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ABSTRACT 

 
The purpose of this study is to constrain geomechanical parameters effecting hydraulic 

stimulation networks within the upper Bone Spring formation, through the collection and 

examination of outcrop data. Data utilized in this study was gathered from the Bone Canyon, 

located within the western escarpment of the Guadalupe Mountains, Texas. LiDAR scans were 

conducted at 13 stations within the Bone Canyon outcrop, utilizing 110 Schmidt Hammer 

measurements and 140 XRF recordings in order to form a lithofacies-constrained geomechanical 

model. LiDAR point cloud data was also utilized to characterize fracture orientations, fracture 

density, and average bedding thickness within the Bone Spring outcrop. Inferences of 

geomechanical properties are assigned to 5 facies packages identified within the upper Bone 

Spring formation. Outcrop descriptions and petrographic analysis were performed with the 

purpose of forming a heightened interpretation of stratigraphic intervals present within the Bone 

Canyon outcrop.  

The findings of this study suggest that: 1) Primary fracture orientations within the upper 

Bone Spring include a NW-SE trending primary set, consisting of a hexagonal NE-SW strike 

secondary set present within an interbedded chert-mudstone package identified in the canyon. 

Primary fracture orientations alternate into a nodular chert-mudstone package positioned 

stratigraphically above, with NE-SW orientations dominant.  2) The highest fracture densities are 

observed within the nodular chert-mudstone package and an interpreted detritally-sourced 

channel within the Cutoff Formation. Fracture densities also show an inverse logarithmic 

correlation with bedding thickness 3) Anoxic/Euxinic proxies show substantial positive 

correlations with Schmidt Hammer-corrected rebound hardness values within the nodular chert-
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mudstone package (Carbonate A) and interbedded chert-mudstone package (Carbonate B). 

Positive correlations were also observed between dolomite/quartz volume and rebound values. 4) 

Fine-scale high/low strength couplets have been inferred from data observations collected within 

a biogenic silica identified in the 1st Bone Spring Carbonate.
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1. INTRODUCTION 

1.1 Problem Statement 

Within the Delaware Basin, Texas, the Bone Springs Formation is one of the most prolific oil 

producers in the United States. With a daily oil production of 460,000 Boe/d in 2017 (Droege, 

2018), the Bone Spring ranks first among plays within the lower 48, in terms of oil production 

(Droege, 2018). Though the Permian basin, including the areas of the Delaware and Midland 

sub-basins, have been studied for almost 140 years, there still remains much to be learned 

regarding the geomechanical properties of these prolific oil producers within the Delaware 

Basin. The correlation of geomechanical properties to lithology, depositional environment, 

stratigraphy, fault orientations, and large-scale facies interpretations are critical parameters for 

the exploration and evaluation of unconventional reservoirs (Slatt et al., 2011). The purpose of 

this study is to investigate the geomechanical properties of the upper Bone Spring outcrop to 

rock cycles which may be related to interpreted lithofacies. 

1.2 Background 

In order to properly characterize mechanical properties within unconventional reservoirs, an 

analysis of strain and their relationship within an anisotropic rock mass can provide important 

information with respect to reservoir performance when hydraulically stimulated. Figure 1 

illustrates the relationship between stimulated reservoir volumes and multi-stage horizontal 

wells. Figure 2 illustrates relationships observed between a tight gas shale matrix and fractures. 

In order to characterize the ease at which a fracture will propagate through a formation, it is 

common to utilize brittleness measurements. The most common correlation to brittleness used in 

the oil and gas industry is that of the correlation between Young’s Modulus and Poisson’s ratio, 
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derived by Rickman et al (2008). Based on laboratory-conducted ultrasonic testing, Rickman et 

al provided the following equation: 

Br = 50
7

(E - 28v + 10.2) 

Where Br represents brittleness, E refers to young’s moduli and v refers to velocity. A study 

conducted by Holt et al. (2011) attempted to show that the earlier experimentation conducted by 

Rickman et al (2008) are reproducible, showing similar P and S wave velocities by performing 

ultrasonic testing under similar hydrostatic loading conditions. Holt et al inferred that under 

similar stress and strain, testing would show the results from Rickman et al (2008) are 

reproducible. The study indicated a positive correlation between brittleness and confining stress 

with P and S wave propagation, similar to the results from Rickman et al (2008). Because of 

positive correlations of P and S waves with density – brittleness of the rock, brittleness of a rock 

can be used to define the mechanical failure or stress/strain relationships of a rock. Other studies 

defining brittleness include research conducted by Altindag (2003), which describes brittleness 

as the measure of a material’s relative preference to two competing mechanical responses; that of 

fractures and deformation in transition from ductile to brittle. Recent studies by Bai (2016) on 

the Woodford Shale using similar variables with the Holts experiment suggested different 

results, showing negative correlations between P-S wave velocities and density-brittleness. This 

experimentation suggests that the ultimate failure of a rock mass, for the purpose of fracability, 

may not be synonymous with brittleness.  

Furthermore, Bai (2016) also suggested that the standard Brittleness Index adopted by the oil 

and gas industry has been widely used inappropriately to characterize the fracability of a rock 

mass. Instead Bai (2016) suggests that the standard Young’s Modulus versus Poisson’s ratio 
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relationship, used as a brittleness indicator, should not be a sole indicator of formation 

fracability. This is because formation fracability is defined by the ultimate rock failure of a 

formation characterized by the breakdown pressure of a given mass (Bai, 2016). He concludes 

that unconfined compressive strength (UCS) is a good indicator of breakdown pressure, however 

in environments of restricted fracturing this may be difficult to analyze, owing to the limits in 

size of fracturing and lack of free fracture propagation in the bottom hole, inhibited by an 

increased pressure response (Bai, 2016). Overall, Bai explains that relating brittleness to 

fracability may inhibit the ability to correctly characterize geomechanical properties, because a 

brittle formation may have a higher rock strength at higher confining pressures. For example, 

brittleness index calculations involving approximate mineral volumes (such as Wang et al., 

2007) do not compensate for formation pressures, and is only an estimation of how particular 

mineralogic compositions will react under ideal conditions. Therefore, it is better to use 

unconfined compressive strength, or UCS, as well as quantifying fracture toughness in some 

instances (Bai, 2016) to characterize soft rock. Additional acceptable methods of quantifying 

fracability and fracture toughness include deriving closure stress gradients from maximum and 

minimum stress, then cross-plotting this data with a dipole-derived brittleness index. However, 

this method can also be costly, as it would involve performing dipole sonic log measurements, or 

laboratory testing of core plugs (Holt, 2011). 

Little research has been done to better characterize the Bone Springs Formation for artificial 

fracturing. Furthermore, very little (if any) research has been done to properly characterize 

geomechanical properties which will allow optimized characterization of rock strength, even 

when considering tests of brittleness in vertical dipole sonic logs. Furthermore, very little 

research has been conducted on outcrop-recorded fracture orientation and intensity within the 
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Bone Spring outcrop. There exists only a recent study performed by Alabbad (2017) that has 

attempted to characterize faults and fractures within the Bone Spring Formation, though miss-

interpreting stratigraphic intervals examined within Bone Canyon. Therefore, this work will 

supplement that of Alabbad’s 2017 study, focusing upon the upper Bone Spring formation within 

Bone Canyon.  

This research is purposed to support the identification of strain and its relative relationships 

to the upper Bone Spring formations. Although utilizing dipole sonic, as well as other stress-

strain testing equipment can be more precise, the implementation of these tools can be costly and 

time consuming. Using the non-destructive testing methods of the SilverSchmidt Hammer, as 

well as LiDAR acquired point-cloud imagery, hundreds of data points can be collected from 

samples in a time effective manner, for little cost. Furthermore, XRF data and LiDAR point 

cloud information were collected to define geomechanical properties, such as Q and corrected R 

values from Schmidt Hammer measurements, to elemental proxies and lithologies. Stratigraphic 

lithofacies are further heightened by 17 interpreted petrographic thin sections. LiDAR point 

cloud data sets are significant as they allow the fracture identification software to identify 

fracture density, as well as the average thickness of beds within the Bone Canyon outcrop.  
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Figure 1: Illustration of a stimulated reservoir volume (SRV), with dual porosity and 
discrete fracture models shown. Complex fracture geometry patterns are also illustrated 
(Zhang et al., 2018) 

 

 
Figure 2: Fracture communication with shale matrix and associated shale gas (Zhang et al., 
2018) 
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1.3 Previous Work 

P.B King initially described the challenges in differentiating and mapping lithologic sub-

units within the Permian Basin in his 1942 publication, which manifested into King’s famous 

characterization of the expansive West Texas Permian-aged strata in his 1948 publication. One 

of the early flaws in attempting to subdivide the West Texas Permian-aged rocks at the time were 

the presence of non-uniform lithology within rock units, both laterally and vertically. King 

chronologically defined lithologic units within the Permian Basin, by constraining collected data 

with known fossils, unconformities, and time/deposition of various sediments. Figure 3 shows 

the upper Permian stratigraphy of the Delaware Basin. The Bone Spring type section focused 

upon in this study is located in the Bone Canyon, present on the western escarpment of the 

Guadalupe Mountains (King, 1948). In King’s 1948 study, the Bone Spring outcrop in Bone 

Canyon has been described, along with the Cutoff formation, Victoria Peak Limestone, as well 

as the shelf-margin equivalent to the Bone Spring Formation (King, 1948). According to Crosby 

(2015), The Bone Spring Formation also crops out approximately 670m North-Northwest in 

Shummard Canyon, named after the famous G.G Shummard. This classic 1948 study by King 

has laid out the ground work for many other studies in the Delaware Basin since.  

In 1951, John Emery Adams was one of the first to demonstrate that the Delaware Basin 

experienced a large period of starved basin deposition. He argued that the waning of the 

Panthalassa Ocean due to decreased relative sea level resulted in an environment restricted of 

regulatory ocean circulation. This research pioneered the evolution of sequence stratigraphy and 

lithologic interpretations in the area. In 1965, Adams had proposed a tectonic-stratigraphic 

development for the Permian Basin and concluded that shelf deposits in the area of west Texas 

and New Mexico formed as a result of the Tobosa Sag, a largely negative structure effecting 
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deposition through the Ordivician and Permian (Adams, 1965). He suggested that subsurface 

structure in the area present today was largely attributed to the presence of the Tobosa Sag.  

Other important work pertaining to this study include Keller et al., (1983), Hills, (1984), 

and Ross and Ross, (1994). As well as research done by Kullman (1999). Kullman (1999) 

discussed the deep-sea fan deposits of the Brushy Canyon Formation as it relates to fault and 

fractures. Kullman describes the two sets of major faulting within the northern portion of the 

Delaware Mountains, and that faults with associated fractures acts as conduits for fluid flow. 

Kullman illustrated that the primary control on fracture density is stratigraphic thickness, 

whereas lithology seemed to have little control. Finally, he described the permeability of 

Delaware Mountain fault zones as being most dependent on the definition of strain features, with 

fault zone alteration (calcification, decalcification, iron-oxide precipitation) being a limited 

factor to permeability of fault zones within the Delaware Mountains (Kullman, 1999). These 

concepts are important when interpreting fracture mechanics from Schmidt Hammer data, then 

comparing small scale interpretations to basin wide fault activity. 

Other work studying the Delaware Basin area utilizing LiDAR scanning, XRF data, other 

various interpretations, such as superposition, interpretation of depositional environments, and 

utilization Schmidt Hammer measurements include Crosby (2015), Hornbuckle (2017), Wang 

(2018), Moreland (2018). Some works on the Bone Springs Formation involving SilverSchmidt 

Hammer data analysis to investigate geomechanical properties include Katz et al., (2000), 

Yilmaz et al., (2002), Celik et al., (2008), Deghan et al., (2010.). The studies of Katz et al (2000) 

produced an elaboration of the ability to evaluate mechanical rock properties through Schmidt 

Hammer data. Their study derived a sequence of linear regressional equations in order to predict 

mechanical rock properties of various sample types. These rock properties, resulting from testing 
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54mm diameter core plugs (Katz et al., 2000), include Young’s Modulus, Uniaxial compressive 

Strength, and Density. However, Katz et al’s also concluded that the hammer rebound values can 

also be correlative with several additional parameters. Furthermore, it is important to note that 

core plug testing conditions required a well cemented, perfectly flat testing surface. 

