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Abstract 

The goal of water quality monitoring is to detect pollutants such as harmful algal blooms 

(HABs) and guide management decisions. A major challenge to this is the uncertainty in 

detecting pollutants in space and time. In Grand Lake O’ The Cherokees, HABs became a 

public health concern in July 2011 when an advisory for no body contact included the 

Fourth of July holiday. This created the need to develop new strategies for timely 

detection of HABs. Satellite remote sensing provided the opportunity to achieve this goal. 

The Grand River Dam Authority (GRDA) funded this research, which integrated in situ 

water quality data, Landsat 8 data, and machine learning to build a tool for automated 

detection of HABs in the Grand Lake Watershed. We collected in situ samples from four 

reservoirs in the watershed and developed indices for algae and turbidity for input in the 

HABs monitoring tool. The tool utilizes Python programming language and extracts 

Landsat data from the United States Geological Survey (USGS) website for an 

interpretation protocol (High, Medium, and Low). This research also studied lake water 

quality by ecoregion and hydrologic unit Levels 4 and 6 in Oklahoma to guide ground 

based sampling. The goal is to utilize this information for regional application of the 

HABs monitoring tool. Further studies will delineate the spatial extent of sample points 

within a pixel, fusion of different satellite platforms, empirical data to calibrate and 

validate the monitoring tool, and the social/economic benefits of this new HABs 

detection strategy.   
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

1.0 Introduction 

The goal of water quality management is to restore and maintain the chemical, 

physical, and biological integrity of impaired waters in the nation (Downing, 2011). This 

need comes from problems caused by point and nonpoint sources of pollution. These 

sources introduce pollutants such as sediment, nutrients, and microorganisms that can 

impair water quality in water bodies and pose health threats to humans and aquatic 

organisms (Brooks, et al., 2016). Minimizing these sources of water quality impairment 

will ensure better water quality in lakes and reservoirs and sustainably support recreation, 

fishing, tourism, and transportation. Achieving this goal has been a major challenge over 

the years (Sharpley, 2016). 

The goal of water quality monitoring is to detect the presence, magnitude, and 

spatial extent of pollutants from those sources and guide management decisions (USEPA, 

2010). A major challenge to this goal has been the increasing uncertainties in detecting 

pollutants at the right time and place.
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This is the case for harmful algal blooms (HABs), which result from erratic incidents of high 

nutrient concentrations. The nutrients may come from upstream land use practices such as 

agriculture or oxidation/reduction processes that release them from the sediments into the 

water column (Findlay, Pace, Lints, & Howe, 1992).  Nitrogen and phosphorus are the two 

main nutrients that nourish algae and lead to their exponential growth (Bormans, Maršálek, 

& Jančula, 2016). 

In this study, we conducted 2.5 years of in situ water quality monitoring in spatial and 

temporal coincidence with Landsat 8 Operational Land Imager (OLI). The goal is to 

overcome monitoring challenges by combining these two sets of data and use machine 

learning to run an automated monitoring tool that detects and characterizes HABs. The study 

was done in four lakes in the Grand Lake Watershed including Grand Lake O’ The 

Cherokees in Oklahoma, John Redmond Lake in Kansas, Council Grove Lake in Kansas, and 

Marion Lake in Kansas. 

The Grand Lake Watershed is contained within four states: Kansas, Missouri, 

Oklahoma, and Arkansas (Figure 1). The major river systems in the watershed are the 

Neosho, Spring, and Elk Rivers. They all converge in Oklahoma in the upper portion of 

Grand Lake. Land cover in the Grand Lake Watershed mainly includes planted pasture, 

natural grassland, cropland, forest, developed areas, and open water and wetlands (Holt, et 

al., 2008). 
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Figure 1. Map showing the Grand Lake Watershed located in Kansas, Missouri, Arkansas, and 

Oklahoma. 

 

According to the Oklahoma Conservation Commission (OCC), nonpoint sources of 

pollution in this watershed are agriculture, construction, in-place contaminants, urban runoff, 

wastewater, resource extraction/exploration, mill, and mine tailings (OCC, 2014). These 

sources were determined through multiple assessment activities from 1990 to 2000 including 

pre-implementation monitoring, clean lakes identification studies, and monitoring by the 

United States Geological Survey (USGS). In 2001, a watershed advisory group was formed; 

watershed based plans were developed in 2005 and 2009. Total maximum daily loads 

(TMDLs) for bacteria were created in 2008 and nutrients in 2013. The OCC created the 
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United States Clean Water Act’s Section 319(h) work plans through 2001-2012 to address 

those nonpoint sources of pollution. In 2006-2012, the United States Environmental 

Protection Agency (USEPA) approved the Honey Creek watershed based plan, which led to 

implementation of practices and post-implementation monitoring. The OCC also collaborated 

with their Kansas counterpart to draft a regional conservation partnership program in 2014 

(OCC, 2014). 

In Grand Lake O’ the Cherokees, nonpoint sources have posed spatial and temporal 

challenges to the Grand River Dam Authority (GRDA) when monitoring and detecting 

HABs. Land use practices such as agriculture, small communities, and forestry activities 

supply nutrients that cause algal growth. They also serve as sources of organic carbon that 

aid microbial metabolism and subsequently anoxic conditions (Machmuller, et al., 2015), 

which release bioavailable phosphorus from sediments into the water column (Findlay, Pace, 

Lints, & Howe, 1992). Nitrogen also comes in through cyanobacterial fixation from the 

atmosphere (Howarth, Marino, Lane, & Cole, 1988), groundwater supply (USGS, 2016), and 

surface runoff (Filstrup & Downing, 2017).   

In July 2011, there was a public health concern when an unprecedented algal bloom 

led to an advisory for cessation in recreational activities in Grand Lake, which included the 

Fourth of July holiday. The need to develop new monitoring strategies for timely detection of 

HABs became a priority. Advances in moderate resolution satellite datasets and associated 

applications provided the opportunity to integrate satellite spectral data, ground based in situ 

water quality data, and machine learning into an automated HABs detection tool for inland 

water bodies in the Grand Lake Watershed. Ultimately, this monitoring capability will be 

extended to HABs detection in the entire southcentral USA.  
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Utilizing satellite data for HABs detection is an active area of scientific research with 

many unexplored opportunities. Lake managers in the Grand Lake watershed will benefit 

from one such opportunity through this Grand River Dam Authority (GRDA) funded 

research. The dissertation has five chapters. Chapter 1 introduces the problem, its context, 

and reviews literature in the subject area. The three chapters that follow are in the form of 

journal articles. Chapter II presents a novel index for photosynthetic algae in the study area. 

There is also a mineral turbidity index to account for interference from other optically active 

objects. The indices developed in Chapter II are key components in the automated 

monitoring tool described in Chapter III. Chapter IV compares lakes by ecoregion and 

hydrologic unit in Oklahoma in terms of water quality and the potential for regional 

application of the monitoring tool. Chapter V is a conclusions chapter that ties all the 

chapters together into conclusions, recommendations, and limitations of the study. 

1.1 Literature Review 

 

1.1.1 Basic concepts 

The primary steps in satellite remote sensing include delineating useful components 

of the electromagnetic radiation, image acquisition and processing, field data collection 

(Campbell & Wynne, 2011), and integration into management tools such as artificial 

intelligence (Jensen, 2015). Data from electromagnetic radiation combined with field data 

explains relationships between predictors and response variables (Pettorelli, et al., 2014). 

These relationships validate simulation through computer programming languages (such as 

Python) that synthesize information into algorithms, a set of instructions that guide 

development of a decision support tool (Theologou, Patelaki, & Karantzalos, 2015). The 

computer algorithm accomplishes this by deploying those variables with reference to 
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empirical data or experience, which result in the ability to estimate parameters of interest 

(Pettorelli, et al., 2014). 

1.1.1.1 Electromagnetic radiation 

The sun’s thermonuclear fusion process leads to continuous emission of radiation that 

fluctuates between electrical and magnetic fields as it travels to earth (Campbell & Wynne, 

2011). These interactive electrical and magnetic forces give the sinusoidal particle-wave 

nature of incident radiation on the surface of the earth. The application of remote sensing in 

natural resource research derives from different objects having unique properties that allow 

unique interactions with this radiation as it becomes incident on the earth’s surface and 

reradiates back from it (Campbell & Wynne, 2011). Unique spectral characteristics give 

objects a spectral signature. Different substances have unique spectral signatures that make it 

possible to study their characteristics using remotely sensed, multispectral data. This creates 

the opportunity to overcome a number of monitoring challenges including accessibility 

issues, financial burdens, conflicting interests, and uncertainty in imminent pollution spikes 

(Pettorelli, et al., 2014). 

Studies have characterized electromagnetic energy into component parts based on the 

wavelength of radiation in order to understand these spectral signatures. These arrangements 

in the number and dimensions of specific wavelengths of energy form the Electromagnetic 

Spectrum (EMS) (Campbell & Wynne, 2014). When substances interact with 

electromagnetic energy, they undergo one or more of the following:  

 The substance may absorb some or all of the radiation and become excited to a 

higher energy level; 

 The substance may reradiate the absorbed energy into different wavelengths; 
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 The substance may reflect back some or all of the radiation; or 

 The substance may scatter the radiant energy. 

The type of interaction depends on the inherent chemical properties of the substance as well 

as the environmental conditions affecting its physical state (Campbell & Wynne, 2014).  

The observation and recording of these interactions in concert with the inherent 

properties of the substance in question form the basis of multispectral satellite remote sensing 

in natural resource research (Pettorelli et al., 2014). According to Campbell and Wynne 

(2014), these interactions are rooted in the following underlying characteristics of the 

electromagnetic energy: 

 Wavelength: the distance between two crests of the sinusoidal wave of energy. It 

is affected by electric and magnetic fields; 

 Frequency: the number of crests passing a fixed point in a given time period, 

usually measured in hertz (cycles per second). The frequency has an inverse 

relationship with the wavelength; 

 Amplitude: the maximum height of the crests (the peak of displacement); and 

 The speed of electromagnetic energy (c), a product of the frequency (ν) and the 

wavelength (𝛌). 

In remote sensing, the unit of electromagnetic energy is usually in wavelengths. It is common 

to cite wavelength in nanometers (10-9 meters, nm) or micrometers (10-6 meters, μm) in these 

applications. The EMS has regions of electromagnetic energy between extremes of long and 

short wavelengths. Each region has bands of different wavelengths with shorter wavelengths 

corresponding to higher energy. These regions range from Gamma Rays the highest energy 

region to Radio Waves the lowest energy region. Since different substances interact 
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differently with solar energy, spectral signatures are useful in building computer algorithms 

to explain changes in environmental conditions (Pettorelli et al., 2014). The two most 

important spectral bands to remote sensing of the environment are visible and infrared (IR) 

spectra (Campbell & Wynne, 2014); Table 1 shows the characteristics of the different bands 

as they apply to Landsat platforms.  

1.1.1.2 The visible spectrum 

 This visible spectrum ranges between wavelengths of 400 and 700 nm. This portion 

of the sun’s electromagnetic energy makes the sense of vision possible in humans and other 

animals. The visible spectrum divides into three primary regions of importance to remote 

sensing of the environment: 400-500 nm (Blue light), 500-600 nm (Green light), and 600-700 

nm (Red light). One of these colors (Blue, Green, or Red) reflects and appears to the human 

eye when an object absorbs the other two. When an object reflects all three primary colors, 

we see white light. Absorption of all primary colors appears black (Jensen, 2015). 

1.1.1.3 The infrared (IR) spectrum 

The Infrared (IR) Spectrum spans from 700-2500 nm of the EMS (Jensen, 2015). 

Because of its broad range of wavelengths, IR has multiple applications in remote sensing of 

the environment. It divides into three sub regions:  Near Infrared (NIR), Mid Infrared (MIR), 

and Far Infrared (FIR). Radiation in the NIR region has optical properties significant to 

natural resource studies. For example, a combination of Visible Green and NIR spectra have 

been useful in vegetation studies (Thenkabail, et al., 2013). Infrared is also useful in studying 

soils, heavy metals, and minerals (Shi, Chen, Liu, & Wu, 2014). The delineation of riparian 

areas around water bodies (Thenkabail, et al., 2013) utilizes the NIR region of radiation. The 

FIR, also known as Thermal IR, has been useful in understanding the thermal properties of 
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substances (Campbell & Wynne, 2014). In general, IR radiation is useful in delineating water 

bodies in the study area because clear water absorbs all of it (Jensen, 2015). 

In Landsat sensors prior to Landsat 8 (Table 1), thermal IR is Band 6, lying between 

shortwave IR 1 (SWIR 1) and shortwave IR 2 (SWIR2).  In Landsat 8 (Table 1), the SWIRs 

appear as Bands 6 and 7; thermal IR bands are Bands 10 and 11. The SWIRs are two useful 

bands in natural resource studies. They reflect high when incident on solid minerals, making 

them useful for delineating mineral turbidity in lakes and reservoirs (Jensen, 2015). The 

panchromatic band is a grey scale image that spans across the Red, Green, and Blue (RGB) 

portions of the electromagnetic spectrum. It has a higher spatial resolution (15 m) compared 

to the other bands (30 m). Landsat 8 has higher spectral resolution (i.e. the number of bands a 

sensor can detect) compared to the previous sensors because it has additional bands for 

detecting coastal aerosols (Band 2), cirrus clouds (Band 9), and an additional thermal IR 

band.     

1.1.1.4 Landsat sensors 

In the 1960s, the United States Department of the Interior (DOI), the National 

Aeronautics and Space Administration (NASA), and the United States Department of 

Agriculture (USDA) embarked on an ambitious effort to develop and launch the first civilian 

Earth observation sensors on satellite platforms (USGS, 2015). By July 1972, there was a 

successful launching of the Earth Resources Technology Satellite (ERTS-1), which was later 

renamed Landsat 1. The launches of Landsat 2, Landsat 3, and Landsat 4 followed in 1975, 

1978, and 1982, respectively. They all carried multispectral scanners (MSS). The successful 

lunching of Landsat 5 Thematic Mapper (TM) in 1984 ensured continued delivery of high 

quality images of the surface of the Earth for 28 years and 10 months. 
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In 1993, Landsat 6 failed to achieve orbit leading to the launch of Landsat 7 

Enhanced Thematic Mapper (ETM+) in 1999. On May 31, 2003, the Scan Line Corrector 

(SLC), which compensates for the forward motion of the Landsat platform, failed and has not 

recovered despite subsequent efforts. As a result, the ETM+ sensor returns images with 

duplicated areas and widths that increase toward the scene edge (USGS, 2015). The latest 

Landsat sensor is the operational land imager (OLI) launched on Landsat 8 in 2013. It 

collects images of the surface of the Earth every 16 days. The United States Geological 

Survey (USGS) archives and provides all the Landsat data to the public at no cost. Table 1 

shows the Landsat types and their detailed information.                                                                                                                             

Table 1. Spectral details for the various Landsat platforms (USGS, 2015) 

Multispectral 

Scanner 

(MSS) 

Landsat 

1-3 

Landsat 

4-5 

Spectral Res 

(µm) 

Spatial Res 

(m) 

Band 4 Band 1 0.5-0.6 60 

Band 5 Band 2 0.6-0.7 60 

Band 6 Band 3 0.7-0.8 60 

Band 7 Band 4 0.8-1.1 60 

 Landsat 7  Spectral Res 

(µm) 

Spatial Res 

(m) 

Enhanced Thematic Mapper Plus 

(ETM+) 

Band 1  0.45-0.52 30 

Band 2  0.52-0.60 30 

Band 3  0.63-0.69 30 

Band 4  0.77-0.90 30 

Band 5  1.55-1.75 30 

Band 6  10.40-12.50 30 

Band 7  2.09-2.35 30 

Band 8 - Panchromatic  0.52-0.90 15 

 Landsat 8  Spectral Res 

(µm) 

Spatial Res 

(m) 

Landsat 8 

Operational  

Land Imager  

(OLI)  

and  

Thermal  

Infrared  

Sensor  

(TIRS)  

Band 1 - Coastal aerosol  0.43 - 0.45 30 

Band 2 – Blue  0.45 - 0.51 30 

Band 3 – Green  0.53 - 0.59 30 

Band 4 – Red  0.64 - 0.67 30 

Band 5 - Near Infrared 

(NIR) 

 
0.85 - 0.88 30 

Band 6 - SWIR 1  1.57 - 1.65 30 

Band 7 - SWIR 2  2.11 - 2.29 30 

Band 8 – Panchromatic  0.50 - 0.68 15 

Band 9 – Cirrus  1.36 - 1.38 30 
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Band 10 - (TIRS) 1  10.60 - 11.19 30 

Band 11 - (TIRS) 2   11.50- 12.51 30 

 

 

1.1.1.5 Spectral signatures 

Clear water reflects low amounts of visible light. When the water becomes turbid, this 

reflectance increases up to 10%, especially in the visible bands. Green vegetation reflects 

high in the Green band compared to the other visible bands and in the NIR region; it absorbs 

Blue and Red radiation. Due to these spectral properties, studies can discern different types 

of vegetation by examining their absorption/reflectance spectra in the visible and IR regions 

(Jensen, 2015). Figure 2 shows the spectral signatures of substances of interest in this 

research. 

 
Figure 2. Spectral signatures of substances of interest (Zorogastúa C, Quiroz, Potts, & Schulz, 2014) 
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The spectral signature representing green vegetation is due to pigments that interact 

with visible light; they are present in all photosynthetic organisms including green plants and 

phytoplankton (microscopic plants and algae) in aquatic ecosystems (Kirk, 2011). The 

presence of photosynthetic pigments in diversity of organisms makes it difficult to provide 

unique spectral information for algal biomass. One way to address this problem is utilizing 

the differences in spectral signatures between green plants and algal biomass. In the leaves of 

green plants, the spongy mesophyll layer has the ability to reflect NIR radiation (Jensen, 

2015). This spongy mesophyll layer is absent in algae. This serves as useful information in 

accounting for contribution from green plants in the development of a differential index for 

algal biomass. 

Chlorophylls are the pigments that enhance reflection of Green light in photosynthetic 

organisms. Their porphyrin ring provides the required oxidation/reduction potential that 

allows for transfer of electrons in their excited states and energized by solar radiation. This 

transfer of energized electrons is made possible by chlorophyll-a (CHLa), which passes the 

electrons to sugar forming molecules. All photosynthetic organisms contain CHLa. Other 

forms of chlorophyll exist including chlorophyll b (CHLb), which occurs only in green algae 

and in plants, and many types of chlorophyll c (Kirk, 2011). 

Carotenoids are the pigments responsible for reflectance of Red, Orange, and Yellow 

bands in plants and algae. The carbon rings of carotene connected by carbon chains do not 

transfer solar energized electrons through the photosynthetic pathway. They lose their 

absorbed energy to chlorophyll (Kirk, 2011). These exchanges between reflectance and 

absorbance through oxidation/reduction chains are useful in developing indices for algal 

biomass in the study area.     
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Delineating the spectral signature of water clarity in lakes and reservoirs also helps in 

development of an automated satellite-based monitoring tool. This is possible by accounting 

for Secchi disc depth (SDZ), turbidity, and colored dissolved organic matter. Soil reflects 

high in the NIR and SWIR regions (Jensen, 2015). This gives useful spectral signatures in 

developing a differential index for mineral and algal turbidity. Colored dissolved organic 

matter (CDOM) is the light absorbing component of dissolved organic matter (Harvey, 

Kratzer, & Anderson, 2015). There is difficulty in differentiating spectral signatures between 

CDOM and algal content using low spatial resolution Landsat (900-m2 pixel size). Therefore, 

a differential algal index would require ground-based sampling of algal concentrations in the 

water column.    

1.1.1.6 Image resolution 

The four types of resolution used in remote sensing of natural resources are spatial, 

temporal, radiometric, and spectral (Jensen, 2015). Each type of resolution has unique 

information that defines the properties of pixels as well as the margin of error. All four 

resolutions give the overall properties of an image (Jensen, 2015). 

Spatial resolution gives the minimum angle or distance separating two objects that 

can be resolved by a sensor. The spatial resolution represents the size of a pixel, which is the 

smallest unit of an image on computer screens or hard copy images.  Landsat has a spatial 

resolution of 30 m x 30 m. Some sensors have higher spatial resolution, making them useful 

in detailed discrimination of objects on the surface of the Earth. Digital Globe’s WorldView-

2 has a spatial resolution of 0.46 cm x 0.46 cm for its panchromatic band and 1.85 m x 1.85 

m for its four multispectral bands (Jensen, 2015).  
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Temporal resolution is the time a satellite takes to return to the same spot to collect an 

image. This enhances multiple records of the same spot on Earth over time, and this helps in 

developing models that relate spectral data and temporally related water quality parameters 

of interest. The temporal resolution of Landsat is 16 days (Jensen, 2015). This makes Landsat 

a useful tool for monitoring water quality parameters like algal pigments and water clarity. If 

the study area falls in more than one path/row combination, it is possible to conduct weekly 

monitoring using Landsat. A path/row combination is the area covered by the Landsat sensor 

as it takes pictures of the surface of the Earth during Landsat orbit from north to south and 

Earth orbit from east to west (USGS, 2016).  

Radiometric resolution refers to the sensitivity of a remote sensing detector to 

differences in signal strength as it records the radiant flux reflected, emitted, or back 

scattered from the terrain (Jensen, 2015). The unit of radiometric resolution is bits, which 

gives a measure of the number of brightness values (BV). These are a range of colors 

between black and white contained within an image. The number of BV is calculated as the 

number 2 raised to the number of bits (BV = 2bits) of the image (Jensen, 2015). The Landsat 1 

MSS had 6-bits, giving 26 BV (0-63). The Landsat TM and ETM+ sensors had 8-bits, giving 

them higher radiometric resolution (0-255 BV) than the MSS platforms. Landsat 8 OLI has 

16-bits giving its images 216 BV (0-65,535 BV). 

Spectral resolution refers to the number and dimensions of wavelength intervals or 

bands in the EMS to which a sensor is sensitive. The more bands a sensor can detect, the 

higher its spectral resolution. When the sensor detects multiples of bands, the phenomenon is 

called multispectral remote sensing. All Landsat sensors are multispectral as they have 

between 4 and 11 spectral bands. Hyperspectral remote sensing involves the detection of 
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hundreds of bands. In ultraspectral remote sensing, the sensor detects several hundreds of 

bands. (Jensen, 2015).   

1.1.1.7 Image acquisition and processing  

The USGS has made all of the Landsat data available for free download from one or 

more of the following websites: Earth Explorer (http://earthexplorer.usgs.gov), Global 

Visualization Viewer (GloVis) ( http://glovis.usgs.gov), and Landsat Look Viewer 

(http://landsatlook.usgs.gov). Image processing begins with pre-processing by correcting 

errors sourced from the sensor, atmosphere, and topography (Jensen, 2015). Post-processing 

includes accuracy assessment, information extraction, and utilization of data from the image 

(Jensen, 2015). There are statistical and physical models that correct for errors in digital 

numbers and compute radiance values representing pixels (Campbell & Wynne, 2014). 

Statistical models (example, Dark Object Subtraction and apparent reflectance) use 

properties of the image to correct for errors. Physical models on the other hand take into 

account the dynamic nature of the environmental phenomenon and incorporate parameters 

that may interfere with reflectance of radiation.  

For Landsat, the USGS does radiometric and geometric corrections of images and 

makes them publicly available. Following download of an image, the user needs to carry out 

atmospheric correction in order to remove error from scattering or misrepresentation of 

pixels. Most of the statistical and physical models for atmospheric correction come as 

extensions of image processing software packages such as ENVI and ArcGIS. Some of the 

widely utilized physical models include fast line-of-sight atmospheric analysis of spectral 

hypercubes (FLAASH), second simulation of satellite signals in the solar spectrum (6S), low 

resolution atmospheric radiance and transmittance (LOWTRAN), moderate resolution 

http://earthexplorer.usgs.gov/
http://glovis.usgs.gov/
http://landsatlook.usgs.gov/
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atmospheric radiance and transmittance (MODTRAN), and quick atmospheric correction 

(QAC). 

A key component of satellite imagery is the development of products that end users 

can apply in their project management efforts. Scientists build these products through 

machine learning applications; one such application is open Python scripting. Python is 

useful in remote sensing applications because it has both analytical and object oriented 

applications. It interfaces with a variety of extension programs such as GDAL (a translator 

library for raster and vector geospatial data), NumPy (the fundamental package for scientific 

computing with Python), and shapely (a spatial data model for points, curves, and surfaces).  

Barrett and Frazier (2016) used open Python scripting to develop an automated 

method of extracting remotely sensed reflectance values from Landsat imagery to pinpoint 

water sample locations and their respective quality parameters with universal applicability 

(Barrett & Frazier, 2016). The criteria used for utilization of their automated method include:  

1) In-situ water quality parameters collected after 1 March 1984; 

2) Landsat TM and ETM+ images downloaded from the USGS Earth Explorer and 

GloVis, temporally coincident with water quality parameters within ± one day, 

and covering the lake(s) of interest; and 

3) Lake-boundary shape files: the authors used automated image processing built in 

the open Python scripting language in ArcMap via the Arcpy (the Python 

extension in ArcGIS mapping software) module.  

Image processing followed four stages: minimum value extraction and image subsetting, 

radiometric correction including water and cloud masks, extraction and averaging of spectral 
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reflectance values in sample point windows, and statistical regression analysis (Barrett & 

Frazier, 2016).   

They tested their approach on a set of lakes in eastern Oklahoma and the results of 

reflectance in the short wave infrared (SWIR) region of the EMS had significant relationships 

(α < 0.01) with both chlorophyll and turbidity through ratios with other bands. Even though 

USGS now processes and provides Landsat data at no cost to the user, the work of Barret and 

Frazier (2016) serves as a useful reference for quality control and quality assurance. 

In a 1999 study, Allee and Johnson processed their Landsat images for 30 sampling 

points using global positioning system (GPS) and pseudo invariant features (PIF) (Allee & 

Johnson, 1999). The study utilized geometric measurements of Landsat scenes using a 

vector-based hydrology map obtained from the USGS with mean digital numbers from a 

3x3-pixel window for Bands 1 to 5 and 7 for each station. The resulting pixel values 

accounted for boat drifting and erroneous GPS coordinates. Results of their predictive 

models for CHLa showed a good coefficient of determination (R2= 0.80) in the July 1994 set 

of samples and also in the December 1994 samples (R2 = 0.84); the February 1995 data for 

SDZ also had strong R2 (0.96). The historical data did not quite support these models 

probably because of differences in species composition during different times of satellite 

flyover. 

Kallio et al (2008) rectified their ETM+ images to national geographic coordinates 

based on 25 ground control points (GCPs). Using nearest neighbor, they resampled the 

images to 25 m with positional accuracy of about 0.5 pixel. Digital numbers were useful in 

calculating the top-of-atmosphere (TOA) radiances and they applied the gain and offset 
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values of the header files associated with each image. The authors used the simplified 

method of atmospheric correction (SMAC) model to minimize errors from the atmosphere.  

The study simulated underwater reflectance using the Finnish national water quality 

dataset for 2000–2002 including the routine monitoring results of 1,670 stations representing 

1,113 lakes. Kallio et al (2008) used the bio-optical models concentration of total suspended 

solids (CTSS), the absorption coefficient of colored dissolved organic matter at wavelength λ 

= 400 nm (aCDOM400), and the sum of concentrations of CHLa and phaeophytin a (CChl-a) 

as input to measure reflectance for turbidity, Colored Dissolved Organic Matter (CDOM), 

and SDZ.  

For estimation errors, the image-specific empirical algorithms improved on accuracy 

by 14% compared to using in situ data without algorithm training. The results also revealed 

that a better atmospheric correction method was needed as SMAC had minimal improvement 

compared to the original Top-of-Atmosphere radiance. The under-water simulation of 

reflectance revealed the need for region-specific algorithms, particularly in the case of SDZ. 

Overall, this reflectance model has been tested and proven to work in Finnish lakes (Kallio, 

et al., 2008). 

1.1.1.8 Ground reference information 

Ground reference data make it possible for image enhancement, image correction 

using ground reference points or pseudo-invariant features, and accuracy assessment. Ground 

reference data is also important because it combines with remotely sensed data to validate the 

spectral signature of substances under study (Jensen, 2015).  

A typical data gathering technique in remote sensing is the use of in-situ sampling 

through transducers (Jensen, 2015). The transducer comes into physical contact with the 
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medium and records a signal that represents the presence and magnitude of a specified 

parameter in that medium. The signal is usually energized by pressure, electric charge, 

magnetic induction, or temperature change. The instrument displays concentrations of 

parameters of interest on the detector screen (Jensen, 2015). In order to ensure true 

representation of situations on the ground, studies usually collect field data that are 

temporally coincident with remotely sensed data (Jensen, 2015). 

