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Abstract 

This thesis reports the development of three different radiation induced acoustic 

imaging systems excited by a pulsed laser, X-ray, and electric field respectively. Firstly, 

a laser induced photoacoustic imaging system for non-destructive testing (pNDT) is 

presented in Chapter I. The pNDT is comprised of three major components: picosecond 

pulsed laser based ultrasonic actuator, ultrasound receiver, data processing and 

computing subsystem. A CFRP composted was scanned and both the micro-scale and 

macro-scale damage are detected and localized with spatial resolution of 100 µm. 

Secondly, an X-ray-induced acoustic tomography (XACT) system was developed for 

bone imaging in Chapter II. A 500 KHz ultrasound transducer was used to obtain a 3D 

image of a chicken bone placed underneath the -ray source. The first XACT biological 

bone sample was linearly scanned with 12-posiiton increments. The image was then 

obtained with a back-projection reconstruction algorithm. The chicken bone was 

successfully reconstructed, demonstrating the potentials of XACT systems in bone 

density in vivo imaging. Thirdly, a new imaging modality, electroacoustic tomography 

(EAT), was designed for electrical therapy monitoring. The acoustic signals generated by 

high-voltage pulsing electrical fields during electrical therapies were detected and 

analyzed. The optimal parameters for effective EA signal generation were found. The 

results demonstrated the potentials of the pNDT system in ultra-high resolution CFRP 

NDT, the XACT system in fast 3D bone imaging, and the EAT system in real-time 

electric therapy monitoring.   
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 Chapter 1: Introduction 

1.1 Radiation-induced Acoustic Wave 

1.1.1 The Discovery of Radiation-induced Acoustic Wave 

In 1880, Alexander Graham Bell discovered that substances emit sound when a 

‘vibratory beam of light’ falls upon them [1]. This discovery marked the first time that a 

radiation-induced acoustic wave was discovered, in the form of light-induced 

photoacoustic (PA) wave. It would not be until around 100 years after the discovery of 

photoacoustic effect, with the advancement of ultrasound transducers and computers, PA 

phenomenon began to be heavily investigated by scientists for biomedical purposes [2]–

[4]. 

Inspired by the discovery of PA waves, scientists started the investigations of 

generating acoustic waves with other types of radiation excitation sources. In 1980, 

Theodore Bowen proposed the theory that all non-ionizing radiation which deposit heat 

in short pulses should be able to produce acoustic waves, and such waves are named 

thermoacoustic (TA) waves [5]. A few years later, X-ray-induced acoustic (XA) waves 

were discovered in 1983 by Wolfgang Sachse, expanding the possible acoustic wave 

generating excitation sources to ionizing radiations. Recently, electroacoustic (EA) waves 

were also generated and detected with a nanosecond electric pulse excitation source [6]. 

 

1.1.2 The Generation and Propagation of Radiation-induced Acoustic Wave 

The fundamental principle of radiation-induced acoustic wave generation 

includes 3 steps: (1) the target medium absorbs radiation energy from the excitation 

source; (2) the absorbed radiation energy is converted into heat and generates a localized 
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temperature rise; (3) the temperature rise causes thermoelastic expansions in the medium, 

which result in the generation of acoustic waves [4], [7], [8].  

The efficient generation of radiation-induced acoustic waves requires the 

satisfaction of two conditions, the thermal and stress confinements [9]. The thermal 

confinement indicates that the thermal diffusion during radiation excitation can only be 

neglected if the pulse with τ of the excitation source is smaller than the target medium’s 

relaxation time τth [7], [8], i.e., 

τ <  τ𝑡𝑡ℎ =
𝑑𝑑𝑐𝑐2

4𝐷𝐷𝑇𝑇
.    (1) 

 In this equation, dc represents the desired spatial resolution, and 𝐷𝐷𝑇𝑇 indicates the thermal 

diffusivity of the target medium. 

The stress confinement means the volume expansion of the absorber during the 

excitation period can only be neglected if the pulse width of the radiation source is smaller 

than the stress exit time of the target medium [7], [8]. The condition is described as 

follows: 

τ <  τ𝑠𝑠𝑠𝑠 =
𝑑𝑑𝑐𝑐2

𝑣𝑣𝑠𝑠
,    (2) 

where 𝑣𝑣𝑠𝑠 is the speed of sound in the target medium. 

Once the thermal diffusion and the medium volume expansion can be 

mathematically neglected, the initial local pressure rise 𝑝𝑝0(𝑟𝑟) caused by the radiation 

energy absorption can be modelled with the following equation[4], [8]: 

𝑝𝑝0(𝑟𝑟) = −
𝛽𝛽
𝑐𝑐
𝜕𝜕
𝜕𝜕𝑡𝑡
𝐻𝐻(𝑟𝑟, 𝑡𝑡).  (3) 

In equation (3), 𝛽𝛽 and 𝑐𝑐 represent the target medium related thermal coefficient constant 

of volume expansion and heat capacity constant respectively. 𝐻𝐻(𝑟𝑟, 𝑡𝑡)  indicates the 
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heating function, which is specific to excitation sources and targets, defined as thermal 

energy converted per unit volume and time, resulted from the radiation energy absorption.  

The first time derivative of 𝐻𝐻(𝑟𝑟, 𝑡𝑡) is the resulted heating from energy absorption. The 

initial local pressure𝑝𝑝0(𝑟𝑟) is directly proportional to the spatial distribution of the heat 

function 𝐻𝐻(𝑟𝑟, 𝑡𝑡).  

The general radiation-induced acoustic wave generation and propagation equation 

(equation 4) in an inviscid medium can be obtained by implementing equation (3): 

∇2𝑝𝑝(𝑟𝑟, 𝑡𝑡) −
1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡
2 𝑝𝑝(𝑟𝑟, 𝑡𝑡) = −

𝛽𝛽
𝐶𝐶
𝜕𝜕
𝜕𝜕𝑡𝑡
𝐻𝐻(𝑟𝑟, 𝑡𝑡), (4) 

where 𝑝𝑝(𝑟𝑟, 𝑡𝑡) denotes the acoustic pressure at location 𝑟𝑟 and time 𝑡𝑡. 