Other studies such as Celik (2008) have utilized a form of frame strength analysis of 

mechanical properties known as point load index. Point Load Test (PLT) is an acceptable rock 

mechanics test program used to calculate rock strength index. This indicator can also be used to 

estimate other rock strength parameters. Rock strengths determined by PLT 

represent complete rock strengths, such as their estimated load frame strengths, not necessarily 

the actual strength of the rock. Therefore, owing to its facility in collection and utility to correlate 

to wireline logs, rebound values were utilized primarily in this study, as well as correlations to 

UCS. 

   Another study relavent to this research is that of Amani and Shahbazi (2013). In their study, 

Amani and Shahbazi describe a method to derive Unconfined Compressive Strength (UCS) 

measured from sonic logs and formation porosity within a carbonate reservoir. This method is 

important because it allows for the correlation of subsurface UCS derived from wireline logging 

tools within the Bone Spring Formation. A recent study by Rajabi et al (2017) which attempted 

to correlate UCS to Schmidt Hammer tests and Point Load Values is also relevant to this study. 

However, many other studies applying to correlations with other relevant rock types and 

different equations associated with these studies introduced through time are listed in table 1. 
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Table 1. Empirical equations through multiple studies, attempting to derive Unconfined 
Compressive Strength from Schmidt Hammer Hardness. Modified from Rajabi et al (2017) 
* indicates equation used in this paper 

 

Equation   R2    Author   Rock Type 

UCS= 9.97e(0.02*p*R)           R2=0.94  Deer and Miller (1966)         Various Lithologies 

UCS=0.4R-3.6           R2=0.94  Shorey et al. (1984)             Coal 

UCS=4.92R-67.52          R2=0.93  Sachpazis (1990)                Carbonate rocks 

*UCS=2.21e(0.07*R)          R2=0.94  Katz et al. (2000)              Limestone and Sandstone 

UCS=e0.059R+0.818           R2=0.98  Yilmiz and Sendir (2002)              Gypsum 

UCS=2.75R-36.83          R2=0.97  Dincer et al. (2004)              Basalts and Tuff 

UCS=0.000004R4.29          R2=0.89  Yaser and Erdogan (2004)    Carbonates, Limestone 

UCS=1.45e(0.07R)           R2=0.92  Aydin and Basu (2005)   Granitic Rocks 

UCS=3.2R-46.59           R2=0.76  Shalabi et al (2007)       Dolomite, Limestone 

UCS=0.0028R2.584          R2=0.92  Yagiz (2009)     Travertine, Limestone,             

             Schist 

UCS=1.233R-2.846          R2=0.91  Tondon and Gupta (2015)              Dolomite 

 

 

 

 

1.4 Study Area 

The Delaware Basin, a sub-basin of the Permian Basin and greater Tobosa Basin, is an 

asymmetric basin spanning 33,500 kilometers of present-day west Texas and New Mexico (Hill, 

1996). The main hydrocarbon producing interval consists of roughly 7620 meters of Paleozoic 

sediments (Payne, 1976). It is bounded to the north by the Northwestern Platform, to the west by 

the Diablo Platform, and to the south by the Marathon-Ouachita Fold Belt, being separated from 

the Midland Basin by the Central Basin Platform, illustrated in Figure 4. This research is 

conducted on the Bone Spring outcrop, located within the Bone Canyon and positioned on the 
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western Escarpment of the Guadalupe Mountains. Also outcropping within/proximal to Bone 

Canyon are the Cutoff Formation, Brushy Canyon Formation, Cherry Canyon, and El Capitan 

reef complex, illustrated in figure 2.  

The study area of this research is shown in Figure 4, with basin geometry and Bone Canyon 

geometry also being illustrated. Measurement transects within the study area are highlighted in 

Figure 5. Marker 317 indicates the approximate starting position of XRF and Schmidt Hammer 

sampling. It is noteworthy to mention that, proximal to the Bone Canyon study area, Bone Spring 

Formation outcrops can also be found. for example, in Shummard Canyon, positioned adjacent to 

the Bone Canyon outcrop and also located within the western escarpment of the Guadalupe 

Mountains, a similar Bone Spring stratigraphic section can be observed.  

All research was conducted on property owned and managed by the National Park Service, 

and therefore permission was required in order to enter the property for data acquisition and 

sample collection. Schmidt Hammer data collected for this study, as well as XRF data utilized 

from past research (Andrew Brown, unpublished) was implemented in this research. The Bone 

Canyon outcrop lies at the end of the road leading to the historic house, known as the William’s 

Ranch House. In order to reach the historic house, vehicle transportation is inevitable to transport 

research equipment safely and effectively. Vehicles were then parked off of the road away from 

the property, with research equipment being hiked to the mouth of the Bone Canyon outcrop. 
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Figure 5: Bone Canyon with relative sample positions highlighted. Waypoint flags 
illustrated mark GPS positions of sampling locations. Note that samples 050 and 051 were 
omitted from this study. 

 

 
Figure 6: Stratigraphic column of the Permian Basin region. From Yang and Dorobek 
(1995) 
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2. GEOLOGIC BACKGROUND 

 

2.1 Pennsylvanian - Wolfcampian Deposition 

Within the Permian Basin, the Pennsylvanian through Wolfcampian (Permian) strata consist 

of the Springer, Morrow, Atoka, Strawn, Canyon, Cisco, and Wolfcamp Formations, illustrated 

in figure 6. The Pennsylvanian was a time of increased tectonic exertion, which brought forth 

rapid subsidence, and in broad terms, a starved basin experiencing deep burial (Adams, 1965). 

Further uplift and subsidence were induced by the Ouachita-Marathon orogeny which generated 

the greater ancestral Rocky Mountains. Overall, deposition during the Pennsylvanian within the 

Delaware Basin was dominated by deep-basin shales, partly due to an exacerbated period of 

subsidence (Adams, 1965; Hills, 1984; Crosby, 2015). This rapid subsidence and growth of 

Pennsylvanian sedimentation created significant accommodation space for the subsequent 

deposition of Permian sediments. Furthermore, past research also suggests that carbonate 

deposition occured along the northwest shelf within the Cisco Group, with sporadic appearances 

on well logs near the base of the Wolfcamp/Pennsylvanian unconformity (Hills, 1984).  

 The deposition of carbonates proximal to the Pennslyvannian/Wolfcamp boundary primarily 

consists of platform carbonates and continued throughout Permian time. Because the 

Pennsylvanian Morrow and Atoka Formations thicken towards the Central Basin Platform likely 

as a product of flexure, accommodation space was created at the conclusion of the Ouachita-

Marathon Orogeny (Wright, 2008). Though not the primary focus of this paper, increasing 

tectonic activity within Pennsylvanian time created significant fault-related structures (Kullman, 

1999). Pennsylvanian sedimentation thins to the east and is absent as a result of erosion on fault 

blocks, associated with the uplift of the Central Basin Platform.  
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 The dominance of clastic deposition initiating the Wolfcampian sequence is due to 

continued tectonic uplift, initiating a period of relative sea level change and sustained reciprocal 

sedimentation. This reciprocal sedimentation was primarily being sourced from the west, 

southwest, and northwest parts of the Delaware Basin (Adams, 1965). Clastic sedimentation 

during the Wolfcampian were predominated by the deposition of turbidity sediments sourced 

from the west. Agitation of the water column from turbidity deposits caused mixing of the water 

column, allowing for the enhancement of nutrient-rich water which increased the production of 

hydrocarbon source materials. As a further result, an increase of algae, and planktonic/nektonic 

organisms occurred within the paleo-water column (Adams, 1965; Hills, 1984). Throughout the 

Wolfcampian, waning of siliciclastic deposition allowed for the development of carbonate 

deposition along the shelf of the Delaware Basin. The creation of carbonate build-ups was 

further supported by a continuing decrease in clastic deposition towards the end of the 

Wolfcampian (Hills, 1984; Crosby, 2015). Seen as the first instance of extensive shelf carbonate 

build-ups within the Delaware, the build-up seen within the center of the basin consists of 

interbedded shale deposits with skeletal hash-rich mounds (Silver and Todd, 1969).  
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Figure 7. Idealized stratigraphic column illustrating early through late Permian 
sedimentation within the Bone Canyon outcrop. Red circles mark sections observed in the 
study area, with transects marked to the right. Modified from Alabbad, 2017. 

 

2.2 Bone Springs Deposition 

The Delaware Basin in the time of the Leonardian experienced multiple fluctuating 

depositional episodes of highstand carbonates and lowstand clastics, encompassing the Bone 

Spring Formation. Illustrated in Figure 7, the Bone Spring in the subsurface is generalized to 

consist of three oil-bearing siliciclastic intervals alternated with three organic-rich carbonate 

mudstone intervals. The Highstand deposition of the Wolfcamp Formation was followed by a sea 

level fall during the Leonardian whilst the subsequent lowstand and transgressive deposition of 

the 3rd Bone Spring Sand occurred (Hart, 1998; Crosby, 2015). The cyclic transition of changing 

sea level from high to lowstand system’s tracts ultimately led to the deposition of highstand 
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carbonates, followed by lowstand siliciclastic deposition in the form of sediment gravity flows 

transporting carbonate material from the shelf edge (Pray, 1988; Montgomery, 1998; Crosby, 

2015). Figure 8 outlines this form of reciprocal sedimentation involving highstand carbonates 

and lowstand clastic sedimentation.  

Research conducted by Montgomery (1998) suggested that deposition during the Leonardian 

was primarily controlled by tectonic subsidence, even stating that the Leonardian saw similar or 

more tectonic activity than the Wolfcampian. This suggestion supports previous studies which 

show that low relief structures formed during high tectonic activity of the Pennsylvanian 

controlled paleobathemetry and the depositional axis of deposition (Hart, 1998).  

The 3rd Bone Spring Sand, overlying the Wolfcamp Formation, marks the top beginning of 

the Bone Spring. Though debate exists on the stratigraphic marker demarcating the 3rd Bone 

Spring and the Wolfcamp (Montgomery 1997), a well-known oil play referred to as the 

Wolfbone play lies just above a limestone bed which marks the separation between the Bone 

Spring and Wolfcamp. Research done by Mazullo and Reid (1987) suggested that this particular 

limestone bed can be dated by age-related fusulinid fossils. The 2nd Bone Springs Carbonate, 

located above the 2nd Bone Springs Sand, is an allochthonous carbonate deposited at a time when 

sea level highstands were contributed to maximum deposition of carbonates on the Northwest 

Shelf (Davis, 2014). Carbonates within this zone primarily consist of spiculitic, carbonaceous 

wackestones, with lime mudstones common in the basin. Laminated dolomitic mudstones and 

dolomitized megabreccias are also common on the slope (Gawloski 1987; Davis, 2014). The 

main mechanism for deposition involves turbidity and debris flows containing shelf derived 

carbonate material. Therefore, the lithology of the 2nd Carbonate is entirely dependent on that of 

the shelf-equivalent Abo-Yeso carbonate formation. Furthermore, dolomitization of clasts within 
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the 2nd Carbonate underwent early dolomitizing prior to deposition (Davis, 2014). The 2nd Bone 

Spring Formation is also one of the most active horizontal drilling targets within southeast New 

Mexico oil plays within the Delaware Basin, with an average initial production rate of 1,300 

BOE/d (Crosby, 2015).  