Collecting field data at temporally coincident time with Landsat overpass has proven 

useful in the literature. Allee and Johnson’s study (1999) derived SDZ and CHLa from 

Landsat spectral data by developing an algorithm that relates the two sets of data. The 

authors recognized that atmospheric conditions vary on a daily basis and have an impact on 

the nature of spectral data. In addition, ground conditions have impacts on the magnitude and 

properties of parameters measured. Due to these dynamics, the authors decided to collect 

their field data on dates temporally coincident with Landsat overpasses.  

Carpenter and Carpenter (1983) utilized spectral data from Landsat MSS to build 

multiple linear predictors for turbidity and chlorophyll pigment in freshwaters in southeastern 

Australia (Carpenter & Carpenter, 1983). The objective was to develop a remotely sensed 

monitoring tool that would help alleviate the burden of covering costly and inaccessible 

monitoring sites. Since the study used Landsat data as surrogate to ground based monitoring, 

ground reference information at coincidental times was imperative. This is because 

environmental conditions change on a daily basis and may not reflect the true nature of 

conditions during sampling time before or after Landsat overpass (Carpenter & Carpenter, 

1983). In their 2008 study, Kallio et al investigated the estimation accuracy of Landsat 
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imagery for turbidity, CDOM, and SDZ and asserted this was possible through ground based 

monitoring temporally coincident with image acquisition (Kallio, et al., 2008). 

It is also typical to have some flexibility in temporal coincidence for field and 

Landsat data provided there is no major change between the acquisition dates. Major changes 

may be due to biophysical conditions of the water body and its surroundings or atmospheric 

conditions. The number of flexible days reported in the literature range from ±1 day (Barret 

and Frazier, 2016) to ± 7 days (McCullough, Loftin, & Sader, 2012) of satellite overpass. 

1.1.1.9 Image errors 

Water quality monitoring through satellite remote sensing includes planning and 

design of appropriate methodologies and analytical protocols that ensure significant 

reduction in error (Jensen, 2015). Several sources of error exist in satellite remote sensing. 

These errors come from geometric and radiometric distortions from the Earth’s complicated 

systems and imperfect sensors (Jensen, 2015).   

Sensor errors are systematic and correction protocols exist to help improve image 

quality. One source of sensor error is in the type of scanner used. The Landsat sensors have 

either whiskbroom or pushbroom scanners. Whiskbroom mirrors move across a track to 

reflect light on a single detector. The mirror moves back and forth to collect measurements 

one pixel at a time. These back and forth movements give angles of reflections at the nadir 

different from those at the edges. These differences in angles at which the mirror scans an 

object creates a distortion at the edges of the image. All Landsat sensors prior to Landsat 8 

had whiskbroom scanners on their platforms.  

Pushbroom scanners have fewer moving parts and they move along the track of the 

Landsat platform collecting images of many pixels at a line perpendicular to the flight path. 
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This gives them increased sensitivity and fewer edge errors compared to whiskbroom 

scanners. The Earth Resources Observation and Science (EROS) Center in South Dakota 

does correction of all sensor edge errors before posting images on the USGS website (USGS, 

2016).   

Bad pixels (shot noise) and line dropout (line stripping) are two important sources of 

error. Bad pixels result when the scanner skips certain areas and records wrong pixel values. 

Typical correction methods include interpolation from neighboring pixel values or 

comparison to images taken from the same spot on previous dates. One issue with these 

corrections is in the heterogeneous nature of land cover types. Interpolating values from 

neighboring pixels that may represent different land cover types may be misleading, 

especially giving the low spatial resolution of Landsat. Another issue is that changing 

characteristics of a particular land cover over time may give misleading information about 

the bad pixel (Jensen, 2015).  

The fate of radiation from the sun also introduces error in pixel values recorded by 

the sensor. The ideal way of avoiding sources of error resulting from the fate of reflected 

solar radiation is to select spectral bands that are less susceptible to atmospheric scattering as 

well using images less affected by cloud cover. Studies have shown that cloud cover less than 

10% is ideal for natural resource remote sensing (Sano, Ferreira, Asner, & Steinke, 2007).  

The five main fates and their characteristics include (Jensen, 2015) 

1) Solar radiation is incident on the target pixel, reflects and makes its way to the 

Landsat sensor, and sensor records the correct pixel value. This is the ideal route 

of solar radiation for remote sensing of the environment. 
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2)  Solar radiation is incident on the atmosphere, it is scattered, makes its way to the 

Landsat sensor, and wrongly represents target pixel values. This gives misleading 

spectral signatures and is very common with short waves radiant energy. That is 

why ultraviolet (UV) and Blue bands are not very useful in remote sensing of the 

environment. 

3) Solar radiation is scattered by the atmosphere, part of it becomes incident on the 

target pixel, makes its way back to the Landsat sensor, and sensor records spectral 

signature representing that target pixel. This will give the expected spectral 

signature under study. 

4) Solar radiation is scattered by the atmosphere, part of it becomes incident on the 

wrong pixel, makes its way back to the Landsat sensor, and sensor records 

spectral signature representing the target pixel. This will give misleading results 

of the spectral signature under study. 

5) Solar radiation is scattered by the atmosphere, part of it becomes incident on the 

wrong pixel, bounces on to the target pixel, makes its way back to the Landsat 

sensor, and sensor records spectral signature representing the target pixel. This 

will give the expected spectral signature under study. 

Another source of error is distortion in synchronicity between the orbit of the Earth and the 

sensor orbit. This leads to shift in pixel positions on the surface of the Earth. The Earth is 

spherical, making it impossible to have a 90o angle of incidence at nadir, which creates a 

source of spatial error. An important type of spatial error is circular error of probability, 

which defines the average distance between a target and the terminal end of the signal’s path 

of travel. When signals are recorded, it is possible to miss the target pixel several times. 
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Calculation of circular error considers the distance of each missed target from the intended 

target (Kim, 2017). The acceptable distance depends on the type of satellite mission and type 

of image correction routine. The USGS Landsat data gap study team accepts a circular error 

less than 65 m for image processing (USGS, 2017).   

 Correction of errors due displaced pixels is done by repositioning them to their 

original locations with GCPs and mathematical models. It is easy to identify GCPs with the 

use of reference maps or georeferenced images. Using the map or georeferenced image, 

correction follows the use of an appropriate warping model, a transformation matrix, and 

resampling of the BV to restore accuracy of data obtained. The EROS center does all these 

image corrections before the USGS provides the readily available images to the public.      

Ensuring accuracy in ground-based data minimizes errors like misrepresenting pixels 

during field monitoring. Sometimes the pixel values do not represent the true picture of 

variations in the land cover types. Low spatial resolution pixels may have a mix of land cover 

types that make it difficult to record values representing one spectral signature. In addressing 

these issues, researchers use empirical tests to confirm the right spectral signature 

(Theologou, Patelaki, & Karantzalos, 2015).  

1.1.2 Algorithm development for mapping water quality 

In an algorithmic approach to problem solving, the computer programs give an output 

of the defined relationship between the independent and response variables. Any change in 

information may require modification of the algorithm to accommodate for that change 

(Jensen, 2015). Selection of appropriate algorithms is critical in building automated tools for 

remotely sensed natural resource monitoring. Algorithms can be object based, supervised, or 

unsupervised input-output relationships (Jensen, 2015).   
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Regression analysis gives the significance of those relationships even though it 

sometimes drops the most important variable due to computational issues like multi-

collinearity (Carpenter & Carpenter, 1983). An important consideration is that environmental 

processes are complex and may violate some of these modeling requirements. The need for 

more flexible but accurate mapping tools becomes obvious in some cases (Dormann, et al., 

2013). Theologou et al (2015) confirmed the use of one or more of the following algorithms 

in establishing relationships between in-situ field and Landsat data (Theologou, Patelaki, & 

Karantzalos, 2015).  

1) Empirical algorithm: the creation of regression models using satellite imagery and 

water quality parameters. The primary sources of data are principally the satellite data 

(the independent variable) and field in-situ data (the dependent variable). The process 

is essentially an input-output analysis. 

2) Semi-empirical approach: This approach embodies the use of spectral water quality 

characteristics in the statistical analysis. There are inherent sets of information that help 

map the deployment of information into the model. 

3) Analytical approach: In this approach, key parameters relate to the inherent optical 

properties, the apparent optical properties, and top-of-atmosphere radiance.   

1.1.2.1 Band ratios and the development of indices  

A remarkable application of remotely sensed data in natural resource studies is the 

development of indices from equations derived from ratios of spectral bands. The process 

utilizes information from feature pixels of different bands and their relationships to translate 

into useful information (Jensen, 2015). Most indices make use of a normalized relationship 

between two bands that concurrently interact with matter. In a 1973 study, researchers 
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developed the normalized differential vegetation index (NDVI) to infer the health of 

vegetation in terms of changes over time (Rouse, Haas, Schell, & Deering, 1973). The index 

is based on the assumption that greater biomass equates to better health of an ecosystem. It 

has a range of values defined as -1≤NDVI≤1. The lesser the value, the less healthy is the 

vegetation. Values closer to or equal to one indicate healthy vegetation (Jensen, 2015).   

In 2010, a group of researchers in India developed a MERIS (MEdium Resolution 

Imaging Spectrometer) Terrestrial Chlorophyll Index (MTCI) to map the spatio-temporal 

variation of vegetation phenology using the equation (Jensen, 2015): ⍴band 10 - ⍴band 9/⍴band 

9 - ⍴band 8 (⍴ represents reflectance). The equation derives from MERIS bands 8, 9, and 10. 

With an 8-day temporal composite of MERIS MTCI data, the authors suggested that the 

MTCI combined information on leaf area index and the chlorophyll concentration of leaves 

to produce an image of chlorophyll content (Jensen, 2015). 

1.1.2.2 Remote sensing of water quality in reservoir ecosystems 

The availability of remote sensing datasets and the understanding of their benefits and 

limitations provide the potential to assist in overcoming some water quality monitoring 

challenges. These include meeting the cost of additional sampling space/frequency and 

inaccessibility to important areas (Barnes, Hua, Holekamp, Blonski, & Spiering, 2014). This 

has led to several studies that use algorithms to establish relationships between remotely 

sensed and ground based data.  Birth and McVey (1968) were among the first scientists to 

utilize remote sensing techniques to reveal new findings in natural resource management. 

They evaluated the color of grass turf using a ratio of NIR (750-nanometer [nm]) to Red 

(650-nm) reflectance and called it the turf color index. The authors developed this index in 

order to serve as a means of determining from an image the density and distribution of grass 
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turf in an area. They measured the index with a two-filter instrument, called ratiospect, on 

eight samples of turf collected from three species. The results showed a correlation 

coefficient of 0.984 between the ratiospect readings and the visual score of turf color. This 

mathematical relationship became a useful reference for development of remotely sensed 

natural resource models in ecosystems studies (Birth & McVey, 1968). 

Several studies have followed Birth and McVey (1968) in utilizing remote sensing to 

overcome natural resource monitoring challenges. The need for satellite remote sensing in 

the study area is rooted in information from the literature regarding utilization of Landsat 

data for estimating water quality trends in reservoir ecosystems. 

1.1.2.3 Remote sensing of chlorophyll pigments 

Chlorophyll is optically active, having spectral signatures of Green reflectance and 

absorbance in Red and Blue (CHLa). These signatures make it possible to remotely sense 

chlorophyll pigments (Jensen, 2015). Figure 3 presents a plot of the spectral signatures of 

CHLa (present in green algae and BGA) and CHLb (present only in green algae):  



27 
 

 
Figure 3. Spectral signatures of CHLa & CHLb (Jensen, 2015) 

 

A major challenge to remote sensing of chlorophyll in inland waters is the difficulty 

to register pixel values at low concentrations (Yacobi, Giltelson, & Mayo, 1995) or when 

mineral turbidity masks sensor detection of chlorophyll reflected bands. Ruddick et al (2001) 

proposed four steps to utilize satellite sensors in measuring CHLa concentrations by 

analytical methods (Ruddick, Gons, Rijkeboer, & Tilstone, 2001):  

1. Carrying out atmospheric correction to discriminate above-water upwelling 

radiance derived from satellite sensors;  
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2. Air-water interface correction to differentiate subsurface irradiance reflectance 

from the above-water upwelling radiance and downwelling irradiance; 

3. Estimating the phytoplankton absorption coefficient at a designated wavelength 

from subsurface irradiance reflectance; and 

4. Removing errors from conversion of the phytoplankton absorption coefficient into 

CHLa concentration. 

Some studies combine data from high spectral resolution images with Landsat multispectral 

data to develop the optimum spectral index that can estimate the concentration range of water 

quality parameters. Yacobi et al (1995) used algorithms to explain chlorophyll concentrations 

in Lake Kinneret, a large freshwater body in Israel, by means of high spectral-resolution 

radiometer and spectral reflectance of Landsat TM (Yacobi, Giltelson, & Mayo, 1995). The 

authors tested the influence of varying chlorophyll concentrations on surface reflectance and 

the index of spectral bands that would serve as benchmark for chlorophyll determination 

from remotely sensed data.  

The results showed that chlorophyll reflectance spectra did not necessarily depend on 

concentration as much as it depended on the region of the EMS. Chlorophyll absorbed Blue 

and Red bands and reflection was high in Green and NIR bands. Their study confirmed a 

positive relationship between high reflectance from chlorophyll and an increase in its 

concentration only in the Green and NIR bands (Yacobi, Giltelson, & Mayo, 1995). These 

results confirmed expected chlorophyll-spectra relationships. Chlorophyll reflects Green light 

and absorbs high in the Blue and Red regions of the EMS (Jensen, 2015). The authors used 

these results to build regression equations for estimating chlorophyll concentrations in Lake 

Kinneret. Appendix 1 shows the coefficient of determination for the predictive equation. 



29 
 

In order to use spectral data in determining chlorophyll in their lake under review, 

Yacobi et al (1995) saw the need to develop a chlorophyll index with little or no interference 

from other water quality parameters. The authors factored in spectral bands with minimal 

sensitivity to variation in chlorophyll concentration and ruled out influence by survey 

conditions. Using high spectral-resolution data from the radiometer used in the study, they 

considered the wavelength at which only one dominant factor would influence spectral 

feature variation as the most useful for determining chlorophyll concentration.  

According to Yacobi et al (1995), the Red reflectance maximum at nearly 700 nm 

was the only feature that met those criteria. One reason was that the position of the peak, as 

well as its magnitude, had a close relationship with chlorophyll concentration. The standard 

deviation of reflectance values for the 400 to 850 nm EMS, as well as the coefficient of 

variation, showed that sensitivity to chlorophyll variation in the range near 700 nm was up to 

3-fold higher than in the Blue region of the spectrum. 

Han and Rundquist (1997) tested to see whether the well documented ratio of 

reflectance in the NIR (705 nm) to that in the Red (670 nm) region was a good predictor of 

chlorophyll content in relatively turbid Midwestern reservoirs in the United States (US). The 

authors compared their 2-year study results to those obtained by first derivative of reflectivity 

near 690 nm, to see which of the two would better predict chlorophyll concentration. In 

calculating the first derivatives, they divided the difference between successive reflectivity 

values by the wavelength interval separating them. In this case study, only in one occasion 

did they find the NIR/Red ratio to be a good predictor of chlorophyll content. The first 

derivative of reflectivity was found to be a good predictor of chlorophyll concentration (Han 

& Rundquist, 1997).  
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In a more recent study in Lake Bogoria in Kenya, reflectance values for both NIR 

(835 nm) and NIR:Red (835 nm/660 nm) showed strong linear correlations with in-situ 

CHLa concentrations (Tebbs, Harper, & Remedios, 2013). The NIR/Red ratio gave a better 

fit to CHLa compared to the single NIR (Appendix 1). The band ratio produced a better 

indication of water quality with top of atmosphere (TOA) reflectance compared to 

atmospherically corrected data (Tebbs et al, 2013). The advantage of TOA reflectance is that 

it reduces the in-between scene variability through a normalization for solar irradiance since 

it combines surface and atmospheric reflectance (Jensen, 2015). 

The studies discussed above show that NIR and Red bands are common for 

chlorophyll determination in the literature. Other studies have shown that other combinations 

can yield acceptable results. Torbick et al (2008) used different combinations of Landsat 7 

ETM+1 (450-520 nm) and ETM+3 (630-690 nm) to develop equations for CHLa 

concentrations in West Lake, China (Torbick, et al., 2008). For single bands, ETM+3 was a 

better predictor (R2 = 0.78) compared to ETM+1 (R2 = 0.45). A ratio of ETM+3/ETM+1 

gave the best model (R2 = 0.81). All the other combinations gave poor water quality models. 

In addition to band combinations, studies have also compared results from different 

Landsat sensors. In a 2014 study in Lebanon, algorithms derived from Landsat 7 and Landsat 

8 showed different results for CHLa (Deutsch, Alameddine, & El-Fadel, 2014). The results 

revealed better predictive tendencies of Landsat 8 (R2 = 0.70) than either Landsat 7 (R2 = 

0.11) or Landsat 7+8 (R2 = 0.46). The authors attributed the differences to dissimilar band 

spacing in the two satellite sensors. They asserted that Landsat 8 seemed more capable of 

characterizing the chlorophyll fluorescence peak in the Red to NIR boundary than Landsat 7. 

1.1.2.4 Remote sensing of water clarity 
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Using satellite data as indicator of clarity in water bodies can be challenging because 

clarity depends on dynamic processes such as limnetic characteristics and natural or 

anthropogenic activities in a watershed (Torbick, et al., 2013; McCullough, Loftin, & Sader, 

2012). Accessibility and frequency of monitoring is particularly challenging for a large 

number of water bodies in some watersheds (McCullough et al, 2012). The use of satellite 

remote sensing in overcoming this challenge has been widely documented. Some of those 

findings were useful in the development of the objectives for monitoring water quality in this 

research.   

In mapping inland lake water quality across the Lower Peninsula of Michigan, 

Torbick et al (2013) used Landsat TM imagery to build models for a number of water quality 

parameters, including SDZ. The authors applied a suite of preprocessing routines to help 

come up with the best mapping model for water quality in the study area. The preprocessing 

routines included digital number (DN), radiance, Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) protocol, dark object subtraction (DOS), and subsurface 

volumetric reflectance. Each routine combined water quality results to build algorithms for 

the modeling. For SDZ, the following were the R2 values for the routines: 0.56 for DN, 0.77 

for LEDAPS, 0.58 for DOS, 0.82 for subsurface volumetric modeling, and 0.81 for radiance. 

All routines showed strong correlation with SDZ, using the band combination 

TM1+TM3+TM3/TM1 (Torbick, et al., 2013). 

McCullough et al (2012) asserted that remotely sensed data could efficiently estimate 

clarity of lakes on a regional scale. They developed equations for use in monitoring the 

clarity of 1511 lakes in Maine, USA. Their research combined a 20-year (1990-2010) dataset 

of Landsat 5 TM and Landsat 7 ETM+ brightness values for TM bands 1 (Blue) and 3 (Red) 



32 
 

with SDZ. They took SDZ readings temporally coincident with Landsat schedule and having 

a flexibility of 1–7 days’ field data gathering before or after the overpass. Their results 

indicated that Landsat TM bands 1 and 3 were good predictors of SDZ; this was supported by 

data from 119 sample stations on the lakes under study. They also tested the TM1/TM3 ratio 

and found it to be a good predictor of water clarity.  

Researchers have also compared different Landsat sensors to estimate water clarity. 

In comparing sensors on Landsat 7 ETM+ and Landsat 8 OLI, Olmanson et al (2016) 

developed predictors for SDZ in Minnesota. They compared September 1, 2008 Landsat 7 

and August 22, 2013 Landsat 8 images using stepwise regression to identify the best 

predictor for water clarity. Their results asserted that the best model for water clarity with 

Landsat 8 accounted for 82% (R2=0.82) of the data from the relationship, water clarity = OLI 

band-2/OLI band-4 + OLI band-1. This result was nearly identical to the relationship, water 

clarity = OLI band-2/OLI band-4 + OLI band-2. The best model for the ETM+ sensor was, 

water clarity = ETM+ band-1/ETM+ band-3 + ETM+ band-1. The researchers found that 

both sensors worked well for water clarity measurements (Olmanson, Brezonik, Finlay, & 

Bauer, 2016).  

1.1.2.5 Strength of regression models 

 Linear regression models attempt to minimize the deviation of measured values from 

the predicted values through a line of best fit. The smaller the differences between the 

observed and the predicted values, the stronger is the model (Frost, 2013). Some studies use 

residual plots to determine the strength of a model. It reveals unwanted residual patterns that 

indicate biased results more effectively than numbers (Frost, 2013). Remote sensing studies 

often utilize the coefficient of determination (R2) to evaluate how close the measured values 

are to the fitted regression line with values ranging 0-100% (0.0-1.0). The closer R2 is to 1.0, 
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the more reliable is the model. Appendix 1 presents a list of studies and their regression 

results. 

1.1.3 Social and economic impacts of satellite remote sensing   

In 2008, the DOI authorized release of all Landsat images for free public utility. The 

DOI made this policy in order to allow researchers provide better explanation of trends that 

affect the social and economic welfare of societies around the world. By 2015, there were 

about 30 million downloads of Landsat scenes for variety of uses (Campbell J. , 2015). The 

data from those images provided useful information for government agencies, learning 

institutions, private entities, and individuals. These help address major issues in agriculture, 

forestry, disaster risk management, climate change, and settlements.  

The US Federal Government allocates an annual budget of $ 3.5 billion to civil earth 

observation, management of the data obtained thereof, and support to similar programs at 

state level. These programs contribute an estimated $30 billion dollars to the US economy 

through projects that utilize satellite data (Campbell J. , 2015). 

Albeit these social and economic benefits from utilizing satellite data, a major barrier 

is slow acceptance by end users (Schaeffer, et al., 2013). According to Schaeffer et al (2013), 

managers still rely on periodic ground based monitoring, which typically utilize limited 

sample locations and frequencies. Additionally, some potential end users have concerns over 

errors from the atmosphere, the environment, and the sensors. These in addition to 

uncertainties regarding the fate of future satellite missions, and the perceived high-tech 

nature of satellite data make it hard to integrate satellite-based information into policy 

decisions. There appears to be the need to integrate cost/benefit analysis into all satellite 

remote sensing projects and their products. 
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Watkins (1978) presented three basic principles of cost/benefit analysis for remotely 

sensed data. The first principle evaluates the costs and benefits in terms of how much change 

the remote sensing project brings. Secondly, the amount of money that is equivalent to those 

costs and benefits will determine the value of the remote sensing project. The third principle 

requires evaluating the market value of products derived from a remote sensing project 

(Watkins, 1978). Studies over the years have shown that direct monetary evaluation of costs 

and benefits is more difficult than the other principles. Indirect monetary value seems to be 

the most feasible form of analysis.  

Hellegers, Soppe, Perry, and Bastiaanssen (2010) showed that remote sensing was 

useful in delineating the economic indicators of water resource management. Remote sensing 

helped track consumption patterns of water, irrigation needs, and crop yields. This 

approach made it simple to forecast market trends for agricultural products and improve 

water consumption by means of equity in access to water resources (Hellegers, Soppe, 

Perry, & Bastiaanssen, 2010). Rauniker, Forney, and Benjamin (2013) showed an indirect 

economic benefit of satellite remote sensing by estimating the value of information derived 

from such data. The estimated value was $858 million ± $197 million per year, and this 

could increase to $38.1 billion ± $8.8 billion in the future (Raunikar, Forney, & Benjamin, 

2013). In the carbon market, Cunningham, Little, and Montgomery (2013) compared 

satellite remote sensing to auditing in accounting firms. Utilization of satellite data helps 

investors keep track of trends in forest cover and its economic impact. Satellite imagery is 

helping an estimated growth of $100 billion in the carbon market by 2020 (Cunningham, 

Little, & Montgomery, 2013). 
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A major economic growth in satellite remote sensing has been in the market value 

of its products. Commercial earth observation programs and products significantly 

contribute to the satellite industry (more than 70%), which was worth $314.17 billion in 

2013 (Orban, 2015). This growth is expected to continue as more countries lunch space 

programs, and as the technologies become simpler.  

However, the industry’s future is not that certain giving a number of factors. 

Competition between countries is increasing and no one seems to have control over trends 

in the market. The type and magnitude of change will depend on which direction the 

competition takes. Additionally, declassification of satellite data in the US gave momentum 

to commercial programs and products. However, most of those products are expensive and 

it is not clear whether prices may reduce significantly in the future. This could be achieved 

if the technologies become more user friendly and are useful to a wide variety of end users 

(Weber & O’Connell, 2011).   

  In the Grand Lake watershed, there has been no study on the social and economic 

impacts of satellite remote sensing on ecosystem services of lakes. Ghimire, Boyer, Sheilder, 

Melstrom, and Stoecker (2017) estimated amenity values on Grand Lake O’ The Cherokees 

to residential homeowners in the area. Values estimated included lake view, lake access, 

proximity, frontage, and dock capacity. They found out that, residential sales with docks 

worth on average $46,599 more than those without. The value of houses near the shoreline of 

the lake sold for $88,568 more than those located far away from the shore, and the value 

dropped as the property became more remote. Other variables that affected value were the 

age of the house, presence of septic sewer, and the need for possession of flood insurance 

(Ghimire, Boyer, Shideler, Melstrom, & Stoecker, 2017). 
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However, Ghimire et al (2017) did not consider the effect of Grand Lake’s water 

quality on the housing market in that area. A future study could take a close look at the 

impact of lake water quality on the value of amenities that depend on it. It seems water 

quality to the housing industry is only an issue when it becomes an aesthetic (example, 

HABs) or a public health problem. A study in 2017 shows that people are willing to pay extra 

for assurance of minimal likelihood of HABs (Boyer, Daniels, & Melstrom, 2017). 

Additionally, the scenery of HABs and their uncertainties pose a challenge to lake managers 

when planning for recreation (Roberts, Boyer, & Lusk, 2008). The automated monitoring 

tool developed in this study will help address most of these issues. 
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LANDSAT-8 BASED INDICES OF ALGAE AND TURBIDITY FOR INLAND 
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Torbick, Nathan2; and Wagner Kevin L.1 

1Oklahoma State University; 2Applied GeoSolutions 

 

Abstract 

Point and nonpoint sources of pollution introduce pollutants that can impair water quality 

and pose health risks to humans and aquatic organisms. Managing these sources requires 

monitoring the spatial and temporal extent of water quality to help identify impaired 

water bodies. In the Grand Lake Watershed situated in Oklahoma, Kansas, Arkansas, and 

Missouri, there is concern over repeated harmful algal blooms (HABs) in recent history. 

A new monitoring strategy that ensures timely HABs detection will help resolve this 

concern. Our objective was to develop indices for photosynthetic algae and mineral 

turbidity using spectral bands in Landsat 8. We measured chlorophyll a (CHLa) and 

water clarity in situ in four lakes in the Grand Lake Watershed using an EXO-1 YSI 

multi-parameter probe and Secchi disc. We used regression analysis to compare in situ 

results to the indices. The results revealed relationships varying temporally with 

significant relationships and strong R2 on some dates. For those days with strong 

relationships, there may have been minimal mixed pixel problems or less interference 

from other inherent optical properties. Mixed pixel problems are the most probable cause 

of poor model performance for dates that recorded insignificant relationships. Using 

concentrations from single points as ground truth for radiation representing a 900-m2 area 

may be misleading. However, these need confirmations in future studies, which could 

involve accounting for interference; determining low, medium, and high values for the 

indices; lab-based clarification of CHLa reflectance in the near infrared (NIR) spectrum; 

and fusion of different satellite sensors.   
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2.1 Introduction 

Point and nonpoint sources of pollution introduce pollutants such as sediments, 

nutrients, and microorganisms that can impair water quality and pose health risks to 

humans and aquatic organisms (Brooks, et al., 2016). Managing these sources requires 

monitoring the spatial and temporal extent of water quality to help identify and 

characterize impaired water bodies (Cord, et al., 2017). A major challenge to lake 

monitoring is the limitation in space and time for water quality characterization 

(Karpatne, et al., 2016). This challenge is particularly true for algal blooms, which result 

from erratic biophysical conditions including elevated nutrient levels (Gilbert & Burford, 

2017), changing climate (Paerl, et al., 2016), and the rate of physiological activity of 

algal pigments in relation to wavelengths of light (Tamburic, et al., 2014).  

