
 ACCESS CONTROL AND SECURITY OF DATASETS

BY USAGE TRACKING USING BLOCK CHAIN

TECHNOLOGY

 By

 PIYUSH BHATT

 Master of Science in Computer Science

 Oklahoma State University

 Stillwater, Oklahoma

 2016

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2016

iii

 ACCESS CONTROL AND SECURITY OF DATASETS

BY USAGE TRACKING USING BLOCK CHAIN

TECHNOLOGY

 Thesis Approved:

 Dr. Johnson Thomas

Thesis Advisor

Committee Members:

Dr. Johnson Thomas

Dr. Christopher Crick

Dr. K.M.George

iii

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all those

who helped with me with creating and developing the

concept of access control using block chains. A special

gratitude to my thesis advisor, Dr. Johnson Thomas, whose

contribution in stimulating suggestions and encouragement,

helped me to coordinate my project. I would also like to

thank Ashwin Thandapani Kumarasamy whose helpful

insights and vast knowledge in the subject helped me

achieve my goal.

iv

Name: PIYUSH BHATT

Date of Degree: MAY, 2017

Title of Study: MASTER OF SCIENCE IN COMPUTER SCIENCE

Major Field: BIG DATA

Abstract: The thesis proposes a novel way to solve the threat of exposure of sensitive data

from large datasets. Data is captured by organizations and converted into datasets. Two

or more datasets may be combined to fetch critical or sensitive data which then can be

misused for a variety of purposes. An unauthorized user may be able to access the data.

This thesis proposes a blockchain approach to tracking data usage and will record details

such as when and by whom the datasets are accessed. The Blockchain is used to record

information about the user who accesses the datasets. The user name of the individual,

name of the dataset accessed, the method using which the dataset is accessed (Command

Line Interface or Map Reduce) and the command line operation performed (cat, copy,

move, put) is recorded in each block. Each blockchain represents a dataset. Blockchains

are very secure when it comes to storing sensitive information because the data inside a

blockchain is immutable. The data inside each block is stored using hash values and each

block is connected to the others using the hash value of the previous block. If an

unauthorized modification is done to the data, the hash value would change, thus

rendering all the following blocks invalid. This would alert the administrator that

information has been modified. When a dataset is accessed, the username, the dataset

name, the method of access (Command Line Interface or Map Reduce) and the command

line operation (cat, copy, move, put) are captured using the data usage tracker and these

values are used to create the blockchain. If an unauthorized modification is done, the

blockchain validation process will identify the illegal access and report accordingly.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 Big Data ...1

 Block Chain ...2

 The Problem ...4

 Proposed Solution ..4

 My Contribution...4

 Outline of the document...4

II. REVIEW OF LITERATURE..5

 Access control of sensitive data in HDFS ..5

 Vigiles: FGAC for MR Systems ..8

 Access Control for Big Data using Data Content...9

 An Access Scheme for Big Data processing..10

III. METHODOLOGY ..12

 Detailed problem Statement ...12

 Detailed solution ..14

 Algorithm...30

IV. Implementation ..34

 Findings and Results ..41

V. Conclusion ..59

REFERENCES ..62

vi

LIST OF FIGURES

Figure Page

1..17

2..17

3..18

4..18

5..21

6..22

7..23

8..23

9..24

10..25

11..26

12..27

13..28

14..29

15..35

16..42

17..42

18..43

19..43

20..44

21..45

22..45

23..46

24..46

25..47

26..47

27..48

28..48

29..49

30..50

31..51

32..51

33..52

34..53

35..54

vi

36..54

37..55

38..55

39..56

40..56

41..57

42..57

43..58

44..58

1

CHAPTER I

INTRODUCTION

1. BIG DATA

Every day 2.5 quintillion bytes of data are created [1]. In 2011 1.8 zettabytes (or 1.8

trillion GBs) of data was created. In 2012 it reached 2.8 zettabytes and the IDC

(International Data Corporation) now forecasts that 40 zettabytes of data will be

generated (ZB) by 2020 [2]. Organizations with a large customer base like Facebook,

Amazon or Google deal with huge amounts of data. This kind of data is called Big Data.

With Big Data, the large amount of data cannot be processed using conventional database

systems. Big Data is not only about the size of the data. It is also about how the data is

being used, how the data is being transmitted or moved, how costly it is to maintain the

data, how much time is consumed to process the data. Big Data is not one technology but

an amalgamation of multiple different technologies. It uses tools and techniques to

process and maintain data, effectively and efficiently. Industries like Banking, Health-

care and Education use these technologies to maintain their data effectively. Big data

technologies utilize data in a different way than conventional database systems. The data

is compiled into structures called datasets and then these datasets are processed. For

example Apache's Hadoop is one Big Data framework, which is widely used to deal with

2

big data. Its file system known as the Hadoop Distributed File System (HDFS) which is a

distributed file system used to store large volumes of data. It provides reliability and

efficiency. Some other frameworks which handle big data are: Storm [11], Hortonworks

Data Platform [12], Apache Pig [13]. There are numerous such tools out there. Every tool

has their own way to handle big data. Hadoop uses Map Reduce to process the data.

Hadoop MapReduce [3] is a software framework for writing applications which process

vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of

nodes) of commodity hardware in a reliable, fault-tolerant manner. R is a programming

language mostly used for Big Data Analytics. Big data analytics [4] examines large

amounts of data to uncover hidden patterns, correlations and other insights. With today’s

technology, it’s possible to analyze data and get answers from it almost immediately – an

effort that’s slower and less efficient with more traditional business intelligence solutions.

2. BLOCKCHAIN

Blockchain is a Distributed Database. Blockchain was first used for Bitcoin [5]. Bitcoin is

an organization which created a cryptocurrency with the same name (Bitcoin).

Cryptocurrency is analogous to digital currency. The Bitcoin protocol uses blockchain.

Blockchains are secure because they are built to prevent hacker attacks or unauthorized

modification. There are three types of blockchains: Public, Private and Hybrid.

Organizations such as Bitcoin use a public blockchain. Everyone who has access to the

Internet can look at the bitcoin transactions. A blockchain is kept private in an

3

organization which has sensitive data. A hybrid blockchain is one in which some parts of

the blockchain are public while some parts are private. A block chain consists of blocks

which consist of some kind of data. They are connected to each other using Hash values

(Block header).

After some computations and modifications the items mentioned above (Version number,

Hash of the previous block, Merkle Root, Time stamp and number of bits of the data) are

concatenated together and converted into a single hash. The hash is a value generated by

a Cryptographic Hashing Function [6]. If someone tries to modify even a single data

entry in the block, the whole hash value will get corrupted. Thus it would be clear that an

unauthorized change has been made. There are multiple nodes in a blockchain network.