Overlying the 2nd Bone Spring Carbonate are the 1st Bone Spring Sand and Carbonate being 

similar in ways to the 3rd Bone Spring Carbonate, mainly composed of spiculitic mudstones and 

wackstones: Carbonate deposition occurred during high-stand deposition in a time when shelfal 

carbonates were experiencing high production, as shown in Figure 8 within the Bone Canyon 

outcrop. Carbonate siltstones can also be observed within the 1st Bone Spring Carbonate interval. 

Delineation between bedded chert and carbonate mudstone and nodular chert, interbedded with 

carbonate mudstone was observed between the lower and upper sections of the canyon. This is 

thought to be due to fluctuations in biogenic silica precipitation within the upper Carbonate of 

the Bone Spring formation within Bone Canyon. Though categorized as an independent 

lithologic subsection, the six packages comprising the Bone Spring can be defined under a 

reciprocal depositional model. The primary formations within the Bone Spring as defined by 

Hart’s 1998 study consist of (in chronologic order) 3rd Bone Spring Sand, 3rd Bone Spring 

Carbonate, 2nd Bone Spring Sand, 2nd Bone Spring Carbonate, 1st Bone Spring Sand, 1st Bone 

Spring Carbonate (Hart, 1998). Figure 9 illustrates the relationship of depositional environmental 

models alternated between the sub-units of the Bone Spring, during the changing of sea level. 

Above the 1st Bone Springs Sand lies the clay rich Avalon Shale (Davis, 2014), which has 

been a popular completion target for horizontal drilling and hydraulic fracturing by public 

operators in the region (droege, 2018). Overlying the clay rich Avalon Shale is the Avalon 

Carbonate, defined by dark carbonate shaly siltstone interbedded with mudstone. This 
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interbedded siltstone acts as permeable conduit for vertical fluid flow (Bachmann et al., 2013). 

The Avalon shale interval is theorized (Davis, 2014) to consist of sedimentation stratigraphically 

above the 1st Bone Spring Carbonate (divided into Carbonate A and Carbonate B in this study). 

Furthermore, the Avalon shale is obviously being identified within subsurface logging data. 

However, confirmation of the Avalon shale within Bone Canyon has not been confirmed in this 

study, owing to a lack of comparable outcrop information in the area. Therefore, the upper 

section of the 1st Bone Spring Carbonate has been characterized based on transitions in 

identifiable lithofacies, illustrated in figure 7. The Upper Bone Spring Limestone is dominated 

by massive, blocky mudstones towards the Bone Spring/Cuttoff boundary. Within the Bone 

Canyon outcrop, past research studies have hypothesized that the Bone Spring Formation, Cutoff 

and Brushy Canyon Formations are the main intervals exposed within Bone Canyon (Beaubouf 

et al., 1999) though this study focuses primarily on the Brushy Canyon formation.  As shown in 

Figure 7, the outcrop units identified in this research consists of the 1st Bone Spring Carbonate 

Sand interval, 1st Bone Spring Carbonate B layered chert dominated (potential lower Avalon 

Shale interval), 1st Bone Spring Carbonate A nodular chert dominated (potential upper Avalon 

Shale interval), the Bone Spring Limestone, Cutoff Conglomerate, and the Brushy Canyon 

formation. Intervals positioned stratigraphically above the Brushy Canyon formation, including 

the Bell Canyon formation and Cherry Canyon formation, were observed in the field and 

inferred, however not confirmed in this study.  
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2.3 Guadalupian – Ochoan Deposition 

The Brushy Canyon formation belongs to the Delaware Mountain Group, initiating the lower 

Guadalupian and middle Permian (King, 1948). Associated with global sea-level fall in the 

Panthalassa Ocean, further fluctuations of relative sea-level within the Delaware Basin produced 

low stand deposition of detrital within the region. Recent studies published by Higgs (2015) have 

suggested that interpretations of the Brushy Canyon Formation as a product of shallow water 

deposition, which most operators within the Delaware Basin have adopted, would be better 

instead modeled as a deep-sea turbidite fan model. Higgs goes on to suggest that the Brushy 

Canyon is an analogue for deep sea turbidite deposits, analogous to “Flysch” deposits, that is 

orogenically external in nature. The appropriate terminology (dubbed by Higgs, 2015) is a 

miogeosynclinal Flysch. The Brushy Canyon formation is also dominated by storm-wave-base 

Figure 9: Illustration of simplified reciprocal sedimentation within the 
Delaware Basin, during high stand carbonate deposition with mud 
supported debris flows, and Low stand siliciclastic deposition dominated 
by platform sandstones and turbidites. Adapted from Scholle, 2002 
through www.sepmstrata.org 

 

 

http://www.sepmstrata.org/
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dominated hyperpycnites, exhibiting fine grain deposition with hummocky cross-stratification 

prevalent. Also, present within the inner-most Brushy Canyon are mega breccia originating from 

limestone-block conglomeritic debrites (Higgs, 2015). Other deposits within the Brushy include 

incised slope channels, prograding deltaic complexes and as previously mentioned, 

hyperpycnites (Higgs 2014; Higgs 2015). Figure 10 displays the Brushy Canyon outcrop within 

Bone Canyon. 

The final lowering of sea level within the Panthalassa Ocean during the Ochoan caused the 

Delaware Basin isolated from connected oceanic circulation, causing the deposition of the world-

renowned Castille Evaporites. Other evaporites consist of the Salado and Rustler Formations, 

which lie within the northern and eastern margins of the basin (Adams, 1965). Following 

evaporite deposition is terrestrial red beds prograding into the basin (Adams, 1965).  Late 

Permian deposition (Late Ochoan) consists of an extended hiatus and subaerial erosion through 

the early Mesozoic (Hills, 1984)  
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2.4 Tectonic History 

 In order to thoroughly understand geomechanical properties inferred from field-collected 

data in this study, it is important to report the previous tectonic history of the region. The 

location encompassing the westward Delaware Basin has been subject to multiple orogenic 

events within the last one billion years. Orogenic events relevant to the overall tectonic 

development of West Texas, the Trans-Pecos Texas region and the Permian Basin include three 

principal events: early Precambrian orogenic events, late Paleozoic compression following the 

formation of the Pangean supercontinent, compression from the Laramide Orogeny during the 

late Cretaceous, concluding with Cenozoic extension relating to the formation of the Basin and 

Range Province (Kullman, 1999). Figure 11 shows a schematic representation of regional 

Figure 10: Outcrop of Brushy Canyon formation within Bone Canyon. This 
section was subject to studies conducted by Alabbad (2017) in which fracture 
orientations were interpreted and recorded. 
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extension and fault propagation within the Permian Basin – Basin and Range Provence. The 

early Ordovician witnessed cooling of underlying rifted crust, creating subsidence and the 

creation of coastal plains known as the Tobosa Basin (Galley, 1958; Yalmaz, 2015; Wang, 

2018).  

Precambrian tectonic events within the area between the Trans-Pecos Texas region and 

westward from New Mexico to Arizona once was associated with the southwestern margin of the 

ancient North American Plate (Muelberger and Dickinson, 1989), and are thought to have 

formed as part of large branching rift system due to southeasterly extension around 1450 ma 

(Kullman, 1999). Precambrian tectonic activity is ultimately the main catalyst for the observed 

regional structural grain, including the location and orientation of structure produced in later 

orogenies. Terranes in chronologic order include the Chaves Granitic Terrane, overlain by the 

Precambrian siliciclastic rocks of the Debaca Terrane (Denison et al., 1971; Kullman, 1999), 

followed by the Franklin Mountains igneous terrane above. This succession is then followed by 

the Van Horn metamorphic mobile belt, thrusted onto the Debacca. Furthermore, K-Ar age 

dating of the Llano/Chaves unconformity suggests that is could represent a southward extension 

of the Grenville Front (Denison et al., 1969; Kullman, 1999).  

 Early Paleozoic-Late Cretaceous: Associated with the larger Tobasa basin, the late 

Precambrian to late Mississippian section is characterized by the presence of faint crustal 

extension with a low rate of tectonic subsidence in a passive margin setting (Kullman, 1999). 

The Permian is considered to be Tectonically stable. Vertical movement between fault bounded 

zones can be attributed to the accretion of the Pangean supercontinent within the late 

Mississippian. According to earlier work done by Muehlberger and Dickerson (1989) and 

Kullman (1999), weakness seen along vertical movement in zones can be attributed to hyper-
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tectonic activity within the late Precambrian. This fault block movement subsequently caused the 

creation of Horsts (Diablo Platform and Central Basin Platform) and Grabens (Delaware Basin 

and Midland Basins). The Permian is thought to consist of relatively stable basin subsidence and 

tectonic activity (Hills, 1984; Kullman, 1999). Figure 12 illustrates the sub-basins of the 

Delaware and Midland Basins as the relate to the overall Tobosa Basin.  

The Laramide Orogeny is thought to had little to no influence upon the Delaware Basin, 

other than slight uplift of the Delaware Mountains. The result of Laramide compression consists 

of limited broad arching (Kullman, 1999).  

 Cenozoic Deformation: The formation of the Salt Flat Graben and Delaware Mountains 

resulted from Trans-Pecos tectonism in the Cenozoic (Kullman, 1999). Laramide compression 

transitioned into Basin and Range extension, preceded by a brief volcanism event within the 

Eocene-Oligocene. The end of the Paleocene saw a period of extension preceding rifting and 

graben creation.  
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Figure 11: Transgression of tectonic events from the early Pennsylvanian to present. 
Modified from Kullman, 1999 



` 

27 
 

 

Figure 12: Outline of Delaware Basin, with relation to Tobosa Basin, Texas Arch and 
Diablo Arch. from Adams (1965). 
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2.5 Fault History 

Regional fault characteristics, as defined in the previous section, are partially controlled 

by the early tectonic development of the Tobosa Basin during the Precambrian. Fault trends 

within the region are primarily northwest/southeast (King, 1948). As will be defined, these 

findings correspond to those found in this study, with secondary fracture orientations from 

East/West. Fault development within the Early-late Permian were developed through weakness 

seen in vertical fault sections due to increased tectonic activity in the Precambrian, further 

experiencing minimal uplift within the Laramide Orogeny (Hills, 1984). Figure 13 shows known 

major fault populations through west Texas and the Delaware Basin. Relative position of the 

study area examined in this paper is highlighted in red. The main fault within the Bone Canyon 

outcrop and Williams Ranch region is defined by a large degree of vertical separation, displacing 

formations above the Cherry Canyon formation by over 5000 feet (Hills, 1984). Smaller fault 

complexes can be identified in the lower sections of Bone Canyon encompassing the Leonard 

sand package. Further fault growth within the Cenozoic to present day is largely a consequence 

of Basin and Range expansion within West Texas and New Mexico along the Trans-Pecos region 

(Hills, 1984; Kullman, 1999). 

Though the Delaware Basin shows signs of modern tectonic activity, the development of 

faults and fractures in relation to hydrocarbon development during this time is extraneous. Work 

done by Dumas (1980) and Goetz (1980) show evidence of seismic activity and modern tectonic 

readjustment of the Diablo Plateau (shown in figure 11) by roughly 23 cm between 1934 and 

1977 (Kullman, 1999).  
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Figure 13: Cenozoic fault map of west Texas and Southeastern New Mexico. Red Square 
marks relative position of study area. Orange Pin marks GPS position of Bone Canyon. 
After Kullman, 1999. 
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3. METHODS 

3.1 Field Methods 

 Collection of LiDAR, Schmidt Hammer and XRF data was conducted within the Bone 

Canyon outcrop, positioned in the Guadalupe Mountains National Park. These outcrops are 

believed to represent the 1st Carbonate of the upper Bone Spring, a conglomeritic unit of the 

Cutoff Formation, and the Brushy Canyon Sandstone (seen in Figure 7), though no data was 

collected from the Brushy Canyon in this study. Intervals within Bone Canyon consisting of the 

Brushy Canyon were analyzed by Alabbad’s 2017 research. Sampling intervals vary between 

transects which four samples were collected between the bedded chert and limestone, detailed 

transects with sampling intervals of roughly 15 feet, and transect 1, which includes a 1-foot 

sampling interval. Figure 7 illustrates measured transects and their relative position to lithofacies. 

