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Abstract

This dissertation has two parts. In the first part, we revisit the correspondence

between spaces of modular forms and orders in quaternion algebras addressed first

by Eichler and completed by Hijikata, Pizer, and Shemanske, using an arbitrary

definite quaternion algebra with arbitrary level. We present explicit bases for orders

of arbitrary level N > 1 in definite rational quaternion algebras. These orders have

applications to computations of spaces of elliptic and quaternionic modular forms.

In the second part, we investigate the behavior of quaternionic modular forms. In

particular, we calculate quaternionic modular forms of weight 2, and illustrate a use

of the orders constructed in the first part. We use these forms to explore the behavior

of spaces of quaternionic cusp forms of weight 2 and level N , and make a number of

conjectures concerning the behavior of zeros of such quaternionic modular forms.

In particular, we use dimension formulas and the action of involutions on our space

to predict certain zeros of quaternionic modular forms (which we call trivial zeros),

and conjecture that the ratio of the number of zerofree forms of level ≤ N to the

number of forms with no trivial zeros tends to 1 as N goes to infinity. Finally, we

analyze asymptotics of the growth rate of trivial zeros, and provide a histogram of

the distribution of nontrivial zeros with respect to the degrees of factors associated to

them. We also provide data on a variety of quaternionic modular forms in Appendix

A.

ix



Introduction

Let Sk (N ) denote the space of elliptic cusp forms of weight k on Γ0(N ) with

trivial character. Denote by B a definite quaternion algebra over Q, and denote

by O an order in B. In 1940, Hecke conjectured that for a prime p, a basis for

S2(p) could be obtained via the theta series associated to a set of one-sided O-ideal

class representatives, where O is a maximal order in the definite quaternion algebra

ramified at p and ∞. In 1956, Eichler [4] proved that there was indeed a basis for

S2(p) taken from a more general collection of theta series associated to O obtained

via certain arithmetically defined matrices associated to the order called Brandt

matrices. Hijikata, Pizer and Shemanske [7] generalized Eichler’s work to arbitrary

level in 1989 by working with orders of level N = pr M in a definite quaternion

algebra ramified at p and ∞. More recently, Martin [12] treated the basis problem

using orders in algebras with more general discriminant.

Much of the literature on the subject of these orders involves fixing a definite

quaternion algebra B ramified at p and∞, and explicit bases for the orders involved

are limited. For example, Pizer [18] presents bases for maximal orders of the definite

algebras ramified at a single finite prime. Albert [1] and Ibukiyama [8] also present

bases for maximal orders of definite quaternion algebras. Pacetti and Rodriguez-

Villegas [15] also provide bases for orders of level p2. More generally, orders of

level N can be used to construct modular forms of level N . Note that there are
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other approaches to this, for instance modular symbols or an approach of Dembélé

[3] which only requires the use of maximal orders. Pacetti and Sirolli [16] also

compute Bass orders over a totally real field, as well as ideal class representatives

(note that the orders considered here are also Bass orders). One can algorithmically

construct more general orders, but explicit bases were not known. Moreover, explicit

construction of non-maximal orders is also useful for computations of quaternionic

modular forms via Brandt matrices, which we address in Chapter 3. Specifically,

computations of these quaternionic modular forms will allow us to address questions

raised in [11].

We begin by presenting the background on quaternion algebras and modular

forms, including a variety of pertinent number-theoretic objects used in Chapters 2

and 3. This serves as the foundation for the subsequent chapters.

We continue in Chapter 2, presenting explicit bases for orders of arbitrary level

N > 1 in definite rational quaternion algebras. These results have been checked for

∆ ≤ 1000 and N ≤10,000 in Sage via discriminant computations. Furthermore,

we can construct these orders in arbitrary definite rational quaternion algebras for

admissible levels N , where an admissible level N is one in which the discriminant

of the quaternion algebra divides N (note that this is a necessary condition to obtain

an order of level N in B). Our construction works in every case except where

v2(N ) = 2 and the discriminant of B is even. In this case, we can construct an order

with level N = 4N ′ (with N ′ odd) in a quaternion algebra with even discriminant if∏
p|RM1,p,2 p ≡ 1 mod 4, where we have written our level as N = RM for relatively

prime R and M , where the discriminant of B divides R, and split M into M1 and

M2, where the factors of M1 are the primes in N which have odd exponent, and the

factors of M2 are the primes in N which have even exponent.

We conclude in Chapter 3 with a construction and analysis of weight 2 quater-
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nionic modular forms over Q. Quaternionic modular forms in certain Atkin-Lehner

eigenspaces have trivial zeros. We conjecture that almost all quaternionic modular

forms with no trivial zeros in fact have no zeros. To motivate our conjectures we

begin by describing a construction algorithm for computing quaternionic modular

forms of weight 2 and level N ∈ Sq∗, where Sq∗ is the set of positive squarefree

integers which are a product of an odd number of primes. We then proceed to

describe data collected counting both the number of trivial zeros (for prime level)

and the number of zerofree quaternionic modular forms of level L ∈ Sq∗ ≤ N ,

and connect this data to the number of forms with no trivial zeros which we can

predict via dimensions of Atkin-Lehner eigenspaces calculated using results from

[14]. This determines how many quaternionic modular forms have no trivial zeros.

We conjecture that, for N a squarefree product of an odd number of primes, the

ratio of the number of zerofree quaternionic modular forms of level L ≤ N to the

number of forms with no trivial zeros of level L ≤ N tends to 1 as N → ∞, and

provide data for prime N up to 7500, and for nonprime level L ∈ Sq∗ up to 3000.

We also compare the number of nontrivial zeros which occur for prime level to the

number which occur for squarefree levels which are a product of an odd number

of primes. We then expand our considerations to quaternionic modular forms of

arbitrary levels which are a product of an odd number of primes, constructed via

the algorithm presented in Chapter 2. Lastly, we analyze asymptotics of the growth

rate of trivial zeros, and provide a histogram of the distribution of nontrivial zeros

with respect to the degrees of factors associated to them.

Appendix A contains tables of cuspidal quaternionic modular forms of level

N ∈ Sq∗ ≤ 100 for reference, along with their associated global root numbers w f .
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Chapter 1

Background

In this chapter we will gather relevant information on quadratic fields and quaternion

algebras. We will also provide some useful results on the splitting of quaternion

algebras, and we discuss quadratic residues and quadratic reciprocity, which are

relevant to the calculations of the splitting criteria. We also present a brief descrip-

tion of the theory of orders in quaternion algebras and their ideal theory. For more

background, Vignéras [19] is the classical source, but for a more recent source one

may find Voight [20] of help.

We also describe modular forms and related results in some detail, with specific

emphasis on connections with quaternion algebras via the construction of Brandt

matrices. We also briefly visit the theory of old- and newforms of Atkin and Lehner

[2].
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1.1. Quaternions

1.1. Quadratic fields

Consider the quadratic field K = Q(
√

a) and its ring of integers oK . It is well-

known that oK = Z
[
1+
√

a
2

]
and disc(K ) = a if a ≡ 1 mod 4, and oK = Z

[√
a

]

and disc(K ) = 4a otherwise. We wish to use the quadratic field K to control the

behavior of our order O, since we have K ⊂ B =
(

a,b
Q

)
. Now consider the local field

Kp = Qp(
√

a) and its behavior at p:

Lemma 1. Let K = Qp(
√

a). If p|a then Kp is ramified, but if
(

a
p

)
= −1 then Kp

is unramified, and if
(

a
p

)
= 1 then Kp is split. For p = 2, if a is even then K2 is

ramified, and if a ≡ ±1 mod 8 then K2 is split, but if a ≡ ±3 mod 8 then K2 is

unramified.

1.1. Quaternion algebras

Now consider a simple algebra A. By Wedderburn’s theorem, we know that any

simple algebra with dimension < 4 is a field; hence, the first interesting simple alge-

bras have dimension 4, and these are our subject of study. Recall that a quaternion

algebra overQ is a four-dimensional central simpleQ-algebra. Note that any quater-

nion algebra over Q is either a noncommutative division algebra or the split matrix

algebra M2(Q); we write (a, b)Q = 1 if the algebra is split, and (a, b)Q = −1 if the

algebra is ramified. We can construct quaternion algebras using the Hilbert symbol

B =
(

a,b
Q

)
to denote the quaternion algebra with Q-basis 1, i, j, k and multiplication

satisfying

i2 = a, j2 = b, and i j = − ji = k .
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Indeed, any quaternion algebra can be constructed in this way for some a, b ∈ Z.

The splitting behavior of our quaternion algebra is described as follows:

Lemma 2. Suppose that p is an odd prime and a, b ∈ Z are nonzero and squarefree.

Then
(

a,b
Qp

)
is division (i.e., ramified) if and only if

1. p - a, p | b, and a is a nonsquare mod p; or

2. p | a, p - b, and b is a nonsquare mod p; or

3. p | a, p | b, and −a−1b is a nonsquare mod p.

Alternatively, if p = 2, then we have

(a, 2)Q2 =

(a
2

)
=




+1 if a ≡ 1, 7 mod 8

−1 if a ≡ 3, 5 mod 8
.

Furthermore, if both a and b are odd primes we have (a, b)Q2 = (−1)
a−1
2

b−1
2 .

This lemma follows from known calculations of Hilbert symbols over Qp.

There are 3 possibilities for the behavior of Kp, and 2 for Bp, so we have the

means of describing the behavior of our quaternion algebra B with K = Q(
√

a) ⊂ B

in six cases. However, in order for our quadratic field K to be contained in B, B

must not ramify if K is split; in other words, we can omit one of the cases:

Kp split, Bp split Kp ramified, Bp split Kp unramified, Bp split

× Kp ramified, Bp ramified Kp unramified, Bp ramified

We also note here that the Hilbert symbols defined above have many helpful

properties, including (a, b)F · (a, c)F = (a, bc)F if F is p-adic. This will prove

6



useful for calculating the behavior of B2, the localization of our algebra B at 2.

We will be using a number of useful facts about quadratic residue symbols,

which are listed here. A quadratic residue symbol is defined as

(
a
p

)
=




+1 if a is a square mod p

0 if p | a

−1 if a is not a square mod p

.

Now if a = p1 · · · · · pk , then the Kronecker symbol
(

a
p

)
=

( p1
p

)
· · · · ·

( pk
p

)
. We also

have the law of quadratic reciprocity:

(
p
q

)
=

(
q
p

)
· (−1)

p−1
2

q−1
2 .

This allows us to relate conditions on q to conditions on p, and vice versa. Observe

that the value of (−1)
p−1
2

p−1
2 depends on p and q mod 4; in particular, if either

p or q ≡ 1 mod 4, then (−1)
p−1
2

p−1
2 = 1. If both p and q are ≡ 3 mod 4, then

(−1)
p−1
2

p−1
2 = −1. We will also note here some useful particular values of residue

symbols:

1.
(
−1
p

)
= 1 if and only if p ≡ 1 mod 4, and

2.
(
−2
p

)
= 1 if and only if p ≡ 1, 3 mod 8.

1.1. Orders

Recall the definition of a order in a number field K as a complete Z-lattice in K

which is also a subring of K . We expand this definition to orders in quaternion

algebras as follows:

7



Definition 3. Let B be an F-algebra, for F the fraction field of a Dedekind domain

R. An R-lattice Λ is a finitely generated module over R, and Λ is called complete

if it contains a basis for the algebra B (as a vector space). An order O of B is a

complete R-lattice which is also a subring in A.

Consider, for example, the quaternion algebra B =
(

a,b
F

)
and O = R⊕ Ri ⊕ Rj ⊕

Rk. Then O is an order, which naturally extends our idea of orders to quaternions.

Consider the matrix representation of the quaternion algebra

B =
(

a, b
Q

)
'




*..
,

α bβ

β̄ ᾱ

+//
-
: α, β ∈ K



,

where K = Q(
√

a), with the above isomorphism given by

i 7→
*..
,

√
a

−
√

a

+//
-
, j 7→

*..
,

b

1

+//
-
, k 7→

*..
,

b
√

a

−
√

a

+//
-
.

We can see the natural extension of our idea of orders from rings of integers using

O =




*..
,

α bβ

β̄ ᾱ

+//
-
: α, β ∈ oK



,

where oK is the ring of integers of K .

Since the collection of all integral elements of a simple algebra does not generally

form a ring, wemust consider collections of elements that do, i.e. orders. The analog

of the ring of integers in this context is amaximal order— an order which is maximal

with respect to inclusion. If A is a commutative semisimple algebra, then A has a

unique maximal order Omax, but for general quaternion algebras maximal orders are

not unique.

8



The intersection of two maximal orders yields an Eichler order, a class of orders

which correspond to

Γ0(N ) =



*..
,

a b

c d

+//
-
∈ SL(2) : c ≡ 0 mod N



.

This congruence subgroup plays an important role in the theory of modular forms,

which will be discussed in the next section.

Notice that if A is split — i.e. A ' M2(F) — the presentation of orders differs

fromwhen A = D is division. In particular, if D is a local division algebra, then O =

{α ∈ D : vD (α) ≥ 0} is the unique maximal order of D. Here vD (α) = vF (N (α))

is the valuation on D via the norm map N (α).

We now develop the concept of level to differentiate between orders. Begin with

B a quaternion algebra over Q.

Definition 4. If O is an order with Z-basis α1, . . . , α4 as a free module,

level(O) = disc(O) = (det(αiα j )i, j )2.

Moreover, for levp(O) the local level of O, we have level(O) =
∏

p<∞ levp(O).

This gives us a method of easily computing the level of an order, given a basis.

Note that as we define level here, disc(B) divides lev(O). In Chapter 2, we will

present local orders of level pn in distinct cases for B split or B division.

1.1. Ideal theory of orders

Orders have a theory of ideals which will come into play in calculations of Brandt

matrices and quaternionic modular forms, and we describe important details here.

9



Definition 5. Let O be an R-order in an algebra A. A left (integral) ideal I in O

is an additive subgroup of O such that OI ⊂ I. A left fractional ideal J of O is a

subset of the form αI where α ∈ F× and I is an integral ideal. We refer to the set

of fractional ideals of O as Frac(O).

When we refer to ideals we will henceforth mean left fractional ideals unless

specified. For I,J ∈ Frac(O), we say I ≡ J if J = Iα for some α ∈ A×. This is

an equivalence relation on Frac(O), and the set of ideal classes is given by Cl(O).

Moreover, define the class number h(O) = #Cl(O). Note that [18] and [17] provide

formulas for the class number of orders of certain types, while a general formula is

given in [6].

The representatives of the ideal classes {I1, . . . ,Ih} can be used to construct

Brandt matrices (cf [18]), which provide a means of computing modular forms.

Examples of such construction via Sage and Magma can be found in Section 2.6.

We can use a quaternion order O of level N to construct a series of Brandt

matrices using the ideals of O, which gives us a basis of elliptic modular forms of

level N . This construction is introduced by Pizer in [18] and further refined in [7].

We now pivot our background to describe modular forms in view of this connection.

1.2. Modular forms

Modular forms are a fundamental tool in number theory for the study of a variety of

objects, including elliptic curves and quadratic forms. We now introduce modular

forms and relevant background.

10



1.2. Classical modular forms

Consider the N th congruence subgroup

Γ0(N ) =



*..
,

a b

c d

+//
-
∈ SL(2) : c ≡ 0 mod N



,

which acts by linear fractional transformations on the upper half plane H.