There might be hundreds of thousands of nodes present in the blockchain. If someone

wishes to hack a blockchain, he will have to find all the nodes in the network and hack all

of them at the same time. If he tries to access one node and modify the data, the values of

the hash value of the block will change. If the block is modified, its hash value would

change and thus it would be known that the block is now corrupt. The block from any of

the other nodes, which are not corrupt could be used to replace the corrupt block. All the

blocks are connected to each other using the hash value of the previous block. Hence if a

change is made in any block, all the blocks following that block will be rendered useless.

Hence the blockchain is secure and reliable.

4

3. THE PROBLEM:

Data is captured by organizations and converted into datasets. Two or more datasets may

be combined which may cause critical or sensitive data to be fetched from multiple

locations. The data can then be misused for variety of purposes. An unauthorized user

can access the data.

4. PROPOSED SOLUTION:

A system is required to track usage of datasets. Every time a dataset is accessed, the

usage of that data should be captured. This system should be secure so that no one can

make any unauthorized changes to it. A blockchain will be created every time a dataset is

introduced. Every dataset will have its own block chain. Every block in the dataset will

have the user name of the user accessing the dataset, the name of the dataset, the type of

access used and command line operation performed. Type of access can be using

MapReduce (MR) or using the Command Line (CLI) and the command line operation

performed could be copy, move or view. Since the block chain is secure and immune to

any kind of cyber-attacks, the usage of the datasets would remain safe.

5. OUTLINE OF THE THESIS

Chapter 2 consists of the review of previous work in similar areas. Chapter 3 describes

the problem in detail and the proposed solution. Chapter 4 describes the implementation

of the solution. Chapter 5 is the conclusion of the thesis work done.

5

CHAPTER II

LITERATURE REVIEW

Several other researches have been done in similar areas. This chapter explains how the

work done by the other researchers is different from what has been done here.

1. Access control of sensitive data in HDFS [7]:

The research presents a new security model which is different than the conventional key

based federated system. Every federated user has a key (password), using which he can

access data. For two parties to be able to access each other’s data, a security token is

used. This could be a RSA token. The TokenID is generated which provides the Token.

TokenID= {OwnerId, RenewerId, issueDate, maxDate,

sequenceNumber} (1)

OwnerID: ID of the owner of the token.

RenewerID: ID of the individual who renews the token.

issueDate: Token issue date

maxDate: Token expiration date

sequenceNumber: The sequence number of the token in the list.

6

Every token has a validity which is usually one day or till the task is completed. The

validity can be calculated using the issueDate and the maxDate. Access rights or

limitations should be added to the tokenID so that a user cannot access any

unauthorized data. Also the verification of the result generated should be present.

Equation (1) can be modified as:

TokenID={ownerIDc, renewerId, issueDate, maxDate,

sequenceNumber, outputCheck} (2)

ownerIDc={ownerId, accessLimit, KeyId, expirationDate} (3)

The new parameters to generate TokenID has 2 new components. OwnerIDc and

outputCheck as seen in (2). OwnerIDc describes the access rights allowed. It is

generated using accessLimit as seen in (3). accessLimit provides permission to

view the data for which the user has access. OutputCheck verifies the output

generated. These two factors enhance the security of the data being accessed.

Let's assume a function G which comprises of: N (set of states), A (set of access rights), D

(set of allowed resources in the Database), U (return result of the user query).

Function G has a fixed set of access rights, specifies the resources allowed in the database

and the result of the query. This function acts as an access control mechanism. If a user

tries to access any information which requires special access rights, or if he tries to access

resources which are it is not permitted to access or if the result of the query does not

7

match the permitted result, the function G will be responsible for catching the malicious

access.

Every authenticated user ni ∈ N will have a token which will define a set of access rights

ai ∈A:. An unauthorized user (malicious user/hacker) will have no access rights. If an

authorized user tries to access any data to which he doesn't have access, he will be

blocked and reported. If the output doesn't match the access permissions he will be

blocked. Two users can have some of the access rights in common. A user can have the

same access rights for two database resources or his access rights may be different for the

database resources. Every system or node has a super user who has all the access rights to

all the resources. If a hacker tries to simulate a query as an authorized user he can be

caught for multiple reasons. He might not know about the access rights or the queries do

not match. If he is using a particular computer system, he will get locked out of that

system. The security team might get hold of the query the hacker was trying to execute,

flag it and prevent any similar future attacks. There might be internal hackers who try to

access the data they do not have rights to. Their attempts to gain unauthorized access will

be flagged.

There is a chance that sensitive information might be accessed without any trace of any

attack. Even read access rights provided to a user will result in the exposure of the data.

8

2. Vigiles: Fine-grained Access Control for MapReduce Systems [8]:

Vigiles is like a firewall which provides Fine Grained Access Control Predicates. User

defined predicates are applied to each file and a user can access a file only after these

predicates are applied. These predicates run Access Control Filters (ACF). Access

Control Filters provide access based on the security policies and protocols. There are

three types of ACF actions: reject (rejects access), grant (grants access) and modify

(modifies the data). Vigiles acts as a middleware between users and the MapReduce

system. It uses the same user name and password of the OS authenticating process. End

users have no direct responsibility with Vigiles. Administrators create config files and

customize ACFs. A user can communicate with Vigiles by using the computer screen

(OS interface). Vigiles executes the job on behalf of the user and since it has all the file

access parameters, it runs and provides the output. ACF generation is a three step

process: Decompose, fetch and action. Unstructured text is broken into words. Sensitive

words are found and created into tokens which are indexed. Then ACF actions are

applied to the words. ACF injection is a process used in Vigiles. Three types of aspects

are injected into these pointcuts: (1) initialization aspect is injected to initialize()

method; (2) predicate aspect is injected to nextKeyValue() method; and (3)

modification aspects are injected to getCurrentKey()/getCurrentValue()

methods. Although Vigiles provides a way to identify sensitive data, it all depends on the

9

administrator. Administrator decides which data is sensitive. There's no way to track

which user accesses which data.

3. Access Control for Big Data using Data Content [9]:

The paper proposes a Content-based access control (CBAC) for big data. It is an

additional access control scheme along with the existing Database access control rules. It

is designed for areas where a certain amount of approximation regarding access control is

applicable. A user can access a few more or less records than is assigned by the

administrator.

A generic CBAC policy could be represented as:

ACR = {subject, object, action, f (u, di)}, where u is the subject

and d is the data object.

CBAC provides the users a special role which allows them to access a certain type of data

for which they have the access. The role has predefined access to a type of data.

It uses a function: f (u, di) = {true, false}. Access to a record will be

provided if the output of the function is true.

