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ABSTRACT 

Mississippian Meramec reservoirs of the STACK (Sooner Trend in the Anadarko [Basin] 

in Canadian and Kingfisher counties) play are comprised of silty limestones, calcareous 

siltstones, argillaceous-calcareous siltstones, argillaceous siltstones and mudstones. Core-defined 

reservoir lithologies are directly related to independently derived petrophysical rock types based 

on core porosity-permeability relationships. Machine-learning classification was employed with 

core and well-log data to predict lithologies in non-cored wells based on well-log signatures. An 

Artificial Neural Network produced an overall accuracy of 93% by charting the model results in 

a confusion matrix and was applied to a suite of logs in non-cored wells to generate lithology 

logs for the Meramec. Using core, wireline well logs and classified lithology logs, the Meramec 

was divided into eight stratigraphic units characterized as strike-elongate, shoaling-upward 

parasequences.  The bottom three parasequences (lower Meramec) form a retrogradational 

parasequence set that back-steps to the northwest, with each parasequence capped by a marine-

flooding surface and the parasequence set capped by a maximum flooding surface. The upper 

Meramec is characterized by two parasequences that form an aggradational to progradational 

paraseqeunce set followed by two transgressive parasequences in a retrogradational 

parasequence set.  

Lithology, rock type, porosity, permeability, and water saturation models were generated 

to explore their stratigraphic and lateral variability and to evaluate their relationships to 

production, pore volume, and hydrocarbon pore volume.  Calcareous-rich lithologies and rock 

types commonly exhibit lower values of porosity and permeability with higher water saturation. 

Argillaceous-rich lithologies and rock types have relatively higher porosity and permeability 

with lower water saturation. Examining the spatial distribution of reservoir properties within the 
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stratigraphic framework, reservoir quality improves moving up in the retrogradational 

parasequence set then worsens in the overlying progradational parasequence set. The ideal 

reservoir quality lies in the parasequences below and above the maximum flooding surface 

where more argillaceous-rich lithologies and rock types exist, resulting in optimal petrophysical 

properties, higher pore volume and hydrocarbon pore volume.   
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 INTRODUCTION 

Mississippian reservoirs in the Anadarko Basin consist of carbonate and siliciclastic 

deposits with significant petrophysical-property heterogeneity that resulted from uplift and 

exposure, burial, relative sea-level changes, and diagenesis (e.g., Rogers, 2001; Watney et al., 

2001; Mazzullo et al., 2010). Mississippian carbonate and chert-rich reservoirs in southern 

Kansas and northern Oklahoma, informally known as the “Mississippi Lime”, have been the 

focus of several studies that address their depositional setting and reservoir characteristics (e.g., 

Peeler, 1985; Parham and Northcutt, 1993; Watney et al., 2001; Mazzullo, 2011; Grammer et al., 

2013; LeBlanc, 2014; Flinton, 2016; Mazzullo et al., 2016; Lindzey et al., 2017; Turnini et al., 

2017; Price and Grammer, 2018).  The basinward and, in part, laterally equivalent deposits of the 

STACK (Sooner Trend of the Anadarko [Basin] in Canadian and Kingfisher counties) play in 

central Oklahoma consist of mixed carbonate and siliciclastic sandstones, siltstones, and 

claystones (Price et al., 2017; Drummond, 2018; Duarte, 2018; Hardwick, 2018; Hickman, 2018; 

Leavitt, 2018; Miller, 2018) (Figure 1). In addition to the Late Devonian to Early Mississippian 

Woodford Shale, the Mississippian Meramec of the STACK play forms significant petroleum 

reservoirs. 

Unlike the “Mississippi Lime”, fewer studies document the lithologies, stratigraphy, 

depositional setting, and stratigraphic variability of Meramec reservoir properties in the STACK 

area. Examining core and well data, Price et al. (2017) observed that the Mississippian Meramec 

is primarily a siliciclastic system composed of argillaceous to calcareous siltstones and very fine 

sandstones and concluded that reservoir quality is inversely related to the amount of calcite 

cement. Price et al. (2017) interpreted several stacked, low-angle (<1°) prograding clinoforms 

that have strike-elongate continuity in a northeast-southwest orientation and concluded that  
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relative changes in sea-level imparted a strong control on the distribution of reservoir-quality 

facies. They suggest that the Meramec was deposited during an overall rise in sea level and 

several stacked shallowing-upward parasequences exist that grade upward from more 

argillaceous into calcareous siltstones. Hardwick (2018) interpreted a mixed carbonate-

siliciclastic system for the lower Meramec. Hardwick (2018) found that pervasive marine calcite 

cement in silt-dominated facies of the Meramec significantly occluded primary porosity and 

creates baffles for vertical fluid flow while clay partially preserved primary porosity and 

enhanced fluid flow. Drummond (2018), Hickman (2018), and Miller (2018) also identified 

mixed carbonate-siliciclastic lithofacies from core in the Meramec and found that the Meramec 

consists of shallowing upward cycles, commonly capped by marine-flooding surfaces. 

Drummond (2018) and Hickman (2018) used machine learning techniques to classify lithologies 

in non-cored wells based upon unique well-log signatures. Subsequently, they used three-

dimensional models to relate facies and petrophysical properties to stratigraphy. Hickman (2018) 

examined how interpreted reservoir parameters affected reservoir quality and how they correlate 

with Meramec production performance.  He found that production was not strongly controlled by 

lithology throughout his study area, rather completion techniques, reservoir pressure and fluid 

properties controlled production.  

To expand upon previous work, this study investigates the lithologies and rock types of 

the Mississippian Meramec and how they relate to well-log response.  Machine-learning 

techniques are explored to classify lithologies and rock types in non-cored wells. This study 

examines the stratigraphic and lateral variability of lithologies, rock types, porosity, permeability 

and water saturation and evaluates how they relate to production and affect pore volume and 

hydrocarbon pore volume distribution.  
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The study area is in southern Kingfisher, northern Canadian and eastern Blaine counties, 

Oklahoma (Figure 2).  Data include well logs from 1155 wells with an average well spacing of 

1300 to 1800 ft (396 to 548 m), 104 wells with production data, core data and descriptions 

(porosity and permeability) from 3 wells (Appendix-B3) in Kingfisher County, x-ray diffraction 

(XRD) data, x-ray fluorescence (XRF) data, thin-section photomicrographs, and SEM data. In 

this paper, I begin with an overview of the geologic setting and methodology.  Data are used to 

describe and interpret lithologies and lithofacies in cored wells and classify lithologies in non-

cored wells using machine-learning techniques.  A stratigraphic framework is developed based 

on interpreted lithological cycles. Three-dimensional reservoir models are generated to map the 

spatial distribution of lithologies and petrophysical properties and to assess hydrocarbon pore 

volume.  I conclude with a summary of my findings and discuss the stratigraphic controls on 

pore-volume and hydrocarbon pore-volume distribution. 

GEOLOGIC SETTING 

In the late Proterozoic to early Cambrian, the Southern Oklahoma Aulacogen was formed 

by inferred rifts or failed arms of triple junctions that extended into the North American craton 

during the formation of the proto-Atlantic Ocean (Burke and Dewey, 1973; Wickham, 1978; 

Perry, 1990). Once rifting ended in the early Cambrian, the Southern Oklahoma Aulacogen 

cooled and initiated subsidence, radiating northward giving way to the southern Oklahoma 

trough (Perry, 1990; Ham et al., 1965). From the Cambrian to the early Mississippian, the 

subsidence rate decreased over time and a passive continental margin existed outward from the 

trough (Perry, 1990).   
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Figure 2: Detailed map of the study area showing locations of 1155 wells with wireline logs 
(GR, NPHI, RhoB, PE, RILD), 2 cored wells and 3 cross-sections.
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Three major tectonic events shaped the paleogeography of the North American craton 

during the Mississippian: the Acadian, Antler, and proto-Ouchita orogenies (Gutshick and 

Sandberg, 1983). These events formed the Transcontinental Arch which cut across North 

America, trending northeast to southwest and separating the Madison ramp to the northwest and 

the Burlington ramp to the southeast (Appendix-A1). From the late Mississippian through the 

early Pennsylvanian, the North American craton collided with Gondwana, giving rise to the 

Ouachita and Wichita orogenic events, with the orogenic events lasting into the Permian (Ball et 

al., 1991). As the two plates converged, what is now present-day Texas was pushed northward 

against the midcontinent, causing the Wichita Mountains and Amarillo Arch to be uplifted and 

thrust over the southern margins of the southern Oklahoma aulacogen and trough. This initiated 

subsidence and formed the Anadarko Basin (Ball et al., 1991).  

The Anadarko Basin is an asymmetrical foreland basin with a northwest trend that covers 

approximately 58,000 mi2 (150,000 km2) across western Oklahoma, the northern part of the 

Texas Panhandle, southwestern Kansas, and southeastern Colorado (Beebe, 1959; Lane and De 

Keyser, 1980; Gutschick and Sandberg, 1983; Ball et al., 1991). At its deepest point, the 

Anadarko Basin contains up to 40,000 ft (12,000 m) of Paleozoic sedimentary deposits (Ham et 

al., 1965). The Anadarko Basin is bound by the Arbuckle uplift to the south, the Amarillo-

Wichita uplift to the southwest, the Nemaha uplift to the east and gradually thins northward into 

the Hugoton Embayment and Las Animas Arch and the Central Kansas Uplift (Beebe, 1959; 

Adler, 1971; Lane and De Keyser, 1980; Perry, 1990; Ball et al., 1991).  

In the Mississippian, the study area was likely located in the tropical to subtropical 

latitudinal belt (Appendix-A1), between 20° S and 30° S relative to the paleoequator (Curtis and 
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Champlin, 1959; Witzke, 1990; Mazzulo et al., 2010). Mississippian deposits were the product of 

broad epeirogenic movement of warm, shallow sea water that occurred throughout the southern 

midcontinent (Northcutt et al., 2001). Deposition of these sediments within the Anadarko Basin 

occurred along a low relief ramp (<1°), distally steepening into the basin.  The Mississippian 

marks the transitional period from greenhouse conditions during the earlier Devonian to icehouse 

conditions in the late Pennsylvanian- early Permian. Read (1995) and Haq and Schutter (2008) 

suggest that the early Mississippian deposits were a result of lower amplitude sea-level 

fluctuations characterized by greenhouse conditions while the upper Mississippian deposits 

consist of higher amplitude sea-level changes indicative of an icehouse climate (Appendix-A2).  

