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Abstract

We study a problem concerning parabolic induction in certain p-adic unitary
groups. More precisely, for E/F a quadratic extension of p-adic fields the associ-
ated unitary group U(n,n) contains a parabolic subgroup P with Levi component
L isomorphic to GL,(FE). Let 7 be an irreducible supercuspidal representation of
L of depth zero. We use Hecke algebra methods to determine when the parabol-

ically induced representation (&7 is reducible.

vil



Chapter 1

Background

In this chapter, we recall the basic definitions and theorems which we need

throughout this report.

1.1 Algebraic groups

Let F' be an algebraically closed field. An algebraic group is an algebraic vari-
ety over F' that is a group such that the multiplication and taking inverse are
morphisms of varieties. When the variety is affine we call the group an affine
algebraic group. It is well known that every affine algebraic group is isomorphic
to some closed subgroup (w.r.t the Zariski topology) of GL, (F') for some natural

number n.

1.2 Valuations and local fields

Let F' be a field. An absolute value on F' is a map |.| : F' — Ry such that for

any xz,y € F,



|z =0 <=2 =0,
lzy| = |2 |y,
v +y| < |z| + |yl

We say F' is non-Archimedean if
|z + y| < max{|z|, |y|} for all x,y € F.

The absolute value |.| defines a topology on F' which has as a basis for the
open sets, all U(a,e) = {b € F | ]a—b|] < ¢e},a € F,e > 0. We call F' a non-
Archimedean local field if it is locally compact and complete with respect to a

non-trivial non-Archimedean absolute value. Let

Op={acF|la <1}

which is called the the ring of integers of F'. Then Op is a principal ideal domain

with unique maximal ideal

pr={a€ F|la] <1}.

Let wr be a generator of the ideal pg called a uniformizer of F'. We denote
Or/pr by kp which is a finite field. We call kr the residue field of F. We write
|kp| = ¢ = p" for some prime p and some integer r > 1.

Every element in z € F'* can be written uniquely as z = uw}, for some unit
u € OF and n € Z. We use the notation n = vp(z). In these terms the absolute
value on F' can be given by |z| = ¢7¥®) = ¢~ for  # 0 and [0| = 0.

The ideals

pr=w'Opr={x € F|lz|<q¢"},neZ
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in O are called the fractional ideals. They are open subgroups of F' and give a

fundamental system of open neighborhoods of 0 in F.

1.3 Representations of locally profinite groups

1.3.1 Smooth representations

Let G be a topological group. We say G is locally profinite if it is Hausdorff
topological space and every open neighborhood of the identity element in G
contains a compact open subgroup of G.

Let V be a vector space over C which is not necessarily finite dimensional and
GL(V') be the set of all invertible linear operators on V. A representation (m, V')
of G is a homomorphism 7 of groups from G to GL(V').

Suppose W is a subspace of V' which is G-invariant, i.e., 7(g)w € W for all
g € G,w € W. Then restricting the operators 7(g) to W gives a representation
of G in W. We call the invariant subspace W a sub-representation of V.

If W/ C W are sub-representations of 7, then each 7|y (g),9 € G induces an
invertible linear operator 7|y, w(g) on the quotient space W/W’, and we have
(W\W/WI, wW/w’ ) is a representation of GG called a sub-quotient of 7. In the special
case when W =V we say the representation is a quotient of .

A representation (m, V') of G is irreducible if the only G-invariant subspaces
of V are {0} and V. If 7 is not irreducible then 7 is reducible.

A representation (7, V) of G has a finite composition series if there exist G-

invariant subspaces V; of V' such that

0=V CVigVe GV, =V



where each sub-quotient 7|y, v,,0 < j < r—11is irreducible . The sub-quotients
7lv,../v, are called the composition factors of 7.

The representation 7 is smooth if for every v € V., there exists a compact
open subgroup K of G such that 7(k)(v) = v for all k € K.

A representation 7 of V is admissible if VX = {v € V' | 7(k)v = v} is a finite
dimensional subspace of V' for every compact open subgroup K of G.

Given two representations (71, V1) and (mg, V5) of G, a linear map T from V}
to V; is called an intertwining map if ma(g) o T = T o mi(g) for all g € G. We
call (71, Vi)and (w2, V5) isomorphic or equivalent representations if there exits an
intertwiner 7" which is an isomorphism. We denote Homg(V7, V5) or Homg (7, 79)
for the collection of intertwining maps between Vi and V5. If m; and 7y are
representations of the same vector space V and if they are equivalent, then we
denote equivalence of representations by m; ~ .

Let V* = Home(V, C) be the dual space of V. Define a dual representation
(7, V*) of G by

(7 (1) (v) = v'(w (g7 )v)

for v € Vo' € V* and g € G. This is a representation of G but it is not
necessarily smooth. Therefore we consider the space of all smooth vectors given by
V' = (V*)> = J(V*)¥ where the union is taken over all compact open subgroups
of G. We theaneﬁne the representation (7, V") as 7 (g)(v) = 7*(g)(v) for
ve V', g € G. This representation is smooth and we call it the smooth dual or
contragradient of (m, V).

Given a representation m of H < G and g € G we let 19 denote the repre-
sentation of HY = g~ 1Hg given by w9(h') = w(gh’g™') where b/ € H and let

97 denote the representation of YH = gHg ™! given by 97 (k') = w(g~'1g) where



heH.

1.3.2 Restriction and induction of representations

Let G be a locally profinite group and (7, V') be a smooth representation of G.
Let H be a subgroup of G. The restriction of © to H is a representation of H
in V, denoted by 7|gy. Now it is natural to ask can we construct a smooth
representation of G from smooth representation of H and the answer is yes. The
process of constructing a smooth representation of GG from smooth representation
of H is called smooth induction and the representation of GG so obtained is called
the smoothly induced representation. We explain the construction below.

Let (p, V') be a smooth representation of H. The smoothly induced represen-
tation is denoted by Ind%(p, V). Its space is the set of all functions f: G — V

such that

L. f(hg) = p(h)f(g) for h € H,g € G.

2. There is a compact open subgroup K of G such that f(gk) = f(g) for
ge G keK.

The action of G is given by g.f(x) = f(xg) where f € Ind%(p,V),x € G.

Given a smooth representation (p, V') of H, we can also define another type of
smooth representation of G denoted by c-Ind%(p, V). It consists of all functions
in Ind%(p,V) which are compactly supported modulo H. This means if f €
Ind$ (p, V) is such that support of f is compact in G/H then f € c-Ind%(p, V).
The action of G on c-Ind%(p, V) is again given by g.f(x) = f(xg) where f € c-
Ind%(p,V),x € G.

Now there is another notion called normalized induction. Let G be the group

of F-points of a reductive algebraic group defined over a non-Archimedean local
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field F'. Let P be a parabolic subgroup of G. Write P = L x U where L is the
Levi component of P and U is the unipotent radical of P. Let (p, V') be a smooth
representation of P. The normalized induction (%(p, V) is defined as 1% (p, V) =
Ind%(p ® 6]13/2), dp is a character of P defined as dp(p) = ||det(Adp)|Licv]||F for
p € P and LieU is the Lie-algebra of U. We shall use (&(p) for t(%(p, V) in this
report. We work with normalized induced representations rather than induced

representations in this report as results look more appealing.

1.3.3 Supercuspidal representations

Let G be the group of F-points of a reductive algebraic group defined over a

non-Archimedean local field F'. A representation (7, V') of G is supercuspidal if
Homg (m, Ind%r) = {0}

for any proper parabolic subgroups P of G and any representation 7 of a Levi

component of P.

1.3.4 Frobenius reciprocity and Mackey’s irreducibility

criterion

We recall Frobenius reciprocity. Let G be a locally profinite group and (7, V)
be a representation of G. Let H be an open subgroup of G and (p, W) be a

representation of H. Then

Homg(c-Ind%p, ) ~ Hompg (p, 7|x).



For H a closed subgroup of GG, we have

Homg (7, Ind$p) ~ Hompy (7| x, p).

We recall Mackey’s Irreducibility Criterion. Let G be a locally profinite group
and H be an open, compact subgroup of G. Let (7, V') be a smooth representation

of H. Then Ind$m is irreducible exactly when

Hom(79| gnmo, ™| anms) = 0

for g ¢ H.

1.3.5 Cuspidal representations

Let G be a finite group of Lie type. Let (p, V) be an irreducible representation of
G. For P a parabolic subgroup of G, we write Up for its unipotent radical. We
say (p,V) is a cuspidal representation of G <= VU = 0 for all proper parabolic

subgroups P of G.

1.4 Unramified characters

Let G be the group of F-points of an algebraic group defined over a non-Archimedean
local field F. Write G° for the smallest subgroup of G' containing the compact
open subgroups of G. We say a character v: G — C* is unramified if v|g. = 1,
i.e., v is trivial on G°. Let the group of unramified characters of G be denoted

by X (G).



1.5 Bernstein decomposition

Let G be the F-rational points of a reductive algebraic group defined over a
non-Archimedean local field F. According to Theorem 3.3 in [6], we have the

following Propn.

Proposition 1.1. 1. Let L be a Levi subgroup of G (i.e., a Levi component of
a parabolic subgroup P of G). Let o be an irreducible smooth supercuspidal
representation of L. Then 150 has finite length for every parabolic subgroup
P with Levi component L. Further, the set of the composition factors or

irreducible sub-quotients of (%o is independent of P.

2. Let Ly, Ly be Levi subgroups of G and oq,09 be irreducible supercuspidal
smooth representations of Ly, Ly respectively. Then for any parabolic sub-
groups Py, Py with Levi components Ly, Ly respectively, we have the repre-
sentations Lglal,L%aQ either have the same set of composition factors or
have no composition factors in common. Now the representations L%Ul
and L%Og have the same set of composition factors <= the pairs (L, 01)
and (Lq, 09) are conjugate; that is, there is an element g € G such that

Ly=L{ =g 'Lig and oy ~ 0/9.

3. Let (m, V') be an irreducible smooth representation of G. Then there exists
a parabolic subgroup P of G with Levi component L, unipotent radical U
and an irreducible supercuspidal smooth representation o of L such that 7
is equivalent to an irreducible sub-quotient or a composition factor of 1So.
We refer to the pair (L,o) where L is a Levi subgroup of G and o is an

wrreducible supercuspidal smooth representation of L as a cuspidal pair.

Now by Propn. 1.1, there exists unique conjugacy class of cuspidal pairs (L, o)
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with the property that 7 is isomorphic to a composition factor of (%o for some
parabolic subgroup P of GG. We call this conjugacy class of cuspidal pairs, the
cuspidal support of (7, V).

Given two cuspidal supports (L, 01) and (Lg, 09) of (m,V), we say they are
inertially equivalent if there exists ¢ € G and x € X,,.(L2) such that Ly = L
and of ~ 09 ® x. We write [L, 0]g for the inertial equivalence class or inertial
support of (7, V). Let B(G) denote the set of inertial equivalence classes [L, o]q.

Let (@) denote the category of smooth representations of G. Let R*(G)
be the full sub-category of smooth representations of G with the property that
(m, V) € 0b(R*(G)) <= every irreducible sub-quotient of 7 has inertial support
s =|L,0]q.

We can now state the Bernstein decomposition:

RG) = ] ®(G).

se€B(G)

1.6 Types and covers

Let G be the F-rational points of a reductive algebraic group defined over a

non-Archimedean local field F.

1.6.1 Types

Let K be a compact open subgroup of G. Let (p, W) be an irreducible smooth
representation of K and (7, V') be a smooth representation of G. Let V* be the
p-isotopic subspace of V. Thus V7 is the sum of all irreducible K-subspaces of

V' which are equivalent to p.



VP = ZW’
o

where the sum is over all W’ such that (7|g, W) >~ (p, W).

Let H(G) be the space of all locally constant compactly supported functions
f: G — C. This is a C- algebra under convolution *. So for elements f, g € H(G)

we have

(f*g)(z /f gly~ )dpu(y).

Here we have fixed a Haar measure p on G. Let (7, V) be a representation of

G. Then H(G) acts on V via

hv = / h(z)m(x)vdu(x)
G
for h € H(G),v € V. Let e, be the element in H(G) with support K such that

colw) = B2tryy (pla~)), 2 € K.

We have e, x e, = e, and e,V = V* for any smooth representation (m, V') of
G.

Let R,(G) be the full sub-category of R(G) consisting of all (7, V) where V'
is generated by V*. So (m,V) € R,(G) if and only if V = H(G) * e,V.We now

state the definition of a type.

Definition 1.2. Let s € B(G). We say that (K, p) is an s-type in G if R,(G) =
R°(G).

10



1.6.2 Hecke algebras

Let K be a compact open subgroup of G. Let (p, W) be an irreducible smooth

representation of K. Here we introduce the Hecke algebra H(G, p).

supp(f) is compact and

H(G,p) =14 f: G— Endc(p) | f(kighs) = p" (k1) f(g)p" ()
where ki, ky € K,g € G

Then H(G, p) is a C-algebra with multiplication given by convolution * w.r.t

some fixed Haar measure p on G. So for elements f,g € H(G) we have

(f * 9)(z) = /G F gy 2)duy).

The importance of types is seen from the following result. Let 7w be a smooth
representation in R*(G). Let H(G, p) — Mod denote the category of H(G, p)-
modules. If (K, p) is an s-type then mg: R*(G) — H(G, p) — Mod given by

mea(m) = Homg (p, m) is an equivalence of categories.

1.6.3 Covers

Let K be a compact open subgroup of G. Let P = L x U be a parabolic subgroup
of G. The notation means that P has unipotent radical U and that L is a Levi
component of P. Let P = L x U be the L-opposite of P. Thus PN P = L. Let
(p, W) be an irreducible representation of K. Then we say (K p) is decomposed

with respect to (L, P) if the following hold:

1. K=(KNnU)(KNL)(KNU).

11



2. (KNU),(KNU) < kerp.

Suppose (K, p) is decomposed with respect to (L, P). We set K, = KN L
and pr, = p|k,. We say an element g € G intertwines p if Homgang (p9, p) # 0.
Let Jg(p) = {z € G | zintertwines p}. We have the Hecke algebras H(G, p) and
H(L,pr). We write

H(G,p)r = {f € H(G, p) | supp(f) € KLK}.

