ACCESS CONTROL AND SECURITY OF DATASETS
BY USAGE TRACKING USING BLOCK CHAIN

TECHNOLOGY

By
PIYUSH BHATT
Master of Science in Computer Science
Oklahoma State University
Stillwater, Oklahoma

2016

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2016

ACCESS CONTROL AND SECURITY OF DATASETS
BY USAGE TRACKING USING BLOCK CHAIN

TECHNOLOGY

Thesis Approved:

Dr. Johnson Thomas

Thesis Advisor

Committee Members:
Dr. Johnson Thomas
Dr. Christopher Crick

Dr. K.M.George

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all those
who helped with me with creating and developing the
concept of access control using block chains. A special
gratitude to my thesis advisor, Dr. Johnson Thomas, whose
contribution in stimulating suggestions and encouragement,
helped me to coordinate my project. I would also like to
thank Ashwin Thandapani Kumarasamy whose helpful
insights and vast knowledge in the subject helped me
achieve my goal.

Name: PIYUSH BHATT
Date of Degree: MAY, 2017
Title of Study: MASTER OF SCIENCE IN COMPUTER SCIENCE

Major Field: BIG DATA

Abstract: The thesis proposes a novel way to solve the threat of exposure of sensitive data
from large datasets. Data is captured by organizations and converted into datasets. Two
or more datasets may be combined to fetch critical or sensitive data which then can be
misused for a variety of purposes. An unauthorized user may be able to access the data.
This thesis proposes a blockchain approach to tracking data usage and will record details
such as when and by whom the datasets are accessed. The Blockchain is used to record
information about the user who accesses the datasets. The user name of the individual,
name of the dataset accessed, the method using which the dataset is accessed (Command
Line Interface or Map Reduce) and the command line operation performed (cat, copy,
move, put) is recorded in each block. Each blockchain represents a dataset. Blockchains
are very secure when it comes to storing sensitive information because the data inside a
blockchain is immutable. The data inside each block is stored using hash values and each
block is connected to the others using the hash value of the previous block. If an
unauthorized modification is done to the data, the hash value would change, thus
rendering all the following blocks invalid. This would alert the administrator that
information has been modified. When a dataset is accessed, the username, the dataset
name, the method of access (Command Line Interface or Map Reduce) and the command
line operation (cat, copy, move, put) are captured using the data usage tracker and these
values are used to create the blockchain. If an unauthorized modification is done, the
blockchain validation process will identify the illegal access and report accordingly.

TABLE OF CONTENTS

Chapter Page
L. INTRODUCTION ...ttt sttt sttt e 1
B DAta ..ot ettt et ettt enaeenne 1
BIOCK CRaIN ..t 2
The ProDIEM ..ottt 4
PropoSed SOIULIONcccuviieiiiieciie ettt e e e e e e 4
MY CONIIDULION. ...ttt ettt ettt ettt e et eeabeebeeesbeensaesnseenne 4
Outline of the dOCUMENL.........cooiiiiiiiiiii e 4
II. REVIEW OF LITERATURE ..ottt e 5
Access control of sensitive data in HDFS.........ccoocooiiiiie 5
Vigiles: FGAC for MR SYStEMScocviiiiiiiieeiieiieeie ettt ettt 8
Access Control for Big Data using Data Content............c.ccceeevveeeiiieeiieesiieesieeens 9
An Access Scheme for Big Data processing.........ccceeeveeerveeerieeenieeeieeereeesvee e 10
III. METHODOLOGY ...ttt sttt ettt st enaesneenne s 12
Detailed problem Statement...........cc.eeecvieeiiieeiiie e 12
Detailed SOIULIONc.eeeiieiieeiieie ettt 14
F N Fd0) 11 4V o USRS 30
IV, IMPIemMENtationc..eevuiiiiieiieeiieste ettt ettt ettt eeteesaaeebeeseeeensens 34
Findings and ReESUILScccuiiiiiiiiiiiecieeeee et e 41
VL CONCIUSION .ottt ettt et ettt et et e s e ebeesaeeenbens 59
REFERENCES ...ttt ettt ettt st te s seeneeeneenneas 62

LIST OF FIGURES

Figure Page
L ettt et h et h e et e e bt e et e e bt e e a bt e beeeat e e bt e eabe e beesateenne 17
ettt h ettt h e et h e et e e bt e bt e bt e et e e s bt e et e e bee e beesheeebeenaeeeneens 17
B et ettt b e h et bt e h et et e e e ht e e bt e eh et e bt e eh b e e beeeh bt e bt e nhteebeeenbeeteenaneenne 18
PP TSP U PO PSR PPTUPRRUPPTRPRRIPPN 18
o J O OO OO OSSO UROUSR PR 21
Bttt ettt et h e et eh e et e bttt ea et et e bt e e neenaneeane 22
T ettt h e e bt b ettt e h et e bt e e h bt e bt e e bt e e bt e shteeb e e ehteebeenaneeneene 23
T TP TP PP U P TTOPUPPORUPPRPP 23
ettt h et h et et h et bt e h e e e bt e bt e e bt e sht e e bt e e heeebeeeateeneens 24
L0ttt ettt ettt e b et beesare e 25
0 OO OSSO STRURUURUPRRTRIOt 26
L ettt ettt st ettt e ae et 27
K OO OSSO STRURUURUPRRPRIOt 28
Lttt et ettt e be e e e 29
OO OSSPSR STRURUURUPRRRTRIOt 35
L0ttt et ettt e b et e be e st 42
OO U SORUUTRURUURUPPRRTRIOt 42
L ettt et ettt et e b et be e st e e 43
| OO OSSO RURUURUPRRRTRIOt 43
200 et h et h e et eh et enh bt et e bt e beesabe e bt e naeeeneens 44
) OO OO PP PTUPRRROPRUPRRRPIN 45
2 et ettt et e h e bt e bt et e e bttt e bt e e bt e ebe e e b e e saae e bt e naeeereens 45
F K F OO PP PTUPRRRPPRUPRRRTPIN 46
24 ettt h ettt et e h e st e st e e bt e sateeneen 46
T OO PP PTU PR UPRUPRORPON 47
20 ettt h et e h bttt e sttt e b et et eshee e bt enaeeeneen 47
2T ettt bt bttt e bt e bt e bt e et e e bt e e bt e bt e eate e bt e eabe e bt e sateebeeas 48
B TR O PP OO OP RO TP PPORUPTUPRRUPPTRPRRRPPN 48
2 et h e bt h ettt ht e et e e bt e e bt e bt e eabe e bt e e bt e beeeateebeeens 49
B0 ettt e h et a e et e bttt e e sh et et e bt e neesaneeane 50
K OO OSSO P O PTUPRRPPRUPRRRPPIN 51
B ettt et h et a bt et h e e b e na et et e bt e e neenane e 51
K SO OO OO P RO UTUPRRRPPUPRORTPIN 52
Bttt h ettt et sh e ettt et esae e e neesane e 53
B ettt h et bt h e e bt e e h et e bt e e bt e e bt e eht e e bt e ehteebeesaaeeneens 54

Vi

B et e b et 55
B ettt b e s 55
B e ettt ettt ene e s 56
B0 et 56
AL ettt et enee 57
A2ttt s 57
A3 et sttt e ne e st enee 58
B ettt st 58

Vi

CHAPTER I

INTRODUCTION

1. BIG DATA

Every day 2.5 quintillion bytes of data are created [1]. In 2011 1.8 zettabytes (or 1.8
trillion GBs) of data was created. In 2012 it reached 2.8 zettabytes and the IDC
(International Data Corporation) now forecasts that 40 zettabytes of data will be
generated (ZB) by 2020 [2]. Organizations with a large customer base like Facebook,
Amazon or Google deal with huge amounts of data. This kind of data is called Big Data.
With Big Data, the large amount of data cannot be processed using conventional database
systems. Big Data is not only about the size of the data. It is also about how the data is
being used, how the data is being transmitted or moved, how costly it is to maintain the
data, how much time is consumed to process the data. Big Data is not one technology but
an amalgamation of multiple different technologies. It uses tools and techniques to
process and maintain data, effectively and efficiently. Industries like Banking, Health-
care and Education use these technologies to maintain their data effectively. Big data
technologies utilize data in a different way than conventional database systems. The data
is compiled into structures called datasets and then these datasets are processed. For

example Apache's Hadoop is one Big Data framework, which is widely used to deal with

big data. Its file system known as the Hadoop Distributed File System (HDFS) which is a
distributed file system used to store large volumes of data. It provides reliability and
efficiency. Some other frameworks which handle big data are: Storm [11], Hortonworks
Data Platform [12], Apache Pig [13]. There are numerous such tools out there. Every tool
has their own way to handle big data. Hadoop uses Map Reduce to process the data.
Hadoop MapReduce [3] is a software framework for writing applications which process
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of
nodes) of commodity hardware in a reliable, fault-tolerant manner. R is a programming
language mostly used for Big Data Analytics. Big data analytics [4] examines large
amounts of data to uncover hidden patterns, correlations and other insights. With today’s
technology, it’s possible to analyze data and get answers from it almost immediately — an

effort that’s slower and less efficient with more traditional business intelligence solutions.

2. BLOCKCHAIN

Blockchain is a Distributed Database. Blockchain was first used for Bitcoin [5]. Bitcoin is
an organization which created a cryptocurrency with the same name (Bitcoin).
Cryptocurrency is analogous to digital currency. The Bitcoin protocol uses blockchain.
Blockchains are secure because they are built to prevent hacker attacks or unauthorized
modification. There are three types of blockchains: Public, Private and Hybrid.
Organizations such as Bitcoin use a public blockchain. Everyone who has access to the

Internet can look at the bitcoin transactions. A blockchain is kept private in an
2

organization which has sensitive data. A hybrid blockchain is one in which some parts of
the blockchain are public while some parts are private. A block chain consists of blocks
which consist of some kind of data. They are connected to each other using Hash values

(Block header).

After some computations and modifications the items mentioned above (Version number,
Hash of the previous block, Merkle Root, Time stamp and number of bits of the data) are
concatenated together and converted into a single hash. The hash is a value generated by
a Cryptographic Hashing Function [6]. If someone tries to modify even a single data
entry in the block, the whole hash value will get corrupted. Thus it would be clear that an
unauthorized change has been made. There are multiple nodes in a blockchain network.
There might be hundreds of thousands of nodes present in the blockchain. If someone
wishes to hack a blockchain, he will have to find all the nodes in the network and hack all
of them at the same time. If he tries to access one node and modify the data, the values of
the hash value of the block will change. If the block is modified, its hash value would
change and thus it would be known that the block is now corrupt. The block from any of
the other nodes, which are not corrupt could be used to replace the corrupt block. All the
blocks are connected to each other using the hash value of the previous block. Hence if a
change is made in any block, all the blocks following that block will be rendered useless.

Hence the blockchain is secure and reliable.

3. THE PROBLEM:

Data is captured by organizations and converted into datasets. Two or more datasets may
be combined which may cause critical or sensitive data to be fetched from multiple
locations. The data can then be misused for variety of purposes. An unauthorized user

can access the data.

4. PROPOSED SOLUTION:

A system is required to track usage of datasets. Every time a dataset is accessed, the
usage of that data should be captured. This system should be secure so that no one can
make any unauthorized changes to it. A blockchain will be created every time a dataset is
introduced. Every dataset will have its own block chain. Every block in the dataset will
have the user name of the user accessing the dataset, the name of the dataset, the type of
access used and command line operation performed. Type of access can be using
MapReduce (MR) or using the Command Line (CLI) and the command line operation
performed could be copy, move or view. Since the block chain is secure and immune to

any kind of cyber-attacks, the usage of the datasets would remain safe.

S. OUTLINE OF THE THESIS

Chapter 2 consists of the review of previous work in similar areas. Chapter 3 describes
the problem in detail and the proposed solution. Chapter 4 describes the implementation

of the solution. Chapter 5 is the conclusion of the thesis work done.
4

CHAPTER II

LITERATURE REVIEW

Several other researches have been done in similar areas. This chapter explains how the

work done by the other researchers is different from what has been done here.

1. Access control of sensitive data in HDFS [7]:

The research presents a new security model which is different than the conventional key
based federated system. Every federated user has a key (password), using which he can
access data. For two parties to be able to access each other’s data, a security token is

used. This could be a RSA token. The TokenID is generated which provides the Token.