 Mississippian deposits have been divided into four depositional episodes of 

Kinderhookian, Osagean, Meramecian, and Chesterian age (Northcutt et al., 2001). The 

Mississippian interval is described by Sloss (1963) as a 2nd-order transgressive-regressive cycle 

affiliated with the top of the Kaskaskia sequence. It is bounded below by a minor disconformity 

and above by a major unconformity (Comer, 1991) with several higher-order, transgressive-

regressive cycles. 

METHODS 

Lithologies, lithofacies, and rock types 

Lithologies and lithofacies were identified in the Mississippian Meramec by combining 

1) detailed core descriptions with 2) petrographic data, and 3) calculated mineralogy from X-ray

fluorescence.  The three cored wells within the study area include Well A (485 ft [148 m]) in an 

undisclosed location, the Gulf Oil Corp 1-23 Shaffer (242 ft [74 m]) and the Gulf Oil Corp 1-25 

Rohling (207 ft [63 m]). Well A (Appendix-B1) was described to identify lithologies and 
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lithofacies through observations of composition, sedimentary structures, grain size, color, and 

diagenetic textures. Core descriptions for the Gulf Oil Corp 1-23 Shaffer and Gulf Oil Corp 1-25 

Rohling were incorporated from previous studies (Miller, 2018; Drummond, 2018; Hickman, 

2018). Utilizing cored interval gamma-ray logs, a depth correction was applied to each core: +25 

ft (7.6 m) for Well A, +5 ft (1.5 m) for the Gulf Oil Corp 1-23 Shaffer and +10 ft (3 m) for the 

Gulf Oil Corp 1-25 Rohling. Petrographic data including percentages of primary minerals (D. 

Larese, 2018, personal communication) based on 33 thin sections from the Well A core were 

used to understand diagenetic processes and products. Additionally, twelve and fourteen thin-

section photomicrographs from the Gulf Oil Corp 1-25 Rohling and Gulf Oil Corp 1-23 Shaffer, 

respectively, were also used to interpret lithologies. For the three cored wells, X-ray fluorescence 

(XRF) data and calculated mineralogies (from the XRF data) were converted to a well-log format 

and used to determine the variability of carbonate (calcite + dolomite), clay, and quartz (wt. %) 

within the cores to better define lithologies.  The XRF inversion algorithm uses major elemental 

data (e.g., calcium, silicon, magnesium and potassium) and converts it into corresponding 

mineralogies based on input parameters (e.g., feldspar to clay ratio, siderite to chlorite ratio) set 

in the algorithm (H. Han and S. Dang, 2018, personal communication). The inversion is 

calibrated by comparing the calculated mineralogy to measured mineralogy from Fourier-

transform infrared spectroscopy (FTIR).  

Petrophysically defined rock types and rock-type logs were provided that are based on 

core-derived porosity and permeability from Well A, Gulf Oil Corp 1-23 Shaffer, Gulf Oil Corp 

1-25 Rohling, and Payrock Energy 1506 McCarthy (I. Gupta, 2018, personal communication).

Rock types are defined from cross plots of core-measured permeability (air) and porosity and 

applying Flow Zone Indicator (FZI) cutoffs (Appendix-B2) to separate the data. An FZI cutoff is 

8



a value that is determined by the ratio of the Reservoir Quality Index (RQI) and the pore-to-grain 

volume (Rpvgv) and is determined by the following equations developed by Amaefule et al. 

(1993): 

𝑅𝑅𝑅𝑅𝑅𝑅 = 0.0314 ∗  �
𝑘𝑘
∅

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
∅

1 −  ∅

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

where: 

k = permeability 

ø = porosity 

Rpvgv = pore-to-grain volume ratio 

RQI = Reservoir Quality Index 

FZI = Flow Zone Indicator 

Final FZI cutoff values were determined through a “hit and trial” method. After 

determining initial FZI cutoff values, geomechanical, mineralogical and petrophysical properties 

were analyzed by rock types and adjusted accordingly until sufficient contrast of rock types was 

reached.    

Classification of Lithologies 

Electrofacies classification is a method to estimate subsurface properties (e.g. lithology, 

rock type) in non-cored wells within an area of interest utilizing some form of machine learning. 

According to Serra and Abbot (1982), “the electrofacies concept is primarily a method of 

9



describing rock in terms of its well-log characteristics.” By comparing a well-log signature to its 

corresponding cored interval, a relationship can be identified between well-log response and the 

described facies or calculated rock type from core. This relationship can be used to classify those 

facies or rock types in non-cored wells based solely on well-log response.  A supervised 

classification approach (Artificial Neural Network [ANN]) and unsupervised clustering approach 

(principle component analysis and K-means) of machine learning were used to classify 

lithologies for Well A and the Gulf Oil Corp 1-23 Shaffer, and Gulf Oil Corp 1-25 Rohling wells 

and applied to non-cored wells. In addition, an ANN was used to classify rock types in non-cored 

wells. 

ANNs are, in essence, a computer’s way of mimicking the biological problem-solving 

skills of the human brain. By being able to resolve patterns in complex data, it can form 

relationships in the data and then store those data as experiential knowledge. For lithology 

classification, the ANN minimizes the error between a target output (e.g. a discrete core-based 

lithology log) and an estimated or classified output (e.g. the lithology classification) (Kumar and 

Kishore, 2006). This is completed through an iterative process known as training the ANN. By 

analyzing input variables (well logs), the ANN internally begins to form relationships between 

the well-log signatures and the corresponding lithology log (target output) based on core-

described lithologies. The training is completed by randomly cross-validating a user defined 

amount of the data (50%) used to form the relationships with the remaining data used to test the 

accuracy of the relationships. Three different log suite combinations were explored in training 

the ANN: 1) Gamma ray (GR), Neutron porosity (NPHI), Bulk density (RhoB), 2) GR, NPHI, 

RhoB, photoelectric effect (PE), 3) GR. NPHI, RhoB, deep resistivity (RILD).  
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Principle component analysis (PCA) and K-means clustering groups data (i.e., well-log 

responses) into similar categories, which are then classified into, in this case, lithologies. PCA is 

a data preprocessing step conducted prior to K-means clustering to decrease the dimensionality 

of the data and to determine the extent of the property variability. This is accomplished by 

finding the covariance matrix of the mean subtracted data point for each variable, then 

computing the covariance matrix eigenvectors and eigenvalues. The computed eigenvectors 

represent the principal components and each successive principle component indicates the 

direction of decreased anisotropy (Smith, 2002).  

K-means is a clustering algorithm that minimizes the sum of squared distances from each

point to the centroid within each cluster (Hartigan, 1975; Wagstaff et al., 2001; Kunungo et al., 

2002). This is done by first assigning a given K (the number of clusters), which are randomly 

distributed throughout the data. If K can cannot be resolved by core data, then it can be 

determined through other means, one of which is an elbow plot (Appendix-C5). An elbow plot 

takes the sum of squares between (cumulative distance of each centroid to the global centroid 

with increasing K values) and the sum of squares within (cumulative distance between data 

points in a cluster and the centroid with increasing values of K) and plots them against each 

other. Where the slope decreases (elbow) in each line is the value of natural clusters within the 

data set as determined by the elbow plot. The data points are then clustered based on the closest 

centroid and a recalculation of the centroid position is then conducted to reflect the mean 

position of the data assigned to that centroid. Through an iterative process, the centroid positions 

are recalculated, and data points are reassigned until each point mean distance is minimized in 

reference to its centroid (Hartigan, 1975; Wagstaff et al., 2001; Kunungo et al., 2002).  
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To evaluate the accuracy of the ANN and PCA/K-means classifications, the lithology and 

rock type classifications are compared to the actual core-defined lithologies and rock types using 

a confusion matrix (Ting, 2011). The confusion matrix is a table that shows instances of the 

actual class in rows and instances of the predicted class in columns (Kohavi and Provost, 1998; 

Ting, 2011). Two types of accuracies are measured; overall accuracy and user’s accuracy. 

Overall accuracy is the summation of all the correctly predicted classes divided by the number of 

classes predicted. This value is important but can overshadow the erroneous predictions of 

individual classes, which is why user’s accuracy is also important. User’s accuracy is determined 

by the number of correctly predicted occurrences of a specific class divided by the total 

occurrences for that class (Janssen and van der Wel, 1994). Overall and user’s accuracies were 

calculated for both ANN and K-means methods. 

Stratigraphy 

The stratigraphy of the Meramec was developed by interpreting lithologies, lithofacies 

successions, and key surfaces using core (N=3), classified lithology logs, and conventional well 

logs (gamma-ray, neutron porosity, bulk density and resistivity) for 1155 wells. Formation tops 

were interpreted in the 1155 wells to subdivide the Meramec into zones (Figure 3) through 

means of dip- and strike-oriented cross sections.  Isopach and structure-contour maps were 

generated for each zone to visualize the trends and for quality control of the formation tops.  

Lithology, Rock-Type, and Petrophysical-Property Modeling 

A 3-D reservoir model grid was generated with commercial software by using the 

structure-contour maps that define the reservoir zones. The 3-D grid covers an area of 

approximately 575 mi2 (1490 km2) with aerial cell dimensions of 250 ft x 250 ft (76 m x 76 m) 

with an approximate cell/layer thickness of 2 ft (0.6 m). The grid in the I, J, and K directions is 
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comprised of 406 x 249 x 406 cells, respectively, resulting in 40,677,952 cells. A proportional 

layering scheme was used. For 4 Upper Meramec zones, the grid was truncated where the zones 

pinched out.  