Variations in sampling intervals are to identify small scale mechanical variations as well as large 

scale correlations. The roughly 3000 ft of measured section, most being extremely difficult to 

reach on foot, is split into 10 different measurement transects, analyzed using Schmidt Hammer 

Collection, LiDAR, and XRF. Figure 14 outlines the relative locations of individual 

measurement transects. Transect 1, 6 and 7 are defined by fine scale sampling, which consists of 

a sampling interval of 1-15 ft. Transects 2,3,8,9, and 10 consist of sampling intervals of 15-50ft 

intervals.  Both transects 6 and 7 consist of Schmidt hammer analysis, Light Detection and 

Range (LiDAR) scanning, and X-Ray Fluorescence (XRF) measurement. Transect 1 consists of 

XRF and SilverSchmidt analysis. Varying sampling intervals of different transects can also save 

valuable time in the field and can be used to infer relative information regarding rock strength-

lithologic composition. Transect 1 was measured along a lithologic transition from sandy 

mudstone to carbonate-rich mudstone, which is interpreted to be a transition from biogenic silica 
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precipitation into Bone Spring Carbonate deposition. Transect 9 was gathered toward a suspected 

channel of detrital sediment deposition within the Brushy Canyon/Cutoff formation boundary, 

likely from sediment gravity flows easily observed in the Shummard Canyon outcrop. 

 

3.2 Light Detection and Range Device Collection and Mechanics 

 Acquisition of LiDAR readings required the traversing of hazardous terrain through Bone 

Canyon, in order to collect data on the entirety of the Bone canyon outcrop (roughly 450m 

vertical depth). Conditions appropriated the use of four researchers to carry equipment through 

the canyon. A RIEGL VZ-400i 3D terrestrial laser scanner with an attached Nikon D810 

utilizing a Nikor 20mm lens was used in this study. The LiDAR’s effective range of 1000m, at 

these altitudes and low humidity, allows the observer to image an outcrop from multiple 

positions, while accuracy of 5mm and precision of 3mm allows for accurate readings and 

interpretations of measurements (REIGL, 2013; Hornbuckle, 2017). The investigator can then 

compile multiple scans into a high resolution, three-dimensional model using reflectors as tie 

points.  

The reflector geometry is designated so that shadows caused by canyon walls, trees, 

boulders, and other objects obstructing the view of the camera are minimized. Reflectors are also 

necessary to tie scans together in the 3D model. Three common reflectors are required between 

scans in order to perform a tie of discrete scans. Reflectors consist of 10cm cylinders and 5cm 

flat reflectors which possess a cohesive material on the backside. The number of reflectors 

necessary and relative position depend on outcrop geometry and length of desired measurement 

area. Scanning positions were determined prior to reflector placement in order to optimize each 

reflectors ability to maximize shadow reduction. Once scanning positions have been set and 
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reflectors have been placed, the LiDAR is carefully attached to a tripod, then connected to a 

portable laptop directly with an ethernet cable. Each scan is recorded individually to the laptop 

via ethernet and simultaneously stored on the RiScan Pro v2.5.3. A 360° scan is then conducted 

with a 0.02° resolution and a Pulse Repetition Rate (PRR) of 300 kHz (REIGL 2013, 

Hornbuckle, 2017). Total time per scan was set at 15 minutes, with the LiDAR internal GPS 

Positioning system set to FAST. During the full scan, six individual photographs are taken with 

the LiDAR identifying overlap. Identification of longitude and latitude position are recorded on 

top of the LiDAR internally during pose estimation (internal GPS positioning system). Once the 

LiDAR has concluded a scan, reflectors are repositioned if necessary and another scan is 

performed. The user also can perform an additional 0.005mm fine scan after the initial scan. 

Duration varies depending on size of measured section. Once this process is complete, the user 

must locate corresponding reflector points with the RiScan Pro software. 

 In total, 13 scans were performed in the span of three days. The initial estimation of 17 

scans was undermined by the internal system failure of the LiDAR after scan 13, thus scans at 

the entrance to the canyon were not conducted. Scan positions utilized in this study are identified 

in figure 14, with approximate transect locations and formation boundaries also outlined. 

Visibility was clear, with wind speeds of roughly 20MPH from the Northwest. Camera settings 

were set to a shutter speed of 1/250 seconds, aperture of f/22, and ISO of 250 for all 13 scans. 

Though the shadows from the canyon walls were initially thought to become a problem once in 

the field, the initial images from the Nikon D810 revealed a balanced exposure and true color 

present, therefore no corrections for shadows were needed.  
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3.3 LiDAR Processing 

 Once LiDAR data are acquired, scans are processed in RiScan Pro v2.5.3 as point cloud 

data. Sizes of point clouds can range in size, from thousands to millions of points depending on 

outcrop size. Point cloud data are defined as “a set of points with coordinate values in a well-

defined coordinate system” (RIEGL Glossary, 2012; Hornbuckle, 2017). The LiDAR multi-scan 

model makes stratigraphic interpretations more comprehensible, with the ability to observe facies 

changes at the millimeter scale. Figure 15 displays interpreted formation boundaries between the 

Bone Spring, Cutoff, and Brushy Canyon formations. Figure 13 displays a set of point cloud data 

shown in true color. Furthermore, each point within the point cloud has data associated specific 

to each individual point, such as reflectance, amplitude, time stamp, and pulse shape deviation 

(REIGL, 2013; Giddens, 2016). Once all data are converted to polydata, an octree filter is 

applied to the point cloud in order to create a uniform data set. This octree application ultimately 

deletes the polydata created by the user and evenly distributes points. After the octree filter is 

applied and the image has been cleared of noise, points are then triangulated to create the mesh 

which the user can use to display reflectance and amplitude.  

 Reflectance and amplitude of wave signals recorded by the LiDAR can be a helpful 

mechanism for outcrop interpretation. The amplitude of each point is given as a ratio of the echo 

signal of the detection threshold of the LiDAR scanner, given in decibels. It should be noted that 

the amplitude signal given by a point within the mesh should only be considered accurate if the 

scanning position relative to said point is exactly perpendicular. Reflectance of a point can be 

defined as the incident of optical power given by a point at a given wavelength. The reflectance 

measured is a ratio of the amplitude given by a point to the amplitude given by a flat target, with 

an orthonormal orientation to the beam. Because of this, it is considered independent of target 
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angle (REIGL 2013; Giddens, 2016). This measurement therefore reveals the strength of a light 

point hitting a point and returning to the reflector. Because of this reliability, reflectance is the 

major LiDAR attribute applied to the outcrop measured at Bone canyon.  

 

 

Figure 14: Relation of LiDAR scan positions to field-measured transects (red) within Bone 
Canyon 
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Figure 15: Point cloud data displayed in true color. Also shown is scan position 002 and 
formation boundaries of the Bone Spring/Cutoff formations (bottom line) and Brushy 
Canyon/Cutoff formations (Top line) 
 
 

3.4 X-Ray Fluorescence data collection and processing 

X-Ray Fluorescence measurements were taken using a Thermo-Fisher Scientific XRF 

device, in order to further support lithology interpretations made by LiDAR reflectance and 

amplitude. These were combined with petrographic interpretations of lithofacies, to compare 

with SilverSchmidt readings for potential relationships between measured lithology, elemental 

analysis, and mechanical measurements. Other uses of XRF data include the interpretation of 

paleoenvironment using various geochemical proxies and ratios. XRF readings consisted of a 

220 second measurement interval, with three measurement filters designed to measure highly 

sensitive elements. 

Filters consisted of high, main, and low, with each assigned to a relative range of 

elements. “Main range” filter corresponds to elements ranging from Manganese to Bismuth.  
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“Low” range is used to optimize the sensitivity of elements Titanium through Chromium. 

Finally, “High range” is ideal for sensitive elements such as Silver through Barium. 

Internationally accepted standards were used to calibrate the XRF device including PAAS and 

SARM-41 sample provided by Thermo Scientific. Once measurements occurred, all data was 

transferred from the device to the Thermo Scientific software, which was then correlated through 

multiple cluster analysis. All measurements are reported in ppm. A light range filter was also 

applied for a duration of 60 seconds and was applied in order to read elements with a sensitivity 

not recorded by other filters. As measurements recorded at transect 1 failed to measure Uranium 

and Thorium contents due to internal system errors, they have been omitted from the creation of 

pseudo-gamma ray curves conducted on other transects. In total, 180 data points were recorded 

within the Bone Canyon outcrop. XRF-derived mineralogies were computed using programs 

created by Pigott (unpublished). 

 

3.5 SilverSchmidt data collection and mechanics 

The Schmidt Hammer has long been used in outcrop studies as a method to 

derive mechanical data in an affordable, non-destructive manner. With easy portability, 

utilization was necessary considering the harsh terrain, as well as to support the ongoing effort to 

not disturb outcrop features in Bone Canyon. The original mechanical Schmidt hammer was 

developed by Ernest Schmidt in 1951, in which a metal plunger with a spring-loaded mass 

impacts the surface of a rock. The rebound of the energy returning from the rock is then recorded 

internally. The rebound value collected from the sample is dependent on the hardness of the 

rock. Considering the relationship between rock hardness and rock density (Viles et al., 2011), 

rebound hardness could give insight into the mechanical characteristics of the Bone Spring.  
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Though Ernest’s first development of the Schmidt Hammer required the correction of 

directional bias using conversion charts, the modern development of SilverSchmidt hammer 

records data electronically, internally corrected for horizontal or vertical variation (Q value) 

(Viles et al., 2011). It should be noted that measurements ideally should be recorded 

perpendicular to the rock face. The recorded Q value from the SilverSchmidt can also be defined 

as the inbound velocity divided by the rebound velocity. Figure 16 shows the correction of Q to 

R, and the correlation of R to unconfined compressive strength. All samples were collected using 

an L-type SilverSchmidt rebound device. All sample locations were sanded before data was 

collected. Samples were consistently recorded perpendicular to a relatively flat, prepared rock 

surface, either from the vertical direction or the horizontal direction.  

In total, 110 data samples were taken, all associated with XRF measurements in identical 

positions. 17 of these samples also correspond to petrographic samples. All samples were sanded 

before testing commenced. It should be noted that previous studies have stated that variation 

exists between hydrous and anhydrous samples. However when samples were tested before and 

after water was applied and allotted time to become hydrous, measurements showed negligible 

variations in this scenario. 

As mentioned previously, Studies done by Katz (2000) demonstrated a correlation between 

the R value of the Schmidt hammer to unconfined compressive strength. Although this 

correlation was used in this study, it should not be implemented due to the non-ideal rock 

conditions in this study. Other correlations, defined in table 1, have also been referred to in this 

research as a method to compare the Katz data correlations. The Katz study consisted of even 

rock types, varying in lithology. Lithologies sampled ranged from fine grained/granular 

sedimentary rocks to crystalline igneous samples, with sedimentary rocks ranging in calcite 
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cementation (Katz, 2000). The correlation coefficient of R2=0.964 was achieved, though 

excluding soft rock samples drastically reduced the resulting  R2. 