The detection of radiation-induced acoustic pressure generated by an arbitrarily 

heterogeneous medium can be solved by applying three-dimensional Green’s function 

[10], [11]. The radiation-induced acoustic signal 𝑝𝑝(𝒓𝒓, 𝒕𝒕) picked up by an ultrasound 

transducer is given as follows [12]: 

𝑝𝑝(𝒓𝒓, 𝒕𝒕) =   
1

4𝜋𝜋𝐶𝐶𝑝𝑝2
𝜕𝜕
𝜕𝜕𝑡𝑡
�𝑑𝑑𝑟𝑟′

1
|𝒓𝒓 − 𝑟𝑟′|

𝐻𝐻(𝒓𝒓, 𝒕𝒕 − 𝑡𝑡′)�
𝑡𝑡′=𝑟𝑟−𝑟𝑟

′

𝑣𝑣𝑠𝑠
  

 , (5) 

where 𝑟𝑟′ and 𝑡𝑡′ denotes the excitation location and time, respectively. Cp is the specific 

heat capacity at constant pressure. Equation (5) can be used to calculate radiation-induced 

acoustic wave generated on an arbitrarily heterogenous radiation absorbing object.  

 

1.2 Radiation-induced Acoustic Imaging and Its Application in Biomedicine 

1.2.1 Medical Imaging 

Since the X-ray was discovered more than one hundred years ago, radiation based X-ray  

imaging has been invaluable in medical diagnosis, prevention and treatment planning 
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[13]–[16]. Among all the radiation based imaging techniques, X-ray computed 

tomography (CT) demonstrated great utility in providing high-resolution, three-

dimensional, and non-invasive medical imaging method since its invention in 1970s. 

However, CT based imaging techniques require a large amount of projection data. Long 

scanning time and high radiation dose are required to achieve adequate imaging results.  

Over 29,000 future cancers are estimated to be related to CT scans performed in the 

United States in 2007 alone [17]. The radiation-induced acoustic imaging method known 

as X-ray acoustic computed tomography (XACT) was introduced and demonstrated as a 

novel medical imaging modality in 2013 by Xiang, etc. [18].  XACT not only takes the 

advantage of high-contrast and specificity characteristics from its radiation source, but 

also inherits the high spatial resolution from the ultrasound transducer. In contrast to the 

long radiation exposure time require for CT techniques because the generated acoustic 

waves propagate spherically from the excitation point. The XACT imaging system only 

needs a single X-ray projection to achieve a high-resolution 3D reconstruction. Thus, the 

total radiation dose can, theoretically, be drastically reduced with XACT imaging. 

Since the introduction of XACT, new biomedicine applications and different 

configurations have been studied by research groups around the world [19]–[21]. The 

latest development of XACT imaging systems utilizes a ring ultrasound-transducer array 

to achieve fast and high resolution 2D reconstruction. A schematic of the system setup is 

demonstrated in Figure 1 [22]. In this setup of XACT system, the generated acoustic 

signals are acquired by the 128 ultrasound transducer elements on the ring array. The 

imaged sample is placed in the center of the ring array. Figure 2 shows an OU logo sample 
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reconstruction obtained from such setup [22]. The result yielded a spatial resolution of 

138 µm, from the 5 MHz transducer array. 

Although XACT system experiments on simple lead sample yielded great results, 

challenges remain for it to acquire high signal-to-noise ratio (SNR) acoustic signals from 

less X-ray absorbing objects. Prior to this thesis, complex biological samples have never 

been imaged with XACT systems. 

  

  

Figure 1. Schematic of the ring array implemented XACT system 
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Figure 2. OU logo sample reconstruction. The original 
sample is made of 150 µm lead sheets 



 

7 
 

 

1.2.2 Dosimetry for Radiation Therapy 

Radiation therapy (also known as radiotherapy) is a cancer treatment that uses a 

localized high-energy beam of ionizing radiation to kill or slow the growth of cancerous 

cells [23].  However, during the radiation procedure the high-energy radiation can also 

damage the health of surrounding tissues. Therefore, maximizing the radiation damage 

on cancer cells while maintaining a minimum amount of dose to healthy cells is the most 

important principle in radiation therapy. In vivo radiation therapy dosimetry was created 

to ensure that radiation therapy treatment is being delivered with the best efficiency by 

measuring the radiation dose absorbed on an object [24]. Many national and international 

institutions recommend in vivo radiation therapy dosimetry as a safety tool to avoid major 

operation errors. 

Currently, the most established clinical dosimetry techniques include ion chambers 

(ICs), chemiluminescent dosimeters (TLDs), and optically stimulated luminescent 

dosimeters (OSLDs). However, all of the mentioned techniques are limited in terms of 

operation time or ease of implementation [25]. The basic mechanism of radiation-induced 

acoustic imaging is based on the radiation energy absorbed by target mediums. Naturally, 

Radiation-induced acoustic imaging systems have the potential to be an effective tool for 

non-invasive in vivo dosimetry during radiation therapies. 

X-ray-induced acoustic (XA) imaging utilizes acoustic waves to determine the energy 

absorption from X-ray photons. Simulations to demonstrate XA imaging’s feasibility of 

being implemented as a dosimetry method in X-ray radiation therapies have already been 

demonstrated by researchers [26]. Experimental X-ray-induced acoustic computed 
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tomography (XACT) results have also been obtained and analyzed with theoretical 

models [27]. All the research results obtained so far indicate that XA imaging has 

tremendous potential to be a useful and effective in vivo X-ray dosimeter in the clinics. 

In addition, this study introduces a new radiation-induced acoustic imaging technique, 

electroacoustic (EA) imaging, that will be used as a new electric therapy monitoring 

method. The experimental results will be demonstrated to showcase the feasibility of such 

technique in measuring the electric field intensity. 

 

1.3 Radiation-induced Acoustic Imaging and Its Application in NDT 

Non-destructive Testing (NDT) describes the technology of evaluating a material, 

component or system without damaging the integrity of the article itself [28]. Because 

NDT does not leave permanent alterations on the object examined, the techniques are 

high valuable in many fields including manufacturing, healthcare and art, etc. [29], [30].  

Today’s NDT field includes a great variety of methods. The predominating techniques 

include various acoustic testing configurations, radiographic testing systems and 

electrical impedance tomography [31], [32]. However, these methods all come with 

certain limitations. For example, acoustic testing methods require high frequency 

ultrasound transducers to provide high resolution spatial information; although, with high 

frequency ultrasound receivers, the imaging depth of the acoustic system will be limited 

to a relatively low value. Conventional radiographic testing systems either require a long 

operation time, like Computerized Tomography, or has limited accessibilities such as X-

ray systems [31]. 
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Radiation-induced acoustic techniques can shorten the distance that the acoustic wave 

needs to travel in the signal attenuating medium, which can theoretically provide double 

the penetration power of conventional acoustic testing methods. In terms of accessibility, 

both the receiving and transmitting ends of the radiation-induced acoustic NDT systems 

can be positioned on the same side of the testing object, which does not have the space 

limitation of transmission based radiographic testing systems. Since the radiation-induced 

acoustic waves propagate spherically in a three-dimensional (3D) space, a complete 3D 

reconstruction could theoretically be obtained from a single projection of radiation. Thus, 

the total radiation time can be reduced drastically when compared to conventional 

radiographic methods.  