Tokenl D= {Omerld, Renewerld, issueDate, naxDate,
sequenceNunber } (1)
Oaner | D: ID of the owner of the token.

Renewer | D: ID of the individual who renews the token.

i ssueDat e: Token issue date

maxDat e: Token expiration date

sequenceNunber : The sequence number of the token in the list.

Every token has a validity which is usually one day or till the task is completed. The
validity can be calculated using the i SsueDat e and the maxDat e. Access rights or
limitations should be added to the t okenl D so that a user cannot access any
unauthorized data. Also the verification of the result generated should be present.

Equation (1) can be modified as:

Tokenl D={ owner | Dc, renewerld, issueDate, nmaxDate,
sequenceNunber, out put Check} (2)

owner | Dc={ owner | d, accessLimt, Keyld, expirationDate} 3)

The new parameters to generate Tokenl Dhas 2 new components. Oamer | Dc and

out put Check as seen in (2). Omner | Dc describes the access rights allowed. It is
generated using accessLi m t asseenin (3). accessLi m t provides permission to
view the data for which the user has access. Qut put Check verifies the output
generated. These two factors enhance the security of the data being accessed.

Let's assume a function G which comprises of: N (set of states), 4 (set of access rights), D

(set of allowed resources in the Database), U (return result of the user query).

Function G has a fixed set of access rights, specifies the resources allowed in the database
and the result of the query. This function acts as an access control mechanism. If a user
tries to access any information which requires special access rights, or if he tries to access

resources which are it is not permitted to access or if the result of the query does not

match the permitted result, the function G will be responsible for catching the malicious

acCCcEss.

Every authenticated user »; [N will have a token which will define a set of access rights
a;UA:. An unauthorized user (malicious user/hacker) will have no access rights. If an
authorized user tries to access any data to which he doesn't have access, he will be
blocked and reported. If the output doesn't match the access permissions he will be
blocked. Two users can have some of the access rights in common. A user can have the
same access rights for two database resources or his access rights may be different for the
database resources. Every system or node has a super user who has all the access rights to
all the resources. If a hacker tries to simulate a query as an authorized user he can be
caught for multiple reasons. He might not know about the access rights or the queries do
not match. If he is using a particular computer system, he will get locked out of that
system. The security team might get hold of the query the hacker was trying to execute,
flag it and prevent any similar future attacks. There might be internal hackers who try to
access the data they do not have rights to. Their attempts to gain unauthorized access will

be flagged.

There is a chance that sensitive information might be accessed without any trace of any

attack. Even read access rights provided to a user will result in the exposure of the data.

2. Vigiles: Fine-grained Access Control for MapReduce Systems [8]:

Vigiles is like a firewall which provides Fine Grained Access Control Predicates. User
defined predicates are applied to each file and a user can access a file only after these
predicates are applied. These predicates run Access Control Filters (ACF). Access
Control Filters provide access based on the security policies and protocols. There are
three types of ACF actions: reject (rejects access), grant (grants access) and modify
(modifies the data). Vigiles acts as a middleware between users and the MapReduce
system. It uses the same user name and password of the OS authenticating process. End
users have no direct responsibility with Vigiles. Administrators create config files and
customize ACFs. A user can communicate with Vigiles by using the computer screen
(OS interface). Vigiles executes the job on behalf of the user and since it has all the file
access parameters, it runs and provides the output. ACF generation is a three step
process: Decompose, fetch and action. Unstructured text is broken into words. Sensitive
words are found and created into tokens which are indexed. Then ACF actions are
applied to the words. ACF injection is a process used in Vigiles. Three types of aspects
are injected into these pointcuts: (1) initialization aspect is injected to i ni ti al i ze()
method; (2) predicate aspect is injected to next KeyVal ue() method; and (3)
modification aspects are injected to get Cur r ent Key() / get Cur r ent Val ue()

methods. Although Vigiles provides a way to identify sensitive data, it all depends on the

administrator. Administrator decides which data is sensitive. There's no way to track

which user accesses which data.

3. Access Control for Big Data using Data Content [9]:

The paper proposes a Content-based access control (CBAC) for big data. It is an
additional access control scheme along with the existing Database access control rules. It
is designed for areas where a certain amount of approximation regarding access control is
applicable. A user can access a few more or less records than is assigned by the

administrator.

A generic CBAC policy could be represented as:

ACR = {subject, object, action, f (u, di)}, whereu is the subject

and d is the data object.

CBAC provides the users a special role which allows them to access a certain type of data

for which they have the access. The role has predefined access to a type of data.

It uses a function: f (u, di) = {true, false}. Accesstoarecord will be

provided if the output of the function is true.

In this model, content similarity is compared with a preset threshold, and the user is
granted access to all the records that pass the similarity. But if the threshold value is

computed wrong, then it might allow the user to access more records than he was

allowed. This can be solved by implementing Top K Similarity. It can be implemented

just like CBAC, as an additional component.

There's always the risk a user can access a record which he was not supposed to access
and there would be no record of him accessing it since CBAC provides the access based

on approximation.

4. An Access Scheme for Big Data processing [10]:

Big Data has no predefined scheme for database management. So Big Data access control
requires additional access control capabilities. The following components are the parts of

the new Access control scheme:

1. Security Agreement: It's an agreement between a Big Data source and the Master
System which defines the security classes. Its purpose is to agree upon security classes by

the Master System and Big Data sources.

2. Trust Cooperated Systems List (TCSL): This is a list of trusted Cooperated Systems

which are recognized by the master system.

3. Master System Access Control Policy (MSP): This is a set of rules imposed by the

Master System to enforce Access Control on Cooperated Systems.

10

4. Cooperated System Access Control Policy (CSP): This allows the Cooperated Systems
to control the access to the distributed Big Data data/process by considering the

processing capabilities and security requirements of the systems.

5. Federated Attribute Definitions (FAD): This lists the common attributes used by the
Master System and Cooperated System, so that the Master System Policy and Cooperated

System Policy can be composed using the common attributes in the FAD dictionary.

Someone can bypass the security classes or the security officer can modify the policies.

Human error can be a factor in this scheme.

There is very limited work on detecting malicious or unauthorized modifications to big
data. The aspect of security when datasets are merged or joined has also not been
addressed in previous works. None of the above approaches provide a proper and

accurate mechanism for securing big data.

11

CHAPTER III

METHODOLOGY

ITII.1. DETAILED PROBLEM STATEMENT

Two or more datasets can be combined which may cause critical or sensitive data to be
accessed which then can be misused for a variety of purposes. Even a single dataset
carrying sensitive can be accessed for malicious purposes. For example one dataset has
Candidate Id, Name, Date of Birth and Place of Birth of an individual. Another dataset
might have the Person_Id, Candidate Id, Date of Birth and Phone Number. The third
dataset might have Person Id and SSN. If an unauthorized user is able to get all these 3
datasets, he can get the sensitive information about the person. A system is needed which
would track the usage of these datasets; who is using what kind of datasets. If the same
unauthorized user who is trying to access the sensitive information can cover his tracks in
the system, then the system fails. So this system needs to be highly secure and quite
reliable. There should be no loss or corruption of data for any reason. The system should
have multiple backups on different locations like DR (Disaster Recovery) sites.

The solutions mentioned in chapter II which are provided by other researchers are good
but they are dependent on human computer interaction. A user may not have access to
modify the dataset but he may be able to read the data from the dataset which is a major
concern. In some cases, the access rights are not accurately implemented. They could

12

provide a little more access or a little less access to data. A little less access would be a
less of a concern that providing a little more access. Any kind of sensitive data could be
accessed, accidentally or intentionally. The solution provided here is mostly automated.
The data cannot be modified even if the individual has access rights. It can be deleted by
the administrator but the report generated would be accessed by everyone and anyone can
question why the dataset, blockchain or even a block was deleted. The blockchain is
monitored after every fixed interval of time by an automated process. So any kind of

unauthorized access (if possible) will be detected.

13

I1I1.2. DETAILED PROBLEM SOLUTION

In order to solve the problem stated above, a usage tracking system is created using block
chain technology. There would be multiple nodes and each node will have the
blockchains of all the datasets available. Once a block chain is created in any of the
nodes, it would be synchronized to all the other nodes. So there would be no loss of data

thus making it reliable.

Not only would the proposed scheme be able to detect changes to a block chain, it would
also be able to detect any illegal accesses to data by comparing it with data access control
rules. If an individual who does not have access rights, tries to access a dataset, the
information would be recorded and monitored at regular intervals. As soon as a user
accesses a dataset, his or her username, the dataset(s) he or she accessed, how he or she
accessed the dataset(s) and what command line operation was performed will be
recorded. If he does not have access rights to the dataset and if he or she still tries to

access it, it would be detected.

The implementation of our proposed scheme is as follows:

A block consists of 5 kinds of data:
e Version Number
* Hash of the previous block(Block Header)
* Merkle Root
* Time stamp of creation of the block

14

e Number of bits of data inside the block. This is the size of data in the block in
bits.

1. Creation of Genesis block: If an existing dataset is accessed for the first time, the
dataset name, name of the user who accessed the dataset, the method using which the
dataset was accessed (Command Line Interface or Map Reduce) and the command line
operation performed (cat, copy, move) will be captured. If a new dataset is created in
HDFS, name of the dataset created, name of the user who created the dataset, method
using which the dataset was created (Command Line Interface or Map Reduce) and the
command line operation using which the dataset was created (copy, move, put) will be
captured .The values captured above would be hashed using SHA-256. This would give a
256 bit hash or 64 characters hash value. A version number would be assigned to the
genesis block. This could be any random number of any random length. Every following
block in the block chain would have a version number. There are many ways to calculate
the version number of the next block. The version number can be incremented by a
constant number or a customized algorithm could be used which would compute the
version number. The number of bits of the data in the genesis block would be calculated.
For example if the data in the blockchain is 10, then the binary encoded form of 10 in bits
would be 00110001 00110000. Thus the size of the data in this case would be 16 bits. A
timestamp would be entered for this block. The timestamp would be the creation time of
the block. Once the hashed value of the data is calculated, the version number, the
number of bits and the time stamp, will be concatenated and then the hash of this string

15

will be calculated. This will be the final hash of the genesis block. This hash value will be

used in the next block.

2. Creation of the first block: Once the genesis block is created, it will provide a hash
value for the next block. A version number will be calculated using a customized
algorithm. It will take the version number of the previous block and generate a version
number. A timestamp will be generated for this block. The username of the user
accessing the dataset will be captured. The name of the dataset will be acquired. The
method which was used to access the dataset will be fetched. It would be either using
Map Reduce (MR) or the Command Line Interface (CLI). The command line operation
with which the user accessed the dataset (view, copy, move, put) will be recorded as well.
A Merkle root will be calculated using the Merkle tree. The Merkle root is calculated
because it contains the amalgamated hash values of all the data which is present inside
the block. If even a single data item is modified, the Merkle root will be changed because
the hash value of the data is a part of the Merkle root.
Steps to create a Merkle tree:
1. Calculate H (user nane) : Hash value of the user name; H (dat aset
namne) : Hash value of the name of the dataset; H (met hod) : Method of
accessing the dataset; H (oper ati on) define. This order will be followed

throughout the blockchain for consistency.

16

H(user nane) H(oper ati on) H(dat aset) H(met hod)

2. Concatenate the hash of the first two items:

H(UNOP) = H(user nane)+H(operati on). Pointtwo arrows from

H(user nane) and H(oper ati on) to H(UNCP) .

H(UNOP)
H(user nane) H(oper ati on)

Figure 1: A node of Merkel Tree

3. Concatenate the hash of the next two items:

H(DSM = H(Dat aset name) + H(nethod). Point two arrows from

H(dat aset nane) and H(et hod) to H(DSM .

H(DSM

/N

H(dat aset nane) H(et hod)
Figure 2: A node of the Merkle tree

4. Point two arrows from H{ UNOP) and H{ DSM to H(r oot) .

17

H(root) = H(UNOP) +H(DSM .

H(root)
H(UNOP) H(DSM

Figure 3: Combined nodes of the Merkle tree.

5. H(root) isthe Merkel root.

The following figure is the complete Merkle tree

H(root)
H(UNOP) H(DSM
H(user nane) H(oper ati on) H(dat aset n/ I—xhod)

Figure 4: A complete Merkel tree

18

Once the Merkel root is calculated, the number of bits of the data is calculated. The total

number of bits will be calculated for username, command line operation, dataset and the

method.

