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Abstract: Ultra-Wideband (UWB) has impacted our lives in impressive ways, it is one of 

the high potential areas with enormous benefits, especially for the short-range 

communication. With more discoveries, technology changed and the importance of 

wideband network was favored over narrowband. Officially, in the year 1933, Armstrong 

found and recognized the advantages of wideband signaling. Later, UWB was coined and 

took a fast pace and changed the conduct of the society in many ways. The most significant 

part about UWB is its applications, one of the claims i.e., Off-body is thoroughly studied 

and analyzed throughout the thesis.  

 

We performed one of the first vertical link channel studies with Off-body channel 

characterization with one UWB antenna patch on Unmanned Aerial Vehicle (UAV) and 

another antenna at different body locations on a real human subject for the frequency 

bandwidth of 3.1-10.6 GHz in different environments such as anechoic, indoor, and 

outdoor. The main purpose is to monitor how UWB system is affected by both large and 

small-scale fading, that’s why it was worth taking measurements in all three settings for 

the analysis. Also, it was critical to pick one best distributions among Lognormal, Rayleigh, 

Nakagami, Normal, Weibull, Gamma, Exponential and Rician using Akaike Information 

Criteria (AIC). The path loss varies in different environments, and its exponent becomes 

important parameter to be determined for all three settings.  

 

It was interesting to study how UWB characteristics varied with different environments. 

The delay profiles such as power delay profile (PDP), root mean square (RMS), maximum 

excess and mean excess delays were analyzed. For all the analysis, we used two small, light 

weighted compatible antenna patches, which supported UWB bandwidth and consumed 

less power so that it could be safely attached to a human body.  

 

Our work is mainly focused on the detailed understanding of standard UWB path loss and 

delay spreads for the communication channel between UAV and wearable. We believe this 

study would help us in understanding UWB Off body characteristics thoroughly and would 

also help in health monitoring and improvising the optimum location of the human body 

tag. 
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CHAPTER I 

 

 

INTRODUCTION 

 

“When wireless is perfectly applied the whole earth will be converted into a huge brain.” 

-Nikola Tesla 

In contemporary world, we are surrounded by wireless systems from headsets to automobile, 

everything is functioning wirelessly. There was a time when thinking about communicating with a 

person sitting in a different country was a dream, however, with time now what we see is conversing 

with anyone, anywhere smoothly; definitely, wireless has pushed our boundaries and helped our 

society in achieving unimaginable. Especially, in past ten years, the growth of communications 

industry has manifolded, integration has been on a large scale and has given rise to miniature 

technologies, which has made wireless economical and reliable [38]. Today, from entertainment to 

transferring highly secured data, wireless is being trusted in spite of having many limitations. 

Wireless has been chosen because of its convenience over other network types and with years 

passing by it has undoubtedly brought all great inventions, which has led wireless to be the fastest 

growing segment of the communication industry [39]. When the wireless communication was naive 

to the existence it was used for narrowed down bandwidths, with even little broad bands there were 

high chances of getting noise added to the system. In addition, previously not all the devices were 

compatible with the wideband area networks; hence mostly narrowband existed and the products 

which could support narrow bandwidths. With the expansion of wideband  came the existence of
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many technologies, along with the other ones came UWB technology. The brief history of UWB is 

shown in Figure 1.1. The name UWB coined because of its extensive bandwidth of up to 7.5 Gbps, 

which was undoubtedly huge. Any system was categorized as UWB when the absolute bandwidth 

was more than 500 MHz [22], and still, we follow the same definition.  

 

Figure 1.1 A brief history of UWB communication [30]. 

 

UWB is a type of radio; it is not exactly a conventional kind of radio system. As we are familiar, 

radio is a technology in which EM waves could be sent or received using a Transmitter and a 

Receiver, which is shown in the Figure 1.2.  

 

Figure 1.2 A basic radio system with transmitter, propagation medium and receiver [40]. 

 

 

Radio is used for transmitting, music, video, voice, telephony or a highly ciphered information, 
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this information could be keenly observed and read at the end of the receiver. We can tune a 

particular frequency for listening to music, for watching TV or for making a call to a specific 

person, everything is possible because of the electromagnetic waves, which are processed through 

a radio system. When a signal is without information, it is considered to have zero bandwidth. 

When data is modulated to the message (signal), it expands the information bandwidth [1]. The 

zero bandwidths represent the narrowband signals.  

 

Figure 1.3 The fundamental of UWB [1] 

 

As we can see in the Figure 1.3, a signal with information, when bifurcated using time, especially 

as a narrow lane of time [1]. Instead of small bandwidth, they occupy broad bands also known as 

UWB, which give rise to Ultrawideband concept. The UWB signal is defined as the integration of 

sub-narrowband signals each having a center frequency, which means that the wavelength of the 

entire UWB signal will change significantly over the whole frequency band [41]. Hence, it is a 

unique kind of extensive range UWB radio with the FCC approved [29] frequency range of 3.1-
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10.6 GHz [24,25]. For deploying UWB based products in the market, Institute of Electrical and 

Electronics Engineers (IEEE) performed significant work and assigned IEEE 802.15.4a as a 

standard.  

When a signal is modulated, coded and made highly compact with respect to the time but not with 

the frequency, this fundamental idea is referred as UWB. It has many benefits, one of them is it 

can accommodate multiple users. Rather than frequency the users are separated using time [1-2]. 

The best representation of multiple users in time is shown in the Figure 1.4.  

UWB has many other advantages which makes it a reliable source. The broad bandwidth of 7.5 

GHz and potentially 100 Mbps of the high data rate has application in high-definition television 

pictures, less of multipath interference and low power hence longer battery life [2-3]. It is also 

considered beneficial for location-based applications, such as, using wireless networks in a limited 

area securely, which used the data rate of below 1 Mbps [27]. One of the successful location-based 

services so far is 911 emergency number [26]. UWB is already used in military applications, and 

due to its potential, it is expected to have more usage in wireless communication and ranging in 

future [41]. So far, the unlicensed band of 2.45 GHz was studied for the On-body characterization, 

but a colossal scope was observed for the UWB which drew the attention of many researchers. 

UWB On-body radio channel characterization and system level modelling for body-centric 

wireless networks have been presented extensively in the open literature [3-4, 5–17]. Many 

researchers in the different areas have studied the UWB channel characterisation for standing and 

day to day life postures [5-17]. 

Another advantage of UWB that makes it reliable for both the On-body and Off-body 

characterisation is the high-frequency bandwidth range. As we know by the mathematical 

expression of 𝑐 = 𝑓𝜆  the frequency and wavelength are inversely proportional to each other. 

Hence, when the frequency is high, the wavelength associated with it would be short, and a short 
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wavelength leads to an antenna of small size. The small size of antenna patch is useful for both the 

types of body characterisations, small size makes it wearable and handy. Similar kind of small 

patch isotropic antenna was used for our experiment, for obtaining all the measurements.  

 

Figure 1.4 Representing the multiple users accommodated in UWB with the time separation [1]. 

 

UWB channel has several qualities which could be an exciting finding in the wireless 

communications, we are interested in body-centric discussion. There are two ways the body 

channel characterization is performed, one is On-body, and another one is Off-body. Such 

communication trend dealing with On and Off-body is a hot topic of research [18-20] and also very 

critical to understand the fundamental difference between both the systems. On-body 

communication is a system in which both the receiver and transmitter are placed on the human 

subject. On-body communication is very trendy in the contemporary world, moreover; as a result, 

there are many health monitoring devices. Today, we can easily keep track of our heartbeat, sugar 

level, etc. Whereas, Off-body communication is a system in which either the receiver or the 
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transmitter is attached to the body and whichever is not mounted on the body is kept away from 

the body at a certain distance. Off-body communication could be either wired or wireless. 

One of the best day to day examples of Off-body communication is ECG (electrocardiogram), in 

which sensors are attached to the human body and the status is observed on the receiver’s screen 

which is not mounted on the subject. Also, NASA uses Off-body method for tracking the health of 

astronauts using sensors on their spacesuit. In this work, we were keen to study Off-body centric 

communication using microstrip patch antenna, which is isotropic. We are planning to study the 

behavior of UWB antenna patch in three different environments, i.e., anechoic chamber, indoor 

warehouse scenario and outdoor. 