Vertical lithology variograms were created utilizing both normal and nested spherical 

variogram models. Horizontal ranges were determined based upon cell size, well spacing, and 

variogram maps produced from corresponding upscaled logs. Horizontal variogram ranges in 

both the major and minor directions for the rock-type model were reduced by 500 ft (152.4 m) 

and 250 ft (76.2 m) respectively. The horizontal variograms for the subsequent petrophysical 

properties were reduced by another 500 ft (152.4 m) and 250 ft (76.2 m) in the major and minor 

directions. Shorter ranges for the major and minor directions aided in capturing smaller scale 

internal property heterogeneity (e.g. porosity is heterogeneous within lithologies and rock types) 

(Appendix C-7 to C-10).  

To represent the spatial variability of lithologies within the Meramec, a 3-D lithology 

model was constructed with a commercial software package using sequential-indicator 

simulation (SIS). The model constraints include: 1) the stratigraphic framework (3-D grid), 2) 

upscaled lithology logs, 3) variogram parameters by zone, 4) lithology percentages by zone, and 

5) lithology proportion volumes for each lithology. Lithology logs were upscaled to the 3-D

model grid by assigning a single lithology class to a cell based on the most abundant lithology 

within a cell. The target fractions of each lithology were obtained from the upscaled lithology 

logs. The spatial variability of the lithologies was constrained by well-data and lithology 

proportion volumes. Lithology proportion volumes (Appendix-C10) were generated by first 

dividing the model area into 8 smaller areas and creating lithology vertical proportion curves 

14



(VPC) or logs (N=8) for each area. The VPC log data were mapped to generate a proportion 

volume for each lithology.    

A 3-D rock type model was constructed to evaluate the spatial distribution of rock types. 

Rock types were also modeled using SIS with the following modeling constraints: 1) the 

stratigraphic framework (3-D grid), 2) upscaled rock-type logs, 3) variogram parameters by 

zone, 4) rock-type percentages by zone, and 5) rock-type proportion volumes for each rock type. 

Rock-type logs were upscaled to the 3-D model grid by assigning a single rock type to a cell 

based on the most abundant rock type within a cell. Target fractions of each rock type were 

obtained from the upscaled rock-type logs. The spatial variability of the rock types was 

constrained by rock type proportion volumes (Appendix-C11) generated from vertical rock-type 

proportion curves (N=8) using a similar method as described earlier for lithologies. 

A 3-D porosity model was generated to evaluate the distribution of total porosity (PHITot) 

within the study area. PHITot logs were biased to the rock-type logs and upscaled using an 

arithmetic mean. The porosity model was generated using a sequential-Gaussian simulation 

(SGS) and was constrained to: 1) 3-D rock-type model, 2) upscaled PHITot logs (biased to rock 

type), 3) porosity histograms by zone and rock type, and 4) variogram parameters by zone and 

rock type.  A permeability (k) model was calculated using the FZI equation with inputs from the 

PHITot and rock-type models.   

Water saturation (Sw) logs were calculated using the basic Archie equation, resistivity 

(RILD) logs, and PHITot logs. The parameters for the Archie equation were determined through 

core and lab measurements (Ali Tinni, 2019, personal communication) where: Cementation 

exponent (m) = 1.73, Formation water resistivity (Rw) = 0.026 Ohm • m, and Saturation exponent 

(n) was determined to be a function of porosity:
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  A 3-D Sw model was generated using SGS and constrained to: 1) the 3-D rock type 

model, 2) upscaled Sw logs (biased to rock type), Sw  histograms by zone and rock type, and 

variogram parameters by zone and rock type.  

Volumetric and Production Analysis 

The 3-D rock type, PHITot and Sw models were used in a volumetric uncertainty analysis 

workflow (Figure 4) to calculate low, middle, and high case scenarios for pore volume and 

hydrocarbon pore volume (HCPV). The volumetric calculation was completed through an 

uncertainty analysis conducted in commercial software with 25 realizations of pore volume and 

hydrocarbon pore volume. For this analysis, the global seed value for the rock type model was 

randomized to generate the different realizations. Each rock-type realization was then used as a 

constraint for associated PHITot and Sw models. For the 25 realizations, P10 (most conservative), 

P50 and P90 (most optimistic) values for pore volume were determined and related to their 

corresponding rock type, PHITot, and Sw models (Appendix-D1 to D4) for analysis.  HCPV was 

calculated by simply multiplying pore volume by oil saturation (1-Sw). PHITot was used for 

volumetric calculations due to the possibility that hydrocarbons in the Meramec exist in clay-rich 

lithologies. Average maps were generated for the entire Meramec and by zone to evaluate the 

spatial distribution of pore volume and HCPV.  

Meramec horizontal wells with production data (N=104) were categorized by reservoir 

zone. Synthetic logs were extracted from the generated 3-D models along the laterals for 

lithology, rock type, porosity, permeability, and water saturation. Completion data including  
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Figure 4: Generalized model workflow outlining the steps taken to 
generate the 3-D models for the study area and the subsequent 
volumetric analysis 
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average stage length and average amount of stages in the lateral were also considered 

parameters. Production data for 180-day cumulative oil production were chosen for analysis. The 

production data were normalized by dividing the 180-day cumulative production values by the 

lateral length of the well, normalizing the data into BBL/ft. For lithology and rock type logs, 

ratios were calculated to determine the fraction of that lithology and rock type present in the 

lateral. Averages were calculated for porosity, permeability, and water saturation along the 

lateral. These values for the 104 wells were then cross-plotted against 180-day cumulative oil 

production (STB) normalized to BBL/ft to observe the correlation between reservoir parameters 

and production.  

RESULTS  

Lithologies, lithofacies, and rock types 

The Mississippian Meramec in the STACK area consists primarily of 5 lithologies: 1) 

mudstone, 2) argillaceous siltstone, 3) argillaceous-calcareous siltstone, 4) calcareous siltstone 

and 5) silty limestone; and 8 lithofacies:  1) structureless mudstone, 2) silty laminated mudstone, 

3) silty bioturbated mudstone, 4) calcareous bioturbated siltstone, 5) calcareous laminated

siltstone, 6) very fine grained calcareous structureless sandstone to very course siltstone, 7) very 

fine grained calcareous, cross-stratified sandstone to very course siltstone, and 8) skeletal silty 

packstone to grainstone (Figures 5 and 6, Table 1). Lithofacies gradually vary stratigraphically 

and commonly do not have distinct boundaries. Given that several lithofacies qualitatively 

exhibit similar well-log responses, lithologies were estimated in non-cored wells using machine 

learning.   

Three rock types (1, 2, and 3) are defined based on the FZI approach (Gupta, 2018, personal 

communication).  Of the three rock types, rock type 1 has the least carbonate (13 wt. % of calcite  
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Figure 5: Core photographs of the identified Meramec lithofacies in the study 
area: A) Structureless mudstone (Well A (X419 ft [X871 m] MD). B) Silty 
laminated mudstone (Well A (X423 ft [X872 m] MD). C) Silty bioturbated 
mudstone (Well A (X429.5 ft [X874 m] MD). D)  Calcareous bioturbated siltstone 
(Well A (X718 ft [X962 m] MD). E) Calcareous laminated siltstone (Well A 
(X523 ft [X903m] MD). F) Calcareous structureless very fine-grained sandstone/ 
very course siltstone (Well A (X535 ft [X906 m] MD). G) Calcareous, cross-
stratified very fine-grained sandstone/very course siltstone (Well A (X537 ft X907 
m] MD). H) Skeletal silty packstone to grainstone Gulf Oil Corp 1-23 Shaffer
(9696 ft [2955 m] MD). Legend: L = laminations, Bu = bioturbations, CS = cross-
stratification, MD = Mud Drape, F = Fossil.
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 Figure 6: Thin section photomicrographs of the identified Meramec lithofacies in 
the study area: A) Structureless mudstone. Very clay rich with dispersed fossil 
fragments and pyrite.  (Well A (X418.15ft [X871 m] MD). B) Silty laminated 
mudstone.  Angular to sub-angular, moderately-well sorted silt-sized quartz grains. 
Clay rich with faint planar to inclined lamina. Dispersed peloids, pyrite and 
calcite\fossil fragments present. (Well A (X424 ft [X872 m] MD). C) Silty 
bioturbated mudstone. Angular to sub-angular, moderately well sorted silt-sized 
quartz grains. Clay rich with burrows comprising of more clay material. Peloids, 
dispersed pyrite and calcite\fossil fragments present (Well A (X430 ft [X874 m] 
MD). D) Calcareous bioturbated siltstone. Angular to sub-angular, moderately well 
sorted silt-sized quartz grains. Higher amounts of calcite present with clay-filled 
burrows and intergranular clay material (Well A (X718.20 ft [X962 m] MD). E) 
Calcareous laminated siltstone. Elevated levels of calcite. Angular to sub-angular, 
well sorted silt-sized quartz grains. Planar to inclined, clay-rich laminations. (Well 
A (X523 ft [X903m] MD). F) Calcareous structureless very fine-grained sandstone/ 
very course siltstone. Angular very coarse-grained silt to very-fine grained sand, 
quartz grains. Heavily cemented with calcite. Fossil fragments and calcite grains 
prevalent. Dispersed peloids observed (Well A (X535 ft [X906 m] MD). G) 
Calcareous, cross-stratified very fine-grained sandstone/very course siltstone. 
Angular very coarse-grained silt to very-fine grained sand, quartz grains. Heavily 
cemented with calcite. Fossil fragments and calcite grains prevalent. Planar, wavy 
and inclined laminations observed with elevated clay minerals. Dispersed peloids 
and pyrite found. (Well A (X537 ft X907 m] MD). H) Skeletal silty packstone to 
grainstone. Fossil fragments prevalent with high levels of calcite cement and grains. 
Peloids and silt-sized quartz grains found throughout. (Gulf Oil Corp 1-23 Shaffer 
(9696.25 ft [2955 m] MD). Legend: L = laminations, Bu = bioturbations, CS = 
cross-stratification, F = Fossil, P = peloid. 
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+ dolomite), the most clay (27 wt. %) and has the lowest Young’s Modulus (41 GPa). Compared

to the other rock types, rock type 1 is the most porous (5.8 vol%) and exhibits lower water 

saturation (33 %). In contrast, rock type 3 has the most carbonate (38 wt.%) and the least clay (14 

wt.%). Rock type 3 exhibits low porosity (2.3 %), high Young’s Modulus (53 GPa), and relatively 

high water saturation (53 %).  Rock type 2 has values for these parameters that are between rock 

types 1 and 3. When comparing the interpreted lithologies to rock types, there is a direct 

correlation. Mudstone, argillaceous siltstone, and some argillaceous-calcareous siltstone (more 

clay-rich end member) relate directly to rock type 1. The majority of argillaceous-calcareous 

siltstone correlates to rock type 2, and calcareous siltstone and silty limestone relate to rock type 

3.  