Recently, a simulation study of an XACT system for concrete infrastructures NDT 

has been performed [33]. Figure 3 shows the imaging schematic of the proposed XACT 

concrete inspection system. Different from conventional X-ray computed tomography, 

the XACT system only needs one side of the inspecting target for operation. In this 

simulation study, both the large-scale and sub-millimeter-scale of the concrete structure 

XACT reconstructions have been separately demonstrated [33]. The macro-scale 

reconstruction of a 1 m diameter concrete beam is shown in Figure 4. The macro-level 

XACT reconstruction was clearly able to resolve the embedded defect at the level of the 

white dashed line. The micro-scale that defects resolving power of the XACT system is 

demonstrated with a model of a 30 cm concrete beam with embedded rebars. Figure 5a 

shows the XACT reconstruction of the rebar-embedded concrete beam model. By 

subtracting a health rebar embedment image off the reconstructed image, the defects 

surrounding the rebar were able to be identified in Figure 5b [33].  



 

10 
 

 

Figure 3. The schematic diagram of the concrete infrastructure inspecting XACT 
system 

 

Figure 4. The XACT reconstruction of a 1m diameter 
concrete beam  
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The simulation studies of XACT systems show promising potential of such 

techniques to be implemented in structure NDT. However, these simulation results still 

need experimental verification. Besides utilizing X-ray-induced acoustic waves, a thin 

3D composite NDT system, based on photoacoustic imaging, was proposed by Matthew 

O’Donnell, etc. in 2016 [34]. The study showed great potential of the photoacoustic 

imaging based method in NDT. In this thesis, the photoacoustic imaging method will be 

further explored along with a demonstration of a high-resolution 3D NDT system in the 

following chapter. 

 

 

1.4 Objectives of This Study 

In this study, a high-resolution photoacoustic microscopy non-destructive testing 

(pNDT) system for the detection of damage precursors in carbon fiber reinforced plastic 

Figure 5. The XACT reconstruction the cross section of a 30 cm rebar-embedded 
concrete beam (a) the XACT reconstruction of the rebar-embedded concrete beam model 

(b) the defects surrounding the rebar after the health rebar subtraction 
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(CFRP) composites has been developed. The developed pNDT system consists of four 

major parts: a high-precision, down to 100 nm resolution, 2-axis scanning stage 

controlled by NI LabVIEW software [35], a picosecond pulsed laser radiation source, a 

high frequency ultrasound receiver, and the data acquisition, processing and 

reconstructing subsystem. The system configuration, control and data acquisition are 

presented in detail. The 3D microstructure of the structural grid within the CFRP 

composite has been reconstructed with addition analysis.  

Additionally, an X-ray-induced acoustic computed tomography (XACT) system for 

bone imaging has been developed. The system for bone imaging utilizes a miniature 

short-pulsed X-ray generator, an ultrasound transducer, a manual linear positioning stage, 

and data acquisition and process subsystem. Acoustic signals were successfully detected 

and demonstrated with a linearly scanned chicken bone image, marking the first time that 

XACT reconstructed an image of a biological sample. After the demonstration of the 

chicken bone reconstruction results, future system upgrade directions will be discussed, 

along with addition tests on upgrade components. 

Finally, an electroacoustic tomography (EAT) system for electrical therapy monitoring 

was developed in this study. The system configuration, the design of the short-pulse high 

voltage generating circuit, and the data acquisition process of the EAT system will be 

explained in Chapter 4. Successfully detected acoustic waves with different voltage 

electrical fields will be demonstrated and future experimental setups will be discussed. 
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Chapter 2: Photoacoustic Imaging for NDT 

 

2.1 NDT for CFRP Background 

Carbon fiber reinforced polymer (CFRP) composites is a specially manufactured 

and reinforced material which contains carbon fibers [36]. Due to their outstanding 

strength-to-weight ratio, thermomechanical properties and superior corrosion resistance 

compared to traditional material, CFRP composites have been widely used as core 

structural materials for a wide range of manufacturing fields, including aerospace, 

automotive, infrastructure, healthcare, etc. [29], [37], [38].   

Yet, CFRP composites can still become damaged whether the material is in transit 

or under service. Typical causes include impact that occurs in a short amount of time and 

fatigue, which happens over a longer period of time [39]–[41]. Moreover, structural 

damages, which include microscale damage precursors and macroscale failures, can 

occur without visible signs on the surface of the material. Common microscale damage 

precursors include fiber breakages, fiber pullout, and matrix cracks. Delamination has 

been considered the most common macroscale damage that can result in catastrophic 

failure in the material structure. Therefore, it is crucial to find an adequate NDT method 

that is capable of 3D high-resolution and high-accuracy imaging to detect and 

characterize the damage precursors in CFRP composites [34]. 

Techniques such as ultrasound imaging, X-ray tomography, and IR thermography 

are the most common NDT methods used for CFRP materials [42], [43]. All the 

techniques mentioned exhibit certain limitations and weakness. In conventional 

ultrasound NDE systems, ultrasound waves are generated in narrow frequency bands and 
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are only able to detect the internal structure in a relative low resolution. Next, Three-

dimensional (3D) X-ray based NDT methods can take an extended period to operate and 

will need a large space on both receiving and transmitting ends. Lastly, IR thermography 

does not allow 3D imaging and fails to provide fine microstructural details.  

Laser-induced PA imaging techniques have been studied as a plausible alternative 

to the conventional methods previously stated [44]–[46]. Theoretically, PA imaging 

provides many advantages over conventional NDT methods, providing much better 

resolution than ultrasound-based solutions combined with outstanding versatility in one 

package. The characteristics of PA imaging making it a suitable solution for CFRP 

composites NDT. 

The goal for the developed laser-induced photoacoustic non-destructive testing 

(pNDT) system is to provide three-dimensional (3D) extra-high-resolution damage 

precursor detection in CFRP composites. To achieve such goal, a picosecond pulsed laser 

source and a 20MHz ultrasound transducer were used as the excitation source and 

receiving end for the system. Details of the system configuration, control, and data 

acquisition are presented. 