In this model, content similarity is compared with a preset threshold, and the user is

granted access to all the records that pass the similarity. But if the threshold value is

computed wrong, then it might allow the user to access more records than he was

10

allowed. This can be solved by implementing Top K Similarity. It can be implemented

just like CBAC, as an additional component.

There's always the risk a user can access a record which he was not supposed to access

and there would be no record of him accessing it since CBAC provides the access based

on approximation.

4. An Access Scheme for Big Data processing [10]:

Big Data has no predefined scheme for database management. So Big Data access control

requires additional access control capabilities. The following components are the parts of

the new Access control scheme:

1. Security Agreement: It's an agreement between a Big Data source and the Master

System which defines the security classes. Its purpose is to agree upon security classes by

the Master System and Big Data sources.

2. Trust Cooperated Systems List (TCSL): This is a list of trusted Cooperated Systems

which are recognized by the master system.

3. Master System Access Control Policy (MSP): This is a set of rules imposed by the

Master System to enforce Access Control on Cooperated Systems.

11

4. Cooperated System Access Control Policy (CSP): This allows the Cooperated Systems

to control the access to the distributed Big Data data/process by considering the

processing capabilities and security requirements of the systems.

5. Federated Attribute Definitions (FAD): This lists the common attributes used by the

Master System and Cooperated System, so that the Master System Policy and Cooperated

System Policy can be composed using the common attributes in the FAD dictionary.

Someone can bypass the security classes or the security officer can modify the policies.

Human error can be a factor in this scheme.

There is very limited work on detecting malicious or unauthorized modifications to big

data. The aspect of security when datasets are merged or joined has also not been

addressed in previous works. None of the above approaches provide a proper and

accurate mechanism for securing big data.

12

CHAPTER III

METHODOLOGY

III.1. DETAILED PROBLEM STATEMENT

Two or more datasets can be combined which may cause critical or sensitive data to be

accessed which then can be misused for a variety of purposes. Even a single dataset

carrying sensitive can be accessed for malicious purposes. For example one dataset has

Candidate_Id, Name, Date of Birth and Place of Birth of an individual. Another dataset

might have the Person_Id, Candidate_Id, Date of Birth and Phone Number. The third

dataset might have Person_Id and SSN. If an unauthorized user is able to get all these 3

datasets, he can get the sensitive information about the person. A system is needed which

would track the usage of these datasets; who is using what kind of datasets. If the same

unauthorized user who is trying to access the sensitive information can cover his tracks in

the system, then the system fails. So this system needs to be highly secure and quite

reliable. There should be no loss or corruption of data for any reason. The system should

have multiple backups on different locations like DR (Disaster Recovery) sites.

The solutions mentioned in chapter II which are provided by other researchers are good

but they are dependent on human computer interaction. A user may not have access to

modify the dataset but he may be able to read the data from the dataset which is a major

concern. In some cases, the access rights are not accurately implemented. They could

13

provide a little more access or a little less access to data. A little less access would be a

less of a concern that providing a little more access. Any kind of sensitive data could be

accessed, accidentally or intentionally. The solution provided here is mostly automated.

The data cannot be modified even if the individual has access rights. It can be deleted by

the administrator but the report generated would be accessed by everyone and anyone can

question why the dataset, blockchain or even a block was deleted. The blockchain is

monitored after every fixed interval of time by an automated process. So any kind of

unauthorized access (if possible) will be detected.

14

III.2. DETAILED PROBLEM SOLUTION

In order to solve the problem stated above, a usage tracking system is created using block

chain technology. There would be multiple nodes and each node will have the

blockchains of all the datasets available. Once a block chain is created in any of the

nodes, it would be synchronized to all the other nodes. So there would be no loss of data

thus making it reliable.

Not only would the proposed scheme be able to detect changes to a block chain, it would

also be able to detect any illegal accesses to data by comparing it with data access control

rules. If an individual who does not have access rights, tries to access a dataset, the

information would be recorded and monitored at regular intervals. As soon as a user

accesses a dataset, his or her username, the dataset(s) he or she accessed, how he or she

accessed the dataset(s) and what command line operation was performed will be

recorded. If he does not have access rights to the dataset and if he or she still tries to

access it, it would be detected.

The implementation of our proposed scheme is as follows:

A block consists of 5 kinds of data:

• Version Number

• Hash of the previous block(Block Header)

• Merkle Root

• Time stamp of creation of the block

15

• Number of bits of data inside the block. This is the size of data in the block in

bits.

1. Creation of Genesis block: If an existing dataset is accessed for the first time, the

dataset name, name of the user who accessed the dataset, the method using which the

dataset was accessed (Command Line Interface or Map Reduce) and the command line

operation performed (cat, copy, move) will be captured. If a new dataset is created in

HDFS, name of the dataset created, name of the user who created the dataset, method

using which the dataset was created (Command Line Interface or Map Reduce) and the

command line operation using which the dataset was created (copy, move, put) will be

captured .The values captured above would be hashed using SHA-256. This would give a

256 bit hash or 64 characters hash value. A version number would be assigned to the

genesis block. This could be any random number of any random length. Every following

block in the block chain would have a version number. There are many ways to calculate

the version number of the next block. The version number can be incremented by a

constant number or a customized algorithm could be used which would compute the

version number. The number of bits of the data in the genesis block would be calculated.

For example if the data in the blockchain is 10, then the binary encoded form of 10 in bits

would be 00110001 00110000. Thus the size of the data in this case would be 16 bits. A

timestamp would be entered for this block. The timestamp would be the creation time of

the block. Once the hashed value of the data is calculated, the version number, the

number of bits and the time stamp, will be concatenated and then the hash of this string

16

will be calculated. This will be the final hash of the genesis block. This hash value will be

used in the next block.

2. Creation of the first block: Once the genesis block is created, it will provide a hash

value for the next block. A version number will be calculated using a customized

algorithm. It will take the version number of the previous block and generate a version

number. A timestamp will be generated for this block. The username of the user

accessing the dataset will be captured. The name of the dataset will be acquired. The

method which was used to access the dataset will be fetched. It would be either using

Map Reduce (MR) or the Command Line Interface (CLI). The command line operation

with which the user accessed the dataset (view, copy, move, put) will be recorded as well.

A Merkle root will be calculated using the Merkle tree. The Merkle root is calculated

because it contains the amalgamated hash values of all the data which is present inside

the block. If even a single data item is modified, the Merkle root will be changed because

the hash value of the data is a part of the Merkle root.

Steps to create a Merkle tree:

1. Calculate H (user name): Hash value of the user name; H (dataset

name): Hash value of the name of the dataset; H (method): Method of

accessing the dataset; H (operation) define. This order will be followed

throughout the blockchain for consistency.