Definition 6. Fix k ≥ 0 and N ≥ 1. A classical (elliptic) modular form is a

function f : H → C which is holomorphic on H and the cusps, and satisfies the

modular transformation law

f
*..
,

*..
,

a b

c d

+//
-

z
+//
-
= (cz + d)k · f (z).

The condition at the cusps essentially amounts to a growth condition as f

approaches each cusp. The space of modular forms of weight k and level N is

denoted by Mk (N ).

Since f is periodic (in particular, f (z+1) = f (z)), we know that f has a Fourier

expansion

f (z) =
∑
n≥0

anqn, q = e2πiz .

We call an the nth Fourier coefficient of f .

Definition 7. The Eisenstein series of weight k ≥ 4 is

Ek (z) =
1

2ζ (k)
·

∑
(c,d)∈Z2−{(0,0)}

1
(cz + d)k ∈ Mk (N ),

where ζ (k) is the Riemann zeta function.

11



The Eisenstein series is well-understood, but there are other modular forms

which require further study.

Definition 8. A cusp form is a modular form f ∈ Mk (N ) which vanishes at all

of the cusps; i.e., the constant term a0 of the expansion of f at each cusp is zero.

Denote by Sk (N ) the space of cusp forms of weight k and level N .

Generally, the space of modular forms Mk (N ) is spanned by the Eisenstein series

and Sk (N ).

Definition 9. The k-th Hecke operator Tk can be defined as follows:

• For primes p,

(Tp f )(z) =




∑
apn + pk−1an/pqn p - N∑
apnqn p | N

• For prime powers,

Tpm f =




TpTpm−1 − pk−1Tpm−2 p - N

(Tp)m p | N

• For general k, we require that Tmn = TmTn when gcd(m, n) = 1.

The Hecke operators above were developed by Atkin and Lehner to show that

Mk (N ) has a basis of forms satisfying am( f )an( f ) = amn( f ) for all relatively prime

m, n ∈ N. In particular, there is a basis of eigenvectors — called eigenforms —

for all Tk with gcd(N, k) = 1 which can be normalized to give the multiplicative

conditions above.
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1.2. Oldforms and newforms

We outline briefly here the theory of oldforms and newforms of Atkin and Lehner.

Begin by observing that if M | N , we have Γ0(N ) ⊂ Γ0(M), which gives us

Sk (M) ⊂ Sk (N ). Furthermore, for divisors d | N/M we can map a form f of level

M to one of level N using f (z) 7→ f (dz).

Definition 10. A cusp form ϕ ∈ Sk (N ) is called an oldform if it can be obtained

from a lower level M | N via the map f (z) 7→ f (dz) for some d | N/M . The

newspace Snew
k (N ) is the orthogonal complement of the space generated by the

oldforms. Lastly, we call f ∈ Snew
k (N ) a newform if f is a normalized eigenform

for the Hecke operators Tn with n relatively prime to N .

Observe that newforms have multiplicative Fourier coefficients, which are in

fact determined by the values of ap( f ) for p prime. Atkin and Lehner showed

in [2] that there is a basis of newforms for Snew
k (N ), giving us a basis of forms

with multiplicative Fourier coefficients. Furthermore, since distinct newforms are

linearly independent, the number of newforms is dim(Snew
k (N )). Understanding the

space of newforms of level N is fundamental to understanding spaces of modular

forms. We will use a decomposition of the spaces of newforms into a plus space

Snew,+
k (N ) and a minus space Snew,−

k (N ), according the the sign of the global root

number w f of the modular form, in Chapter 3.
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Chapter 2

Constructing non-Eichler orders in

quaternion algebras

2.1. Introduction

In this chapter, we present an explicit basis for orders of arbitrary admissible level

N > 1 in definite rational quaternion algebras, where an admissible level N is one

in which the discriminant of the quaternion algebra divides N (this is a necessary

condition to obtain an order of level N in B). These results have been checked

for ∆ ≤ 1000 and N ≤ 10, 000 in Sage. Furthermore, we present these orders in

arbitrary definite rational quaternion algebras in every case except the case where

v2(N ) = 2 and the discriminant of B is even. In this case, we can construct an order

with level N = 4N ′ (with N ′ odd) in a quaternion algebra with even discriminant if∏
p|RM1,p,2 p ≡ 1 mod 4, where we have written our level as N = RM for relatively

prime R and M , where the discriminant of B divides R, and split M into M1 and

M2, where the factors of M1 are the primes in N which have odd exponent, and the

factors of M2 are the primes in N which have even exponent.
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Our result uses a careful choice of the presentation of our definite quaternion

algebra B =
(

a,b
Q

)
via a, b ∈ Z, allowing for computation of a space of modular

forms of weight 2k and level N (see [6], [12]). Note that working with more general

ramification sets in our algebra allows us to remove oldforms from the space of

modular forms constructed using our order, compared to an order of the same level

in an algebra with a smaller ramification set (see [15]). Moreover, our result can

be used to compute quaternionic modular forms via Brandt matrices. Note that our

result is for definite rational quaternion algebras, but a nearly identical argument

(with different conditions mod 8) will work for indefinite quaternion algebras. The

general description of our basis is somewhat complex, so for simplicity we state an

explicit basis for the special case with odd level pr :

Theorem 11. Let B be a definite quaternion algebra with discriminant ∆B = p odd

and N = pr our level. Take

a, b =




−q,−p if r odd, p ≡ 1 mod 4, with q nonsquare mod p and 3 mod 4

−p,−q if r odd, p ≡ 3 mod 4, with q square mod p and 1 mod 8

−qp,−p if r even, p ≡ 1 mod 4, with q nonsquare mod p and 3 mod 4

−p,−q if r even, p ≡ 3 mod 4, with q square mod p and 1 mod 8

Then we can represent B as
(

a,b
Q

)
. Furthermore, put f = pr if r is odd, and

f = pr−1−vp (b) if r is even, and select x with x2 ≡ −p mod q, and let z be given

by the Euclidean algorithm for finding y(−q) + z(2x) = 1, u be given by using the

Euclidean algorithm to write v(q) + w(2x) = 1, and setting 0 ≤ u < 2q such that

u ≡ vq+2w mod 2q, and z′ is given by choosing 0 ≤ z′ < 2q with z′ ≡ 4z mod 2q.
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Then the order

O =




Z
〈 q+i+2zk

2q , 2i+z′k
2q ,

f ( j+k)
2 , f k

〉
if p ≡ 1 mod 4

Z
〈
1, 1+i

2 ,
f ( j+uk)

2q , f k
〉

if p ≡ 3 mod 4

has level N = pr .

The above theorem splits into two cases, one where r is odd and the other where

r is even. In the second case, p is ramified in K , making the construction more

complicated, as well as the structure of the space of associated theta series (see [7],

[12]). Our result is stated in full generality in Theorem 13.

In Section 2.2, we will embed our quaternion algebra B in M2(K ), for K a

quadratic field, and examine its level locally in cases based on the splitting/ramification

of Kp and Bp. In Section 2.3, we will construct a global order O of B using the local

results from the previous section, with level N · q for a suitable auxiliary prime q.

We will construct this order in cases, based on the behavior of 2 in the quadratic

field K and in the algebra B. We will also calculate the basis for this order. In

Section 2.4, using a technique of Voight [21] we will lower the level of our order

constructed in the previous section from N · q to N , and calculate the new basis for

this order. In Section 2.5, we will present our general result, as well as a few special

cases, including an order of level pr for the algebra ramified at a single prime p.

Finally, in Section 2.6 we will present examples of using our construction of orders

to compute spaces of modular forms.
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2.2. Local orders

Recall that we can embed our quaternion algebra B =
(

a,b
Q

)
in M2(K ), where

K = Q(
√

a) as

B =



*..
,

α bβ

β̄ ᾱ

+//
-
: α, β ∈ K = Q(

√
a)



.

The form of an order varies depending onwhether K is split, ramified, or unramified,

and also varies based on whether B is split or ramified. Therefore, we will examine

orders in each case separately. In particular, we may consider the local algebra

Bp = B ⊗Q Qp =




*..
,

α bβ

β̄ ᾱ

+//
-
: α, β ∈ Kp = K ⊗ Qp




at each prime, and examine orders locally, split into the cases above for the behavior

of Kp and Bp. Consider the following orders, referred to as residually inert orders

by Voight in [20]: for finite primes that ramify in B, a residually inert order Op

of Bp has a quadratic extension Kp of Qp and a positive integer v(p) (odd if Kp is

unramified) so that Op = oKp +P
v−1
Bp

, where PBp is the unique maximal ideal of the

unique maximal order OBp of Bp. Note that these orders were called special orders

by Hijikata, Pizer, and Shemanske in [6]. For our purposes, we will construct O to

be a residually inert order for primes which ramify in B and in K (using K as our

quadratic field), and to be Eichler (residually split) for primes which split in B.

For the remainder of this section, fix a, b ∈ Z squarefree and coprime.
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Bp is split

Assume that Bp is split. Then the standard Eichler order OBp (n) of level n = pk has

the form

OB (n) =
*..
,

Zp Zp

pkZp Zp

+//
-
,

and all Eichler orders of level n are conjugate to OB (n).

Kp is split

If Kp is split, we have Kp = Qp ⊕ Qp and oKp = Zp ⊕ Zp. Consider the order

Op =




*..
,

α bβ

β̄ ᾱ

+//
-
: α ∈ oKp, β ∈ f oKp




=




*..
,

(x, y) b f (z,w)

f (w, z) (y, x)

+//
-
: x, y, z,w ∈ Zp



.

We now conjugate and simplify:

*..
,

f

1

+//
-

*..
,

(x, y) b f (z,w)

f (w, z) (y, x)

+//
-

*..
,

1
f

1

+//
-
=

*..
,

(x, y) b f 2(z,w)

(w, z) (y, x)

+//
-
.

So we can identify these matrices with pairs of matrices
*..
,

*..
,

x b f 2z

w y

+//
-
,

*..
,

y b f 2w

z x

+//
-

+//
-
,

and we have

Op '




*..
,

x b f 2z

w y

+//
-
: x, y, z,w ∈ Zp



.

This is an Eichler order of level p2vp ( f )+vp (b) in Bp = M2(Qp).
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Kp is ramified

Now assume that Kp is ramified. Note that oKp = Zp[
√

a].

If Bp is split, then b must be a norm from o×Kp
, so we can write b = uū for some

u ∈ o×Kp
. Making the substitution β 7→ ū−1 β gives us

Bp =




*..
,

α uβ

u−1 β̄ ᾱ

+//
-
: α, β ∈ Kp



.

Consider the order

Op =




*..
,

α uβ

u−1 β̄ ᾱ

+//
-
: α ∈ Zp + goKp, β ∈ f (Zp + goKp )



.

Now let ` =
*..
,

√
a −

√
a

1 1

+//
-

*..
,

u−1

1

+//
-
, and write α = x + gy + gz

√
a and β = f p +

f gq + f gr
√

a. Then the conjugation `Op`
−1 gives us

`
*..
,

α uβ

u−1 β̄ ᾱ

+//
-
`−1 =

1
2u−1
√

a
·

*..
,

u−1
√

a[(α + ᾱ) − (β + β̄)] u−1a[(α − ᾱ) + (β − β̄)]

u−1[(α − ᾱ) − (β − β̄)] u−1
√

a[(α + ᾱ) + (β + β̄)]

+//
-
. (2.1)

Now if α ∈ Zp+goKp and β ∈ f (Zp+goKp ) then α+ ᾱ = 2x+2gy, α− ᾱ = 2gz
√

a,

β + β̄ = 2 f p + 2 f gq, and β − β̄ = 2 f gr
√

a. This gives us

`Op`
−1 =

*..
,

x + gy − f p − f gq a(gz + f gr)

gz − f gr x + gy + f p + f gq

+//
-
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=
*..
,

Zp pvp (a)+vp (g)Zp

pvp (g)Zp Zp

+//
-
=

*..
,

Zp pvp (a)+2vp (g)Zp

Zp Zp

+//
-
.

So we have an explicit conjugation of Bp to M2(Qp) that clearly expresses Op as an

Eichler order of level pvp (a)+2vp (g).

If p = 2, we must be more careful, since it is possible for 2 to be ramified in K

but for 2 - a. In particular, if a ≡ 3 mod 4 but 2 - a, then the order described above

has v2(N ) = 2v2(g) + 2. Alternatively, if p = 2 and 2 | a, then the order described

above has v2(N ) = 2v2(g) + 8. Finally, if p = 2 and 2 | b, then the order described

above has v2(N ) = 2v2(g) + 1.

Kp is unramified

If Kp is unramified, then oKp = Zp[
√

a] unless p = 2 and a ≡ 1 mod 4, when we

have oK2 = Z2[
1+
√

a
2 ]. An identical argument as the previous section gives us

Op =




*..
,

α uβ

u−1 β̄ ᾱ

+//
-
: α ∈ Zp + goKp, β ∈ f (Zp + goKp )



.

with level pvp (a)+2vp (g). In this case, since Kp is unramified, we have vp(a) = 0, so

our level is p2vp (g).

If p = 2 and a ≡ 1 mod 4, thenwe have oK2 = Z2

[
1+
√

a
2

]
. The basis for our order

O2 isZ2〈1, 1+i
2 , f j, f · j+k

2 〉, and a quick calculation shows that v2(disc(O)) = 2v2( f ).

So our level is 22v2( f ).

Bp is ramified

Assume that Bp is ramified. We again break into cases based on whether Kp is

ramified or unramified.
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Kp is ramified

Assume Kp is ramified. Here we use the residually inert orders defined previously.

We know that PBp = $BpOBp , and Pv−1
Bp
= {x ∈ OBp : N (x) ∈ pv−1}. Now OBp is

the maximal order of Bp, a local division algebra, which we know is of the form

OBp =




*..
,

α bβ

β̄ ᾱ

+//
-
: α ∈ oKp, β ∈ oKp




if p , 2. When p = 2,

OB2 =




*..
,

α 2β

β̄ ᾱ

+//
-
: α ∈ oK2, β ∈ oK2




is maximal when K2 is unramified.

We require that p | b if Kp is unramified, and p - b if Kp is ramified to obtain

the maximal orders.

Now consider an element x ∈ OB:

x =
*..
,

α bβ

β̄ ᾱ

+//
-
=

*..
,

α

ᾱ

+//
-
+

*..
,

bβ

β̄

+//
-
.

For x to be an element of our residually inert order Op, we need
*..
,

α

ᾱ

+//
-
∈ oKp , so

α ∈ oKp . We also need y =
*..
,

bβ

β̄

+//
-
∈ Pv−1

B to obtain level pv. Now y ∈ Pv−1
B if

and only if N (y) ∈ pv−1Zp, and we know that N (y) = −bβ β̄. So we know that we

need β β̄ ∈ pv−1−vp (b)Zp. Now we write β = u$m
Kp

for a uniformizer $ and a unit

u. Now since Kp is ramified, we choose $Kp =
√
vp. So β β̄ = uū · vmpm when Kp
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is ramified. So when Kp is ramified, then if β ∈ pv/2oKp then N
*..
,

bβ

β̄

+//
-
∈ pv+1Zp.

So

Op =




*..
,

α bβ

β̄ ᾱ

+//
-
: α ∈ oKp, β ∈ f oKp




is a residually inert order with level pvp ( f )+1, for f ∈ oKp .