Total items in a block

Hash value of the genesis block.

Version number

Time stamp value

Merkel root value (The hashed value of H(root) from Figure 4)

Number of bits of the data.

The version number, timestamp and number of bits will be converted into hexadecimal

format. Each hexadecimal number will be of & characters. If it is shorter than 8 characters

it will padded with Os in the beginning.

Total items in a block:

Hash value of the genesis block.
Version number (hex)

Time stamp value (hex)

Merkel root value

Number of bits of the data (hex)

Next convert all the items into Little Endian format. For example 000003EB would be

converted into EB030000. The characters are replaced in pairs from the end of the string

19

to the front of the string. So initially 'EB' was at the end and it is now brought to the front

of the String. Similarly for all the other pairs as well.

E(HG : Little Endian Format of hash value of genesis block.

E(HEXVN) : Little Endian format of hexadecimal value of version number

E(HEXTS) : Little Endian format of hexadecimal value of time stamp

E(MRV) : Little Endian format of Merkel root.

E(HEXNB) : Little Endian format of hexadecimal value of number of bits

The hash value of this block will be calculated by concatenating the above 5 values and

hashing:

H(CB) = Hash value of current block

H(CB) = H(E(HG) +E(HEXVN) +E(HEXTS) +E(MRV) +E(HEXNB))

This would give the final hash value of the current block.

Following the same procedure for all the blocks, a block chain is completed.

As mentioned earlier, every dataset has a block chain; hence there will be multiple block

chains. Every time a new dataset is introduced, a new block chain is created

20

If a user wishes to access dataset (A) and dataset (B) as shown in figure 5 a new block

chain would be formed by merging the 2 block chains and creating a whole new block

chain.
Dataset A Dataset A First Dataset A
Genesis Block Block A1 Second Block
Ac A2

Dataset AB

Genesis Block

ABg
Dataset B Dataset B First Dataset B /

Genesis Block Block B1 Second Block
Bs B>

Figure 5: Merging of 2 blockchains to create a new block chain

The resulting dataset (AB) as shown in the figure is the amalgamation of dataset A and
dataset B. The newly formed block is the genesis block of the block of the new chain AB
and the following blocks would be AB1, AB>,..,AB.. The genesis block would be created
by capturing the name of the dataset. The name of the dataset would be created by
concatenating the name of the 2 datasets which are combined. Name of the user who
accessed the 2 datasets together will be captured. Map Reduce is the only method allows
the user to access 2 datasets at the same time. The command line operation would be

MRAccess. These 4 values would be used to create the Merkle root. The version number

21

of the new genesis block ABg would be computed by creating a similar customized
algorithm which would take the input as version numbers of Az and B». The timestamp
when the 2 datasets were accessed will be captured. The number of bits of data (the
username, new dataset name, method of access and the command line operation) will be

calculated.

Last block of blockchain A

Version number

Merkle Root
Genesis Block of blockchain AB

Timestamp of creation of block
Version number (Calculated from previous

Number of bits of data S 2 version numbers)

Hash value of previous block Merkle Root of username

Dataset name (AB)

Last block of blockchain B Method of access (MR)

Version number of the block Operation (MRAccess)

Merkle Root Y. Timestamp of creation of Genesis block
Timestamp of creation of block Number of bits of the above data.

MNumber of bits of data

Hash value of previous block

Figure 6: Creation of Genesis Block when 2 blockchains are combined.

If a new dataset C is introduced, and all three are merged, then the new blockchain would

be ABC.

Deletion of datasets: If a dataset is deleted from Hadoop File System (HDFS), the

blockchain representing that dataset would be deleted as well.

22

Dataset A was accessed to create the blockchain A. The blockchain had a genesis block

Agand A1, Ao, ... were the subsequent blocks.

Dataset A

\

Genesis block of blockchain A (Ag)

Version number of the block
Merkle Root
Timestamp of creation of genesis block

Number of bits of data

15t block of blockchain A (A1)

Version number of the block
Merkle Root

Timestamp of creation of the block
Number of bits of data

Hash Value of genesis block

Figure 7: Creation of blockchain when dataset is accessed.

When we delete the dataset A from HDFS, the blockchain A will be deleted

automatically.

77 -

- ‘N
Lt S
- ~
~

Genesis block of blockchain A (Ag)

Version number of the-block

~.
‘..

Merkle Root T~

Timestamp of creation of genesis block

Number beitsoT'&éta

1st block of blockchain A (A;) _/,‘—""'

Version number.of the block

-t

- Merkle Root
ﬁm‘estamp of creation of the block

Number of bits (;f a'a‘ta\\.\

Hash Value of genesis block

Figure 8: Deletion of blockchain when dataset is deleted.

23

In case of merged blockchains:

For example if from figure 5, dataset B is deleted, the new genesis block ABg would

simply become a part of block chain A. The Genesis block of AB remains the same.

Dataset A Dataset A Dataset A Dataset A
Genesis Block First Block A1 Second Block Third Block
Ac A, Az
A\
Nl
\\
\
- . Dataset AB
DatasetB-.. _ Dataset B Dataset B /Da.taset'g‘ Genesis
Genesis Block | “First Block Ba Sego/nd/"“/ Third Block Block ABg
o = Blocke: 3

Figure 9: Deletion of a Dataset

Deletion of Block: If an unauthorized user tries to modify any block, he will change the
hash value of the block and thus will be caught. But now the block will be useless. So the
block will be deleted and the block with the correct data will be updated by retrieving the
block from the backup nodes. Hence data will not be lost. This is why the blockchain is

secure and reliable.

24

The dataset A was accessed to create the blockchain A. It has the genesis block (Ag) and
the subsequent blocks A1, Az... The entire blockchain is replicated in the other node with
the same values. The value (Merkle Root) in block Ajin Node 1has been modified by an
unauthorized user thus rendering it useless. While the blockchain A in Node 2 which is a

backup node has not been modified and has correct values.

Node 1 (Actual Node). Block A; has been
modified and is a corrupt block.

Genesis block of blockchain A (Ag) 1+ block of blockchain A (A;)
Version number of the block corrupt block.
Merkle Root) Version number of the block
Timestamp of creation of genesis block Merkle Root (modified by an
unauthorized user)
Number of bits of data
Timestamp of creation of the block

Node 2 (Backup Node). The replica of
blockchain A from Node A with the
correct block.

Genesis block of blockchain A (Ag) 15t block of blockchain A (A1)
Version number of the block Version number of the block
Merkle Root Merkle Root
_. __________________
Timestamp of creation of genesis block Timestamp of creation of the block
Number of bits of data Number of bits of data
Hash Value of genesis block

Figure 10: Corrupt blockchain in Node 1 and correct blockchain in backup node

25

When the blockchain validation process will be executed, the corrupt block will be
identified. The corrupt block will be deleted and the blockchain will be updated using the

correct blockchain in Node 2.

Node 1 (Actual Node). Block A; has been
modified and is a corrupt block.

Genesis block of blockchain A (Ag) 25t block of blockchain A (Aq) /./"
Version number of the block corrupf\block. //
Merkle Root —3p! Version number of the block | e
Timestamp of creation of genesis block Merkle Root (mtjaified'by\an
unauthorized user) e
Number of bits of data Rt N
Timestamp of creation of the block\‘\,\

Node 2 (Backup Node). The replica of
blockchain A from Node A with the
correct block.

Genesis block of blockchain A (Ag) 1+ block of blockchain A (A1)

Version number of the block Version number of the block

Merkle Root |
Merkle Root —» erkle Roo
Timestamp of creation of genesis block Timestamp of creation of the block
Number of bits of data Number of bits of data

Hash Value of genesis block

Figure 11: Backup node replacing corrupt blockchain.

26

Deletion of dataset and restore: If the administrator decides to delete a dataset and then
decides to insert the same dataset again with the same name, a new block chain will be

created. It will not be linked back to the existing blockchain.

Dataset A was created/accessed to create the blockchain A with genesis block (Ag) and

subsequent blocks A1, A2 ...

Dataset A
Genesis block of blockchain A (Ag) 15t block of blockchain A (A;)
Version number of the block Version number of the block
Merkle Root Merkle Root
—>| e
Timestamp of creation of genesis block Timestamp of creation of the block
Number of bits of data Number of bits of data
Hash Value of genesis block

Figure 12: Dataset creating the blockchain.

27

The administrator decides that dataset A is of no use anymore and thus deletes it. Since
the dataset A is deleted, as explained previously, the blockchain A will be deleted

automatically.

~
'~
<
KN

-
4"
-
-

Dataset A

< ~
- ~

= 15t block of blockchain A (A;) -
Genesis block of blockchain A (Ag) T

Soo Version number thhe’bfdck
Version number of the bloek. . _ ST

~l MerkTé’R-c;ot
Merkle Root o=

)) e i Timestamp of creation of the block
Timestamp of creation of genesis block R

e Number of bits\o'f‘data,
Number of bits of data DS

~.

- Hash Value of genesis block \"«._

Figure 13: Deletion of dataset results in deletion of blockchain.

The administrator realizes that dataset A was important or dataset has to be used again, he

inserts dataset A. Once he creates dataset A again, a fresh blockchain A.

28

Dataset A

New genesis block of blockchain A (Ag)

New 15t block of blockchain A (A;)

New version number of the block
New Merkle Root

New timestamp of creation of genesis
block

New number of bits of data

New version number of the block

New Merkle Root

New timestamp of creation of the block
New number of bits of data

Hash Value of genesis block

Figure 14: Reintroduction of dataset results in anew blockchain

The blockchain cannot be modified. Once a block has been created, it cannot be modified

legally. But if someone tries to change the values in a block in the block chain in an

unauthorized fashion, it would change the hash value. The access rights to delete the

blockchain lies with the administrator. If he deletes a blockchain or a block, his actions

would be documented in a log file with the timestamp and his username. If someone else

tried to delete the block or blockchain, it would be detected because after every fixed

interval an automated batch process will be executed which will compare the blockchains

of one node to the other. If any unknown discrepancy happens, the blockchain would

notify the administrator. Algorithm 5 below explains this process.

29

Algorithms for Blockchain Data Usage Tracker

Algorithm 1 merkle root calc

Input: dataset name, operation, user name, method Of Access;

output: merkle root;

1: Compute Hash (dataset name and operation) = Hash (Hash (dataset name) +Hash

(operation));

2: Compute Hash (user name and method Of access) =Hash (Hash (user name) +Hash

(method Of Access));

3: Compute merkle root = Hash ((dataset name and operation) and (user name and
method Of access)) = Hash (Hash (dataset name and operation) +Hash (user name and
method Of access));

Description: This algorithm explains the calculation of Merkle Root. The hash of dataset
name and the hash of command line operation are concatenated and hashed again. The
hash of username and the hash of method of access are concatenated and hashed again.
The two hash values created are concatenated and hashed again. The output is Merkle

Root.

30

Algorithm 2 block creation

Input: version number, timestamp, merkle root, prev_block header, data size,

dataset name, operation, user name, method of access;

Output: block header;

1: Compute merkle root = merkle root calc (dataset name, operation, user name,

method of access);

2: Compute block header=Hash (LittleEndian (Hex (version_number)) LittleEndian

(Hex (timestamp)) +LittleEndian (Hex (data_size)) +merkle root + prev_block header);

if (blockType==Genesis block)

prev_block header=0

3: insert to database= Encrypted (dataset name, operation, user name,
method of access), LittleEndian (Hex (version_number), LittleEndian (Hex (timestamp),
LittleEndian (Hex (data_size), merkle root, block header;

Description: This algorithm explains the creation of blocks in a blockchain. Dataset
name, username, command line operation and method of access are used to calculate the
Merkle root. When a block is being created, a version number is calculated. A timestamp
of creation is captured. The number of bits of data (data used for calculating Merkle
Root) is calculated. The version number, the timestamp and the number of bits are
converted into hexadecimal format and then converted into Little Endian format. Finally

these three values are concatenated and hashed. If a genesis block is being created, the

31

hash value created is concatenated with the Merkle root. This provides the blockheader of
the genesis block. For the subsequent blocks the Merkle root, the hash value of version
number, timestamp and number of bits and the blockheader of previous block are

concatenated to create the block header of the current block.