We recall some results and constructions from pages 606-612 in [2]. These
allow us to transfer questions about parabolic induction into questions concerning

the module theory of appropriate Hecke algebras.

Proposition 1.3. Let (K, p) decompose with respect to (L, P) .Then

1. pr, is irreducible.
2. 3L(pL) = jG(p) NL.

3. There is an embedding T: H(L, pr) — H(G, p) such that if f € H(L,pr)

has support KpzKj, for some z € L, then T(f) has support KzK.

4. The map T induces an isomorphism of vector spaces:

H(La pL) i> H(G7 p)L

Definition 1.4. An element z € L is called (K, P)-positive element if:

1. 2(KNU)z' CKNU.

2. 27 {KNU)zCKNU.

12



Definition 1.5. An element z € L is called strongly (K, P)-positive element if:
1. zis (K, P) positive.
2. z lies in center of L.

3. For and compact open subgroups K and K’ of U there exists m > 0 and

m € Z such that 2" Kz"™ C K'.

4. For and compact open subgroups K and K’ of U there exists m > 0 and

m € Z such that 2 ™Kz C K'.

Proposition 1.6. Strongly (K, P)-positive elements exist and given a strongly
positive element z € L , there exists a unique function ¢, € H(L, pr,) with support

K zK|, such that ¢,(2) is identity function in Endc(pr).

( supp(f) is compact and consists
of strongly (K, P)-positive elements

and f(kilks) = py (k1) f(1)py (ko)
\ where kl,kQEKL,lEL /

HY(L,pr) =< f: G — Endc(p,)

The isomorphism of vector spaces T': H(L, pr) — H(G, p) restricts to an

embedding of algebras:
Tt HY(L,pr) — H(G, p)r — H(G, p).

Proposition 1.7. The embedding T extends to an embedding of algebras

t: H(L,pr) — H(G,p) if and only if TT(¢,) is invertible for some strongly
(K, P)-positive element z, where ¢, € H(L, pr) has support KpzK with ¢.(z) =
1.

13



Definition 1.8. Let L be a proper Levi subgroup of GG. Let K be a compact
open subgroup of L and p;, be an irreducible smooth representation of K. Let K
be a compact open subgroup of G and p be an irreducible, smooth representation

of K. Then we say (K, p) is a G-cover of (K, pr) if

1. The pair (K, p) is decomposed with respect to (L, P) for every parabolic

subgroup P of G with Levi component L.
2. KNL=Kyand p|; ~ pr.

3. The embedding TF: H*(L,pr) — H(G, p) extends to an embedding of
algebras t: H(L, pr) — H(G, p).

Proposition 1.9. Let s;, = [L, 7], € B(L) and s = [L,7|e € B(G) . Say
(Kpr,pr) is an sp-type and (K, p) is a G-cover of (Kp,sr). Then (K,p) is an

s-type.

Recall the categories R*L (L), R*(G) where s;, = [L, 7] and s = [L, 7]g. Also
recall H(G, p) — Mod is the category of H(G, p)-modules. Let H(L, pr) — Mod
be the category of H(L, p)-modules. The functors 1%, mq were defined earlier.
Let m € R (L). Then the functor mp: R*E(L) — H(L, p) — Mod is given by
my(m) = Homg, (pr, 7). The functor (Tp).: H(L, pr) — Mod — H(G, p)— Mod
is defined later in this report.

The importance of covers is seen from the following commutative diagram

which we will use in answering the question which we pose later in this report.

R(G) 2% H(G,p) — Mod

)
L%T (Tpxﬂ

Ror (L) s H(L,pr) — Mod

14



Chapter 2

Unitary groups

2.1 Setup

Let E/F be a quadratic Galois extension of non-Archimedean local fields where
char F' # 2. Write — for the non-trivial element of Gal(E/F'). The group U(n,n)

is given by

U(n,n) = {g € GLo,(E) | 'gJg = J}

1
for J = where each block is of size n and for g = (g;;) we write g = (g;;).

10
We write O and Op for the ring of integers in E and F' respectively. Similarly,

pr and pr denote the maximal ideals in Op and Op and kg = Op/pp and
kr = Op/pr denote the residue class fields of Op and Op.

There are two kinds of extensions of E over F'. One is the unramified extension
and the other one is the ramified extension. In the unramified case, we can choose
uniformizers wp, wr in E, F such that wg = wr so that we have [kg : kp] =

2,Gal(kg/kr) = Gal(E/F). As wg = wp, so Wg = wg since wrp € F. As

15



krp =F,, so kg = F,2 in this case. In the ramified case, we can choose uniformizers
wg, @ in B, F such that w% = wp so that we have [kg : kp] = 1, Gal(kg/kr) =
1. As w% = wp, we can further choose wg such that g = —wp. As kp = F,,
so kg = IF, in this case.

We write P for the Siegel parabolic subgroup of G. Write L for the Siegel
Levi component of P and U for the unipotent radical of P. Thus P = L x U

with

a O
L:{ \aEGLn(E)}
O ta—l

and

1 X _
U= | X € My (E), X +X=00.
0 1

Let Ko = GL,(9Og) and K; = 14+ wgM,,(Og). Note K; = 14+ wgM,,(Og) is

the kernel of the surjective group homomorphism

(9i5) — (95 + Pe): GLo(Or) — GL,(kg)

2.2 Depth zero representations

The general definition of depth zero representation is given by Theorem 3.5 in
[9]. However, for our specific problem we say 7 is a depth zero representation of

Siegel Levi component L of P if 7%t £ 0.

16



2.3 Question

Let 7 be an irreducible supercuspidal representation of L of depth zero. We look
at the family of representations (% (7wv) for v € x,,.(L). We want to determine
the set of such v for which this induced representation is irreducible. By general

theory, this is a finite set.

2.4 Depth zero supercuspidal representations

Suppose T is an irreducible cuspidal representation of GL, (kg) inflated to a rep-
resentation of GL,(Op) = Ko. Then let Ky = ZK, where Z = Z(GL,(E)) =
{A1, | A € EX}. As any element of E* can be written as uw}, for some u € Oj,
and m € Z. So in fact, }A(B =< wgl, > Kj.

Let (m, V') be a representation of G and 1y be the identity linear transforma-
tion of V. As wgl, € Z, so n(wgl,) = w.(wpl,)ly where w,: Z — C* is the
central character of .

Let 7 be a representation of [?0 such that:
1. ?(wEln) = wﬂ(wEln)lv,
2. ;’KO =T.

Say wy(wgl,) = z where z € C*. Now call 7 = 7,. We have extended 7 to
7, which is a representation of [?0, so that Z acts by w,. Hence 7] 7o 2 7, which
implies that Homp (7., 7[z, ) # 0.

By Frobenius reciprocity for induction from open subgroups,

Homg (7, 7|z,) =~ Homg(c—lnd%?’;, ).
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Thus c-Homeg (1 nd%o?z,w) # 0. So there exists a non-zero G-map from c-
1 nd%o?z to w. As 7 is cuspidal representation, using Cartan decompostion and
Mackey’s criteria we can show that c-1 nd%ﬁ is irreducible. So m ~ ¢-I nd%o?z.
As -1 nd%i is irreducible supercuspidal representation of G of depth zero, so =
is irreducible supercuspidal representation of GG of depth zero.

Conversely, let 7 is a depth zero representation of GL,(F). So 7%t #£ {0}.
Hence 7| g, 2 1k,, where 1k, is trivial representation of K7. This means 7|, 2 T,
where 7 is an irreducible representation of Ky such that 7|x, 2 1k,. So 7 is trivial
on K;. So 7|k, contains an irreducible representation 7 of Ky such that 7|k, is
trivial. So 7 can be viewed as an irreducible representation of Ky/K; = GL,(kg)
inflated to Ky = GL,(Og). The representation 7 is cuspidal by (a very special
case of) A.1 Appendix [§].

So we have the following bijection of sets:

(Isomorphism classes )

of irreducible
[somorphism classes of irreducible
x C* +— ¢ supercuspidal
cuspidal representations of GL, (kg)
representations of

| GL,,(E) of depth zero |

G ~
(T, 2) Indg, 7.

(Tywr(wEly,)) < T

From now on we denote the representation 7 by py. So pg is an irreducible
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cuspidal representation of GL,(kg) inflated to Ky = GL,(Og).

2.5 Siegel parahoric subgroup

The Siegel parahoric subgroup B of U(n,n) is defined by:

GL.(Dp) M, (Op)
= NU(n,n).
Mn(pp)  GLa(Op)

Let

1 0 _
U:{ |XeMn(E),X+tX=o}.
X 1

We have B = (BN U)PB N LR NU) (Iwahori factorization of B). Let us
denote (B NU) by B_, (BNU) by By, (BN L) by Po. Thus

a 0
‘Boz{ \aEGLn(DE)},

0 ta—l

1 X _
L= | X € M, (Dp), X +1X =0},

10 _
P = { | X € Mn(oE),X+tX:o}.

2.6 Representation of Siegel parahoric subgroup

Let us recall that the Siegel parahoric subgroup B of U(n,n) is defined as:

GL,(Or) M,(Dg)
B = N U(n,n).
M, (pE) GL, (DE>
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Recall by Iwahori factorization of 9B we have = (BPNU)(PNL)(PNU) =
P PP

As pg is a representation of Ky, it can also be viewed as a representation of
PBo. This is because Py = Ky. Let V' be the vector space associated with py. Now
po is extended to a map p from B to GL(V) as follows. By Iwahori factorization,
if j € P then j can be written as j_jpj., where j_ € P, j,. € P, jo € Po. Now

the map p on P is defined as p(j) = po(Jo)-

Proposition 2.1. p is a homomorphism from B to GL(V'). So p becomes a

representation of B.

Proof. Let

a 0
‘Bo,lz{ ]aEKlzl—i-an(DE)}.

0 'a!
Clearly, Po1 = K;. Now let us define By = P_Po1P+. We can observe

clearly that B is a subgroup of U(n,n) NGLs, (D). We have the following group

homomorphism:
¢: P TUPE, Pk).

Here P(kg) is the Siegel parabolic subgroup of {g € GLa,(kg) | ‘gJg = J}.
Now P(kgp) = L(kg) x U(kg), where L(kg),U(kg) are the Levi component and

unipotent radical of the Siegel parabolic subgroup respectively.

L(kE>={ © 0 |aeGLn<k:E>},

0 ta !
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1 X .
0 1

¢ is a surjective homomorphism. Now let us find the inverse image of U(kg).
Let j € B and 57 = j_joj+ be the Iwahori factorization of 5, where j, € P, j_ €
PB_.jJ0 € Po. So ¢(j) € U(kg) < jo € Po1. Therefore Py is the inverse image
of U(kg) under ¢. So we have BB, = P(kg)/U(kg) = L(kg) = GL,(kg). As
p(j) = po(Jo), so p is a representation of P which is lifted from representation pg

of Py that is trivial on .
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Chapter 3

Structure of H(L, pg) and H(G, p)

3.1 Calculation of Ng(33))

We set G = U(n,n). To describe H(G, p) we need to determine Ng(pg) which is
given by

Ne(po) = {m € Na(Bo) | po = pg'}-

Further, to find out Ng(po) we need to determine Ng(Po). To that end we
shall calculate N, () (Ko). Let Z = Z(GL,(E)). So Z = {1, | A € E*}.

Lemma 3.1. NGLn(E')(KO) = KQZ

Proof. By the Cartan decomposition, any g € GL,(F) can be written as

wh 0 0
0 w? 0
9=k o ko
0
0 0 wl

where ki, ks € Ky and for certain ly,ly... [, € Z with [ <1y < ... 1,.
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w0 0
) ) 0 w% .. 0
So we only need to determine the matrices that nor-
: . 0
0 0 ... =@

malize K. Let A be one such matrix which normalizes Ky. So ABA™! € K, for

all B € K. Let the matrix A be of form

w% 0O ... 0
0 wi ... 0

0
0 0 ... wg]

for certain l1,ly...1, € Z with [; < ly <...l,. Now matrix A~! looks like

wgll 0o ... 0
0 wz? ... 0
0

0 0 g |

bll b12 bln
b21 b22 b2n
bnl bn? bnn

where b;; € Op for 1 < i,j < n. Now ABA™! € K, for all B € Ky. And that

implies wg_ljbij € Op for 1 < ¢,j < n. Choose a matrix B in Ky such that
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bi=1for1< i<n,b; =0for 1< 4,j<n,i#1,j#2,1%# jand b2 =1. So
i1y

we have wj ? € Op. As only positive integral powers of wg lie in Op. Hence

ly > . Similarly we can show that Iy > ;. So l; = l,. We can show in a similar

fashion that Iy = Il3,l3 =14,...,l,_1 =1,. Letuscall ly =ly=1l3=---=1,=r
_w% o ... 0 |
for some r € Z. Hence any matrix 0 wg S in Ngr,(g)(Ko) is of
' 0
00 @y
the form
_wTE 0 0 ]
0 wqh 0
0
I 0 0o ... w%_

for some r € Z. So Ngu,,(g)(Ko) consists of all the matrices in g € GL,(E) such

that
wp 0 0
g M 0 wp 0 v
0
0 O wh

wp 0 ... 0
0 wp 0
€ Z(GL,(FE)).
0
0 0 wE
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Let M = M'M"u~! for some u € OF and let uw}, = a for some a € E*. So now

any matrix in Ngr,,(g)(Ko) is of form g € GL,(E) such that

a 0 . 0
0 a . 0
g=M
0
00 ... a
where a € EX,M - K(). So we have NGL,,L(E)(KO> = ZKO = K()Z O

From now on let us denote Ky by K. Now let us calculate Ng(Po). Note that
0

1
J = € G. Indeed, J € Ng(Bo). The center Z(Py) of Py is given by
10

ul

0
Z(%):{ R |uegg}.
u

The center Z(L) of L is given by

al 0
Z(L):{ \aEEX}.
0 a'l

Proposition 3.2. N¢(Bo) = (PoZ(L), J) =PoZ(L) x (J).