 

Figure 16: Correlation of SilverSchmidt Q value to rebound ratio and unconfined 
compressive strength, Modified from Wang 2018 
 
 

4. DATA AND OUTCROP CHARACTERISTICS 

This study utilized hand samples collected from Bone Canyon to create thin sections for 

petrographic analysis. Overall, two hand samples were collected from this research study, with 

the utilization of 13 thin sections previously created from Bone Canyon research collected 

through Andrew Brown (unpublished). Thin sections incorporated in this study encompass the 

intervals of the Cutoff Formation and 1st Bone Spring Carbonate. Table 2 displays thin section 

descriptions for all samples analyzed. Outcrop descriptions were also recorded for the Cutoff 

Formation and 1st Bone Spring Carbonate, with further separation of the 1st Bone Spring 

Carbonate into sub-formations of Carbonate A and Carbonate B. A siliceous mudstone identified 
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at the mouth of Bone Canyon, denoted as the 1st Bone Spring Carbonaceous Sand. The 

separation of the 1st Bone Spring Carbonate into intervals A and B was determined based upon 

variations in biogenic chert formation, and the identification of truncating beds and onlapping fill 

within the carbonate interval. Data collection within Bone Canyon also included the collection of 

XRF and Schmidt Hammer measurements. Overall, 140 XRF and 110 Schmidt Hammer 

Measurements were gathered, spanning the Cutoff Formation to the 1st Bone Spring 

Carbonaceous Sand.  

 

4.1. Petrography and Outcrop Descriptions 

In addition to sample collection, outcrop observations were recorded within areas of 

interest identified within the canyon. Figure 17 displays outcrop photography of four identified 

areas of interest, including the 1st Bone Spring Carbonate Sand (17A), 1st Bone Spring Carbonate 

B (17B), upper Bone Spring Limestone (17C), and the Cutoff channel sand (17D). Petrographic 

samples taken from each area serve to heighten stratigraphic interpretations within the canyon, 

with the confirmation of lithologic transitions. Overall, distinct lithology variations can be 

identified on a 1st order inference, transitioning from biogenic siliceous carbonate in 17A, to 

bedded chert-dominated mudstone within 14B, blocky, massive mudstone illustrated by 17C, as 

well as very fine, amalgamated sandstones in 17D.  Between 17B and 17C exists a Carbonate A, 

identified as nodular chert-dominated mudstone more prevalent. Outcrop interpretation from 

Carbonate B concluded that the presence of bedded chert is dominant, with the presence of few, 

large (~0.5-1m diameter) nodules are present. This interpretation is heightened by an observed 

stratigraphic unconformable surface present between the bed-dominated chert and nodular-chert 

dominated sequence, thus the two have been separated into Carbonate B followed by Carbonate 
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A stratigraphically above. Overall, this stratigraphic interpretation serves as a framework to infer 

mechanical properties from the outcrop and assign within a particular stratigraphic interval 

within the canyon. 

Figure 18B illustrates the presence of radiolarian, coupled with benthic foraminifera and 

bivalve skeletal fragments. Trolibite skeletal fragments were observed sparsely through the 

sample. Trace amounts of biogenic silica (<5%) were also observed. Overall the sample displays 

amorphous pore space throughout, coupled with dissolution dominated diagenetic features 

(Pigott, 2017). The cement consists of sparry calcite with kerogen-rich fibrous layers also 

present. No fracture-produced secondary porosity was observed within the sample.  

A kerogen-rich siliceous mudstone was identified within Transect 9, illustrated in Figure 

18D. Sitting stratigraphically below the Cutoff Conglomerate, the sample could potentially have 

been derived from the upper Bone Spring Limestone. However, this cannot be confirmed due to 

a lack of stratigraphic boundaries observed thought the boundary is likely included within a 

covered interval in Bone Canyon. Biogenic silica was also observed in trace amounts. Chert 

replacement within allochems present in sample is dominant, often found within dissolution of 

crinoid centers. Matrix consists of primarily micrite, as opposed to the sparry-dimicrite common 

within the lower Carbonate interval. Sample OU-2154-PMNM collected from transect 1 

indicated by Figure 18A displays a siliceous mudstone, dominated by biogenic silica and partial 

dolomitization. Dolomitization present within the sample can be described as having a planar-

rhombic structure, with cloudy centers and displaying a hypotropic-mosaic (Pigott, 2017). 

Radiolaria, siliceous diatoms present with dissolved skeletal fragments. Sweeping extinction 

exists within calcic spears present in thin section, suggesting low-mg calcite replacement of 

aragonite. Grading can also be observed within thin section, with very fine-grained biogenic 
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quartz encompassing fined grained silica in a spar-dimicrite matrix. The presence of radiolaria, 

diatoms, and lack of sedimentary structures from outcrop observations suggests that the interval 

observed is associated with a high-stand depositional event, supporting the high frequency of 

radiolaria sponge (Pigott, 2017). Therefore, this interval is more appropriately associated with 

the HST of the 1st Bone Spring Carbonate, contradicting past work identifying the interval as the 

1st Bone Spring Sand (Alabbad, 2017). Fractures observed from outcrop observations show a 

NW-SE trend (~120o/81SW) with calcite infill.  

Figure 18C displays a chert/chalcedony dominated wackestone. With kerogen-filled 

crinoid centers, surrounded by a sparry calcite ring. Sample OU-21560-PMNM displayed in 

Figure 18C was collected from the interbedded chert/mudstone dominated transect 4. Overall, 

chert beds within the 1st Bone Spring Carbonate show high volumes of chert/chalcedony cement, 

with ~10-20% allochem concentration. Figure 18C also reveals the presence of a radial ooid, 

which is interpreted to be transported form the shelf. Trace amounts of potassium feldspar was 

also observed in trace amounts.  Overall, petrographic investigation not only suggested the 

presence of biogenic silica  

Figure 16A consists of a photomicrograph of the Cutoff sand channel proximal to scan 

position 1. It is a subarkose displaying calcite cement and partial dolomitization. Grains consist 

of very fined grained sub-angular to angular quartz, with Potassium and albite also identified in 

trace amounts (<5%). Furthermore, abundant fracture porosity was identified within the sample, 

corresponding to lower Schmidt Hammer rebound velocity measurements and an observed 

inverse relationship with average bedding thickness. Lack of trace fossils or replacement features 

within the sample suggests a detrital sourced siliceous input, in contrast to the 1st Bone Spring 

Carbonaceous Sand biogenic source. The sand channel identified within the Cutoff Formation 
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also displays soft sediment deformation features associated with sub-aqueous depositional 

features. This deposition is interpreted to be associated with a basin-wide low stand period, a 

transition period from high-stand (FSST) (Montgomery, 1997; Crosby, 2015).  

Figure 19B illustrates the Cutoff conglomerate a Calclithite dominated by sparry calcite 

cementation. Grains are rounded to sub-rounded, poorly sorted clasts in a calcic/partially 

dolomitized matrix. Clast size ranges from 65 microns to 6 mm, consisting of allochem-

abundant, calcite-rich cobbles. Cobbles are inferred to be sourced from shelf material into deeper 

water. Furthermore, two generations of isopachous cement have been identified within the 

sample, consisting of an early stage marine cementation, with a second stage calcic spar 

isopachous cementation ring. The spar observed within the second cementation is indicative of 

marine vadose cementation. Intraclastic microcrystalline dolomitization is also observed, with 

cloudy exposure  
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Figure 17: (A) Transect 1 measured interval, inferred 1st Bone Spring Carbonaceous Sand, 
(B) Transect 6 measured interval, interpreted Bone Spring Carbonate B, (C) Transect 8 
measured interval, inferred Bone Spring Limestone, (D) Transect 9 measured section, 
interpreted Cutoff channel sand.  
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Figure 18: (A) Siliceous mudstone, from sample OU-2154-PMNM. Note Radiolarian 
present within slide. Benthic foraminifera present with ~40% biogenic silica grains. 
Dolomitization is dominated by planar-rhombic structure, cloudy centers with hypotropic 
mosaic.  (B) Radiolarian-rich Mudstone, identified within the Bone Spring Carbonate A. 
Vuggular pore space identified with dissolution-dominated diagenetic features were 
observed. (C ) Predominantly biogenic chert, with presence of micritic calcite and fossils 
also present. Trace feldspar (<5%) observed sparsely. Kerogen-filled crinoids due to center 
dissolution also present. Note presence of radial ooid, interpreted to be transported from 
upward shelf, due to its trace amount (<1%). (D) From inferred Bone Spring Limestone; 
Radiolarian-dominated mudstone. Cementation is micrite with high volumes of kerogen-
filled fractures present within the sample. Chert replacement of crinoids are common 
throughout, with biogenically sourced silica also present. Outcrop photograph can be 
observed in Figure 14C. Power 4x cpl 
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Figure 19: (A) Arkosic Quartzarenite identified within the Cutoff conglomeritic unit. Note 
the presence of secondary fracture porosity. (B) Calclithite identified within the Cutoff 
Formation in Bone Canyon. Two generations of isopachous cement can be observed, giving 
evidence for re-cementation involved with sub-aqueous, shallow exposure. Hydrocarbon 
staining around cementation rims indicates later hydrocarbon migration. Power 4x, CPL 

 

 

 

Figure 20: (A) Southwest oriented photograph of Bone Canyon, with the Brushy Canyon 
formation defined. (B) inferred later Guadalupian sedimentation. 
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Figure 21: Chert-cemented, high angle fractures identified with an approximate NE-SW 
orientation. Complimentary, shallow angle fracture with chert cementation also identified, 
with chert nodules being prevalent. Fractures labeled by red arrow 

 

4.2. XRF Data 

A total of 140 XRF measurements were recorded throughout the measured interval within 

Bone Canyon, with the purpose of identifying mineral composition of relevant stratigraphic 

intervals, and to attempt a correlation with Schmidt Hammer rebound intensity. Appendix A 

outlines derived XRF-mineralogy data from all transect measured. Sampling interval varies 

within all transects excluding transect 1, which is set at a 1ft sampling interval. This method was 

chosen with the effort to correctly represent chert bedding within the Bone Spring Carbonate. 

For determining relative correlations to the Schmidt Hammer data, the XRF estimated 

mineralogy was displayed using a weighted 2-point average, and a common sampling interval of 
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10 feet. Dominant mineralogy present within most transects consists of heavy calcite and chert 

precipitation, with secondary dolomite and clay minerals, with trace pyrite also present. It should 

be noted that transects within Bone Canyon represent measured section of the canyon and does 

not reflect vertical stratigraphic depth. Overall, trace amounts of gypsum (<6%) was observed 

only within transect 1. Pyrite was observed in larger amounts (10-20%) within all transects 

measured within Bone Canyon. Gypsum deposition within carbonates can be indicative of sub-

aqueous deposition (Schreiber, 1987), while high pyrite precipitation may be indicative of 

hydrocarbon migration (Ghazban, 2010). A Psuedo-gamma ray log was also derived using 

correlations with spectral gamma for all transects measured excluding transect 1, owing to 

malfunctions in sampling equipment previously described.  

 

4.3. SilverSchmidt data 

 Approximately 150 Schmidt Hammer rebound intensity readings were recorded 

throughout Bone Canyon, spanning roughly 914m of measured section, with 110 being utilized 

in this study. Overall, readings fluctuated from average Q of 15 to 90, with R values in the range 

of 20-85. The largest fluctuations were observed within Transect 6 and Transect 1 (Bone Spring 

Carbonate A and the 1st Bone Spring sand. Because this study did not allow for compressive 

strength tests or density measurements, Poisson’s ratio was assumed to equal √3, representing 

isotropic rock. Columns marked with ln(E) represents an intermediary step involved with the 

correlation equation of Young’s moduli, from Katz et al (2000). Furthermore, columns under 

ln(U) mark an intermediate step in the correlation equation of rebound values and unconfined 

compressive strength (UCS), also from Katz et al (2000). Rebound factors were derived from Q 

values measured with the SilverSchmidt device, using correlations derived through studies done 
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by Wrinkler and Matthews (2014). Correlation of the brittleness index defined by Wang et al to 

rebound values and R values shows no correlation. No correlations were also observed in clays 

vs R, or pseudo-gamma ray vs R. Figure 22 illustrates Quartz/Dolomite volume vs. R. Appendix 

B outlines all raw Q data collected from outcrop examination. 
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5. RESULTS 

 

5.1. LiDAR constrained stratigraphy 

Figure 23 illustrates the approximate stratigraphy of Bone Canyon. Stratigraphic 

positions were determined through the description of outcrop samples, including LiDAR based 

facies interpretation from Transect 1 through Transect 10. Figure 23 also illustrates pseudo 

gamma-ray profiles recorded for stratigraphic intervals examined. Figure 24 defines lateral 

variation in transect measurements, and their relation to formation contacts. Furthermore, an 

inferred relative sea level curve has been included, showing correlation with pseudo gamma-ray 

measurements. Pseudo gamma-ray (PGR) correlations were performed using programs created 

by John Pigott (unpublished, 2019). Equations regarding the estimation of PGR can be found in 

figure 26. Stratigraphic boundaries were interpreted based upon 1) The presence of onlapping 

beds to an unconformable surface. 2) lithologic changes identified on X-Ray Fluorescence or 

LiDAR reflectance. 3) variation in elemental proxy responses. The boundary between The Cutoff 

formation and Brushy Canyon formation was determined based upon LiDAR imagery, which 

observed lithologic facies transitioning from massive, cobble dominated calclithite to bedded, 

fine grained detrital sandstone, similar to what was interpreted by Beaubouf et al. (1999). 