For the study of the far field, in each of the three scenarios measurements were taken at different 

distances ranging 3.5 to 8.0 meters. The basic idea of taking measures in the different environments 

is to understand the path loss and finding the path loss exponent for each one of them. Once we are 

familiar with the path loss and its exponent, we found the impulse response for each distance of 

respective body locations, then based upon the impulse response we ended up analyzing delays 

such as power delay profile, mean excess delay, maximum excess delay and RMS delay.  
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1.1 RESEARCH OBJECTIVE 

 

The primary objective of the research is to come up with an optimum location for antenna patch 

on the human body; this would be a helpful study for deciding the best locations for placing sensors 

on the human body for health monitoring. In our work, we are performing the channel 

characterization by developing a wireless communication between UAV and wearable device. 

There are many efficient body based sensors in the market, not all the sensors provide the valid 

results, many times main reason for the non-effective result is not being able to come up with best 

sensor location. When two sensors are in the line of sight (LOS) with each other, the system works 

and monitors the best. However, with non-line of sight (NLOS) the results observed are different, 

with more body movement the sensor location continually varies with respect to the receiver and 

hence show continuous variation. It is crucial to study the change because in practical scenario 

because nothing is stable and with the body movement the sensor location also continuously varies. 

Hence, we picked the best body locations and analyzed each of the areas at different distances 

between 3.5 - 8 meters with the interval of 0.5 meters in the anechoic, indoor warehouse and 

outdoor environment. A significant point to be noted is that we are relying on averaging, which 

means for each distance we have taken ten different measurements, and for each of the distance 

point we have found scattering parameter, i.e., 𝑆21 for the frequency range of 3.1-10.6 GHz, hence 

we are concerned with the average value of  𝑆21. The averaged 𝑆21 is used for finding the path loss 

exponent using linear regression, we have used Least Squares (LS) method. Also, 𝑆21  value has 

been helpful in coming up with the impulse response for each of the distance at different 

frequencies ranging from 3.1 to 10.6 GHz. 

Moreover, in this study, the delay parameters have been investigated as well for coming up with 

the best sensor location. For coding, we used MATLAB. All the measurements were taken in the 

environment of Richmond Hill lab, Oklahoma State University, Stillwater. 
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1.2 THESIS ORGANIZATION 

 

The thesis work consists of four chapters, Chapter 1 provides the fundamental introduction of the 

primary topic, i.e., UWB communication, and explanation of the primary objective of the study. 

Chapter 2 starts with the discussion of the UWB, we discussed the type of antenna requirement for 

the measurement and other required equipment, in other sections the UWB antenna behavior has 

been studied in three environments with varying distances and changing antenna locations. For 

understanding the propagation of UWB communication, path loss has been characterized for each 

body channel and respective path loss exponent and time dispersion parameters have been 

determined. Chapter 3 discusses the changing behavior of UWB with different human postures for 

LOS and NLOS in the indoor and outdoor environments. In this chapter, again the path loss 

dependency was compared with the distance, and time dispersion parameters were characterized for 

different human postures. In Chapter 4, the results are presented based on the analysis of the UWB 

antenna. Further, the conclusion has been extended to the future work. 
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CHAPTER 2 

 

OFF-BODY CHANNEL CHARACTERIZATION FOR DIFFERENT ENVIRONMENT 

 

2.1 INTRODUCTION 

 

UWB channel characterizations have been done in many different environments, such as office, 

house, airplane, outdoor, and underwater. Researchers have been working hard to know all the 

aspects related to UWB for receiving all the benefits out of it. UWB comes with so many 

advantages, one of the significant advantages is low power requirements, which make them very 

comfortable to be placed on any human body type. Also, due to low power, there is minimal noise 

interference which makes it perfect for short range, high data rate applications [43] and deployable 

for LOS and NLOS [22]. These advantages make UWB Technology a perfect fit for body-centric 

communications. Body-centric is one primary field of study these days. Body-centric is a network 

in which a bunch of low power sensors is spread around the human body to record specified 

physiological data for healthcare monitoring, and the human body is used as a transmission medium 

[31,44]. The human body is a complex structure; in body-centric communication, we make sure 

that signals don’t harm the sensitive human body surface, also, don’t compromise with the system 

quality. Luckily, for UWB, Federal Communications Commission (FCC) has defined power 

requirement as - 41.3 dBm/MHz, or 75 nanowatts/MHz [43] which doesn’t have any adverse effect 

on human body cells. 

Body-centric communication are of three types, 

 On-body  

 Off-body  



10 
 

 In-body  

 

These are very simple networks shown in the Figure 2.1; the On-body communicates when both 

Transmitter (Tx) and Receiver (Rx) are present on the human body. The Off-body communicates 

when either transmitter or receiver are present on the human body. The In-body communicates 

when one of the nodes is implanted inside the human body [42].    

 

Figure 2.1 Subdomain of body centric communication [37]. 

 

UWB has another advantage, due to the high frequency they have the tendency to penetrate most 

of the materials, which makes them applicable for through-the-walls communication and ground 

penetrating radars [43]. When any wireless signal travels, there are three basic propagation 

mechanisms occur, reflection, diffraction, and scattering. Reflection occurs when a signal strikes 

on an object. Diffraction occurs when a sharp-edged surface obstructs path between transmitter and 

receiver. Scattering occurs when an object kept in between the path of receiver and transmitter is 

smaller than the wavelength of the signal. The indoor warehouse and outdoor environment both get 

affected by all three propagation mechanisms and hence lead to different kinds of fading. Multipath 

fading is interference between two or more versions of signal arriving at two different times at the 

receiver [38]. Shadowing occurs due to the obstacles between transmitter and receiver, whereas, 
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power attenuates due to absorption, reflection, scattering and diffraction [39]. Variation due to 

shadowing and path loss occurs over large distances referred as large-scale propagation, whereas, 

multipath occurs at very short distances and referred as small-scale propagation effects. Small scale 

fading arises due to multipath propagation, speed of receiver and speed of the surrounding objects 

[38]. Multipath is also known as simple fading, describes the rapid fluctuation of amplitude over 

short period of time or travel distance and ignores large scale path loss effects [38]. The basic 

propagation effects are shown in Figure 2.2. 

 

Figure 2.2 The basic propagation mechanism effects. 

 

However, the performance of a UWB communications system is affected due to strong narrowband 

interference from the radio transmission [43]. It is essential to study the path loss and its exponent 

because multipath is impossible to avoid in UWB. Although, studies have shown short UWB pulses 

are not profoundly affected by the multipath but fading affects the system performance strongly, 

that’s why it is strongly recommended to study time dispersion parameters as well. In this work, 

we are dealing with the Off-body communication. We are interested in UWB Off-body channel 

characterization, finding path loss with distance-dependency and the time dispersion parameters 

due to large scale fading. 
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2.2 MEASUREMENT METHODOLOGY 

 

For performing UWB measurement, firstly, it was essential to decide an environment. Once a 

setting was fixed, the measurements were taken in the frequency domain. We used UWB based 

sensor which is also referred as a node, for capturing the data from the human body. It consists of 

nothing but an antenna patch for communicating with the other UWB based sensor which would 

be located at the certain distance from the human body. As we are performing Off-body 

characterization, we have to make sure both the sensors should not be on the same human subject. 

The UWB signal penetrates many materials but due to low power it is not harmful to the humans, 

for making sure we got the antennas tested. In this work, we have analyzed the antenna patch in 

three multipath environments and studied the path loss exponent for each one of them. 

 

2.2.1. MEASUREMENT SETUP 

 

 
Before going to the procedure of how to take measurements, it is essential to understand the entire 

measurement setup correctly. The basic UWB communication system is shown in the Figure 2.3. 

In our setup the structure is straightforward and consists of; 

•    Transmitter: The signal is transmitted through one of the UWB patches. 

•    Receiver: Another UWB patche receive the signal. 

•    RF coaxial cables:  For connecting VNA to the antenna patches. Weight: 2 lbs. 

•    Calibration kit:   Agilent 85032F. 

•   Vector Network Analyzer (VNA): VNA is test equipment which helps RF and microwave 

devices to be characterized as scattering parameter also known as S parameters. (Agilent 8722ES 

[50 MHz- 40 GHz]) [52]. 
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•    Data acquisition device: A laptop. 

