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ABSTRACT 

 Within the field of drug design, there is a great interest in the development of 

synthetic libraries that mimic the structural complexity of natural product scaffolds. Recent 

cheminformatic analyses have revealed that 83% of the core ring scaffolds found in natural 

products are absent among commercially available drug molecules. Spirocycles are one of 

these cores presumably due to the difficulty found in synthesizing this scaffold. In order to 

address the limitation in synthetic technology, a novel approach to spiroethers, azaspiro-

ring systems, spirocarbocycles, spiroketals, and spiroaminals has been developed using 

metal carbene initiated cascade reactions. 

 The identification of two novel catalytic systems were critical to the success of 

synthesizing these varying spirocycles. The first development was identification of 

Rh2(esp)2 as a catalyst for the efficient insertion of carboxylic acids into acceptor/acceptor 

diazocarbonyls. The second development was the identification of Rh2(esp)2/PPh3AuOTf as 

a synergistic catalytic combination for an O–H insertion/Conia-ene cascade for the 

stereoselective synthesis of tetrahydrofurans and g-butyrolactones. 

 These systems were applied to the synthesis of spiroethers using an O–H 

insertion/Conia-cascade and azaspiro-ring systems using an N–H insertion/Conia-ene 

cascade. Subsequently, the Rh(II)/Au(I) system was applied to the synthesis of 5-, 6-, and 

7-membered oxindole hybridized spirocarbocycles. Lastly, direct access to spiroketals and 

spiroaminals using a metal carbene initiated cascade reaction dependent on the use of a-

diazoketones was developed. Within each synthetic effort, valuable mechanistic insights 

were obtained to justify stereochemistry and applicability to a substrate scope. 
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CHAPTER 1 
 
 
 

Natural Products as Inspiration for the  

Synthesis of Bioactive Spirocycles in Drug Discovery 

 

1.1 INTRODUCTION 

 

 If one were to probe today’s American population and ask, “What is your greatest 

issue with healthcare in the United States?” an opinion that would often be expressed is, 

“Drugs are too costly”.  To date, the cost of drug development, including the price of failure 

and the opportunity cost, has more than doubled in the past decade. [1]  A study published 

in the Journal of Health Economics showed that the annual price for new drug development 

costs $2.6 billion, a 145% increase (accounting for inflation) since a widely cited study in 

2003.[2]  The higher price tag can be attributed to a variety of factors, but the major 

contributing factor is the higher failure rates of new drug molecules that are entering 

clinical trials.[2] The business of developing innovative drugs is extremely risky and it is well 

understood in our society that the development of a new drug requires major investment 

of capital, human resources, and technological expertise.  However, what is not well 
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understood by the majority is the impact of ineffective research and development efforts 

at the chemical level on the price of the drugs that are purchased at local pharmacies.   

New drug development, from the synthesis of a compound to approval of a New 

Drug Application, can take on average 10–15 years.[1] With this timeframe and the 

aforementioned amount of money required to develop a new drug annually, it is easy to 

understand why the price paid at the pharmacy for drugs is on a steady incline.  The drug 

approval process in the United States can be categorized into three sections (Figure 1.1) : 

1) Preclinical testing and research and development; 2) Clinical research and development; 

and 3) New Drug Application review.[3]  The stage where more effective research and 

development efforts can have the greatest impact, devoid of human safety concerns, can 

be found at the “Preclinical testing and research and development” stage.  This is the stage 

in which drug molecules are initially being discovered and/or synthesized and tested for 

hit-compound identification by high-throughput screening of chemical libraries 

 
Figure 1.1. Visual depiction of drug approval process in the United States 
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Currently in the field of drug design and delivery, a significant number of scientists 

believe it is necessary to make drug molecules that more closely mimic the complexity of 

molecules derived from nature.[4] There is great interest in the development of synthetic 

libraries that mimic the structural complexity of natural product scaffolds. The reasoning 

for this interest was inspired by cheminformatic analyses that revealed that many natural 

product scaffolds remain underexploited in probe and drug discovery.[5] Presently, 83% of 

the core ring scaffolds found in natural products are absent among commercially available 

drug molecules and drug candidate screening libraries.[6] Therefore, designing molecules 

for screening that contain scaffolds found in natural products but are absent from current 

drug molecules is an ideal starting point when designing chemical libraries or developing 

the foundation of a synthetic chemistry research program.[7] This is due to the fact that 

molecules with three-dimensional features such as stereochemistry and bond saturation 

have increased binding specificity, decreased toxicological liabilities, and favorable 

pharmacological properties.[5] 

The chemo-diversity, structural complexity, and three-dimensionality of natural 

products provides scientists with molecular scaffolds that the human mind oftentimes 

cannot fathom piecing together in a laboratory setting. This described uniqueness of 

natural products is what allows these scaffolds to occupy regions of chemical space that 

current drug molecules are not accessing. Due to the high structural diversity of molecules 

obtained from terrestrial and marine organisms, natural products have been the source of 

many successful drug leads.[8] In the last 25 years, of the 877 novel drug molecules 

developed 33% were natural products or their derivatives, evidence of the importance of 
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biogenic structural motifs.[9] However, the major challenge in accessing scaffolds found in 

complex natural products is the development of efficient synthetic routes to obtain these 

molecules.[5] Given this rising challenge, synthetic chemists must identify methods to 

quickly and efficiently synthesize complex molecules and scaffolds that are inspired by 

natural products. One example of a complex scaffold that is currently underrepresented in 

chemical space and difficult to access using known literature protocols are ring systems 

possessing a spirocenter. 

Spirocyclic ring systems are found in a variety of bioactive natural products and 

approved drugs (Figure 1.2).[10] Spirocyclic ring systems contain a “spirocenter” which is a 

tetra-substituted carbon atom that is used to perpendicularly fuse two ring systems to 

create a highly rigid scaffold.[11] The rigidity of this system allows molecules to possess well-

defined conformations in biological systems.[11g] The spirocyclic scaffold increases the 

metabolic stability of drug compounds and allows them to have higher probabilities of 

interaction with protein binding sites.[12] Key classes of spirocycles include spiroethers[13], 

spirolactones[14], spiroamines[15], spirolactams[15c], spirooxindoles[16], spiroketals[17], and 

spiroaminals. Spiroethers such as the pseurotin family, are secondary microbial 

metabolites isolated from a culture broth of Pseuderotium ovalis.[18] They possess a wide 

range of biological activities including antibiotic, antifungal, anti-angiogenic, and anti-

cancer activities.[19] Also, the spiroether drug griseofulvin is on the World Health 

Organization’s (WHO)’s list of essential medicines.[20] The spirolactone core is found in the 

hyperolactone natural products, which were isolated from the leaves of the plant 

Hypericum Chinese L.[21] In particular, hyperlactone C and biyouyanagin A are of significant 
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Figure 1.2. Biologically active natural products containing a spirocenter 
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interest because of their anti-HIV activity.[22] In addition, g-butyrolactones are very 

common structural motifs found in about 10% of all-natural products.[23]  

Despite the impressive biological pedigree of spirocyclic molecules, not many of 

these scaffolds have advanced to clinical use due to low isolated yields or synthetic 

challenges associated with the stereoselective installation of the spirocenter. As a result, 

most of these drugs are either semi-synthetic natural product derivatives or synthetic 

molecules in which the spirocenter is achiral. Thus, there remains a tremendous 

opportunity to exploit the biological capabilities of spirocycles in chemical biology and drug 

discovery, provided that the synthetic challenges associated with the stereoselective 

synthesis of these molecules can be overcame. 

 

1.2 TOTAL SYNTHESES OF SPIROCYCLIC NATURAL PRODUCTS 

In this section, recent representative developments made toward the synthesis of 

spirocyclic natural products are described. Most of these methods involve the synthesis of 

a densely functionalized core which needs multiple synthetic steps to obtain prior to setting 

the spirocenter. With insights from these total syntheses, one can conclude that a general 

approach to all classes of spirocycles is of great need in the chemical community. This 

dissertation hopes to establish a method that solves this need. 
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1.2.1 TOTAL SYNTHESIS OF HYPEROLACTONE C – SPIROETHER  

 In 2009, Du et al. completed the total synthesis of hyperlactone C through the 

efficient construction of two vicinal quaternary carbon centers.[25] The authors were able 

to accomplish this daunting task by using a palladium-catalyzed asymmetric allylic 

alkylation reaction. This strategy enabled the concise and efficient total synthesis of their 

desired natural product, hyperolactone C (depicted in Scheme 1.1)  and also (–)-

biyouyanagin A in overall 20% and 8% yields, respectively. Starting from methyl 

acetoacetate 1 and benzaldehyde, the authors synthesized 2 through the formation of a 

 
Scheme 1.1. Total synthesis of hyperlactone C by Du et al. 
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insertion of the enol-form of 3. With this key intermediate in hand, a Pd(II) catalyzed allylic 

alkylation was conducted to set the desired quaternary centers with high stereoselectivity. 

The desired spirocenter was set through a lactonization reaction of 5 to obtain 

hyperolactone C. 

 

1.2.2  TOTAL SYNTHESIS OF AMATHASPIRAMIDE F – AZASPIRO-RING SYSTEM 

 A unique [2,3]-Stevens rearrangement which was prompted by a palladium-

catalyzed allylic amination gave way to the diastereoselective total synthesis of 

amathaspiramide F by Tambar and coworkers (Scheme 1.2).[26] The authors were 

interested in utilizing a diastereoselective [2,3]-Stevens rearrangement to construct the 

two contiguous stereocenters of the natural product prior to setting the desired 

spirocenter. An easily obtainable prenylated proline derivative 6 underwent an allylic 

alkylation using carbonate 7 under Pd(II) conditions. Intermediate 8 underwent an 

immediate rearrangement to the desired product 9 whose N-prenyl group was cleaved 

under olefin isomerization conditions. The desired intermediate 10 was treated with 

trifluoroacetic acid to conduct a global deprotection followed by treatment with TMSCHN2 

to furnish 11. This intermediate was known in a previous total synthesis of 

amathaspiramide F and the spirocenter was set through ozonolysis of 11 followed by 

spirohemiaminal formation using MeNH2 to obtain 13. Four subsequent steps were 

necessary to obtain the desired natural product amathaspiramide F. 
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Scheme 1.2. Total synthesis of amathaspiramide F completed by Tambar et al. 
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occurred through an substitution reaction in 99.5% ee. With the optically pure 

spirocarbocycle 18 in hand, a palladium catalyzed carbonylation was conducted to 

synthesize carboxylic acid 19 which was then coupled with the pre-synthesized lactam (20) 

portion of the natural product. This synthesis successfully made over 100 kilograms of 

ubrogepant in an overall 43% yield. 

 
Scheme 1.3. Total synthesis of ubrogepant by Yasuda et al. 
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construction of chroman spiroacetals which proceeded through the in situ formation of an 

exo-enol ether and ortho-quinonemethide. These two intermediates underwent a [4+2] 

annulation to form the desired products. This methodology was applied to the total 

synthesis of berkelic acid by starting with compound 22 and 23. However, upon 

optimization it was realized that their desired spiroketalization could be achieved with Ag(I) 

catalysis instead of Pd(II) catalysis. After spiroketalization, the desired product was 

immediately reduced to give 24 to avoid decomposition of the unstable intermediate. Once 

this highly complex molecule underwent iodination only a few more straightforward 

synthetic steps were needed to make the natural product. Compound 25 underwent an 

umpolung alkylation in the presence of 26 and LDA. This reaction delivered the berkelic 

acid methyl ester which was exposed to selective benzylic ester cleavage to achieve the 

total synthesis of berkelic acid in a 38% overall yield. 

 
Scheme 1.4. Total synthesis of berkelic acid by Fañanàs et al. 
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1.3  GOALS OF THIS DISSERTATION 

 
  The representative synthetic efforts presented in the previous section were 

successful in achieving their respective molecules in an efficient and concise manner. 

However, the key spirocyclization step for each scaffold was extremely specific and thereby 

could not be applied in a general manner to obtain all classes of spirocycles. Envisaging a 

strategy to construct every class of spirocycle through similar retrosynthetic bond 

disconnections would aid the evolution of synthetic planning and reaction development for 

the construction of more complex and diverse chemical libraries for drug screening 

programs. With the desire to develop methodology in alignment with this strategy in our 

mind, we dissected spirocycles down the middle to create a simple and straightforward 

retrosynthetic design (Figure 1.3). This disconnection would provide convergent access to 

all classes of spirocycles if two ambiphilic reacting partners were used to convergently set 

the desired spirocenter. We hypothesized that through the use of metal carbenes derived 

from diazo compounds, a cascade reaction with a tethered nucleophile and electrophile 

could give access to a wide range of spirocycles. Therefore, the goal of this dissertation is 

to successfully utilize metal carbene initiated cascade reactions to achieve the efficient 

synthesis of spirocyclic scaffolds.  

 
Figure 1.3. Novel disconnection to spirocycles developed by Sharma Lab 
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CHAPTER 2 
 

Identification of Rh(II)/Au(I)  

Synergistic Cascade Catalysis 

 

 

2.1  INTRODUCTION 

 

Recently in the field of synthetic chemistry, synergistic cascade catalysis has 

become an effective method to install molecular complexity in methodology development 

and the total synthesis of natural products.[1] Synergistic catalysis is a mode of catalysis in 

which two catalysts and two catalytic cycles cooperatively work to create a new single 

bond.[2] This mode of catalysis provides opportunities to efficiently and selectively 

assemble molecules with high levels of molecular complexity when compared to mono-

catalytic systems. In mono-catalysis one substrate is catalytically activated, altering the 

energy of only a single component of the reaction system. However, in synergistic catalysis 

both the HOMO and LUMO of the reacting system are concurrently activated using distinct 

catalysis, thereby creating two catalytic cycles that must simultaneously work together 

(Figure 2.1).[2b] 
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Figure 2.1. The classification of synergistic catalysis and the difference between 

traditional catalytic systems. 

Synergistic catalysis enables transformations that are usually impossible or 

inefficient using traditional mono-catalytic systems. While there are many benefits to 

synergistic cascade catalysis, this mode of catalysis has been underexplored due to the 
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cascades stands as a challenging feat in synthetic chemistry.[1c, 2a, 2b, 3] When nature 

implements synergistic catalysis, enzymes typically have the advantage of physical 

separation between catalytic sites within the enzyme.[3a] Conversely, in laboratory 

syntheses, the catalysts are free to interact with each other, thereby leading to the 

possibility of deactivation of both catalysts.[2b]  However, it is important to note that the 

molecular freedom of each individual catalyst in the reaction system allows one to optimize 

the reaction easily through modification of individual catalysts separately.  
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Recently the use of diazo derived rhodium carbenes in synergistic catalysis has 

gained recognition in the chemical community. It has been widely known since the early 

1970s that dirhodium(II) catalysts are the most effective catalysts for the formation of 

rhodium carbenes from diazo compounds due to the control of reactivity and selectivity 

that is induced by the bridging carboxylate ligands in the paddlewheel metal-ligand 

complex.[4] Rhodium carbenes are attractive partners for synergistic transformations due 

to their ease of formation, relative stability, controlled reactivity in typical catalytic 

reactions, and redox compatibility with a variety of transition metals.[5] 

 

Figure 2.2. a) Overview of diazocarbonyl stabilization and metal carbene reactivity; 

 b) dirhodium(II) paddlewheel complex. 

Rhodium carbenes are typically formed from diazo compounds which are inherently 

unstable substrates. However, the stability of diazo compounds can be attenuated through 

substitution of proper electron withdrawing groups at the diazo functionality. Carbonyl 

compounds have been used throughout history as electron withdrawing groups to create 
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Diazocarbonyl compounds can be categorized into three subgroups: 1) acceptor/acceptor 

[A/A] - possessing two carbonyl groups, 2) acceptor [A] - possessing a single carbonyl group, 

3) acceptor/donor [A/D] - possessing a single carbonyl group and a vinyl or aromatic group. 

The order of stability toward diazo decomposition and subsequent metal-carbene 

formation has A/D diazocarbonyls as the most reactive while A/A diazocarbonyls are the 

least reactive. However, in the case of metal carbene reactivity, this trend is reversed 

(Figure 2.2a).  

Metal carbene formation from diazocarbonyls using dirhodium(II) catalysts 

proceeds through a unique mechanism. Dirhodium(II) catalysts have an open axial 

coordination site on each terminal end of the paddlewheel complex that serves as a Lewis 

acidic center (Figure 2.2b). This characteristic allows the catalyst to undergo electrophilic 

addition to the diazo compound at the a-carbon (Scheme 2.1). Subsequent loss of 

dinitrogen  

 
Scheme 2.1. General mechanism for synergistic catalysis in rhodium carbene chemistry. 
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from the rhodium-associated diazocarbonyl prompts formation of an electrophilic rhodium 

carbene intermediate. The rhodium carbene is transferred to a coupling partner and the 

catalyst is regenerated. Within this dissertation, the coupling partner is a “X–H” bond (X = 

O, N, S, sp2-C). Upon X–H insertion into the rhodium carbene, a highly reactive zwitterionic 

intermediate is formed prior to catalyst extrusion. This zwitterionic intermediate has the 

ability to proceed down two different pathways: 1) undergo 1,2-proton 

transfer/protodemetalation to provide the formal X–H insertion product, or 2) be trapped 

by an adequately activated electrophilic species in a synergistic catalytic cascade (Scheme 

2.1). The objective of this research is to understand the reactivity of rhodium carbenes and 

their application in synergistic cascade reactions where the active zwitterionic 

intermediate is trapped by an activated electrophilic species. 

We hypothesized that in order to have a viable synergistic cascade, the initial step 

of the catalytic cycle must be proficient. Therefore, when initiating our studies toward the 

development of a synergistic catalytic cocktail for spirocyclizations, it was important to 

identify a catalyst that could efficiently decompose diazocarbonyls to produce a stable 

carbene intermediate that was able to undergo X–H (X = O, N, sp2 C–H) insertions 

efficiently. 

It was decided that optimization of the initial X–H insertion step would begin with 

A/A diazocarbonyls as our model substrates. A/A diazocarbonyls are important chemical 

building blocks in organic synthesis that are capable of novel transformations such as 

cyclopropanation, cyclopropenation, sp3 and sp2 C–H activations, and various cascade 

rearrangements.[6] Although these substrates have been applied in a wide variety of 
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transformations, their stability, requires harsh conditions in order to extrude N2 and 

generate a metal carbene reactive species. These harsh conditions are not suitable for the 

development of synergistic catalytic cascades. Due to this limitation, the implementation 

of A/A diazocarbonyls in many cascade transformations is scarce.  

When surveying the literature, it was observed that O–H insertion reactions of 

alcohols into A/A diazocarbonyls were thoroughly investigated. However, only a few 

examples of O–H insertion reactions of carboxylic acids had been reported in the literature 

(Scheme 2.2).[7] In 2005 Jørgensen et al. identified Rh2(OAc)4 as a catalyst for the O–H 

insertion of carboxylic acids into a-diazo-b-ketoesters (Scheme 2.2a).[7a] To enable the 

desired transformation, the reaction needed to be heated at 40 ºC for 16 hours to provide 

compound 1a in a 75% yield. These conditions are not adequately efficient for use in a 

synergistic catalytic cascade. Later in 2011, Kitamura et al. identified Pd(OAc)2 as an 

efficient catalyst for carboxylic acid O–H insertion into A/A diazocarbonyls (Scheme 

2.2b).[7b] However, the reaction conditions necessitated the use of the carboxylic acid as 

solvent and a heightened temperature of 70 ºC. These conditions are extremely harsh 

when considering including an additional highly reactive organometallic intermediate for 

the development of a synergistic cascade. Most recently in 2014, Dong et al. identified a 

catalytic cocktail of Cu(OAc)2 and isocyanide for the carboxylic acid O–H insertion into A/A 

diazocarbonyls (Scheme 2.2c).[7c] Although the identification of an earth abundant Cu(II) 

catalyst was appreciated by the chemical community, the need of the carboxylic acid as a 

solvent and the use of a reactive isocyanide made these conditions unsuitable for the 
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development of a synergistic cascade. Additionally, the reaction was conducted at 100 ºC, 

a temperature that initiates thermal decomposition for many organometallic complexes. 

 
Scheme 2.2. Previous methods for the carboxylic acid O–H insertion into metal carbenes. 
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1)4.[7a] To our delight the desired insertion compound 4a was obtained in 64% yield after 

stirring at room temperature for 12 hours. The Pd(II) conditions[7b] were also screened and 

after refluxing in dichloromethane for 8 hours, the desired compound was obtained in a  

 

Table 2.1: Optimization of Carboxylic O–H Insertion into A/A Diazocarbonyls 

 
entry catalyst system solvent, T (ºC), t 4a (yield%)b 

1 Rh2(OAc)4 CH2Cl2, rt, 12h 64 
2 Pd(OAc)2 CH2Cl2, reflux, 8h 58 
3 Cu(OAc)2/ CNCH2CO2Et DCE, reflux, 12h 55 
4 Rh2(TFAc)4 CH2Cl2, rt, 6h 46 
5 Rh2(HFBd)4 CH2Cl2, rt, 6h 67 
6 Rh2(esp)2 CH2Cl2, rt, 10 min 94 
7 - TFEe, reflux, 12h NR 
8 Hoveyda Grubbs2nd CH2Cl2, reflux, 10h 40 
9 Cu(acac)2 DCE, reflux, 5h 62 

10 Cu(OAc)2 DCE, reflux, 5h 43 
aAll optimization reactions were performed with 2a (1.5 equiv), 3a (1 equiv) and catalyst (1 mol%). 
bIsolated yields after column chromatography. NR = no reaction; cTFA = trifluoroacetate; dHFB = 
heptafluorobutyrate; eTFE = trifluoroethanol. 
 

mediocre 58% yield (Table 1, entry 2). Next the Cu(II) conditions[7c] were screened and after 

refluxing in dichloroethane for 12 hours, the desired compound was obtained in 55% yield 

(Table 1, entry 3). 
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Inspired by the preliminary efficiency and ambient reaction temperature of 

Rh2(OAc)4, we decided to screen more electrophilic Rh(II) catalysts (Table 2.1, entries 4–5). 

We hypothesized that through increasing the electrophilicity of the Rh(II) paddlewheel  

ligand-metal complex, an increased rate of diazo decomposition would occur[8], thereby 

enabling a more efficient transformation. The electrophilic catalysts Rh2(TFA)4 and 

Rh2(HFB)4, primed with trifluoroacetate (TFA) and heptafluorobutyrate (HFB) ligands 

respectively, decreased the time of the desired transformation to 6 hours with no 

significant change in yield from Rh2(OAc)4. However, to our surprise, Rh2(esp)2, which was 

developed by the Du Bois group for C–H amination[9], provided the desired compound at 

room temperature within minutes in an excellent 94% yield (Table 2.1, entry 6). Various 

other conditions were also screened such as trifluoroethanol as a solvent, the Hoveyda–

Grubbs catalyst, and different Cu(II) catalysts, but these conditions were met with limited 

success or no reaction. 

2.2.2  APPLICATION TO SUBSTRATE SCOPE 

Encouraged by the identification of optimized conditions we undertook a thorough 

study of the substrate scope of the reaction. We began by examining diethyl diazomalonate 

and its applicability to a range of amino acids (Scheme 2.3). Sterically hindered Boc-

protected proline inserted in a good 83% yield (4b). Next, the reaction showed high levels 

of chemoselectivity when Boc-protected serine, which possesses a free hydroxyl side chain, 

 
† The work within Section 2.2 was published in 2016 as a featured cover article for European 
Journal of Organic Chemistry, see reference: Hunter, A. C.; Chinthapally, K.; Sharma, I., 
Rh2(esp)2: An Efficient Catalyst for O-H Insertion Reactions of Carboxylic Acids into 
Acceptor/Acceptor Diazo Compounds. Eur. J. Org. Chem. 2016, 2016 (13), 2260–2263. 
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gave the desired compound 4c in 74% yield. The undesired double insertion into the free 

hydroxyl sidechain (highlighted in orange) of 4c was only observed in a minimal 18% yield. 

After that, we screened Boc-protected tryptophan that has highly electron rich and reactive 

C–sp2 and N–H indole centers. The varying electron rich reactive sites of the indole moiety 

had little effect on the efficiency of the transformation, producing the desired compound 

4d in 62%.  

After screening different amino acids, a wide variety of carboxylic acids with 

differing functionality were also studied. Aliphatic carboxylic acids underwent the desired 

transformation efficiently (4e–4f). Next we screened alkynyl- and alkenyl-carboxylic acids 

that are primed with functionality known to undergo cyclopropenation and 

cyclopropanation[6o] in the presence of Rh(II) carbenes. These carboxylic acids underwent 

the desired transformation efficiently to give the alkynyl substrate 4g in 94% yield and the 

alkenyl substrates 4h and 4i in 90% and 93% yields, respectively. Lastly, we screened the 

electronic effects of aryl substituents on the reactivity of various benzoic acids. Benzoic 

acid produced the desired compound 4j in 87% yield. However, the decreased 

nucleophilicty of 4-nitrobenzoic acid had a resounding effect on the efficiency of the 

reaction. The desired product 4k was produced in a lessened 69% yield and a slow addition 

of diethyl diazomalonate via syringe pump was needed in order to avoid unproductive 

decomposition of the diazocarbonyl. Conversely, the electron-rich 4-methoxybenzoic acid 

was highly reactive and provided the desired insertion product 4l in an excellent 94% yield. 

Finally, as another probe for chemoselectivity, we screened salicylic acid which has a free 

phenolic O–H. The desired carboxylic acid O–H insertion product 4m was obtained in an 
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excellent yield with no production of the double insertion product into the free phenolic 

O–H in 4m.  

 
Scheme 2.3. Scope of Rh2(esp)2-catalyzed room temperature O–H insertion reactions of 

carboxylic acid in diethyldiazomalonates. 
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primed with benzylic C–H bonds susceptible to intramolecular sp3–C activation, underwent 

the desired transformation to provide 4n in 83% yield. The highly stable a-diazo-b-

amidoesters provided the desired insertion compounds 4o and 4p in 73% and 96% yields 

respectively. The a-diazo-b-ketoester and a-diazo-1,3-diketone substrates efficiently 

provided compounds 4q in 86% yield and 4r in 85% yield. Next, the cyclic A/A 

diazocarbonyl, 1,3-indanone diazo, provided 4s in 73% yield, however, a longer reaction 

time of 3 hours was needed due to this diazocarbonyls increased stability. 

As a final effort in expanding the substrate scope, we investigated whether these 

conditions could apply to A/D and A-diazocarbonyls (Scheme 2.4). N-methyl isatin diazo 

and free N–H isatin diazo both underwent the desired transformation to provide oxindole 

scaffolds 4t and 4u in 82% and 78% yields. Lastly, commercially available ethyldiazoacetate 

gave the desired compound 4v in 78% yield. 

The identification of Rh2(esp)2 as an efficient catalyst for the O–H insertion of 

carboxylic acids into a wide variety of diazocarbonyls provided us with reaction conditions 

that are mild, efficient and highly chemoselective in the presence of alkenes, alkynes, 

hydroxyl and phenolic O–H’s, and electron rich arenes. The characteristics of this catalytic 

system were ideal for application in a synergistic catalytic cascade, which was the next feat 

in our research efforts. 
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Scheme 2.4. Scope of Rh2(esp)2-catalyzed room temperature O–H insertion reactions of 

Boc-proctected phenylalanine into various diazocarbonyls 
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ene cyclization of the zwitterionic intermediate that formed during the O–H insertion 

reaction (Scheme 2.5). 

 
Scheme 2.5. Preliminary observation of Rh(II)-catalyzed Conia-ene cyclization to form 5a 

in trace amounts. 

  

This observation allowed us to hypothesize a direct method for the formation of g-
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2.3.1  SCREENING OF LEWIS ACIDS FOR STEPWISE CONIA-ENE CYCLIZATION 

To begin our work, we decided to optimize the individual Conia-ene cyclization of 

a-acyloxy diazocarbonyl compound 4w to form g-butyrolactone 5a (Table 2.2). Similar to 

the hypothesis that led to the identification of Rh2(esp)2 as an efficient catalyst for O–H 

insertion of carboxylic acids into diazocarbonyls, we believed it was necessary to also 

identify a highly efficient catalyst for the stepwise Conia-ene cyclization if we hoped to 

create an efficient synergistic catalytic cascade.  

For the initial optimization, 4w was exposed to a variety of conditions known in 

literature to promote Conia-ene cyclizations (Table 2.2).[12] When exposed to Zn(II) salts, 

ZnCl2 and Zn(OTf)2, the reaction was extremely sluggish and after 20 hours at room 

temperature the conversion of these reactions did not reach above 15% (Table 2.2, entries 

1–2). Next, we screened copper salts Cu(OTf)2 and (CuOTf)2-toluene (Table 2.2, entries 3–

4). While Cu(II) triflate provided a negligible 14% conversion after 20 hours at room 

temperature, the more active Cu(I) triflate gave 100% conversion after 20 hours at room 

temperature.  Other metal salts such as Pd(OAc)2, Yb(OTf)3,  In(OTf)3, and PPh3AuCl were 

screened, but none of them provided 100% conversion. Lastly, taking inspiration from 

Toste’s seminal identification of cationic Au(I) for the Conia-ene cyclization of  b-ketoesters 

with alkynes[13], we exposed 4w to a mixture of AgOTf/PPh3AuCl at room temperature 

(Table 2.2, entry 10). In under 2 hours, these conditions provided complete conversion of 

4w into 5a.  

† The work within Section 2.3 was published in 2016 in Chemistry a European Journal, see 
reference:  Hunter, A.C.; Schlitzer, S.C.; Sharma, I., Synergistic Diazo-OH Insertion/Conia-
Ene Cascade Catalysis for the Stereoselective Syntheis of g-Butyrolactones and 
Tetrahydrofurans. Chem. Eur. J. 2016, 22(45), 16062–16065. 
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Table 2.2: Optimization of Step-wise Conia-ene Cyclization 

 
entry Lewis acid solvent, T (ºC), t 4a (%conversion)b 

1 ZnCl2 CH2Cl2, rt, 20 h 12 
2 Zn(OTf)2 CH2Cl2, rt, 20 h 9 
3 Cu(OTf)2 CH2Cl2, rt, 20 h 14 
4 (CuOTf)2.tol CH2Cl2, rt, 20 h 100 
5 Pd(OAc)2 CH2Cl2, rt, 20 h 77 
6 Yb(OTf)3 CH2Cl2, rt, 20 h 10 
7 In(OTf)3 CH2Cl2, rt, 20 h 41 
8 AgOTf CH2Cl2, rt, 20 h 27 
9 PPh3AuCl CH2Cl2, rt, 20 h 18 

10 AgOTf/PPh3AuCl CH2Cl2, rt, 2 h 100 
aAll optimization reactions were performed with 0.2M solution of 3a, Lewis acid (10 mol%) and 4 Å 
molecular sieves; bConversion (%) was determined from the crude 1H NMR spectrum. 
 

After establishing the optimized conditions for the Conia-ene cyclization, we 

decided to study the possibility of a tandem synergistic Rh(II)/Au(I) catalyzed O–H 

insertion/Conia-ene cascade (Table 2.3). For the initial optimization, 3-butynoic acid and 1 

mol% of Rh2(esp)2 were mixed with 10 mol% of PPh3AuOTf in dichloromethane and allowed 

to stir for 5 minutes at room temperature. Next, a solution of the diazo was added to the 

reaction dropwise over 1 minute and immediate emittance of N2 was observed. The desired 

product 5a formed instantly (under 1 minute) without any trace of the insertion product 

4w observed. This reaction was repeated with a decreased loading of 1 mol% of PPh3AuOTf, 
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and the reaction was found to be equally efficient. However, a 10 mol% catalytic loading of 

PPh3AuOTf was used for future reactions due to ease of experiment set up.  

 

Table 2.3: Optimization of Synergistic O–H Insertion/Conia-ene Cascade 

 
entry Rh(II)/Lewis acid timeb 3a:4ac 

1 Rh2(esp)2/AgOTf/PPh3AuCl Instant 0:100 
2 Rh2(esp)2/AgOTf/PPh3AuCld Instant 0:100 
3 Rh2(OAc)4/AgOTf/PPh3AuCl 5 h 44:56e 
4 Rh2(TFA)4/AgOTf/PPh3AuCl 2.5 h 38:62 
5 Rh2(HFBf) 4/AgOTf/PPh3AuCl 2.5 h 41:59 
6 Rh2(esp)2/(CuOTf)2.tol 10 min 93:7 
7 Rh2(esp)2/AgOTf 10 min 93:7 
8 Rh2(esp)2/PPh3AuCl 10 min 96:4 
9 AgOTf/PPh3AuCl 10 min 0:0g 

aAll optimization reactions were performed in 0.1 M CH2Cl2 with 1a (1.20 equiv.), 2a (1 equiv.), Rh2L4 
(1 mol%), and Lewis acids (10 mol%) along with 4 Å molecular sieves; btime required for the 
complete consumption of 1a;   cConversion (%) was determined from the crude 1H NMR spectrum;              
dAgOTf/PPh3AuCl (1 mol%) was used; e6-endo-dig product was also observed; fHFB = 
heptafluorobutyrate; g5-endo-dig lactonization to form furan-2(3H)-one. 
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multiple hours of reaction time. This study highlighted the importance and necessity of 

Rh2(esp)2 in the synergistic catalytic cascade. Next, we screened Rh2(esp)2 with various 

Group 11 metals (Cu(I), Au(I) alone, Ag(I) alone) and these combinations provided negligible 

amounts of conversion to the cyclized product 5a (Table 2.3, entries 68). Lastly, we decided 

to negate Rh2(esp)2 from the reaction mixture to determine if PPh3AuOTf was active 

enough to catalyze the entire transformation on its own (Table 2.3, entry 9). However, to 

our surprise, premixing of 3-butynoic acid with PPh3AuOTf resulted in the formation of 

furan-2(3H)-one presumably via a 5-endo-dig-lactonization prior to the addition of the 

diazocarbonyl. The culmination of these studies suggest that this catalyst system is 

extremely specific, novel, and effective in the O–H insertion/Conia-ene cascade.  

 

2.3.2  APPLICATION TO SUBSTRATE SCOPE 

Once the optimized conditions were identified and thoroughly studied, we began 

to explore the generality of this transformation with differing A/A diazocarbonyls to 

provide a variety of g-butyrolactones (Scheme 2.6). Increasing the bulk of the ester group 

to tert-butyl slightly decreased the yield of 5b to 73%. The diazo derived from 

ethylacetoacetate, which possesses a methylene group active toward intramolecular C–H 

activation[14], provided 5c in 76% yield. Lastly, the highly reactive diazo derived from 

pentane-2,4-dione gave 5d in a 76% yield also. Next, we screened the same diazocarbonyls 

with the corresponding 3-butynol for a hydroxyl-OH insertion/Conia-ene cascade, and the 

reaction was observed to be equally efficient to provide a range of tetrahydrofurans (5e–

5h).  
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Scheme 2.6. Scope of Rh2(esp)2/PPh3AuOTf catalyzed O–H insertion/Conia-ene cyclization 

for the synthesis of g-butyrolactones and tetrahydrofurans. 
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and S- isomers of an alcohol were used in two separate transformations with the same 

diazo, 5o and 5p were produced as single diastereomers. When their optical rotations were 

taken, they were observed to be equal and opposite, proving that the pair were 

enantiomers. This study shows that we are able to induce asymmetry in this transformation 

using a chiral pool for our nucleophiles.  