Algorithm 3 combine blockchains

Input: dataset_name (] to n), operations, version_number, data_size, timestamp,

user_name, method_of_access, prev_block _header (1 to n);

output: block header;

1: merkle root=merkle root calc ((dataset name]+dataset name)+....+ dataset namep),

operations, user name, method of access);

2: block header = Hash(LittleEndian(Hex(version number)+LittleEndian(Hex(data size)

+ LittleEndian (Hex(timestamp) + merkle root + Hash(prev_block header]

+prev_block header) +......prev_block headerp));

Description: If two datasets are accessed at the same time using Map Reduce, then the
blockchains of the two datasets are combined to create a third blockchain. The Merkle
root is recomputed based on the two separate blockchains, the version number is
calculated based on the two blockchains. Timestamp and the number of bits are

calculated.

32

Algorithm 4 delete dataset

input: dataset name], dataset name), dataset namej?;

1: Dataset name]) = dataset name]+dataset name);

2: if dataset name) present == dataset name) blockchain

then do nothing

else dataset name) deleted

dataset name]) = dataset];

Description: If a dataset in Hadoop File System (HDFS) is deleted, the blockchain of

that dataset will be deleted as well.

Algorithm 5 validation blockchain

input(from database): prev_block header,
LittleEndian(Hex(version_number),LittleEndian(Hex(timestamp),LittleEndian(Hex(data

size),merkle root, block header;

output: boolean_flag;

1: if (Hash (prev_block header+LittleEndian (Hex (version number)

+LittleEndian (Hex (timestamp) +LittleEndian (Hex (data_size)

33

+merkle root)) ==block header) {boolean flag=true} else {boolean flag=false};
if (boolean_flag = false) {delete block}

Description: The blockchains are validated at regular intervals. The values are
recomputed and if an anomaly is detected in any block of any blockchain, it is reported to
the administrator in the form of a log file with the block details. The corrupt block is

deleted.

34

CHAPTER IV

Implementation

Usage tracker is a program which tracks users who access datasets in the Hadoop file
system. The implementation of Blockchain Data Usage Tracker begins with fetching the
name of the dataset accessed, name of the user who accessed the dataset, the method
using which the dataset was accessed (Command Line Interface or Map Reduce) and the
command line operation using which the dataset was accessed (cat, copy, move, put) .In
order to extract the values related to the dataset, snippets of extra code was added to the
Hadoop source code in order to fetch the values mentioned above and pass them as
arguments to the Usage Tracker. The username, the dataset name, the method used to
access the dataset (Command Line Interface) and the command line operation performed

to access the dataset (cat, copy, move, put) is being captured in the Hadoop source code.

35

Hadoop Source Code

Hadoop common

Code to view the dataset — Code torcopythedataset— Code to move the dataset

(cat) (copy,-put) (meve)

Hadoop Map Reduce Client

using Map Reduce TUUTTN datas §t'U§_§pg| Map|Reduce

C
[a]

Code to acces$ single datgset '|""'['[['Codé [6 dtcess multiple :i

Genesis Block of blodkchain whein just
viewed

Genesis Block of blockchain when using
Map Reduce

Dataset name <« 0 - B O Dataset name

User name ¢———) I pJ User name
-

Method of accessing dataset <«

LU

I
i . B S > I l\»/lethod of accessing dataset

Command line operation performed to . 1l » | Command line operation performed to
access the dgtaset—— yaceess the dataset

Genesis Block of blockchain when copiec
or moved

Dataset name <«

d
o
User name <
o
|
Method of accessing dataset <
d
o

Command line operation performed tof
access the dataset -

Figure 15: Blockchain Data Usage Tracker with Hadoop Source code origins

36

The following CLI (Command Line Interface) operations were recorded:

1. copyFr onmLocal : This operation copies the data files from the local system to the
Hadoop file system. This operation is responsible for the creation of the Genesis block in
the blockchain because it creates a new dataset.

2. moveFr onLocal : This operation is again responsible for creation of the Genesis
block. It copies the files from local system to the Hadoop file system and deletes the
original file in the local system.

3. cat : This operation is used to read the content of the dataset. Its primary purpose is
creation of blocks after the Genesis block. Every time a dataset is read using this
command, a new block is added to the blockchain.

4. put : This operation is same as copyFr onLocal .

5.copyToLocal : This operation is the reverse of copyFr onlLocal . It copies the
dataset from the Hadoop file system to local file system. It is responsible for adding
blocks to the blockchain after the genesis block.

6. get : It is same as copyToLocal .

The dataset accessed information using Map Reduce is recorded as well. Data for single
dataset access and multiple dataset access is recorded. If multiple datasets are accessed
and the datasets already have blockchains, this operation would amalgamate the two

blockchains to create a third blockchain.

37

The program to create the blockchain and blocks is being called from the Hadoop source
code using common daemons after the required values are extracted. A daemon is a
computer program that runs as a background process, executing tasks on a predefined
schedule or in response to particular events, or in response to requests for information or
services from other programs. In order to use the daemon, the Apache Common Daemon
libraries are used. In this application, the daemon is called from Hadoop source code by
executing a shell script. This shell script has the location of Common Daemon libraries,
java class path, location of the Blockchain program (jar file) location, the location of log
files. It also has the commands for Start, Stop and Restart. In order to start the daemon,
script “start” command has to be executed. Similarly once the daemon task is performed,
script “stop” is executed which will terminate the daemon. The values which are fetched

from the source code are passed as arguments along with the daemon.

As soon as the information from the Hadoop source code is available, the daemon is
called and it starts the creation of the block while the Hadoop process is continuing in the

background.

The blockchain creation process starts by fetching the dataset related values from the
daemon. Once the program has all the values it needs, these values are encrypted using an
encryption key and an encryption algorithm and the same values are hashed using a

hashing algorithm. The encryption key is created by the individual who has access to the

38

plain text values. The hashed values are used to create the Merkle root by concatenating

them and hashing them again.

The current timestamp, the number of bits of information and the version number using a
customized algorithm are calculated. The above mentioned three values are converted
into hexadecimal format. The output (hexadecimal values) are then converted into little
endian format and finally the output is encrypted using an encryption algorithm.

The hexadecimal-little endian-encrypted values of version number, time stamp and
number of bits are concatenated along with the Merkle root and hashed to create the
blockheader of the genesis block of the blockchain. In the subsequent blocks along with
the above mentioned concatenation, the blockheader of the previous block is
concatenated and then hashed to create the blockheader which will be used in the

following blocks.

Validation of blockchain is done at regular intervals. A Cron Job is being using which
starts the process at every regular intervals. It re-computes the values of each block and
compares these values to the previous block. If there is a mismatch in any of the values, it
is recorded and a report is generated which specifies which values in which block were
modified and the decrypted values of the Username, dataset name, the method of access

and the operation performed.

39

The blockchain data usage tracker was implemented and tested on a standalone machine
first with 1 namenode and 1 datanode single cluster. The system had 3 GB RAM and
250GB hard drive. Hadoop File System (HDFS) version 2.7.3 along with Hive 2.1.0
(Hiveserver2) were used. The blockchain data usage tracker at this point was tested using
10 datasets with sizes varying between 1000 and 10000 lines of data. Each blockchain

had number of blocks varying between 10 and 15.

Once testing on a standalone machine was completed, the blockchain data usage tracker
was implemented and tested on Amazon Web Service EC; cloud platform. 2 Hadoop
clusters were used. One was the main cluster and the other was the backup cluster. Each
Hadoop cluster had 4 separate instances with 8 GB hard drive and 4GB RAM. 1 instance
was used as namenode and 3 other instances were used as datanodes. Hadoop 2.7.3 and
Hive 2.1.0 (Hiveserver2) was used. In Amazon Web Service EC; the blockchain data
usage tracker was tested with 30 different datasets, their sizes varying between 10000 and

100000 lines of data. The number of blocks created varied between 30-50 blocks.

40

Findings and Results

The data usage tracker works as expected. When an existing dataset is accessed for the
first time, a new blockchain is created. Every time the dataset is accessed again a new

block is added to the blockchain.

The average execution time for creation of Genesis block/Blockchain creation in the
AWS EC2 cluster with 4GB RAM and 8GB hard drive system is 4000 milliseconds. 2
processes (HDFS and Hiveserver2) were running simultaneously. The sample for this

result is 25 executions. The size of datasets varied between 10000-100000 lines.

If a dataset is deleted, its corresponding blockchain is deleted as well. The average
execution time for deletion of a blockchain in the AWS EC2 cluster with 4GB RAM and
8GB hard drive system is 1000 milliseconds. The sample for this result is 10 executions.

The size of datasets varied between 10000-100000 lines.

At every regular intervals the blockchain is validated for validity. The values are
recomputed with the previous values and if there is an anomaly, it is recorded in the

report.

The average execution time for validation of 16 blockchains with an average of 40 blocks
in each blockchain in the AWS EC2 cluster with 4GB RAM and 8GB hard drive system

1s 19500 milliseconds.

41

Screenshots:

ubuntu@ip-172-31-24-T1: ~

ubuntu@ip-172-31-24-71:~% hdfs dfs -1s /blockchain
ubuntu@ip-172-31-24-71:~5 |}

Figure 16: No blockchains initially

This screenshot portrays that there are no blockchains initially. The hdfs blockchain

folder is empty.

® = @ File Edit View Search Terminal Help

ubuntu@ip-172-31-24-71:~5 hdfs dfs -1s fuser/ubuntu

Found 2 items

drwxr-xr-x - ubuntu supergroup 8 2017-12-10 23:24 fuserfubuntu/multipleInput
drwxr-xr-x - ubuntu supergroup 0 2017-12-10 23:25 Juserfubuntu/wordcount

ubuntu@ip-172-31-24-71:~5 |

Figure 17: No datasets initially

This screenshot portrays that initially there are no datasets in the system. That is, there

are no files in the Hadoop file system.

42

ubuntu@ip-172-31-24-71: ~

ubuntu@ip-172-31-24-71:~$ hdfs dfs -copyFromLocal /fhome/ubuntu/inputs/input1000 /user/ubuntu
ubuntu@ip-172-31-24-71:~% hdfs dfs -1s /blockchain

Found 2 items

drwxr-xr-x - ubuntu supergroup 0 2017-12-10 23:37 /blockchain/input1000 blockc
~FW=T=~T== 1 ubuntu supergroup 17 2017-12-10 23:37 /blockchain/list
ubuntu@ip-172-31-24-71:~$ hdfs dfs -ls /blockchain/input1600_blockc

Found 1 items
STW-T==T=-~ 1 ubuntu supergroup 460 2017-12-10 23:37 /blockchain/inputi1@ee_blockc/inputi1688_blockc
ubuntu@ip-172-31-24-71:~5 [

Figure 18: Create first dataset and blockchain

This screenshot portrays that a new Hadoop file system file (dataset) was created
(input1000) by copying it from a local system. Once the dataset (input1000) was created,
the blockchain related to that was created as well. The blockchian is created by
appending the name of the dataset with “_blocke” and putting it in a folder with the same
name. In this case a folder named “input1000_blocke” was created in the blockchain
folder and inside the input1000 blockc, a Hadoop file with the name
“input1000_blocke” was created. The file has the genesis block with size 460 Bytes.