 

2.2 Experimental Setup and Methods 

2.2.1 Photoacoustic Imaging theory 

The fundamental principles of radiation-induced acoustic imaging were explained 

in the previous chapter.  In light-induced PA imaging, the heating function is given as 

follows [7]: 

𝐻𝐻(𝑟𝑟, 𝑡𝑡) =  𝜇𝜇𝑎𝑎(𝑟𝑟)𝜙𝜙(𝑟𝑟, 𝑡𝑡),   (6) 
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where 𝜇𝜇𝑎𝑎 represents the light absorption coefficient, the probability of photon absorption 

per unit path length, of the target medium. 

Because 𝜇𝜇𝑎𝑎 is largely medium specific and wavelength specific, in PA imaging, 

different wavelengths of light source will excite different types of photo absorbers. In the 

sense of non-destructive testing, different materials or air gaps will show a different light 

absorption property. Thus, based on the differences of acoustic signal amplitudes, 

different materials or air gaps can be shown in the final reconstruction of PA imaging. 

 

2.2.2 pNDT System Configuration 

    

Figure 6.  The system diagram of pNDT system. Block-diagram of the pNDT 
system. UT: Ultrasonic Transducer; SS: Scanning Stage; OL: Objective lens; 
AMP: Amplifiers; DAQ: Data Acquisition Card; Laser: Green laser (532 nm) 
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The system diagram of pNDT is shown in Figure 6. The pNDT system is 

comprised of four major components: 1) picosecond pulsed laser (wavelength of 

532nm) for the generation of PA waves, 2) Lead zirconate titanate (PZT) piezoelectric 

ultrasound transducer mounted above the scanning stage, 3) 2-axis high-precision (~100 

nm step size) motorized scanning stage fixed between the laser excitation source and 

the ultrasound transducer  and 4) data amplification, acquisition, processing and image 

reconstruction display. Since sound waves attenuate drastically in air, distilled water 

was used as a coupling medium between the ultrasound transducer and the CFRP plate. 

Both the ultrasound transducer and the CFRP plate were immerged in a water tank that 

was mounted on the top of the scanning stage. 

The picosecond laser (COMPILER 532/266, Passat, Ltd., Canada) used in the 

system can provide an ultrafast laser pulse with pulse width <7 ps. The laser beam was 

focused by a 0.1 numerical aperture object lens and projected to the bottom surface of 

the CFRP composite. The pulse repetition rate of the laser is adjustable between 1 Hz 

and 400 Hz. In the CFRP evaluation experiment, 30 Hz repetition rate was chosen for 

optimal signal-to-noise ratio while minimizing CFRP surface damage caused by 

focused high-energy laser beam.  

The generated photoacoustic signal was then captured by the PZT ultrasound 

transducer (U8517149, Olympus NDT) which has a center frequency of 20 MHz, and 

greater than 50% -6 dB bandwidth. In optical-resolution PA tomography (OR-PAT) 

systems, the lateral resolution of the system is determined by the focus diameter of the 

optical source, and the axial resolution of the system is reversely proportional to the 

bandwidth of the ultrasound transducer. The axial resolution is given by 0.88 c∕Δf, where 
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c is the speed of sound in the propagation medium, and Δf is the bandwidth of the 

ultrasonic transducer [4], [47]. This 20 MHz center frequency was specifically chosen to 

provide a theoretical maximum spatial resolution of 132 µm in water, while remaining 

strong enough penetration power for the acoustic signal to reach to the receiving end. 

A coaxial low-noise amplifier with a bandwidth of 0.1-1000 MHz at -3 dB and a typical 

gain of 20 dB (ZFL-1000LN+, Mini-Circuits) received the signals from the transducer 

and delivered the amplified signals to a secondary amplification stage (ZFL-500+, 

Mini-Circuits) with a bandwidth of 0.05-500 MHz at -3 dB providing gain of 25 dB. In 

total, the amplification stage can provide more than 170 gain to the acoustic signal.  

Amplified signals were recorded by data acquisition card (NI PCI-5153EX, National 

Instruments). A sampling rate of 500 MHz was used to record 1021 data points at each 

location. One set of data incorporated 500×500 positions as the scanning stage 

(LMS203 Fast XY Scanning stage, Thorlabs) moved in the X-Y plane controlled by 

LABVIEW [35]. Photoacoustic images were reconstructed with two-dimensional back-

projection algorithms in MATLAB [48], [49].  An ‘X’ shaped indent was created with a 

sharp knife on the top surface of the CFRP plate used in the experiment. A micro-CT of 

the image is shown in Figure 7 to demonstrate the plate surface and the marking. 
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2.2.3 Acoustic Signal Attenuation Correction 

A typical acoustic wave from the excitation point inside the target medium will 

travel through different non-ideal propagation mediums and then reach the receiving end 

of the ultrasound transducer. When sound waves travel through non-ideal propagation 

mediums, inevitably the attenuation will be going to the amplitude of the acoustic waves. 

The attenuation of acoustics wave traveling through a heterogenous medium is modeled 

by Stoke’s law given below (equation 6): 

𝐴𝐴(𝑑𝑑) = 𝐴𝐴0𝑒𝑒−𝛼𝛼𝛼𝛼 ,   (7) 

where 𝛼𝛼, the linear attenuation coefficient of the medium, has a unit of the reciprocal of 

length, m-1. A0 denotes the original amplitude of the acoustic wave. After traveling a 

distance of  𝑑𝑑 in the non-ideal medium, the attenuated amplitude will be A(d).  

Figure 7. Image of the CFRP plate used in the 
experiment, the thin indent is marked with yellow 

dashed lines 
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In this experiment, distilled water was used as a coupling medium between the ultrasound 

transducer and the scanned CFRP plate. Considering, the attenuation of sound in distilled 

water is inversely-proportional to the square powered acoustic wave frequency (for 20 

MHz, αwater = 0.00006325) at room temperature, the sound amplitude loss in water is 

neglected. 

In order to compensate for the ultrasound attenuation in the CFRP material, a time gain 

correction (TGC) function (equation 7) was applied to all the A-scan signals before the 

image reconstruction algorithm [34]: 

𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇(𝑧𝑧𝑘𝑘) = 𝐴𝐴0(𝑧𝑧𝑘𝑘) × exp�𝛼𝛼(𝑧𝑧𝑘𝑘 − 𝑧𝑧0)� , (7) 

In Equation 7, ATGC(Zk) denotes the attenuation compensated ultrasound signal at 

time stamp Zk. A0 and 𝛼𝛼 represent the original ultrasound amplitude at the excitation point 

and the estimated linear attenuation coefficient of CFRP, respectively. The acoustic 

attenuation compensation correction of a single A-scan is shown in Figure 8. 