 
Scheme 2.7. Scope of Rh2(esp)2/PPh3AuOTf catalyzed O–H insertion/Conia-ene cascade 

using A/D diazos. The corresponding insertion compounds (4) are unable to undergo 

stepwise cyclization to form the cyclic scaffolds. 

 

To further probe the generality of this transformation we exposed alkynoic acids 

and alkynols to A/D diazos in the presence of our Rh(II)/Au(I) catalyst system (Scheme 2.7). 

When 3-alkynoic acid was exposed to 2-diazo-1,2-diphenylethan-1-one in the presence of 

our optimized conditions, the desired g-butyrolactone 5q was isolated in 87% yield. The 

same diazo was then exposed to 3-butynol and provided the desired tetrahydrofuran 5r in 
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was observed to be diastereoselective (5s). Lastly, 2-tetralone diazo, which is a cyclic A/D 

diazocarbonyl, provided the desired spiroether 5t in 71% yield.  

 

2.3.3  MECHANISTIC INSIGHTS 

For mechanistic insights into the reactivity of A/D diazocarbonyls in this system, we 

decided to synthesize the insertion compounds from each of the aforementioned A/D 

diazocarbonyls. When these substrates were exposed to PPh3AuOTf in a stepwise fashion 

there was no observed Conia-ene cyclization even after reacting for 12 hours. This 

observation proved that the synergism of Rh(II)/Au(I) was necessary to invoke the desired 

transformation with A/D diazocarbonyls. 

Next, to gain a deeper level of understanding for this transformation, non-terminal 

homopropargylic acid 3w was subjected to the stepwise and synergistic catalysis conditions 

(Scheme 2.8). However, under the synergistic Rh(II)/Au(I) condition we did not observed 

any insertion or Conia-ene product. Instead we observed a completely unexpected [3.1.0]-

fused ring system 7 as the exclusive product and single diastereomer (Scheme 2.9). The 

product forms presumably through the stereoselective cyclopropanation of the resulting 

unsaturated furanone that is produced when 3-pentynoic acid was premixed with the 

catalyst solution via a 5-endo-dig lactonization. It is important to note that non-terminal 

homopropargylic acids self-lactonize at a rate 5x faster than the terminal 3-butynoic 

acid.[15]  
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Scheme 2.8. Limitation of synergistic transformation when applied to non-terminal 

alkynes. 

 

Lastly, to further substantiate our observations, we conducted 1H and 13C NMR 

experiments for mechanistic insights. When 3-butynoic acid was exposed to Rh2(esp)2 

alone, there was an observed loss of the carboxylic acid proton HA (Figure 2.3). When 3-

butynoic acid was mixed with a stoichiometric amount of Rh2(esp)2/AgOTf/PPh3AuCl in 

CD2Cl2 at room temperature, alongside disappearance of HA,  we also observed a complete 

loss of the alkyne proton HC within minutes and formation of a new proton in the alkene 

region (5.82 ppm) having coupling with the HB protons. This suggests the formation of a 

gold acetylide/gold vinylidene as the reactive intermediate.[16] When the acid was exposed 

to either Rh/Ag or Rh/Au alone there was no distinct proton losses observed that differed 

from what was seen with Rh2(esp)2 alone. Lastly, when the acid was exposed to 

AgOTf/PPh3AuCl without Rh2(esp)2 present, furan-2(3H)-one was observed via 5-endo-dig 

lactonization.  
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Figure 2.3. NMR experiments for mechanistic insights 

 

These findings, alongside the other mechanistic insights, allowed us to propose a 

reaction mechanism wherein upon formation of a dually activated zwitterionic 

intermediate a Conia-ene cyclization occurs. However, when added in a stepwise fashion 

Rh(II) and Au(I) work independently of each other without exerting any synergistic effect 

(Scheme 2.9). 
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Scheme 2.9. Proposed mechanism for the synergistic transformation 

 

2.4  SUMMARY  

After completion of this work we have developed strategies to prepare a-acyloxy 

carbonyl scaffolds, y-butyrolactones, and tetrahydrofurans from readily available starting 

materials. We have also identified two novel catalytic systems that were critical to our 

success: 1) Rh2(esp)2 as a single catalyst for the efficient insertion of carboxylic acids into 

A/A diazocarbonyls[10] and 2) Rh2(esp)2/PPh3AuOTf as a synergistic catalytic combination 

for the O–H insertion/Conia-ene cascade.[17] The reactivity and stereoselectivity of the O–

H insertion/Conia-ene cascade was proven to be quite general and even expanded to 

substrates that were unable to undergo the corresponding stepwise transformation, 

thereby proving the synergism of the Rh(II)/Au(I) catalyst system.  
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2.6  EXPERIMENTAL SECTION 

2.6.1  GENERAL PROCEDURES FOR CARBOXYLIC ACID INSERTION 

General Procedure I: Carboxylic acid (1 equiv.) and Rh2(esp)2 (1 mol%) were added to a 

round bottom flask, dissolved in anhydrous dichloromethane (0.5 M), and sonicated to 

ensure solubility. The acceptor-acceptor (1.5 equiv.) diazo was then added drop-wise via 

syringe over a span of 5 minutes. Once the release of N2 gas ceased, reaction was observed 

to be complete by TLC (10 min–2 h). After completion rotary evaporation provided the 

crude compound. Purification by flash chromatography (4:1 – 2:3 Hex/EtOAc) afforded the 

pure compound.  

General Procedure II: Carboxylic acid (1 equiv.) and Rh2(esp)2 (1 mol%) were added to a 

round bottom flask and half of the anhydrous dichloromethane (0.2 M) was added. The 

flask was sonicated to ensure solubility of the reagents. The acceptor-acceptor diazo (1.5 

equiv.) was dissolved in the other half of the anhydrous dichloromethane and added to the 

reaction flask via syringe pump (2–4 h addition time). Once addition was complete rotary 

evaporation provided the crude product. Purification by flash chromatography (4:1–1:1 

Hex/EtOAc) provided the pure product.  

 

Diethyl 2-(((tert-butoxycarbonyl)-L-phenylalanyl)oxy)malonate (4a). Prepared from 

diethyl 2-diazomalonate and Boc-L-phenylalanine using general procedure EI. Colorless 
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liquid (42 mg, 94%). TLC: Rf 0.37 (4:1 hexanes/EtOAc). IR (NaCl): 3390, 2933, 1752, 1716, 

1502, 1452, 1369, 1249, 1165, 1087, 1028, 858, 702. 1H NMR (400 MHz) δ 7.33 – 7.19 (m, 

5H), 5.56 (s, 1H), 4.90 (d, J = 8.0 Hz, 1H), 4.75 (d, J = 8.0 Hz, 1H), 4.30 (ddq, J = 10.2, 6.6, 3.2 

Hz, 4H), 3.29 (dd, J = 14.0, 5.1 Hz, 1H), 3.08 (dd, J = 4.0, 12.0 Hz, 1H), 1.39 (s, 9H), 1.31 (t, J 

= 7.1 Hz, 6H). 13C NMR (101 MHz) δ 170.63, 164.06, 163.92, 154.95, 135.64, 129.38, 128.52, 

127.01, 80.01, 71.96, 62.62, 54.07, 37.77, 30.87, 28.20, 13.93, 13.91. HRMS (ESI) m/z calcd 

for C21H29NO8Na ([M+Na]+) 446.1790; found 446.1777.  

 

1-(Tert-butyl) 2-(1,3-diethoxy-1,3-dioxopropan-2-yl) (S)-pyrrolidine-1,2-dicarboxylate 

(4b). Prepared from diethyl 2-diazomalonate and Boc-L-proline using general procedure EI 

and obtained as a mixture of rotamers (1:1). Colorless liquid (28 mg, 83%). TLC: Rf 0.24 (4:1 

hexanes/EtOAc). IR (NaCl): 3511, 2981, 2939, 2884, 1763, 1701, 1368, 1245, 1162, 1123, 

1091. 1H NMR (400 MHz) δ 5.52 (s, 1H), 5.48 (s, 1H), 4.43 (dd, J = 4.0, 8.0 Hz, 1H), 4.34 (dd, 

J = 8.6, 3.8 Hz, 1H), 4.29 – 4.17 (m, 8H), 3.51 (ddq, J = 16.8, 8.3, 4.6 Hz, 2H), 3.42 – 3.38 (m, 

1H), 3.36 – 3.29 (m, 1H), 2.28 – 2.10 (m, 4H), 1.99 – 1.80 (m, 4H), 1.40 (s, 7H), 1.35 (s, 9H), 

1.24 (tq, J = 7.1, 3.9 Hz, 12H). 13C NMR (101 MHz) δ 171.73, 171.42, 165.71, 164.37, 164.20, 

164.16, 164.12, 153.60, 80.13, 79.88, 71.82, 71.67, 62.52, 62.40, 62.23, 58.68, 58.43, 46.56, 

46.28, 30.69, 29.73, 28.37, 28.19, 24.13, 23.43, 13.95, 13.92. HRMS (ESI) m/z calcd for 

C17H27NO8Na ([M+Na]+) 396.1634; found 396.1634.  
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Diethyl 2-(((tert-butoxycarbonyl)-L-seryl)oxy)malonate (4c). Prepared from diethyl 2- 

diazomalonate and Boc-L-serine using general procedure EII. clear oil (161 mg, 74%). TLC: 

Rf 0.52 (1:1 hexanes/EtOAc). IR (NaCl): 3505, 2927, 1754, 1719. 1H-NMR (400 MHz): δ 4.39 

– 4.22 (m, 4H), 3.89 – 3.80 (m, 1H), 2.82 (s, 1H), 1.45 (s, 9H), 1.36 – 1.28 (m, 6H). 13C-NMR 

(101 MHz, Chloroform-d) δ 169.89, 72.08, 63.22, 62.95, 28.25, 13.92, 13.90. HRMS (ESI) 

m/z calcd for C15H25NO9 ([M+Na]+) 386.1427; found 386.1418. Diethyl 2-((N-(tert-

butoxycarbonyl)-O-(1,3-diethoxy-1,3-dioxopropan-2-yl)-L- seryl)oxy)malonate (4c-bis). 

Prepared from diethyl 2-diazomalonate and Boc-L-serine using general procedure EII. Clear 

oil (48 mg, 16%). TLC: Rf 0.6 (1:1 hexanes/EtOAc). IR (NaCl): 2981, 1749, 1718, 1508, 1369, 

1296, 1244, 1159, 1095, 1028. 1H-NMR (400 MHz): δ 5.78 – 5.62 (m, 1H), 5.59 (s, 1H), 4.68 

– 4.60 (m, 1H), 4.57 (s, 1H), 4.26 (dddd, J = 12.7, 11.2, 6.5, 3.8 Hz, 8H), 4.14 (dd, J = 10.0, 

3.6 Hz, 1H), 4.05 (d, J = 2.9 Hz, 1H), 1.45 (s, 9H), 1.34 – 1.25 (m, 12H). 13C-NMR (101 MHz): 

168.78, 165.79, 163.92, 163.90, 155.35, 155.27, 80.13, 79.19, 72.14, 70.70, 70.67, 62.60, 

62.53, 62.10, 62.05, 53.78, 28.26, 13.99, 13.94, 13.92, 13.89. HRMS (ESI) m/z calcd for 

C22H35NO13 ([M+Na]+) 544.2006; found 544.2015.  
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Diethyl 2-(((tert-butoxycarbonyl)-L-tryptophyl)oxy)malonate (4d). Prepared from diethyl 

2- diazomalonate and Boc-L-tryptophan from general procedure EII. clear oil (171 mg, 

62%). TLC: Rf 0.47 (1:1 hexanes/EtOAc). IR (NaCl): 3061, 2980, 2927, 1750, 1503, 1460. 1H-

NMR (400 MHz): δ 8.13 (s, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.21 – 7.05 

(m, 3H), 5.53 (s, 1H), 5.02 (d, J = 8.5 Hz, 1H), 4.82 (d, J = 7.5 Hz, 1H), 4.38 – 4.20 (m, 6H), 

3.57 – 3.23 (m, 2H), 1.40 (s, 9H), 1.31 (td, J = 7.1, 2.6 Hz, 10H). 13C-NMR (101 MHz) δ 170.95, 

123.31, 123.28, 122.12, 122.11, 119.63, 118.67, 118.66, 111.14, 111.12, 111.10, 109.99, 

109.74, 72.01, 62.61, 54.14, 28.26, 27.50, 13.96, 13.93. HRMS (ESI) m/z calcd for 

C23H30N2O8 ([M+Na]+) 485.1900; found 485.1899.  

 

 

 

Diethyl 2-acetoxymalonate (4e). Prepared from diethyl 2-diazomalonate and acetic acid 

using general procedure EI. clear oil (21.5 mg, 92%). TLC: Rf 0.31 (4:1 hexanes/EtOAc) IR 

(NaCl): 2925, 1751. 1H-NMR (400 MHz): δ 5.51 (s, 1H), 4.29 (qq, J = 7.4, 3.6 Hz, 4H), 2.22 (s, 
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3H), 1.30 (t, J = 7.1 Hz, 6H). 13C-NMR (101 MHz) δ 169.44, 164.44, 71.81, 62.51, 29.67, 20.37, 

13.94. HRMS (ESI) m/z calcd for C9H14O6 ([M+Na]+) 241.0688; found 241.0905.  

 

Diethyl 2-(pentanoyloxy)malonate (4f). Prepared from diethyl 2-diazomalonate and 

pentanoic acid using general procedure EI. Colorless liquid (22 mg, 86%) .TLC: Rf 0.54 (4:1 

hexanes/EtOAc). IR (NaCl): 2963, 2875, 1754, 1467, 1373, 1181, 1160, 1113, 1031, 858. 1H 

NMR (400 MHz) δ 5.51 (s, 1H), 4.28 (tdt, J = 10.8, 8.0, 3.6 Hz, 4H), 2.48 (t, J = 7.5 Hz, 2H), 

1.70 – 1.63 (m, 2H), 1.42 – 1.34 (m, 2H), 1.29 (t, J = 7.1 Hz, 6H), 0.91 (t, J = 7.3 Hz, 3H). 13C 

NMR (101 MHz) δ 172.31, 164.55, 71.61, 62.45, 33.33, 26.71, 22.07, 13.93, 13.62. HRMS 

(ESI) m/z calcd for C12H20O6Na ([M+Na]+) 283.1157; found 283.1155.  

 

 

 

Diethyl 2-(pent-4-ynoyloxy)malonate (4g). Prepared from diethyl 2-diazomalonate and 4-

pentynoic acid using general procedure EII. clear oil (182 mg, 94%). TLC: Rf 0.5 (4:1 

hexanes/EtOAc). IR (NaCl): 3284, 2983, 2924, 2357, 1747, 1373, 1153, 1093, 1028. 
1
H-NMR 

(300 MHz): δ 5.53 (s, 1H), 4.32 – 4.23 (m, 4H), 2.76 – 2.71 (m, 2H), 2.57 – 2.51 (m, 2H), 2.02 

– 2.01 (m, 1H), 1.29 (t, J = 7.1 Hz, 6H). 
13

C-NMR (75 MHz): δ 170.26, 164.15, 81.79, 71.73, 
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69.20, 62.48, 32.64, 14.03, 13.84. HRMS (ESI) m/z calcd for C12H16O6 ([M+Na]+) 279.0845; 

found 279.0847.  

 

Diethyl 2-(pent-4-enoyloxy)malonate (4h). Prepared from diethyl 2-diazomalonate and 

pent-4- enoic acid using general procedure EI. clear oil (25 mg, 90%). TLC: Rf 0.87 (7:3 

hexanes/EtOAc). IR (NaCl): 3152, 2927, 2855, 1751, 1676, 1465. 1H-NMR (400 MHz) δ 

5.84 (ddt, J = 16.7, 10.2, 6.4 Hz, 1H), 5.53 (s, 1H), 5.19– 4.96 (m, 2H), 4.28 (dt, J = 7.2, 3.6 

Hz, 4H), 2.69 – 2.56 (m, 2H), 1.30 (t, J = 7.1 Hz, 6H). 13C-NMR (101 MHz) δ 171.56, 

164.45, 136.08, 115.80, 71.69, 62.50, 32.87, 28.50, 13.95. HRMS (ESI) m/z calcd for 

C12H18O6 ([M+Na]+) 281.1001; 281.1000 found.  

 

Diethyl 2-(((2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-

2,4,6,8- tetraenoyl)oxy)malonate (4i). Prepared from diethyl 2-diazomalonate and retinoic 

acid using general procedure EI. Pale yellow oil (21 mg, 93%). TLC: Rf 0.14 (9:1 

hexanes/EtOAc). IR (NaCl): 2658, 2927, 1749, 1722, 1583, 1371, 1230, 1182, 1136, 1095, 

1029. 1H NMR (400 MHz) δ 7.05 (dd, J = 15.0, 11.5 Hz, 1H), 6.30 (d, J = 15.3 Hz, 2H), 

6.16 (s, 1H), 6.13 (d, J = 8.0 Hz, 1H), 5.94 (s, 1H), 5.57 (s, 1H), 4.29 (dd, J = 7.0, 5.4 Hz, 

4H), 2.36 (s, 3H), 2.00 (s, 3H), 1.71 (s, 3H), 1.64 – 1.57 (m, 3H), 1.51 – 1.42 (m, 2H), 1.31 

(t, J = 7.1 Hz, 6H), 1.02 (s, 6H). 13C NMR (101 MHz) δ 165.13, 164.89, 155.90, 140.47, 
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137.61, 137.12, 134.54, 132.16, 130.19, 129.33, 129.12, 116.02, 71.39, 62.38, 39.58, 34.23, 

33.09, 28.93, 21.72, 19.18, 14.15, 13.96, 12.91. HRMS (ESI) m/z calcd for C27H38O6Na 

([M+Na]+) 481.2566; found 481.2568.  

 

Diethyl 2-(benzoyloxy)malonate (4j). Prepared from diethyl 2-diazomalonate and benzoic 

acid using general procedure EI. clear oil (26.1 mg, 87%). TLC: Rf 0.43 (4:1 hexanes/EtOAc). 

IR (NaCl): 2927, 2855, 1752, 1684. 1H-NMR (400 MHz): δ 8.21 – 8.08 (m, 2H), 7.61 (t, J = 7.4 

Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 5.75 (s, 1H), 4.33 (qq, J = 7.4, 3.6 Hz, 4H), 1.33 (t, J = 7.1 Hz, 

6H). 13C-NMR (101 MHz) δ 165.10, 164.50, 133.77, 130.16, 128.49, 72.11, 62.54, 29.69, 

13.99 HRMS (ESI) m/z calcd for C14H16O6 ([M+Na]+) 303.0845; found 303.0847.  

 

Diethyl 2-((4-nitrobenzoyl)oxy)malonate (4k). Prepared from diethyl 2-diazomalonate and 

4- nitro benzoic acid from general procedure EII. clear oil (81 mg, 69%). TLC: Rf 0.55 (7:3 

hexanes/EtOAc). IR (NaCl): 1H-NMR (400 M Hz): δ 8.31 (s, 4H), 5.76 (s, 2H), 4.34 (qd, J = 7.1, 

4.3 Hz, 4H), 1.33 (t, J = 7.1 Hz, 6H). 13C-NMR (101 MHz): δ 163.93, 163.28, 151.00, 133.83, 

131.31, 123.65, 77.39, 77.20, 77.06, 72.49, 62.82, 14.03, 13.98. HRMS not mass active.  
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Diethyl 2-((4-methoxybenzoyl)oxy)malonate (4l). Prepared from diethyl 2-diazomalonate 

and 4-methoxy benzoic acid using general procedure EI. Colorless liquid (29.7 mg, 94%). 

TLC: Rf 0.29 (9:1 hexanes/EtOAc). IR (NaCl): 3528, 2982, 2939, 2845, 1751, 1719, 1607, 

1513. 1H NMR (400 MHz) δ 8.08 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 5.72 (s, 1H), 4.31 

(qq, J = 7.5, 3.6 Hz, 4H), 3.86 (s, 3H), 1.31 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz) δ 164.74, 

164.67, 164.02, 132.28, 120.73, 113.75, 71.93, 62.44, 55.44, 13.96. HRMS (ESI) m/z calcd 

for C15H18O7Na ([M+Na]+) 333.0950; found 333.0949  

 

Diethyl 2-((2-hydroxybenzoyl)oxy)malonate (4m). Prepared from diethyl 2-diazomalonate 

and salicylic acid from general procedure EII. clear oil (127 mg, 94%). TLC: Rf 0.55 (7:3 

hexanes/EtOAc). IR (NaCl): 1H-NMR (400 MHz): δ 10.57 – 10.44 (m, 1H), 10.13 (s, 1H), 8.02 

(dd, J = 8.0, 1.6 Hz, 1H), 7.64 – 7.46 (m, 1H), 7.00 (d, J = 7.9 Hz, 1H), 6.96 – 6.90 (m, 1H), 

5.74 (s, 1H), 4.34 (tq, J = 7.1, 3.9 Hz, 4H), 1.34 (t, J = 7.1 Hz, 6H). 13C-NMR (101 MHz): δ 

168.30, 164.01, 161.76, 136.72, 136.66, 136.64, 130.77, 130.60, 119.56, 119.43, 117.75, 
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117.66, 111.15, 72.02, 62.79, 13.98. HRMS (ESI) m/z calcd for C15H25NO9 ([M+Na]+) 

386.1427; found 386.1418.  

 

Dibenzyl 2-(((tert-butoxycarbonyl)-L-phenylalanyl)oxy)malonate (4n). Prepared from 

dibenzyl 2-diazomalonate and Boc-L-phenylalanine using general procedure EI. Colorless 

liquid (34 mg, 83%). TLC: Rf 0.31 (4:1 hexanes/EtOAc). IR (NaCl): 3396, 2974, 2927, 1753, 

1716, 1498, 1456, 1367, 1251, 1215, 1163, 1083, 1028, 748. 1H NMR (400 MHz) δ 7.33 – 

7.27 (m, 7H), 7.25 – 7.19 (m, 6H), 7.17 (d, J = 6.6 Hz, 2H), 5.68 (s, 1H), 5.23 (s, 4H), 4.90 (d, 

J = 8.0 Hz, 1H), 4.75 (d, J = 6.3 Hz, 1H), 3.25 (dd, J = 14.1, 5.3 Hz, 1H), 3.03 (dd, J = 14.0, 7.0 

Hz, 1H), 1.39 (s, 9H). 13C NMR (101 MHz) δ 170.58, 163.78, 163.63, 135.58, 134.42, 129.36, 

128.62, 128.60, 128.51, 128.28, 126.99, 80.03, 71.90, 68.15, 54.07, 37.75, 28.21. HRMS 

(ESI) m/z calcd for C31H33NO8Na ([M+Na]+) 570.2103; found 570.2108.  

 

Ethyl 2-(((tert-butoxycarbonyl)-L-phenylalanyl)oxy)-3-(methoxy(methyl)amino)-3 

oxopropanoate (4o) . Prepared from ethyl 2-diazo-3-(methoxy(methyl)amino)-3-

oxopropanoate and Boc-L-phenylalanine using general procedure EI and obtained as a 

mixture of diasteromers (1:1).  Light yellow oil (106 mg, 73%). TLC: Rf 0.66 (1:1 
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hexanes/EtOAc). IR (NaCl) 2980. 2936, 1751, 1717, 1507, 1392. 1H-NMR (400 MHz) δ 7.34 

– 7.27 (m, 4H), 7.24 – 7.18 (m, 6H), 6.01 (s, 1H), 5.95 (s, 1H), 4.92 (d, J = 6.6 Hz, 2H), 4.72 

(d, J = 6.9 Hz, 2H), 4.28 (p, J = 7.2 Hz, 4H), 3.75 (s, 3H), 3.73 (s, 3H), 3.30 (dd, J = 13.8, 6.1 

Hz, 2H), 3.24 (s, 6H), 3.08 (dt, J = 14.5, 7.7 Hz, 2H), 1.38 (s, 18H), 1.30 (td, J = 7.1, 3.9 Hz, 

6H).  13C-NMR (101 MHz) δ 170.83, 164.48, 154.97, 135.88, 135.78, 129.50, 129.46,128.57, 

128.51, 128.49, 126.98, 126.91, 79.95, 77.21, 70.55, 70.17, 62.39, 61.64, 38.04, 37.78, 

32.49, 28.22, 28.13, 14.02, 13.99. HRMS (ESI) m/z calcd for C21H30O8 ([M+Na]+) 461.1900; 

found 461.1903. 

 

Ethyl 3-(((S)-1-(benzyloxy)-1-oxo-3-phenylpropan-2-yl)amino)-2-(((tert-butoxycarbonyl)-

L- phenylalanyl)oxy)-3-oxopropanoate (4p). Prepared from ethyl (S)-3-((1-(benzyloxy)-1-

oxo-3- phenylpropan-2-yl)amino)-2-diazo-3-oxopropanoate and Boc-L-phenylalanine using 

general procedure EI and obtained as a mixture of diastereomers (1:1). Light yellow oil (204 

mg, 96%). TLC: Rf 0.46 (1:1 hexanes/EtOAc). IR (NaCl): 2981, 2935, 1750, 1700, 1584, 1168. 

1H-NMR (400 MHz): δ 7.41 – 7.26 (m, 8H), 7.26 – 7.12 (m, 9H), 7.06 – 6.88 (m, 3H), 5.50 (s, 

1H), 5.44 (s, 1H), 5.24 – 5.09 (m, 2H), 4.96 – 4.84 (m, 2H), 4.23 (ddt, J = 14.2, 7.1, 3.5 Hz, 

2H), 3.18 (dddt, J = 26.4, 20.8, 13.8, 6.7 Hz, 3H), 3.02 (dd, J = 13.9, 7.2 Hz, 1H), 1.42 (s, 18H), 

1.27 (t, J = 7.1 Hz, 3H). 13C-NMR (101 MHz): δ 170.42, 170.37, 129.41, 129.33, 129.29, 

128.65, 128.64, 128.61, 128.54, 127.21, 127.13, 72.92, 72.80, 67.46, 67.38, 62.77, 62.71, 
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54.36, 53.48, 53.33, 37.52, 28.25, 13.93, 13.91. HRMS (ESI) m/z calcd for C35H40N2O9 ([M–

H]–) 631.2656; found 631.2677.  

 

Ethyl 2-(((tert-butoxycarbonyl)-L-phenylalanyl)oxy)-3-oxobutanoate (4q). Prepared from 

ethyl 2-diazo-3-oxobutanoate and Boc-L-phenylalanine using general procedure EI and 

obtained as a mixture of diastereomers (1:1). Colorless powder (25 mg, 86%). TLC: Rf 0.31 

(4:1 hexanes/EtOAc). IR (NaCl): 3371, 2950, 2853, 1755, 1733, 1505, 1538, 1524. 1H NMR 

(400 MHz) δ 7.30 (t, J = 7.0 Hz, 4H), 7.25 – 7.18 (m, 5H), 5.49 (s, 1H), 5.47 (s, 1H), 4.93 (s, 

1H), 4.72 (d, J = 6.5 Hz, 2H), 4.28 (p, J = 6.7 Hz, 4H), 3.25 (td, J = 15.7, 15.2, 5.8 Hz, 2H), 3.10 

(dt, J = 14.0, 6.8 Hz, 2H), 2.28 (s, 3H), 2.24 (s, 3H), 1.39 (s, 18H), 1.30 (td, J = 7.1, 3.1 Hz, 6H). 

13C NMR (101 MHz) δ 170.78, 164.16, 163.98, 155.05, 135.66, 129.35, 129.29, 128.63, 

128.58, 127.12, 127.08, 80.17, 80.16, 78.06, 78.02, 62.59, 54.32, 54.20, 38.03, 37.75, 28.21, 

27.08, 13.97, 13.94. HRMS (ESI) m/z calcd for C20H27NO7Na ([M+Na]+) 416.1685; found 

416.1685.  

 

2,4-Dioxopentan-3-yl (tert-butoxycarbonyl)-L-phenylalaninate (4r). Prepared from 3- 

diazopentane-2,4-dione and Boc-L-phenylalanine using general procedure EI and obtained 
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as a mixture of keto-enol form. Colorless powder (32 mg, 85%). TLC: Rf 0.36 (4:1 

hexanes/EtOAc). IR (NaCl): 3367, 2978, 2929, 1757, 1716, 1504, 1452, 1363, 1278, 1251, 

1165, 1078, 748. 1H NMR (400 MHz) δ 7.30 (q, J = 5.7, 5.2 Hz, 2H), 7.27 – 7.21 (m, 3H), 5.45 

(s, 1H), 4.96 (d, J = 7.7 Hz, 1H), 4.75 – 4.66 (m, 1H), 3.22 (dd, J = 14.0, 6.4 Hz, 1H), 3.09 (ddd, 

J = 29.6, 13.9, 7.5 Hz, 1H), 2.22 (s, 3H), 2.19 (s, 3H), 1.40 (s, 9H). 13C NMR (101 MHz) δ 

198.70, 198.27, 171.43, 170.74, 155.09, 135.72, 135.38, 129.26, 129.19, 128.84, 128.67, 

127.39, 127.17, 85.16, 80.45, 80.27, 54.50, 54.40, 38.06, 37.62, 28.21, 28.17, 27.24, 27.16, 

20.67. HRMS (ESI) m/z calcd for C19H25NO6Na ([M+Na]+) 386.1579; found 386.1577.  

 

1,3-Dioxo-2,3-dihydro-1H-inden-2-yl (tert-butoxycarbonyl)-L-phenylalaninate (4s). 

Prepared from 2-diazo-1H-indene-1,3(2H)-dione and Boc-L-phenylalanine using general 

procedure EI. Orange oil (110 mg, 70%). TLC: Rf 0.44 (7:3 hexanes/EtOAc). IR (NaCl): 2978, 

2926, 2855, 1808, 1768, 1725, 1507. 1H-NMR (400 MHz) δ 8.07 – 7.96 (m, 2H), 7.91 (dd, J 

= 5.7, 3.1 Hz, 2H), 7.38 – 7.27 (m, 4H), 5.37 (s, 1H), 4.86 (dd, J = 13.6, 7.1 Hz, 2H), 3.26 (dd, 

J = 13.8, 5.4 Hz, 1H), 3.14 (dd, J = 13.8, 5.4 Hz, 1H), 1.40 (s, 9H). 13C-NMR (101 MHz) δ 

192.06, 192.02, 139.74, 136.46, 135.38, 135.37, 129.77, 129.76, 129.72, 129.68, 128.76, 

128.58, 128.51, 127.06, 123.89, 123.84, 123.83, 80.05, 80.03, 53.69, 53.67, 38.20, 28.24. 

HRMS (ESI) m/z calcd for C23H23NO6 ([M+Na]+) 432.1423; found 432.1425.  
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1-Methyl-2-oxoindolin-3-yl (tert-butoxycarbonyl)-L-phenylalaninate (4t). Prepared from 

3- diazo-1-methylindolin-2-one and Boc-L-phenylalanine using general procedure EI and 

obtained as a mixture of diastereomers (1:1). Red liquid (25 mg, 82%). TLC: Rf 0.33 (7:3 

hexanes/EtOAc). IR (NaCl): 3438, 2980, 2931, 1751, 1719, 1617, 1496, 1164. 1H NMR (400 

MHz) δ 7.36 (t, J = 7.7 Hz, 2H), 7.27 – 7.21 (m, 5H), 7.12 (d, J = 7.0 Hz, 2H), 7.05 (t, J = 7.5 

Hz, 2H), 6.83 (d, J = 7.7 Hz, 2H), 6.08 (s, 1H), 5.97 (s, 1H), 4.98 (s, 1H), 4.77 – 4.66 (m, 1H), 

3.22 (s, 6H), 3.16 – 3.05 (m, 2H), 1.42 (s, 7H), 1.38 (s, 9H). 13C NMR (101 MHz) δ 171.34, 

144.50, 135.57, 130.49, 129.57, 129.51, 128.54, 128.48, 127.01, 126.07, 125.86, 123.63, 

123.59, 123.12, 122.99, 108.46, 79.98, 70.42, 70.11, 54.41, 54.29, 38.02, 38.00, 37.88, 

37.87, 28.23, 26.34. HRMS (ESI) m/z calcd for C23H26N2O5Na ([M+Na]+) 433.1739; found 

433.1730.  

 

2-Oxoindolin-3-yl (tert-butoxycarbonyl)-L-phenylalaninate (4u). TLC: Rf 0.50 (1:1 

hexanes/EtOAc). Prepared from 3-diazoindolin-2-one and Boc-L-phenylalanine using 

general procedure EI and obtained as a mixture of diastereomers (1:1).  Red liquid (25 mg, 
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78%). IR (NaCl): 3273, 2978, 2927, 1732, 1622, 1500, 1471, 1367, 1165, 1055, 1026, 910, 

752. 1H NMR (400 MHz) δ 8.26 (d, J = 22.8 Hz, 2H), 7.32 – 7.21 (m, 9H), 7.16 – 7.14 (m, 2H), 

7.06 – 7.01 (m, 3H), 6.87 (d, J = 7.8 Hz, 2H), 4.99 (d, J = 8.1 Hz, 2H), 4.77 – 4.70 (m, 2H), 3.27 

– 3.10 (m, 4H), 1.42 (s, 10H), 1.38 (s, 9H). 13C NMR (101 MHz) δ 173.54, 171.40, 171.37, 

155.03, 141.57, 135.59, 135.56, 130.51, 129.59, 129.56, 128.59, 128.53, 127.07, 126.34, 

126.18, 124.15, 124.10, 123.16, 123.03, 110.29, 80.09, 70.73, 70.40, 54.41, 54.33, 38.05, 

37.89, 28.26. HRMS (ESI) m/z calcd for C22H24N2O5Na ([M+Na]+) 419.1582; found 419.1570. 

