifiers

have a slightly higher bias, but the reduced variance of the random forest output means

that the overall performance is better than a single decision tree classifier [22].

One of each was trained on some simulated weather data with simulated RFI. To

generate the training data, equation 2.7 was used to simulate weather data, which was
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injected with RFI using 2.1. The simulated weather radar data was simulated as a set of

5000 range bins, each with 36 pulses, yielding 180000 total samples. The ambiguous

velocity of the hypothetical radar was set at 20 ms−1, and the spectrum width was set

at 3 ms−1. The signal power was set to 100 W, the signal-to-noise ratio (SNR) was

varied between 0 and 60 dB, and, when applicable, the interference-to-noise ratio (INR)

was set to between 0 and 30 dB. The radial velocity was uniformly randomly generated

between±vam for each range bin. The probability that RFI was located at any one range

bin and pulse was set to 0.05.

The data passed to the regression algorithm was only data that a radar operator could

be reasonably expected to know. The ambiguous velocity is an inherent property of the

scanning strategy in use, so it was passed as it was. The other values were measured

using the simulated radar data at that particular simulated range bin, using pulse-pair

processing when needed:

• signal power (at pulse i) Pi

• radial velocity vr

• spectrum width σv

• average power P

• Pi
P

• Pi−k,k ∈ {±1,±2±3,±4}

• Pi
Pi−k

,k ∈ {±1,±2,±3,±4}

The total number of features was 37. A separate tree and random forest was trained for

every 5 dB of SNR between 0 and 60 dB. Scikit-learn’s implementations of both were

used [23].
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2.3.4.3 Useful Metrics and Algorithm Performance

The receiver operating characteristic (ROC) curve is a measure widely used for model

comparison, especially in the field of machine learning. The ROC curve is a plot of

true positive rate versus false positive rate; that is, it plots sensitivity versus fallout

(where f allout = 1− speci f icity). It serves to visualize the performance tradeoffs of

classification problems by showing how much an increase in true positive rate ”costs”

in terms of the requisite increase in false positive rate. By definition, an algorithm that

randomly classifies an entry will be right as much as it is wrong, and thus its ROC curve

will be a line from (0,0) to (1,1), as seen in Figure 2.20. ROC curves that stay above

this diagonal indicate an algorithm that performs better than random assignment [24].

The area under the ROC curve (AUC) is a metric used to quickly quantify the ROC

in an easy-to-compare scalar value. It is, as its name suggests, the integrated area under

the ROC curve. In terms of probability, the AUC is “equivalent to the probability that the

classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative instance” [24]; thus the AUC of a random classifier is 0.5, and the AUC of a

perfect classifier that is always correct is 1.

Both metrics are widely used, especially in machine learning applications, and so

will be used to evaluate the performance of the decision tree and random classifier and

compare their performance to that of the other RFI detection algorithms.

Again, equation 2.7 was used to simulate weather data, which was injected with

RFI using 2.1. The SNR and INR were varied and the probability of detection and

probability of false alarm were recorded and resulting AUCs of the ROC were recorded.

The ROC for when the SNR was 60 dB and the INR was 30 dB is shown in Figure 2.21.

The associated AUCs are shown in Table 2.2. Examination of Figure 2.21 and Table 2.2

shows that the industry standard algorithms (Vaisala 1, Vaisala 2, and Vaisala 3) do not

perform very well. They do perform better than a random classifier, but their AUC is

only around 0.6. By contrast, the experimental ISDA algorithm performs much better,
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Algorithm AUC

ISDA 0.800

Vaisala 1 0.620

Vaisala 2 0.583

Vaisala 3 0.586

Decision Tree 0.784

Random Forest 0.891

Table 2.2: AUCs for the tested RFI classification algorithms.

with an ROC far removed from the random assignment line and an AUC of 0.8. The

Scikit-learn implementations of the machine learning algorithms perform quite well;

the single decision tree classifier has an ROC only slightly below ISDA’s ROC (with a

corresponding AUC of 0.784), while the random forest classifier performs much better

than ISDA performs, with the best ROC on the chart and an AUC of 0.891.

Varying the SNRs and INRs and calculating the AUC at each point can yield more

insight into relative algorithm performance, as seen in Figure 2.22. The machine learn-

ing algorithms clearly have a higher AUC over a larger set of SNRs and INRs than the

other detection algorithms.

Despite their higher performance, there are some drawbacks to the machine learning

algorithms. One of the reasons for choosing decision trees was the ease of interpretation,

especially when compared to other machine learning classification algorithms such as

neural networks. The Scikit-learn implementation of the decision tree has almost 6500

nodes; while still easy to interpret, condensing it into a set of rules to be implemented

onto an FPGA is not as simple. If trimming a bunch of nodes from the decision tree or

random forests yields a large decrease in performance, it may be worth the slight drop

in performance to implement the simpler ISDA over the superior-performing machine

learning algorithms, at least in operational settings where speed is a priority. Either way,
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it’s clear that machine learning algorithms can perform better than the currently-used

industry algorithms. A single decision tree classifier can perform on par with the exper-

imental algorithm ISDA and far above the operational Vaisala algorithms. Additionally,

a random forest classifier can perform better than any other method examined.

2.4 Conclusions

Radio frequency interference was observed at the National Weather Radar Testbed Phased

Array Radar and motivated an inquiry into the efficacy of industry-standard RFI miti-

gation algorithms. The RFI was intermittent RFI of two types: with a PRI equal to that

of the NWRT and with a PRI that was an integer multiple of the NWRT. The industry’s

Vaisala algorithms were compared to an algorithm developed for this research, a cell-

averaging CFAR-type algorithm called ISDA, in a variety of experiments. When tested

on white noise afflicted with simulated intermittent integer-multiple RFI, the Vaisala al-

gorithms were less sensitive than ISDA and could not reach PFAs as low as ISDA could.

When tested on real weather data afflicted with simulated RFI, the Vaisala algorithms

did mitigate the RFI, but the leftover bias in the meteorological variables was still higher

than the bias after application of ISDA. When tested on simulated weather data with sim-

ulated RFI, the Vaisala algorithms again could not match the performance of ISDA. With

the ability to simulate weather data and RFI, training datasets could be formed and ma-

chine learning classification algorithms compared to ISDA and the Vaisala algorithms.

Decision trees were found to match ISDA’s performance, and random forests were able

to perform better than any of the other algorithms tested; however, both of these algo-

rithms took a non-trivial amount of time to execute on the radar data. The machine

learning algorithms would be best leveraged in offline processing for RFI detection.

These tests all used simulated RFI that had a PRI that was an integer-multiple of the

radar. This is not necessarily realistic; for example, the observed RFI that motivated

this research had instances where its PRI was identical to that of the NWRT, making the
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return near-indistinguishable from that of a point target. This reveals a major weakness

of the Vaisala algorithms, ISDA, and the machine learning classification algorithms as

they were trained: if the RFI is present in every pulse at a particular range gate, or

even just in some multiple contiguous pulses (as was the case with some of the RFI

in this observed data), then the meteorological data will be affected in a way that the

temporal RFI algorithms cannot mitigate. Fortunately, digital control of phased arrays

offers spatial data from the radar which can be leveraged to mitigate RFI. Chapter 3

explores interference mitigation using this spatial data on both weather radar data and

communications data.

30



(a) Simple replacement is used by the

Vaisala algorithms.

(b) Slow time interpolation is used by de-

fault by the ISDA algorithm.

(c) Fast time interpolation is used by default

by the EMI algorithm.

Figure 2.4: There are three data recovery schemes tested. Simple replacement is used

by the Vaisala algorithms, slow time interpolation is the default for ISDA, and the EMI

filter uses fast time interpolation.
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(a) Varied Threshold and Width

(b) Varied Threshold and Guard Cells

Figure 2.5: ISDA PFA results from varying the threshold versus the width (top) and

number of guard cells (bottom) on white Gaussian noise.
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Figure 2.6: Using the default configuration shown in Figure 2.3a, the threshold was

varied and the PFAs recorded.
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Figure 2.7: The PFA as a function of injected interferer power. The Vaisala algorithms

(labeled SM1, SM2, and SM3 here) were unable to reach PFAs as low as the ISDA and

EMI algorithms were.
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Figure 2.8: The probability of detection as a function of injected interferer power, sep-

arated by algorithm PFA. Note that because the Vaisala algorithms (labeled SM1, SM2,

and SM3 here) could not reach as low of a PFA as the other two algorithms, their results

are not shown in the bottom chart.
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(a) Data Before RFI Detection and Mitigation

(b) Data After RFI Detection and Mitigation using

PFA = 0.1

(c) Data After RFI Detection and Mitigation using

PFA = 0.001

Figure 2.9: Data before (top) and after using ISDA to mitigate RFI with an aggressive

PFA of 0.1 (middle) and a more conservative PFA of 0.001 (bottom).
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(a) Data before RFI detection and mitigation (b) Data After RFI Detection and Mitigation us-

ing PFA = 0.001

(c) Data before RFI detection and mitigation,

zoomed in near the dwell of interest.

(d) Data after RFI detection and mitigation using

PFA = 0.001, zoomed in near the dwell of interest

Figure 2.10: Data before (left column) and after (right column) using ISDA to mitigate

RFI with a conservative PFA of 0.001. The location of the data used in the dwell shown

in Figure 2.9 is noted with the green circle, and the area around that circle is shown in

the bottom row.
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(a) Data before RFI detection and mitigation

(b) Data after RFI detection and mitigation using PFA = 0.001

Figure 2.11: Data before (left column) and after (right column) using ISDA to mitigate

RFI with a conservative PFA of 0.001. The only change is at range gate 767 and pulse

32.
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Figure 2.12: This RFI-free data from inside the black box was used as the starting point

for this experiment.
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(a) Example Execution: Power (b) Example Execution: Radial Velocity

Figure 2.13: An example execution of this experiment. Power (top) and radial velocity

(bottom) without RFI (left), with injected RFI with an INR or 60 dB (center), and after

mitigation via linear averaging (right).
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Figure 2.14: Probability of detection for PFA = 0.1 (top), 0.01 (middle), and

0.001 (bottom) for ISDA (red), EMI (black), and the Vaisala algorithms (other colors).
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Figure 2.15: Bias (in dB) in reflectivity as a function of INR introduced by RFI

(top) and the correction of RFI for PFA = 0.1 (middle top), 0.01 (middle bottom), and

0.001 (bottom) for ISDA (red and orange), EMI (black), and the Vaisala algorithms

(blues and greens).
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Figure 2.16: Standard deviation of the reflectivity bias as a function of INR introduced

by RFI (top) and the correction of RFI for PFA = 0.1 (middle top), 0.01 (middle bottom),

and 0.001 (bottom) for ISDA (red and orange), EMI (black), and the Vaisala algorithms

(blues and greens).
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Figure 2.17: Bias (in dB) in radial velocity as a function of INRintroduced by RFI

(top) and the correction of RFI for PFA = 0.1 (middle top), 0.01 (middle bottom), and

0.001 (bottom) for ISDA (red and orange), EMI (black), and the Vaisala algorithms

(blues and greens).
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Figure 2.18: Standard deviation of the radial velocity bias as a function of IN-

Rintroduced by RFI (top) and the correction of RFI for PFA = 0.1 (middle top),

0.01 (middle bottom), and 0.001 (bottom) for ISDA (red and orange), EMI (black), and

the Vaisala algorithms (blues and greens).
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(a) ISDA Parameterization Fit (b) Vaisala 1 Parameterization Fit

(c) Vaisala 2 Parameterization Fit (d) Vaisala 3 Parameterization Fit

Figure 2.19: Predicted PFA (blue) versus calculated PFA (red dots) on the test set after

elastic net regularization.
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Figure 2.20: The ROC of a random classifier is simply a diagonal line (with an integrated

area under the curve of 0.5).

Figure 2.21: The ROC of the various detection algorithms when the SNR was 60 dB

and the INR was 30 dB.
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Figure 2.22: The AUCs of the RFI detection algorithms as a function of simulated

weather data SNR and RFI INR. ISDA is shown in the top left; the Vaisala algorithms

are shown in the top center left, center right, and middle; a decision tree is shown in

the bottom far left; and a random forest is shown in the bottom center left. Dark red

represents an AUC of 0.9; the color scale is common across the whole figure.
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Chapter 3

Spatial Strategies

3.1 Background, Motivation, and Prerequisites

The WSR-88D is a single-dish radar, and so only one stream of complex in-phase and

quadrature (IQ) data is converted to a digital signal, and the beampattern of the radar —

essentially the “shape” of the electromagnetic wavefront — is immutable. Phased array

radars are systems comprised of multiple antennas working in concert, and instead of

manually steering a dish to point at a target, they coordinate the phase of the transmitted

electromagnetic waves from each antenna so that their phases are aligned in the direc-

tion in which the radar wishes to “look”, effectively steering the beam in that direction

without moving the antenna. Additionally, the shape of the beampattern can be altered

as well by varying the magnitude and phase at each antenna [25].

Improvements in technology have opened the door for multiple streams of IQ data

to be received at the subarray and even element level of phased arrays, opening the door

for powerful algorithms to be applied to increase data quality. The DARPA Arrays at

Commercial Timescales (ACT) program was created to encourage development of a

common building block for digital phased arrays that would incorporate 80-90% of an

array’s core functionality, reducing development time for radio frequency phased array

systems to be used in applications ranging from radar to communications to electronic

warfare [26, 27]. Because modern FPGAs are capable of performing tasks tradition-

ally relegated to applications-specific integrated circuits, the processing chain of a radio

frequency system can be completely moved to an FPGA. Additionally, modern FPGAs

include single-precision floating-point DSPs, allowing more complex algorithms that

require higher numerical precision to be implemented on an FPGA with fewer wor-

ries over dynamic range and scaling issues. Combined with the potential of modern
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high-level synthesis tools to generate FPGA layouts given only code in a higher-level

language, there is potential for a high performance ACT module contained on an FPGA

that performs both RF processing and more complex algorithms to improve data quality

[28].