In the Grand Lake Watershed (located in Oklahoma, Kansas, Arkansas, and 

Missouri), the Grand River Dam authority (GRDA) is concerned over the repeated cases 

of harmful algal blooms (HABs) in recent history. The agency is interested in new 

monitoring strategies that would help identify and explain the spatial and temporal extent 

of such algal blooms. Developing new tools that pinpoint priority areas for algal pollution 

monitoring will help the GRDA save time and cost in future water quality monitoring. 

Satellite remote sensing datasets provide a potential data source for overcoming 

certain water quality monitoring challenges. The increased costs associated with in situ 

data collection at additional sampling sites, higher sampling frequencies, and the inability 

to access important areas (Barnes, Blonski, Hua, Holekamp, & Spiering, 2014) are some 

of the challenges. Several studies have established statistical relationships between 

remotely sensed spectral signatures and ground based data for algal pigment detection 
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(Allee & Johnson, 1999; Chen, et al., 2010; Han & Rundquist, 1997; Kirk, 2011; Mishra 

& Mishra, 2012; Ruddick, Gons, Rijkeboer, & Tilstone, 2001; Tebbs, Harper, & 

Remedios, 2013; Thu Ha, Koike, Nhuan, Parsons, & Thao, 2017; Torbick, et al., 2008; 

Yacobi, Giltelson, & Mayo, 1995). In particular, chlorophyll-a (CHLa) is an optically 

active pigment in algae and other green plants that has spectral signatures of reflecting 

Green light and absorbance in Red and Blue. These unique signatures make it possible to 

remotely sense chlorophyll pigments (Jensen, 2015).   

A major limitation to the use of remotely sensed images to predict chlorophyll 

content in inland waters is the difficulty in registering reflectance/absorbance values at 

low chlorophyll concentrations (Yacobi, Giltelson, & Mayo, 1995). Discerning the region 

of the reflectance spectrum resulting from chlorophyll versus the region resulting from 

other effects like mineral turbidity (Jensen, 2015; Ruddick, Gons, Rijkeboer, & Tilstone, 

2001) is also a challenge. The fate of radiation from the sun may also introduce errors in 

reflectance values recorded by the sensor, creating the need for atmospheric correction 

(Jensen, 2015). Geometric correction is also required due to errors introduced from 

external sources including wind, temperature, humidity, tidal waves, and the shape of the 

Earth (USGS, 2018). Correction of circular error (i.e. the distance between target pixel 

and actual pixel of measurement) ensures accurate representation of the pixels under 

consideration.  

When relating remotely sensed data to algal pigments, it is important to collect 

field data that are spatially and temporally coincident with the satellite flyover. This gives 

a reliable representation of statistical relationships between data from satellite imagery 

and field monitoring data (Carpenter & Carpenter, 1983; Kallio, et al., 2008). It could be 
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acceptable to sample before or after Landsat overpass if there is no major change in water 

quality conditions between the acquisition and sampling dates. Major changes may result 

from biophysical conditions of the water body and its watershed (Mosley, 2015). The 

number of flexible days reported in the literature range from ±1 day (Barrett & Frazier, 

2016) to ± 7 days (McCullough, Loftin, & Sader, 2012) of satellite overpass. 

Studies relating satellite remote sensing to water quality typically utilize 

correlation between spectral band ratios and ground based in situ parameters. The most 

common band ratio is that between near infrared (NIR) and Red (Han & Rundquist, 

1997; Mishra & Mishra, 2012; Thu Ha, Koike, Nhuan, Parsons, & Thao, 2017). Some 

studies also mix band ratios with different types of band combinations in order to get the 

best coefficient of determination (Torbick, et al., 2008).  Even though these studies have 

reported proven methods to confirm the use of multispectral band combinations and band 

ratios for a linear relationship between chlorophyll content and reflectance, some of the 

assertions remain unclear.  

It is an established fact that algae have pigments that reflect or absorb radiation 

with specific wavelengths in the visible region of the electromagnetic spectrum (Kirk, 

2011). However, it seems unclear if NIR radiation is also reflected in photosynthetic 

algae. A 2010 study gave a different result when the authors reported that chlorophyll-f 

absorbed NIR radiation (Chen, et al., 2010). This contradicts studies that have reported 

NIR reflectance spectral of algal pigments, except if chlorophyll-f is not universally 

distributed in algae. 

There has been no universally accepted band ratio to represent chlorophyll 

reflectance even though spectral properties, chlorophyll structures, and image processing 
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routines all remain the same. The differences lie in the wavelengths selected. However, 

the idea of chlorophyll having a spectral signature that allows reflectance in multiple 

wavelengths needs further clarification.  

Based on these uncertainties, this study did not include IR reflectance as one of 

the bands representing chlorophyll concentration in inland water bodies. Absorption in IR 

seems more realistic because there is absorption of an even shorter-wavelength band, 

Red, during photosynthesis. The reported IR reflectance values may be coming from a 

different optically active object, especially from a 900-m2 pixel that is susceptible to 

mixing from multiple optically active objects.  

We used relationships between bands that are photosynthetically active in order to 

develop a universally acceptable photosynthetic algal index (PAI). The objective is to 

develop an index for CHLa that can qualitatively determine, on a 0≤PAI≤1 scale, the 

spatial extent of photosynthesis on the water body. This will guide ground based 

monitoring and enhance resource use efficiency. We also present and index for mineral 

turbidity to account for interference from turbidity in those waters.  

2.2 Materials and methods  

2.2.1 The Grand Lake Watershed 

 The Grand Lake Watershed (Figure 4) situates in three Landsat path/row 

combinations (Appendix II) and Council Grove Lake and Marion Lakes in the Neosho 

River watershed fall in two path/row combinations (Appendix II). All the lakes under 

study, except Marion, share path 27 with varying rows. The Landsat path/row 

combinations have minimum swath width of 185 km and the sensor takes images with an 

instantaneous-field-of-view (IFOV) of 30 m x 30 m. The IFOV is also known as pixel, 
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the smallest unit of an image (Jensen, 2015), and ranges between 7,000 and 9,000 pixels 

per Landsat scene. 

 
Figure 4. The Grand Lake watershed and its sub-watersheds 

  

Officially named Grand Lake O’ The Cherokees hereafter referred to as Grand 

Lake, it is located in Delaware, Ottawa, and Mayes counties in northeastern Oklahoma. 

Grand Lake is in the foothills of the Ozark Mountains and receives its water from the 

Grand (Neosho), Elk, and Spring Rivers (LakeHub LLC, 2018). Table 2 shows the 

surface area, shoreline length, average depth, and water volume of Grand Lake (Johnson 

& Luza, 2008) and the other lakes under study.  
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Table 2. Characteristics of Lakes under study 

Lake Surface area 

(km2) 

Shoreline length 

(km)  

Mean Depth 

(m) 

water volume 

(m3) 

Grand Lake 188.2 2,092.147 11.0 2,062,378,560 

Council Grove Lake 13.27 64.374 4.0 59,823,869.121 

Marion Lake  0.62 96.561 3.4 98,560,132.747 

John Redmond Lake 38 94.951 2.7 83,016,000 

 

Figures 5 and 6 show maps of the Grand Lake sub watershed and sampling sites on the 

lake, respectively.  

        
Figure 5. Grand Lake sub-watershed 
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Figure 6. Sampling sites of Grand Lake in Oklahoma  

 

Council Grove Lake in Morris County is located in the scenic Flint Hills region of 

Kansas and lies in the Neosho River basin. Table 2 shows the surface area, mean depth, 

shoreline length, and volume of water in the lake (U.S. Army Corps of Engineers, 2011). 

Figures 7 and 8 show maps of the Council Grove sub watershed and sampling sites on the 

lake, respectively. 
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Figure 7. Map of Council Grove Lake sub-watershed 

 

 

   
Figure 8. Sampling sites on Council Grove Lake in Kansas 
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Marion Lake lies between the cities of Marion and Hillsboro in Marion county, 

central Kansas. It is situated in the North Cottonwood River basin, which drains most of 

the watershed. Figures 9 and 10 show maps of the watershed and lake sampling sites, 

respectively. The surface area, shoreline length, mean depth, and water volume are shown 

in Table 2 (US Army Corps of Engineers, 2018).   

   
Figure 9. Maps of Marion Lake sub-watershed 
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Figure 10. Sampling sites on Marion Lake in Kansas 

 

The Neosho River serves as both the recharge in the northwest and discharge in 

the southeast for the John Redmond Lake (Figure 11), which lies within Coffey County 

in eastern Kansas. Table 2 shows the reservoir’s surface area, mean depth, shoreline 

length, and volume (US Army corpse of Engineers, 2018). 
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Figure 11. Maps of the John Redmond Lake sub watershed 

 

 

 
Figure 12. Sampling sites on John Redmond Lake in Kansas 
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2.2.2 Image acquisition 

We downloaded radiometric and geometrically corrected Landsat 8 images from 

the USGS Earth Explorer website at no cost. Details of the image dates, sites, reflectance 

values as well as the details of in situ samples are presented in the appendices (Appendix 

III – Appendix X). All the images selected had scene cloud cover less than 10%. In areas 

where cloud cover was over 10%, we ensured that it did not affected the area of interest. 

The software packages utilized were ENVI 4.5 and ArcGIS 3.5 for all image analysis and 

mapping.  

2.2.3 Image processing  

For brevity, this section summarizes the processing workflow succinctly. We 

started with computation of the top of atmosphere radiances, LTOA, from Digital Number 

(DN): 𝐿𝑇𝑂𝐴 = 𝑀𝐿 ∗ 𝐷𝑁 + 𝐴𝐿;  with ML (multiplicative factor, gain) and AL (additive 

factor, offset) values provided in the metadata. The next step is computing the TOA 

reflectances (ρTOA) by normalizing 𝐿𝑇𝑂𝐴  to the band averaged irradiance: 𝜌𝑇𝑂𝐴 =

𝜋∗𝐿𝑇𝑂𝐴∗𝑑2

𝐹0∗𝑐𝑜𝑠𝜃0
;  where F0 is the band averaged extraterrestrial solar irradiance, d the sun-earth 

distance in Astronomical Units, and θ0 the sun zenith angle. The ρTOA is assumed the 

sum of aerosol reflectance (ρa), Rayleigh reflectance (ρr) and the water-leaving radiance 

reflectance just above the surface (ρw0 +): 𝜌𝑇𝑂𝐴 = 𝜌𝑎 + 𝜌𝑟 + 𝑡 ∗ρw0 +; with t the two-

way diffuse atmospheric transmittance. Note for more recent scenes processed with 

Level-1 Product Generation System (LGPS), top of atmosphere reflectances are directly 

computed from DN using the provided scaling factors (MR, AR): 𝜌𝑇𝑂𝐴 = MR * DN + 

AR. The ρw0 + defines as ρw0+=
𝜋∗Lw0+

Ed0+
; where Lw0 + is the water-leaving radiance, 

and Ed0 + the down-welling irradiance, both just above the water surface. The Rayleigh 
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correction of Vanhellemont & Ruddick (2014), and Vanhellemont & Ruddick 

(2015), implements a look-up-table (LUT). The LUT is generated for all bands (square 

bandpass) using 6SV v1.1 modified to disable the ocean contribution but including 

surface reflectance (sky- and sunglint) for a nominal wind speed of 1 m s− 1 

(Vanhellemont & Ruddick, 2015). For Landsat 8 OLI the relative spectral response 

applies as opposed to square band passes. The Rayleigh reflectance is then from the LUT 

using sun and sensor geometry. Wang and Shi (2006) suggest cloud and land masking to 

be performed using a threshold on the reflectance in the 1609 nm SWIR band (Wang & 

Shi, 2006). Pixels are classified as not being water when the Rayleigh-corrected 

reflectance (ρc = ρTOA − ρr) in band 6, 𝜌
6

𝑐
> 0.0215. Ultimately, for aerosol correction 

we applied a simple correction scheme leveraging SWIR, which has negligible signals in 

water, a moving average smoothing filter (kernel=32), and nominal fixed per pixel 

epsilon for batch processing of Landsat scenes.  

To complement the empirical modeling, we employed machine-learning 

techniques. This algorithm framework will rely upon open Python scripting for 

development of the automated monitoring tool. Chapter III presents a detailed description 

of the Python based tool for satellite based water quality monitoring. 

2.2.4 Sampling  

The sampling sites used in this study (Figures 5-12) are the same as those 

designated and used by the lake managers. Water quality sampling took place on dates 

and times temporally coincident with Landsat flyover (Appendix III – Appendix X). If no 

major change in water quality occurred, and when there was the need, sampling dates 
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extended to ±2 days of Landsat overpass; this is consistent with the number of days 

reported in the literature (Barrett & Frazier, 2016).   

2.2.4.1 In-situ water quality sampling 

The sampling instrument used was the EXO1 YSI multi-parameter probe to 

collect water quality data at each sample site. The sonde consists of replaceable sensors 

and pressure transducers, which pick signals and send to the detector that displays the 

signals as concentrations of the different parameters. Parameters measured include 

turbidity, dissolved oxygen, pH, temperature, chlorophyll fluorescence, and phycocyanin 

(cyanobacteria) fluorescence. The water quality data were recorded in field notebooks in 

addition to logging them on to the EXO1 storage system. The procedures for assembling, 

preparing, and calibrating the EXO1 probe are detailed in the instrument’s operation 

manual (EXO, 2017).  

2.2.4.2 Collection of water samples for laboratory analyses 

This research utilized brown bottles, a depth integrated tube sampler, and a Van 

Dorne water sampler to collect water samples. The samples were stored in a cooler and 

transported to the laboratory for sample analysis. Sample collection and analyses 

followed procedures adapted from the USEPA’s sampling and analysis plan guidance and 

template (USEPA, 2014). 

2.3 Landsat 8 spectral indices for photosynthetic algae and mineral turbidity 

2.3.1 Photosynthetic Algal Index (PAI) 

During photosynthesis, there is maximum CHLa reflectance in Green light and 

absorption of Blue and Red lights (Tamburic, et al., 2014). A Landsat based qualitative 

confirmatory test for algae would indicate reflectance in Green and absorption of Red 
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radiation. Presence of healthy photosynthetic algae in the water would expectedly agree 

with a chlorophyll index given in Equation 1. 

PAI ∝
ρG- ρR

ρG+ ρR

       Equation 1 

Where ρG is Green reflectance and ρR, Red reflectance of light in the sun’s 

electromagnetic spectrum (EMS). This chlorophyll index ranges between -1 and +1. 

Healthy photosynthetic algae would skew towards +1 while low values would indicate 

reflectance from substances other than photosynthetic algae.  Equation 2 introduces k, the 

constant of proportionality, accounting for visible reflectance from water and other 

substances in the water. 

PAI =k(
ρG- ρR

ρG+ ρR

)      Equation 2 

Turbidity, a major water quality issue in the study area (Holt, et al., 2008), is the 

main water quality parameter (in addition to water) that reflects visible light and may 

diminish the accuracy of the algal index developed in this study. The variable k in 

Equation 2 accounts for other reflectance sources of visible light. The value of k was 

assumed to be one because determination of visible reflectance from other optical active 

objects (other than PAI and mineral turbidity) was beyond the scope of this study. On a 

scale of -1≤PAI≥1, values that skew towards negative one (-1) indicate either minimal 

algal activity in the lake or there is high mineral turbidity. There is maximum likelihood 

of algal bloom for a photosynthetic algal index that skews to positive one (+1).  

Since Blue light has a shorter wavelength range compared to Green and Red light, 

it is more susceptible to Rayleigh scattering in the atmosphere (Jensen, 2015). Its 
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inclusion in a Landsat based photosynthetic algal index may increase the likelihood of 

random error. 

2.3.2 Mineral Turbidity Index (MTI) 

Since clear water absorbs all three bands of IR light: NIR, shortwave IR 1 

(SWIR1) and shortwave IR 2 (SWIR2), its reflectance indicates the presence of 

substances that may interfere with the accuracy of the algal index developed in this study. 

Thus, spectral a relationship that would qualitatively represent mineral turbidity is 

MTI = k(
ρSWIR2-ρG 

ρSWIR2+ρ
G

 
)     Equation 3 

A replacement of ρR in equation 1 with ρSWIR2 and rearranging, gave the normalized 

difference mineral turbidity index in equation 3. The SWIR2 reflectance was suitable in 

this case because it has the longest wavelength range making its reflectance the least 

likely except in highly turbid waters.  

On a scale of -1≤MTI≥1, values that skew towards negative one (-1) indicate 

either high algal activity in the lake or the water is clear; the reverse is the case for a 

mineral turbidity index that skews to positive one (+1). We present the following rules 

for interpreting the two indices (Table 3).  

Table 3. MTI and PAI interpretation scenarios 

SN Scenario  MTI value PAI value Comments  

1 Algal bloom Low  High High means MTI or PAI is skewed towards +1; 

low means MTI or PAI is skewed towards -1 

2 Possible algal 

bloom 

Medium, 

Low 

High Medium means MTI or PAI value cluster around 

zero 

3 No algal 

bloom 

Medium, 

Low 

Medium, Low  

4 Water is 

clear 

Medium, 

Low 

Medium, Low Ground-based monitoring required 

5 Turbid water Medium, 

High,   

Medium, Low  MTI or PAI could be medium if there is high 

visible reflectance from turbidity; 
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2.4 Empirical relationship between in situ CHLa & PAI and between SDZ & MTI 

This study utilized simple linear regression models to determine the significance 

of relationships between PAI and in situ CHLa concentration and also between MTI and 

SDZ, within the pixel in which sampling was done. This study used a 95% confidence 

level (p-value, α = 0.05) to demine significance between predictors and response 

variables in the models. The null hypothesis was that there was no linear relationship 

between the predictor and the response variable. When α≤0.05, we rejected the null 

hypothesis and concluded there was significant relationship; the reverse was the case 

when α>0.05.  

This assumption was tested using statistical significance and coefficients of 

determination of the regression models. Where there was no significant relationship, it 

may have been that the concentration captured in the in situ measurement was different 

from the actual concentration reflecting the water leaving radiance. Additionally, there 

was probably a mixing pixel problem interfering with CHLa reflectance. Mixed pixels 

(when a pixel has heterogeneous optically active objects) can result in confusion when 

interpreting properties of an image (Choodarathnakara, Kumar, Koliwad, & Patil, 2012). 

The coefficients of determination were R2 (strength of the relationship between the 

predictor and response variable) and predicted R2 (strength of such relationship in future 

application of the model). The R2 values ranged between -1≤R2≤+1. 

Each designated sampling site was located within a Landsat pixel with an area of 

30 m x 30 m on the lake. PAI and MTI values were used as predictors for CHLa 

concentrations and SDZ, respectively. A lake’s SDZ is an indication of how deep light 
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penetrates the water body (Alikas & Kratzer, 2017) and is inversely related to turbidity 

(Bachmann, Hoyer, Croteau, & Canfield Jr., 2017).  

2.5 Results and discussions 

 

2.5.1 Laboratory data versus in situ data 

 

This research involved validation of chlorophyll concentrations measured in situ 

via the YSI multi-probe. The team randomly selected dates on which water samples were 

collected alongside in situ measurements for laboratory analysis. Comparison of in situ 

data to the laboratory-analyzed data for CHLa in Grand Lake showed moderate to high 

correlation (Figure 13) demonstrating the accuracy of the in situ measurements. 

 
Figure 13. In situ vs. laboratory CHLa concentrations on selected dates in Grand Lake 

 

2.5.2 Results of relationships between CHLa & PAI and SDZ & MTI 

Table 4 presents results of sampling dates on which Landsat 8 spectral data were 

collected. Discussions of the results follow in the subsections. There was also a 
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comparison of images of PAI to those of true color images (Figures 17, 19, 19, & 20). 

The expectation was that green vegetation on true color images would have the same 

locations as relatively high values on a PAI image.  

Table 4. Regression models showing p-values, R2, predicted R2 and equations of PAI vs CHLa & 

MTI vs SDZ on different sampling dates in the study area. 

Lake Date 

Regression analysis (PAI vs. 

CHLa) 

Regression analysis (MTI vs. 

SDZ) 

Regression equations 

p-

value 

R2 Predicte

d R2 

p-value R2 Predicte

d R2 

Grand 

Lake 

2015/07/13 0.004 0.579 0.275 0.011 0.462 0.304 CHLa = 14.32 + 162PAI 

SDZ = 1.29 + 1.05MTI 

Grand 

Lake 

2015/07/29 0.078 0.278 0.007 0.165 0.168 0.000 CHLa = 29.08 - 79.0PAI 

SDZ = 1.486 + 0.375MTI 

Grand 

Lake 

2015/08/14 0.512 0.004 0.000 0.033 0.352 0.003 CHLa = 37.30 - 37.7PAI 

SDZ = 2.17 + 1.52MTI 

Grand 

Lake 

2015/09/15 0.156 0.174 0.000 0.001 0.640 0.555 CHLa = 7.25 - 19.3PAI 

SDZ = 3.23 + 2.97MTI 

Council 

Grove 

Lake 

2017/08/01 0.001 0.738 0.607 0.315 0.125 0.000 CHLa = 1.74 - 12.23PAI 

SDZ = 0.69 + 0.39MTI 

Council 

Grove 

Lake 

2017/08/17 0.003 0.679 0.474 0.780 0.010 0.000 CHLa = 5.10 - 40.46PAI 

SDZ = 0.59 + 0.14MTI 

John 

Redmond 

Lake 

2017/08/10 0.210 0.248 0.000 0.226 0.233 0.000 CHLa = 4.21 + 98.1PAI 

SDZ = -294 - 341MTI 

John 

Redmond 

Lake 

2017/08/26 0.984 0.000 0.000 0.132 0.336 0.000 CHLa = 11.10 + 3PAI 

SDZ = 168.70 + 158MTI 

Marion 

Lake 

2017/08/01 0.066 0.403 0.100 0.852 0.000 0.000 CHLa = 7.04 - 47.9PAI 

SDZ = 0.552 + 0.21MTI 

Marion 

Lake 

2017/08/17 0.005 0.707 0.406 0.098 0.343 0.000 CHLa = 6.61 – 34.38PAI 

SDZ = 1.32 + 1.44MTI 

 

 

2.5.2.1 Grand Lake 

On July 13, 2015, the data showed significant relationship between CHLa and 

PAI (α = 0.004). Compared to previous studies (Appendix II) we saw a good linear 

relationship between PAI and CHLa (R2 = 0.58) and a predictive strength of 28% 

(predicted R2 = 0.28). Concentrations ranged from 0.09 µg/L to 47.5 µg/L (Figure 14). It 

was not clear from the results whether PAI could predict more or less CHLa data if the 
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concentrations changed in range. In a future study, the spatial distribution of CHLa 

within a pixel will help capture the maximum concentration that may give a better R2 

value (Yacobi, Giltelson, & Mayo, 1995).  

   

 
Figure 14. CHLa concentrations (µg/L) in Grand Lake on July 13 2015 

 

The regression analysis also supported a significant relationship between SDZ and 

MTI (α = 0.011) on July 13, 2015. This significance might be supported by the trophic 

condition, having SDZ less than 3.0 m (Figure 15) and chlorophyll concentration greater 

than 8 μg/L (Istvánovics, 2013). The R2 was lower (0.46) than that of PAI while the 

predicted R2 (0.3) was comparable. 
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Figure 15. SDZ (m) in Grand Lake on July 13 2015. 

On July 29, 2015, there was no significant relationship between CHLa and PAI (α 

= 0.08). The coefficients of determination were also low (R2 = 0.28; R2-predicted = 

0.007). Similar results were recorded for the MTI on this date even though cloud cover 

was low (0.05%), and the image was taken at nadir while CHLa and SDZ remained 

comparable to the July 13 samples. The predictive model recorded for PAI (α = 0.51; R2 

= 0.004; R2-predicted = 0.00) on August 14 was even further off target. However, MTI, 

on August 14, showed a significant relationship with SDZ (α = 0.003; R2 = 0.35) 

although the predictive tendency was significantly low (R2-predict = 0.003). A mixed 

pixel problem may have affected the regression relationships between CHLa and 

PAI/MTI (Jones & Sirault, 2014) on these dates. 

On September 15, 2015, similar conditions were observed for PAI as on July 29. 

However, the model supported a significant relationship between MTI and SDZ, with 

strong R2 (0.64) and predicted R2 = 0.56. This could mean that the water was too turbid 

to allow sensor recording of chlorophyll reflectance; CHLa concentrations were relatively 
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low and SDZ relatively shallow at most sampling sites on that date (Figure 16). 

Alternatively, there could have been a mixed pixel problem (Jones & Sirault, 2014) 

 
Figure 16. CHLa (µg/L) and SDZ (m) in Grand Lake on September 15 2015 

2.5.2.2 Kansas reservoirs 

There were favorable cloud conditions for two ground based monitoring trips to 

Council Grove Lake, Kansas, in the summer of 2017 (08/01/2017 and 08/17/2017). The 

clouds were greater than 10% on August 1, but did not cover the lake and there were 

clear skies on August 17. The analysis showed significant relationship between CHLa 

and PAI on both days (α = 0.001 and 0.003 on the 1st and 17th, respectively). There were 

good R2 values as well on these dates (August 1: R2 = 0.74; predicted R2 = 0.61; August 

17: R2 = 0.68; predicted R2 = 0.47). Relationship between MTI and SDZ was 

insignificant (α = 0.78 and 0.23, respectively) on both days and the R2 values were very 

low as well (0.23 or lower). The reverse was expected on these dates because of the low 

CHLa concentration (Table 6) and seemingly turbid condition (low SDZ) on the lake. 

Apparently, the turbidity was not as significant to give high reflectance in SWIR2 (i.e. 

SWIR2 was probably absorbed by water more than it was reflected by mineral turbidity) 

Also, mixed pixel problems may have been minimal to enhance CHLa reflectance (Jones 

& Sirault, 2014).  
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Table 5. CHLa (µg/L) and SDZ (m) in Council Grove Lake with data collected from the 10 sample 

sites on 08/01/2017 and 08/17/2017. 

Sampling Site 

08/01/2017 08/17/2017 

SDZ (m) CHL (µg/L) SDZ (m) CHLa (µg/L) 

CG1 0.35 3.83 0.35 5.03 

CG2 0.35 5.09 0.31 4.51 

CG3 0.45 3.88 0.48 3.28 

CG4 0.35 3.05 0.46 2.79 

CG5 0.45 1.97 0.60 1.61 

CG6 0.35 5.03 0.40 2.68 

CG7 0.35 3.5 0.54 2.59 

CG8 0.50 2.26 0.57 2.35 

CG9 0.50 1.34 0.70 2.07 

CG10 0.65 2.21 0.59 1.96 

 

Unlike Council Grove Lake, analysis of data from John Redmond Lake showed 

no significant relationship between either pair (PAI and CHLa or MTI and SDZ). All R2 

values were very low as well. These were the cases for both sampling dates (08/10/2017 

and 08/26/2017).  

In Marion lake, there were no significant relationships between the variables 

using data collected from this lake on August 1, 2017. One of the two datasets 

(08/17/2017) showed significant relationship between PAI and CHLa (α = 0.005) with R2 

= 0.71 and predicted R2 = 0.41. The relationship between SDZ and MTI was not 

significant on the same date; this meant photosynthesis was active within the pixel under 

review. 

2.5.2.3 Interpretation of the regression models 

 

The slope of each model is the ratio of variations in PAI and CHLa, and it gives 

the extent to which the variables can change along the vertical and horizontal axes; the 

intercept (or constant) gives the CHLa concentration at which PAI becomes zero 

(Piñeiro, Perelman, Juan P. Guerschman, & Paruelo, 2008). These are useful pieces of 
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information in determining the minimum and maximum PAI/CHLa values within the 

predictive range of the model.  

Table 6 gives the regression models on the various sampling dates at the lakes 

under study and p-values of their slopes and intercepts. Inferring from the regression 

model for Grand Lake on July 13, 2015, the CHLa concentration would be 14.32 µg/L 

when PAI became zero at a slope of 162. Extrapolating the line negatively or positively 

would give the minimum and maximum possible PAI values for this concentration range 

and giving the prevailing circumstances. Based on this model, it is impossible to use a 

PAI value as low as negative one (-1) because CHLa will give a negative result. Using 

the model, the maximum CHLa concentration at which PAI became positive one (1) 

would be 176.32 µg/L. However, a series of run tests should follow to give the practical 

implications of the predictive tendencies revealed on this date (and all the other dates) 

albeit the statistical significance of the slope (α=0.004) and intercept (α=0.002). 