17

 H(username) H(operation) H(dataset) H(method)

2. Concatenate the hash of the first two items:

H(UNOP)= H(user name)+H(operation). Point two arrows from

H(user name) and H(operation) to H(UNOP).

 H(UNOP)

 H(username) H(operation)

 Figure 1: A node of Merkel Tree

3. Concatenate the hash of the next two items:

H(DSM) = H(Dataset name) + H(method). Point two arrows from

H(dataset name) and H(method) to H(DSM).

 H(DSM)

 H(dataset name) H(method)

 Figure 2: A node of the Merkle tree

4. Point two arrows from H(UNOP) and H(DSM) to H(root).

18

H(root) = H(UNOP)+H(DSM).

 H(root)

 H(UNOP) H(DSM)

 Figure 3: Combined nodes of the Merkle tree.

5. H(root) is the Merkel root.

The following figure is the complete Merkle tree

 H(root)

 H(UNOP) H(DSM)

H(user name) H(operation) H(dataset name) H(method)

Figure 4: A complete Merkel tree

19

Once the Merkel root is calculated, the number of bits of the data is calculated. The total

number of bits will be calculated for username, command line operation, dataset and the

method.

Total items in a block

• Hash value of the genesis block.

• Version number

• Time stamp value

• Merkel root value (The hashed value of H(root) from Figure 4)

• Number of bits of the data.

The version number, timestamp and number of bits will be converted into hexadecimal

format. Each hexadecimal number will be of 8 characters. If it is shorter than 8 characters

it will padded with 0s in the beginning.

Total items in a block:

• Hash value of the genesis block.

• Version number (hex)

• Time stamp value (hex)

• Merkel root value

• Number of bits of the data (hex)

Next convert all the items into Little Endian format. For example 000003EB would be

converted into EB030000. The characters are replaced in pairs from the end of the string

20

to the front of the string. So initially 'EB' was at the end and it is now brought to the front

of the String. Similarly for all the other pairs as well.

E(HG): Little Endian Format of hash value of genesis block.

E(HEXVN): Little Endian format of hexadecimal value of version number

E(HEXTS): Little Endian format of hexadecimal value of time stamp

E(MRV): Little Endian format of Merkel root.

E(HEXNB): Little Endian format of hexadecimal value of number of bits

The hash value of this block will be calculated by concatenating the above 5 values and

hashing:

H(CB)= Hash value of current block

H(CB) = H(E(HG)+E(HEXVN)+E(HEXTS)+E(MRV)+E(HEXNB))

This would give the final hash value of the current block.

Following the same procedure for all the blocks, a block chain is completed.

As mentioned earlier, every dataset has a block chain; hence there will be multiple block

chains. Every time a new dataset is introduced, a new block chain is created

21

If a user wishes to access dataset (A) and dataset (B) as shown in figure 5 a new block

chain would be formed by merging the 2 block chains and creating a whole new block

chain.

Figure 5: Merging of 2 blockchains to create a new block chain

The resulting dataset (AB) as shown in the figure is the amalgamation of dataset A and

dataset B. The newly formed block is the genesis block of the block of the new chain AB

and the following blocks would be AB1, AB2 ,..,ABn. The genesis block would be created

by capturing the name of the dataset. The name of the dataset would be created by

concatenating the name of the 2 datasets which are combined. Name of the user who

accessed the 2 datasets together will be captured. Map Reduce is the only method allows

the user to access 2 datasets at the same time. The command line operation would be

MRAccess. These 4 values would be used to create the Merkle root. The version number

Dataset A

Genesis Block

AG

Dataset A First

Block A1

Dataset A

Second Block

A2
Dataset AB

Genesis Block

ABG

Dataset B

Genesis Block

BG

Dataset B First

Block B1

Dataset B

Second Block

B2

22

of the new genesis block ABG would be computed by creating a similar customized

algorithm which would take the input as version numbers of A2 and B2. The timestamp

when the 2 datasets were accessed will be captured. The number of bits of data (the

username, new dataset name, method of access and the command line operation) will be

calculated.

Figure 6: Creation of Genesis Block when 2 blockchains are combined.

If a new dataset C is introduced, and all three are merged, then the new blockchain would

be ABC.

Deletion of datasets: If a dataset is deleted from Hadoop File System (HDFS), the

blockchain representing that dataset would be deleted as well.

23

Dataset A was accessed to create the blockchain A. The blockchain had a genesis block

AG and A1, A2, … were the subsequent blocks.

Figure 7: Creation of blockchain when dataset is accessed.

When we delete the dataset A from HDFS, the blockchain A will be deleted

automatically.

Figure 8: Deletion of blockchain when dataset is deleted.

Genesis block of blockchain A (AG)

Version number of the block

Merkle Root

Timestamp of creation of genesis block

Number of bits of data

1st block of blockchain A (A1)

Version number of the block

Merkle Root

Timestamp of creation of the block

Number of bits of data

Hash Value of genesis block

Dataset A

Dataset A

Genesis block of blockchain A (AG)

Version number of the block

Merkle Root

Timestamp of creation of genesis block

Number of bits of data

1st block of blockchain A (A1)

Version number of the block

Merkle Root

Timestamp of creation of the block

Number of bits of data

Hash Value of genesis block

24

In case of merged blockchains:

 For example if from figure 5, dataset B is deleted, the new genesis block ABG would

simply become a part of block chain A. The Genesis block of AB remains the same.

Figure 9: Deletion of a Dataset

Deletion of Block: If an unauthorized user tries to modify any block, he will change the

hash value of the block and thus will be caught. But now the block will be useless. So the

block will be deleted and the block with the correct data will be updated by retrieving the

block from the backup nodes. Hence data will not be lost. This is why the blockchain is

secure and reliable.

Dataset A

Third Block

A3

Dataset A

Second Block

A2

Dataset A

First Block A1

Dataset A

Genesis Block

AG

Dataset AB

Genesis

Block ABG

Dataset B

Genesis Block

BG

Dataset B

First Block B1

Dataset B

Second

Block B2

Dataset B

Third Block

B3

25

The dataset A was accessed to create the blockchain A. It has the genesis block (AG) and

the subsequent blocks A1, A2… The entire blockchain is replicated in the other node with

the same values. The value (Merkle Root) in block A1 in Node 1has been modified by an

unauthorized user thus rendering it useless. While the blockchain A in Node 2 which is a

backup node has not been modified and has correct values.

Figure 10: Corrupt blockchain in Node 1 and correct blockchain in backup node

Genesis block of blockchain A (AG)

Version number of the block

Merkle Root

Timestamp of creation of genesis block

Number of bits of data

1st block of blockchain A (A1)

corrupt block.

Version number of the block

Merkle Root (modified by an

unauthorized user)

Timestamp of creation of the block

Node 1 (Actual Node). Block A1 has been

modified and is a corrupt block.