The proliferation of phased array technology is beneficial to weather radar as well —

phased array radars are a likely candidate for the next generation of weather and surveil-

lance radar [7, 8, 9, 3]. Though the dual polarization performance of phased arrays

remains an issue [29, 30], experiments indicate that the increase in temporal resolution

has very beneficial impacts on forecaster performance [31]. Interference is, of course,

still an issue for phased array systems. For communications systems, interference can

degrade the quality of the connection, potentially corrupting it to the point that data can-

not be interpreted from the signal. For weather radar, ground clutter is always an issue,

and accurate clutter mitigation algorithms are highly valued by the weather radar com-

munity. The simplest methods of mitigating clutter contamination are inflexible; notch

filters eliminate undesired ground clutter along with any coincident weather data [32],

while static clutter maps cannot adapt to changing environmental conditions’ effect on

the radar beam’s path [33]. Better clutter mitigation can be effected by using the data

gathered by the radar. The clutter decision tree proposed by Lee et al. detects clut-

ter using a combination of radar moments, statistics, and an adaptive clutter map [34].

Fuzzy logic clutter detectors such as the Radar Echo Classifier proposed by Kessinger

et al. [35] and the Clutter Mitigation Decision algorithm proposed by Hubbert et al. use

fuzzy logic on radar moments to classify echoes, detect clutter, and, in conjunction with

clutter filtering, can be used to address issues such as anomalous propagation[36]. The

more complicated Gaussian Model Adaptive Processing (GMAP) method uses spectral

features to recover weather signals after notch filtering has been applied [37]. Spectral

features are also used in the CLutter Environment ANalysis using Adaptive Process-

ing (CLEAN-AP) algorithm to detect clutter and recover the weather signal. Simple
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Figure 3.1: Sidelobe canceller channel locations (blue circles) on the NWRT PAR.

Bayesian classifiers (SBCs) are used in the spectrum clutter identification (SCI) algo-

rithm in conjunction with new spectral parameters to detect clutter [38]. Incorporating

data from multiple azimuths or polarizations can improve the clutter detection capabili-

ties of these SBCs [39].

All of these sophisticated methods are designed for radars limited to data from a

single antenna equipped with a single receiver. Unlike other meteorological radars, the

converted Navy SPY-1A phased array radar at the NWRT is equipped with several aux-

iliary antennas in addition to its main antenna. These antennas are located around the

periphery of the radar, as illustrated in Figure 3.1, enabling the gathering of spatial infor-

mation from the radar return [40, 41]. Adaptive digital beamforming (ADBF) methods

such as linearly-constrained minimum variance (LCMV) beamforming have shown their

effectiveness at eliminating interference from jammers and other noise sources [42] and
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have been successfully applied to wind profilers [43], but have not yet been applied to

meteorological surveillance radars. The multi-channel receiver at the NWRT provides

the spatial data necessary to implement LCMV beamforming, allowing the introduction

of nulls in the direction of ground clutter and other undesired targets (nullforming) [44].

Two implementations of the LCMV beamforming algorithm with quadratic constraint

were executed on data collected at the NWRT [45].

This chapter is organized as follows: Section 3.2 gives an overview of several ADBF

algorithms and their suitability for different applications, and Section 3.3 goes over the

performance of these algorithms in several experiments. The experiment in Subsec-

tion 3.3.1 goes over the different ADBF algorithms and their simulated performance in

a DARPA ACT module; the experiment in Subsection 3.3.2 uses one of these ADBF

algorithms to mitigate ground clutter observed by the NWRT SPY-1A radar; and the ex-

periment in Subsection 3.3.3 involves implementing several direction finding techniques

for phased array radars on the DARPA ACT module.

3.2 Adaptive Digital Beamforming Algorithms

The spatial information available to phased array systems allows for more complex

and better-performing beamforming strategies than the standard Fourier beamforming.

Adaptive beamforming algorithms often take the form of statistically optimum beam-

formers, which use the statistics of the received signal to ”optimize” the signal accord-

ing to certain criteria; the criteria generally are chosen to minimize the contributions

of noise and interferers in the final beamformed signal [46]. Some of the more com-

mon statistically optimum beamformers are the multiple sidelobe canceller [47], maxi-

mum likelihood method [48], sample-matrix inversion [49], minimum variance distor-

tionless response (MVDR), linearly-constrained minimum variance (LCMV) [50], and

Applebaum algorithms [51]; other algorithms, such as the least mean squares (LMS)
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[52, 46] and recursive least squares (RLS) [46], are gradient descent algorithms, choos-

ing weights to best match the received signal to some desired signal. Each type and

instance of these algorithms is subject to its own limitations in terms of information

required and computational cost.

Implementation of effective real time adaptive digital beamforming was a goal of

the DARPA ACT project. To that end, as part of the design process a trade study was

performed on a subset of these algorithms to analyze the performance and costs of each

of these algorithms; the algorithms studied are summarized in Table 3.1 and Section

3.2.1. Unless otherwise specified, the standard notation used in this chapter is: x is the

signal received by the array; w is the weight vector to be applied during beamforming; yd

is the desired signal, also known as the reference signal; S is a covariance matrix, so Sx

is the covariance matrix of x; n is the noise environment, which is what the array would

receive if the desired signal wasn’t present; vs is the steering vector toward the desired

signal; C is the constraint matrix used in LCMV beamforming, and g is the value of the

constraints; {·}∗ is the conjugation operation, and acts to conjugate the object to which it

is applied; {·}H is the Hermitian operator, and acts to conjugate and transpose the object

to which it is applied; λ and µ are parameters defined by the algorithm in which they are

used; Nel is the number of digital channels used in the ADBF calculation, which in this

paper is equal to the number of elements in the phased array antenna; Nt is the number

of time samples used in the ADBF processing; and Ncon is the number of constraints

given to the LCMV algorithm; the abbreviation ”Dir. BF” indicates that only standard

Fourier beamforming was used to steer the antenna array [28].

3.2.1 Trade Study

The LMS, RLS, Applebaum, MVDR, and LCMV algorithms were analyzed in terms of

their computational cost and ability to reduce the impact of interfering signals and noise

on the final beamformed signal. A simulation environment was developed in Matlab to
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perform the trade study. This environment simulated the reception of user-customized

signals by a phased array system and subsequently routed signals through the ACT mod-

ule processing. The ACT module’s digital downconversion processing chain includes

mixing, decimation, filtration, ADBF, and application of the calculated beamforming

weights on the filtered signal.

For the trade study, unless otherwise specified: the phased-array system had a 1×16

uniform linear array (ULA) with 0.5λ spacing at 5 GHz; the digital downconversion

chain is as specified in [28]; the target signal was a randomly-generated QPSK signal

with a carrier frequency of 5 GHz, a symbol bandwidth of 62.5 MHz, and an angle-

of-arrival of 25 degrees from the array broadside; the interfering signal was similarly

generated, but with an angle of arrival of 40 degrees from array broadside; the inter-

ferer’s transmitter strength was 40 dB greater than that of the signal; there was no noise;

128 time samples were used in the ADBF calculations; a null was requested for LCMV

in the direction of the interferer [28].

3.2.1.1 Least Mean Squares (LMS)

The least mean square algorithm is aimed at minimizing the error between the weighted

received signal and the desired signal. It is computationally simpler than other methods

at O(n), but its convergence speed depends on the qualities of the received signal. More

specifically, the shape of the error surface, which itself depends on the eigenstructure of

the received signal, determines the speed of convergence. More widely spread eigen-

values result in slower convergence, meaning other algorithms with better convergence

characteristics may be more suited to the task [46, 52].

3.2.1.2 Recursive Least Squares (RLS)

The recursive least squares algorithm is similar to the LMS algorithm. It is an algorithm

that minimizes the error between the signal under the current weights and the desired
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signal; however, instead of aiming to minimize the current error like LMS does, the RLS

algorithm seeks to minimize a weighted sum of the past squared errors. It is O(n2) and

thus is more computationally complex than the LMS algorithm, but offers potentially

faster convergence at the cost of being less numerically stable [46, 53].

3.2.1.3 Applebaum

The Applebaum beamformer is an optimum beamformer that maximizes SNR. To do

this, it requires two things: a steering vector to the target, and knowledge of the noise

environment. Applebaum calculates beamforming weights by inverting the covariance

matrix calculated from the noise environment, and is thus of O(n3) complexity [51].

3.2.1.4 Minimum Variance Distortionless Response (MVDR)

The minimum variance distortionless response beamformer is optimum in that it mini-

mizes the output energy by minimizing variance while maintaining a distortionless re-

sponse from the desired signal’s direction. Minimizing the variance overall serves to

reduce the impact of any signals not from the desired direction [50] and any variation

of gain in the desired direction is compensated for through appropriate normalization.

Interferers are suppressed through the inherent spatial whitening of the beamforming

weights [54]. The only information MVDR requires is the steering vector to the target.

MVDR calculates beamforming weights by inverting the covariance matrix calculated

from the noise environment, and is thus of O(n3) complexity [50].

3.2.1.5 Linearly Constrained Minimum Variance (LCMV)

The linearly constrained minimum variance beamformer is a more general case of the

MVDR beamformer. It is an optimum beamformer since it seeks to minimize output

energy, but can have additional user-defined constraints. It requires only the data con-

tained in the user constraints. A typical user constraint is for a distortionless response
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from the desired direction; if this is the only constraint used, then the LCMV beam-

former simplifies to the MVDR beamformer. Other potential constraints include nulls

in the directions of known interferers [50, 42], and the algorithm can be extended to

include quadratic constraints to preserve mainlobe power if more computational com-

plexity isn’t an issue, as was done in [55]. LCMV calculates beamforming weights by

inverting the covariance matrix calculated from the noise environment, and is thus of

O(n3) complexity [50, 42].

3.2.2 Increasing ADBF Algorithm Numerical Stability

Both the MVDR and LCMV algorithms are susceptible to signal mismatch and array

perturbations. Incorporating a quadratic constraint to minimize ||w||2 can be used to

ameliorate this issue. This LCMV QC beamformer minimizes the output noise power

subject to the constraint that

wHw = T ≤ T◦ (3.1)

Using the method of Lagrangian multipliers, the optimum weight vector that satisfies

both the linear and quadratic constraints is found to be

w = (Sx +β I)−1C[CH(Sx +β I)−1C]−1f (3.2)

where β is the amount of diagonal loading added to the signal covariance matrix Sx.

There is no closed form solution for β ; instead, the β that satisfies the quadratic con-

straint must be solved for numerically. When β = 0, the standard LCMV solution in

Table 3.1 is obtained; as β → ∞, the beamformer approaches the quiescent beamformer

[42].

The classic method discussed above requires that the inverse of a matrix be calcu-

lated for each β until a β is found that satisfies the quadratic constraint. While the

end results of this technique are effective, the computational cost of so many matrix

inversions can quickly become prohibitive. A new method of implementing quadratic
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constraints proposed in [56] reduces the use of the expensive matrix inversion opera-

tion using recursive least squares (RLS) updating to the quadratic constraint. First, the

weight vector w is split into two components, one in the constraint subspace (wq) and

one in a subspace orthogonal to it (wa). The weight vector can then be represented as

w = wq−Bwa (3.3)

where B is a blocking matrix orthogonal to the constraint subspace C. This means that

the the quadratic constraint expressed in equation (3.1) can be rewritten as

wH
a wa ≤ T◦−wH

q wq , α
2. (3.4)

The quiescent weight vector, wq, is fixed as

wq = C(CHC)−1f (3.5)

Using this new notation, the standard LCMV solution in the equation in Table 3.1

can be represented as

wa = (BHSxB)−1BHSxwq (3.6)

By setting z=BHX and yc =wH
q X, the covariance matrix of z becomes Sz =BHSxB and

the cross-correlation vector of z and yc becomes pz = BHSxwq. The adaptive weights

wa from the standard LCMV solution then become

wa = S−1
z pz , w̃a (3.7)

When the quadratic constraint is added, the adaptive weight vector is changed only

slightly, becoming

wa = (Sz +λ I)−1pz (3.8)

where λ is the diagonal loading component.

Rewriting the quadratically constrained adaptive weight vector wa in terms of the

linearly constrained adaptive weight vector w̃a yields:

wa = (I+λS−1
z )−1S−1

z pz = (I+λS−1
z )−1w̃a. (3.9)
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Using only the first two terms of the Taylor series expansion transforms wa:

wa ≈ (I−λS−1
z )w̃a = w̃a−λva (3.10)

where va = S−1
z w̃a. Substituting equation 3.10 into equation 3.4 provides a quadratic

equation in λ :

wH
a wa−α

2 = aλ
2 +bλ + c = 0 (3.11)

where a = ||va||2, b =−2ℜ{vH
a w̃a}, and c = ||w̃a||2−α2. Solving for the smaller root

of this equation, i.e.

λ =
−b−ℜ{

√
b2−4ac}

2a
(3.12)

allows for λ , the approximate amount of diagonal loading needed to meet the quadratic

constraint, to be directly calculated [56].