The contents of a blockchain would be shown in another screenshot.

ubuntu@ip-172-31-24-71: ~ = @ & =) s40p
ubuntu@ip-172-3 4-71:~$ hdfs dfs -copyFromLocal /home/ubuntu/inputs/input18600 /user/ubuntu/multipleInput

-31-24-71:~5 hdfs dfs -copyFromLocal /home/ubuntu/inputs/input12000 /user/ubuntu/multipleInput

-31-24-71:~$ hdfs dfs -1s /blockchain

- ubuntu supergroup @ 2017-12-10 23:39 /blockchain/input106808_blockc

- ubuntu supergroup © 2017-12-10 37 /blockchain/input1008_blockc

- ubuntu supergroup ® 2017-12-16 23:39 /blockchain/input12608_blockc

1 ubuntu supergroup 53 2017-12-18 23:39 /blockchain/list
ubuntu@ip-172-31-24-71:~§

ubuntu@ip-172-31-24-71: ~/MR

ubuntu@ip-172-31-24-71:~/MRS hdfs dfs -ls Juser/ubuntu/multipleInput

Found 2 items

-TW-T--r-- 3 ubuntu supergroup 524730 2017-12-10 23:39 fuser/ubuntu/multipleInput/inputi0060
“FW~F==f== 3 ubuntu supergroup 629676 2017-12-10 23:39 /user fubuntu/multipleInput/input12060
ubuntu@ip-172-31-24-71:~/MRS

43

Figure 19: Inserting more files in hdfs

The screenshot portrays more files being added to Hadoop file system by copying them
from local. These files are being added to a folder called multiplelnput which later will be
used for Map Reduce purposes. The 2 new files (input10000 and input12000) creates two

new blockchains named: “input10000_blocke and input12000_blocke”.

ubuntu@ip-172-31-24-71: ~ =) 4)) 5:42PM 1%

ubuntu@ip-172-31-24-71:~$ hdfs dfs -1s /blockchain/input10006_blockc
Found 1 items
1 ubuntu supergroup 460 2017-12-10 23:39 /blockchain/input16660_blockc/input18666_blockc
ubuntu@ip-172-31-24-71:~$ hdfs dfs -cat /user/ubuntu/multipleInput/input16600
Cleo Syce|46 Northridge Pass|Cincinnati|OH|45238
[Valera Leonards|9 Anzinger Circle|Washington|DC|20425
Bogey Timbs|®4889 Truax Crossing|EL Paso|TX|79945
Camilla Bartlett|8 Pleasure Park|Miami|FL|33233
Othilia Redfield|79386 Portage Junction|Port Charlotte|FL|33954
Galvan Gregon|47 Dahle Parkway|Bradenton|FL|34282
javeril Brantl|5483 East Crossing|Tucson|AZ|85725
Lira Edwick|50446 Maple Plaza|Fort Wayne|IN|46814
Rhodie Loukes|9 Lerdahl Road|Norfolk|VA|23509
Karlene Viveash|1362 Messerschmidt Street|Miami|FL|33188
Malchy Aylin|44517 Everett Street|Orlando|FL|328
skippie Cummungs|5 Killdeer Trail|oklahoma City|OK|73197
Adolf Geistbeck|185 Elka Trail|Phoenix|AZ|85077
Dall Attenburrow|85272 Bobwhite Circle|Lexington|KY|48524
vince McPherson|658 Eastlawn Drive|Palmdale|CA[93591
jArchie Ivers|48 Shelley Point|Charleston|WV|25331
Cobbie Mumm|97328 Havey Avenue|New York City|NY|18276
Noelani Lehrer|9896 Arrowood Park|Philadelphia|PA|19191
Hewe McTurley|6548 Muir Parkway|Zephyrhills|FL|33543
Melinda Cote|49030 Arizona Park|Las Vegas|NV|89155
Pen Rupert|11081 Rusk Drive|Oklahoma City|OK|73109
Trista Fullegar|2834@ Sommers Parkway|New York City|NY[18045
Cob Sandercroft|73693 Lake view Hill|Stockton|CA|95210
lAngelia Yurkin|9 Coleman Street|Saint Louis|MO|63184
Terrie Bice|4 Cambridge Plaza|Lynchburg|VA]24515
Linet Pennicott|69447 Cascade Avenue|Denton|TX|76218
[Amie Riddell|3 Bunker Hill Point|Sacramento|CA[95823
Weylin Chansonne|5478 Lindbergh Hill|Columbus|OH|43231
Egon Sandeland|®2 Cardinal Alley|San Antonio|TX|78265
Kathleen Prinnett|4855 Trailsway Parkway|Alexandria|VA[22333
Noell Crasford|6 Menomonie Center |Minneapolis|MN|55441
lQuincey Matskiv|12 Schmedeman Road|Charleston|WV|25305
Darrick Gilding|652 Heffernan Circle|Wilmington|NC|28418
Junina Rathjen|41395 Melrose Pass|Baton Rouge|LA|78805
Roselin Oxenbury|®5 Tennyson Point|Abilene|TX|79699

Figure 20: Viewing a dataset

The screenshot portrays that the blockchain “input10000 blocke” has the genesis block
of size 460 Bytes. Cat command is executed for the dataset input10000. This would

display the contents of the dataset and create a new block to the blockchain.

44

ubuntu@ip-172-31-24-71: ~ = m % B 4) 5:43P
ubuntu@ip-172-31-24-71:~5 hdfs dfs -1s /blockchain/inputieeee_blockc

Found 1 items

“FW-F--T-- 1 ubuntu supergroup 920 2017-12-10 23:42 [blockchain/input10000_blockc/input10000_blockc

ubuntu@ip-172-31-24-71:~§

Figure 21: Second block added to blockchain

The size of blockchain “input10000_ blocke” increased to 920 bytes with second block

being of 460 Bytes.

ubuntu@ip-172-31-24-71: ~/MR

ubuntu@ip-172-31-24-71:~/MRS 1s
MWordCount.java SWordCount.java
ubuntu@ip-172-31-24-71:~/MRS I

Figure 22: Map Reduce programs

This screenshot portrays that there are two map reduce programs.

MWordCount.java takes multiple input files, counts the words in all of them, and returns

a single output.

SWordCount.java takes single input file, counts the words and returns a single output.

45

ubuntu@ip-172-31-24-71: ~/MR = ﬁ £ =0 «4)) 5:50PM 1%

ubuntu@ip-172-31-24-71:~/MRS export HADOOP_CLASSPATH=/usr/lib/jvm/java-8-openjdk-amd64/1ib/tools.jar
ubuntu@ip-172-31-24-71:~/MRS hadoop com.sun.tools.javac.Main SWordCount.java
Note: SWordCount.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
ubuntu@ip-172-31-24- ~/MRS jar cf swc.jar SWordCount*.class
ubuntu@ip-172-31-24-71:~/MRS hdfs dfs -copyFromLocal /home/ubuntu/inputs/input5666 fuser/ubuntu
ubuntu@ip-172-31-24-71:~/MRS hadoop jar swc.jar SWordCount fuser/ubuntu/input5860 fuser/ubuntu/wordcount/foutput
17/12/10 23:50:03 INFO client.RMProxy: Connecting to ResourceManager at ec2-18-218-1-144.us-east-2.compute.amazonaws.com/172.31.24.71:8032
17/12/16 23:50:04 WARN mapreduce.JobResourcelploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your a
pplication with ToolRunner to remedy this.
& 84 INFO input.FileInputFormat: Total input paths to process i
94 INFO mapreduce.Jobsubmitter: number of splits:1

INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1512947981511_0007

INFO impl.YarnClientImpl: Submitted application application_1512947981511 0087

INFO mapreduce.Job: The url to track the job: http://ec2-18-218-1-144.us-east-2.compute.amazonaws.com:8888/proxy/application_15129479

INFO mapreduce.Job: Running job: job_1512947981511_8087

INFO mapreduce.Job: Job job_1512947981511_6687 running in uber mode : false
INFO mapreduce.Job: map 6% reduce 0%

INFO mapreduce.Job: map 10 reduce

INFO mapreduce.Job: map 16 reduce 100%

INFO mapreduce.Job: Job job_1512947981511_6687 completed successfully

INFO mapreduce.Job: Counters: 49

FILE: Number of bytes read 259
FILE: Number of bytes written=372603
FILE: Number of read operations=8
FILE: Number of large read operations=0
FILE: Number of write operations=8
HDFS: Mumber of bytes read=262512
HDFS: Number of bytes written=52619
HDFS: Number of read operations=6
HDFS: Number of large read operations=8
HDFS: Number of write operations=2

Job Counters
Launched map tasks
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=34848

Figure 23: Map Reduce for single input

The screenshot portrays that the Map reduce program SWordCount.java is compiled. A

new dataset named “input5000” is added to Hadoop and Map Reduce is performed on it.

untu@ip-172-31-24-71: ~/MR =) 5:51PM
ntu@ip-172-31-24-71:~/MRS hdfs dfs -1s /blockchain

nd 5 items

Xr-xr-x - ubuntu supergroup

2017-12-18 23:39 /blockchain/input10000_blockc
Xr-Xr-x - ubuntu supergroup

2017-12-16 23:37 /blockchain/inputi066_blockc

Xr-Xxr-x - ubuntu supergroup
b ubuntu supergroup
ntu@ip-172-31-24-71:~/MRS

2017-12-10 23:49 /blockchain/input5000_blockc
2017-12-10 23: /blockchain/list

]
(]
X -Xr-X - ubuntu supergroup 0 2017-12-10 23: /blockchain/input12000_blockc
)
(]

Figure 24: New blockchain created

The screenshot portrays that a new blockchain named “input5000_blocke” is created

after the dataset “input5000” was accessed using Map Reduce.

46

ubuntu@ip-172-31-24-71: ~/MR = B & = 1) s54P
ubuntu@ip-172-31-2 :~/MRS export HADOOP_CLASSPATH=/usr/lib/jvm/java-8-openjdk-amd64/1lib/tools. jar
MRS hadoop com.sun.tools.javac.Main MWordCount.java
MRS jar cf mwc.jar MWordCount*.class
:~/MR$ hadoop jar mwc.jar MWordCount fuser/ubuntu/multiplelnput /user/ubuntu/wordcount/multioutput
0 23:54:03 INFO client.RMProxy: Connecting to ResourceManager at ec2-18-218-1-144.us-east-2.compute.amazonaws.com/172.31.24.71:8032
23:54:04 INFO input.FileInputFormat: Total input paths to process : 2
23:54:04 INFO input.CombineFileInputFormat: DEBUG: Terminated node allocation with : CompletedNodes: 3, size left: 1154406
23:54:04 INFO mapreduce.JobSubmitter: number of splits:1
23:54:04 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1512947981511_ 0069
:54:04 INFO impl.YarnClientImpl: Submitted application application_1512947981511 0009
:54:04 INFO mapreduce.Job: The url to track the job: http://ec2-18-218-1-144.us-east-2.compute.amnazonaws.com:8088/proxy/application_151

:54:04 INFO mapreduce.Job: Running job: job_1512947981511_6089
17/12/10 23:54:10 INFO mapreduce.Job: Job job_1512947981511 0009 running in uber mode : false
17/12/10 23:54:10 INFO mapreduce.Job: map 0% reduce 0%

Figure 25: Map Reduce on Multiple inputs

The screenshot portrays that Map Reduce program MWordCount.java was executed with
input files in multipleInput folder: input10000 and input12000 (Figure 19). The program

counts the words of both the files and provides a single output file.

ubuntu@ip-172-31-24-71: ~/MR
ubuntu@ip-172-31-24-71:~/MRS hdfs dfs -ls /blockchain

2017-12-1 H /blockchain/inputi0680_blockc
2017-12- : /blockchain/inputi0080 1inputi2000_ blocke

ubuntu supergroup
ubuntu supergroup

2017-12- :39 /blockchain/input12080_blockc
2017-12-1 H /blockchain/input5600_blockc
2017-12- H /blockchain/list

ubuntu supergroup
ubuntu supergroup
ubuntu supergroup 9

(5]
(<]
ubuntu supergroup 0 2017-12-16 = /blockchain/input1000_blockc
(<]
(s}
9

Figure 26: A blockchain with multiple datasets

The screenshot portrays that when multiple files were accessed using Map Reduce, a
blockchain was created with the names of the 2 files separated by “ ”. In this case, Map
Reduce accessed two datasets: input1 0000 and input12000. The resulting blockchain

created is input10000_input12000 blocke.