  

Figure 8. Attenuation Correction (a) Typical full bandwidth photoacoustic A-scan 
with an assumed signal attenuation function (red dashed curve) and (b) TGC 

corrected (normalized by the exponent of Equation 7) pNDT A-scan. 
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2.2.4 LabVIEW Control Program for Stop and Go Scanning 

The developed pNDT system uses a stop and go 2D raster scan pattern (Figure 9) 

[50].  A LabVIEW [35] program was designed to synchronize the 2-axis scanning stage 

(LMS203 Fast XY Scanning stage, Thorlabs) and the PCI DAQ card (NI PCI-5153EX, 

National Instruments) for stop and go scanning. The stage will move the CFRP composite 

by a predefined distance and hold the position until the A-line acoustic signal 

corresponding to the position is acquired and deposited into a ‘.txt’ file.  

 

The LabVIEW software has two parts. First, the front panel which hosts all the 

control options and the program diagram where all the graphical logics exist. This part of 

Figure 9. 3D raster scan pattern [50] 
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the pNDT LabVIEW program can be further divided into two sections: the motor control 

section and the data acquisition section. Figure 10 demonstrates the motor control section 

of the LabVIEW front panel design for the pNDT system. On the left side of the motor 

control section, different setting inputs/outputs are divided and grouped into 3 rectangles. 

The top rectangle, ‘Hardware Setting’, houses the initialization settings for the two 

channel motor controller (BDD202, Thorlabs). The ‘Scan Setting’ group contains all the 

input parameters to define the start points, step sizes and number of steps of the scan for 

each channel, along with calculated scan end points indicators. The last rectangle, ‘Scan 

Iteration’, contains two outputs that indicates the position of the scanning stage by 

showing the horizontal and vertical iterations (steps). In addition to scan parameters, the 

horizontal and vertical motor drivers (APT, Thorlabs) were installed on the right side of 

the motor control section of the LabVIEW front panel. 
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The data acquisition card initialization section of the pNDT program front panel 

is shown in Figure 11. A scan activation button can be seen between the data acquisition 

section and the motor initialization section. Additionally, the scan can be further 

configured with the number of average setting (‘Num Avgs’) and the step wait time (‘ms 

to wait’) for each step. In the pNDT system, two channels of the data acquisition card are 

used to collect the trigger information from the laser pulsing machine, and the data 

information from the ultrasound transducer. Inside the data acquisition section on the 

front panel, the trigger channel and the data channel are grouped separated and labeled as 

channel 0 and channel 1, which was intended for easier channel recognition on the DAQ 

card. The horizontal configuration rectangle has input fields to define the minimum 

Figure 10. the motor control section of the LabVIEW front panel. 
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sample rate, minimum record length and the reference position percentage. The reference 

position setting allows users to define what percentage of the signal acquired will be 

before the trigger detected. For example, a ‘0%’ setting will set the DAQ card to acquire 

right at the trigger time point. In addition to input parameters, the horizontal configuration 

group also houses the actual sampling rate, actual record length and the calculated record 

duration in seconds. The trigger configuration group can be seen on the right side of the 

horizontal configuration group. In pNDT system, a DC pulsed signal was sent from the 

laser machine as the trigger signal. 

 

 

Figure 11. LabVIEW program front panel for pNDT (data acquisition card 
initialization part) 

 



 

24 
 

The logical part of pNDT LabVIEW program can also be divided into two parts: 

the motor and DAQ card initialization part and the motor movement and data acquisition 

synchronization part (Figure 12&.13). In the initialization phase of pNDT program 

diagram, configurations for the DAQ card and the motor are grouped in separate frames. 

In addition to the configurations, two constantly running while loops are used to perform 

calculations for the channel end points and the horizontal durations in seconds. The data 

acquisition synchronization phase of pNDT system LabVIEW program is configured 

with one stacked sequence structure. The sequence structure contains four sequence 

frames: motor initialization, motor start, motor operation/data acquisition 

synchronization and motor/DAQ card stop. The shown image in Figure 13 is the most 

populated motor operation/data acquisition synchronization frame. The motor 

operation/data acquisition synchronization frame starts with a while loop with a single 

switch button. The switch loop is the mechanism of the manual scan start button. Once 

the scan start button is pressed, the wire information will break out of the while loop, and 

flow into the next terminals of their paths. After the scan-start switch mechanism, two 

nested while loops are used to iterate through all the vertical and horizontal positions of 

the scan. Figure 14 shows a screenshot of the two nested movement-control while loops, 

when the stack sequence inside of the inner while loop changed to the horizontal 

movement frame. The vertical movements of the scanning stage are specified in the outer 

while loop and the inner while loop contains both the horizontal movements and a data 

acquisition sub VI. Thus, with each iteration of vertical movement, the LabVIEW 

program will control the scanning stage to loop through all the predefined horizontal 

points and control the DAQ card to acquire the acoustic signals while the movements are 
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paused. The data collection sub VI is shown in Figure 15. The data collection section 

contains one for loop defined by the number of averages input from the front panel. The 

vertical iteration point, the horizontal iteration point, and the average loop iteration point 

are used inside of the for loop to determine the name sequence of the exporting ‘.txt’ file. 
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Figure 13. LabVIEW program diagram for pNDT (DAQ and motor 
synchronization) 

Figure 12. LabVIEW program diagram for pNDT (DAQ and motor 
synchronization) 
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Figure 15. Nested movement-control while loops 

Figure 14. Data collection sub VI for pNDT LabVIEW program 
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2.3 Photoacoustic Detection of Damage Precursors in CFRP Composites 

Figure 16 shows pNDT C-scan images in the X-Y plane parallel to the top surface 

of the composite sample at a depth of 25 μm. The values of the C-scan pixels are 

normalized from 0.1 to 1. The pNDT C-scan image (Figure 16a) contains detailed 

information on the composite’s structure imperfections, including the X-shaped notches 

created for scanning. The structure and the orientation of the woven fabric are also visible. 

The individual carbon fiber yarn within the composite can be clearly observed. 