Classification of Lithologies 

The primary goal of using machine learning in this study was to classify lithologies in 

non-cored wells based on well-log data. The complication with lithofacies in the Meramec lies in 

their unique fine-scale features such as grain size, sedimentary structures and bedding planes. 

These characteristics are not manifested in distinctive well-log signatures, making them difficult 

to classify accurately. By grouping lithofacies into their correlative parent lithologies, they are 

distinguishable by log response, allowing them to be classified more accurately in non-cored 

wells.    

Through evaluation of the target output (core lithology log) and the predicted output 

(classified lithology log) of the ANN by means of confusion matrices, relatively high overall and 

user’s accuracies were achieved (Figure 7, Table 2, Appendix-C1 and C2). For the Well A core, 

the overall accuracy is 93% utilizing a log suite of GR, NPHI, RhoB and PE. User’s accuracies 

are 100%, 91.6%, 86.7% and 97.7% for mudstone, argillaceous siltstone, argillaceous-calcareous 
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ANN

Core
Mudstone
Argillaceous Siltstone
Arg. Calc. Siltstone
Calcareous Siltstone
User Accuracy

Mudstone Argillaceous
Siltstone

Arg. Calc.
Siltstone

Calcareous
Siltstone

25
0
0
0

0 0 0
4
4

1
28

22

14
235

317

350

100.0 % 91.6 % 86.7 % 97.7 %

GR, NPHI, RhoB, PE

ANN

Core
Argillaceous Siltstone
Arg. Calc. Siltstone
Calcareous Siltstone
Silty Limestone
User Accuracy

Argillaceous
Siltstone

Arg. Calc.
Siltstone

Calcareous
Siltstone

Silty 
Limestone

0
0
0
0

0 0 0
0

24
6

26
46

7
39

209

137

0.0 % 86.7 % 42.4 % 85.1 %

GR, NPHI, RhoB, PE

ANN

Core
Argillaceous Siltstone
Arg. Calc. Siltstone
Calcareous Siltstone
Silty Limestone
User Accuracy

Argillaceous
Siltstone

Arg. Calc. 
Silstone

Calcareous
Siltstone

Silty
Limestone

40
4
5
0

4 5 0
0
7

0
61

0

5
136

140

92

81.6 % 68.3 % 93.2 % 92.3 %

GR, NPHI, RhoB, PE

Overall Accuracy : 92.7 %

Overall Accuracy : 77.9 %

Overall Accuracy : 84.8 %

A

B

C

Table 2: Confusion matrices displaying the accuracies for the artificial neural 
network in Petrel using a log suite of gamma ray (GR), neutron porosity 
(NPHI), bulk density (RhoB) and photoelectric effect (PE) for: A) Well A B) 
Gulf Oil Corp 1-23 Rohling and C) Gulf Oil Corp 1-25 Shaffer.
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siltstone, and calcareous siltstone, respectively. The unsupervised PCA/K-means clustering 

method yielded lower accuracies (Table 3) utilizing multiple log-suite combinations for Well A. 

An elbow plot (Appendix-C5) indicates that three clusters are naturally identifiable in the soft 

data (well logs). Due to a lack of additional nearby cored wells to conduct blind tests to further 

evaluate the accuracy of the ANN classification model, a qualitative method was used. 

Lithologies were defined for small discrete core intervals (samples) of the Meramec in Well A, 

Gulf Oil Corp 1-23 Shaffer and Gulf Oil Corp 1-25 Rohling, and those lithology intervals were 

used to train the ANN. Lithologies were then classified for the other cored intervals of the three 

wells, using the ANN (cross validation). The results of cross validation were qualitatively 

evaluated by cross-plotting clay (wt. %) versus carbonate (calcite + dolomite wt.%) (mineralogy 

based on XRF data) and color coding the plot by ANN-derived classified lithologies. (Figure 8). 

The plot illustrates that the calcareous siltstones and limestones plot with high calcite and low 

clay, and that mudstones and argillaceous siltstones exhibit high clay and relatively low calcite.  

Thus, the ANN-classified lithologies are consistent with the XRF-derived mineralogy.     

 For lithology classification in non-cored wells, the reservoir model was divided into 

northwest and southeast areas (Appendix-C4) with the boundary between the two areas oriented 

approximately parallel to depositional strike.  The boundary was selected to correspond to a shift 

in gamma-ray values based on a Meramec gamma-ray map. The Well A ANN model was used to 

classify lithologies in all non-cored wells represented in the southeast area, whereas the Gulf Oil 

Corp 1-23 Shaffer and Gulf Oil Corp 1-25 Rohling ANN model was used to classify the 

northwest area wells. The reservoir model is divided into areas for lithology classification 

because silty limestone present in the Gulf Oil Corp 1-23 Shaffer and Gulf Oil Corp 1-25 

Rohling cores is not present in the Well A core (located south of those wells) and mudstone 

27



Kmeans

Core
Mudstone
Argillaceous Siltstone
Arg. Calc. Siltstone
Calcareous Siltstone
User Accuracy

Mudstone Argillaceous
Siltstone

Arg. Calc.
Siltstone

Calcareous
Siltstone

25
126

20
2

0 0 0
0
0

0
175
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151
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207

141

14.5 % 54.2 % 30.9 % 100.0 %

GR, NPHI, RhoB, PE

Overall Accuracy : 47.9 %

A

Kmeans

Core
Mudstone
Argillaceous Siltstone
Arg. Calc. Siltstone
Calcareous Siltstone
User Accuracy

Mudstone Argillaceous
Siltstone

Arg. Calc.
Siltstone

Calcareous
Siltstone

25
173

0
2

0 0 0
6

38
12

168
41

24
61

123

256

12.5 % 40.6 % 48.4 % 85.3 %

GR, NPHI, RhoB

Overall Accuracy : 50.1 %

C

Kmeans

Core
Mudstone
Argillaceous Siltstone
Arg. Calc. Siltstone
Calcareous Siltstone
User Accuracy

Mudstone Argillaceous
Siltstone

Arg. Calc.
Siltstone

Calcareous
Siltstone

25
173

0
2

0 0 0
6

34
5

172
41

42
61

123

245

12.5 % 41.0 % 42.4 % 85.9 %

GR, NPHI, RhoB,RILD

Overall Accuracy : 48.9 %

B

Table 3: Confusion matrix for K-means showing accuracies of the classifications 
for lithologies in Well A. K-means inputs include: A) gamma ray (GR), neutron 
porosity (NPHI), bulk density (RhoB) and photoelectric effect (PE), B) gamma ray 
(GR), neutron porosity (NPHI), bulk density (RhoB) and deep resistivity (RILD) 
and C) gamma ray (GR), neutron porosity (NPHI) and bulk density (RhoB). 
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Figure 8: Cross plots of clay and calcite in weight percent colored by the 
classified lithologies in the corresponding wells. A) represents Well A. B 
represents both the Gulf Oil Corp 1-23 Shafer and 1-25 Rohling.  
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 described in Well A is absent in the Gulf Oil Corp 1-23 Shaffer and Gulf Oil Corp 1-25 Rohling. 

This suggests that a change in depositional characteristics exist and different ANN models are 

required.  

In regard to rock types, due to limited sample sizes from cores in the study area, rock 

types were classified for the entire study area using an ANN for only the Well A core. The ANN 

for rock types produced an overall accuracy of 70% with user’s accuracies of 80%, 67% and 

66% for rock types 1, 2 and 3, respectively (Appendix-C3). The same qualitative method used 

for lithologies was used to evaluate the rock-type classification results. The plot illustrates that 

the calcareous-rich rock type 3 plots with high calcite and low clay, and that the mudstone-rich 

rock type 1 exhibits high clay and relatively low calcite.  Thus, the ANN-classified rock types 

are consistent with the XRF-derived mineralogy (Figure 9).    

Stratigraphy 

The Meramec in the study area ranges in thickness from 63 ft (19 m) in the northwest to 

525 ft (160 m) in the southwest (more distal). The Mississippian interval is considered to be a 

2nd-order-regressive (5-50 Ma) sequence which represents the upper part of the Kaskaskia 

Sequence of Sloss (1963). The Mississippian sequence is capped by a major unconformity. 

Higher-order cyclicity (Figure 3; e.g., third- and fourth-order) is interpreted in the Meramec 

interval (e.g., Price et al., 2017; Miller, 2018; Drummond, 2018); however, the specific timing of 

each cycle or order of cyclicity is not known. Milankovich-driven eustasy is the attributed 

driving force to these shorter, higher-order cycles; however, other controlling factors may also 

include: rates of sedimentation, short term (seasonal) climate variations, and tectonics (e.g., 

Read, 1995; Rogers, 2001; Watney et al, 2001).  Numerous upward-shallowing depositional 

cycles are interpreted based on the vertical succession of lithofacies as observed in core and  
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Figure 9: Cross-plot of carbonate (calcite + dolomite) and clay content from the Well A 
core derived from an x-ray fluorescence (XRF) inversion to mineralogy. The data points 
are color coded by the classified rock types determined from the artificial neural 
network. Rock type 1 is clay rich, rock type 2 contains both carbonate and clay and rock 
type 3 is carbonate rich. 
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interpreted from well logs. An idealized stacking pattern is defined as (from base to top) 

mudstone, argillaceous siltstone, argillaceous calcareous siltstone, and calcareous siltstone/silty 

limestone.  Each upward-shallowing cycle is interpreted to be a parasequence that is capped by a 

marine-flooding surface.  Although not totally clear, the parasequences appear to exhibit deposits 

that reflect an initial minor transgressive phase followed by a regressive phase (Figure 3) as 

opposed to being completely asymmetric upward-shoaling cycles with only a regressive phase.  