3.2.3 Matrix Inversion Lemma (MIL)

The computationally costliest operations in the Applebaum, MVDR, and LCMV algo-

rithms are the inversions of the covariance matrices. For an N channel system, an ADBF

calculation using a sample covariance matrix computed from only 5N samples is capa-

ble of computing weights that are within 1 dB of optimal [49]. The covariance matrix

may be estimated by using the formula

Sx =
1
N

n

∑
k=1

xkxH
k (3.13)

where N is the total number of samples, k is the iterator in the summation, and x is the

L×N signal matrix where L is the number of channels. If this sum is expanded, we find

that, as new information comes in, the current estimate of the covariance matrix may be

updated using the formula

Sx(k) = k−1
k Sx(k−1)+ 1

k xkxH
k (3.14)
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We can use this information to keep a running estimate of the inverse of the covariance

matrix:

[Sx(k)]
−1 =

[
k−1

k
Sx(k−1)+

1
k

xkxH
k

]−1

=

[
k

k−1
Sx(k−1)+

(
1√
k

xk

)(
1√
k

xk

)H
]−1

(3.15)

The matrix inversion lemma, also called the Woodbury matrix identity [57] is relevant:

(A+UCV)−1 = A−1−A−1U
(
C−1 +VA−1U

)−1 VA−1 (3.16)

By setting A = k−1
k Sx(k− 1)⇔ A−1 = k

k−1S−1
x (k− 1), U = 1√

k
xk = V H , and C = 1,

the matrix inversion lemma can be leveraged to provide an alternate form of the update

formula for the inverse of the covariance matrix:

S−1
x (k) = k

k−1S−1
x (k−1)−

k
k−1S−1

x (k−1)xkxH
k S−1

x (k−1)

(k−1)+xH
k S−1

x (k−1)xk
(3.17)

Using this formulation has the potential to reduce the computational complexity. If Nc is

the number of receiver channels and Ns is the number of samples recorded, then calcu-

lating the covariance matrix is an 8N2
c Ns +2N2

c operation and inverting that covariance

matrix costs an additional N3
c operations. Each iteration of the covariance inverse update

formula from equation 3.17 costs 45N2
c +5Nc operations, so keeping a running estimate

of the covariance matrix inverse will cost 45N2
c Ns + 5NcNs operations by the end of

the CPI. When the number of channels is small, the difference may not be particularly

noticeable, but as the number of channels increases, an O
(
N3

c
)

operation will become

prohibitively costly; using the MIL formulation could work to cut some of these costs

[58].

3.3 Results

3.3.1 Interference Mitigation for the DARPA ACT Module

Algorithm performance was also assessed as part of the trade study. The default scene

(desired signal at 25 degrees, interferer at 40 degrees, SIR of -40 dB, and no noise)
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was used, with LCMV requesting a null from the direction of the interferer instead of

in an arbitrary direction like above. Two statistics in particular were examined: the

signal-to-interference ratio (SIR) and the bit error rate (BER). The SIR is the desired

signal’s power divided by the summed power of the interferers; a higher SIR indicates

better performance. The bit error rate was the number of erroneous bits in the received

signal after ADBF processing and QPSK demodulation divided by the total number

of bits received; a lower bit error rate indicates better performance. The simulation

environment was run 1024 times and the statistics averaged as appropriate.

Figure 3.2 shows the average signal-to-interference-plus-noise ratio (SINR) as a

function of the number of samples used in ADBF processing; once again, higher SINR

indicates better performance. The SINR is remarkably stratified based on the algorithm.

On average, LCMV has the highest SINR, followed by Applebaum and MVDR, both of

which perform slightly better with a larger number of samples used. The LMS and RLS

algorithms do perform better than the case without any ADBF processing, but their per-

formance is less than that of the covariance-matrix-based algorithms. Figure 3.3 shows

the average BER as a function of the number of samples used in ADBF processing.

There are two clear groups: LMS and RLS beamforming perform only slightly better

than the case without any ADBF processing, while MVDR, Applebaum, and LCMV

perform noticeably better in this scenario. The performance of MVDR, LCMV, and

Applebaum beamforming increases slightly with the number of samples used in ADBF

processing.

The LMS and RLS algorithms were not chosen for implementation on the ACT com-

mon module; both required knowledge of the desired signal, which may be reasonable

for communications applications but is not possible for radar applications. The other

three algorithms were considered in more detail. All three of the remaining algorithms

required an inversion of a covariance matrix, meaning that algorithm complexity would

be by default proportional to the number of elements cubed ( O(N3
el) ), making these
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Figure 3.2: The ADBF algorithms’ performance in terms of SIR is actually not no-

ticeably correlated with the number of samples used. There are, however, noticeable

differences in SIR performance based on the ADBF algorithm used. Note that in this

simulation, a null was requested in the direction of the interferer, which allows LCMV

to perform better than MVDR.

beamforming algorithms very computationally costly. Applebaum additionally required

knowledge of the environment without the desired signal. This is potentially feasible

for defense radar — if the desired signal transmits only intermittently and the radar

knows when the desired signal will be transmitting, then a characterization of the noise

environment may be done outside of that time; this does require the interferers to coop-

erate and transmit during the noise environment characterization. While it is possible

to make Applebaum work, relying on the environment to cooperate was not an ideal

setup. MVDR and LCMV required no information about the environment, only infor-

mation about where to look and, in the case of LCMV, where to place nulls or apply

other constraints.
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Figure 3.3: The optimum beamforming methods perform noticeably better in terms of

bit error rate than do the gradient descent beamforming algorithms. Additionally, the

optimum methods perform slightly better as more samples are used for ADBF process-

ing.

Applebaum was not selected for the ACT module despite its smaller computational

complexity relative to the other covariance-matrix-inversion algorithms. Because its

performance is predicated on its ability to get an accurate observation of the environ-

ment sans the desired signal, if a situation arose where this was impossible (e.g. no

control over the desired signal, or smart jammers that only activate when the desired

signal transmits), its performance could suffer greatly. Similarly LCMV, despite its use-

ful ability to introduce nulls in requested directions, was also not chosen for the ACT

module — because space on the FPGA was a valuable and very limited resource, the

additional and potentially variable computational cost of LCMV over MVDR was not

deemed worth the additional flexibility provided by user constraints.
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The ADBF algorithm ultimately chosen for implementation in the DARPA ACT

Phase 2 module was MVDR beamforming. Its predictable computational complexity,

and thus predictable FPGA usage was an important factor, as was that its only require-

ment was knowledge of the look direction [28]. For other applications, where compu-

tational complexity and space on the electronics was less of a limiting factor, LCMV

would be a good choice, especially when the location of interferers is known. The in-

terference present in the data from Figure 1.4 is almost certainly from a nearby airport

surveillance radar; the location of this radar is known, and always asking LCMV for a

null in that direction could have acted to mitigate all RFI from that radar without the

user having to worry about it.

3.3.2 Spatial Filtering Applied to Ground Clutter

The trade study discussed in Section 3.3.1 above was specifically for the DARPA ACT

module, and concerned the choice and performance of ADBF algorithms on simulated

data with a desired signal and an interferer. There are applications in domains outside

that of active interferers; for example, ground clutter can be viewed as a type of inter-

ference: it’s a non-weather signal that can significantly affect meteorological variable

values [16]. In this section, data with ground clutter contamination was collected from

the NWRT PAR using the 6-channel receiver comprised of the sum channel (containing

signal from the main array) and five sidelobe canceller channels. The two quadratically

constrained LCMV methods discussed in Section 3.2.2 were applied to this data to filter

out the ground clutter. Because the multi-channel receiver is not phase calibrated, no di-

rectional constraints could be applied; instead the LCMV constraint was chosen to reject

data common to the sum channel (the first channel) and the sidelobe canceller channels,

effectively forming nulls in the direction of any strong signal from the sidelobes:
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C =



1

0

0

0

0

0


, B =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, T◦ = 2

Data collected on October 12, 2012 was inspected to find suitable locations for initial

tests of the LCMV beamforming performance. The data can be seen pre-processing

in Figure 3.4. From this data, range gates where varying amounts of clutter from the

sidelobes contaminated the weather signal were chosen for further study. The velocity

spectrum at each of the range gates (range gates 136, 138, 139, and 143 at 355◦ azimuth)

was computed. In all four range gates, the center of the weather signal spectrum was

located around 10 m/s. Range gates 136, 139, and 143 additionally show the character-

istic ground clutter return at 0 m/s. Figure 3.5 shows the spectra both before and after

LCMV beamforming using both the numerical search for the quadratic constraint [50]

and the closed form solution for the quadratic constraint [56] discussed in Section 3.2.2.

Velocity estimates calculated using pulse pair processing are included in the Figure 3.5,

and demonstrate the improvement LCMV beamforming has upon the data. Velocity es-

timates that were previously not near the center of the weather spectrum, as in range

gates 136, 139, and 143, are restored to the center of the weather spectrum once LCMV

beamforming removes or mitigates the ground clutter. Velocity estimates of data that

was not impacted by ground clutter, such as range gate 138, are not impacted.

Next, the effects of using LCMV beamforming at every range gate along an azimuth

were examined. Figure 3.6 shows the results of the application of both types of LCMV

QC beamforming. While the final results do slightly differ between the two methods,

both result in make major alterations at similar locations (generally closer to the radar,

where ground clutter is more prevalent).
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Figure 3.4: PPIs of received echoes of each channel of the multi-channel receiver. The

sum channel is in the top left.
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(a) Range Gate 136: LCMP QC (b) Range Gate 136: LCMP QC (RLS)

(c) Range Gate 138: LCMP QC (d) Range Gate 138: LCMP QC (RLS)

(e) Range Gate 139: LCMP QC (f) Range Gate 139: LCMP QC (RLS)

(g) Range Gate 143: LCMP QC (h) Range Gate 143: LCMP QC (RLS)

Figure 3.5: Velocity spectra and estimates of assorted range gates before (in blue) and af-

ter (in red) each of the LCMV beamforming methods. The velocity estimates are shown

as vertical dashed lines from before (in blue) and after (in red) LCMV beamforming.
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Figure 3.6: Along-azimuth results of application of LCMV beamformer.

After examining the results at individual range gates and along whole azimuths, the

LCMV beamforming strategy was applied to a whole sector of a plan position indicator

(PPI). The PPIs of the input to the multi-channel receiver were shown in Figure 3.4.

The results of LCMV beamforming are shown in Figure 3.7 Figure 3.7a is the power

and Figure 3.7d is the velocity of the raw input data — no modifications are made, and

contamination due to clutter is readily apparent. Figures 3.7b and 3.7e show the result of

LCMV beamforming using the numerical search for the quadratic constraint — much of

the clutter contamination is removed, especially close to the radar. This is easily visible

in the radial velocity, and some weather signals become less affected by ground clutter

as well. Figures 3.7c and 3.7f have much the same results — much of the clutter is

attenuated or removed; however, the weather signal is also more attenuated, as can be

seen by contrasting Figures 3.7g and 3.7h.

Efficiency concerns arise when examining the workings of the LCMV QC beam-

former with no closed solution from Section 3.2.2 [42]. A numerical search must be

performed at each gate, and the minimum amount of diagonal loading is desired, mean-

ing that the search for the constraint must start from zero. Ways to increase the efficiency

of this search are desired, so the behavior of the constraints was examined in Figure 3.8.
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(a) Sum Channel Power (no

modifications)

(b) Power After LCMV QC

Processing

(c) Power After RLS

LCMV QC Processing

(d) Velocity Sum Channel

(no modifications)

(e) Velocity After LCMV

QC Processing

(f) Velocity After RLS

LCMV QC Processing

(g) Magnitude of Power

Change After LCMV QC

Processing

(h) Magnitude of Power

Change After RLS LCMV

QC Processing

Figure 3.7: PPIs of the power (top), radial velocity (middle), and power change from

before (left) and after (middle, right) LCMV processing. 69



(a) Optimal β (dB) for

LCMV QC

(b) Gate-to-Gate Change in

β for LCMV QC

(c) Optimal λ for RLS

LCMV QC

Figure 3.8: PPIs of quadratic constraints. The β parameter (left and middle) must be

found via numerical search; the computational cost could quickly accrue. Because of

the high dynamic range of the β and λ parameters, they are shown on a log scale in the

left and right plots so that features may be more easily seen.

Figure 3.8c shows the behavior of the solution to the closed-form RLS LCMV beam-

forming method; since the closed-form solution is known, there is no advantage to be

gained by examining its spatial behavior. Figure 3.8a, on the other hand, shows that

while there are some sharp jumps in β , for the most part the amount of loading does not

vary much from gate to gate. This smoothness is quantified in Figure 3.8b, which shows

the gate-to-gate change in β . Since this change in β is so small over much of the PPI,

using the previous gate’s β as a starting point for the search for a new β can potentially

save significant time.

The beamforming techniques were applied for the first time to meteorological data

collected at the NWRT phased array radar to filter ground clutter. These techniques have

the potential to simplify or even eliminate the need for clutter filtering that is currently

mandatory at NEXRAD sites. Initial results show that, while some ground clutter was
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still present after the adaptive beamforming, a large part of it was removed or at least at-

tenuated. With the closed form solution provided by [56], this adaptive filtering could be

done without the need for numerical searches, resulting in relatively quick and efficient

clutter filtering [55].

3.3.3 Direction Finding using the DARPA ACT Module

The spatial information observed by the antenna can be used in other applications than

adaptive digital beamforming. For example, direction finding algorithms use the spatial

data received by a digital phased array to determine the direction from which a signal

is coming. This has myriad potential applications; for example, if direction finding is

used to find the direction of a signal interfering with a radar, LCMV beamforming can

be employed with a constraint added to introduce a null in that direction.

A simple experiment was performed using the Collins Aerospace version of the

DARPA ACT module to do direction finding. The ACT module was connected with

an 8x8 S-band array. This incarnation of the ACT module only supports 16 digital

channels, so only one row of eight elements connected to the ACT module was used

in the direction finding. Two algorithms were tested: a beamscan algorithm called the

Bartlett beamformer, and a subspace algorithm called MUSIC.

The Bartlett beamformer for determining a spatial spectrum is defined as:

P̂B = vHSxv (3.18)

where v is the set of steering vectors that define the search space, and Sx is the signal

covariance matrix. This algorithm is simple in concept — essentially a beam is digi-

tally steered in the directions defined by v and the power from that direction is recorded.

Peaks in the spatial spectrum are noted as the locations of possible sources. It should be

noted that the antenna’s intrinsic beampattern comes into play, so sources located more

closely in angle than the antenna’s resolution won’t be easily distinguished. Addition-

ally, there will be a number of local maxima equal to the number of antenna elements, as
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can be seen in Figure 3.9; that does not mean that there are that many sources detected

[42].