 

EQUIPMENT SPECIFICATIONS 

Vector Network Analyzer Agilent 8722ES  [50 MHz – 40 GHz ] 

Calibration kit Agilent 85032F 

UAV 3 DR | IRIS + Quadcopter 

RF coaxial cables Weight ~ 2 lbs 

2 Antenna sensors 
OctaneBW-3000-10000-EG 

[3GHz -11 GHz] 

 
Table 2.1 The measurement equipment and their specifications. 

                               

This is a simple setup which explains how the data is transferred from transmitter to the receiver 

through the propagation channel. Both the transmitter and the receiver are attached to the VNA 

through the port one and port two respectively. The measurements were performed in the frequency 

domain using VNA [45].  Finally, the measured data, i.e., frequency responses are acquired through 

the laptop for analysis. Hence, channel transfer function 𝐻(𝑓) = 𝑆21(𝑓) is determined. 

 

Figure 2.3  The standard block diagram of UWB communication system. 

 
Although in our setup we have a transmitter UWB antenna patch on the UAV and receiver antenna 

patch on the human subject, which is shown in the Figure 2.4. UAV is used because it helps in 

providing vertical link communication and complexity to the overall system. The antenna patches 
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were connected to the VNA via RF coaxial cables of length 3-5 and 10 meters. It was necessary for 

the setup, having a human subject and his physical details like, height and weight, which in our 

case was an adult male with height of 1.8 meters and weight of 78 kgs.  

 

Figure 2.4 The sketch plan of the measurement setup for UWB Off-body characterization. 

 
We started with placing UWB antenna sensor at different body locations to the human subject, 

forehead, heart, abdomen, right arm / wrist / waist/ thigh / shin. We considered the left side of the 

human body as well and took measurements for left arm / shin which was surprisingly similar to 

the measured data results of right arm / shin, because the distance of left and right arm / wrist was 

identical from the UAV. Hence, instead of spending time on the entire left side of measurement we 

considered body and data points symmetrical and focused on one side of the body for analysis to 

save time.     

VNA was set with the sweep time of 100 milliseconds (ms), to generate 1601 continuous wave 

tones those were uniformly distributed over the 3.1-10.6 GHz spectrum [22], with frequency 
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interval 10 MHz, S-parameter (𝑆21) test set to measure the sampled frequency response of the 

channel [41]. The transmit power level set for VNA was -10dBm. The Figure 2.5 shows the 

Agilent’s VNA setup. 

 

Figure 2.5 The VNA used for the recovering 𝑆21 parameter. 

 
Antenna characteristics usually affect the radio signal propagation [41]. As we know, UWB 

occupies broad frequency band, hence, the message is not flat over the frequency. Moreover, 

picking a right antenna becomes an essential part of the UWB channel. Also, its frequency response 

changes over the entire bandwidth and the channel impulse response is obtained using the inverse 

Fourier transform, which we would be studying in coming sections [41]. For both transmission and 

receiving nodes, we used Octane BW-3000-10000-EG Omni-directional, vertically analyzed, 

wideband antennas with 5.5 dBi gain @ 3 GHz, 8.2 dBi gain @ 6 GHz and 6.3 dBi gain @ 9 GHz. 

Antenna made up of flexible material, lightweight (2 ounces), small in size with dimension 4.5″ x 

4.25″ x 0.4″ which is shown in the Figure 2.7, and VSWR less than 2:1, the radiation pattern of 

UWB antenna is given in the Figure 2.6.  
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The radiation pattern is also known as far field pattern or antenna pattern that represents the 

directional dependence of the strength of radio waves from antenna. It is basically a graphical 

representation of the radiation properties of antenna as a function of space coordinates.   

 

Figure 2.6 The radiation pattern for UWB antenna (Octane BW-3000-10000-EG),  from left to right 

Azimuth and Elevation patterns of the antenna used for the UWB measurement process. 

 

Figure 2.7 Octane BW-3000-10000-EG used for UWB Off-body channel characterization. 
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An IRIS+ quadcopter which is shown in the Figure 2.8 was used for the measurement, which had 

6 miles of communication range, the maximum speed of 25 mph and 3 DR link communication. 

The python code was used for acquiring data which took approximately 10 minutes for each 

channel measurement. 

 

Figure 2.8 An IRIS+ quadcopter used for placing the transmitter. 

 

2.2.2. MEASUREMENT PROCEDURE 

 

Before implementing any system design, proper planning is essential. Similarly, for the wireless 

system to implement, proper planning of channel measurements and modeling are indispensable 

[45]. It is necessary to analyze the wireless tag performance for understanding the correlation 

between them. We are trying to understand the difference in the behavior of UWB wireless tag in 

different multipath environments. In our case, we have taken measurements in three different 

scenarios, 

 Anechoic chamber; 
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 Indoor (Warehouse) environment; 

 Outdoor;    

Before going in-depth analysis of each environment, it is important to understand each one of them 

fundamentally. The anechoic chamber is an environment with no reflection, whatever the signal is 

sent from one node to other, it is absolutely absorbed. The picture of the anechoic chamber is shown 

in Figure 2.9. Thick foam and Styrofoam surrounded the chamber for high absorption. Hence, such 

rooms are highly useful for coming up with valid conclusion on no multipath environment. 

We analyzed indoor warehouse environment, which could also be considered as a practical 

environment. This is an environment which has a certain amount of large and small fading due to 

the objects around, through which the signals are reflected, and also multipath could be observed. 

We found there was enough scattering due to metallic scatters in the indoor warehouse environment 

[45]. It was considered practical, because generally in such environment a person spends most of 

his time. It becomes essential to study the behavior of UWB in indoor warehouse; it had unique 

propagation properties that consisted of substantial metallic walls, dimensions of halls and 

surrounding objects. Our main gain from such environment was to introduce multipath to analyze 

the performance of UWB wireless links. 

Outdoor is an environment that is not closed or surrounded by any walls. Through this we aim to 

understand the UWB performance in an open space. We also tried to learn how much a wireless 

tag is affected by the outside environment. 

 For the measurement, firstly, it was important to decide a multipath environment, mostly it is 

advisable to take the first measurement in the anechoic chamber without any multipath. The 

measure is made in the frequency domain [22]. In our setup, for each scenario, a transmitter is fixed 

at the UAV and receiver patch is attached to a human subject. The measurement is taken for the 

distance range of 3.5 to 8.0 meters with the interval of 0.5 meters in the indoor warehouse. 
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For each distance, the antenna patch is placed at 13 different human body locations for LOS and 

four body locations for NLOS. The patch locations on the human body for both LOS and NLOS is 

shown in the Figure 2.10. 

Before starting the measurement, it is essential to perform the calibration (Agilent 85032F) at the 

 

Figure 2.9 The picture of anechoic chamber where Off-body communication was performed [28]. 

 

interested frequency band for compensating the effects of measuring equipment, antennas, and 

cables [46], which helps in maintaining a reference to the overall system. When VNA was 

evaluating the channel response for each distance and each body location, it was necessary to obtain 

original data by extracting the effects of cables and outer environment on the final measured data. 

For taking the measurement, a human subject was made to stand still, with antenna receiver patch 

on his body at the distance of 8 meters in the LOS with the transmitter that is attached to a UAV. 

All the measurements were performed in the indoor warehouse of Richmond Hill lab of Oklahoma 

State University, Stillwater. The layout of the lab is shown in the Figure 2.12. The walls of the 

warehouse were made up of steel and surrounding had two metal pillars near the measuring 
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environment. The plan of the indoor area in which measurements were taken along with receiver 

and UAV is shown in the Figure 2.11 [46]. Inside the warehouse ten different transmitter-receiver 

separations were selected varying from 3.5-8.0 meters with the interval of 0.5 meters. For each 

antenna location, two different scenarios were considered LOS and NLOS. For LOS ten, whereas 

for NLOS four different antenna patch locations were measured, which is shown in the Figure 2.10. 

                                    

   (a)                                             (b) 

Figure 2.10 The UWB antenna patch locations on human body for measurements in the (a) LOS 

and (b) NLOS scenarios. 

