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Abstract

We study a problem concerning parabolic induction in certain p-adic unitary

groups. More precisely, for E/F a quadratic extension of p-adic fields the associ-

ated unitary group U(n, n) contains a parabolic subgroup P with Levi component

L isomorphic to GLn(E). Let π be an irreducible supercuspidal representation of

L of depth zero. We use Hecke algebra methods to determine when the parabol-

ically induced representation ιGPπ is reducible.
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Chapter 1

Background

In this chapter, we recall the basic definitions and theorems which we need

throughout this report.

1.1 Algebraic groups

Let F be an algebraically closed field. An algebraic group is an algebraic vari-

ety over F that is a group such that the multiplication and taking inverse are

morphisms of varieties. When the variety is affine we call the group an affine

algebraic group. It is well known that every affine algebraic group is isomorphic

to some closed subgroup (w.r.t the Zariski topology) of GLn(F ) for some natural

number n.

1.2 Valuations and local fields

Let F be a field. An absolute value on F is a map |.| : F → R>0 such that for

any x, y ∈ F ,
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|x| = 0⇐⇒ x = 0,

|xy| = |x| |y| ,

|x+ y| 6 |x|+ |y| .

We say F is non-Archimedean if

|x+ y| 6 max{|x| , |y|} for all x, y ∈ F .

The absolute value |.| defines a topology on F which has as a basis for the

open sets, all U(a, ε) = {b ∈ F | |a− b| < ε}, a ∈ F, ε > 0. We call F a non-

Archimedean local field if it is locally compact and complete with respect to a

non-trivial non-Archimedean absolute value. Let

OF = {a ∈ F | |a| 6 1}

which is called the the ring of integers of F . Then OF is a principal ideal domain

with unique maximal ideal

pF = {a ∈ F | |a| < 1}.

Let $F be a generator of the ideal pF called a uniformizer of F . We denote

OF/pF by kF which is a finite field. We call kF the residue field of F . We write

|kF | = q = pr for some prime p and some integer r > 1.

Every element in x ∈ F× can be written uniquely as x = u$n
F , for some unit

u ∈ O×F and n ∈ Z. We use the notation n = νF (x). In these terms the absolute

value on F can be given by |x| = q−ν(x) = q−n for x 6= 0 and |0| = 0.

The ideals

pnF = $nOF = {x ∈ F | |x| 6 q−n}, n ∈ Z
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in OF are called the fractional ideals. They are open subgroups of F and give a

fundamental system of open neighborhoods of 0 in F .

1.3 Representations of locally profinite groups

1.3.1 Smooth representations

Let G be a topological group. We say G is locally profinite if it is Hausdorff

topological space and every open neighborhood of the identity element in G

contains a compact open subgroup of G.

Let V be a vector space over C which is not necessarily finite dimensional and

GL(V ) be the set of all invertible linear operators on V . A representation (π, V )

of G is a homomorphism π of groups from G to GL(V ).

Suppose W is a subspace of V which is G-invariant, i.e., π(g)w ∈ W for all

g ∈ G,w ∈ W . Then restricting the operators π(g) to W gives a representation

of G in W . We call the invariant subspace W a sub-representation of V .

If W ′ ⊂ W are sub-representations of π, then each π|W (g), g ∈ G induces an

invertible linear operator π|W/W ′(g) on the quotient space W/W ′, and we have(
π|W/W ′ ,W/W ′) is a representation of G called a sub-quotient of π. In the special

case when W = V we say the representation is a quotient of π.

A representation (π, V ) of G is irreducible if the only G-invariant subspaces

of V are {0} and V . If π is not irreducible then π is reducible.

A representation (π, V ) of G has a finite composition series if there exist G-

invariant subspaces Vj of V such that

0 = V0 ( V1 ( V2 · · · ( Vr = V
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where each sub-quotient π|Vj+1/Vj , 0 6 j 6 r−1 is irreducible . The sub-quotients

π|Vj+1/Vj are called the composition factors of π.

The representation π is smooth if for every v ∈ V , there exists a compact

open subgroup K of G such that π(k)(v) = v for all k ∈ K.

A representation π of V is admissible if V K = {v ∈ V | π(k)v = v} is a finite

dimensional subspace of V for every compact open subgroup K of G.

Given two representations (π1, V1) and (π2, V2) of G, a linear map T from V1

to V2 is called an intertwining map if π2(g) ◦ T = T ◦ π1(g) for all g ∈ G. We

call (π1, V1)and (π2, V2) isomorphic or equivalent representations if there exits an

intertwiner T which is an isomorphism. We denote HomG(V1, V2) or HomG(π1, π2)

for the collection of intertwining maps between V1 and V2. If π1 and π2 are

representations of the same vector space V and if they are equivalent, then we

denote equivalence of representations by π1 ' π2.

Let V ∗ = HomC(V,C) be the dual space of V . Define a dual representation

(π∗, V ∗) of G by

(π∗(g)v′)(v) = v′(π(g−1)v)

for v ∈ V, v′ ∈ V ∗ and g ∈ G. This is a representation of G but it is not

necessarily smooth. Therefore we consider the space of all smooth vectors given by

V
∨

= (V ∗)∞ =
⋃
K

(V ∗)K where the union is taken over all compact open subgroups

of G. We then define the representation (π
∨
, V

∨
) as π

∨
(g)(v) = π∗(g)(v) for

v ∈ V ∨ , g ∈ G. This representation is smooth and we call it the smooth dual or

contragradient of (π, V ).

Given a representation π of H 6 G and g ∈ G we let πg denote the repre-

sentation of Hg = g−1Hg given by πg(h′) = π(gh′g−1) where h′ ∈ H and let

gπ denote the representation of gH = gHg−1 given by gπ(h′) = π(g−1h′g) where

4



h′ ∈ H.

1.3.2 Restriction and induction of representations

Let G be a locally profinite group and (π, V ) be a smooth representation of G.

Let H be a subgroup of G. The restriction of π to H is a representation of H

in V , denoted by π|H . Now it is natural to ask can we construct a smooth

representation of G from smooth representation of H and the answer is yes. The

process of constructing a smooth representation of G from smooth representation

of H is called smooth induction and the representation of G so obtained is called

the smoothly induced representation. We explain the construction below.

Let (ρ, V ) be a smooth representation of H. The smoothly induced represen-

tation is denoted by IndGH(ρ, V ). Its space is the set of all functions f : G → V

such that

1. f(hg) = ρ(h)f(g) for h ∈ H, g ∈ G.

2. There is a compact open subgroup K of G such that f(gk) = f(g) for

g ∈ G, k ∈ K.

The action of G is given by g.f(x) = f(xg) where f ∈ IndGH(ρ, V ), x ∈ G.

Given a smooth representation (ρ, V ) of H, we can also define another type of

smooth representation of G denoted by c-IndGH(ρ, V ). It consists of all functions

in IndGH(ρ, V ) which are compactly supported modulo H. This means if f ∈

IndGH(ρ, V ) is such that support of f is compact in G/H then f ∈ c-IndGH(ρ, V ).

The action of G on c-IndGH(ρ, V ) is again given by g.f(x) = f(xg) where f ∈ c-

IndGH(ρ, V ), x ∈ G.

Now there is another notion called normalized induction. Let G be the group

of F -points of a reductive algebraic group defined over a non-Archimedean local

5



field F . Let P be a parabolic subgroup of G. Write P = L n U where L is the

Levi component of P and U is the unipotent radical of P . Let (ρ, V ) be a smooth

representation of P . The normalized induction ιGP (ρ, V ) is defined as ιGP (ρ, V ) =

IndGP (ρ ⊗ δ1/2
P ), δP is a character of P defined as δP (p) = ‖det(Ad p)|LieU‖F for

p ∈ P and LieU is the Lie-algebra of U . We shall use ιGP (ρ) for ιGP (ρ, V ) in this

report. We work with normalized induced representations rather than induced

representations in this report as results look more appealing.

1.3.3 Supercuspidal representations

Let G be the group of F -points of a reductive algebraic group defined over a

non-Archimedean local field F . A representation (π, V ) of G is supercuspidal if

HomG(π, IndGP τ) = {0}

for any proper parabolic subgroups P of G and any representation τ of a Levi

component of P .

1.3.4 Frobenius reciprocity and Mackey’s irreducibility

criterion

We recall Frobenius reciprocity. Let G be a locally profinite group and (π, V )

be a representation of G. Let H be an open subgroup of G and (ρ,W ) be a

representation of H. Then

HomG(c-IndGHρ, π) ' HomH(ρ, π|H).
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For H a closed subgroup of G, we have

HomG(π, IndGHρ) ' HomH(π|H , ρ).

We recall Mackey’s Irreducibility Criterion. Let G be a locally profinite group

and H be an open, compact subgroup of G. Let (π, V ) be a smooth representation

of H. Then IndGHπ is irreducible exactly when

Hom(πg|H∩Hg , π|H∩Hg) = 0

for g /∈ H.

1.3.5 Cuspidal representations

Let G be a finite group of Lie type. Let (ρ, V ) be an irreducible representation of

G. For P a parabolic subgroup of G, we write UP for its unipotent radical. We

say (ρ, V ) is a cuspidal representation of G⇐⇒ V UP = 0 for all proper parabolic

subgroups P of G.

1.4 Unramified characters

LetG be the group of F -points of an algebraic group defined over a non-Archimedean

local field F . Write G◦ for the smallest subgroup of G containing the compact

open subgroups of G. We say a character ν : G −→ C× is unramified if ν|G◦ = 1,

i.e., ν is trivial on G◦. Let the group of unramified characters of G be denoted

by Xnr(G).
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1.5 Bernstein decomposition

Let G be the F -rational points of a reductive algebraic group defined over a

non-Archimedean local field F . According to Theorem 3.3 in [6], we have the

following Propn.

Proposition 1.1. 1. Let L be a Levi subgroup of G (i.e., a Levi component of

a parabolic subgroup P of G). Let σ be an irreducible smooth supercuspidal

representation of L. Then ιGPσ has finite length for every parabolic subgroup

P with Levi component L. Further, the set of the composition factors or

irreducible sub-quotients of ιGPσ is independent of P .

2. Let L1, L2 be Levi subgroups of G and σ1, σ2 be irreducible supercuspidal

smooth representations of L1, L2 respectively. Then for any parabolic sub-

groups P1, P2 with Levi components L1, L2 respectively, we have the repre-

sentations ιGP1
σ1, ι

G
P2
σ2 either have the same set of composition factors or

have no composition factors in common. Now the representations ιGP1
σ1

and ιGP2
σ2 have the same set of composition factors ⇐⇒ the pairs (L1, σ1)

and (L2, σ2) are conjugate; that is, there is an element g ∈ G such that

L2 = Lg1 = g−1L1g and σ2 ' σ1
g.

3. Let (π, V ) be an irreducible smooth representation of G. Then there exists

a parabolic subgroup P of G with Levi component L, unipotent radical U

and an irreducible supercuspidal smooth representation σ of L such that π

is equivalent to an irreducible sub-quotient or a composition factor of ιGPσ.

We refer to the pair (L, σ) where L is a Levi subgroup of G and σ is an

irreducible supercuspidal smooth representation of L as a cuspidal pair.

Now by Propn. 1.1, there exists unique conjugacy class of cuspidal pairs (L, σ)
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with the property that π is isomorphic to a composition factor of ιGPσ for some

parabolic subgroup P of G. We call this conjugacy class of cuspidal pairs, the

cuspidal support of (π, V ).

Given two cuspidal supports (L1, σ1) and (L2, σ2) of (π, V ), we say they are

inertially equivalent if there exists g ∈ G and χ ∈ Xnr(L2) such that L2 = Lg1

and σg1 ' σ2 ⊗ χ. We write [L, σ]G for the inertial equivalence class or inertial

support of (π, V ). Let B(G) denote the set of inertial equivalence classes [L, σ]G.

Let R(G) denote the category of smooth representations of G. Let Rs(G)

be the full sub-category of smooth representations of G with the property that

(π, V ) ∈ ob(Rs(G)) ⇐⇒ every irreducible sub-quotient of π has inertial support

s = [L, σ]G.

We can now state the Bernstein decomposition:

R(G) =
∏

s∈B(G)

Rs(G).

1.6 Types and covers

Let G be the F -rational points of a reductive algebraic group defined over a

non-Archimedean local field F .

1.6.1 Types

Let K be a compact open subgroup of G. Let (ρ,W ) be an irreducible smooth

representation of K and (π, V ) be a smooth representation of G. Let V ρ be the

ρ-isotopic subspace of V . Thus V ρ is the sum of all irreducible K-subspaces of

V which are equivalent to ρ.

9



V ρ =
∑
W ′

W ′

where the sum is over all W ′ such that (π|K ,W ′) ' (ρ,W ).

Let H(G) be the space of all locally constant compactly supported functions

f : G→ C. This is a C- algebra under convolution ∗. So for elements f, g ∈ H(G)

we have

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dµ(y).

Here we have fixed a Haar measure µ on G. Let (π, V ) be a representation of

G. Then H(G) acts on V via

hv =

∫
G

h(x)π(x)vdµ(x)

for h ∈ H(G), v ∈ V . Let eρ be the element in H(G) with support K such that

eρ(x) = dimρ
µ(K)

trW (ρ(x−1)), x ∈ K.

We have eρ ∗ eρ = eρ and eρV = V ρ for any smooth representation (π, V ) of

G.

Let Rρ(G) be the full sub-category of R(G) consisting of all (π, V ) where V

is generated by V ρ. So (π, V ) ∈ Rρ(G) if and only if V = H(G) ∗ eρV .We now

state the definition of a type.

Definition 1.2. Let s ∈ B(G). We say that (K, ρ) is an s-type in G if Rρ(G) =

Rs(G).

10



1.6.2 Hecke algebras

Let K be a compact open subgroup of G. Let (ρ,W ) be an irreducible smooth

representation of K. Here we introduce the Hecke algebra H(G, ρ).

H(G, ρ) =

f : G→ EndC(ρ
∨
)

∣∣∣∣∣∣∣∣
supp(f) is compact and

f(k1gk2) = ρ
∨
(k1)f(g)ρ

∨
(k2)

where k1, k2 ∈ K, g ∈ G

 .

Then H(G, ρ) is a C-algebra with multiplication given by convolution ∗ w.r.t

some fixed Haar measure µ on G. So for elements f, g ∈ H(G) we have

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dµ(y).

The importance of types is seen from the following result. Let π be a smooth

representation in Rs(G). Let H(G, ρ) − Mod denote the category of H(G, ρ)-

modules. If (K, ρ) is an s-type then mG : Rs(G) −→ H(G, ρ) −Mod given by

mG(π) = HomK(ρ, π) is an equivalence of categories.

1.6.3 Covers

Let K be a compact open subgroup of G. Let P = LnU be a parabolic subgroup

of G. The notation means that P has unipotent radical U and that L is a Levi

component of P . Let P = Ln U be the L-opposite of P . Thus P ∩ P = L. Let

(ρ,W ) be an irreducible representation of K. Then we say (K, ρ) is decomposed

with respect to (L, P ) if the following hold:

1. K = (K ∩ U)(K ∩ L)(K ∩ U).

11



2. (K ∩ U), (K ∩ U) 6 kerρ.

Suppose (K, ρ) is decomposed with respect to (L, P ). We set KL = K ∩ L

and ρL = ρ|KL . We say an element g ∈ G intertwines ρ if HomKg∩K(ρg, ρ) 6= 0.

Let IG(ρ) = {x ∈ G | x intertwines ρ}. We have the Hecke algebras H(G, ρ) and

H(L, ρL). We write

H(G, ρ)L = {f ∈ H(G, ρ) | supp(f) ⊆ KLK}.

We recall some results and constructions from pages 606-612 in [2]. These

allow us to transfer questions about parabolic induction into questions concerning

the module theory of appropriate Hecke algebras.

Proposition 1.3. Let (K, ρ) decompose with respect to (L, P ) .Then

1. ρL is irreducible.

2. IL(ρL) = IG(ρ) ∩ L.

3. There is an embedding T : H(L, ρL) −→ H(G, ρ) such that if f ∈ H(L, ρL)

has support KLzKL for some z ∈ L, then T (f) has support KzK.

4. The map T induces an isomorphism of vector spaces:

H(L, ρL)
'−→ H(G, ρ)L.

Definition 1.4. An element z ∈ L is called (K,P )-positive element if:

1. z(K ∩ U)z−1 ⊆ K ∩ U.

2. z−1(K ∩ U)z ⊆ K ∩ U.

12



Definition 1.5. An element z ∈ L is called strongly (K,P )-positive element if:

1. z is (K,P ) positive.

2. z lies in center of L.

3. For and compact open subgroups K and K ′ of U there exists m > 0 and

m ∈ Z such that zmKz−m ⊆ K ′.

4. For and compact open subgroups K and K ′ of U there exists m > 0 and

m ∈ Z such that z−mKz ⊆ K ′.

Proposition 1.6. Strongly (K,P )-positive elements exist and given a strongly

positive element z ∈ L , there exists a unique function φz ∈ H(L, ρL) with support

KLzKL such that φz(z) is identity function in EndC(ρL).

H+(L, ρL) =


f : G→ EndC(ρ

∨

L)

∣∣∣∣∣∣∣∣∣∣∣

supp(f) is compact and consists

of strongly (K,P )-positive elements

and f(k1lk2) = ρ
∨
L(k1)f(l)ρ

∨
L(k2)

where k1, k2 ∈ KL, l ∈ L


.