47

ubuntu@ip-172-31-24-71: ~/MR =

ubuntu@ip-172-31-24-71:~/MRS hdfs dfs -rm fuser/ubuntu/multipleInput/inputizese

17/12/10 23:56:23 INFO .TrashPolicyDefault: Namenode trash configuration: Deletion interval = @ minutes, Emptier interval = @ minutes.
Deleted /fuser/ubuntu/multipleInput/input12008

ubuntu@ip-172-31-24-71:~/MRS hdfs dfs -ls /blockchain

Found 4 items

ubuntu supergroup 0 2017-12-16 23:39 /blockchain/input16006_blockc
ubuntu supergroup 0 2017-12-10 23:37 /blockchain/input1000_blockc
ubuntu supergroup 0 2017-12-18 23:49 [blockchain/input5008_blockc
ubuntu supergroup 99 2017-12-18 23:54 [blockchain/list
ubuntu@ip-172-31-24-71:~/MRS hdfs dfs -1s /blockchain/input10060_blockc
Found 1 items
-rW-r- 1 ubuntu supergroup 928 2017-12-10 23:42 /blockchain/input10600_blockc/input10006_blockc

Figure 27: Delete dataset

The screenshot portrays that the dataset input12000 was deleted. Along with input12000,
the corresponding blockchain (input12000_blocke) was deleted as well. There was
another blockchain was created using input12000, i.e.
“input10000_input12000 blocke”. It was deleted as well and the content was copied to

the remaining blockchain “input10000_blocke”.
ubuntu@ip-172-31-24-71: ~ = B % =) 6oipm 1

ubuntu@ip-172-31-24-71:~$ hdfs dfs -cat fuser/ubuntu/input5000
Cleo Syce|46 Northridge Pass|Cincinnati|OH|45238

lvalera Leonards|9 Anzinger Circle|Washington|DC|208425

Bogey Timbs|04889 Truax Crossing|ELl Paso|TX|79945

Camilla Bartlett|8 Pleasure Park|Miami|FL|33233

lothilia Redfield|79386 Portage Junction|Port Charlotte|FL|33954
Galvan Gregon|47 Dahle Parkway|Bradenton|FL|34282

laveril Brantl]|5483 East Crossing|Tucson|AZ|85725

Lira Edwick|50446 Maple Plaza|Fort Wayne|IN|46814

Rhodie Loukes|9 Lerdahl Road|Norfolk]|VA|23569

Karlene Viveash|1362 Messerschmidt Street|Miami|FL|33180
Malchy Aylin|44517 Everett Street|Orlando|FL|32813

Skippie Cummungs|5 Killdeer Trail|Oklahoma City|OK|73197
jadoLf Geistbeck|185 Elka Trail|Phoenix|AZ|85077

Dall Attenburrow|85272 Bobwhite circle|Lexington|KY|40524
[Vince McPherson|658 Eastlawn Drive|Palmdale|CA[93591

jarchie Ivers|48 Shelley Point|Charleston|WV|25331

Cobbie Mumm|97328 Havey Avenue|New York City|NY|1027@
Noelani Lehrer|9890 Arrowood Park|Philadelphia|PA]19191

Hewe McTurley|6548 Muir Parkway|Zephyrhills|FL[33543

Melinda Cote|49036 Arizona Park|Las Vegas|NV|89155

Pen Rupert|1101 Rusk Drive|Oklahoma City|OK|73109

Trista Fullegar|28340 Sommers Parkway|New York City|NY|10045
Cob Sandercroft|73693 Lake View Hill|Stockton|CA|95216
|angelia yurkin|9 Coleman Street|Saint Louis|MO|63164

Terrie Bice|4 Cambridge Plaza|Lynchburg|VA]|24515

Linet Pennicott]|69447 Cascade Avenue|Denten|TX|76218

|amie Riddell|3 Bunker Hill Point|Sacramento|CA[95823

Weylin Chansonne|5478 Lindbergh Hill|Columbus|OH|43231

Egon Sandeland |02 Cardinal Alley|San Antonio|TX|78265
Kathleen Prinnett|4855 Trailsway Parkway|Alexandria|VA|22333
Noell Crasford|6 Menomonie Center |Minneapolis|MN|55441
[Quincey Matskiv|12 Schmedeman Road|Charleston|WV|25305
Darrick Gilding|652 Heffernan Circle|Wilmington|NC|28410
Junina Rathjen|41395 Melrose Pass|Baton Rouge|LA|70805
Roselin Oxenbury|e5 Tennyson Point|Abilene|TX|79699

Crichton Mahon|940 American Street|ELl Paso|TX|88519

Figure 28: Viewing the dataset

48

The screenshot portrays that dataset input5000 was viewed. This would add another

block to the blockchain.

ubuntu@ip-172-31-24-71: ~

ubuntu@ip-172-31-24-71:~% hdfs dfs -1s /blockchain/input5086_blockc

Found 1 items

~TW-T--T-- 1 ubuntu supergroup 1380 2017-12-11 00:00 /blockchain/input5000_blockc/input5000_blockc
ubuntu@ip-172-31-24-71:-5

Figure 29: New block added to blockchain

The screenshot portrays that when the dataset input5000 was accessed, a new block was

added to the blockchain. The blockchain “inputS000_blockc” now has 3 blocks.

The next few steps are performed to attack the blockchain, so that it can be modified
which is an unauthorized access. Since the system has all the access and all the

privileges, it can perform any actions to modify the data without leaving much evidence.

49

input5000_blocke (/tmp/fz3temp-2) - gedit

R B open - Bsove

|] Configurations % | ‘| Instance connection x || Procedure x | input5000_blocke x

1,jUIB1IFOQQNXUSmrs 1AUzQ==,xsFGFtI6kCVKhWCskRPeaOkeS /SPIWT621/4yFB3qpE=,HTytdcGtSMD3jtrsPAIQUg==, 1tPq5qlil+r /Ub+swgScBycriiDF3wQo
+I1tkDXzMaTA3vFoGFeOk69sscSTKEUL+A6ucnqghyYQhj+wS19tpYx0keS /SPIWT621 /4yFB3qpE=, 8spftl7idyP4vu4+iBe joy7vi2ghMfvhpubyPcNIFFLTBebganksYTLFNGexPn9iszYGxe/
UFAWIALINERIAXwWRekcS/SPIWT621/4yF83gpE=,ePveZL+Z5Tu@Ip3PnQOkhw==,pG+/TxE

+5NJICE41iMLLSzw==,QKhyGIMOF55r2z TXnSkGLrTGpvbmIQqgDIIWUMDSUSGE=, eSHNoJASVCVLXLFNGTAHZg==, YeweY1V90zGgb6Ioma1MIA==
2,6dARVBThwgRRXHGOawBNzQ==, xAokZktaEWGXOCUF2 +EZUOKCS [SPIWT621 /4yF83qpE=,BN+oN1hwu3tCtwi7S0zoBw==,98wWxsWOCuzthv/

CZQBWWNB72 jROKduke1QdwQh3NRABBBC jOIc2Cud7nedT jqGUKOLChSNhOBEPI zw4xdAWS50kCS /SPIWTE21/4yF83qpE=, YnzAgi5q5TBGZ1Z5+1U0ALU
+laFHrikmpeugSSIBusXjGu606MavAGBWbyYFgk1qou03 tNObuwtMleWWGYtgFLOKeS /SPIWT621 /4yFB3qpE=,ePveZL+ZSTu0Ip3PnQOkhw==,pG+/TXE
+sNICcE41jMLiSzw==,QKhyGInBF55rzTXnSkGLrTGpvbnIQqgDI IWUMDSUSGB=, ThqSqYDLIZNLBjDBZ jn7zg==,SPFqVIN661luAx5t25ut1A==

3,XEF5]0QT jHgiTEGBWB sSrA==,q/uLbsxhi1584ybSLkbNpekcs/SPIWT621/4yFB3qpE=,HTytdcGtSMD3]trsPAIQUg==,1tPq5qLil+r/Ub+wg9cBycrijDF3uQo
+ItkDxzMaTA3vfoGfeoks9sscSTKEUT +AGucnqghyYQhj+w519tpYx0okeS/SPIWT621/4yFB3qpE=, JLEXCPQMsTT13ui tyNdPE/TeJ0ULT j¥QIREJeKUOLP jnd jXhRNOSQ+UWDD
+k8QEHkx18ZdD11hAVFmZfAnME+OkeS /SPIWT621/4yFB3qpE=,ePveZL+25TuBIp3PnQ0khw==,pG+/TxE
+SNICE41IMLLSzw==,QKhyGIMBF55r2zTXnSkGLr TGpvbmIQqgDIIWUMDSUSGE=, eSHNo JASVCVLXIFNGTAHzg==, txMQOLZ tnMWCANF JSuzchw==

PlainText Tabwidth:8 » Ln1,Col18 INS

Figure 30: Blockchain data

The blockchain “input5000_blocke” was copied to the local file system. This blockchain
has 3 blocks. The fields in the blocks are separated by “,”. There are 10 fields in each

block. The field marked by red will be modified.

50

input5000_blocke (/tmp/fz3temp-2) - gedit = m P = @) Goarm %

R B o -

| Configurations % | Instance connection X || Procedure X _| input5000_blocke x

1, JUIBLIFOQQNXUSMrs 1AUZQ==,xs FGFtI6kCVKhWCskRPeaOkes /SPIWT621/4yFB3qpE=,HTytdcGtSMD3trsPAIQUg==, 1tPq5qLil+r /Ub+wg9cBycrijDF3wQo
+IrkszHaTAavfoneDkﬁQsschKEuiiAﬁucnqghyVUhj*WSIDtpVkacSjSPJHTﬁEI/dyFBBGpE:,85ﬂ7??ﬁ4yp4vu44jBﬂjDy?VIZghMthpubyPcN]FFLFBbqankﬁVTlfNCexPnQiSZVCK(/
UFAWIdLINERIAxWReKcS /SPINT621/4yF83qpE=,ePveZL+ZSTu@Ip3PnQ0khw==,pG+/TxE =
+5NIcE41iMLLSzw==,QKhyGIMOF55rzTXnSkGLrTGpvbmIQqgDIIWUMDsUSGE=, eSHno JASVCVLX1FNGTAHzZg==,YOweY1V90zGgb6Iom41MIA==
2,6dARVBThwgRRXHGOaWBNzQ==, xAckZktaEwGX@CUj2+EzUOkcS /SPIWT621/4yFB3qpE=, BN+oN1hwu3tCtwi7S8z08BwW==,98wxsWoCuzthv/
CZQBWWNB72jROKduke1QdwQh3NRABBEC j@Ic2Cud7nedT jqGUKOLChSnhOB6PI zw4xdAWSS0keS /SPIWT621/4yF83qpE=, YnzAgiSq5TBGZ1Z5+1UcALl
+1aFHr1kmpeugsSIBuUsSXjGu606MavAGBWbyFgk1qou03 tNObuwtMleWWGVtgFLOkeS /SPIWT621/4yFE3qpE=,ePveZL+ZSTu0Ip3PnQOkhw==,pG+/TXE
+SNICE41jMLiSzw==,QKhyGINBF5Srz TXnSkGLrTGpvbmIQqgDIIWURDsUSGE=, ThqSqYDLIZNLB jDBZ jnTzg==,SPFqVlH6611uAx5t25ut A==

3,XxEF5]0QT jHgLTEGBWB jsrA==,q/uLbsxhi1584yb51kbNpekcS/5PINT621/4yFB3qpE=,HTytdcGESMD3 jtrsPAIQUg==,1tPq5qlil+r /Ub+wg9cBycrijDF3wQo
+ItkDxzMaTA3vfoGfeoks9sscSTKEUT +AGucnqghyYQhj+w519tpYx0okeS/SPIWT621/4yFB3qpE=, JLEXCPQMsTT13ui tyNdPE/TeJ0ULT j¥QIREJeKUOLP jnd jXhRNOSQ+UWDD
+k8QEHkx18ZdD11hAVFmZfAnME+OkeS /SPIWT621/4yFB3qpE=,ePveZL+25TuBIp3PnQ0khw==,pG+/TxE
+sSNIcE41jML1Szw==,QKhyGImBF55r2TXnSkCLrTGpvbmIQqgDIIWUMDSUSGO=,eSHNoJASVCVLX1FNGTAHZg==, txMQoLZ tnMWCANT JSuzchw==

saving file '/tmp/Fz3temp-2/input5000_blockc' PlainText = Tabwidth:8 » Ln1,col 213 INS

Figure 31: Modified block

A part of the genesis block for blockchain “input5000_blockce” has been modified.