 
For the distance of 8 meters, the UWB antenna sensor was placed at 13 different body locations, 

for each patch location, 10-time snapshots of measurements were collected for 1601 number of 

points for the uniform frequency distribution of 3.1-10.6 GHz. Then, with the interval of 0.5 meters, 

the subject changed his distance, and the entire measurement process was repeated every time for 

each of the length until human subject reached 3.5 meters. For LOS, at every interval, for each 13 

body location, data, i.e., channel responses were collected. The data is nothing but frequency 
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response with both magnitude (dB) and phase (degrees). Throughout the measurement process, the 

height of transmitter (on the UAV) was maintained.  

The flow chart representing the post-processing steps after the UWB channel measurement were 

obtained. 

 

 

  

The entire measurement process was repeated for the anechoic chamber and outdoor environment. 

Both could be considered as extreme environments as compared with the indoor warehouse. We 

made sure to lock the anechoic chamber while measurements were recorded. The anechoic chamber 

in the Richmond Hill lab consisted of two axes, radiation absorbent material. The outdoor 

environment where the measurements were taken was free open but not empty, the measurement 

scenario had parked cars along one side. The anechoic chamber and outdoor settings are shown in 

the Figure 2.9  and Figure 2.13 respectively.    

During the measurement, we made sure about the most basic conditions, such as no other human 

subject or unwanted moving objects were present in the measurement setting, to avoid Rician 

Collect 1601 points measurements obtained in 
the frequency domain  [3.1 - 10.6 GHz]

Find out the transfer function in the frequency 
domain.

Inverse Fourier transfer function (IFFT)

Impulse response of each channel

Average 1601 measurements for 
every point.
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fading for LOS and Rayleigh fading for NLOS scenario. For the measurement, the UAV was 

maintained at the fixed height of 3.0 meter. Ten sets of data was collected for different receiver 

location that were placed on a human subject for each new set of measurements [46]. The channel  

   

(a)                                                                        (b) 

Figure 2.11 Indoor warehouse measurement setup with the human subject in the LOS with the 

UAV in the indoor warehouse environment with path location at (a) Ear and (b) Wrist. 

 

response we received out of VNA was nothing but S21, i.e., also known as Transmission coefficient 

which corresponds to channel transfer function and kept safe for the post-processing and further 

evaluation of other crucial parameters. 

The entire procedure was repeated for NLOS for four body locations shown in the Figure 2.10 and 

path loss exponent, time dispersion parameters were calculated.  

While performing the measurements, it is advisable to take care of many factors. UWB propagation 

is heavily frequency-dependent [41]. It is suggested to have a stable static environment condition, 
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which means if one measurement is taken considering a bunch of people in the room then rest other 

measures should also be taken with the same number of people at the similar location. The objects 

situated on the way between transmitter and receiver in the propagation medium affects all the 

frequencies in different ways [41]. Studies have shown that number people in a room affect the 

measurement results at vast extent [22]. In our setup, we made sure that no other entity should 

change the measurement. Also, it is advisable to take care of the coaxial RF antenna cables and 

connectors, cables shouldn’t be bent anywhere, and connectors should be tightened firmly to avoid 

the losses due to moving cables during measurement. Under these conditions, the frequency 

response of the channel does not vary a lot during the time required to sweep the whole 

measurement bandwidth [47]. Also, we took care of the distance between the body and the mounted 

antennas by considering 5-7 mm distance variation caused by loose clothing. 

  

                                           (a)                                                                                  (b) 

Figure 2.12 (a) The layout of indoor warehouse setup, the two black spots represent two solid 

pillars present near the measurement setup. (b) The transmitter-receiver setup with wireless 

communication. 
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(a)                                                                                            (b) 

 
Figure 2.13 Outdoor setup with human subject and  in the LOS (a) side view of the setup with 

patch on his wrist (b) front view with patch location on his wrist. 

 

2.3 PATH LOSS CHARACTERIZATION 

 

Path loss characterization plays a vital role in designing wireless system. The primary objective of 

path loss characterization is to find out path loss exponent value in each environment i.e., anechoic, 

indoor warehouse and outdoor. The path loss exponent was supposed to be varying based on the 

different environment in which measurements were performed. In the practical environment, i.e., 

indoor and outdoor, the received power should logarithmically decrease with increasing distance. 

The path loss exponent also depends on antenna height and terrain category.  

For our setup, the data was collected for all the distances with each body location using data 

acquisition device, in our case we used python code on a laptop, data was processed further for 

evaluating other significant parameters. The recorded values were indexed as, 𝐻(𝑓), where 1601 
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points were uniformly captured over the frequency range of 3.1- 10.6 GHz, which we defined as  i 

varying from 1…1601 and for each distance we took snapshots of ten readings for averaging 

purpose, which we defined as j, varying from 1…10 [47]. Before any further parameter estimation, 

a coherent averaging of 10 measurements over the entire frequency range of 1601 points was 

performed, i.e., over the ten time-snapshots for each spatial point, to reduce the noise level and 

increase statistical analysis reliability. UWB measurement and propagation is heavily frequency 

dependent that’s why it was easy to model by impulse response method [41]. For mean power, time 

average of signal data was performed by changing position of the receiver [51].  The channel 

transfer function in the form of 𝐻(𝑓) for each distance is given by [47], 

H(𝑓) = ∑ ∑ 𝑆21(𝑓𝑖,𝑗)

1601

𝑖=1

10

𝑗=1

 

By taking ten snapshots of the measurement, averaging it and integrating the output helps in 

compensating external and antenna effects [41]. The evaluated channel transfer functions 𝐻(𝑓) 

between fixed m transmitter and n-th different receiver distances which in our setup is ten, was 

windowed using Hamming window then inversed Fourier Transformed resulting in impulse 

response ℎ (𝜏, 𝑚, 𝑛𝑖). When the concept of windowing is applied, we found out a measurable 

decrease in the number of paths counted [48]. Windowing generally improves the dynamic time 

domain range of a signal by neglecting the frequency response [49]. We were aiming to obtain a 

time domain response from a frequency domain at best, fast and easy way using Inverse Fast 

Fourier Transform (IFFT) method [46]. The evaluation was done for all of the ten different 

combinations of transmitter (Tx) and receiver (Rx) array locations, resulting in a total of 10 × 9 

impulse responses [45], where 9 stands for the body positions of UWB sensor tag on a human 

subject which we took measurements for.   



26 
 

Path loss is defined as a ratio between transmitted and received power, which can be directly 

measured by averaging the responses obtained by measurements [50]. The path loss 

characterization is separately done for all the environments. In our work, the goal is to understand 

the variation in received signal power with distance due to path loss & shadowing. Path loss is 

caused to the propagation channel and the power radiated by the transmitter. Path loss in dB could 

be given as a linear function of the logarithmic distance between transmitter and receiver, where, 

the slope of the graph determines path loss exponent given as 𝛾, which could be mathematically 

expressed as, 

𝑃𝐿𝑑𝐵(𝑑)  =  
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 
  =   𝑃𝐿𝑑𝐵(𝑑𝑜)   +  10 𝛾 log10  (𝑑

𝑑𝑜
⁄ )  +  𝑋𝜎 

Where d is the distance between transmitter and receiver, 𝑑𝑜 is the reference distance, and 𝑃𝐿(𝑑𝑜) 

is the path loss at the reference distance, 𝛾 is known as path loss exponent, 𝑋𝜎 is a zero-mean 

Gaussian distributed random variable with standard deviation 𝜎, both these values and path loss is 

defined in decibels (dB) [50]. 

The main objective behind studying the relation between path loss and distance is to calculate the 

value of path loss exponent for indoor and outdoor scenarios separately and compare them. As we 

know the value of path loss exponent is evaluated using slope, we used linear regression analysis, 

Least Squares method which is shown in Figure 2.17. The path loss exponent value increases with 

increasing number of indoor objects and also the increasing frequency, whereas, path loss exponent 

decreases with increasing antenna height [21]. For every distance, we averaged the obtained path 

loss values, which could be mathematically given as, 

𝑃𝐿𝑑𝐵( 𝑑𝑙  ) =    −10 log10(  
1

1601
∑ |

1601

𝑖=1

𝐻𝑖(𝑑𝑙)|2 ) 
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Where 𝑑𝑙 is each distance ranging from 3.5- 8.0 meters. The critical point here is to model the large-

scale characteristics of the environment for doing that, it is indispensable to come up with path loss 

variation.  