A B

Proof. Tt easy to see that Ng(Bo) < Ng(Z(Po)). Now suppose g = €
C D

Ng(Z (o)), where A, B,C, D € M,,(E). Let us choose u € O} such that u # u .
Now such a u exists in 9. Because if w = u~! for all w € O then u = u~" for
all u € OF. But O5 N F* = 9OF. Therefore u ="' for all u € OF or u* =1 for

all u € O which is a contradiction.
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A B
As € Na(Z(%Bo)),
C D

-1

A B ul 0 A B vl 0
C D 0 w'l| |C D 0 o1

for some v € OF,. The left and right hand sides must have the same eigenvalues.

So u= v or 7 !. Let u = v. Then we have
- 1

A B ul 0 A B vl 0
C D 0 w'1| |C D 0 o711
Au Bu ! Av Bv

:> e
Cu Du! Cv~' Du!

Asu =, 80 Au = Av,Du' = Dv™. Now as u # v ! (i.e v # u '), from
the above matrix relation we can see that Bu—! = Bv, Cu = Cv~! for arbitrary
matrices B and C. So this would imply that B = C' = 0. In a similar way, we can

show that if u = v~! then A = D = 0. Hence any element of Ng(Z(By)) is of the

A 0 0 B
form or with A, B,C, D € GL,(E). As Ng(Bo) < Na(Z(Bo)),
0 D C 0
0
so any element which normalizes P is also of the form or with
0 D cC 0

A, B,C,D € GL,(E).

A 0
It normalizes Py then

€ Py for all a € K.



AaA™? 0
- € Py for all a € K.
0 Da'D!

Hence AaA=t, D'a='D! € K for all a € K. So this implies that A,D €
Nev,(p)(K) = ZK = KZ from lemma 3.1 and also *(AaA~')"' = D'a~'D™!
for all @ € K. If Y(AaA-1)"! = D'a'D~! for all a € K then 'A"1*a 1A =
Dia Dl foralla € K = A ="'D""' (ie D ='A71). And as A € ZK, so

A = zk for some z € Z, k € K. Hence

A 0 zk 0
0 D 0 '(zk)!
Similarly, we can show that if normalizes By then
¢ 0
0 B 0 2K

= for some 2’ € Z, K € K.

0 B 0
if € N¢(Bo), we have shown that it looks like where
C 0 HZE)™Y 0

2,2 € Z, k, k' € K. We know that J € Ng(*Bo) and as J = ,

0 B B 0
C 0
zk 0

SO Ng(m0>:<J; |zEZ,kEK>:‘BOZ(L)>4<J>. O

0 t%— 1
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3.2 Ng(po): unramified case

We now calculate Ng(po) in the unramified case. This will help in determining
the structure of H(G, p).

As pp is an irreducible cuspidal representation of GL,(kg), there exists a
regular character 6 of [* (where [ is a degree n extension of kg) such that py = 7.
We have kg = Fp2. So | = Fen.

Let I' = Gal(l/kg). The group T is generated by the Frobenius map ® given
by ®(\) = A for A € I. Here ®*(\) = A" = X (since [* is a cyclic group of
order ¢*" — 1) = ®" = 1.

Let us look at the action of I" on Hom({*,C*). Fory € I"and § € Hom(l*,C*),
v acts on 0 by v.0(A) = 0(~(X\)). Here 7.0 is also represented by 67.

We say a character 6 is regular character if stabr(0) = {y € ' | 7 =0} = 1.
So if 6 is regular character of [* then §” =1 = v = 1. And also for two regular
characters 6 and € we have 7y ~ 79 <= there exists v € I" such that §7 = ¢'.

As we are in the unramified case, so Gal(kg/kr) = Gal(E/F). Let ¢: GL,(kg)
— GL,(kg) be a group homomorphism given by: t(g) = 'g~!. Let us denote
19 0t by 1" So 1'(9) = 19(e(g)) = 19(*g™!) for g € GL, (kg). We also denote
Ta(g) for 79(g) for g € GL,(kg). It can be observed clearly as 6 is a character of
I, 80 (A™) = 0™(X) for m € Z, X € [*.

Let Té\,/ be the dual representation of 7. Let V be the vector space corre-
sponding to 7y which is finite dimensional. Choose a basis {vy,vs,...v,} of the
vector space V. The dual basis {v},v3,... v} } for the dual space V* of V can be
constructed such that v} (v;) = §;; for 1 < 7,7 < n. Suppose with respect to the
above basis {vy,vs,...v,}, T9(g7!) represents matrix A and with respect to the

dual basis {v},v5,...v:}, 7, (¢9) represents matrix B,then A = ‘B.
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From Propn. 3.5 in [7] we have Ty ~ 7y, and from Propn. 3.4 in [7] we have

Vv
Te ~ Tg—l.

Proposition 3.3. Let 6 be a reqular character of I*. Then 75 >~ 19 <= 07 = 071

for some v € Gal(l/kg).

Proof. = As 15 =~ 79, 80 Xr:(9) = Xr(g) for g € GLu(kg). But x-(g9) =
Xr("G7Y), since xr:(9) = Xr(e(g)) for g € GLyn(kg). As we know from the
above discussion that 7, (¢) = (7a(g~"))%, so trace(t, (9)) = trace(ry(g~"))t. Now
trace(te(g™")) = trace(ry(g~1))! as the trace of the matrix and it’s transpose are

same. So we have trace(my(g—")) = trace(t, (g)). Let us choose h € GL,(kg)

such that h='g~'h = g71. So, x.v(9) = X7 (97") = X7 (B7"g7'h) = X7, ("g 7).

1

Let us denote 74 (g) for m9(n(g)) where n: ¢ — 'g~! is a group automorphism

of GL,(kp). Hence x:1(9) = Xr (fg7'). But we have already shown before
that x.,(fg7") = X (g). so Xoy (9) = X-2(g). This implies 7, ~ 77. Hence
T =T, ?; ~ Tevq ~ Ty-q(since 7'9\/ ~ 1) Ty T@q,TGV ~ 7p-1). Now from the
hypothesis of Propn. we know that 75 ~ 7y, so this implies 7y ~ 7p-¢ (since
T4 = Tp—q). But as 0 is a regular character 67 = 679 for some v € I' = Gal(l/kg)
where [I: kg| = n.

<= Now we can reverse the arguments and show that if #7 = 679 for some

v €T = Gal(l/kg) then 7§ ~ Tp-q. O

Proposition 3.4. If 0 is a reqular character of I* such that 67 = 079 for some
v € I' then n is odd. Conversely, if n = 2m+1 is odd and 6 is a regular character

of I* then 62" = 6.

Proof. = Suppose 0 is a regular character of [* such that 87 = 679 for some

v € I'. We know that I' =< & > where ®: [ — [ is the Frobenius map given by
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d(\) = A for A € I. Now ®*(\) = A¢" = A for A € | = &" = 1. Now we have
(6=9)7 = (67)7%. Hence ()" = (67) = (079) = (67)77 = (079)77 = 97" = ¢°.
Now 67" = % because for A € I¥, 07 () = (A) = O(®(N\)) = #®(\). As @ is
a regular character and (0)” = 6%, so 42 = ®. Let ® be a generator of I and
7% = ®. So v is also a generator of I'.

Hence order of 4?= order of ® = =n = g.c.d(2,n) =1. Sonis

—n_
g.c.d(2,n)

odd.

<= Suppose n is odd. Let n = 2m + 1 where m € N. Now
Hom(I*,C*) = 1*.

So Hom(1*,C*) is a cyclic group of order (¢*" — 1). Hence for every divisor
d of (¢*" — 1), there exists an element in Hom({*,C*) of order d. As (¢" + 1) is

a divisor of (¢*" — 1), hence there exists an element 6 in Hom(I*,C*) of order

n—+1 2m—+2

(" +1). Hence 9"l =1 = 07" = 07! = 09" =079 = (4 =01 =
0@ = 971 = 9" = 71 = 7 = 079, where y = O"*! € T,

Now we claim that 6 is a regular character in Hom({*, C*). suppose §7 = 6 for
some v € I'. Let v = ®* for some k € N. So we have 6*" = 0. But 6° = 67", hence
0" = 0. That implies #°~' = 1. As 0 has order (¢" +1), so (¢" +1) | (¢ —1).
Let | = 2k, so we have (¢ + 1) | (¢ — 1) . If I < n then it is a contradiction
to the fact that (¢" + 1) | (¢! — 1). Hence [ > n. Now by applying Euclidean
Algorithm for the integers [,n we have | = nd + r for some 0 <r <n and d >0
where r,d € Z. Now d # 0, because if d = 0 then [ = r and that means [ < n
which is a contradiction. So d € N. As we have (¢" +1) | (¢! = 1) = (¢" + 1) |
(@ =D+ (" +1) = (" +1) | (¢ +¢") = (" +1) [ ¢"(¢"¢"""V +1).
Now as ¢" and (¢" + 1) are relatively prime, so (¢" + 1) | (¢".¢"9™) + 1) =

@+ ("D +1) = (" +1) = (¢"+ 1) | ¢"(¢".¢q""? —1). Asq"
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and (¢" + 1) are relatively prime, so (¢" +1) | (¢".¢"*? —1). So continuing the
above process we get, (¢" + 1) | (¢" + 1) if dis odd or (¢"+ 1) | (¢" — 1) if d is
even. But degree of (¢ + 1) is greater than degree of (¢" + 1) as r < n. So r has
to be equal to 0 and | = 2k = nd + r = nd. And that implies 2 | nd. But n is
odd so 2 | d. Now this means that d is even and hence (¢" + 1) | (¢" — 1). And
(¢"+1) | (¢" — 1) is not possible because = 0. So we have 2k = nd = n | 2k.
But as n is odd this implies n | k. And this further implies k& = np for some

p €N. So v =& = " = 1 = 0 is regular character.

Combining Propn. 3.3 and Propn. 3.4, we have the following Propn.
Proposition 3.5. Let 0 is a reqular character of I*. Then 15 ~ 19 <= n is odd.

We know that pg is an irreducible cuspidal representation of K. But K = 33,.
So pp can be viewed as a representation of . Now let us compute Ng(po),

where Ng(po) = {m € Na(Bo) | po >~ pi'}. Let m € Ng(PBo). Hence m is either

zk 0
J or m is of the form for some z € Z, k € K.
0 (zk)™!
zk 0
Proposition 3.6. If m = for some z € Z k € K then py™ ~ pg.
0 '(zk)™!

Proof. As pg is an irreducible cuspidal representation of K, so K normalizes py.

Clearly, Z normalizes py. Thus ZK normalizes py. As py can also be viewed

zk 0

as a representation of Py, so py™ =~ pg where m = for some
0 'zk)™!
ze ke K. O
0 1
Proposition 3.7. If m = J = then py™ =~ po only when n is odd.
10
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Proof. We know that ¢: @ — ‘@' is a group homomorphism of GL,(kg). Now

12 a — 'a~! can be inflated to a group homomorphism of GL, (). Further, ¢

can be viewed as a group homomorphism from B, to Py given by:

a 0 gt 0
L g
0 ta ! 0 a
a 0
where a € GL,(Og). Let g = . If m = J then py™(g) = po(JgJ ') =
0 ‘gt
ta—l 0
Po = po(t(g)) = po(g). So pa™(g) = po(g) for g € Po = p™ =
0 a

py- But from the hypothesis of Propn., we know that p{’ ~ pg. So we have

po = pi. Now from Propn. 3.5, pg >~ py = py' <= n is odd. O

Thus we have the following conclusion about Ng(pg) for the unramified case:

If n is even then Ng(po) = Z(L)Bo and if n is odd then Ng(po) = Z(L)Po X
().

3.3 Ng(po): ramified case

Now that we have calculated Ng(), let us calculate Ng(pg) for the ramified
case which would help us in determining the structure of H(G, p) in the ramified
case.

As in section 3.2, py = 7y for some regular character 6 of [* (where [ is a
degree n extension of kg). We have kp =F,. So [l =Fn.

Let I' = Gal(l/kg). The group I' is generated by Frobenius map ® given by

P(N) = X for X\ € I. Here d"()\) = A" = X (since [* is a cyclic group of order
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" —1) = " =

For v € I" and 6 € Hom(I*,C*), v acts on 6 by 7.0(\) = 6(y(\)). Here .6 is
also represented by 7.

As we are in the ramified case, so Gal(kg/kr) = 1. So g = g for g € kg.

Let v: GL,(kg) — GL,(kg) be a group homomorphism given by: t(g) =g~ =

tg=1. Let us denote 1y o ¢ by 7p". So 75(g) = 19(e(g)) = T('g ") = Tp(tg™") for
g € GL,,(kg). We also denote T5(g) for 79(g) for g € GL,,(kg).But 75(g) = 74(g) =

T9(g). It can be observed clearly as 6 is a character of [* , so (™) = 6™ () for

me 7\ e lx.

Proposition 3.8. Let 0 be a reqular character of I*. Then 7} ~ 19 <= 07 = 07!

for some v € Gal(l/kg) .

Proof. = As 75 ~ 7y, 50 Xr:(9) = Xr(9) for g € GL,(kg). But x-:(g9) =
Xz ("g™"), since xr(9) = Xxz(e(g)) for g € GL,(kp). As we know from the
above discussion that 7, (g) = (7a(g~"))%, so trace(t, (9)) = trace(rs(g~"))t. Now
trace(to(g™')) = trace(rg(g~1))! as the trace of the matrix and it’s transpose are
Y

same. So we have trace(y(g~")) = trace(t, (g)). Let us choose h € GL,(kg) such

that A9~ h = g7 So, x,v(9) = Xr(97") = Xr (A7 g7 h) = X7 ("g™") Let
us denote 7,'(g) for 74(n(g)) where n: g — *g~! is a group automorphism of
GL,(kp). Hence x;1(g9) = X (*g71). But we have already shown before that
Xrp (g1 = Xy (g). so Xy (9) = Xr2(g). This implies 7, =~ 7. Hence 7§ = 7} ~
Tg ~ Tp-1 (since Tg ~ Tg,rg ~ 7p-1). Now from the hypothesis of Propn. we
know that 7} ~ 7y, so this implies 7p =~ 7p-1 (since 75 ~ 7y-1).But as 0 is a regular
character 7 = 07! for some v € I' = Gal(l/kg) where [I: kg] = n.