The isomorphism of vector spaces T : H(L, ρL) −→ H(G, ρ)L restricts to an

embedding of algebras:

T+ : H+(L, ρL) −→ H(G, ρ)L ↪→ H(G, ρ).

Proposition 1.7. The embedding T+ extends to an embedding of algebras

t : H(L, ρL) −→ H(G, ρ) if and only if T+(φz) is invertible for some strongly

(K,P )-positive element z, where φz ∈ H(L, ρL) has support KLzKL with φz(z) =

1.
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Definition 1.8. Let L be a proper Levi subgroup of G. Let KL be a compact

open subgroup of L and ρL be an irreducible smooth representation of KL. Let K

be a compact open subgroup of G and ρ be an irreducible, smooth representation

of K. Then we say (K, ρ) is a G-cover of (KL, ρL) if

1. The pair (K, ρ) is decomposed with respect to (L, P ) for every parabolic

subgroup P of G with Levi component L.

2. K ∩ L = KL and ρ|L ' ρL.

3. The embedding T+ : H+(L, ρL) −→ H(G, ρ) extends to an embedding of

algebras t : H(L, ρL) −→ H(G, ρ).

Proposition 1.9. Let sL = [L, π]L ∈ B(L) and s = [L, π]G ∈ B(G) . Say

(KL, ρL) is an sL-type and (K, ρ) is a G-cover of (KL, sL). Then (K, ρ) is an

s-type.

Recall the categories RsL(L),Rs(G) where sL = [L, π]L and s = [L, π]G. Also

recall H(G, ρ) −Mod is the category of H(G, ρ)-modules. Let H(L, ρL) −Mod

be the category of H(L, ρL)-modules. The functors ιGP ,mG were defined earlier.

Let π ∈ RsL(L). Then the functor mL : RsL(L) −→ H(L, ρL)−Mod is given by

mL(π) = HomKL(ρL, π). The functor (TP )∗ : H(L, ρL)−Mod −→ H(G, ρ)−Mod

is defined later in this report.

The importance of covers is seen from the following commutative diagram

which we will use in answering the question which we pose later in this report.

Rs(G)
mG−−−→ H(G, ρ)−Mod

ιGP

x (TP )∗

x
RsL(L)

mL−−−→ H(L, ρL)−Mod
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Chapter 2

Unitary groups

2.1 Setup

Let E/F be a quadratic Galois extension of non-Archimedean local fields where

char F 6= 2. Write − for the non-trivial element of Gal(E/F ). The group U(n, n)

is given by

U(n, n) = {g ∈ GL2n(E) | tgJg = J}

for J =

0 1

1 0

 where each block is of size n and for g = (gij) we write g = (gij).

We write OE and OF for the ring of integers in E and F respectively. Similarly,

pE and pF denote the maximal ideals in OE and OF and kE = OE/pE and

kF = OF/pF denote the residue class fields of OE and OF .

There are two kinds of extensions of E over F . One is the unramified extension

and the other one is the ramified extension. In the unramified case, we can choose

uniformizers $E, $F in E,F such that $E = $F so that we have [kE : kF ] =

2,Gal(kE/kF ) ∼= Gal(E/F ). As $E = $F , so $E = $E since $F ∈ F . As
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kF = Fq, so kE = Fq2 in this case. In the ramified case, we can choose uniformizers

$E, $F in E,F such that $2
E = $F so that we have [kE : kF ] = 1,Gal(kE/kF ) =

1. As $2
E = $F , we can further choose $E such that $E = −$E. As kF = Fq,

so kE = Fq in this case.

We write P for the Siegel parabolic subgroup of G. Write L for the Siegel

Levi component of P and U for the unipotent radical of P . Thus P = L n U

with

L =

{a 0

0 ta−1

 | a ∈ GLn(E)

}

and

U =

{1 X

0 1

 | X ∈ Mn(E), X + tX = 0

}
.

Let K0 = GLn(OE) and K1 = 1 +$EMn(OE). Note K1 = 1 +$EMn(OE) is

the kernel of the surjective group homomorphism

(gij) −→ (gij + pE) : GLn(OE) −→ GLn(kE)

2.2 Depth zero representations

The general definition of depth zero representation is given by Theorem 3.5 in

[9]. However, for our specific problem we say π is a depth zero representation of

Siegel Levi component L of P if πK1 6= 0.

16



2.3 Question

Let π be an irreducible supercuspidal representation of L of depth zero. We look

at the family of representations ιGP (πν) for ν ∈ χnr(L). We want to determine

the set of such ν for which this induced representation is irreducible. By general

theory, this is a finite set.

2.4 Depth zero supercuspidal representations

Suppose τ is an irreducible cuspidal representation of GLn(kE) inflated to a rep-

resentation of GLn(OE) = K0. Then let K̃0 = ZK0 where Z = Z(GLn(E)) =

{λ 1n | λ ∈ E×}. As any element of E× can be written as u$n
E for some u ∈ O×E

and m ∈ Z. So in fact, K̃0 =< $E1n > K0.

Let (π, V ) be a representation of G and 1V be the identity linear transforma-

tion of V . As $E1n ∈ Z, so π($E1n) = ωπ($E1n)1V where ωπ : Z −→ C× is the

central character of π.

Let τ̃ be a representation of K̃0 such that:

1. τ̃($E1n) = ωπ($E1n)1V ,

2. τ̃ |K0 = τ.

Say ωπ($E1n) = z where z ∈ C×. Now call τ̃ = τ̃z. We have extended τ to

τ̃z which is a representation of K̃0, so that Z acts by ωπ. Hence π|K̃0
⊇ τ̃z which

implies that HomK̃0
(τ̃z, π|K̃0

) 6= 0.

By Frobenius reciprocity for induction from open subgroups,

HomK̃0
(τ̃z, π|K̃0

) ' HomG(c-IndG
K̃0
τ̃z, π).
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Thus c-HomG(IndG
K̃0
τ̃z, π) 6= 0. So there exists a non-zero G-map from c-

IndG
K̃0
τ̃z to π. As τ is cuspidal representation, using Cartan decompostion and

Mackey’s criteria we can show that c-IndG
K̃0
τ̃z is irreducible. So π ' c-IndG

K̃0
τ̃z.

As c-IndG
K̃0
τ̃z is irreducible supercuspidal representation of G of depth zero, so π

is irreducible supercuspidal representation of G of depth zero.

Conversely, let π is a depth zero representation of GLn(E). So πK1 6= {0}.

Hence π|K1 ⊇ 1K1 , where 1K1 is trivial representation ofK1. This means π|K0 ⊇ τ ,

where τ is an irreducible representation of K0 such that τ |K1 ⊇ 1K1 . So τ is trivial

on K1. So π|K0 contains an irreducible representation τ of K0 such that τ |K1 is

trivial. So τ can be viewed as an irreducible representation of K0/K1
∼= GLn(kE)

inflated to K0 = GLn(OE). The representation τ is cuspidal by (a very special

case of) A.1 Appendix [8].

So we have the following bijection of sets:

{
Isomorphism classes of irreducible

cuspidal representations of GLn(kE)

}
× C× ←→



Isomorphism classes

of irreducible

supercuspidal

representations of

GLn(E) of depth zero


.

(τ, z) −−−−−−−−−−−−−−−−−−−−−−−−−→ IndG
K̃0
τ̃z

(τ, ωπ($E1n))←−−−−−−−−−−−−−−−−−−−−−−−−− π

From now on we denote the representation τ by ρ0. So ρ0 is an irreducible
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cuspidal representation of GLn(kE) inflated to K0 = GLn(OE).

2.5 Siegel parahoric subgroup

The Siegel parahoric subgroup P of U(n, n) is defined by:

P =

GLn(OE) Mn(OE)

Mn(pE) GLn(OE)

⋂U(n, n).

Let

U =

{ 1 0

X 1

 | X ∈ Mn(E), X + tX = 0

}
.

We have P = (P ∩ U)(P ∩ L)(P ∩ U) (Iwahori factorization of P). Let us

denote (P ∩ U) by P−, (P ∩ U) by P+, (P ∩ L) by P0. Thus

P0 =

{a 0

0 ta−1

 | a ∈ GLn(OE)

}
,

P+ =

{1 X

0 1

 | X ∈ Mn(OE), X + tX = 0

}
,

P− =

{ 1 0

X 1

 | X ∈ Mn(OE), X + tX = 0

}
.

2.6 Representation of Siegel parahoric subgroup

Let us recall that the Siegel parahoric subgroup P of U(n, n) is defined as:

P =

GLn(OE) Mn(OE)

Mn(pE) GLn(OE)

⋂U(n, n).
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Recall by Iwahori factorization of P we have P = (P ∩ U)(P ∩ L)(P ∩ U) =

P−P0P+.

As ρ0 is a representation of K0, it can also be viewed as a representation of

P0. This is because P0
∼= K0. Let V be the vector space associated with ρ0. Now

ρ0 is extended to a map ρ from P to GL(V ) as follows. By Iwahori factorization,

if j ∈ P then j can be written as j−j0j+, where j− ∈ P−, j+ ∈ P+, j0 ∈ P0. Now

the map ρ on P is defined as ρ(j) = ρ0(j0).

Proposition 2.1. ρ is a homomorphism from P to GL(V ). So ρ becomes a

representation of P.

Proof. Let

P0,1 =

{a 0

0 ta−1

 | a ∈ K1 = 1 +$Mn(OE)

}
.

Clearly, P0,1
∼= K1. Now let us define P1 = P−P0,1P+. We can observe

clearly that P is a subgroup of U(n, n)∩GL2n(OE). We have the following group

homomorphism:

φ : P
modpE−−−−→ P (kE).

Here P (kE) is the Siegel parabolic subgroup of {g ∈ GL2n(kE) | tgJg = J}.

Now P (kE) = L(kE) n U(kE), where L(kE), U(kE) are the Levi component and

unipotent radical of the Siegel parabolic subgroup respectively.

L(kE) =

{a 0

0 ta−1

 | a ∈ GLn(kE)

}
,
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U(kE) =

{1 X

0 1

 | X ∈ Mn(kE), X +t X = 0

}
.

φ is a surjective homomorphism. Now let us find the inverse image of U(kE).

Let j ∈ P and j = j−j0j+ be the Iwahori factorization of j, where j+ ∈ P+, j− ∈

P−, j0 ∈ P0. So φ(j) ∈ U(kE)⇐⇒ j0 ∈ P0,1. Therefore P1 is the inverse image

of U(kE) under φ. So we have P�P1
∼= P (kE)�U(kE) ∼= L(kE) ∼= GLn(kE). As

ρ(j) = ρ0(j0), so ρ is a representation of P which is lifted from representation ρ0

of P0 that is trivial on P1.
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Chapter 3

Structure of H(L, ρ0) and H(G, ρ)

3.1 Calculation of NG(P0)

We set G = U(n, n). To describe H(G, ρ) we need to determine NG(ρ0) which is

given by

NG(ρ0) = {m ∈ NG(P0) | ρ0 ' ρm0 }.

Further, to find out NG(ρ0) we need to determine NG(P0). To that end we

shall calculate NGLn(E)(K0). Let Z = Z(GLn(E)). So Z = {λ1n | λ ∈ E×}.

Lemma 3.1. NGLn(E)(K0) = K0Z.

Proof. By the Cartan decomposition, any g ∈ GLn(E) can be written as

g = k1



$l1
E 0 . . . 0

0 $l2
E . . . 0

...
...

. . . 0

0 0 . . . $ln
E


k2

where k1, k2 ∈ K0 and for certain l1, l2 . . . ln ∈ Z with l1 6 l2 6 . . . ln.
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So we only need to determine the matrices



$l1
E 0 . . . 0

0 $l2
E . . . 0

...
...

. . . 0

0 0 . . . $ln
E


that nor-

malize K0. Let A be one such matrix which normalizes K0. So ABA−1 ∈ K0 for

all B ∈ K0. Let the matrix A be of form



$l1
E 0 . . . 0

0 $l2
E . . . 0

...
...

. . . 0

0 0 . . . $ln
E


for certain l1, l2 . . . ln ∈ Z with l1 6 l2 6 . . . ln. Now matrix A−1 looks like



$−l1E 0 . . . 0

0 $−l2E . . . 0

...
...

. . . 0

0 0 . . . $−lnE


.

Let the matrix B be of form (bij)16i,j6n. So matrix B looks like:



b11 b12 . . . b1n

b21 b22 . . . b2n

...
... . . .

...

bn1 bn2 . . . bnn


where bij ∈ OE for 1 6 i, j 6 n. Now ABA−1 ∈ K0 for all B ∈ K0. And that

implies $
li−lj
E bij ∈ OE for 1 6 i, j 6 n. Choose a matrix B in K0 such that
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bii = 1 for 1 6 i 6 n, bij = 0 for 1 6 i, j 6 n, i 6= 1, j 6= 2, i 6= j and b12 = 1. So

we have $l1−l2
E ∈ OE. As only positive integral powers of $E lie in OE. Hence

l1 > l2. Similarly we can show that l2 > l1. So l1 = l2. We can show in a similar

fashion that l2 = l3, l3 = l4, . . . , ln−1 = ln. Let us call l1 = l2 = l3 = · · · = ln = r

for some r ∈ Z. Hence any matrix



$l1
E 0 . . . 0

0 $l2
E . . . 0

...
...

. . . 0

0 0 . . . $ln
E


in NGLn(E)(K0) is of

the form



$r
E 0 . . . 0

0 $r
E . . . 0

...
...

. . . 0

0 0 . . . $r
E


for some r ∈ Z. So NGLn(E)(K0) consists of all the matrices in g ∈ GLn(E) such

that

g = M ′



$r
E 0 . . . 0

0 $r
E . . . 0

...
...

. . . 0

0 0 . . . $r
E


M ′′

where M ′,M ′′ ∈ K0, r ∈ Z. But we can see that

$r
E 0 . . . 0

0 $r
E . . . 0

...
...

. . . 0

0 0 . . . $r
E


∈ Z(GLn(E)).
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Let M = M ′M ′′u−1 for some u ∈ O×E and let u$r
E = a for some a ∈ E×. So now

any matrix in NGLn(E)(K0) is of form g ∈ GLn(E) such that

g = M



a 0 . . . 0

0 a . . . 0

...
...

. . . 0

0 0 . . . a


where a ∈ E×,M ∈ K0. So we have NGLn(E)(K0) = ZK0 = K0Z.

From now on let us denote K0 by K. Now let us calculate NG(P0). Note that

J =

0 1

1 0

 ∈ G. Indeed, J ∈ NG(P0). The center Z(P0) of P0 is given by

Z(P0) =

{u1 0

0 u−11

 | u ∈ O×E

}
.

The center Z(L) of L is given by

Z(L) =

{a1 0

0 a−11

 | a ∈ E×}.
Proposition 3.2. NG(P0) = 〈P0Z(L), J〉 = P0Z(L)o 〈J〉.

Proof. It easy to see that NG(P0) 6 NG(Z(P0)). Now suppose g =

A B

C D

 ∈
NG(Z(P0)), where A,B,C,D ∈ Mn(E). Let us choose u ∈ O×E such that u 6= u−1.

Now such a u exists in O×E. Because if u = u−1 for all u ∈ O×E then u = u−1 for

all u ∈ O×E. But O×E ∩ F× = O×F . Therefore u = u−1 for all u ∈ O×F or u2 = 1 for

all u ∈ O×F which is a contradiction.
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As

A B

C D

 ∈ NG(Z(P0)),

A B

C D


u1 0

0 u−11


A B

C D


−1

=

v1 0

0 v−11


for some v ∈ O×E. The left and right hand sides must have the same eigenvalues.

So u= v or v−1. Let u = v. Then we haveA B

C D


u1 0

0 u−11


A B

C D


−1

=

v1 0

0 v−11



=⇒

Au Bu−1

Cu Du−1

 =

 Av Bv

Cv−1 Du−1

 .
As u = v, so Au = Av,Du−1 = Dv−1. Now as u 6= v−1 (i.e v 6= u−1), from

the above matrix relation we can see that Bu−1 = Bv, Cu = Cv−1 for arbitrary

matrices B and C. So this would imply that B = C = 0. In a similar way, we can

show that if u = v−1 then A = D = 0. Hence any element of NG(Z(P0)) is of the

form

A 0

0 D

 or

0 B

C 0

 with A,B,C,D ∈ GLn(E). As NG(P0) 6 NG(Z(P0)),

so any element which normalizes P0 is also of the form

A 0

0 D

 or

0 B

C 0

 with

A,B,C,D ∈ GLn(E).

If

A 0

0 D

 normalizes P0 then

A 0

0 D


a 0

0 ta−1


A−1 0

0 D−1

 ∈ P0 for all a ∈ K.
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=⇒

AaA−1 0

0 Dta−1D−1

 ∈ P0 for all a ∈ K.

Hence AaA−1, Dta−1D−1 ∈ K for all a ∈ K. So this implies that A,D ∈

NGLn(E)(K) = ZK = KZ from lemma 3.1 and also t(AaA−1)−1 = Dta−1D−1

for all a ∈ K. If t(AaA−1)−1 = Dta−1D−1 for all a ∈ K then tA−1ta−1tA =

Dta−1D−1 for all a ∈ K =⇒ A = tD−1 (i.e D = tA−1). And as A ∈ ZK, so

A = zk for some z ∈ Z, k ∈ K. HenceA 0

0 D

 =

zk 0

0 t(zk)−1

.

Similarly, we can show that if

0 B

C 0

 normalizes P0 then

0 B

C 0

 =

 0 z′k′

t(z′k′)−1 0

 for some z′ ∈ Z, k′ ∈ K.