Cycles are often incomplete or irregular in terms of the lithologies and lithofacies. The upward-

shallowing and coarsening cycles generally exhibit upward-decreasing GR well-log signatures 

punctuated by a sharp increase in GR at the top of each cycle that corresponds to the flooding 

surface.  An overall increase in GR occurs from the north-northwest to south-southeast, 

indicating an increase in clay content. 

Based on lithofacies stacking patterns observed in core and compared to well logs (GR, 

NPHI, RhoB, RILD), the Meramec is divided into eight parasequences (Figures 10 and 11). The 

key surfaces that cap each parasequence or reservoir zone are the Osage and the eight Meramec 

zones (from base to top: A, B10, B, C, D, E, F, G) (Figures 3, 10 and 11). 

Lithology, Rock-Type, and Petrophysical-Property Models 

To constrain the spatial distribution of lithologies, rock-types, and petrophysical 

properties, vertical variograms were created and ranges were estimated that vary from 2 to 7 ft 

(0.6 to 2.1 m). Based on qualitative trends, lithology horizontal variogram ranges were set to 

4000 ft (1220 m) and 2000 ft (610 m) in the major and minor directions, respectively; and to 

3500 ft (1065 m) and 1750 ft (530 m) for rock types. Horizontal variogram ranges for 

petrophysical properties are less than ranges for lithologies and rock types and are set to 3000 ft 

(915 m) and 1500 ft (460 m) in the major and minor directions, respectively.  Vertical variogram  
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Figure 10: Regional cross sections through the study area flattened on the Late Devonian 
Woodford shale, displaying the interpreted internal stratigraphic zones of the Mississippian 
Meramec. The GR track is shaded by the lithology classifications and was used as a guide 
for stratigraphic correlations. (A) represents a northwest-southeast dip-oriented cross-
section showing the progradational nature of the clinoforms in the study area. Calcareous-
rich lithologies are prevalent in the northwest transitioning to clay-rich lithologies in the 
southeast, moving into the basin. (B) represents a northeast-southwest, strike oriented 
cross-section, showing an increase in the overall thickness of the Meramec.  
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Figure 11: Interpreted parasequence isopach maps for the Meramec A-G and the entire 
Meramec. Depositional dip indicated by the isopachs is to the southeast with depositional strike 
occurring at approximately 70° from the north.  
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ranges for petrophysical properties vary from 2 to 3 ft (0.6 to 0.9 m) (Appendix-C6 through C9). 

For the lithology model, parasequences A, B10, and B show lithologies that backstep to 

the northwest, and represent a retrogradational clinoform set with an upward increase in 

argillaceous-rich lithologies (18 to 34 %) and decrease in calcareous-rich lithologies (61 to 37 %) 

(Figures 12 and 13). Parasequence B is capped by a maximum flooding surface and is comprised 

of primarily argillaceous-rich lithologies. The parasequence stacking patterns suggest that 

parasequences D through E form an aggradational to progradational parasequence set 

(progradation to southeast) as indicated by upward-coarsening vertical lithology successions, 

becoming more calcareous rich (30 to 64 %) moving up section into parasequence E. 

Parasequences F and G overly parasequence E and represent a retrogradational parasequence set, 

back step to the northwest, and contain more argillaceous-rich facies (23 to  52 %), with the 

majority of the mudstone in the study area present in parasequence G to the southeast 

(basinward).  

For the rock-type model, parasequences A, B10 and B also show rock types that backstep 

to the northwest, with an increase in the clay-rich rock type 1 (6.8 to 33.1 %) and a decrease in 

the carbonate-rich rock type 3 (39.3 to 12.4 %) moving up section (Figures 12 and 13). Meramec 

E displays a significant increase (38.5 %) in the amount of rock type 3 followed by a significant 

increase of rock type 1(54.0 and 78.6 %) in the overlying Meramec F and G, respectively. The 

vertical proportion curves for lithologies and rock types (Figure 3) both show the same 

retrogradational-progradational-retrogradational trend, indicating a positive relationship.  

Total porosity in the study area ranges from 0–10% with some anomalous readings of 

15%, primarily occurring in the very clay rich Meramec F and G. Porosity increases distally into 
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Figure 12: Northwest-southeast and northeast-southwest slices of the 3-D modeling 
results with the Osage horizon shown. (A) is the lithology model and (B) is the rock 
type model. (C) porosity (D) permeability and (E) water saturation models were 
constrained to the rock type model.  (F) is the resulting P50 hydrocarbon pore volume 
model. Comparing all 6 models, petrophysical properties are observed to be 
controlled by the distribution of calcite-clay content.
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Figure 13: Northwest-southeast oriented cross-sections through the 3-D model flattened on the 
Late Devonian Woodford shale horizon. (A) shows the 7 stratigraphic zones and the 
progradational nature of the clinoforms associated with the Meramec in the study area overlying 
the Osage. (B) shows the spatial distribution of the lithologies within the study area. Meramec A, 
B, B10 and D display an overall decrease in calcareous-rich lithologies moving up section with 
an increase in clay-rich lithologies indicative of a rise in sea-level and retrogradation. Meramec 
E shows an increase in calcareous-rich lithologies with Meramec F and G showing an increase in 
clay-rich lithologies indicating a drop in sea-level followed by a rise in sea-level respectively. C) 
shows the spatial distribution of the rock types within the study area. Meramec A, B, B10 and D 
display an overall decrease in rock type 1 moving up section with an increase in clay-rich 
lithologies indicative of a rise in sea-level and retrogradation. Meramec E shows an increase in 
calcareous-rich rock type 3 with Meramec F and G showing an increase in clay-rich rock type 1 
indicating a drop in sea-level followed by a rise in sea-level respectively. The models shown 
represent the P50 realization based on uncertainty analysis discussed in the Volumetric and 
Production Analysis section.    
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the basin to the southeast, with lower porosity values occurring proximal to the northwest. The 

porosity model (Figures 12 and 14) shows increasing porosity moving up section in relationship 

to increasing argillaceous-rich lithology and rock types, with lower average porosity for the 

Meramec A (2.7 %) and higher average values in parasequences B10, B, and D (3.4, 4.4, and 

5.3%, respectively). Transitioning into the Meramec E, the average porosity is observed to be 3.9 

%, which is a decrease associated with an increase in calcareous-rich lithologies and rock types. 

In the Meramec F and G average porosity is 6.1 and 7.1%, respectively, which represents an 

increase in average porosity associated with an increase in argillaceous-rich lithologies and rock 

types.  

 Permeability measurements from core range from 0.01 µD to 0.1 mD. The average 

permeability of the Meramec in the study area is low; approximately 4.5 µD. Trending from 

northwest to southeast, permeability increases moving proximal to distal into the basin (Figures 

12 and 14). The permeability model (Figures 12 and 14) shows increasing permeability moving 

up section in relationship to increasing argillaceous-rich lithology and rock types, with lower 

average permeability for the Meramec A (2.4 µD) and higher average values in parasequences 

B10, B, and D (3.2 , 4.9, and 6.8 µD, respectively). Transitioning into the Meramec E, the 

average permeability is observed to be 4.1 µD, which is a decrease associated with an increase in 

calcareous-rich lithologies and rock types. In the Meramec F and G average permeability is 7.3 

and 6.1 µD, respectively, which represents an increase in average permeability associated with 

an increase in argillaceous-rich lithologies and rock types. 

Water saturation is variable throughout the study area. The water saturation (Sw) model 

(Figures 12 and 14) shows decreasing Sw moving up section in relationship to increasing 

argillaceous-rich lithology and rock types, with higher average Sw for the Meramec A (45 %) and 
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Figure 14: Northwest-southeast oriented cross-sections through the 3-D model flattened 
on the Late Devonian Woodford shale horizon. (A) shows the spatial distribution of 
porosity within the study area. Meramec A, B, B10 and D display an overall increase in 
porosity moving up section with an increase in clay-rich lithologies and rock types 
indicative of a rise in sea-level and retrogradation. Meramec E shows a decrease in 
porosity with Meramec F and G showing an increase in porosity indicating a drop in sea-
level followed by a rise in sea-level respectively. (B) shows the spatial distribution of 
permeability within the study area. Meramec A, B, B10 and D display an overall increase 
in permeability moving up section with an increase in clay-rich lithologies and rock types 
indicative of a rise in sea-level and retrogradation. Meramec E shows a decrease in 
permeability with Meramec F and G showing an increase permeability indicating a drop 
in sea-level followed by a rise in sea-level respectively. (C) shows the spatial distribution 
of water saturation within the study area. Meramec A, B, B10 and D display an overall 
decrease in water saturation moving up section with an increase in clay-rich lithologies 
and rock types. Meramec E shows an increase in water saturation with Meramec F and G 
showing a decrease in water saturation. Water saturation is observed to be highest with 
calcareous-rich lithologies and rock types. (D) shows the spatial distribution of HCPV 
within the study area. Meramec A, B, B10 and D display an overall increase in HCPV 
moving up section with an increase in clay-rich lithologies and rock types. Meramec E 
shows a decrease in HCPV with Meramec F and G showing an increase in water HCPV. 
The models shown represent the P50 realization based on uncertainty analysis discussed 
in the Volumetric and Production Analysis section.    
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lower average values in parasequences B10, B, and D (44, 41, and 34 %, respectively). 