 

2-Ethoxy-2-oxoethyl (tert-butoxycarbonyl)-L-phenylalaninate (4v), Prepared from ethyl 2- 

diazoacetate and Boc-L-phenylalanine using general procedure EI. White powder (160 mg, 

78%). TLC: Rf 0.44 (4:1 hexanes/EtOAc). IR (NaCl): 3375, 2855, 1763, 1719, 1684. 1H-NMR 

(400 MHz): δ 7.30 (dd, J = 7.8, 6.4 Hz, 2H), 7.25 – 7.13 (m, 3H), 4.93 (d, J = 7.7 Hz, 2H), 4.79 

– 4.48 (m, 5H), 4.24 (q, J = 7.1 Hz, 2H), 3.25 (dd, J = 14.1, 5.3 Hz, 3H), 3.06 (dd, J = 14.0, 7.0 

Hz, 3H), 1.39 (s, 9H), 1.29 (t, J = 7.1 Hz, 3H). 13C-NMR (101 MHz) δ 171.47, 167.28, 155.05, 

135.90, 129.38, 129.00, 128.52, 128.19, 126.99, 79.97, 61.54, 61.13, 54.16, 37.99, 28.24, 

14.09. HRMS (ESI) m/z calcd for C18H25NO6 ([M+Na]+) 374.1580; found 374.1583.  
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1-Methoxy-1,3-dioxo-3-phenylpropan-2-yl but-3-ynoate (4w). Prepared from methyl 2-

diazo-3-oxo-3-phenylpropanoate and but-3-ynoic acid using general procedure F1. Yellow 

oil (26 mg, 93%). TLC: Rf 0.42 (7:3 hexanes/EtOAc). 1H NMR (400 MHz) δ 7.72–7.37 (m, 

5H), 6.37 (s, 1H), 3.79 (s, 3H), 3.49 (t, J = 2.9 Hz, 2H), 2.21 (t, J = 2.7 Hz, 1H). 13C NMR (101 

MHz) δ 188.8, 166.7, 165.1, 134.4, 133.9, 129.3, 128.9, 75.0, 74.3, 72.5, 53.3, 25.4. ESI-MS 

m/z calcd for C14H12O5 ([M+Na]+) 283.5; found 283.1. 

 

2.6.2 GENERAL PROCEDURE FOR THE SYNTHESIS OF g-BUTYROLACTONES AND 

TETRAHYDROFURANS 

Alkynoic acid/alkynol (1 equiv.), Rh2(esp)2 (1 mol%), AgOTf (10 mol%), PPh3AuCl (10 mol%), 

and activated 4Å molecular sieves (36 mg per mL of solvent) were added to a round bottom 

flask, dissolved in anhydrous dichloromethane (0.2 M), and allowed to pre-mix for 5 

minutes. The diazo (1.2 equiv.) was dissolved in anhydrous dichloromethane (0.2 M making 

a total 0.1 M solution for the reaction) was then added drop-wise via syringe manually over 

a span of 2 minutes. Once the release of N2 gas ceased, reaction was observed to be 

complete by TLC and TLC-MS. After completion, molecular sieves were removed by 

filtration over a pad of celite and rotary evaporation provided the crude compound. 

Purification by flash chromatography (9:1–7:3 Hex/EtOAc) afforded the pure compound. 
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Methyl 2-benzoyl-3-methylene-5-oxotetrahydrofuran-2-carboxylate (5a). Prepared from 

methyl 2-diazo-3-oxo-3-phenylpropanoate and 3-butynoic acid using general procedure EI.  

Yellow liquid (28 mg, 83%). TLC: Rf 0.54 (7:3 hexanes/EtOAc). IR (NaCl): 2957, 2920, 2850, 

1808, 1744, 1698, 1597. 1H NMR (400 MHz) δ 8.01–7.95 (m, 2H), 7.59 (ddt, J = 7.9, 6.9, 1.3 

Hz, 1H), 7.52 – 7.42 (m, 2H), 5.68 (td, J = 2.8, 1.0 Hz, 1H), 5.62 (td, J = 2.5, 1.0 Hz, 1H), 3.81 

(s, 3H), 3.39 (td, J = 2.6, 1.7 Hz, 2H). 13C NMR (101 MHz) δ 188.4, 172.3, 167.4, 134.4, 130.0, 

129.1, 116.7, 90.1, 54.1, 33.7. HRMS (ESI) m/z calcd for C14H12O5 ([M+Na]+) 283.0583; found 

283.0584. 

 

tert-Butyl 2-benzoyl-3-methylene-5-oxotetrahydrofuran-2-carboxylate (5b). Prepared 

from tert-butyl 2-diazo-3-oxo-3-phenylpropanoate and 3-butynoic acid using general 

procedure EI.  Yellow liquid (68 mg, 73%) .TLC: Rf 0.67 (7:3 hexanes/EtOAc). IR (NaCl): 2980, 

2926, 2852, 1811, 1748, 1700, 1598, 1581. 1H NMR (400 MHz) δ 8.07–7.89 (m, 2H), 7.46 (t, 

J = 7.6 Hz, 3H), 5.65 (d, J = 2.4 Hz, 1H), 5.60 (t, J = 2.5 Hz, 1H), 3.38 (q, J = 2.0, 1.6 Hz, 2H), 

1.36 (s, 9H). 13C NMR (101 MHz) δ 191.2, 170.0, 143.8, 134.3, 133.3, 129.7, 128.4, 112.6, 

90.2, 68.9, 53.0, 32.9. HRMS (ESI) m/z calcd for C17H18O4 ([M+Na]+) 325.1052; found 

325.1034. 
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Ethyl 2-acetyl-3-methylene-5-oxotetrahydrofuran-2-carboxylate (5c). Prepared from 

ethyl 2-diazo-3-oxobutanoate and 3-butynoic acid using general procedure EI.  Yellow oil 

(47.3 mg, 76%). TLC: Rf 0.37 (7:3 hexanes/EtOAc). IR (NaCl): 2965, 2925, 2880, 2683, 1734, 

1712, 1659. 1H-NMR (400 MHz) δ 5.66 (td, J = 2.4, 1.3 Hz, 1H), 5.45 (dt, J = 2.5, 1.5 Hz, 1H), 

4.28 (qdd, J = 7.2, 3.4, 0.7 Hz, 2H), 3.47 – 3.21 (m, 2H), 2.32 (d, J = 0.6 Hz, 3H), 1.29 (td, J = 

7.1, 0.6 Hz, 3H). 13C-NMR (101 MHz) δ 197.7, 172.1, 165.3, 133.9, 118.5, 115.4, 91.0, 63.2, 

33.4, 25.9, 13.9. HRMS (ESI) m/z calcd for C10H12O5 ([M+Na]+) 235.0583; found 235.0579. 

 

1,1'-(3-Methylene-5-oxotetrahydrofuran-2,2-diyl)bis(ethan-1-one) (5d). Prepared from 3-

diazopentane-2,4-dione and 3-butynoic acid using general procedure EI. Yellow oil (55 mg, 

76%). TLC: Rf 0.57 (7:3 hexanes/EtOAc). IR (NaCl): 2923, 2851, 1806, 1737, 1718, 1665, 

1638. 1H-NMR (400 MHz): δ 5.60 (tt, J = 2.8, 1.1 Hz, 1H), 5.43 (dt, J = 2.5, 1.2 Hz, 1H), 3.31 

– 3.26 (m, 2H), 2.31 (s, 6H). 13C-NMR (101 MHz) δ 198.9, 172.5, 164.5, 133.9, 115.2, 33.6, 

26.3. HRMS (ESI) m/z calcd for C9H10O4 ([M+Na]+) 205.0477; found 205.0476. 

 

 

O

O

O
Me

O

OEt

O

O

OO
Me

Me



Ch. 2 – Identification of Rh(II)/Au(I) Synergistic Cascade Catalysis 

 

61 

 

Methyl 2-benzoyl-3-methylenetetrahydrofuran-2-carboxylate (5e). Prepared from methyl 

2-diazo-3-oxo-3-phenylpropanoate and 3-butynoic acid using general procedure EI.  Yellow 

liquid (52 mg, 86%). 1H NMR (400 MHz) δ 8.05–7.99 (m, 2H), 7.57–7.51 (m, 1H), 7.46–7.39 

(m, 2H), 5.50 (t, J = 2.1 Hz, 1H), 5.41 (t, J = 2.3 Hz, 1H), 4.21 (q, J = 7.8 Hz, 1H), 4.08 (dt, J = 

8.3, 6.4 Hz, 1H), 3.74 (s, 3H), 2.73 (ddt, J = 7.5, 4.4, 1.4 Hz, 2H).13C NMR (101 MHz) δ 191.2, 

170.0, 143.8, 134.3, 133.2, 129.7, 128.4, 112.6, 90.2, 68.9, 53.0, 32.9. Compound matched 

literature known values 

 

tert-Butyl 2-benzoyl-3-methylenetetrahydrofuran-2-carboxylate (5f). Prepared from tert-

butyl 2-diazo-3-oxo-3-phenylpropanoate and 3-butynol using general procedure EI. Yellow 

oil (47 mg, 80%). TLC: Rf 0.5 (4:1 hexanes/EtOAc). IR (NaCl): 2958, 2924, 2854, 2127, 1722, 

1598, 1583. 1H NMR (400 MHz) δ 8.07–8.03 (m, 2H), 7.57–7.50 (m, 1H), 7.47–7.39 (m, 2H), 

5.50 (t, J = 2.1 Hz, 1H), 5.41 (t, J = 2.2 Hz, 1H), 4.23 (q, J = 7.8 Hz, 1H), 4.07 (dt, J = 8.2, 6.3 

Hz, 1H), 2.73 (ddt, J = 8.3, 4.4, 1.7 Hz, 2H), 1.32 (s, 9H). 13C NMR (101 MHz) δ 191.3, 168.5, 

144.3, 134.8, 132.9, 129.6, 128.3, 111.9, 90.1, 83.1, 68.8, 33.2, 29.7, 27.6. ESI-MS m/z calcd 

for C17H20O4 ([M+Na]+) 311.1; found 311.1. 
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Ethyl 2-acetyl-3-methylenetetrahydrofuran-2-carboxylate (5g). Prepared from ethyl 2-

diazo-3-oxobutanoate and 3-butynol using general procedure EI.  Yellow oil (45 mg, 64%). 

TLC: Rf 0.60 (7:3 hexanes/EtOAc). IR (NaCl): 2963, 2925, 1745, 1662. 1H NMR (400 MHz) δ 

5.32 (t, J = 2.4 Hz, 1H), 5.30 (t, J = 2.2 Hz, 1H), 4.17 (qd, J = 7.1, 2.9 Hz, 2H), 4.09–3.97 (m, 

2H), 2.70–2.59 (m, 2H), 2.17 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). 13C-NMR (101 MHz) δ 201.6, 

168.1, 143.3, 112.0, 90.2, 68.4, 61.9, 32.7, 30.8, 25.4, 13.9. HRMS (ESI) m/z calcd for C10H14O4 

([M+Na]+) 221.0790; found 221.0784. 

 

1,1'-(3-Methylenetetrahydrofuran-2,2-diyl)bis(ethan-1-one) (5h). Prepared from 3-

diazopentane-2,4-dione and 3-butynol using general procedure EI. Orange oil (52 mg, 

78%). 1H NMR (400 MHz) δ 5.34 (t, J = 2.2 Hz, 1H), 5.30 (t, J = 2.4 Hz, 1H), 4.08 (t, J = 7.1 Hz, 

2H), 2.67 (ddd, J = 7.1, 4.9, 2.3 Hz, 2H), 2.23 (s, 6H).13C-NMR (101 MHz) δ 198.8, 178.9, 

144.7, 112.9, 95.5, 42.3, 25.9.  Compound matched literature known values. 

 

1,1'-(4,4-Dimethyl-3-methylene-5-oxotetrahydrofuran-2,2-diyl)bis(ethan-1-one) (5i). 

Prepared from 3-diazopentane-2,4-dione and 2,2-dimethylbut-3-ynoic acid using general 
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procedure EI. Yellow oil (45 mg, 91%). TLC: Rf 0.71 (7:3 hexanes/EtOAc). IR (NaCl): 2977, 

2932, 2874, 2853, 1798, 1740, 1720, 1644, 1582. 1H NMR (400 MHz) δ 5.53 (d, J = 1.5 Hz, 

1H), 5.34 (d, J = 1.5 Hz, 1H), 2.28 (s, 6H), 1.29 (s, 6H). 13C-NMR (101 MHz) δ 198.8, 178.9, 

144.7, 112.9, 95.5, 42.3, 25.9. HRMS (ESI) m/z calcd for C11H14O4 ([M+Na]+) 233.0790; 

233.0787 found. 

 

1,1'-(4,4-Dimethyl-3-methylenetetrahydrofuran-2,2-diyl)bis(ethan-1-one) (5j). Prepared 

from 3-diazopentane-2,4-dione and 2,2-dimethylbut-3-yn-1-ol using general procedure EI.  

Pale yellow oil (51 mg, 87%). TLC: Rf 0.57 (4:1 hexanes/EtOAc). IR (NaCl): 2966, 2931, 2871, 

1736, 1714, 1660, 1583. 1H NMR (400 MHz) δ 5.28 (t, J = 0.8 Hz, 1H), 5.18 (t, J = 0.8 Hz, 1H), 

3.78 (s, 2H), 2.25 (s, 6H), 1.12 (s, 6H). 13C NMR (101 MHz) δ 203.0, 152.0, 109.3, 98.5, 80.5, 

26.4, 25.7. HRMS (ESI) m/z calcd for C11H16O3 ([M+Na]+) 219.0997; found 219.0997. 

 

1,1'-(3-Methylene-4-phenyltetrahydrofuran-2,2-diyl)bis(ethan-1-one) (5k).  Prepared 

from ethyl 2-diazo-3-oxobutanoate and 2-phenylbut-3-yn-1-ol using general procedure EI. 

Yellow oil (81 mg, 86%). TLC: Rf 0.60 (4:1 hexanes/EtOAc). 1H NMR (400 MHz) δ 7.36–7.27 

(m, 3H), 7.18 (dd, J = 6.9, 1.6 Hz, 2H), 5.46–5.39 (m, 1H), 5.07–5.00 (m, 1H), 4.55–4.44 (m, 

1H), 3.96–3.91 (m, 2H), 2.30 (d, J = 4.9 Hz, 6H). 13C NMR (101 MHz) δ 203.1, 202.6, 147.0, 
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138.7, 128.8, 128.5, 127.4, 113.7, 75.3, 50.4, 26.2, 25.8. HRMS (ESI) m/z calcd for C15H16O3 

([M+Na]+) 267.0997; found 267.0995. 

 

1,1'-(3-Methylene-5-phenyltetrahydrofuran-2,2-diyl)bis(ethan-1-one) (5l). Prepared 

from 3-diazopentane-2,4-dione and 1-phenylbut-3-yn-1-ol using general procedure EI. 

Yellow oil (72mg, 72%). TLC: Rf 0.63 (7:3 hexanes/EtOAc). 1H NMR (400 MHz) δ 7.46–7.30 

(m, 5H), 5.37 (dd, J = 2.8, 1.6 Hz, 1H), 5.34 (dd, J = 3.0, 1.6 Hz, 1H), 5.07 (dd, J = 10.3, 6.1 Hz, 

1H), 3.03 (ddt, J = 15.7, 6.1, 1.6 Hz, 1H), 2.65 (ddt, J = 15.8, 10.3, 2.9 Hz, 1H), 2.31 (d, J = 5.4 

Hz, 6H). 13C NMR (101 MHz) δ 203.3, 202.6, 142.6, 139.9, 128.7, 128.3, 126.1, 111.9, 81.4, 

41.2, 26.3, 26.0. HRMS (ESI) m/z calcd for C15H16O3 ([M+Na]+) 267.0997; found 267.0993. 

 

 

Methyl-2-benzoyl-3-methylene-4-phenyltetrahydrofuran-2-carboxylate (5m).  Prepared 

from methyl 2-diazo-3-oxo-3-phenylpropanoate and 2-phenylbut-3-yn-1-ol using general 

procedure EI. Clear oil (47 mg, 77%). TLC: Rf 0.65 (4:1 hexanes/EtOAc). 1H NMR (400 MHz) 

δ 8.14–8.02 (m, 2H), 7.63–7.53 (m, 1H), 7.52–7.37 (m, 2H), 7.40–7.15 (m, 5H), 5.55 (d, J = 

3.0 Hz, 1H), 5.13 (d, J = 2.7 Hz, 1H), 4.47 (t, J = 8.2 Hz, 1H), 4.27 (dd, J = 10.1, 8.3 Hz, 1H), 

3.97 (ddt, J = 10.7, 8.1, 2.8 Hz, 1H), 3.80 (s, 3H). 13C NMR (101 MHz) δ 190.6, 170.2, 148.7, 
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138.5, 134.2, 133.4, 129.8, 128.9, 128.7, 128.5, 127.3, 114.4, 91.4, 76.1, 53.1, 50.6. 

Compound matched literature known values 

 

Methyl-2-benzoyl-3-methylene-5-phenyltetrahydrofuran-2-carboxylate (5n).  Prepared 

from methyl 2-diazo-3-oxo-3-phenylpropanoate and 1-phenylbut-3-yn-1-ol using general 

procedure EI. Clear oil (52 mg, 77%). TLC: Rf 0.64 (7:3 hexanes/EtOAc). 1H NMR (400 MHz) 

δ 8.16–8.03 (m, 4H), 7.60–7.50 (m, 1H), 7.48–7.39 (m, 1H), 7.37–7.19 (m, 4H), 5.53 (dd, J = 

2.8, 1.3 Hz, 1H), 5.46 (dd, J = 3.1, 1.2 Hz, 1H), 5.42 (dd, J = 10.8, 5.6 Hz, 1H), 3.77 (s, 3H), 

3.04 (ddt, J = 15.2, 5.7, 1.3 Hz, 1H), 2.67 (ddt, J = 15.1, 10.8, 2.9 Hz, 1H). 13C NMR (101 MHz) 

δ 190.8, 170.3, 144.2, 140.0, 134.4, 133.2, 129.9, 128.4, 128.4, 128.3, 127.9, 125.9, 112.6, 

82.2, 52.9, 41.9. HRMS (ESI) m/z calcd for C20H18O4 ([M+Na]+) 345.1095; found 345.1102. 

 

Methyl (5R)-2-benzoyl-5-((benzyloxy)methyl)-3-methylenetetrahydrofuran-2-

carboxylate (4o).  Prepared from methyl 2-diazo-3-oxo-3-phenylpropanoate and (R)-1-

(benzyloxy)pent-4-yn-2-ol using general procedure EI. Clear oil (62 mg, 64%): [α]21
D +22.8 

(c = 1, CHCl3). TLC: Rf 0.52 (7:3 hexanes/EtOAc). 1H NMR (400 MHz) δ 8.13–8.00 (m, 2H), 

7.40 (t, J = 7.8 Hz, 3H), 7.23 (dd, J = 5.2, 1.7 Hz, 3H), 7.16 (dd, J = 6.9, 2.8 Hz, 2H), 5.48 (dd, 

J = 2.7, 1.6 Hz, 1H), 5.40 (dd, J = 2.9, 1.6 Hz, 1H), 4.43 (s, 2H), 3.75 (s, 3H), 3.66 (ddd, J = 
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14.6, 4.8, 2.4 Hz, 1H), 3.53 (t, J = 4.3 Hz, 2H), 2.84 – 2.72 (m, 1H), 2.68 (ddt, J = 8.9, 5.9, 2.7 

Hz, 1H). 13C NMR (101 MHz) δ 191.3, 170.2, 143.8, 138.0, 134.4, 133.1, 129.9, 129.3, 128.6, 

128.3, 128.3, 128.2, 127.5, 127.4, 112.8, 90.9, 79.9, 77.3, 73.2, 71.1, 53.0, 35.2. HRMS (ESI) 

m/z calcd for C22H22O5 ([M+Na]+) 389.1357; found 389.1365. 

 

Methyl (5S)-2-benzoyl-5-((benzyloxy)methyl)-3-methylenetetrahydrofuran-2-

carboxylate (4p). Prepared from methyl 2-diazo-3-oxo-3-phenylpropanoate and (S)-1-

(benzyloxy)pent-4-yn-2-ol using general procedure EI. Clear oil (47 mg, 75%): [α]21
D –22.8 

(c = 1, CHCl3). TLC: Rf 0.52 (7:3 hexanes/EtOAc). 1H NMR (400 MHz) δ 8.13–8.00 (m, 2H), 

7.40 (t, J = 7.8 Hz, 3H), 7.23 (dd, J = 5.2, 1.7 Hz, 3H), 7.16 (dd, J = 6.9, 2.8 Hz, 2H), 5.48 (dd, 

J = 2.7, 1.6 Hz, 1H), 5.40 (dd, J = 2.9, 1.6 Hz, 1H), 4.43 (s, 2H), 3.75 (s, 3H), 3.66 (ddd, J = 

14.6, 4.8, 2.4 Hz, 1H), 3.53 (t, J = 4.3 Hz, 2H), 2.84 – 2.72 (m, 1H), 2.68 (ddt, J = 8.9, 5.9, 2.7 

Hz, 1H). 13C NMR (101 MHz) δ 191.3, 170.2, 143.8, 138.0, 134.4, 133.1, 129.9, 129.3, 128.6, 

128.3, 128.2, 127.5, 127.4, 112.8, 90.9, 79.9, 77.3, 73.2, 71.1, 53.0, 35.2. HRMS (ESI) m/z 

calcd for C22H22O5 ([M+Na]+) 389.1357; found 389.1365. 

 

5-Benzoyl-4-methylene-5-phenyldihydrofuran-2(3H)-one (5q). Prepared from 2-diazo-

1,2-diphenylethan-1-one and but-3-ynoic acid using general procedure EI. Clear oil (19 mg, 
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87%).   TLC: Rf 0.54 (7:3 hexanes/EtOAc). 1H NMR (400 MHz) δ 7.56–7.29 (m, 10H), 5.45 (d, 

J = 2.5 Hz, 1H), 5.28 (t, J = 2.8 Hz, 1H), 3.50 – 3.22 (m, 2H). 13C NMR (101 MHz) δ 194.5, 

172.9, 134.9, 133.3, 132.9, 130.7, 129.9, 129.0, 128.9, 128.8, 128.7, 128.3, 124.9, 115.2, 

34.7, 29.7. HRMS (ESI) m/z calcd for C18H14O3 ([M+H]+) 279.1002; found 279.1003.  

 

(3-Methylene-2-phenyltetrahydrofuran-2-yl)(phenyl)methanone (5r). Prepared from 2-

diazo-1,2-diphenylethan-1-one and but-3-yn-1-ol using general procedure EI. Clear oil (70 

mg, 86%).   TLC: Rf 0.85 (7:3 hexanes/EtOAc). 1H NMR (400 MHz) δ 7.71–7.62 (m, 1H), 7.56–

7.41 (m, 5H), 7.40–7.24 (m, 4H), 5.36 (t, J = 2.1 Hz, 1H), 5.05 (t, J = 2.3 Hz, 1H), 4.22–4.08 

(m, 1H), 3.98 (td, J = 8.2, 6.8 Hz, 1H), 2.93–2.58 (m, 2H). 13C NMR (101 MHz) δ 198.4, 148.6, 

140.3, 135.2, 134.9, 130.5, 129.9, 129.0, 128.5, 128.4, 128.3, 127.8, 127.7, 125.4, 111.5, 

92.6, 66.7, 32.7. HRMS (ESI) m/z calcd for C15H16O3 ([M+Na]+) 287.1048; found 287.1038. 

 

(3-Methylene-2,4-diphenyltetrahydrofuran-2-yl)(phenyl)methanone (5s). Prepared from 

2-diazo-1,2-diphenylethan-1-one and 2-phenylbut-3-yn-1-ol using general procedure EI. 

Clear oil (19 mg, 82%). TLC: Rf 0.84 (7:3 hexanes/EtOAc). 1H NMR (400 MHz) δ 7.71–7.62 

(m, 1H), 7.57–7.21 (m, 11H), 7.24–7.12 (m, 3H), 5.11 (d, J = 2.7 Hz, 1H), 5.03 (d, J = 2.4 Hz, 

1H), 4.40 (t, J = 8.1 Hz, 1H), 4.13 (t, J = 8.1 Hz, 1H), 4.07 (tt, J = 7.8, 2.5 Hz, 1H). 13C NMR 

(101 MHz) δ 197.8, 153.2, 140.0, 134.9, 132.6, 130.6, 129.9, 129.0, 128.7, 128.6, 128.5, 
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127.9, 127.8, 126.9, 125.4, 113.9, 109.9, 77.3, 74.5, 50.3, 29.7. HRMS (ESI) m/z calcd for 

C24H20O2 ([M+Na]+) 363,1360; found 363.1350. 

 

3-Methylene-3',4,4',5-tetrahydro-2'H,3H-spiro[furan-2,1'-naphthalen]-2'-one (5t). 

Prepared from 1-diazo-3,4-dihydronaphthalen-2(1H)-one and but-3-yn-1-ol using general 

procedure EI. Clear oil (28 mg, 71%).   TLC: Rf 0.52 (8:2 hexanes/EtOAc). 1H NMR (400 MHz) 

δ 7.41–7.11 (m, 4H), 5.19 (d, J = 2.2 Hz, 1H), 4.67 (d, J = 2.2 Hz, 1H), 4.42 (td, J = 8.3, 5.6 Hz, 

1H), 4.23 (q, J = 7.6 Hz, 1H), 3.16 (qd, J = 16.1, 7.9 Hz, 2H), 3.01 – 2.91 (m, 1H), 2.92 – 2.83 

(m, 1H), 2.78 (ddd, J = 15.2, 7.7, 5.7 Hz, 1H), 2.64 (dt, J = 15.4, 6.5 Hz, 1H). 13C NMR (101 

MHz) δ 208.1, 151.1, 138.9, 136.4, 128.1, 128.0, 127.6, 127.2, 110.8, 67.9, 35.9, 32.6, 28.7. 

HRMS (ESI) m/z calcd for C14H14O2 ([M+Na]+) 237.0892; found 237.0896. 

 

Ethyl 6-acetyl-1-methyl-3-oxo-2-oxabicyclo[3.1.0]hexane-6-carboxylate (7). Prepared 

from ethyl 2-diazo-3-oxobutanoate and pent-3-ynoic acid using general procedure 3. Clear 

thick oil (17 mg, 64%). TLC: Rf 0.47 (7:3 hexanes/EtOAc). 1H NMR (400 MHz) δ 4.26 – 4.15 

(m, 2H), 3.63 – 3.57 (m, 1H), 2.95 (d, J = 8.7 Hz, 1H), 2.91 (d, J = 8.7 Hz, 1H), 2.86 (d, J = 2.5 

Hz, 1H), 2.81 (d, J = 2.5 Hz, 1H), 2.23 (d, J = 1.7 Hz, 3H), 1.75 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz) δ 173.8, 166.6, 164.3, 134.3, 134.1, 129.3, 129.2, 115.1, 109.9, 105.9, 
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77.3, 77.0, 76.7, 60.1, 47.1, 34.4, 23.7, 14.3, 14.2, 14.0. ESI-MS m/z calcd for C11H14O5 

([M+Na]+) 249.6; found 249.1. 
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CHAPTER 3 
 

Rh(II)/Au(I) Catalyzed Synthesis of  

Spiroethers and Azaspiro-Ring Systems 

 

 

3.1  INTRODUCTION 

 

  The stereoselective synthesis of spiroethers, which are found in a wide range of 

bioactive natural products and drug molecules (Figure 3.1), is of great importance to the 

field of synthetic chemistry.[1] Examples of naturally occurring spiroethers include the 

pseurotins and spirooxindoles. Due to the biological importance of spiroethers, the 

synthesis of this scaffold remains an area of current interest to the chemical community. 

 
Figure 3.1. Representative examples of biologically active spiroethers as natural products 

and synthetically derived drug molecules. 
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Most existing methods to access spiroethers rely heavily on intramolecular 

cyclization/rearrangement reactions of appropriate linear precursors which require 

multiple synthetic steps for preparation. For example, in 2012 Jiao et al. identified a direct 

C(sp3)–H functionalization of tetrahydrofurans to access spiroethers (Scheme 3.1).[2] In this 

work it was necessary to start with a tetrahydrofuran that contained both an a,b-

unsaturated aldehyde and a diethylmalonate moiety. When this highly functionalized 

substrate was placed in the presence of a strong Lewis acid and organocatalyst, an iminium 

ion mediated C–H functionalization occurred. Although this method provided access to a 

variety of spiroethers with differing substituents and ring sizes, the method is not ideal 

because of the four synthetic steps needed to access the linear precursor for intramolecular 

cyclization. 

 
Scheme 3.1. Previous approach to spiroethers showing the general need to synthesize a 

complex linear precursor prior to setting spirocenter. 
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Also of great value are azaspiro-ring systems which uniquely possess an aza-

substituted quaternary center.[3] This motif is frequently found in many biologically active 

natural alkaloids such as cylindricine A, lepadeformine A, TAN1251A, and FR901483 (Figure 

3.2).[3a] Azaspiro-ring systems are also found in a variety of highly valuable ligand scaffolds. 

These types of ligands have been proven to be especially powerful due to their ability to 

induce impeccable stereocontrol because of the proximity of the spiro-backbone to the 

nitrogen center which coordinates catalysts. Although azaspiro-ring systems such as 

spiropyrollidines are of great value, their associated synthetic challenges cause syntheses 

for accessing them to be limited, similar to spiroethers. 

 
Figure 3.2. Biologically active azaspiro-ring systems found in natural products 
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synthetic steps from a complex linear precursor to obtain their spiropyrollidine ligand 

scaffolds for screening. This eight-step sequence had to be repeated for each different 

ligand scaffold for screening.  

 
Scheme 3.2. Biologically active azaspiro-ring systems found in natural products 

 

 When analyzing the structures of spiroethers and spiropyrollidines, one’s attention 

is immediately drawn to the daunting task of forming the quaternary stereocenter 
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Figure 3.3. Novel disconnection to spirocycles developed by Sharma Lab 

 

3.2 STEREOSELECTIVE TRAPPING OF Rh(II) CARBENES WITH Au(I) 

ACTIVATED ALKYNOLS FOR THE SYNTHESIS OF SPIROETHERS  

In the preceding chapter, we reported the identification and application of 

Rh2(esp)2 and PPh3AuOTf as a synergistic catalytic cocktail to access g-butyrolactones and 

tetrahydrofurans.[5] Within this work, our diazocarbonyls were often linear substrates. 

However, there was one example where we implemented a cyclic diazocarbonyl derived 

from 2-tetralone (Scheme 3.3). When diazo 1a was exposed to our catalytic conditions in 

the presence of 3-butynol, we were able to obtain the corresponding spiroether 3a in 71% 

yield.  

 
Scheme 3.3. Preliminary results to help justify synthetic approach. 
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With this preliminary result in hand, we hypothesized that we could split 

spiroethers “down the middle” into a corresponding cyclic diazocarbonyl and alkynol 

derivative, the hydroxyl group being our nucleophile and the alkyne being our electrophile. 

When these two substrates are exposed to our Rh2(esp)2/PPh3AuOTf catalytic cocktail, the 

desired spiroether would be rapidly and efficiently obtained. This approach would 

eliminate the need to synthesize highly functionalized linear precursors, thereby making 

our method highly convergent. 

 

3.2.1  INITIAL SCREENING OF CATALYTIC CONDITIONS 

Inspired by the initial synthesis of spiroether 3a using our Rh2(esp)2/PPh3AuOTf 

catalytic conditions, we decided to focus our attention on optimizing this transformation 

using N-methyl isatin diazo 1b. This diazo would provide highly relevant spirooxindole 

scaffolds which are privileged skeletons due to their broad and promising biological 

activities and prevalence in naturally occurring molecules.[6] 

 
Scheme 3.4.  Preliminary results for cascade spirocyclization 
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 We initiated our work by attempting the carboxylic acid O–H insertion/Conia-ene 

cyclization using diazo 1b and 3-butynoic acid (Scheme 3.4a). Surprisingly, this reaction 

yielded only the corresponding insertion product 4b and no trace of the cyclized product 

3b was detected. The incompatibility of the carboxylic acid in this cascade reaction may be 

attributed to the low pKa value of the protonated carboxylic acid in the zwitterionic 

intermediate (approximated –7.4).[7] This low pKa value would thereby favor a higher rate 

of proton transfer over the trapping of the activated alkyne. Undeterred by this failed 

reaction, we next decided to screen the reaction with 3-butynol, as it was just as efficient 

as 3-butynoic acid in our O–H insertion/Conia-ene cyclization methodology (Scheme 3.4b). 

Upon completion of this reaction we observed a 25:75 ratio of the desired spiroether 3c to 

the competing insertion product 4c. Encouraged by the results in hand, we began to 

optimize the reaction in order to obtain a higher conversion to spiroether 3c (Table 3.1). 

When examining the mechanism of this transformation it is understood that in 

order to have a higher probability of the active Rh(II)-bound zwitterionic intermediate 

being trapped by the Au(I)-activated alkynol, the lifetime of the Rh(II)–bound zwitterionic 

intermediate must be increased.[8] One obvious way to increase the lifetime is to limit the 

amount of diazocarbonyl present in the reaction mixture, consequently the Rh(II) will not 

be influenced to leave the zwitterionic intermediate to go decompose another 

diazocarbonyl. To test this hypothesis, we added a solution of 1b in dichloromethane via 

syringe pump to a mixture of the catalytic solution and 3-butynol. When this reaction was 

complete, we observed a significant increase in conversion to a 40:60 ratio of the desired 

spiroether 3c to the competing insertion product 4c (Table 3.1, entry 2). Next, we decided 
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to test the influence of a decreased temperature, however, when the reaction was 

conducted at 0 ºC with a syringe pump addition of 1b no significant change in conversion 

was observed (Table 3.1, entry 3). Lastly, we hypothesized that an increase in Lewis-acidity 

of the Rh(II) catalyst could extend the lifetime of the Rh(II)-bound zwitterionic 

intermediate.[8a, 9] To test this hypothesis, we conducted the reaction in the presence of 

highly electrophilic Rh2(TFA)4 instead of Rh2(esp)2. This change proved to be exceedingly 

successful, providing almost exclusively the desired spiroether in an 80% conversion (Table 

3.1, entry 4). 

 

Table 3.1. Optimization of O–H Insertion/Conia-ene Cascade for Spiroether Synthesis 

 

entry Rh(II)/Lewis acid timeb(temp) 3c:4cc 

1 Rh2(esp)2/AgOTf/PPh3AuCl Instant(rt) 25:75 
2 Rh2(esp)2/AgOTf/PPh3AuCld 1hr addition(rt) 40:60 
3 Rh2(esp)2/AgOTf/PPh3AuCld 1hr addition(0 ºC) 40:60 
4 Rh2(TFA)4

e/AgOTf/PPh3AuCld 1hr addition(0 ºC) 80:20 
aAll optimization reactions were performed in 0.1 M CH2Cl2 with 1b (1.20 equiv.), 2a (1 equiv.), Rh2L4 
(1 mol%), and Lewis acids (10 mol%) along with 4 Å molecular sieves; btime required for the 
complete consumption of 1b; cConversion (%) was determined from the crude 1H NMR 
spectrum;d1b was added via syringe pump addition as a solution in CH2Cl2; eTFA = trifluoroacetate. 
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3.2.2  APPLICATION TO SUBSTRATE SCOPE 

 
Scheme 3.5. Representative substrate scope of oxindole spiroethers accessed through O–H 

Insertion/Conia-ene cyclization with Rh2(TFA)4/PPh3AuOTf 

 

With optimized conditions in hand, we undertook a thorough study of the substrate 

scope of this transformation in hopes of accessing a variety of functionalized spiroethers 

(Scheme 3.5). When the reaction was conducted with a sterically hindered secondary 

benzyl alkynol the desired product 3d was produced in a good 68% yield. Next, a phenyl-

substituted primary alkynol provided 3e in 70% yield. Interested in the electronic effects of 

the isatin diazo, we conducted the reaction using a 6-chloro substituent on the oxindole 

core. This electron-deficient species did not have a pronounced effect on the yield of any 

of the isolated substrates (3f–3h). Lastly, we screened the effect of an electron rich 

N
O

R1
O

R2
R3

N
O

O

N
O

O

Ph

N
O

O
Ph

N
O

O

N
O

O

Ph

Cl Cl

N
O

O
MeO

3c,	79% 3d,	70%
dr	>	98:2

3e,	68%
dr	>	98:2

3f,	90% 3g,	66%
dr	>	98:2

3h,	60%
dr	>	98:2

N
O

O
Cl

3i,	63%
dr	>	98:2

Ph

N
O

N2

HO
+

R1 R3

R2

	Rh2(TFA)4	(1	mol%)
PPh3AuOTf	(10	mol%)

CH2Cl2,	rt1 2 3

Ph



CH. 3 – Rh(II)/Au(I) Catalyzed Synthesis of Spiroethers and Azaspiro-Ring Systems 125 

oxindole core, and this perturbation in electronics also did not have an effect on the 

transformation (3i). 