If

A 0

0 D

 ∈ NG(P0), we have shown that it looks like

zk 0

0 t(zk)−1

 and

if

0 B

C 0

 ∈ NG(P0), we have shown that it looks like

 0 z′k′

t(z′k′)−1 0

 where

z, z′ ∈ Z, k, k′ ∈ K. We know that J ∈ NG(P0) and as

0 B

C 0

 J =

B 0

0 C

,

so NG(P0) =

〈
J ;

zk 0

0 t(zk)−1

 | z ∈ Z, k ∈ K〉 = P0Z(L)o 〈J〉.
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3.2 NG(ρ0): unramified case

We now calculate NG(ρ0) in the unramified case. This will help in determining

the structure of H(G, ρ).

As ρ0 is an irreducible cuspidal representation of GLn(kE), there exists a

regular character θ of l× (where l is a degree n extension of kE) such that ρ0 = τθ.

We have kE = Fq2 . So l = Fq2n .

Let Γ = Gal(l/kE). The group Γ is generated by the Frobenius map Φ given

by Φ(λ) = λq
2

for λ ∈ l. Here Φn(λ) = λq
2n

= λ (since l× is a cyclic group of

order q2n − 1) =⇒ Φn = 1.

Let us look at the action of Γ on Hom(l×,C×). For γ ∈ Γ and θ ∈ Hom(l×,C×),

γ acts on θ by γ.θ(λ) = θ(γ(λ)). Here γ.θ is also represented by θγ.

We say a character θ is regular character if stabΓ(θ) = {γ ∈ Γ | θγ = θ} = 1.

So if θ is regular character of l× then θγ = 1 =⇒ γ = 1. And also for two regular

characters θ and θ′ we have τθ ' τθ′ ⇐⇒ there exists γ ∈ Γ such that θγ = θ′.

As we are in the unramified case, so Gal(kE/kF ) ∼= Gal(E/F ). Let ι : GLn(kE)

−→ GLn(kE) be a group homomorphism given by: ι(g) = tg−1. Let us denote

τθ ◦ ι by τθ
ι. So τθ

ι(g) = τθ(ι(g)) = τθ(
tg−1) for g ∈ GLn(kE). We also denote

τθ(g) for τθ(g) for g ∈ GLn(kE). It can be observed clearly as θ is a character of

l×, so θ(λm) = θm(λ) for m ∈ Z, λ ∈ l×.

Let τ
∨

θ be the dual representation of τθ. Let V be the vector space corre-

sponding to τθ which is finite dimensional. Choose a basis {v1, v2, . . . vn} of the

vector space V . The dual basis {v∗1, v∗2, . . . v∗n} for the dual space V ∗ of V can be

constructed such that v∗i (vj) = δij for 1 6 i, j 6 n. Suppose with respect to the

above basis {v1, v2, . . . vn}, τθ(g−1) represents matrix A and with respect to the

dual basis {v∗1, v∗2, . . . v∗n}, τ
∨

θ (g) represents matrix B,then A = tB.
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From Propn. 3.5 in [7] we have τ θ ' τθq and from Propn. 3.4 in [7] we have

τ
∨

θ ' τθ−1 .

Proposition 3.3. Let θ be a regular character of l×. Then τ ιθ ' τθ ⇐⇒ θγ = θ−q

for some γ ∈ Gal(l/kE).

Proof. =⇒ As τ ιθ ' τθ, so χτ ιθ(g) = χτθ(g) for g ∈ GLn(kE). But χτ ιθ(g) =

χτθ(
tg−1), since χτ ιθ(g) = χτθ(ι(g)) for g ∈ GLn(kE). As we know from the

above discussion that τ
∨

θ (g) = (τθ(g
−1))t, so trace(τ

∨

θ (g)) = trace(τθ(g
−1))t. Now

trace(τθ(g
−1)) = trace(τθ(g

−1))t as the trace of the matrix and it’s transpose are

same. So we have trace(τθ(g
−1)) = trace(τ

∨

θ (g)). Let us choose h ∈ GLn(kE)

such that h−1tg−1h = g−1. So, χτ∨θ
(g) = χτθ(g

−1) = χτθ(h
−1tg−1h) = χτθ(

tg−1).

Let us denote τ ηθ (g) for τθ(η(g)) where η : g −→ tg−1 is a group automorphism

of GLn(kE). Hence χτηθ (g) = χτθ(
tg−1). But we have already shown before

that χτθ(
tg−1) = χτ∨θ

(g). so χτ∨θ
(g) = χτηθ (g). This implies τ

∨

θ ' τ ηθ . Hence

τ ιθ = τ ηθ ' τ
∨

θ ' τ
∨

θq ' τθ−q(since τ
∨

θ ' τ ηθ , τ θ ' τθq , τ
∨

θ ' τθ−1). Now from the

hypothesis of Propn. we know that τ ιθ ' τθ, so this implies τθ ' τθ−q (since

τ ιθ ' τθ−q). But as θ is a regular character θγ = θ−q for some γ ∈ Γ = Gal(l/kE)

where [l : kE] = n.

⇐= Now we can reverse the arguments and show that if θγ = θ−q for some

γ ∈ Γ = Gal(l/kE) then τ ιθ ' τθ−q .

Proposition 3.4. If θ is a regular character of l× such that θγ = θ−q for some

γ ∈ Γ then n is odd. Conversely, if n = 2m+1 is odd and θ is a regular character

of l× then θΦm+1
= θ−q.

Proof. =⇒ Suppose θ is a regular character of l× such that θγ = θ−q for some

γ ∈ Γ. We know that Γ =< Φ > where Φ: l −→ l is the Frobenius map given by
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Φ(λ) = λq
2

for λ ∈ l. Now Φn(λ) = λq
2n

= λ for λ ∈ l =⇒ Φn = 1. Now we have

(θ−q)γ = (θγ)−q. Hence (θ)γ
2

= (θγ)γ = (θ−q)γ = (θγ)−q = (θ−q)−q = θq
2

= θΦ.

Now θq
2

= θΦ because for λ ∈ l×, θq2(λ) = θ(λq
2
) = θ(Φ(λ)) = θΦ(λ). As θ is

a regular character and (θ)γ
2

= θΦ, so γ2 = Φ. Let Φ be a generator of Γ and

γ2 = Φ. So γ is also a generator of Γ.

Hence order of γ2= order of Φ =⇒ n
g.c.d(2,n)

= n =⇒ g.c.d(2, n) = 1. So n is

odd.

⇐= Suppose n is odd. Let n = 2m+ 1 where m ∈ N. Now

Hom(l×,C×) ∼= l×.

So Hom(l×,C×) is a cyclic group of order (q2n − 1). Hence for every divisor

d of (q2n − 1), there exists an element in Hom(l×,C×) of order d. As (qn + 1) is

a divisor of (q2n − 1), hence there exists an element θ in Hom(l×,C×) of order

(qn + 1). Hence θq
n+1 = 1 =⇒ θq

n
= θ−1 =⇒ θq

n+1
= θ−q =⇒ θq

2m+2
= θ−q =⇒

θ(q2)m+1
= θ−q =⇒ θΦm+1

= θ−q =⇒ θγ = θ−q, where γ = Φm+1 ∈ Γ.

Now we claim that θ is a regular character in Hom(l×,C×). suppose θγ = θ for

some γ ∈ Γ. Let γ = Φk for some k ∈ N. So we have θΦk = θ. But θΦ = θq
2
, hence

θq
2k

= θ. That implies θq
2k−1 = 1. As θ has order (qn + 1), so (qn + 1) | (q2k − 1).

Let l = 2k, so we have (qn + 1) | (ql − 1) . If l < n then it is a contradiction

to the fact that (qn + 1) | (ql − 1). Hence l > n. Now by applying Euclidean

Algorithm for the integers l, n we have l = nd+ r for some 0 6 r < n and d > 0

where r, d ∈ Z. Now d 6= 0, because if d = 0 then l = r and that means l < n

which is a contradiction. So d ∈ N. As we have (qn + 1) | (ql − 1) =⇒ (qn + 1) |

((ql − 1) + (qn + 1)) =⇒ (qn + 1) | (ql + qn) =⇒ (qn + 1) | qn(qr.qn(d−1) + 1).

Now as qn and (qn + 1) are relatively prime, so (qn + 1) | (qr.qn(d−1) + 1) =⇒

(qn + 1) | ((qr.qn(d−1) + 1) − (qn + 1)) =⇒ (qn + 1) | qn(qr.qn(d−2) − 1). As qn
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and (qn + 1) are relatively prime, so (qn + 1) | (qr.qn(d−2) − 1). So continuing the

above process we get, (qn + 1) | (qr + 1) if d is odd or (qn + 1) | (qr − 1) if d is

even. But degree of (qn + 1) is greater than degree of (qr + 1) as r < n. So r has

to be equal to 0 and l = 2k = nd + r = nd. And that implies 2 | nd. But n is

odd so 2 | d. Now this means that d is even and hence (qn + 1) | (qr − 1). And

(qn + 1) | (qr − 1) is not possible because r = 0. So we have 2k = nd =⇒ n | 2k.

But as n is odd this implies n | k. And this further implies k = np for some

p ∈ N. So γ = Φk = Φnp = 1 =⇒ θ is regular character.

Combining Propn. 3.3 and Propn. 3.4, we have the following Propn.

Proposition 3.5. Let θ is a regular character of l×. Then τ ιθ ' τθ ⇐⇒ n is odd.

We know that ρ0 is an irreducible cuspidal representation of K. But K ∼= P0.

So ρ0 can be viewed as a representation of P0. Now let us compute NG(ρ0),

where NG(ρ0) = {m ∈ NG(P0) | ρ0 ' ρm0 }. Let m ∈ NG(P0). Hence m is either

J or m is of the form

zk 0

0 t(zk)−1

 for some z ∈ Z, k ∈ K.

Proposition 3.6. If m =

zk 0

0 t(zk)−1

 for some z ∈ Z, k ∈ K then ρ0
m ' ρ0.

Proof. As ρ0 is an irreducible cuspidal representation of K, so K normalizes ρ0.

Clearly, Z normalizes ρ0. Thus ZK normalizes ρ0. As ρ0 can also be viewed

as a representation of P0, so ρ0
m ' ρ0 where m =

zk 0

0 t(zk)−1

 for some

z ∈ Z, k ∈ K.

Proposition 3.7. If m = J =

0 1

1 0

 then ρ0
m ' ρ0 only when n is odd.
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Proof. We know that ι : a −→ ta−1 is a group homomorphism of GLn(kE). Now

ι : a −→ ta−1 can be inflated to a group homomorphism of GLn(OE). Further, ι

can be viewed as a group homomorphism from P0 to P0 given by:

ι


a 0

0 ta−1


 =

ta−1 0

0 a



where a ∈ GLn(OE). Let g =

a 0

0 ta−1

. If m = J then ρ0
m(g) = ρ0(JgJ−1) =

ρ0


ta−1 0

0 a


 = ρ0(ι(g)) = ρι0(g). So ρ0

m(g) = ρι0(g) for g ∈ P0 =⇒ ρ0
m =

ρι0. But from the hypothesis of Propn., we know that ρm0 ' ρ0. So we have

ρ0 ' ρι0. Now from Propn. 3.5, ρ0 ' ρι0 = ρm0 ⇐⇒ n is odd.

Thus we have the following conclusion about NG(ρ0) for the unramified case:

If n is even then NG(ρ0) = Z(L)P0 and if n is odd then NG(ρ0) = Z(L)P0 o

〈J〉.

3.3 NG(ρ0): ramified case

Now that we have calculated NG(P0), let us calculate NG(ρ0) for the ramified

case which would help us in determining the structure of H(G, ρ) in the ramified

case.

As in section 3.2, ρ0 = τθ for some regular character θ of l× (where l is a

degree n extension of kE). We have kE = Fq. So l = Fqn .

Let Γ = Gal(l/kE). The group Γ is generated by Frobenius map Φ given by

Φ(λ) = λq for λ ∈ l. Here Φn(λ) = λq
n

= λ (since l× is a cyclic group of order
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qn − 1) =⇒ Φn = 1.

For γ ∈ Γ and θ ∈ Hom(l×,C×), γ acts on θ by γ.θ(λ) = θ(γ(λ)). Here γ.θ is

also represented by θγ.

As we are in the ramified case, so Gal(kE/kF ) = 1. So g = g for g ∈ kE.

Let ι : GLn(kE) −→ GLn(kE) be a group homomorphism given by: ι(g) = tg−1 =

tg−1. Let us denote τθ ◦ ι by τθ
ι. So τθ

ι(g) = τθ(ι(g)) = τθ(
tg−1) = τθ(

tg−1) for

g ∈ GLn(kE). We also denote τθ(g) for τθ(g) for g ∈ GLn(kE).But τθ(g) = τθ(g) =

τθ(g). It can be observed clearly as θ is a character of l× , so θ(λm) = θm(λ) for

m ∈ Z, λ ∈ l×.

Proposition 3.8. Let θ be a regular character of l×. Then τ ιθ ' τθ ⇐⇒ θγ = θ−1

for some γ ∈ Gal(l/kE) .

Proof. =⇒ As τ ιθ ' τθ, so χτ ιθ(g) = χτθ(g) for g ∈ GLn(kE). But χτ ιθ(g) =

χτθ(
tg−1), since χτ ιθ(g) = χτθ(ι(g)) for g ∈ GLn(kE). As we know from the

above discussion that τ
∨

θ (g) = (τθ(g
−1))t, so trace(τ

∨

θ (g)) = trace(τθ(g
−1))t. Now

trace(τθ(g
−1)) = trace(τθ(g

−1))t as the trace of the matrix and it’s transpose are

same. So we have trace(τθ(g
−1)) = trace(τ

∨

θ (g)). Let us choose h ∈ GLn(kE) such

that h−1tg−1h = g−1. So, χτ∨θ
(g) = χτθ(g

−1) = χτθ(h
−1tg−1h) = χτθ(

tg−1).Let

us denote τ ηθ (g) for τθ(η(g)) where η : g −→ tg−1 is a group automorphism of

GLn(kE). Hence χτηθ (g) = χτθ(
tg−1). But we have already shown before that

χτθ(
tg−1) = χτ∨θ

(g). so χτ∨θ
(g) = χτηθ (g). This implies τ

∨

θ ' τ ηθ . Hence τ ιθ = τ ηθ '

τ
∨

θ ' τθ−1 (since τ
∨

θ ' τ ηθ , τ
∨

θ ' τθ−1). Now from the hypothesis of Propn. we

know that τ ιθ ' τθ, so this implies τθ ' τθ−1 (since τ ιθ ' τθ−1).But as θ is a regular

character θγ = θ−1 for some γ ∈ Γ = Gal(l/kE) where [l : kE] = n.

⇐= Now we can reverse the arguments and show that if θγ = θ−1 for some

γ ∈ Γ = Gal(l/kE) then τ ιθ ' τθ−1 .
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Proposition 3.9. If θ is a regular character of l× such that θγ = θ−1 for some

γ ∈ Γ then n is even. Conversely, if n = 2m is even and θ is a regular character

of l× then θΦm = θ−1.

Proof. =⇒ Suppose θ is a regular character of l× such that θγ = θ−1 for some

γ ∈ Γ. We know that Γ =< Φ > where Φ: l −→ l is the Frobenius map given

by Φ(λ) = λq for λ ∈ l. Now Φn(λ) = λq
n

= λ for λ ∈ l =⇒ Φn = 1. So for

λ ∈ l× we have θγ
2
(λ) = θγ(γ(λ)) = θ−1(γ(λ)) = θ((γ(λ))−1) = θ(γ(λ−1)) =

θγ(λ)−1 = θ−1(λ−1) = θ((λ)−1)−1) = θ(λ). So this implies θγ
2

= θ. As θ is

a regular character, so we have γ2 = 1. Now for λ ∈ l× we have θΦ(λ) =

θ(Φ(λ)) = θ(λq) = θq(λ). That implies θΦ = θq. As γ2 = 1 =⇒ γ = 1 or

γ has order 2. If γ = 1 as θγ = θ−1 =⇒ θ = θ−1 =⇒ θ(λ) = θ−1(λ) for

λ ∈ l× =⇒ θ(λ) = θ(λ−1) =⇒ θ(λ2) = 1 =⇒ (θ(λ))2 = 1 =⇒ θ(λ) = {±1} for

λ ∈ l×.

Let q be an odd prime power. So for λ ∈ l× we have θΦ(λ) = θq(λ) = (θ(λ))q =

θ(λ) (since θ(λ) = {±1}). So this implies θΦ = θ and that further implies Φ = 1

as θ is a regular character =⇒ n = 1 which contradicts our assumption that

cardinality of Γ is greater than 1. Now suppose q is a prime power of 2. As the

characteristic of kE = 2 that implies +1 = −1 in kE. So θ(λ) = ±1 = 1 for

λ ∈ l×. So we have for λ ∈ l×, θΦ(λ) = θq(λ) = (θ(λ))q = 1 (since θ(λ) = 1).

And this implies θΦ = θ and that further implies Φ = 1 as θ is a regular character

=⇒ n = 1 which contradicts our assumption that cardinality of Γ is greater than

1.

Hence γ2 = 1 or γ has order 2, since γ 6= 1. Now Γ has order n and γ ∈ Γ

has order 2. So 2 | n =⇒ n is even.

⇐= Suppose n is even. Let n = 2m where m ∈ N. Now
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Hom(l×,C×) ∼= l×.