Satellite images from Google Earth were used to further improve stratigraphic 

interpretations across the canyon, due to the incomplete coverage from the combined LiDAR 

image. Boundaries between the Bone Spring Limestone and the Cutoff Conglomerate were 

determined by lithology transition from detrital calclithite dominated siliciclastic deposition to 

carbonate deposition, identified from LiDAR true color images, LiDAR reflectance, thin section 

analysis and outcrop description. Stratigraphic boundaries between the Bone Spring Limestone 
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and Bone Spring Carbonate A were determined based off of the identification of a large 

unconformity, and lithology transition based on LiDAR reflectance. Boundaries between Bone 

Spring Carbonates A and B were determined through lithologic transitions from interbedded 

chert to nodular chert, accompanied by the presence of an unconformable surface at the base of 

the Transect 7 measured section. Finally, stratigraphic boundaries between the between the 1st 

Bone Spring Carbonate sand and Carbonate B were inferred based on field observations (gradual 

lithology variation throughout transects 1-3), as well as referencing to satellite imagery.  

Figure 
23: Approximation of stratigraphic positions within Bone Canyon. It should be noted that 
the Bone Spring Limestone is combined with the Bone Spring Carbonate A, for the 
purpose of clarity within a compressed satellite image. Pseudo gamma-ray collected from 
XRF data is also recorded, including an inferred sea level curve. 
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Figure 24: Relation of field-measured transects to Bone Canyon outcrop formations 
illustrating lateral variation 

 

5.2. Split-FX 

 Rock mass characterization software Split-FX utilizes XYZ RGB ASCII formatted point 

cloud data to extract fracture information such as strike orientation, strike dip, total fractures, 

fracture trace identification, and volume measurements. XYZ refers to a Euclidean spatial 

reference system in which X is latitudinal spacing, Y is longitudinal, and Z is vertical. Split-FX 

also allows the user to import true color information, R representing red, B being blue, and G 

representing green. Once imported into the software, the point cloud data must be oriented in 

reference to the relative scanning position, by specifying pitch, yaw, and relative horizontal 

position of the scanner (Hanzel, 2014; Alabbad, 2017). The ideal scanning position is 
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perpendicular to the investigation surface (Split Engineering, 2019). Once the scanning position 

has been specified, a data QC is performed, eliminating noise and outcrop cover (plants, debris, 

shadows, etc.). The desired measurement space is then specified, recording overall area 

measured. Points within the desired measurement area are then triangulated based upon user 

specified parameters such as points per triangle. Minimizing shadows can be acquired by 

increasing point spacing (Hanzel, 2014; Alabbad, 2017). In order to identify small fracture 

planes present within the outcrop, this study utilized a point spacing of 1-10 minimum points per 

triangle. Triangles are then grouped by user defined similarities including minimum patch size 

and minimum neighbor angle. This study utilized a minimum patch size of 5-13 triangles per 

patch, and a maximum neighbor angle of 13. Patches can then be viewed on a stereonet and 

selected based on orientation. Patches can represent features such as bedding planes, outcrop 

orientation, and fractures surfaces. It is imperative that the user determines which orientations 

resemble fracture surfaces, based upon outcrop interpretation. Data must be quality controlled 

based upon interpretations made in the field, as well as point cloud interpretations made in Split-

FX. 

 

5.3. Fracture Populations 

 Fracture orientations were recorded from 7 different areas of interest, including scan 

positions 1, 3, 10, 11, and 13, or the approximate positions of transects 9, 10, 7, and 6 (refer to 

Figure 7 and Figure 14). The examined scan positions encompass the Cutoff Conglomerate, 

Cutoff sand channel, Bone Spring Carbonate A, and Bone Spring Carbonate B. Strike and dip 

information were exported from Split-FX and imported into Microsoft Excel and GEOrient for 

strike frequency analysis and rose diagram creation.  Strike frequencies and dip information were 
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then referenced to field measured fracture strike and dip, defined in figure 25. This was 

conducted in order to confirm the precision of measurements within Split-FX. 

 

 

Figure 25: Ground truth (left) fracture orientations measured within the Bone Spring 
outcrop, and (right) fracture orientations measured in Split-FX. The substantial increase 
between data collected from the field and LiDAR extraction should be noted, with 6 field 
measurements in ground truth measurements and 545 extracted through Split-FX 

 

5.3.1. North Wall: Cutoff Conglomerate 

An area of 443.62 square meters of the Cutoff conglomerate north wall exposure was 

analyzed in order to extract fracture information. Figure 26 displays the analyzed section within 

Split-FX. Overall, 364 fracture planes were identified within the observed area, with bimodal 

distribution peaks in strike frequency observed within 30-70° and 150-250°. Mean resultant 

direction analyzed is 121°-301°. Primary sets are interpreted to be the NE-SW trending 30-70° 

set with a secondary set striking NW-SE. Fracture density was derived by dividing total the 

number of fractures by square meter of area observed. Subsequently, fracture density was 

observed to be 0.821 fractures per square meter. Average bedding thickness observed within the 

N N 
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Cutoff conglomerate was 1.646 meters to 1.746 meters. Average bed thickness was gathered 

using the ruler function within Split-fx and compared with field observations to ensure 

procession.  The Cutoff Conglomerate within the North wall has the highest observed bedding 

thickness, with the lowest recorded fracture density. Figure 27 illustrates strike information from 

stereonet view, strike frequency, rose diagram view, area observed, total number of fractures, 

and fracture density.  

 

Figure 26: LiDAR image of cutoff conglomerate, proximal to transect 10. Average bed 
thickness observed within the analyzed interval was 1.2 meters, with a fracture density of 
0.821 per meter squared.  
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5.3.2. North Wall: Cutoff Sand Channel 

The Cutoff channel sand identified within the Cutoff conglomerate consists of 167 square 

meters of area, with a total of 772 fractures identified. Figure 28 shows the examined interval of 

point cloud data within Split-FX. Overall, strike frequencies extracted from Split-FX show a 

normal distribution, with a mode of 40-50° (NE-SW). a minor, orthogonal secondary fracture set 

can be observed at 120-140° strike (NW-SE). Average bed thickness observed within the 

examined interval is 0.266-0.321 meters, with a fracture density of 4.6 per square meter. Figure 

29 displays strike frequency within a 2D chart view, with a stereonet view of all fracture great 

circles, as well as strike frequency in rose diagram view, with area observed, fracture density, 

and total fractures identified. 

 

Figure 28: True color point cloud view of Cutoff channel within Split-FX.  
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5.3.3. Scan Position 3: Bone Spring unconformity 

A large, laterally extensive unconformable surface was examined between the 1st Bone 

Spring Carbonate A and the upper Bone Spring Limestone (transect 8 and tranest 10), with 

LiDAR reflectance of the interval giving evidence for lithology changes across this surface. 

Figure 30 illustrates the LiDAR reflective image within Riscan Pro, with reflectance variation 

indicated by the fluctuation from high reflectance (warm colors) to low reflectance (green). 

Stratigraphic interpretation within this interval includes the 1st Bone Spring Carbonate A overlain 

by the Upper Bone Spring limestone at the unconformable surface. Positions above and below 

the unconformable surface was analyzed, as well as the entirety of the section, analyzed in a 

position juxtaposed to the area observed in Figure 30. Overall, a 103.82 square meter area 

analyzed above the unconformity identified 463 fractures, with a dominate NW-SE striking set 

and a minor hexagonal NE-SW striking set. Fracture density is approximately 4.46 per meter 

squared. Figure 31 illustrates fracture data collected from Split-FX. Furthermore, large fractures 

observed within the image appear to terminate at the unconformable surface. This could have 

significance in the relative chronology of fracture formation. An area of 105.46 square meters 

was analyzed below the unconformable surface, identifying 92 fractures. Dominate strike 

frequency changes to NE-SW, with a minor NW-SE hexagonal set present. Figure 32 illustrates 

fracture data gathered from Split-FX software. Fracture density below the unconformity was 

observed to be 0.87 per square meter, yielding a substantially lower fracture density than the 

previously analyzed section positioned above. This low fracture density could be due potentially 

to a vertical lithology fluctuation, based upon the correlations found in this study. Figure 33 

illustrates fracture analysis of both above and below the unconformity. 
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5.3.4. Transect 7: Bone Spring Carbonate A 

Transect 7 consisted of 50 XRF and Schmidt hammer recordings, spanning ~ 400 ft of 

measured section. Figure 34 illustrates the measuring position of 13 scan locations (red-filled 

circles) as well as fracture traces identified within the outcrop (magenta planes). In total, 111.99 

square meters were analyzed, with 545 fractures identified and multiple sets observed. The area 

analyzed within Transect 7 lacks the set uniformity which was observed in other positions. This 

could be a result of mass heterogeneities present within Carbonate A. relative strike direction 

identified within Transect 7 includes a relative NE-SW trending set, with a minor NW-SE 

trending minor fracture set. Transect 7 also possesses the highest fracture density of any interval 

examined, with 4.866 per square meter. This could potentially be due to the finer scan quality, 

giving the interpreter the ability to identify more fracture traces.  

 

Figure 34: Transect 7 true color scan within Split-FX. Red filled dots show XRD and 
Schmidt Hammer measuring positions. Magenta planes indicate fracture traces 
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Figure 35 illustrates fracture data collected from Split-FX rock mass characterization 

software of transect 7.  Figure 36 displays bed truncation in addition to onlapping sediment fill at 

the base of transect 7, with XRF/Schmidt hammer measurement positions identified through red-

filled circles. Overall, the bottom section of Transect 7 shows clearer fracture sets, with strike 

frequency showing a dominant NW-SE trending set, and a minor, secondary set of hexagonal 

NE-SW striking fractures. Two fractures were identified which display substantially shallow 

dips, relative to other sets identified. It is likely that the stress associated with the formation of 

these individual fractures is unrelated to those forming the dominantly steep sets examined, and 

likely suggests multiple stress events with varying maximum stress orientations. Figure 37 

 illustrates fracture data collected from Split-FX, with stereonet view present. Stereonet 

view present within Figure 37 shows main fracture set (blue) with secondary hexagonal set (red) 

displayed with trace fracture great circles (black) and total fracture poles. Pole circumference 

corresponds to relative fracture length. The two great circles seen within stereonet view 

displaying shallow dip angles corresponds to previously mentioned tertiary set of shallow 

dipping fractures, however, display similar strike orientations with other fracture traces and the 

secondary fracture set identified. The observed fracture density for this observed interval is 2.79 

per meter squared, with a total examined area of 122.31 meters squared and 342 fractures 

identified. Figure  
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5.3.5. Transect 6: Bone Spring Carbonate B 

Strike frequencies within Transect 6 (Carbonate B) show a bimodal distribution, with a 

primary NW-SE trending fracture set and a secondary hexagonal NE-SW trending set. 