 
Scheme 3.6. Representative substrate scope of spiroethers accessed through O–H 

Insertion/Conia-ene cyclization with Rh2(esp)2/PPh3AuSbF6 
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a mild source of triflic acid which could cause decomposition of the desired spiroether 

product.[10] With this problem in hand, we thought to screen a more stable silver salt with 

a less active counter ion and our silver salt of choice was AgSbF6. Delightfully, this change 

increased the yield of the desired product 3j to 42%. 

 With our newly modified conditions, we expanded the substrate scope of this 

reaction to A/A cyclic diazocarbonyls (Scheme 3.6). The Meldrum’s acid diazo was 

compatible with substituted primary and secondary alcohols giving the desired substrates 

3k and 3l in 40% yield and 32% yield, respectively. We believe the moderate yields observed 

in these transformations with Meldrum’s acid diazocarbonyl can be attributed to molecular 

instability of the corresponding spiroether in the presence of Lewis acids.[11] These 

substrates have a high level of entropic driving force for fragmentation. Next, we decided 

to screen the diazocarbonyl derived from barbituric acid which would not have the entropic 

driving force for fragmentation. When this diazo was reacted with 3-butynol under the 

optimized conditions the desired compound 3m was produced in a 62% yield, validating 

our hypothesis. As expected, this diazo also accommodated primary and secondary alcohol 

substituents (3n–3o). 

 

3.2.3  MECHNISTIC INSIGHTS 

 To probe the reaction mechanism, deuterium labeling experiments were conducted 

with both the donor/acceptor and acceptor/acceptor cyclic diazocarbonyls. To conduct this 

study, it was necessary to synthesize a deuterated 3-butynol derivative (Scheme 3.5). 

Initially, we explored a kinetic deprotonation and exposed our parent 3-butynol to 2.5 
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equivalents of n-butyllithium and proceeded to quench the reaction with D2O, however, 

this was proven to be unsuccessful. Next, we decided to exploit the relative acidity of the 

alkyne proton and explored thermodynamic deprotonation conditions. We exposed a TBS-

protected 3-butynol derivative to 1.2 equivalents of trithethylamine in a 1:1 mixture of D2O 

and THF, hoping to facilitate a proton/deuterium exchange within the reaction. This 

solution was stirred overnight and the next morning the desired compound was isolated 

with 95% deuterium incorporation. To complete the synthesis of the desired deuterated 

alkynol, a TBS-deprotection was needed, however when this compound was exposed tetra-

butylammonium fluoride (TBAF) and isolation was attempted, the desired compound was 

 
Scheme 3.7. Insights into the synthesis of deuterated 3-butynol derivative 
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point of the desired compound. However, when the deuterated derivative was synthesized 

and exposed to TBAF, 1H NMR showed reincorporation of the proton at the alkyne. This 

caused us to explore an alternative method of TBS-deprotection, HF-pyridine which was 

quenched with methoxytrimethylsilane instead of water upon completion of the reaction. 

This method produced the desired substrate 2c[D] in a 33% yield. 

 Once our deuterated alkynol was obtained, it was exposed to both the 

donor/acceptor and acceptor/acceptor cyclic diazocarbonyls under their respective 

optimized reaction conditions (Scheme 3.8). In both cases, no deuterium scrambling was 

observed, and the deuterium was found to be syn to the carbonyl functionality using 1D 

nOe experiments. This observation was in accordance with results published by Toste et al. 

in his previous Au(I)-catalyzed Conie-ene cyclization.[12] These results suggest a mechanism 

involving the trapping of an enol-intermediate with a gold-alkyne p-coordinated complex, 

ruling out the formation of a gold acetylide.[13] 

 
Scheme 3.8. Deuterium labeling studies using deueterated alkynol 
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 For further insights we conducted the reaction with isatin diazo 1b and 3-butynol in 

the presence of D2O in order to determine a possible mode of proto-demetalation for this 

transformation (Scheme 3.9). Upon completion of the reaction a 47:53 ratio of spirother 

3c/3c[D] to insertion byproduct 4c/4c[D] was observed. For the spiroether, there was a 

38% deuterium incorporation at the alkene and for the insertion compound there was a 

55% deuterium incorporation at the a-center of the isatin and no deuterium incorporation 

at the alkyne. These observations suggest that there is a high likelihood the proto-

demetalation step for this transformation occurs intermoleculary through trace amount of 

water present in the reaction. 

  

 
Scheme 3.9. Deuterium labeling studies using D2O as an additive 
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donor/acceptor and acceptor/acceptor cyclic diazocarbonyls using Rh2(TFA)4 and Rh2(esp)2 

as catalysts, respectively. When the insertion compounds were subjected to the Au(I) 

catalyzed Conia-ene cyclizatin condition, we did not observe any cyclized products even 

 
Scheme 3.10. Probing stepwise transformation for validation of synergy 
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products to a mixture of Rh(II) and cationic Au(I), in order to probe whether the catalyst 

mixture is able to induce the stepwise transformation. However, no cyclized products were 

observed under these conditions also, even after 12 hours in refluxing dichloromethane. 

This study supports the complete synergy of Rh(II) and Au(I) in this catalytic cascade. 

As a final effort to obtain mechanistic understanding, we conducted studies to 

probe whether this transformation could be conducted asymmetrically (Table 3.2). Initially, 

we attempted the cascade reaction with chiral Rh(II) catalysts, Rh2(S-DOSP)4 and Rh2(S-

PTAD)4 with isatin diazo 1b. We also screened the optimized reaction with the 

incorporation of R-BINAP(AuCl)2. Nevertheless, after screening these conditions no 

enantiomeric excess (ee) was observed. This observation was in accordance with literature 

N
O

O

4c

N
O

N
O

O

O

4d

PPh3AuSbF6	(10	mol%)

CH2Cl2,	reflux
X

N
O

N
O

O

O
3m

PPh3AuOTf	(10	mol%)
X

CH2Cl2,	reflux
N

O

O

3c

a)

b)



CH. 3 – Rh(II)/Au(I) Catalyzed Synthesis of Spiroethers and Azaspiro-Ring Systems 131 

Table 3.2. Optimization of Asymmetric Transformation with Isatin Diazo 

 

entry Condition timeb(temp) %ee(yield%) 

1 Rh2(S-DOSP)4/AgOTf/PPh3AuCl 1hr addition(0 ºC) 0 (52) 
2 Rh2(S-PTAD)4/AgOTf/PPh3AuCl 1hr addition(0 ºC)) 0 (43) 
3 Rh2(TFA)4

c/AgOTf/R-BINAP(AuCl)2 1hr addition(0 ºC) 0 (61) 
aAll optimization reactions were performed in 0.1 M CH2Cl2 with 1b (1.20 equiv.), 2a (1 equiv.), Rh2L4 
(1 mol%), and Lewis acids (10 mol%) along with 4 Å molecular sieves; btime required for the 
complete consumption of 1b; cTFA = trifluoroacetate. 
 

reports of inducing negligible enantioselectivity with chiral Rh(II) catalysts when the 

reaction centralized around the trapping of electrophiles with oxonium and ammonium 

zwitterionic intermediates that are formed in situ. Subsequently, we probed whether we 

could induce asymmetry using a chiral Au(I) catalyst. After completing the reaction with 

Rh2(TFA)4/R-BINAP(AuCl)2/AgOTf the desired compound 3c was isolated in a 53% yield, but 

no enantiomeric excess was induced.  

Next, we decided to change the diazocarbonyl for optimization to the 2-tetralone 

diazocarbonyl due to a hypothesis that the reactivity of an a-ketone diazocarbonyl would 

differ from the amide of isatin diazocarbonyl (Table 3.3). Whenever we exposed 1a to 3-

butynol in the presence of Rh2(esp)2/R-BINAP(AuCl)2/AgOTf we obtained the desired 

spiroether 3a in a 73% yield with 33% ee. Subsequently we replaced Rh2(esp)2 with 

Rh2(OAc)4 and the ee dropped to 28%. However, when Rh2(TFA)4 was used the yield 

increased to 96% and the ee also increased to 39%. It is well known that decreasing the 
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temperature of the reaction can increase the corresponding ee, therefore we lowered the 

temperature to 0 ºC and the ee increased to 42%. A further drop to -40 ºC increased the 

ee to 66%, however, conducting the reaction at -78 ºC was ineffective due to the inability 

of the diazocarbonyl to be decomposed.  

 

Table 3.3. Optimization of Asymmetric Transformation with 2-Tetralone Diazo 

 

entry Condition timeb(temp) %ee(yield%) 

1 Rh2(S-DOSP)4/AgOTf/PPh3AuCl 1hr addition(rt) 0 (65) 
2 Rh2(S-PTAD)4/AgOTf/PPh3AuCl 1hr addition(rt) 0 (63) 
3 Rh2(esp)2/AgOTf/R-BINAP(AuCl)2 1hr addition(rt) 33 (73) 
4 Rh2(OAc)4/AgOTf/R-BINAP(AuCl)2 1hr addition(rt) 28 (62) 
5 Rh2(TFA)4/AgOTf/R-BINAP(AuCl)2 1hr addition(rt) 39 (96) 
6 Rh2(TFA)4/AgOTf/R-BINAP(AuCl)2 1hr addition(0 ºC) 42 (95) 
7 Rh2(TFA)4/AgOTf/R-BINAP(AuCl)2 1hr addition(-40 ºC) 66 (96) 
8 Rh2(TFA)4/AgOTf/R-BINAP(AuCl)2 1hr addition(-78 ºC) – d 

aAll optimization reactions were performed in 0.1 M CH2Cl2 with 1b (1.20 equiv.), 2a (1 equiv.), Rh2L4 
(1 mol%), and Lewis acids (10 mol%) along with 4 Å molecular sieves; btime required for the 
complete consumption of 1a; cTFA = trifluoroacetate; dDiazo 1a did not decompose at -78 ºC. 
 

With these mechanistic insights we were able to propose a mechanism for this 

transformation (Scheme 3.11). When added in a stepwise fashion, Rh(II)/Au(I) work 

independently without exerting any synergistic effect on each other. Specifically, Rh(II) 

decomposes the diazocarbonyl compound to form a Rh(II)-carbene 5 that undergoes 
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oxygen insertion to provide a zwitterionic intermediate 6 which undergoes keto–enol 

tautomerism to provide a reactive, dually activated intermediate 7. The reactive enol form 

enables the Conia-ene cyclization with the cyclic diazocarbonyl compound. The enol-

intermediate also explains the lack of enantioinduction with chiral Rh(II) salts. The 

stereoselectivity of the Conia-ene cyclization is influenced by the steric bulk as well as the 

Au(I)-coordinated alkynol substrate, where the enol form approaches the Au(I)-activated 

alkyne from the opposite face of the steric bulk. 

 

 
Scheme 3.11. Probing stepwise transformation for validation of synergy 

 

 The newly identified conditions for the synthesis of spiroethers are mild, selective, 

and provide a general and convergent route to diverse spiroethers. An important feature 

of this transformation is the high stereoselectivity and success of new Conia-ene 

cyclizations that are inaccessible using traditional mono-catalytic systems. The next goal 
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for our Rh(II)/Au(I) synergistic catalytic cocktail was its application to a corresponding N–H 

insertion/Conia-ene cascade to access various azaspiro-ring systems such as 

spiropyrollidines.  

 

3.3 STEREOSELECTIVE TRAPPING OF Rh(II) CARBENES WITH Au(I) 

ACTIVATED AMINOALKYNES FOR THE SYNTHESIS OF 

SPIROPYROLLIDINES 

 As one has seen thus far, diazocarbonyl derived rhodium carbenes are versatile 

synthetic intermediates that offer sequential reactions with a nucleophile and electrophile. 

In continuation with our interest in accessing diverse spirocyclic scaffolds, we focused our 

efforts on the development of a synergistic cascade reaction that would provide direct 

access to five membered azaspiro heterocycles which are common structural motifs in 

bioactive natural products and pharmaceuticals. Inspired by our previous work[14], in which 

we efficiently trapped rhodium carbenes with a variety of Au(I)-activated alkynoic acids and 

alkynols, we envisioned trapping rhodium carbenes with aminoalkynes using the same 

Rh(II)/Au(I) catalytic cocktail. 

 

3.3.1  INITIAL SCREENING OF CATALYTIC CONDITIONS 

To initiate our study, aminoalkyne 5a and 2-tetralone diazo 1a were selected as 

model substrates. The addition of 2-tetralone diazo 1a to aminoalkyne 5a in the presence 

of our previously optimized Rh2(esp)2/PPh3AuCl/AgSbF6 catalyst cocktail in 
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dichloromethane at room temperature provided the major spiropyrollidine product 6a in 

75% conversion with an isolated 60% yield (Table 3.4, entry 1). Encouraged by the initial 

results of this cascade reaction, we examined the effect of different Lewis acids known for 

synthesizing N-heterocycles through alkyne cyclization.[15] We screened ZnCl2, In(OTf)3, 

PPh3AuCl (alone), AgSbF6 (alone) and no conversion to the desired spiro compound was 

observed (Table 3.4, entry 2–5). Next, we decided to examine the effect of different 

dirhodium carboxylates known to decompose diazocarbonyls. Surprisingly, a mixture of 

Rh2(OAc)4/PPh3AuSbF6 was completely ineffective and produced none of the desired 

 

Table 3.4. Optimization of N–H insertion/Conia-ene Cascade 

 

entry Rh(II) Lewis Acid 6a:7a 

1 Rh2(esp)2 PPh3AuSbF6 75:25 
2 Rh2(esp)2 ZnCl2 0:100 
3 Rh2(esp)2 In(OTf)3 0:100 
4 Rh2(esp)2 PPh3AuCl 0:100 
5 Rh2(esp)2 AgSbF6 0:100 
6 Rh2(OAc)4 PPh3AuSbF6 0:100 
7 Rh2(TFA)4 PPh3AuSbF6 40:60 

aAll optimization reactions were performed by adding diazo 1a (1 equiv.) dropwise via syringe to a 
solution of 5a (1 equiv.), Rh2L4 (1 mol%), and Lewis acids (10 mol%) along with 4 Å molecular sieves 
in 0.3 M CH2Cl2. 
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spiropyrollidine (Table 3.4, entry 6). Subsequently we screened a mixture of 

Rh2(TFA)4/PPh3AuSbF6, which were the optimal conditions for the O–H insertion/Conia-ene 

cyclization of donor/acceptor cyclic diazocarbonyls, but only 40% conversion to the desired 

spiroether was observed (Table 3.4, entry 7). 

 

3.3.2  APPLICATION TO SUBSTRATE SCOPE 

 With the optimized conditions in hand, we investigated the applicability of this 

cascade reaction to a wide variety of substrates (Scheme 3.12). The fused aromatic 

phenanthrenone diazocarbonyl also participated in the cascade under the optimized 

conditions to provide spiropyrollidine 6b in a 62% yield. To demonstrate the utility of the 

transformation, it was necessary to identify a removable protecting group that would 

provide access to the free N–H spiropyrollidine, a functionality necessary for many ligand 

scaffolds. Using an aminoalkyne that was synthesized from para-anisidine, we were able to 

obtain the PMP (para-methoxy phenyl) protected spiropyrollidine 6c in 65% yield. This 

substrate was then taken forward and exposed to CAN (ceric ammonium nitrate) to give 

the free spiropyrollidine 8 in 83% yield. 

 Next, we hoped to apply these conditions to the more stable acceptor/acceptor 

diazocarbonyls. To initiate these efforts, methyl-benzoylacetate diazocarbonyl was 

exposed to aminoalkyne 5a in the presence of our optimized catalytic cocktail. At room 

temperature this electron deficient A/A diazocarbonyl did not decompose because of 

preferred complexation of Rh2(esp)2 with the Lewis-basic aminoalkyne. Due to the 

ineffectiveness of the catalyst at room temperature the reaction was refluxed in order to 
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initiate the desired transformation. However, 6d was obtained in a very low yield because 

the aminoalkyne 5a favored the 5-endo-dig self-cyclization when heated in the presence of 

PPh3AuSbF6. To optimize the yield of 6d, the A/A diazocarbonyl was added to the 

aminoalkyne in the presence of Rh2(esp)2 alone in refluxing dichloromethane. After the 

desired insertion product was visualized via thin layer chromatography PPh3AuCl and 

AgSbF6 were added to the same reaction vial and provided 6d in 92% yield. This modified 

protocol was also used to synthesize pyrollidine 6e in 90% yield and 6f in 94% yield.  

 
Scheme 3.12. Substrate scope of Rh2(esp)2/PPh3AuSbF6 catalyzed N–H insertion/Conia-ene 

cascade reaction to access spiropyrollidines/pyrollidines 

 

As seen in the synthesis of spiroethers, A/A cyclic diazocarbonyls are extremely 

stable substrates and required modified conditions to obtain their corresponding 
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spiroether products. This observation persisted with the aminoalkynes, also. When 

attempting to extend the aforementioned modified protocol to A/A cyclic diazocarbonyls 

such as Meldrum’s acid and barbituric acid diazos, it was observed that the stepwise Conia-

ene reaction was unsuccessful. Therefore, to synthesize substrates 6g–6h, the cyclic 

diazocarbonyl was added to the aminoalkyne and Rh2(esp)2/PPh3AuSbF6 then refluxed until 

complete. The method produced 6g and 6h in lower yields due to the competing self-

cyclization of the aminoalkyne 5a. 

 
Scheme 3.13. Applicaton of 2-ethynlaniline to access spiro-indoles 

 

 Next, we desired to expand our system to accommodate other aminoalkynes. Easily 

accessible 2-ethynylaniline was synthesized and exposed to Meldrum’s acid diazocarbonyl. 

In the presence of our catalytic cocktail the desired product 6i was produced in a mediocre 

yield. However, the self-cyclization of 2-ethynylaniline under Au(I) catalysis cannot occur  

due to geometrical restraints. Therefore, the decreased yield in this transformation is 

presumable attributed to the thermal decomposition of the desired product in the 

presence of Lewis acids. Nevertheless, we hypothesized that aromatic constraint found 

within 2-ethynylaniline could facilitate the Conia-ene cyclization step with Rh2(esp)2 alone, 

exploiting the inherent reactivity of the zwitterionic intermediate. Our hypothesis was 
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proven correct and spiro-indoline 6i was produced in 65% yield. The benzyl protected 

compound 6j was also successfully synthesized using this modified method (Scheme 3.13). 

 

3.3.3  MECHANISTIC INSIGHTS 

 To gain further insight into the mechanism of this transformation insertion products 

were synthesized with both the donor/acceptor 2-tetralone diazocarbonyl (7a) and the 

acceptor/acceptor methylbenzoylacetate diazocarbonyl (7b) using Rh2(esp)2 as a catalyst 

(Scheme 3.14a). When the insertion products were subjected to the Au(I)-catalyzed Conia-

ene cyclization we did not observe any cyclization for the 2-tetralone insertion compound 

7a even after refluxing for 12 hours in dichloromethane. However, for the 

methylbenzoylacetate insertion product 7b, cyclization occurred with equal efficiency as 

observed in our one pot, tandem cyclization protocol. 

Next, we examined if non-terminal alkynes were tolerated in this transformation 

(Scheme 3.14b). When insertion product 7c was exposed to PPh3AuSbF6 no cyclization 

occurred even after the reaction was refluxed for 12 hours. Lastly in an attempt to access 

piperidines, insertion product 7d was synthesized and exposed to PPh3AuSbF6, however no 

cyclization occurred with this substrate either (Scheme 3.14b).  

Given the results from the control experiments, we decided to probe the reaction 

mechanism using deuterium labeling experiments with 2-tetralone diazocarbonyl 1a and 

methylbenzoylacetate diazocarbonyl 1c (Scheme 3.15). When the deuterium labeling 

experiment was completed with 2-tetralone diazocarbonyl and the deuterated 

aminoalkyne, the desired product 3k was obtained in 62% yield, proving there was no effect 
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of deuterium on the overall reaction efficiency. However, deuterium scrambling was 

observed with only 67% deuterium incorporation in the final product 3k. This observation 

 
Scheme 3.14. a) Insertion products exposed to Conia-ene cyclization conditions; b) 

Attempted cyclizations for non-terminal and 6-membered alkynes. 

 

was inconsistent with studies in our synthesis of spiroethers conducted earlier within this 

chapter and also studies completed by Toste et al. in their original identification of cationic 

Au(I) catalysis for Conia-ene cyclizations.[12b] When the experiment was conducted using 

diazocarbonyl 1c, deuterium scrambling was also observed, although in a lessened manner 

with 80% deuterium incorporation in the final product 3l. The results of these experiments 
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suggest the possibility of a Au(I)-acetylide as a reactive intermediate that is in equilibrium 

with an alkyne-p-complex with Au(I), and the equilibrium prefers the alkyne-p-complex 

with Au(I). 

 
Scheme 3.15. Deuterium labeling studies. 

 

 These findings allow us to propose a reaction mechanism that is similar to the 

mechanism observed with spiroethers (Scheme 3.16). Specifically, Rh(II) decomposes the 

diazocarbonyls to form a Rh(II)-carbene 1 that undergoes nitrogen addition to provide a 

zwitterionic intermediate 9, which proceeds to undergo keto–enol tautomerism to provide 

a reactive dually activated zwitterionic intermediate 11. This active zwitterionic 

intermediate proceeds to undertake a Conia-ene cyclization with the diazocarbonyl 

compounds when in the presence of a Au(I)-activated alkyne. In the stepwise mechanism, 

the zwitterionic intermediate undergoes 1,2-proton transfer to provide the insertion 

product 7 and only when this insertion product is derived from an A/A diazo will a stepwise 

Conia-ene cyclization ensue in the presence of cationic Au(I). 
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Scheme 3.16. Plausible mechanism for the stepwise and synergistic Rh(II)/Au() catalyzed 

diazo N–H insertion/Conia-ene cascade. 

 

This new method for trapping rhodium carbenes with aminoalkynes is convergent 

in nature and uses readily available starting materials for the synthesis of a variety of N-

heterocycles. An important feature of this transformation is its high chemo- and regio-

selectivity. Upon completion of this work we were able to fulfill our goal of developing a 

general method to access azaspiro-ring systems using our Rh(II)/Au(I) synergistic catalytic 

cocktail. 
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cyclizations for the synthess of tetrahydrofurans and pyrrolidines, although there have 

been several reports of enantioselective Conia-ene cyclizations for the synthesis of 

cyclopentanes.[16]  

 Due to the fact that the asymmetric Conia-ene cyclization has been employed in the 

synthesis of a variety of complex molecules[17], we believed the development of an 

asymmetric Conia-ene oxo- (to access tetrahydrofurans) and aza- (to access pyrrolidines) 

cyclization would be of great value to the chemical community, even if it could not be 

accessed through a derivative of our synergistic Rh(II)/Au(I) synergistic catalytic cocktail. 

Our synergistic cocktail is dependent on an expeditious activation of our corresponding 

reactive intermediates; consequentially, this method of reactivity is not conducive to an 

enantioselective transformation. Also, non-asymmetric Conia-ene cyclizations that are 

catalyzed by metal-based Lewis acids are efficient because they proceed through pure 

alkyne activation and when asymmetric variants of these known transformations were 

investigated, it was realized that a lack of enantioselectivity is achieved due to the poor 

transmission of ligand chirality as a consequence of the linear geometry of the alkyne-metal 

complex.[16c] Therefore, to induce adequate levels of enatioselectivity in the Conia-ene 

cyclization of carbonyl and dicarbonyl compounds, it is necessary to create a chiral enolate 

that would attack the alkyne.[16b]  

 

3.4.1  OPTIMIZATION OF ASYMMETRIC CATALYTIC CONDITIONS 

 Although there are many non-enantioselective protocols for the Conia-ene carbo-

cyclization which use a wide range of Lewis acid metal complexes, asymmetric methods are 
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scarce and typically rely on the activation of a metallic complex with a chiral ligand. The 

first report of a transformation of this kind came from Toste et al. in which they developed 

an asymmetric Pd(II) DTBM-SegPhos complex with Yb(OTf)3 as a co-catalyst.[16c] 

Subsequently, a system using La(OiPr)3/AgOAc and a peptide-based ligand was developed 

by Shibasaki et al.[16e] Next, Enders et al. identified a AgNTf2/quinidine combination and a 

(CuOTf)2-tol/cinchona complex that both enabled the enantioselective Conia-ene 

cyclization, respectively.[16b] Lastly White et al. obtained excellent results with their 

application of an iron-salene complex to achieve the desired transformation.[16a] 

 

Table 3.5. Optimizatin of Asymmetric Stepwise Conia-ene Cyclization 

 

entry Lewis Acid/Chiral Ligand solvent Yield (% ee) 

1 R-BINAP(AuOTf)2 CH2Cl2 48 (24) 
2 (CuOTf)2-tol/cinchona ligand CH2Cl2 76 (33) 
3 R-DTBM-SegPhos[Pd(OTf)2] ether 95 (83) 

All optimization reactions were performed by adding 8a (1 equiv.) to a solution of the Lewis Acid 
(10 mol%) in 0.1 M of the appropriate solvent. The reaction was then stirred overnight until 
visualized as complete by thin layer chromatography. 
 

 Inspired by the reports in the literature, we set out determine the applicability of a 

select number of these systems with our insertion substrate 8a, that was accessed through 

the Rh2(esp)2 catalyzed O–H insertion of 3-butynol into methylbenzoylacetate 

diazocarbonyl (Table 3.5). As a means of setting a proper basis for our initial studies, we 
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examined chiral Au(I) catalysis through the use of R-BINAP(AuOTf)2. This chiral Au(I) 

complex gave us the desired cyclization in a 48% yield and a mediocre 24% ee (Table 3.5, 

entry 1). Next, we applied the (CuOTf)2-tol/cinchona complex reported by Enders et al., 

these conditions increased the yield to 77% but the ee remained mediocre at 33% (Table 

3.5, entry 2). Lastly, we applied the Pd(II) DTBM-SegPhos complex with Yb(OTf)3 in ether 

that was developed by Toste et al. (Table 3.5, entry 3). This system provided great results 

with a 95% yield and 83% ee. When this system was applied to the corresponding N–H 

insertion product, the desired compound was isolated in a 64% yield and 81% ee (Scheme 

3.17). 

 
Scheme 3.17. Asymmetric synthesis of pyrollidine 6c using chiral Pd(II) catalysis. 

 

 Excited by these results and the ability to induce ee in our system, we desired to 

design a new asymmetric catalytic system that was cheaper, easier to access, and was not 

known for any prior Conia-ene type cyclizations. Although Toste’s conditions were effective 

they required a palladium complex that necessitated 5 synthetic steps to obtain. Inspired 

by the development of an asymmetric cross-dehydrogenative coupling reaction that was 

dependent on the formation of a chrial enolate and developed by the Schiedt group, we 
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Schiedt applied in their system.[18] BOX ligands are ideal ligands for asymmetric catalysis 

because they are accessed through a chiral amino acids, allowing them to be readily 

accessible. 

 

Table 3.6. Optimization of Cu(I)/BOX Ligand Catalyzed Conia-ene Cyclization 

 

entry BOX Ligand solvent Yield (% ee) 

1 Ligand 1 (L1) CH2Cl2 84 (47) 
2 Ligand 2 (L2) CH2Cl2 81 (83) 
3 Ligand 3 (L4) CH2Cl2 44 (34) 
4 Ligand 4 (L4) CH2Cl2 86 (91) 
5 Ligand 4 (L4) toluene 47 (28) 
6 Ligand 4 (L4) ether 25 (43) 
7 Ligand 4 (L4) CHCl3 87 (93) 

All optimization reactions were performed by adding 8a (1 equiv.) to a solution of the (CuOTf)2-tol 
(10 mol%) and Ligand (12 mol%) in 0.1 M of the appropriate solvent. The reaction was then stirred 
overnight until visualized as complete by thin layer chromatography. 
 

To initiate our studies we synthesized a variety of BOX ligands using known 

synthetic protocols.[18-19] First, we complexed ligand L1 with (CuOTf)2-tol in 

dicholoromethane and allowed that solution to stir for 15 minutes before adding our 
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insertion compound 8a. After stirring overnight, the desired compound 9a was obtained in 

87% yield but only 47% ee. Next, we used the same conditions with ligand L2 that has more 

steric bulk, this ligand increased the ee to 83%. Inspired by previous works showing the 

impeccable stereo-induction of spiro-BOX ligands such as L3[19b, 19c], we applied this ligand 

to our system. However, the reaction was extremely sluggish and provided the desired 

product in a mediocre 34% ee. Lastly, we were curious about the impact of a cyclopropane 

backbone on our optimal ligand. The inclusion of this scaffold would decrease the “bite-

angle” of our catalyst/ligand complex and thereby increase the steric crowding of the 

system. Gratifyingly, when ligand L4 was applied in our system the ee increased to 91%. 

Next, we screened the effect of different solvents and chloroform increased the ee to 93%. 

When this system was applied to the corresponding N–H insertion product 7b, the desired 

compound was isolated in 81% yield and 94% ee (Scheme 3.18).  

 
Scheme 3.18. Asymmetric synthesis of pyrollidine 6c using chiral Cu(I) catalysis. 

 

 In conclusion, we have identified a (CuOTf)2/BOX ligand complex that effectively 

induces asymmetry in the Conia-ene oxo- and aza-cyclizations to provide chiral 

tetrahydrofurans and pyrollidines. This catalytic system allows for the asymmetric 

installation of quaternary centers and generates an alkene that can be further manipulated 
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for valuable transformations. Further applications of this system will be reported in due 

course. 

 

3.5  SUMMARY 

 After completion of the work within this chapter, we developed strategies to 

prepare spiroethers[14] and azaspiro-ring systems[20] from readily available starting 

materials and easily accessible diazocarbonyl compounds. Difficulties in preparing certain 

substrates led us to explore different catalytic conditions, temperatures, and reagent 

addition methods. Prompted by several mechanistic probing experiments, we were able to 

identify a differing mode of reactivity for O–H insertion/Conia-ene cyclizations as compared 

to N–H insertion/Conia-ene cyclizations. Enantioselective variants of this transformation 

were also explored. Results from the asymmetric experiments for the synthesis of 

spiroethers provided insight into the difficulty of inducing ee using chiral Rh(II) salts, 

however, the use of chiral Au(I) complexes provided preliminary ee data and valuable 

understanding of the transition state involved in this transformation. Due to our desire to 

synthesize chiral tetrahydrofurans and pyrrolidines, we were able to identify a Cu(I)/chiral 

bisoxazoline catalytic combination that enabled the stepwise enantioselective Conia-ene 

cyclization in ee’s as high as 93%. 
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3.7  EXPERIMENTAL SECTION 

3.7.1  GENERAL PRODCEDURE OF O–H INSERTION/CONIA ENE FOR A/D DIAZOS 

In a 15 mL round bottom flask, powdered 4Å molecular sieves (100 mg/mmol of diazo) 

were activated via heat and cooled to room temperature under vacuum.  Rh2(TFA)4 (1 

mol%), AgOTf (5 mol%), and PPh3AuCl (5 mol%) were added, and dissolved in a solution of 

dry dichloromethane (0.2M).  The flask was sealed and cooled to 0 ºC in an ice water bath.  

In a separate 4 mL vial, alkynol (1 equiv.) and N-methylisatin diazo (1.2 equiv.) were 

dissolved together in dry dichloromethane (0.1M) and taken into a syringe.  The 

diazo/alkynol solution was then added to the catalytic mixture dropwise via syringe pump 

at a rate of 1 mL/hr.  Once addition was complete, the reaction was diluted with 

dichloromethane (20 mL) and quenched with a saturated solution of sodium bicarbonate.  

The aqueous layer was extracted, and combined organics were dried over sodium sulfate, 

filtered, and concentrated.  Crude NMR was analyzed, and the mixture was purified by flash 

chromatography with the designated solvent system as listed below. 

 

1'-methyl-3-methylene-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-one (3c). Prepared 

from 3-diazo-1-methylindolin-2-one and but-3-yn-1-ol using general procedure G.  orange 

oil (30 mg, 79%). TLC: Rf  0.38 (20% EtOAc in hexanes).  IR (NaCl): 3059.10, 2922.16, 

2362.80, 2339.65, 1724.36, 1614.42.  1H NMR (400 MHz) δ 7.34 – 7.32 (td, J = 7.7, 1.3 Hz, 

1H), 7.21 – 7.18 (dd, J = 7.5, 1.3 Hz, 1H), 7.09 – 7.05 (t, J = 7.5 Hz, 1H), 6.82 – 6.80 (d, J = 7.8 

N
O

O
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Hz, 1H), 5.11 – 5.10 (t, J = 2.2 Hz, 1H), 4.58 – 4.57 (t, J = 2.4 Hz, 1H), 4.53 – 4.49 (td, J = 8.1, 

6.7 Hz, 1H), 4.28 – 4.23 (td, J = 7.9, 5.9 Hz, 1H), 3.16 (s, 3H), 3.13 – 3.07 (m, 1H), 2.93 – 2.85 

(m, 1H). 13C NMR (101 MHz) δ 169.5, 149.4, 144.6, 129.9, 129.5, 125.3, 124.8, 123.2, 123.0, 

108.6, 108.2, 68.1, 32.9, 26.2 HRMS (ESI) m/z calcd for C13H13NO2Na ([M+Na]+) 238.0844; 

found 238.0835. 

 

1'-methyl-3-methylene-5-phenyl-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-one (3d). 