 

Figure 16. X-Y plane image (a) pNDT X-Y plane image (25 μm into the CFRP plate 
from the top surface) , the ‘X’ marking is highlighted, (b) SEM image, the width of 
the ‘X’ marking is calculated, (c) FWHM measurements along the blue line on the 
pNDT image, are taken as the lateral resolution of the image 
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Comparing with the scanning electron microscope (SEM) image (Figure 16b) of 

the same CFRP plate surface, the patterns from both images match perfectly confirming 

the lateral accuracy of the pNDT system. The ultrasonic signal of two grid line profiles 

along the blue lines in Figure 16a are extracted and shown in Figure 16c. The full width 

half-maximum (FWHM), 100µm, of the corresponding line spread function of the right 

grid line was estimated as the lateral resolution of the system at the depth of 25 µm. 

Notice that the top of the C-scan image, at the depth of 25 μm, fades out to dark 

red color, which indicates low amplitudes of acoustic signals. This is because the surface 

of the CFRP plate was not perfectly orthogonal to the ultrasound transducer’s focusing 

beam. The theory was further confirmed by projecting all C-scans into one averaged 2D 

x-y plane image (Figure 17). In Figure 17, the fiber yarn grids are visible across the entire 

imaging area, which in turn means all the surface details were captured by the 3D imaging 

system. While also, the crack on the back of the plate was also visible in the projected 

image, which proves that pNDT system has the depth penetration power to image the 

CFRP plate from top to bottom. 

Along with x-y plane reconstructions, accurate B-scan reconstructions of the 

CFRP plate were created to present the defects in y-z plane (Figure 18). Figure 13a and 

Figure 18b show the surface notches at different positions across the plate. The B-scan 

results and the C-scan reconstructions obtained showed strong agreement of the defect 

positions, indicating that the pNDT system can reconstruct the defects of a thin CFRP 

plate with high accuracy. 



 

30 
 

 

Figure 17. Average value projected X-Y plane image. 
Dashed white lines indicating the position of the crack 

that is on the back of the CFRP plate 

Figure 18. (a), (b) B-scan reconstruction samples of the CFRP plate. 
(c) X-scan image as a position reference for (a) and (b) 
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Chapter 3: X-ray-induced Acoustic Computed Tomography for Bone 

Imaging 

3.1 Background 

3.1.1 X-ray-induced Acoustic Computed Tomography Theory 

Analogously to PA imaging, XACT effect converts the X-ray photon’s energy 

into localized heat, which in turn generates acoustic waves proportional to the energy 

absorbed. During X-ray radiation, the energy is absorbed by the inner-shell electrons of 

the medium and photoelectrons can be generated [51], [52]. The conversion between X-

ray photons and photoelectrons leads to localized temperature rise. The localized 

temperature rise is modeled by the heating function of XACT [7]: 

𝐻𝐻(𝑟𝑟, 𝑡𝑡) = 𝜇𝜇𝑥𝑥(𝑟𝑟)𝐹𝐹(𝑟𝑟, 𝑡𝑡), (8) 

where 𝜇𝜇𝑥𝑥 indicates the X-ray energy absorption coefficient, and F represent the X-ray 

fluence function based on the location and time.  

Besides the medium based absorption coefficient, pulse width of X-ray source also plays 

a crucial role in generation of XACT waves. A short-pulsed X-ray excitation source can 

be more effective in generation of acoustic waves [53]. Due to this reason, a picosecond 

X-ray machine was chosen for this experiment. 

 

3.1.2 Bone Imaging Techniques 

Today, bone related health issues are affecting more than 50 million adults in 

America [54]. Proper assessments for bone health are crucial to not only the prevention, 

diagnosis and monitoring of bone-related disorders, but also to serve as an indicator for 

other diseases symptoms  [55].  
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Bone mineral density (BMD)  imaging is one of the golden methods for determining the 

health of bones[56]. Among bone imaging techniques, dual-energy X-ray absorptiometry 

(DXA) has been the most used and thoroughly invested technology [57]. However, DXA 

systems can only measure the bones in two dimensions, meaning comprehensive three-

dimensional (3D) microstructural information cannot be obtained. Moreover, the quality 

of BMD measurement by DXA degrades when imaging thick areas, as a result of the 

limited penetrations power of the X-ray sources used [58]. 3D bone imaging techniques 

have been explored by numerous scientists across the globe for replacing DXA as a better 

alternative. High resolution peripheral quantitative computed tomography (HR-pQCT) 

and modern multidetector row CT (MDCT) are two merging bone imaging modalities 

based on CT technology [59], [60]. However, CT based systems share the common 

obstacles of high dose and long operating time. Long operating time will inevitably 

degrade the imaging results because movements of the patients will introduce motion blur. 

Currently, no suitable bone imaging technique that can realize 3D imaging of bone in a 

short amount of time targeting the thick areas between patients’ hip and spine exist. The 

XACT system, which utilized the spherically propagated acoustic waves, has the 

theoretical potentials to overcome the problems such as high dosage and long scanning 

time. On the grounds that the ultrasound receivers and the X-ray source can be positioned 

on the same side of the patients, positioning is no longer an issue and thick areas such as 

the hip and spine can be imaged.  

In this study, the first XACT image of a chicken bone was reconstructed; plus, the 

detailed configurations, methods, and results will be discussed in the following sections. 
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3.2 Experimental Setup and Methods 

3.2.1 XACT System Configuration 

An XACT system configuration diagram for chicken boning imaging is shown in 

Figure 19.  In the configuration, a water tank was used for coupling purposes between the 

ultrasound transducer and the imaged object. The chicken bone was placed on a linear 

adjustable stage (invisible in Figure 19) underneath the X-ray source.  

After the XACT acoustic wave generation, the system can be divided into two paths: a 

data collection path indicated with green arrows, and a trigger detection path indicated 

with yellow arrows. The trigger detection path starts with a scintillator placed right 

beneath the water tank. When X-ray machine is firing, X-ray photons that passed through 

the water tank will be collected by the scintillator and converted into visible light photons. 

A photo diode was connected to the output of the scintillator, so that the converted 

photons will be detected and converted to electrical pulses. The electrical pulses were 

then read by a data acquisition card (NI PCI-5153EX, National Instruments) as X-ray 

pulsing triggers for data reconstruction. In data collection path, an ultrasound transducer 

with 500 KHz center frequency (NDT 902829, Olympus Panametrics) was used for 

receiving XACT acoustic signals. In the end, a 60 dB preamplifier (5682, Olympus) was 

connected between the data acquisition card and the ultrasound transducer. 
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Figure 19. XACT system for single transducer scanning setup 

 

During the scan, the linear stage holding the chicken bone sample was moved 12 

times along the direction that is perpendicular to the ultrasound transducer receiving 

direction. 