So Hom(l×,C×) is a cyclic group of order (qn − 1) = (q2m − 1). Hence for

every divisor d of (q2m−1), there exists an element in Hom(l×,C×) of order d. As

(qm + 1) is a divisor of (q2m− 1), hence there exists an element θ in Hom(l×,C×)

of order (qm + 1). So θq
m+1 = 1 =⇒ θq

m
= θ−1 =⇒ θΦm = θ−1(since θΦ = θq).

Hence we have θγ = θ−1, where γ = Φm.

Now we claim that the character θ is regular. Suppose θγ = θ for some γ ∈ Γ.

Let γ = Φk for some k ∈ Z. Then we have θΦk = θ =⇒ θq
k

= θ =⇒ θq
k−1 = 1.

As θ has order (qm + 1) that means (qm + 1) | (qk − 1). By Euclidean Algorithm,

we have k = md + r where r, d ∈ Z, 0 6 r < m. If d = 0 then k = r < m

which contradicts the fact that (qm + 1) | (qk − 1). So d > 1. Now as (qm + 1) |

(qk−1) =⇒ (qm+1) | ((qk−1)+(qm+1)) =⇒ (qm+1) | (qk + qm) =⇒ (qm+1) |

(qmd+r+qm) =⇒ (qm+1) | qm(qm(d−1)+r+1). But as qm and (qm+1) are relatively

prime, so this implies (qm+1) | (qm(d−1)+r+1). But (qm+1) | (qm(d−1)+r+1) =⇒

(qm+1) | ((qm(d−1)+r+1)−(qm+1)) =⇒ (qm+1) | qm(qm(d−2)+r−1). But as qm and

(qm+1) are relatively prime, so this implies (qm+1) | (qm(d−2)+r−1). Continuing

the above process, we have (qm + 1) | (qr + 1) if d is odd and (qm + 1) | (qr − 1)if

d is even. As r < m, the above conditions are possible only when r = 0. If r = 0,

then k = md. So if d is odd then (qm + 1) | 2 =⇒ (qm + 1) is either 1 or 2. If

(qm + 1) = 1 then q = 0 which is a contradiction. So let (qm + 1) = 2 then we

have q = 1 which is again a contradiction as q is a prime power. So d has to

be even. Let d be even and is greater than 2. So d can take values 4, 6, 8, . . ..

But as k = md, so k can take values 4m, 6m, 8m, . . . . That is k can take values

2n, 3n, 6n, . . . which is a contradiction as k < n. So d = 2. Hence k = 2m = n.

So Φk = Φn = 1 =⇒ γ = 1. So θ is a regular character.
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Combining Propn. 3.8 and Propn. 3.9 we have the following Propn.

Proposition 3.10. Let θ be a regular character of l×. Then τ ιθ ' τθ ⇐⇒ n is

even.

We know that ρ0 is an irreducible cuspidal representation of K. But K ∼= P0.

So ρ0 can be viewed as a representation of P0. Now let us compute NG(ρ0),

where NG(ρ0) = {m ∈ NG(P0) | ρ0 ' ρm0 }. Let m ∈ NG(P0). Hence m is either

J or m is of the form

zk 0

0 t(zk)−1

 for some z ∈ Z, k ∈ K.

Proposition 3.11. If m =

zk 0

0 t(zk)−1

 for some z ∈ Z, k ∈ K then ρ0
m ' ρ0.

Proof. As ρ0 is an irreducible cuspidal representation of K, so K normalizes ρ0.

Clearly, Z normalizes ρ0. Thus ZK normalizes ρ0. As ρ0 can also be viewed

as a representation of P0, so ρ0
m ' ρ0 where m =

zk 0

0 t(zk)−1

 for some

z ∈ Z, k ∈ K.

Proposition 3.12. If m = J =

0 1

1 0

 then ρ0
m ' ρ0 only when n is even.

Proof. We know that ι : a −→ ta−1 is a group homomorphism of GLn(kE). Now

ι : a −→ ta−1 can be inflated to a group homomorphism of GLn(OE). Further, ι

can be viewed as a group homomorphism from P0 to P0 given by:

ι


a 0

0 ta−1


 =

ta−1 0

0 a
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where a ∈ GLn(OE). Let g =

a 0

0 ta−1

. If m = J then ρ0
m(g) = ρ0(JgJ−1) =

ρ0


ta−1 0

0 a


 = ρ0(ι(g)) = ρι0(g). So ρ0

m(g) = ρι0(g) for all g ∈ P0 =⇒ ρ0
m =

ρι0. But from the hypothesis of the Propn. we know that ρm0 ' ρ0. So we have

ρ0 ' ρι0. Now from Propn. 3.10, ρ0 ' ρι0 = ρm0 ⇐⇒ n is even.

So we have the following conclusion about NG(ρ0) for ramified case: If n is

odd then NG(ρ0) = Z(L)P0 and if n is even then NG(ρ0) = Z(L)P0 o 〈J〉.

Lemma 3.13. When n is odd in the unramified case or when n is even in

the ramified case, we have NG(ρ0) = 〈P0, w0, w1〉, where w0 = J and w1 = 0 $E
−11

$E1 0

.

Proof. Let ζ = w0w1. So ζ =

$E1 0

0 $E
−11

. We can clearly see that w2
0 = 1.

So w0 = w−1
0 and w1 = w−1

0 ζ = w0ζ. From the hypothesis of lemma, we have

NG(ρ0) = Z(L)P0 o 〈J〉. As any element in E× can be written as u$n for

some n ∈ Z, u ∈ O×E, so Z(L) = Z(P0)〈ζ〉. So Z(L)P0 = 〈P0, ζ〉. Hence

NG(ρ0) = 〈P0, ζ〉o J . But J = w0, w1 = w0ζ. So NG(ρ0) = 〈P0, w0, w1〉.

3.4 Structure of H(G, ρ): unramified case

In this section we determine the structure ofH(G, ρ) for the unramified case when

n is odd. Using cuspidality of ρ0, it can be shown by Theorem 4.15 in [8], that

IG(ρ) = PNG(ρ0)P. But from lemma 3.13, NG(ρ0) = 〈P0, w0, w1〉. So IG(ρ) =

P 〈P0, w0, w1〉P = P 〈w0, w1〉P, as P0 is a subgroup of P. Let V be the vector
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space corresponding to ρ. Let us recall that H(G, ρ) consists of maps f : G →

EndC(V
∨
) such that support of f is compact and f(pgp′) = ρ

∨
(p)f(g)ρ

∨
(p′) for

p, p′ ∈ P, g ∈ G. In fact H(G, ρ) consists of C-linear combinations of maps

f : G −→ EndC(V
∨
) such that f is supported on PxP where x ∈ IG(ρ) and

f(pxp′) = ρ
∨
(p)f(x)ρ

∨
(p′) for p, p′ ∈ P. We shall now show there exists φ0 ∈

H(G, ρ) with support Pw0P and satisfies φ2
0 = qn + (qn − 1)φ0. Let

K(0) = U(n, n) ∩GL2n(OE) = {g ∈ GL2n(OE) |t gJg = J},

K1(0) = {g ∈ 1 +$EM2n(OE) |t gJg = J},

G = {g ∈ GL2n(kE) |t gJg = J}.

The map r from K(0) to G given by r : K(0)
mod pE−−−−→ G is a surjective group

homomorphism with kernel K1(0). So by the first isomorphism theorem of groups

we have:

K(0)
K1(0)

∼= G.

r(P) = P =

GLn(kE) Mn(kE)

0 GLn(kE)

⋂G= Siegel parabolic subgroup of G.

Now P = L n U, where L is the Siegel Levi component of P and U is the

unipotent radical of G. Here

L =

{a 0

0 ta−1

 | a ∈ GLn(kE)

}
,

U =

{1 X

0 1

 | X ∈ Mn(kE), X + tX = 0

}
.
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Let V be the vector space corresponding to ρ. The Hecke algebra H(K(0), ρ)

is a sub-algebra of H(G, ρ).

Let ρ be the representation of P which when inflated to P is given by ρ and

V is also the vector space corresponding to ρ. The Hecke algebra H(G, ρ) looks

as follows:

H(G, ρ) =

{
f : G→ EndC(V

∨
)

∣∣∣∣∣ f(pgp′) = ρ
∨
(p)f(g)ρ

∨
(p′)

where p, p′ ∈ P, g ∈ G

}
.

Now the homomorphism r : K(0) −→ G extends to a map from H(K(0), ρ)

to H(G, ρ) which we again denote by r. Thus r : H(K(0), ρ) −→ H(G, ρ) is given

by

r(φ)(r(x)) = φ(x)

forφ ∈ H(K(0), ρ) andx ∈ K(0).

Proposition 3.14. The map r : H(K(0), ρ) −→ H(G, ρ) is an algebra isomor-

phism.

Proof. To prove that the map r is an isomorphism of algebras, we have to show

that r is a homomorphism of algebras and is a bijective map.

In order to show that the map r is a homomorphism, we need to show that it

is C-linear and it preserves convolution. It is obvious that the map r is C-linear.

Let us now show that the map preserves convolution.

If x ∈ K(0) and φ1, φ2 ∈ H(K(0), ρ) then

(φ1 ∗ φ2)(x) =

∫
K(0)

φ1(y)φ2(y−1x)dy.
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Now ∫
K(0)

φ1(y)φ2(y−1x)dy =
∑

y∈P/K(0)

φ1(xy−1)φ2(y).

Hence

r(φ1 ∗ φ2)(r(x)) = (φ1 ∗ φ2)(x)

=
∑

y∈P/K(0)

φ1(xy−1)φ2(y)

=
∑

y∈P/K(0)

(r(φ1)(r(xy−1)))(r(φ2)(r(y)))

=
∑

r(y)∈P/G

(r(φ1)(r(x)(r(y))−1))(r(φ2)(r(y)))

= (r(φ1) ∗ r(φ2))(r(x)).

So we have r(φ1 ∗ φ2)(r(x)) = (r(φ1) ∗ r(φ2))(r(x)). But r is a surjective group

homomorphism from K(0) to G. Hence r(φ1∗φ2)(y) = (r(φ1)∗r(φ2))(y) for y ∈ G

which would imply that r(φ1 ∗φ2) = (r(φ1) ∗ r(φ2)). Hence r is a homomorphism

of algebras.

In order to show that r is bijective map, we first show here that the map r is

a one-one map. Let φ1, φ2 ∈ H(K(0), ρ), y ∈ G. Suppose r(φ1)(y) = r(φ2)(y). As

r is surjective map from K(0) to G, so there exists x ∈ K(0) such that r(x) = y.

So r(φ1)(r(x)) = r(φ2)(r(x)) =⇒ φ1(x) = φ2(x). As r is a surjective map from

K(0) to G, so when y spans over G, x spans over K(0). So φ1(x) = φ2(x) for

x ∈ K(0) =⇒ φ1 = φ2. So r is a one-one map.

Now we show that r is a surjective map from H(K(0), ρ) to H(G, ρ). Let

ψ ∈ H(G, ρ), then ψ : G −→ EndCV is a map such that ψ(pgp′) = ψ(g) for p, p′ ∈

P, g ∈ G. As r is a surjective map from K(0) to G , so ψ ◦ r makes sense. Now let
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us call ψ◦r as φ. So φ is a map from K(0) to EndCV . Let p, p′ ∈ P, k ∈ K(0), so

φ(pkp′) = (ψ ◦r)(pkp′) = ψ(r(pkp′)) = ψ(r(p)r(k)r(p′)) = ψ(r(k)) = (ψ ◦r)(k) =

φ(k). So φ ∈ H(K(0), ρ). Let y ∈ G. So there exits x ∈ K(0) such that r(x) = y.

Now consider ψ(y) = ψ(r(x)) = (ψ ◦ r)(x) = φ(x) = r(φ)(r(x)) = r(φ)(y). So

ψ(y) = r(φ)(y) for y ∈ G =⇒ ψ = r(φ). Hence r is a surjective map.

As r is both one-one and surjective map, hence it is a bijective map.

Let w = r(w0) = r(

0 1

1 0

) =

0 1

1 0

 ∈ G. Clearly K(0) ⊇ P qPw0P =⇒

r(K(0)) ⊇ r(PqPw0P) =⇒ G ⊇ r(P)qr(Pw0P) = PqPwP. So G ⊇ PqPwP.

Now IndGPρ = π1 ⊕ π2, where π1, π2 are distinct irreducible representations

of G with dimπ2 > dimπ1. Let λ = dimπ2
dimπ1

. By Propn. 3.2 in [4], there exists

a unique φ in H(G, ρ) with support PwP such that φ2 = λ + (λ − 1)φ. By

Propn. 3.14, there is a unique element φ0 in H(K(0), ρ) such that r(φ0) = φ.

Thus supp(φ0)=Pw0P and φ2
0 = λ+ (λ− 1)φ0. From Lemma 3.12 in [7], λ = qn.

Hence φ2
0 = qn + (qn − 1)φ0. As support of φ0 = Pw0P ⊆ K(0) ⊆ G, so φ0 can

be extended to G and viewed as an element of H(G, ρ). Thus φ0 satisfies the

following relation in H(G, ρ):

φ2
0 = qn + (qn − 1)φ0.

We shall now show there exists φ1 ∈ H(G, ρ) with support Pw1P satisfying

the same relation as φ0. Let η =

 0 1

$E1 0

. Now we can check that ηw0η
−1 = w1.

Recall that P looks as follows:
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P =

GLn(OE) Mn(OE)

Mn(pE) GLn(OE)

⋂G.

Lemma 3.15. ηPη−1 = P.

Proof.

P =

GLn(OE) Mn(OE)

Mn(pE) GLn(OE)

⋂G

=⇒ ηPη−1 = η

GLn(OE) Mn(OE)

Mn(pE) GLn(OE)

 η−1
⋂
ηGη−1.

It is easy to show that

η

GLn(OE) Mn(OE)

Mn(pE) GLn(OE)

 η−1 =

GLn(OE) Mn(OE)

Mn(pE) GLn(OE)

 .
Now we claim that ηGη−1 = G. To prove this let us consider

G′ = {g ∈ GL2n(E) |t gJg = λ(g)J for someλ(g) ∈ F×}.

Now η ∈ G′ clearly, as tηJη = $EJ = $FJ . And λ : G′ −→ F× is a

homomorphism of groups with kernel G. So G E G′. As η ∈ G′ and G E G′, so

ηGη−1 = G. Hence ηPη−1 = P.

As P ⊆ K(0) and w0 ∈ K(0), so K(0) ⊇ PqPw0P =⇒ ηK(0)η−1 ⊇ ηPη−1q

ηPw0Pη
−1. But from lemma 3.15, we know that ηPη−1 = P and ηPw0Pη

−1 =

(ηPη−1)(ηw0η
−1)(ηPη−1) = Pw1P (since ηw0η

−1 = w1). So ηK(0)η−1 ⊇ P q

Pw1P.
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Let r′ be homomorphism of groups given by the map r′ : ηk(0)η−1 −→ G

such that r′(x) = (η−1xη)modpE for x ∈ K(0). Observe that r′ is a surjec-

tive homomorphism of groups because r′(ηK(0)η−1) = (η−1ηK(0)η−1η)modpE =

K(0)modpE = G. The kernel of group homomorphism is ηK1(0)η−1. Now by

the first isomorphism theorem of groups we have ηK(0)η−1

ηK1(0)η−1
∼= K(0)

K1(0)
∼= G. Also

r′(ηPη−1) = (η−1ηPη−1η)modpE = PmodpE = P. Let ρ be representation of P

which when inflated to P is given by ρ. The Hecke algebra of ηK(0)η−1 which

we denote by H(ηK(0)η−1, ρ) is a sub-algebra of H(G, ρ).

The map r′ : ηK(0)η−1 −→ G extends to a map from H(ηK(0)η−1, ρ) to

H(G, ρ) which we gain denote by r′. Thus r′ : H(ηK(0)η−1, ρ) −→ H(G, ρ) is

given by

r′(φ(r′(x)) = φ(x)

forφ ∈ H(ηK(0)η−1, ρ) andx ∈ ηK(0)η−1.

The proof that r′ is an isomorphism goes in the similar lines as Propn. 3.14

.We can observe that r′(w1) = w ∈ G, where w is defined as before in this

section. As we know from our previous discussion in this section, that there

exists a unique φ in H(G, ρ) with support PwP such that φ2 = qn + (qn − 1)φ.

Hence there is a unique element φ1 ∈ H(ηK(0)η−1, ρ) such that r′(φ1) = φ. Thus

supp(φ1)=Pw1P and φ2
1 = qn + (qn − 1)φ1. Now φ1 can be extended to G and

viewed as an element in H(G, ρ) as Pw1P ⊆ ηK(0)η−1 ⊆ G. Thus φ1 satisfies

the following relation in H(G, ρ):

φ2
1 = qn + (qn − 1)φ1.

Thus we have shown there exists φi ∈ H(G, ρ) with supp(φi)=PwiP satisfying
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φ2
i = qn + (qn− 1)φi for i = 0, 1. It can be further shown that φ0 and φ1 generate

the Hecke algebra H(G, ρ). Let us denote the Hecke algebra H(G, ρ) by A. So

A = H(G, ρ) =

〈
φi : G→ EndC(ρ

∨
)

∣∣∣∣∣∣∣∣
φi is supported on PwiP

and φi(pwip
′) = ρ

∨
(p)φi(wi)ρ

∨
(p′)

where p, p′ ∈ P, g ∈ G, i = 0, 1

〉

where φi satisfies the relation:

φ2
i = qn + (qn − 1)φi for i = 0, 1.

Lemma 3.16. φ0 and φ1 are units in A.

Proof. As φ2
i = qn+(qn−1)φi for i = 0, 1. So φi(

φi+(1−qn)1
qn

) = 1 for i=0,1. Hence

φ0 and φ1 are units in A.