In Grand Lake, the dates on which the slopes were insignificant corresponded to 

slopes that had values less than one. In the Kansas reservoirs, however, significance in 

the slope or intercept did not depend on the magnitude of their values. The number of 

sampling dates in each of the Kansas lakes were smaller than in Grand lake. Several test 

runs are required to show the practical implications of the scenarios observed in Table 6.  

Table 6. The p-values of slopes and intercepts of the regression models developed between PAI and 

CHLa and between MTI and SDZ  

Lake Date Regression equations p-value (Slope) p-value (Constant) 

Grand Lake 2015/07/13 
CHLa = 14.32 + 162PAI 0.004 0.002 

SDZ = 1.29 + 1.05MTI 0.011 0.000 

Grand Lake 2015/07/29 
CHLa = 29.08 - 79.0PAI 0.078 0.002 

SDZ = 1.486 + 0.375MTI 0.165 0.000 

Grand Lake 2015/08/14 
CHLa = 37.30 - 37.7PAI 0.512 0.020 

SDZ = 2.17 + 1.52MTI 0.033 0.001 

Grand Lake 2015/09/15 CHLa = 7.25 - 19.3PAI 0.156 0.009 



62 
 

SDZ = 3.23 + 2.97MTI 0.001 0.000 

Council Grove Lake 2017/08/01 
CHLa = 1.74 - 12.23PAI 0.001 0.000 

SDZ = 0.69 + 0.39MTI 0.315 0.022 

Council Grove Lake 2017/08/17 
CHLa = 5.10 - 40.46PAI 0.003 0.000 

SDZ = 0.59 + 0.14MTI 0.708 0.099 

John Redmond Lake 2017/08/10 
CHLa = 4.21 + 98.1PAI 0.210 0.635 

SDZ = -294 - 341MTI 0.26 0.270 

John Redmond Lake 2017/08/26 
CHLa = 11.10 + 3PAI 0.984 0.252 

SDZ = 168.70 + 158MTI 0.132 0.080 

Marion Lake 2017/08/01 
CHLa = 7.04 - 47.9PAI 0.066 0.003 

SDZ = 0.55 + 0.21MTI 0.852 0.459 

Marion Lake 2017/08/17 
CHLa = 6.61 – 34.38PAI 0.005 0.000 

SDZ = 1.32 + 1.44MTI 0.098 0.031 

 

2.6 Comparison of PAI images to true color images 

The Landsat 8 images in Figures 17-20 show the landscape of PAIs in comparison 

to true color on the sampling dates that showed significant relationships between PAI and 

CHLa. Values range between low PAI values (dark colored) and high values (green). 

PAI, an indication of where photosynthesis is taking place, is comparable to the 

landscape of the true color images in all scenarios. (Jensen, 2015). Areas with green 

vegetation show high PAI values because photosynthesis is a process that reflects green 

light. Compared to areas with green vegetation, the values of PAI are low on the lakes 

because there is no algal bloom during the time of image acquisition. When there is an 

algal bloom on a lake (i.e. high photosynthetic activity in CHLa), we expect PAI to 

increase in value on the lake.  
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Figure 17. PAI compared to true color (Grand Lake, July 13, 2015). 
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Figure 18. PAI compared to true color (C. Grove, August 1, 2017). Cloud cover is not different from 

bare soil because they both reflect high in red. 
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Figure 19. PAI compared to true color (C. Grove, August 17, 2017). 
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Figure 20. PAI compared to a true color (Marion Lake, August 17, 2017). 

2.7 Conclusions 

The objective of this study was to develop indices for photosynthetic algae and 

mineral turbidity using Landsat 8 operational land imager (OLI). The goal was to develop 

indices for inclusion in a monitoring tool for automated characterization of HABs on 

lakes managed by the GRDA. A photosynthetic algal index (PAI) was developed using 

water leaving radiance in Green and Red giving active spectrum plots for these two bands 

in the photosynthetic pigment, CHLa. For the mineral turbidity index (MTI), SWIR2 and 

Green bands were used since SWIR2 has the longest wavelength and it is expected to be 

absorbed by water except if it is incident upon waters with high mineral turbidity.  
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The in situ results were compared to the PAI and MTI developed in this study 

using regression analysis. The results revealed temporally variable relationships. On 

some dates, significant relationships were observed with strong R2. However, this was not 

observed in all sampling dates.  

For those days on which strong relationships were found, there may have been 

minimal mixed pixel problems and less interference from other inherent optical 

properties with similar spectral signatures. Even though concentrations were low on some 

of those days, the model still had significant p-values and R2. Photosynthesis may have 

been active in those chlorophyll pigments despite their low concentrations. 

Mixed pixel problems are the most probable causes for poor model performance 

for the dates in which insignificant relationships were observed. Using concentrations 

from a single sampling point as ground truth for radiation representing a 900-m2 area may 

be overly optimistic. For a more accurate spectral signature for water leaving radiance, 

the goal would be sampling in as many points within a pixel as possible to estimate the 

concentration range and how much influence a parameter has on reflected radiation from 

that pixel.  

There were a number of other limitations to this study. A lab based clarification 

on whether CHLa can reflect NIR radiation was beyond the scope of this study. 

Conclusions were drawn based on literature reviewed. A future study would involve 

laboratory scale determination of IR spectral signatures for CHLa. 

Computation of PAI and MTI did not take into account the constant of 

proportionality. We assumed k to have carried the value of one. A lab-based study that 

gives a linear plot between CHLa and PAI and between SDZ and MTI would give a slope 
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that represents interference from water and other optically active objects with comparable 

spectral signatures. 

Determination of cutoff points for low, medium, and high values were also 

beyond the scope of this study. These were limited to range of values between negative 

and positive one. A future lab based experiment would develop a calibration curve with 

various concentrations of CHLa and turbidity to determine those cutoff points. 
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CHAPTER III 
 

SOFTWARE TOOL FOR MONITORING HARMFUL ALGAL BLOOMS USING 

LANDSAT DATA 

 

Mansaray Abubakarr S.1, Swatelle Mitchell1, Lampard Dave1, Torbick Nathan2, Stoodley Scott 

H.1, Wagner Kevin L. 1, and Dzialowski Andrew D. 1 

1Oklahoma State University, 2Applied GeoSolutions  

Abstract 

Lake managers need more resources to address challenges of increased frequency and 

spatial extent in detecting harmful algal blooms (HABs). Land use practices such as 

agriculture and urbanization cumulatively introduce nutrients into downstream water 

bodies and increase the likelihood of HABs. They also introduce organic carbon leading 

to increased rates of microbial metabolism, oxygen demand, and subsequent 

bioavailability of nutrients. Pinpointing these sources is a difficult task, which 

complicates prioritizing monitoring locations and frequency for HABs detection. In 

responding to the susceptibility of Oklahoma lakes to these uncertainties, we developed 

an automated tool that can help address these spatial and temporal challenges for HABs 

monitoring. In this study, we developed an open source software tool in Python to 

monitor HABs using a satellite based photosynthetic algal index (PAI). To account for 

interferences from other optically active objects, a mineral turbidity index (MTI) was also 

developed. The Python tool downloads Landsat images from the United States 

Geological Survey’s (USGS) Earth Explorer website and saves them onto a desktop. It 

then extracts spectral data and input into the equations that characterize photosynthetic 

algae and mineral turbidity. These computational results for photosynthetic algae and 

mineral turbidity determine whether there is a bloom on the lake. 



70 
 

3.1 Introduction 

 Lake managers today need more resources to address challenges of increased 

frequency and spatial extent in detecting harmful algal blooms (HABs). Increasing land 

use practices such as agriculture, settlements, and forestry cumulatively introduce 

nutrients directly and through metabolism of organic carbon into downstream water 

bodies (Machmuller, et al., 2015). Agricultural practices and land clearing introduce 

organic carbon into water bodies and lead to an increase in oxygen demand resulting 

from increased rates of microbial metabolism (Findlay, Pace, Lints, & Howe, 1992). 

Phosphorus becomes bioavailable in these anoxic aquatic conditions (Pettersson, 19989) 

and triggers exponential algal growth (Bormans, Maršálek, & Jančula, 2016). Nitrogen is 

also a limiting factor to HABs occurrence (Filstrup & Downing, 2017) and it is supplied 

through fixation from the atmosphere (Howarth, Marino, Lane, & Cole, 1988), 

groundwater inflow (USGS, 2016), and surface runoff (Filstrup & Downing, 2017). 

These nonpoint nutrient sources make it challenging to pinpoint priority areas for HABs 

monitoring in inland water bodies. New monitoring tools that capture spatial and 

temporal variability of these HABs are needed in agriculturally productive regions such 

as Oklahoma, where more than 200 lakes are susceptible to impairment from these 

pollutants. 

 In the Grand Lake watershed in Oklahoma, Kansas, Arkansas, Missouri, the 

development of an automated monitoring tool for HABs detection has become a priority 

in pursuit to addressing the repeated cases of unprecedented blooms in jurisdictional 

waters. The goal is to use this new monitoring strategy to identify and characterize the 

spatial and temporal extent of such algal blooms. Developing this tool will help agencies 
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pinpoint priority areas for algal pollution monitoring and save time and cost in future 

water quality monitoring. 

 The development of such automated monitoring tool is possible through machine 

learning, which is a sequence of instructions (algorithms) that are built in a computer 

programming language. The script is coded according to specific instructions and input 

information derived from analytical and/or empirical data (Alpaydın, 2010). Machine 

learning has been used in remote sensing and geographic information systems (GIS) for 

natural resource management. Huang and Jensen (1997) asserted that the use of decision 

trees and minimal human input help computers learn how to generate information on 

remote sensing and GIS of the environment (Huang & Jensen, 1997). Several studies 

have used similar methods in developing workflows of image acquisition, processing, 

and analysis with minimal human input (Melgani & Bruzzone, 2004; Ahmad, Kalra, & 

Stephen, 2010; Lary, Alavi, Gandomi, & Walker, 2016; Cracknell & Reading, 2014; 

Yong Hoon, Ho Kyung, Jong-Kuk, Jungho, & Sunghyun, 2014).  

 A limitation to machine learning in remote sensing is the difficulty in generalizing 

the code to be universally applicable. The algorithms are limited to specific geographical, 

analytical, and empirical boundaries (Brassel & Weibel, 2007). This makes it limiting to 

use a software developed in a different study area since their algorithms have spatial 

differences in water quality. The objective of this study is to develop an automated 

satellite based monitoring tool for HABs detection in the Grand Lake Watershed. 

Ultimately, lake managers in the entire southcentral US will be able to use this tool in 

detecting and characterizing HABs.  
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3.2 Materials and methods 

3.2.1 Description of the study area 

The Grand Lake Watershed (Figure 21) has an area that lies in three Landsat 

path/row areas (Appendix II). The Landsat path/row areas have minimum swath width of 

185 km and the sensor takes images with an instantaneous-field-of-view (IFOV) of 30 m 

x 30 m. The IFOV is also known as pixel, the smallest unit of an image (Jensen, 2015), 

and ranges between 7,000 and 9,000 pixels per Landsat scene. 

 
Figure 21. Map showing the Grand Lake watershed and its sub-watersheds 

 

 Officially named Grand Lake O’ The Cherokees hereafter referred to as Grand 

Lake, it is located in Delaware, Ottawa, and Mayes counties in northeastern Oklahoma. 

Grand Lake is in the foothills of the Ozark Mountains and receives its water from the 

Grand (Neosho), Elk, and Spring Rivers (LakeHub LLC, 2018). Table 7 shows the 
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surface area, shoreline length, average depth, and water volume of Grand Lake (Johnson 

& Luza, 2008) and the other lakes under study. Figure 22 shows a map of the Grand Lake 

and sampling sites on the lake.  

Table 7. Characteristics of Lakes under study 

Lake Surface area 

(km2) 

Shoreline length 

(km)  

Mean Depth 

(m) 

water volume 

(m3) 

Grand Lake 188.2 2,092.147 11.0 2,062,378,560 

Council Grove Lake 13.27 64.374 4.0 59,823,869.121 

Marion Lake  0.62 96.561 3.4 98,560,132.747 

John Redmond Lake 38 94.951 2.7 83,016,000 

 

 

   
Figure 22. Sampling sites of Grand Lake in Oklahoma  

 

Council Grove Lake, in Morris County, is located in the scenic Flint Hills region 

of Kansas and lies in the Neosho River basin. Table 7 shows the surface area, mean 

depth, shoreline length, and volume of water in the lake (U.S. Army Corps of Engineers, 
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2011). Figure 23 shows a map of the Council Grove Lake and sampling points on the 

lake. 

 

   
Figure 23. Sampling sites on Council Grove Lake in Kansas 

 

Marion Lake lies between the cities of Marion and Hillsboro in Marion county, 

central Kansas. It is situated in the North Cottonwood River basin, which drains most of 

the watershed. Figures 24 shows a map Marion Lake and the lake sampling sites. The 

surface area, shoreline length, mean depth, and water volume are shown in Table 7 (US 

Army Corps of Engineers, 2018).   
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Figure 24. Sampling sites on Marion Lake in Kansas 

 

The Neosho River in the John Redmond sub watershed serves as both the 

recharge in the northwest and discharge in the southeast for the John Redmond Lake 

(Figure 25), which lies within Coffey County in eastern Kansas. Table 7 shows the 

reservoir’s surface area, mean depth, shoreline length, and volume (US Army corpse of 

Engineers, 2018).      
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Figure 25. Sampling sites on John Redmond Lake in Kansas 

 

3.2.2 In-situ water quality sampling 

The programming workflow provides for validation through in situ water quality 

data plotted against temporally and spatially coincident extracted spectral data. The EXO-

1 YSI multi-parameter water quality probe is used to collect data for CHLa, and the 

Secchi disc is used to collect data for SDZ. These data are used for routine quality 

assurance (QA) tests when running the tool. In a previous study (Chapter II), indices were 

developed, for use in this tool. The data used to develop the indices were collected using 

the EXO1 YSI multi-parameter probe at designated sample sites on lakes in the study 

area. The probe consists of replaceable sensors and pressure transducers, which pick 

signals and send to the detector that displays the signals as concentrations of the different 

parameters. The procedures for assembling, preparing, and calibrating the EXO1 probe 

are detailed in the instrument’s operation manual (EXO, 2017).  
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3.2.3 Collection of water samples for laboratory analyses 

In the development of the indices, we collected samples for analysis in the laboratory. 

These data were compared to in situ water quality data collected from the same sites and 

dates as quality control and quality assurance. We utilized brown bottles, a depth 

integrated tube sampler, and a Van Dorne water sampler to collect water samples. The 

samples were stored in a cooler and transported to the laboratory for sample analysis. 

Sample collection and analyses followed the USEPA’s sampling and analysis plan 

guidance and template (USEPA, 2014). 

3.2.4 Software  

 The software developed in this study is written in Python 3.4. Python is free and 

open source, and it is extensively utilized for scientific applications because of its object-

oriented, interpretive, and interactive programming tendencies (Wichmann, 2017). 

Python 3 has all recent standard library improvements available by default in version 3.4 

(Wichmann, 2017).  

 With Python, the user does not have to be an expert in computer programming. The 

language is generic and its script can be easily interpreted. The standard Python 

programming language can support a large set of spatial and temporal raster data files and 

can run and display iterative temporal models (Karssenberg, de Jong, & van der Kwast, 

2007). The program is an open source with a large number of library modules that make 

it suitable for our satellite based monitoring (Oliphant, 2007). 

3.2.5 Theoretical and empirical bases of the tool 

 In a previous remote sensing study (Chapter II), indices were developed for 

photosynthetic algae and mineral turbidity as shown in the equations below.  
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PAI =
ρG- ρR

ρG+ ρR

    

Where PAI is photosynthetic algal index, ρG is Green reflectance, and ρR is Red 

reflectance of light in the sun’s electromagnetic spectrum (EMS). The PAI has values 

ranging between -1 and +1. For the mineral turbidity index (MTI), 

MTI = (
ρSWIR2-ρG 

ρSWIR2+ρ
G

 
)   

Where ρSWIR2 is shortwave infrared 2 and MTI ranges between -1 and +1. The PAI is 

incorporated into the Python script to delineate the active spectrum of photosynthetic 

algae and guide mapping of HABs in the lakes under study. The MTI was developed to 

account for interference from other optically active objects in the water body. Turbidity, a 

major water quality issue in Oklahoma, is regarded the main interference to PAI 

measurement. These two indices were empirically tested with ground based data on 

temporally coincident dates of Landsat 8 OLI (Chapter II).    

3.3 Structure and work flow of the python script 

3.3.1 Image acquisition  

 The tool is customized to obtain satellite images from the USGS earth explorer 

website. Specific instructions include searching for the uniform resource locator (URL), 

signing in with a username and password; specifying image types and quality, and 

downloading to a computer desktop. The tool also has the capability of ordering and 

downloading surface reflectance images from USGS. It displays update on the status of 

orders whenever the user logs on to their computer. This software has instructions that 

enhance the complete ordering and downloading procedures set by the USGS. 
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3.3.2 File extensions (dependencies) 

 There is a wide range of extension libraries that the Python program depends on 

for full operation. The type of file extension used depends on the purpose for which the 

script is written. We utilized eight extensions in order to ensure smooth operation of the 

automated HABs monitoring tool. Table 8 shows a list of the file extensions used in this 

study.  

Table 8. File extensions for Python scripting 

File Extension Description/function 

NumPy The fundamental package for scientific computing with Python 

GDAL A translator library for raster and vector geospatial data formats  

PyProj Performs cartographic transformations and geodetic computations 

Shapely A licensed Python package for manipulation and analysis of planar geometric objects 

Requests Allows the user to send HTTP requests, without the need for manual labor, i.e. there is 

no need to add query strings manually to your URLs, or to form-encode your POST 

data 

Rasterio  Geographic information systems use GeoTIFF and other formats to organize and store 

gridded raster datasets such as satellite imagery and terrain models. Rasterio reads and 

writes these formats  

Matplotlib  A Python 2D plotting library which produces publication quality figures in a variety of 

hardcopy formats and interactive environments 

USGS A Python module for interfacing with the USGS website 

  

3.3.3 Interpretation of PAI and MTI values 

 Figure 26 shows a simple flow diagram describing the workflow of the software and 

its interpretation rules. Following are detailed descriptions of the workflow. 
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Figure 26. Flow diagram showing the operational structure of the software developed for automated 

monitoring of HABs in the Grand Lake watershed 

 

 The Python tool extracts spectral data for input into the indices developed for 

photosynthetic algae and mineral turbidity. The first step is computation of PAI followed 

by a quality assurance (QA) test. The workflow is built such that QA tests are done 

routinely and when necessary. The frequency of this routine is determined through 

empirical data, which will be compiled in due course alongside utilization of the 

monitoring tool.  In-between the routine QA tests, it is optional to the user to execute the 

test. The QA test is based on a Pass/Fail standard. Regression analysis is done on the PAI 

against in situ chlorophyll-a data. If the results show regression error, α≤0.05, coefficient 

of determination R2≥0.6 and predicted R2≥0.5, the tool will indicate a Pass. If, on the 

other hand, α>0.05, R2<0.6, and predicted R2<0.5, the tool will indicate a Fail and report 

details of the failed QA test. In this case, the user has the ability to override the failed test 

and continue with the analysis. These standards are based on values reported in the 
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literature and from confidence intervals that assume normal distribution of data (Allee & 

Johnson, 1999; Chen, et al., 2010; Han & Rundquist, 1997; Kirk, 2011; Mishra & 

Mishra, 2012; Ruddick, Gons, Rijkeboer, & Tilstone, 2001; Tebbs, Harper, & Remedios, 

2013; Thu Ha, Koike, Nhuan, Parsons, & Thao, 2017; Torbick, et al., 2008; Yacobi, 

Giltelson, & Mayo, 1995). Future studies will involve development of a Pass/Fail 

standard based on both empirical and analytical evidences.  

  Following the pass/fail test is interpretation of high, medium, or low PAI values. 

High PAI values have range 0.5-1, medium PAI values have range (-0.5)-0.49, and low 

PAI values have range (-1)-(-0.49). The expectation is that these ranges will correspond 

to scenarios as summarized in Table 9. However, these standards require verification by 

empirical evidence through series of test runs in future monitoring programs.  

Table 9. Interpretation rules for both PAI and MTI in the automated monitoring tool 

Caveat If PAI is: And MTI is: Report 

QA test, no MTI computation required High  Low Algal bloom 

QA test, MTI computation is necessary High Medium, Low Possible algal bloom 

QA test, MTI computation is required Medium, Low Medium, Low No algal bloom 

QA test, MTI computation is required Medium, Low Medium, Low Water is clear 

QA test, MTI computation is required Medium, Low  Medium, High   Turbid water 

 

 These resulting PAI and MTI values at designated monitoring sites are exported to a 

csv file for further analysis and decision-making. Additionally, shape files for all lakes 

under investigation have been included in the software for overlay on the satellite image. 

Mapping of PAI and/or MTI on the lakes are possible through masking and plotting in a 

GIS software.   

 The Python code for the software will post at GitHub (https://github.com/) upon 

approval from the owners (GRDA). The next step will be series of test runs of the 

software to validate its functionality. Additionally, results of trials will be useful in the 

https://github.com/
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development of standards and a completed manuscript for publication in peer reviewed 

journals.    

3.4 Conclusions 

  The objective of this study was to develop an automated tool for detection of 

HABs in the Grand Lake Watershed and, potentially, the southcentral USA. This study 

used open source Python to build a software that automates a number of steps from image 

acquisition to displaying the spatial extent of a photosynthetic algal index on lakes 

through GIS mapping software.  

  The software can order and download radiometric, geometric, and 

atmospherically corrected images (Level-2 LC images) and extract spectral values to 

compute PAI and/or MTI with set standards and QA requirements. The results indicate 

whether there is a bloom, a possible bloom, turbidity, or the water is clear. Resulting 

images can also be plotted in a GIS platform (e.g. QGIS or ArcMap).  
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CHAPTER IV 
 

LAKE WATER QUALITY BY ECOREGION AND HYDROLOGIC UNIT IN 

OKLAHOMA 

 

Mansaray Abubakarr S1, Stoodley Scott H1, Dzialowski Andrew D1, Wagner Kevin L1, 

and Torbick Nathan2 

 

1Oklahoma State University; 2Applied GeoSolutions 

 

Abstract 

The goal of water quality monitoring at a regional level is to determine the magnitude 

and spatial distribution of pollutants across a region. In Oklahoma, most of the more than 

200 lakes are susceptible to impairment from sediments, nutrients, and microorganisms 

causing economic and ecological concerns to state agencies and other stakeholders. The 

Oklahoma Water Resources Board (OWRB) monitors over 130 lakes on a quarterly 

rotational basis over a five-year period through their Beneficial Use Monitoring Program 

(BUMP). In this study, we classified 20 of those lakes into ecoregions and/or hydrologic 

units to determine if a representative lake could be selected per ecoregion for ground-

based water quality monitoring. The OWRB’s lake monitoring staff collected and 

analyzed the water quality samples. Lakes were compared for turbidity and CHLa using 

single factor analysis of variance (ANOVA) and two-sample t-test. The results indicate 

that selecting representative lakes by ecoregion or hydrologic unit is a plausible 

approach. These lakes are located within Landsat flyover path/rows. This makes it 

possible to combine ground based and Landsat data for input into the satellite based water 

quality monitoring tool developed in a previous study (Chapter II). This combination of 

ground based and automated satellite-based monitoring will increase sampling frequency 

in lakes and expand the spatial extent of OWRB’s lake monitoring program. 
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4.1 Introduction 

A major challenge to water quality monitoring is using limited resources to 

sample many areas at a time. Usually agencies are limited in budgets and human 

resources. This makes it hard for accurate and comprehensive sampling of water bodies 

throughout a region (Rodríguez, et al., 2006). Nonetheless, successful water quality 

monitoring at regional scale requires consideration of the spatial extent of many water 

bodies as opposed to measuring a single point over time (Urquhart, Paulsen, & Larsen, 

1998). Deciding which water body to choose in a rotational monitoring program is also 

challenging as the possibility exists to miss out on major pollution events (Harvey, 

Kratzer, & Philipson, 2015). Oklahoma state agencies with water quality monitoring 

responsibilities face this challenge with over 200 reservoirs distributed throughout the 

state (Figure 27). There are approximately 55,646 miles of shoreline along lakes and 

ponds and 1,401 square miles of water area in those lakes and ponds (OWRB, 2018).  
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Figure 27 Map showing Lakes in Oklahoma 

 

In Oklahoma, most of the lakes are susceptible to impairment from sediments, 

nutrients, and pathogens (OCC, 2014). This is a concern given the social, economic, and 

environmental benefits derived from those lakes. Estimates have shown that reservoir 

related recreation contributes an annual income of $2.2 billion to Oklahoma’s economy. 

Fishing contributes $730,503,000 to the economy, while camping contributes another 

$10.7 million annually. Activities related to those reservoirs provide 32,100 jobs and 

18,718,000 tourist days every year (OWRB, 2017). There is a need for monitoring 

programs that will delineate the magnitude and extent of pollution in as many of those 

lakes as possible. Such monitoring results will provide a useful guide for determining 
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where to implement beneficial management practices that will reduce pollution sources in 

the watersheds in Oklahoma.  

The Oklahoma Water Resources Board (OWRB) developed the Beneficial Use 

Monitoring Program (BUMP) to ensure sampling of 130 lakes on quarterly basis with a 

five-year rotation schedule (OWRB, 2017). The monitoring program includes only lakes 

that are above 50 surface acres. These are broken up into two groups, those lakes that are 

greater than 500 surface acres and those below. Out of the 68 lakes with surface acres 

greater than 500, 14 are monitored during one of the quarters in a selected year and twice 

in the five-year rotational monitoring period. Ten lakes with areas less than 500 surface 

acres are randomly selected and monitored annually over the 5-year rotational period 

(OWRB, 2017).  

Due to this small sample size relative to the number of lakes in the state, many of 

the Oklahoma lakes are not monitored during a quarterly BUMP schedule. This poses the 

challenge of uncertainties in delineating which reservoirs may or may not be supporting 

their beneficial uses and to what magnitude they matter. These uncertainties have been 

further confounded by unprecedented harmful algal blooms (HABs) in a number of those 

reservoirs (Holt, et al., 2008). These algal pollution events have been repeating every 

summer.  

In 2015, the GRDA funded this research to develop a near real time Landsat 8 

based water quality monitoring tool for timely detection and assessment of HABs in 

northeastern Oklahoma. The goal is to capacitate state agencies like OWRB to utilize this 

new monitoring tool to improve risk assessment through timely and extended 

characterization of HABs in lakes in southcentral USA. This will help improve resource 
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allocation by delineating hotspot areas for priority monitoring, maximizing customer 

satisfaction, and achieving water resource policy objectives.   

This study looks into the potential for a ground based monitoring routine that 

covers the required spatial extent while combining with temporally coincident satellite 

flyovers. This monitoring capability is needed to integrate in situ water quality data, 

satellite data, and machine learning to calibrate and run the monitoring tool. The 

objective is to determine if representative reservoirs can be selected based on their 

ecoregion or hydrologic unit to coincide with satellite flyover schedules. Lakes in these 

regions are compared to each other over a 5-year period (2012-2017) in terms of CHLa 

and turbidity.  

Water bodies within the same ecoregion are expected to be susceptible to similar 

ecological conditions (USEPA, 2017). Those water bodies in the same hydrologic unit 

are expected to have similar water quality trends since they all receive waters from the 

same upstream sources and have similar indirect source conditions (NRCS-USDA, 2007).  

Delineation of representative water bodies within a satellite fly-over path/row will ensure 

spatial and temporal coincidence in ground based and Landsat data. We hypothesize that 

reservoirs in the same ecoregion and/or hydrologic unit are not significantly different in 

Turbidity and CHLa concentrations at a 95% confidence level.  

4.2 Materials and Methods 

4.2.1 Description of study area 

This study covered 20 reservoirs across the state of Oklahoma all of which are included 

in the OWRB’s BUMP. Appendix XI presents a list of all 20 lakes, sampling sites, 

sampling dates, and water quality parameters. In order to capture the variations in 
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Oklahoma’s ecoregions and hydrologic units, the selected lakes spread across the length 

and breadth of the state with the exception of the panhandle in the northwest; data were not 

available for this region. Figure 28 shows locations of the selected lakes across Oklahoma. 