Kp is unramified

If Kp is unramified, then a maximal order is given by




*..
,

α $β

β̄ ᾱ

+//
-
: α ∈ oKp, β ∈ $oKp



.

Furthermore, it is well-known that all orders containing the unramified quadratic

field extension are isomorphic to oKp ⊕ $
noKp j, where $ is a uniformizer for Kp.

We will represent these orders in this setting via an embedded in the matrix algebra

as



*..
,

α $β

β̄ ᾱ

+//
-
: α ∈ oKp, β ∈ $

n
oKp



.

Orders of this form have level p2n+1. So consider the order

O =




*..
,

α bβ

β̄ ᾱ

+//
-
: α ∈ oKp, β ∈ f oKp



.

So long as p | b, this order will have level p2vp ( f )+1.
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2.3. Global order

Now that we know the form that local orders take, we can examine a global order

which has prescribed level locally at each place. Our global order will be a residually

inert order locally for primes p | R2, and will be Eichler locally for primes p - R,

for a, b ∈ Z such that B =
(

a,b
Q

)
with a, b ∈ Z squarefree. Consider the global order

O ⊂ B =
(

a,b
Q

)
given by

O = O(a, b, f , g) =



*..
,

α bβ

β̄ ᾱ

+//
-
: α ∈ Z + goK, β ∈ f (Z + goK )



.

The localization of this order is

Op = O ⊗oQ oQp = O ⊗ Zp =




*..
,

α bβ

β̄ ᾱ

+//
-
: α ∈ Zp + goKp, β ∈ f (Zp + goKp )



.

We require g ∈ Z×p for the primes where both Kp and Bp are split, so that α ∈

Zp + oKp = oKp and β ∈ f (Zp + oKp ) = f oKp . This yields our order from Section

2.2 with level pvp (b)+2vp ( f ). Our order Op also has level if Kp is ramified and Bp is

split, since its form locally is the same as in Section 2.2.

So this order has level p1+2vp (g) if p is odd or if p = 2 and a ≡ 1 mod 4, and

level 22v2(g)+2 if p = 2 and a ≡ 3 mod 4, and level 22v2(g)+3 if p = 2 and 2 | a.

Similarly, Op has level if Kp is unramified and Bp is split, giving us level p2vp (g) if

p is odd or p = 2 with a ≡ 1 mod 4, and 22v2(g)+2 when p = 2 and a ≡ 3 mod 4,

and 22v2(g)+3 when p = 2 and 2 | a.

Locally, our order Op has level if both Kp and Bp are ramified, since our order

has the form of the order constructed in 2.2, since f ∈ oK for primes which ramify

in both the field and the algebra. Lastly, requiring g ∈ Z×p for the primes where Kp
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is unramified and Bp is ramified allows Op to have level, since α ∈ Zp + oKp = oKp

and β ∈ f (Zp + oKp ) = f oKp . This gives Op level p2vp ( f )+1. We summarize the

results from Section 2.2 via the levels we can achieve locally at each prime, based

on the behavior of Kp and Bp:

Figure 2.1: Distribution of levels by ramification in K and B

Kp split Kp ramified Kp unramified
Bp split p2vp ( f )+vp (b) p2vp (g)+1 p2vp (g)

Bp ramified × pvp ( f )+1 p2vp ( f )+1

It is important to note the parity that can be achieved in each case; in particular,

for p where Kp is unramified and Bp is split, we only obtain even exponents for

the local level at p. On the other hand, at p where Kp is ramified and Bp is split,

or where Kp is unramified and Bp is ramified, we only obtain odd exponents for

the local level at p. When both Kp and Bp are split, we obtain either odd or even

exponent, with the parity determined by our selection of b in the representation of

B =
(

a,b
Q

)
. We have the most freedom when both Kp and Bp are ramified, where we

obtain either even or odd exponents, dependent only on the valuation of f .

Selecting a, b

Now consider our quaternion algebra B given via its discriminant ∆, and the level

N we desire. Write N = R · M for relatively prime R and M , with primes dividing

the discriminant grouped into R and the others into M . Next write R = R1 · R2 and

M = M1 · M2, where we group the primes with odd powers into R1 and M1, and

the primes with even powers into R2 and M2. Note that R1, R2, M1, and M2 are all

pairwise relatively prime. Moreover, we will use
∏′

p|S to indicate that the product
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should be taken over all primes p ∈ S except p = 2. We wish to select a, b ∈ Z

so that (i) B =
(

a,b
Q

)
and (ii) primes dividing the level are sorted appropriately into

cases which give the correct level that matches the parity of the exponent.

Proposition 12. Suppose that B is a definite quaternion algebra over Q with

discriminant ∆, and we wish to choose a, b ∈ Z so that B =
(

a,b
Q

)
and so that each

prime p | N has the appropriate splitting behavior in K and B so that we can

achieve local level pvp (N ). Then we may choose a, b in the following way (noting

that p, q, and r represent primes) based on our desired behavior at 2:

1. Suppose that 2 - ∆ and 2 has an even exponent in N (including the case where

2 - N). If the product
∏

p|RM1 p ≡ 3 mod 4 then select a := −
∏

p|RM1 p and

b := −q with q prime satisfying the conditions

•
(
−q
p

)
= −1 for all p | R;

•
(
−q
p

)
= 1 for all p | M1;

• and q ≡ 1 mod 8.

Alternatively, if the product
∏

p|RM1 p ≡ 1 mod 4 then select a := −q ·
∏

p|R2 p

and b := −
∏

p|RM1 p with q prime satisfying the conditions

•
( q

p

)
= (−1) ·

(
−

∏
r |R2 r
p

)
for all p | R1;

•
( q

p

)
= (−1) ·

(
−

∏
r |RM1,r,p r

p

)
for all p | R2;

•
( q

p

)
=

(
−

∏
r |R2 r
p

)
for all p | M1;

• If
∏

p|R2 p ≡ 1 mod 4, then q ≡ 3 mod 4; and if
∏

p|R2 p ≡ 3 mod 4,

then q ≡ 1 mod 4.

2. Suppose that 2 - ∆ and 2 has an odd exponent in N . Select a := −q ·
∏

p|R2 p

and b := −
∏

p|RM1 p with q prime satisfying the conditions
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•
( q

p

)
= (−1) ·

(
−

∏
r |R2 r
p

)
for all p | R1;

•
( q

p

)
= (−1) ·

(
−

∏
r |R1M1,r,p r

p

)
for all p | R2;

•
( q

p

)
=

(
−

∏
r |R2 r
p

)
for all p | M1, p , 2;

• If
∏

p|R2 p ≡ 1 mod 8, then q ≡ 7 mod 8; if
∏

p|R2 p ≡ 3 mod 8, then

q ≡ 5 mod ; if
∏

p|R2 p ≡ 5 mod 8, then q ≡ 3 mod ; and if
∏

p|R2 p ≡

7 mod 8, then q ≡ 1 mod 8.

3. Suppose that 2 | ∆, v2(N ) , 2. Select a := −q ·
∏

p|R2 p and b := −
∏

p|RM1 p

with q prime satisfying the conditions

•
( q

p

)
= (−1) ·

(
−

∏′
r |R2

r

p

)
for all p | R1, p , 2;

•
( q

p

)
= (−1) ·

(
−

∏′
r |R1M1,r,p

r

p

)
for all p | R2, p , 2;

•
( q

p

)
=

(
−

∏′
r |R2

r

p

)
for all p | M1;

• If v2(N ) = 1, 3, choose q so that a ≡ 5 mod 8. If v2(N ) > 4 is even,

then we have the following for a′ = a/2 and b′ = b/2:

– If b′ ≡ 1 mod 8, then choose q so that a′ ≡ 3 or 5 mod 8.

– If b′ ≡ 3 mod 8, then choose q so that a′ ≡ 1 or 3 mod 8.

– If b′ ≡ 5 mod 8, then choose q so that a′ ≡ 1 or 7 mod 8.

– If b′ ≡ 7 mod 8, then choose q so that a′ ≡ 5 or 7 mod 8.

If v2(N ) > 4 is odd, then we have the following:

– If b′ ≡ 1 mod 4, then choose q so that a ≡ 3 mod 8.

– If b′ ≡ 3 mod 4, then choose q so that a ≡ 7 mod 8.

4. Lastly, suppose that 2 | ∆with v2(N ) = 2. If
∏′

p|RM1
p ≡ 1 mod 4, then select

a := −q ·
∏′

p|R2
p and b := −

∏′
p|RM1

p with q prime satisfying the conditions
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•
( q

p

)
= (−1) ·

(
−

∏′
r |R2

r

p

)
for all p | R1, p , 2;

•
( q

p

)
= (−1) ·

(
−

∏′
r |R1M1,r,p

r

p

)
for all p | R2, p , 2;

•
( q

p

)
=

(
−

∏′
r |R2

r

p

)
for all p | M1;

• If
∏′

p|R2
p ≡ 1 mod 4, then q ≡ 1 mod 4; and if

∏′
p|R2

p ≡ 3 mod 4,

then q ≡ 3 mod 4.

Alternatively, if
∏′

p|RM1
p ≡ 3 mod 4, we cannot construct an order with

v2(N ) = 2. This is an inherent condition in the structure of the quaternion

algebra B =
(

a,b
Q

)
and the field K = Q(

√
a), not specific to our particular

construction.

Observe that there is a hidden condition that
(

b
q

)
= 1, so that we obtain

disc
(

a,b
Q

)
= ∆, which we will verify. Furthermore, we will observe the behav-

ior of 2, which will determine its behavior in our algebra.

The conditions on q amount to a finite number of modular congruences, which

by Dirichlet’s theorem on primes in arithmetic progressions we know have a prime

solution q , 2. It is worth observing here that if we choose a and b correctly so that

the correct prime factors of a and b are ramified (excluding q), and if we have the

correct ramification or splitting of 2, we expect that Bq will be split due to the parity

of the set of ramified primes. What we desire in selecting a and b as described

above is the following picture of the distribution of primes (ignoring 2 and q):

Figure 2.2: Distribution of level factors

Kp split Kp ramified Kp unramified
Bp split p | M2 p | M1 p | M2

Bp ramified × p | R −
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In the above diagram, the primes dividing M2 are distributed between the Kp

split case and the Kp unramified case, since the parity of the exponent we can achieve

in those cases is the same. In particular, according to Lemma 2 the conditions that(
−q
p

)
= −1 for all p | R determine that Bp is ramified for all primes p | R, and Kp

is also ramified for all primes p | R. The conditions that
(
−q
p

)
= 1 for all p | M1

determine that Bp is split for all primes p | M1, and Kp is ramified for all primes

p | M1. These conditions are sufficient in all cases except the Case 1b, which

is considered by hand. We also need that Bq is split, which is accomplished via

quadratic reciprocity:

(
a
q

)
=

(
−1
q

)
·
∏
p|R

(
p
q

)
·
∏
p|M1

(
p
q

)

=

(
−1
q

)
·
∏
p|R

(−1)
p−1
2

q−1
2

(
q
p

)
·
∏
p|M1

(−1)
p−1
2

q−1
2

(
q
p

)

=

(
−1
q

)
·
∏
p|R

(−1)
p−1
2

q−1
2

(
−1
p

) (
−q
p

)
·
∏
p|M1

(−1)
p−1
2

q−1
2

(
−1
p

) (
−q
p

)
.

Notice that we are using quadratic reciprocity assuming that 2 - a. If 2 | a then we

have (
a
q

)
=

(
−2
q

)
·
∏
p|R

(−1)
p−1
2

q−1
2

(
q
p

)
·
∏
p|M1

(−1)
p−1
2

q−1
2

(
q
p

)

=

(
−2
q

)
·
∏
p|R

(−1)
p−1
2

q−1
2

(
−1
p

) (
−q
p

)
·
∏
p|M1

(−1)
p−1
2

q−1
2

(
−1
p

) (
−q
p

)
.

But the prime q satisfies that
(
−q
p

)
= −1 for all factors of the first product and(

−q
p

)
= 1 for all factors in the second product. Now there are an odd number of
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finite ramified primes in B, so
∏

p|R

( q
p

)
= −1. Thus we have

(
a
q

)
=

(
−1
q

)
· (−1) ·

∏
p|R

(−1)
p−1
2

q−1
2

(
−1
p

)
·
∏
p|M1

(−1)
p−1
2

q−1
2

(
−1
p

)

in the case where 2 - a, and

(
a
q

)
=

(
−2
q

)
· (−1) ·

∏
p|R

(−1)
p−1
2

q−1
2

(
−1
p

)
·
∏
p|M1

(−1)
p−1
2

q−1
2

(
−1
p

)

in the case where 2 | a. In order for Bq to be split we need
(

a
q

)
= 1, which means

that we need

1 =
(
−1
q

)
· (−1) ·

∏
p|RM1

(−1)
p−1
2

q−1
2 ·

∏
p|RM1

(
−1
p

)
for 2 - a and

1 =
(
−2
q

)
· (−1) ·

∏
p|RM1

′
(−1)

p−1
2

q−1
2 ·

∏
p|RM1

′
(
−1
p

)
.

for 2 | a. These two conditions interact with the behavior of 2 in K and in B, which

means that we must consider their behavior together.

Case 1: 2 - ∆ and v2(N ) is even

Suppose we are in Case 1, where by hypothesis 2 - ∆ and 2 has an even exponent in

N . Furthermore, suppose that the product
∏

p|RM1 p ≡ 3 mod 4, so that we select

a := −
∏

p|RM1 p and b := −q, with q ≡ 1 mod 8. This gives us a ≡ 1 mod 4 and

b ≡ 7 mod 8, so (a, b)Q2 = (−1)
a−1
2

b−1
2 = 1. Furthermore,

(
a
q

)
=

(
−1
q

)
· (−1) ·

∏
p|RM1

(−1)
p−1
2

q−1
2 ·

∏
p|RM1

(
−1
p

)
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= 1 · (−1) ·
∏
p|R

(
−1
p

)
·
∏
p|M1

(
−1
p

)
= −1 ·

∏
p|RM1

(
−1
p

)
.

Now since
∏

p|RM1 p ≡ 3 mod 4, an odd number of the p are ≡ 3 mod 4. Therefore∏
p|RM1

(
−1
p

)
= −1, so

(
a
q

)
= 1 as desired. Furthermore, a ≡ 1 mod 4 so 2 is not

ramified in K . This gives us

Figure 2.3: Distribution of level factors and q, Case 1a

Kp split Kp ramified Kp unramified
Bp split 2, q, p | M2 p | M1 p | M2

Bp ramified × p | R −

Alternatively, suppose that the product
∏

p|RM1 p ≡ 1 mod 4, so that we select

a := −q ·
∏

p|R2 p and b := −
∏

p|RM1 p. Then b ≡ 3 mod 4, and we choose q mod 4

so that a ≡ 1 mod 4. This gives us (a, b)Q2 = (−1)
a−1
2

b−1
2 = 1 (so B2 is split) and

K2 is not ramified. Furthermore, we have

(
b
q

)
=

(
−

∏
p|RM1 p
q

)
=

(
−1
q

)
·

∏
p|RM1

(
p
q

)
=

(
−1
q

)
·
∏
p|R1

(
p
q

)
·
∏
p|R2

(
p
q

)
·
∏
p|M1

(
p
q

)

=

(
−1
q

)
·



∏
p|RM1

(−1)
p−1
2

q−1
2


·



∏
p|R1

(
−

∏
p′ |R2 p′

p

)
· (−1)



·



∏
p|R2

(
−

∏
p′ |R1M1 p′

p

)
· (−1)


·



∏
p|M1

(
−

∏
p′ |R2 p′

p

)

via quadratic reciprocity and our assumptions on the values of
( q

p

)
. Now since

a ≡ 1 mod 4, we have
∏

p|RM1 (−1)
p−1
2

q−1
2 = 1. Moreover, we can factor the −1’s out

of the products above by observing that there are an odd number of primes dividing

R, so we have an odd number of −1’s, giving us a −1 factor. We can also expand
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the products in the residue symbols above to obtain

(
−1
q

)
· (−1) ·



∏
r |R1

(
−1
r

)
·
∏
p|R2

( p
r

)

·



∏
r |R2

(
−1
r

)
·

∏
p|R1M1

( p
r

)
·



∏
r |M1

(
−1
r

)
·
∏
p|R2

( p
r

)
.