Prepared from 3-diazo-1-methylindolin-2-one and 1-phenylbut-3-yn-1-ol using general 

procedure G.  Orange oil (55 mg, 70%). TLC: Rf  0.59 (20% EtOAc in hexanes). IR (NaCl): 

3062, 2953, 2926, 2854, 2594, 2358, 2341, 1728, 1614, 1558, 1494, 1571, 1373, 1255, 1097, 

1026, 1004, 937, 777, 754, 698.  1H NMR (500 MHz) δ 7.67 – 7.66 (m, 1H), 7.42 – 7.35 (m, 

2H), 7.13 – 7.10  (t, J = 7.5 Hz, 0H), 6.85 – 6.83 (d, J = 7.8 Hz, 1H), 5.33 – 5.30 (dd, J = 11.0, 

5.3 Hz, 1H), 5.15 – 5.14 (d, J = 2.7 Hz, 1H), 4.58 – 4.57 (d, J = 2.9 Hz, 1H), 3.33 –3.27 (ddt, J 

= 14.2, 11.0, 2.9 Hz, 1H), 3.21 (s) 3.13 – 3.07 (dd, J = 14.7, 5.3 Hz, 1H). 13C NMR (126 MHz) 

δ 168.5, 145.6, 134.8, 129.9, 128.1, 126.9, 125.0, 123.2, 108.9, 108.1, 82.2, 42.5, 26.4. LRMS 

(ESI) m/z calcd for C19H17NO2Na ([M+Na]+) 314.1157; found 314.1151. 
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Ph
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1'-methyl-3-methylene-4-phenyl-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-one (3e). 

Prepared from 3-diazo-1-methylindolin-2-one and 2-phenylbut-3-yn-1-ol using general 

procedure G.  Orange oil (25 mg, 68%). TLC: Rf  0.41 (20% EtOAc in hexanes). IR (NaCl): 

3057, 3028, 2920, 2893, 2850, 2360, 2343, 1722, 1614, 1492, 1469, 1369, 1348, 1246, 1095, 

1039, 1018, 906, 754, 700.  1H NMR (500 MHz) δ 7.41 – 7.30 (m, 7H), 7.12 – 7.08 (td, J = 

7.5, 1.0 Hz, 1H), 6.85 – 6.83 (dt, J = 7.7, 0.7 Hz, 1H), 4.87 – 4.84 (t, J = 8.4 Hz, 1H), 4.77 – 

4.76  (d, J = 2.5 Hz, 1H), 4.66 – 4.65 (d, J = 2.8 Hz, 1H), 4.51 – 4.47 (tt, J = 8.2, 2.7 Hz, 1H), 

4.27 – 4.25 (t, J = 8.1 Hz, 1H), 3.19 (s, 3H). 13C NMR (126 MHz) δ 167.2, 153.7, 144.6, 140.0, 

130.1, 128.8, 128.6, 127.9, 127.1, 125.2, 123.3, 110.6, 108.3, 77.3, 75.4, 49.9, 26.3. HRMS 

(ESI) m/z calcd for C19H17NO2Na ([M+Na]+) 314.1157; found 314.1152. 

 

 

 

5'-chloro-1'-methyl-3-methylene-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-one (3f). 

Prepared from 5-chloro-3-diazo-1-methylindolin-2-one and 3-butyn-1-ol using general 

procedure G. Orange oil (27 mg, 90%). TLC: Rf  0.25 (30% EtOAc in hexanes).  IR (NaCl): 2958, 

N
O

O
Ph
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2920, 2891, 2358, 2331, 1780, 1610, 1489, 1429, 1359, 1342, 1263, 1195, 1103, 1033, 981, 

900, 812, 742.  1H NMR (500 MHz) δ 7.31 (dd, J = 8.3, 2.1 Hz, 1H), 7.19 (dd, J = 2.1, 0.4 Hz, 

1H), 6.75 (d, J = 8.3 Hz, 1H), 5.15 (t, J = 2.2 Hz, 1H), 4.60 (t, J = 2.3 Hz, 1H), 4.51 (td, J = 8.1, 

6.6 Hz, 1H), 4.26 (td, J = 7.9, 5.9 Hz, 1H), 3.16 (s, 3H), 3.11 (dddt, J = 15.5, 8.3, 6.0, 2.4 Hz, 

1H), 2.89 (dddt, J = 15.4, 7.7, 6.6, 2.1 Hz, 1H).13C NMR (126 MHz) δ 176.3, 148.9, 143.1, 

134.2, 134.1, 131.1, 129.8, 129.3, 129.2, 128.5, 125.3, 109.2, 109.0, 68.4, 32.8, 26.3. HRMS 

(ESI) m/z calcd for C13H12ClNNaO2 ([M+Na]+) 272.0454; found . 

 

5'-chloro-1'-methyl-3-methylene-5-phenyl-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-

one (3g). Prepared from 5-chloro-3-diazo-1-methylindolin-2-one and 1-phenylbut-3-yn-1-

ol using general procedure G.  Orange oil (18 mg, 66%). TLC: Rf  0.71 (30% EtOAc in 

hexanes).  IR (NaCl): 3427.5, 3298.3, 3049.5, 2926.01, 2353.2, 1728.2, 1612.5.  1H NMR (500 

MHz) δ 7.66 – 7.63 (m, 2H), 7.42 – 7.36 (m, 4H), 7.34 – 7.33 (p, J = 1.5 Hz, 3H), 6.78 – 6.76 

(d, J = 8.2 Hz, 1H), 5.32 – 5.29 (dd, J = 11.0, 5.3 Hz, 1H), 5.18 – 5.17 (dd, J = 2.9, 1.1 Hz, 1H), 

4.60 (dd, J = 3.0, 0.8 Hz, 1H), 3.32 – 3.25 (ddt, J = 14.1, 11.0, 2.9 Hz, 1H), 3.20 (s, 3H), 3.12 

– 3.07 (ddt, J = 14.7, 5.4, 1.0 Hz, 1H). 13C NMR (126 MHz) δ 171.8, 149.1, 143.2, 140.6, 131.3, 

129.9, 128.5, 128.3, 128.2, 128.0, 126.9, 125.7, 125.5, 109.9, 109.3, 109.2, 82.4, 72.3, 70.9, 

42.4, 29.5, 26.5. HRMS (ESI) m/z calcd for C19H16ClNO2Na ([M]+) 325.0870; found 326.0949. 
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5'-chloro-1'-methyl-3-methylene-4-phenyl-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-

one (3h). Prepared from 5-chloro-3-diazo-1-methylindolin-2-one and 2-phenylbut-3-yn-1-

ol using general procedure G.  Orange oil (14 mg, 60%). TLC: Rf  0.52 (20% EtOAc in 

hexanes).  IR (NaCl): 2931.8, 2858.5, 2362.8, 2349.3, 1728.2.  1H NMR (500 MHz) δ 7.44 – 

7.30 (m, 5H), 7.25 (d, J = 2.1 Hz, 1H), 6,80 – 6.78 (d, J = 8.3 Hz, 1H), 4.88 – 4.84 (t, J = 8.4 Hz, 

1H), 4.80 – 4.79 (d, J = 2.5 Hz, 1H), 4.69 – 4.68 (d, J = 2.8 Hz, 1H), 4.52 – 4.49 (tt, J = 8.3, 2.7 

Hz, 1H), 4.27 – 4.24 (t, J = 8.2 Hz, 1H), 3.19 (s, 3H). 13C NMR (126 MHz) δ 175.8, 153.2, 143.1, 

139.4, 130.9, 130.0, 128.8, 128.6, 128.5, 127.2, 125.6, 110.9, 109.2, 75.5, 49.8, 29.7, 26.4.  

HRMS (ESI) m/z calcd for C19H16ClNO2Na ([M+Na]+) 348.0767; found 348.0753. 

 

 

 

5'-methoxy-1'-methyl-3-methylene-4-phenyl-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-

2'-one (3i). Prepared from 3-diazo-5-methoxy-1-methylindolin-2-one and 2-phenylbut-3-

yn-1-ol using general procedure G.  Orange oil (5 mg, 63%). TLC: Rf  0.42 (20% EtOAc in 

hexanes).  IR (NaCl): 3429.4, 3400.5, 2922.2, 2856.6, 2366.6, 2341.6, 1724.4.  1H NMR (500 
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MHz) δ 7.44 – 7.26 (m, 5H), 6.89 – 6.87 (m, 2H), 6.79 – 6.73 (m, 1H), 4.88 – 4.86 (t, J = 8.4 

Hz, 1H), 4.79 – 4.78 (d, J = 2.5 Hz, 1H), 4.69 – 4.68 (d, J = 2.8 Hz, 1H), 4.52 – 4.48 (tt, J = 8.3, 

2.7 Hz, 1H), 4.28 – 4.25 (t, J = 8.0 Hz, 1H), 3.81 (s, 3H), 3.18 (s, 2H).   13C NMR (126 MHz) δ 

176.1, 156.4, 139.8, 134.0, 114.3, 112.3, 109.9, 108.6, 75.3, 65.8, 55.8, 49.8, 29.7, 26.3, 

15.2. HRMS (ESI) m/z calcd for C23H19NO3Na ([M+Na]+) 344.1263; found 344.1246. 

 

1'-methyl-3-(methylene-d)-5-phenyl-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-one 

(3p). Prepared from 3-diazo-1-methylindolin-2-one and 1-phenylbut-3-yn-4-d-1-ol using 

general procedure H.  Orange oil (14 mg, 70%). TLC: Rf  0.59 (20% EtOAc in hexanes).  IR 

(NaCl): 3057, 3028, 2924, 2981, 2854, 2358, 2339, 1722, 1614, 1558, 1539, 1494, 1469, 

1369, 1346, 1240, 1093, 1035, 958, 848, 754, 698.  1H NMR (500 MHz) δ 7.67 – 7.66 (m, 

1H), 7.42 – 7.35 (m, 2H), 7.13 – 7.10  (t, J = 7.5 Hz, 0H), 6.85 – 6.83 (d, J = 7.8 Hz, 1H), 5.33 

– 5.30 (dd, J = 11.0, 5.3 Hz, 1H), 5.15 – 5.14 (d, J = 2.7 Hz, 1H), 4.58 – 4.57 (d, J = 2.9 Hz, 0.06 

H), 3.33 –3.27 (ddt, J = 14.2, 11.0, 2.9 Hz, 1H), 3.21 (s) 3.13 – 3.07 (dd, J = 14.7, 5.3 Hz, 1H). 

13C NMR (126 MHz) δ 168.5, 145.6, 134.8, 129.9, 128.1, 126.9, 125.0, 123.2, 108.9, 108.1, 

82.2, 42.5, 26.4. HRMS (ESI) m/z calcd for C19H16DNO2Na ([M+Na]+) 315.1220; found 

314.1219. 
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3.7.2  GENERAL PRODCEDURE OF O–H INSERTION/CONIA ENE FOR A/A DIAZOS 

To a 4.0 mL vial equipped with a magnetic stir bar was added powdered 4Å molecular sieves 

(70 mg/ mL solvent).  The molecular sieves were activated via heat and allowed to cool to 

room temperature under vacuum.  Rh2(esp)2 (1 mol %), AuClPPh3 (10 mol %), and AgSbF6 

(10 mol %) were then measured directly into the reaction vessel.  A solution of alkynol (1.2 

equiv.) and diazo (1.0 equiv.)  in dichloromethane (0.3M)  was added, and the mixture was 

sonicated for 30 seconds.   The reaction vessel was sealed, and heated to 60 ºC.   The 

reaction was monitored by TLC until complete consumption of diazo was observed 

(between 30 minutes – 5 h).  The crude reaction mixture was then cooled to room 

temperature, filtered through a pad of celite, concentrated, and analyzed via 1H NMR. The 

crude mixture was then purified via flash chromatography to furnish spirocyclic 

compounds.  

 

 

 

8,8-dimethyl-4-methylene-1,7,9-trioxaspiro[4.5]decane-6,10-dione (3j). Prepared from 5-

diazo-2,2-dimethyl-1,3-dioxane-4,6-dione and but-3-yn-1-ol using general procedure F 

(Conversion of Diazo observed in 30 minutes).  Clear oil (20 mg, 42%). TLC: Rf  0.6 (20% 

EtOAc in hexanes). IR (NaCl): 2957, 2918, 2850, 2359, 2340, 1732, 1714, 1633, 1608, 1558, 

1539, 1489, 1456, 1384, 1211, 1097, 1010, 939.  1H NMR (500 MHz) δ 5.37 – 5.35 (q, J = 2.0 
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Hz, 1H), 5.27 – 5.26 (q, J = 2.1 Hz, 1H), 4.44 – 4.41 (t, J = 7.1 Hz, 2H), 2.92 – 2.89 (tt, J = 7.1, 

2.2 Hz, 2H), 1.83 – 1.82 (d, J = 4.5 Hz, 6H). 13C NMR (126 MHz) δ 167.3, 149.5,  109.9, 106.0, 

71.4, 32.6, 30.5, 27.3. HRMS (ESI) m/z calcd for C10H12O5Na ([M+Na]+) 235.0582; found 

235.0578. 

 

8,8-dimethyl-4-methylene-3-phenyl-1,7,9-trioxaspiro[4.5]decane-6,10-dione (3k). 

Prepared from 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione and 2-phenylbut-3-yn-1-ol 

using general procedure F (Conversion of Diazo observed in 30 minutes).  Clear oil (12 mg, 

40%). TLC: Rf  0.75 (20% EtOAc in hexanes). IR (NaCl): 3004, 2980, 2918, 2950, 2359, 2341, 

1791, 1761, 1683, 1558, 1494, 1394, 1292, 1199, 1118, 1029, 999, 914, 700.  1H NMR (500 

MHz) δ 7.39 – 7.30 (m, 5H), 5.36 – 5.35 (ddd, J = 3.1, 1.9, 0.6 Hz, 1H), 4.96 – 4.95 (dd, J = 

2.8, 1.9 Hz, 1H), 4.76 – 4.74 (td, J = 8.3, 0.5 Hz, 1H), 4.43 – 4.42 (dd, J = 10.4, 8.2 Hz, 1H), 

4.27 – 4.22 (ddt, J = 10.6, 8.5, 2.9 Hz, 1H), 1.87 – 1.85 (m, 6H). 13C NMR (126 MHz) δ 167.6, 

166.9, 154.2, 129.1, 128.9, 127.7, 111.4, 106.2, 78.2, 50.4, 30.6, 27.3. HRMS (ESI) m/z calcd 

for C16H16O5Na ([M+Na]+) 311.0895; found 311.0894. 

 

 

8,8-dimethyl-4-methylene-2-phenyl-1,7,9-trioxaspiro[4.5]decane-6,10-dione (3l). 

Prepared from 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione and 1-phenylbut-3-yn-1-ol 
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using general procedure F (Conversion of Diazo observed in 30 minutes).  Clear oil (24 mg, 

32%). TLC: Rf  0.80 (20% EtOAc in hexanes). IR (NaCl): 3052, 2920, 2850, 2358, 2341, 1791, 

1759, 1683, 1558, 1456, 1394, 1386, 1284, 1197, 1118, 1012, 916, 700.  1H NMR (500 MHz) 

δ 7.57 – 7.55 (m, 2H), 7.42 – 7.33 (m, 3H), 5.55 – 5.52 (dd, J = 10.5, 5.8 Hz, 1H), 5.38 – 5.37 

(dt, J = 2.9, 1.5 Hz, 1H), 5.30 – 5.29 (dt, J = 3.1, 1.5 Hz, 1H), 3.18 – 3.13 (ddt, J = 15.5, 5.7, 

1.4 Hz, 1H), 2.99 – 2.93 (ddt, J = 15.4, 10.5, 2.9 Hz, 1H), 1.85 – 1.83 (d, J = 9.9 Hz, 6H). 13C 

NMR (126 MHz) δ 167.8, 167.0, 149.5, 139.3, 128.6, 128.6, 126.7, 109.9, 109.9, 106.1, 84.6, 

82.1, 41.5, 30.6, 27.4. HRMS (ESI) m/z calcd for C16H16O5Na ([M+Na]+) 311.0895; found 

311.0895. 

 

7,9-dimethyl-4-methylene-1-oxa-7,9-diazaspiro[4.5]decane-6,8,10-trione (3m). Prepared 

from 5-diazo-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione and 3-butyn-1-ol using 

general procedure F (Conversion of Diazo observed in 40 minutes). cloudy oil (40 mg, 55%). 

TLC: Rf  0.43 (30% EtOAc in hexanes). IR (NaCl): 2858.5, 2358.9, 2339.7, 1670.6.  1H NMR 

(400 MHz) δ 5.25 – 5.24 (q, J = 2.1, 1.5 Hz, 1H), 5.00 – 4.99 (q, J = 2.2 Hz, 1H), 4.47 – 4.43 

(td, J = 7.1, 1.2 Hz, 2H), 3.47 – 3.40 (d, J = 1.0 Hz, 6H), 2.86 – 2.81 (tdd, J = 6.9, 2.5, 1.6 Hz, 

2H). 13C NMR (101 MHz) δ 168.1, 159.4, 155.0, 149.0, 108.3, 78.9, 70.9, 32.4, 31.5, 29.4, 

29.2. HRMS (ESI) m/z calcd for C16H16N2O4Na ([M+Na]+) 247.0695; found 247.0698. 
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7,9-dimethyl-4-methylene-3-phenyl-1-oxa-7,9-diazaspiro[4.5]decane-6,8,10-trione (3n). 

Prepared from 5-diazo-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione and 2-phenylbut-3-

yn-1-ol using general procedure F (Conversion of Diazo observed in 40 minutes).  Cloudy oil 

(75 mg, 62%). TLC: Rf  0.63 (30% EtOAc in hexanes). IR (NaCl): 3061, 3030, 2958, 2899, 2852, 

2361, 2342, 1759, 1693, 1681, 1602, 1446, 1377, 1280, 1163, 1068, 908, 7541H NMR (500 

MHz) δ 7.35– 7.17 (m, 5H), 5.11 – 5.10 (ddd, J = 2.9, 2.1, 0.5 Hz, 1H), 4.85 – 4.84 (dd, J = 2.8, 

2.1 Hz, 1H), 4.81 – 4.78 (t, J = 8.4 Hz, 1H), 4.51 – 4.47 (dd, J = 10.3, 8.2 Hz, 1H), 4.21 – 4.16 

(m, 1H), 3.39 (s 3H), 3.37 (s 3H). 13C NMR (126 MHz) δ 168.5, 167.4, 153.8, 150.9, 137.1, 

128.9, 128.9, 128.3, 127.6, 109.7, 84.2, 77.7, 72.6, 67.5, 50.2, 29.4, 29.1. HRMS (ESI) m/z 

calcd for C16H16N2O4Na ([M+Na]+) 323.1008; found 323.1013. 

 

7,9-dimethyl-4-methylene-2-phenyl-1-oxa-7,9-diazaspiro[4.5]decane-6,8,10-trione (3o).  

Prepared from 5-diazo-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione and (S)-1-

phenylbut-3-yn-1-ol using  general procedure F (Conversion of Diazo observed in 1 hour).  

Faint yellow oil (21 mg, 60%).  [α]21
D –2.4 (c = 0.005, CHCl3).  TLC : Rf 0.73 (50% Ethyl acetate 

in hexanes).  IR (NaCl): 3056, 2920, 2850, 2360, 2330, 1732, 1693, 1681, 1558, 1435, 1375, 

1281, 1068, 985, 754, 700.  1H NMR (500 MHz) δ 7.65 – 7.61 (m, 2H), 7.42 – 7.31 (m, 3H), 

5.57 (dd, J = 10.5, 5.7 Hz, 1H), 5.26 (m, 1H), 5.02 (m, 1H), 3.38 (d, J = 2.7 Hz, 6H), 3.12 – 3.05 

N
O

N
O

O

O
Ph

N
O

N
O

O

O
Ph



CH. 3 – Rh(II)/Au(I) Catalyzed Synthesis of Spiroethers and Azaspiro-Ring Systems 163 

(m, 1H), 2.88 (ddt, J = 15.4, 10.5, 2.9 Hz, 1H).  13C NMR (126 MHz) δ 168.7, 149.3, 139.9, 

128.6, 128.4, 126.6, 108.3, 83.9, 41.5, 29.4, 29.2.  HRMS (ESI) m/z calcd for C16H16N2O4Na 

([M+Na]+) 323.1008; found 323.1014. 

 

7,9-dimethyl-4-methylene-2-phenyl-1-oxa-7,9-diazaspiro[4.5]decane-6,8,10-trione (3q).  

Prepared from 5-diazo-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione and (R)-1-

phenylbut-3-yn-1-ol using general procedure F (Conversion of Diazo observed in 1 hour).  

Faint yellow oil (22 mg, 61%).  [α]21
D –2.3 (c = 0.007, CHCl3).  TLC : Rf 0.73 (50% Ethyl acetate 

in hexanes).  IR (NaCl): 3042, 2956, 2922, 2852, 2358, 2339, 1693, 1579, 1454, 1438, 1375, 

1280, 1134, 1068, 985, 754, 731, 700.  1H NMR (400 MHz) δ 7.63 (d, J = 7.4 Hz, 2H), 7.44 – 

7.24 (m, 3H), 5.58 (d, J = 12.4 Hz, 1H), 5.26 (s, 1H), 5.03 (s, 1H), 3.38 (d, J = 2.2 Hz, 6H), 3.10 

(dd, J = 15.3, 5.7 Hz, 1H), 2.94 – 2.83 (m, 1H).  13C NMR (126 MHz) δ 168.7, 167.7, 151.0, 

149.3, 139.9, 128.6, 128.4, 128.3, 126.6, 108.3, 83.9, 41.5, 29.4, 29.2.  HRMS (ESI) m/z calcd 

for C16H16N2O4Na ([M+Na]+) 323.1008; found 323.0992. 

 

3.7.3  GENERAL PRODCEDURE FOR PYRROLIDINES 6a–6c, 6k 

To a 4.0 mL vial equipped with a magnetic stir bar was added Rh2(esp)2 (1 mol %), PPh3AuCl 

(10 mol %), and AgSbF6 (10 mol %) directly into the reaction vessel.  A solution of (but-3-

yn-1-yl)-aniline (1.1 equiv.) was then added.  Lastly, the diazo (1.0 equiv.) in 

dichloromethane (0.3M)  was added. The reaction vessel was sealed, and allowed to stir at 
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room temperature until bubbling ceased and the diazo was consumed via TLC 

(approximately 30 minutes). Once the reaction was complete, the crude reaction mixture 

was filtered through a slurry of celite/silica gel, concentrated, and analyzed via crude 1H 

NMR. The crude mixture was then purified via flash chromatography to furnish 

functionalized spiropyrrolidines. 

 

3'-methylene-1'-phenyl-3,4-dihydro-2H-spiro[naphthalene-1,2'-pyrrolidin]-2-one (6a). 

Prepared from 1-diazo-3,4-dihydronaphthalen-2(1H)-one and N-(but-3-yn-1-yl)aniline 

(Reaction time = 10 minutes) Yellow oil (32 mg, 60%). TLC :  Rf 0.52 (20% ethyl acetate in 

hexanes). IR (NaCl): 3289, 3065, 2922, 2859, 2367, 2320, 1719. 1H NMR (500 MHz, CDCl3) δ 

7.23 (td, J = 7.3, 1.5 Hz, 1H), 7.18 – 7.12 (m, 1H), 7.10 (dd, J = 7.9, 1.5 Hz, 1H), 7.06 – 6.99 

(m, 2H), 6.59 (tt, J = 7.3, 1.0 Hz, 1H), 6.29 (dt, J = 7.8, 1.0 Hz, 2H), 5.15 (dd, J = 2.6, 1.3 Hz, 

1H), 4.61 (dd, J = 2.9, 1.2 Hz, 1H), 3.95 – 3.85 (m, 2H), 3.49 – 3.16 (m, 4H), 3.03 – 2.88 (m, 

1H), 2.84 – 2.75 (m, 1H), 2.74 – 2.62 (m, 1H).  13C NMR (151 MHz, CDCl3) δ 207.6, 152.9, 

145.1, 140.0, 135.6, 128.6 (2C), 128.1, 127.8, 127.7, 127.3 (2C), 116.7, 113.7 (2C), 111.6, 

49.02, 36.73, 29.89, 28.62. LRMS (ESI) m/z calcd for C20H19NONa ([M+Na]+) 312.13; found 

312.14. 
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3'-methylene-1'-phenyl-10H-spiro[phenanthrene-9,2'-pyrrolidin]-10-one (6b). Prepared 

from 10-diazophenanthren-9(10H)-one and N-(but-3-yn-1-yl)aniline (Reaction time = 10 

minutes). Yellow oil (33 mg, 62%). TLC : Rf 0.55 (20% ethyl acetate in hexanes).  IR (NaCl): 

3065, 3036, 2959, 2926, 2363, 2350, 1684. 1H NMR (600 MHz, CDCl3) δ 8.13 (d, J = 8.1 Hz, 

1H), 8.10 – 8.05 (m, 2H), 7.73 (td, J = 7.7, 1.5 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.37 (td, J = 8.0, 

7.6, 1.4 Hz, 1H), 7.31 (dd, J = 7.9, 1.3 Hz, 1H), 7.23 (d, J = 7.0 Hz, 1H), 7.00 (dd, J = 8.5, 7.2 

Hz, 2H), 6.61 – 6.53 (m, 1H), 6.26 (d, J = 8.1 Hz, 2H), 4.86 (t, J = 2.1 Hz, 1H), 4.54 (t, J = 2.1 

Hz, 1H), 4.03 (td, J = 8.2, 6.8 Hz, 1H), 3.99 (td, J = 8.9, 4.9 Hz, 1H), 3.06 – 2.97 (m, 1H), 2.89 

– 2.82 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 197.1, 150.1, 145.2, 141.4, 137.4, 134.8 (2C), 

129.9, 129.8, 128.7, 128.5 (2C), 128.2, 127.9, 127.0, 124.0, 123.1, 116.7, 114.4 (2C), 109.8, 

76.6, 49.0, 29.5.  LRMS (ESI) m/z calcd for C24H19NONa ([M+Na]+) 360.13; found 360.14. 

 

1'-(4-methoxyphenyl)-3'-methylene-3,4-dihydro-2H-spiro[naphthalene-1,2'-pyrrolidin]-

2-one (6c). Prepared from 1-diazo-3,4-dihydronaphthalen-2(1H)-one and N-(but-3-yn-1-

yl)-4-methoxyaniline (Reaction time = 10 minute). Yellow oil (70 mg, 65%). TLC : Rf 0.60 

(30% ethyl acetate in hexanes). IR (NaCl): 2926, 2859, 2359, 2324, 2124, 1792, 1753. 1H 

NMR (500 MHz, CDCl3) δ 7.29 – 7.21 (m, 2H), 7.17 – 7.15 (m, 2H), 6.70 – 6.61 (m, 2H), 6.31 

O
NPh

O
NPMP



CH. 3 – Rh(II)/Au(I) Catalyzed Synthesis of Spiroethers and Azaspiro-Ring Systems 166 

– 6.19 (m, 2H), 5.13 (dd, J = 2.6, 1.4 Hz, 1H), 4.60 (dd, J = 2.9, 1.3 Hz, 1H), 3.90 – 3.84 (m, 

2H), 3.66 (s, 3H), 3.39 – 3.30 (m, 1H), 3.27 – 3.14 (m, 2H), 2.93 (dddt, J = 15.0, 10.1, 7.6, 2.7 

Hz, 1H), 2.82 – 2.74 (m, 1H), 2.69 – 2.61 (m, 1H).  13C NMR (126 MHz, CDCl3) δ 208.4, 153.2, 

151.3, 140.3, 139.8, 135.7, 128.3, 128.1, 128.0, 127.7, 127.3, 114.7 (2C), 114.4 (2C), 111.4, 

55.6, 49.4, 37.1, 30.0, 28.6.  LRMS (ESI) m/z calcd for C21H21NO2Na ([M+Na]+]) 342.14; found 

342.16. 

 

3'-(methylene-d)-1'-phenyl-3,4-dihydro-2H-spiro[naphthalene-1,2'-pyrrolidin]-2-one 

(6k). Prepared from 1-diazo-3,4-dihydronaphthalen-2(1H)-one and N-(but-3-yn-1-yl-4-

d)aniline (Reaction time = 10 minutes). Faint yellow oil (43 mg, 67%). TLC: Rf  0.77 (30% 

ethyl acetate in hexanes). IR (NaCl): 3032, 2922, 2849, 1719, 1600. 1H NMR (600 MHz, 

CDCl3) δ 7.26 (t, J = 6.7 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 

7.9 Hz, 1H), 7.02 (t, J = 7.9 Hz, 2H), 6.58 (t, J = 7.3 Hz, 1H), 6.27 (d, J = 8.0 Hz, 2H), 5.15 – 

5.10 (m, 1H), 4.59 (t, J = 1.8 Hz, 0.44H), 3.91 – 3.84 (m, 2H), 3.35 (dt, J = 13.8, 6.7 Hz, 1H), 

3.29 – 3.15 (m, 2H), 2.97 – 2.87 (m, 1H), 2.76 (dt, J = 15.2, 5.6 Hz, 1H), 2.72 – 2.63 (m, 1H).  

13C NMR (151 MHz, CDCl3) δ 207.6, 152.8, 152.7, 145.1, 140.0, 135.6, 135.6, 128.6, 128.3, 

128.0, 127.7, 127.7, 127.4, 116.7, 113.7, 111.6, 111.37, 111.2, 49.4, 36.7, 29.9. LRMS (ESI) 

m/z calcd for C21H21NONa ([M+Na]+) 313.14; found 313.06. 
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3.7.4  GENERAL PRODCEDURE FOR PYRROLIDINES 6d–6f, 6l 

To a 4.0 mL vial equipped with a magnetic stir bar was added Rh2(esp)2 (1 mol %) and a 

solution of (but-3-yn-1-yl)-aniline (1.1 equiv.).  The diazo (1.0 equiv.)  in dichloromethane 

(0.3M)  was added and the reaction vessel was sealed, and allowed to stir at reflux until 

bubbling ceased and the diazo was consumed via TLC (approximately 5 minutes). Once the 

insertion product had formed PPh3AuCl (10 mol %), and AgSbF6 (10 mol %) were added 

directly into the reaction vessel and this solution was allowed to stir an additional 30 

minutes until the insertion product was no longer visible on TLC and a new, more polar spot 

had formed (the cyclization product).  Once the reaction was complete, the crude reaction 

mixture was filtered through a slurry of celite/silica gel, concentrated, and analyzed via 

crude 1H NMR. The crude mixture was then purified via flash chromatography to furnish 

functionalized pyrrolidines 

 

methyl-2-benzoyl-3-methylene-1-phenylpyrrolidine-2-carboxylate (6d).  Prepared from 

methyl 2-diazo-3-oxo-3-phenylpropanoate and N-(but-3-yn-1-yl)aniline (Reaction time = 20 

minutes). Yellow oil (54 mg, 92%). TLC :  Rf 0.41 (20% ethyl acetate in hexanes). IR (NaCl): 

3059, 2949, 2916, 2849, 2320, 1740, 1678. 1H NMR (600 MHz, CDCl3) δ 7.68 (dd, J = 8.4, 1.4 

Hz, 2H), 7.35 (ddt, J = 8.8, 7.3, 1.3 Hz, 1H), 7.24 – 7.19 (m, 2H), 7.11 – 7.05 (m, 2H), 6.67 (td, 

J = 7.3, 1.0 Hz, 1H), 6.61 (dq, J = 7.3, 1.5, 1.0 Hz, 2H), 5.31 – 5.24 (m, 2H), 3.87 (dt, J = 8.9, 

7.5 Hz, 1H), 3.73 (s, 3H), 3.64 (dt, J = 8.7, 7.2 Hz, 1H), 2.98 (tt, J = 7.3, 2.3 Hz, 2H). 13C NMR 
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(151 MHz, CDCl3) δ 197.2, 169.2, 146.4, 145.1, 136.0, 132.2, 128.8 (2C), 128.7 (2C), 127.9 

(2C), 118.2, 113.7, 112.8, 80.3, 74.8, 52.7, 47.8, 30.0. LRMS (ESI) m/z calcd for C20H19NO3Na 

([M+Na]+) 344.12; found 344.15. 

 

ethyl-2-acetyl-3-methylene-1-phenylpyrrolidine-2-carboxylate (6e).  Prepared from ethyl 

2-diazo-3-oxobutanoate and N-(but-3-yn-1-yl)aniline (Reaction time = 20 minutes).  Faint 

yellow oil (50 mg, 90%). TLC :  Rf 0.44 (20% ethyl acetate in hexanes).  IR (NaCl): 2978, 2926, 

2855, 2363, 2324, 1751, 1734, 1601.  1H NMR (500 MHz, CDCl3) δ 7.25 – 7.14 (m, 2H), 6.78 

(tt, J = 7.3, 1.0 Hz, 1H), 6.56 (dt, J = 7.9, 1.0 Hz, 2H), 5.34 (td, J = 2.3, 0.7 Hz, 1H), 5.27 (td, J 

= 2.2, 0.7 Hz, 1H), 4.19 – 4.01 (m, 2H), 3.80 (ddd, J = 8.6, 7.3, 6.0 Hz, 1H), 3.64 (dt, J = 8.6, 

7.5 Hz, 1H), 2.93 – 2.83 (m, 2H), 2.13 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, 

CDCl3) δ 202.8, 168.5, 145.4, 129.1 (2C), 118.2, 113.2 (2C), 111.4, 80.3, 61.4, 48.1, 30.6, 

26.1, 13.8. LRMS (ESI) m/z calcd for C16H19NO3Na ([M+Na]+) 296.12; found 296.14. 

 

methyl-2-benzoyl-1-(4-methoxyphenyl)-3-methylenepyrrolidine-2-carboxylate (6f). 

Prepared from methyl 2-diazo-3-oxo-3-phenylpropanoate and N-(but-3-yn-1-yl)-4-

methoxyaniline (Reaction time = 20 minutes).  Vibrant yellow oil (80 mg, 94%). TLC: Rf  0.47 

(30% ethyl acetate in hexanes). IR (NaCl): 2955, 2835, 1740, 1682. 1H NMR (600 MHz, CDCl3) 

δ 7.78 – 7.71 (m, 2H), 7.41 – 7.33 (m, 1H), 7.25 – 7.22 (m, 2H), 6.71 – 6.62 (m, 2H), 6.61 – 
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6.53 (m, 2H), 5.25 (qd, J = 2.3, 0.8 Hz, 2H), 3.82 (ddd, J = 8.7, 7.9, 6.2 Hz, 1H), 3.71 (s, 3H), 

3.66 (s, 3H), 3.58 (td, J = 8.5, 6.6 Hz, 1H), 2.99 – 2.91 (m, 2H).  13C NMR (151 MHz, CDCl3) δ 

197.3, 169.3, 152.3, 146.7, 139.3, 136.1, 132.2, 128.9 (2C), 127.9 (2C), 115.0 (2C), 114.3 

(2C), 112.8, 80.8, 55.5, 52.6, 48.2, 30.1. LRMS (ESI) m/z calcd for C21H21NO4Na ([M+Na]+) 

374.13; found 374.52. 