 
Figure 28 Selected Reservoirs across Oklahoma  

 

4.2.2 Ecoregions 

Oklahoma has 12 level III ecoregions (Figures 29) and 46 level IV ecoregions. Each 

ecoregion has characteristic spatial patterns of biotic and abiotic communities defined by 

their physiography, geology, climate, soils, land use, wildlife, fish, hydrology, and 

vegetation (USEPA, 2017). This ecological diversity in Oklahoma is due to the varied 

landscape in climate, terrain, geology, soil, and land use (USEPA, 2017). The variability 
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is characterized by vast plains, elevated karst plateaus, hills, and folded low mountains. 

The precipitation gradient starts from east to west ranging from high in the east to low in 

the west. There are higher temperatures and longer growing seasons in the south. The 

state is characterized by landscapes as summarized in table 10. The elevation gradient 

begins with 1,524 m on Black Mesa in the northwestern Panhandle down to about 91 m 

in the southeast (USEPA, 2017).  

Table 10. Variations in landscape in Oklahoma 

Landscape  Location/Description  

Ouachita Mountains forested and become progressively more stunted 

and open westward 

Southern pine forests Southeast  

Tall grass prairie, mixed grass prairie, and short 

grass 

Central and western parts of the state 

mesquite and other xeric plants characteristic of the dry southwest 

 

 
Figure 29. Level III Ecoregions and their constituent reservoirs in Oklahoma  
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4.2.3 River Basins and Hydrologic Unit Codes 

Oklahoma lies within two major river basins, the Red River and the Arkansas River 

basins (Johnson & Luza, 2008). The Red River in Oklahoma, starts from the Texas 

Panhandle in the east and flows into Arkansas where it continues through Louisiana to 

join the Atchafalaya River. The Arkansas River enters Oklahoma in Kay County and 

flows into Arkansas near Fort Smith on its way to the Mississippi River in southeastern 

Kansas (Johnson & Luza, 2008). Figure 30 shows a map of Oklahoma’s river systems. 

Most of these river systems were impounded to give rise to the lakes under study. These 

rivers and lakes divide into hydrologic unit codes based on their regional and drainage 

similarities (NRCS-USDA, 2007).  

 
Figure 30. Map showing rivers and lakes across Oklahoma 
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This study considered Oklahoma’s sub-regional level and accounting units with 4-

digit and 6-digit hydrological unit codes, respectively. When lakes within an ecoregion 

were significantly different, they were divided further into these hydrologic units, which 

have areas that locate within those ecoregions. These units receive surface water from an 

upstream drainage system and associated surface areas and they form an area with single 

or multiple outlet points (NRCS-USDA, 2007). Figures 31 and 32 show the 4-digit and 6-

digit hydrologic unit maps of Oklahoma, respectively. 

 

 
Figure 31. Maps showing 4-digi hydrologic units and their constituent reservoirs in Oklahoma 
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Figure 32. Maps showing 6-digit hydrologic units and their constituent reservoirs in Oklahoma 

 

4.2.4 WRS2 Path/Row combinations for Landsat 8 in Oklahoma 

The areas in Landsat flyover paths and rows as described in the World Reference 

System 2 (WRS2) have spatial coincidence with ecoregions in Oklahoma. Every 

ecoregion and, hence, every hydrologic unit and reservoir have areas that locate within 

specific Landsat path/row areas (Figure 33).  
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Figure 33. Reservoirs and Level 4 hydrologic units in Oklahoma's Landsat paths/row areas 

Table 11 shows the list of lakes under review within each path/row.  

Table 11. List of reservoirs in each WRS2 path/row combinations for Oklahoma 

Path Row Oklahoma Lakes 

25 36 Broken bow Lake 

25 37 Broken Bow Lake 

26 35 Grand Lake O’ The Cherokees, Lake Eucha; Fort Gibson lake; Oologah Lake; Robert S 

Kerr Reservoir 

26 36 Broken Bow Lake, Hugo Lake; Robert S Kerr Reservoir, McGee Creek Reservoir 

27 34 Oologah Lake 

27 35 Lake Arcadia, Boomer Lake, Kaw Lake, Keystone Lake, Lake Carl Blackwell, Fort 

Gibson lake, Lake McMertury, Oologah Lake 

27 36 Lake Arcadia, Lake Thunderbird, Lake Taxoma, McGee Creek Reservoir  

27 37 Lake Taxoma 

28 34 Kaw Lake 

28 35 Lake Arcadia, Boomer Lake, Canton Lake, Kaw Lake, Lake Carl Blackwell, Lake Hefner, 

Lake McMertury,  

28 36 Lake Thunderbird, Waurika Lake 

29 35 Canton Lake, Foss Reservoir  
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4.3 Sampling and Analysis 

The OWRB did the sampling and analysis of data used in this study through their 

beneficial use monitoring program. Detailed description of procedures for sampling and 

analysis is available at the agency’s water quality monitoring website (OWRB, 2018). 

The monitoring team used high-resolution maps, landmarks, and thalweg (i.e. the 

deepest part of the water body) to designate sites for water sampling. A depth finder was 

used to locate a thalweg, details of which were recorded on a field sheet (location, depth, 

etc.). Samples were collected with sample bottles at 0.5 m depths; samples were also 

collected for quality assurance/quality control (QA/QC) analysis. 

For CHLa analysis, 1-L samples were collected at each sample site starting with 

rinsing the containers with sample water. Sample collection was done by immersing the 

sample container’s nozzle down to the 0.5-meter depth and slowly allowing sample 

container to fill and expelling all the air. The monitoring team ensured that shipping and 

analysis of samples in the laboratory was done within 24 hours because chlorophyll 

analysis has a 24-hour holding time. With overnight trips, the BUMP lake team did the 

analysis in the field. The detailed steps for CHLa analysis are available at the OWRB’s 

website (OWRB, 2013).  

The monitoring team used either the HACH® 2100P portable turbidity meter or the 

LaMotte 2020 portable turbidity meter. For immediate analysis, the water sample was 

collected using a vial in the turbidity meter kit. For subsequent analysis, a clean one-pint 

plastic bottle was rinsed and filled with sample for analysis within 24 hours. The bottles 

were placed on ice until analysis was conducted. During analysis, the water sample was 
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brought to ambient temperature for an accurate reading to be determined. Detailed 

description of this procedure is available at the OWRB website (OWRB, 2001). 

Analysis of data followed either single factor analysis of variance (ANOVA) or two 

sample t-test. We assumed that differences within and between datasets were not 

significant on a 95% confidence level (α = 0.05). Statistical analyses were completed for 

five years of data (2012-2017); the data were collected on specific dates within a quarter. 

Details of the data are shown in Appendix XI.  

For each sampling date, we took average concentrations of parameters from all 

sampling sites per lake. For all the 20 lakes, we compared the means of those average 

concentrations per date to each other (i.e. we assumed that those means were equal). 

Using the Minitab-18 statistical software, comparison of those average values per 

sampling period in the 20 lakes gave the results of significance in similarities or 

differences of CHLa and turbidity between the lakes.  

4.4 Results and Discussions 

4.4.1 Water quality by ecoregion 

Table 12 and Figure 34 show p-values that compare water quality in the lakes in each 

ecoregion. Five of the 12 ecoregions in Oklahoma include two or more of the 20 lakes in 

this study. Comparisons were not made in ecoregions in which there is only one lake. 

Table 12. Differences/similarities in water quality between lakes in Oklahoma’s ecoregions  

Ecoregions Lakes p-value 

  CHLa Turbidity 

Central great plains Lake McMurtry, Lake Hefner, Boomer Lake, Lake Carl 

Blackwell, Lake Thunderbird, Foss Lake, Kaw Lake, 

Waurika Reservoir 

0.0258 0.1471 

Cross Timbers Keystone Lake, Lake Texoma, Lake Arcadia 0.1932 0.0779 

Central Irregular 

Plains 

Oologah Lake, Ft Gibson Lake 
0.0307 0.0066 

Ozark Highlands Grand Lake O’ The Cherokees, Lake Eucha, Fort Gibson 

Lake 
0.3346 0.0542 
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Ouachita 

Mountains 

McGee Creek Reservoir, Broken Bow Lake 
0.1849 0.1495 

 

In the Central Great Plains and Central Irregular Plains, we reject the null 

hypothesis that the mean CHLa concentration between lakes within these regions are 

equal. Their p-values (α = 0.0258 and 0.0307, respectively) are lower than the required 

standard (α = 0.05) and, hence, we say the differences in mean CHLa between lakes in 

those two regions are significant. This is probably because the areas in those ecoregions 

divide into hydrologic units that are different in drainage sources, and have different 

susceptibility to the conditions that cause algal growth on the lakes (NRCS-USDA, 

2007). At the other ecoregions, we do not reject the null hypothesis for CHLa because 

their p-values are all greater than the required standard (α = 0.05). This means 

concentrations in those lakes are not significantly different for the period under review. 

For a Landsat based regional monitoring tool, a representative lake could come from each 

of those ecoregions for ground-based data.  
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Figure 34. Differences/similarities in water quality between lakes in Oklahoma’s ecoregions 

 

In the Central Irregular Plains, both CHLa and turbidity concentrations are 

different between lakes. This may be because the Chariton, Des Moines, Grand, 

Missouri, and Thompson Rivers and their tributaries go through an irregular landscape in 

this region (Karstensen, 2009). These may have led to irregular conditions that cause 

differences in CHLa and turbidity in the lakes. There is need to further divide the region 

into hydrologic units, which may help achieve the statistical insignificance in lakes and 

enhance selection of a representative lake for routine ground-based sampling. 

Apart from the Central Irregular Plains, all the ecoregions with two or more lakes 

have turbidity levels that are not significantly different. We expect this because of the 

predominant agricultural activities (Patton & Marston, 2009) that cause erosion by wind 
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and water in Oklahoma (DEQ, 2016). However, a combined ANOVA for turbidity in all 

20 lakes showed significant difference between lakes (α ≤ 0.5).  

4.4.2 Water quality by Hydrologic Unit 

Table 14 and Figure 34 show p-values that compare average concentrations of 

parameters within lakes in each hydrologic unit. If the p-value for average concentrations 

in lakes within one level of a hydrologic unit is significant (i.e. if concentrations of 

parameters within those lakes are significantly different from each other based on a 95% 

confidence level), we divide the constituent lakes into a second level hydrologic unit with 

an area having smaller number of lakes. This continues until we attain a p-value for 

insignificance in difference between concentrations of parameters in lakes. If a 

hydrologic unit has an area that have one lake, there is no need for a test of significance.    

Table 13. Differences/similarities in water quality between lakes in Oklahoma’s HUCs  

Hydrologic 

Unit Code 
Lakes p-value 

  CHLa Turbidity 

1105 Lake McMertury, Lake Hefner, Keystone Lake, Boomer Lake, 

Lake Carl Blackwell 
0.0033⃰ 0.1991 

1106 Kaw Lake, Keystone Lake 0.0705 0.1986 

1107 Grand Lake O’ The Cherokees, Oologah Lake, Lake Eucha, Ft 

Gibson Lake 
0.2069 0.0027 

110702 Grand Lake O’ The Cherokees, Lake Eucha, Fort Gibson Lake - 0.0542 

1109 Lake Thunderbird, Robert S Kerr Reservoir 0.3223 0.3651 

1110 Canton Lake, Robert S Kerr Reservoir 0.5885 0.2283 

1111 Robert S Kerr Reservoir, Keystone Lake 0.1679 0.4656 

1113 Foss Lake, Waurinka Reservoir, Lake Taxoma 0.0942 0.0213 

111303 Foss Lake, Lake Taxoma - 0.0769 

1114 McGee Creek Reservoir, Broken Bow Lake, Hugo Lake 0.0010 1.2*10-5 

⃰ Concentrations are significantly different at all HUC levels 

 

The two HUCs where lakes show significantly different water quality are HUC 

1105 and HUC 1114. For HUC 1114, dividing lakes into different levels of hydrologic 

units (4-digit, 6-digit, and even 8-digit HUCs) did not make any difference in statistical 
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significance for both CHLa and turbidity. This hydrologic unit (HUC 1114) is a forested 

area with more than one ecoregion. Each lake in this unit have source waters from 

different river systems. Hence, each of these lakes should be in the representative list for 

ground-based sampling. A similar situation was observed for CHLa in lakes of 

hydrologic unit with code 1105. This hydrologic unit lies in both the central Great Plains 

and the Cross Timbers Ecoregion. Since these two ecoregions have different ecological 

susceptibilities, we do not expect them to show statistical insignificance.  

 
Figure 35. Differences/similarities in water quality between lakes in Oklahoma’s HUCs 

4.4.3 Landsat 8 fly-over path/rows 

Each flyover path and row of Landsat 8 make up an area that coincides with areas 

having a number of ecoregions and hydrologic units. This makes it possible to have all 20 

lakes within at least one path/row of Landsat 8. Therefore, a future Landsat based 
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automated monitoring at regional level will have satellite data that are spatially 

coincident and comparable to ground-based water quality data from those lakes.  

Table 14 shows four flyover path/rows that spatially coincide with a number of 

lakes having statistically insignificant differences in concentrations (α>0.05) of 

parameters within those lakes. In path/row 26/35, average CHLa concentrations were 

statistically insignificant in differences between lakes in the area. Similarly, average 

concentrations of CHLa and turbidity were statistically insignificant in difference 

between lakes within path/row 28/35, 28/36, and 29/35.  Within those path/rows, the 

monitoring team could select representative lakes for a sampling routine that is 

temporally coincident with Landsat schedule. These sets of data could be used for routine 

calibration of the Landsat based automated monitoring tool for the region. In those 

path/rows where average concentrations in lakes were significantly different from each 

other (α≤0.5), the monitoring team could use ecoregions or hydrologic units for further 

grouping of the lakes by similarity.   

Table 14. p-values for path/row combinations 

Path Row Reservoirs p-value 

   CHLa Turbidity 

26 35 Grand Lake O’ The Cherokees, Lake Eucha; Fort Gibson lake; 

Oologah Lake; Robert S Kerr Reservoir 

0.2753 2.39*10-5 

 

26 36 Broken Bow Lake, Hugo Lake; Robert S Kerr Reservoir, 

McGee Creek Reservoir 

0.0010 4.95*10-6 

27 35 Lake Arcadia, Boomer Lake, Kaw Lake, Keystone Lake, Lake 

Carl Blackwell, Fort Gibson lake, Lake McMertury, Oologah 

Lake 

0.0016 0.0373 

27 36 Lake Arcadia, Lake Thunderbird, Lake Taxoma, McGee 

Creek Reservoir  

0.0207 0.0404 

28 35 Lake Arcadia, Boomer Lake, Canton Lake, Kaw Lake, Lake 

Carl Blackwell, Lake Hefner, Lake McMertury,  

0.0673 0.4639 

28 36 Lake Thunderbird, Waurika Lake 0.8011 0.2581 

29 35 Canton Lake, Foss Reservoir  0.2676 0.1930 
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4.5  Conclusions 

The objective of this study was to determine if representative lakes could be 

selected based on ecoregions and/or hydrologic units for ground based monitoring in 

Oklahoma lakes. The goal is to combine this monitoring plan with satellite data and 

machine learning for an automated monitoring tool for inland water bodies in the state.  

Twenty lakes in the OWRB’s BUMP were selected for the study. The OWRB 

provided the turbidity and CHLa data that were used in the analysis. The study used one-

factor ANOVA and two-sampled t-test in the study. 

For most of the ecoregions, the p-values with an error tolerance limit of 5% (α ≤ 

0.05) showed that a representative lake could be selected per region, except for the 

Central Great Plains and the Central Irregular Plains. These two regions required further 

subdivision of lakes by water quality.  

For hydrologic units, the p-values showed acceptable representation of a lake per 

unit. The exceptions were different in HUC 1105 and HUC 1114. Water quality data 

were statistically different at all sublevels in these HUCs. In these regions, it would be 

wise to include all the lakes in the representative list of lakes for ground-based sampling. 

The study results show that monitoring teams can select representative lakes 

based on their classification into ecoregions and hydrologic units in Oklahoma. These 

representative lakes have areas that lie in Landsat flyover path/rows. This makes it 

possible for combination of ground-based and satellite data for input into an automated 

monitoring tool for Oklahoma. This tool will increase sampling frequency and expand the 

spatial extent of lakes covered in OWRB’s BUMP for CHLa and turbidity.   



102 
 

CHAPTER V 
 

CONCLUSIONS 

The objective of this dissertation was to use Landsat 8 and in situ water quality data to 

develop an automated monitoring tool for HABs detection in the Grand Lake Watershed. The 

ultimate goal is to have this tool detect HABs in the entire southcentral USA. This need came 

about because of repeated cases of HABs especially during the summer in Grand Lake O’ The 

Cherokees. The Grand River Dam Authority became concerned over these repeated and erratic 

HAB events. In 2015, we started monitoring for development of this monitoring tool, which led 

to this dissertation as an outcome.  

This dissertation has five chapters. Chapter 1 introduces the problem, its context, and 

reviews literature in the subject area. Chapters II, III, and IV are in the form of publishable papers 

in peer-reviewed journals. Chapter II presents a novel index for photosynthetic algae in the study 

area. There is also a mineral turbidity index to account for interference from other optically active 

objects. Chapter III presents a description of an automated monitoring tool developed in this 

study. The tool downloads processed Landsat images from the USGS Earth Explorer website and 

extract spectral values for input into the indices. Following this step is an interpretation protocol 

that determines if PAI is high, medium, or low.  
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Chapter IV compares lakes by region in Oklahoma in terms of water quality and potential 

application of the automated monitoring tool at regional level.  

This research was limited to activities discussed in the chapters presented. We 

recommend that further study will complete the development of the automated monitoring tool 

for the Grand Lake watershed. The following recommendations are opportunities for continuation 

in improving this tool. 

Sampling was limited to one point within a pixel of 900 m2. It is unclear whether this 

single point had CHLa concentrations that represented the spatial extent of such pixel. If the 

situation of mixed pixel is pronounced, relationships between CHLa concentrations and spectral 

values representing that pixel may be misleading. The recommendation is a future monitoring 

routine that ensures as many samples within a pixel as possible. 

With the Landsat return schedule of 16 days, it becomes challenging to have early 

detection of HABs when it happens before or after the return period. In this case, ground-based 

data before or after the flyover schedule may not be useful for input into the automated 

monitoring tool. Additionally, if cloud cover is high on the day of Landsat flyover the return 

period becomes even longer. This is particularly challenging because weather conditions are 

erratic during the summer in Oklahoma. It is recommended that Landsat’s European counterpart, 

Sentinel (2&3) become part of the ground based monitoring protocol. Sentinel has a return period 

as early as 5 days. This will help increase the number of sample results and make statistical 

analysis more representative of the reality.  

In addition to monitoring frequency, Sentinel has a better spatial resolution with 

minimum pixel size of 10 m (100 m2). This will help minimize the problem of mixed pixel and 

improve validation of results obtained. The existence of image processing protocols that can fuse 

images of different resolutions makes this recommendation plausible.  
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This research developed caveats for interpretation of the algal index. The index indicates 

high, medium, or low based on the following proposed scale: high = 0.5-1, medium = -0.5-0.49 

and low is less than -0.5. This determination was based on statistical confidence intervals and 

literature review; but that may or may not be the case. A future empirical analysis would 

determine a scale that is based on proven experimental results.  

The automated tool is capable of determining the qualitative and spatial extent of HABs 

in lakes in the study area. However, this tool has not been tested for lakes across the region. This 

dissertation delineated selection of representative lakes for empirical testing of the software. A 

future study will consider this as an objective. Additionally, an integration of this software into 

mapping tools such as ArcGIS and QGIS will make it more powerful. 

This research did not involve a social and economic survey of the monitoring tool. The 

recommendation is for a future social and economic study that will highlight the impact of the 

tool on the lake management projects, the communities benefiting from such lakes, and the state 

economy. These will provide the basis for future investment in the tool.  A future study that 

considers the impact of HABs frequency on the value of lakes to amenities is also a good research 

idea in the future.
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APPENDICES 

 

Appendix I. Coefficient of determination of studies found in the literature 

Author and 

year 

Study Result of model 

Allee and 

Johnson 

(1999) 

Estimated surface CHLa and SD of 

Bull Shoals Reservoir in Arkansas, 

USA 

Models for CHLa from July 1994 (R2 = 0.80) 

and December 1994 (R2 = 0.84) data and for SD 

(R2 = 0.96) 

Carpenter and 

Carpenter 

(1983) 

Built multiple linear predictors for 

turbidity and chlorophyll pigment in 

freshwaters in southeastern 

Australia 

R2 in the range 0.59-0.95 for turbidity and 0.50-

0.85 for chlorophyll pigment 

Deutsch et al 

(2014) 

Landsat 7 and Landsat 8 compared 

for CHLa 

Better predictive tendencies of Landsat 8 (R2 = 

0.70) than either Landsat 7 (R2 = 0.11) or 

Landsat 7+8 (R2 = 0.46). 

 Han and 

Rundquist 

(1997) 

Ratio of NIR to Red region in 

relatively turbid Midwestern 

reservoirs in the US 

only on one occasion did they find the NIR/Red 

ratio to be a good predictor of chlorophyll 

content 

 Olmanson et 

al (2016) 

Compared sensors on Landsat 7 

ETM+ and Landsat 8 OLI to for SD 

in Minnesota 

Best water clarity model for Landsat 8 used the 

OLI 2/4 band ratio plus OLI band 1 (R2 = 0.82) 

Tebbs et al 

(2013) 

NIR/Red ratio for CHLa as 

indicator for cyanobacterial 

biomass. 

R2 as high as 0.85 against high CHLa. Strong R2 

(0.81) for the band ratio. Strong predictive 

tendency with TOA reflectance (R2 = 0.80) 

Torbick et al 

(2008)  

Combinations of Landsat 7 ETM+1 

and ETM+3 to develop equations 

for CHLa in West Lake, China 

For single bands, ETM+3 was a better predictor 

(R2 = 0.78) compared to ETM+1 (R2 = 0.45). A 

ratio of ETM+3/ETM+1 gave the best 

predictive equation (R2 = 0.81). 

Torbick et al 

(2013) 

Mapping inland lake water quality 

across the Lower Peninsula of 

Michigan 

For SD, R2 values for the routines = 0.56 for 

DN, 0.77 for LEDAPS, 0.58 for DOS, 0.82 for 

subsurface volumetric modeling, and 0.81 for 

radiance.  

Yacobi et al 

(1995) 

Estimating the concentration of 

chlorophyll using Landsat data 

The correlation between predicted and 

measured sets was R2 = 0.96 
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Appendix II. Landsat overpass schedules  

 

Sampling dates with coincidental satellite over passes in 2016 
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J                                

J                                

A                                

S                                

O                                

N                                

D                                 

 Sampling dates with coincidental satellite over passes in 2017 

J                                

F                                

M                                

A                                

M                                

J                                

J                                

A                                

S                                

O                                

N                                

D                                

Grand Lake (Path/Row: 26/35).  Council Grove and John Redmond Reservoirs (Path/Row: 27/33). Marion Reservoir (Path/Row: 28/33). 
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D       R F        S       S S        

Marion Lake:  Path/Row A: 124/211; Path/Row B: 28/33.  Council Grove Lake: Path/Row C: 27/33; Path/Row A:   124/211; Path/Row B:  28/33. 

Appendix III: In situ concentrations at Grand Lake 
Site 

Name Lat. Long. Date 

CHLa-RFU (OSU 

Probe) 

CHLa- µg/L (OSU 

Probe) 

Secchi Disk 

(m) 

CHLa-µg/L  (GRDA 

Probe) 

CHLa-RFU (GRDA 

Probe) 

Dream 36.50879 -94.9559 2014-07-25       -0.6 -0.2 

Drip 36.49967 -94.95615 2014-07-25       -0.6 -0.2 

Drown 36.49768 -94.91853 2014-07-25       -0.6 -0.2 

Duck 36.53628 -94.97203 2014-07-25       -0.6 -0.2 

Elk 36.64998 -94.70839 2014-07-25           

Grand 36.68269 -94.77281 2014-07-25           

Honey 36.57511 -94.78775 2014-07-25       -0.6 -0.2 

Horse 36.62247 -94.9092 2014-07-25       -0.6 -0.2 

P Dam 36.49254 -95.0448 2014-07-25       6.6 2.1 

Sail 36.64176 -94.81493 2014-07-25       8.5 2.8 

Shang 36.55447 -94.8449 2014-07-25           

Tree 36.56396 -94.91276 2014-07-25       -0.6 -0.2 

Wood 36.53666 -94.82251 2014-07-25       -0.6 -0.2 

Dream 36.50879 -94.9559 2014-08-26       4.6 1.5 

Drip 36.49967 -94.95615 2014-08-26       -0.1 0 

Drown 36.49768 -94.91853 2014-08-26       -0.1 0 

Duck 36.53628 -94.97203 2014-08-26       -0.1 0 

Elk 36.64998 -94.70839 2014-08-26       -0.1 0 

Grand 36.68269 -94.77281 2014-08-26       -0.1 0 

Honey 36.57511 -94.78775 2014-08-26       -0.1 0 

Horse 36.62247 -94.9092 2014-08-26       -0.1 0 

P Dam 36.49254 -95.0448 2014-08-26       3.4 1.1 
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Site 

Name Lat. Long. Date 

CHLa-RFU (OSU 

Probe) 

CHLa- µg/L (OSU 

Probe) 

Secchi Disk 

(m) 

CHLa-µg/L  (GRDA 

Probe) 

CHLa-RFU (GRDA 

Probe) 

Sail 36.64176 -94.81493 2014-08-26       -0.1 0 

Shang 36.55447 -94.8449 2014-08-26       -0.1 0 

Tree 36.56396 -94.91276 2014-08-26       -0.1 0 

Wood 36.53666 -94.82251 2014-08-26       -0.1 0 

Dream 36.50879 -94.9559 2014-10-15       1.5 0.5 

Drip 36.49967 -94.95615 2014-10-15       1.3 0.4 

Drown 36.49768 -94.91853 2014-10-15       2.1 0.7 

Duck 36.53628 -94.97203 2014-10-15       -0.2 -0.1 

Elk 36.64998 -94.70839 2014-10-15       - - 

Grand 36.68269 -94.77281 2014-10-15       6 2 

Honey 36.57511 -94.78775 2014-10-15       1.4 0.5 

Horse 36.62247 -94.9092 2014-10-15       -0.2 -0.1 

P Dam 36.49254 -95.0448 2014-10-15       1 0.3 

Sail 36.64176 -94.81493 2014-10-15       -0.2 -0.1 

Shang 36.55447 -94.8449 2014-10-15       2.6 0.9 

Tree 36.56396 -94.91276 2014-10-15       -0.2 -0.1 

Wood 36.53666 -94.82251 2014-10-15       -0.2 -0.1 

Dream 36.50879 -94.9559 2015-06-11       46.4 6.5 

Drip 36.49967 -94.95615 2015-06-11       34.7 4.4 

Drown 36.49768 -94.91853 2015-06-11       51.8 7.4 

Duck 36.53628 -94.97203 2015-06-11       60.3 8.9 

Elk 36.64998 -94.70839 2015-06-11           

Grand 36.68269 -94.77281 2015-06-11           

Honey 36.57511 -94.78775 2015-06-11           

Horse 36.62247 -94.9092 2015-06-11           

P Dam 36.49254 -95.0448 2015-06-11       34.4 4.3 
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Site 

Name Lat. Long. Date 

CHLa-RFU (OSU 

Probe) 

CHLa- µg/L (OSU 

Probe) 

Secchi Disk 

(m) 

CHLa-µg/L  (GRDA 

Probe) 

CHLa-RFU (GRDA 

Probe) 