The products above can be written as

(
−1
q

)
· (−1) ·



∏
p|RM1

(
−1
p

)
·



∏
p|R2,r |R1

( p
r

)
·



∏
p|R1,r |R2

( p
r

)

·



∏
p|M1,r |R2

( p
r

)
·



∏
p|R2,r |M1

( p
r

)
.

Notice that we have some quadratic reciprocity here; in particular, we have
( p

r

)
·
(

r
p

)
for all pairs p | R1 and r | R2, as well as all pairs p | R2 and r | M1. Furthermore,

since
∏

p|RM1 p ≡ 1 mod 4, we have
∏

p|RM1

(
−1
p

)
= 1. So we obtain

(
b
q

)
=

(
−1
q

)
· (−1) ·



∏
p|R2,r |R1

(−1)
p−1
2

r−1
2


·



∏
p|R2,r |M1

(−1)
p−1
2

r−1
2


.

Now we know that
∏

p|RM1 p ≡ 1 mod 4, so we have the following cases:

1. R1 ≡ 1 mod 4, R2 ≡ 1 mod 4, and M1 ≡ 1 mod 4;

2. R1 ≡ 1 mod 4, R2 ≡ 3 mod 4, and M1 ≡ 3 mod 4;

3. R1 ≡ 3 mod 4, R2 ≡ 1 mod 4, and M1 ≡ 3 mod 4;

4. R1 ≡ 3 mod 4, R2 ≡ 3 mod 4, and M1 ≡ 1 mod 4.

Furthermore, notice that to obtain a ≡ 1 mod 4, in the first and third cases above we
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require q ≡ 3 mod 4, and in the second and fourth we require q ≡ 1 mod 4. Now

observe that to obtain (−1)
p−1
2

r−1
2 = −1, we need both p and r to be ≡ 3 mod 4.

Moreover, to get −1 out of each of the products above, there need to be an odd

number of p ≡ 3 mod 4 and r ≡ 3 mod 4. So we can use the above cases to

evaluate
(

b
q

)
. In Case 1,

(
b
q

)
= (−1)(−1)(1)(1) = 1 as desired; similarly, in Case 2(

b
q

)
= (1)(−1)(1)(−1) = 1; in Case 3

(
b
q

)
= (−1)(−1)(1)(1) = 1; finally in Case 4(

b
q

)
= (1)(−1)(−1)(1) = 1.So Bq is split in all cases. Thus we have the following

distribution of primes:

Figure 2.4: Distribution of level factors and q, Case 1b

Kp split Kp ramified Kp unramified
Bp split 2, p | M1, M2 q p | M2

Bp ramified × p | R2 p | R1

Case 2: 2 - ∆ and v2(N ) is odd

Suppose now that we are in Case 3, where by hypothesis 2 - ∆ and 2 has an odd

exponent in N . We select a := −q ·
∏

p|R2 p and b := −
∏

p|RM1 p with q mod 8 so

that a ≡ 1 mod 8. Then 2 | b. In this scenario we have

(
b
q

)
=

(
−

∏
p|RM1 p
q

)
=

(
−1
q

)
·

∏
p|RM1

(
p
q

)
=

(
−1
q

)
·
∏
p|R1

(
p
q

)
·
∏
p|R2

(
p
q

)
·
∏
p|M1

(
p
q

)

This gives us
(

b
q

)
= 1 as in the previous case. Moreover, in both cases, since

2 | b we have 2 non-ramified in K . Since 2 | b, (a, b)Q2 = (a, 2)Q2 · (a, b′)Q2 for

b′ = b/2. Then (a, b′)Q2 = (−1)
a−1
2

b′−1
2 = 1 since a ≡ 1 mod 4, and (a, 2)Q2 = 1

since a ≡ 1 mod 8. Thus B2 is split. So we have the following distribution of

32



primes:

Figure 2.5: Distribution of level factors and q, Case 2

Kp split Kp ramified Kp unramified
Bp split q, p | M2 2, p | M1 p | M2

Bp ramified × p | R2 R1

Case 3: 2 | ∆ and v2(N ) , 2

Suppose that we are inCase 3, where by hypothesis 2 | ∆. We select a := −q·
∏

p|R2 p

and b := −
∏

p|RM1 p with q mod 8 so that 2 ramifies in B . Furthermore, we have

the requirements mod p so that the p | R are ramified in B and the p | M are split

in B. Now we have

(
b
q

)
=

(
−

∏
p|RM1 p
q

)
=

(
−1
q

)
·

∏
p|RM1

(
p
q

)
=

(
−1
q

)
·
∏
p|R1

(
p
q

)
·
∏
p|R2

(
p
q

)
·
∏
p|M1

(
p
q

)

As before, we obtain
(

b
q

)
= 1. So Bq is split as desired. Since b is even, B ramifies

at 2 if and only if a is nonsquare mod 8. In the case v2(N ) = 1 or 3, a ≡ 5 mod 8,

while in the case v2(N ) > 4 and odd, a ≡ 3 mod 4. In all cases it is nonsquare.

Furthermore, K2 is non-ramified when 2 - R2, and K2 is ramified when 2 | R2.

Case 4: 2 | ∆ and v2(N ) = 2

It is important to observe that our order at 2 behaves differently depending on

whether a and b are both odd, or 2 | a, or 2 | b. The behavior also depends on

a mod 4. In particular, if we desire v2(N ) = 2, we must select a and b as follows:

Both a and b must be ≡ 3 mod 4, so that v2(disc(K )) = 2, and so that (a, b)Q2 =
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(−1)
a−1
2

b−1
2 = −1. Furthermore, since we can only choose a = −

∏′
p|RM1

p, b = −q

or a = −q ·
∏′

p|R2
p, b = −

∏′
p|RM1

p, we therefore need
∏′

p|RM1
p ≡ 1 mod 4. This

is an inherent condition in the structure of the quaternion algebra B =
(

a,b
Q

)
and

the field K = Q(
√

a), not specific to our particular construction. If this product

is ≡ 1 mod 4, we select a = −q ·
∏′

p|R2
p and b = −

∏′
p|RM1

p with q so that

a ≡ 3 mod 4. Alternatively, if
∏′

p|RM1
p ≡ 3 mod 4, we cannot create an order with

v2(N ) = 2 if ∆ is even.

Special Cases

In some cases, we prefer to restrict our quaternion algebra to simpler scenarios

which are common or particularly useful. In particular, our general construction

above can be reduced to two helpful cases: (1) where ∆ = p, i.e., where B ramifies

at a single prime, and (2) where Kp is unramified wherever Bp is ramified.

Case 1: ∆ = p

Suppose that ∆ = p, so our quaternion algebra only ramifies at one place p, and

furthermore suppose that N = pk . Then if p , 2, we can use Case 1 from above to

obtain the following:

If p ≡ 3 mod 4 then select a := −p and b := −q with q satisfying
(
−q
p

)
= −1

and q ≡ 1 mod 8. If p ≡ 1 mod 4, then choose a := −qp and b := −p for even

exponents of p, and a := −q and b := −p for odd exponents of p. In both scenarios,

choose q satisfying
( q

p

)
= −1 and q ≡ 3 mod 4. In both cases, there is a hidden

condition that
(

b
q

)
= 1 so that ∆ = p as desired.

In the first case, both 2 and q are split in K , and p is ramified in both the field and

the algebra. In the second case, 2 is split in K , q is ramified in K and split in B, and

p is ramified in B and either ramified or unramified in K (depending on p mod 4).
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Then the order

O =




*..
,

α bβ

β̄ ᾱ

+//
-
: α ∈ oK, β ∈ pk−1

oK




has level qpk . Now the level we have achieved is close to what we desired, but there

is an additional q. In a subsequent section we will take care of this and revisit our

order.

Case 2: Kp unramified for p | ∆

Suppose that R = R1, so all primes which ramify in B have odd exponents in the level

N . Then we can select a = −q and b = −
∏

p|RM1 p with the following conditions

on q:

1.
(
−q
p

)
= −1 for all p | R

2.
(
−q
p

)
= 1 for all p | M1

3. If 2 | M2, then we require q ≡ 3 mod 4.

4. If 2 | M1, then we require q ≡ 7 mod 8

5. If 2 | R, then we require q ≡ 3 mod 8.

Conditions 1 and 2 determine that our quaternion algebra is ramified for all

p | R, and split for all p | M1, with the exception of p = 2. We must verify that 2

behaves as desired in B, and that B splits at q. Now we have

(
b
q

)
=

(
−1
q

)
·

∏
p|RM1

(
−q
p

)
·

(
−1
p

)
· (−1)

p−1
2

q−1
2

if 2 - b, and (
b
q

)
=

(
−2
q

)
·

∏
p|RM1

′
(
−q
p

)
·

(
−1
p

)
· (−1)

p−1
2

q−1
2
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if 2 | b. In either case, we obtain
(

b
q

)
= 1 as desired.

In the case where b is odd, a is odd as well, so (a, b)Q2 = (−1)
a−1
2

b−1
2 . In the first

case, b ≡ 3 mod 4, and a ≡ 1 mod 4, so (−1)
a−1
2

b−1
2 = 1 as desired. In the second

case, b ≡ 1 mod 4, so (−1)
a−1
2

b−1
2 = 1 as desired. Thus 2 is split in B in both cases.

Furthermore, a ≡ 1 mod 4 is required in both cases so that 2 is not ramified in K . In

the other case, where b is even, we use (a, b)Q2 = (a, 2)Q2 · (a, b′)Q2 (for b′ = b/2).

Now in both cases, a ≡ 1 mod 4, so this yields (a, b)Q2 = 1 as desired. So 2 is split

in B.

Now if 2 | R, then we have

(
b
q

)
=

(
−2
q

)
·

∏
p|RM1

′
(

p
q

)
=

(
−2
q

)
·

∏
p|RM1

′
(
−q
p

)
·

(
−1
p

)
· (−1)

p−1
2

q−1
2

=

(
−2
q

)
·

∏
p|RM1

′
(
−1
p

)
·

*.
,

∏
p|RM1

′
(−1)

p−1
2 +/

-

q−1
2

.

If
∏′

p|RM1
p ≡ 1 mod 4, an even number of the p are ≡ 3 mod 4, so

∏′
p|RM1(

−1
p

)
= 1 =

∏′
p|RM1

(−1)
p−1
2 , so this reduces to

(
b
q

)
=

(
−2
q

)
· 1 · 1 =

(
−2
q

)
. Therefore

q ≡ 3 mod 8 is sufficient.

Alternatively, if
∏′

p|RM1
p ≡ 3 mod 4, an odd number of the p are ≡ 3 mod 4, so∏′

p|RM1

(
−1
p

)
= −1 =

∏′
p|RM1

(−1)
p−1
2 , so this reduces to

(
b
q

)
=

(
−2
q

)
·−1 · (−1)

q−1
2 =

(−1) ·
(
−2
q

)
· (−1)

q−1
2 . Therefore q ≡ 3 mod 8 is sufficient.

In both of the cases above, 2 | b, so we use (a, b)Q2 = (a, 2)Q2 · (a, b′)Q2 (for b′ =

b/2). Now if 2 | R, we desire B2 to be ramified. Now in the first case,
∏′

p|RM1
p ≡

1 mod 4, so b′ ≡ 3 mod 4. So (a, b)Q2 = (a, 2)Q2 · (a, b′)Q2 = (a, 2)Q2 · (−1)
a−1
2 .

Observe that if q ≡ 3 mod 8, then a ≡ 5 mod 8, and either yields (a, b)Q2 = −1

as desired. So 2 ramifies in B. In the second case,
∏′

p|RM1
p ≡ 3 mod 4, so
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b′ ≡ 1 mod 4. So (a, b)Q2 = (a, 2)Q2 · (a, b′)Q2 = (a, 2)Q2 · (−1)
a−1
2

b−1
2 = (a, 2)Q2 .

Observe that if q ≡ 3 mod 8, then a ≡ 5 mod 8, and either yields (a, b)Q2 = −1 as

desired. So 2 ramifies in B. Furthermore, we desire that 2 is unramified in K , so we

need q ≡ 3 mod 4. Therefore, we need q ≡ 3 mod 8.

Now we have selected a, b so that B =
(

a,b
Q

)
, This gives us

Figure 2.6: Distribution of level factors and q, Kp unramified

Kp split Kp ramified Kp unramified
Bp split p | M1, p | M2 q p | M2

Bp ramified × − p | R

.

Now the order

O =




*..
,

α bβ

β̄ ᾱ

+//
-
: α ∈ Z + goK, β ∈ f (Z + goK )




has level qN for

f = ε ·
∏
p|R

′
p

vp (N )−1
2 ·

∏
p|M2,(
a
p

)
=1

pvp (N )/2, g =
∏
p|M2,(
a
p

)
=−1

pvp (N )/2 ·
∏
p|M1

p
vp (N )−1

2 ,

with

ε =




2
v2 (N )−3

2 if v2(N ) ≥ 3 odd

2
v2 (N )

2 −2 if v2(N ) ≥ 3 even

1 else.

Now the level we have achieved is close to what we desired, but there is a q factor

separating us from our ultimate goal. In a subsequent section we will take care of
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this and revisit our order.

Basis for O

We know that oK has basis 1,
√

a if a ≡ 3 mod 4, and 1, 1+
√

a
2 if a ≡ 1 mod 4. In

the first case, Z + goK has basis 1, g
√

a and f (Z + goK ) has basis f , f g
√

a; in the

second case, Z + goK has basis 1, g
(
1+
√

a
2

)
and f (Z + goK ) has basis f , f g

(
1+
√

a
2

)
.