Lemma 3.17. Let φ, ψ ∈ H(G, ρ) with support of φ, ψ being PxP,PyP respec-

tively. Then supp(φ ∗ ψ)=supp(φψ) ⊆ (supp(φ))(supp(ψ))=PxPyP.

Proof. As supp(φ)= PxP and supp(ψ)= PyP, so if z ∈ supp(φ ∗ ψ) then (φ ∗

ψ)(z) =
∫
G
φ(zr−1)ψ(r)dr 6= 0. So there exists r ∈ G such that φ(zr−1)ψ(r) 6= 0.

Because if φ(zr−1)ψ(r) = 0 for r ∈ G then
∫
G
φ(zr−1)ψ(r) = 0 =⇒ (φ∗ψ)(z) = 0

which is a contradiction. So φ(zr−1)ψ(r) 6= 0 for some r ∈ G. As φ(zr−1) 6= 0 =⇒

supp(φ) = PxP and ψ(r) 6= 0 =⇒ r ∈ supp(ψ) = PyP. Hence (zr−1)(r) = z ∈

(supp(φ))(supp(ψ)) = (PxP)(PyP) = PxPyP. Hence supp(φ ∗ ψ)= supp(φψ)

⊆ (supp(φ))(supp(ψ))=PxPyP.

From B-N pair structure theory we can show that, PxPyP = PxyP ⇐⇒

l(xy) = l(x) + l(y). From lemma 3.17, we have supp(φ0φ1) ⊆ Pw0Pw1P. But

Pw0Pw1P = Pw0w1P (since l(w0w1) = l(w0) + l(w1)). Thus supp(φ0φ1)⊆

Pw0w1P. Let ζ = w0w1, So
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ζ =

$1 0

0 $−11

 .
As φ0, φ1 are units in algebra A, so ψ = φ0φ1 is a unit too in A and

ψ−1 = φ−1
1 φ−1

0 . Now as we have seen before that supp(φ0φ1) ⊆ Pw0w1P =⇒

supp(ψ) ⊆ PζP =⇒ supp(ψ) = ∅ orPζP. If supp(ψ)= ∅ =⇒ ψ = 0 which is a

contradiction as ψ is a unit in A. So supp(ψ) = PζP. As ψ is a unit in A, we can

show as before from B-N pair structure theory that supp(ψ2) = Pζ2P. Hence

by induction on n ∈ N, we can further show from B-N pair structure theory that

supp(ψn)= PζnP for n ∈ N.

Now A contains a sub- algebra generated by ψ, ψ−1 over C and we denote

this sub-algebra by B. So B = C[ψ, ψ−1] where

B = C[ψ, ψ−1] =

{
ckψ

k + · · ·+ clψ
l

∣∣∣∣∣ ck, . . . , cl ∈ C;

k < l; k, l ∈ Z

}
.

Proposition 3.18. The unique algebra homomorphism C[x, x−1] −→ B given by

x −→ ψ is an isomorphism. So B ' C[x, x−1].

Proof. It is obvious that the map is an algebra homomorphism and is surjective

as {ψn | n ∈ Z} spans B. Now we show that the kernel of map is 0. Suppose

ckψ
k + · · · + clψ

l = 0 with ck, . . . , cl ∈ C; l > k > 0; l, k ∈ Z. Let x ∈ suppψs =

PζsP where 0 6 k 6 s 6 l. As double cosets of a group are disjoint or equal, so

ψs(x) 6= 0 and ψi(x) = 0 for 0 6 k 6 i 6 l, i 6= s. Hence ckψ
k(x)+· · ·+clψl(x) = 0

would imply that cs = 0. In a similar way we can show that ck = ck+1 = . . . = cl =

0. So {ψk, ψk+1, . . . , ψl} is a linearly independent set when 0 6 k < l; k, l ∈ Z.

Now suppose if k < 0 and let ckψ
k + · · · + clψ

l = 0 with ck, . . . , cl ∈ C; k, l ∈ Z.

Let us assume without loss of generality that k < l. Multiplying throughout

the above expression by ψ−k, we have ck + · · · + clψ
l−k = 0. Now repeating the
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previous argument we have ck = ck+1 = . . . = cl = 0. So again {ψk, ψk+1, . . . , ψl}

is a linearly independent set when k < 0; k < l; k, l ∈ Z. Hence B ' C[x, x−1].

3.5 Structure of H(G, ρ): ramified case

In this section we determine the structure of H(G, ρ) for the ramified case when n

is even. Recall IG(ρ) = PNG(ρ0)P. But from lemma 3.13, NG(ρ0) = 〈P0, w0, w1〉.

So IG(ρ) = P 〈P0, w0, w1〉P = P 〈w0, w1〉P, as P0 is a subgroup of P. Let V

be the vector space corresponding to ρ. Let us recall that H(G, ρ) consists of

maps f : G → EndC(V
∨
) such that support of f is compact and f(pgp′) =

ρ
∨
(p)f(g)ρ

∨
(p′) for p, p′ ∈ P, g ∈ G. In fact H(G, ρ) consists of C-linear combi-

nations of maps f : G −→ EndC(V
∨
) such that f is supported on PxP where

x ∈ IG(ρ) and f(pxp′) = ρ
∨
(p)f(x)ρ

∨
(p′) for p, p′ ∈ P. We shall now show there

exists φ0 ∈ H(G, ρ) with support Pw0P and satisfies φ2
0 = qn/2 + (qn/2 − 1)φ0.

Let

K(0) = U(n, n) ∩GL2n(OE) = {g ∈ GL2n(OE) |t gJg = J},

K1(0) = {g ∈ 1 +$EM2n(OE) |t gJg = J},

G = {g ∈ GL2n(kE) |t gJg = J}.

The map r from K(0) to G given by r : K(0)
mod pE−−−−→ G is a surjective group

homomorphism with kernel K1(0). So by the first isomorphism theorem of groups

we have:

K(0)
K1(0)

∼= G.
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r(P) = P =

GLn(kE) Mn(kE)

0 GLn(kE)

⋂G= Siegel parabolic subgroup of G.

Now P = L n U, where L is the Siegel Levi component of P and U is the

unipotent radical of G. Here

L =

{a 0

0 ta−1

 | a ∈ GLn(kE)

}
,

U =

{1 X

0 1

 | X ∈ Mn(kE), X + tX = 0

}
.

Let V be the vector space corresponding to ρ. The Hecke algebra H(K(0), ρ)

is a sub-algebra of H(G, ρ).

Let ρ be the representation of P which when inflated to P is given by ρ and

V is also the vector space corresponding to ρ. The Hecke algebra H(G, ρ) looks

as follows:

H(G, ρ) =

{
f : G→ EndC(V

∨
)

∣∣∣∣∣ f(pgp′) = ρ
∨
(p)f(g)ρ

∨
(p′)

where p, p′ ∈ P, g ∈ G

}
.

Now the homomorphism r : K(0) −→ G extends to a map from H(K(0), ρ)

to H(G, ρ) which we again denote by r. Thus r : H(K(0), ρ) −→ H(G, ρ) is given

by

r(φ)(r(x)) = φ(x)

forφ ∈ H(K(0), ρ) andx ∈ K(0).

As in the unramified case, when n is odd, we can show that H(K(0), ρ) is
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isomorphic to H(G, ρ) as algebras via r.

Let w = r(w0) = r(

0 1

1 0

) =

0 1

1 0

 ∈ G. Clearly K(0) ⊇ P qPw0P =⇒

r(K(0)) ⊇ r(PqPw0P) =⇒ G ⊇ r(P)qr(Pw0P) = PqPwP. So G ⊇ PqPwP.

Now G is a finite group. In fact, it is the special orthogonal group consisting

of matrices of size 2n× 2n over finite field kE or Fq. So G = SO2n(Fq).

According to the Theorem 6.3 in [4], there exists a unique φ in H(G, ρ) with

support PwP such that φ2 = qn/2 + (qn/2 − 1)φ. Hence there is a unique element

φ0 ∈ H(K(0), ρ) such that r(φ0) = φ. Thus supp(φ0)=Pw0P and φ2
0 = qn/2 +

(qn/2− 1)φ0. Now φ0 can be extended to G and viewed as an element in H(G, ρ)

as Pw0P ⊆ K(0) ⊆ G. Thus φ0 satisfies the following relation in H(G, ρ):

φ2
0 = qn/2 + (qn/2 − 1)φ0.

We shall now show there exists φ1 ∈ H(G, ρ) with support Pw1P satisfying

the same relation as φ0.

We know that w1 =

 0 $−1
E 1

$E1 0

 , $−1
E = −$E. So w1 =

 0 −$−1
E 1

$E1 0

.

Let η =

$E1 0

0 1

. So, ηw1η
−1 = J ′ =

0 −1

1 0

. Recall that P looks as follows:

P =

GLn(OE) Mn(OE)

Mn(pE) GLn(OE)

⋂G.

Now

η

GLn(OE) Mn(OE)

Mn(pE) GLn(OE)

 η−1 =

GLn(OE) Mn(pE)

Mn(OE) GLn(OE)

 ,
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ηGη−1 = G′ = {g ∈ GL2n(E) |t gJ ′g = J ′}.

Hence

ηPη−1 =

GLn(OE) Mn(pE)

Mn(OE) GLn(OE)

⋂G′.

Therefore ηPη−1 is the opposite of the Siegel Parahoric subgroup of G′. Let

K ′(0) = 〈P, w1〉.

And let

G′ = {g ∈ GL2n(kE) |t gJ ′g = J ′}

= {g ∈ GL2n(kE) |t gJ ′g = J ′}.

Let r′ : K ′(0) −→ G′ be the group homomorphism given by

r′(x) = (ηxη−1)modpE wherex ∈ K ′(0).

So we have r′(K(0)) = (ηK ′(0)η−1)modpE = (η〈P, w1〉η−1)modpE. Let

r′(P) = (ηPη−1)modpE = P
′
. We can see that r′(w1) = (ηw1η

−1)modpE =

J ′modpE = w′ =

0 −1

1 0

.

So P
′
= r′(P) = (ηPη−1)modpE =

GLn(kE) 0

Mn(kE) GLn(kE)

⋂G′. Clearly P
′

is

the opposite of Siegel parabolic subgroup of G′. Hence r′(K(0)) = 〈P′, w′〉 = G′,

as P
′

is a maximal subgroup of G′ and w′ does not lie in P
′
. So r′ is a surjective

homomorphism of groups.
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Let V be the vector space corresponding to ρ. The Hecke algebra H(K ′(0), ρ)

is a sub-algebra of H(G, ρ).

Let ρ′ be the representation of P
′
which when inflated to ηP is given by ηρ and

V is also the vector space corresponding to ρ′. Now the Hecke algebra H(G′, ρ′)

looks as follows:

H(G′, ρ′) =

{
f : G′ → EndC(V

∨
)

∣∣∣∣∣ f(pgp′) = ρ′
∨
(p)f(g)ρ′

∨
(p′)

where p, p′ ∈ P
′
, g ∈ G′

}
.

Now the homomorphism r′ : K ′(0) −→ G′ extends to a map from H(K ′(0), ρ)

to H(G′, ρ′) which we again denote by r′. Thus r′ : H(K ′(0), ρ) −→ H(G′, ρ′) is

given by

r′(φ)(r′(x)) = φ(x)

forφ ∈ H(K ′(0), ρ) andx ∈ K ′(0).

As in the unramified case when n is odd, we can show that H(K ′(0), ρ) is

isomorphic to H(G′, ρ′) as algebras via r′.

Clearly K ′(0) ⊇ PqPw1P =⇒ r′(K ′(0)) ⊇ r′(PqPw1P) =⇒ G′ ⊇ r′(P)q

r′(Pw1P) = P
′ q P

′
w′P

′
. So G′ ⊇ P

′ q P
′
w′P

′
.

Now G′ is a finite group. In fact, it is the symplectic group consisting of

matrices of size 2n× 2n over finite field kE or Fq. So G′ = Sp2n(Fq).

According to the Theorem 6.3 in [4], there exists a unique φ in H(G′, ρ′)

with support P
′
w′P

′
such that φ2 = qn/2 + (qn/2 − 1)φ. Hence there is a unique

element φ1 ∈ H(K ′(0), ρ) such that r′(φ1) = φ. Thus supp(φ1)=Pw1P and

φ2
1 = qn/2 + (qn/2− 1)φ1. Now φ1 can be extended to G and viewed as an element
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in H(G, ρ) as Pw1P ⊆ K ′(0) ⊆ G. Thus φ1 satisfies the following relation in

H(G, ρ):

φ2
1 = qn/2 + (qn/2 − 1)φ1.

Thus we have shown there exists φi ∈ H(G, ρ) with supp(φi)=PwiP satisfying

φ2
i = qn/2 + (qn/2 − 1)φi for i = 0, 1. It can be further shown that φ0 and φ1

generate the Hecke algebra H(G, ρ). Let us denote the Hecke algebra H(G, ρ) by

A. So

A = H(G, ρ) =

〈
φi : G→ EndC(ρ

∨
)

∣∣∣∣∣∣∣∣
φi is supported on PwiP

andφi(pwip
′) = ρ

∨
(p)φi(wi)ρ

∨
(p′)

where p, p′ ∈ P, g ∈ G, i = 0, 1

〉

where φi has support PwiP and φi satisfies the relation:

φ2
i = qn/2 + (qn/2 − 1)φi for i = 0, 1.

Lemma 3.19. φ0 and φ1 are units in A.

Proof. As φ2
i = qn/2 + (qn/2 − 1)φi for i = 0, 1. So φi(

φi+(1−qn/2)1

qn/2
) = 1 for i=0,1.

Hence φ0 and φ1 are units in A.

As φ0, φ1 are units in A which is an algebra, so ψ = φ0φ1 is a unit too in A

and ψ−1 = φ−1
1 φ−1

0 . As in the unramified case when n is odd, we can show that

A contains sub-algebra B = C[ψ, ψ−1] where

B = C[ψ, ψ−1] =

{
ckψ

k + · · ·+ clψ
l

∣∣∣∣∣ ck, . . . , cl ∈ C;

k < l; k, l ∈ Z

}
.
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Further, as in the unramified case when n is odd, we can show that C[ψ, ψ−1] '

C[x, x−1] as C-algebras.

3.6 Structure of H(L, ρ0)

In this section we describe the structure of H(L, ρ0). Thus we need first to

determine

NL(ρ0) = {m ∈ NL(P0) | ρm0 ' ρ0}.

We know from lemma 3.1 that NGLn(E)(K0) = K0Z, so we have NL(P0) =

Z(L)P0. Since Z(L) clearly normalizes ρ0 and ρ0 is an irreducible cuspidal rep-

resentation of P0, so NL(ρ0) = Z(L)P0.

Now that we have calculated NL(ρ0), we determine the structure of H(L, ρ0).

Using the cuspidality of ρ0, it can be shown by A.1 Appendix [8] that IL(ρ0) =

P0NL(ρ0)P0. As NL(ρ0) = Z(L)P0, so IL(ρ0) = P0Z(L)P0P0 = Z(L)P0. Let

V be the vector space of ρ0.

The Hecke algebraH(L, ρ0) consists of C-linear combinations of maps f : L −→

EndC(V
∨
) such that each map f is supported on P0xP0 where x ∈ IL(ρ0) =

Z(L)P0 and f(pxp′) = ρ
∨
0 (p)f(x)ρ

∨
0 (p′) for p, p′ ∈ P0. It is clear that

Z(L)P0 =
∐
n∈Z

P0ζ
n.

So the Hecke algebra H(L, ρ0) consists of C-linear combinations of maps

f : L −→ EndC(V
∨
) such that each map f is supported on P0xP0 where x ∈

P0ζ
n with n ∈ Z and f(pxp′) = ρ

∨
0 (p)f(x)ρ

∨
0 (p′) for p, p′ ∈ P0.

Let φ1, φ2 ∈ H(L, ρ0) with supp(φ1) = P0z1 and supp(φ2) = P0z2 respectively
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with z1, z2 ∈ Z(L). As ρ0 is an irreducible cuspidal representation of P0. So if

f ∈ H(L, ρ0) with supp(f) = P0z where z ∈ Z(L) then from Schur’s lemma

f(z) = c1V ∨ for some c ∈ C×. Hence φ1(z1) = c11V ∨ and φ2(z2) = c21V ∨ where

c1, c2 ∈ C×.

We have supp(φ1φ2) ⊆ (supp(φ1))(supp(φ2)) = P0z1P0z2 = P0z1z2. The

proof goes in the similar lines as lemma 3.17.

We assume without loss of generality that volP0 = volP− = volP+ = 1.

Thus we have volP = 1.

Lemma 3.20. Let φ1, φ2 ∈ H(L, ρ0) with supp(φ1) = P0z1 and supp(φ2) = P0z2

where z1, z2 ∈ Z(L). Also let φ1(z1) = c11V ∨ and φ2(z2) = c21V ∨ where c1, c2 ∈

C×. Then (φ1 ∗ φ2)(z1z2) = φ1(z1)φ2(z2) = c1c21V ∨ .

Proof.

(φ1 ∗ φ2)(z1z2) =

∫
L

φ1(z1z2y
−1)φ2(y)dy

=

∫
P0

φ1(z1z2z
−1
2 p−1)φ2(z2p)dy

=

∫
P0

φ1(z1p
−1)φ2(pz2)dy

=

∫
P0

φ1(z1)ρ
∨

0 (p−1)ρ
∨

0 (p)φ2(z2)dy

=

∫
P0

φ1(z1)φ2(z2)dy

=

∫
P0

c1c21V ∨dy

= c1c2Vol(P0)1V ∨

= c1c21V ∨

= φ1(z1)φ2(z2).
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As supp(φ1 ∗ φ2) = supp(φ1φ2) ⊆ P0z1z2, so supp(φ1 ∗ φ2) = ∅ or P0z1z2.