Transitioning into the Meramec E, the average Sw is observed to be 44 %, which is an increase 

associated with an increase in calcareous-rich lithologies and rock types. In the Meramec F and 

G average Sw is 38 and 44 %, respectively, which represents a decrease in average Sw associated 

with an increase in argillaceous-rich lithologies and rock types for the Meramec F, but water-

bound clay is thought to explain the increase in average Sw  in association with the onset of 

mudstone in Meramec G. 

Volumetric and Production Analysis 

Used herein, in terms of pore volume and hydrocarbon pore volume (HCPV) in reservoir 

barrels (RB), P10 represents the more conservative volumetric outcome of the models with P90 

representing the optimistic volumetric output (Figure 15). The P10, P50, and P90 rock-type 

models (Appendix-D1) contain similar percentages of rock types 1, 2 and 3, (23%, 50.8%, and 

26.2%, respectively).  

Through uncertainty analysis (25 realizations), pore volume, HCPV, and HCPV per 

section in reservoir barrels (RB) were calculated and P10, P50, and P90 cases are reported (Table 

4). The P10, P50 and P90 pore volume amounts are 42,089 x 106, 42,138 x 106, and 42,175 x 106 

RB, respectively; resulting in < 1% difference between values. HCPV amounts are 27,043 x 106, 

27,093 x 106, and 27,131 x 106 RB for the P10, P50, and P90 cases, respectively. The P50 HCPV 

model (Figures 12 and 14) shows increasing average HCPV moving up section in relationship to 

increasing argillaceous-rich lithology and rock types, with lower average HCPV for the 

Meramec A (541 x 106 RB) and higher average values in parasequences B10, B, and D (542 , 

910, and 898 x 106 RB, respectively). Transitioning into the Meramec E, the average HCPV is  
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Figure 15: Histogram of pore volume calculated through 25 iterations in an uncertainty analysis. 
P10, P50 and P90 values of pore volume are displayed via the horizontal dashed lines. The y-axis 
is the fraction of iterations that correspond to the calculated pore volume on the x-axis.  
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MRMC_G 2294 1323

MRMC_F 255521 2909 1905

MRMC_E 790275 5623 3443 5.98

MRMC_D 946236 9077 6256 10.86

MRMC_B 1348926 10495 6764 11.74

MRMC_B10 1058487 6231 3906 6.78

MRMC_A 1117578 5460 3446 5.98

Total 5694149 42089 27043 41.35

MRMC_G 177127 2307 1336

MRMC_F 255521 2886 1886

MRMC_E 790275 5638 3454 6.00

MRMC_D 946236 9074 6263 10.87

MRMC_B 1348926 10482 6746 11.71

MRMC_B10 1058487 6263 3938 6.84

MRMC_A 1117578 5488 3469 6.02

Total 5694149 42138 27093 41.44

MRMC_G 177127 2292 1326

MRMC_F 255521 2893 1887

MRMC_E 790275 5614 3443 5.98

MRMC_D 946236 9103 6288 10.92

MRMC_B 1348926 10525 6786 11.78

MRMC_B10 1058487 6257 3933 6.83

MRMC_A 1117578 5491 3467 6.02

Total 5694149 42175 27131 41.52

P90 Volumetric Calculations

Zone
Bulk Volume          

(*10
6
 ft

3
)

Pore Volume        

(*10
6
 RB)

Hydrocarbon Pore 

Volume (*10
6
 RB)

P50 Volumetric Calculations

Zone
Bulk Volume          

(*10
6
 ft

3
)

Pore Volume        

(*10
6
 RB)

Hydrocarbon Pore 

Volume (*10
6
 RB)

P10 Volumetric Calculations

Zone
Bulk Volume          

(*10
6 ft3)

Hydrocarbon Pore 

Volume (*106 RB)

HCPV per section 

(*106 RB) 

Pore Volume        

(*10
6
 RB)

HCPV per section 

(*106 RB) 

HCPV per section 

(*106 RB) 

Table 4: Results from the volumetric analysis for P10, P50, P90 and base case scenarios. 
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observed to be 535 x 106 RB, which is a decrease associated with an increase in calcareous-rich 

lithologies and rock types. In the Meramec F and G average HCPV is 853 and 778 x 106 RB, 

respectively, which represents an increase in average HCPV associated with an increase in 

argillaceous-rich lithologies and rock types. 

 Average pore volume and HCPV maps (Figure 16, Appendix-D5 to Appendix-D9) for 

P10, P50, and P90 cases show their spatial distribution. The greatest pore volume and HCPV 

amounts are associated with parasequences B and D.  HCPV per section was also calculated for 

the entire Meramec (~41 x 106 RB) and for each parasequence A–E (Table 4). 

Through cross-plots, 180-day production was compared to lithology, rock type, porosity, 

permeability, water saturation, average stage length in the lateral, and average amount of stages 

in the lateral, to determine if there was a correlation between these parameters and reservoir 

productivity (Appendix-E1 to Appendix-E5). Based on this qualitative analysis, there are no 

clear trends between 180-day production and these reservoir parameters. However, when looking 

at the comparison between 180-day normalized production and rock type 2(Appendix-E4), a 

loose correlation can be made. The cross-plot shows that production potentially increases with an 

increase in rock type 2. With this said, completion design can significantly impact the reservoir 

rock and associated fault and fracture networks; therefore, it can be difficult to make 

assumptions when comparing production back to the reservoir parameters without a more 

thorough and complex analysis.  
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DISCUSSION 

The K-means dilemma with lithology classification 

K-means clustering is a powerful and simple machine learning tool, used to identify

patterns in data and cluster the data based on similarities. Its use, however, entails certain 

restrictive assumptions about the data which come with consequences that might not be 

immediately apparent (Raykov et al., 2016). In this study, K-means clustering achieved low 

accuracies(k = 3) when clustering mudstone, argillaceous siltstone and argillaceous-calcareous 

siltstone in Well A utilizing three different well-log suites ([GR, NPHI, RhoB, PE], [GR, NPHI, 

RhoB, RILD], [GR, NPHI, RhoB]), resulting in overall classification accuracies of 47.9, 48.9 

and 50.0% (Table 3) when comparing the clustered data back to the cored-defined lithology log. 

It did however achieve high accuracies when clustering calcareous siltstone. The issue with the 

lower accuracies may lie in the subtle gradational nature of one lithology into another with no 

clear end-members, the variability of clay and calcite in the lithologies and how these lithologies 

unique well-log signatures subtly differ from one another in some instances.  

Reservoir parameters and implications on reservoir quality 

The Mississippian Meramec consists of mixed carbonate-siliciclastic deposits that have 

undergone significant change since deposition due to uplift and exposure, burial, relative sea-

level changes, and diagenesis. Unlike the reservoirs of the “Mississippi Lime” to the north, 

where diagenesis allowed for enhanced moldic and intercrystaline porosity in spiculitic and 

chert-rich deposits (Wethington and Pranter, 2018), the Meramec in the STACK area is a very 

low porosity and permeable rock. Two of the driving factors on reservoir quality in the Meramec 

are clay and calcite-cement abundance. Porosity is lower in more calcareous-rich lithologies 

while argillaceous-rich lithologies exhibit higher porosity (Figure 17). This is thought to be the  
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Figure 17: Cross-plots of A) calcite versus total porosity and B) clay versus total porosity. 
The data points are colored by classified lithologies determined from the artificial neural 
network.  
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result of clay particles partially lining grains and pores and limiting the onset of calcite 

cementation during diagenesis, thus preserving primary pore space. In support of this, Hardwick 

(2018) found that in the Meramec, the primary loss of porosity and permeability can be attributed 

to onset of calcite cementation and that interstitial clay allowed for the preservation of primary 

pore space. In addition, (D. Larese, 2018, personal communication) found that there were two 

dominant diagenetic processes prevalent in the study area that controlled porosity: 1) burial 

compaction and 2) chemical compaction. Burial compaction resulted in deformation of detrital 

clay, ductile deformation, and grain breakage and rotation. While clays conformed to other 

detrital grains such as calcite and quartz, interstitial voids were created, thus preserving pore 

space and contributing to overall porosity (D. Larese, 2018, personal communication). Chemical 

compaction resulted in sutured grain contacts and stylolites.  Chemical cementation resulted in 

calcite-dolomite cements, followed by quartz and then pyrite. Clays inhibit chemical compaction 

and reduce quartz cementation (D. Larese, 2018, personal communication). Observations suggest 

that permeability, aligning with porosity, appears to favor the more argillaceous lithologies and 

rock types. As a result of diagenetic controls on porosity, it is inferred that permeability is also 

directly impacted by the same processes that affected porosity. 

With observations on the petrophysical models, the stratigraphic and lateral variability of 

petrophysical properties, pore volume and HCPV are directly related to calcite cement and the 

distribution of clays throughout the study area.  Furthermore, the distribution of lithologies, rock 

types and petrophyscial properties in addition to pore volume and HCPV suggest that the 

Meramec B and D are the best intervals in the Meramec for production. Both zones contain the 

optimal proportions of the best lithologies and rock types along with the best porosity, 

permeability, pore volume and HCPV and the lowest water saturations.  
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CONCLUSIONS 

The Mississippian Meramec is comprised of mixed carbonate-siliciclastic sediments that 

were deposited on a broad, regionally extensive carbonate ramp to distal basinal setting in 

relatively shallow warm waters. High-frequency sea level fluctuations in the shallow water 

setting impart a large control on the distribution of facies. The Mississippian Meramec in the 

STACK area consists primarily of 5 lithologies: 1) mudstone, 2) argillaceous siltstone, 3) 

argillaceous-calcareous siltstone, 4) calcareous siltstone and 5) silty limestone; and 8 lithofacies:  

1) structureless mudstone, 2) silty laminated mudstone, 3) silty bioturbated mudstone, 4)

calcareous bioturbated siltstone, 5) calcareous laminated siltstone, 6) very fine grained 

calcareous structureless sandstone to very course siltstone, 7) very fine grained calcareous, cross-

stratified sandstone to very course siltstone, and 8) skeletal silty packstone to grainstone. 