<= Now we can reverse the arguments and show that if 7 = §~! for some

v €' = Gal(l/kg) then 7§ ~ Ty-1. O
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Proposition 3.9. If 0 is a reqular character of I* such that 7 = 6= for some

v €I then n is even. Conversely, if n = 2m is even and 0 is a reqular character

of I* then 6®" = 671,

Proof. = Suppose 0 is a regular character of X such that §7 = §=! for some

v €. We know that ' =< & > where ®: [ — [ is the Frobenius map given

by ®(\) = X for A € I. Now ®"(\) = M\ = A for A € | = ®" = 1. So for

A€ I we have 07 (A) = 07(v(A)) = 67 (Y(N) = 8((v(V) ) = 6(v(A ) =

N =071 = (N = 6(N). So this implies 87" = 6. As 6 is
1.

a regular character, so we have 72 =

Now for A € I* we have §%(\) =
O(®(N)) = 0(\9) = 09()\). That implies 0* = 09. As 4> =1 = v =1 or
v has order 2. If y = las 6 =60 = 0 = 07! = O(\) = 07'(\) for
AelX = 0N =011 = 0N\)=1= (A(N)>=1= 0()\) = {£1} for
Ael™.

Let ¢ be an odd prime power. So for A € [* we have 0% (\) = 09(\) = (6()\))? =
O()\) (since O(N\) = {£1}). So this implies % = § and that further implies ® = 1
as 0 is a regular character = n = 1 which contradicts our assumption that
cardinality of I' is greater than 1. Now suppose ¢ is a prime power of 2. As the
characteristic of kg = 2 that implies +1 = —1 in kg. So 6(\) = +£1 =1 for
A € I*. So we have for A € [, 0%(\) = 09(\) = (A(N\))? = 1 (since H(N) = 1).
And this implies #® = 0 and that further implies ® = 1 as 6 is a regular character
= n = 1 which contradicts our assumption that cardinality of I" is greater than
1.

Hence 72 = 1 or v has order 2, since v # 1. Now I' has order n and v € T

has order 2. So 2 | n = n is even.

<= Suppose n is even. Let n = 2m where m € N. Now
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Hom({*,C*) & 1%,

So Hom(I*,C*) is a cyclic group of order (¢" — 1) = (¢*™ — 1). Hence for
every divisor d of (¢*™—1), there exists an element in Hom(1*, C*) of order d. As
(g™ +1) is a divisor of (¢°™ — 1), hence there exists an element 6 in Hom(I*, C*)
of order (¢™ +1). So #9" 1 =1 = 09" = 01 = %" = 0~ (since * = 0).
Hence we have 67 = 0!, where v = ®™.

Now we claim that the character 6 is regular. Suppose 87 = 6 for some v € I
Let v = ®F for some k € Z. Then we have %" =0 = 0" = 9§ — 99"~ = 1.
As 6 has order (¢™ + 1) that means (¢™ +1) | (¢* —1). By Euclidean Algorithm,
we have k = md + r where r,d € Z,0 < r < m. If d =0then k =r <m
which contradicts the fact that (¢™ +1) | (¢* —1). Sod > 1. Now as (¢™ + 1) |
(" =1) = (¢"+1) | (" =1 +(@"+1)) = (¢"+1) | (¢"+¢") = (¢"+1) |
(@M ¢ = (¢™+1) | ¢™(¢™@ D+ 1), But as ¢ and (¢™+1) are relatively
prime, so this implies (¢™+1) | (¢™@¢ Y+ +1). But (¢™+1) | (¢4 V" +1) =
(q"+1) | (gD 1)~ (1)) = (g™+1) | (g™ D+ —1). But as g™ and
(¢™+1) are relatively prime, so this implies (¢™+1) | (¢"™4=2+" —1). Continuing
the above process, we have (¢™ +1) | (¢" +1) if d is odd and (¢™ +1) | (¢" — 1)if
d is even. As r < m, the above conditions are possible only when r = 0. If r = 0,
then k = md. So if d is odd then (¢™ + 1) | 2 = (¢™ + 1) is either 1 or 2. If
(g™ + 1) = 1 then g = 0 which is a contradiction. So let (¢™ + 1) = 2 then we
have ¢ = 1 which is again a contradiction as ¢ is a prime power. So d has to
be even. Let d be even and is greater than 2. So d can take values 4,6,8,....
But as £ = md, so k can take values 4m,6m,8m,.... That is £ can take values
2n,3n,6n, ... which is a contradiction as k < n. So d = 2. Hence k = 2m = n.

So ®% = ®" =1 = v = 1. So 6 is a regular character.
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Combining Propn. 3.8 and Propn. 3.9 we have the following Propn.

Proposition 3.10. Let 0 be a regular character of I*. Then 175 ~ 19 <= n is

even.

We know that pg is an irreducible cuspidal representation of K. But K = 3,.
So po can be viewed as a representation of Bo. Now let us compute Ng(po),

where Ng(po) = {m € Na(Bo) | po =~ pi'}. Let m € Ng(Boy). Hence m is either

zk 0
J or m is of the form for some z € Z, k € K.
0 '(zk)!
zk 0
Proposition 3.11. If m = for some z € Z, k € K then py™ >~ py.
0 f(zk)™!

Proof. As pg is an irreducible cuspidal representation of K, so K normalizes py.

Clearly, Z normalizes py. Thus ZK normalizes py. As pg can also be viewed

zk 0
as a representation of Py, so py™ =~ py where m = for some
0 (zk)™!
ze  keK.
. . 1
Proposition 3.12. Ifm=J = then po™ =~ po only when n is even.
10

Proof. We know that ¢: @ — ‘@' is a group homomorphism of GL,,(kg). Now

12 a — '@~ ! can be inflated to a group homomorphism of GL, (). Further, ¢

can be viewed as a group homomorphism from B, to Py given by:
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a 0
where a € GL,(Og). Let g = . If m = J then py™(g) = po(JgJ ) =
0 ta—l

Po = po(t(9)) = po(g)- So pa™(g) = ph(g) for all g € Py = py™ =

py. But from the hypothesis of the Propn. we know that p{’ ~ py. So we have

po = pi. Now from Propn. 3.10, py =~ pf = pi' <= n is even. U

So we have the following conclusion about Ng(po) for ramified case: If n is

odd then Ng(po) = Z(L)Bo and if n is even then Ng(po) = Z(L)Po x (J).

Lemma 3.13. When n is odd in the unramified case or when n is even in

the ramified case, we have Ng(po) = (Po,wo,w1), where wy = J and w; =
0 ﬁE_ll
’ZﬂEl
Proof. Let ( = wowy. So ( = . We can clearly see that w = 1.
0 ﬁE_ll

So wy = wy ' and w; = wy'¢ = wel. From the hypothesis of lemma, we have
Nea(po) = Z(L)Po x (J). As any element in E* can be written as uw” for
some n € Z,u € OF, so Z(L) = Z(Po)(). So Z(L)Bo = (Po,(). Hence

Ng(po) = <m0,<> xJ. But J = Wo, W1 = ’wog. So Ng<p0> = <2B0,w0,w1>. ]

3.4 Structure of H(G, p): unramified case

In this section we determine the structure of H(G, p) for the unramified case when

n is odd. Using cuspidality of pg, it can be shown by Theorem 4.15 in [8], that
Ja(p) = BNe(po)B. But from lemma 3.13, Ng(po) = (Bo, wo, w1). So Ta(p) =
B (Po, wo, w1) P = P (wo, wy) P, as Py is a subgroup of P. Let V' be the vector
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space corresponding to p. Let us recall that H(G, p) consists of maps f: G —
Endc (V") such that support of f is compact and f(pgp’) = p’ (p)f(g)p’ (p') for
p,p € P,g € G. In fact H(G, p) consists of C-linear combinations of maps
f: G — Endc(V") such that f is supported on PP where z € Jg(p) and
flpzp) = p’ (p)f(2)p () for p,p’ € P. We shall now show there exists ¢y €
H(G, p) with support PweP and satisfies p2 = ¢" + (¢" — 1)¢o. Let

K(0) = Uln, 1) N GLon(O5) = {g € GLon(D1) [ 59 = J}.
Ki(0) ={g € 1 + wgMa,(Og) |"gJg = J},
G={g € GLy,(kg) | gJg = J}.

mod pg

The map r from K(0) to G given by r: K(0) —— G is a surjective group

homomorphism with kernel K7(0). So by the first isomorphism theorem of groups

we have:
KO ~
Ki(0) G.
GLn(kp) M (kp) . .
r(B) =P = () G= Siegel parabolic subgroup of G.

0 GL.(ks)

Now P = L x U, where L is the Siegel Levi component of P and U is the

unipotent radical of G. Here

a 0
L:{ |a€GLn(kE)},
0 ta—l

1 X _
U:{ |X€Mn(k:E),X+tX=O}.
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Let V' be the vector space corresponding to p. The Hecke algebra H (K (0), p)
is a sub-algebra of H(G, p).

Let p be the representation of P which when inflated to 3 is given by p and
V is also the vector space corresponding to p. The Hecke algebra H(G,p) looks

as follows:

H(G,p) = {f: G — Endc(V")

Flogp) =7 (0)f(9)p" (p’)}
where p,p' € P, g € G '

Now the homomorphism r: K(0) — G extends to a map from H(K(0), p)
to ‘H(G, p) which we again denote by r. Thus r: H(K(0), p) — H(G, p) is given
by

for ¢ € H(K(0),p)andx € K(0).

Proposition 3.14. The map r: H(K(0),p) — H(G,p) is an algebra isomor-

phism.

Proof. To prove that the map r is an isomorphism of algebras, we have to show
that r is a homomorphism of algebras and is a bijective map.

In order to show that the map r is a homomorphism, we need to show that it
is C-linear and it preserves convolution. It is obvious that the map r is C-linear.
Let us now show that the map preserves convolution.

If 2 € K(0) and ¢y, ¢o € H(K(0), p) then

(¢1 % ¢2)(z) = )¢1(?J)¢2(y_1$)dy'

K(0
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Now

/ L WG = S 6yl
K(0 )

yEP/K (0

Hence

r(01 % ¢2)(r(x)) = (¢1 * d2)(2)
= Z ¢1(zy )2 (y)

yeP/K(0)

= Z (r(é1)(r(zy= ) (r(d2)(r(y)))
yeEP/K(0)

= > (@)@ (@) )N r(e)(r(y)))
r(y)€eP/G

= (r(¢1) * 7(¢2)) (r(2)).

So we have (¢ * ¢2)(r(x)) = (r(¢1) * r(p2))(r(z)). But r is a surjective group
homomorphism from K (0) to G. Hence r(¢1xd2)(y) = (r(¢1)*r(¢e))(y) fory € G
which would imply that r(¢; * ¢2) = (r(¢1) *7(p2)). Hence r is a homomorphism
of algebras.

In order to show that r is bijective map, we first show here that the map r is
a one-one map. Let ¢1, o € H(K(0),p),y € G. Suppose 7(¢1)(y) = r(¢2)(y). As
r is surjective map from K(0) to G, so there exists € K(0) such that r(z) = y.
So 7(¢1)(r(z)) = r(p2)(r(z)) = ¢1(x) = ¢2(z). As r is a surjective map from
K(0) to G, so when y spans over G, x spans over K(0). So ¢i(z) = ¢o(z) for
x € K(0) = ¢1 = ¢. So r is a one-one map.

Now we show that r is a surjective map from H(K(0),p) to H(G,p). Let
¥ € H(G,p), then ¢»: G — EndcV is a map such that ¢ (pgp’) = ¢(g) for p,p’ €

P,g € G. As r is a surjective map from K(0) to G , so ¥ or makes sense. Now let
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us call hor as ¢. So ¢ is a map from K(0) to EndcV. Let p,p’ € B,k € K(0), so
¢(pkp') = (or)(pkp') = P(r(pkp')) = »(r(p)r(k)r(p)) = &(r(k)) = (Yor)(k) =
é(k). So & € H(K(0), p). Let y € G. So there exits « € K (0) such that r(z) = v.
Now consider ¢(y) = ¢(r(z)) = (Y or)(z) = ¢(z) = r(¢)(r(z)) = r(¢)(y). So
W(y) = r(d)(y) for y € G = ¥ = r(¢). Hence r is a surjective map.

As r is both one-one and surjective map, hence it is a bijective map.

]

01 01
) € G. Clearly K(0) 2 B II Puwp'P =

Let w = r(wy) = 7(
10 10

r(K(0)) D r(PUPweP) = G 2 r(P) LLr(PwP) = PIIPwP. So G O PIIPwP.

Now IndSp = m @ 7y, where 71, my are distinct irreducible representations
of G with dimmy, > dimm. Let A = fﬁ%ﬁ. By Propn. 3.2 in [4], there exists
a unique ¢ in H(G,p) with support PwP such that ¢*> = X\ + (A — 1)¢. By
Propn. 3.14, there is a unique element ¢y in H(K(0), p) such that r(¢g) = ¢.
Thus supp(¢o)=PweP and ¢2 = A+ (A —1)@. From Lemma 3.12 in [7], A = ¢".
Hence ¢2 = ¢" + (¢" — 1)¢g. As support of ¢y = PwP C K(0) C G, so ¢y can
be extended to G and viewed as an element of H (G, p). Thus ¢, satisfies the

following relation in H(G, p):

oo =q" + (¢" — 1)¢o.

We shall now show there exists ¢, € H(G, p) with support Pw;P satisfying
1

the same relation as ¢g. Let n = . Now we can check that nwon=—! = w;.

Recall that B looks as follows:
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GL,(Og) M, (O
g |Gl MOn) |

Mn(pe)  GLn(OF)
Lemma 3.15. By~ = P.

Proof.
GL,(Ogr) M,(Og)

¥ = Né

Mn(pE) GLn(DE)

GL, (9D M, (O
=¥y =1 ©z) (D=) ' \nGn~'.
M, (pr)  GLn(Ok)

It is easy to show that

GL.(D5) Mu(Op) | . |GL.(D5) M.(Og)
n no =
Mn(pE) GLn(DE) Mn(pE) GLn(DE)

Now we claim that nGn~! = G. To prove this let us consider
G' = {g € GLy,(E) |" gJg = X(g)J for some \(g) € F*}.