Node 2 (Backup Node). The replica of

blockchain A from Node A with the

correct block.

Genesis block of blockchain A (AG)

Version number of the block

Merkle Root

Timestamp of creation of genesis block

Number of bits of data

1st block of blockchain A (A1)

Version number of the block

Merkle Root

Timestamp of creation of the block

Number of bits of data

Hash Value of genesis block

26

When the blockchain validation process will be executed, the corrupt block will be

identified. The corrupt block will be deleted and the blockchain will be updated using the

correct blockchain in Node 2.

Figure 11: Backup node replacing corrupt blockchain.

Node 1 (Actual Node). Block A1 has been

modified and is a corrupt block.

Genesis block of blockchain A (AG)

Version number of the block

Merkle Root

Timestamp of creation of genesis block

Number of bits of data

1st block of blockchain A (A1)

corrupt block.

Version number of the block

Merkle Root (modified by an

unauthorized user)

Timestamp of creation of the block

Node 2 (Backup Node). The replica of

blockchain A from Node A with the

correct block.

Genesis block of blockchain A (AG)

Version number of the block

Merkle Root

Timestamp of creation of genesis block

Number of bits of data

1st block of blockchain A (A1)

Version number of the block

Merkle Root

Timestamp of creation of the block

Number of bits of data

Hash Value of genesis block

27

Deletion of dataset and restore: If the administrator decides to delete a dataset and then

decides to insert the same dataset again with the same name, a new block chain will be

created. It will not be linked back to the existing blockchain.

Dataset A was created/accessed to create the blockchain A with genesis block (AG) and

subsequent blocks A1, A2 …

Figure 12: Dataset creating the blockchain.

Genesis block of blockchain A (AG)

Version number of the block

Merkle Root

Timestamp of creation of genesis block

Number of bits of data

1st block of blockchain A (A1)

Version number of the block

Merkle Root

Timestamp of creation of the block

Number of bits of data

Hash Value of genesis block

Dataset A

28

The administrator decides that dataset A is of no use anymore and thus deletes it. Since

the dataset A is deleted, as explained previously, the blockchain A will be deleted

automatically.

Figure 13: Deletion of dataset results in deletion of blockchain.

The administrator realizes that dataset A was important or dataset has to be used again, he

inserts dataset A. Once he creates dataset A again, a fresh blockchain A.

Dataset A

Genesis block of blockchain A (AG)

Version number of the block

Merkle Root

Timestamp of creation of genesis block

Number of bits of data

1st block of blockchain A (A1)

Version number of the block

Merkle Root

Timestamp of creation of the block

Number of bits of data

Hash Value of genesis block

29

Figure 14: Reintroduction of dataset results in anew blockchain

The blockchain cannot be modified. Once a block has been created, it cannot be modified

legally. But if someone tries to change the values in a block in the block chain in an

unauthorized fashion, it would change the hash value. The access rights to delete the

blockchain lies with the administrator. If he deletes a blockchain or a block, his actions

would be documented in a log file with the timestamp and his username. If someone else

tried to delete the block or blockchain, it would be detected because after every fixed

interval an automated batch process will be executed which will compare the blockchains

of one node to the other. If any unknown discrepancy happens, the blockchain would

notify the administrator. Algorithm 5 below explains this process.

New genesis block of blockchain A (AG)

New version number of the block

New Merkle Root

New timestamp of creation of genesis

block

New number of bits of data

New 1st block of blockchain A (A1)

New version number of the block

New Merkle Root

New timestamp of creation of the block

New number of bits of data

Hash Value of genesis block

Dataset A

30

Algorithms for Blockchain Data Usage Tracker

Algorithm 1 merkle_root_calc

Input: dataset_name, operation, user_name, method_Of_Access;

output: merkle_root;

1: Compute Hash (dataset_name and operation) = Hash (Hash (dataset_name) +Hash

(operation));

2: Compute Hash (user_name and method_Of_access) =Hash (Hash (user_name) +Hash

(method_Of_Access));

3: Compute merkle_root = Hash ((dataset_name and operation) and (user_name and

method_Of_access)) = Hash (Hash (dataset_name and operation) +Hash (user_name and

method_Of_access));

Description: This algorithm explains the calculation of Merkle Root. The hash of dataset

name and the hash of command line operation are concatenated and hashed again. The

hash of username and the hash of method of access are concatenated and hashed again.

The two hash values created are concatenated and hashed again. The output is Merkle

Root.

31

Algorithm 2 block_creation

Input: version_number, timestamp, merkle_root, prev_block_header, data_size,

dataset_name, operation, user_name, method_of_access;

Output: block_header;

1: Compute merkle_root = merkle_root_calc (dataset_name, operation, user_name,

method_of_access);

2: Compute block_header=Hash (LittleEndian (Hex (version_number)) LittleEndian

(Hex (timestamp)) +LittleEndian (Hex (data_size)) +merkle_root + prev_block_header);

if (blockType==Genesis block)

prev_block_header=0

3: insert to database= Encrypted (dataset_name, operation, user_name,

method_of_access), LittleEndian (Hex (version_number), LittleEndian (Hex (timestamp),

LittleEndian (Hex (data_size), merkle_root, block_header;

Description: This algorithm explains the creation of blocks in a blockchain. Dataset

name, username, command line operation and method of access are used to calculate the

Merkle root. When a block is being created, a version number is calculated. A timestamp

of creation is captured. The number of bits of data (data used for calculating Merkle

Root) is calculated. The version number, the timestamp and the number of bits are

converted into hexadecimal format and then converted into Little Endian format. Finally

these three values are concatenated and hashed. If a genesis block is being created, the

32

hash value created is concatenated with the Merkle root. This provides the blockheader of

the genesis block. For the subsequent blocks the Merkle root, the hash value of version

number, timestamp and number of bits and the blockheader of previous block are

concatenated to create the block header of the current block.

Algorithm 3 combine_blockchains

Input: dataset_name (1 to n), operations, version_number, data_size, timestamp,

user_name, method_of_access, prev_block_header (1 to n);

output: block_header;

1: merkle_root= merkle_root_calc ((dataset_name1+dataset_name2+....+ dataset_namen),

operations, user_name, method_of_access);

2: block_header = Hash(LittleEndian(Hex(version_number)+LittleEndian(Hex(data_size)

+ LittleEndian (Hex(timestamp) + merkle_root + Hash(prev_block_header1

+prev_block_header2 +......prev_block_headern));

Description: If two datasets are accessed at the same time using Map Reduce, then the

blockchains of the two datasets are combined to create a third blockchain. The Merkle

root is recomputed based on the two separate blockchains, the version number is

calculated based on the two blockchains. Timestamp and the number of bits are

calculated.