Sail 36.64176 -94.81493 2015-06-11           

Shang 36.55447 -94.8449 2015-06-11           

Tree 36.56396 -94.91276 2015-06-11       44.6 6.2 

Wood 36.53666 -94.82251 2015-06-11       61.4 9.2 

Dream 36.50879 -94.9559 2015-07-13 3.25 28.15 1.01 28.15 3.25 

Drip 36.49967 -94.95615 2015-07-13 2.9 26.4 1.04 26.4 2.9 

Drown 36.49768 -94.91853 2015-07-13 6.7 47.5 0.80 47.5 6.7 

Duck 36.53628 -94.97203 2015-07-13 3.7 30.9 1.30 30.9 3.7 

Elk 36.64998 -94.70839 2015-07-13 0.29 0.09 0.30     

Grand 36.68269 -94.77281 2015-07-13 0.92 2.66 0.46     

Honey 36.57511 -94.78775 2015-07-13 7.45 28.73 0.78     

Horse 36.62247 -94.9092 2015-07-13 4.7 36.5 0.38 36.5 4.7 

P Dam 36.49254 -95.0448 2015-07-13 1.7 15.9 1.40 15.9 1.7 

Sail 36.64176 -94.81493 2015-07-13 4.62 17.59 0.57     

Shang 36.55447 -94.8449 2015-07-13 2.63 9.45 1.13     

Tree 36.56396 -94.91276 2015-07-13     0.97     

Wood 36.53666 -94.82251 2015-07-13 6.46 24.76 0.85     

Dream 36.50879 -94.9559 2015-07-29 2.25 21.35 1.40 21.35 2.25 

Drip 36.49967 -94.95615 2015-07-29 3.3 28.4 1.31 28.4 3.3 

Drown 36.49768 -94.91853 2015-07-29 3.2 27.9 1.38 27.9 3.2 

Duck 36.53628 -94.97203 2015-07-29 2.5 23.3 1.50 23.3 2.5 

Elk 36.64998 -94.70839 2015-07-29 1.69 6.13 0.99     

Grand 36.68269 -94.77281 2015-07-29 1.41 4.57 1.02     

Honey 36.57511 -94.78775 2015-07-29 2.97 10.72 1.30     

Horse 36.62247 -94.9092 2015-07-29 2.1 19.5 1.52 19.5 2.1 

P Dam 36.49254 -95.0448 2015-07-29 2.7 25.4 1.28 25.4 2.7 
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Site 

Name Lat. Long. Date 

CHLa-RFU (OSU 

Probe) 

CHLa- µg/L (OSU 

Probe) 

Secchi Disk 

(m) 

CHLa-µg/L  (GRDA 

Probe) 

CHLa-RFU (GRDA 

Probe) 

Sail 36.64176 -94.81493 2015-07-29 2.20 7.60 1.08     

Shang 36.55447 -94.8449 2015-07-29 2.05 7.14 1.42     

Tree 36.56396 -94.91276 2015-07-29     1.42     

Wood 36.53666 -94.82251 2015-07-29 2.30 8.10 1.37     

Dream 36.50879 -94.9559 2015-08-14 1.90 18.10 1.25 18.10 1.90 

Drip 36.49967 -94.95615 2015-08-14 2.50 23.20 1.57 23.20 2.50 

Drown 36.49768 -94.91853 2015-08-14 2.30 21.60 1.10 21.60 2.30 

Duck 36.53628 -94.97203 2015-08-14 2.40 22.30 1.32 22.30 2.40 

Elk 36.64998 -94.70839 2015-08-14 5.90 43.10 0.54 43.10 5.90 

Grand 36.68269 -94.77281 2015-08-14 4.20 33.80 0.71 33.80 4.20 

Honey 36.57511 -94.78775 2015-08-14 6.40 46.50 1.20 46.50 6.40 

Horse 36.62247 -94.9092 2015-08-14 3.30 28.80 0.94 28.80 3.30 

P Dam 36.49254 -95.0448 2015-08-14 1.60 15.60 0.76 15.60 1.60 

Sail 36.64176 -94.81493 2015-08-14 3.60 29.90 0.77 29.90 3.60 

Shang 36.55447 -94.8449 2015-08-14 2.80 25.40 1.12 25.40 2.80 

Tree 36.56396 -94.91276 2015-08-14 3.60 30.40 0.76 30.40 3.60 

Wood 36.53666 -94.82251 2015-08-14 3.10 27.30 1.20 27.30 3.10 

Dream 36.50879 -94.9559 2015-09-15 0.87 2.24 1.85     

Drip 36.49967 -94.95615 2015-09-15 0.77 2.13 1.90     

Drown 36.49768 -94.91853 2015-09-15 0.97 2.81 1.75     

Duck 36.53628 -94.97203 2015-09-15 1.10 3.32 1.50     

Elk 36.64998 -94.70839 2015-09-15 2.43 8.67 0.64     

Grand 36.68269 -94.77281 2015-09-15 1.92 6.63 0.60     

Honey 36.57511 -94.78775 2015-09-15 2.09 7.19 1.15     

Horse 36.62247 -94.9092 2015-09-15 1.66 5.56 0.78     

P Dam 36.49254 -95.0448 2015-09-15 0.85 2.40 1.80     
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Site 

Name Lat. Long. Date 

CHLa-RFU (OSU 

Probe) 

CHLa- µg/L (OSU 

Probe) 

Secchi Disk 

(m) 

CHLa-µg/L  (GRDA 

Probe) 

CHLa-RFU (GRDA 

Probe) 

Sail 36.64176 -94.81493 2015-09-15 1.17 3.60 0.97     

Shang 36.55447 -94.8449 2015-09-15 0.58 1.28 1.20     

Tree 36.56396 -94.91276 2015-09-15 0.84 2.43 1.38     

Wood 36.53666 -94.82251 2015-09-15 0.27 2.04 1.15     

Dream 36.50879 -94.9559 2016-05-12 1.21 3.90 1.37 6.1 1.4 

Drip 36.49967 -94.95615 2016-05-12 1.38 4.64 1.35 8.4 2 

Drown 36.49768 -94.91853 2016-05-12 2.34 8.49 1.48 9.5 2.2 

Duck 36.53628 -94.97203 2016-05-12 2.00 6.63 1.35 10 2.4 

Elk 36.64998 -94.70839 2016-05-12     0.88 17.6 4.2 

Grand 36.68269 -94.77281 2016-05-12 1.84 6.21 0.23 11.1 2.6 

Honey 36.57511 -94.78775 2016-05-12 3.29 8.32 1.01 5 1.2 

Horse 36.62247 -94.9092 2016-05-12 2.68 8.14 1.14 10.4 2.5 

P Dam 36.49254 -95.0448 2016-05-12 2.57 8.13 1.16 12.7 3 

Sail 36.64176 -94.81493 2016-05-12 1.58 5.56 0.33 9.8 2.3 

Shang 36.55447 -94.8449 2016-05-12 0.60 1.42 1.09 5 1.2 

Tree 36.56396 -94.91276 2016-05-12 0.63 1.39 1.43 4.4 1.1 

Wood 36.53666 -94.82251 2016-05-12 1.00 3.00 1.2 5.8 1.4 

Dream 36.50879 -94.9559 2016-06-28 3.01 11.05 1.33 17 4.5 

Drip 36.49967 -94.95615 2016-06-28 5.17 19.54 0.95 18.4 4.8 

Drown 36.49768 -94.91853 2016-06-28 4.46 16.77 0.87 20.6 5.4 

Duck 36.53628 -94.97203 2016-06-28 2.73 9.87 0.94 14.7 3.8 

Elk 36.64998 -94.70839 2016-06-28 3.02 10.98 1 16.1 4.2 

Grand 36.68269 -94.77281 2016-06-28 11.03 43.13 0.86 46.2 12.1 

Honey 36.57511 -94.78775 2016-06-28 4.83 18.04 0.84 23.3 6.1 

Horse 36.62247 -94.9092 2016-06-28 2.03 7.06 0.93 11.5 3 

P Dam 36.49254 -95.0448 2016-06-28 3.87 14.43 0.93 18.1 4.8 
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Site 

Name Lat. Long. Date 

CHLa-RFU (OSU 

Probe) 

CHLa- µg/L (OSU 

Probe) 

Secchi Disk 

(m) 

CHLa-µg/L  (GRDA 

Probe) 

CHLa-RFU (GRDA 

Probe) 

Sail 36.64176 -94.81493 2016-06-28 4.23 15.56 0.93 23.8 6.2 

Shang 36.55447 -94.8449 2016-06-28 4.65 18.10 0.83 28.1 7.4 

Tree 36.56396 -94.91276 2016-06-28 2.86 10.36 1.8 14 3.7 

Wood 36.53666 -94.82251 2016-06-28 3.37 12.55 1.3 16.4 4.3 

Appendix IV. In situ data at Council Grove Lake 

Site ID Lat. Long Date CHLa-RFU CHLa-µg/L Secchi Depth-m 

CG1 38.713066 -96.542366 2017-08-02 1.47 4.79 0.35 

CG1 38.713066 -96.542366 2017-08-02 0.98 2.86   

CG2 38.705002 -96.543983 2017-08-02 1.69 5.71 0.35 

CG2 38.705002 -96.543983 2017-08-02 1.38 4.46   

CG3 38.700901 -96.534302 2017-08-02 1.24 3.88 0.45 

CG3 38.700901 -96.534302 2017-08-02 - -   

CG4 38.688381 -96.527367 2017-08-02 1.09 3.31 0.35 

CG4 38.688381 -96.527367 2017-08-02 0.96 2.79   

CG5 38.689781 -96.513481 2017-08-02 0.73 1.84 0.45 

CG5 38.689781 -96.513481 2017-08-02 0.79 2.10   

CG6 38.713783 -96.507782 2017-08-02 1.54 5.11 0.35 

CG6 38.713783 -96.507782 2017-08-02 1.50 4.94   

CG7 38.705883 -96.508286 2017-08-02 1.11 3.37 0.35 

CG7 38.705833 -96.508286 2017-08-02 1.17 3.63   

CG8 38.693867 -96.502869 2017-08-02 0.78 2.04 0.50 

CG8 38.693867 -96.502869 2017-08-02 0.88 2.47   

CG9 38.686684 -96.500748 2017-08-02 0.61 1.38 0.50 

CG9 38.686684 -96.500748 2017-08-02 0.59 1.30   

CG10 38.683067 -96.507317 2017-08-02 0.86 2.36 0.65 

CG10 38.683067 -96.507317 2017-08-02 0.78 2.05   
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Site ID Lat. Long Date CHLa-RFU CHLa-µg/L Secchi Depth-m 

CG1 38.713066 -96.542366 2017-08-10 1.37 4.41 0.49 

CG1 38.713066 -96.542366 2017-08-10 1.01 2.97   

CG2 38.705002 -96.543983 2017-08-10 0.98 2.87 0.45 

CG2 38.705002 -96.543983 2017-08-10 0.62 1.42   

CG3 38.700901 -96.534302 2017-08-10 0.49 0.88 0.49 

CG3 38.700901 -96.534302 2017-08-10 0.34 0.31   

CG4 38.688381 -96.527367 2017-08-10 0.85 2.31 0.49 

CG4 38.688381 -96.527367 2017-08-10 0.52 1.03   

CG5 38.689781 -96.513481 2017-08-10 0.41 0.56 0.45 

CG5 38.689781 -96.513481 2017-08-10 0.34 0.28   

CG6 38.713783 -96.507782 2017-08-10 1.44 4.68 0.52 

CG6 38.713783 -96.507782 2017-08-10 0.61 1.37   

CG7 38.705883 -96.508286 2017-08-10 0.78 2.05 0.45 

CG7 38.705833 -96.508286 2017-08-10 0.50 0.93   

CG8 38.693867 -96.502869 2017-08-10 0.44 0.70 0.49 

CG8 38.693867 -96.502869 2017-08-10 0.30 0.13   

CG9 38.686684 -96.500748 2017-08-10 0.44 0.71 0.44 

CG9 38.686684 -96.500748 2017-08-10 - -   

CG10 38.683067 -96.507317 2017-08-10 0.37 0.42 0.49 

CG10 38.683067 -96.507317 2017-08-10 0.34 0.29   

CG1 38.713066 -96.542366 2017-08-17 1.52 5.03 0.35 

CG1 38.713066 -96.542366 2017-08-17 - -   

CG2 38.705002 -96.543983 2017-08-17 1.61 5.38 0.31 

CG2 38.705002 -96.543983 2017-08-17 1.18 3.63   

CG3 38.700901 -96.534302 2017-08-17 1.15 3.53 0.48 

CG3 38.700901 -96.534302 2017-08-17 1.02 3.02   
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Site ID Lat. Long Date CHLa-RFU CHLa-µg/L Secchi Depth-m 

CG4 38.688381 -96.527367 2017-08-17 1.07 3.19 0.46 

CG4 38.688381 -96.527367 2017-08-17 0.86 2.38   

CG5 38.689781 -96.513481 2017-08-17 0.70 1.72 0.60 

CG5 38.689781 -96.513481 2017-08-17 0.64 1.50   

CG6 38.713783 -96.507782 2017-08-17 0.95 2.74 0.40 

CG6 38.713783 -96.507782 2017-08-17 0.92 2.62   

CG7 38.705883 -96.508286 2017-08-17 0.95 2.72 0.54 

CG7 38.705833 -96.508286 2017-08-17 0.88 2.46   

CG8 38.693867 -96.502869 2017-08-17 0.88 2.44 0.57 

CG8 38.693867 -96.502869 2017-08-17 0.83 2.25   

CG9 38.686684 -96.500748 2017-08-17 0.78 2.05 0.70 

CG9 38.686684 -96.500748 2017-08-17 0.79 2.09   

CG10 38.683067 -96.507317 2017-08-17 0.78 2.07 0.59 

CG10 38.683067 -96.507317 2017-08-17 0.73 1.85   

CG1 38.713066 -96.542366 2017-08-26     0.40 

CG2 38.705002 -96.543983 2017-08-26     0.45 

CG3 38.700901 -96.534302 2017-08-26     0.45 

CG4 38.688381 -96.527367 2017-08-26     0.35 

CG5 38.689781 -96.513481 2017-08-26     0.45 

CG5 D 38.689781 -96.513481 2017-08-26     - 

CG6 38.713783 -96.507782 2017-08-26     0.45 

CG7 38.705883 -96.508286 2017-08-26     0.55 

CG8 38.693867 -96.502869 2017-08-26     0.60 

CG9 38.686684 -96.500748 2017-08-26     0.55 

CG10 38.683067 -96.507317 2017-08-26     0.55 
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Appendix V. In situ data at John Redmond Lake 

Site ID Lat. Long Date CHLa-RFU CHLa-μg/L Secchi Depth-m 

John Red 1 38.247581 95.768265 2017-08-10 3.69 13.70 0.33 

John Red 1     2017-08-10 3.69 13.70   

John Red 2 38.266399 95.78743 2017-08-10 4.95 18.72 0.32 

John Red 2     2017-08-10       

John Red 3 38.265518 95.807869 2017-08-10 4.75 17.92 0.33 

John Red 3     2017-08-10 5.29 20.10   

John Red 4 38.251068 95.822418 2017-08-10 4.38 16.44 0.27 

John Red 4     2017-08-10 4.71 17.76   

John Red 5 38.247417 95.80677 2017-08-10 4.13 15.46 0.36 

John Red 5     2017-08-10 4.45 16.72   

John Red 6 38.238419 95.808601 2017-08-10 5.17 19.61 0.35 

John Red 6     2017-08-10 4.99 18.89   

John Red 7 38.228619 95.802254 2017-08-10 3.62 13.40 0.28 

John Red 7     2017-08-10 3.89 14.48   

John Red 8 38.236282 95.788948 2017-08-10 4.47 16.82 0.35 

John Red 8     2017-08-10 4.15 15.52   

John Red 1 38.247581 95.768265 2017-08-26 2.11 7.39 0.40 

John Red 2 38.266399 95.78743 2017-08-26 2.77 10.02 0.35 

John Red 3 38.265518 95.807869 2017-08-26 3.11 11.38 0.30 

John Red 4 38.251068 95.822418 2017-08-26 3.99 14.89 0.25 

John Red 5 38.247417 95.80677 2017-08-26 3.43 12.64 0.30 

John Red 6 38.238419 95.808601 2017-08-26     0.25 

John Red 7 38.228619 95.802254 2017-08-26     0.25 

John Red 8 38.236282 95.788948 2017-08-26     0.25 
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Appendix VI. In situ data at Marion Lake 

Site ID Lat. Long Date CHLa-RFU CHLa-µg/L Secchi Depth-m 

M1 38.403099 -97.112579 2017-08-02 2.11 7.38 0.25 

M1 38.403099 -97.112579 2017-08-02 1.79 6.10   

M2 38.408066 -97.128136 2017-08-02 2.11 7.38 0.30 

M2 38.408066 -97.128136 2017-08-02 1.60 5.32   

M3 38.418282 -97.138733 2017-08-02 2.52 9.02 0.45 

M3 38.418282 -97.138733 2017-08-02 2.17 7.61   

M3 38.418282 -97.138733 2017-08-02 2.26 7.98   

M4 38.431683 -97.147919 2017-08-02 2.15 7.54 0.35 

M4 38.431683 -97.147919 2017-08-02 3.48 12.86   

M5 38.440617 -97.153603 2017-08-02 3.75 13.94 0.45 

M5 38.440617 -97.153603 2017-08-02 3.29 12.09   

M6 38.393482 -97.129715 2017-08-02 1.78 6.06 0.45 

M6 38.393482 -97.129715 2017-08-02 2.52 9.03   

M7 38.383385 -97.104836 2017-08-02 1.57 5.19 0.53 

M7 38.383385 -97.104836 2017-08-02 1.23 3.83   

M8 38.374119 -97.101402 2017-08-02 0.97 2.82 0.55 

M8 38.374119 -97.101402 2017-08-02     

M9 38.372635 -97.089584 2017-08-02     

M9 38.372635 -97.089584 2017-08-02 0.70 1.74   

M1 38.403099 -97.112579 2017-08-17 2.08 7.27 0.50 

M1 38.403099 -97.112579 2017-08-17 1.97 6.82   

M2 38.408066 -97.128136 2017-08-17 2.67 9.62 0.43 

M2 38.408066 -97.128136 2017-08-17 2.59 9.30   

M3 38.418282 -97.138733 2017-08-17 3.36 12.39 0.32 

M3 38.418282 -97.138733 2017-08-17 3.00 10.95   
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Site ID Lat. Long Date CHLa-RFU CHLa-µg/L Secchi Depth-m 

M4 38.431683 -97.147919 2017-08-17 3.60 13.35 0.28 

M4 38.431683 -97.147919 2017-08-17 3.64 13.47   

M5 38.440617 -97.153603 2017-08-17 5.53 21.04 0.20 

M5 38.440617 -97.153603   - -   

M6 38.393482 -97.129715 2017-08-17 2.77 9.99 0.38 

M6 38.393482 -97.129715 2017-08-17 3.22 11.80   

M7 38.383385 -97.104836 2017-08-17 2.00 6.92 0.43 

M7 38.383385 -97.104836 2017-08-17 1.89 6.50   

M8 38.374119 -97.101402 2017-08-17 2.40 8.51 0.44 

M8 38.374119 -97.101402 2017-08-17 2.16 7.56   

M9 38.372635 -97.089584 2017-08-17 2.00 6.94 0.48 

M9 38.372635 -97.089584 2017-08-17 1.82 6.22   

 

Appendix VII. Landsat 8 spectral data for Grand Lake 

Site ID Lat. Long Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

Dream 36.50879 -94.9559 2014-08-26 134 48 114 42 44 36 21 

Drip 36.49967 -94.95615 2014-08-26 195 87 148 84 11 99 78 

Drown 36.49768 -94.91853 2014-08-26 253 146 227 146 100 99 70 

Duck 36.53628 -94.97203 2014-08-26 161 62 134 54 32 64 50 

Elk 36.64998 -94.70839 2014-08-26 215 125 293 185 73 42 27 

Grand 36.68269 -94.77281 2014-08-26 226 145 276 182 81 44 24 

Honey 36.57511 -94.78775 2014-08-26 259 134 320 150 42 60 33 

Horse 36.62247 -94.9092 2014-08-26 303 224 400 231 132 110 77 

P Dam 36.49254 -95.0448 2014-08-26 218 121 172 93 104 73 42 

Sail 36.64176 -94.81493 2014-08-26 220 61 252 138 83 53 40 
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Site ID Lat. Long Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

Shang 36.55447 -94.8449 2014-08-26 206 118 225 102 71 32 19 

Tree 36.56396 -94.91276 2014-08-26 210 118 207 105 58 44 28 

Wood 36.53666 -94.82251 2014-08-26 217 100 204 96 -9 58 43 

Dream 36.50879 -94.9559 2015-06-11 466 377 486 425 339 269 214 

Drip 36.49967 -94.95615 2015-06-11 623 531 653 599 468 456 350 

Drown 36.49768 -94.91853 2015-06-11 329 225 289 206 135 106 84 

Duck 36.53628 -94.97203 2015-06-11 407 308 375 328 244 250 197 

Elk 36.64998 -94.70839 2015-06-11 377 286 364 314 279 209 157 

Grand 36.68269 -94.77281 2015-06-11 517 454 658 605 291 191 146 

Honey 36.57511 -94.78775 2015-06-11 475 373 421 377 231 291 227 

Horse 36.62247 -94.9092 2015-06-11 505 389 479 415 370 318 250 

P Dam 36.49254 -95.0448 2015-06-11 561 467 570 509 364 305 237 

Sail 36.64176 -94.81493 2015-06-11 481 400 532 466 340 265 211 

Shang 36.55447 -94.8449 2015-06-11 547 459 632 592 325 223 171 

Tree 36.56396 -94.91276 2015-06-11 486 383 501 443 321 238 187 

Wood 36.53666 -94.82251 2015-06-11 500 407 472 429 194 217 171 

Dream 36.50879 -94.9559 2015-07-13 259 178 256 223 143 161 132 

Drip 36.49967 -94.95615 2015-07-13 328 238 280 261 184 233 183 

Drown 36.49768 -94.91853 2015-07-13 134 65 123 94 27 66 48 

Duck 36.53628 -94.97203 2015-07-13 194 101 148 131 71 127 103 

Elk 36.64998 -94.70839 2015-07-13 572 619 1113 1189 232 139 111 

Grand 36.68269 -94.77281 2015-07-13 287 253 465 585 117 47 34 

Honey 36.57511 -94.78775 2015-07-13 259 165 219 193 143 179 136 

Horse 36.62247 -94.9092 2015-07-13 250 169 229 193 133 146 119 

P Dam 36.49254 -95.0448 2015-07-13 280 191 244 221 114 177 141 

Sail 36.64176 -94.81493 2015-07-13 255 204 351 306 120 91 79 
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Site ID Lat. Long Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

Shang 36.55447 -94.8449 2015-07-13 268 192 282 241 171 143 116 

Tree 36.56396 -94.91276 2015-07-13 249 177 276 233 110 107 86 

Wood 36.53666 -94.82251 2015-07-13 162 81 144 117 -25 93 71 

Dream 36.50879 -94.9559 2015-07-29 113 35 107 70 11 50 31 

Drip 36.49967 -94.95615 2015-07-29 211 133 194 164 118 178 122 

Drown 36.49768 -94.91853 2015-07-29 198 119 195 148 89 114 85 

Duck 36.53628 -94.97203 2015-07-29 114 30 90 69 35 87 62 

Elk 36.64998 -94.70839 2015-07-29 129 71 201 149 37 61 45 

Grand 36.68269 -94.77281 2015-07-29 200 146 324 248 73 52 33 

Honey 36.57511 -94.78775 2015-07-29 165 45 136 89 32 89 60 

Horse 36.62247 -94.9092 2015-07-29 181 109 219 141 61 86 55 

P Dam 36.49254 -95.0448 2015-07-29 257 155 220 194 116 182 124 

Sail 36.64176 -94.81493 2015-07-29 180 96 215 148 107 78 63 

Shang 36.55447 -94.8449 2015-07-29 167 80 176 113 79 59 38 

Tree 36.56396 -94.91276 2015-07-29 149 73 154 102 60 59 37 

Wood 36.53666 -94.82251 2015-07-29 109 22 104 59 -57 78 51 

Dream 36.50879 -94.9559 2015-08-14 189 91 131 76 26 20 12 

Drip 36.49967 -94.95615 2015-08-14 200 91 127 72 -21 29 34 

Drown 36.49768 -94.91853 2015-08-14 232 130 166 111 27 41 39 

Duck 36.53628 -94.97203 2015-08-14 202 96 144 85 4 43 37 

Elk 36.64998 -94.70839 2015-08-14 252 179 376 274 20 10 19 

Grand 36.68269 -94.77281 2015-08-14 232 139 260 163 53 18 19 

Honey 36.57511 -94.78775 2015-08-14 195 96 141 73 -32 24 22 

Horse 36.62247 -94.9092 2015-08-14 263 167 261 149 43 39 37 

P Dam 36.49254 -95.0448 2015-08-14 238 112 136 74 -8 10 13 

Sail 36.64176 -94.81493 2015-08-14 259 163 270 194 69 26 31 
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Site ID Lat. Long Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

Shang 36.55447 -94.8449 2015-08-14 254 155 238 141 46 7 8 

Tree 36.56396 -94.91276 2015-08-14 268 166 239 151 75 50 44 

Wood 36.53666 -94.82251 2015-08-14 251 144 210 127 -36 28 31 

Dream 36.50879 -94.9559 2015-09-15 177 91 147 89 85 41 27 

Drip 36.49967 -94.95615 2015-09-15 195 98 135 81 -2 55 48 

Drown 36.49768 -94.91853 2015-09-15 200 118 171 114 73 62 50 

Duck 36.53628 -94.97203 2015-09-15 219 132 202 134 60 55 48 

Elk 36.64998 -94.70839 2015-09-15 270 194 393 278 112 48 43 

Grand 36.68269 -94.77281 2015-09-15 326 255 426 367 134 40 28 

Honey 36.57511 -94.78775 2015-09-15 242 142 191 139 37 54 41 

Horse 36.62247 -94.9092 2015-09-15 296 212 323 223 163 93 72 

P Dam 36.49254 -95.0448 2015-09-15 235 132 158 115 111 85 62 

Sail 36.64176 -94.81493 2015-09-15 294 205 357 290 131 61 53 

Shang 36.55447 -94.8449 2015-09-15 236 155 243 176 119 58 40 

Tree 36.56396 -94.91276 2015-09-15 268 186 273 201 144 83 63 

Wood 36.53666 -94.82251 2015-09-15 183 94 170 108 -41 32 27 

Dream 36.50879 -94.9559 2016-05-12               

Drip 36.49967 -94.95615 2016-05-12 527 456 619 447 164 210 175 

Drown 36.49768 -94.91853 2016-05-12               

Duck 36.53628 -94.97203 2016-05-12               

Elk 36.64998 -94.70839 2016-05-12 508 453 696 495 313 267 229 

Grand 36.68269 -94.77281 2016-05-12 539 560 871 997 405 189 168 

Honey 36.57511 -94.78775 2016-05-12 474 390 558 413 151 164 135 

Horse 36.62247 -94.9092 2016-05-12               

P Dam 36.49254 -95.0448 2016-05-12 196 118 169 95 -7 30 25 

Sail 36.64176 -94.81493 2016-05-12 618 613 893 938 387 227 189 
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Site ID Lat. Long Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

Shang 36.55447 -94.8449 2016-05-12 527 515 754 660 270 209 184 

Tree 36.56396 -94.91276 2016-05-12               

Wood 36.53666 -94.82251 2016-05-12 478 417 618 492 61 89 77 

 

Appendix VIII. Landsat 8 spectral data for Council Grove Lake 

Site ID Lat. Long Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

CG1 38.713066 -96.542366 2017/08/01 410 493 686 649 366 208 174 

CG2 38.705002 -96.543983 2017/08/01 406 500 710 687 345 181 152 

CG3 38.700901 -96.534302 2017/08/01 415 498 704 640 337 207 170 

CG4 38.688381 -96.527367 2017/08/01 297 369 573 492 173 54 38 

CG5 38.689781 -96.513481 2017/08/01 380 474 694 603 289 182 145 

CG6 38.713783 -96.507782 2017/08/01 389 472 699 656 292 157 128 

CG7 38.705883 -96.508286 2017/08/01 374 462 686 603 277 157 124 

CG8 38.693867 -96.502869 2017/08/01 443 532 751 665 389 282 239 

CG9 38.686684 -96.500748 2017/08/01 366 449 666 573 288 179 142 

CG10 38.683067 -96.507317 2017/08/01 363 440 650 556 280 168 136 

CG1 38.713066 -96.542366 2017/08/17 410 493 686 649 366 208 174 

CG2 38.705002 -96.543983 2017/08/17 406 500 710 687 345 181 152 

CG3 38.700901 -96.534302 2017/08/17 415 498 704 640 337 207 170 

CG4 38.688381 -96.527367 2017/08/17 297 369 573 492 173 54 38 

CG5 38.689781 -96.513481 2017/08/17 380 474 694 603 289 182 145 

CG6 38.713783 -96.507782 2017/08/17 389 472 699 656 292 157 128 

CG7 38.705883 -96.508286 2017/08/17 374 462 686 603 277 157 124 

CG8 38.693867 -96.502869 2017/08/17 443 532 751 665 389 282 239 

CG9 38.686684 -96.500748 2017/08/17 366 449 666 573 288 179 142 
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Site ID Lat. Long Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