If supp(φ1 ∗ φ2) = ∅ then it means that (φ1 ∗ φ2) = 0. This contradicts (φ1 ∗

φ2)(z1z2) = c1c2 6= 0. So supp(φ1 ∗ φ2) = P0z1z2.

This implies that φ1 is invertible and φ−1
1 be it’s inverse. Thus supp(φ−1

1 ) =

P0z
−1
1 and φ−1

1 (z−1
1 ) = c−1

1 1V ∨ .

Define α ∈ H(L, ρ0) by supp(α) = P0ζ and α(ζ) = 1V ∨ .

Proposition 3.21. 1. αn(ζn) = (α(ζ))n for n ∈ Z.

2. supp(αn) = P0ζ
nP0 = P0ζ

n = ζnP0 for n ∈ Z.

Proof. As α : L −→ EndC(ρ
∨
0 ), so α(ζ) ∈ EndC(ρ

∨
0 ). Now ζ ∈ Z(L),P0 6 L, so

Pζ
0 = P0, (ρ

∨
0 )ζ = ρ

∨
0 . We can see that ζ ∈ IL(ρ

∨
0 ) = IL(ρ0) = Z(L)P0, hence ζ

intertwines ρ
∨
0 . Hence

HomP0∩Pζ0
(ρ
∨
0 , (ρ

∨
0 )ζ) 6= 0

=⇒ HomP0∩P0(ρ
∨
0 , ρ

∨
0 ) 6= 0

=⇒ EndP0(ρ
∨
0 ) 6= 0.

So α(ζ) ∈ EndP0(ρ
∨
0 ). As ρ

∨
0 is an irreducible representation of P0, so from

Schur’s lemma α(ζ) is either zero or an isomorphism. But as α(ζ) 6= 0 =⇒ α(ζ)

is an isomorphism =⇒ (α(ζ))−1 exists.

Using lemma 3.20 over and over we get, αn(ζn) = (α(ζ))n for n ∈ Z and

supp(αn) = P0ζ
nP0 = P0ζ

n = ζnP0 for n ∈ Z

We know that H(L, ρ0) consists of C-linear combinations of maps f : L −→

EndC(V
∨
) such that each map f is supported on P0xP0 where x ∈ P0ζ

n with

n ∈ Z and f(pxp′) = ρ
∨
0 (p)f(x)ρ

∨
0 (p′) for p, p′ ∈ P0. So from Propn. 3.21,

H(L, ρ0) is generated as a C-algebra by α and α−1. Hence H(L, ρ0) = C[α, α−1].
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Proposition 3.22. The unique algebra homomorphism C[x, x−1] −→ C[α, α−1]

given by x −→ α is an isomorphism. So C[α, α−1] ' C[x, x−1].

Proof. It is obvious that the map is an algebra homomorphism and is surjective

as {αn | n ∈ Z} spans C[α, α−1]. Now we show that the kernel of map is 0. Let us

look at ckα
k + ck+1α

k+1 · · ·+ clα
l = 0 where k < l; k, l ∈ Z; ck, ck+1 . . . cl ∈ C. We

know that supp(αi) = P0ζ
i for k 6 i 6 l. Let x ∈ supp(αs) where k 6 s 6 l. Now

consider ckα
k(x) + ck+1α

k+1(x) · · · + clα
l(x) = 0. This implies that csα

s(x) = 0

as x ∈ supp(αs). But as αs(x) 6= 0 =⇒ cs = 0. Hence ck = ck+1 · · · = cl = 0. So

{αn | n ∈ Z} is a linearly independent set. Thus C[α, α−1] ' C[x, x−1].

We have already shown before in sections 3.4 and 3.5 that B = C[ψ, ψ−1] is

a sub-algebra of A = H(G, ρ), where ψ is supported on PζP and B ∼= C[x, x−1].

As H(L, ρ0) = C[α, α−1] ∼= C[x, x−1], so B ∼= H(L, ρ0) as C-algebras. Hence

H(L, ρ0) can be viewed as a sub-algebra of H(G, ρ).

Now we would like to find out how simple H(L, ρ0)-modules look like. Thus

to understand them we need to find out how simple C[x, x−1]-modules look like.

3.7 Calculation of simple H(L, ρ0)-modules

The following Propn. is taken from Propn. 3.11 in [1].

Proposition 3.23. If A is a commutative ring with identity and S is a multi-

plicative closed subset of A. If A is a principal ideal domain then S−1A is also

a principal ideal domain. And also if I is an ideal in S−1A then there exists an

ideal J in A such that I = JS−1A.

Lemma 3.24. C[x, x−1] is a principal ideal domain.
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Proof. Let A = C[x] and S = {xn | n ∈ N ∪ {0}}. Clearly, S is a multiplicative

closed subset of A and A is a principal ideal domain. Now we have S−1A =

C[x, x−1]. From Propn. 3.23, C[x, x−1] is a principal ideal domain.

Lemma 3.25. Any maximal ideal in C[x, x−1] is of the form (x − λ)C[x, x−1]

where λ ∈ C×.

Proof. Suppose I be a proper ideal in C[x, x−1]. From Propn. 3.23, we know that

I is of the form JC[x, x−1] where J is an ideal in C[x]. As C[x] is a principal

ideal domain so J = p(x)C[x] for some p(x) ∈ C[x] and degp(x) > 0. Let

λ ∈ C be a root of p(x). So (x − λ) | p(x). This would imply p(x)C[x] ⊆

(x − λ)C[x]. Hence I = p(x)C[x, x−1] ⊆ (x − λ)C[x, x−1]. But I is a maximal

ideal in C[x, x−1]. So I = (x − λ)C[x, x−1]. So any maximal ideal in C[x, x−1]

is of the form (x − λ)C[x, x−1] where λ ∈ C. But if λ = 0 then (x − λ) = x

and (x − λ)C[x, x−1] = xC[x, x−1] = C[x, x−1] which is not a maximal ideal. So

λ ∈ C×.

The following Propn. is taken from exercise problem 9 on page 356 in [3].

Proposition 3.26. Let R be a commutative ring with identity. An R-module M

is simple ⇐⇒M ∼= R/I for some maximal ideal I in R.

From Propn. 3.26, every simple C[x, x−1]-module is isomorphic to C[x, x−1]-

module C[x,x−1]
(x−λ)C[x,x−1]

for some λ ∈ C×.

The following Propn. is taken from Propn. 3.11 in [1].

Proposition 3.27. A is a commutative ring with identity and S is a multiplica-

tive closed subset of A. Let J be an ideal in A. Then we have S−1A
JS−1A

∼= A
J

as

S−1A-modules.
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Let A = C[x] and S = {xn | n ∈ N ∪ {0}} in the Propn. 3.27. So we

have S−1A = C[x, x−1]. Then Propn. 3.27 says that C[x,x−1]
(x−λ)C[x,x−1]

∼= C[x]
(x−λ)C[x]

as

C[x, x−1]-modules, where λ ∈ C×.

Proposition 3.28. C[x]
(x−λ)C[x]

∼= Cλ as C[x]-modules, where λ ∈ C× and Cλ is the

ring C with C[x]-module structure given by x.z = λz for z ∈ Cλ.

Proof. The C[x]-module structure of C[x]
(x−λ)C[x]

is given by p(x).q(x) = p(λ)q(x)

where p(x), q(x) ∈ C[x]. The map

φ : C[x]
(x−λ)C[x]

−→ Cλ

is defined as φ(p(x)) = p(λ) for p(x) ∈ C[x]. We shall now check that φ is a

C[x]-module homomorphism. Let p(x), q(x) ∈ C[x]. Now let us consider

φ(p(x) + q(x)) = φ((p+ q)(x))

= (p+ q)(λ)

= p(λ) + q(λ)

= φ(p(x)) + φ(q(x)).

Now let us look at

φ(p(x).q(x)) = φ(p(λ)q(x))

= φ(p(λ)q(x))

= p(λ)q(λ)

= p(λ)φ(q(x))

= p(x).φ(q(x)).
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So φ is a homomorphism of C[x]-modules. Let z ∈ C, then there exists a

polynomial p(x) ∈ C[x] such that p(λ) = z. Hence φ(p(x)) = p(λ) = z. So

φ is surjective map. Suppose if φ(p(x)) = φ(q(x)) where p(x), q(x) ∈ C[x] then

p(λ) = q(λ). This implies that (p−q)(λ) = 0 =⇒ (x−λ) | (p−q)(x) =⇒ (x−λ) |

(p(x)− q(x)) =⇒ p(x) = q(x). So φ is one-one map. Hence φ is an isomorphism

of C[x]-modules. Hence the module structure of ring C[x] over C[x]
(x−λ)

is preserved

for Cλ. Therefore the C[x]-module structure of Cλ is given by x.z = λz where

z ∈ Cλ.

So from Propn. 3.28, we have C[x]
(x−λ)

∼= Cλ as C[x]-modules for λ ∈ C×.

This means that C[x]
(x−λ)

∼= Cλ as C[x, x−1]-modules for λ ∈ C×. Recall that

C[x,x−1]
(x−λ)C[x,x−1]

∼= C[x]
(x−λ)C[x]

as C[x, x−1]-modules for λ ∈ C×. Therefore C[x,x−1]
(x−λ)C[x,x−1]

∼=

Cλ as C[x, x−1]-modules for λ ∈ C× with the C[x, x−1]-module structure on Cλ

given by x.z = λz where z ∈ Cλ.

As H(L, ρ0) = C[α, α−1], so the simple H(L, ρ0)-modules are same as the

simple C[α, α−1]-modules. We have shown before that C[α, α−1] ∼= C[x, x−1] as

algebras. So the distinct simple H(L, ρ0)-modules(up to isomorphism) are the

various Cλ for λ ∈ C×. The module structure is determined by α.z = λz for

z ∈ Cλ.
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Chapter 4

Final computations to answer the

question

4.1 Calculation of δP (ζ)

Let us recall the modulus character δP : P −→ R×>0 introduced in section 1.3.

The character δP is given by δP (p) = ‖det(Ad p)|LieU‖F for p ∈ P , where LieU is

the Lie algebra of U . We have

U =

{1 X

0 1

 | X ∈ Mn(E), X +t X = 0

}
,

LieU =

{0 X

0 0

 | X ∈ Mn(E), X +t X = 0

}
.
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4.1.1 Calculation of δP (ζ): unramified case

Recall ζ =

$E1 0

0 $−1
E 1

 in the unramified case. So

(Ad ζ)

0 X

0 0

 = ζ

0 X

0 0

 ζ−1 =

0 $2
EX

0 0

 .
Hence

δP (ζ) = ‖det(Ad ζ)|LieU‖F

= ‖$2(dimF (LieU))
E ‖F

= ‖$2n2

E ‖F

= ‖$2n2

F ‖F

= q−2n2

.

4.1.2 Calculation of δP (ζ): ramified case

Recall ζ =

$E1 0

0 −$−1
E 1

 in the ramified case. So

(Ad ζ)

0 X

0 0

 = ζ

0 X

0 0

 ζ−1 =

0 −$2
EX

0 0

 .
Hence

δP (ζ) = ‖det(Ad ζ)|LieU‖F

= ‖ −$2(dimF (LieU))
E ‖F

= ‖$2n2

E ‖F

= ‖$n2

F ‖F
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= q−n
2

.

4.2 Understanding the map TP

Let us denote the set of (P, P )-positive elements by I+. Thus

I+ = {x ∈ L | xP+x
−1 ⊆ P+, x

−1P−x ⊆ P−}.

where P+ = P ∩ U,P− = P ∩ U . We have

H+(L, ρ0) = {f ∈ H(L, ρ0) | suppf ⊆ P0I+P0}.

Note ζ ∈ I+, so H+(L, ρ0) = C[α]. The following discussion is taken from

pages 612-619 in [2]. Let W be space of ρ0. Let f ∈ H+(L, ρ0) with support of

f being P0xP0 for x ∈ I+. The map F ∈ H(G, ρ) is supported on PxP and

f(x) = F (x). The algebra embedding

T+ : H+(L, ρ0) −→ H(G, ρ)

is given by T+(f) = F .

Recall support of α ∈ H+(L, ρ0) is P0ζ. Let T+(α) = ψ, where ψ ∈ H(G, ρ)

has support PζP and α(ζ) = ψ(ζ) = 1W∨ . As T+(α) = ψ is invertible, so from

Propn. 1.7 we can conclude that T+ extends to an embedding of algebras

t : H(L, ρ0) −→ H(G, ρ).

Let φ ∈ H(L, ρ0) and m ∈ N is chosen such that αmφ ∈ H+(L, ρ0). The map
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t is then given by t(φ) = ψ−mT+(αmφ). For φ ∈ H(L, ρ0), the map

tP : H(L, ρ0) −→ H(G, ρ)

is given by tP (φ) = t(φδP ), where φδP ∈ H(L, ρ0) and is the map

φδP : L −→ EndC(ρ
∨

0 )

given by (φδP )(l) = φ(l)δP (l) for l ∈ L. As α ∈ H(L, ρ0) we have

tP (α)(ζ) = t(αδP )(ζ)

= T+(αδP )(ζ)

= δP (ζ)T+(α)(ζ)

= δP (ζ)ψ(ζ)

= δP (ζ)1W∨ .

Let H(L, ρ0)-Mod denote the category ofH(L, ρ0)-modules and H(G, ρ)-Mod

denote the category of H(G, ρ)-modules. The map tP induces a functor (tP )∗

given by

(tP )∗ : H(L, ρ0)−Mod −→ H(G, ρ)−Mod.

For M an H(L, ρ0)-module,

(tP )∗(M) = HomH(L,ρ0)(H(G, ρ),M)

where H(G, ρ) is viewed as a H(L, ρ0)-module via tP . The action of H(G, ρ) on
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(tP )∗(M) is given by

h′ψ(h1) = ψ(h1h
′)

where ψ ∈ (tP )∗(M), h1, h
′ ∈ H(G, ρ).

Let τ ∈ R[L,π]L(L) then functor mL : R[L,π]L(L) −→ H(L, ρ0)−Mod is given

by mL(τ) = HomP0(ρ0, τ). The functor mL is an equivalence of categories. Let

f ∈ mL(τ), γ ∈ H(L, ρ0) and w ∈ W . The action ofH(L, ρ0) on mL(τ) is given by

(γ.f)(w) =
∫
L
τ(l)f(γ

∨
(l−1)w)dl. Here γ

∨
is defined on L by γ

∨
(l−1) = γ(l)

∨
for

l ∈ L. Let τ ′ ∈ R[L,π]G(G) then the functor mG : R[L,π]G(G) −→ H(G, ρ)−Mod is

given by mG(τ ′) = HomP(ρ, τ ′). The functor mG is an equivalence of categories.

From Corollary 8.4 in [2], the functors mL,mG, Ind
G
P , (tP )∗ fit into the following

commutative diagram:

R[L,π]G(G)
mG−−−→ H(G, ρ)−Mod

IndGP

x (tP )∗

x
R[L,π]L(L)

mL−−−→ H(L, ρ0)−Mod

If τ ∈ R[L,π]L(L) then from the above commutative diagram, we see that

(tP )∗(mL(τ)) ∼= mG(IndGP τ) as H(G, ρ)-modules. Replacing τ by (τ ⊗ δ
1/2
P ) in

the above expression, (tP )∗(mL(τ ⊗ δ
1/2
P )) ∼= mG(IndGP (τ ⊗ δ

1/2
P )) as H(G, ρ)-

modules. As IndGP (τ ⊗ δ1/2
P ) = ιGP (τ), we have (tP )∗(mL(τ ⊗ δ1/2

P )) ∼= mG(ιGP (τ))

as H(G, ρ)-modules.

Our aim is to find an algebra embedding TP : H(L, ρ0) −→ H(G, ρ) such that

the following diagram commutes:
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R[L,π]G(G)
mG−−−→ H(G, ρ)−Mod

ιGP

x (TP )∗

x
R[L,π]L(L)

mL−−−→ H(L, ρ0)−Mod

Let τ ∈ R[L,π]L(L) then mL(τ) ∈ H(L, ρ0)- Mod. The functor (TP )∗ is defined

as below:

(TP )∗(mL(τ)) =

{
ψ : H(G, ρ)→ mL(τ)

∣∣∣∣∣ hψ(h1) = ψ(TP (h)h1) where

h ∈ H(L, ρ0), h1 ∈ H(G, ρ)

}
.

From the above commutative diagram, we see that (TP )∗(mL(τ)) ∼= mG(ιGP (τ))

as H(G, ρ)-modules. Recall that (tP )∗(mL(τ ⊗ δ
1/2
P )) ∼= mG(ιGP (τ)) as H(G, ρ)-

modules. Hence we have to find an algebra embedding Tp : H(L, ρ0) −→ H(G, ρ)

such that (TP )∗(mL(τ)) ∼= (tP )∗(mL(τ ⊗ δ1/2
P )) as H(G, ρ)-modules.

Proposition 4.1. The map TP is given by TP (φ) = tP (φδ
−1/2
P ) for φ ∈ H(L, ρ0)

so that we have (TP )∗(mL(τ)) = (tP )∗(mL(τ ⊗ δ1/2
P )) as H(G, ρ)- modules.