33

Algorithm 4 delete_dataset

input: dataset_name1, dataset_name2, dataset_name12;

1: Dataset_name12 = dataset_name1+dataset_name2;

2: if dataset_name2 present == dataset_name2 blockchain

 then do nothing

 else dataset_name2 deleted

 dataset_name12 = dataset1;

Description: If a dataset in Hadoop File System (HDFS) is deleted, the blockchain of

that dataset will be deleted as well.

Algorithm 5 validation_blockchain

input(from database): prev_block_header,

LittleEndian(Hex(version_number),LittleEndian(Hex(timestamp),LittleEndian(Hex(data_

size),merkle_root, block_header;

output: boolean_flag;

1: if (Hash (prev_block_header+LittleEndian (Hex (version_number)

 +LittleEndian (Hex (timestamp) +LittleEndian (Hex (data_size)

34

 +merkle_root)) ==block_header) {boolean_flag=true} else {boolean_flag=false};

 if (boolean_flag = false) {delete_block}

Description: The blockchains are validated at regular intervals. The values are

recomputed and if an anomaly is detected in any block of any blockchain, it is reported to

the administrator in the form of a log file with the block details. The corrupt block is

deleted.

35

CHAPTER IV

Implementation

Usage tracker is a program which tracks users who access datasets in the Hadoop file

system. The implementation of Blockchain Data Usage Tracker begins with fetching the

name of the dataset accessed, name of the user who accessed the dataset, the method

using which the dataset was accessed (Command Line Interface or Map Reduce) and the

command line operation using which the dataset was accessed (cat, copy, move, put) .In

order to extract the values related to the dataset, snippets of extra code was added to the

Hadoop source code in order to fetch the values mentioned above and pass them as

arguments to the Usage Tracker. The username, the dataset name, the method used to

access the dataset (Command Line Interface) and the command line operation performed

to access the dataset (cat, copy, move, put) is being captured in the Hadoop source code.

36

Figure 15: Blockchain Data Usage Tracker with Hadoop Source code origins

Hadoop Source Code

Hadoop common

Code to view the dataset

(cat)

Code to copy the dataset

(copy, put)

Code to move the dataset

(move)

Hadoop Map Reduce Client

Code to access single dataset

using Map Reduce

Code to access multiple

dataset using Map Reduce

Genesis Block of blockchain when just

viewed

Dataset name

User name

Method of accessing dataset

Command line operation performed to

access the dataset

Genesis Block of blockchain when copied

or moved

Dataset name

User name

Method of accessing dataset

Command line operation performed to

access the dataset

Genesis Block of blockchain when using

Map Reduce

Dataset name

User name

Method of accessing dataset

Command line operation performed to

access the dataset

37

The following CLI (Command Line Interface) operations were recorded:

1. copyFromLocal: This operation copies the data files from the local system to the

Hadoop file system. This operation is responsible for the creation of the Genesis block in

the blockchain because it creates a new dataset.

2. moveFromLocal: This operation is again responsible for creation of the Genesis

block. It copies the files from local system to the Hadoop file system and deletes the

original file in the local system.

3. cat: This operation is used to read the content of the dataset. Its primary purpose is

creation of blocks after the Genesis block. Every time a dataset is read using this

command, a new block is added to the blockchain.

4. put: This operation is same as copyFromLocal.

5. copyToLocal: This operation is the reverse of copyFromLocal. It copies the

dataset from the Hadoop file system to local file system. It is responsible for adding

blocks to the blockchain after the genesis block.

6. get: It is same as copyToLocal.

The dataset accessed information using Map Reduce is recorded as well. Data for single

dataset access and multiple dataset access is recorded. If multiple datasets are accessed

and the datasets already have blockchains, this operation would amalgamate the two

blockchains to create a third blockchain.

38

The program to create the blockchain and blocks is being called from the Hadoop source

code using common daemons after the required values are extracted. A daemon is a

computer program that runs as a background process, executing tasks on a predefined

schedule or in response to particular events, or in response to requests for information or

services from other programs. In order to use the daemon, the Apache Common Daemon

libraries are used. In this application, the daemon is called from Hadoop source code by

executing a shell script. This shell script has the location of Common Daemon libraries,

java class path, location of the Blockchain program (jar file) location, the location of log

files. It also has the commands for Start, Stop and Restart. In order to start the daemon,

script “start” command has to be executed. Similarly once the daemon task is performed,

script “stop” is executed which will terminate the daemon. The values which are fetched

from the source code are passed as arguments along with the daemon.

As soon as the information from the Hadoop source code is available, the daemon is

called and it starts the creation of the block while the Hadoop process is continuing in the

background.

The blockchain creation process starts by fetching the dataset related values from the

daemon. Once the program has all the values it needs, these values are encrypted using an

encryption key and an encryption algorithm and the same values are hashed using a

hashing algorithm. The encryption key is created by the individual who has access to the

39

plain text values. The hashed values are used to create the Merkle root by concatenating

them and hashing them again.

The current timestamp, the number of bits of information and the version number using a

customized algorithm are calculated. The above mentioned three values are converted

into hexadecimal format. The output (hexadecimal values) are then converted into little

endian format and finally the output is encrypted using an encryption algorithm.

The hexadecimal-little endian-encrypted values of version number, time stamp and

number of bits are concatenated along with the Merkle root and hashed to create the

blockheader of the genesis block of the blockchain. In the subsequent blocks along with

the above mentioned concatenation, the blockheader of the previous block is

concatenated and then hashed to create the blockheader which will be used in the

following blocks.

Validation of blockchain is done at regular intervals. A Cron Job is being using which

starts the process at every regular intervals. It re-computes the values of each block and

compares these values to the previous block. If there is a mismatch in any of the values, it

is recorded and a report is generated which specifies which values in which block were

modified and the decrypted values of the Username, dataset name, the method of access

and the operation performed.

40

The blockchain data usage tracker was implemented and tested on a standalone machine

first with 1 namenode and 1 datanode single cluster. The system had 3 GB RAM and

250GB hard drive. Hadoop File System (HDFS) version 2.7.3 along with Hive 2.1.0

(Hiveserver2) were used. The blockchain data usage tracker at this point was tested using

10 datasets with sizes varying between 1000 and 10000 lines of data. Each blockchain

had number of blocks varying between 10 and 15.

Once testing on a standalone machine was completed, the blockchain data usage tracker

was implemented and tested on Amazon Web Service EC2 cloud platform. 2 Hadoop

clusters were used. One was the main cluster and the other was the backup cluster. Each

Hadoop cluster had 4 separate instances with 8GB hard drive and 4GB RAM. 1 instance

was used as namenode and 3 other instances were used as datanodes. Hadoop 2.7.3 and

Hive 2.1.0 (Hiveserver2) was used. In Amazon Web Service EC2 the blockchain data

usage tracker was tested with 30 different datasets, their sizes varying between 10000 and

100000 lines of data. The number of blocks created varied between 30-50 blocks.