Originally (Figure 30) it was “+w7” and it was modified to “777”.

ubuntu@ip-172-31-24-71: ~
ubuntu@ip-172-31-24-71:~$ hdfs dfs -1s /blockchain
Found 5 items
drwxr-xr-x ubuntu supergroup 0 2017-12-10 23:39 /fblockchain/input10088_blockc
drwxr-xr-x ubuntu supergroup 0 2017-12-10 23:37 /blockchain/input1008_blockc

ubuntu supergroup 0 2017-12-10 23:49 /blockchain/input5000_blockc

ubuntu supergroup 2017-12-11 00:082 [blockchain/input5008_blockc_blocke

ubuntu supergroup 123 2017-12-11 00:82 /fblockchain/list

p-172-31-24-71:~5 hdfs dfs -rm /blockchain/input5088_blockc/input5000_blockc

17/12/11 00:05:07 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = © minutes, Emptier interval = 0 minutes.
Deleted /blockchain/input5000_blockc/input5000 blockc
ubuntu@ip-172-31-24-71 hdfs dfs -ls /blockchain/input5000_blockc
ubuntu@ip-172-31-24-71 hdfs dfs -copyFromLocal /[home/ubuntu/MR/input5000_blockc /blockchain/input5000_blockc
ubuntu@ip-172-31-24-71 hdfs dfs -ls /blockchain/input5680_blockc
Found 1 items
-TW-T--T-- 3 ubuntu supergroup 1380 2017-12-11 00:85 /blockchain/input5008_blockc/input5000_blockc
ubuntu@ip-172-31-24-71:~

Figure 32: Changing the blockchain

51

The blockchain “input5000_blocke” is modified by the following steps:

1. The blockchain file (input5000 blocke) was copied to the local file system
(figure 30).

2. It was edited in the local file system and some of the values were modified
(figure 31).

3. The blockchain file (input5000 blocke) in Hadoop file system was deleted
and replaced with the modified file from local file system using

copyFromLocal.

The blockchain is now modified. Next we execute the blockchain validation.

ubuntu@ip-172-31-24-T1: ~ = X B) 6:07P
ubuntu@ip-172-31-24-71:~$ java -cp [fusr/local/hadoop/CBC.jar blockchain/validationScheduler
[main] INFO org.quartz.impl.StdSchedulerFactory - Using default implementation for ThreadExecutor
[main] INFO org.quartz.simpl.SimpleThreadPool - Job execution threads will use class loader of thread: main
[main] INFO org.quartz.core.SchedulerSignalerImpl - Initialized Scheduler Signaller of type: class org.quartz.core.SchedulerSignalerImpl
[main] INFO org.quartz.core.QuartzScheduler - Quartz Scheduler v.2.2.1 created.
[main] INFO org.quartz.simpl.RAMJobStore - RAMJobStore initialized
[main] INFO org.quartz.core.QuartzScheduler - Scheduler meta-data: Quartz Scheduler (v2.2.1) 'DefaultQuartzScheduler’ with instanceId 'NON_CLUSTER
Scheduler class: 'org.quartz.core.QuartzScheduler' - running locally.
NOT STARTED.
Currently in standby mode.
Number of jobs executed: @
Using thread pool 'org.quartz.simpl.SimpleThreadPool' - with 1@ threads.
Using job-store 'org.quartz.simpl.RAMJobStore' - which does not support persistence. and is not clustered.

[main] INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler 'DefaultQuartzScheduler' initialized from default resource file in Quartz packa
quartz.properties’

[main] INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler version: 2.2.1

main] INFO org.quartz.core.QuartzScheduler - Scheduler DefaultQuartzScheduler_S$_NON_CLUSTERED started.

Figure 33: Validating blockchain

In the screenshot, the validation scheduler is executed. This scheduler executes the
validation logic after every fixed interval. In this case, the validation logic is executed

every 5 minutes.

52

validation.log (/tmp/Fz3temp-2) - gedit = X B 4) 6:31P

.‘ Popen + 8 save |:.

|'] validation.log %

Mon Dec 11 00:30:04 UTC 2017: Genesis block data manipulated for:

User Name: ubuntu | Datset Name: input5000 | Method: CLI | Operation: put
ke ek

Mon Dec 11 08:30:04 UTC 2017: Data manipulated for block number 2 for :
User Name: ubuntu | Datset Name: input5600 | Method: CLI | Operation: put

Mon Dec 11 00:30:04 UTC 2017: Data manipulated for block number 3 for :
User Name: ubuntu | Datset Name: input5000 | Method: CLI | Operation: put

Figure 34: Validation report

In the previous steps we modified the blockchain input5000 blockc and we modified the
genesis block. The screenshot of the report explains the same. Since we modified the
genesis block, the entire blockchain was affected. This report is in decrypted format, so

the admin can see which dataset was modified at what time.

Hence, a change in the genesis block from “+w7” to “777” is detected because all the
values were recalculated during the validation process. The process of creating the block
header i.e. the concatenation of merkle root, the version number, the timestamp and the
number of bits provided a block header value which was different from the present block
header value. Since the block header value from the genesis block is being used to create
the subsequent block, the values in the subsequent blocks changed as well. The
concatenation of merkle root, the version number, the timestamp, number of bits and the

previous block header was different than the block header value present.

53

ubuntu@ip-172-31-24-T1 B &t &=) e33pm
ubuntu@ip-172-31-24-71:~$ java -cp fusr/local/hadoop/CBC.jar blockchain/viewBlockchain

[main] INFO org.apache.hive. jdbc.Utils - Supplied authoriti: ec2-18-218-1-144.us-east-2.compute.amazonaws.com: 10000

[main] INFO org.apache.hive.jdbc.Utils - Resolved authority: ec2-18-218-1-144.us-east-2.compute.amazonaws.com:10060

Enter UserName:

pshbhatt

Enter Password:

piyushi

2017-12-11 00:33:00,033 WARN MNativeCodelLoader - Unable to load native-hadoop library for your platfor using builtin-java classes where applicable

Please enter the dataset name to view it's blockchain or enter ALL to view all blockchains

all

Block number: 1

Merkle Root: SmUdhitygVoAXZW+emUdwywgOwk8HR3ckDEXWL11j50C2qy+pxvaslf8ull2WT2QVgQm/FPoHHeNWDhRLWQFO+keS/SPIWT621 /4yF83qpE= | Block Header: K/GK8ps31nBU3
qaf jwWR16rT/911HCRAZGeThwoSFyhczWibwr FGiCqoNGUqYppHPrrk82JoSr3bmdtYMITSFukcS /SPIWT621 /4yF83qpE= | Username: ubuntu | Dataset Name: input1668 | Method:

CLI | Operation: put

Block number: 1

Merkle Root: 462CzeuHvvsMNdkGyOfId/oIjzTqxsArasTtnall6+rhU+Fs6FonblL5Xfz90vZsBOXEEY4A71+XrFamtodkzz+kcS/SPINT621/4yF83qpE= | Block Header: kMFluslOGFAtn
/D50AUHB /Ag/pWT2wBlremXxa61fZtFCCsQGYDKKPDNMIrIL9TdQWO8j6F88YqZkg727NmO+keS /SPINT621/4yF83qpE= | Username: ubuntu | Dataset Name: input10000 | Method:

CLI | oOperation: put

Block number: 2

Merkle Root: 462CzeuHvvsMNdkGyOfId/oljzTqxsArdsTtnall6+rhU+Fs6Fonbl5Xfz90vZsBOXEEY4A71+XrFamtodkzZ+keS/SPIWT621/4yF83qpE= | Block Header: m+GWTpaVgvPn
L6t0xpZIuhj9HHVMWITEP1u79P11aGr 3M0he jHHZOGaBtDON3WCFA49 TemwKOr I8 TazBhh100kcS /SPIWT621 /4yF83qpE= | Username: ubuntu | Dataset Name: input16686 | Method:
CLI | operation: cat

Block number: 1

Merkle Root: itPq5qlil+r/Ub+wg9cBycrijDF3wQo+ItkDXzM4TA3vfoGTeOk69sscSFKEUT+A6ucnqghyYQhi+w519tpYx0keS/SPIWT621/4yF83qpE= | Block Header: 77714yPaVU
4+ jBO jOy7VI2ghMFvhpUbyPcNIFFL FBbqanksYT1FNGexPn9iszVGxc /UFAWIdL InERTAxwRekcS /SPIWT621 /4yF83qpE= | Username: ubuntu | Dataset Name: input5860 | Method:
CLI | Operation: put

Block number: 2

Merkle Root: 98wxsWOCuzthv/cZQBWWnB72jROKduke1QdwQh3NRABBACjOIc2Cud7nedTjqGUkOLchSnhOB6PTzwaxdAWS50keS /SPIWT621/4yF83qpE= | Block Header: YnzAgiSq5fBGZ
1ZS+1UoALU+1aFHr1kmpeug5SIBuUSX jGU6B6MaVAGBWbYFgk1qou03tNebuwtMLeWHGVtgFLOKCS /SPINT621/4yF83qpE= | Username: ubuntu | Dataset Name: input5000 | Method:

MR | Operation: mraccess

Block number: 3

Figure 35: View all blockchains by admin

ubuntu@ip-172-31-24-71: ~

ubuntu@ip-172-31-24-71: java -cp Jusr/local/hadoop/CBC.jar blockchain/ViewBlockchain

[main] INFO org.apache.hive.jdbc.Utils - Supplied authorities: ec2-18-218-1-144.us-east-2.compute.amazonaws.con:10008
[main] INFO org.apache.hive.jdbc.Utils - Resolved authority: ec2-18-218-1-144.us-east-2.compute.amazonaws.com: 10000

Enter Password:

piyush69

2017-12-11 00:33:58,974 WARN NativeCodelLoader - Unable to load native-hadoop library for your platform... using builtin-java classes where applic
Please enter the dataset name to view it's blockchain or enter ALL to view all blockchains

inputi00@

Block number: 1

Merkle Root: SmuUdhitygVoAXZW+emUdwywgowk8HR3ckDEXWL113j50C2qy+pxvas1f8ull2WT2QVgQm/FPoHHeNWDhRLWQFO+kcS/SPIWT621/4yF83qpE= | Block Header: K/GK8ps3
qgf jwHR16rT /91 1HCRAZGe ThwoSFyhczWibwr fG1CqoNGUqYppHPrrk82JoSr3bmdtYMITSFukcS/SPIWT621/4yF83qpE= | Username: ubuntu | Dataset Name: input18e@ | Met
CLI | Operation: put

Figure 36: View single blockchain by admin

54

ubuntu@ip-172-31-24-71: ~ [ES) 1))) 6:36PM {l}
ubuntu@ip-172-31-24-71:~$ java -cp fusr/local/hadoop/CBC.jar blockchain/viewBlockchain

[main] INFO org.apache.hive. jdbc.Utils - Supplied authorit : ec2-18-21 -144.us-east-2.compute.amazonaws.com: 10000

[main] INFO org.apache.hive.jdbc.Utils - Resolved authority: ec2-18-218-1-144.us-east-2.compute.amazonaws.com:10060

Enter UserName:

pshbhattM

Enter Password:

piyush69

2017-12-11 00:36:00,900 WARN MNativeCodelLoader - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Block number: 1

Block Header: K/GKBps31nBU3qgfiwWRLGrT/911HCRAZGeThwoSFyhcziibwr FGiCqoNGUQYppHPrrk82JoSr3bndtYMITSFukeS/SPINT621/4yF83gpE=

k number: 1
k Header: kMFlu6lOGFAtn/DSBAUHB/Ag/pWF2wBlremXxa61fZtFCCsQGYDKKPDNmIrIL9TdQWO8j6F88YqZkg7z7NmO+kcS/SPIWT621 /4yF83qpE=
k number: 2
Header: m+GWTpaVigVPnWL6t0xpZIuhjOHHVMWITEP1u79P11aGr3M0he jHWZOGaGt! 3WCFA49TemwKOrJ8TazBhhI00kcS/SPIWT621/4yF83qpE=
k number: 1
k Header: 8sp77714yP4VU4+jBOjOy7VI2ghMfvhpUbyPcNIFFLFObgankeYTLfNGexPn91szYGxXC /UFAWIALINERIAXWReKCS /SPINT621/4yF83qpE=
k number: 2
k Header: YnzAgiSq5fBGZiZS+1UoA1U+laFHr1kmpeug5SIBusSX jGU606MavAGBWbYFgk1qou03tNObuwtMleWWGVEgFLOKCS /SPINT621/4yF83qpE=
number: 3
k Header: jLEXCPQMs7T13uityNdPE/7eJ0Ub7jVQIREJIeKUOLPjndiXhRNO8Q+UwDb+k8QEHKx18ZdDi1hAVFmZF4MME+OKCS/SPIWT621/4yF83qpE=

ubuntu@ip-172-31-24-71:~5 I

Figure 37: View blockchain non-admin

A user can view the blockchains. All they have to do is provide their credentials
(username and password). If their role is admin, they can view the decrypted blockchain.
They can either view all the blockchains (figure 35) or a specific blockchain (figure 36).
If the user is not an admin, he/she can view the blockheaders of all the blockchain. No

other information is visible to them.