Proof. Let W be space of ρ0. The vector spaces for mL(τδ
1/2
P ) and mL(τ) are

the same. Let f ∈ mL(τ) = HomP0(ρ0, τ), γ ∈ H(L, ρ0) and w ∈ W . Recall the

action of H(L, ρ0) on mL(τ) is given by

(γ.f)(w) =

∫
L

τ(l)f(γ
∨
(l−1)w)dl.

Let f ′ ∈ mL(τδ
1/2
P ) = HomP0(ρ0, τδ

1/2
P ), γ ∈ H(L, ρ0) and w ∈ W . Recall the

action of H(L, ρ0) on mL(τδ
1/2
P ) is given by

(γ.f ′)(w) =

∫
L

(τδ
1/2
P )(l)f ′(γ

∨
(l−1)w)dl =

∫
L

τ(l)δ
1/2
P (l)f ′(γ

∨
(l−1)w)dl.
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Now f ′ is a linear transformation from space of ρ0 to space of τδ
1/2
P . As δ

1/2
P (l) ∈

C×, so δ
1/2
P (l)f ′(γ

∨
(l−1)w) = f ′(δ

1/2
P (l)γ

∨
(l−1)w). Hence we have

(γ.f ′)(w) =

∫
L

τ(l)f ′(δ
1/2
P (l)γ

∨
(l−1)w)dl =

∫
L

τ(l)f ′(δ
1/2
P (l)γ(l)

∨
w)dl.

Further as δ
1/2
P (l) ∈ C×, so δ

1/2
P (l)(γ(l))

∨
= (δ

1/2
P γ)(l)

∨
. Therefore

(γ.f ′)(w) =

∫
L

τ(l)f ′((δ
1/2
P γ)(l)

∨
w)dl = (δ

1/2
P γ).f ′(w).

Hence we can conclude that the action of γ ∈ H(L, ρ0) on f ′ ∈ mL(τδ
1/2
P ) is same

as the action of δ
1/2
P γ ∈ H(L, ρ0) on f ′ ∈ mL(τ). So we have (TP )∗(mL(τ)) =

(tP )∗(mL(τ ⊗ δ1/2
P )) as H(G, ρ)- modules.

From Propn. 4.1, TP (α) = tP (αδ
−1/2
P ). So we have

TP (α) = tP (αδ
−1/2
P )

= t(αδ
−1/2
P δP )

= t(αδ
1/2
P )

= T+(αδ
1/2
P ).

Hence

TP (α)(ζ) = T+(αδ
1/2
P )(ζ)

= δ
1/2
P (ζ)T+(α)(ζ)

= δ
1/2
P (ζ)α(ζ)
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= δ
1/2
P (ζ)1W∨ .

Thus TP (α)(ζ) = δ
1/2
P (ζ)1W∨ with supp(TP (α)) = supp(tP (α)) = PζP.

4.2.1 Calculation of (φ0 ∗ φ1)(ζ)

In this section we calculate (φ0 ∗ φ1)(ζ). Let gi = q−n/2φi for i = 0, 1 in the

unramified case and gi = q−n/4φi for i = 0, 1 in the ramified case. Determin-

ing (φ0 ∗ φ1)(ζ) would be useful in showing g0 ∗ g1 = TP (α) in both ramified

and unramified cases. From now on, we assume without loss of generality that

volP0 = volP− = volP+ = 1. Thus we have volP = 1.

Lemma 4.2. supp(φ0 ∗ φ1) = PζP = Pw0w1P.

Proof. We first claim that supp(φ0∗φ1) ⊆ Pw0Pw1P. Suppose z ∈ supp(φ0∗φ1)

then (φ0 ∗ φ1)(z) =
∫
G
φ0(zr−1)φ1(r)dr 6= 0. This would imply that there exists

an r ∈ G such that φ0(zr−1)φ1(r) 6= 0. As φ0(zr−1)φ1(r) 6= 0, this means that

φ0(zr−1) 6= 0, φ1(r) 6= 0. But φ0(zr−1) 6= 0 would imply that zr−1 ∈ Pw0P and

φ1(r) 6= 0 would imply that r ∈ Pw1P. So z = (zr−1)(r) ∈ (Pw0P)(Pw1P) =

(suppφ0)(suppφ1) = Pw0Pw1P. Hence supp(φ0∗φ1) ⊆ Pw0Pw1P. Let us recall

P0,P+,P−.

P0 =

{a 0

0 ta−1

 | a ∈ GLn(OE)

}
,

P+ =

{1 X

0 1

 | X ∈ Mn(OE), X + tX = 0

}
,

P− =

{ 1 0

X 1

 | X ∈ $EMn(OE), X + tX = 0

}
.
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It is easy observe that w0P−w
−1
0 ⊆ P+, w0P0w

−1
0 = P0, w

−1
1 P+w1 ⊆ P−.

Now we have

Pw0Pw1P = Pw0P−P0P+w1P

= Pw0P−w
−1
0 w0P0w

−1
0 w0w1w

−1
1 P+w1P

⊆ PP+P0w0w1P−P

= Pw0w1P

= PζP.

So Pw0Pw1P ⊆ Pw0w1P = PζP. On the contrary, as 1 ∈ P, so PζP =

Pw0w1P ⊆ Pw0Pw1P. Hence we have Pw0Pw1P = Pw0w1P = PζP. There-

fore supp(φ0∗φ1) ⊆ Pw0Pw1P = Pw0w1P = PζP. This implies supp(φ0∗φ1) =

∅ or PζP. But if supp(φ0 ∗ φ1) = ∅ then (φ0 ∗ φ1) = 0 which is a contradiction.

Thus supp(φ0 ∗ φ1) = PζP.

For r ∈ Z let

K−,r =

{ 1 0

X 1

 | X ∈ Mn(prE), X + tX = 0

}
,

K+,r =

{1 X

0 1

 | X ∈ Mn(prE), X + tX = 0

}
.

Proposition 4.3. (φ0 ∗ φ1)(ζ) = φ0(w0)φ1(w1).

Proof. From Lemma 4.2, supp(φ0 ∗ φ1) = PζP = Pw0w1P. So now let us

consider

(φ0 ∗ φ1)(ζ) = (φ0 ∗ φ1)(w0w1)
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=

∫
G

φ0(y)φ1(y−1ζ)dy

=

∫
Pw0P

φ0(y)φ1(y−1ζ)dy.

We know that Pw0P = q
z∈Pw0P/P

zP. Let y = zp ∈ zP. So we have

φ0(y)φ1(y−1ζ) = φ0(zp)φ1(p−1z−1ζ)

= φ0(z)ρ
∨
(p)ρ

∨
(p−1)φ1(z−1ζ)

= φ0(z)φ1(z−1ζ).

Hence

(φ0 ∗ φ1)(ζ) =
∑

z∈Pw0P/P

φ0(z)φ1(z−1ζ)VolP =
∑

z∈Pw0P/P

φ0(z)φ1(z−1ζ)

Let α : P/w0Pw
−1
0 ∩ P −→ Pw0P/P be the map given by α(x(w0Pw

−1
0 ∩

P)) = xw0P where x ∈ P. We can observe that the map α is bijective. So

P/w0Pw
−1
0 ∩P is in bijection with Pw0P/P.

Hence

(φ0 ∗ φ1)(ζ) =
∑

x∈P/w0Pw
−1
0 ∩P

φ0(xw0)φ1(w−1
0 x−1ζ).

From Iwahori factorization of P we have P = P−P0P+ = K−,1P0K+,0. There-

fore w0Pw
−1
0 =w0 P =w0 Kw0

−,1P
w0
0 K+,0 = K+,1P0K−,0. So P0 ∩ w0Pw

−1
0 =

P ∩w0 P = K+,1P0K−,1. Let β : P/w0Pw
−1
0 ∩ P −→ K+,0/K+,1 be the map

given by β(x(P ∩w0 P)) = x+K+,1 where x ∈ P and x = x+px−, x+ ∈ P+, p ∈

P0, x− ∈ P−. We can observe that the map β is bijective. So P/w0Pw
−1
0 ∩P is

in bijection with K+,0/K+,1.
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Therefore

(φ0 ∗ φ1)(ζ) =
∑

x+∈K+,0/K+,1

φ0(x+w0)φ1(w−1
0 x−1

+ ζ)

=
∑

x+∈K+,0/K+,1

ρ
∨
(x+)φ0(w0)φ1(w−1

0 x−1
+ ζ).

As ρ
∨

is trivial on P+ and x+ ∈ P+ so we have

(φ0 ∗ φ1)(ζ) =
∑

x+∈K+,0/K+,1

φ0(w0)φ1(w−1
0 x−1

+ ζ).

The terms in above summation which do not vanish are the ones for which

w−1
0 x−1

+ ζ ∈ Pw1P =⇒ x−1
+ ∈ w0Pw1Pζ

−1 =⇒ x+ ∈ ζPw−1
1 Pw−1

0 =⇒ w−1
0 x+w0 ∈

w1Pw
−1
1 P. It is clear w1Pw

−1
1 P = (w1P)(P). As w1P =w1 Kw1

−,1P
w1
0 K+,0 =

K−,2P0K+,−1, so w1Pw
−1
1 P = (w1P)(P) = K−,2P0K+,−1P0K−,1. Hence we

have w−1
0 x+w0 ∈ K−,2P0K+,−1P0K−,1 =⇒ w−1

0 x+w0 = k−p0k+k
′
− where k− ∈

K−,2, k+ ∈ K+,−1, k
′
− ∈ K−,1, p0 ∈ P0. Hence we have p0k+ = k−1

− w−1
0 x+w0k

′−1
− .

Now as w−1
0 x+w0 ∈ K−,0, k

−1
− ∈ K−,2, k

′−1
− ∈ K−,1, so k−1

− w−1
0 x+w0k

′−1
− ∈ K−,0

and p0k+ ∈ P0K+,−1. But we know that K−,0 ∩P0K+,−1 = 1 =⇒ p0k+ = 1 =⇒

w−1
0 x+w0 = k−k

′
− ∈ K−,1 =⇒ x+ ∈ w0K−,1w

−1
0 = K+,1. As x+ ∈ K+,1, so only

the trivial coset contributes to the above summation. Hence

(φ0 ∗ φ1)(ζ) = φ0(w0)φ1(w−1
0 ζ) = φ0(w0)φ1(w1).

4.2.2 Relation between g0, g1 and TP (α): unramified case

Recall that H(G, ρ) = 〈φ0, φ1〉 where φ0 is supported on Pw0P and φ1 is sup-

ported on Pw1P respectively with φ2
i = qn + (qn − 1)φi for i = 0, 1. In this
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section we show that g0 ∗ g1 = TP (α), where gi = q−n/2φi for i = 0, 1.

Proposition 4.4. g0g1 = TP (α).

Proof. Let us choose ψi ∈ H(G, ρ) for i = 0, 1 such that supp(ψi) = PwiP for i =

0, 1. So φi is a scalar multiple of ψi for i = 0, 1. Hence φi = λiψi where λi ∈ C× for

i = 0, 1. Let ψi(wi) = A ∈ HomP∩wiP(wiρ
∨
, ρ
∨
) for i = 0, 1 and W be the space of

ρ. So A2 = 1W∨ . From Propn. 4.3, we have (ψ0 ∗ ψ1)(ζ) = ψ0(w0)ψ1(w1) = A2 =

1W∨ . Now let ψi satisfies the quadratic relation given by ψ2
i = aψi + b where

a, b ∈ R for i = 0, 1. As ψ2
i = aψi + b =⇒ (−ψi)2 = (−a)(−ψi) + b, so a can be

arranged such that a > 0. We can see that 1 ∈ H(G, ρ) is defined as below:

1(x) =


0, if x /∈ P;

ρ
∨
(x) if x ∈ P.

Let us consider ψ2
i (1) =

∫
G
ψi(y)ψi(y

−1)dy for i = 0, 1. Now let y = pwip
′

where p, p′ ∈ P for i = 0, 1. So we have

ψ2
i (1) =

∫
PwiP

ψi(pwip
′)ψi(p

′−1w−1
i p−1)d(pwip

′)

=

∫
PwiP

ρ
∨
(p)ψi(wi)ρ

∨
(p′)ρ

∨
(p
′−1)ψi(w

−1
i )ρ

∨
(p−1)d(pwip

′)

=

∫
PwiP

ρ
∨
(p)ψi(wi)ψi(w

−1
i )ρ

∨
(p−1)d(pwip

′)

=

∫
PwiP

ρ
∨
(p)ψi(wi)ψi(wi)ρ

∨
(p−1)d(pwip

′)

=

∫
PwiP

ρ
∨
(p)A2ρ

∨
(p−1)d(pwip

′)

=

∫
PwiP

A2ρ
∨
(p)ρ

∨
(p−1)d(pwip

′)

= A2vol(PwiP)
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= 1W∨vol(PwiP).

So ψ2
i (1) = 1W∨vol(PwiP) for i = 0, 1. We already know that ψ2

i = aψi + b

where a, b ∈ R and for i = 0, 1. Now evaluating the expression ψ2
i = aψi + b

at 1, we have ψ2
i (1) = aψi(1) + b1(1). We can see that ψi(1) = 0 as support

of ψi is PwiP for i = 0, 1. We have seen before that ψ2
i (1) = 1W∨vol(PwiP)

for i = 0, 1 and as 1 ∈ P, 1(1) = ρ
∨
(1) = 1W∨ . So ψ2

i (1) = aψi(1) + b1(1) =⇒

1W∨vol(PwiP) = 1W∨ b for i = 0, 1. Comparing coefficients of 1W∨ on both sides

of the equation 1W∨vol(PwiP) = 1W∨ b for i = 0, 1 we get

b = vol(PwiP).

As φi = λiψi for i = 0, 1, hence φ2
i = λ2

iψ
2
i = λ2

i (aψi + b) = (λia)(λiψi) +

λ2
i b = (λia)φi + λ2

i b for i = 0, 1. But φ2
i = (qn − 1)φi + qn for i = 0, 1. So

φ2
i = (λia)φi + λ2

i b = (qn − 1)φi + qn for i = 0, 1. As φi and 1 are linearly

independent, hence λia = (qn − 1) for i = 0, 1. Therefore λi = qn−1
a

for i = 0, 1.

As a > 0, a ∈ R, so λi > 0, λi ∈ R for i = 0, 1. Similarly, as φi and 1 are linearly

independent, hence λ2
i b = qn =⇒ λ2

i = qn

b
for i = 0, 1.

Now PwiP = q
x∈P/P∩wiP

xwiP =⇒ vol(PwiP) = [PwiP : P]volP = [PwiP :

P] = [P : P ∩wi P] for i = 0, 1. Hence b = vol(PwiP) = [P : P ∩wi P] for

i = 0, 1. Now as λ2
0 = λ2

1 = qn

b
=⇒ λ0 = λ1 = qn/2

b1/2
= qn/2

[P:P∩w0P]1/2
. Therefore

φ0φ1 = (λ0ψ0)(λ1ψ1)

= λ2
0ψ0ψ1

=
qnψ0ψ1

[P : P ∩w0 P]
.
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We have seen before that, P = K−,1P0K+,0 and P ∩w0 P = K−,1P0K+,1. So

[P : P ∩w0 P] = |K+,0

K+,1

|

= |{X ∈ Mn(kE) | X +t X = 0}|

= (qn)(q2)
(n)(n−1)

2

= (qn)(qn
2−n)

= qn
2

.

Hence

(φ0φ1)(ζ) =
qn(ψ0ψ1)(ζ)

[P : P ∩w0 P]

=
qn(ψ0ψ1)(ζ)

qn2

= qn−n
2

1W∨ .

Recall gi = q−n/2φi for i = 0, 1. We know that φ2
i = (qn−1)φi+q

n for i = 0, 1.

So for i = 0, 1 we have

g2
i = q−nφ2

i

= q−n((qn − 1)φi + qn)

= (1− q−n)φi + 1

= (1− q−n)qn/2gi + 1

= (qn/2 − q−n/2)gi + 1.
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So g0g1 = (q−n/2φ1)(q−n/2φ2) = q−nφ1φ2 =⇒ (g0g1)(ζ) = q−n(φ1φ2)(ζ) =

q−nqn−n
2
1W∨ = q−n

2
1W∨ . From the earlier discussion in this section we have

TP (α)(ζ) = δ
1/2
P (ζ)1W∨ . From section 4.1, we have δP (ζ) = q−2n2

. Hence

δ
1/2
P (ζ) = q−n

2
. Therefore (g0g1)(ζ) = TP (α)(ζ). So (g0g1)(ζ) = TP (α)(ζ). We

have supp(TP (α)) = PζP. As supp(gi) = PwiP, Lemma 4.2 gives supp(g0g1) =

PζP. Therefore g0g1 = TP (α).

4.2.3 Relation between g0, g1 and Tp(α): ramified case

We know that H(G, ρ) = 〈φ0, φ1〉 where φ0 is supported on Pw0P and φ1 is

supported on Pw1P respectively with φ2
i = qn/2 + (qn/2 − 1)φi for i = 0, 1. In

this section we show that g0 ∗ g1 = TP (α), where gi = q−n/4φi for i = 0, 1.

Proposition 4.5. g0g1 = TP (α).