So a basis for

O =




*..
,

α bβ

β̄ ᾱ

+//
-
: α ∈ Z + goK, β ∈ f (Z + goK )




is
*..
,

1

1

+//
-
,

*..
,

g
√

a

−g
√

a

+//
-
,

*..
,

f b

f

+//
-
, and

*..
,

f gb
√

a

− f g
√

a

+//
-

in the case where a ≡ 3 mod 4, and

*..
,

1

1

+//
-
,

*..
,

g
(
1+
√

a
2

)
g

(
1−
√

a
2

)+//
-
,

*..
,

f b

f

+//
-
, and

*..
,

f gb
(
1+
√

a
2

)
f g

(
1−
√

a
2

) +//
-

in the case where a ≡ 1 mod 4. Using the fact that

*..
,

√
a

−
√

a

+//
-
·

*..
,

b

1

+//
-
=

*..
,

b
√

a

−
√

a

+//
-

we can convert these elements from their matrix representations to the standard

representations using 1, i, j, and k. We also observe that since f ∈ oK , then we will

obtain powers of the factors of a, encoded by h (a squarefree integer). Notice that
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locally when p is ramified in K–so that Op is a residually inert order–we have basis

Op = Z〈1, i, pvp (h) · f j, f k〉,

with level p2vp ( f )+2 when p is ramified in B. This allows us to simplify our

description of f to be in Z rather than in oK , by incorporating a third, squarefree

integer h to do globally what the p did locally here. So, if a ≡ 3 mod 4, our basis

becomes

O = Z〈1, gi, f h j, f gk〉.

Alternatively, if a ≡ 1 mod 4, our basis becomes

O = Z

〈
1, g

(
1 + i
2

)
, f h j, f g

(
h j + k

2

)〉
.

We can calculate the discriminant of Op by observing that if p , 2 we have

Op = Zq〈1, gi, f gh · j, f k〉 and disc(Op) =
√
det (αiα j ) = ab · f 2g2h. If p = 2,

then disc(O2) = 4 if a ≡ 3 mod 4, and disc(O2) = 1 if a ≡ 1 mod 4. If 2 | a, then

disc(O2) = 8.

2.4. Lowering the level

In Section 2.3 youmay notice that the prime q was used tomanipulate our quaternion

algebra
(

a,b
Q

)
so that we obtained the discriminant ∆ as we desired, as well as

distributing the primes in R1, R2, M1 and M2 properly to obtain the desired parity

for each exponent. Furthermore, q was often used to manipulate the behavior of 2

in both the quadratic field K (
√

a) and B to obtain the desired behavior of 2 in the

level. The selection of q played a central role in achieving these results, yet as you
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may note from the distributions of primes in each of the cases from the previous

section the behavior of Kq and Bq is such that while Bq is always split we can obtain

at minimum a level of q for the localization of our order Oq. So to obtain our desired

level N , we must lower the level of Oq from q to 1, which in turn lowers the level of

O from qN to N . Observe that since we have chosen q , 2, Oq has basis 1, i, j, k in

all cases. This allows us to apply a technique from Voight ([21]) to find a maximal

order O′q containing Oq. From [21], Algorithm 7.10, we will compute a q-maximal

order containing O by adjoining a special element to our order. Now in Cases 1a,

2, and 3, q | b, and in Cases 1b q | a. Now since q is odd, we are in Step 2 of the

algorithm, where we swap i for j or k so that ordq(a) = 0. So in Cases 1a, 2, and

3 q - a, so we do not need to swap anything. If we are in Cases 1b, we swap i for

j locally, which globally swaps gi and f j. In both of these cases, ordq(b) = 1 and

(after swapping if necessary)
(

a
q

)
= 1, so next we solve x2 ≡ a mod q for x ∈ Z/qZ

and adjoin q−1(x − i) j locally. In order to adjoin this element globally to O without

altering Op (p , q) we adjoin f gq−1(x − i) j globally in Cases 1a, 2, and 3, and we

adjoin f gq−1(x − j)i globally in Cases 1b.

Adjoining f gq−1(x − i) j globally to our order does not affect the order at places

p , q, since q ∈ Z×p and x ∈ Zp, so we have

f gq−1(x − i) j = f gq−1(x j − k) = q−1(xg( f j) − f gk) ∈ Op

for all p , q. Similarly, adjoining f gq−1(x − j)i globally to our order does not

affect the order at places p , q since

f gq−1(x − j)i = f gq−1(xi + k) = q−1(x f (gi) + f gk) ∈ Op
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for all p , q. In particular,

Zp〈1, gi, f h j, f gq−1(x − i) j〉 = Zp〈1, gi, f h j, f g(x j − k)〉

= Zp〈1, gi, f h j, gx( f j) − f gk〉 = Zp〈1, gi, f h j, f gk〉 = Op

and

Zp〈1, gi, f h j, f gq−1(x − j)i〉 = Zp〈1, gi, f h j, f g(xi + k)〉

= Zp〈1, gi, f h j, f x(gi) + f gk〉 = Zp〈1, gi, f h j, f gk〉 = Op.

Therefore we have O = Z〈1, gi, f h j, f gk〉 ⊂ O′ = Z〈1, gi, f h j, f gq−1(x − i) j〉. On

the other hand, away from q, O′p = Op; at q, Oq ⊂ O
′
q with O′q maximal as desired,

since

Zq〈1, gi, f h j, f gq−1(x − i) j〉 = Zq〈1, i, j, q−1(x − i) j〉

and

Zq〈1, gi, f h j, f gq−1(x − j)i〉 = Zq〈1, i, j, q−1(x − j)i〉.

So since O′ is unchanged from O for p , q, while O′ has level 1 at q whereas O has

level q, we have level(O) = R1R2 · M1M2 = N as desired.

So globally if a ≡ 3 mod 4 we can compute our basis as

O′ =




Z〈1, gi, f gh( j+xk)
q , f k〉 if q | b

Z〈1, gh(i+tk)
q , f g j, f k〉 if q | a

,

where t ∈ Z comes from the Euclidean algorithm for writing

1 = s(q) + t(hx). (2.2)
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However, if a ≡ 1 mod 4, so O has basis

O = Z

〈
1, g ·

1 + i
2
, f h j, f g ·

h j + k
2

〉
,

we must calculate the basis obtained by adjoining q−1(x − i) j or q−1(x − j)i to O

by using the Hermite normal form. The Hermite normal forms give us a basis for

our order:

O′ =




Z
〈
1, g(1+i)

2 ,
f gh( j+uk)

2q , f k
〉

if q | b

Z
〈 q+gi+2gzk

2q ,
g(2i+z′k)

2q ,
f (h j+gk)

2 , f gk
〉

if q | a
,

where u is given by using the Euclidean algorithm to write v(q) + w(2x) = 1, and

setting 0 ≤ u < 2q such that

u ≡ vq + 2w mod 2q, (2.3)

z is given by the Euclidean algorithm for writing

y(−q) + z(2x) = 1, (2.4)

and where z′ is given by choosing 0 ≤ z′ < 2q with

z′ ≡ 4z mod 2q. (2.5)
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2.5. Main result

In Section 2.3 we constructed orders of level qN , and in the previous section we

lowered the level of our order at q from q to 1. Therefore we have the following:

Theorem 13. Select a, b to represent our quaternion algebra as stated in Proposi-

tion 12, and put

f = ε ·
∏
p|R1

′
p

vp (N )−1
2 ·

∏
p|R2

′
pvp (N )/2−1 ·

∏
p|M2,(
a
p

)
=1

pvp (N )/2,

g =
∏
p|M2,(
a
p

)
=−1

pvp (N )/2 ·
∏
p|M1

p
vp (N )−1

2

and

h =




∏
p|R2

p1−vp (b) if v2(N ) , 2

∏
p|R2

′
p1−vp (b) if v2(N ) = 2

with ε =




2
v2 (N )−3

2 if v2(N ) ≥ 3 odd

2
v2 (N )

2 −2 if v2(N ) ≥ 3 even

1 else

.

and select x ∈ Z with x2 ≡ a mod q if q | b, and x2 ≡ b mod q if q | a. Then

the order

O =




Z
〈 q+gi+2gzk

2q ,
g(2i+z′k)

2q ,
f (h j+gk)

2 , f gk
〉

if q | a and a ≡ 1 mod 4

Z〈1, gh(i+tk)
q , f g j, f k〉 if q | a and a ≡ 3 mod 4

Z
〈
1, g(1+i)

2 ,
f gh( j+uk)

2q , f k
〉

if q | b and a ≡ 1 mod 4

Z〈1, gi, f gh( j+xk)
q , f k〉 if q | b and a ≡ 3 mod 4
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has level N in B, with u given by (2.3), z given by (2.4), z′ given by (2.5), and t given

by (2.2).

Theorem 11 follows from descending Theorem 13 to ∆ = p.

When ∆ | R1–i.e. when Kp is unramified for all p | ∆–Theorem 13 descends to:

Theorem 14. When we select a, b to represent our quaternion algebra as stated in

Section 2.3, we choose

f = ε ·
∏
p|R

p
vp (N )−1

2 ·
∏
p|M2,(
a
p

)
=1

pvp (N )/2, g =
∏
p|M2,(
a
p

)
=−1

pvp (N )/2 ·
∏
p|M1

p
vp (N )−1

2

with

ε =




2
v2 (N )−3

2 if v2(N ) ≥ 3 odd

2
v2 (N )

2 −2 if v2(N ) ≥ 3 even

1 else

,

and select x ∈ Z with x2 ≡ a mod q if q | b, and x2 ≡ b mod q is q | a. Then the

order

O =




Z
〈 q+gi+2gzk

2q ,
g(2i+z′k)

2q ,
f ( j+gk)

2 , f gk
〉

if a ≡ 1 mod 4

Z〈1, g(i+tk)
q , f g j, f k〉 if a ≡ 3 mod 4

has level N in B, with z given by (2.4), z′ given by (2.5), and t given by (2.2).

These results have been checked for ∆ < 1000 and N < 10, 000 by constructing

the order prescribed above in Sage and computing its discriminant, matching it to the

level N . Note that I have provided the code for the general construction of an order

with level N detailed in my result, available at http://math.ou.edu/~jwiebe/.
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2.6. Examples

Now that we have our order O of level N , we can use it to construct spaces of

modular forms of level N using Brandt matrices (or theta series); see [18], [6] when

B has prime discriminant, and see [12] for arbitrary B. Note that there are other

approaches to this, including a technique of Dembélé [3] which only requires the

use of maximal orders. However, our result also allows us to compute quaternionic

modular forms via Brandt matrices, and also solves the quaternionic analog of the

classical problem of finding bases for orders in number fields.

We conclude by presenting examples of finding bases of orders, and indicate

how this is used to compute modular forms of matching level.

Example 15 (∆ = 3 and N = 27).

Suppose that ∆ = 3 and N = 27. We can compute the class number (see [18]),

and obtain H = 2. We can compute a, b and O using the case outlined in Section

2.3 to obtain a = −3, b = −73 and use Theorem 13 to obtain

O = Z

〈
1,
1 + i
2
,
3 j + 309k

146
, 3k

〉
.

Using Magma we obtain the following via M:=BrandtModule(O) and

HeckeOperator(M,p):

T1 =
*..
,

1 0

0 1

+//
-
, T2 =

*..
,

1 2

1 2

+//
-
, T3 =

*..
,

0 0

0 0

+//
-
,

T4 =
*..
,

−5 6

3 −2

+//
-
, T5 =

*..
,

2 4

2 4

+//
-
, T6 =

*..
,

0 0

0 0

+//
-
,
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T7 =
*..
,

2 6

3 5

+//
-
, T8 =

*..
,

32 64

32 64

+//
-
, . . .

which yield the Eisenstein series with ap = p+ 1 for p , 3, as well as the cusp form

f = q − 2q4 − q7 + 5q13 + . . . .

These are bothmodular forms of weight 2 and level 27, whose pth Fourier coefficient

is an eigenvalue of the Hecke operator Tp above (p , 3).

Example 16 (∆ = 7 and N = 49).

Suppose that ∆ = 7 and N = 49. We can compute a, b and O using (again)

the case outlined in Section 2.3 to obtain a = −7, b = −11 and use Theorem 13 to

obtain

O = Z

〈
1,
1 + i
2
,
7( j − 5k)

22
, k

〉
.

Using Magma as in the previous example gives us

T1 =

*..........
,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+//////////
-

, T2 =

*..........
,

2 1 0 0

1 2 0 0

0 0 2 1

0 0 1 2

+//////////
-

, T3 =

*..........
,

0 0 2 2

0 0 2 2

2 2 0 0

2 2 0 0

+//////////
-

,

T4 =

*..........
,

3 4 0 0

4 3 0 0

0 0 3 4

0 0 4 3

+//////////
-

,T5 =

*..........
,

0 0 3 3

0 0 3 3

3 3 0 0

3 3 0 0

+//////////
-

, T6 =

*..........
,

0 0 6 6

0 0 6 6

6 6 0 0

6 6 0 0

+//////////
-

,
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T7 =

*..........
,

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

+//////////
-

, T8 =

*..........
,

6 9 0 0

9 6 0 0

0 0 6 9

0 0 9 6

+//////////
-

, . . .

which yield the Eisenstein series with ap = p+ 1 for p , 7, as well as the cusp form

f = q + q2 − q4 − 3q8 − 3q9 + 4q11 + . . .

These are bothmodular forms of weight 2 and level 49, whose pth Fourier coefficient

is an eigenvalue of the Hecke operator Tp above (p , 7). Note that [7] provides a

number of examples in Section 10 of similar calculations to ours, and in fact we

may verify our results in this example by considering Example 10.5.

Example 17 (∆ = 70 and N = 2 · 52 · 75 · 11 · 232).

Suppose that ∆ = 70 and N = 2 · 52 · 75 · 11 · 232. Since 2 | ∆ and v2(N ) = 1, we

are in Case 3, where we select a = −q ·
∏

p|R2 p and b = −
∏

p|RM1 p. Our conditions

on q we compute as:

1.
( q
7

)
= (−1) ·

(
−5
7

)
; and

2.
( q
5

)
= (−1) ·

(
−7·11
5

)
; and

3.
( q
11

)
=

(
−5
11

)
.

We also choose q ≡ 7 mod 8 so that a ≡ 5 mod 8. So this gives us a set

of congruences where q is nonsquare mod 7, a square mod 5, and nonsquare

mod 11. So if q ≡ 7 mod 8, q ≡ 3 mod 7, q ≡ 2 mod 5, and q ≡ 2 mod 11,

we obtain q = 1487. So a = −1487 · 5 and b = −2 · 5 · 7 · 11. This gives us
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B =
(
−7435,−770

Q

)
with ∆ = 70 as desired. Then f = 23 · 72, g = 1, and h = 1. Now

we need to find x so that x2 ≡ −770 mod 1487, which gives us x = 593. Next we

use the extended Euclidean algorithm to compute d = y(−1487)+ z(2 · 593), which

gives us z = 1156. Then c = 2z = 2312. So now we can construct our order:

O = Z

〈
1487 + i + 2 · 578k

2974
,

i + 1156k
1487

,
1127 j + 1127k

2
, 1127k

〉
.

This order has level N = 4889996650 = 2 · 52 · 75 · 11 · 232 as desired.
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Chapter 3

Zeros of quaternionic modular forms

3.1. Introduction

Modular forms are a fundamental tool in number theory for the study of a variety of

objects, including elliptic curves and quadratic forms. As discussed in 1, classical

modular forms are functions on the upper half plane H = {z ∈ C : Im(z) > 0}

obeying a certain set of transformation properties; equivalently, one can characterize

classical modular forms as functions on the hyperbolic plane that behave well under

the action of specific discrete subgroups of isometries. One can also expand on the

idea of modular forms to functions on Hn (yielding Hilbert modular forms) or on

the Siegel upper half-space (yielding Siegel modular forms). Here we will study

modular forms on quaternion algebras, and use certain behavior connected to the

Atkin-Lehner eigenvalues associated to the forms to predict zeros of such forms.