The MUltiple SIgnal Classification (MUSIC) algorithm for determining a spatial

spectrum is defined as:

P̂MU =
[
vHÛNÛH

N v
]−1

(3.19)

where v is again the set of steering vectors that define the search space, and ÛN is the ma-

trix comprised of the estimated eigenvectors of the noise subspace. The noise subspace

matrix is calculated by performing an eigendecomposition on the signal covariance ma-

trix Sx and removing the eigenvectors associated with the largest D eigenvalues, where

D is the number of signals in the environment. If the user is incorrect in specifying D,

then algorithm performance can degrade rapidly. This algorithm essentially looks for

the directions in the search space that are most orthogonal to the noise subspace; the

directions with peaks are those most orthogonal to the noise subspace and are marked

as source directions [42].

To verify the capabilities of the ACT module at direction finding, the ACT module

was set up in a tapered anechoic chamber. A horn transmitting a tone at S-band was

set up at one end of the chamber, and the phased array antenna was set up on a post at

the other. The receiving antenna was rotated; this has the effect of changing the source

direction relative to the plane of the antenna, and was a suitable setup for testing the

direction finding algorithms.

Some snapshots of the spatial spectrums using Bartlett and MUSIC with the antenna

at different angles are shown in Figure 3.10. The algorithms do a passable job at di-

rection finding. The results are not as exact as would be desired — for example, two

signals are detected by the MUSIC algorithm instead of just one — but a lot of this

is attributable to some drawbacks in experimental design and the resources available.

First, due to time and equipment constraints, the antenna with the module was rotated

manually, and thus the angles of the source relative to the antenna are only approximate.

72



Figure 3.9: An example of direction finding results. An ACT module output comprised

of two strong and equal-power signals at different angular locations was simulated and

then sent into Matlab post-processing that did direction finding analysis. Shapes indicate

detections by different algorithms — triangles represent Bartlett and diamonds represent

MUSIC — and each unique shape color indicates a detection at a new angle. Note the

many peaks in the Bartlett results compared to MUSIC’s two, a result of the antenna

beampattern manifesting in the Bartlett processing.
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(a) Spatial spectrum, transmitter at antenna broadside.

(b) Spatial spectrum, transmitter at 30 degrees off antenna broad-

side.

(c) Spatial spectrum, transmitter at -20 degrees off antenna

broadside.

Figure 3.10: Direction finding analysis of the ACT module experimental setup with the

antenna oriented at different angles. Note that the environment is set up to find two

signals; MUSIC performance was severely degraded when using D = 1.
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Second, and again due to time and equipment constraints, there was no opportunity for

proper calibration of the antenna connected with the module. Instead, very simple digi-

tal equalization was performed to improve channel matching and thus direction finding

performance; this stopgap measure performed relatively well, but, given that the Bartlett

spatial spectrum with does not look much like the simulated beampattern, it is reason-

able to assume that there is room for improvement in channel matching. Finally, the

doors of the chamber were open by necessity; it is possible that the “second” signal that

MUSIC needed to search for in order to perform well is the manifestation of some mul-

tipath reception. Regardless, in order to function properly, MUSIC needed to remove

at least two eigenvectors associated with the largest eigenvalues rather than one, so two

distinct directions must have been associated with the signal subspace. The performance

contrast can be seen in Figure 3.11. When only one transmitter is sought, as in Figure

3.11a, there is no direction particularly orthogonal to the noise subspace; when two or

more transmitters are sought, as in Figures 3.11b and 3.11c, there is a clear peak in the

spatial spectrum.

This simple experiment verified the potential for direction finding using an all-digital

phased array. While MUSIC gives more distinct and noticeable peaks associated with

the spatial spectrum, it must know how many signals are present or else performance

is degraded; in contrast, Bartlett does not rely on knowledge of the signal environment,

but performs poorly when two sources are located closely in angle. Direction finding

can be employed in a variety of applications, including radar and electronic warfare, to

improve performance and otherwise accomplish mission goals.

3.4 Conclusions

The advent of digital control at the subarray and element level allows spatial processing

techniques to be used in a wide variety of applications. The DARPA Arrays at Commer-

cial Timescales project seeks to enable such processing. A variety of adaptive digital
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(a) Spatial spectrum, MUSIC looking for 1 source.

(b) Spatial spectrum, MUSIC looking for 2 sources.

(c) Spatial spectrum, MUSIC looking for 3 sources.

Figure 3.11: MUSIC direction finding analysis of the ACT module. Despite there only

being 1 transmitter, two signals show up in the noise subspace.
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beamforming algorithms were studied and compared in terms of efficacy and computa-

tional complexity for radar and communications applications. Ultimately, MVDR was

selected for implementation on the DARPA ACT project due to its high performance

and predictable computational complexity. Two techniques were explored to enhance

the performance of the MVDR algorithm: first, the numerical stability of the MVDR

algorithm was enhanced with diagonal loading of the signal covariance matrix; and sec-

ond, the matrix inversion lemma was found to be a functional method of computing the

inverse of the signal covariance matrix in an online fashion.

Unfortunately, no spatial data was available from the NWRT that had the type of RFI

observed in Chapter 2. However, for meteorologists ground clutter is, essentially, a type

of interference present in every pulse at a particular range bin — this is precisely the

situation that the temporal algorithms had issues handling. Since spatial weather radar

data with ground clutter contamination was available, ADBF algorithms were employed

on this data and were found to be quite effective at mitigating or completely removing

the ground clutter signature while leaving the weather signal unaltered. These adaptive

digital beamforming methods have promise in mitigating the impact of interference in a

wide variety of applications. It should be noted that these algorithms require well cali-

brated arrays with good channel matching, or else the desired signal may be perceived

as an interferer and consequently attenuated by the ADBF algorithm. Chapter 4 uses

data from a prototype receiver for a radar in development at the OU Advanced Radar

Research Center and explores both the impact of poor channel matching on ADBF per-

formance and also how digital equalization can be used to improve channel matching.
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Chapter 4

Digital Equalization

4.1 Background

Digital equalization, a process by which the behavior of a group of antennas can be

brought into parity, was precipitated by efforts to improve the performance of adaptive

arrays. While early adaptive algorithms could compensate for poorly matched channels,

they were slow to converge, especially if eigenvalues were widely spread [52, 59, 46].

Newer adaptive beamforming methods, such as those discussed in Section 3.2, are able

to find optimum weights much more quickly [49]; however, these algorithms require

channels that are closely matched in terms of amplitude and phase, or else the attainable

depth of the nulls produced by the algorithms can be significantly negatively impacted

[60, 61, 62, 63, 64]. Digital equalization is a means to effect the requisite channel

matching [60].

Digital equalization is typically implemented as a finite input response (FIR) filter

through which the signal is fed and which alters the input signal’s frequency response to

match the frequency response of some reference signal. The most common approach to

determine the coefficients for the equalization filter is to collect a calibration signal that

has passed through the channel to be equalized (the auxiliary channel) and minimize the

error between the auxiliary signal and the reference signal via a least squares approach.

However, this approach can be relatively computationally costly — it requires a matrix

inversion, which is an O
(
n3) operation. The calibration of the equalizer is typically

done in a controlled environment using a known “reference signal” serving as the input

to the receiver. There are two popular methods to perform the calibration of the equal-

izer: the first examines the receiver’s response to a series of continuous wave signals
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that, put together, span the equalization bandwidth, while the second involves exam-

ining the receiver’s response to broadband noise [65]. The equalizer calibration can be

performed with other signals as well; the experiments here use an linear frequency mod-

ulated (LFM) signal as the calibration signal, which is a slight deviation from the first

method, while signals of opportunity can and have been used as a calibration signal by

other phased array radars [66, 67, 68, 69]. If the equalization filter is able to be cal-

ibrated in the field, then troublesome issues such as temperature-dependent frequency

behavior degrading the performance of an electronically scanned array (ESA) could be

ameliorated by an in-the-field calibration of a digital equalizer.

This chapter is organized as follows: Subsection 4.1.1 briefly explains how to cal-

ibrate an FIR filter suitable for equalization; Section 4.2 uses this technique on data

collected from a prototype receiver at OU and examines the performance, both at in-

creasing channel matching and in a simulated ADBF scenario; and Section 4.3 performs

the same experiments on simulated data with simulated mismatch.

4.1.1 Calibrating the Equalization Filter

For an equalization filter with N coefficients, two M×N signal matrices X and Y are

formed from the auxiliary and main signals respectively. Each row of these signal matri-

ces is comprised of contiguous series of samples from the output of that channel. It has

been calculated that nearly optimum equalizer performance can be attained if M = 5N

statistically independent rows are used in constructing these signal matrices [65]. To

enable the equalizer to function across a range of frequencies, often a long LFM sig-

nal is used, with each individual row coming from a different location in that signal.

Other calibration signals may be used, though; another common method is to compare

the auxiliary and reference channels’ responses to broadband Gaussian noise [65], and

signals of opportunity have been used in determining an equalization filter for HF over-

the-horizon radars [67].
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Once the signal matrices are formed, an error matrix E is constructed by setting

E = Y−XW. In this setup, W is a set of column vectors wi, where each wi is a set

of reversed FIR coefficients such that wi,n = hN−n∀n ∈ [1,N]; each column vector wi

represents a different potential time delay built into the implementation of the equalizing

filter. The different columns of Y represent time delays in the reference channel, as it is

possible to attain better performance with such a delay. The error matrix E is minimized

in a least squares sense:

min||E||2 = min||Y−XW||2 (4.1)

To simply derive the solution, an extended signal matrix Z = [XY] is constructed.

This extended matrix Z undergoes QR decomposition; recall that after QR decompo-

sition of a complex matrix, Q is a unitary matrix (so QHQ = I where {·}H signifies

the conjugate transpose operation) and R is an upper triangular matrix. Therefore,

ZHZ = RHQHQR = RHR. The matrix R can then be partitioned such that

R =

U V

0 T

 (4.2)

where U and T are upper triangular matrices. Since

ZHZ =

XHX XHY

YHX YHY

 (4.3)

it can be seen that W = U−1V. Additionally, T is the Cholesky triangle of the residual

covariance; that is, EHE = THT, meaning that the channel tracking error magnitudes

can be computed from

|Enn|2 =
n

∑
m=1
|Tmn|2 (4.4)

and the channel tracking error for a particular filter configuration associated with a par-

ticular time delay can be computed before solving the UW=V equation, helping choose

the equalization delay associated with the least error [65].
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Figure 4.1: Conceptual drawing of the Horus radar [4].

To determine the effectiveness of the equalization, the channel pair cancellation ratio

(CPCR) measure can be used [70]. For this paper, the following definition of CPCR is

used:

CPCR =
Pout

Pr
(4.5)

where Pout is the output power of the reference channel and Pr is the output power

of the difference of the output signals at the reference and auxiliary channel. Under

this definition, higher CPCR is better, and infinite CPCR indicates perfect equalization

[65]. In the absence of nonlinearities and with the auxiliary and reference channel gains

nearly equal to each other, the theoretical maximum CPCR is about half of the output

SNR [70].

4.2 Horus Data

Horus is an all-digital phased array radar system under development at the University of

Oklahoma’s Advanced Radar Research Center. Seen in Figure 4.1, this highly flexible

system will serve as a testbed for advanced digital radar designs and algorithms. Data

from a prototype receiver from this system was recorded using the test setup shown in
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Figure 4.2: Test bench setup for the data collected from this experiment. The signal is

passed through four channels of one of these “Octoblade” receivers.

Figure 4.2 [71, 72, 4]. The data suffers from channel mismatch, and was used to explore

the effects of equalization on this data. A 500 microsecond chirp spanning 124 MHz was

passed through the prototype Horus receiver and the signals at the outputs of the four

channels were collected, after being mixed down to baseband, at a sampling frequency

of 125 MHz. Three sets of data were collected: the results of a single chirp passed

through the receiver, the averaged results of 64 chirps passed through the receiver, and

a digital loopback (DLB) of the receiver input signal. There was noticeable channel

mismatch throughout the bandwidth; the Fourier transforms of the signals at the receiver

input and at each receiver channel’s output are shown in Figure 4.3. Digital equalization

was performed using the method outlined in Section 4.1.1 using an equalizer set up in

a feedforward configuration, as in Figure 4.4 [73]. The auxiliary signal used was the

averaged IQ data from the receiver output. Because the input signal to the receiver was

available and had good behavior across the spectrum, it was used as the reference signal

for the equalization calculation; because that information — the signal at the input to

the receiver — is likely not to always be available, the calculations were repeated using

the channel 1 receiver output as the reference signal.
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Figure 4.3: Fourier transforms of the input reference signal and of the signals collected

at the output of each channel of the prototype Horus receiver.

Figure 4.4: Block diagram of a receiver with an equalization stage before the ADBF

stage. Because each channel is mismatched in its own particular way, each channel gets

its own equalizer.
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Table 4.1: Pre- and Post-equalization CPCR

Channel DLB pre-EQ CPCR (dB) DLB Post-EQ CPCR (dB)

1 0.678 29

2 0.773 30.2

3 0.883 31.3

4 1.14 29.6

Channel Ch.1 pre-EQ CPCR (dB) Ch.1 Post-EQ CPCR (dB)

1 ∞ ∞

2 2.95 37.1

3 0.415 32.6

4 0.43 31.5

The Fourier transforms of the signals before and after equalization using a 128 tap

equalization filter can be seen in Figure 4.5. With equalization using 128 filter coeffi-

cients, the signals matched the reference signal very well, attaining the CPCRs shown in

Table 4.1. To explore the relation between CPCR and the number of equalization filter

coefficients used, that number was varied between 1 and 128. The results are shown in

Figure 4.6. For the data used here, the rate of improvement varied on the reference signal

used. When the reference signal was the digitally-looped-back signal, there was always

room for improvement in the CPCR, though the rate of CPCR improvement slowed as

more taps were added. When the channel 1 output was used as the reference signal, the

CPCR quickly (after between 10 and 20 taps) reached a value past which there was little

variation; though the improvement to CPCR was faster and the ultimate CPCR higher,

the amplitude of the output signal as a function of frequency was not as flat as if the DLB

signal were used. Note that the CPCR numbers shown here are certainly a function of
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(a) Ref. Signal: DLB

Figure 4.5: Fourier transforms of the reference signal (blue), the signals at each chan-

nel’s output (red-orange), and those signals after equalization (yellow, essentially super-

imposed on blue) using the digitally-looped-back signal as the reference signal. Figure

4.5b is on the next page.
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(b) Ref. Signal: Ch. 1

Figure 4.5: Fourier transforms of the reference signal (blue), the signals at each chan-

nel’s output (red-orange), and those signals after equalization (yellow, essentially super-

imposed on blue) using the channel 1 output as the reference signal. Figure 4.5a is on

the previous page.
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Figure 4.6: The CPCR varies with respect to the number of equalization filter coeffi-

cients used.
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this particular data; data that starts off with worse channel matching will require more

equalization filter coefficients to attain its maximum post-equalization CPCRs.