 

methyl-2-benzoyl-3-(methylene-d)-1-phenylpyrrolidine-2-carboxylate (6l). Prepared 

from methyl 2-diazo-3-oxo-3-phenylpropanoate and N-(but-3-yn-1-yl-4-d)aniline (Reaction 

time = 20 minutes). Yellow oil (50 mg, 95%). TLC: Rf  0.59 (30% ethyl acetate in hexanes). IR 

(NaCl): 3059, 2949, 2855, 2363, 1748, 1680. 1H NMR (500 MHz, benzene d6) δ 7.85 – 7.74 

(m, 2H), 7.06 – 6.99 (m, 2H), 6.94 – 6.84 (m, 3H), 6.83 – 6.77 (m, 2H), 6.61 (ddt, J = 8.4, 7.4, 

1.1 Hz, 1H), 5.34 (t, J = 2.2 Hz, 0H), 4.93 – 4.88 (m, 1H), 3.44 (dq, J = 11.4, 4.3, 2.4 Hz, 1H), 

3.37 (s, 3H), 3.29 (td, J = 9.0, 5.3 Hz, 1H), 2.54 (ddt, J = 10.9, 8.6, 4.3 Hz, 1H), 2.46 – 2.36 (m, 

1H). 13C NMR (151 MHz, CDCl3) δ 197.2, 169.2, 146.3, 145.1, 136.0, 132.2, 128.8, 128.7, 

127.9, 118.2, 113.7, 112.7, 112.6, 112.4, 80.3, 53.4, 52.7, 47.8, 30.1, 30.0. LRMS (ESI) m/z 

calcd for C20H18DNO3Na ([M+Na]+) 345.13; found 345.61. 

 

3.7.5  GENERAL PRODCEDURE FOR PYRROLIDINES 6g–6h 

To a 4.0 mL vial equipped with a magnetic stir bar was added Rh2(esp)2 (1 mol %), PPh3AuCl 

(10 mol %), and AgSbF6 (10 mol %) directly into the reaction vessel.  A solution of (but-3-

NPh

O
Ph

O
MeO D

H
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yn-1-yl)-aniline (1.1 equiv.) was then added.  Lastly, the diazo (1.0 equiv.) was added. The 

reaction vessel was sealed and allowed to stir at reflux for 16 hours. After this time, the 

crude reaction mixture was filtered through a slurry of celite/silica gel, concentrated, and 

analyzed via crude 1H NMR. The crude mixture was then purified via flash chromatography 

to furnish functionalized spiropyrrolidines. 

 

8,8-dimethyl-4-methylene-1-phenyl-7,9-dioxa-1-azaspiro[4.5]decane-6,10-dione (6g).  

Prepared from 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione and N-(but-3-yn-1-yl)aniline 

(Reaction time = 16 hours).  Yellow oil (24 mg, 41%).  TLC : Rf 0.26 (20% ethyl acetate in 

hexanes). IR (NaCl): 2926, 2845, 2359, 2162, 1684.  1H NMR (600 MHz, CDCl3) δ 7.23 (d, J = 

8.0 Hz, 2H), 6.85 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 8.1 Hz, 2H), 5.37 (t, J = 2.1 Hz, 2H), 3.79 (t, J 

= 6.9 Hz, 2H), 2.96 (tt, J = 6.9, 2.0 Hz, 2H), 1.91 (s, 6H).  13C NMR (151 MHz, CDCl3) δ 165.6, 

148.8, 144.3, 134.2, 132.0, 129.3, 129.2, 119.9, 114.6, 111.1, 107.1, 72.1, 48.8, 31.3, 30.5, 

29.2.  LRMS (ESI) m/z calcd for C16H17NO4Na ([M+Na]+) 310.10; found 310.12. 

 

7,9-dimethyl-4-methylene-1-phenyl-1,7,9-triazaspiro[4.5]decane-6,8,10-trione (6h). 

Prepared from 5-diazo-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione and N-(but-3-yn-1-

yl)aniline (Reaction time = 16 hours).  Yellow oil (33 mg, 52%)  TLC : Rf 0.22 (20% ethyl 
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acetate in hexanes). 1H NMR (600 MHz, CDCl3) δ 7.19 (dd, J = 8.7, 7.4 Hz, 2H), 6.79 – 6.75 

(m, 1H), 6.32 (dt, J = 7.7, 1.0 Hz, 2H), 5.20 (q, J = 2.1 Hz, 1H), 5.01 (q, J = 2.2 Hz, 1H), 3.86 (t, 

J = 7.0 Hz, 2H), 3.40 (s, 6H), 2.96 (tt, J = 6.9, 2.2 Hz, 2H).  13C NMR (151 MHz, CDCl3) δ 168.4 

(2C), 149.3, 144.3, 129.5 (2C), 118.7 (2C), 112.9 (2C), 108.5, 90.0, 48.5, 31.0, 29.7, 29.5.  

LRMS (ESI) m/z calcd for C16H17N3O3Na ([M+Na]+); 322.11; found 322.12. 

 

3.7.6  GENERAL PRODCEDURE FOR PYRROLIDINES 6i–6j 

To a 4.0 mL vial equipped with a magnetic stir bar was added Rh2(esp)2 (1 mol %) directly 

into the reaction vessel.  A solution of 2-ethynylaniline (1.1 equiv.) was then added.  Lastly, 

the diazo (1.0 equiv.) was added. The reaction vessel was sealed and allowed to stir at reflux 

for 16 hours. After this time, the crude reaction mixture was filtered through a slurry of 

celite/silica gel, concentrated, and analyzed via crude 1H NMR. The crude mixture was then 

purified via flash chromatography to furnish functionalized spiropyrrolidines 

 

 

2',2'-dimethyl-3-methylenespiro[indoline-2,5'-[1,3]dioxane]-4',6'-dione (6i). prepared 

from 2,2-dimethyl-1,3-dioxane-4,6-dione and 2-ethynylaniline (Reaction time = 16 hours).  

Faint yellow oil (50 mg, 65%).  TLC : Rf 0.14 (20% ethyl acetate in hexanes).  IR (NaCl): 3327, 

2922, 2855, 2363, 2324, 1790, 1740. 1H NMR (600 MHz, CDCl3) δ 7.35 – 7.32 (m, 1H), 7.25 

– 7.22 (m, 1H), 6.91 (t, J = 7.3 Hz, 2H), 5.65 (d, J = 2.3 Hz, 1H), 5.37 (d, J = 2.4 Hz, 1H), 4.66 

O
O

O
O

N
H



CH. 3 – Rh(II)/Au(I) Catalyzed Synthesis of Spiroethers and Azaspiro-Ring Systems 172 

(s, 1H), 1.90 (s, 3H), 1.78 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 166.7 (2C), 152.3, 147.8, 131.4 

(2C), 123.5, 121.6, 112.8, 106.1, 104.2, 71.6, 31.1, 27.3.  LRMS (ESI) m/z calcd for 

C14H13NO4Na ([M+Na]+) 282.07; found 282.11. 

 

1-benzyl-2',2'-dimethyl-3-methylenespiro[indoline-2,5'-[1,3]dioxane]-4',6'-dione (6j). 

Prepared from 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione and N-benzyl-2-ethynylaniline 

(Reaction time = 16 hours).  Faint yellow oil (30 mg, 73%). TLC : Rf 0.38 (20% ethyl acetate 

in hexanes).  IR (NaCl): 2926, 2855, 2359, 2324, 2124, 1792, 1753. 1H NMR (600 MHz, CDCl3) 

δ 7.55 – 7.51 (m, 2H), 7.37 – 7.33 (m, 2H), 7.29 (t, J = 6.7 Hz, 2H), 7.12 – 7.08 (m, 1H), 6.76 

(td, J = 7.5, 0.9 Hz, 1H), 6.40 (d, J = 8.1 Hz, 1H), 5.62 (d, J = 2.3 Hz, 1H), 5.34 (d, J = 2.3 Hz, 

1H), 4.47 (s, 2H), 1.85 (s, 3H), 1.52 (s, 3H).  13C NMR (151 MHz, CDCl3) δ 164.8 (2C), 153.5, 

147.0, 136.2, 131.4, 128.7, 128.2 (2C), 127.8 (2C), 123.2, 121.2, 119.4, 109.0, 106.2, 103.4, 

51.6, 31.1, 29.7, 28.0. LRMS (ESI) m/z calcd for C21H19NO4Na ([M+Na]+]) 372.12; found 

372.13. 
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CHAPTER 4 
 

 Metal Carbene Initiated Synthesis of 

 5-, 6-, and 7-membered Spirocarbocycles  

  

 

 

4.1  INTRODUCTION 

 

 Research groups throughout the field of synthetic chemistry have focused great 

efforts on the stereoselective synthesis of spirocarbocycles with multiple stereocenters.[1] 

In particular, their focus has been centralized around the synthesis of six-membered 

spirocarbocycles, which are found in many biologically active natural and synthetic 

compounds, with one of the most well-known examples being gelsemine (Figure 4.1).  

A common strategy for synthesizing all carbon spirocycles, such as the one found in 

gelsemine, involves the cyclization of the ends of two substituents on a fully-substituted 

carbon center that was previously installed on a pre-formed ring system (Figure 4.2).[1] In 

very few cases are the both rings on the spirocarbocycle formed in the same step, thereby  
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Figure 4.1. Biologically active natural products and drug molecules containing 5-, 6-, and 

7-membered spirocarbocycle core 

 

 
Figure 4.2. Current synthetic challenges in synthesis all-carbon spirocycles 

 

making it extremely difficult to maintain stereocontrol in the desired product. With this 

challenge in mind, it was of great interest to our research group to induce de novo 

formation of both ring systems of the spirocarbocycle in a single step in hopes of 

maintaining control of the stereochemistry in the spirocenter bond forming process. 

 As previously mentioned, dual catalysis is a powerful way to assemble molecular 

complexity, such as the spirocarbocyclic motif, from readily available starting materials due 
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to the fact that multiple bonds, that are often difficult to install, are formed in one pot by 

simultaneous yet discrete catalytic events.[2] Other than being synthetically appealing, this 

approach allows for price efficiency in terms of reagents, solvents, and waste management 

as well as in time and effort.[3] Recently, significant efforts have been devoted to developing 

one-pot dual catalytic methods to achieve carbon-carbon bond formations[4], and we 

believed that dual catalysis would enable us to complete the task of forming both rings of 

the spirocarbocycle in one pot.  

 Given the success of our Rh(II)/Au(I) synergistic catalytic cocktail for the synthesis 

of g-butyrolactones, tetrahydrofurans, spiroethers, and azaspiro-ring systems[5] we 

envisioned the possibility of using this catalytic system to synthesize oxindole hybridized 

spirocarbocycles, which are found in a wide range of bioactive natural products and 

pharmaceuticals such as sclerotiamide, gelsemine, chitosenine, and ubrogepant (Figure 

4.1).[6] Spriocyclic hybrids containing oxindole units exhibit higher interaction with 

biological receptors by protein inhibition or ezymatic pathways.[6j] These hybrids have been 

recognized as having promising anticancer activity.[6j]  

 Our proposed retrosynthetic design for the synthesis of oxindole hybridized 

spirocarbocycles involved an intramolecular carbene sp2 C–H functionalization/Conia-ene 

cascade as visualized in Scheme 4.1b. As seen in previous chapters, we have had great 

success with the Conia-ene cyclization, however, the generation of a masked “carbon 

nucleophile” that would insert into an active Rh(II) carbene and create our desired 

zwitterionic intermediate was a new challenge. Within the literature there are various 

types of C–H insertion reactions in which diazocarbonyl compounds participate, however,  
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Scheme 4.1. a) Initial development of sp2 C–H functionalization by Doyle et al. 

 b) Our retrosynthetic design using sp2 C–H functionalization/Conia-ene cascade. 

 

in 1998 Doyle et al. proposed the formation of a zwitterionic intermediate during the 

aromatic C–H insertion of N-aryl diazoamide into a Rh(II)-carbene (Scheme 4.1a).[7] This 

zwitterionic intermediate is electronically favorable because the positive charge of the 

intermediate is stabilized by the electron-rich oxindole resonance stabilization. This 

zwitterionic intermediate typically undergoes rapid proton transfer to generate C–H 

functionalized products, conversely, we desired to trap this intermediate with an alkyne.  

With these insights from the literature in mind, we decided to design a substrate 

that linked an alkyne substituted acceptor/acceptor diazocarbonyl to an electron rich 

aniline to access a derivative of the N-aryl diazoamide that Doyle used in his initial 1988 

study.[7] It is important to note that there were no previous reports of an intramolecular 

cascade reaction utilizing both sp2 C–H functionalization[8] and a Conia-ene cascade[9]. This 

may be attributed to selectivity issues caused by the alkyne functionality in the carbene sp2 

C–H functionalization step, such as cyclopropenation[10] or carbene/alkyne metathesis.[11] 

N
O

O
Conia-ene

sp2	C–H	
Activation

2a
N O

O
Rh

n
Au

N

O O

N2

H

1a

N

O

N2

R
[Rh]

N
O

[Rh]–

N
O[Rh]–

N
O

a)	Doyle	1988

b)	Our	proposed	retrosynthetic	design



Ch. 4 – Metal Carbene Initiated Synthesis of 5-, 6-, and 7-membered Spirocarbocycles 203 

 For the initial investigation, we took our newly synthesized diazo-acetoacetamide 

1a as a model substrate and exposed it to our previously developed Rh(II)/Au(I) synergistic 

catalytic cocktail that was used for our carbene heteroatom insertion/Conia-ene 

cyclizations. This reaction proceeded very cleanly, however, it provided a major product in 

which the characteristic ketone peak (~200 ppm) in 13C NMR spectrum was missing. Further 

structural analysis revealed the formation of an unexpected exo-glycal product in 67% yield 

(Scheme 4.2). With this finding we quickly realized that application of our prolific 

Rh(II)/Au(I) synergistic catalytic cocktail would not be as direct when applying it to the 

synthesis of spirocarbocycles.  

 
Scheme 4.2. Unexpected results that provided an undesired exo-glycal via O-alkylation of 

alkyne instead of C-alkylation. 
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4.2 Rh(II)/Au(I) DUAL CATALYSIS IN CARBENE sp2 C–H 

FUNCTIONALIZATION/CONIA-ENE CASCADE 

 
Figure 4.3. a) Baldwin rules for enol-endo cyclizations; b) Visualization of two different 

modes of attack possible within our designed system 

 

Given the results from our initial experiment with 1a in Scheme 4.2, we looked into 

the literature to examine enolendo intramolecular ring cyclizations.[12] After a survey of 

literature, we observed that while there were indeed few reports of 5–enolendo–exo dig 

cyclizations known in literature, it was only obtained in a trace amount as a byproduct with 

the more favorable 6-enolendo-endo dig cyclization.[12a–c] Next, we looked into Sir Jack E. 

Baldwin’s original work in which he derived a different set of rules for enolendo cyclizations 

(Figure 4.3a).[12d–f] In these studies, Baldwin investigated the ring closure reactions of 

enolendo-exo-tet/trig systems; however, there was no report of enolendo-exo-dig 

cyclizations in his work.[10f] Keeping in mind the Baldwin rules for enolendo-exo-tet/trig 

systems and examples from literature of 6-enolendo-exo dig cyclizations, we hypothesized 

that through extension of the hydrocarbon chain length we would create a substrate with 
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a better trajectory to favor C-alkylation over O-alkylation to provide the desired 

spirocarbocycle (Figure 4.3b).[13] 

 

4.2.1  INITIAL SCREENING OF CATALYTIC CONDITIONS 

 For the initial optimization, diazo-acetoacetamide 1b was selected as the model 

substrate. The addition of 1b to our previously optimized synergistic 

Rh2(esp)2/AgOTf/PPh3AuCl and Rh2(esp)2/AgSbF6/PPh3AuCl catalytic conditions for carbene 

heteroatom insertion/Conia-ene cascades provided the sp2 C–H functionalization product 

with instantaneous alkyne hydration to give a 1,5-dione 4b at room temperature (Table 

4.1, entry 1–2). This Markovnikov addition of water across a triple bond to generate 

ketones is a well-known practice and is generally initiated by strong Brønsted and Lewis 

acids.[12j–12l] In particular, the generation of the 1,5-dione is highly favorable due to the 

stabilized 6-membered transition state found in intermediate-A that promotes 

hydration.[12l] It is important to note this is the same type of intermediate that led to the 

formation of the undesired exo-glycal in our initial studies in Scheme 4.2. 

 As we have seen in previous chapters, Au(I)-catalyzed reactions involve [LAu][Y] as 

an active species, where L = any type of phosphine ligand and Y = TfO–, SbF6
– or a variety of 

other counter anions.[14] These electrophilic species are generated by the metal–ion 

exchange between PPh3AuCl and AgY (Y = TfO–  or SbF6
–) and are typically not isolated after 

formation due to their highly active nature, even though there is a risk of interference of 

silver with the catalytic process.[14] Assuming the highly cationic nature of a Ag(I) activated 

Au(I) salt was not ideal for this transformation, we decided to examine other Lewis acids  
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Table 4.1. Optimization for the Synthesis of 6-Membered Spirocarbocycle 

 

entry catalysts temp, t yield (%)b 

1 Rh2(esp)2/AgOTf/PPh3AuCl rt, 30 min 0c 

2 Rh2(esp)2/AgSbF6/PPh3AuCl rt, 30 min 0c 

3 Rh2(esp)2/PPh3AuCl/(CuOTf)2-tol reflux, 3 h 57 

4 Rh2(esp)2/(CuOTf)2-tol reflux, 12 h 45 

5 Rh2(esp)2/PPh3AuCl reflux, 12 h 32 

6 Rh2(esp)2/ZnCl2 reflux, 12 h 43 

7 Rh2(OAc)4/PPh3AuCl/(CuOTf)2-tol reflux, 3 h 31 

8 Rh2(HFB)4
d/PPh3AuCl/(CuOTf)2-tol reflux, 3 h 63 

9 Rh2(HFB)4
d/PPh3AuCl/(CuOTf)2-tol reflux, 3 h 68e 

10 PPh3AuCl/ (CuOTf)2-tol reflux, 12h 0f 
a All optimization reactions were performed by adding a 0.5 M solution of 1b (1.0 equiv.) into a 0.2 
M solution of Rh(II) (1 mol %) and Lewis acid(s) (10 mol %) via syringe, unless otherwise noted all 
reactions were refluxed until starting material diazo was consumed. b Isolated yields after column 
chromatography. c Reaction conditions instantaneously hydrated the alkene to provide the 1,5-
dione alkyne hydration product derived from 4a. d HFB = heptafluorobutyrate. e Reaction ran with 
the addition of heat activated 4 Å MS (100 mg/1 mmol of 1b).fReaction conditions did not 
decompose 1b, starting material remained. 

 

N

O O

N2 N O

O

1b 2b

conditions

4	Å	MS
CH2Cl2,	reflux

N O

OH

3b

N O

O [Au] [H2O]

N O

OH

O

4bintermediate-A



Ch. 4 – Metal Carbene Initiated Synthesis of 5-, 6-, and 7-membered Spirocarbocycles 207 

known to promote Conia-ene cyclizations[9] in hopes of attenuating the level of activation 

of our active intermediate (Table 4.1). Recently hit has been shown that Cu(I) triflate can 

activate Au(I) salts to form stable cationic Au(I) complexes at elevated temperatures.[14] In 

2013 Guérinot et al. hypothesized that a gradual, and possibly reversible, delivery of 

cationic Au(I) from a reservoir of stable PPh3AuCl would create a more controlled reaction 

environment for their respective transformation.[14] The authors stated that the quick 

precipitation of AgCl makes any source of silver salt undesirable for this catalytic method, 

however within their study they. showed that Cu(I) triflate provided the desired attenuated 

reactivity. [14] With these insights in mind, we exposed diazo 1b to a catalytic cocktail of 

Rh2(esp)2/PPh3AuCl/(CuOTf)2-tol at room temperature and only obtained the C–H 

functionalization product 3b and no spirocarbocycle 2b. However, in refluxing 

dichloromethane, the desired product 2b was obtained in 57% yield after 3 hours (Table 

4.1, entry 3). 

 Next, we wanted to determine if this reactivity was due to the Au(I)/Cu(I) Lewis 

acids acting in synergism, therefore we screened Au(I) and Cu(I) salts individually (Table 

4.1, entry 4–5). When diazo 1b was exposed to Rh2(esp)2/(CuOTf)2-tol in refluxing 

dichloromethane, the reaction was found to be sluggish and spirocarbocycle 2b was 

formed in 45% yield after refluxing for 12 hours. We also observed a sluggish reaction with 

the Rh2(esp)2/PPh3AuCl combination. It is well known that ZnCl2 can efficiently catalyze 

Conia-ene cyclizations[15], therefore we screened a mixture of Rh2(esp)2/ZnCl2 but did not 

achieve any significant improvement, only a 43% of the desired spirocarbocycle formed 
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after 12h refluxing in dichloromethane with a mixture of the undesired endo-alkene 

rearrangement product (Table 4.1, entry 6).  

 With our best Au(I)/Cu(I) Lewis acid combination, we then examined different 

dirhodium carboxylates known to decompose diazocarbonyls in our attempt to increase 

the yield of 2b (Table 4.1, entry 7–9).[16] In a thorough study by Doyle et al. in 1998, he 

proposed that the process of aromatic C–H functionalization is more accurately described 

mechanistically as electrophilic aromatic substitution[7], therefore a more electrophilic 

Rh(II)-carbene would be most ideal for this transformation. With this insight in mind, we 

first screened Rh2(OAc)4, which creates a less electrophilic carbene as compared to 

Rh2(esp)2.[16] This Rh(II) salt decreased the yield of the desired transformation to 31%, 

providing solid evidence for validation of our hypothesis. Next, we screened the highly 

electrophilic Rh2(HFB)4 catalyst and the yield of the desired product increased to 63%, 

thereby validating the hypothesis of the need for an electrophilic carbene. Subsequently, 

we repeated these conditions in the presence of heat activated 4Å molecular sieves and 

the reaction yield was increased to 68%. Lastly, to ensure the necessity of Rh(II) in the 

system, we exposed 1b to the Au(I)/Cu(I) catalytic conditions (Table 4.1, entry 10). 

However, under these conditions 1b did not undergo decomposition to initiate the desired 

sp2 C–H functionalization. 
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4.2.2  SYNTHESIS OF 5/6 OXINDOLE HYBRIDIZED SPIROCARBOCYCLES 

With optimized conditions in hand, we then investigated the scope of this cascade 

sequence (Scheme 4.3). For our initial studies, we decided to probe the diastereoselectivity 

of the transformation. A phenyl substituted diazo was exposed to the optimized conditions  

 
Scheme  4.3. Scope of Rh(II)/Au(I)/Cu(I) catalyzed cascade for the synthesis of 

functionalized 6-membered oxindole hybridized spirocarbocycles. 
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oxindole ring is trans to the side chain substituent on the ring formed during the Conia-ene 

cyclization. The stereochemical arrangement of the substituents was determined based on 

the coupling constants of the protons of interest (Figure 4.4). The coupling constant for the 

benzylic proton to the neighboring diastereotopic protons was J = 12.8 Hz for the axial-axial 

interaction and J = 6.4 Hz for the axial-equatorial interaction. This high diastereoselectivity 

was also maintained for the less bulky methyl substituted spirocarbocycle 2d.  

  

 

Figure  4.4. Stereochemical analysis of 2c via calculated coupling constants. 

 

Next, we looked into the electronic effects of the cascade transformation. Electron 

rich substrates were equally efficient as the non-electronically perturbed substrates, 
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producing the desired compounds 2e and 2f in 70% and 65% yields. Next, an electron poor 

diazo-acetoacetamide was synthesized and exposed to the optimized conditions. This 

substrate underwent the desired transformation to provide 2g, albeit in a significantly 

lower 32% yield showing that electron withdrawing substituents on the aromatic ring have 

a substantial effect on the efficiency of the reaction. An extended reaction time of 14 hours 

was necessary for this substrate and caused alkene isomerization to the more 

thermodynamically favored product. which also contributed to the decreased yield of 2g. 

Next, diazo-acetoacetamide derived from the corresponding naphthalenamine was 

examined and it gave the desired product 2h in 71% yield with high regioselectivity for C–

H functionalization. Subsequently, we synthesized a benzopyran substituted diazo-

acetoacetamide and exposed it to our optimized reaction conditions. The desired 

spirocarbocycle 2i was synthesized in 87% yield and afforded a scaffold which is found in 

many biologically active oxindole hybridized spirocarbocycles. [6e]  

 Lastly, we hypothesized our optimized conditions could be extended to the 

synthesis of spirobenzofuranones, a scaffold that is found in the biologically active natural 

product rosmadial (Figure 4.1). A phenol substituted diazo-acetoacetate was synthesized 

and exposed to the Rh2(HFB)4/PPh3AuCl/(CuOTf)2-tol catalytic cocktail and a complex 

mixture was obtained. Upon a literature survey, it was discovered that sp2 C–H 

functionalization of phenol substituted diazo-acetates is highly dependent on the nature of 

the ligand (therefore the corresponding electronics) of the Rh(II) catalyst.[17] In literature, 

Rh(II) perfluorobutyrate catalysts provide a cycloheptatrienyl ring expanded product over 

sp2 C–H functionalization.[17] Therefore, Rh2(OAc)4 was used instead of Rh2(HFB)4 to obtain 
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the desired sp2 C–H functionalization and intramolecular Conia-ene cyclization to provide 

2j in 72% yield (Scheme 4.4).  

 
Scheme 4.4. Syntheis of spriobenzofuranone through modified conditions using Rh2(OAc)4. 

 

4.2.3  SYNTHESIS OF 5/7 OXINDOLE HYBRIDIZED SPIROCARBOCYCLES 

 In order to expand the applicability of this methodology to larger ring cyclizations, 

we decided to synthesize a diazo-acetoacetamide with an extended carbon chain which 

would provide a seven-membered spirocarbocyle. Carbocyclic seven-membered rings are 

common structural units that can be found in a variety of polycyclic natural products that 

are of considerable medicinal interest. [6j] However, unlike smaller ring sizes, the 

construction of seven-membered rings is more challenging, and their syntheses are limited 

in literature. [6j] 

 We hypothesized that the application to seven-membered scaffolds would not be 

simple, typically seven-membered rings are much more difficult to form than the 

corresponding five- and six-membered rings. This is due to two factors: entropy and 

enthalpy. Entropy favors the formation of smaller rings; however, our model substrate 

would only give access to either a seven-membered (7-exo-dig) cyclization or an eight-

membered (8-endo-dig) cyclization. Therefore, we knew entropic barriers would not be an 
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issue. Nevertheless, overcoming enthalpic barriers would play a major role. When we 

consider the strain in the transition state leading to our desired ring cyclization, we see that 

transannular repulsion through the unfavorable “flagpole” interactions becomes an issue. 

With these thermodynamic insights in mind, we set out to apply our methodology to the 

synthesis of seven-membered spirocarbocycles. 

 When the extended diazo-acetoacetamide was exposed to the optimized reaction 

conditions identified in Table 4.1, the reaction stalled at the C–H functionalization step to 

provide the corresponding insertion compound, proving that the seven-membered ring 

formation needed more energy to proceed. Therefore, we increased the catalytic loading 

of PPh3AuCl and (CuOTf)2-tol to 20 mol% and allowed a longer reaction time and the 

desired product 2k was isolated in a 49% yield. Next, we looked into the diastereoselectivity 

of this reaction with a phenyl-substituted seven-membered diazo-acetoacetamide. The 

desired product 2l was isolated in 54% yield as a single diastereomer. The relative 

stereochemistry of the phenyl substituent and spiro-junction in 2l was determined based 

on the nuclear Overhauser effect (nOe) correlations and was further confirmed by the 

single crystal structure using X-Ray crystallography (Figure 4.5). Similar to the six-

membered spirocarbocycle, the aryl component of the oxindole is trans to the stereo-

center substituent on the ring formed during the Conia-ene cyclization. Lastly, 2m was 

synthesized in a 47% yield and the high stereoselectivity was also maintained with the less 

bulky methyl substituent on the side chain.  
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Scheme 4.5. Synthesis of 7-membered spirocarbocycle oxindole hybrids 

 
Figure  4.5. Cyrstal structure of 2l; 

 C–H bond lengths in resulting alkene functionality = 0.95 Å. 
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4.2.4  SYNTHESIS OF 5/5 OXINDOLE HYBRIDIZED SPIROCARBOCYCLES 

 After the successful formation of the 6- and 7-membered oxindole hybridized 

spirocarbocycles, we turned our attention to the synthesis of 5-membered hybrids. 

Scaffolds of this type are found in a variety of biologically active natural products. [6a, 6e, 6f] 

Due to the prevalence of this core in nature, it was a great desire of ours to access the 

corresponding spirocyclization through our optimized methodology. Because of our failed 

attempt at a 5-membered spirocyclization with diazo 1a in Scheme 4.2, we hypothesized 

that by synthesizing mono-carbonyl diazo 1n we would create a substrate that has a more 

favorable trajectory to prefer C-alkylation over the undesired O-alkylation. We would also 

avoid the possibility of forming intermediate-A as seen in Table 4.1 that promotes the 

undesired O-alkylation by excluding the additional carbonyl ketone. Our newly designed 

substrate would proceed through a well-known 5-exo-dig cyclization that is similar to work 

published by the Toste group.[18] Furthermore, all enolexo cyclizations for the tet/trig/dig 

systems follow the original Baldwin rules as seen in our previous work[5, 19] with Rh(II)-

carbene initiated heteroatom insertion/Conia-ene cascade cyclizations, therefore this 

substrate possessed the ideal design to achieve a successful reaction. 

 For the initial optimization we exposed 1n to our optimized conditions that 

provided the 6- and 7-membered spirocarbocycles. After refluxing in dichloromethane for 

three hours, this catalytic combination of Rh2(HFB)4/PPh3AuCl/(CuOTf)2-tol provided the 

sp2 C–H functionalization product 3n only (Table 4.2, entry 1). We hypothesized that the 

mild activation of PPh3AuCl with (CuOTf)2-tol was not enough to catalyze this reaction, 

therefore we decided to attempt this transformation with our previously developed 
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Table 4.2. Optimization for the Synthesis of 5-Membered Spirocarbocycle 

 

entry catalysts temp, t yield (%)b 

1 Rh2(HFB)4/PPh3AuCl/(CuOTf)2-tol reflux, 3 h 0c 

2 Rh2(HFB)4/PPh3AuCl/AgSbF6 rt, 2 h 53 

3d PPh3AuCl/AgSbF6 rt, 12 h 67 
a For entries 1 and 2: reactions were performed by adding a 0.5 M solution of 1n (1.0 equiv) into a 
0.2 M solution of Rh(II) (1 mol %) and Lewis acid(s) (10 mol %), and heat activated 4 Å MS (100 
mg/mmol) via syringe; Reactions were stirred at the designated temperature until 1n was 
consumed. b Isolated yields. c Reaction provided only the sp2 C–H activation product. d For entry 3: 
reaction was performed by adding a 0.5 M solution of 1n (1.0 equiv.) into a 0.2 M solution of 
PPh3AuCl (20 mol %) and AgSbF6 (20 mol %) via syringe, and was stirred at rt until desired product 
formed. 
 

Rh(II)/Au(I)/Ag(I) conditions (Table 4.2, entry 2). This combination provided the desired 

compound 2n in a 53% isolated yield after reacting for two hours. Interestingly, we did not 

observe any hydration product of the alkyne functionality as previously observed for the 

corresponding six-membered Conia-ene cyclization.  
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diazocarbonyl was consumed to provide complete conversion to 2n without any uncyclized 

sp2 C–H functionalization product 3n present.  

 
Scheme 4.6. Scope of Au(I)/Ag(I) catalyzed cascade for the synthesis of functionalized 5-

membered oxindole hybridized spirocarbocycles. 

 

 With these newly optimized conditions in hand we decided to look into the 

electronic effects for this transformation (Scheme 4.6). Electron rich aromatics were 

accommodated with equal efficiency as the parent compound (2o). Furthermore, the 

benzopyran fused spirocarbocycle 2p was also obtained in a moderate 54% yield under 

these reaction conditions. The core of 2p can be found in the natural product, 

sclerotiamide, which has recently been identified by Duerfeldt et al. as the first non-

peptide-based natural product activator of bacterial caseinolytic protease P (ClpP) (Figure 

4.1).[6a] It is important to note that the electron deficient substrate could not be accessed 

with this methodology. The reaction stalled at the sp2 C–H functionalization presumably 

due to the decreased nucleophilicity of the oxindole in the intramolecular Conia-ene 

cyclization. 
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4.2.5  MECHANISTIC INSIGHTS 

 To probe the mechanism of this transformation and determine if synergy was 

necessary to obtain the desired oxindole hybridized spirocarbocycles, we synthesized 

insertion compound 3b and isolated it as the enol tautomer of the b-keto amide. We 

exposed this substrate to PPh3AuCl/(CuOTf)2-tol in refluxing dichloromethane and 2b was 

isolated in 84% yield. This suggests the possibility of a non-synergistic stepwise 

transformation involving a carbene sp2 C–H functionalization and subsequent Conia-ene 

cyclization (Scheme 4.7). 

 
Scheme 4.7. Synthesis of 2b from isolated insertion compound. 

 

 To further probe the mechanism, we synthesized a variety of deuterium labeled 

diazo compounds. Diazo acetoacetamide 1q was synthesized to examine the kinetic 

isotope effect of the reaction and validate whether the transformation was through a 

cyclopropanation or electrophilic aromatic substitution mechanism (Scheme 4.8). In the 

literature, it has been stated that typical kH/kD values for electrophilic aromatic substitution 

mechanisms are less than 1.3 unless the formation of the initial sigma-complex from 

nucleophilic attack of the aromatic ring onto the electrophile is reversible. [17] Therefore, 

when we observed a kH/kD = 1 in this experiment we were able to conclude that the 
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Scheme 4.8. Deuterium labeling experiment probing kinetic isotope effect for C–H 

functionalization. 

 

mechanism is proceeding through electrophilic aromatic substitution as originally 

proposed by Doyle in 1998 and also Hu et al. in their work featuring a similar sp2
 C–H 

functionalization intermediate.  

 Next, the penta-deuterated diazo 1r was synthesized and exposed to the optimized 

reaction conditions to provide 2r (Scheme 4.9). Interestingly no deuterium incorporation 

was observed in the resulting alkene functionality of 2r, suggesting the possibility of an 

intermolecular 1,2-proton transfer. As seen in Scheme 4.7, the transformation has a high 

likelihood of proceeding through an enol-intermediate where the corresponding 

deuterium transferred during the C–H functionalization can now be exchanged at a high  

 
Scheme 4.9. Deuterium labeling experiment probing inter- vs intra- molecular deuterium 

transfer. 
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rate as a deuterated enol. This exchange is likely occurring with the minimal moisture 

present in the reaction medium. Therefore, in the resultant Conia-ene cyclization we are 

not observing any deuterium incorporation on the alkene. This experiment provided 

additional conclusive evidence of the stepwise transformation.  

  

 
Scheme 4.10. Deuterium labeling experiment giving insight into gold complexation. 