  

3.3 Chicken Bone Imaging Result 

A preliminary image was successfully reconstructed from the chicken bone 

sample by back projecting the acoustic signals around the transducer locations. Figure 20 

shows a comparison between a camera picture of the chicken bone and the imaging result 

from the XACT system. The low resolution of the resulted image is understandable, since 

a low-frequency ultrasound transducer was used in the experiment. Replacing the 500 

KHz transducer with a high-frequency focused ultrasound transducer will improve the 
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axial resolution of the image. Additionally, only 12 different positions were scanned in 

this experiment for the reconstruction, which resulted in low lateral resolution.  This can 

be solved by adding more steps and making the step size smaller. In future developments 

of the XACT system, the simple back projection reconstruction algorithm will be replaced 

by more sophisticated reconstructions. 

 

Figure 20. (a) camera picture of the chicken bone scanned; (b) reconstructed 
image of the chicken bone 
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Chapter 4: Electroacoustic Tomography to Monitor Electrical 

Therapy 

4.1 Background 

4.1.1 Electroacoustic Imaging Theory 

In electroacoustic (EA) imaging, two electrodes are used as excitation source for 

creating high-voltage electrical field radiation. Figure 21 illustrates the EA imaging 

concept with a visualized electrical field. The deposited electrical energy is absorbed by 

a target medium, and then localized heat is generated. EA waves can then be detected 

because of the thermoelastic expansions. A heating function for EA wave generation is 

given as follows: 

𝐻𝐻(𝑟𝑟, 𝑡𝑡) = 𝜂𝜂𝐸𝐸(𝑟𝑟)𝐴𝐴𝑒𝑒(𝑟𝑟, 𝑡𝑡), (8) 

 

where 𝜂𝜂𝐸𝐸  denotes the electrical energy absorption at location r, and 𝐴𝐴𝑒𝑒 represent the 

electrical energy deposition. 

 

Figure 21. Schematic illustration of Electric pulse-induced Acoustic Signals 
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The purpose of this study is to demonstrate EAT system’s capability of sensing 

and locating electric fields by capturing acoustic waves. Furthermore, different 

parameters affecting the imaging performance of EAT system are tested to better 

understand the characteristics of such technique. 

 

4.1.2 Electrical Therapy Monitoring Techniques 

There has been an increasing amount of electrical therapies used in clinics, i.e. 

cancer ablation [61]. These techniques apply high-voltage short-pulsed electricity to 

increase patients’ cell membrane permeability. With increased membrane permeability, 

non-permanent drugs and genes can gain access to the inside of the cells.  However, 

electrical therapies are often non-irreversible and location specific. So, high precision of 

application is required during the procedures. Currently, only monitoring systems for pre-

treatment planning and post-stimulation monitoring exist, such as confocal microscopy 

[62], magnetic resonance imaging (MRI) [63],ultrasound imaging (US) [64], electrical 

impedance tomography (EIT) [65], and magnetic resonance EIT (MREIT) [66], [67]. An 

in situ monitoring technique to real-time monitor the electrical therapy procedure is 

invaluable.  

Electroacoustic Tomography (EAT) system is developed for monitoring of such 

therapies by real-time imaging of the electrical field generated by the therapy electrodes. 

By utilizing electroacoustic (EA) waves, transducers on the outside of patient’s body can 

capture the electric field information at procedure location and reconstruct such 

information to real-time monitor the electrical field changes in side patients’ body. 
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In this study, a prototype structure of EAT system has been built. The electrical therapy 

procedure is simulated by two electrodes connected to a custom built high-voltage electric 

field generating circuit board. Acoustic signals have been captured to demonstrate the 

feasibility of EAT system. 

4.2 Experimental Setup and Methods 

4.2.1 EAT System  

Figure 22 shows the system diagram of a developed EAT system prototype. This 

prototype of EAT system is designed to demonstrate the potential of sensing electrical 

fields by capturing EA waves using an ultrasound transducer. In order to simulate the 

high-voltage short-pulsed electrical therapies used in clinic, a DC to DC voltage converter 

Figure 22. EAT imaging system configuration diagram 
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(C12 XPPOWER) is used for suppling high DC voltage to a custom built specialized 

high-voltage pulse generating circuit board. Two electrodes are connected to the pulse 

generating board and either placed in water or inserted in a tissue mimicking phantom. 

An ultrasound transducer is placed on the other side of the tissue mimicking phantom for 

acoustic wave capture. After going through a 60 dB amplifier (5682, Olympus), the 

acoustic signal can then be acquired by a computer mounted data acquisition card (NI 

PCI-5153EX, National Instruments). In order to demonstrate the performance of built EA 

imaging prototype, two different ultrasound transducers have been tested under different 

magnitudes of electrical field voltages. 

4.3 Experimental Results 

 

Figure 23. (a, b): Electroacoustic (EA) signals in different electric field intensity of 
4.8 kV/cm, and 8 kV/cm, at 1μs pulse width, 𝑑𝑑1 = 0.150 𝑐𝑐𝑐𝑐, 𝑑𝑑2 = 0.340 𝑐𝑐𝑐𝑐 

(a) 

(b) 
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Figure 24. (a, b): Different pulse width (1 µs and 200 ns) electroacoustic (EA) 
signals captured by matching center frequency (500 KHz and 5 MHz) transducers 

in tissue mimicking phantoms 

Figure 25. (a), (b): EA signal in an agar-based homogeneous phantom, transducers 
at Δ𝑡𝑡 = 1000 𝑛𝑛𝑛𝑛 and (a) with conductivity of 1 mS/cm, and (b) 34 mS/cm, at EF = 8 

kV/cm. 
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In figure 23, two EA signals were captured by the same ultrasound transducer, but 

under different electric field intensities, 4.8 kV/cm and 8 kV/cm respectively. As 

demonstrated in the plots, the amplitudes of the generated acoustic signals are positively 

proportional to the intensity of the electric field. After comparing the effects of different 

electrical field strengths, different electrical field pulse -widths are also compared.  Figure 

24 shows the plot comparison between the generated acoustic waves from an electrical 

field with 1 µs pulse width and 200 ns pulse width. From the plot, the axial resolution of 

the test with shorter electrical field pulse width is shown to be much higher than the 

resolution of the longer pulse width; although, the signal-to-noise (SNR) ratio looks 

comparable. The higher SNR is expected on longer electrical field pulse width scenarios, 

when a high acoustic attenuation medium is present. The attenuation of the acoustic 

signals is inversely proportional to the frequency of the waves. Lastly, different 

conductivities of the tissue mimicking phantom are tested with the same electrical field 

intensity at 8 kV/cm. In figure 25, the phantom with higher conductivity (34 milli siemens) 

returned much higher SNR EA signals.  
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Chapter 5: Discussion and Conclusion 

5.1 Discussion and future works 

 5.1.1 pNDT Discussion and Future Works 

Detection sensitivity is the main criteria when evaluating pNDT system’s 

performance. The theoretical model indicates that the resultant PA waves’ amplitude is 

proportional to the time derivative of the excitation pulse [68]. To simplify, the pulse 

width of the excitation source is PA is crucial to the effective generation of acoustic waves. 