41

Findings and Results

The data usage tracker works as expected. When an existing dataset is accessed for the

first time, a new blockchain is created. Every time the dataset is accessed again a new

block is added to the blockchain.

The average execution time for creation of Genesis block/Blockchain creation in the

AWS EC2 cluster with 4GB RAM and 8GB hard drive system is 4000 milliseconds. 2

processes (HDFS and Hiveserver2) were running simultaneously. The sample for this

result is 25 executions. The size of datasets varied between 10000-100000 lines.

If a dataset is deleted, its corresponding blockchain is deleted as well. The average

execution time for deletion of a blockchain in the AWS EC2 cluster with 4GB RAM and

8GB hard drive system is 1000 milliseconds. The sample for this result is 10 executions.

The size of datasets varied between 10000-100000 lines.

At every regular intervals the blockchain is validated for validity. The values are

recomputed with the previous values and if there is an anomaly, it is recorded in the

report.

The average execution time for validation of 16 blockchains with an average of 40 blocks

in each blockchain in the AWS EC2 cluster with 4GB RAM and 8GB hard drive system

is 19500 milliseconds.

42

Screenshots:

Figure 16: No blockchains initially

This screenshot portrays that there are no blockchains initially. The hdfs blockchain

folder is empty.

Figure 17: No datasets initially

This screenshot portrays that initially there are no datasets in the system. That is, there

are no files in the Hadoop file system.

43

Figure 18: Create first dataset and blockchain

This screenshot portrays that a new Hadoop file system file (dataset) was created

(input1000) by copying it from a local system. Once the dataset (input1000) was created,

the blockchain related to that was created as well. The blockchian is created by

appending the name of the dataset with “_blockc” and putting it in a folder with the same

name. In this case a folder named “input1000_blockc” was created in the blockchain

folder and inside the input1000_blockc, a Hadoop file with the name

“input1000_blockc” was created. The file has the genesis block with size 460 Bytes.

The contents of a blockchain would be shown in another screenshot.

44

Figure 19: Inserting more files in hdfs

The screenshot portrays more files being added to Hadoop file system by copying them

from local. These files are being added to a folder called multipleInput which later will be

used for Map Reduce purposes. The 2 new files (input10000 and input12000) creates two

new blockchains named: “input10000_blockc and input12000_blockc”.

Figure 20: Viewing a dataset

The screenshot portrays that the blockchain “input10000_blockc” has the genesis block

of size 460 Bytes. Cat command is executed for the dataset input10000. This would

display the contents of the dataset and create a new block to the blockchain.

45

Figure 21: Second block added to blockchain

The size of blockchain “input10000_blockc” increased to 920 bytes with second block

being of 460 Bytes.

Figure 22: Map Reduce programs

This screenshot portrays that there are two map reduce programs.

MWordCount.java takes multiple input files, counts the words in all of them, and returns

a single output.

SWordCount.java takes single input file, counts the words and returns a single output.

46

Figure 23: Map Reduce for single input

The screenshot portrays that the Map reduce program SWordCount.java is compiled. A

new dataset named “input5000” is added to Hadoop and Map Reduce is performed on it.

Figure 24: New blockchain created

The screenshot portrays that a new blockchain named “input5000_blockc” is created

after the dataset “input5000” was accessed using Map Reduce.

47

Figure 25: Map Reduce on Multiple inputs

The screenshot portrays that Map Reduce program MWordCount.java was executed with

input files in multipleInput folder: input10000 and input12000 (Figure 19). The program

counts the words of both the files and provides a single output file.

Figure 26: A blockchain with multiple datasets

The screenshot portrays that when multiple files were accessed using Map Reduce, a

blockchain was created with the names of the 2 files separated by “_”. In this case, Map

Reduce accessed two datasets: input10000 and input12000. The resulting blockchain

created is input10000_input12000_blockc.

48

Figure 27: Delete dataset

The screenshot portrays that the dataset input12000 was deleted. Along with input12000,

the corresponding blockchain (input12000_blockc) was deleted as well. There was

another blockchain was created using input12000, i.e.

“input10000_input12000_blockc”. It was deleted as well and the content was copied to

the remaining blockchain “input10000_blockc”.

Figure 28: Viewing the dataset

49

The screenshot portrays that dataset input5000 was viewed. This would add another

block to the blockchain.

Figure 29: New block added to blockchain

The screenshot portrays that when the dataset input5000 was accessed, a new block was

added to the blockchain. The blockchain “input5000_blockc” now has 3 blocks.

The next few steps are performed to attack the blockchain, so that it can be modified

which is an unauthorized access. Since the system has all the access and all the

privileges, it can perform any actions to modify the data without leaving much evidence.

50

Figure 30: Blockchain data

The blockchain “input5000_blockc” was copied to the local file system. This blockchain

has 3 blocks. The fields in the blocks are separated by “,”. There are 10 fields in each

block. The field marked by red will be modified.

51

Figure 31: Modified block

A part of the genesis block for blockchain “input5000_blockc” has been modified.

Originally (Figure 30) it was “+w7” and it was modified to “777”.

Figure 32: Changing the blockchain

52

The blockchain “input5000_blockc” is modified by the following steps:

1. The blockchain file (input5000_blockc) was copied to the local file system

(figure 30).

2. It was edited in the local file system and some of the values were modified

(figure 31).

3. The blockchain file (input5000_blockc) in Hadoop file system was deleted

and replaced with the modified file from local file system using

copyFromLocal.

The blockchain is now modified. Next we execute the blockchain validation.

Figure 33: Validating blockchain

In the screenshot, the validation scheduler is executed. This scheduler executes the

validation logic after every fixed interval. In this case, the validation logic is executed

every 5 minutes.

53

Figure 34: Validation report

In the previous steps we modified the blockchain input5000_blockc and we modified the

genesis block. The screenshot of the report explains the same. Since we modified the

genesis block, the entire blockchain was affected. This report is in decrypted format, so

the admin can see which dataset was modified at what time.

Hence, a change in the genesis block from “+w7” to “777” is detected because all the

values were recalculated during the validation process. The process of creating the block

header i.e. the concatenation of merkle root, the version number, the timestamp and the

number of bits provided a block header value which was different from the present block

header value. Since the block header value from the genesis block is being used to create

the subsequent block, the values in the subsequent blocks changed as well. The

concatenation of merkle root, the version number, the timestamp, number of bits and the

previous block header was different than the block header value present.