4.2.1 Spatial Spectrum

The effects of equalization in improving the channel matching can be readily seen in

the apparent direction of the signal source. Recall that the Bartlett method is a simple

direction finding algorithm which essentially performs a sweep across a search space,

yielding the incoming power as a function of angle, as covered in Section 3.3.3. The

Bartlett method of direction finding was applied to the input data using a search space of

-90 to 90 degrees in azimuth [62]. The results are shown in Figure 4.7. The input chirp

signal was fed into all of the receiver channels simultaneously, so the signal should

appear to come from broadside, and this is the case for the reference signal in red-

orange. When the digitally-looped-back signal was the reference signal, the spatial

spectrum calculation was straightforward, since there were already four channels of the

digitally-looped-back signal available; when the channel 1 output of the receiver was

the reference signal, a four channel version of the reference signal was synthesized by

duplicating the channel 1 output, yielding a signal that still seems to come in from

broadside, but at a lower power. In contrast to the reference signal, the signal at each

of the receiver channel outputs before equalization, shown in cyan, appears to come

from approximately 20 degrees off of broadside, a significant deviation from what is

expected. Equalization alleviates this issue, and the signal after equalization, shown in

the green dashed line, appears to come from broadside as expected [74, 73]. For ADBF

algorithms very susceptible to beam and array mismatch, such as minimum-variance

distortionless response (MVDR) beamforming, an error of even a few degrees could

have a significant effect on the beampattern; an error of 20 degrees could easily result in

the algorithm actually nulling the signal a user is intending to receive [42].
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(a) Spatial spectrum of the original signal before equalization

(cyan) and after equalization (green) using the DLB as a refer-

ence.

(b) Spatial spectrum of the original signal before equalization

(cyan) and after equalization (green) using channel 1 as a refer-

ence.

Figure 4.7: The apparent direction of the reference signal (red), the input signal after

passing through the receiver but before equalization (cyan), and the signal after equal-

ization (green dashed, superimposed on red). The direction the signal should appear to

be coming from is shown in the vertical green dashed line.
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4.2.2 ADBF Impacts

The effects of equalization on ADBF techniques were explored in more detail. For

this experiment, an artificial input to the receiver was created by duplicating a base

auxiliary signal (in this case, the non-averaged IQ data from the receiver output), ap-

plying a unique phase shift to each instance of this duplicated signal (to represent a

unique source), and adding the two together to yield a composite signal. In this case,

the “desired source” or “target source” was phase shifted so it appeared to come from

-20 degrees azimuth and scaled up in amplitude by 20 dB. The other source, the “in-

terfering source,” was phase shifted so it appeared to come from 30 degrees azimuth,

and had its amplitude scaled up by 40 dB (so the transmitter signal-to-interference ratio

was -20 dB). Additionally, to prevent the desired and interfering source from being too

similar, the interfering source was comprised of the middle half of the original signal

duplicated twice. The spectrogram of this input signal is shown in Figure 4.8. With this

method of creating the composite signal, the inputs to each channel had the same channel

matching characteristics as they did during the equalization calibration step, mimicking

a real-world application of equalization where the coefficients for the equalization filter

are determined and then used on a new and unknown signal in an environment where

ADBF could enhance performance [74, 73]. For this experiment, MVDR beamforming

was the ADBF algorithm used. The formula for MVDR beamforming is

w = S−1
x vs

[
vH

s S−1
x vs

]−1
(4.6)

where vs is the steering vector toward the direction the user wishes to look; x is the re-

ceived data; Sx = xxH + λ I is the signal covariance matrix, where the H superscript

denotes the conjugate transpose operation and λ = trace(|Sx|)/Nchannel denotes the

amount of diagonal loading applied to the covariance matrix to enhance numerical sta-

bility before inversion; and w are the adaptive beamforming weights. The MVDR cal-

culation’s complexity is O(Nchannel)
3 [62].
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Figure 4.8: A spectrogram of the input signal to the equalizer in the ADBF scenario.

The interfering signal is the disjoint signal, circled in red, and is clearly much stronger

than the desired signal (which occupies the diagonal and is circled in blue).
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Table 4.2: Post-Processing SIR

Ref. Sig. Equalization ADBF SIR (dB) Color

N/A No No -36.8 Cyan

N/A No Yes -17.4 Purple (dashed)

DLB Yes Yes 9.4 Green (Figure 4.10a)

Ch.1 Yes Yes 6.4 Green (Figure 4.10b)

The results are shown in Figure 4.10; note that the differences between using the

digitally-looped-back signal and the channel 1 output as the reference signal are min-

imal, manifesting as a higher final SNR but ultimately similar results. Figures 4.9a

and 4.9b show the spatial spectrum of the composite signal at the output of the receivers

without equalization (cyan) and with equalization (green). The true locations of the

sources are shown in the red and green vertical dashed lines. It’s clear that, without

equalization, the apparent direction of the sources does not resemble the true setup of

the environment. Figures 4.10a and 4.10b show the beampatterns without any ADBF

(cyan), with ADBF but without equalization (purple dashed), and with ADBF and with

equalization (green). The beampattern without equalization does not have any notably

deep nulls, meaning that the interferer’s contribution to the received signal is not miti-

gated by much. When equalization is included as a step before ADBF, then the signal-

to-interference ratio (SIR) is greatly improved; for the scenario here, the SIRs are shown

in Table 4.2. Using equalization before ADBF improves the SIR in this particular setup

by around 25 dB. The spectrograms of the post-ADBF signal without an equalization

stage and with an equalization stage are shown in Figure 4.11. The color axis is shared

between Figure 4.11 and Figure 4.8. As such, it is clear that, without equalization, per-

forming adaptive digital beamforming pushes down the power of the interfering signal

only minimally. However, when equalization is performed before the ADBF stage, the
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(a) The digitally looped back signal was used as the reference

signal.

(b) The output of channel 1 was used as the reference signal.

Figure 4.9: The spatial spectrum without equalization (cyan) and with equalization

(green) using the DLB signal (top) and the channel 1 signal (bottom) as the reference

signal. In both figures, the locations of the desired signal (vertical green dashed) and the

interfering signal (vertical red dashed) are also shown.
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(a) The digitally looped back signal was used as the reference

signal.

(b) The output of channel 1 was used as the reference signal.

Figure 4.10: The ADBF beampattern with and without equalization using the DLB

signal (top) and the channel 1 signal (bottom) as the reference signal. The beampattern

without equalization and without ADBF is in cyan, the beampattern without equalization

and with ADBF is in purple, and the beampattern with equalization and with ADBF is

in green. In both figures, the locations of the desired signal (vertical green dashed) and

the interfering signal (vertical red dashed) are also shown.
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(a) Post-ADBF, no equalization.

(b) Post-ADBF, with equalization

Figure 4.11: Spectrograms of the signal after ADBF without (top) and with (bottom)

equalization first. The higher power of the interfering signal is clearly not as mitigated

if no equalization is used.
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interferer signal power is pushed down to below that of the desired signal, causing the

notable signal-to-interference ratio improvement.

The effects of inserting an equalization stage before performing ADBF were ex-

plored for a variety of equalization filter orders and for a variety of desired and inter-

fering signal powers and locations. Results of this inquiry are shown in Figures 4.12

and 4.13. Both sets of figures show the improvement to the SIR caused by including

an equalization step before the ADBF step. Figure 4.12 shows the improvement to SIR

after equalization as a function of the interferer angle and the source angle. The ADBF

algorithm used here is MVDR, which performs poorly in situations where the desired

signal and interfering signal are located angularly close to each other; when the sources

are sufficiently far apart, equalization always improves the SIR after ADBF. Figure 4.13

shows the improvement to SIR after equalization as a function of the number of filter

coefficients used in the equalization step and as a function of the relative powers of the

desired and interfering sources. Increasing the filter order does improve performance,

but the more noticeable factor is the power of the interferer relative to the power of the

source. Note that using equalization before ADBF virtually always improves the SIR

[74, 73].

4.2.3 Comparison to Machine Learning Algorithm Performance

The channel matching problem is well addressed by the FIR equalization filter; notably,

SIR performance in ADBF scenarios is always improved after employing this method.

For comparison, a variety of machine learning regression algorithms were tested on the

equalization problem and their effects on CPCR and SINR improvement were com-

pared to the least-squares FIR filter design method. Eight methods were tested: linear

regression, linear regression with the ridge penalty (hereafter called “ridge regression”),

linear regression with the lasso penalty (hereafter called “lasso regression”), linear re-

gression with the elastic net penalty (hereafter called “elastic net regression”), decision
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(a) SIR improvements using the DLB signal as a reference.

(b) SIR improvements using the channel 1 signal as a reference.

Figure 4.12: When equalization is used before ADBF, the SIR is always improved ex-

cept when the interferer and desired source are essentially collocated in angle. This is

a known weakness of MVDR. The results hold true whether the reference signal is the

digitally looped back signal or the channel 1 output signal.
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(a) SIR improvements using the DLB signal as a reference.

(b) SIR improvements using the channel 1 signal as a reference.

Figure 4.13: If the interferer transmitter power is of similar or greater power than the

desired source transmitter power, using equalization before ADBF always results in an

improvement to SIR.
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tree regression, random forest regression, gradient boosted tree regression, and multi-

layer perceptron regression; short summaries of each of the methods can be found in

Appendix B. Scikit-learn’s implementations of each of the algorithms were used [23],

Numpy [75] and Scipy [76] were used for the processing, and Matplotlib was used to

generate the plots [77].

The original least-squares FIR design method was calibrated using the averaged IQ

data from the Horus receiver as the auxiliary signal and the channel 1 output as the

reference signal; the FIR filter was of order 64. To train the machine learning algorithms,

training, validation, and truth data sets were constructed from the same signals. Separate

estimators were trained for the real and imaginary components of the signal for each

channel. The features extracted for these data sets were:

• R{Xn−k}∀k ∈ [0 : 64)

• I{Xn−k}∀k ∈ [0 : 64)

where Xn is the complex signal at the current time, (and so Xn−1 is the IQ data from

the time sample before the current time sample); R and I are the real and imaginary

components of the following; and 64 was chosen as the number of time delays because

it was the same as the order of the FIR filter. These features were normalized so that

they fit into a normal distribution with a mean of zero and variance of one. Cross-

validation was performed to choose the best-performing parameters, which are shown

in Table 4.3. Note that α = 0 was found to be the optimal parameter for the linear

models (ridge, lasso, and elastic net regression). This indicates that, since the error was

lowest if all of the input features were used in the prediction, all of the input features

have predictive value; mathematically, this means that they all simplify to be equivalent

to linear regression. Additionally, two more features were trialed,

• |Xn−k|∀k ∈ [0,64)

• ∠Xn−k∀k ∈ [0,64)
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Figure 4.14: The FFTs of the post-equalization signals show consistently improved

CPCRs.

where |·| is the magnitude of the enclosed term and ∠ is the phase angle of the following

term. Performance was worse with these features so they were excluded from further

experiments.

The FFTs of the results from testing the calibration on the non-averaged IQ data from

the Horus receiver are shown in Figure 4.14, and the resulting CPCRs are summarized

in Table 4.4. For the following figures, the reference signal is the solid blue line, the

signal before equalization calibration is the solid cyan line, the digital filter equalization

method (i.e. the non-machine-learning method) is in the green dashed line, and the

algorithms are in a variety of other colors of dot-dashed lines. Most of the algorithms

visually do a good job at matching the reference frequency response, though there is
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Table 4.3: Optimal Regression Algorithm Parameters

Algorithm Parameter Name Parameter Value

Ridge α 0

Lasso α 0

Elastic Net α 0

L1 ratio: 0

Decision Tree Criterion Mean-squared error (MSE)

Random Forest Criterion MSE

Number of Estimators 50

Gradient Boosted Tree Criterion Friedman MSE

α 0.9

Learning rate 0.1

Loss Least squares

Maximum depth 3

Number of Estimators 100

Multilayer Perceptron Activation Function Rectified Linear Unit

α 1

Hidden Layer Size 100

Learning Rate Constant
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some noisiness to the fit, especially for the gradient boosted tree; this is reflected in the

CPCR numbers.

The spatial spectra of the calibration data are shown in Figure 4.15. Again, the

reference signal is in blue, the signal before calibration is in cyan, the non-machine-

learning method is in the green dashed line, and the varied machine learning methods

are in dot-dashed lines. The beampattern nulls are not as deep as would be desired for

some of the algorithms, but all do a passable job at restoring the apparent directionality

of the calibration signal.

The same ADBF signal generation technique as in Section 4.2.2 was used to create

the same ADBF scene, and the quality of these machine learning equalization solutions

were tested. The spatial spectrum of the ADBF scene is shown in Figure 4.16. The

signal without equalization is in cyan, the digital filter method is in the green dashed

line, and the other methods are in various colors of dotted lines. The locations of the

desired and interfering signals are shown in vertical green and red dashed lines respec-

tively. The tree-based methods do get the correct directionality, but do not match the

Table 4.4: CPCRs (in dB) of Equalization Algorithms

Algorithm Ch. 1 Ch. 2 Ch. 3 Ch. 4

Digital Filter 34.4 34.8 36.2 33.6

Linear Regression 34.4 35.4 29.0 34.5

Ridge 34.4 35.4 29.0 34.5

Lasso 34.4 35.4 29.0 34.5

Elastic Net 34.4 35.4 29.0 34.5

Decision Tree 34.4 33.9 35.5 34.5

Random Forest 34.4 36.5 39.7 35.6

Gradient Boosted 33.7 27.4 25.1 32.4

Neural Network 33.8 38.5 22.9 22.3
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Figure 4.15: The spatial spectra of the post-equalization signals show much improved

performance, though some algorithms get better results than others.
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Figure 4.16: The spatial spectra of the post-equalization signals show much improved

performance for the linear models, but the nonlinear models (the tree-based methods

and neural networks) do not perform well at amplitude matching.
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amplitude correctly. Similarly, the neural network implementation does show peaks in

its spatial spectrum in the expected directions but has very little amplitude variation.