Difference angle between both modes is between 60-70°. Overall, a majority of fractures 

identified within the 188.41 square meters analyzed show shallow dip, with trace fractures 

striking approximately N-S. Fracture density observed within this interval show 2.558 per meter 

squared, with 482 total fractures identified. Highest frequency of fractures occurs at a strike of 

120-130°. The reoccurrence of bimodal fracture sets within the Bone Spring Carbonate B could 

be due to the presence of bedded biogenic chert, as opposed to nodular chert observed within 

Carbonate A. However, further examination should be done to confirm this interpretation. Figure 

38 illustrates the analyzed section. Figure 39 displays Fracture data gathered from Split-FX 

software.  

 

Figure 38: True color point cloud image of transect 6, within the Bone Spring Carbonate B.  
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5.3.6. Population Summary 

 Overall, fracture populations within Bone Canyon show NW-SE and NE-SW trending 

primary orientations, showing hexagonal sets within carbonate units and orthogonal sets within 

siliciclastic packages. The coulombic nature of fracture sets analyzed within Carbonate A and B 

could be indicative of heterogeneity within the 1st Bone Spring Carbonate, and highly isotropic 

rock mass observed within the cutoff sand channel. An initial interpretation of stratigraphy and 

fracture orientation frequency data reveals that primary orientations appear to shift above the 

unconformable surface identified at the top of the 1st Bone Spring Carbonate A and the Upper 

Bone Spring Limestone. These findings vary with work done by Alabbad (2017), which 

analyzed E-W orientations within the Brushy Canyon Formation within the Bone Canyon 

outcrop. Structural dip observed on fractures identified within Transect 6 show shallower dip 

angles than other intervals analyzed.  

 

5.4. XRF cluster analysis 

A statistical cluster analysis was performed on 27 major and trace elements collected 

from XRF measurements, with rebound values correlated from Q. Cluster analysis includes 

hierarchal cluster analysis performed on the Minitab statistical program, measuring correlations 

in fluctuations between rebound values corrections from the SilverSchmidt device to XRF-

derived elemental abundances. Rebound values were also analyzed with elemental abundances. 

Elemental abundances are reported in weight (ppm) while R is a unitless value. The purpose of 

the statistical cluster analysis was to partition elements in correlation to rock type present within 

the Bone Canyon outcrop, and to correlate with rebound values. Overall, 6-8 clusters were 

identified within three individual cluster analysis. Figures 40, 42, and 43 display dendrograms of 
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cluster analysis conducted on transect 1 (1st Bone Spring Carbonate Sand), transect 6 (1st Bone 

Spring Carbonate B), transect 7 (1st Bone Spring Carbonate A). Overall, rebound values and 

inferred UCS values show a negative correlation with elements associated with clastic 

mineralization, including biogenic silica, detrital sedimentation (Cutoff formation), and clays 

with associated feldspar mineralogy. Figure 41 illustrates defined increases in Ca/Al, with 

decreases in Zr and Ti within the 1st Bone Spring Carbonate Sand. This further supports the 

interpretation regarding the presence of biogenic silica, produced during HST time. R values 

show similarity with elements associated with carbonate deposition. Furthermore, R shows a 

strong negative relation with Mo, Cu, Ni, U, and V. In Figure 40, transect 1 shows a non-

correlation with Cu, Mo and V. Therefore, a x-y cross-plot correlation was applied in order to 

compare various elemental proxies to Q values, illustrated in figure 41. Displayed in Figure 43, 

R shows a neutral relation with Cu. The strongest positive elemental correlation seen with R is 

observed between Barium and Calcium. This infers that R shows highest similarity with high 

precipitation of dolomite and carbonate content. Uranium and Thorium are absent from cluster 

analysis of transect 1 due to internal errors within the Thermo Scientific X-Ray Fluorescence 

measurement device U and Th are present for all other examined intervals. 
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5.4.1. Transect 1 (1st Bone Spring Carbonate Sand) 
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5.4.2. Transect 6 (1st Bone Spring Carbonate A) 
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5.4.3. Transect 7 (1st Bone Spring Carbonate B) 
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5.5. XRF and LiDAR Constrained Lithology 

Once statistical analysis was conducted on major and selected trace elements, XRF 

mineralogy was derived and correlated to LiDAR reflectance. The purpose of correlating XRF 

mineralogy to point cloud imagery reflectance was to constrain large scale lithology 

interpretations and confirm precision among interpretations within a multi-facetted geologic 

framework. In order to clearly and accurately infer mechanical properties and characterize 

fractures within Bone Canyon, a clear, laterally extensive interpretation of lithofacies is needed. 

Figures 44 through 47 display LiDAR reflectance of the Bone Spring Carbonate A, Bone Spring 

Carbonate B, Transect 8 (inferred Bone Spring Limestone), and Cutoff channel sand. LiDAR 

reflectance is displayed with a pie chart representation of derived XRF mineralogy present at 

XRF measurements indicated by red arrows.  

Higher reflection (>0db) is identified with warm colors (yellow, orange, red), while lower 

reflectance (<0db) displayed with cooler colors (green, blue, purple). Within charts illustrating 

XRF mineralogy, purple indicates relative dolomite, blue indicates calcite, red indicates pyrite, 

brown highlights albite-mica clays, pink indicates potassium feldspar, and light blue indicates 

gypsum. Figures 46 and 47 show thin section petrographic photographs at approximate 

collection location. Overall, higher reflection illuminates intervals of large relative silica content, 

confirmed by mineralogy and petrographic interpretation. Lower reflection corresponds with 

high calcite precipitation. The attributes which are able to differentiate dolomite from other 

major mineral abundances such as quartz and calcite could not be observed. Furthermore, no 

correlation is detected for the presence of clays with LiDAR reflectance.  
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5.5.1. 1st Bone Spring Carbonate B 
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5.5.2. 1st Bone Spring Carbonate A 
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5.5.3. Bone Spring Limestone 

 

 

Fi
gu

re
 4

6:
 L

iD
A

R
 r

ef
le

ct
an

ce
 d

is
pl

ay
ed

 w
ith

 p
et

ro
gr

ap
hi

c 
sl

id
e 

O
U

-2
16

1-
PM

N
M

. R
ed

 a
rr

ow
 

in
di

ca
te

s r
el

at
iv

e 
sa

m
pl

e 
co

lle
ct

io
n 

lo
ca

tio
n.

  

 



` 

82 
 

5.5.4. Cutoff Channel 
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6. DISCUSSION 

6.1. Anoxic/Euxinic proxy correlation 

 Based upon elemental data and their cluster analysis, correlative positive cluster elements 

such as Mo, U, V, Ni, Cu can be interpreted to suggest anoxic/euxinic depositional environments 

that could be associated with high organic content. Studies by Trillovallard et al (2006) 

concluded that high enrichment of elements such as Mo, Ni, and Cu are correspondent to high 

TOC enrichment, due to their association with pyrite and sulfur precipitation in organic phases. 

Within anoxic phases, Ni and Cu are trapped after the decay of organic material within iron 

sulfides (Trillovallard et al., 2006), which result in a good correlation with TOC. Within this 

anoxic phase, uptake of associated trace elements is restricted by the presence of compatible 

organic substrates (Trillovallard et al., 2006). Anoxic proxies which are from Trillavallard et al’s 

study illustrate elements relationships observed with TOC vs Uranium, Nickel, Copper, and 

Vanadium. Euxinic environmental proxies defined by the relationship between TOC vs Nickel, 

Uranium, and Molybdenum. Elimination of Uranium and Vanadium as euxinic environmental 

proxy with TOC is due to U and V association with authigenic phases within euxinic 

environments. Figure 48 illustrates relationships with elemental proxy’s vs TOC. Overall, the 

purpose of this correlation was to identify positive correlations with high trace element 

enrichment associated with TOC-rich zones and areas of high rebound intensity. Work done by 

Verma et al (2017) details relationships with high TOC content, high clay input and plastic 

deformation among enriched intervals. Research done by Verma et al (2017) has inferred that 

intervals which possess brittle-ductile couplets (zones identified by high-low strength packages) 

are the “sweet spot” for high fracability. These zones, defined in the previously mentioned study, 

appear to be present within the canyon. Though the study by Verma et al characterizes strength 



` 

84 
 

couplets with mineralogy-derived strength correlations, correlations with TOC and elastic 

deformation are well documented (Slatt and Abousleiman, 2011; Verma et al., 2017).  

 Overall, trends with paleoenvironment elemental proxies have been identified within 

transects 2-5, 6, and 7. Scatter-plots illustrated in Figure 49 show a significant correlation 

between Ni and Q, which corresponds to research conducted by Williams et al (2015). Figure 50 

displays trace elements Nickel, Copper with XRF-derived mineralogy and R values associated 

with transect 1. Reducing Vanadium concentration roughly result in decreasing rebound 

intensity, and vice versa. Likewise, Nickel shows similar correlation with R values. Increases in 

rebound intensity also seem to correlate slightly with increases in dolomite concentrations. 

Intervals associated with elevated silica show corresponding decreases in rebound values, as 

shown in Figure 25.  

 Figure 50 defines rebound values correlated with XRF derived mineralogy, Nickel and 

Copper concentrations. It should be noted that, when defined in a statistical analysis, Copper 

shows a neutral correlation with R values, however in practical use shows high similarities with 

nickel. Furthermore, for accurate correlation with elemental proxies and R values, weighted 

average was omitted from this correlation, and mineralogy was correlated on the measured 

sampling interval. High correlation between Ni, Cu vs R values can be observed, with the 

exception of intervals encompassing 475ft – 445ft, ~325ft - ~275ft, and ~25ft – 0ft. These 

findings correspond to previous studies utilizing this method (Williams, 2015; Crowell, 2018). 

The influx of clay minerals such as kaolinite could explain this variation in R values vs elemental 

proxies. Initial examinations show further correlations of high-strength intervals and increases in 

calcite percent. Likewise, an influx in biogenic chert precipitation show decreases in rebound 

intensity. This could serve to prove further correlations with rock strength and 
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paleoenvironmental interpretations. Trace amounts of gypsum were also identified within the 

interval 9-10ft. This could serve paleo environmental interpretations of sub-aqueous 

sedimentation or biogenic silica precipitation. 

 Transect 7, illustrated in Figure 51, identifies correlations with R values, XRF derived 

mineralogy, Nickel, and Copper. for accurate correlation with elemental proxies and R values, 

weighted average was omitted from this correlation, and mineralogy was correlated on the 

measured sampling interval. Both Nickel and Copper show similarity with R values when 

examined within a statistical analysis. Overall, like transect 6, fluctuations seem to correspond to 

variations in elemental proxies and carbonate/chert enrichment. Relatively, decreases in Nickel 

and Copper concentrations tend to correspond with drops in rebound intensity. Likewise, 

increases in Nickel and Copper concentrations tend to relate to an increase in R values. Like the 

comparisons made within transect 6, anomalies within this relationship could be explained 

through an influx of kaolinite-rich clays, however further examination would be required to 

confirm this hypothesis. Further research within Bone Canyon could reveal potential correlations 

with paleo-environment and rebound intensity, through geochemical analysis combined with 

chemostratigraphy, and highly detailed sequence stratigraphy, combined with subsurface well 

and seismic correlations.  
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Figure 48: Schematic diagram illustrating the relative enrichment of Ni, Cu, Mo, U and V 
versus total organic carbon (TOC). TE stands for trace elements and OM stands for 
organic matter (Trillovallard et al., 2006) 
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Figure 49: 2D scatter-plot view, depicting a substantial correlation between Q and Ni in 
data points collected from transects 1-10. Q vs Cu show a less substantial correlation. It 
should be noted that a majority of data points illustrated in figure 49 lie within a mudstone 
lithology, as opposed to chert. 