The implementation of the 7-picosecond pulsed laser should result in a high conversion 

coefficient between the light and the acoustic waves.  

The laser resolution of pNDT system is given  by the diffraction-limited spot size 

of the optical focus [47]. When the 532 nm wavelength laser source is combined with the 

0.10 numerical aperture (NA) objective lens, the theoretical later resolution of pNDT is 

2.7 μm, which is enough to resolve the individual carbon fibers (diameter of 5~10 μm) 

embedded in the CFRP plate. If the penetration depth is prioritized, the lateral resolution 

can be scaled down accordingly by either increasing the NA number of the objective lens 

or using a shorter expiation wavelength. The axial resolution of pNDT is jointly 

determined by the pulse width of the laser source along with the center frequency of the 

transducer used. If a higher frequency transducer were used, higher axial resolution can 

be achieved. 

The demonstrated pNDT scanning speed is limited by the single ultrasonic probe for 

signal collection during the scanning. However, a pair of galvanometer mirrors with optical 

scanning can dramatically improve the imaging speed (up to 30 kHz, the limitation of a 

galvanometer) and will be faster than any mechanical-scanning imaging system. Additionally, 



 

43 
 

by increasing the repetition rate of the excitation laser, the speed of the pNDT system can be 

further improved. 

 

5.1.2 XACT system Discussion and Future Works 

XACT is a novel imaging modality that has the potential to allow 3D 

reconstruction of bone structure with a single projection of X-ray. It also theoretically 

deposits lower dose in patients as compared to conventional CT based techniques. 

Furthermore, with powerful enough data processing equipment, real-time 3D bone 

imaging is achievable.  

The first XACT system bone imaging was reconstructed in this study, which is 

significant to prove the bone imaging potential of the XACT system. For the future 

development of the XACT system, a cup-shaped ultrasound transducer array can replace 

the single ultrasound transducer to enable the 3D imaging capability (Figure 26). An 

ultrasound cup detector has ultrasound transducer elements mounted on the inside of the 

cup surface. By utilizing the spherically propagated XA waves, a 3D reconstruction can 

be realized with one projection of X-ray.  

A 72-channel cup-shaped ultrasound probe is already being tested for such a job. 

In addition to the multi-channel ultrasound probe, a 128-channel pre-amplifier and a 128-

channel data acquisition machine have already been tested and are ready to be 

implemented into the next generation XACT system for single pulsed 3D bone imaging. 

The next step is to develop and implement the cup ultrasound transducer array 

reconstruction algorithm to demonstrate the 3D imaging capability of XACT. Total dose 
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from a single X-ray projection can be verified after obtaining the image by using an ion 

chamber to confirm the claimed low-dose character of XACT. 

 

5.1.3 EAT system Discussion and Future Works 

In this study, the acoustic signals generated by high-voltage pulsing electrical 

fields were detected and analyzed. The optimal parameters for effective EA signal 

generating were found. Based on a theoretical model and experimental testing, the 

duration of the electric pulse, the intensity of the electric field, and the conductivity of the 

stimulating medium all effect the generation of the acoustic waves.  The study indicates 

that acoustic pressure waves can monitor electrotherapy in the range of µs-ns electric 

pulse duration. The present experimental results further validate the principle of real-time 

Figure 26. the next generation single projection 3D bone imaging 
concept of XACT system with an ultrasound cup detector 
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monitoring of electric-field excitation as a new technique for clinical electrotherapy 

applications. 

With the verification of acoustic signals from pulsing electric fields in water and 

phantom, a more robust and static-electricity proof polychlorinated biphenyl (PCB) 

design has been created for the high-voltage electric field generating circuit. The design 

of the printed circuit board (PCB) is shown in Figure 27, and the 3D realization of the 

PCB in Autodesk Fusion 360 [69] is shown in Figure 28. The PCB manufacturing of the 

board will allow the circuit to be housed inside of a portable chassis, which in term will 

greatly enhance the portability of the EAT system. 

For the future development of EAT system for monitoring electric therapies, the 

high-voltage pulsing circuit can be upgraded to provide high-voltage pulses with overall 

higher wattage design.  A new DC-to-DC boost convert chip, XP POWER F50, will allow 

a design of 5000 Volts pulsing electric field with a total power consumption of 10 Watts. 

Besides upgrading the electric field generating circuit, an ultrasound ring-array 

will be replacing the single transducer for the detection of acoustic waves. With the 

addition of a ring array, monitoring the dynamics of electric fields become a possibility. 

The challenges remain to be finding out ways to improve the SNR of received acoustic 

signals. The solution can be designing a better amplification stage or improving the 

reconstruction algorithms.  
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Figure 27. PCB design for EAT high-voltage electric field generating circuit 

Figure 28. 3D realization of the PCB design 



 

47 
 

5.2 Conclusion 

With inherent hybrid waveform nature, radiation-induced acoustic imaging 

techniques offer multiple advantages over the conventional pure radiation based or pure 

sound based imaging modalities.  The combination of radiation high contrast and 

acoustic-diffraction-limited spatial resolution associated with low scattering of ultrasonic 

waves makes radiation-induced acoustic imaging techniques particularly suitable for 

biomedical and non-destructive testing purposes.  

The development progress of multiple novel radiation-induced acoustic imaging 

modalities, utilizing photoacoustic (PA) effect, X-ray-induced acoustic (XA) effect and 

electroacoustic (EA) effect, has been report in this study.  

Overall, the radiation-induced acoustic imaging systems are still in their ‘infancy’. 

Improvements in terms of sensitivity, speed, and ease of use still need to be made.  Many 

design obstacles, including, but not limited to reconstruction algorithm optimization, 

must be conquered before they can be applied to the practical fields.  
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