Examining the spectrograms of each type of signal reveals more; Figure 4.17 shows the

spectrograms of the equalizer output signal (only channel 2 is shown to save space; all

of the channel outputs looked visually similar).

The linear models in Figure 4.17a look as would be expected — the interferer is

stronger than the target signal. The tree-based models in Figure 4.17b visually look

correct — the correct features are in the correct places — but the amplitude is wrong;

these machine learning models have attenuated the signal. The neural network model in

Figure 4.17c introduces additional signal components not present in the original signal.

The deviations present in both the tree-based models and the neural network are likely

because the machine learning models were trained solely on the broadside case and

likely overfit to that specific situation. A future experiment would add training data for

the neural net that included situations where the calibration signal appeared to come

from a variety of directions to determine if neural network performance improved; past

work on the use of neural nets to find the direction of arrival for signals indicates that

improved performance under this more thorough training scheme is likely [78, 79, 80].

The MVDR ADBF algorithm was applied to the signal after equalization using each

of these methods. The results are shown in Figure 4.18 and the SINR improvements

from equalization using each method are shown in Table 4.5. The beampattern without

ADBF is shown in blue, the beampattern with ADBF but without equalization is shown

in the cyan dotted line, the beampattern produced by using the non-machine-learning

method is shown in the green dashed line, and the other methods are in various colors

of dotted lines. The locations of the desired and interfering signals are shown in the

vertical green and red dashed lines respectively. Figure 4.19 has the beampatterns split

up by groups of algorithms and is perhaps easier to parse.
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(a) Equalization output spectrogram: linear mod-

els

(b) Equalization output spectrogram: tree-based

models

(c) Equalization output spectrogram: neural net-

work

Figure 4.17: Spectrograms of the equalization output for the ADBF portion of the ML

experiment. The linear models (the digital filter design method and linear, ridge, lasso,

and elastic net regression) all looked virtually identical, so only linear regression is

shown in Figure 4.17a. Similarly, the tree-based methods (decision tree, random forest,

and gradient boosted regression) all looked virtually identical, so only decision tree

regression is shown in Figure 4.17b.
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Figure 4.18: The beampatterns determined by MVDR beamforming on an equalized

signal.

107



(a) Beampatterns of linear regression algorithms.

(b) Beampatterns of tree-based and neural network algorithms.

Figure 4.19: The beampatterns determined by MVDR beamforming on an equalized

signal, split into different figures for easier viewing.
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The linear regression-based algorithms, seen in Figure 4.19a, all improve the SINR

after ADBF; linear-model algorithms all do well at introducing a null in the correct

direction and improving the SINR. The tree-based algorithms and neural networks are

shown in Figure 4.19b. The tree-based algorithms all do a good job at introducing a null

in the correct direction, but the associated attenuation caused by the equalizers results

in an overall poorer SINR. The neural network’s introduced nonlinearities also cause

issues, resulting in an overall poorer SINR.

Overall, newer and more complicated machine learning methods, including decision

trees, random forests, and neural networks, could probably perform as well as or better

than the more classical machine learning methods such as linear least squares regression

or ridge regression at digital equalization if the training datasets were carefully and

comprehensibly crafted; it’s very possible, however, that such a training dataset would

not be easily obtainable in a real world equalization scenario. However, even if such

training datasets were able to be obtained, the expensive computational cost of training

Table 4.5: Improvement to SINR (in dB) after ADBF for each Equalization Algorithms

Algorithm SINR Improvement (dB)

Least Squares 22.8

Linear Regression 24.5

Ridge 24.5

Lasso 24.4

Elastic Net 24.4

Decision Tree -2.03

Random Forest -2.07

Gradient Boosted Tree -3.62

Multilayer Perceptron -6.54
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these more complicated estimators — potentially as high as O(n3 logn) for trees and

O(n4) for neural nets [23] — and the more complex implementation of these estimators

methods makes the more classical linear-model-based methods, with their comparable

performance, O(n3) computational cost for training, and simple implementation, better

suited to equalization applications.

4.3 Simulated Data

The above experiment tested the performance of equalization for the data collected from

the Horus prototype receiver. More general conclusions were desired as to the effects

of equalization and how it could improve performance. To that end, data was simulated

and manually mismatched. In order to simulate the channel mismatch, the data was

passed through an FIR filter with randomly generated complex coefficients; the length

of the filter was varied as desired.

First, some relation between the amount of mismatch and the number of coefficients

needed to counteract that mismatch was examined. The simulated setup was again a

four-channel system. The number of coefficients of the corrupting FIR filter was varied

from 1 to 32, with each channel receiving its own coefficients. The number of coef-

ficients in the equalization filter was varied from 1 to 256. At each point, the CPCR

was calculated and recorded after equalization using the digitally looped back signal as

the reference signal. This was repeated 50 times, and the mean of the CPCRs at each

point was calculated. The results can be seen in Figure 4.20. It can be seen that, as

more corruption coefficients are added, the number of equalization coefficients needed

to counter the corruption increases exponentially. Additionally, CPCRs above approxi-

mately 30 dB are not attainable if the mismatch is too severe. A slice of this chart can be

seen in Figure 4.21, where the number of corruption filter coefficients was held constant

at 4, and the experiment was executed 50 times and then averaged.
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Figure 4.20: The CPCR varies with respect to the number of filter coefficients used in

both the corruption and the equalization stages.
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(a) CPCR by channel.

(b) Mean CPCR.

Figure 4.21: For simulated data, the CPCR as a function of equalization filter order

when the corrupting filter uses 4 taps.
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Figure 4.22: Post-ADBF improvement to SIR if equalization is used, as a function of

original source SNR and the SIR.

Next, the same adaptive digital beamforming experiments as above were repeated,

with one addition — the original source’s SNR can be controlled, so it, too, was varied.

In all figures, the filter used to induce channel mismatch used 4 coefficients, and the

experiment was repeated 50 times and then averaged.

Figure 4.22 shows the improvement to SIR if equalization is used as a function of

the source SNR and the transmitter SIR. In general, if the SIR is too low or the source

power is not far above the noise power, then improvements are only minimal; as SNR in-

creases, the post-ADBF SIR improvement becomes more noticeable; additionally, hav-

ing a stronger signal than interferer also helps the post-ADBF SIR.
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Figure 4.23: Post-ADBF improvement to SIR if equalization is used, as a function of

interferer angle and source angle.

Figure 4.23 shows the improvement to SIR if equalization is used as a function of the

source and interferer angles. As in the case with the Horus data, the characteristics of

MVDR are most evident: having the interferer and source too closely collocated in angle

hurts performance. Despite that, employing equalization always improves post-ADBF

SIR.

Figure 4.24 shows the improvement to SIR if equalization is used as a function of

the transmitter SIR and the order of the equalization filter. The features are similar

to the same experiment performed on Horus data: giving taps to the equalization fil-

ter improves matching, and the consequent improvement to post-ADBF SIR is more

noticeable when the interferer is stronger than the signal.
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Figure 4.24: Post-ADBF improvement to SIR if equalization is used, as a function of

SIR and equalization filter order.
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4.4 Conclusions

Data recorded using a prototype receiver and suffering from channel mismatch was used

to investigate the efficacy of digital equalization at enhancing channel matching and the

consequent effects on ADBF performance. Digital equalization was effected via various

methods, including a digital FIR filter design method and a variety of machine learning

algorithms. All of the methods tested were good at improving channel matching; all

methods tested improved the channel pair cancellation ratio to above 20 dB, and most

algorithms tested were able to reach 30 dB. The effects of this improvement on array

performance were illustrated by examining the spatial spectra of the input signal to the

equalizer and the signals at the outputs of the equalizers. The signal without equalization

appeared to come from about 20 degrees off broadside; after equalization, the signal

appeared to come from broadside, as expected, a confirmation of the beneficial effects

of equalization.

Other data recorded from the same receiver was used to construct an ADBF scenario

with a signal and interferer present, with both at different amplitudes and apparent in-

cident angles than that of the training data. This data was used as input to the different

methods of equalization that were previously calibrated, and the improvement to SINR

compared to ADBF without equalization was calculated. The digital filter method and

linear model machine learning methods performed well on this data, improving SINR

by almost 25 dB for the specific scene constructed. The nonlinear model machine learn-

ing methods did not adapt well to the changes made to the data; the tree-based models

greatly attenuated the signal, and the neural network method introduced nonlinearities

not present in the input signal. If care was taken to construct a training dataset for these

nonlinear models that encompassed a wide range of apparent incident angles and am-

plitudes, these models could likely perform just as well as the digital filter or the linear

models; however, this would likely not be worth the effort. The digital filter and linear

models already perform very well and can be trained in O(n3) time; training trees takes
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O(n3 logn) time, and training neural nets can take O(n4) time. If the training dataset

is expanded to include the wide variety of conditions needed for these models to per-

form well in a wide variety of conditions, training time would be prohibitive. The right

tool for the job should be used; here, the right tool is one of the linear model machine

learning methods or the digital FIR filter design method.

Finally, instead of using data from the prototype receiver, new data with different

degrees of simulated mismatch was generated. This allowed investigation into the how

well the results above could be generalized. The results above were confirmed: when the

right tool is used (here, the digital FIR filter design method of equalization), equalization

will always improve ADBF performance except when the target signal and the interferer

are too closely located in angle, in which case the ADBF algorithm itself is the issue.

Equalization, when done properly, is clearly a powerful tool for enhancing digital phased

array performance.
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Chapter 5

Conclusion

This dissertation explored a variety of methods of improving radar data quality. Already-

existing temporal methods, the Vaisala algorithms, performed passably well at mitigat-

ing radio frequency interference as long as it was intermittent. A new algorithm, the

Interference Spike Detection Algorithm, was developed; it outperforms the Vaisala al-

gorithms in all measures. The Vaisala algorithms and ISDA both require the user to

define parameters, but machine learning regression algorithms were applied to the prob-

lem to find a relation between the signal characteristics and algorithm parameters as a

function of probability of false alarm; while the regression might be improved by using a

nonlinear model, the relation found still performs passably well. Additionally, machine

learning classification algorithms were applied for the first time to the RFI detection

problem, and it was found that they have the potential to outperform ISDA and the other

methods; however, these classification algorithms were too complicated to easily imple-

ment on an FPGA. Future work should investigate how the machine learning algorithm

performance changes if fewer computational resources are available to it. It is very pos-

sible that, despite potentially higher performance from the machine learning algorithms,

the quick speed and low complexity of ISDA could make them the preferred temporal

RFI mitigation method, with the machine learning algorithms applied in post-processing

to catch instances of RFI missed during online processing.

Despite this effort, all of the temporal methods fail when trying to address RFI that

is continuous wave, noise-like, or intermittent RFI with a PRI perfectly synced with that

of the radar; that is, RFI that is present for multiple contiguous pulses at a particular

range gate. Fortunately, digital phased arrays and spatial processing algorithms offer

another solution. A variety of adaptive digital beamforming algorithms were assessed
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for their performance in mitigating interferers of precisely the type the temporal algo-

rithms were unable to handle. The MVDR algorithm stood outwith its high efficacy,

little prerequisite knowledge required, and predictable computational complexity, and

was chosen for implementation on the DARPA ACT program. In the weather radar do-

main, adaptive digital beamforming was used on weather data collected from spatially

distributed channels on the NWRT. While there was no RFI present, the analogy can

be made that ground clutter essentially is interference to weather radars; thus, the algo-

rithm was used to filter out ground clutter from this data. The performance was very

promising — the adaptive digital beamforming algorithm ameliorated the influence of

the ground clutter on the signal statistics while preserving the weather data, and thus

offers a viable alternative to state-of-the-art spectral reconstruction ground clutter filter-

ing techniques such as GMAP. The linearly constrained minimum variance algorithm

used here is particularly powerful, allowing users to ask it to satisfy constraints; if the

location of a problematic emitter or wind turbine is known, the user can ask for nulls in

the beampatterns in that direction, mitigating the influence of that interferer or clutter

while not altering the signal statistics of the data received from the look direction. Fu-

ture phased array weather radar systems will likely wish to perform at least some ground

clutter filtering via adaptive digital beamforming.

The increased computational performance has additionally opened the door to im-

prove phased array performance even outside the context of interference. In order to

have accurate beamsteering and beamforming, the digital channels of a receiver must be

well matched — an identical signal fed into separate hardware channels must yield the

same signal out (or at least very close to the same signal out). Digital equalization can

improve channel matching to high levels, and moreover it has been used to that effect

when calibrated using signals of opportunity, meaning that the calibration of the equal-

izer need not necessarily take place in an anechoic chamber (though matching quality

will very likely be higher if it does). With more accurate channel matching comes more
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accurate steering and consequently more accurate adaptive digital beamforming and thus

interference suppression. In an experiment using data taken from a prototype Horus re-

ceiver, applying equalization before adaptive digital beamforming improved the final

signal-to-interference ratio in virtually all cases. Machine learning regression methods

show some promise as an alternative to the older digital FIR filter design techniques,

though the right tool for the job must be used; techniques such as neural network regres-

sion are not nearly as well suited to the equalization problem as more classical machine

learning methods such as linear regression. When implemented properly, digital equal-

ization has great potential to improve phased array radar performance.
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Appendix A

Useful Derivations

A.1 Adaptive Digital Beamforming

A.1.1 Minimum Variance Distortionless Response

Van Trees [42] makes the distinction between the minimum variance distortionless re-

sponse (MVDR) beamformer, which seeks to minimize the power of the noise envi-

ronment, and the minimum power distortionless response (MPDR) beamformer, which

seeks to minimize the total power. The derivation is the same, the only difference is

that MVDR uses the noise spectral matrix Sn instead of the signal spectral matrix Sx.