In particular, we will investigate the behavior of zeros of quaternionic modular

forms of a given level which can be predicted to occur by a combination of analysis

of the plus and minus spaces Snew,±
k (N ) and the action of the σp on the forms,

where σp represents the involution given by right multiplication on Cl(O) by a
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uniformizer $p of Op. This behavior is tied to a nonvanishing result for the L-

functions of the elliptic cusp forms associated with our quaternionic modular forms.

This nonvanishing phenomena will be examined in more detail in a joint paper with

Kimball Martin in the future.

Let Snew
k (N ) denote the new subspace ofweight k elliptic cusp forms on Γ0(N ) —

i.e., the space of forms which are not obtained from lower level modular forms. We

can decompose the newspace above into the (full) plus and minus spaces Snew,±
k (N ),

subspaces generated by newforms with global root number— the± in the functional

equation of their L-functions — equal to ±1. We can refine this decomposition

further by observing that newforms with Atkin-Lehner eigenvalue +1 or −1 for each

prime p | N generate subspaces of the full plus/minus spaces, which we denote

by Snew,εM
2 (N ), using the notation of sign patterns in [14]. In this chapter, we

construct and analyze quaternionic modular forms over Q. Define Sq∗ to be the set

of squarefree integers which are the product of an odd number of primes, necessary

to create a maximal order O with level N because the discriminant of our quaternion

algebra must have the same (odd number of) prime factors as our level N . We begin

by describing a construction algorithm for computing quaternionic modular forms

of level N ∈ Sq∗. We then proceed to describe data collected counting both the

number of zeros and the number of zerofree quaternionic modular forms of level

L ≤ N , compared with the dimension of the minus spaces Snew,εM
2 (N ) to determine

the behavior of the nontrivial zeros of quaternionic modular forms — that is, the

zeros which are not the result of the action of the σp on the minus spaces Snew,εM
2 .

We conjecture that the ratio of the total number of zerofree quaternionic modular

forms of level L ∈ Sq∗ ≤ N to the total number of forms with no trivial zeros tends

to 1 as N → ∞, and provide data for prime N up to 7500 and nonprime N ∈ Sq∗

up to 3000 by using [14] to calculate the dimensions of such ± spaces, along with
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the involutions on the space of quaternionic modular forms. We also compare the

number of nontrivial zeros which occur for prime level to the number which occur

for level N ∈ Sq∗. We also expand our considerations to quaternionic modular

forms of arbitrary level, constructed via the algorithm presented in Chapter 2. We

conclude by analyzing asymptotics of the growth rate of trivial zeros, and provide

a histogram of the distribution of nontrivial zeros with respect to the degrees of

factors associated to them.

We begin in Section 3.2 by defining quaternionic modular forms and the cusp

space S(O). We present an algorithm for computing quaternionic modular forms

of level N ∈ Sq∗ in Section 3.3. We proceed in Sections 3.4 and 3.5 to calculate

dimensions of the plus and minus spaces of Snew
k (N ) using [14], which we use to

calculate the number of trivial zeros of a given quaternionic modular form of prime

level N , as well as to calculate the number of zeros for all forms of prime level N .

This allows us to analyze the number of nontrivial zeros with respect to the size

of the minus space of Snew
k (N ) (the space of forms with no trivial zeros), whose

ratio we expect to tend towards 1 as N → ∞. We establish our conjecture for

prime level, and give relevant data illustrating this limit. In Section 3.5, we use the

dimension formulas of [14] and results of [11] to calculate the number of forms of

level N ∈ Sq∗ which we expect to be zerofree (i.e., forms which have no trivial

zeros), and compare the predicted number to the actual value given via the previous

data. This yields our final conjecture that the ratio of the total number of zerofree

forms of level L ∈ Sq∗ ≤ N to the number of forms with no trivial zeros of level

L ∈ Sq∗ ≤ N tends to 1 as N → ∞. We continue in Section 3.6 by connecting our

construction of orders of general level presented in Chapter 2 to our discussion on

quaternionic modular forms, and present examples of quaternionic modular forms

with general level N . We conclude with an analysis of the growth rate of the number
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of nontrivial zeros, as well as the number of forms with nontrivial zeros, and a

histogram relating nontrivial zeros to the degree of the associated factors.

3.2. Quaternionic modular forms

Let O be be an order in a definite rational quaternion algebra B.

Definition 18. A quaternionic modular form of level O and weight 2 is a complex-

valued function ϕ on the set Cl(O) of right O-ideal classes. Let M (O) denote the

space of quaternionic modular forms.

Note that we can view quaternionic modular forms as functions ϕ : B̂× → C

which are left B×-invariant and right Ô×-invariant to better see their arithmetic

connections.

For F = Q, things become simpler because we have F×o×p F×∞ ' AF , giving us

quaternionic eigenforms which correspond to elliptic cusp forms with trivial central

character. Moreover, we define the Eisenstein space Eis(O) of M (O) to be the

subspace of constant functions on Cl(O).

Definition 19. The normalized inner product on M (O) is given by

〈ϕ, ϕ′〉 =

h∑
i=1

ϕ(xi)ϕ(xi)
wi

,

where wi = |O` (xi)× |, the size of the unit group of the left order of O with respect

to xi.

Let 1 denote the constant function 1 on Cl(O). The cusp space S(O) of M (O)
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is given by

S(O) = {ϕ ∈ M (O) : 〈ϕ, 1〉 = 0};

i.e., the subspace of forms which satisfy

1
w1
ϕ(x1) + · · · +

1
wh

ϕ(xh) = 0.

Observe that the definition above is for quaternionic modular forms over Q. The

general definition requires a more sophisticated inner product and that cusp forms

to be orthogonal to the entire Eisenstein subspace Eis(O).

Note that the Jacquet-Landlands correspondence, in the setting of automorphic

representations, gives us the isomorphism

S2(O) ' Snew
2 (N ),

where lev(O) = N and Snew
2 (N ) is the space of elliptic modular forms. This

isomorphism respects the action of the Hecke operators Tp for p - N . Also note

that the action of the ramified Hecke operators Tp on S2(O) corresponds to the

action of Tp = −Wp on Snew
2 (N ) under the Jacquet-Langlands correspondence for

the Atkin-Lehner operator Wp.

This correspondence shows the number-theoretic connections quaternionicmod-

ular forms have to modular forms of other varieties, and is used to obtain the di-

mension formulas we will in Sections 3.4 and 3.5, as well as in future work on a

nonvanishing result of the L-function of the elliptic modular form f associated to

our quaternionic modular form ϕ.

53



3.3. Computing bases of quaternionic modular forms

We calculate quaternionic modular forms over Q via the following algorithm:

// Input: Level N, squarefree product of odd number of primes

// Output: S={quaternionic modular forms of level N},

total number of zeros of S,

total number of zerofree forms of S

function mod-form-data(N):

B:=BrandtModule(N)

while CharPoly(HeckeOperator(B,p)) has repeat factors:

p:=NextPrime(p);

M:=HeckeOperator(B,p);

f<x>:=Factor(CharPoly(M));

Ev:=EigenvalsOverQ(M);

for lambda in Ev do:

E:=Eigenspace(M,lambda);

S:=Append(S,Basis(E));

zerocounter+=Count(phi,0);

if Count(phi,0) == 0 then:

zerofreeforms+=1;

for factor in f do:

if degree(factor) > 1 then:

54



lambda:=Eigenvalue(factor);

K:=NumberField(lambda);

E:=Eigenspace(Matrix(K,M),lambda);

S:=Append(S,Basis(E));

zerocounter+=Count(phi,0);

if Count(phi,0) == 0 then:

zerofreeforms+=1;

return S, zerocounter, zerofreeforms;

This gives us a method for computing quaternionic modular forms for N ∈ Sq∗.

For example, if N = 23, we have the following:

N=23 x1 x2 x3 Min poly. of α Global root number

ϕ1 1 1 1 x − 3 +1

ϕ2 2 α − 1 −3α x2 + x − 1 +1

Also note that the global root number w f = (−1)k ∏
p|N wp( f ), where the wp

are the Atkin-Lehner eigenvalues. In the weight 2 case, we have w f =
∏

p|N wp( f ),

where each wp( f ) = −ap( f ) for p | N for ap the Hecke eigenvalues.

It is advantageous to see the values of our forms in terms of α because we can

more easily see the action of the involution σN on ϕ. For example, for N = 67, we

have the following data:
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N=67 x1 x2 x3 x4 x5 x6 Min poly. of αi

ϕ1 1 1 1 1 1 1 x − 3

ϕ2 2 1 -1 -1 0 0 x − 2

ϕ3 4 2α2 − 2 α2 + 1 α2 + 1 −2α2 − 1 −2α2 − 1 x2 + x − 1

ϕ4 0 0 1 -1 α3 + 2 −α3 − 2 x2 + 3x + 1

Recall that if f ∈ Snew
k (N ) is a newform, the sign of the functional equation w f

of the L-series L(s, f ) is (−1)k/2 · λ, where λ is the eigenvalue of WN , the N th

Atkin-Lehner operator. We decompose the newspace into Snew,±
k (N ), the subspaces

generated by newforms with w f = ±1. We can see from the above data that x1

and x2 are fixed by σN , and x3 and x4 are interchanged, as are x5 and x6. This

allows us to deduce the plus and minus spaces of Snew
2 (67), with ϕ1 forming the

Eisenstein subspace, ϕ3 forming the plus space with dimension 2 (since ϕ3 has a

single conjugate because the minimal polynomial of α is degree 2), and ϕ2 and ϕ4

forming the minus space with dimension 3 (since ϕ4 has a conjugate because its

minimal polynomial is degree 2).

Note that due to the construction of our quaternionic modular forms, their values

will in fact lie in R, a fact we can use to calculate approximate values for our forms

when needed. In particular, the zeros of the ϕi will be of particular interest, which

we detect with reasonable accuracy using approximate eigenvector calculations in

Sage.
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3.4. Zeros of quaternionicmodular formswith prime level

Consider the dimension of the plus and minus space observed in the above case

when N = 67. It is possible to manually examine a given quaternionic modular

form of level N and determine which ϕi are in the plus space and which are in

the minus space, and indeed one can obtain a significant amount of information

from such observations. However, when we wish to expedite such calculations, it is

sufficient to calculate the dimension of Snew,±
k (N ) for prime N . Observe that such

calculations tell us how many (but not which) forms belong in the ± spaces. Such

formulas have been developed in [22], [9], and [5]. Explicit formulas for N prime

and N squarefree are given by Martin in [14], which we reiterate here.

From Theorem 2.2 of [14], we know that for N > 3 squarefree,

dim Snew,±
k (N ) =

1
2
dim Snew

k (N ) ±
1
2

(
1
2

h(∆N )b(N, 1) − δk,2

)
, (3.1)

where ∆N is the discriminant of Q(
√
−N ), h(∆N ) is the class number of an order

of discriminant ∆N , and b(N, 1) = 1, 2, or 4 according to whether N . 3 mod 4,

N ≡ 7 mod 8, or N ≡ 3 mod 8 (respectively).

Using the above formula along with the involution on σN , we can calculate the

number of zeros (which we call trivial zeros) we expect to occur in the eigenforms

of M (O) for O a quaternion order of prime level N using the formula

E(N ) = rN · dim(Snew,−
2 (N )),

where rN = h(O)−2 dim(Snew,−
2 (N )) for h(O) the class number of a quaternion order

of level N . Here rN is the number of fixed points ofσN , which acts on the eigenforms

{φk }. Since the action of σN on φ ∈ M±(O) is given by φ(σN (x)) = ±φ(x) for
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all x ∈ Cl(O), then for the minus space φ(σN (x)) = −φ(x). Moreover, if σN fixes

x, then we have φ(σN (x)) = φ(x) = −φ(x), so it must be that φ(x) = 0. So rN

represents the number of trivial zeros of a quaternionic modular form of level N , and

E(N ) gives the total number of such trivial zeros across all quaternionic modular

forms of prime level N . Note that for general N ∈ Sq∗, predicting the number of

trivial zeros is more challenging.

Outside of the values of a given quaternionic modular form which must be zero

as counted by rN on an individual basis, and by E(N ) for all level N forms, we expect

values of a given form to be zero with a zero percent probability in the distribution

of levels N → ∞. Indeed, we expect that almost all zeros of quaternionic modular

forms are in fact trivial zeros. Our first conjecture describes this:

Conjecture 20. Let A(N ) denote the number of zeroswhich occur in the eigenforms

of M (O) for O of prime level N . Then

lim
N→∞

∑
prime levels L ≤ N

E(L)∑
prime levels L ≤ N

A(L)
= 1.

In fact, examining quaternionic modular forms of prime level N using the

algorithm in the previous section — along with our formula for E(N ) — allows us

to compare the number of trivial zeros (zeros which come from the minus space

Snew,−
2 (N ) where σN fixes xi) to the actual number of zeros A(N ) to determine

how many nontrivial zeros occur for a given level. For instance, consider again the

example of N = 67:
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N=67 x1 x2 x3 x4 x5 x6 w f

ϕ1 1 1 1 1 1 1 +1

ϕ2 2 1 -1 -1 0 0 −1

ϕ3 4 2α2 − 2 α2 + 1 α2 + 1 −2α2 − 1 −2α2 − 1 +1

ϕ4 0 0 1 -1 α3 + 2 −α3 − 2 −1

We know that ϕ3 (along with its conjugate) span the plus space, and ϕ2 and ϕ4

and its conjugate span the minus space. Furthermore, the zeros of ϕ2 and ϕ4 are our

trivial zeros, so along with multiplicity we have E(67) = 6. We now examine this

trend for prime level:

Figure 3.1: Number of trivial zeros E(N ) (black) vs actual zeros A(N ) (white) (N
- prime)

67 109 139 179 211
Level

Zeros

As we can see, there are occasional levels N for which the number of nontrivial

zeros is particularly high, and we illustrate this by computing the ratio of nontrivial

zeros in proportion to the total number of zeros:
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Figure 3.2: nontrivial zeros / actual zeros (N - prime)

1,000 3,000 5,000 7,000

0.25

0.5

Notice that this ratio appears to converge to 0, meaning that as N → ∞, almost

all zeros of a given quaternionic modular form ϕ are trivial zeros. This data provides

further justification for Conjecture 20.

For prime levels, we can directly compute the number of zeros we expect,

but for general level this is not possible without significant computations using

ideal classes. This leads us to a connected problem: can we predict how many

quaternionic modular forms of level N are zerofree? The following theorem helps

to answer this question:

Theorem 21. Let N be prime. Then the number of quaternionic cusp forms of

level N which have no trivial zeros is equal to dim(Snew,+
2 (N )) − 1.

Proof. Suppose that ϕ is a quaternionic cusp form of prime level N which has no

trivial zeros. Then there is no xi for which ϕ(σN (x)) = −ϕ(x) and σN (x) = x.

So either σN has no fixed points, or ϕ is not in the minus space Snew,−
2 (N ). But for

prime N , σN always has fixed points (see Lemma 4.3 of [13]). So it must be that ϕ ∈

Snew,+
2 (N ). The number of cusp forms in S+2 (N ) is exactly dim(Snew,+

2 (N )) − 1. �
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Thus we present a second conjecture on the number of forms with no trivial

zeros which we can predict using the dimension formula 3.1. This will provide a

common feature by which to compare the behavior of prime and nonprime levels in

Sq∗.