2.3.1. STATISTICAL ANALYSIS 

 

In the radio communication system, modeling is done statistically. The statistical analysis is 

performed using Akaike Information Criteria (AIC) in both the indoor and outdoor environment. 

The cumulative distribution function (CDF) of the path loss variation in each of the scenario, i.e., 

indoor warehouse, and outdoor, for each body channel is compared to well-known distributions, 

Normal, Weibull, Lognormal, Rayleigh, Nakagami, Rician, Gamma, and Exponential which is 

shown in the Figure 2.14.  

For the UWB statistical modeling, we try to find the best model using AIC. It is a great relative 

quality method for coming up with a best statistical model [23,24]. The measured data is used for 

coming up with different statistical models which are relatively compared by AKAIKE method.   

 

Figure 2.14 Cumulative distribution function measured and estimated, for forehead Off-body 

radio channel when subject was in the indoor environment at different distances. 
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The second order AKAI is defined as, 

 𝐴𝐼𝐶𝑐    =   −2 𝑙𝑛 (𝐿)  +  2𝑘 +  
2𝑘 (𝑘 + 1)

(𝑛 –  𝑘 −  1)
 

Where L is the maximized likelihood, k is the number of parameters estimated for that distribution, 

and n is the number of samples of the experiment. The eight distributions models mentioned above 

are all two parameter distributions (k =2) except the Rayleigh and the Exponential (k = 1) [50]. 

For determining the best statistical model, always look for the lowest AIC, and the idea is to sort 

statistical models from good to the bad ones; that’s why relative AKAI is considered which 

normalizes to the lowest value obtained [50]. The corrected value is given by,   

𝛥𝑖 =  𝐴𝐼𝐶𝐶–  min (𝐴𝐼𝐶𝑐). 

If the result of any statistical model indicates zero, it represents the best fitting. In our study, we 

applied AKAIKE for an indoor warehouse environment. We also analyzed the best distribution 

pattern for the outdoor setting as well; this was evaluated to be sure about the distribution. We were 

curious about finding if both outdoor and indoor support the same distribution result or not, also it 

helped in settling up with the distribution indeed. The AIC analysis for indoor and outdoor is shown 

in the Table 2.1 and Table 2.2, respectively. The AIC low value shows better distribution.  On the 

basis of the tabulated result of AIC, all the body positions we took into account for the 

measurement, in both indoor and outdoor environment supports Lognormal as the best fitting 

distribution for our system which is shown in the Figure 2.15 and 2.16. Also, the Figure 2.14 shows 

CDF for each distance considering Lognormal as a best distribution fit. 

 

 

 



29 
 

 

Position Normal Weibull Lognormal Rayleigh Nakagami Rician Gamma Exponential 

Forehead 0.0036 42.19 17.27 4113.59 1.95 0 8.47 6292.23 

Heart 3.49 38.6 4.22 4010.94 0 3.44 1.42 6186.814 

Right wrist 15.65 252.95 0 5668.19 8.85 15.62 3.75 7872.35 

Abdomen 0 19.17 24.12 4513.76 5.12 0.021 13.75 6701.5 

Right thigh 41.39 420.11 0 5807.27 26.17 41.34 12.42 8012.53 

Right arm 0.0079 44.176 10.10 4537.45 0.575 0 4.6 6725.8 

Right shin 0 61.33 17.31 5166.476 3.71 0.01 9.75 7365.04 

Waist 16.28 294.24 0 6103.48 9.62 16.26 4.25 8311.30 

Ear 11.11 301.88 0 6380.04 6.31 11.10 2.59 8589.74 

 
Table 2.2 Comparison of different distributions adopting AKAI for nine Off-body positions in the 

indoor environment. 

 

 

Position Normal Weibull Lognormal Rayleigh Nakagami Rician Gamma Exponential 

Forehead 8.42 64.04 1.25 3578.72 0.93 8.29 0 5740.48 

Heart 94.619 0 168.10 3787.28 114.3 94.80 139.64 5952.79 

Right wrist 27.46 0 67.61 5413.32 39.07 27.5 52.59 7614.53 

Abdomen 12.9 0 54.57 4215.9 23.20 13.05 37.62 6396.71 

Right thigh 23.98 312.98 0 5411.46 14.05 23.94 6.11 7612.86 

Right arm 59.89 0 112.96 4130.85 73.77 59.99 92.17 6308.14 

Right shin 11.05 204.57 0 4915.33 4.82 11.01 1.35 7110.22 

Waist 12.56 198.90 0 5254.13 6.4 12.53 2.47 7453.75 

Ear 12.361 189.9 0 5053.49 6.02 12. 65 2.20 7250.43 

 

Table 2.3 Comparison of different distributions adopting AKAI for nine Off-body positions in the 

outdoor environment. 
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Figure 2.15 The statistical analysis representing all the distributions to fit according to AKAIKE 

method. 

 

Figure 2.16 The statistical analysis representing Lognormal as a best fit out of other distributions 

according to AKAI method as it is close to the x-axis. 
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2.3.2. PATH LOSS ANALYSIS 

 

Statistical analysis helped in understanding the concept behind the best suited model and further 

assisted in determining Lognormal as the best distribution. Once we were familiar with the 

distribution, the main aim of this section was to come up with the path loss exponent for each body 

location. Path loss exponent is a factor to categorize an environment as lossy or non-lossy. Lower 

the path loss exponent value represents a free space, higher the exponent value represents the lossy 

environment. In our experiment, the path loss exponent was compared between two situations, i.e., 

indoor and outdoor. While taking the measurements, we already observed and assumed, the left 

and right side of human body did not make much difference. Hence, considering the assumption 

further, we only observed human subject’s right side channel path loss exponent (𝛾) values. Before 

proceeding for path loss exponent, the path loss for each body location is observed. The Table 2.4 

Body location Path loss - Indoor Path loss - Outdoor 

Ear 63.88 66.00 

Forehead 59.44 60.10 

Chest 62.14 60.31 

Right Arm 62.64 63.17 

Right Wrist 64.67 63.48 

Waist 64.10 64.27 

Right Thigh 63.89 63.81 

Right Lower Shin 63.52 63.77 

Abdomen 62.57 61.96 

Overall body 

average 
62.98 62.98 

 

Table 2.4 Comparing indoor and outdoor path loss of nine body locations for LOS. 

 

shows the path loss of individual channels in both the indoor and outdoor environments. 

 

Through the Table 2.4 we can make two conclusions, 

 

•    The environment with high path loss overall. 

 
•    The channel with high path loss in both the environments. 
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After analyzing the results, we can see overall both the environment share similar path loss value 

of 62.9 ~ 63.0 dB. Hence, we can conclude both the environments have a similar loss. Now, if we 

look over and observe the individual path loss for each channel, forehead in both the environments 

has lower path loss. The reason behind low value is the LOS, face to face communication between 

transmitter and receiver. For the indoor environment, the right wrist has highest path loss of 64.67 

dB, which could be because wrist movement in between the measurement due to which 

communication becomes NLOS. Whereas for outdoor environment, ear and waist has higher path 

loss of 66.00 dB and 64.27 dB. Another reason behind the differences in the value is the antenna 

polarization which is vertically polarized in our case, comes cross aligned with the receiver antenna 

for certain body positions with the transmitter antenna. Now, instead of analyzing each channel as 

an individual, we combined two or three body locations and considered as one single channel. For 

instance, the wrist and arm path loss values were averaged to call hand section. Similarly, chest 

section, head section, and leg section include abdomen/ waist/heart position, ear/forehead and thigh 

and shin, respectively.  

The Table 2.5 shows all the combined results of path losses. 

Combined body channels Indoor Outdoor 

Head 61.66 63.05 

Chest 62.9 62.2 

Hand 63.65 63.33 

Leg 63.70 63.79 

 

Table 2.5 Comparing indoor and outdoor path loss value of four combined body channels for 

LOS. 