 

 

Figure 50: (A) R values derived from SilverSchmidt hardness test, (B) XRF mineralogy in 
weight percent, (C) nickel concentration in ppm, (D) copper concentration in ppm 

 

Figure 51: (A) R values from SilverSchmidt hardness test, (B) XRF mineralogy, (C) nickel 
concentration in ppm, (D) copper concentration in weight percent for Transect 7 
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6.2. Trends in Rebound Hardness 

 The identification of high-low strength couplets has been identified within the Bone 

Spring Carbonate, through hardness tests conducted on the measured section within Bone 

Canyon. Figure 52 illustrates rebound hardness (A) with XRF-derived mineralogy (B). The 1st 

Bone Spring Carbonate Sand and the 1st Bone Spring Carbonate B are identified to the left, with 

a sampling interval between 11-28 ft, with a detailed examination of transect 1 on the left, with a 

1ft sampling interval. Overall, strength variation with a frequency of 1-2ft exists within a 

detailed interval, possibly controlled by organic content input and fine-scale paleo-environmental 

transitions. The accumulation of siliceous radiolarian sponges within the area comprising the 

Bone canyon during Leonardian time (Pray, 1988) and subsequent precipitation of chert within 

the upper Bone Spring could be proven as a paleo-driven factor of rebound hardness. 

Dolomitization of chert intervals also has a significant correlation with rebound hardness, with 

petrographic examination and XRF-derivation of mineralogy confirming dolomite within the 

upper Bone Spring. The in-situ production of chert/diagenetic precipitation of dolomite and their 

relationship with rebound hardness, however, seem to be less significant than paleoenvironment 

and oxygen input. statistical analysis shows stronger correlations with specific mineralogy 

precipitation.  

It is important to compare bound intensity values with compressive strength tests and 

fracture toughness examinations, rather than derived associations with mineralogy. Therefore, 

when attempting to use proxies to correlate rock strength, it is important to interpret 

paleoenvironmental drivers as opposed to lithology. It is the secondary objective of this study to 

correlate rock strength to paleo-environmental indicators, with a primary objective to first 

characterize rock strength within the upper Bone Spring Carbonate. Further work within the 
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canyon on this subject should reveal similar relationships within stratigraphic intervals further 

within the canyon, such as the Bone Spring Carbonate A, Bone Spring Limestone, and Cutoff 

formation, though paleo-environmental interpretations should differ within the Bone Spring 

Limestone and Cutoff Formation. 

 

Figure 52: (left) transects 1-5 with (A) Rebound values and (B) XRF-derived mineralogy. 
(right) defines high-low strength couplets with identical logs views shown. Green shading 
shows R < 60, Red shading defines intervals where R > 60 

 

6.3. Fracture Characterization 

6.3.1. Fracture Orientation Distribution 

The distribution of fracture orientations within the canyon can be observed within Figure 

52, defining a proposed 2D strength model, constrained by canyon stratigraphy and determined 

through uniaxial strength testing of the measured section within the canyon. Overall, intervals 

(A) 

(B) (B) 

(A) 



` 

90 
 

examined within the Cutoff show primary fracture orientations with a NE-SW strike, and a 

secondary NW-SE set. This varies from the NW-SE primary set which the majority of the Bone 

Spring Carbonate B examined intervals possess. There is also evidence suggesting the 

termination of large, NW striking fractures by an unconformable surface examined at scan 

position 3. NE striking fractures also examined proximal to scan position 3 are observed to 

permeate through this unconformity. It is possible that this unconformity examined at scan 

position 3 could correspond to a large unconformity examined within Shummard Canyon 

adjacent to Bone Canyon. The confirmation of relative age of this unconformable surface could 

lead to the age dating of associated stress events in Bone Canyon. Fracture traces, although 

partially interpreted from LiDAR imagery, were not able to be extracted using Split-FX, due to a 

failure of the mesh to define a fracture plane. 

The curvature of the canyon wall may apply a bias to collected data and affect the ability 

to identify continuous fractures within the outcrop (Alabbad, 2017) from LiDAR. The orientation 

of Bone Canyon outcrop has been defined by Alabbad (2017) to have a curvilinear orientation 

(south wall, brushy canyon formation) with a dominant orientation of NW-SE. The curvilinear 

nature of the outcrop could prevent identification of fractures within the upper Bone Canyon. 

Therefore, interpretation bias should be considered for NW-SE orientations. Further examination 

of fracture orientations within the canyon should focus on LiDAR imagery and fracture 

characterization of the lower Bone Canyon, encompassing the lower Carbonate B and 1st Bone 

Carbonate Sand. The inference of fracture density and orientations within the lower interval are 

dominantly NW-SE fracture orientations with increased fracture density and average bed 

thickness similar to Carbonate B. This inference is based upon field observations, XRF sampling 
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and Schmidt Hammer rebound hardness testing. However, this information should be confirmed 

through LiDAR imagery. 

6.3.2. Distribution of fracture density and bed thickness 

In total, 3,407 fractures were identified within the upper section of the 1st Bone Spring 

Carbonate. Fracture density and average bed thickness within the canyon show an inverse 

relationship, with an increase of average bed thickness showing a decrease in fracture density. 

This is comparable to findings by McGinnis (2017).  Likewise, decrease in average bed thickness 

reveals an increase in fracture density. Figure 53 illustrates the relationship between fracture 

density and average bed thickness (left track). From correlations with average bed thickness, 

fracture density, and rebound values, fracture density appears to become elevated where rebound 

values are low. According to the set standards (International Association of Engineering 

Geologists), (International Society for Rock Mechanics), and (geological society), R values 

measured from the Bone Spring outcrop represent strong rock (<50 geological society and IAEG, 

<60 ISRM), with varying degrees of rock hardness (Sajid & Arif, 2015). Intervals which show 

moderate to soft rock (>50) values include the Cutoff channel sand, Bone Spring Carbonate B, 

and the 1st Bone Spring Carbonate Sand. However, within the 1st Bone Spring Carbonate Sand, 

1ft-scale strength couplets are prevalent, with values ranging from ~5 (weak) to 80 (extremely 

strong) (Sajid & Arif, 2015). These fine-scale fluctuations in organic rich, hard shale and soft, 

siliceous material make for ideal targets for hydraulic fracture stimulation (Verma et al., 2017).  

Figure 54 defines an inverse relationship between average bedding thickness and fracture 

density measured in Split-FX. Also displayed, a logarithmic correlation with R2=0.7201 

(R2=0.4042 when fracture density below unconformity is included) 
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6.3.3. 2D rock strength model 
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6.4. Implications for Future Work 

The findings of this study should be considered preliminary, with a need for further study 

regarding compressive strength testing. Strength inference based on triaxial compressive strength 

tests to would be able to varify correlations with Schmidt hammer data within the interpretted 

stratigraphic framework. Though UCS can be utilized for the recognition of strength properties 

to relate with the rock, factors such as fracture toughness can provide more relevant information 

(Bai, 2016). Furthermore, the verification of fine-scale high/low strength couplets within the 

measured intervals of the Cutoff channel sand, Cutoff formation, Bone Spring Limestone, Bone 

Spring Carbonate A and Bone Spring Carbonate B is necessary for identification of intervals 

with geomechanical properties ideal for hydraulic fracturing. Mechanical data from outcrop also 

should be correlated with subsurface well data, such as interpretive lithology models, dipole 

sonic logs, seismic data, DAS, DTS, microseismic, and relative correlation to conventional well 

logs in order to varify mechanical properties within the subsurface. It should be noted that the 

effects of weathering could eliminate fracture surfaces within outcrop, and therefore fracture 

densities could be elevated within the subsurface, compared to this study. 

Though evidence of biogenic silica exists within the interval identified as the 1st Bone 

Spring Carbonate Sand, further chemostratigraphic analysis and biostratigraphy should be 

implemented to confirm the subdivision of the Bone Spring within Bone Canyon. Furthermore, 

the implementation of mechanical stratigraphy within the canyon to subsurface would not only 

support the geomechanical data inferred from the Bone Spring outcrop but would also serve to 

support stratigraphic interpretations made utilizing LiDAR imagery, satellite imagery, and XRF-

derived mineralogy correlations. Likewise, geochemical analysis (for example, TOC analysis) of 

the Bone Spring outcrop could support proxy correlations with other factors defined in this 
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study. (Trillovollard et al., 2006). These results would allow the comparison of TOC data with 

uniaxial and triaxial compressive tests. 

Idealistically, correlation of fracture orientations and dip information gathered from Bone 

Canyon correlated to subsurface image logs, such as formation imaging or borehole imaging, 

would support the data inferred in this study. Furthermore, the differentiation of sealed and open 

fractures would further support fracture characterization within the 1st Bone Spring Formation. 

Combined with horizontal fluctuations of fracture length and density, the definition of open and 

sealed fractures within the canyon can also give an integrated fracture characterization of the 1st 

Bone Spring Carbonate within Bone Canyon. Furthermore, initial observations from this study 

suggests fracture fill between the 1st Bone Spring Carbonate and the 1st Bone Spring Carbonate 

A are different, where chert cementation being dominant within Carbonate A. These findings 

would suggest a diagenetic influence. Correlation of this research and work done by Alabbad 

(2017) indicate vast fluctuations of fractures orientations and density. The confirmation of 

Alabbad’s work would give insight into mechanical information within the Brushy Canyon 

Formation. Furthermore, the collection of density data could give insight into velocity properties 

within Bone Canyon and could be compared with velocity correlations derived from this study, 

using a common Poisson’s ratio.  
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7. CONCLUSIONS 

Results from this study supports the presence of fine-scale fluctuations in rock hardness 

within the lower interval up the upper Bone Spring formation, on the magnitude of 1-2ft. Results 

also suggest that anoxic/euxinic proxies indicative of a high TOC concentration can assist in the 

identification of fine-scale rock hardness fluctuations. A positive correlation of rebound hardness 

and high TOC paleo-environmental proxies can aid in the interpretation of high-low strength 

couplets within the 1st Bone Spring Carbonate. The lithological variations, although a factor, 

were observed to have less significance to variations in rock hardness than fluctuations in oxygen 

with paleo-time. Areas defined by low rebound measurements show a substantial correlation 

with areas of increased fracture density. The presence of an inverse relation with average bed 

thickness and R values also exists. The highest fracture densites measured within the canyon are 

observed within the Cutoff channel sand and the 1st Bone Spring Carbonate A. This correlates 

with rebound values recorded within these intervals.  

The presence of bimodal strike frequency peaks in fracture data, within various measurement 

locations within the Bone Spring outcrop supports the identification of primary and secondary 

fracture sets. This is coupled with the identification of formation permeating fractures. 

Preliminary interpretation from this study supports the occurrence of stress events creating NW-

SE fractures, followed by varying maximum stress direction events supporting the creation of 

NE-SW trending fracture sets. Further research would heighten the understanding of mechanical 

stratigraphy and characterized fractures included within these findings. 
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The Main conclusions identified from this study are as follows: 

• Primary fracture orientations within the upper Bone Spring include a NW-SE trending 

primary set in the Bone Spring Limestone, and 1st Bone Spring Carbonate B, with a 

hexagonal NE-SW trending secondary set. Primary orientations are identified as 

dominantly NE-SE in the interbedded Chert-Mudstone Carbonate A.  

• The highest fracture densities are observed within the 1st Bone Spring Carbonate interval 

A and the Cutoff channel. An inverse correlation was observed with bedding thickness 

and fracture density. 

• Anoxic/Euxinic proxies show a substantial positive correlation with rebound hardness in 

transect 6 (1st Bone Spring Carbonate B) and transect 7 (1st Bone Spring Carbonate A). 

Positive correlations were also observed with dolomite volume vs Q and quartz volume 

vs Q 

• Fine-scale (1ft scale) hardness fluctuations have been interpreted within the 1st Bone 

Spring Carbonate Sand. Further research could verify the relations of hardness and rock 

strength within the canyon. 
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APPENDIX B: Raw SilverSchmidt data 

 

 

 

 

 

 

 

 



` 

109 
 

 



` 

110 
 

 



` 

111 
 

 



` 

112 
 

 