The same applies to linearly constrained minimum power (LCMP) beamforming versus

linearly constrained minimum variance (LCMV) beamforming. Because most literature

refers to the MPDR beamformer as defined by [42] as the MVDR beamformer, that is

the convention followed in the text of the dissertation.

The problem of MVDR beamforming is to minimize the total signal power without

altering the signal coming in from the steering direction. In math form:

min
w
{wSxw} subject to wHv = 1 (A.1)

where w are the weights being calculated; Sx is the received signal spectral matrix;

wSxw is the mean square of the output noise; and v is a steering vector pointed in the

steering direction. Lagrangian multipliers can be used to make rephrase the problem:

f (w) = wHSxw+λ
[
wHv−1

]
+λ

∗ [vHw−1
]

(A.2)
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where λ are the Lagrangian multipliers (and are scalars) and f (w) is the function to be

minimized. We take the gradient with respect to wH and set it equal to zero:

∇wH f (w) = 0

⇔ 2wHSx +vH
λ +vH

λ = 0

⇔ wHSx +λvH = 0

⇔ wHSx =−λvH

⇔ wH =−λvHS−1
x

(A.3)

Note that the signal covariance matrix Sx is Hermitian; that is, SH
x = Sx; additionally,

the inverse of a Hermitian matrix is itself a Hermitian matrix. We plug this into the

constraint equation and solve for λ :

wHv = 1

⇔−λvHS−1
x v = 1

⇔ λ =−
[
vHS−1

x v
]−1

(A.4)

We can plug this back into the equation above, canceling out the negatives and getting a

formula of the optimum beamforming weights under the MVDR constraint:

wH =
vHS−1

x

vHS−1
x v

⇔ w =
S−1

x v
vHS−1

x v

(A.5)

Using these weights will minimize the total power while retaining the signal from the

steering direction [42].

A.1.2 Linearly Constrained Minimum Variance

The LCMV beamformer is a more generalized form of the MVDR beamformer. The

basic goal — to minimize the total signal power — remains, but with LCMV the con-

straint on this minimization is more than just distortionless response from the steering
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direction. The constraints themselves are up the user — some useful applications in-

clude steering nulls in particular directions to mitigate interferers, or asking for a strong

beampattern to the side of the direction the target is expected to be transmitting from to

accommodate for array mismatch — but the derivation is very similar. LCMV seeks to:

min
w
{wSxw} subject to wHC = gH (A.6)

where w are the weights being calculated; Sx is the received signal spectral matrix;

wSxw is the mean square of the output noise; C are the constraints parameters, and g

are the desired values of the constraints. When C = v (where v is the steering direction)

and g = 1, the LCMV beamformer simplifies into the MVDR beamformer.

To calculate the optimum weights for LCMV beamforming, we define a function

f (w) using Lagrangian multipliers λ to capture the constraints:

f (w) = wHSxw+
[
wHC−gH]

λ +λ
H [CHw−g

]
(A.7)

We then take the gradient with respect to wH , set equal to zero, and solve for wH :

∇wH f (w) = 0

⇔ 2wHSx +λ
HCH +λ

HCH = 0

⇔ wHSx +λ
HCH = 0

⇔ wHSx =−λ
HCH

⇔ wH =−λ
HCHS−1

x

(A.8)

Note that the signal covariance matrix Sx is Hermitian; that is, SH
x = Sx; additionally,

the inverse of a Hermitian matrix is itself a Hermitian matrix. We take this equation and

plug it into the original constraint equation, solving for λ H :

wHC = gH

⇔−λ
HCHS−1

x C = gH

⇔ λ
H =−gH [CHS−1

x C
]−1

(A.9)
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We reincorporate to the equation above, canceling out the negatives and getting a for-

mula for the optimum beamforming weights under the LCMV constraints:

wH = gH [CHS−1
x C

]−1 CHS−1
x

⇔ w = S−1
x C

[
CHS−1

x C
]−1 g

(A.10)

Using these weights will minimize the total power while satisfying the constraints con-

tained in C and g [42].

A.2 Direction Finding

A.2.1 Bartlett Method

The Bartlett beamformer is just a simple beamscan algorithm. In essence, a digital beam

is scanned over the search space and the power of the return is plotted. In math form:

P̂B =
1
K

K

∑
k=1

∣∣vHXk
∣∣2

= vH

{
1
K

K

∑
k=1

XkXH
k

}
v

= vHSxv

(A.11)

where there are K samples; v are the steering vectors that span the search space; Xk is

the signal at sample k; and Sx =
1
K ∑

K
k=1 XkXH

k is the signal covariance matrix. Because

it’s a digital beamscan, its resolution is limited to the resolution of the antenna array. In

linear algebra terms, this algorithm is essentially finding the length of Sx in the direction

of v [81, 42].

A.2.2 MUSIC

Multiple Signal Classification, commonly called MUSIC, is a direction finding algo-

rithm based on subspace analysis. Because MUSIC does not rely on the radar geometry

at all, its resolution is not limited as the Bartlett method’s was. If X is a signal comprised
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of D incoming signals and noise and is received by an M-element radar, then it can be

modeled as
X1

X2
...

XM


=


V (θ1) V (θ2) · · · V (θD)




F1

F2
...

FD


+


B1

B2
...

BM


(A.12)

which can be reduced to

X = VF+B (A.13)

where V are the steering vectors associated with the incident directions of the D signals

in F, and Bi are the noise at each of the M elements. The covariance matrix of X is then

Sx = XXH = VFFHVH +BBH (A.14)

which, if the incident signals and the noise are uncorrelated, can be simplified into

Sx = VPVH +λS0 (A.15)

Unless the signals Fi are completely uncorrelated, the matrix P will be positive definite,

and when the number of signals D is less than the number of array elements M, then the

matrix VPVH will not be full rank, meaning that its determinant will equal zero. The

equation can be rearranged

∣∣VPVH∣∣= |SX−λS0|= 0 (A.16)

This can only be true if S = λS0, meaning that λ must equal one of the eigenvalues of

S. Since V is full rank and P is positive definite, VPVH must be nonnegative definite,

requiring that λ = λmin where λmin is the minimum eigenvalue of S in the metric of S0.

This can be used to estimate D, the number of incident signals, by counting the number

of eigenvalues of S approximately equal to λmin and subtracting that from the number
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of elements. That is, D̂ = M− N̂ where N̂ is the number of eigenvalues approximately

equal to λmin. When examining matrix eigenvalues and eigenvectors, by definition

Sei = λiS0ei∀i ∈ [1,M] (A.17)

which, using equation A.15, can be rewritten as

VPVHei +λminS0ei = λiS0ei

⇔ VPVHei = (λi−λmin)S0ei

(A.18)

which, whenever λi = λmin (meaning that the current eigenvalue is not associated with a

signal) will evaluate to zero. In linear algebra terms, when VPVHei = 0, then the current

eigenvector ei associated with the current eigenvalue λi ≈ λmin is orthogonal to VPVH ,

which is the space spanned by the signal vectors. Using this, the eigenvectors can thus

be sorted into two groups: ED, a set of D eigenvectors that span the signal subspace;

and EN , a set of N eigenvectors that span the noise subspace. Additionally, because the

bases for these subspaces are eigenvectors of a Hermitian matrix, they are orthogonal,

meaning that the signal and noise subspaces are orthogonal.

To perform MUSIC, then, we simply define a space over which we wish to search,

v, and look at the lengths of each vi in the noise subspace:

Q̂MUSIC =
∣∣vHEN

∣∣2
⇔= vHENEH

N v

⇔= vH (I−EDEH
D
)

v

(A.19)

Typically this in inverted, since the lowest lengths in the noise subspace are associated

with the directions most associated with the signal subspace; that is, P̂MUSIC = 1
Q̂MUSIC

is typically evaluated [82, 42].
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Appendix B

Machine Learning Background

B.1 Linear Models

B.1.1 Linear Regression

The following conventions are used: y is a series of observations; X is the series of

system states that, using coefficients in β , can be used to generate a predicted system

state ŷ, where ŷ = Xβ . Often a bias term, β0, is folded into the β and X matrices.

An example application is the simple case of projectile motion: a ball traveling in

one direction at a constant velocity. We want to find the linear model ŷ = Xβ that will

best describe the system states in y. In this case, y is the set of observations of the ball’s

position; X is the times at which the observations are taken, and β are the unknown

quantities that govern the ball’s motion (in this case, the starting position y0 and the

velocity v). If there are n observations, the series of equations comprising our linear

model,

ŷ1 = β0 +β1t1

ŷ2 = β0 +β1t2
...

ŷn = β0 +β1tn

(B.1)

can, by setting

y =


y1

y2
...

yn


, X =


1 t1

1 t2
...

1 tn


, and β =

 y0

v



127



be packaged up neatly:

y = Xβ = ŷ (B.2)

Note that the column of ones at the left of X is the byproduct of incorporating the bias

term β0 = y0 into Xβ .

There are many methods to solve for β , but the most common is the method of least

squares, wherein the β is chosen such that the sum of squares of a residual vector

r = y− ŷ (B.3)

is minimized. When using the Euclidean norm, ||r||2 =
(
r2

1 + r2
2 + · · ·+ r2

n
)1/2,we find

the minimum of

f (β ) = ||r||22 = ||y− ŷ||22

= ||y−Xβ ||22

= (y−Xβ )T (y−Xβ )

(B.4)

which will be at a location when both of these conditions are true:
∇ f (β ) = 0

∇2 f (β ) is positive definite
(B.5)

where

∇ f (β ) =
(

∂ f
∂β0

,
∂ f
∂β1

)T

(B.6)

and

∇
2 f (β ) =

 ∂ 2 f
∂β 2

0

∂ 2 f
∂β0∂β1

∂ 2 f
∂β0∂β1

∂ 2 f
∂β 2

1

 (B.7)

Expanding the f (β ) from above, we obtain

f (β ) = (y−Xβ )H (y−Xβ )

=
(
yT −β

T XT)(y−Xβ )

= yT y−yT Xβ −β
T XT y+β

T XT Xβ

= yT y−2yT Xβ +β
T (XHX

)
β

(B.8)
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From this, we can find that

∇ f (β ) =−2XT
β +2

(
XT X

)
β (B.9)

and

∇
2 f (β ) = 2

(
XT X

)
(B.10)

The first condition from B.5 yields that

∇ f (β ) = 0 =−2XT y+2
(
XT X

)
β ⇔

(
XT X

)
β = XT y (B.11)

which, if XT X is non-singular, yields the solution

β =
(
XT X

)−1 XT y (B.12)

Using the second condition from B.5 we find that ∇2 f (β ) is positive definite if XT X is

positive definite.

The requirement that the matrix XT X be nonsingular can become a problem if the

features in the different columns of X are not independent. If the terms are correlated, the

XT X matrix can approach singularity, resulting in random errors causing large variance

in the system output [20, 83, 23]. This can be dealt with using shrinkage methods such

as ridge regression and lasso.

B.1.2 Tikhonov Regularization (Ridge Regression)

Tikhonov regularization, also known as ridge regression or L2 regularization, changes

the minimum residual problem solved by least squares regression into a problem that

balances minimizing the residual and minimizing the norm of the coefficients in β . The

problem becomes minimizing f (β ), where:

f (β ) = ||y−Xβ ||22 +α ||β ||22 (B.13)
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where α ≥ 0 is a real constant. Minimizing it involves the same conditions. Setting the

gradient to zero yields the solution

∇ f (β ) =
(
XT X+αI

)
β −XT y = 0

⇔ β =
(
XT X+αI

)−1 XT y
(B.14)

Large α will increase the shrinkage that occurs, making the coefficients more robust

to issues arising from correlated features. Overall, ridge regression acts to smooth the

solutions, and acts to transform ill-posed problems into well-posed problems [20, 83,

23].

B.1.3 Lasso

Lasso, an acronym for “least absolute shrinkage and selection operator”, is sometimes

known as L1 regularization. It is another shrinkage method that can be used to im-

prove regression performance over simple least squares regression by adding a different

constraint — minimizing the absolute value of the coefficients — to the least squares

problem. The problem becomes minimizing f (β ):

f (β ) = ||y−Xβ ||22 +α ||β ||1 (B.15)

where ||β ||1 = |β0|+ |β1|+ · · ·+ |βn| is the Manhattan norm. There is no closed form

solution for β as there was with ridge regression, but, as α increases, the penalty term

tends to prefer solutions with fewer parameter values, resulting in a solution that depends

on fewer variables [20, 23].

B.1.4 Elastic Net

Elastic net regularization strives to strike a balance between the L1 penalty imposed by

lasso and the L2 penalty imposed by ridge regression. The penalty has the form

n

∑
i=1

(
α |βi|+(1−α)β 2

i
)

(B.16)

130



making the minimization problem that of finding the minimum of f (β ) where

f (β ) = ||y−Xβ ||22 +λα ||β ||22 +(1−λ )α ||β ||1 (B.17)

where α performs the same functions as in ridge regression and lasso, and λ allows the

user to choose the balance between the L1 and L2 penalties. Each penalty performs the

same functions as above: the L1 term performs variable selection, excluding features

that are deemed unimportant, while the L2 increases numeric stability [20, 23].

B.2 Trees

The most common application of trees are in classification problems, as was done with

RFI detection in Section 2.3.4. Classification trees are simply binary trees that split

using the feature that will give the most information. A simple example, the problem

of “should I eat at Chipotle?”, can be simply represented using the tree in Figure B.1.