 

On the combined analysis of path loss for four sections, we observed leg had higher path loss value 

for both indoor and outdoor environments. Leg led all other sections by the value of 63.7 and 63.79 

for both indoor and outdoor, respectively. The reason behind is that the higher value has to cover 
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more distance between the transmitter and receiver for wireless communication. Also, antenna 

suffered from ground reflections and gave rise to the high loss. 

In each environment, indoor and outdoor, first the path loss pattern was studied for LOS, we took 

measurements for nine body locations, which included only the right side of the human subject i.e., 

right ear / arm / wrist / thigh / lower shin, forehead, chest, waist and abdomen, as per the prior 

assumption of symmetry. Moreover, the path loss exponent in LOS is observed for nine body 

locations. The comparison of path loss exponent is shown in the Table 2.6.  

Body location 
Path loss exponent - 

Indoor 

Path loss exponent - 

Outdoor 

Ear 0.31 0.57 

Forehead 1.80 1.22 

Chest 0.19 1.05 

Right Arm 0.05 0.94 

Right wrist 0.34 0.32 

Waist 0.96 0.85 

Right Thigh 0.21 0.58 

Right Lower Shin 0.26 0.13 

Abdomen 0.51 0.58 

Overall body 

average 
0.51 0.69 

 

Table 2.6 Comparing indoor and outdoor path loss exponent value of nine body locations for 

LOS. 

 
From Table 2.6 we observed, outdoor has higher path loss exponent value for overall body as 

compared to indoor. Outdoor overall exponent leads by the value of 0.69. For both indoor and 

outdoor, the higher value of path loss exponent was obtained for the forehead, i.e., 1.8 and 1.22, 

respectively. However, for both indoor and outdoor environment path loss exponent has high 

value for forehead location, the reason is, communication is less distant between the transmitter 

and receiver because forehead area is closer to the UAV as compared to any other body section  
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Figure 2.17 For forehead and waist combined in the indoor environment, estimating slope i.e., 

finding path loss exponent using linear regression, Least Squares method. 

 
and hence in proper polarization with each other. For indoor, right arm has low path loss exponent 

value of 0.05, whereas, for outdoor, lower shin has low exponent value 0.13. The probable reason 

behind the low values for path loss exponent in both the environment would be multipath effect 

due to surrounding objects. Also, we observed the path loss exponent value by combining the 

effects of body location as an overall channel. Instead of comparing individual body location, the 

averaged path loss exponent value of indoor and outdoor is shown in the Table 2.7. 

Combined body channels Indoor Outdoor 

Head 1.05 0.89 

Chest 0.55 0.82 

Hand 0.19 0.63 

Leg 0.24 0.36 

 

Table 2.7 Comparing indoor and outdoor path loss exponent of four combined body channels for 

LOS. 
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In the combined analysis of body channels, for both indoor and outdoor the path loss exponent 

value is higher for head section, i.e., 1.05 and 0.89. In indoor, the lower value of path loss exponent 

is observed for hand section, whereas, for the outdoor leg has low path loss exponent value, as 0.19 

and 0.36 respectively. 

After analyzing the LOS, we observed the same pattern for NLOS in both the environments. As we 

did not take measurements for all the body locations in case of non-line of sight, we observe four 

body locations only, i.e., forehead, right arm, right lower shin, and abdomen because human subject 

was not facing the antenna patch attached to the UAV; hence, we picked body location from each 

section of the human body. The path loss value for each position in NLOS scenario for both the 

environments is given in the Table 2.8. 

Body patch location Indoor Outdoor 

Forehead 66.98 66.44 

Right Arm 69.20 68.63 

Right Lower Shin 68.97 69.32 

Abdomen 69.32 67.60 

 

Table 2.8 Path loss values for both the environments of each body section in NLOS. 

 
For NLOS, in both the indoor and outdoor environments, forehead has a low value of path loss. 

Whereas for the higher value of path loss both the environment has a different value of body 

locations, for indoor environment, abdomen has a high loss, whereas, in outdoor lower shin has the 

higher value. 

To understand the environments in which the human subject was exposed the path loss exponent 

was determined for NLOS environment as well which is shown in the Table 2.9. By covering the 

NLOS we are planning to analyze the shadowing scenario which is one of the studies to be 

performed to understand the large scale fading.   
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Body patch location Indoor Outdoor 

Forehead 1.12 0.61 

Right Arm 0.26 0.38 

Right Lower Shin 0.03 0.15 

Abdomen 0.11 0.50 

 

Table 2.9 Comparing indoor and outdoor path loss exponent value of four body locations for 

NLOS. 

 
As we can see from the Table 2.9, the higher value of path loss exponent is observed for forehead 

in both indoor and outdoor environments as 1.12 and 0.61 respectively. The minimum exponent is 

observed for lower shin in both indoor and outdoor environments. 

Hence, for both LOS and NLOS we can infer that forehead is the best location for a sensor, which 

makes sense because more it would be closer and in the LOS to the UAV. We also observed when 

sensors are not aligned properly and disrupts the communication; it gives rise to overall path loss. 

2.4 TIME DISPERSION PARAMETER 

 

Time dispersion parameters are the perfect way to find out the delay in the system. The multipath 

in the channel creates time delay spread that is a characteristics of the channel, which leads to, time-

varying channel [39]. In this section, we study about the power delay profile, RMS delay, mean 

and max excess delay. The time spreading could be explained as [39], 

                                      1 𝑡⁄  <  (𝑓 2 −  𝑓 1), leads to little time spreading. 

                                   1 𝑡⁄   >  (𝑓 2 −  𝑓 1), leads to enough time spreading & distortion. 

For delay analysis, the frequency responses or channel transfer functions we obtained after 

measurement were averaged, then the impulse response is received for each body channel, which 

could further lead to parameters calculation. The acquired impulse response goes through Hamming 
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windowing [35] and normalization. Windowing improves in the dynamic range of the time domain 

transform of data and produces an impulse stimulus with lower side-lobes but broader pulse width 

[43]. After windowing, IFFT was applied that transformed frequency domain to time domain.  

It is impossible to obtain the time parameters without calculating the power delay profile(PDP). 

Also, it is impossible to find PDP without finding the impulse response. Power delay profile could 

be calculated as [43], 

𝑃 (𝜏, 𝑑𝑙)  =  |ℎ (𝜏, 𝑑𝑙)|2 

Where τ represents the delay for some distance 𝑑𝑙, ℎ (𝜏, 𝑑𝑙) is the Fourier transform of 𝑆21 in the 

frequency domain. 

We calculated one of the the time dispersion parameters, i.e. Max excess delay for a set threshold 

value of 5 dB; also, we have the flexibility of changing the threshold value to as per our 

requirement. We derive other multipath dispersion parameters mathematically from power delay 

profile, which is represented by relative received power and excess delay with respect to fixed time. 

The mean excess delay is the first moment of power delay profile and is given as [43], 

𝜏𝑚   =   
∑ 𝑃(𝜏𝑖)𝜏𝑖𝑖

∑ 𝑃(𝜏𝑖)𝑖
 

The RMS or root mean square delay spread is one crucial time dispersion parameter. More 

importantly, when frequency bandwidth is too high, RMS delay is must to be studied. It provides 

a measure of time dispersion in multipath and evaluates the performance of the system [46]. UWB 

has a massive bandwidth of 7.5 GHz due to which it doesn’t support flat fading hence frequency 

selective fading is prominent, that’s why RMS delay spread plays an important role.  

Mathematically, it is given as the square root of the second moment of power delay profile [43], 
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τrms = √𝜏2 − 𝜏𝑚
2,   𝜏2 =

∑ 𝑃(𝜏𝑖)(𝜏𝑖
2)𝑖

∑ 𝑃(𝜏𝑖)𝑖
 

Maximum excess delay of the power delay profile could be determined by the time delay during 

which multipath energy falls to the set threshold value (In our setup 5 dB). 

After understanding the delay parameters, the implementation of delay analysis in our experimental 

setup we are observing each body location separately, and it is essential to note the pattern of delay 

for each one of them in both the scenarios indoor and outdoor. Also, for an ideal environment 

consideration, we measured the anechoic chamber, and the pattern of average delay profile for the 

anechoic chamber is shown in Figure 2.18. 

As we observed in the path loss characterization, for both LOS and NLOS scenario, we determined 

the path loss and path loss exponent for each body location in both the environment indoor and 

outdoor. 