ubuntu@ip-172-31-24-71: ~

ubuntu@ip-172-31-24-71:~$ java -cp /usr/local/hadoop/CBC.jar blockchain/Role Registration

[main] INFO org.apache.hive.jdbc.Utils - Supplied authorities: ec2-18-218-1-144.us-east-2.compute.amazonaws.com:10000
[main] INFO org.apache.hive.jdbc.Utils - Resolved authority: ec2-18-218-1-144.us-east-2.compute.amazonaws.com: 10080
First Name:

Figure 38: User registration

55

ime taken: ©.755 seconds
ive> select * from registration;

Piyush Bhatt pshbhatt 1d9¢c893b7075da81c6da18f9bf57494 admin 10807868
Jennifer Bhatt jenni3og 88f20e3885e9e31ac60a234319bdced admin 1068607868

Piyush Bhatt pshbhattM 1d9c893b7075da81c6dal8f9bf57494 manager NA

temporary user tempuser dc12Bacb45f752e3f1c2a724c849e5b employee NA
ime taken: 1.054 seconds, Fetched: 4 row(s)
Lve>

Figure 39: User data

The employees of the organization can register themselves if they wish to see the
blockchain. They will have to provide their information and their information will be
inserted into the database. If their role is admin, an extra field will be added to the

registration process. The password would be inserted into the database as a hash value.

ubuntu@ip-172-31-24-71: ~

ubuntu@ip-172-31-24-71:~5 hdfs dfs -copyfromlocal [home/ubuntu/inputs/input2e688 /user/ubuntu
-copyfromlocal: Unknown command
ubuntu@ip-172-31-24-71:~5 hdfs dfs -copyFromlocal /home/fubuntu/inputs/input20000 /user/ubuntu
-copyFromlocal: Unknown command
ubuntu@ip-172-31-24-71:~$ hdfs dfs -copyFromLocal fhomefubuntu/finputs/input20000 fuserfubuntu
ubuntu@ip-172-31-24-71:~5% hdfs dfs -1s /blockchain
Found 5 items
=X - ubuntu supergroup 5] : J/blockchain/input16068_blockc
-x - ubuntu supergroup 0 2017-12-186 2 /blockchain/input1866_blockc
X=X - ubuntu supergroup a 3 /blockchain/input20688_blockc
-x - ubuntu supergroup i} ~12-1 H /blockchain/input5000_blockc

1 ubuntu supergroup 181 -12- 3 /blockchain/list
ubuntu@ip-172-31-24-71:~5 hdfs dfs -copytolocal /user/ubuntu/inputi@e@ /home/ubuntu
-copytolocal: Unknown command
ubuntu@ip-172-31-24-71:-5

Figure 40: Incorrect statements

If incorrect statements are entered, the Hadoop file system throws an error and does not
perform any action. In the screenshot, copyFromLocal command was misspelled twice
and it was copied when the command was executed correctly. The next command

copyToLocal was misspelled and Hadoop file syetem caught the error.

56

ubuntu@ip-172-31-24-71: ~ = H X B) 4:07P
ubuntu@ip-172-31-24-71:~$ hdfs dfs -1s /blockchain
Found 5 itenms
drwxr-xr-x - ubuntu supergroup ® 2017-12-10 23:39 /blockchain/input10008_blockc
drwxr-xr-x - ubuntu supergroup 0 2017-12-16 23: /blockchain/inputi066_blockc
SXM=X - ubuntu supergroup © 2017-12-11 21: /blockchain/input20000_blockc
X=X - ubuntu supergroup © 2017-12-11 00:85 /blockchain/input5000_blockc
1 ubuntu supergroup 229 2017-12-11 22:85 /blockchain/list
ubuntu@ip-172-31-24-71:~$ hdfs dfs -copyToLocal /blockchainfinput20086_blockc/inputze000_blockc
ubuntu@ip-172-31-24-71:~5 hdfs dfs -1s /blockchain
Found 6 itens
drwxr-xr-x - ubuntu supergroup 2017-12-10 23:39 /blockchain/inputieeee_blockc
- ubuntu supergroup 2017-12-10 23:37 /blockchain/input1006_blockc
- ubuntu supergroup 2017-12-1 /blockchain/input20080_blockc

X
%
=X - ubuntu supergroup 2017-12- /blockchain/input20000_blockc_blockc
b3 - ubuntu supergroup ® 2017-12-11 00:05 /blockchain/input5000_blockc

1 ubuntu supergroup 2017-12-11 22:86 /blockchain/list

Figure 41: Illegal command

Copying blockchain files to local file system is an illegal operation. The Blockchain data
usage tracker detects that and creates a new blockchain which has 2 “_blocke” in the name.
This shows that someone tried to tamper with the blockchain. The user’s username will be

captured in this new blockchain and the validation process will detect it as an anomaly.

:| validation - Notepad
File Edit Format View Help

Mon Dec 11 22:46:19 UTC 2817: Operation was done on blockchain for input28600 blockc blockc

Figure 42: Validation report

The report shows that an illegal operation was performed on a blockchain.

57

ubuntu@ip-172-31-24-71: ~ = m 2 = 1))) 4:44P
ubuntu@ip-172-31-24-71:~§ hdfs dfs -1s /blockchain
Found 6 items

-xr-x - ubuntu supergroup 2017-12- 23: /blockchain/input10600_blockc

-XF-X - ubuntu supergroup 2017-12- 23: /blockchain/inputieee_blockc

-Xr=X - ubuntu supergroup 2017-12- 22: /blockchain/input20660_blockc

XF-XT-X% - ubuntu supergroup 2017-12- 22: /blockchain/input26008_blockc_blockc

-XF-X - ubuntu supergroup 2017-12-11 00: /blockchain/input5008_blockc
=FW-[==[=-~ 1 ubuntu supergroup 2017-12- 22: /blockchain/list
ubuntu@ip-172-31-24-71:~$ hdfs dfs -rm -r /blockchain/input20680_blocke_blockc
17/12/11 22:44:04 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = @ minutes, Emptier interval = 0@ minutes.
Deleted /blockchain/input20006_blockc_blockc
ubuntu@ip-172-31-24-71:~5 hdfs dfs -rm /user/ubuntu/input20000
17/12/11 22:44:15 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = ® minutes, Emptier interval = @ minutes.
Deleted Juser/ubuntu/input26000

-71:~5 hdfs dfs -1s /blockchain

- ubuntu supergroup © 2017-12-16 23:39 /blockchain/input10688_blockc

- ubuntu supergroup @ 2017-12-10 23:37 /blockchain/input1000_blockc

- ubuntu supergroup 0 2017-12-11 00:085 /blockchain/input5008_blockc
=TW-T==F=~ 1 ubuntu supergroup 65 2017-12-11 22:42 /blockchain/list
ubuntu@ip-172-31-24-71:~§

Figure 43: Delete hdfs files

delete.log (/tmp/fz3temp-2) - gedit

n‘ P-Open - B8 save 1;.

] delete.log x

Mon Dec 11 22:44:85 UTC 2017: File input20080_blockc_blockc deleted.

Mon Dec 11 22:44:16 UTC 2017: File input20000 deleted.

Mon Dec 11 22:44:20 UTC 2017: File input20000_blockc deleted.

Figure 44: Log of files deleted

If a file is deleted (blockchain or dataset), it will be recorded in delete.log. Like in the
screenshot, first the blockchain “input20000_ blockc_blocke” was deleted (figure 43).

This was recorded in delete.log (figure 44).

Next the dataset input20000 was deleted. As explained previously, if a dataset is deleted,
the corresponding blockchain will be deleted as well. The delete.log records the deletion

of input20000 and its corresponding blockchain input20000_blocke.

58

CHAPTER V

Conclusion

Data is captured by organizations and converted into datasets. Two or more datasets may be
combined to fetch critical or sensitive data which then can be misused for a variety of purposes.
The thesis proposes a novel way to track the usage of the datasets using a blockchain. Blockchain
is used because the data inside a blockchain is immutable. The data inside the blockchain are
validated at regular intervals and if an individual tries to modify the data using unauthorized

manner, the changes would be known.

When an user accesses/creates a dataset in Hadoop File System (HDFS), his username, the name
of the dataset accessed/created, the method using which he accessed the dataset (Command Line
Interface or Map Reduce) and the Command Line Operation performed (cat, copy and move) are
captured. These values are then hashed to create a single hash value called Merkle root. If a new
dataset is created or an existing dataset is accessed for the first time, a genesis block is created. A
version number is calculated, the timestamp for creation of the block is captured and the number
of bits of the data (data used for creation of Merkle root) is calculated. These three values are
modified and are concatenated with the Merkle root. This creates the block header which is used in
creation of the subsequent blocks. The blockheader of the following blocks is calculated by

concatenating the Merkle root, the modified version number, the modified timestamp, modified

59

number of bits and the block header of the previous block. Since all the data inside each block
depends on the data from the previous blocks, all the data is connected. At every regular intervals
a validation process is executed. This process recomputes all the values and if any modification
was done to any of the blocks, the values in the following blocks would not match. This would
mean that an unauthorized modification was performed. This is the reason blockchain is secure and

reliable.

This implementation was tested on a real Hadoop cluster with 1 namenode and 3 datanodes. One
more backup cluster was created. Each of these nodes was configured with 4GB RAM and 8GB
hard drive. When a dataset in HDFS was accessed, the details were stored in blocks in the
blockchain. The blocks consisted of a multiple hash values. These hash values were the Merkle
root, the blockheader, hash values of Version number, the timestamp and number of bits. One of
these values were modified and the validation process was executed. The modification caused an
anomaly and was caught during the validation process. This anomaly was reported to a log file.

The testing was successful with the expected results.

In this implementation dataset name, username, method of access (Command Line Interface or
Map Reduce) and command line operation (copy, move, cat, put) are being used to create a
blockchain. In the future many more relevant entities like data items, the access rights each user
has and user role could be captured to make the use of Blockchain Data Usage Tracker more

detailed on a larger scale.

60

This was done on a small scale testing environment. In future, this could be made to be executed
on a large scale scope like for public/government use. That would require high performance servers

which would make it much better.

61

REFERENCES

[1]

[2]

[3]

[4]

[3]
[6]

[7]

[8]

[9]

Every day big data statistics

(http://www.vcloudnews.com/every-day-big-data-statistics-2-5- quintillion-bytes-
of-data-created- daily/)[02/27/2017], indentation - check for all

How much data is out there?

(http://www.webopedia.com/quick _ref/just-how-much-data-is-out-there.html),
[02/27/2017]

Hadoop Mapreduce(https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html),
[02/27/2017]

Big data analytics (http://www.sas.com/en_us/insights/analytics/big-data-

analytics.html), [02/27/2017]
Bitcoin (https://bitcoin.org/en/), [02/27/2017]

Cryptographic Hash Functions
(https://en.wikipedia.org/wiki/Cryptographic_hash function), [02/27/2017]

Access control of sensitive data in HDFS

(https://www.thinkmind.org/download.php?articleid=infocomp 2013 4 10 1005
0) [02/27/2017]

Vigiles: Fine-grained Access Control for MapReduce Systems
(http://www .utdallas.edu/~muratk/publications/vigilespaper.pdf) [02/27/2017]

Zeng, W., Yang, Y., Luo, B. (2013). Access control for Big Data using data
content. In IEEE International Conference on Big Data, 2013, pp. 45-47.

62

[10] Hu, V. C., Grance, T., Ferraiolo, D. F., Kuhn, D. R. (2014). An Access
Control scheme for Big Data processing. In IEEE International Conference on
Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), 2014, pp. 1-7.

[11] Storm (http://storm.apache.org/) [03/20/2017]

[12] Hortonworks Data Platform(https://hortonworks.com/products/data-
center/hdp/)[03/20/2017]

[13] Apache Pig(https://pig.apache.org/)[03/20/2017]

63

VITA
PIYUSH BHATT
Candidate for the Degree of
Master of Science in Computer Science

Thesis: ACCESS CONTROL AND SECURITY OF DATASETS BY USAGE

TRACKING USING BLOCK CHAIN TECHNOLOGY
Major Field: BIG DATA
Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at
Oklahoma State University, Stillwater, Oklahoma in May, 2017.

Completed the requirements for the Bachelor of Science in Information
Technology at SRM University, Chennai, India in 2011.

Experience: 3.5 years of software development in Java and J2EE.