Proof. Let us choose ψi ∈ H(G, ρ) for i = 0, 1 such that supp(ψi) = PwiP for

i = 0, 1. So φi is a scalar multiple of ψi for i = 0, 1. Hence φi = λiψi where

λi ∈ C× for i = 0, 1. Let ψi(wi) = Ai ∈ HomP∩wiP(wiρ
∨
, ρ
∨
) for i = 0, 1 and

W be the space of ρ. So A2
i = 1W∨ for i = 0, 1. From section 5.1 on page

24 in [4], we can say that A0 = A1. From Propn. 4.3, we have (ψ0 ∗ ψ1)(ζ) =

ψ0(w0)ψ1(w1) = A0A1 = A2
0 = 1W∨ . Now let ψi satisfies the quadratic relation

given by ψ2
i = aiψi + bi where ai, bi ∈ R for i = 0, 1. As ψ2

i = aiψi + bi =⇒

(−ψi)2 = (−ai)(−ψi) + bi, so ai can be arranged such that ai > 0 for i = 0, 1.

We can see that 1 ∈ H(G, ρ) is defined as below:

1(x) =


0, if x /∈ P;

ρ
∨
(x) if x ∈ P.
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Let us consider ψ2
0(1) =

∫
G
ψ0(y)ψ0(y−1)dy. Now let y = pw0p

′ where p, p′ ∈

P. So we have

ψ2
0(1) =

∫
Pw0P

ψ0(pw0p
′)ψ0(p

′−1w−1
0 p−1)d(pw0p

′)

=

∫
Pw0P

ρ
∨
(p)ψ0(w0)ρ

∨
(p′)ρ

∨
(p
′−1)ψ0(w−1

0 )ρ
∨
(p−1)d(pw0p

′)

=

∫
Pw0P

ρ
∨
(p)ψ0(w0)ψ0(w−1

0 )ρ
∨
(p−1)d(pw0p

′)

=

∫
Pw0P

ρ
∨
(p)ψ0(w0)ψ0(w0)ρ

∨
(p−1)d(pw0p

′)

=

∫
Pw0P

ρ
∨
(p)A2

0ρ
∨
(p−1)d(pw0p

′)

=

∫
Pw0P

A2
0ρ
∨
(p)ρ

∨
(p−1)d(pw0p

′)

= A2
0vol(Pw0P)

= 1W∨vol(Pw0P).

So ψ2
0(1) = 1W∨vol(Pw0P). We already know that ψ2

0 = a0ψ0 + b0 where

a0, b0 ∈ R. Now evaluating the expression ψ2
0 = a0ψ0 + b0 at 1, we have ψ2

0(1) =

a0ψ0(1) + b01(1). We can see that ψ0(1) = 0 as support of ψ0 is Pw0P. We have

seen before that ψ2
0(1) = 1W∨vol(Pw0P) and as 1 ∈ P, 1(1) = ρ

∨
(1) = 1W∨ . So

ψ2
0(1) = a0ψi(1) + b01(1) =⇒ 1W∨vol(Pw0P) = 1W∨ b0. Comparing coefficients

of 1W∨ on both sides of the equation 1W∨ b0 = 1W∨vol(Pw0P) we get

b0 = vol(Pw0P).

As φ0 = λ0ψ0, hence φ2
0 = λ2

0ψ
2
0 = λ2

0(a0ψ0 + b0) = (λ0a0)(λ0ψ0) + λ2
0b0 =

(λ0a0)φ0 + λ2
0b0. But φ2

0 = (qn/2 − 1)φ0 + qn/2. So φ2
0 = (λ0a0)φ0 + λ2

0b0 =

(qn/2−1)φ0 +qn/2. As φ0 and 1 are linearly independent, hence λ0a0 = (qn/2−1).
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Therefore λ0 = qn/2−1
a0

. As a0 > 0, a0 ∈ R, so λ0 > 0, λ0 ∈ R. Similarly, as φ0 and

1 are linearly independent, hence λ2
0b = qn/2 =⇒ λ2

0 = qn/2

b0
.

Now Pw0P = q
x∈P/P∩w0P

xw0P =⇒ vol(Pw0P) = [Pw0P : P]volP = [Pw0P :

P] = [P : P ∩w0 P]. Hence b0 = vol(Pw0P) = [P : P ∩w0 P]. Now as

λ2
0 = qn/2

b0
=⇒ λ0 = qn/4

b
1/2
0

= qn/4

[P:P∩w0P]1/2
.

We have seen before that, P = K−,1P0K+,0 and P ∩w0 P = K−,1P0K+,1. So

[P : P ∩w0 P] = |K+,0

K+,1

|

= |{X ∈ Mn(kE) | X +t X = 0}|

= q
(n)(n−1)

2

= q
n2−n

2 .

So

λ0 = qn/4

[P:P∩w0P]1/2
= qn/4

q
n2−n

4

.

Let us consider ψ2
1(1) =

∫
G
ψ1(y)ψ1(y−1)dy. Now let y = pw1p

′ where p, p′ ∈

P. So we have

ψ2
1(1) =

∫
Pw1P

ψ1(pw1p
′)ψ1(p

′−1w−1
1 p−1)d(pw1p

′)

=

∫
Pw1P

ρ
∨
(p)ψ1(w1)ρ

∨
(p′)ρ

∨
(p
′−1)ψ1(w−1

1 )ρ
∨
(p−1)d(pw1p

′)

=

∫
Pw1P

ρ
∨
(p)ψ1(w1)ψ1(w−1

1 )ρ
∨
(p−1)d(pw1p

′)

=

∫
Pw1P

ρ
∨
(p)ψ1(w1)ψ1(−w1)ρ

∨
(p−1)d(pw1p

′)
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=

∫
Pw1P

ρ
∨
(p)ψ1(w1)ρ

∨
(−1)ψ1(w1)ρ

∨
(p−1)d(pw1p

′)

= ρ
∨
(−1)

∫
Pw1P

A2
1ρ
∨
(p)ρ

∨
(p−1)d(pw1p

′)

= ρ
∨
(−1)A2

1vol(Pw1P)

= ρ
∨
(−1)1W∨vol(Pw1P).

So ψ2
1(1) = 1W∨vol(Pw1P). We already know that ψ2

1 = a1ψ1 + b1 where

a1, b1 ∈ R. Now evaluating the expression ψ2
1 = a1ψ1 + b1 at 1, we have ψ2

1(1) =

a1ψ1(1) + b11(1). We can see that ψ1(1) = 0 as support of ψ1 is Pw1P. We have

seen before that ψ2
1(1) = 1W∨vol(Pw1P) and as 1 ∈ P, 1(1) = ρ

∨
(1) = 1W∨ .

So ψ2
1(1) = a1ψi(1) + b11(1) =⇒ ρ

∨
(−1)1W∨vol(Pw1P) = 1W∨ b1. Comparing

coefficients of 1W∨ on both sides of the equation 1W∨ b1 = 1W∨ρ
∨
(−1)vol(Pw1P)

we get

b1 = ρ
∨
(−1)vol(Pw1P).

As φ1 = λ1ψ1, hence φ2
1 = λ2

1ψ
2
1 = λ2

1(a1ψ1 + b1) = (λ1a1)(λ1ψ1) + λ2
1b1 =

(λ0a1)φ1 + λ2
1b1. But φ2

1 = (qn/2 − 1)φ1 + qn/2. So φ2
1 = (λ1a1)φ1 + λ2

1b1 =

(qn/2−1)φ1 +qn/2. As φ1 and 1 are linearly independent, hence λ1a1 = (qn/2−1).

Therefore λ1 = qn/2−1
a1

. As a1 > 0, a1 ∈ R, so λ1 > 0, λ1 ∈ R. Similarly, as φ1 and

1 are linearly independent, hence λ2
1b = qn/2 =⇒ λ2

1 = qn/2

b1
.

Now Pw1P = q
x∈P/P∩w1P

xw1P =⇒ vol(Pw1P) = [Pw1P : P]volP = [Pw1P :

P] = [P : P ∩w1 P]. Hence b1 = vol(Pw1P) = [P : P ∩w1 P]. Now as

λ2
1 = qn/2

b1
=⇒ λ1 = qn/4

b
1/2
1

= qn/4

[P:P∩w1P]1/2
.

We have seen before that P = K−,1P0K+,0,
w1 P = K−,2P0K+,−1. So P ∩w1

P = K−,2P0K+,0. Hence
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[P : P ∩w1 P] = |K−,1
K−,2

|

= |{X ∈ Mn(kE) | X =t X}|

= q
(n)(n+1)

2

= q
n2+n

2 .

So

λ1 = qn/4

[P:P∩w1P]1/2
= qn/4

q
n2+n

4 (ρ(−1))1/2
.

Hence

(φ0φ1)(ζ) = (λ0ψ0)(λ1ψ1)(ζ)

= (λ0λ1)(ψ0ψ1)(ζ)

=
qn/4

q
n2−n

4

qn/4

q
n2+n

4 (ρ(−1))1/2
1
∨

W

=
q
n−n2

2 1
∨
W

(ρ(−1))1/2

=
q
n−n2

2 1
∨
W

(ρ(−1))1/2
.

As −1 ∈ Z(P) and ρ
∨

is a representation of P, so ρ
∨
(−1) = ωρ∨ (−1) where

ωρ∨ is the central character of P. Now 1 = ωρ∨ (1) = (ωρ∨ (−1))2, so ρ
∨
(−1) =

ωρ∨ (−1) = ±1. We have seen before that λ1 = qn/2−1
a1

and a1 ∈ R, a1 > 0, so

λ1 > 0. But we know that λ1 = qn/4

[P:P∩w1P]1/2
= qn/4

q
n2+n

4 (ρ(−1))1/2
, hence ρ

∨
(−1) = 1.

Recall gi = q−n/4φi for i = 0, 1. We know that φ2
i = (qn/2 − 1)φi + qn/2 for

i = 0, 1. So for i = 0, 1 we have
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g2
i = q−n/2φ2

i

= q−n/2((qn/2 − 1)φi + qn/2)

= (1− q−n/2)φi + 1

= (1− q−n/2)qn/4gi + 1

= (qn/4 − q−n/4)gi + 1.

So g0g1 = (q−n/4φ1)(q−n/4φ2) = q−n/2φ1φ2 =⇒ (g0g1)(ζ) = q−n/2(φ0φ1)(ζ) =

q−n/2
q
n−n2

2 1
∨
W

(ρ(−1))1/2
= q

−n2
2 1

∨
W . From the earlier discussion in this section we have

TP (α)(ζ) = δ
1/2
P (ζ)1W∨ . From section 4.1, we have δP (ζ) = q−n

2
. Hence δ

1/2
P (ζ) =

q−n
2/2. Therefore (g0g1)(ζ) = TP (α)(ζ). So (g0g1)(ζ) = TP (α)(ζ). We have

supp(TP (α)) = PζP. As supp(gi) = PwiP, Lemma 4.2 gives supp(g0g1) = PζP.

Therefore g0g1 = TP (α).

4.3 Calculation of mL(πν)

Note πν lies in R[L,π]L(L). Recall mL is an equivalence of categories. As πν is

an irreducible representation of L, it follows that mL(πν) is a simple H(L, ρ0)-

module. In this section, we identify the simple H(L, ρ0)-module corresponding

to mL(πν). Calculating mL(πν) will be useful in answering the question in next

section.

From section 2.4, we know that π = IndL
P̃0
ρ̃0, where P̃0 = 〈ζ〉P0, ρ̃0(ζkj) =

ρ0(j) for j ∈ P0, k ∈ Z. Let us recall that ν is unramified character of L from

section 2.3. Let V be space of πν and W be space of ρ0. Recall mL(πν) =

HomP0(ρ0, πν). Let f ∈ HomP0(ρ0, πν). As P0 is a compact open subgroup of L
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and ν is an unramified character of L, so ν(j) = 1 for j ∈ P0. We already know

that α ∈ H(L, ρ0) with support of α being P0ζ and α(ζ) = 1W∨ . Let w ∈ W

and we have seen in section 4.2 that the way H(L, ρ0) acts on HomP0(ρ0, πν) is

given by:

(α.f)(w) =

∫
L

(πν)(l)f(α
∨
(l−1)w)dl

=

∫
L

(πν)(l)f((α(l))∨w)dl

=

∫
P0

(πν)(pζ)f((α(pζ))∨w)dp

=

∫
P0

(πν)(pζ)f((ρ
∨

0 (p)α(ζ))∨w)dp

=

∫
P0

(πν)(pζ)f((ρ
∨

0 (p)1W∨ )∨w)dp

=

∫
P0

(πν)(pζ)f((ρ
∨

0 (p))∨w)dp

=

∫
P0

π(pζ)ν(pζ)f((ρ
∨

0 (p))∨w)dp

=

∫
P0

π(pζ)ν(ζ)f((ρ
∨

0 (p))∨w)dp.

Now 〈, 〉 : W × W
∨ −→ C is given by: 〈w, ρ∨0 (p)w

∨〉 = 〈ρ0(p−1)w,w
∨〉 for

p ∈ P0, w ∈ W . So we have (ρ
∨
0 (p))

∨
= ρ0(p−1) for p ∈ P0. Hence

(α.f)(w) =

∫
P0

π(pζ)ν(ζ)f(ρ0(p−1)w)dp.

As f ∈ HomP0(ρ0, πν), so (πν)(p)f(w) = f(ρ0(p)w) for p ∈ P0, w ∈ W .
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Hence

(α.f)(w) = ν(ζ)

∫
P0

π(pζ)(πν)(p−1)f(w)dp

= ν(ζ)

∫
P0

π(pζ)π(p−1)ν(p−1)f(w)dp

= ν(ζ)

∫
P0

π(pζ)π(p−1)f(w)dp.

Now as π = IndL
P̃0
ρ̃0 and P̃0 = 〈ζ〉P0, ρ̃0(ζkj) = ρ0(j) for j ∈ P0, k ∈ Z, so

π(pζ) = π(p)ρ̃0(ζ) = π(p)ρ0(1) = π(p)1W∨ .Therefore

(α.f)(w) = ν(ζ)

∫
P0

π(p)π(p−1)f(w)dp

= ν(ζ)f(w)Vol(P0)

= ν(ζ)f(w)

So (α.f)(w) = ν(ζ)f(w) for w ∈ W . So α acts on f by multiplication by

ν(ζ). Recall for λ ∈ C×, we write Cλ for the H(L, ρ0)-module with underlying

abelian group C such that α.z = λz for z ∈ Cλ. Therefore mL(πν) ∼= Cν(ζ).

4.4 Answering the question

Recall the following commutative diagram which we described earlier.

R[L,π]G(G)
mG−−−→ H(G, ρ)−Mod

ιGP

x (TP )∗

x
R[L,π]L(L)

mL−−−→ H(L, ρ0)−Mod
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Observe that πν lies in R[L,π]L(L). From the above commutative diagram, it

follows that ιGP (πν) lies in R[L,π]G(G) and mG(ιGP (πν)) is an H(G, ρ)-module. Re-

call mL(πν) ∼= Cν(ζ) as H(L, ρ0)-modules. From the above commutative diagram,

we have mG(ιGP (πν)) ∼= (TP )∗(Cν(ζ)) as H(G, ρ)-modules. Thus to determine the

unramified characters ν for which ιGP (πν) is irreducible, we have to understand

when (TP )∗(Cν(ζ)) is a simple H(G, ρ)-module.

Using notation on page 438 in [5], we have γ1 = γ2 = qn/2 for unram-

ified case when n is odd and γ1 = γ2 = qn/4 for ramified case when n is

even. As in Propn. 1.6 of [5], let Γ = {γ1γ2,−γ1γ
−1
2 ,−γ−1

1 γ2, (γ1γ2)−1}. So by

Propn. 1.6 in [5], (TP )∗(Cν(ζ)) is a simple H(G, ρ)-module ⇐⇒ ν(ζ) /∈ Γ. Recall

π = IndLZ(L)P0
ρ̃0 where ρ̃0(ζkj) = ρ0(j) for j ∈ P0, k ∈ Z and ρ0 = τθ for some

regular character θ of l× with [l : kE] = n. Hence we can conclude that ιGP (πν) is

irreducible for the unramified case when n is odd ⇐⇒ ν(ζ) /∈ {qn, q−n,−1},

θq
n+1

= θ−q and ιGP (πν) is irreducible for the ramified case when n is even

⇐⇒ ν(ζ) /∈ {qn/2, q−n/2,−1}, θqn/2 = θ−1.

Recall that in the unramified case when n is even or in the ramified case when

n is odd we have NG(ρ0) = Z(L)P0. Thus IG(ρ) = P(Z(L)P0)P = PZ(L)P.

From Corollary 6.5 in [6] which states that if IG(ρ) ⊆ PLP then

TP : H(L, ρ0) −→ H(G, ρ)

is an isomorphism of C-algebras. As we have IG(ρ) = PZ(L)P in the unramified

case when n is even or in the ramified case when n is odd, so H(L, ρ0) ∼= H(G, ρ)

as C-algebras. So from the commutative diagram on page 80, we can conclude

that ιGP (πν) is irreducible for any unramified character ν of L. So we conclude

with the following theorem.
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Theorem 4.6. Let G = U(n, n). Let P be the Siegel parabolic subgroup of G and

L be the Siegel Levi component of P . Let π = IndLZ(L)P0
ρ̃0 be a smooth irreducible

supercuspidal depth zero representation of L ∼= GLn(E) where ρ̃0(ζkj) = ρ0(j) for

j ∈ P0, k ∈ Z and ρ0 = τθ for some regular character θ of l× with [l : kE] = n.

Consider the family ιGP (πν) for ν ∈ Xnr(L).

1. For E/F is unramified, ιGP (πν) is reducible ⇐⇒ n is odd, θq
n+1

= θ−q and

ν(ζ) ∈ {qn, q−n,−1}.

2. For E/F is ramified, ιGP (πν) is reducible ⇐⇒ n is even, θq
n/2

= θ−1 and

ν(ζ) ∈ {qn/2, q−n/2,−1}.
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