54

Figure 35: View all blockchains by admin

Figure 36: View single blockchain by admin

55

Figure 37: View blockchain non-admin

A user can view the blockchains. All they have to do is provide their credentials

(username and password). If their role is admin, they can view the decrypted blockchain.

They can either view all the blockchains (figure 35) or a specific blockchain (figure 36).

If the user is not an admin, he/she can view the blockheaders of all the blockchain. No

other information is visible to them.

Figure 38: User registration

56

Figure 39: User data

The employees of the organization can register themselves if they wish to see the

blockchain. They will have to provide their information and their information will be

inserted into the database. If their role is admin, an extra field will be added to the

registration process. The password would be inserted into the database as a hash value.

Figure 40: Incorrect statements

If incorrect statements are entered, the Hadoop file system throws an error and does not

perform any action. In the screenshot, copyFromLocal command was misspelled twice

and it was copied when the command was executed correctly. The next command

copyToLocal was misspelled and Hadoop file syetem caught the error.

57

Figure 41: Illegal command

Copying blockchain files to local file system is an illegal operation. The Blockchain data

usage tracker detects that and creates a new blockchain which has 2 “_blockc” in the name.

This shows that someone tried to tamper with the blockchain. The user’s username will be

captured in this new blockchain and the validation process will detect it as an anomaly.

Figure 42: Validation report

The report shows that an illegal operation was performed on a blockchain.

58

Figure 43: Delete hdfs files

Figure 44: Log of files deleted

If a file is deleted (blockchain or dataset), it will be recorded in delete.log. Like in the

screenshot, first the blockchain “input20000_blockc_blockc” was deleted (figure 43).

This was recorded in delete.log (figure 44).

Next the dataset input20000 was deleted. As explained previously, if a dataset is deleted,

the corresponding blockchain will be deleted as well. The delete.log records the deletion

of input20000 and its corresponding blockchain input20000_blockc.

59

CHAPTER V

Conclusion

Data is captured by organizations and converted into datasets. Two or more datasets may be

combined to fetch critical or sensitive data which then can be misused for a variety of purposes.

The thesis proposes a novel way to track the usage of the datasets using a blockchain. Blockchain

is used because the data inside a blockchain is immutable. The data inside the blockchain are

validated at regular intervals and if an individual tries to modify the data using unauthorized

manner, the changes would be known.

When an user accesses/creates a dataset in Hadoop File System (HDFS), his username, the name

of the dataset accessed/created, the method using which he accessed the dataset (Command Line

Interface or Map Reduce) and the Command Line Operation performed (cat, copy and move) are

captured. These values are then hashed to create a single hash value called Merkle root. If a new

dataset is created or an existing dataset is accessed for the first time, a genesis block is created. A

version number is calculated, the timestamp for creation of the block is captured and the number

of bits of the data (data used for creation of Merkle root) is calculated. These three values are

modified and are concatenated with the Merkle root. This creates the block header which is used in

creation of the subsequent blocks. The blockheader of the following blocks is calculated by

concatenating the Merkle root, the modified version number, the modified timestamp, modified

60

number of bits and the block header of the previous block. Since all the data inside each block

depends on the data from the previous blocks, all the data is connected. At every regular intervals

a validation process is executed. This process recomputes all the values and if any modification

was done to any of the blocks, the values in the following blocks would not match. This would

mean that an unauthorized modification was performed. This is the reason blockchain is secure and

reliable.

This implementation was tested on a real Hadoop cluster with 1 namenode and 3 datanodes. One

more backup cluster was created. Each of these nodes was configured with 4GB RAM and 8GB

hard drive. When a dataset in HDFS was accessed, the details were stored in blocks in the

blockchain. The blocks consisted of a multiple hash values. These hash values were the Merkle

root, the blockheader, hash values of Version number, the timestamp and number of bits. One of

these values were modified and the validation process was executed. The modification caused an

anomaly and was caught during the validation process. This anomaly was reported to a log file.

The testing was successful with the expected results.

In this implementation dataset name, username, method of access (Command Line Interface or

Map Reduce) and command line operation (copy, move, cat, put) are being used to create a

blockchain. In the future many more relevant entities like data items, the access rights each user

has and user role could be captured to make the use of Blockchain Data Usage Tracker more

detailed on a larger scale.

61

This was done on a small scale testing environment. In future, this could be made to be executed

on a large scale scope like for public/government use. That would require high performance servers

which would make it much better.

62

REFERENCES

[1] Every day big data statistics

 (http://www.vcloudnews.com/every-day-big-data-statistics-2-5- quintillion-bytes-

of-data-created- daily/)[02/27/2017], indentation - check for all

[2] How much data is out there?

(http://www.webopedia.com/quick_ref/just-how-much-data-is-out-there.html),

[02/27/2017]

[3] Hadoop Mapreduce(https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html),

[02/27/2017]

[4] Big data analytics (http://www.sas.com/en_us/insights/analytics/big-data-

analytics.html), [02/27/2017]

[5] Bitcoin (https://bitcoin.org/en/), [02/27/2017]

[6] Cryptographic Hash Functions

(https://en.wikipedia.org/wiki/Cryptographic_hash_function), [02/27/2017]

[7] Access control of sensitive data in HDFS

(https://www.thinkmind.org/download.php?articleid=infocomp_2013_4_10_1005

0) [02/27/2017]

[8] Vigiles: Fine-grained Access Control for MapReduce Systems

 (http://www.utdallas.edu/~muratk/publications/vigilespaper.pdf) [02/27/2017]

[9] Zeng, W., Yang, Y., Luo, B. (2013). Access control for Big Data using data

content. In IEEE International Conference on Big Data, 2013, pp. 45-47.

63

[10] Hu, V. C., Grance, T., Ferraiolo, D. F., Kuhn, D. R. (2014). An Access

 Control scheme for Big Data processing. In IEEE International Conference on

 Collaborative Computing: Networking, Applications and Worksharing

 (CollaborateCom), 2014, pp. 1-7.

[11] Storm (http://storm.apache.org/) [03/20/2017]

[12] Hortonworks Data Platform(https://hortonworks.com/products/data-

center/hdp/)[03/20/2017]

[13] Apache Pig(https://pig.apache.org/)[03/20/2017]

VITA

PIYUSH BHATT

Candidate for the Degree of

Master of Science in Computer Science

Thesis: ACCESS CONTROL AND SECURITY OF DATASETS BY USAGE

TRACKING USING BLOCK CHAIN TECHNOLOGY

Major Field: BIG DATA

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in May, 2017.

Completed the requirements for the Bachelor of Science in Information

Technology at SRM University, Chennai, India in 2011.

Experience: 3.5 years of software development in Java and J2EE.