 
Figure 4.6. Crystal structure of 2s; C–D bond length = 0.87 Å; C–H bond length = 1.02 Å. 
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Lastly diazo-acetoacetamide 1s was synthesized with a deuterium incorporated on 

the alkyne. When this substrate was exposed to the optimized conditions, the desired 

product 2s was obtained in good yield with 86% deuterium incorporation at the resulting 

alkene functionality (Scheme 4.10). The deuterium was found to be syn to the carbonyl 

functionality as observed in our previous spiroether work and by the Toste group. [9a] The 

deuterium orientation was further confirmed by the single crystal structure using X-ray 

crystallography (Figure 4.6). Upon analysis, the C–D bond length, which was 0.87 Å, was 

found to be significantly shorter than the C–H bond length, which was 1.02 Å. [21] The results 

from this deuterium labeling experiment suggest the possibility of an equilibrium between 

an alkyne-p complex with gold and a gold acetylide.[22]  

Table 4.3. Attempted Optimization of Asymmetric Spirocyclization 

 

Entry Catalystsa Ligand Yield (%) % ee 

1 Rh2(R-DOSP)4 /PPh3AuCl/(CuOTf)2�tol – 52 0 
2 Rh2(HFB)4/L1(AuCl)2/(CuOTf)2�tol L1  44 0 
3 Rh2(HFB)4/PPh3AuCl/(CuOTf)2�tol/L2 L2 < 5 0 

a
 Catalyst loading: 1 mol% of Rh(II), 10 mol % of Au(I), 10 mol % of Cu(I), 11 mol% ligand 
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In an attempt to induce asymmetry in our methodology (Table 4.3), we attempted 

the cascade reaction with chiral rhodium salt Rh2(S-DOSP)4, PPh3AuCl, (CuOTf)2-tol, and our 

model six-membered diazo-acetoacetamide. Unfortunately no enantiomeric excess (ee) 

was observed using chiral Rh(II) salts. We also attempted the cascade reaction with gold 

and copper bearing chrial ligands but did not induce ee in the resulting spirocarbocycle. 

The findings identified by our mechanistic probing experiments in combination with 

evidence found during the development of our substrate scope allowed us to propose a 

mechanism depicted in Scheme 4.11. First the diazo is decomposed by the metal catalyst  

 
Scheme 4.11. Proposed mechanism through a stepwise C–H functionalization and Conia-

ene cascade cyclization.  
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to form a metal carbene that undergoes a sp2 C–H functionalization to provide an alkyne-

gold activated oxindole zwitterionic intermediate. This substrate then undergoes a gold(I) 

activated Conia-ene cyclization to provide the desired spirocarbocycle. As seen through the 

deuterium loss in Scheme 4.10, gold activation of the alkyne is in equilibrium between the 

gold-acetylide and gold-p complex, with the equilibrium favoring the p-complex.  

 

4.3  SUMMARY 

 Upon completion of this work, a general approach to the stereoselective synthesis 

of 5-, 6-, and 7-memebered oxindole hybridized spirocarbocycles was developed. Extension 

of our previously identified Rh(II)/Au(I) catalytic cocktail was proven to be successful, 

although a modification to the activation of Au(I) by Cu(I) was needed to obtain the desired 

reactivity. The experimental findings within this work led to the development of a novel 

bond disconnection in the synthesis of a variety of spirocarbocycles. The next logical step 

in building upon this methodology is to complete computational analyses to provide insight 

into how one could effectively induce asymmetry in the system. 
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4.5  EXPERIMENTAL SECTION 

4.5.1  MATERIALS AND METHODS 

Reagents: Reagents and solvents were obtained from Sigma-Aldrich (www.sigma-

aldrich.com), Chem-Impex (www.chemimpex.com) or Acros Organics (www.fishersci.com) 

and used without further purification unless otherwise indicated. Dry solvents 

(acetonitrile) were obtained from Acros Organics (www.fishersci.com), and 

dichloromethane was distilled over CaH under N2 unless otherwise indicated. THF 

purchased from Sigma-Aldrich was distilled over Na metal with benzophenone indicator. 

Toluene was obtained from Sigma-Aldrich. Reactions: All reactions were performed in 

flame-dried glassware under positive N2 pressure with magnetic stirring unless otherwise 

noted. Liquid reagents and solutions were transferred through rubber septa via syringes 

flushed with N2 prior to use. Cold baths were generated as follows: 0 °C with wet ice/water 

and -78 °C with dry ice/acetone. Chromatography: TLC was performed on 0.25 mm 

E. Merck silica gel 60 F254 plates and visualized under UV light (254 nm) or by staining with 

potassium permanganate (KMnO4), cerium ammonium molybdenate (CAM), 

phosphomolybdic acid (PMA), and ninhydrin. Silica flash chromatography was performed 

on Sorbtech 230–400 mesh silica gel 60. Analytical Instrumentation: IR spectra were 

recorded on a Thermo Scientific Nicolet 6700 FTIR spectrometer with peaks reported in 

cm–1. NMR spectra were recorded on a Varian VNMRS 400, 500 and 600 MHz NMR 

spectrometer in CDCl3 unless otherwise indicated. Chemical shifts are expressed in ppm 

relative to solvent signals: CDCl3 (1H, 7.26 ppm, 13C, 77.0 ppm); coupling constants are 
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expressed in Hz. NMR spectra were processed using Mnova 

(www.mestrelab.com/software/mnova-nmr). Mass spectra were obtained on an Advion 

ExpressionL CMS Mass Spectrometer or at the OU Analytical Core Facility on an Agilent 6538 

High-Mass-Resolution QTOF Mass Spectrometer and an Agilent 1290 UPLC. X-ray 

crystallography analysis was carried out at the University of Oklahoma using a Bruker APEX 

ccd area detector (1) and graphite-monochromated Mo Ka radiation (l = 0.71073 Å) 

source. Crystal structures were visualized using CCDC Mercury software 

(http://www.ccdc.cam.ac.uk/products/mercury/). Nomenclature: N.B.: Atom numbers 

shown in chemical structures herein correspond to IUPAC nomenclature, which was used 

to name each compound. 

 

4.5.2  GENERAL PROCEDURE FOR 6-MEMBERED SPIROCARBOCYCLES 

 

To a teflon coated 20 mL vial was added heat activated 4 Å molecular sieves (100 

mg/mmol of starting material), Rh2(HFB)4 (1 mol %), PPh3AuCl (10 mol %), and 

(CuOTf)2-toluene (10 mol %). This mixture was dissolved in 0.2 M dichloromethane 

and allowed to stir for 5 minutes at room temperature. The corresponding diazo 

compound 1 (0.55 mmol) was dissolved in 0.5 M dicholoromethane and then added 

to the catalyst solution stirring at room temperature. The 20 mL vial was sealed and 
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placed on a heating mantle and allowed to stir at reflux for 5 hours. Once the 

reaction was completed, the crude mixture was filtered over a celite pad to remove 

the 4 Å molecular sieves.  The filtrate was directly loaded to a silica gel column and 

purified using flash column chromatography eluting with 10% EtOAc in Hex to afford 

spirocarbocycle product 2b–2j and 2q–2s. 

 

1'-methyl-2-methylenespiro[cyclohexane-1,3'-indoline]-2',6-dione (2b). White solid (39 

mg, 68%, mp 141-142 °C). TLC: Rf 0.71 (40% EtOAc in Hex). IR (NaCl): 3055, 2941, 2644, 

2367, 1730. 1H NMR (500 MHz, , Chloroform-d) δ 7.36 (t, J = 5.0, 1H), 7.19 (t, J = 5.0, 1H), 

7.15 (t, J = 5.0, 1H), 6.88 (d, J = 7.8 Hz, 1H), 4.88 (s, 1H), 4.51 (s, 1H), 3.35 – 3.24 (m, 2H), 

3.18 (s, 3H), 2.66–2.55 (m, 2H), 2.26–2.20 (m, 1H), 1.86 (qt, J = 13.2, 4.2 Hz, 1H). 13C NMR 

(126 MHz, Chloroform-d) δ 203.0, 171.2, 145.7, 143.7, 128.8, 127.1, 126.4, 122.6, 111.6, 

108.5, 72.3, 39.1, 30.9, 26.6, 24.6. HRMS (ESI) m/z calcd for C15H16NO2 ([M+H]+) 242.1181; 

found 242.1184. 
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1'-methyl-6-methylene-3-phenylspiro[cyclohexane-1,3'-indoline]-2,2'-dione (2c). Orange 

solid (31.0 mg, 65%, mp 155-156 °C). TLC: Rf 0.54 (20% EtOAc in Hex). IR (NaCl): 2934, 2113, 

1729, 1697. 1H NMR (600 MHz, Chloroform-d) δ 7.41 (d, J = 7.5 Hz, 1H), 7.31 (q, J = 7.4 Hz, 

3H), 7.25–7.23 (m, 1H), 7.16 (d, J = 7.5 Hz, 2H), 7.08 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 7.8 Hz, 

1H), 5.12 (s, 1H), 4.79 (s, 1H), 4.02 (dd, J = 12.8, 6.4 Hz, 1H), 3.22 (s, 3H), 3.08–3.04 (m, 1H), 

2.99–2.93 (m, 1H), 2.51–2.38 (m, 2H). 13C NMR (151 MHz, Chloroform-d) δ 203.5, 173.3, 

144.1, 143.7, 137.7, 129.3, 129.0, 128.8 (2C), 128.3 (2C), 127.2, 123.4, 122.6, 113.9, 108.9, 

77.1, 70.6, 54.6, 31.1, 29.6. HRMS (ESI) m/z calcd for C21H21NO3Na ([M+Na+H2O]+) 

336.1600; found 336.1598. 

 

1',3-dimethyl-6-methylenespiro[cyclohexane-1,3'-indoline]-2,2'-dione (2d). White solid 

(98 mg, 64%, mp 139-138 °C). TLC: Rf 0.84 (40% EtOAc in Hex). IR (NaCl): 3069, 2936, 1732, 

1657. 1H NMR (600 MHz, , Chloroform-d) δ 7.32–7.28 (m, 2H), 7.04 (t, J = 7.8 Hz, 1H), 6.86 

(d, J = 7.8 Hz, 1H), 5.01 (s, 1H), 4.70 (s, 1H), 3.25 (s, 3H), 2.91–2.81 (m, 3H), 2.23–2.18 (m, 

Ha
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1H), 1.85–1.78 (m, 1H), 1.13 (d, J = 6.5 Hz, 3H). 13C NMR (151 MHz, Chloroform-d) δ 206.1, 

173.5, 144.4, 143.9, 134.1, 128.8, 123.3, 122.4, 113.1, 108.9, 70.5, 42.6, 30.9, 30.3, 26.5, 

14.9. HRMS (ESI) m/z calcd for C16H17NO2Na ([M+Na]+) 278.1157; found 278.1163. 

 

5'-methoxy-1'-methyl-2-methylenespiro[cyclohexane-1,3'-indoline]-2',6-dione (2e). 

Yellow oil (30 mg, 70%). TLC: Rf 0.68 (40% EtOAc in Hex). IR (NaCl): 2367, 1701, 1638, 1603. 

1H NMR (600 MHz, Chloroform-d) δ 6.86 (dd, J = 8.5, 2.6 Hz, 1H), 6.79–6.73 (m, 2H), 4.86 

(s, 1H), 4.51 (s, 1H), 3.79 (s, 3H), 3.33–3.23 (m, 2H), 3.13 (s, 3H), 2.63–2.51 (m, 2H), 2.23–

2.18 (m, 1H), 1.86–1.77 (m, 1H). 13C NMR (151 MHz, Chloroform-d) δ 203.1, 170.9, 155.7, 

145.7, 137.2, 131.9, 127.6, 114.2, 113.5, 111.6, 108.8, 72.7, 55.8, 39.2, 26.8, 24.5. HRMS 

(ESI) m/z calcd for C16H17NO3Na ([M+Na]+) 294.1106; found 294.1113. 

 

4',6'-dimethoxy-1'-methyl-2-methylenespiro[cyclohexane-1,3'-indoline]-2',6-dione (2f). 

Yellow oil (33 mg, 65%). TLC: Rf 0.61 (40% EtOAc in Hex). IR (NaCl): 3007, 2945, 2363, 1703, 

1620. 1H NMR (600 MHz, Chloroform-d) δ 6.22 (d, J = 2.0 Hz, 1H), 6.10 (d, J = 2.0 Hz, 1H), 

4.80 (d, J = 1.9 Hz, 1H), 4.42 (s, 1H), 3.84 (s, 3H), 3.75 (s, 3H), 3.22–3.14 (m, 1H), 3.10 (s, 

3H), 3.03 (ddd, J = 15.2, 13.3, 6.1 Hz, 1H), 2.66–2.55 (m, 2H), 2.18–2.13 (m, 1H), 1.81 (qt, J 
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= 13.2, 4.0 Hz, 1H). 13C NMR (151 MHz, Chloroform-d) δ 202.5, 172.2, 162.3, 156.3, 145.8, 

143.5, 110.3, 106.6, 93.1, 88.7, 70.5, 55.6, 55.5, 39.6, 31.0, 26.8, 23.3. HRMS (ESI) m/z calcd 

for C17H19NO4Na ([M+Na]+) 324.1212; found 324.1209. 

 

 

1'-methyl-2-methylene-2',6-dioxospiro[cyclohexane-1,3'-indoline]-6'-carbonitrile (2g). 

Yellow oil (17 mg, 32% combined yield). TLC: Rf 0.52 (40% EtOAc in Hex). IR (NaCl): 3075, 

2926, 2324, 2224, 1699. 1H NMR (600 MHz, Chloroform-d) [external alkene] δ 7.45 (t, J = 

7.9 Hz, 1H), 7.34 (dd, J = 7.8, 1.1 Hz, 1H), 6.98 (dd, J = 7.9, 1.1 Hz, 1H), 5.08 (d, J = 4.5 Hz, 

1H), 3.55 (t, J = 7.1 Hz, 3H), 3.27 (s, 5H), 2.26 – 2.17 (m, 6H), 2.16 (q, J = 1.6 Hz, 4H).1',2-

dimethyl-2',6-dioxospiro[cyclohexane-1,3'-indolin]-2-ene-6'-carbonitrile (S1) (600 MHz, 

Chloroform-d) [internal alkene] (600 MHz, Chloroform-d) [internal alkene] δ 7.39 (dd, J = 

7.9, 1.0 Hz, 1H), 7.26–7.24 (m, 1H), 7.05 (dd, J = 7.9, 1.0 Hz, 1H), 4.96 (d, J = 2.0 Hz, 1H), 

4.33 (d, J = 1.8 Hz, 1H), 3.17 (s, 3H), 3.17–3.11 (m, 2H), 2.75–2.60 (m, 2H), 2.26–2.17 (m, 

1H), 1.95 (qt, J = 13.7, 3.9 Hz, 1H). 13C NMR (101 MHz) (151 MHz, Chloroform-d) δ 200.7, 

169.8, 149.7, 143.2, 141.0, 129.7, 127.9, 126.5, 126.3, 126.1, 123.4, 123.3, 119.7, 116.3, 

112.2, 111.8, 111.1, 110.7, 109.5, 106.3, 101.9, 101.4, 71.9, 39.3, 31.0, 29.7, 26.9, 26.0, 

23.3, 22.4, 19.1, 16.8. HRMS (ESI) m/z calcd for C16H15N2O2 ([M+H]+) 267.1133; found 

267.1137. 
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1-methyl-2'-methylenespiro[benzo[f]indole-3,1'-cyclohexane]-2,6'(1H)-dione (2h). Clear 

oil (25 mg, 71%). TLC: Rf 0.79 (40% EtOAc in Hex). IR (NaCl): 3055, 2941, 1707, 1639. 1H 

NMR (600 MHz, Chloroform-d) δ 7.81 (dd, J = 17.8, 8.1 Hz, 2H), 7.62 (s, 1H), 7.49 (ddd, J = 

8.1, 6.9, 1.2 Hz, 1H), 7.40 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.15 (s, 1H), 4.91 (d, J = 1.8 Hz, 1H), 

4.57 (s, 1H), 3.37–3.29 (m, 2H), 3.28 (s, 3H), 2.71–2.59 (m, 2H), 2.29–2.24 (m, 1H), 1.95–

1.87 (m, 1H). 13C NMR (151 MHz, Chloroform-d) δ 203.0, 171.1, 145.9, 141.8, 133.9, 130.2, 

128.5, 127.0, 126.9, 126.8, 126.7, 124.3, 112.0, 104.2, 71.7, 39.4, 31.2, 26.9, 24.6. HRMS 

(ESI) m/z calcd for C19H18NO2 ([M+H]+) 292.1337; found 292.1344. 

 

1'-(2,4-dimethoxybenzyl)-7',7'-dimethyl-2-methylene-1',7'-dihydro-2'H-

spiro[cyclohexane-1,3'-pyrano[2,3-g]indole]-2',6-dione (2i). Bright yellow oil (92 mg, 

87%). TLC: Rf 0.74 (40% EtOAc in Hex). IR (NaCl): 2968, 2941, 2868, 1699. 1H NMR (500 

MHz, Chloroform-d) δ 6.93 (d, J = 8.1 Hz, 1H), 6.69 (d, J = 8.4 Hz, 1H), 6.62 (d, J = 8.2 Hz, 

1H), 6.48 (d, J = 2.4 Hz, 1H), 6.35 (dd, J = 8.4, 2.4 Hz, 1H), 6.27 (d, J = 10.1 Hz, 1H), 5.45 (d, J 

= 10.1 Hz, 1H), 5.01–4.89 (m, 3H), 4.65 (s, 1H), 3.86 (s, 3H), 3.76 (s, 3H), 3.34–3.24 (m, 2H), 
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2.69–2.57 (m, 2H), 2.25–2.19 (m, 1H), 1.91–1.81 (m, 1H), 1.38 (s, 3H), 1.34 (s, 3H). 13C NMR 

(101 MHz, Chloroform-d) δ 203.8, 172.9, 160.2, 157.2, 153.9, 138.9, 134.1, 130.5, 126.9, 

126.3, 119.2, 117.1, 116.4, 110.9, 107.3, 104.1, 98.6, 74.9, 71.3, 60.4, 55.4, 40.9, 39.3, 31.1, 

27.5, 27.1, 24.4, 14.2. HRMS (ESI) m/z calcd for C28H29NO5Na ([M+Na]+) 482.1944; found. 

482.1945. 

 

2'-methylene-2H-spiro[benzofuran-3,1'-cyclohexane]-2,6'-dione (2j). Clear oil (32 mg, 

72%). TLC: Rf 0.60 (20% EtOAc in Hex). IR (NaCl): 2924, 2852, 1712, 1608. 1H NMR (600 

MHz, Chloroform-d) δ 7.39 (ddd, J = 8.1, 5.7, 3.4 Hz, 1H), 7.28–7.23 (m, 2H), 7.15 (dt, J = 

8.1, 0.8 Hz, 1H), 5.00 (d, J = 1.8 Hz, 1H), 4.60 (d, J = 1.4 Hz, 1H), 3.27–3.18 (m, 2H), 2.70–

2.58 (m, 2H), 2.28–2.23 (m, 1H), 1.87 (qt, J = 13.1, 4.2 Hz, 1H). 13C NMR (151 MHz, 

Chloroform-d) δ 200.4, 170.4, 153.4, 144.3, 129.8, 127.5, 124.5, 124.2, 113.4, 110.8, 70.5, 

38.4, 30.3, 24.7. HRMS (ESI) m/z calcd for C14H13O3 ([M+H]+) 229.0864; found 229.0876. 
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 1'-methyl-2-methylenespiro[cyclohexane-1,3'-indoline]-2',6-dione-7'-d (2q). White solid 

(15 mg, 60%, mp 140-141 °C). TLC: Rf 0.71 (40% EtOAc in Hex). IR (NaCl): 3059, 2941, 2320, 

1699.  1H NMR (500 MHz, Chloroform-d δ 7.38 – 7.34 (m, 1H), 7.21 – 7.14 (m, 2H), 6.88 (dt, 

J = 7.8, 0.8 Hz, 0.47H), 4.88 (d, J = 2.1 Hz, 1H), 4.51 (d, J = 1.6, 1H), 3.36 – 3.25 (m, 2H), 3.18 

(s, 3H), 2.66 – 2.55 (m, 2H), 2.27 – 2.21 (m, 1H), 1.86 (qt, J = 13.1, 4.1 Hz, 1H).  13C NMR 

(101 MHz, Chloroform-d) δ 203.1, 171.2, 145.7, 128.7, 127.1, 126.4, 122.6, 121.2, 111.6, 

108.5, 72.3, 39.2, 30.9, 26.7, 24.6. HRMS (ESI) m/z calcd for C15H14DNO2Na ([M+Na]+) 

265.1064; found 265.1060. 

 

1'-methyl-2-methylenespiro[cyclohexane-1,3'-indoline]-2',6-dione-4',5',6',7'-d4 (2r). 

White solid (23 mg, 63%, mp 141-142 °C). TLC: Rf 0.71 (40% EtOAc in Hex). IR (NaCl): 3059, 

2936, 1703, 1600. 1H NMR (400 MHz, Chloroform-d) δ 4.86 (s, 1H), 4.49 (s, 1H), 3.34–3.22 

(m, 2H), 3.16 (s, 3H), 2.64–2.53 (m, 2H), 2.25–2.21 (m, 1H), 1.89–1.82 (m, 1H). 13C NMR 

(101 MHz) (101 MHz, Chloroform-d) δ 203.1, 171.2, 145.7, 143.6, 126.9, 126.7, 126.3, 
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111.6, 109.9, 108.2, 72.3, 39.2, 30.9, 26.7, 24.6. HRMS (ESI) m/z calcd for C15H11D4NO2 

([M+H]+) 246.1432; found 246.1437. 

 

 

1'-methyl-2-(methylene-d)spiro[cyclohexane-1,3'-indoline]-2',6-dione (2s). White solid 

(80 mg, 63%). Recrystallization from 1:1 dichloromethane/hexanes (slow evaporation 

method) yielded colorless block crystals (mp 140-141 °C).  TLC: Rf 0.71 (40% EtOAc in Hex). 

IR (NaCl): 3052, 2939, 1696, 1610. 1H NMR (600 MHz, Chloroform-d) δ 7.33 (td, J = 7.6, 1.3 

Hz, 1H), 7.17 (dd, J = 7.5, 1.4 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 4.84 (d, 

J = 1.9 Hz, 1H), 4.49 (d, J = 1.5 Hz, 0.16H), 3.32–3.23 (m, 2H), 3.15 (s, 3H), 2.63–2.52 (m, 

2H), 2.23–2.18 (m, 1H), 1.83 (qt, J = 13.1, 4.1 Hz, 1H). 13C NMR (151 MHz, Chloroform-d) δ 

203.1, 171.2, 145.6, 143.7, 128.8, 127.1, 126.4, 122.6, 111.4 (t, J = 24.17 Hz, 1C), 108.5, 

72.3, 39.2, 30.9, 26.7, 24.6. HRMS (ESI) m/z calcd for C15H14DNO2Na ([M+Na]+) 265.0987; 

found 265.0984. 
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4.5.3  GENERAL PROCEDURE FOR 7-MEMBERED SPIROCARBOCYCLES 

 
 

To a teflon coated 20 mL vial was added heat activated 4 Å molecular sieves (100 mg/mmol 

of starting material), Rh2(HFB)4 (1 mol %), PPh3AuCl (20 mol %), and (CuOTf)2-toluene (20 

mol %). This mixture was dissolved in 0.2 M dichloromethane and allowed to stir for 5 

minutes at room temperature.  The corresponding diazo compound 1 (0.55 mmol) was 

dissolved in 0.5 M CH2Cl2 and then added to the catalyst solution stirring at room 

temperature. The 20 mL vial was sealed and placed on a heating mantle and allowed to stir 

at reflux for 5 hours. Once the reaction was completed, the crude mixture was filtered over 

a celite pad to remove the 4 Å molecular sieves.  The filtrate was directly loaded to a silica 

gel column and purified using flash column chromatography eluting with 10% EtOAc in Hex 

to afford spirocarbocycle product 2k–2m. 

 

1'-methyl-2-methylenespiro[cycloheptane-1,3'-indoline]-2',7-dione (2k). White sticky oil 

(30.5 mg, 49%). TLC: Rf 0.74 (40% EtOAc in Hex). IR (NaCl): 3059, 2932, 1734, 1632. 1H NMR 

(600 MHz, Chloroform-d) δ 7.32 (td, J = 7.7, 1.3 Hz, 1H), 7.23 (dd, J = 7.5, 1.2 Hz, 1H), 7.07 
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(td, J = 7.6, 1.1 Hz, 1H), 6.88–6.85 (m, 1H), 5.16 (d, J = 0.9 Hz, 1H), 4.79 (d, J = 0.9 Hz, 1H), 

3.20 (s, 3H), 2.87 (ddd, J = 11.8, 10.7, 2.6 Hz, 1H), 2.79–2.66 (m, 2H), 2.65–2.52 (m, 1H), 

2.14–1.96 (m, 2H), 1.87–1.65 (m, 2H). 13C NMR (151 MHz, Chloroform-d) δ 206.3, 173.6, 

146.1, 144.1, 132.0, 129.1, 124.3, 122.5, 116.7, 108.8, 71.7, 42.6, 35.6, 32.4, 27.7, 26.4. 

HRMS (ESI) m/z calcd for C16H17NO2Na ([M+Na]+) 278.1157; found 278.1165. 

 

1'-methyl-7-methylene-3-phenylspiro[cycloheptane-1,3'-indoline]-2,2'-dione (2l). White 

solid (80 mg, 54%). Recrystallization from 1:1 dichloromethane/hexanes (slow evaporation 

method) yielded colorless block crystals (mp 153-154 °C) TLC: Rf 0.67 (40% EtOAc in Hex). 

IR (NaCl): 3069, 2936, 1732, 1657. 1H NMR (400 MHz, Chloroform-d) δ 7.49 (dd, J = 7.5, 1.2 

Hz, 1H), 7.30 (td, J = 7.8, 1.3 Hz, 1H), 7.24 (d, J = 4.3 Hz, 4H), 7.17 (h, J = 4.4 Hz, 1H), 7.11 

(td, J = 7.6, 1.1 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 5.29 – 5.26 (m, 1H), 4.91 (s, 1H), 4.37 (dd, J 

= 10.5, 3.6 Hz, 1H), 3.16 (s, 3H), 2.97–2.84 (m, 1H), 2.76 (dt, J = 14.1, 4.0 Hz, 1H), 2.29–2.13 

(m, 3H), 1.94–1.71 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 204.4, 173.8, 145.5, 144.6, 

139.9, 129.4, 128.2 (2C), 128.1 (2C), 126.9, 125.7, 124.4, 122.3, 117.2, 109.0, 72.0, 56.4, 

36.2, 35.2, 31.8, 26.3. HRMS (ESI) m/z calcd for C22H22NO2 ([M+H]+) 332.1650; found 

332.1655. 
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1',3-dimethyl-7-methylenespiro[cycloheptane-1,3'-indoline]-2,2'-dione (2m). White 

sticky oil (30.5 mg, 47%). TLC: Rf 0.74 (40% EtOAc in Hex). IR (NaCl): 3059, 2936, 2363, 1734, 

1638. 1H NMR (600 MHz, Chloroform-d) δ 7.31 (td, J = 7.8, 1.2 Hz, 1H), 7.22 (dd, J = 7.6, 1.2 

Hz, 1H), 7.05 (td, J = 7.6, 1.0 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 5.16 (q, J = 0.8 Hz, 1H), 4.76 (t, 

J = 1.0 Hz, 1H), 3.20 (s, 3H), 3.19–3.15 (m, 1H), 2.82–2.71 (m, 1H), 2.69–2.60 (m, 1H), 2.12–

2.06 (m, 1H), 1.86–1.78 (m, 1H), 1.70–1.58 (m, 2H), 1.04 (d, J = 6.6 Hz, 3H). 13C NMR (101 

MHz, Chloroform-d) δ 207.9, 173.9, 145.9, 144.5, 134.2, 129.2, 123.9, 122.4, 116.6, 108.9, 

71.8, 45.8, 36.6, 35.2, 31.8, 26.3, 17.8. HRMS (ESI) m/z calcd for C17H19NO2Na ([M+Na]+) 

292.1314; found 292.1322. 

 
4.5.3  GENERAL PROCEDURE FOR 5-MEMBERED 

 

To a teflon coated 20 mL vial was added heat activated 4 Å molecular sieves (100 mg/mmol 

of starting material), PPh3AuCl (20 mol %), and AgSbF6 (20 mol %).  This mixture was 

dissolved in 0.2 M dichloromethane and allowed to stir for 5 minutes at room temperature. 

The corresponding diazo compound 1 (0.55 mmol) was dissolved in 0.5 M CH2Cl2 and then 
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added to the catalyst solution stirring at room temperature. The 20 mL vial was sealed and 

allowed to stir at room temperature overnight. Once the reaction was completed, the 

crude mixture was filtered over a celite pad to remove the 4 Å molecular sieves. The filtrate 

was directly loaded to a silica gel column and purified using flash column chromatography 

eleuting with 10% EtOAc in Hex to afford spirocarbocycle product 2n–2p. 

 

1'-methyl-2-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (2n). Faint yellow oil (32 

mg, 67%). TLC: Rf 0.71 (40% EtOAc in Hex). IR (NaCl): 3055, 2922, 2849, 1713, 1611. 1H NMR 

(600 MHz, Chloroform-d) δ 7.25 (t, J = 6.0 Hz, 3H), 7.10 (d, J = 7.5, 1H), 7.04 (t, J = 7.5, 1H), 

6.83 (d, J = 7.8 Hz, 1H), 4.94 (t, J = 2.1 Hz, 1H), 4.39 (t, J = 2.3 Hz, 1H), 3.20 (s, 3H), 2.83–2.72 

(m, 1H), 2.67–2.58 (m, 1H), 2.33–2.19 (m, 2H), 2.07–1.91 (m, 2H). 13C NMR (151 MHz, 

Chloroform-d) δ 179.9, 154.5, 143.7, 135.2, 123.0, 122.9, 108.2, 107.7, 58.4, 38.5, 33.7, 

29.7, 26.3, 24.3. HRMS (ESI) m/z calcd for C14H16NO ([M+H]+) 214.1232; found 214.1229. 

 

4',6'-dimethoxy-1'-methyl-2-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (2o). 

Faint yellow oil (55 mg, 69%, mp 136-137 °C). TLC: Rf 0.61 (40% EtOAc in Hex). IR (NaCl): 

3075, 2936, 2849, 1709. 1H NMR (600 MHz, Chloroform-d) δ 6.16 (d, J = 2.0 Hz, 1H), 6.10 
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(d, J = 2.0 Hz, 1H), 4.87 (t, J = 2.2 Hz, 1H), 4.37 (t, J = 2.2 Hz, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 

3.15 (s, 3H), 2.70 (dt, J = 14.9, 7.2 Hz, 2H), 2.61 (dt, J = 15.6, 7.3 Hz, 2H), 2.30 (dt, J = 12.2, 

7.0 Hz, 1H), 2.18–2.07 (m, 2H), 2.04–1.96 (m, 1H). 13C NMR (151 MHz, Chloroform-d) δ 

181.1, 161.3, 155.6, 154.0, 145.8, 112.6, 106.1, 92.6, 88.0, 57.2, 55.6 (2C), 35.3, 34.2, 26.4, 

24.7. HRMS (ESI) m/z calcd for C16H20NO3 ([M+H]+) 274.1443; found 274.1442. 

 

1'-(3,4-dimethylbenzyl)-7',7'-dimethyl-2-methylene-1',7'-dihydro-2'H-

spiro[cyclopentane-1,3'-pyrano[2,3-g]indol]-2'-one (2p). Faint yellow oil (53 mg, 54%). 

TLC: Rf 0.71 (30% EtOAc in Hex). IR (NaCl): 2955, 2924, 2852, 1712, 1608. 1H NMR (600 

MHz, Chloroform-d) δ 6.87 (d, J = 8.1 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 6.51 (d, J = 8.0 Hz, 

1H), 6.48 (d, J = 2.3 Hz, 1H), 6.36 (dd, J = 8.4, 2.3 Hz, 1H), 6.32 (d, J = 10.1 Hz, 1H), 5.46 (d, J 

= 10.1 Hz, 1H), 5.04 (d, J = 17.4 Hz, 1H), 5.00 (t, J = 2.3 Hz, 1H), 4.92 (d, J = 17.3 Hz, 1H), 4.55 

(t, J = 2.3 Hz, 1H), 3.87 (s, 3H), 3.76 (s, 3H), 2.33 (td, J = 13.1, 7.3 Hz, 1H), 2.29–2.23 (m, 1H), 

2.07 (dt, J = 12.0, 7.2 Hz, 1H), 1.95 (dp, J = 13.9, 7.4 Hz, 1H), 1.36 (s, 3H), 1.33 (s, 3H). 13C 

NMR (151 MHz, Chloroform-d) δ 181.4, 160.0, 157.2, 155.2, 153.0, 138.8, 130.4, 127.6, 

126.5, 123.1, 117.4, 117.1, 110.7, 108.2, 106.8, 104.1, 98.7, 74.8, 57.5, 55.4, 40.3, 40.0, 

33.6, 29.7, 27.5, 27.0, 24.0. HRMS (ESI) m/z calcd for C27H30NO4 ([M+H]+) 432.2175; found 

432.2138. 
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CHAPTER 5 
 

 [3+2] Annulations of a-Diazoketones for  

the Synthesis of Spiroketals and Spiroaminals 

  

 

 

5.1  INTRODUCTION 

 

 The spiroketal moiety is considered a highly privileged scaffold that is found in 

numerous natural products and drugs (Figure 5.1).[1] Molecules that contain the spiroketal  

 
Figure 5.1. Biologically active natural products and drug molecules containing 

spiroketals/aminals 
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backbone have at least two oxacyclic rings in which the oxygen atoms, that belong to their 

own respective rings, share a common spiro-carbon atom. Currently, the isolation and 

characterization of new spiroketals is a continually growing field, therefore new methods 

for the laboratory synthesis of these scaffolds is highly appreciated by the chemical 

community.[1b] Synthetic efforts completed by laboratories can provide insight into possible 

biosynthetic pathways that lead to the natural synthesis of spiroketal containing natural 

products. 

 
Scheme 5.1. Synthesis of benzannulated spiroketals developed by Sharma et al. 

 

 Recently in 2014, Sharma et al. developed a solvent-dependent stereoselective 

spiroketalization using Sc(OTf)3 and exo-glycal epoxides having alcohol side chains (Scheme 

5.1).[2] The reaction proceeds through a Sc(III) mediated epoxide opening which forms a 

stabilized oxocarbenium ion that undergoes O-alkylation by the flanking hydroxyl group to 

provide the desired benzannulated spiroketals (Scheme 5.1). Subsequently in 2017, Liang 

et al. developed a Sc(OTf)3/PPh3AuOTf catalyzed spiroketalization using exo-enol ethers 

and ortho-quinone methides.[3] The authors propose this reaction proceeds through a Au(I) 
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catalyzed cyclization of an alkyne to form an exo-enol ether. Simultaneously, Sc(III) 

generates the ortho-quinone methide through a dehydration sequence. When these two 

intermediates react, they undergo a [4+2] annulation to form the desired benzannulated 

spiroketals (Scheme 5.2). 