CG10 38.683067 -96.507317 2017/08/17 363 440 650 556 280 168 136 

CG1 38.713066 -96.542366 2017/08/26 465 511 643 536 323 85 47 

CG2 38.705002 -96.543983 2017/08/26 455 498 625 502 279 77 45 

CG3 38.700901 -96.534302 2017/08/26 487 537 672 560 300 88 53 

CG4 38.688381 -96.527367 2017/08/26 517 581 729 640 315 90 52 

CG5 38.689781 -96.513481 2017/08/26 501 571 726 629 260 70 38 

CG6 38.713783 -96.507782 2017/08/26 459 519 660 560 274 72 42 

CG7 38.705883 -96.508286 2017/08/26 495 537 660 527 319 106 62 

CG8 38.693867 -96.502869 2017/08/26 480 544 693 595 244 56 36 

CG9 38.686684 -96.500748 2017/08/26 482 548 705 615 243 60 35 

CG10 38.683067 -96.507317 2017/08/26 482 555 707 615 243 59 33 

 

Appendix IX. Landsat 8 spectral data for John Redmond Lake 

Site ID Lat. Long Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

John Red 1 38.247581 95.768265 2017/08/10 159 246 484 379 105 6 11 

John Red 2 38.266399 95.78743 2017/08/10 172 268 517 400 120 10 12 

John Red 3 38.265518 95.807869 2017/08/10 206 294 518 395 102 10 11 

John Red 4 38.251068 95.822418 2017/08/10 278 359 579 460 147 12 14 

John Red 5 38.247417 95.80677 2017/08/10 211 290 497 374 80 6 12 

John Red 6 38.238419 95.808601 2017/08/10 214 296 521 390 91 10 12 

John Red 7 38.228619 95.802254 2017/08/10 240 325 567 444 120 5 14 

John Red 8 38.236282 95.788948 2017/08/10 204 296 526 416 98 9 9 

John Red 1 38.247581 95.768265 2017/08/26 293 366 569 508 189 49 38 

John Red 2 38.266399 95.78743 2017/08/26 349 433 641 586 232 65 47 

John Red 3 38.265518 95.807869 2017/08/26 326 403 606 552 217 65 48 
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Site ID Lat. Long Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

John Red 4 38.251068 95.822418 2017/08/26 341 425 639 581 219 51 39 

John Red 5 38.247417 95.80677 2017/08/26 300 374 559 484 181 46 36 

John Red 6 38.238419 95.808601 2017/08/26 287 363 557 482 166 35 23 

John Red 7 38.228619 95.802254 2017/08/26 325 414 625 581 236 49 34 

John Red 8 38.236282 95.788948 2017/08/26 302 375 570 501 189 48 34 

 

Appendix X. Land sat 8 spectral data for Marion Lake 

Site ID Lat. Long. Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

M1 38.403099 -97.112579 2017/08/01 329 384 526 452 252 143 109 

M2 38.408066 -97.128136 2017/08/01 376 428 595 513 303 190 152 

M3 38.418282 -97.138733 2017/08/01 366 420 598 530 287 148 117 

M4 38.431683 -97.147919 2017/08/01 380 436 621 558 328 155 119 

M5 38.440617 -97.153603 2017/08/01 401 477 678 653 432 163 131 

M6 38.393482 -97.129715 2017/08/01 303 351 507 421 236 110 87 

M7 38.383385 -97.104836 2017/08/01 340 392 525 444 253 148 124 

M8 38.374119 -97.101402 2017/08/01 340 385 529 456 271 159 130 

M9 38.372635 -97.089584 2017/08/01 362 415 557 481 284 164 134 

M1 38.403099 -97.112579 2017/08/17 329 384 526 452 252 143 109 

M2 38.408066 -97.128136 2017/08/17 376 428 595 513 303 190 152 

M3 38.418282 -97.138733 2017/08/17 366 420 598 530 287 148 117 

M4 38.431683 -97.147919 2017/08/17 380 436 621 558 328 155 119 

M5 38.440617 -97.153603 2017/08/17 401 477 678 653 432 163 131 

M6 38.393482 -97.129715 2017/08/17 303 351 507 421 236 110 87 

M7 38.383385 -97.104836 2017/08/17 340 392 525 444 253 148 124 

M8 38.374119 -97.101402 2017/08/17 340 385 529 456 271 159 130 
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Site ID Lat. Long. Date Coastal Aerosol (B1) Blue (B2) Green (B3) Red (B4) NIR (B5) SWIR1 (B6) SWIR2 (B7) 

M9 38.372635 -97.089584 2017/08/17 362 415 557 481 284 164 134 

 

Appendix XI. Water Quality data for selected lakes in Oklahoma (Data were collected by OWRB) 

Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

10/01/2012 1 Arcadia Lake 18.2 16 40 

10/01/2012 2 Arcadia Lake 20 24 30 

10/01/2012 3 Arcadia Lake 25.1 19 40 

10/01/2012 4 Arcadia Lake 36.9 22 25 

10/01/2012 5 Arcadia Lake 43.7 75 7 

01/02/2013 1 Arcadia Lake 4.99 18 65 

01/02/2013 2 Arcadia Lake 8.87 15 55 

01/02/2013 3 Arcadia Lake 7 14 55 

01/02/2013 4 Arcadia Lake 13.9 15 57 

01/02/2013 5 Arcadia Lake 25 15 55 

03/06/2013 2 Arcadia Lake 7.02 29 40 

03/06/2013 3 Arcadia Lake 5.87 34 35 

03/06/2013 4 Arcadia Lake 11.8 63 27 

03/06/2013 5 Arcadia Lake 15.5 52 25 

03/06/2013 1 Arcadia Lake 5.47 25 40 

08/12/2013 1 Arcadia Lake 20.1 9 66 

08/12/2013 2 Arcadia Lake 26.7 11 62 

08/12/2013 3 Arcadia Lake 22.9 12 60 

08/12/2013 4 Arcadia Lake 17.5 11 52 

08/12/2013 5 Arcadia Lake 15.3 20 43 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

12/03/2014 1 Arcadia Lake 16.4 5 150 

12/03/2014 2 Arcadia Lake 16.6 7 150 

12/03/2014 3 Arcadia Lake 17.1 6 130 

12/03/2014 4 Arcadia Lake 21.8 5 153 

12/03/2014 5 Arcadia Lake 31.9 6 200 

02/25/2015 1 Arcadia Lake 10 13 61 

02/25/2015 2 Arcadia Lake 10.6 11 53 

02/25/2015 3 Arcadia Lake 11.7 11 70 

02/25/2015 4 Arcadia Lake 14.2 13 42 

02/25/2015 5 Arcadia Lake 16.3 15 45 

06/09/2015 1 Arcadia Lake 15.9 5 155 

06/09/2015 2 Arcadia Lake 25.5 7 117 

06/09/2015 3 Arcadia Lake 35.6 5 113 

06/09/2015 4 Arcadia Lake 21.1 4 140 

06/09/2015 5 Arcadia Lake 9.87 5 152 

08/24/2015 1 Arcadia Lake 31.2 3 182 

08/24/2015 2 Arcadia Lake 41.2 4 107 

08/24/2015 3 Arcadia Lake 48.4 4 122 

08/24/2015 4 Arcadia Lake 45.3 3 109 

08/24/2015 5 Arcadia Lake 59.9 3 134 

  

10/14/2014 1 Boomer Lake 49.7 14 39 

10/14/2014 2 Boomer Lake 56.1 16 39 

10/14/2014 3 Boomer Lake 57.6 24 36 

01/21/2015 1 Boomer Lake 17.8 7 52 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

01/21/2015 2 Boomer Lake 21.1 15 35 

01/21/2015 3 Boomer Lake 22.6 19 25 

03/31/2015 1 Boomer Lake 21.3 10 30 

03/31/2015 2 Boomer Lake 23 13 23 

03/31/2015 3 Boomer Lake 24.5 17 19 

07/07/2015 1 Boomer Lake 28.3 11 54 

07/07/2015 2 Boomer Lake 27.5 15 50 

07/07/2015 3 Boomer Lake 26.4 20 38 

  

11/07/2012 1 Broken Bow 2.92 2 250 

11/07/2012 2 Broken Bow 3 2 250 

11/07/2012 3 Broken Bow 4.33 2 246 

11/07/2012 4 Broken Bow 3.65 1 250 

11/07/2012 5 Broken Bow 5.65 2 250 

11/07/2012 6 Broken Bow 5.34 1 250 

11/07/2012 7 Broken Bow 6.91 2 230 

11/07/2012 8 Broken Bow 9.15 2 232 

03/12/2013 1 Broken Bow 0.72 2 320 

03/12/2013 2 Broken Bow 0.62 2 320 

03/12/2013 3 Broken Bow 0.71 2 320 

03/12/2013 4 Broken Bow 0.7 2 320 

03/12/2013 5 Broken Bow 1.25 3 320 

03/12/2013 6 Broken Bow 2.54 4 220 

03/12/2013 7 Broken Bow 6.17 12 77 

03/12/2013 8 Broken Bow 5.39 33 43 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

04/29/2013 1 Broken Bow 2.05 2 320 

04/29/2013 2 Broken Bow 1.98 2 305 

04/29/2013 3 Broken Bow 3.37 2 305 

04/29/2013 4 Broken Bow 2.42 2 287 

04/29/2013 5 Broken Bow 2.51 2 300 

04/29/2013 6 Broken Bow 4.7 3 198 

04/29/2013 7 Broken Bow 8.79 3 152 

04/29/2013 8 Broken Bow 7.12 3 155 

07/30/2013 1 Broken Bow 8.32 1 225 

07/30/2013 2 Broken Bow 2.81 2 200 

07/30/2013 3 Broken Bow 6.53 2 230 

07/30/2013 4 Broken Bow 5.58 2 200 

07/30/2013 5 Broken Bow 4.82 2 200 

07/30/2013 6 Broken Bow 5.57 2 210 

07/30/2013 7 Broken Bow 7.26 2 200 

07/30/2013 8 Broken Bow 9.06 2 210 

10/20/2015 1 Broken Bow 3.21 4 300 

10/20/2015 2 Broken Bow 2.96 2 300 

10/20/2015 3 Broken Bow 2.98 1 238 

10/20/2015 4 Broken Bow 2.48 2 218 

10/20/2015 5 Broken Bow 2.84 2 234 

10/20/2015 6 Broken Bow 3.02 1 210 

10/20/2015 7 Broken Bow 3.8 2 150 

10/20/2015 8 Broken Bow 4.59 2 144 

08/15/2016 1 Broken Bow 4.5 1 253 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

08/15/2016 2 Broken Bow 4.75 1 248 

08/15/2016 3 Broken Bow 7.88 2 222 

08/15/2016 4 Broken Bow 4.94 2 267 

08/15/2016 5 Broken Bow 6.41 2 209 

08/15/2016 6 Broken Bow 5.97 2 254 

08/15/2016 7 Broken Bow 7.82 2 216 

08/15/2016 8 Broken Bow 9.61 2 190 

  

10/07/2013 1 Canton Lake 136 36 13 

10/07/2013 2 Canton Lake 105 34 14 

10/07/2013 3 Canton Lake 96.2 31 22 

04/09/2014 1 Canton Lake 14.9 24 36 

04/09/2014 2 Canton Lake 16.7 19 23 

04/09/2014 3 Canton Lake 38.7 133 8 

07/07/2014 1 Canton Lake 15.4 17 40 

07/07/2014 2 Canton Lake 14 22 42 

07/07/2014 3 Canton Lake 13.2 34 25 

11/30/2016 1 Canton Lake 5.4 15 65 

11/30/2016 2 Canton Lake 8.39 12 60 

11/30/2016 3 Canton Lake 6.03 12 45 

04/03/2017 1 Canton Lake 5.6 8 96 

04/03/2017 2 Canton Lake 5.97 8 84 

04/03/2017 3 Canton Lake 5.79 9 69 

05/31/2017 1 Canton Lake 7.56 7 82 

05/31/2017 2 Canton Lake 14.6 7 93 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

05/31/2017 3 Canton Lake 13.3 11 79 

08/30/2017 1 Canton Lake 28.9 15 45 

08/30/2017 2 Canton Lake 31.00 15 48 

08/30/2017 3 Canton Lake 27.7 20 35 

  

10/23/2012 1 Foss Lake 10.1 11 66 

10/23/2012 2 Foss Lake 10.8 14 57 

10/23/2012 3 Foss Lake 10.7 21 40 

10/23/2012 4 Foss Lake 10.5 30 37 

10/23/2012 5 Foss Lake 12.2 46 21 

03/05/2013 1 Foss Lake 1.49 16 80 

03/05/2013 2 Foss Lake 1.53 13 84 

03/05/2013 3 Foss Lake 1.67 19 68 

03/05/2013 4 Foss Lake 3.72 26 42 

03/05/2013 5 Foss Lake 2.7 38 29 

04/15/2013 1 Foss Lake 8.48 9 60 

04/15/2013 2 Foss Lake 7.61 14 52 

04/15/2013 3 Foss Lake 6.83 18 33 

04/15/2013 4 Foss Lake 6.82 37 25 

04/15/2013 5 Foss Lake no data no data no data 

08/28/2013 1 Foss Lake 16.8 8 79 

08/28/2013 2 Foss Lake 16.6 6 68 

08/28/2013 3 Foss Lake 13.3 18 45 

08/28/2013 4 Foss Lake 21.9 39 25 

08/28/2013 5 Foss Lake 33.1 91 15 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

10/13/2015 1 Foss Lake 11.1 7 82 

10/13/2015 2 Foss Lake 10.2 8 77 

10/13/2015 3 Foss Lake 17.6 16 50 

10/13/2015 4 Foss Lake 17 16 45 

10/13/2015 5 Foss Lake 19.8 11 35 

08/10/2016 1 Foss Lake 3.04 5 170 

08/10/2016 2 Foss Lake 3.02 4 190 

08/10/2016 3 Foss Lake 5.73 6 117 

08/10/2016 4 Foss Lake 9.2 14 70 

08/10/2016 5 Foss Lake 21.7 22 40 

  

11/27/2012 1 Grand Lake 1.31 10 80 

11/27/2012 2 Grand Lake 1.59 10 105 

11/27/2012 3 Grand Lake 2.11 11 95 

11/27/2012 4 Grand Lake 5.76 10 100 

11/27/2012 5 Grand Lake 2.84 12 93 

11/27/2012 6 Grand Lake 7.11 10 90 

11/27/2012 7 Grand Lake 3.09 9 100 

11/27/2012 8 Grand Lake 5.68 12 77 

11/27/2012 9 Grand Lake 5.63 14 78 

11/27/2012 10 Grand Lake 6.55 15 85 

11/27/2012 11 Grand Lake 13.1 13 87 

11/27/2012 12 Grand Lake 12.9 13 54 

11/27/2012 13 Grand Lake 29.5 14 47 

02/05/2013 1 Grand Lake 1.56 4 150 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

02/05/2013 2 Grand Lake 2.63 4 150 

02/05/2013 3 Grand Lake 4.04 4 150 

02/05/2013 4 Grand Lake 10.6 7 85 

02/05/2013 5 Grand Lake 5.54 6 90 

02/05/2013 6 Grand Lake 4.82 7 100 

02/05/2013 7 Grand Lake 4.33 10 75 

02/05/2013 8 Grand Lake 5.67 10 65 

02/05/2013 9 Grand Lake 7.31 11 65 

02/05/2013 10 Grand Lake 9.09 10 65 

02/05/2013 11 Grand Lake 5.98 9 75 

02/05/2013 12 Grand Lake 14.5 16 45 

02/05/2013 13 Grand Lake 10.7 20 40 

04/02/2013 1 Grand Lake 9.85 6 115 

04/02/2013 2 Grand Lake 10.7 6 120 

04/02/2013 3 Grand Lake 13.1 10 95 

04/02/2013 4 Grand Lake 20.5 10 85 

04/02/2013 5 Grand Lake 21 13 101 

04/02/2013 6 Grand Lake 16.5 7 116 

04/02/2013 7 Grand Lake 15.8 20 67 

04/02/2013 8 Grand Lake 11.7 18 45 

04/02/2013 9 Grand Lake 7.54 49 30 

04/02/2013 10 Grand Lake 22.7 12 47 

04/02/2013 11 Grand Lake 24 11 64 

04/02/2013 12 Grand Lake 17.4 94 13 

04/02/2013 13 Grand Lake 8.68 206 12 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

08/13/2013 1 Grand Lake 27.7 4 73 

08/13/2013 2 Grand Lake 39.7 6 89 

08/13/2013 3 Grand Lake 48.9 6 86 

08/13/2013 4 Grand Lake 43.6 5 82 

08/13/2013 5 Grand Lake 27.3 11 78 

08/13/2013 6 Grand Lake x 9   

08/14/2013 7 Grand Lake 8.86 17 58 

08/14/2013 8 Grand Lake 8.97 28 49 

08/14/2013 9 Grand Lake 7.82 27 45 

08/14/2013 10 Grand Lake 6.18 48 29 

08/14/2013 11 Grand Lake 20.1 38 34 

08/14/2013 12 Grand Lake 6.97 45 26 

08/14/2013 13 Grand Lake 7.21 41 30 

10/28/2014 1 Grand Lake 1.71 5 119 

10/28/2014 2 Grand Lake 4.37 5 112 

10/28/2014 3 Grand Lake 4.86 4 122 

10/28/2014 4 Grand Lake 16.5 5 98 

10/28/2014 5 Grand Lake 6.25 3 119 

10/28/2014 6 Grand Lake 64.7 9 89 

10/28/2014 7 Grand Lake 9.09 5 110 

10/28/2014 8 Grand Lake 13.8 7 72 

10/28/2014 9 Grand Lake 21.4 8 61 

10/28/2014 10 Grand Lake 13.9 12 47 

10/28/2014 11 Grand Lake 33 7 64 

10/28/2014 12 Grand Lake x x   
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

10/28/2014 13 Grand Lake x x   

01/27/2015 1 Grand Lake 1.32 2 315 

01/27/2015 2 Grand Lake 1.54 2 337 

01/27/2015 3 Grand Lake 1.06 2 279 

01/27/2015 4 Grand Lake 7.93 2 153 

01/27/2015 5 Grand Lake 2.13 3 202 

01/27/2015 6 Grand Lake 19.1 3 94 

01/27/2015 7 Grand Lake 7.24 3 108 

01/27/2015 8 Grand Lake x x   

01/27/2015 9 Grand Lake x x   

01/27/2015 10 Grand Lake x x   

01/27/2015 11 Grand Lake x x   

01/27/2015 12 Grand Lake x x   

01/27/2015 13 Grand Lake x x   

04/28/2015 1 Grand Lake 2.05 2 270 

04/28/2015 2 Grand Lake 2.18 2 204 

04/28/2015 3 Grand Lake 2.63 4 153 

04/28/2015 4 Grand Lake x 2 165 

04/28/2015 5 Grand Lake 4.91 3 107 

04/28/2015 6 Grand Lake 49.1 3 71 

04/28/2015 7 Grand Lake 5.55 3 47 

04/28/2015 8 Grand Lake 2.08 2 45 

04/28/2015 9 Grand Lake 3.2 2 30 

04/28/2015 10 Grand Lake 4.85 40 27 

04/28/2015 11 Grand Lake 14.6 13 53 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

04/28/2015 12 Grand Lake 11.7 55 20 

04/28/2015 13 Grand Lake 9.62 54 19 

07/22/2015 1 Grand Lake 17.2 3 130 

07/22/2015 2 Grand Lake 14.1 3 125 

07/22/2015 3 Grand Lake 15.6 4 120 

07/22/2015 4 Grand Lake 13.3 4 127 

07/22/2015 5 Grand Lake 18.7 4 110 

07/22/2015 6 Grand Lake 19.1 6 90 

07/22/2015 7 Grand Lake 18.5 5 95 

07/22/2015 8 Grand Lake 25.5 11 60 

07/22/2015 9 Grand Lake 21.7 9 82 

07/22/2015 10 Grand Lake 19.5 6 89 

07/22/2015 11 Grand Lake 39.9 7 53 

07/22/2015 12 Grand Lake 15.1 21 47 

07/22/2015 13 Grand Lake 26.8 23 38 

  

12/02/2014 1 Hugo Lake 27.7 53 23 

12/02/2014 2 Hugo Lake 29.4 53 27 

12/02/2014 3 Hugo Lake 24.7 54 25 

12/02/2014 4 Hugo Lake 26.9 53 28 

12/02/2014 5 Hugo Lake 26.9 54 24 

03/03/2015 1 Hugo Lake 20.3 36 25 

03/03/2015 2 Hugo Lake 30.2 37 29 

03/03/2015 3 Hugo Lake 25.6 34 27 

03/03/2015 4 Hugo Lake 19.6 34 34 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

03/03/2015 5 Hugo Lake 9.38 22 43 

11/28/2016 1 Hugo Lake 13.2 18 35 

11/28/2016 2 Hugo Lake 10.9 18 36 

11/28/2016 3 Hugo Lake 14.4 45 21 

11/28/2016 Canceled Hugo Lake Canceled Canceled Canceled 

11/28/2016 5 Hugo Lake 15.3 50 10 

02/28/2017 1 Hugo Lake 6.93 34 32 

02/28/2017 2 Hugo Lake 8.68 34 31 

02/28/2017 3 Hugo Lake 9.88 45 32 

02/28/2017 Canceled Hugo Lake Canceled Canceled Canceled 

02/28/2017 Canceled Hugo Lake Canceled Canceled Canceled 

  

10/09/2012 1 Kaw Lake 5.42 9 58 

10/09/2012 2 Kaw Lake 4.7 11 50 

10/09/2012 3 Kaw Lake 12.1 13 30 

10/09/2012 4 Kaw Lake 16.4 36 20 

10/09/2012 5 Kaw Lake 52.6 57 20 

02/11/2013 1 Kaw Lake no data 5 93 

02/11/2013 2 Kaw Lake no data 4 130 

02/11/2013 3 Kaw Lake 4.98 12 60 

02/11/2013 4 Kaw Lake 6.88 18 50 

02/11/2013 5 Kaw Lake 9.98 18 29 

04/22/2013 1 Kaw Lake 3.62 10 65 

04/22/2013 2 Kaw Lake 6.26 12 60 

04/22/2013 3 Kaw Lake 15.3 20 35 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

04/22/2013 4 Kaw Lake 14.2 44 30 

04/22/2013 5 Kaw Lake 40.6 32 28 

10/15/2014 1 Kaw Lake 2.6 14 49 

10/15/2014 2 Kaw Lake 3.53 17 38 

10/15/2014 3 Kaw Lake 7 23 31 

10/15/2014 4 Kaw Lake 8.67 38 27 

10/15/2014 5 Kaw Lake 11.5 308 4 

01/13/2015 1 Kaw Lake 2.22 11 92 

01/13/2015 2 Kaw Lake 2.1 7 91 

01/13/2015 3 Kaw Lake 9.85 9 81 

01/13/2015 4 Kaw Lake 3.4 14 64 

01/13/2015 5 Kaw Lake frozen frozen frozen 

04/21/2015 1 Kaw Lake 0.82 3 201 

04/21/2015 2 Kaw Lake 1.02 3 159 

04/21/2015 3 Kaw Lake 4.97 12 61 

04/21/2015 4 Kaw Lake 1.79 12 52 

04/21/2015 5 Kaw Lake 45.2 19 35 

07/06/2015 1 Kaw Lake 6.29 7 112 

07/06/2015 2 Kaw Lake 16.2 7 103 

07/06/2015 3 Kaw Lake 28.8 7 90 

07/06/2015 4 Kaw Lake 34.2 9 75 

07/06/2015 5 Kaw Lake 26.5 11 63 

  

11/01/2016 1 Keystone Lake 1.6 46 35 

11/01/2016 2 Keystone Lake 2.35 48 30 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

11/01/2016 3 Keystone Lake 12.9 67 28 

11/01/2016 4 Keystone Lake 7.77 67 20 

11/01/2016 5 Keystone Lake 72.2 31 20 

11/01/2016 6 Keystone Lake 1.56 45 25 

11/01/2016 7 Keystone Lake 18.5 17 45 

11/01/2016 8 Keystone Lake 5.77 25 40 

11/01/2016 9 Keystone Lake 2.71 34 23 

11/01/2016 10 Keystone Lake 9.09 34 25 

11/01/2016 11 Keystone Lake 98.6 103 10 

11/01/2016 na Keystone Lake       

01/31/2017 1 Keystone Lake 37.5 5 83 

01/31/2017 2 Keystone Lake 24.7 11 60 

01/31/2017 3 Keystone Lake 23.7 9 70 

01/31/2017 4 Keystone Lake 18.7 17 45 

01/31/2017 5 Keystone Lake 25.4 35 25 

01/31/2017 6 Keystone Lake 36.3 6 77 

01/31/2017 7 Keystone Lake 64 7 70 

01/31/2017 8 Keystone Lake 44 5 100 

01/31/2017 9 Keystone Lake 34.1 4 80 

01/31/2017 10 Keystone Lake 119 7 45 

01/31/2017 11 Keystone Lake 39.4 52 18 

01/31/2017 na Keystone Lake       

05/02/2017 1 Keystone Lake 0.96 56.8 21 

05/02/2017 2 Keystone Lake 1.36 82 15 

05/02/2017 3 Keystone Lake 6.16 97.5 11 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

05/02/2017 4 Keystone Lake 10.3 128 10 

05/02/2017 5 Keystone Lake 17.2 196 10 

05/02/2017 6 Keystone Lake 1.86 54.4 20 

05/02/2017 7 Keystone Lake 17.8 15.4 55 

05/02/2017 8 Keystone Lake 5.47 34.7 30 

05/02/2017 9 Keystone Lake 1.92 53.6 19 

05/02/2017 10 Keystone Lake 8.93 435 6 

05/02/2017 11 Keystone Lake 7.61 556 4 

05/02/2017 12 Keystone Lake 8.01 599 4 

09/18/2017 1 Keystone Lake 6.91 6 107 

09/18/2017 2 Keystone Lake 7.91 11 70 

09/18/2017 3 Keystone Lake 29.3 16 41 

09/18/2017 4 Keystone Lake 64.9 34 23 

09/18/2017 5 Keystone Lake 57.6 63 19 

09/18/2017 6 Keystone Lake 15.4 9 86 

09/18/2017 7 Keystone Lake 20.7 11 65 

09/18/2017 8 Keystone Lake 25 6 84 

09/18/2017 9 Keystone Lake 23.7 10 74 

09/18/2017 10 Keystone Lake 26.4 13 47 

09/18/2017 11 Keystone Lake 44.6 90 13 

09/18/2017 12 Keystone Lake na na   

            

  

10/10/2012 1 Lake Carl Blackwell 19.1 27 25 

10/10/2012 2 Lake Carl Blackwell 33.4 31 28 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

10/10/2012 3 Lake Carl Blackwell 28 25 20 

10/10/2012 4 Lake Carl Blackwell 20.9 61 13 

03/06/2013 1 Lake Carl Blackwell x 20 60 

03/06/2013 2 Lake Carl Blackwell x 22 52 

03/06/2013 3 Lake Carl Blackwell x 17 48 

03/06/2013 4 Lake Carl Blackwell x x   

04/24/2013 1 Lake Carl Blackwell 33.5 16 54 

04/24/2013 2 Lake Carl Blackwell 45.3 23 46 

04/24/2013 3 Lake Carl Blackwell 34 20 42 

04/24/2013 4 Lake Carl Blackwell x x   

07/01/2013 1 Lake Carl Blackwell 10.2 13 43 

07/01/2013 2 Lake Carl Blackwell 23.5 32 22 

07/01/2013 3 Lake Carl Blackwell 16.9 17 35 

07/01/2013 4 Lake Carl Blackwell 25.1 60 14 

12/21/2015 1 Lake Carl Blackwell 5.4 27 33 

12/21/2015 2 Lake Carl Blackwell 5.1 30 32 

12/21/2015 3 Lake Carl Blackwell 6.2 30 30 

12/21/2015 4 Lake Carl Blackwell 6.9 39 X 

09/27/2016 1 Lake Carl Blackwell 18.5 11 62 

09/27/2016 2 Lake Carl Blackwell 27.3 16 50 

09/27/2016 3 Lake Carl Blackwell 26.5 12 44 

09/27/2016 4 Lake Carl Blackwell 27.0 38 24 

  

12/17/2012 1 Lake Eucha 11.9 7 110 

12/17/2012 2 Lake Eucha 15 6 112 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