Conjecture 22. Let Z (N ) denote the number of zerofree eigenforms of M (O) of

level N . Then

lim
N→∞

∑
L≤N

Z (L)∑
L≤N

dim(Snew,+
2 (L))

= 1,

where the levels L in both sums are prime. In other words, we expect that a given

quaternionic modular formwith no trivial zeros will in fact have no zeros. The above

ratio is computing the average of the forms of prime level ≤ N since we also expect

particular levels to be significant outliers (meaning that the number of forms with

nontrivial zeros is a significantly larger proportion). Denote by R(N ) the above

(average) ratio.

For prime levels, we can compute the average ratio R(N ) conjectured above,

and obtain the following data:
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Figure 3.3: Average ratio R(N ) for prime level up to N

1,500 3,000 4,500 6,000

0.96

0.97

0.98

0.99

1

Here we see the behavior of the ratio in question for the conjecture seeming

to illustrate that the limit is moving towards 1 for prime levels, with 150,298 total

zerofree forms (excluding the Eisenstein series) of prime level N ≤ 7500 and

149,923 total forms with no trivial zeros (again excluding the Eisenstein series) of

prime level N ≤ 7500. This gives us an average ratio of 149,923/150,298 = 0.9975.

Also note this tells us that for prime level N ≤ 7500, there are 375 cusp forms with

nontrivial zeros.

The above data shows a number of levels of granularity when analyzing the

zeros for eigenforms of prime level. For nonprime level in Sq∗, we have less

information about the action of the σp, so our methods for predicting zeros will be

more sophisticated.
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3.5. Expanding to Sq∗

For general level N ∈ Sq∗, wemust usemore complex dimension formulas to predict

the number of forms which we expect to be zerofree. Moreover, when our level is

nonprime, there are multiple σp which act on Cl(O). Recall that in the previous

section we predicted when we would obtain zeros of a quaternionic modular form

of prime level by observing the behavior of σN , the only involution on the set of

O-ideal classes. When N ∈ Sq∗, notice that there is an involution σp for each

p | N , and while it is true that each σp may have fixed points yielding trivial zeros

— as was the case when N was prime — we must also consider cycles of the σp

which yield trivial zeros. In particular, we may have σp with fixed points, and in

the minus space, if σN fixes x, then we have φ(σp(x)) = φ(x) = −φ(x), so it must

be that φ(x) = 0. This is a one-cycle. There may also be longer cycles, where

σp1 ◦ σp2 ◦ · · · ◦ σpk fixes some x. Cases such as this will yield additional trivial

zeros for levels in Sq∗, and we wish to count the number of zeros we can predict

via the σp. In order to calculate the dimension of the spaces where the σp have no

fixed points, we must refine our dimension formulas using sign patterns εM .

Now consider a sign pattern εM as defined in [14], meaning a multiplicative

function d 7→ εM (d) on the divisors of M such that εM (1) = 1 and εM (p) ∈ {±1}

for p | M . Then define Snew,εM
k (N ) to be the subspace of Snew

k (N ) generated by

newforms which have Atkin-Lehner eigenvalues equal to εM (p) for each p | M . We

will use the notation −M to indicate the sign pattern which has εM (p) = −1 for all

primes p | M .

From Proposition 3.2 of [14], we have the following: for N squarefree, M > 1

63



dividing N , and εM a sign pattern for M ,

dim(Snew,εM
2 (N )) = 2−ω(M) ·

∑
d |M

εM (d)trSnew
2 (N )Wd .

Moreover, from Proposition 1.2 of [14] we have

trSnew
2 (N )Wd = −

1
2

h′(∆M )b(M, M′) ·
∏
M ′odd

((
∆M

p

)
− 1

)
+ (−1)ω(M ′)

− δM,2 ·
1
2
·
∏
p|M ′

((
−4
p

)
− 1

)
− δM,3 ·

1
3
·
∏
p|M ′

((
−3
p

)
− 1

)
(3.2)

Lastly, when d = 1, the trace of W1 is the dimension of the full new space

Snew
2 (N ), which we recall for convenience from [10]:

dim(Snew
2 (N )) =

ϕ(N )
12
−
1
4
·
∏
p|N

((
−4
p

)
− 1

)
−
1
3
·
∏
p|N

(( p
3

)
− 1

)
+ µ(N ),

where ϕ(N ) is the Euler phi function, and µ(N ) is the Möbius function.

We will use the above dimension formula to compute the number of forms with

no trivial zeros for N ∈ Sq∗, based on the dimensions of subspaces along with the

number of fixed points of σp. In particular, consider the p | N for which σp has

fixed points. The minus eigenspaces of the Wp correspond exactly to quaternionic

cusp forms with no trivial zeros. We can determine the σp which have no fixed

points using Lemma 4.3 of [13]. In particular, if p | N , then

• For p > 2, σp acts without fixed points if and only if
(
−p
q

)
= 1 for some odd

prime q | N or if N is even and p ≡ 7 mod 8.

• For p = 2, σp acts without fixed points if and only if N is divisible by a prime

which is 1 mod 4 and
(
−2
q

)
= 1 for some prime q | N .
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Notice that in general we need to detect when a cycle σp1 ◦ · · · ◦ σpk has fixed

points. Observe that dim(Snew,−M
2 (N )) equals the number of orbits of the σp if and

only if there are no trivial zeros in Snew,−M
2 (N ). This yields the following theorem:

Theorem 23. Let εM be a sign pattern for N and M−εM (O) = {ϕ ∈ M (O) :

Tp(ϕ) = εM (p) · ϕ for p | N } the associated eigenspace. Then any nonzero form

ϕ ∈ M−εM (O) has no trivial zeros if and only if dim(M−εM (O)) = dim(M+N (O))

(which is maximal among the subspaces of Snew
2 (N )). Moreover, from [14] we know

that dim(M−εM (O)) = dim(Snew,εM
2 (N ) and dim(M+N (O)) = 1+dim(Snew,−N

2 (N ))

from the Jacquet-Langlands correspondence. So the number of cusp forms of level

N ∈ Sq∗ with no trivial zeros is

m · (1 + dim(Snew,−N
2 (N ))) − 1,

where m is the number of sign patterns εM for which dim(Snew,εM
2 (N )) = 1 +

dim(Snew,−N
2 (N )).

Proof. Consider a form ϕ ∈ M−εM (O). Then ϕ has no trivial zeros if and only

if there are no cycles σp1 ◦ · · · ◦ σpk producing fixed points among the xi in the

subpsace M−εM (O). Note that fixed points occur in such a cycle if and only if the

parity of the cycle (the product of the signs associated to each orbit {xi, σp(xi)}) is

−1. So if there are no cycles with parity −1 occurring in our subspace M−εM (O),

then we have no trivial zeros. Now observe that

dim(M+N (O)) = 1 + dim(Snew,−N
2 (N ))

is the number of orbits of Cl(O) under the action of the σp, and this dimension
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is maximal among the subspaces of Snew
2 (N ). Moreover, note that all cycles of

M+N (O) have parity +1. So there are no cycles among the σp producing trivial

zeros if and only if dim(M−εM (O)) = dim(M+N (O)). Wemay calculate the number

m of sign patterns which attain this maximum, and compute the dimension of this

space of forms with no trivial zeros to be

m · (1 + dim(Snew,−N
2 (N ))) − 1

as desired. �

Now that we have the dimension formula above and Theorem 23 to count the

number of cusp forms with no trivial zeros, we can expand our conjecture on the

distribution of zeros:

Conjecture 24. Let N ∈ Sq∗ be a nonprime squarefree integer and let S(N ) denote

the number of cusp forms with no trivial zeros, obtained via Theorem 23. As before,

let Z (N ) denote the number of zerofree forms of level N . Then

lim
N→∞

∑
L≤N

Z (L)∑
L≤N

S(L)
= 1,

where the levels in both sums are nonprime squarefree integers L ∈ Sq∗. Call the

above average ratio R(N ) as before.

Notice that here we are averaging the number of zerofree forms of level ≤ N

(obtained via our quaternionic modular forms calculations exhibited in the previous

section), as well as the number of forms with no trivial zeros for level ≤ N . A

small sampling of data is helpful here to observe certain behavior in the average,
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specifically that particular levels contribute significantly to the average, after which

the average moves up towards 1. This behavior of jumping and increasing is of

interest and will be examined further.

In particular, wewill be interested in levels N for which the number of formswith

no trivial zeros of level N is significantly lower than the number of zerofree forms

given by Theorem 23. Such forms will have a significant number of nontrivial zeros,

and we will examine whether such zeros occur more frequently when a quaternionic

modular form corresponds to a factor of low degree, or if there are significant

instances of forms corresponding to high-degree factors with nontrivial zeros. This

will be explored more fully at the end of this section, as well as in Section 3.8.

Figure 3.4: Average ratio R(N ) for nonprime level N ∈ Sq∗ ≤ 3000

500 1,500 2,500

0.94

0.97

1

We observe here that the ratio of zerofree forms to the number of forms with

no trivial zeros is generally lower for nonprime level than for prime level, and there

are more significant outliers for nonprime squarefree level; that is, there are more

nonprime squarefree levels N where the ratio is unusually low, indicated by the

jumps observed in the figure above. We can also observe that while the values of the
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ratio jump periodically due to the outliers, there is also a clustering occuring which

moves towards 1 as N → ∞, which occurs much more quickly for prime levels

compared to general nonprime squarefree levels. This raises an important question:

can we identify where such outliers occur among the nonprime squarefree levels in

Sq∗?

Let’s examine N = 2110, which has ratio 14/23: excluding the quaternionic

modular form corresponding to the Eisenstein series, we have 69 eigenforms, of

which eight correspond to degree one factors, six of degree two, three of degree

three, six of degree six, 16 of degree eight, 18 of degree nine, and 12 of degree

twelve (counting conjugates). All of the forms except the 12 of degree twelve have

zeros. Many of these zeros are ones that we expect, given that we only expect to

have 23 zerofree forms. So there are 9 forms with nontrivial zeros.

Notice that the nontrivial zeros for nonprime squarefree levels in Sq∗ require

more computation to detect, as illustrated by N = 195:

N=195 x1 x2 x3 x4 x5

ϕ1 1 1 1 1 1

ϕ2 0 0 1 −1 −1

ϕ3 3 3 −1 −1 −1

ϕ4 0 0 1 1 1

ϕ5 0 0 1 1 −1

ϕ6 8 −8 α2 − 4α − 8 −α2 + 4α + 8 α2 − 4α − 8
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x6 x7 x8 Min poly. of α w f

1 1 1 x − 8 +1

1 0 0 x + 1 +1

−1 −1 −1 x +1

1 −2 −2 x + 3 +1

−1 0 0 x − 3 +1

−α2 + 4α + 8 2α2 − 4α − 24 −2α2 + 4α + 24 x3 − x2 − 16x − 16 +1

Here all forms have global root number +1, and dim(Snew,−195
2 (195)) = 2, so the

maximum dimension from Theorem 23 we are looking for is 3, which only occurs

in Snew,−13
2 (195) and (trivially) in Snew,−195

2 (195). This gives our five forms with no

trivial zeros. Notice that three zerofree forms come from ϕ6 and its two conjugates,

and ϕ3 is the other zerofree form. So one of ϕ2, ϕ4, or ϕ5 has nontrivial zeros. Using

Lemma 4.3 of [14] we can calculate that σ13 acts without fixed points, while both

σ3 and σ5 have fixed points. So we conclude that ϕ4 has nontrivial zeros.

Now consider the average ratio R(N ) for general squarefree level N ∈ Sq∗.

Given our previous two conjectures, along with the data presented above, it is

natural to merge our conjectures together:

Conjecture 25. Let N ∈ Sq∗ be a squarefree integer and S(N ) denote the number

of cusp forms with no trivial zeros, obtained via Theorem 23 in nonprime levels,

and via dim(Snew,+
2 (N )) in prime levels. As before, let Z (N ) denote the number of

zerofree eigenforms of level N . Then

lim
N→∞

∑
L≤N

Z (L)∑
L≤N

S(L)
= 1,
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where the levels in both sums are squarefree integers L ∈ Sq∗. Call the above

average ratio R(N ) as before.

Notice that the behaviors of prime levels and nonprime levels differ in that for

prime level our average ratio converges more rapidly than for nonprime level, but

both appear to be converging to one in the limit, as predicted by our conjectures:

Figure 3.5: R(N ) for prime level (white, above) vs R(N ) for nonprime squarefree
level in Sq∗ (black, below)
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From this data we can see that themajority of nontrivial zeros occur for nonprime

levels. Notice that the combined average ratio R(3000) = 36411
36943 , where there are

8346 zerofree cusp forms of nonprime squarefree level and 28,065 zerofree cusp

forms of prime level. There are 8655 cusp forms of nonprime squarefree level with

no trivial zeros, and 28,288 cusp forms of prime level with no trivial zeros. We can

see that the majority of cusp forms of level ≤ 3000 come from prime level, but 309

of the 532 cusp forms with nontrivial zeros come from nonprime squarefree levels.

For nonprime N , computations of quaternionic modular forms become increas-

ingly large, and as a result we have opted to sample a range of large N , calculating
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the number of zerofree forms using approximation methods in Sage:

N Forms with no trivial zeros Actual zerofree forms Z (N )/S(N )

3585 56 29 29/56

3586 21 20 20/21

3590 21 19 19/21

3593 159 159 1

3594 19 19 1

3597 49 49 1

3598 35 28 28/35

3605 67 67 1

3606 17 17 1

3607 159 159 1

3613 156 156 1

3614 45 45 1

3615 55 54 1

3617 165 165 1

3619 127 124 124/127

3621 61 61 1

3623 173 172 172/173

3631 172 172 1

3633 55 52 52/55

3634 22 22 1

Observe that while there are outliers with relatively low ratios Z (N )/S(N ) —
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where we have forms with nontrivial zeros — this data confirms our conjectures

that R(N ) → 1 as N → ∞.

3.6. General level

Consider the orders constructed in Chapter 3 of general level N . We examine here

the quaternionic modular forms of level N in the most general setting.

We begin by describing the construction of quaternionic modular forms of

general level: let B be a quaternion algebra with discriminant ∆ and O be an order

of level N given by 13. We can calculate the Hecke operators as before in Magma,

and proceed with our construction of the quaternionic modular forms of level N .

Of note for general N is that we may obtain a eigenspace of higher dimension

corresponding to nonprimitive elliptic modular forms of level pn. For instance,

consider N = 49 and the order constructed in Example 2.6:

O = Z

〈
1,
1 + i
2
,
7( j − 5k)

22
, k

〉
,

where a = −7 and b = −11. Computing the eigenspaces of the Hecke operator T2

gives us

N=49 x1 x2 x3 x4 Min poly. of α

ϕ1 1 1 1 1 x − 3

ϕ2 1 1 1 −1 x + 3

ϕ3 1 0 −1 0 x

ϕ4 0 1 −1 0 x

Note that both ϕ3 and ϕ4 have minimal polynomial x, which occurs because

there is no p for which the Hecke operator Tp has distinct eigenvalues if our level is
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not squarefree. So ϕ3 and ϕ4 form a 2-dimensional eigenspace. For calculations of

quaternionic modular forms of general level N , we will experience this problem for

primes with vp(N ) > 1. Choosing a method by which to obtain eigenforms from

the vp(N )-dimensional eigenspaces is a nontrivial task, which we will not address

here.