Now n € G’ clearly, as Jn = wgJ = wrJ. And \: G' — F* is a
homomorphism of groups with kernel G. So G < G'. Asn € G' and G I G, so
nGn~! = G. Hence nBn~! = P. O

AsP C K(0) and wy € K(0), so K(0) 2 PIUPweP = nK(0)n~' 2 7Py~
nPBwePn~t. But from lemma 3.15, we know that nBn~! =P and nPwePn~—! =
(nFBn~") (nwon ™) (nBn~") = PurP (since nuwon™ = wy). So nK(0)n~" 2 P 1
PuwP.
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Let " be homomorphism of groups given by the map r": nk(0)p~! — G
such that 7/(z) = (n~*xn)modpg for x € K(0). Observe that r’ is a surjec-

tive homomorphism of groups because ' (nK (0)n~!) = (n~'nK (0)n~'n)modpr =

1

K(0)modpg = G. The kernel of group homomorphism is nK;(0)n~'. Now by

nKOn! ~ K(0) ~
o = o) o O Also

the first isomorphism theorem of groups we have
(Bt = (' PBy~n)modpr = Pmodpr = P. Let p be representation of P
which when inflated to 9 is given by p. The Hecke algebra of nK (0)n~! which
we denote by H(nK (0)n~!, p) is a sub-algebra of H(G, p).

The map ' : nK(0)n~! — G extends to a map from H(nK(0)n~ !, p) to
H(G,p) which we gain denote by r’. Thus r': H(nK(0)n~t, p) — H(G,p) is

given by

forgp € H(nK(0)n™*, p)andz € nK(0)n~".

The proof that ' is an isomorphism goes in the similar lines as Propn. 3.14
.We can observe that r'(w;) = w € G, where w is defined as before in this
section. As we know from our previous discussion in this section, that there
exists a unique ¢ in H(G,p) with support PwP such that ¢* = ¢" + (¢" — 1)¢.
Hence there is a unique element ¢, € H(nK (0)n~, p) such that r'(¢;) = ¢. Thus
supp(¢1)=PwP and ¢? = ¢" + (¢" — 1)¢;. Now ¢; can be extended to G and
viewed as an element in H(G, p) as PwP C nK(0)n~! € G. Thus ¢, satisfies

the following relation in H(G, p):

0 =q"+ (" —1)¢r.

Thus we have shown there exists ¢; € H(G, p) with supp(¢;)=Pw; B satisfying
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¢? = q"+(¢" —1)¢; for i = 0,1. It can be further shown that ¢y and ¢; generate

the Hecke algebra H (G, p). Let us denote the Hecke algebra H(G, p) by A. So

¢; is supported on Pw, P
A=H(G,p) = <¢z‘i G — Endc(ﬂv) and ¢;(pwip') = p" (p)gi(wi)p” (V')
where p,p' € B, g€ G,i=0,1

where ¢; satisfies the relation:
07 =q" + (¢" — 1)¢; for i =0, 1.
Lemma 3.16. ¢q and ¢, are units in A.

Proof. As ¢? = ¢"+(¢" —1)¢; fori = 0,1. So ¢Z-(W) = 1 for i=0,1. Hence

¢o and ¢; are units in A. O

Lemma 3.17. Let ¢,v € H(G, p) with support of ¢, being PP, Py P respec-
tively. Then supp(¢ = v )=supp(d)) C (supp($))(supp(i)))=PaPyPB.

Proof. As supp(¢)= PP and supp(v)= PyP, so if z € supp(¢ * ¥) then (¢ *
V) (2) = fG d(zr~H(r)dr # 0. So there exists r € G such that ¢(zr=1)(r) # 0.

Because if ¢(zr~)i(r) = 0 for r € G then [, ¢(zr~1)p(r) = 0 = (¢xh)(2) = 0
which is a contradiction. So ¢(zr1)i(r) # 0 for some r € G. As ¢p(zr™!) # 0 =
supp(¢) = PP and ¢ (r) £ 0 = r € supp(s)) = PyP. Hence (zr2)(r) = 2z €
(supp(¢))(supp(¢¥)) = (BB)(PyPB) = PaPyP. Hence supp(¢ * ¥)= supp(¢1))
C (supp(¢))(supp(v)) =P PyP. O

From B-N pair structure theory we can show that, B PyP = Pary’P <—
l(zy) = l(z) + l(y). From lemma 3.17, we have supp(¢o¢1) C PwePwP. But
PwePwP = Pwow P (since l(wowy) = l(wy) + l(wy)). Thus supp(pop;)C
PBwowB. Let ¢ = wowy, So
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As ¢g, ¢y are units in algebra A, so ¢ = ¢p¢; is a unit too in A and
Y7l = ¢ ¢;'. Now as we have seen before that supp(¢od1) C Pwow, P =
supp(y) C PP = supp(y) = or PCB. If supp(yp)= @ = ¢ = 0 which is a
contradiction as 1 is a unit in A. So supp(¢)) = PCP. As ¢ is a unit in A, we can
show as before from B-N pair structure theory that supp(¢?) = B¢*B. Hence
by induction on n € N, we can further show from B-N pair structure theory that

supp("™)= PP for n € N.

Now A contains a sub- algebra generated by 1,9 ~! over C and we denote

this sub-algebra by B. So B = C[), 1 ~!| where

B:C[w,¢_1]:{Ck'ébk—f_"'_’_cl'ébl

Chy ..., €C,
k<lLkleZf
Proposition 3.18. The unique algebra homomorphism Clx, x7'] — B given by

x — 1) is an isomorphism. So B ~ Clz,x™].

Proof. 1t is obvious that the map is an algebra homomorphism and is surjective
as {¢" | n € Z} spans B. Now we show that the kernel of map is 0. Suppose
)+ et =0 with ¢p,...,q € C;l > k > 0;1,k € Z. Let x € suppy® =
PBC*P where 0 < k£ < s < 1. As double cosets of a group are disjoint or equal, so
Y*(z) # 0and Yi(z) = 0for 0 < k < i < 1,7 # s. Hence 0% (x)+ - -+cpt(z) = 0
would imply that ¢, = 0. In a similar way we can show that ¢, = cxy1 = ... = ¢ =
0. So {¢F, kL ... 4} is a linearly independent set when 0 < k < I} k,l € Z.
Now suppose if £ < 0 and let cy)* + - + ' = 0 with ¢, ..., € C;k,l € Z.
Let us assume without loss of generality that £ < [. Multiplying throughout

the above expression by ¥~*, we have ¢; + --- + /% = 0. Now repeating the
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previous argument we have ¢, = ¢j11 = ... = ¢ = 0. So again {¢* p*T .. !}

is a linearly independent set when k < 0;k < I;k,l € Z. Hence B ~ Clz,x™1].

3.5 Structure of H(G, p): ramified case

In this section we determine the structure of H(G, p) for the ramified case when n
is even. Recall J5(p) = PN (po)PB. But from lemma 3.13, Ng(po) = (Po, wo, w1 ).
So Ja(p) = B (Po, wo, w1) P = P (wo, w1) B, as Py is a subgroup of P. Let V'
be the vector space corresponding to p. Let us recall that H(G, p) consists of
maps f: G — Endc(V') such that support of f is compact and f(pgp/) =
p (p)f(g)p’ (p') for p,p’ € P, g € G. In fact H(G, p) consists of C-linear combi-
nations of maps f: G — EndC(Vv) such that f is supported on PP where
z € Ja(p) and f(pxp') = p’ (p)f(z)p (') for p,p’ € P. We shall now show there
exists ¢g € H(G, p) with support PuweP and satisfies ¢2 = ¢/ + (¢"/? — 1)¢o.
Let

K(0) = U(n,n) N GLyy(Op) = {g € GLon(Or) ' gJg = J},
K1(0) = {g € 1 + @pMo(Op) ' gJg = J},

G ={g € GLan(kg) ['gJg = J}.

modpg

The map 7 from K(0) to G given by r: K(0) —— G is a surjective group
homomorphism with kernel K7(0). So by the first isomorphism theorem of groups

we have:




r(P) =P = () G= Siegel parabolic subgroup of G.
0 GL, (kg)

Now P = L x U, where L is the Siegel Levi component of P and U is the

unipotent radical of G. Here

a 0
L:{ |aEGLn(k‘E)},
0 ta !

1 X _
U= | X € M, (kg), X +'X =0}
0 1

Let V' be the vector space corresponding to p. The Hecke algebra H (K (0), p)
is a sub-algebra of H(G, p).

Let p be the representation of P which when inflated to 3 is given by p and
V is also the vector space corresponding to p. The Hecke algebra H(G, ) looks

as follows:

H(G,p) = {f: G — Endc(V")

flogp)) =2 () f(9)p (@)
where p,p' € P, g € G }

Now the homomorphism r: K(0) — G extends to a map from H(K(0), p)
to H(G, p) which we again denote by r. Thus r: H(K(0), p) — H(G,p) is given
by

for € H(K(0),p)andz € K(0).

As in the unramified case, when n is odd, we can show that H(K(0),p) is
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isomorphic to H(G, p) as algebras via 7.

01 0 1
Let w = r(wy) = r( ) = € G. Clearly K(0) 2 B LI Puwe'P =
10 10

r(K(0)) 2 r(PLUPweP) = G D r(P) LLr(Pwe'P) = PIIPwP. So G O PIIPwP.
Now G is a finite group. In fact, it is the special orthogonal group consisting
of matrices of size 2n x 2n over finite field kg or F,. So G = SOy, (F,).
According to the Theorem 6.3 in [4], there exists a unique ¢ in H(G, p) with
support PwP such that ¢? = ¢™/2 + (¢"/? — 1)¢. Hence there is a unique element
do € H(K(0),p) such that 7(¢y) = ¢. Thus supp(¢o)=PweP and ¢2 = ¢*/? +
(¢"? —1)¢y. Now ¢y can be extended to G and viewed as an element in H(G, p)

as PweP C K(0) C G. Thus ¢g satisfies the following relation in H(G, p):

o5 = q""* + (¢"* — 1)o.

We shall now show there exists ¢, € H(G, p) with support Pw;P satisfying

the same relation as ¢y.

0 wgl . 0 —wy'l
We know that w;, = Wy = —wWg. SO w, =
wpl 0 0 —1
Let n = . So,quynt=J = . Recall that B looks as follows:
0 1 1 0

GL,(Or) M,(OE)
P = NG.
M, (pE) GL, (DE)

Now

GL.(Op) Ma(Op) 1 GL.(Op)  Ma(pe)
e GLos| | M0k L)

48



nGn ' =G ={9 € GLy,(E) |'gJ'g=J}.

Hence

e (Or) (pe) ne.
M, (Og) GL.(Og)

Therefore 781! is the opposite of the Siegel Parahoric subgroup of G’. Let

K'(0) = (B, wi).

And let

G'={g € GLo(kp) ['gJ'g = J'}

= {g S GLQn(k‘E) |t gJ’g = Jl}
Let r": K'(0) — G’ be the group homomorphism given by
r'(x) = (nxn ')modpg wherez € K'(0).

So we have (K (0)) = (nK'(0)n~Y)Ymodpr = (n{B,w1)n~')modpr. Let
P(B) = (B modpr = P'. We can see that 1/(wy) = (quwinYmodpg =

) o 0 -1
J'modpg = w' = .
1 0

GL,(kz) 0

So P =7/(P) = (nBn)modpy = NG. Clearly P is

M, (kg) GL,(kg)
the opposite of Siegel parabolic subgroup of G'. Hence r'(K(0)) = (5/, w'y =G,

: : .. : L
as P is a maximal subgroup of G' and w’ does not lie in P. So 7’ is a surjective

homomorphism of groups.
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Let V' be the vector space corresponding to p. The Hecke algebra H(K'(0), p)
is a sub-algebra of H(G, p).

Let ¢’ be the representation of P’ which when inflated to B is given by "p and
V is also the vector space corresponding to . Now the Hecke algebra H(G', ')

looks as follows:

(G o) - { £i6 s By | T =7 007 <p'>} |

where p,p’ € 5/, ge G

Now the homomorphism 7’: K’(0) — G’ extends to a map from H(K'(0), p)
to H(G',p’) which we again denote by 7’. Thus ’: H(K'(0),p) — H(G',7') is

given by

for ¢ € H(K'(0),p)andz € K'(0).

As in the unramified case when n is odd, we can show that H(K'(0),p) is
isomorphic to H(G',7') as algebras via .

Clearly K'(0) O P PwP = »'(K'(0)) D r'(PLUPwP) = G 2 ' (P) 11
' (PwP) = PIPwP.SoGDP IPwP.

Now G’ is a finite group. In fact, it is the symplectic group consisting of
matrices of size 2n x 2n over finite field kg or F,. So G’ = Spa,(F,).

According to the Theorem 6.3 in [4], there exists a unique ¢ in H(G,7')
with support P w'P such that ¢ = ¢/2 + (¢"? —1)¢. Hence there is a unique
element ¢; € H(K'(0),p) such that 7'(¢1) = ¢. Thus supp(¢1)=Pw'P and

#? = ¢"? 4 (¢"? — 1)¢1. Now ¢, can be extended to G and viewed as an element
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in H(G,p) as PwP C K'(0) C G. Thus ¢, satisfies the following relation in
H(G, p):

¢ =q"?+ (¢"* — 1)¢r.

Thus we have shown there exists ¢; € H(G, p) with supp(¢;)=Pw;B satisfying
¢? = ¢"/? 4+ (¢"/* — 1)¢; for i = 0,1. Tt can be further shown that ¢y and ¢,
generate the Hecke algebra H (G, p). Let us denote the Hecke algebra H (G, p) by
A. So

¢; is supported on Pw; P
A=H(G,p) = <¢i: G — Endc(p’) | andg;(pwip’) = p* (p)di(wi)p’ (p)
where p,p’ € B, g€ G,i=0,1

where ¢; has support Pw;P and ¢; satisfies the relation:
¢? = qV? + (¢ — 1)¢; for i = 0, 1.

Lemma 3.19. ¢q and ¢, are units in A.