Directly related to lithology, 3 rock types based upon core porosity-permeability relationships 

were calculated using a flow-zone indicator (FZI) approach. Machine learning methods were 

used to classify lithologies in non-cored wells. The use of an Artificial Neural Network, a 

supervised method of machine learning, produced an overall accuracy of 93%. This was 

completed with a log suite as an input comprised of GR, NPHI, RHOB and PE.  Verification of 

classification accuracy was validated through qualitative measures using core mineralogy cross-

plots.  

The Meramec stratigraphic framework consists of 8 parasequences. The parasequences 

stack to form a retrogradational parasequence set overlain by an aggradational to progradational 

parasequence set.  The uppermost two parasequences are also retrogradational in character.  The 

parasequence stacking, associated lithology distribution, and diagenetic cements appear to 

control the distribution of petrophyscial properties, pore volume, and hydrocarbon pore volume. 

51



Calcareous-rich lithologies have lower porosity, permeability and HCPV and exhibit higher 

water saturation. Argillaceous-rich lithologies associated with the uppermost interval of the 

retrogradational parasequence set (zone B) and lower part of the overlying parasequence set 

(zone D) appear to be the more favorable reservoir rock in the Meramec. Parasequences B and D 

exhibit higher porosity, permeability and HCPV and lower water saturation exhibiting the 

optimal reservoir quality.   
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APPENDIX 

LIMITATIONS 

This section addresses some of the limitations that were encountered during the scientific 

method process and recommended solutions that could be used to better improve the results. 

Log Normalization 

Log normalization was not performed on the digital las well logs in the 1155 wells in the 

study area. This could affect the end results of the subsequent models generated in this study.  

Production Analysis 

A simple production analysis was conducted in this study relating 180-day normalized 

production to reservoir parameters. Due to the complex methods that are required in hydrocarbon 

extraction in unconventional reservoirs, a more detailed and equally complex analysis would 

need to be conducted in an attempt to understand the relationship between production and 

reservoir parameters. Other variables such as reservoir pressure, GOR and structure are a few 

variables that could be examined to further correlate production to reservoir parameters moving 

forward.  
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Appendix A1. Late Mississippian paleogeographic map. The study area, as marked 
by the black box, is located the Anadarko basin southeast of the Transconticnental 
Arch and paleoequator, positioned approximately between 20-30o S, southeast of 
the paleoequator. 
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Appendix A2. Global onlap and sea level curve for the Carboniferous-Permian 
period tied to a generalized Mississippian stratigraphic column and Meramec 
type log from the study area. The Meramec was deposited during a transition 
from greenhouse to icehouse climate conditions, resulting in increasing 
cyclicity with the rise and fall of sea level thus affecting deposition (modified 
from Boyd, 2008; Haq and Schutter, 2008)
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APPENDIX B: Core Data 

APPENDIX-B1: Well A Core Description 
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Appendix-B2:  A) shows a cross-plot of core measured air permeability (md) 
versus porosity for the listed wells. B) is the same cross-plot with the data colored 
by rock type after an FZI equation was applied. 
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APPENDIX C: Lithology and Rock Type Classification 

Appendix-C1: Confusion matrix of the artificial neural net (ANN) showing accuracies of 
the classifications for lithologies in the A) Well A, B) Gulf Oil Corp 1-23 Rohling and C) 
Gulf Oil Corp 1-25 Shaffer. ANN inputs include: gamma ray (GR), neutron porosity 
(NPHI), bulk density (RhoB) and deep resistivity (RILD). 
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Appendix-C2: Confusion matrix of the artificial neural net (ANN) showing accuracies of the 
classifications for lithologies in the A) Well A, B) Gulf Oil Corp 1-23 Rohling and C) Gulf 
Oil Corp 1-25 Shaffer. ANN inputs include: gamma ray (GR), neutron porosity (NPHI) and 
bulk density (RhoB). 
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Appendix-C3: Confusion matrix of the artificial neural net (ANN) showing 
accuracies of the classifications for rock types in Well A. ANN inputs 
include: A) gamma ray (GR), neutron porosity (NPHI), bulk density (RhoB) 
and photoelectric effect (PE), B) gamma ray (GR), neutron porosity (NPHI), 
bulk density (RhoB) and deep resistivity (RILD) and C) gamma ray (GR), 
neutron porosity (NPHI) and bulk density (RhoB). 
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Gulf Oil Corp 1-25 Rohling  
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Appendix-C4: Map of the study area with an average gamma ray map as an overlay and the 
locations of two cored wells annotated above. The Gulf Oil Corp 1-23 Rohling and 1-25 Shaffer 
was cored in an area of lower average gamma ray values and Well A at an undisclosed location 
southeast was cored in an area of higher average gamma ray values. The dashed line represents 
where the model was divided into half based on the gamma ray trend observed. 
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Appendix -C5: Plot of Sum-of-Squares within (SSW) and Sum-of-Squares between also known 
as an elbow plot. The SSW plot compares the cumulative distance of each point to its 
corresponding centroid as the number K values increase. The SSB plot compares the cumulative 
distance of each centroid to the global centroid in the data with increasing K values. Where the 
slope of both SSW and SSB decreases, known as the elbow, indicates the optimal number of K 
for the data set. 
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Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 4000 2000 5.95 70

MRMC_F 4000 2000 4.855 70

MRMC_E 4000 2000 5.299 70

MRMC_D 4000 2000 5.232 70

MRMC_B 4000 2000 5.198 70

MRMC_B10 4000 2000 5.176 70

MRMC_A 4000 2000 5.209 70

Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 4000 2000 6.99 70

MRMC_F 4000 2000 5.392 70

MRMC_E 4000 2000 5.052 70

MRMC_D 4000 2000 5.071 70

MRMC_B 4000 2000 5.215 70

MRMC_B10 4000 2000 5.172 70

MRMC_A 4000 2000 5.158 70

Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 4000 2000 5.501 70

MRMC_F 4000 2000 5.314 70

MRMC_E 4000 2000 5.105 70

MRMC_D 4000 2000 5.1 70

MRMC_B 4000 2000 4.957 70

MRMC_B10 4000 2000 5.315 70

MRMC_A 4000 2000 5.278 70

Variogram Parameters for Lithology Modeling ( Mudstone)

Variogram Parameters for Lithology Modeling (Argillaceous Siltstone)

Variogram Parameters for Lithology Modeling (Argillaceous‐Calcareous Siltstone)

Appendix-C6: Horizontal and vertical variogram ranges for the lithology model separated 
by zone. Horizontal ranges were estimated from well spacing. The vertical ranges were 
estimated through variography for each zone by lithology. 
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Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 4000 2000 5.767 70

MRMC_F 4000 2000 5.217 70

MRMC_E 4000 2000 5.18 70

MRMC_D 4000 2000 5.239 70

MRMC_B 4000 2000 5.269 70

MRMC_B10 4000 2000 5.284 70

MRMC_A 4000 2000 5.342 70

Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 4000 2000 8.735 70

MRMC_F 4000 2000 4.815 70

MRMC_E 4000 2000 5.227 70

MRMC_D 4000 2000 5.015 70

MRMC_B 4000 2000 5.148 70

MRMC_B10 4000 2000 5.093 70

MRMC_A 4000 2000 5.295 70

Variogram Parameters for Lithology Modeling (Silty Limestone)

Variogram Parameters for Lithology Modeling (Calcareous Siltstone)

Appendix-C6 cont'd.: Horizontal and vertical variogram ranges for the lithology model 
separated by zone. Horizontal ranges were estimated from well spacing. The vertical ranges 
were estimated through variography for each zone by lithology. 
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Zone Lithology Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

Mudstone 4.366 70

Argilaceous Siltstone 4.51 70

Argillaceous‐Calcareous Siltstone 4.51 70

Calcareous Siltstone 4.038 70

Silty Limestone 4.551 70

Mudstone 4.51 70

Argilaceous Siltstone 4.51 70

Argillaceous‐Calcareous Siltstone 3.976 70

Calcareous Siltstone 4.181 70

Silty Limestone 4.53 70

Mudstone 4.017 70

Argilaceous Siltstone 3.997 70

Argillaceous‐Calcareous Siltstone 4.51 70

Calcareous Siltstone 4.099 70

Silty Limestone 4.53 70

Mudstone 4.654 70

Argilaceous Siltstone 4.017 70

Argillaceous‐Calcareous Siltstone 4.366 70

Calcareous Siltstone 4.079 70

Silty Limestone 4.038 70

Mudstone 4.51 70

Argilaceous Siltstone 4.53 70

Argillaceous‐Calcareous Siltstone 4.079 70

Calcareous Siltstone 4.53 70

Silty Limestone 4.53 70

Mudstone 4.489 70

Argilaceous Siltstone 4.551 70

Argillaceous‐Calcareous Siltstone 3.996 70

Calcareous Siltstone 4.839 70

Silty Limestone 4.058 70

Mudstone 2.148 70

Argilaceous Siltstone 4.037 70

Argillaceous‐Calcareous Siltstone 3.77 70

Calcareous Siltstone 4.51 70

Silty Limestone 4.51 70

MRMC_A

Variogram Parameters for Rock Type Modeling (Rock Type 1)

MRMC_G

MRMC_F

MRMC_E

MRMC_D

MRMC_B

MRMC_B10

3500 1750

3500 1750

3500 1750

3500 1750

3500 1750

3500 1750

3500 1750

Appendix-C7: Horizontal and vertical variogram ranges for the rock type model separated 
by zone. Horizontal ranges were decreased from the lithology model to capture the internal 
heterogeneity of the rock types within the lithologies. The vertical ranges were estimated 
through variography for each rock type by lithology and zone. 