To construct a tree, the training dataset is split using a criterion, typically to find the

feature that provides the most information gain or maximizes the “purity” of each class

in its child nodes. This can be done using a few different metrics; for the experiment in

Section 2.3.4, the Gini index was used as the splitting criterion. Using the definition

p̂mk =
1

Nm
∑
xi

I(yi = k) (B.18)

to represent the proportion of members in a node m that belong to class k, these criteria

can be defined. The Gini index is defined by

∑
k 6=k′

p̂mkp̂mk′ =
K

∑
k=1

p̂mk(1− p̂mk) (B.19)

Similarly, the entropy is defined by

−
K

∑
k=1

p̂mk log p̂mk (B.20)

Information gain looks at the difference in one of these values before and after making

a split. A positive value indicates a useful split, and more positive values indicate better

splits.
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Figure B.1: Simple classification problem governing whether someone should eat at

Chipotle, with the root node at the left. An accurate tree would, of course, just be a

single node with “Yes”.

Regression trees operate similarly, with two primary differences. First, instead of the

tree solving a classification problem with a limited number of discrete classes, it solves a

regression problem whose outputs are continuous and real. Second, rather than splitting

based on a measure of information gain, the split is chosen by finding a constant that

minimizes the residual between that constant chosen and the output truth values. This

minimization can be in terms of mean squared error:

min
c ∑

xi
(yi− c)2 (B.21)

or mean absolute error:

minc∑
xi
|yi− c| (B.22)

where yi is the truth data for each corresponding data point xi and c is the constant being

searched for.

Rather than exhaustively test the all potential partitions, the Classification And Re-

gression Trees (CART) algorithm (which is the algorithm used by Scikit-Learn) uses a

greedy approach: starting with the current full dataset, it looks at all available variables
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and all potential values upon which to split that variable; it then chooses the constant

that minimizes the error on each side of that split; it chooses to make that node of the

tree out of the split that results in the lowest error in the new partitions. More formally:

for each feature variable j in the training data X , it splits the data into two regions based

on whether the value of that data’s feature j is greater than or less than a splitting value

s:

R1( j,s) = {X |X j ≤ s} and R2( j,s) = {X |X j > s} (B.23)

It then finds the constant c1 and c2 in each region that minimizes the error between the

truth value and the constant. Altogether:

min
j,s

[
min

c1
∑

xi∈R1( j,s)
(yi− c1)

2 +min
c2

∑
xi∈R2( j,s)

(yi− c2)
2

]
(B.24)

when the mean squared error measure is used. When it finds the best split, it chooses

that and repeats the process for each branch of the tree. This repeats until some criteria

is fit; typically, when the number of data points in each region reaches some threshold;

for Scikit-Learn, this threshold is 1 data point, meaning that potentially each piece of

data in the training set will have its own path down the tree. While this results in good

performance on the training data, if the tree becomes too big then it can become “brittle”

and unable to perform well on input data that were not included in the training data.

Random forests are a tree-based machine learning method that can deal with such

issues. Random forests are built from a group of individual decision trees that are built

using the input data. Rather than sending all the data to all the trees, however, the

training dataset is bootstrapped (i.e. a subset is randomly chosen from all the available

data) and each tree is trained on its own bootstrapped data; additionally, during training

each tree will choose the best feature upon which to split from a random subset of all

available features. Both factors combine to produce individual trees that will have their

own unique structures. When used to perform a prediction, the outputs from each tree

in the forest are averaged. This results in a model that has overall reduced variance in

its output.
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Gradient boosting trees use a different approach. Whereas random forests average

the output of an ensemble of trees, gradient boosting sums the outputs of a group of

trees that have been trained to work together in concert. The starting tree is trained in

the same way as the original, to predict the constant that minimizes the error between

the truth values and the predicted value; this residual error is then used as the truth data

for the next tree, which chooses constants to minimize that error. This is repeated with

subsequent trees. In mathematical terms, these trees are being trained to predict the

negative gradient of the residual error (typically calculated using least squares), hence

the name “‘gradient boosting” [20].

B.3 Neural Networks

Neural nets are constructed out of many individual “neurons”, so named because they

were originally developed to model the neurons in the human brain, working together

in concert to perform a machine learning task. Like trees, neural nets are ultimately

nonlinear. The neural nets are organized in several layers — an input layer, one or more

hidden layers, and an output layer — and each neuron is connected to all the neurons

in the next layer. An example is shown in Figure B.2. Each of the interconnections

is weighted, and each of these weighted inputs are used to calculated the neuron output

value, which can be one of several functions. The one used in this paper was the rectified

linear unit

f (x) =


x, x > 0

0, x≤ 0
(B.25)

To train a neural network, the initial weights of the interconnections are randomized

and the input data fed into the network. The output is observed and the error calcu-

lated. The error is propagated back through the network and the gradients of the error

are used to adjust the weights. The process is repeated until the error has reached an

acceptable value; training is stopped before a minimum is reached to avoid overfitting,

134



Figure B.2: An example neural network architecture with n nodes in the input layer, two

hidden layers with m and p nodes, and an output layer comprised of one node. Each

arrow has a weight associated with it.
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which would mean a loss of model generalizability [20] This training process takes

O(n4) time, making training from scratch a very expensive process; fortuitously, neural

nets are amenable to online training, ameliorating this problem somewhat [23]. Neural

networks are sensitive to input data values, and so input data should be normalized to

fit in a normal distribution with mean of zero and variance of one. Additionally, neural

networks are prone to overfitting, and can lose their ability to perform in circumstances

that don’t match their training [20].
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Appendix C

Useful Matlab Code

The code below is the implementation of ISDA used in the experiments in this disserta-

tion. This code should be useful for performing ISDA in for offline processing, and will

hopefully provide a useful starting point for anyone wishing to implement ISDA.

function [flaggedAsRFI] = ISDA(dataIQ,neighborSet,threshold)

%ISDA Interference Spike Detection Algorithm, detects RFI.

% A cell-averaging CFAR method useful for the detection of

% radio frequency interference.

% This performs ISDA after the whole dwell has been recorded;

% if it is desired to perform ISDA as data streams in,

% modifications will have to be made.

%

% Arguments:

% dataIQ: numPulses x numRangeBins

% The IQ data that comprises a single dwell

% pointed in a single azimuth direction.

% neighborSet: numNeighbors x 2

% The location of the neighbors of each cell

% relative to the current cell. [-1,0] will

% make a neighbor of the cell above, [0,1]

% will make a neighbor of the range bin

% after, and so on.

% The function MakeNeighborSet() may prove

% useful for procedurally generating neighbor

% sets.

% threshold: Scalar value.

% The value to which the ratio of the power at

% the current cell and the mean of the powers

% of the neighboring cells is compared. If it

% exceeds this value, then the current cell

% is flagged as RFI.

% When tested on white Gaussian noise, this

% approximate parameterization proved useful:

% threshold = (PFA / 1.7628) ^ (-1/1.835)

% where PFA is in linear units.

% Alternatively:
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% a threshold of 5 gives a PFA near 0.1,

% a threshold of 18 gives a PFA near 0.01,

% a threshold of 61 gives a PFA near 0.001.

%

% Returns:

% flaggedAsRFI: numPulses x numRangeBins

% A Boolean array (ones and zeros) of where the

% RFI was detected.

% Follow up with a function like RestoreData()

% to deal with the RFI detections, though be

% warned: using a PFA that is too high can

% result in very aggressive RFI detections

% and thus a loss of signal detail.

%

% Figure out how many neighbors are in the neighborSet.

numNeighbors = size(neighborSet,1);

% Pre-allocate for efficiency.

neighbors = zeros([numNeighbors,size(dataIQ)]);

% Put all the neighbors in one big array.

for idxNeighbor = 1:length(numNeighbors)

neighbors(idxNeighbor,:,:) = ...

circshift(dataIQ,neighbors(idxNeighbor,:));

end

% Find the power of the neighbors.

neighborPower = neighbors.^2;

% Take the mean.

meanNeighborPower = squeeze(mean(neighborPower,1));

% Find the power of the cell under test.

currDataPower = dataIQ.^2;

% Take the ratio of the two.

powerRatio = currDataPower ./ meanNeighborPower;

% If the ratio exceeds the threshold, flag as RFI.

flaggedAsRFI = (powerRatio > threshold);

end
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function [neighborLocs] = MakeNeighborSet(params)

%MAKENEIGHBORSET Make a set of neighbor locations for ISDA.

% Simple function used to generate the locations of the

% neighbors that ISDA uses as part of its check for RFI.

% This function doesn’t need to be used for ISDA, but proved

% useful for testing the performance of ISDA where the

% location of neighbors varied.

%

% Arguments:

% params: A structure containing any or all of the

% fields below.

%

% params.widthPulse: Default: 1

% The number of points to grab on

% each slow-time side of the cell

% under test. Thus, a width of 1

% will yield 2 locations; a width

% of 3 will yield 6 locations, and

% so on.

% params.widthRange: Default: 0

% The number of points to grab on

% each fast-time side of the cell

% under test. Again, a width of 1

% will yield 2 locations, and so

% on.

% params.guardNumPulse: Default: 0

% The number of cells to skip around

% the cell under test when grabbing

% neighbors from the slow-time

% dimension. A guardNumPulse of 0

% will result in the use of data

% points immediately adjacent (in

% slow-time) to the cell under test.

% params.guardNumRange: Default: 0

% The number of cells to skip around

% the cell under test when grabbing

% neighbors from the fast-time

% dimension. A guardNumPulse of 0

% will result in the use of data

% points immediately adjacent (in

% fast-time) to the cell under
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% test.

%

% Returns:

% neighborLocs: (widthPulse+widthRange)*2 x 2

% Set of locations from which to grab

% the neighbors for ISDA. Useful as

% arguments into circshift().

% If using default arguments, will

% use data from the pulses

% immediately before and after the

% cell under test, yielding:

% [ 1,0 ;

% -1,0 ]

%

% Set default values if not otherwise specified.

if isfield(params,’widthPulse’)

widthPulse = params.widthPulse;

else

widthPulse = 1;

end

if isfield(params,’widthRange’)

widthRange = params.widthRange;

else

widthRange = 0;

end

if isfield(params,’guardNumPulse’)

guardNumPulse = params.guardNumPulse;

else

guardNumPulse = 0;

end

if isfield(params,’guardNumRange’)

guardNumRange = params.guardNumRange;

else

guardNumRange = 0;

end

% Pre-allocate for efficiency’s sake.

neighborLocs = zeros(widthPulse+widthRange,2);

% Generate the neighbor locations.

for idxWidthP = 1:widthPulse
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currRow = idxWidthP;

neighborLocs(currRow,:) = [idxWidthP+guardNumPulse, 0];

end

for idxWidthR = 1:widthRange

currRow = widthPulse+idxWidthR;

neighborLocs(currRow,:) = [0,idxWidthR+guardNumRange];

end

% The above generates the neighbors below and to the right of the

% point of interest. This line below makes it symmetric about

% the cell under test.

neighborLocs = [neighborLocs ; -1*neighborLocs];

end

function [restoredDataIQ] = RestoreData(dataIQ,flagPlot,method)

%RESTOREDATA Performs data restoration of RFI-afflicted data.

% Restores RFI-afflicted data using the specified method.

%

% Arguments:

% dataIQ: numPulses x numRangeBins

% IQ data that comprises a dwell in a single

% azimuth direction.

% flagPlot: numPulses x numRangeBins

% Boolean array (ones and zeros) indicating

% where RFI is present. Use an algorithm such

% as ISDA to generate such a plot.

% method: string

% What method of data restoration to use. By

% default, will perform slow time

% interpolation (i.e. it will interpolate

% interpolate across the pulse before and

% after the pulse where RFI is present.

%

% Returns:

% restoredDataIQ: numPulses x numRangeBins

% IQ data after data restoration has been
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% performed.

%

if nargin < 3

method = ’slowtime’;

end

% Convert string to lower case.

method = lower(method);

% [numPulses,numRangeBins] = size(dataIQ);

restoredDataIQ = dataIQ;

switch method

case ’slowtime’

% Interpolate across slow time (pulses).

neighbors = zeros([2,size(dataIQ)]);

neighbors(1,:,:) = circshift(dataIQ,[-1,0]);

neighbors(2,:,:) = circshift(dataIQ,[ 1,0]);

meanNeighbors = mean(neighbors,1);

restoredDataIQ(flagPlot==1) = meanNeighbors(flagPlot==1);

case ’fasttime’

% Interpolate across fast time (range).

neighbors = zeros([2,size(dataIQ)]);

neighbors(1,:,:) = circshift(dataIQ,[0,-1]);

neighbors(2,:,:) = circshift(dataIQ,[0, 1]);

meanNeighbors = mean(neighbors,1);

% I don’t want to interpolate the first and last range gates

% across fast time, because that doesn’t make any since -

% they’re not related at all. In those cases, just do

% simple replacement with data from the neighboring range

% gate.

meanNeighbors(1,:) = dataIQ(2,:);

meanNeighbors(end,:) = dataIQ(end-1,:);

restoredDataIQ(flagPlot==1) = meanNeighbors(flagPlot==1);

case ’simplereplacement’

% Just copy data from the pulse before.

replacementData = circshift(dataIQ,[0,-1]);

142



restoredDataIQ(flagPlot==1) = replacementData(flagPlot==1);

otherwise

fprintf(1,’Not supported, returning original data.\n’);

end

end

143



Bibliography

[1] National Weather Service, “Using and understanding Doppler radar,” https://www.
weather.gov/mkx/using-radar, accessed: 2016-12-11.

[2] Wikipedia contributors, “File:atmospheric electromagnetic opacity — Wikipedia,
the free encyclopedia,” 2019, [Online; accessed 5 March 2019]. [Online]. Avail-
able: https://en.wikipedia.org/wiki/File:Atmospheric electromagnetic opacity.svg

[3] J. Y. Cho, “OEP terminal and CONUS weather radar coverage gap identification
analysis for nextgen,” 2010.

[4] R. Palmer, C. Fulton, J. Salazar, H. Sigmarsson, and M. Yeary, “The Horus radar
- an all-digital polarimetric phased array radar for multi-mission surveillance,” in
Env. Inf. Proc. Tech. Phoenix, AZ: Amer. Met. Soc., January 2019.
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