Proof. As ¢? = q¥? + (¢"/* — 1)¢; for i = 0,1. So gbl(w) =1 for i=0,1.

qn/2

Hence ¢y and ¢; are units in A. ]

As ¢g, ¢1 are units in A which is an algebra, so 1) = ¢g¢; is a unit too in A
and ¥' = ¢ ¢y . As in the unramified case when n is odd, we can show that

A contains sub-algebra B = C[t, ¢ ~!| where

B=Clp,¢ "] = {ckw’f +o oy

Chy ..., €C,
k<lkleZ]|
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Further, as in the unramified case when n is odd, we can show that C[¢, ¢~1] ~

Clz,z7'] as C-algebras.

3.6 Structure of H(L, py)

In this section we describe the structure of H(L, py). Thus we need first to

determine

Ni(po) ={m € Nr(Bo) | pg" = po}-

We know from lemma 3.1 that N, (g (Ko) = KoZ, so we have Ni(By) =
Z(L)By. Since Z(L) clearly normalizes py and py is an irreducible cuspidal rep-
resentation of Py, so Np(po) = Z(L)PBo.

Now that we have calculated Ny (pg), we determine the structure of H(L, po)-
Using the cuspidality of po, it can be shown by A.1 Appendix [8] that J.(py) =
BoNL(po)PBo- As Ni(po) = Z(L)Bo, so Tr(po) = BoZ(L)BoPo = Z(L)Po. Let
V' be the vector space of py.

The Hecke algebra H (L, po) consists of C-linear combinations of maps f: L —

Endc(V") such that each map f is supported on PozBy where = € JTp(py) =

Z(L)Bo and f(prp') = py (p) f(x)py (V') for p,p’ € Po. Tt is clear that

Z(L)Bo = [ [ Bo™

neZ
So the Hecke algebra H(L,py) consists of C-linear combinations of maps
f: L — EndC(Vv) such that each map f is supported on Byx*Po where z €
Po¢" with n € Z and f(pzp') = py (p)f(2)py () for p,p’ € Bo.

Let ¢y, ¢o € H(L, po) with supp(¢1) = Poz1 and supp(pa) = Poza respectively
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with 21,29 € Z(L). As pg is an irreducible cuspidal representation of By. So if
f € H(L,po) with supp(f) = Poz where z € Z(L) then from Schur’s lemma
f(z) = cl,v for some ¢ € C*. Hence ¢1(z1) = c11,v and ¢a(22) = col,,v where
c1,c9 € C*.

We have supp(¢1¢2) C (supp(¢1))(supp(¢2)) = Boz1Bozz = Pozize. The

proof goes in the similar lines as lemma 3.17.
We assume without loss of generality that vol3y = volP_ = vol'B, = 1.
Thus we have vol'3 = 1.

Lemma 3.20. Let ¢y, po € H(L, po) with supp(p1) = Poz1 and supp(pe) = Poze
where 21,29 € Z(L). Also let ¢1(z1) = c1lyv and ¢a(2z2) = calyv where c1,¢o €

C*. Then (¢1 * ¢2)(2122) = ¢1(21)¢2(22) = C1021Vv .

Proof.

(01 % 02)(2122) = /L¢1(le2y_l)¢2(y)dy

:/}3 ¢1(212222—1p_1)¢2(z2p)dy
_[p d1(z1p™ ) pa(pz2)dy
- /m $1(21)p0 (07 1)po (p) b2 (22)dy
:/ ¢1(21)P2(22)dy

PBo
:/ 61C21vvdy

Po
= 0102\/01(§q30)1vv

= Clczlvv

= ¢1(2’1)¢2(2’2)-
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]

As supp(¢1 * ¢2) = supp(@1¢2) C Poz122, s0 supp(¢P1 * ¢2) = & or Pozi2e.

If supp(¢y * ¢2) = & then it means that (¢; * ¢o) = 0. This contradicts (¢ *

¢2)(2122) = c1¢9 # 0. So supp(¢y * P2) = Poz129.

This implies that ¢, is invertible and ¢; ' be it’s inverse. Thus supp(¢;') =
Boz ' and ¢ (z7) = er ' Lyv.

Define o € H(L, po) by supp(e) = Po¢ and a(() = 1,,v.

Proposition 3.21. 1. a"(¢") = («a(())" for n € Z.

2. supp(a™) = Po("Po = Pol" = ("Po forn € Z.
Proof. As a: L — Endc(py), so a(¢) € Ende(py). Now ¢ € Z(L),Bo < L, s0

Ps = Bo. (py)¢ = po. We can see that ¢ € Ip(py) = Ir(po) = Z(L)Po, hence ¢

. . \%
intertwines p,. Hence

Hommomqgg (p(vn (p(v))c) #0
= Homg,np, (0o, pg) # 0
— Endy, (pg> # 0.

So a(¢) € Endy,(py). As py is an irreducible representation of By, so from
Schur’s lemma «(() is either zero or an isomorphism. But as a(¢) # 0 = a(()
is an isomorphism = («/(())™! exists.

Using lemma 3.20 over and over we get, a"(¢") = («(¢))" for n € Z and
supp(a”) = Po("Po = Po¢" = (" Py for n € Z O

We know that H(L, py) consists of C-linear combinations of maps f: L —
End@(Vv) such that each map f is supported on PPy where x € Py(™ with
n € Z and f(pzp') = py(p)f(x)py () for p,p’ € Po. So from Propn. 3.21,

H(L, po) is generated as a C-algebra by o and a~!. Hence H(L, py) = Cla, ™.
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Proposition 3.22. The unique algebra homomorphism Clx,z~'] — Cla,a™!]

given by x — « is an isomorphism. So Cla, a™'] ~ Clz, z71].

Proof. 1t is obvious that the map is an algebra homomorphism and is surjective
as {a" | n € Z} spans Cla, a™!]. Now we show that the kernel of map is 0. Let us
look at cra® + ¢yt -+ ol =0 where k < I;k,l € Z;cp, Cpyr ... c; € C. We
know that supp(a’) = Po(’ for k < i < I. Let x € supp(a®) where k < s < I. Now
consider c,a*(x) + ¢t (z) - - + ¢al(x) = 0. This implies that c,a®(z) = 0
as x € supp(a®). But as o®(z) 20 = ¢, = 0. Hence ¢4y = cxy1--- =¢ = 0. So

{a™ | n € Z} is a linearly independent set. Thus Cla, a™!] ~ C[x, z7!]. O

We have already shown before in sections 3.4 and 3.5 that B = C[y, ¥ 7!] is
a sub-algebra of A = H(G, p), where v is supported on PP and B = Clz, z71].
As H(L,po) = Cla,a™'] = Clz,z7!], so B = H(L,py) as C-algebras. Hence
H(L, po) can be viewed as a sub-algebra of H(G, p).

Now we would like to find out how simple H (L, pp)-modules look like. Thus

to understand them we need to find out how simple C[z, z~!]-modules look like.

3.7 Calculation of simple H(L, py)-modules
The following Propn. is taken from Propn. 3.11 in [1].

Proposition 3.23. If A is a commutative ring with identity and S is a multi-
plicative closed subset of A. If A is a principal ideal domain then S™'A is also

a principal ideal domain. And also if I is an ideal in S™'A then there exists an

ideal J in A such that I = JS~TA.

Lemma 3.24. Clz, 27 is a principal ideal domain.
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Proof. Let A = Clz] and S = {z" | n € NU{0}}. Clearly, S is a multiplicative
closed subset of A and A is a principal ideal domain. Now we have S™'A =

Clz,z~!]. From Propn. 3.23, C[x,2~!] is a principal ideal domain. O

Lemma 3.25. Any mazimal ideal in Clz,z7'] is of the form (x — \)Clx, 27!

where A € C*.

Proof. Suppose I be a proper ideal in C[z, z™!]. From Propn. 3.23, we know that
I is of the form JClz,z~ '] where J is an ideal in C[z]. As Clz] is a principal
ideal domain so J = p(x)C[z] for some p(x) € C[z] and degp(z) > 0. Let
A € C be a root of p(z). So (x — A) | p(z). This would imply p(z)C[z] C
(x — X\)Clz]. Hence I = p(z)Clz,27'] C (x — N\)C[z,z7!]. But I is a maximal
ideal in C[z,z7']. So I = (z — A\)C[z,z7!]. So any maximal ideal in C[z,z™!]
is of the form (z — A\)C[z,2!] where A € C. But if A = 0 then (z — \) = x
and (z — \)Clx,27'] = 2Clx, 27!] = C[z, 27| which is not a maximal ideal. So

A e Cx. O
The following Propn. is taken from exercise problem 9 on page 356 in [3].

Proposition 3.26. Let R be a commutative ring with identity. An R-module M

is simple <= M = R/I for some mazimal ideal I in R.

From Propn. 3.26, every simple C[z, z~!]-module is isomorphic to Clz,z™!]-
_ Clea™t] x
module T T for some A € C*.

The following Propn. is taken from Propn. 3.11 in [1].

Proposition 3.27. A is a commutative ring with identity and S is a multiplica-
tive closed subset of A. Let J be an ideal in A. Then we have % = % as

St A-modules.
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Let A = Clz] and S = {2" | n € NU{0}} in the Propn. 3.27. So we

14 _ -1 Clze™'] ~ _ Cla
have S™'A = Clz,z~']. Then Propn. 3.27 says that T = Gy 8

Clz, z~!]-modules, where A\ € C*.

el ~C, as Clx]-modules, where A € C* and C, is the

3 3 C
Proposition 3.28. @—NCla]

ring C with C[x]-module structure given by x.z = Az for z € C,.

Proof. The C[z]-module structure of (m_c)gc(]c[m} is given by p(x).q(z) = p(N)g(x)

where p(z), ¢(x) € C[z]. The map

. Cla]
¢ mmneE O

is defined as ¢(p(x)) = p(A) for p(x) € Clz]. We shall now check that ¢ is a

C[z]-module homomorphism. Let p(x),¢(z) € C[z]. Now let us consider

o(p(x) +q(x)) = ¢((p + q) (7))

= (@+aK)

= o(p(x)) + ¢(q(x)).

Now let us look at




So ¢ is a homomorphism of Clz]-modules. Let z € C, then there exists a

polynomial p(z) € C[z] such that p(A\) = z. Hence ¢(p(z)) = p(A) = z. So

¢ is surjective map. Suppose if ¢(p(z)) = ¢(q(x)) where p(z), q(z) € C[z]| then
q)

p(A) = ¢(A). This implies that (p—q)(A\) =0 = (x—\) | (p—q)(z) = (z—A) |

(p(x) — q(x)) = p(x) = q(x). So ¢ is one-one map. Hence ¢ is an isomorphism

Clz]
(z=X)

of Clz]-modules. Hence the module structure of ring C|x] over is preserved

for Cy. Therefore the C[z]-module structure of C, is given by x.z = Az where

ZGC,\. ]

So from Propn. 3.28, we have (g:c)]\) = C, as C[z]-modules for A\ € C*.

This means that —4. =~ C, as Clz,z !]-modules for A € C*. Recall that

(z—X)
Clza=!] ~  Cla] —1 x Clzaz™'] ~
Tt aoneE &8 Clx, z~']-modules for A € C*. Therefore T =

C, as C[z,z"'-modules for A € C* with the C[z,z~!]-module structure on C,
given by x.z = Az where z € C,.

As H(L,po) = Cla,a™!], so the simple H (L, py)-modules are same as the
simple Cla, o ']-modules. We have shown before that Cla, a™!] & Clz,z7!] as
algebras. So the distinct simple H(L, pp)-modules(up to isomorphism) are the
various C, for A € C*. The module structure is determined by a.z = Az for

ZGC)\.
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Chapter 4

Final computations to answer the

question

4.1 Calculation of §p(¢)

Let us recall the modulus character 0p: P — RZ, introduced in section 1.3.
The character 0p is given by dp(p) = ||det(Ad p)|Licv]||F for p € P, where Lie U is
the Lie algebra of U. We have
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4.1.1 Calculation of §p(¢): unramified case

wEl
Recall ¢ = in the unramified case. So
0 wgll
0 X 0 X ) 0 wrX
(Ad () = (=
0 0 0 0 0 O

Hence

0p(C) = ||det(Ad () |Liev ] F

_ ||w2E(dimF(Lie U)) ||F

4.1.2 Calculation of 6p((): ramified case

Recall ¢ = in the ramified case. So
0 —wp'l
0 X 0 X . 0 —w2X
(Ad¢) = ¢ =
0 0 0 0 0 0

Hence

op(C) = ||det(Ad Q)|Licv | F
2(dimp (LieU
:H_WE( F( ))HF
712
= [lF" |Ir

2
= ||k ||IF
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4.2 Understanding the map Tp

Let us denote the set of (B, P)-positive elements by Z*. Thus

Tt ={r e L|aPa CPy,o ' Poa CP_).

where P, =P NU,P_ = PN U. We have

H (L, po) = {f € H(L, po) | suppf € PoZ Po}.

Note ¢ € I, so HT(L,py) = Cla]. The following discussion is taken from
pages 612-619 in [2]. Let W be space of pg. Let f € H (L, py) with support of
f being PPy for x € Z+. The map F € H(G, p) is supported on PP and
f(z) = F(zx). The algebra embedding

T* 2 H* (L, po) — H(G, p)

is given by T+ (f) = F.
Recall support of o € HT(L, po) is Pol. Let T (a) = 1, where ¢ € H(G, p)
has support PP and a(¢) = ¥(¢) = 1yv. As T (a) = ¢ is invertible, so from

Propn. 1.7 we can conclude that T" extends to an embedding of algebras
t: H(L, po) — H(G, p).
Let ¢ € H(L, po) and m € N is chosen such that o™¢ € H (L, pp). The map
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t is then given by t(¢) = ~"T*(a™¢). For ¢ € H(L, po), the map

tp: H(L,po) — H(G,p)

is given by tp(¢) = t(¢pdp), where ¢pdp € H(L, po) and is the map

$6p: L — Endc(py)

given by (¢dp)(l) = ¢(1)dp(l) for L € L. As o« € H(L, py) we have

tp()(¢) = t(adp)(C)
= T"(adp)(¢)
= 0p(Q) T ()(¢)
= 0p(Q)¥(C)

= 0p(C)Lyyv-

Let H(L, pg)-Mod denote the category of H (L, po)-modules and H(G, p)-Mod
denote the category of H (G, p)-modules. The map tp induces a functor (tp).

given by

(tp)«: H(L, po) — Mod — H(G, p) — Mod.