 
Scheme 5.2. Synthesis of benzannulated spiroketals developed by Liang et al. 

 

 Given these insights into spiroketal synthesis from the literature, we began to 

hypothesize different methods to access this scaffold using our previously developed 

Rh(II)/Au(I) catalytic cocktail and taking inspiration from the systems developed by Sharma 

et al. and Liang et al in Schemes 5.1 and 5.2. As stated in Chapter 3, when analyzing 

spiroethers and azaspiro-ring systems, we dissected these molecules in half to create two 

ambiphilic reacting partners that would combine to form our desired spirocenter. 

However, when we applied this dissection to spiroketals it was determined that a cyclic 

diazo whose diazo substituted-carbon was directly bound to a heteroatom would be 

needed (Figure 5.2). No known syntheses of diazos of this nature can be found in literature, 
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presumably due to a lack of stability of the desired compound.[4]  After many failed 

attempts at developing a synthesis for a diazo compound of this nature, it was determined 

that this retrosynthetic design would be unsuccessful. 

 
Figure 5.2. Attempted retrosynthetic disconnection of spiroketals 
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 With the limitation of this unique diazo synthesis consistently in our minds, we 
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As previously mentioned in Chapter 2, during the substrate scope expansion of the 

carboxylic acid O–H insertion/Conia-ene cascade we identified the formation of a [3.1.0]-

fused ring system when non-terminal alkynes were applied in our Rh(II)/Au(I) catalytic 

system (Scheme 5.3a).[5] This product was confirmed to form through a cyclopropanation 

of the resulting furanone produced during the premixing of 3-pentynoic acid with the 

Rh(II)/Au(I) catalytic cocktail via a 5-endo-dig self-lactonization. Interested in expanding the 

scope of this serendipitous finding, we exposed a-diazoketone 1a to these conditions, 

however an unexpected rearrangement occurred to form dihydropyranone 2a in 28% yield. 
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Scheme 5.3. a) Synthesis of [3.1.0]-fused ring system through Rh(II)/Au(I) catalyzed 

cyclopropanation; b) Serendipitous finding in system when a-diazoketones were used. 

 

Table 5.1. Optimization of Dihydropyranone Synthesis 

 

entry catalysts temp, t yield (%)b 

1 Rh2(esp)2/AgOTf/PPh3AuCl rt, 15 min 28% 

2 Rh2(esp)2/AgSbF6/PPh3AuCl rt, 15 min 29% 

3 Rh2(esp)2/PPh3AuCl/(CuOTf)2-tol rt, 15 min 55% 

4 Rh2(esp)2/PPh3AuCl/(CuOTf)2-tol 0 ºC, 30 min 72% 

5 Rh2(esp)2/PPh3AuCl rt, 24 h 0% 

6 Rh2(esp)2/(CuOTf)2-tol rt, 24 h 0% 

All optimization reactions were performed by adding 3-pentynoic acid (2.5 equiv.) to a solution of 
the Lewis Acid (10 mol%) and Rh2(esp)2 (1 mol%) in 0.1 M of the appropriate CH2Cl2. Once the 
furanone was visualized on TLC, diazo 1a (1 equiv.) was added dropwise via syringe pump. Once the 
addition was complete the desired product was isolated by column chromatography.  
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(Table 5.1). Switching the silver salt to AgSbF6 had little effect on increasing the yield of the 

transformation, therefore we decided to screen the mixture of PPh3AuCl/(CuOTf)2-tol that 

was used in Chapter 4 for a more controlled activation of the alkyne in our system. This 

change significantly increased the yield of 2a to 55% (Table 5.1, entry 3). Next, we 

decreased the temperature of the reaction to 0 ºC and the yield increased to 72% (Table 

5.1, entry 4). Lastly, we screened PPh3AuCl and (CuOTf)2-tol separately in the presence of 

Rh2(esp)2 and neither Lewis acid was able to cyclize 3-pentynoic acid into the corresponding 

furanone, therefore diazo 1a underwent carboxylic acid O–H insertion into 3-pentynoic 

acid. 

Once the optimized conditions were identified we investigated the applicability of 

this method to different substrates (Scheme 5.4). The electron rich para-methoxy ketone 

diazocarbonyl participated in the reaction and the desired compound 2b was isolated in 

92% yield. Next, the para-bromo ketone diazocarbonyl was exposed to the optimized 

reaction conditions and the desired compound 2c was isolated in a 68% yield.  

 
Scheme 5.4. Substrate scope of dihydropyranones 
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 After extending the substrate scope to different a-diazoketones, we were able to 

propose a possible reaction mechanism as illustrated in Scheme 5.5. When exposed to a 

mixture of PPh3AuCl/(CuOTf)2-tol, 3-pentynoic acid undergoes a 5-endo-dig self-

lactonization to form furanone 4. Next, the Rh(II)-carbene of the a-diazoketone is attacked  

 
Scheme 5.5 Proposed mechanism of dihydropyranone synthesis providing insight into 3 

possible pathways of reactivity 

 

by the electron-rich furanone to form the active zwitterionic intermediate 5. This 

intermediate has the ability to pursue three differing pathways: 1) C-alkylation to form a 

cyclopropane, 2) O-alkylation to form a furano-furan derivative, or 3) O-acylation to form 

a six-membered lactone, kicking out a methyl-ketone as a leaving group. The latter pathway  
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is the favored mode of reactivity for this transformation, leading to a variety of 

dihydropyranone derivatives. Further experimentation is needed to provide thorough 

justification for the preference for O-acylation/6-membered lactonization. 

 With preliminary insights into the differing reactivity of a-diazoketones, we wanted 

to extend the reaction seen in Scheme 5.5 to electron-rich alkenes that would not be prone 

to pursue pathway #3 as seen in the mechanism. To initiate our studies, we exposed 

commercially available dihydrofuran to the parent a-diazoketone 1a, however only 

cyclopropanation was observed (Scheme 5.6). We postulated that a change in our a-

diazoketone was needed that would prefer O-alkylation of an oxo-carbenium ion over C-

alkylation, therefore we decided to peruse the literature in search of a different a-

diazoketone. 

 
Scheme 5.6. Attempted extension to dihydrofuran endo-alkene 

 

 Recently in 2013, Kitamura et al. found that diazonaphthoquinones can react with 

enol ethers to provide dihydronaphthoruans through an O-alkylation of an oxo-carbenium 

ions (Scheme 5.7).[6] The authors propose that diazonaphthoquinones (7) form a Rh(II) 

carbene complex in the presence of Rh2(OAc)4 that reacts with enol ethers to form the 
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active zwitterionic intermediate 9. This intermediate aromatizes to form a Rh(II)-bound 

phenolate 10 that proceeds to undergo O-alkylation to form the desired 

dihydronaphthofuran 11. Taking these findings as inspiration, we decided to use 

phenanthrenone diazo 12a, which has many similarities to the diazo used by Kitamura et 

 
Scheme 5.7. Synthesis of dihydronapthofurans by Kitamura et al. 

 

al., and expose it to dihydrofuran in the presence of Rh2(esp)2 alone (the Au(I)/Cu(I) mixture 

was not needed due to a pre-cyclized endo-alkene being used). Once the reaction was 

complete, the desired benzannulated furano-furan 13a was isolated in 76% yield.   

 
Scheme 5.8. Synthesis of benzannulated furano-furans through [3+2] annulation 
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 Inspired by these results, we sought to identify a variety of quinone-type 

diazocarbonyls that would provide similar reactivity as identified with phanenthrenone 

diazo 12a. Recently in literature, diazo quinones synthesized from 2-aminophenol 

derivatives have been shown to form metal-quinoid carbenes when in the presence of 

varying metal catalysis.[7] These active metal-quinoid carbenes have been shown to 

undergo aromatic C–H arylations with electron rich arenes[7b] and C–H functionalizations 

with arylphosphine oxides[7a], however no report of the corresponding C–H 

functionalization followed by O-alkylation of oxo-carbenium ions to form furan-derivatives 

with these types  

 
Scheme 5.9. Application of diazo quinone in developed methodology 

 

of diazo quinones has been reported. With this insight, we exposed diazo quinone 12b to 

commercially available dihydropyran in the presence of Rh2(esp)2 in refluxing 

dichloromethane, upon completion of the reaction benzannulated furano-furan 13b was 

isolated in 61% yield (Scheme 5.9). We proceeded to extend this methodology to a variety 

of electron rich alkenes (Scheme 5.10). Dihydropyran performed similarly to dihydrofuran  
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Scheme 5.10. Substrate scope of benzannulated furano-furans 

 

to provide 13c in 65% yield. Next, we exposed the electron rich endo-alkene synthesized 

from glucose to our optimized conditions and obtained the desired compound 13d in 56% 

yield. Lastly, we applied our method to an endo-alkene which was electron rich due to a 

para-methoxy aryl substituent. This alkene underwent the desired transformation to 

provide 13e in 41% yield.  

 
Scheme 5.11. Proposed mechanism of furano-furan sysnthesis mediated by metal-quinoid 

carbenes to provide thermodynamically favored cis-junction 
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 A plausible mechanism for the formation of the benzannulated furan-ring systems 

is shown in Scheme 5.11. When in the presence of Rh2(esp)2 the diazo quinones form active 

Rh(II)-quinoid carbenes 14 that undergo C–H functionalization with the electron-rich 

alkenes to form a zwitterionic intermediate 15 that quickly aromatizes to give the metal-

bound phenolate complex 16. This complex undergoes O-alkylation onto the oxo-

carbenium ion to form the thermodynamically stable cis-ring junction in 13. 

 Through a thorough understanding of the reactivity of a-diazoketones in hand, a 

new retrosynthesis was designed that “splits” spiroketals in a different manner (Figure 5.3). 

We hypothesized that by applying this newly identified mode of reactivity of metal 

carbenes derived from a-diazoketones and also metal-quinoid carbenes to electron-rich 

exo-alkenes, we could access a variety of spiroketals and spiroaminals through 

stereoselective [3+2] annulations. 

 
Figure 5.3. New retrosynthetic disconnection for spiroketals 
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5.2  SYNTHESIS OF SPIROKETALS AND SPIROAMINALS 

5.2.1  OPTIMIZATION OF CATALYTIC CONDITIONS 

 With our interest intently set on the development of a mild and efficient method 

that provides access to a variety of spiroketals using metal-carbene mediated 

methodology, we proceeded to synthesize electron-rich exo-alkene 17a from readily 

available 2-iodobenzoic acid using literature known protocols. Once this alkene was 

obtained it was exposed to a variety of metal catalysts in the presence of a-diazoketone 

1a. When the reaction was conducted in the with of Rh2(esp)2 a 7:3 ratio of the desired 

product 19a to the cyclopropane 18a was isolated in a total 37% yield (Table 5.2). The  

 

Table 5.2 Optimization of [3+2] Annulation of Exo-Alkene 

 

entry catalysts temp, t 18a:19a 19a %yield 

1 Rh2(esp)2 rt, 30 min 30:70 26% 

2 Rh2(esp)2 rt, 4 hr 0:100 43% 

3 Rh2(OAc)4 rt, 4 hr 0:100 35% 

4 Rh2(R-DOSP)4 rt, 4hr 0:100 42% 

5 Rh2(esp)2 reflux, 2 hrb 0:100 64% 

All optimization reactions were performed by adding 1a (2.5 equiv.) to a solution of Rh(II)(5 mol%) 
in 0.2 M of CH2Cl2. b 1a was added via syringe pump to a refluxing solution of 17a, no cyclopropane 
intermediate was observed with this method of addition 
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reaction gave valuable insight into the possible reaction mechanism; however, we were 

curious whether the highly substituted polarized cyclopropane could undergo 

rearrangement to the desired product 19a. Therefore, 18a was stirred at room 

temperature overnight and the next day clean conversion to 19a was observed. With these 

insights, we repeated the reaction with Rh2(esp)2 and increased the reaction time to 4 

hours, assuming this would be enough time for any necessary rearrangement, and isolated 

19a in 43% yield (Table 5.2, entry 2). Next, we repeated these conditions in the presence 

of Rh2(OAc)4 and the desired product was isolated in 35% yield (Table 5.2, entry 3). 

Subsequently, we screened the chiral Rh(II)-salt, Rh2(R-DOSP)4, in hopes of inducing 

enantiomeric excess (ee) in the transformation but no ee was induced (Table 5.2, entry 4). 

Lastly, we revisted Rh2(esp)2 but added the a-diazoketone dropwise via syringe pump to a 

refluxing solution of exo-alkene 17a and Rh2(esp)2 in hopes of increasing the yield of the 

desired product. These conditions provided the desired compound 19a in a 64% isolated 

yield.  

 

5.2.2  APPLICATION TO SUBSTRATE SCOPE 

 With the optimal conditions in hand we proceeded to extend the substrate scope 

to access a variety of spirocyces. When a non-terminal electron-rich alkene was used the 

desired spiroketal 19c was isolated as a single diastereomer in 47% yield (Scheme 5.12a). 

The yield of this reaction was low despite all attempts at optimization. This was presumably  
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Scheme 5.12. a) Synthesis of spiroketal 19c; b) Non-terminal exo-alkene was not able to 

react with diazo quinone. 

 

due to the electron-rich alkene that was formed in the final product that is of equal 

reactivity to the alkene found in the starting material. To solve this problem, we believed 

the use of diazo quinones in this transformation would increase the yield because there 

would be no reactive alkenes present in the final product. However, when diazo quinone 

12b was reacted with the non-terminal alkene 17b under our optimized conditions the 

[3+2] annulation was not successful and the diazo quinone instead underwent hydration to 

form para-bromo phenol (Scheme 5.12b). We theorized that the steric hindrance of alkene 

17b was not ideal for this transformation with diazo quinones, therefore we screened 

terminal electron-rich exo-alkenes 17a and 17c with the diazo quinone. These substrates 

successfully underwent the desired transformation to form benzannulated spiroaminal 19d 

and sprioketal 19e in 68% yield and 63% yields respectively (Scheme 5.13).  
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Scheme 5.13. a) Synthesis of benzannulated spiroaminal 19d; b) Synthesis of 

benzannulated spiroketal 19e. 

 
 
5.2.3  PROPOSED MECHANISM 

 After applying the methodology to a brief substrate scope, we were able to propose 

a plausible reaction pathway for the Rh(II)-carbene catalyzed spirocyclization (Scheme 

5.14). Decomposition of the a-diazoketone or diazo quinone in the presence of Rh2(esp)2 

forms their respective carbene species. In the case of a-diazoketone carbenes (Scheme 

5.14a), a cyclopropanation is presumed to occur initially, however this polarized 

cyclopropane 20 is highly susceptible to fragmentation to form a zwitterionic species 

consisting of an enolate and oxo/aza-carbenium ion (21). This intermediate undergoes O-

alkylation to form the desired spiroketal/spiroaminal. Comparatively, in the case of Rh(II)-

quinoid carbenes (Scheme 5.14b), the initial C–H functionalization by the electron rich 

alkene occurs to form a reactive zwitterionic intermediate 22 that immediately undergoes 

aromatization to form intermediate 23 thereby prohibiting cyclopropanation. This 
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phenolate-zwitterionic intermediate then undergoes O-alkylation to provide the desired 

spiroketal/spiroaminal. 

 
Scheme 5.14. a) Mechanism of spiroketalization using a-diazoketones; b) Mechanism of 

spiroketalization using diazo quinones 

 

5.3  SUMMARY 

 In conclusion, we have developed methodology to access a variety of heterocyclic 

scaffolds, including dihydropyranones, benzannulated furano-furans, spiroketals, and 

spiroaminals, through use of a-diazoketones and electron-rich alkenes. The unique 

reactivity of metal carbenes derived from a-diazoketones and metal-quinoid carbenes to 

prefer O-alkylation over C-alkylation and the thermal rearrangement of polarized 

cyclopropanes was crucial to the success of these efforts. Further application of this 

methodology to a wider range of scaffolds and optimization of enantioselective 

transformations are currently being pursued in the Sharma laboratory and will be reported 

in due time.  

O

Rh

Ph

H

O

Rh
R1

+
X

X

X

Ph

O XPh

O X
O

Ph

+

O

R1
Rh–

O

R1

–Rh

XX

XO

R1

b)	Metal-Quinoid	Carbenes

a)	α-Diazoketone	Derived	Carbenes

3

14

20 21 19f

22 23 19g



Ch. 5 – [3+2] Annuations of a-Diazoketones for the Synthesis of Spiroketals 283 

5.4  REFERENCES 

[1] Insights into the importance of spiroketals: a) Q. Zheng, Z. Tian, W. Liu, Curr. Opin. 

Chem. Biol. 2016, 31, 95–102; b) F. M. Zhang, S. Y. Zhang, Y. Q. Tu, Nat. Prod. Rep. 

2018, 35, 75–104. 

[2] I. Sharma, J. M. Wurst, D. S. Tan, Org. Lett. 2014, 16, 2474–2477. 

[3] M. Liang, S. Zhang, J. Jia, C.-H. Tung, J. Wang, Z. Xu, Org. Lett. 2017, 19, 2526–2529. 

[4] For reviews on diazocarbonyls and their stability: a) M. P. Doyle, R. Duffy, M. 

Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704–724; bM. P. Doyle, M. A. McKervey, 

T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From 

Cyclopropanes to Ylides, Wiley, 1998. 

[5] A. C. Hunter, S. C. Schlitzer, I. Sharma, Chem. Eur. J. 2016, 22, 16062–16065. 

[6] M. Kitamura, K. Araki, H. Matsuzaki, T. Okauchi, Eur. J. Org. Chem. 2013, 2013, 

5045–5049. 

[7] a) Z. Liu, J.-Q. Wu, S.-D. Yang, Org. Lett. 2017, 19, 5434–5437; b) K. Wu, B. Cao, C. Y. 

Zhou, C. M. Che, Chem. Eur. J. 2018, 24, 4815–4819. 

 

 

 

 

 

 



Ch. 5 – [3+2] Annuations of a-Diazoketones for the Synthesis of Spiroketals 284 

5.5  EXPERIMENTAL SECTION 

5.5.1  GENERAL PROCEDURE FOR SYNTHESIS OF DIHYDROPYRANS 

To a teflon coated 20 mL vial was added heat activated 4 Å molecular sieves (100 mg/mmol 

of starting material), Rh2(esp)2 (1 mol %), PPh3AuCl (10 mol %), and (CuOTf)2-toluene (10 

mol %). This mixture was dissolved in 0.2 M dichloromethane and allowed to stir for 5 

minutes at room temperature before 3-pentynoic acid (2.5 equiv.) was added. The reaction 

was stirred for 15 minutes or until the acid was consumed via TLC and a more non-polar 

spot (the desired furanone) formed. The corresponding diazo compound 1 (1.0 equiv.) was 

dissolved in 0.5 M dicholoromethane and then added to the catalyst solution stirring at 0 

ºC via syringe pump. Once the addition was completed, the crude mixture was filtered over 

a celite pad to remove the 4 Å molecular sieves.  The filtrate was directly loaded to a silica 

gel column and purified using flash column chromatography eluting with 10%–25% EtOAc 

in Hex to afford the dihydropyran. 

 

4-acetyl-6-phenyl-3,4-dihydro-2H-pyran-2-one (2a). 1H NMR (600 MHz, Chloroform-d) δ 

7.61 (dd, J = 6.7, 2.9 Hz, 2H), 7.37 (dd, J = 5.3, 1.9 Hz, 3H), 5.91 (d, J = 5.6 Hz, 1H), 3.62 (q, J 

= 6.0 Hz, 1H), 3.00 (dd, J = 16.2, 5.7 Hz, 1H), 2.72 (dd, J = 16.2, 6.6 Hz, 1H), 2.29 (s, 3H). 13C 

NMR (151 MHz, Chloroform-d) δ 203.8, 166.7, 152.1, 128.6, 124.8, 96.8, 44.6, 29.5, 28.0. 

O O

Me O
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4-acetyl-6-(4-methoxyphenyl)-3,4-dihydro-2H-pyran-2-one (2b). 1H NMR (400 MHz, 

Chloroform-d) δ 7.99 – 7.93 (m, 2H), 6.99 – 6.93 (m, 2H), 3.89 (s, 3H), 3.08 (dd, J = 19.1, 6.4 

Hz, 1H), 2.76 – 2.64 (m, 2H), 2.59 (dd, J = 6.4, 4.7 Hz, 1H), 1.64 (s, 3H). 13C NMR (101 MHz, 

Chloroform-d) δ 192.6, 175.4, 163.9, 130.5, 113.9, 72.7, 55.6, 55.6, 38.1, 33.7, 23.8, 12.9. 

 

4-acetyl-6-(4-bromophenyl)-3,4-dihydro-2H-pyran-2-one (2c). 1H NMR (600 MHz, 

Chloroform-d) δ 7.50 (q, J = 8.5 Hz, 4H), 5.91 (d, J = 5.6 Hz, 1H), 3.62 (q, J = 6.1 Hz, 1H), 3.01 

(dd, J = 16.2, 6.0 Hz, 1H), 2.74 (dd, J = 16.2, 6.6 Hz, 1H), 2.30 (s, 3H). 13C NMR (151 MHz, 

Chloroform-d) δ 203.5, 166.3, 151.3, 131.9, 126.3, 97.3, 44.6, 29.5. 

 

5.5.2 GENERAL PROCEDURE FOR SYNTHESIS OF BENZANNULATED FURANO-

FURANS 

To a teflon coated 20 mL vial was added heat activated 4 Å molecular sieves (100 mg/mmol 

of starting material), Rh2(esp)2 (5 mol %), and the endo-alkene (3.0 equiv.). This mixture 

was dissolved in 0.2 M dichloromethane then the corresponding diazo compound 1 (1.0 

equiv.) was added, the reaction was then heated to reflux until complete. Once complete, 

the crude mixture was filtered over a celite pad to remove the 4 Å molecular sieves.  The 
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filtrate was directly loaded to a silica gel column and purified using flash column 

chromatography eluting with 5%–10% EtOAc in Hex to afford the benzannulated furano-

furan. 

 

9a,11,12,12a-Tetrahydrofuro[2,3-b]phenanthro[9,10-d]furan (13a). TLC: Rf 0.5 (9:1 

hexanes/EtOAc). 1H NMR (500 MHz, CDCl3) δ 8.69 – 8.66 (m, 2H), 8.15 (dd, J = 7.8, 1.3 Hz, 

1H), 7.77 (dd, J = 9.0, 1.0 Hz, 1H), 7.70 – 7.60 (m, 3H), 7.53 (ddd, J = 8.3, 7.0, 1.4 Hz, 1H), 

6.67 (d, J = 5.9 Hz, 1H), 4.43 (dd, J = 8.3, 6.1 Hz, 1H), 4.17 (t, J = 8.5 Hz, 1H), 3.70 (ddd, J = 

11.9, 8.8, 5.2 Hz, 1H), 2.43 (tdd, J = 11.9, 8.6, 7.6 Hz, 1H), 2.35 (dd, J = 12.0, 5.0 Hz, 1H); 13C 

NMR (125 MHz, CDCl3) δ 152.7, 131.5, 129.4, 127.4, 127.2, 127.0, 126.7, 123.7, 123.6, 

122.9, 122.6, 122.6, 121.3, 113.7, 112.0, 67.5, 46.9, 31.6. 

 

5-Bromo-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran (13b). TLC: Rf 0.4 (9:1 

hexanes/EtOAc). 1H NMR (400 MHz, CDCl3) δ 7.29 – 7.30 (m, 1H), 7.24 (ddd, J = 6.7, 2.1, 0.7 

Hz, 1H), 6.69 (d, J = 8.5 Hz, 1H), 6.31 (d, J = 5.7 Hz, 1H), 4.09 (t, J = 8.1 Hz, 1H), 3.99 (dd, J = 

8.4, 5.9 Hz, 1H), 3.62 (ddd, J = 12.1, 8.8, 4.9 Hz, 1H), 2.30 (tdd, J = 12.2, 8.6, 7.7 Hz, 1H), 2.05 

(ddd, J = 12.4, 4.8, 0.4 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 158.6, 131.5, 130.1, 127.7, 

112.8, 111.4, 110.8, 67.3, 46.5, 33.4. 
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6-Bromo-3,4,4a,9a-tetrahydro-2H-pyrano[2,3-b]benzofuran (13c). TLC: Rf 0.3 (9:1 

hexanes/EtOAc). 1H NMR (400 MHz, CDCl3) δ 7.26 – 7.25 (m, 2H), 6.5 (d, J = 8.4 Hz, 1H), 

5.89 (d, J = 6.3 Hz, 1H), 3.81 – 3.69 (m, 2H), 3.32 (q, J = 5.9 Hz, 1H), 2.11–2.02 (m, 1H), 1.90–

1.83 (m, 1H), 1.68 – 1.62 (m, 1H), 1.57 – 1.50 (m, 1H); 13C NMR (101 MHz, CDCl3) δ 157.5, 

131.9, 131.1, 126.9, 112.9, 111.4, 104.5, 61.1, 38.8, 22.6, 19.9. 

 

3,4-Bis(benzyloxy)-2-((benzyloxy)methyl)-6-bromo-3,4,4a,9a-tetrahydro-2H-pyrano[2,3-

b]benzofuran (13d). TLC: Rf 0.5 (8:2 hexanes/EtOAc). 1H NMR (500 MHz, CDCl3) δ 7.38 – 

7.32 (m, 9H), 7.30 – 7.27 (m, 3H), 7.26 – 7.24 (m, 2H), 7.12 (d, J = 7.5 Hz, 2H), 6.72 (d, J = 

8.5 Hz, 2H), 6.10 (d, J = 6.9 Hz, 1H), 4.76 (d, J = 11.6 Hz, 1H), 4.64 – 4.56 (m, 3H), 4.53 (d, J 

= 12.1 Hz, 1H), 4.45 (d, J = 11.4 Hz, 1H), 3.82 – 3.72 (m, 3H), 3.71 – 3.66 (m, 2H), 3.52 (t, J = 

6.2 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 157.3, 137.9, 137.7, 132.5, 131.6, 128.6 (2C), 128.5 

(2C), 128.4 (2C), 128.1, 128.0 (2C), 127.9 (2C), 127.8, 127.8, 127.7, 127.6 (2C), 117.2, 111.2, 

110.0, 104.8, 79.9, 76.1, 73.5, 73.5, 73.0, 72.5, 69.1, 44.6. 

 

3a-(4-Methoxyphenyl)-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran (13e). TLC: Rf 

0.5 (9:1 hexanes/EtOAc). 1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 7.1 Hz, 1H), 7.35 (d, J = 8.8 
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Hz, 2H), 7.30 – 7.27 (m, 1H), 7.19 (d, J = 7.3 Hz, 1H), 7.06 – 7.02 (m, 1H), 6.86 (d, J = 8.7 Hz, 

2H), 4.00 (d, J = 8.7 Hz, 1H), 3.78 (s, 3H), 2.53 (dd, J = 13.8, 5.7 Hz, 1H), 2.25 – 2.13 (m, 2H), 

2.04 –  1.99 (m, 1H), 1.93 – 1.88 (m, 1H), 1.78 – 1.71 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 

159.1, 153.9, 135.6, 131.7, 130.1, 126.1 (2C), 124.1, 121.1, 118.4, 113.9 (2C), 101.5, 55.3, 

54.2, 41.8, 36.4, 25.0. 

 

5.5.3 GENERAL PROCEDURE FOR SYNTHESIS OF SPIROKETALS/AMINALS 

To a teflon coated 20 mL vial was added heat activated 4 Å molecular sieves (100 mg/mmol 

of starting material), Rh2(esp)2 (5 mol %), and the exo-alkene (1.0 equiv.). This mixture was 

dissolved in 0.2 M dichloromethane then the corresponding diazo compound 1 (2.0 equiv.) 

was added, the reaction was then heated to reflux until complete. Once complete, the 

crude mixture was filtered over a celite pad to remove the 4 Å molecular sieves.  The filtrate 

was directly loaded to a silica gel column and purified using flash column chromatography 

eluting with 10%–20% EtOAc in Hex. 

 

2'-benzyl-5-phenyl-3H-spiro[furan-2,1'-isoindolin]-3'-one (19a). 1H NMR (600 MHz, 

Chloroform-d) δ 7.95 – 7.83 (m, 2H), 7.31 (dq, J = 10.4, 3.6, 2.9 Hz, 5H), 7.16 (t, J = 7.3 Hz, 

3H), 5.45 (t, J = 2.9 Hz, 1H), 4.80 (d, J = 15.4 Hz, 1H), 4.54 (d, J = 15.6 Hz, 1H), 3.28 (dd, J = 

17.7, 2.5 Hz, 1H), 2.91 (dd, J = 17.8, 2.9 Hz, 1H). 
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3,5-diphenyl-3H,3'H-spiro[furan-2,1'-isobenzofuran] (19c). 1H NMR (500 MHz, Benzene-

d6) δ 7.73 – 7.66 (m, 2H), 7.33 (dt, J = 7.6, 0.9 Hz,10H), 7.25 – 7.20 (m, 2H), 7.12 – 6.97 (m, 

9H), 6.59 (dt, J = 7.5, 1.0 Hz, 1H), 5.55 (d, J = 2.3 Hz, 1H), 4.87 – 4.76 (m, 2H), 4.20 (d, J = 

12.8 Hz, 1H). 

 

2'-benzyl-5-bromo-3H-spiro[benzofuran-2,1'-isoindolin]-3'-one (19d). 1H NMR (600 MHz, 

Chloroform-d) δ 7.92 – 7.85 (m, 1H), 7.64 – 7.53 (m, 2H), 7.44 (d, J = 7.3 Hz, 1H), 7.30 (dd, 

J = 8.4, 2.1 Hz, 1H), 7.23 – 7.17 (m, 3H), 7.09 – 7.04 (m, 2H), 6.60 (d, J = 8.5 Hz, 1H), 4.78 (d, 

J = 15.7 Hz, 1H), 4.37 (d, J = 15.4 Hz, 1H), 3.56 (d, J = 17.4 Hz, 1H), 3.24 (d, J = 17.4 Hz, 1H). 

 

5-bromo-3H,3'H-spiro[benzofuran-2,1'-isobenzofuran]-3'-one (19e). 1H NMR (600 MHz, 

Chloroform-d) δ 7.96 – 7.91 (m, 1H), 7.81 – 7.75 (m, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.61 (d, J = 

7.6 Hz, 1H), 7.44 (s, 1H), 7.37 (d, J = 2.2 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 3.80 – 3.74 (m, 1H), 

3.64 (d, J = 17.3 Hz, 1H). 13C NMR (151 MHz, Chloroform-d) δ 166.95, 156.74, 145.69, 
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134.99, 131.62, 131.45, 128.31, 127.79, 126.82, 126.73, 125.62, 122.71, 114.50, 113.58, 

111.72, 40.41. 
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CHAPTER 6 

 
  

Conclusions 

  

 

 
 The goal of the research completed within this dissertation was to utilize metal 

carbene initiated cascade reactions to conduct the efficient synthesis of spirocyclic 

scaffolds. The value of this research was centralized around the importance of spirocycles 

and their under-exploitation in the field of drug discovery. Upon completion of this work a 

better understanding of the reactivity of metal carbenes and their use in cascade 

spirocyclizations was obtained. Metal carbenes, which are ambiphilic in nature, provided 

the possibility of conducting sequential reactions with a nucleophile and electrophile 

inbuilt in the same molecule. This cascade reactivity allowed us to stereoselectively install 

spirocenters in “single pot” reactions. 

 Within this dissertation a new strategy to prepare a-acyloxy carbonyl scaffolds, g-

butyrolactones, and tetrahydrofurans from readily available starting materials was 

developed (Chapter 2). During the development of this methodology we were able to 

identify two novel catalytic systems that were critical to the success of our chemistry: 1) 



 304 

Rh2(esp)2 as a single catalyst for the efficient insertion of carboxylic acids into very stable 

A/A diazocarbonyls and 2) Rh2(esp)2/PPh3AuOTf as a synergistic catalytic combination for 

the O–H insertion/Conia-ene cascade. 

 After completing the aforementioned work, we were able to take the insights 

learned during that methodology development to equip ourselves with knowledge 

necessary for the development of methodology to access highly valuable spiroethers and 

azaspiro-ring systems (Chapter 3). The synthesis of these spirocyclic ring scaffolds were not 

achieved without encountering challenges. The challenges we confronted during the 

synthesis of spiroethers and azaspiro-ring systems caused us to explore different catalytic 

conditions, temperatures, and reagent addition methods providing valuable insight into 

the reactivity of metal carbenes in cascade reactions with different nucleophilic sources. 

 With the successful application of our Rh(II)/Au(I) catalytic system to the synthesis 

of spiroethers and azaspiro-ring systems, we gained confidence in our ability to apply this 

system to the difficult synthesis of all-carbon spirocenters. After thorough optimization and 

a modification that required the substitution of AgOTf with (CuOTf)2-tol as our Au(I) 

activator, we were able to extend our previously identified Rh(II)/Au(I) catalytic cocktail to 

a  general approach for the synthesis of 5-, 6-, and 7-membered oxindole hybridized 

spirocarbocycles (Chapter 4).  

 Lastly, we decided to let our ambition navigate our research in an attempt to apply 

our Rh(II)/Au(I) catalytic system to the synthesis of spiroketals, however, an unsuccessful 

retrosynthetic disconnection limited our ability to complete this task. Nevertheless, a 

serendipitous discovery using a-diazoketones provided us with insight into a different 
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mode of reactivity that could be used in the synthesis of spiroketals using metal carbenes. 

With this insight, we identified a new retrosynthetic disconnection that exploited exo-

alkenes and metal carbenes obtained from a-diazoketones and metal-quinoid carbenes 

(Chapter 5). Upon completion of this work we were able to access a variety of spiroketals 

and spiroaminals. 
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recognizes meritorious dissertation projects and supports their 
completion. 

 
05/2017 Jerry J. Zuckerman Scholarship from the University of Oklahoma 

Awarded to a student in the Chemistry/Biochemistry Department 
that has made exception advances and findings in the field of 
Organometallic Chemistry  

 
05/2016 Ronald E. Lehr Scholarship from the University of Oklahoma 

Awarded to a student in the Chemistry/Biochemistry Department 
that has shown exceptional leadership and success in research and 
teaching. 

 
04/2016 SMART (Science, Mathematics, and Research for Transformation) 

Fellowship from the Department of Defense Program aims to 
increase the number of civilian scientists and engineers working at 
Department of Defense laboratories 

 
11/2015 Robberson Research Grant at The University of Oklahoma 

Financial assistance provided to graduate students whose research 
project is leading to significant advances in their field of interest or 
shows high levels or creativity.  

 
04/2014 Ernest Everett Just Fellow at Dartmouth College Monetary award 

and travel grants to attend STEM and Biomedical Research 
conferences. Prompted greater awareness for STEM success 
amongst minority student at Dartmouth College 
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