 

Figure 2.18 Average Power delay profile for each distance (d) in the anechoic chamber 

environment. 
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The pattern followed by body channels in determining the path loss helped in understanding the 

origin behind it, also, helped in finding out the best sensor location in both LOS and NLOS. 

 Body patch location RMS delay- Indoor (ns) RMS delay-Outdoor (ns) 

Ear 43.3 64.2 

Forehead 30.5 64.0 

Chest 42.9 41.6 

Right Arm 46.0 60.7 

Right wrist 56.8 61.2 

Waist 48.6 59.2 

Right Thigh 49.6 55.1 

Right Lower Shin 48.2 51.5 

Abdomen 40.9 58.3 

Overall body average 45.2 57.3 

 
Table 2.10 Comparing indoor and outdoor RMS delay value of nine body locations for LOS. 

 
Now, a similar observation made about the delay for each body location. The RMS delay pattern 

was observed for each sensor location. As we discussed, RMS delay is one important delay analysis 

for such colossal bandwidth of communication system. By finding RMS delay value for each body 

location, we gained a better picture of which position of the sensor makes more sense.  

The RMS delay analysis is shown in the Table 2.10. The RMS delay pattern shows; the delay is 

higher for the outdoor environment as compared to indoor. The RMS delay has a value of 57.3 ns, 

whereas, for indoor, it is 45.2 ns. If we analyze the individual body location for indoor, we found 

out wrist has the highest delay of 56.8 ns which is high compared to the overall average for the 

body. The reason behind such hike for wrist could be due to the subject’s small hand movements, 

also due to multipath from around the objects. It was good to see how little change in body position 

and movement give rise to such enormous delays. In the outdoor environment, the highest delay 

was observed for ear 64.2 ns, the only reason behind this delay is multipath between transmitter 

and receiver while communication was taking place. 

Similarly, NLOS scenario is analyzed for the RMS delay in both indoor and outdoor, the results of 

the analysis are shown in the Table 2.11. 
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Body channels 
RMS delay- Indoor 

(ns) 

RMS delay-

Outdoor(ns) 

Forehead 61.0 64.0 

Right Arm 58.9 62.0 

Right Lower Shin 58.9 62.5 

Abdomen 57.3 61.4 

Overall body average 59.0 62.4 

 
Table 2.11 Comparing indoor and outdoor RMS delay value of four body locations for NLOS. 

 

We can observe from the Table 2.11, in both indoor and outdoor environment, forehead has the 

highest RMS delay value of 61 ns and 64 ns respectively, whereas, the least delay is observed for 

the abdomen. As we saw in the Table 2.10 for the indoor, forehead has lowest average RMS delay 

value of 30.5 ns, which is lowest as compared to any RMS delay, we have seen so far. Therefore, 

this forehead position was analyzed for observing other delay patterns such as the maximum excess 

delay and mean excess delay was also examined graphically. The spread plot for all the delays is 

shown in the Figure 2.19. Based upon the figure, the average of max excess delay is 20.7 ns and 

the average of mean excess delay is 29.3 ns. 

 

Figure 2.19 The delay pattern when antenna patch is at the Forehead position in the indoor 

environment (LOS). 
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Body patch location 
Mean excess delay- 

Indoor (ns) 

Mean excess delay-

Outdoor (ns) 

Ear 40.0 86.6 

Forehead 30 49.8 

Chest 40.08 37.6 

Right Arm 43.1 66.5 

Right wrist 62.1 67 

Waist 47.2 63.7 

Right Thigh 48.5 54.2 

Right Lower Shin 49.2 50.2 

Abdomen 38.4 59.2 

Overall body average 44.2 59.4 

 

Table 2.12 Comparing indoor and outdoor mean excess delay value of nine body locations for 

LOS. 

 

Body patch location Mean delay- Indoor (ns) Mean delay-Outdoor(ns) 

Forehead 81.9 92.3 

Right Arm 107 106 

Right Lower Shin 110 103 

Abdomen 110.8 106 

Overall body average 102.4 101.8 

 
Table 2.13 Comparing indoor and outdoor mean excess delay value of four body locations for 

NLOS. 

 

Body patch location 
Max excess delay- 

Indoor (ns) 

Max excess delay-

Outdoor (ns) 

Ear 22 13.6 

Forehead 21.7 22.6 

Chest 22.5 22.6 

Right Arm 23.1 12.7 

Right wrist 73.5 16 

Waist 41 12.7 

Right Thigh 24.5 25 

Right Lower Shin 40.2 24.9 

Abdomen 22.6 68.4 

Overall body average 32.34 24.2 

 

Table 2.14 Comparing indoor and outdoor max excess delay value of nine body locations for 

LOS. 
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Body patch location 
Max excess Delay- 

Indoor (ns) 

Max excess Delay-

Outdoor (ns) 

Forehead 135 152 

Right Arm 213 213 

Right Lower Shin 213 213 

Abdomen 209 213 

Overall body average 192.5 197.7 

 
Table 2.15 Comparing indoor and outdoor max excess delay value of four body locations for 

NLOS. 

 

Similarly, the mean and max excess delay is analyzed for each body location in both the 

environments indoor and outdoor which is shown in the Tables 2.12, 2.13, 2.14 and 2.15. 
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2.5. CONCLUSION 

 

In this chapter, we started with explaining the significance of UWB communication and its 

importance in the wireless world. We talked about one of the crucial applications of UWB, i.e., 

body-centric communication. The two different kinds of body-centric communication were 

explained. As we were interested in Off body channel characterization, so the measurement 

technique which was one of the significant steps for the characterization, was covered. Entire 

measurement process was explained, measurement setup details were covered for both LOS and 

NLOS. Statistical analysis was performed for finding out the best distribution using AIC test. Path 

loss characterization for each body location was evaluated and tabulated. Through path loss 

characterization we refer, both path loss and path loss exponent value. After the path loss analysis 

based on their results, the delay analysis was performed for finding out more about each body 

location. Also, RMS delay value, max excess and mean excess delay for each body location was 

observed and tabulated for both LOS and NLOS. 
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CHAPTER III 
 

 

OFF-BODY CHANNEL CHARACTERIZATION FOR DIFFERENT POSTURES 

 

3.1 INTRODUCTION 

 

In Chapter 2, we understood the fundamentals of UWB communication and also covered one of 

the essential applications, i.e., body-centric communication, in the form of Off-body 

communication. The Off-body channel was studied, analyzed and characterized thoroughly for both 

indoor and outdoor measurement scenarios. The path loss and path loss exponent were determined 

for each body position. Also, the delay analysis was performed and based upon the analysis of path 

loss characterization. 

In this chapter, we are extending our study to analyze different human body postures. In this study, 

we want to understand how UWB Off-body channel characterization is affected when the human 

subject stands in different postures. This study is important because understanding the LOS and 

NLOS behavior of each channel is not enough. By considering the postures, we are trying to 

consider a human subject in a practical scenario, performing quotidian activities. Before proceeding 

any further, it is important to decide the environment in which measurements would be taken. 

Previously, we wanted to study indoor environment for posture study but later on, to have a 

comparable environment we considered outdoor setting as well and practiced the entire 

measurement process with two body locations and four body postures. 
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In this study we did not consider all body positions; instead, we decided to go for two body positions 

only, i.e., forehead and abdomen, for each posture in both the measuring environments, i.e., indoor 

and outdoor. In addition, we have taken all our measurements in LOS scenario, i.e., human subject 

facing the UAV. 

The primary objective of this chapter is to study the path loss variation for each of the location on 

the human body with different postures. This study is going to help in analyzing which posture 

contributes more path loss. The delay analysis for each posture would be studied as well. In the 

next section we have explained the entire measurement procedure.  

3.2 MEASUREMENT METHODOLOGY 

 

The process of measurement is similar to what we have discussed earlier, in Chapter 2. As we were 

performing the Off-body channel characterization, we needed the same setup and equipment. For 

the equipment and their specifications refer Table 2.1 from Chapter 2. 

A VNA was provided same input as performed earlier.  Before starting the measurement process, 

the calibration of the system was performed using short, open and load connectors. The external 

effect of cables was eradicated using Thru connector. After completing the calibration, the output 

is checked over the Smith plot in the VNA, for being sure regarding the calibration. 