74



Zone Lithology Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

Mudstone 4.428 70

Argilaceous Siltstone 4.509 70

Argillaceous‐Calcareous Siltstone 4.53 70

Calcareous Siltstone 4.489 70

Silty Limestone 4.489 70

Mudstone 4.51 70

Argilaceous Siltstone 4.489 70

Argillaceous‐Calcareous Siltstone 3.935 70

Calcareous Siltstone 4.407 70

Silty Limestone 4.51 70

Mudstone 3.996 70

Argilaceous Siltstone 3.524 70

Argillaceous‐Calcareous Siltstone 4.469 70

Calcareous Siltstone 4.469 70

Silty Limestone 4.51 70

Mudstone 4.53 70

Argilaceous Siltstone 4.551 70

Argillaceous‐Calcareous Siltstone 3.976 70

Calcareous Siltstone 4.058 70

Silty Limestone 3.997 70

Mudstone 4.489 70

Argilaceous Siltstone 3.873 70

Argillaceous‐Calcareous Siltstone 3.771 70

Calcareous Siltstone 3.935 70

Silty Limestone 3.79 70

Mudstone 4.51 70

Argilaceous Siltstone 4.51 70

Argillaceous‐Calcareous Siltstone 4.222 70

Calcareous Siltstone 4.181 70

Silty Limestone 4.53 70

Mudstone 4.099 70

Argilaceous Siltstone 3.955 70

Argillaceous‐Calcareous Siltstone 4.078 70

Calcareous Siltstone 4.099 70

Silty Limestone 3.976 70

Variogram Parameters for Rock Type Modeling (Rock Type 2)

MRMC_G 3500 1750

MRMC_F 3500 1750

MRMC_E 3500 1750

MRMC_D 3500 1750

MRMC_A 3500 1750

MRMC_B 3500 1750

MRMC_B10 3500 1750

Appendix-C7 cont'd.: Horizontal and vertical variogram ranges for the rock type model 
separated by zone. Horizontal ranges were decreased from the lithology model to capture the 
internal heterogeneity of the rock types within the lithologies. The vertical ranges were 
estimated through variography for each rock type by lithology and zone. 
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Zone Lithology Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

Mudstone 4.387 70

Argilaceous Siltstone 3.995 70

Argillaceous‐Calcareous Siltstone 4.51 70

Calcareous Siltstone 4.53 70

Silty Limestone 4.469 70

Mudstone 4.386 70

Argilaceous Siltstone 4.51 70

Argillaceous‐Calcareous Siltstone 4.51 70

Calcareous Siltstone 4.489 70

Silty Limestone 4.53 70

Mudstone 4.41 70

Argilaceous Siltstone 4.325 70

Argillaceous‐Calcareous Siltstone 4.469 70

Calcareous Siltstone 4.51 70

Silty Limestone 4.407 70

Mudstone 4.017 70

Argilaceous Siltstone 4.51 70

Argillaceous‐Calcareous Siltstone 4.099 70

Calcareous Siltstone 3.956 70

Silty Limestone 4.53 70

Mudstone 3.523 70

Argilaceous Siltstone 4.2 70

Argillaceous‐Calcareous Siltstone 3.935 70

Calcareous Siltstone 4.14 70

Silty Limestone 3.996 70

Mudstone 4.51 70

Argilaceous Siltstone 3.997 70

Argillaceous‐Calcareous Siltstone 4.51 70

Calcareous Siltstone 4.53 70

Silty Limestone 4.058 70

Mudstone 4.038 70

Argilaceous Siltstone 3.997 70

Argillaceous‐Calcareous Siltstone 3.976 70

Calcareous Siltstone 4.448 70

Silty Limestone 4.058 70

Variogram Parameters for Rock Type Modeling (Rock Type 3)

MRMC_G 3500 1750

MRMC_F 3500 1750

MRMC_E 3500 1750

MRMC_D 3500 1750

MRMC_A 3500 1750

MRMC_B 3500 1750

MRMC_B10 3500 1750

Appendix-C7 cont'd.: Horizontal and vertical variogram ranges for the rock type model 
separated by zone. Horizontal ranges were decreased from the lithology model to capture the 
internal heterogeneity of the rock types within the lithologies. The vertical ranges were 
estimated through variography for each rock type by lithology and zone. 
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Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 3000 1500 3.348 70

MRMC_F 3000 1500 2.083 70

MRMC_E 3000 1500 2.601 70

MRMC_D 3000 1500 2.402 70

MRMC_B 3000 1500 2.386 70

MRMC_B10 3000 1500 2.185 70

MRMC_A 3000 1500 2.088 70

Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 3000 1500 2.469 70

MRMC_F 3000 1500 2.489 70

MRMC_E 3000 1500 3.005 70

MRMC_D 3000 1500 2.573 70

MRMC_B 3000 1500 2.281 70

MRMC_B10 3000 1500 2.458 70

MRMC_A 3000 1500 2.754 70

Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 3000 1500 2.912 70

MRMC_F 3000 1500 2.518 70

MRMC_E 3000 1500 2.512 70

MRMC_D 3000 1500 2.553 70

MRMC_B 3000 1500 2.405 70

MRMC_B10 3000 1500 2.5 70

MRMC_A 3000 1500 2.424 70

Variogram Parameters for Porosity Modeling ( Rock Type 1)

Variogram Parameters for Porosity Modeling ( Rock Type 2)

Variogram Parameters for Porosity Modeling ( Rock Type 3)

Appendix-C8: Horizontal and vertical variogram ranges for the total porosity model 
separated by zone and rock type. Horizontal ranges were decreased from the rock type 
model to capture the internal heterogeneity of total porosity within the rock types. The 
vertical ranges were estimated through variography for each zone by rock type. 
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Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 3000 1500 3.407 70

MRMC_F 3000 1500 3.475 70

MRMC_E 3000 1500 3.475 70

MRMC_D 3000 1500 3.316 70

MRMC_B 3000 1500 3.158 70

MRMC_B10 3000 1500 3.498 70

MRMC_A 3000 1500 3.543 70

Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 3000 1500 3.521 70

MRMC_F 3000 1500 3.498 70

MRMC_E 3000 1500 3.271 70

MRMC_D 3000 1500 3.339 70

MRMC_B 3000 1500 3.43 70

MRMC_B10 3000 1500 3.521 70

MRMC_A 3000 1500 3.407 70

Zone Major (ft) Minor (ft) Vertical (ft)
Azimuth          

(degrees from N)

MRMC_G 3000 1500 3.589 70

MRMC_F 3000 1500 3.521 70

MRMC_E 3000 1500 3.453 70

MRMC_D 3000 1500 3.385 70

MRMC_B 3000 1500 2.569 70

MRMC_B10 3000 1500 3.475 70

MRMC_A 3000 1500 3.475 70

Variogram Parameters for Water Saturation Modeling ( Rock Type 1)

Variogram Parameters for Water Saturation Modeling ( Rock Type 2)

Variogram Parameters for Water Saturation Modeling ( Rock Type 3)

Appendix-C9: Horizontal and vertical variogram ranges for the water saturation model 
separated by zone and rock type. Horizontal ranges were decreased from the rock type 
model to capture the internal heterogeneity of water saturation within the rock types. The 
vertical ranges were estimated through variography for each zone by rock type. 
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Appendix-C10: 3D lithology 
proportion volumes for A) mudstone, 
B) rgillaceous siltstone, C)
argillaceous-calcareous siltstone, D)
calcareous siltstone and E) silty
limestone. The proportion volumes
were used as a constraint for the
spatial distribution of modeling
lithologies.
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Appendix-C11: 3D rock type proportion volumes for A) rock type 1, B) rock 
type 2 and C) rock type 3. The proportion volumes were used as a constraint for 
the spatial distribution of modeling lithologies. 
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Appendix-D1: Northwest-southeast and northeast-southwest 
transects through the A) P10, B) P50 and C) P90 rock type 
models. The P10 model consisted of 23% rock type 1, 50.8% 
rock type 2 and 26.2 % rock type 3. The P50 model changed in 
rock type 2 percent to 50.7% with rock types 1 and 3 remaining 
the same. The P90 model had an increase in rock type 1 to 
23.2%, 50.6% rock type 2 and 26.2% rock type 3.   
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Appendix-D2: Northwest-southeast and northeast-southwest 
transects through the A) P10, B) P50 and C) P90 total porosity 
models. The mean total porosity for all 3 models remained 
approximately 4.3%. 
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Appendix-D3: Northwest-southeast and northeast-southwest 
transects through the A) P10, B) P50 and C) P90 water 
saturation models. The mean water saturation for all 3 models 
remained approximately 41%. 
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Appendix-D4: Northwest-southeast and northeast-southwest 
transects through the A) P10, B) P50 and C) P90 permeability 
models. The mean permeability for the P10, P50 and P90 
models were approximately 5.6 µD, 4.5 µD and 4.5 µD 
respectively. 
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Appendix-D5: Average P10 pore volume maps for the Meramec A, B10, B, D, E and these 
intervals combined. 
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Appendix-D6: Average P10 hydrocarbon pore volume maps for the Meramec A, B10, B, 
D, E and these intervals combined. 
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Appendix-D7: Average P50 pore volume maps for the Meramec A, B10, B, D, E and these 
intervals combined. 
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Appendix-D8: Average P90 pore volume maps for the Meramec A, B10, B, D, E and these 
intervals combined. 
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Appendix-D9: Average P90 hydrocarbon pore volume maps for the Meramec A, B10, B, D, E 
and these intervals combined. 
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APPENDIX E: Production Analysis 

Appendix-E1: Cross-plots of 180-day cumulative production versus lithology fractions 
extracted along the lateral.  
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Appendix-E2: Cross-plots of 180-day cumulative production versus lithology fractions 
extracted along the lateral. The production has been normalized by dividing the cumulative 
production by the lateral length of the well. 
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Appendix-E3: Cross-plots of 180-day cumulative production versus rock type fractions and 
averaged petrophysical properties extracted along the lateral. 
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Appendix-E4: Cross-plots of 180-day cumulative production versus rock type fractions and 
averaged petrophysical properties extracted along the lateral. The production has been 
normalized by dividing the cumulative production by the lateral length of the well. 
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Appendix-E5: A) and B) are cross plots of non-normalized 180 day production versus 
average number of stages and average stage length respectively. C) and D) are the same 
cross plots, colored by bench. E) and F) are cross plots of normalized 180 day production 
versus average number of stages and average stage length respectively. G) and H) are the 
same cross plots, colored by bench. 
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