For M an H(L, pp)-module,

(tp).(M) = Homsy(r o) (H(G, p), M)

where H(G, p) is viewed as a H(L, pp)-module via tp. The action of H(G, p) on
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(tp)«(M) is given by

Wb () = (Rl

where ¢ € (tp).(M), hi, ' € H(G, p).

Let 7 € ™2 (L) then functor my: RIETe (L) — H(L, po) — Mod is given
by mp(7) = Homgy,(po, 7). The functor my, is an equivalence of categories. Let
femp(r),y € H(L,po) and w € W. The action of H(L, py) on m(7) is given by
(v-f)(w) = [, 7() f(v (7Y )w)dl. Here v is defined on L by v (I"1) = ~y(I)" for
l € L. Let 7 € ®RI™a (@) then the functor mg: R (GQ) — H(G, p) —Mod is
given by mq(7') = Homgp(p, 7). The functor m¢ is an equivalence of categories.
From Corollary 8.4 in [2], the functors mp, mg, Ind$, (tp). fit into the following

commutative diagram:

Rlirle (@) 4 H(G, p) — Mod

R (L) s H(L, po) — Mod
If 7 € RIE7e(L) then from the above commutative diagram, we see that
(tp)(mp (7)) = mg(Ind%t) as H(G, p)-modules. Replacing 7 by (7 ® 5]13/2) in
the above expression, (tp).(mr(T ® 5]13/2)) > me(Ind$(t @ 5113/2)) as H(G, p)-
modules. As Ind%(T ® (5]13/2) = 15(7), we have (tp).(mr(T ® (511:,/2)) ~ me(L8(7))
as H(G, p)-modules.
Our aim is to find an algebra embedding Tp: H(L, py) — H(G, p) such that

the following diagram commutes:
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Rlrle (@) "% H(G, p) — Mod

LIG:T (TP)*T

R (L) s H(L, po) — Mod
Let 7 € R (L) then mp (1) € H(L, po)- Mod. The functor (Tp), is defined

as below:

hip(hy) = (Tp(h)hy) where
(Tp)+(mr(T)) = {1/}2 H(G, p) = my(7) } :

h e H(LapO)a hl € H(G7p>

From the above commutative diagram, we see that (Tp).(mz (7)) = ma(t%(7))
as H(G, p)-modules. Recall that (tp),(my(T @ 6¢2)) = ma(G(7)) as H(G, p)-
modules. Hence we have to find an algebra embedding T,,: H(L, po) — H(G, p)
such that (Tp)«(mp(7)) = (tp)(mp(T ® 5113/2)) as ‘H(G, p)-modules.

Proposition 4.1. The map Tp is given by Tp(¢) = tp(¢(51;1/2> for ¢ € H(L, po)

so that we have (Tp)«(mp(7)) = (tp)(mp(T ® 6113/2)) as H(G, p)- modules.

Proof. Let W be space of pg. The vector spaces for mL(Té}l;/ 2) and my(7) are
the same. Let f € mp(7) = Homgy, (po, 7),v € H(L, po) and w € W. Recall the

action of H(L, po) on mp(7) is given by

wﬁmmjﬁwvwwlmw.

Let f' € mL(Téllj/z) = Homyg, (,00,7'5},/2),7 € H(L, po) and w € W. Recall the

action of H(L, py) on mL(T(S]lD/Z) is given by

\%

wfmwzévﬁ%mﬂJMHMﬂzﬁmw%mfwu*mw.
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Now f’ is a linear transformation from space of p, to space of 7'(5},/ ?. As (5113/ ‘() e

C*, 50 0 2(0) f' (v (ITHYw) = f'(6% (D)7 (1Y) w). Hence we have

%

(7. f)w) = / (1) (5520 (1 yw)dl = / (1) (542U (1) w)dl.

L

Further as (5113/2(0 e C*, so 5113/2(1)(7(l))v = (5113/27)(1)v. Therefore

(7. f)(w) = / () (6L (1) w)dl = (55%).f(w).

Hence we can conclude that the action of v € H(L, pg) on f’ € mL(T§113/2) is same
as the action of 6}3/27 € H(L,po) on f" € mp(r). So we have (Tp).(mp(7)) =

(tp)«(mp(T® (5113/2)) as H(G, p)- modules. O

From Propn. 4.1, Tp(a) = tp(aélgl/Z). So we have

Tp(a) = tp(ady'’?)
= t(adp"?6p)
= t(ad?)

= Tt (ad)?).
Hence

Tp(a) () = T*(ad*)(C)
= 52 (O)TH()(C)
= 51/%(O)a(¢)
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= 52O
Thus Tr()(¢) = 5113/2(C)1Wv with supp(Tp(a)) = supp(tp(a)) = PCP.

4.2.1 Calculation of (¢g * ¢1)(¢)

In this section we calculate (¢o * ¢1)(¢). Let g; = ¢~ ™/%¢; for i = 0,1 in the
unramified case and ¢; = ¢~"/4¢; for i = 0,1 in the ramified case. Determin-
ing (¢g * ¢1)(¢) would be useful in showing go * g1 = Tp(«) in both ramified
and unramified cases. From now on, we assume without loss of generality that

volBy = vol’B_ = volP, = 1. Thus we have vol'P3 = 1.

Lemma 4.2. supp(¢o * ¢1) = PP = PwowP.

Proof. We first claim that supp(do*é1) C BugBuw,B. Suppose = € supp(do*d1)
then (¢g * ¢1)(2) = [, do(zr™")¢1(r)dr # 0. This would imply that there exists
an r € G such that ¢o(zr—)éi(r) £ 0. As do(2r—)é1(r) 2 0, this means that
do(21) £ 0,61 (r) £ 0. But ¢o(2r1) # 0 would imply that 2~ € PuwP and
61(r) # 0 would imply that r € PR, So z = (21 ) (r) € (PuweP)(PunR) =
(suppeo) (suppes) = PuwePwiP. Hence supp(¢o*p1) € PwoPw:P. Let us recall
Bo, B+, P-.
P = { © U lee GLn<oE>},

0 tafl

1 X _
Pl = { | X € Mn(DE),XthX:O},

10 _
P = { | X € @wpM, (D), X +1X = 0}.
X 1
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It is easy observe that wePB_wy ' C Py, wePBowy ' = Po, wi “Prw, CP_.

Now we have

PugPuwrP = PueP - PoRw P
= PuoP-wy ' wePows  wowrwy Prw P
C PP, Rowowr PR
= Puoun B
= PCP.

So PueBwP € Pwow, P = PEP. On the contrary, as 1 € P, so POP =
Pwow’P € PwoPw,P. Hence we have PuwoPwP = PwowP = PCP. There-
fore supp(go# 1) C PugBun® = Pugw P = BEP. This implies supp(goxd) =
@ or PCP. But if supp(o * ¢1) = & then (o * ¢1) = 0 which is a contradiction.

Thus supp(¢o * ¢1) = BCP. -

For r € Z let

1 0 —
K_,= { | X € M,,(p}), X +'X = 0},

1 X _
Ky, = | X € M,u(ph), X +'X =0}

Proposition 4.3. (¢o * ¢1)(C) = do(wo)d1(w1).

Proof. From Lemma 4.2, supp(¢p * ¢1) = PBCP = PwowP. So now let us

consider

(do * $1)(C) = (o * ¢1)(wow:)
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/ do(y)1 (y~C)dy

_ / bo(u)é1 (v~ O)dy
Pwo'P

We know that PwyB = ze‘ﬁwom/mzm Let y = zp € 2. So we have
Go(y)dr1(y~'C) = do(2p)r(p™'271C)
= do(=)p (D)o (p~a(271¢)
= ¢o(2)¢1(27'C).

Hence

(o))=Y, Go(2)ni(zT"QOVoIB = > ()i (27'()
2€PwoB/P z€PwoP/P
Let a: PB/wePwy ' NP — PweB/P be the map given by a(z(wePwy' N
PB)) = zwe'P where z € P. We can observe that the map « is bijective. So
PB/wePBwy ' NP is in bijection with PuwP/P.

Hence

(9o * ¢1)(¢) = > dolrwo)dr(wy 'z,
xE‘B/wo‘Bwalﬂ‘B

From Iwahori factorization of ‘B we have P = P_ PP, = K_ PoK; o. There-
fore wePw, ! =20 P =wo K™ B Ko = Ki1PBoK . So Po N wePwy ' =
PP = K, PoK 1. Let 8: BlwePuw,' NP — K, o/K, 1 be the map
given by S(z(P N* P)) = x4 K, where x € P and v = vypr_,xy € Po,p €
Po, z_ € P_. We can observe that the map S is bijective. So PB/wePwy* NP is

in bijection with K o/K ;.
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Therefore

(o)) = > dolapwo)er(wy'27'C)

v €Ky 0/Ki

= X 0 @)sew0)en(wy'aTC).

T4 €K1 0/Kyn

As p” is trivial on B, and z, € P, so we have

(¢ * 01)(C) = > o (wo) ¢ (wy ' 211 ¢C).

€Ky 0/Kq 1

The terms in above summation which do not vanish are the ones for which
wy e € PP = 171 € wePw P = 2, € CPw;Puw, ' = wy v wy €
wiPwi P It is clear wiPw P = (“UP)(P). As P =1 KUPK o =
K 2Bk, 1, so wiPw; P = (“P)(P) = K_BoK, _1PWoK_ 1. Hence we
have wy 'z wy € K_oBoKy 1 PoK_ 1 = wy 'z wy = k_poky k' where k_ €
K_oky € Ky _y, ke K_1,po € *Bo. Hence we have poky = k:lwglmrwok/__l.
Now as wo’lx+w0 € K,yo,kil € K,’z,kl_*l € K_j, so k:lwalirwok/:l e K
and poky € PoK4 1. But we know that K_ g NPk 1 =1 = poky =1 =
wylziwy =k k' € K ) = v, € woK_jwy' = K, 1. Asx; € K1, so only

the trivial coset contributes to the above summation. Hence

(0 * 01)(C) = do(wo)pr(wy'¢) = do(wo)r(wr).

4.2.2 Relation between gy, g; and Tp(a): unramified case

Recall that H(G, p) = (¢o, 1) where ¢q is supported on PweP and ¢, is sup-

ported on Pw;P respectively with ¢? = ¢" + (¢" — 1)¢; for i = 0,1. In this
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section we show that gy * g1 = Tp(a), where g; = ¢~"/2¢; for i =0, 1.
Proposition 4.4. gog1 = Tp(a).

Proof. Let us choose ¢; € H(G, p) for i = 0,1 such that supp(¢);) = Pw;P for i =
0,1. So ¢; is a scalar multiple of ¢; for : = 0, 1. Hence ¢; = \;1); where \; € C* for
i =0,1. Let ¢;(w;) = A € Homgruip(“ip”,p ) for i = 0,1 and W be the space of
p. So A% = 1,,v. From Propn. 4.3, we have (¢ * ¥1)(¢) = o(wo)th1 (wy) = A% =
lyv. Now let 1); satisfies the quadratic relation given by ¥? = ai; + b where
a,be R fori=0,1. As ¥? = ah; + b = (—;)* = (—a)(—;) + b, so a can be

arranged such that a > 0. We can see that 1 € H(G, p) is defined as below:

0, if z ¢ B;
p’(z) if zeP.

Let us consider ¥7(1) = [, ¢i(y)vi(y")dy for i = 0,1. Now let y = pw;p’

where p,p’ € B for i = 0,1. So we have

HOE /q3 bi(pwip ) i(p  w p ) d(pwip)
= / p (p)bi(wi)p (P)p (0 i(w; Ve (07 )d(pwip)

- / p (P)ilwi)vi(w)p (p~hd(pwip)
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= 1,,vvol(‘Pw;P).

So ¥2(1) = 1v vol(Pw;P) for i = 0,1. We already know that ¢? = ayy; + b
where a,b € R and for i = 0,1. Now evaluating the expression ¥? = a; + b
at 1, we have ¥?(1) = a;(1) + b1(1). We can see that ¢;(1) = 0 as support
of ¢; is Pw;P for i = 0,1. We have seen before that 1?(1) = 1yvvol(Pw,P)
fori = 0,1 and as 1 € B, 1(1) = p (1) = Lyv. So (1) = ab;(1) + b1(1) =
1y vvol(Pw;P) = 1,,vb for i = 0, 1. Comparing coeflicients of 1,,v on both sides

of the equation 1y,vvol(PwP) = 1,,vb for i =0, 1 we get

b = vol(Pw;P).

As ¢; = \p; for i = 0,1, hence ¢? = N2 = N(ay; + b) = (Na)(\hy) +
Nb = (Na)p; + A2b for i = 0,1. But ¢? = (¢" — 1)¢; + ¢" for i = 0,1. So
¢? = (Na)g; + N2 = (¢ — 1)¢; + ¢" for i = 0,1. As ¢; and 1 are linearly

independent, hence \;ja = (¢" — 1) for i = 0,1. Therefore \; = £ for i = 0, 1.

a

Asa > 0,a € R,s0o A\, >0,\; € R for i =0,1. Similarly, as ¢; and 1 are linearly
independent, hence A\2b = ¢" = A? = £~ for i = 0, L.

Now Puw;P = xem/gmwimxwim = vol(Pw;P) = [PwsP : Pvol'P = [Pw,P :

Bl = [P : P P| for i = 0,1. Hence b = vol(Pw,P) = [P : P N*: P for

n/2 n/2
! = —4_— Therefore

1= O7 1. Now as )\(2) = )\% = qT — )\0 = )\1 == b2 T [B:Pwog/2

o1 = (Aotbo) (A1vr)

= Aot
q" ot
RUER AR
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We have seen before that, P = K_ "BoK,; o and PN P = K_ PoK 1. So

B+ o) = |2
= {X € M,(kg) | X +' X = 0}
= (q")(¢") 5
= ("))
— qn?
Hence
()0 = T
_ 4o
-
— "

Recall g; = ¢~ "/%¢; for i = 0, 1. We know that ¢? = (¢" —1)¢; +¢" for i = 0, 1.