Based on the data presented above for both prime and nonprime squarefree level

in Sq∗, we have shown evidence that for squarefree level in Sq∗, almost all forms

with no trivial zeros (caused by the action of the σp on the subspaces of Snew
2 (N ))

in fact have no zeros.

Note that the occurrence of quaternionic modular forms with no zeros, as well as

forms with nontrivial zeros, has ramifications in the vanishing of central L-values.

In particular, forO amaximal order and ϕ ∈ S(O) a zerofree quaternionic eigenform

of level N and f ∈ Snew,−N
2 (N ) the newform associated to ϕ, if ϕ is zerofree then

one can show that there is nonvanishing result for the central L-value associated to

f . We will explore this connection in more detail in a joint paper with Kimball

Martin in the future.

3.7. Asymptotics

In this section, we wish to analyze the growth rates of the quantities examined above;

in particular, we will examine the growth rate of the number of nontrivial zeros of

quaternionic modular forms of prime level, as well as the growth rate of the number

of quaternionic modular forms with no trivial zeros.

So consider the number of trivial zeros of quaternionic modular forms of prime
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level N given by

E(N ) = rN · dim(Snew,−
2 (N )) = (h(O) − 2 dim(Snew,−

2 (N ))) · dim(Snew,−
2 (N ))

as before. If we denote by A(N ) the total number of zeros for forms of prime level

N , and subtract the trivial zeros E(N ), we obtain the number of nontrivial zeros

of level N . Consider the total number of nontrivial zeros T (N ) of quaternionic

modular forms of prime level ≤ N , given below:

Figure 3.6: T (N ) for prime level
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Note that the above data tells us, for instance, that there are 71,733 nontrivial

zeros among the quaternionic modular forms of prime level ≤ 10,000.

Wewish to compare the rate of growth of this function to determine its asymptotic

behavior, so we will graph T (N )/ f (N ) for various continuous functions. We are

looking for an upper bound which goes to zero in the limit. Clearly N is insufficient,

but N2 appears to be an asymptotic upper bound:
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Figure 3.7: T (N )/N
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Figure 3.8: T (N )/N2
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It appears that N3/2 is asymptotically equivalent to T (N ):

Figure 3.9: T (N )/N3/2
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While our data appears to asymptotically grow with N3/2, accurately conjec-

turing this growth rate requires more data on the number of quaternionic modular

forms, a problem which we will address separately in the future.

We would also like to examine the growth rate of the number of forms with

nontrivial zeros. In order to calculate the number of forms with nontrivial zeros,

we must use caution, as forms in the (global) minus space may have both trivial

and nontrivial zeros. In order to find the forms with nontrivial zeros, we must

separate the forms calculated in Sage and Magma into the (global) plus and minus

spaces. To determine whether a given quaternionic modular form is in the minus

space Snew,−
2 (N ), we begin by checking to see if it has at least rN zeros (the number

of trivial zeros for each form in the minus space). If it does, we can further check

that ϕ(xi) = −ϕ(x j ) for each value of our form (this behavior occurs as a result
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of the action of σN ). Once we have filtered the space of forms down using these

techniques, we check to see if we have exactly dim(Snew,−
2 (N )) such forms. If

we have more forms, we proceed to check for each i the number of ϕ j for which

ϕ j (xi) = 0. In particular, for cusp forms in the minus space, the zeros occur for all

such forms at the same xi. We can use this property to detect whether we have the

correct set of forms {ϕ j } spanning Snew,−
2 (N ). Forms in the (global) minus space

Snew,−
2 (N ) with more than rN zeros, in addition to any forms in the (global) plus

space Snew,+
2 (N ) with zeros, give us all cusp forms with nontrivial zeros. Denote by

F (N ) the number of cusp forms with nontrivial zeros.

Such calculations limit our dataset slightly, but we can still use the data to observe

some asymptotic results:

Figure 3.10: F (N ) for prime level
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Figure 3.11: F (N )/N
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It appears that the number of formswith nontrivial zeros of prime level asymptot-

ically grows with N , but again note that accurately conjecturing an asymptotic here

requires more exact data from Magma, a problem which we will address separately

in the future.

Note that some levels have significantly more forms with nontrivial zeros than

others. For example, when N = 571, we have 19 forms in the minus space, with

three forms (a degree 3 form and its conjugates) in the minus space having nontrivial

zeros. In the plus space, there are two degree 1 forms, 4 degree two forms, and

4 degree 4 forms with (nontrivial) zeros. So there are 13 forms of level 571 with

nontrivial zeros.

3.8. Degree histogram

In this section we will explore the degrees associated to forms with nontrivial zeros,

and investigate the conjecture that almost all nontrivial zeros occur for quaternionic

78



modular forms whose associated factors have low degree.

In order to determinewhen a formhas nontrivial zeros, we use the same technique

as in Section 3.7. Note that to obtain this data we eschew the use of approximations

in favor of exact value calculations in Magma in order to obtain the degrees of the

factors fi associated to each quaternionic modular form ϕi.

Figure 3.12: Number of cusp forms with nontrivial zeros of prime level N ≤ 2000
with nontrivial zeros of degree d
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From the above histogram, you can see that the large majority of cusp forms with

nontrivial zeros come from small degree factors. In fact, nearly 90% of the forms

with nontrivial zeros of prime level N ≤ 2000 come from factors of degrees 1, 2, or

3. This supports the conjecture that almost all nontrivial zeros occur in quaternionic

modular forms whose factors have low degree. We will investigate this conjecture

further in future work.
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Appendix A

Tables of quaternionic modular

forms of squarefree level L ∈ Sq∗

The following pages contain tables of the quaternionic modular forms of level

N ∈ Sq∗. Note that the forms {ϕi} are fixed up to scalar multiplication, which in

particular indicates that the zeros listed for these forms are fixed. We will list the

Eisenstein subspace Eis(O) = 〈ϕ1〉 and the cusp space S(O) = 〈ϕ2, . . . , ϕd〉 for d

the dimension of M (O). We also list the global root number w f of each form, which

is the sign of the functional equation of its associated L-function. Note that the

global root number w f =
∏

p|N wp( f ) for wp( f ) the pth Atkin-Lehner eigenvalue.

Furthermore, wp( f ) = −ap( f ) for ap the pth Hecke eigenvalue.

The forms are presented with their exact values using αi an algebraic integer,

along with the minimal polynomial of αi.
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N=3 x1 Min poly. of αi w f

ϕ1 1 x − 3 +1

N=5 x1 Min poly. of αi w f

ϕ1 1 x − 3 +1

N=7 x1 Min poly. of αi w f

ϕ1 1 x − 3 +1

N=11 x1 x2 Min poly. of αi w f

ϕ1 1 1 x − 3 +1

ϕ2 2 −3 x + 2 +1

N=13 x1 Min poly. of αi w f

ϕ1 1 x − 3 +1

N=17 x1 x2 Min poly. of αi w f

ϕ1 1 1 x − 3 +1

ϕ2 3 −1 x + 1 +1

N=19 x1 x2 Min poly. of αi w f

ϕ1 1 1 x − 3 +1

ϕ2 2 −1 x +1

N=23 x1 x2 x3 Min poly. of αi w f

ϕ1 1 1 1 x − 3 +1

ϕ2 2 α2 − 1 −3α2 x2 + x − 1 +1

N=29 x1 x2 x3 Min poly. of αi w f

ϕ1 1 1 1 x − 3 +1

ϕ2 3 α2 −α2 − 1 x2 + 2x − 1 +1
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N=30 x1 x2 Min poly. of αi w f

ϕ1 1 1 x − 1 +1

ϕ2 1 −1 x + 1 +1

N=37 x1 x2 x3 Min poly. of αi w f

ϕ1 1 1 1 x − 3 +1

ϕ2 2 −1 −1 x +1

ϕ3 0 1 −1 x + 2 −1

N=31 x1 x2 x3 Min poly. of αi w f

ϕ1 1 1 1 x − 3 +1

ϕ2 2 α2 − 1 −α2 x2 − x − 1 +1

N=41 x1 x2 x3 x4 Min poly. of αi w f

ϕ1 1 1 1 1 x − 3 +1

ϕ2 6 2α2 −α2
2 − 2α2 + 1 α2

2 − 3 x3 + x2 − 5x − 1 +1

N=42 x1 x2 Min poly. of αi w f

ϕ1 1 1 x − 1 +1

ϕ2 1 −1 x + 1 +1

N=43 x1 x2 x3 x4 Min poly. of αi w f

ϕ1 1 1 1 1 x − 3 +1

ϕ2 4 2α2 − 2 −α2 −α2 x2 − 2 +1

ϕ3 0 0 1 −1 x + 2 −1
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N=47 x1 x2 x3 x4 x5 Min poly. of αi w f

ϕ1 1 1 1 1 1 x − 3 +1

ϕ2 2 α2 − 1 −2α3
2 + α

2
2 + 10α2 − 6 3α3

2 − 2α
2
2 − 16α2 + 10 −3α3

2 + 3α
2
2 + 15α2 − 12 x4 − x3 − 5x2 + 5x − 1 +1

N=53 x1 x2 x3 x4 x5 Min poly. of αi w f

ϕ1 1 1 1 1 1 x − 3 +1

ϕ2 6 2α2 −2α2
2 − 2α2 + 4 α2

2 − 3 α2
2 − 3 x3 + x2 − 3x − 1 +1

ϕ3 0 0 0 1 −1 x + 1 −1

N=59 x1 x2 x3 x4 x5 x6 Min poly. of αi w f

ϕ1 1 1 1 1 1 1 x − 3 +1

ϕ2 8 4α2 − 4 −α4
2 − 2α

3
2 + 7α

2
2 + 10α2 − 8 2α3

2 − 2α
2
2 − 12α2 + 8 3α4

2 − 21α
2
2 + 12 2α2

2 − 2α2 − 4 x5 − 9x3 + 2x2 + 16x − 8 +1
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N=61 x1 x2 x3 x4 x5 Min poly. of αi w f

ϕ1 1 1 1 1 1 x − 3 +1

ϕ2 2 2α2 − 4 −2α2
2 + 2α2 + 4 α2

2 − 2α2 − 1 α2
2 − 2α2 − 1 x3 − x2 − 3x + 1 +1

ϕ3 0 0 0 1 −1 x + 1 −1

N=66 x1 x2 x3 x4 Min poly. of αi w f

ϕ1 1 1 1 1 x − 6 +1

ϕ2 2 2 −3 −3 x + 4 +1

ϕ3 1 −1 0 0 x − 2 +1

ϕ4 0 0 1 −1 x +1

N=67 x1 x2 x3 x4 x5 x6 Min poly. of αi w f

ϕ1 1 1 1 1 1 1 x − 3 +1

ϕ2 2 1 −1 −1 0 0 x − 2 +1

ϕ3 4 2α3 − 2 α3 + 1 α3 + 1 −2α3 − 1 −2α3 − 1 x2 + x − 1 +1

ϕ4 0 0 1 −1 α4 + 2 −α4 − 2 x2 + 3x + 1 −1

N=70 x1 x2 Min poly. of αi w f

ϕ1 1 1 x − 4 +1

ϕ2 1 −1 x +1
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N=71 x1 x2 x3 x4 x5 x6 x7 Min poly. of αi w f

ϕ1 1 1 1 1 1 1 1 x − 3 +1

ϕ2 2 α2 − 1 −α2
2 − α2 + 4 α2 − 1 −3 −α2 α2

2 − 2 x3 − 5x + 3 +1

ϕ3 2 α3 − 1 −α2
3 + α3 + 1 α2

3 − 2α3 − 1 −3α2
3 + 3α3 + 6 2α2

3 − 2α3 − 3 −α2
3 + α3 + 1 x3 + x2 − 4x − 3 +1

N=73 x1 x2 x3 x4 x5 x6 Min poly. of αi w f

ϕ1 1 1 1 1 1 1 x − 3 +1

ϕ2 1 −1 −1 −1 1 1 x − 1 +1

ϕ3 2 2α3 − 4 −α3 + 2 −α3 + 2 −1 −1 x2 − x − 3 +1

ϕ4 0 0 1 −1 −α4 − 1 α4 + 1 x2 + 3x + 1 −1

N=78 x1 x2 Min poly. of αi w f

ϕ1 1 1 x − 1 +1

ϕ2 1 −1 x + 1 +1
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N=79 x1 x2 x3 x4

ϕ1 1 1 1 1

ϕ2 4 2α2 − 2 −α4
2 + α

3
2 + 3α

2
2 − 3α2 + 1 −α4

2 + α
3
2 + 3α

2
2 − 3α2 + 1

ϕ3 0 0 1 −1

x5 x6 x7 Min poly. of αi w f

1 1 1 x − 3 +1

2α3
2 − 8α2 2α4

2 − 2α
3
2 − 8α

2
2 + 6α2 + 2 −2α3

2 + 2α
2
2 + 6α2 − 4 x5 − 6x3 + 8x − 1 +1

0 0 0 x + 1 −1

N=83 x1 x2 x3 x4

ϕ1 1 1 1 1

ϕ2 8 4α2 − 4 2α3
2 − 4α

2
2 − 6α2 + 8 2α4

2 − 4α
3
2 − 10α

2
2 + 12α2 + 8

ϕ3 0 0 0 0
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x5 x6

1 1

−α5
2 − α

4
2 + 9α

3
2 + 7α

2
2 − 16α2 − 8 3α5

2 − 3α
4
2 − 21α

3
2 + 9α

2
2 + 30α2

0 0

x7 x8 Min poly. of αi w f

1 1 x − 3 +1

2α2
2 − 2α2 − 4 2α2

2 − 2α2 − 4 x6 − x5 − 9x4 + 7x3 + 20x2 − 12x − 8 +1

1 −1 x + 1 −1

N=89 x1 x2 x3 x4 x5 x6

ϕ1 1 1 1 1 1 1

ϕ2 3 1 1 −1 −1 1

ϕ3 6 2α3 −α4
3 + α

3
3 + 7α

2
3 − 5α3 − 10 α3

3 − α
2
3 − 5α3 + 3 −α3

3 − α
2
3 + 5α3 + 5 α4

3 − α
3
3 − 7α

2
3 + 3α3 + 6

ϕ4 0 0 0 0 0 0
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x7 x8 Min poly. of αi w f

1 1 x − 3 +1

−1 −1 x − 1 +1

α2
3 − 3 α2

3 − 3 x5 + x4 − 10x3 − 10x2 + 21x + 17 +1

1 −1 x + 1 −1

N=97 x1 x2 x3 x4 x5 x6

ϕ1 1 1 1 1 1 1

ϕ2 2 2α2 − 4 α3
2 − 3α

2
2 − α2 + 5 α3

2 − 3α
2
2 − α2 + 5 −α3

2 + 2α
2
2 + 2α2 − 3 −α3

2 + 2α
2
2 + 2α2 − 3

ϕ3 0 0 1 −1 α2
3 + 2α3 − 1 −α2

3 − 2α3 + 1

x7 x8 Min poly. of αi w f

1 1 x − 3 +1

α2
2 − 2α2 − 1 α2

2 − 2α2 − 1 x4 − 3x3 − x2 + 6x − 1 +1

−α2
3 − 3α3 α2

3 + 3α3 x3 + 4x2 + 3x − 1 −1
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