12/17/2012 3 Lake Eucha 1.2 9 118 

02/4/2013 1 Lake Eucha 11.3 5 150 

02/4/2013 2 Lake Eucha 0.6 11 95 

02/4/2013 3 Lake Eucha 13.3 5 150 

03/26/2013 1 Lake Eucha 20.3 4 144 

03/26/2013 2 Lake Eucha 14.1 7 90 

03/26/2013 3 Lake Eucha 2.38   210 

08/19/2013 1 Lake Eucha 16.9 5 70 

08/19/2013 2 Lake Eucha 15.4 3 78 

08/19/2013 3 Lake Eucha 18.3 4 75 

10/27/2014 1 Lake Eucha 17.7 no data no data 

10/27/2014 2 Lake Eucha 15.9 no data no data 

10/27/2014 3 Lake Eucha 23.9 no data no data 

01/26/2015 1 Lake Eucha 8.57 3 140 

01/26/2015 2 Lake Eucha 9.41 3 100 

01/26/2015 3 Lake Eucha 9.78 6 81 

04/27/2015 1 Lake Eucha 14.3 2 132 

04/27/2015 2 Lake Eucha 13 2 173 

04/27/2015 3 Lake Eucha 19.7 2 85 

07/21/2015 1 Lake Eucha 41.9 7 78 

07/21/2015 2 Lake Eucha 39.6 5 75 

07/21/2015 3 Lake Eucha 38.7 7 71 

  

11/13/2012 1 Fort Gibson Lake 13.4 5 102 

11/13/2012 2 Fort Gibson Lake 12.1 5 88 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

11/13/2012 3 Fort Gibson Lake 11.7 8 78 

11/13/2012 4 Fort Gibson Lake 10.7 7 78 

01/22/2013 1 Fort Gibson Lake 22.1 6 70 

01/22/2013 2 Fort Gibson Lake 17 7 70 

01/22/2013 3 Fort Gibson Lake 18.7 8 70 

01/22/2013 4 Fort Gibson Lake 22.8 8 70 

04/01/2013 1 Fort Gibson Lake 24.2 17 54 

04/01/2013 2 Fort Gibson Lake 17.1 7 102 

04/01/2013 3 Fort Gibson Lake 15.7 6 110 

04/01/2013 4 Fort Gibson Lake 13.5 7 98 

10/07/2014 1 Fort Gibson Lake 9.51 7 87 

10/07/2014 2 Fort Gibson Lake 15.1 6 78 

10/07/2014 3 Fort Gibson Lake 31.8 6 71 

10/07/2014 4 Fort Gibson Lake 18.1 9 61 

10/07/2014 5 Fort Gibson Lake 18.1 6 67 

10/07/2014 6 Fort Gibson Lake 36.9 8 62 

10/07/2014 7 Fort Gibson Lake 22.2 10 53 

10/07/2014 8 Fort Gibson Lake 22.3 10 32 

01/13/2015 1 Fort Gibson Lake 14.3 6 72 

01/13/2015 2 Fort Gibson Lake 15.3 7 74 

01/13/2015 3 Fort Gibson Lake 15.8 6 62 

01/13/2015 4 Fort Gibson Lake 15.7 6 67 

01/13/2015 5 Fort Gibson Lake 15.2 7 69 

01/13/2015 6 Fort Gibson Lake 14.7 6 72 

01/13/2015 7 Fort Gibson Lake 11.6 7 69 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

01/13/2015 8 Fort Gibson Lake 7.06 7 77 

04/14/2015 1 Fort Gibson Lake 24.8 6 82 

04/14/2015 2 Fort Gibson Lake 35 9 62 

04/14/2015 3 Fort Gibson Lake 26.5 9 72 

04/14/2015 4 Fort Gibson Lake 22.7 10 65 

04/14/2015 5 Fort Gibson Lake 38.9 15 5.2 

04/14/2015 6 Fort Gibson Lake 19.9 9 11.3 

04/14/2015 7 Fort Gibson Lake 17.4 12 11.5 

04/14/2015 8 Fort Gibson Lake 6.54 15 6.3 

06/23/2015 1 Fort Gibson Lake 25.3 4 98 

06/23/2015 2 Fort Gibson Lake 18.4 4 85 

06/23/2015 3 Fort Gibson Lake 30.4 5 75 

06/23/2015 4 Fort Gibson Lake 30.4 4 89 

06/23/2015 5 Fort Gibson Lake 16.5 4 82 

06/23/2015 6 Fort Gibson Lake 28.2 7 68 

06/23/2015 7 Fort Gibson Lake 6.89 8 59 

06/23/2015 8 Fort Gibson Lake 23.7 7 78 

  

03/13/2013 1 Lake Hefner 16.7 12 52 

03/13/2013 2 Lake Hefner 19.8 12 52 

03/13/2013 3 Lake Hefner 25.1 12 45 

08/12/2013 1 Lake Hefner 29.4 6 70 

08/12/2013 2 Lake Hefner 36.2 7 60 

08/12/2013 3 Lake Hefner 24.8 7 62 

09/17/2013 1 Lake Hefner 44.3 x x 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

09/17/2013 2 Lake Hefner 34.1 x x 

09/17/2013 3 Lake Hefner 44.7 x x 

07/29/2013 1 Lake Hefner 23.3 x x 

07/29/2013 3 Lake Hefner 22.2 x x 

10/21/2015 1 Lake Hefner 43.7 6 50 

10/21/2015 2 Lake Hefner 41.2 6 60 

10/21/2015 3 Lake Hefner 45 6 58 

08/09/2016 1 Lake Hefner 65.9 9 70 

08/09/2016 2 Lake Hefner 57.9 13 52 

08/09/2016 3 Lake Hefner 61 9 61 

  

10/16/2013 1 Lake McMertury 8.94 X 55 

10/16/2013 2 Lake McMertury 10 X 50 

10/16/2013 3 Lake McMertury 10 X 38 

01/13/2014 1 Lake McMertury 3.3 16 50 

01/13/2014 2 Lake McMertury 3.03 17 52 

01/13/2014 3 Lake McMertury 2.98 21 42 

04/07/2014 1 Lake McMertury 1.89 17 68 

04/07/2014 2 Lake McMertury 3.45 17 62 

04/07/2014 3 Lake McMertury 6.01 21 47 

07/01/2014 1 Lake McMertury 6.94 15 42 

07/01/2014 2 Lake McMertury 4.59 18 45 

07/01/2014 3 Lake McMertury 7.04 32 30 

10/03/2016 1 Lake McMertury 6.97 7 97 

10/03/2016 2 Lake McMertury 12.1 10 94 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

10/03/2016 3 Lake McMertury 7.41 9 89 

01/04/2017 1 Lake McMertury 5.49 12 70 

01/04/2017 2 Lake McMertury 4.96 14 70 

01/04/2017 3 Lake McMertury 5.13 10 70 

04/04/2017 1 Lake McMertury 9.13 10 X 

04/04/2017 2 Lake McMertury 8.39 12 X 

04/04/2017 3 Lake McMertury 8.27 19 X 

  

12/12/2012 1 McGee Creek Reservoir 3.02 8 105 

12/12/2012 2 McGee Creek Reservoir 5.82 9 78 

12/12/2012 3 McGee Creek Reservoir X 6 105 

12/12/2012 4 McGee Creek Reservoir 10.7 7 85 

12/12/2012 5 McGee Creek Reservoir 3.7 7 100 

03/13/2013 1 McGee Creek Reservoir 3.89 43 130 

03/13/2013 2 McGee Creek Reservoir 5.03 72 100 

03/13/2013 3 McGee Creek Reservoir 3.87 7 80 

03/13/2013 4 McGee Creek Reservoir 6.35 19 70 

03/13/2013 5 McGee Creek Reservoir 3.68 22 300 

05/14/2013 1 McGee Creek Reservoir 2.81 6 142 

05/14/2013 2 McGee Creek Reservoir 5.09 6 116 

05/14/2013 3 McGee Creek Reservoir 3.64 5 145 

05/14/2013 4 McGee Creek Reservoir 5.29 5 140 

05/14/2013 5 McGee Creek Reservoir 3.8 6 122 

07/29/2013 1 McGee Creek Reservoir 10.2 4 160 

07/29/2013 2 McGee Creek Reservoir 14.7 4 159 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

07/29/2013 3 McGee Creek Reservoir 12.2 3 145 

07/29/2013 4 McGee Creek Reservoir 7.5 5 125 

07/29/2013 5 McGee Creek Reservoir 10.6 4 155 

12/03/2014 1 McGee Creek Reservoir 4.34 7 93 

12/03/2014 2 McGee Creek Reservoir 2.52 11 75 

12/03/2014 3 McGee Creek Reservoir 6.99 6 104 

12/03/2014 4 McGee Creek Reservoir 10.8 8 80 

12/03/2014 5 McGee Creek Reservoir 4.35 8 87 

03/03/2015 1 McGee Creek Reservoir 1.53 8 103 

03/03/2015 2 McGee Creek Reservoir 3.69 12 63 

03/03/2015 3 McGee Creek Reservoir 3.19 7 106 

03/03/2015 4 McGee Creek Reservoir 2.58 11 67 

03/03/2015 5 McGee Creek Reservoir 3.92 8 80 

06/29/2015 1 McGee Creek Reservoir 13.2 4 67 

06/29/2015 2 McGee Creek Reservoir 11.6 5 70 

06/29/2015 3 McGee Creek Reservoir 14 3 83 

06/29/2015 4 McGee Creek Reservoir 12.9 3 101 

06/29/2015 5 McGee Creek Reservoir 10.5 4 84 

09/01/2015 1 McGee Creek Reservoir 4.83 3 140 

09/01/2015 2 McGee Creek Reservoir 7.68 3 130 

09/01/2015 3 McGee Creek Reservoir 4.75 2 135 

09/01/2015 4 McGee Creek Reservoir 10.9 3 110 

09/01/2015 5 McGee Creek Reservoir 5.55 3 140 

  

01/22/2013 1 Lake Thunderbird 5.8 21 33 



158 
 

Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

01/22/2013 2 Lake Thunderbird 6.95 23 30 

01/22/2013 3 Lake Thunderbird 8.11 25 25 

01/22/2013 4 Lake Thunderbird 6.11 24 30 

01/22/2013 5 Lake Thunderbird 10.3 23 28 

01/22/2013 6 Lake Thunderbird 10 28 20 

01/22/2013 7 Lake Thunderbird 10 24 29 

03/13/2013 1 Lake Thunderbird 7.37 23 40 

03/13/2013 2 Lake Thunderbird 5.99 23 35 

03/13/2013 3 Lake Thunderbird 8.05 24 30 

03/13/2013 4 Lake Thunderbird 5.67 25 40 

03/13/2013 5 Lake Thunderbird 10.4 25 30 

03/13/2013 6 Lake Thunderbird       

03/13/2013 7 Lake Thunderbird 14.5 28 25 

10/20/2014 1 Lake Thunderbird 41.4 10 56 

10/20/2014 2 Lake Thunderbird 39.3 11 50 

10/20/2014 3 Lake Thunderbird 46.3 11 47 

10/20/2014 4 Lake Thunderbird 33.8 11 42 

10/20/2014 5 Lake Thunderbird 38.6 14 45 

10/20/2014 6 Lake Thunderbird 23.3 23 X 

10/20/2014 7 Lake Thunderbird - - X 

10/20/2014 8 Lake Thunderbird - - X 

10/20/2014 11 Lake Thunderbird - - X 

01/14/2015 1 Lake Thunderbird 10.2 7 102 

01/14/2015 2 Lake Thunderbird 9.29 8 97 

01/14/2015 3 Lake Thunderbird 13.4 7 97 

01/14/2015 4 Lake Thunderbird 9.57 8 80 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

01/14/2015 5 Lake Thunderbird 14.2 10 58 

01/14/2015 6 Lake Thunderbird 12.3 22 23 

01/14/2015 7 Lake Thunderbird 6.51 9 79 

01/14/2015 8 Lake Thunderbird - - - 

01/14/2015 11 Lake Thunderbird - - - 

04/23/2015 1 Lake Thunderbird 5.5 13 70 

04/23/2015 2 Lake Thunderbird 8 11 76 

04/23/2015 3 Lake Thunderbird 13.9 14 70 

04/23/2015 4 Lake Thunderbird 7.17 14 68 

04/23/2015 5 Lake Thunderbird 11.7 24 38 

04/23/2015 6 Lake Thunderbird 53.8 78 16 

04/23/2015 7 Lake Thunderbird 15.7 17 57 

04/23/2015 8 Lake Thunderbird 21.8 - 38 

04/23/2015 11 Lake Thunderbird 35.6 - 21 

05/13/2015 1 Lake Thunderbird 3.96 46 30 

05/13/2015 2 Lake Thunderbird 5.29 63 28 

05/13/2015 3 Lake Thunderbird 11.8 51 20 

05/13/2015 4 Lake Thunderbird 5.56 50 28 

05/13/2015 5 Lake Thunderbird 7.5 71 22 

05/13/2015 6 Lake Thunderbird 6.4 120 9 

05/13/2015 7 Lake Thunderbird - - - 

05/13/2015 8 Lake Thunderbird 6.03 99 9 

05/13/2015 11 Lake Thunderbird 5.75 104 18 

06/03/2015 1 Lake Thunderbird 9.40 21 27 

06/03/2015 2 Lake Thunderbird 15 20 12 

06/03/2015 3 Lake Thunderbird 17.2 26 24 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

06/03/2015 4 Lake Thunderbird 18.6 9 27 

06/03/2015 5 Lake Thunderbird 21.4 23 33 

06/03/2015 6 Lake Thunderbird 22.8 27 34 

06/03/2015 7 Lake Thunderbird - - - 

06/03/2015 8 Lake Thunderbird 26.7 22 25 

06/03/2015 11 Lake Thunderbird 17.8 24 33 

06/17/2015 1 Lake Thunderbird 13.90 7 98 

06/17/2015 2 Lake Thunderbird 24.1 8 88 

06/17/2015 3 Lake Thunderbird 30.4 11 69 

06/17/2015 4 Lake Thunderbird 18.1 7 96 

06/17/2015 5 Lake Thunderbird 22.2 12 73 

06/17/2015 6 Lake Thunderbird 14.3 52 31 

06/17/2015 7 Lake Thunderbird - - - 

06/17/2015 8 Lake Thunderbird 20.9 16 59 

06/17/2015 11 Lake Thunderbird 26.5 17 62 

07/01/2015 1 Lake Thunderbird 22.73 6 62 

07/01/2015 2 Lake Thunderbird 19.5 7 38 

07/01/2015 3 Lake Thunderbird 23.2 9 58 

07/01/2015 4 Lake Thunderbird 21.3 7 68 

07/01/2015 5 Lake Thunderbird 18.1 7 64 

07/01/2015 6 Lake Thunderbird 32.7 13 33 

07/01/2015 7 Lake Thunderbird 17.9 11 - 

07/01/2015 8 Lake Thunderbird 0.13 10 33 

07/01/2015 11 Lake Thunderbird 15.2 10 39 

07/15/2015 1 Lake Thunderbird 22.03 6 52 

07/15/2015 2 Lake Thunderbird 20.9 9 56 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

07/15/2015 3 Lake Thunderbird 22.7 10 34 

07/15/2015 4 Lake Thunderbird 20.5 6 53 

07/15/2015 5 Lake Thunderbird 19.4 11 41 

07/15/2015 6 Lake Thunderbird 20.3 20 25 

07/15/2015 7 Lake Thunderbird - - - 

07/15/2015 8 Lake Thunderbird 20.2 12 36 

07/15/2015 11 Lake Thunderbird 16.7 19 31 

07/29/2015 1 Lake Thunderbird 23.63 7 54 

07/29/2015 2 Lake Thunderbird 31 8 63 

07/29/2015 3 Lake Thunderbird 27.3 9 57 

07/29/2015 4 Lake Thunderbird 25.6 6 67 

07/29/2015 5 Lake Thunderbird 34.3 17 29 

07/29/2015 6 Lake Thunderbird 14.4 43 24 

07/29/2015 7 Lake Thunderbird - - - 

07/29/2015 8 Lake Thunderbird 29.6 25 35 

07/29/2015 11 Lake Thunderbird 37.7 48 30 

08/12/2015 1 Lake Thunderbird 29.45 9 40 

08/12/2015 2 Lake Thunderbird 29.3 8 57 

08/12/2015 3 Lake Thunderbird 38 9 6 

08/12/2015 4 Lake Thunderbird 31.3 9 68 

08/12/2015 5 Lake Thunderbird 26.6 9 59 

08/12/2015 6 Lake Thunderbird 23.8 45 48 

08/12/2015 7 Lake Thunderbird - - - 

08/12/2015 8 Lake Thunderbird 22.7 21 39 

08/12/2015 11 Lake Thunderbird 34.2 16 45 

08/26/2015 1 Lake Thunderbird 31.57 6 72 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

08/26/2015 2 Lake Thunderbird 32.7 7 66 

08/26/2015 3 Lake Thunderbird 38.1 9 62 

08/26/2015 4 Lake Thunderbird 29.2 8 64 

08/26/2015 5 Lake Thunderbird 48.1 15 47 

08/26/2015 6 Lake Thunderbird 41.5 40 21 

08/26/2015 7 Lake Thunderbird - - - 

08/26/2015 8 Lake Thunderbird 35.8 23 35 

08/26/2015 11 Lake Thunderbird 35 56 21 

09/09/2015 1 Lake Thunderbird 30.37 5 75 

09/09/2015 2 Lake Thunderbird 38.6 6 53 

09/09/2015 3 Lake Thunderbird 45.2 12 39 

09/09/2015 4 Lake Thunderbird 38.6 5 63 

09/09/2015 5 Lake Thunderbird 34.3 11 40 

09/09/2015 6 Lake Thunderbird 57.5 73 9 

09/09/2015 7 Lake Thunderbird - - - 

09/09/2015 8 Lake Thunderbird 24.3 27 19 

09/09/2015 11 Lake Thunderbird 66.2 41 13 

09/23/2015 1 Lake Thunderbird 24.60 8 68 

09/23/2015 2 Lake Thunderbird 37.4 7 85 

09/23/2015 3 Lake Thunderbird 52 10 54 

09/23/2015 4 Lake Thunderbird 39.8 7 68 

09/23/2015 5 Lake Thunderbird 44.3 9 48 

09/23/2015 6 Lake Thunderbird 45.7 68 13 

09/23/2015 7 Lake Thunderbird - - - 

09/23/2015 8 Lake Thunderbird 48.3 24 30 

09/23/2015 11 Lake Thunderbird 41.1 39 13 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

12/09/2015 1 Lake Thunderbird 6.02 X X 

12/09/2015 2 Lake Thunderbird 3.1 X X 

12/09/2015 3 Lake Thunderbird 13.4 X X 

12/09/2015 4 Lake Thunderbird 4.21 X X 

12/09/2015 5 Lake Thunderbird 5.02 X X 

12/09/2015 6 Lake Thunderbird 13.2 X X 

12/09/2015 7 Lake Thunderbird - X X 

12/09/2015 8 Lake Thunderbird 25.4 X X 

12/09/2015 11 Lake Thunderbird 8.52 X X 

  

12/16/2013 1 Oologah Lake 3.2 17 29 

12/16/2013 2 Oologah Lake 3.17 18 30 

12/16/2013 3 Oologah Lake 3.52 20 43 

12/16/2013 4 Oologah Lake 2.68 17 33 

12/16/2013 5 Oologah Lake 2.5 23 24 

12/16/2013 6 Oologah Lake 4.73 43 20 

12/16/2013 7 Oologah Lake 5.21 34 - 

03/10/2014 1 Oologah Lake 27.6 10 54 

03/10/2014 2 Oologah Lake 27.7 9 66 

03/10/2014 3 Oologah Lake 15.8 8 53 

03/10/2014 4 Oologah Lake 22 10 55 

03/10/2014 5 Oologah Lake 14.8 11 46 

03/10/2014 6 Oologah Lake 10.7 10 47 

03/10/2014 7 Oologah Lake 9.15 9 50 

05/19/2014 1 Oologah Lake 5.21 19 31 

05/19/2014 2 Oologah Lake 4.23 27 - 



164 
 

Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

05/19/2014 3 Oologah Lake 9.89 25 25 

05/19/2014 4 Oologah Lake 6.46 27 22 

05/19/2014 5 Oologah Lake 10.3 36 27 

05/19/2014 6 Oologah Lake 5.27 47 23 

05/19/2014 7 Oologah Lake 9.57 57 19 

08/25/2014 1 Oologah Lake 3.52 6 70 

08/25/2014 2 Oologah Lake 6.89 8 51 

08/25/2014 3 Oologah Lake 11.8 10 50 

08/25/2014 4 Oologah Lake 5.58 7 60 

08/25/2014 5 Oologah Lake 7.24 12 43 

08/25/2014 6 Oologah Lake 13.8 15 38 

08/25/2014 7 Oologah Lake 17 20 35 

11/14/2016 1 Oologah Lake 0.92 30 34 

11/14/2016 2 Oologah Lake 1.12 32 29 

11/14/2016 3 Oologah Lake 3.05 29 35 

11/14/2016 4 Oologah Lake 0.87 40 25 

11/14/2016 5 Oologah Lake 1.2 45 20 

11/14/2016 6 Oologah Lake 5.11 50 17 

11/14/2016 7 Oologah Lake 5.29 56 18 

02/13/2017 1 Oologah Lake 3.83 17 63 

02/13/2017 2 Oologah Lake 4.98 16 65 

02/13/2017 3 Oologah Lake 9.86 15 69 

02/13/2017 4 Oologah Lake 9.64 13 58 

02/13/2017 5 Oologah Lake 11.6 13 58 

02/13/2017 6 Oologah Lake 46.1 27 32 

02/13/2017 7 Oologah Lake 60.5 35 24 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

  

12/16/2014 1 Robert S Kerr Reservoir 8.47 26 29 

12/16/2014 2 Robert S Kerr Reservoir 12.5 25 32 

12/16/2014 3 Robert S Kerr Reservoir 5.34 43 26 

12/16/2014 4 Robert S Kerr Reservoir 9.99 25 28 

12/16/2014 5 Robert S Kerr Reservoir 15.5 26 27 

12/16/2014 6 Robert S Kerr Reservoir 9.12 12 44 

03/18/2015 1 Robert S Kerr Reservoir 10.5 36 34 

03/18/2015 2 Robert S Kerr Reservoir 15 23 42 

03/18/2015 3 Robert S Kerr Reservoir 4.72 79 20 

03/18/2015 4 Robert S Kerr Reservoir 22.4 26 34 

06/16/2015 1 Robert S Kerr Reservoir 5.93 56 27 

06/16/2015 2 Robert S Kerr Reservoir 10.8 48 26 

06/16/2015 3 Robert S Kerr Reservoir 22.8 56 29 

06/16/2015 4 Robert S Kerr Reservoir 5.47 54 26 

06/16/2015 5 Robert S Kerr Reservoir 4.99 46 27 

06/16/2015 6 Robert S Kerr Reservoir 5.98 63 - 

09/22/2015 1 Robert S Kerr Reservoir 8.75 28 27 

09/22/2015 2 Robert S Kerr Reservoir 12.3 28 21 

09/22/2015 3 Robert S Kerr Reservoir 43.5 19 22 

09/22/2015 4 Robert S Kerr Reservoir 13.2 36 15 

09/22/2015 5 Robert S Kerr Reservoir 15.6 28 15 

09/22/2015 6 Robert S Kerr Reservoir 26 17 22 

  

12/05/2012 1 Waurika Lake 25.3 18 37 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

12/05/2012 2 Waurika Lake 25.7 17 35 

12/05/2012 3 Waurika Lake 30.3 21 31 

12/05/2012 4 Waurika Lake 23.5 73 12 

02/27/2013 1 Waurika Lake 4.88 20 50 

02/27/2013 2 Waurika Lake 6.88 22 45 

02/27/2013 3 Waurika Lake 7.32 28 45 

02/27/2013 4 Waurika Lake 34.5 169 10 

04/30/2013 1 Waurika Lake 8.05 27 45 

04/30/2013 2 Waurika Lake 14.4 30 40 

04/30/2013 3 Waurika Lake 37.7 42 15 

04/30/2013 4 Waurika Lake 41.8 204 10 

07/15/2013 1 Waurika Lake 9.85 23 32 

07/15/2013 2 Waurika Lake 13.9 20 26 

07/15/2013 3 Waurika Lake 23.3 35 42 

07/15/2013 4 Waurika Lake 44.5 158 15 

12/02/2014 1 Waurika Lake 5.13 23 40 

12/02/2014 2 Waurika Lake 5.65 25 32 

12/02/2014 3 Waurika Lake 8.53 34 25 

12/02/2014 4 Waurika Lake 19.5 - - 

12/02/2014 5 Waurika Lake - - - 

03/09/2015 1 Waurika Lake 24.6 12 65 

03/09/2015 2 Waurika Lake 20.8 15 58 

03/09/2015 3 Waurika Lake 16.8 24 39 

03/09/2015 4 Waurika Lake 17.9 - - 

03/09/2015 5 Waurika Lake - - - 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

06/08/2015 1 Waurika Lake 2.79 37 30 

06/08/2015 2 Waurika Lake 9.52 37 32 

06/08/2015 3 Waurika Lake 7.17 36 32 

06/08/2015 4 Waurika Lake 37.2 17 52 

06/08/2015 5 Waurika Lake 37.20 12 57 

08/31/2015 1 Waurika Lake 10.9 10 82 

08/31/2015 2 Waurika Lake 14.6 8 78 

08/31/2015 3 Waurika Lake 9.04 9 75 

08/31/2015 4 Waurika Lake 14.4 6 88 

08/31/2015 5 Waurika Lake 14.4 10 70 

  

01/28/2013 1 Lake Texoma 4.49 3 250 

01/28/2013 2 Lake Texoma 4.89 2 180 

01/28/2013 3 Lake Texoma 8.38 3 - 

01/28/2013 4 Lake Texoma 5.97 5 - 

04/15/2013 1 Lake Texoma 1.76 3 105 

04/15/2013 2 Lake Texoma 6.37 3 95 

04/15/2013 3 Lake Texoma 4 2 105 

04/15/2013 4 Lake Texoma 4.44 3 85 

08/26/2013 1 Lake Texoma 18.2 2 118 

08/26/2013 2 Lake Texoma 24.3 2 108 

08/26/2013 3 Lake Texoma 18.9 3 83 

08/26/2013 4 Lake Texoma 26.2 4 68 

08/26/2013 5 Lake Texoma 20.2 3 83 

08/26/2013 6 Lake Texoma 22.7 3 98 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

08/26/2013 7 Lake Texoma 24 4 77 

08/26/2013 8 Lake Texoma 23 4 78 

08/26/2013 9 Lake Texoma 22.3 7 69 

08/26/2013 10 Lake Texoma 31.9 10 58 

08/26/2013 11 Lake Texoma 32.8 6 68 

08/26/2013 12 Lake Texoma 40.3 11 59 

08/26/2013 13 Lake Texoma 35 44 25 

12/07/2015 1 Lake Texoma 3.37 5 106 

12/07/2015 2 Lake Texoma 3.84 5 112 

12/07/2015 3 Lake Texoma 6.77 5 102 

12/07/2015 4 Lake Texoma 5.17 8 84 

12/07/2015 5 Lake Texoma 6.83 5 101 

12/07/2015 6 Lake Texoma 5.25 4 90 

12/07/2015 7 Lake Texoma 5.73 7 78 

12/07/2015 8 Lake Texoma 9.12 17 40 

12/07/2015 9 Lake Texoma 3.91 38 29 

12/07/2015 10 Lake Texoma 3.98 53 27 

12/07/2015 11 Lake Texoma 7.9 29 25 

12/07/2015 12 Lake Texoma 2.52 77 11 

12/07/2015 13 Lake Texoma 3.92 88 7 

09/19/2016 1 Lake Texoma 11 3 130 

09/19/2016 2 Lake Texoma 9.02 3 120 

09/19/2016 3 Lake Texoma 11.1 2 102 

09/19/2016 4 Lake Texoma 13 6 95 

09/19/2016 5 Lake Texoma 11 4 110 
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Date Site Lake/Reservoir CHLa (µg/L) Turbidity (NTU) Secchi Depth (cm) 

09/19/2016 6 Lake Texoma 10.5 5 126 

09/19/2016 7 Lake Texoma 12.4 4 92 

09/19/2016 8 Lake Texoma 17.6 4 78 

09/19/2016 9 Lake Texoma 23 9 44 

09/19/2016 10 Lake Texoma 20.8 11 40 

09/19/2016 11 Lake Texoma 16.6 7 52 

09/19/2016 12 Lake Texoma 20 6 58 

09/19/2016 13 Lake Texoma 27.8 14 30 
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