So for © = 0,1 we have

9 =q "¢}
=q "((¢" - oi +q")
=(1-q")¢i+1

=(1—q")q"g; +1

= (@ —q")gi+1.
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So gog1 = (q7"2¢1)(q2d2) = ¢ 102 = (9091)(C) = ¢ " ($192)(¢) =

_ —n2 —n2 . . . . . .
g "¢ "1y = ¢ " 1yv. From the earlier discussion in this section we have

Tp(a)(() = 5113/2(C)1WV- From section 4.1, we have 6p(¢) = ¢ 2. Hence

65°(¢) = 47", Therefore (g091)(¢) = Tp(@)(C)- So (9091)(¢) = Tr(a)(Q)- We
have supp(Tp(a)) = PCP. As supp(g;) = Pw;P, Lemma 4.2 gives supp(gog1) =
PP, Therefore gogr = Tp(a). O

4.2.3 Relation between ¢y, g and 7),(a): ramified case

We know that H(G,p) = (¢o,$1) where ¢q is supported on PwyP and ¢, is
supported on PwP respectively with ¢? = ¢"/2 + (¢"/2 — 1)¢; for i = 0,1. In

this section we show that go * g1 = Tp(a), where g; = ¢~/*¢; for i =0, 1.
Proposition 4.5. gog1 = Tp(a).

Proof. Let us choose ¢; € H(G, p) for i = 0,1 such that supp(¢;) = PwsP for
1 = 0,1. So ¢; is a scalar multiple of v; for ¢ = 0,1. Hence ¢; = \;1); where
A € C* fori =0,1. Let ;(w;) = A; € Hommmwm(wipv,pv) for i = 0,1 and
W be the space of p. So A? = 1y,v for i = 0,1. From section 5.1 on page
24 in [4], we can say that Ag = A;. From Propn. 4.3, we have (¢ * ¢1)(¢) =
to(wo)thr (wr) = AgAr = A2 = 1,v. Now let 1; satisfies the quadratic relation
given by ¥? = a;; + b; where a;,b; € R for i = 0,1. As ¢? = aph; + by =
(—:)? = (—a;)(—¥;) + b;, so a; can be arranged such that a; > 0 for ¢ = 0, 1.
We can see that 1 € H(G, p) is defined as below:

0, if z ¢ P

p’(z) if zeP.
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Let us consider ¢3(1) = [, v%o(y)vo(y~")dy. Now let y = pwop’ where p,p’ €
PB. So we have

o (pwop’)ibo(p ~wy o~ ) d(pwop’)

\4 \%

p' (p)vho(wo)p (0)p (P~ )o(wy)p (p~h)d(pwop')

\%

A
A
_ /m o (D)o wo)o(wi o’ () d(pwop)
/q3 v
/

p (p)vho(wo)tho(wo)p (p™")d(pwop’)

p (p)A2p (p~")d(pwop)

/ 420" ()" (0 d(puor)
PwoB

= Agvol(PuwoP)
= 1,vvol(PweP).

So ¥g(1) = 1yvvol(PweP). We already know that ¥§ = agihy + by where
ag, by € R. Now evaluating the expression ¢ = agtbg + by at 1, we have ¢3(1) =
aoo(1) +bpl(1). We can see that 1y(1) = 0 as support of ¢ is PweP. We have
seen before that 12(1) = 1y,vvol(PweP) and as 1 € P, 1(1) = p" (1) = 1,v. So
Pa(1) = api(1) + bl(1) = 1ypv vol(PweP) = 1yvby. Comparing coefficients

of 1,,v on both sides of the equation 1y,vby = 1;;,vvol(PwP) we get
by = vol(PweR).

AS ¢0 = )\0@[)0, hence QZ% = )\%@Dg = /\(2)((1077D0 + bo) = ()\0&0)(A0¢0) + /\31)0 =
(Xoao)do + Adbo. But ¢2 = (¢"% — 1)g + ¢¥/%. So ¢2 = (Moao)do + Aby =

(¢"? —1)¢o+q"%. As ¢y and 1 are linearly independent, hence \gag = (¢"/% —1).
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Therefore A\g = s YN ap > 0,a9 € R, s0 \g > 0, \g € R. Similarly, as ¢ and

ag

1 are linearly independent, hence \2b = ¢"/? = \2 = QZSQ
Now PuwP = I 2weP = vol(Puwe’B) = [PwoP : PJvolP = [Puwo'P :

TR /PP
Bl = [P : P N P]. Hence by = vol(PweP) = [P : P N“0 P|]. Now as

2 qn/2 . qn/4 . qn/4
Ao =T = Ao = = g

We have seen before that, 8 = K_ BoK; o and PN P = K_PoK ;1. So

Kip
S NP = :
) = 1
= {X € M,(kg) | X +' X = 0}
(n)(n—1)
fr— 2
2—n
So
)\ o qn/4 o qn/4
07 BEpnroR]i2 T nZon

Let us consider ¢§(1) = [, v¥1(y)v1(y~")dy. Now let y = pwip’ where p,p’ €
B. So we have

U1 (pwrp’ ) (p/_lwflp_l)d(pwlp/)

/
- /m o (i)’ (0)p" (0~ Ybn (i ) (Y d(pronp)
/m 0" () (wn Yn (wi V) (oY) (pny)

- / p ()1 (wi)yr(—wi)p (p~")d(punp)
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:/ p ()1(wi)p (=11 (wi)p (p~)d(pwrp')
PwiP

\%

) /{3 Ak’ O )

= p (—1)Afvol(PwiP)

— (< 1)1y vol (P ).

So ¥i(1) = 1yvvol(PwP). We already know that ¥f = ay9); + b where
a1,b; € R. Now evaluating the expression 17 = a1 + by at 1, we have ¢?(1) =
a191(1) + b11(1). We can see that 11(1) = 0 as support of ¢ is Pw,P. We have
seen before that 1?(1) = 1yvvol(PwP) and as 1 € P, 1(1) = p (1) = Lyv.
So (1) = aybs(1) + by1(1) = p (=) 1w vol(PwiP) = 1,vb;. Comparing
coefficients of 1,,v on both sides of the equation 1,vb; = 1yvp” (—1)vol(PurR)

we get
b = p’ (—1)vol(Purp).

AS ¢1 = )\1¢1, hence qﬁ% = )\%w% = A%(a1¢1 —|— b1> = ()\1@1)()\11/11) + /\%bl =
(Noar)d1 + A2by. But ¢? = (¢"/% — 1)¢1 + V2. So ¢? = (M\a1)oy + A\2by =

(¢"? 1)1 +q"%. As ¢ and 1 are linearly independent, hence \ja; = (¢"/2 —1).

Therefore \; = it W S a1 > 0,a1 € R, so A\; > 0, \; € R. Similarly, as ¢; and

al

1 are linearly independent, hence \?b = ¢"/? = \? = qu/2
Now Pw P = xem/gmvaxwlm = vol(PwP) = [PwP : PlvolP = [PwP :
Bl = [P : PN P|. Hence by = vol(PwP) = [P : P N P|. Now as
n/2 qn/4 . qn/4

A= =M= = e
We have seen before that P = K_ PBoK; 0, P = K_PoK 4 1. So PN

P = K_PoK,; . Hence
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K_

SP NP = L
) = =
= {X € My (k) | X =" X}
(n)(n+1)
= 2
n%4n
= q 2
So
)\ _ qw;/4 _ qn/4 ‘
1 [B:Pw1R)/2 qrﬁzﬂ(p(_l))lm
Hence

(091)(C) = (Notbo)(A191)(C)
= (AoA1) (¥o1)(C)

As —1 € Z(B) and p’ is a representation of B, so p (—1) = w,v(—1) where

w,v is the central character of . Now 1 = w,v(1) = (w,v(—1))? so p (1) =

w,v(—1) = £1. We have seen before that \; = qnf;l and a; € R,a; > 0, so

n/4 n/4
A1 > 0. But we know that \; = —=% = g
[P:pwLp]L/2 an2+n (p(—1))1/2

Recall g; = ¢~"/4¢; for i = 0,1. We know that ¢? = (¢"/%2 — 1)¢; + ¢"/? for

, hence p"(—1) = 1.

1=20,1. So for i = 0,1 we have
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g =q "¢}
=g "*((¢""* = D)o +q"?)
= (1—q )i +1
=(1—q"?)q"g; +1

= (¢"* = ¢ Mg+ 1.

So 90921 = (q_n/4¢1)(q_n/4¢2) = q 2Py => (9091)(¢) = q_n/2(¢0¢1)(0 =

n—m® v
771/2 q 2 1W

R EEE
Tp(a)(() = 6})/2(C)1Wv. From section 4.1, we have 6p(¢) = ¢~"°. Hence (5},/2(0 =

¢/, Therefore (gog1)() = Tr(a)(€). So (90g1)(C) = Te(a)(C). We have

supp(Tr(a)) = PCP. Assupp(g:) = Pw;’P, Lemma 4.2 gives supp(gog1) = P¢P.
Therefore gog1 = Tp(a). O

—n2 \ . . . . . .
= g2 ly,. From the earlier discussion in this section we have

4.3 Calculation of m(7v)

Note mv lies in RI™e (L), Recall my is an equivalence of categories. As v is
an irreducible representation of L, it follows that my(7wv) is a simple H(L, py)-
module. In this section, we identify the simple H (L, pg)-module corresponding
to mp(mv). Calculating my(mv) will be useful in answering the question in next
section.

From section 2.4, we know that m = Ind%oﬁo, where By = (C)Bo, po(CF)) =
po(jg) for j € Po, k € Z. Let us recall that v is unramified character of L from
section 2.3. Let V' be space of mv and W be space of py. Recall mp(mv) =

Homg, (po, 7v). Let f € Homgy, (po, 7). As By is a compact open subgroup of L

78



and v is an unramified character of L, so v(j) = 1 for j € PBy. We already know
that o € H(L, po) with support of a being Po¢ and a(¢) = 1,v. Let w € W
and we have seen in section 4.2 that the way H(L, py) acts on Homgy, (pg, 71/) is

given by:

\

(mv)(D) f (o (I7w)dl

B

=

S
!

) f (1)) w)d

8
A

(1) (pC)f ((a(pC)) " w)dp

[=}

(m)(pC) f ((po (P)x(€)) " w)dp

(=}

(7)) £ ((po (p) Lyprv ) Vw)dp

\%

() (C) f (P (p)) Yw)dp

Il
D

[=}

7(pC)v(pC) f (o () ¥ w)dp

[=}

T (PO () f((po (p)) w)dp.

[=}

Now (,): W x W' — C is given by: (w, py(p)w’) = {po(p~")w,w") for

p € Po,w € W. So we have (py(p)) = po(p~) for p € Py. Hence

(o.f)(w) = / (PO (C) f (polpYw)dp.

As f € Homgy,(po, 7v), so (mv)(p)f(w) = f(po(p)w) for p € Po,w € W.
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Hence

(e.f)(w) =v(C) [ 7pC)(mv)(p~") f(w)dp

T

PBo
m(pC)m(p~ v(p™") f(w)dp

0

m(pQ)m(p™") f(w)dp.

0

= v(()

— S—

= v(¢)

Now as 7 = Indk o and Bo = ()P0, o(¢"5) = polj) for j € Po.k € Z, s0

m(p¢) = m(p)po(¢) = m(p)po(1) = 7(p)1y,v.Therefore

So (a.f)(w) = v(¢)f(w) for w € W. So « acts on f by multiplication by
v(¢). Recall for A € C*, we write C, for the H(L, pp)-module with underlying

abelian group C such that a.z = Az for z € Cy. Therefore mp(nv) = C, ).

4.4 Answering the question
Recall the following commutative diagram which we described earlier.

Rlle (@) % H(G, p) — Mod

LICSYT (TP)*T

R (L) s H(L, po) — Mod
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Observe that 7v lies in R4 (L). From the above commutative diagram, it
follows that (& (7v) lies in RIE™e (G) and ma(1G(nv)) is an H(G, p)-module. Re-
call mp(mv) = C, ) as H(L, pp)-modules. From the above commutative diagram,
we have ma(1§(mv)) = (Ip).(Cy)) as H(G, p)-modules. Thus to determine the
unramified characters v for which (% (7v) is irreducible, we have to understand
when (Tp).(Cy(¢)) is a simple H(G, p)-module.

Using notation on page 438 in [5], we have 7, = 7o = ¢¥? for unram-
ified case when n is odd and v = v, = ¢** for ramified case when n is
even. As in Propn. 1.6 of [5], let T' = {v172, =175+ =71 72, (7172) '}, So by
Propn. 1.6 in [5], (Tp).(C, () is a simple H(G, p)-module <= v(({) ¢ I'. Recall
T = Indé(m%ﬁo where po(C*5) = po(j) for j € Po,k € Z and py = 79 for some
regular character 6 of [* with [l : kz] = n. Hence we can conclude that (%(7v) is
irreducible for the unramified case when n is odd <= v(¢) ¢ {¢", ¢ ", —1},
07" = 6% and 1G(nv) is irreducible for the ramified case when n is even
= v(Q) g -1}, 07 =07

Recall that in the unramified case when 7 is even or in the ramified case when
n is odd we have Ng(po) = Z(L)Bo. Thus Ta(p) = P(Z(L)Bo)P = PZ(L)PB.

From Corollary 6.5 in [6] which states that if J5(p) C PLYP then

Tp: H(L, po) — H(G, p)

is an isomorphism of C-algebras. As we have Jg(p) = BZ(L)B in the unramified
case when n is even or in the ramified case when n is odd, so H(L, po) = H(G, p)
as C-algebras. So from the commutative diagram on page 80, we can conclude
that (% (mv) is irreducible for any unramified character v of L. So we conclude

with the following theorem.
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Theorem 4.6. Let G = U(n,n). Let P be the Siegel parabolic subgroup of G and
L be the Siegel Levi component of P. Let m = Indé(L)%[)B be a smooth irreducible
supercuspidal depth zero representation of L = GL,(E) where po(C*5) = po(j) for
Jj € PBo,k € Z and py = 19 for some regular character § of I* with [l : kg| = n.

Consider the family (% (mv) for v € X,,,.(L).

1. For E/F is unramified, 1§ (mv) is reducible <= n is odd, 87" = 67 and

v(¢) e{q", a7 1}

2. For E/F is ramified, 1S (mv) is reducible < n is even, 87" = 6% and

v(¢) € {g"? 7% ~1}.
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