Unlike the previous measurement, where the human subject was changing his distance ranging 

from 3.5 – 8 meters with the interval of 0.5 meters, in this measurement setup, the human subject 

was standing at the fixed distance of 6 meters. Both transmitter and receiver were at a fixed distance 

in this measurement scenario. The measurement was performed in both the indoor and outdoor 

environments. Four primary postures were picked for performing the measurement, sitting, 

standing, bending and sleeping as shown in the Figure 3.1. For each pose, the antenna patch was 
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attached at two different positions on the human subject, i.e., forehead and abdomen as shown in 

Figure 3.2.  

For the first measurement, in the indoor environment, the subject was standing with the antenna 

patch attached to his forehead as shown in Figure 3.3. Then subject changes the location of the 

antenna to the abdomen. For the second measurement, the subject is bending with the antenna 

attached to his forehead and later to his abdomen. Similarly, the measurement was taken for 

sleeping and sitting postures as well. The entire process is repeated for outdoor environment which 

is shown in the Figure 3.4. 

                                                 

(a)                                  (b)                                      (c)                              (d)   

Figure 3.1 The four selected human body postures  (a) Standing  (b) Sleeping  (c) Sitting  (d) 

Bending. 

 

 

Figure 3.2 The UWB antenna patch locations on human body for measurement. 
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Figure 3.3 A standing human subject with UWB antenna patch attached to his forehead with the 

transmitter to the UAV in the indoor warehouse environment. 

     

Figure 3.4 A standing human subject with UWB antenna patch attached to his forehead with the 

transmitter to the UAV in the outdoor environment. 

 

While taking the measurement, we made sure cables were tightly held via connectors. Addition, 

the cables were not bent anywhere while laying on the ground. No other moving object or individual 

except the human subject was around the experimental area when VNA was recording the data. We 

made sure to secure the height of the UAV as at 3 meters.   
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3.3 PATH LOSS CHARACTERIZATION 

 

We already discussed about studying the importance of finding out path loss, it plays a necessary 

role in designing any system. Path loss is like air which exists, affects us and whose presence cannot 

be denied at all. Path loss could not be eradicated from the system, it could only be reduced in 

certain ways. When we discuss about path loss characterization we refer to the path loss in the 

system which could arise due to many factors like diffraction, reflection or scattering by the objects 

in the environment. It is difficult to maintain an ideal environment for the propagation of the signal,  

in any experiment ideal environment would just be considered for the reference purpose, in our 

experimental setup, we considered anechoic chamber as an ideal environment. However, to study 

the practical world it is crucial to have analyzed results from both indoor and outdoor environment, 

it helps in understanding the path loss in easier and empirical manner. 

In the previous chapter, we already studied path loss exponent in both indoor and outdoor 

environments. In this chapter, we want to find out the path loss values for different postures and 

understand the cause behind its nature, based upon the results we want to conclude which posture 

and body location combination suits the best. For coming up with path loss values, at first, the data, 

i.e., frequency response or channel transfer function (𝑆21) is obtained via VNA is shown in the 

Figure 3.5. 

The data is processed through the system for converting frequency domain to time domain, that is 

what the entire concept on which UWB works. For the conversion from one domain to other, we 

use a fast and easy method of IFFT. Hence, the path loss is obtained after processing the data 

through the MATLAB code. The results of path loss is shown in the Table 3.1. 
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Figure 3.5 The averaged path gain vs frequency range of 3.1- 10.6 GHz for all ten points 

measured when antenna patch was placed at the forehead of the human subject. 

 

Tag location Stand (dB) Bend (dB) Sit (dB) Sleep (dB) 

Forehead 59.198 67.024 60.604 67.844 

Abdomen 62.336 65.127 63.335 66.828 

 

Table 3.1 Path loss values for two body locations and four different body postures in the indoor  

environment. 

 

Tag location Stand (dB) Bend (dB) Sit (dB) Sleep (dB) 

Forehead 59.63 68.30 62.38 68.97 

Abdomen 61.48 68.46 60.31 67.53 

 

Table 3.2 Path loss values for two body locations and four different body postures in the outdoor  

environment. 

Through Tables 3.1 and 3.2, we can observe, stand and sit have lower path loss value as compared 

to bend and sleep for both the UWB based sensor locations. The one major reason behind the lower 

path loss value is unobstructed communication between transmitter and receiver due to LOS. We 

already suspected such behavior, but it was good to see the results. The best combination of posture  
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and position is when the person was standing with sensor tag on the forehead or sitting with the 

sensor on the forehead. 

3.4 TIME DISPERSION PARAMETER 

 

Time dispersion parameters are nothing but to understand the delay in the system; it is probable to 

see the delay profile following the same pattern as path loss. The posture and body location with 

high path loss should have a high RMS delay as well. The power delay profile, mean excess, 

maximum excess and RMS delay profile for four body posture with two positions of sensor 

locations were studied, analyzed and conclusions were drawn. 

Tag location Stand (ns) Bend (ns) Sit (ns) Sleep (ns) 

Forehead 30.02 61.45 34.46 61.19 

Abdomen 38.78 56.36 39.00 61.76 

 

Table 3.3 RMS delay for all the eight posture-sensor location combinations in the indoor 

environment. 

 

Tag location Stand (ns) Bend (ns) Sit (ns) Sleep (ns) 

Forehead 50.14 63.03 56.40 64.94 

Abdomen 57.48 63.86 35.81 61.95 

 

Table 3.4 RMS delay for all the eight posture-sensor location combinations in the outdoor 

environment. 

 

From the Table 3.3 and Table 3.4, we can conclude overall RMS delay for standing and sitting is 

small as compared to bending and sleeping postures in both indoor and outdoor. Among all the 

posture and sensor position combination, a person standing with sensor on the forehead is one best 

combination, due to least RMS delay value. 

Tag location Stand (ns) Bend (ns) Sit (ns) Sleep (ns) 

Forehead 21.75 24.84 22.5 23.35 

Abdomen 22.28 22.68 23.08 23.08 

 

Table 3.5 Maximum excess delay for all eight posture-sensor location combinations for 5 dB of 

threshold in the indoor environment. 
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Tag location Stand (ns) Bend (ns) Sit (ns) Sleep (ns) 

Forehead 22.28 24.68 22.81 24.68 

Abdomen 22.94 26.01 23.88 23.88 

 
Table 3.6 Maximum excess delay for all eight posture-sensor location combinations for 5 dB of 

threshold in the outdoor environment. 

 
Figure 3.6 The peak in the graph between power delay profile and delay spread represents the 

max excess delay value of 21.75 for the sensor location of forehead while the subject was 

standing at the distance of 5 meters. 

 
From the Table 3.5 and Table 3.6, we can conclude overall maximum excess delay is small and 

somewhat similar for all the postures in both indoor and outdoor. Among all the posture and sensor  

Tag location Stand (ns) Bend (ns) Sit (ns) Sleep (ns) 

Forehead 29.92 70.47 33.53 73.30 

Abdomen 36.34 58.57 37.10 75.16 

 

Table 3.7 Mean excess delay for all eight posture and sensor location combinations in the indoor 

environment. 

 



52 
 

position combination, a person standing with sensor on the forehead is one best combination and 

has least maximum excess delay value for the threshold value of 5 dB. 

Tag location Stand (ns) Bend (ns) Sit (ns) Sleep (ns) 

Forehead 45.81 103.00 55.9 92.01 

Abdomen 57.60 94.78 34.79 70.73 

 

Table 3.8 Mean excess delay for all eight posture and sensor location combinations in the outdoor 

environment. 

 

From the Tables 3.7 and 3.8, we can conclude overall mean excess delay is small for standing and 

sitting posture as compared to sleeping and bending postures in both indoor and outdoor. It is due 

to LOS and NLOS between the transmitter and the receiver antenna, also, the antenna polarization 

between transmitter and receiver affects the bending and the sleeping postures. Among all the 

posture and sensor position combination, a person standing with sensor on the forehead is one best 

combination, due to least mean excess delay value.  
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3.5 CONCLUSION 

 

In this chapter, we tried to understand the behavior of UWB sensor for different postures. In Chapter 

2, we talked about how each location of the sensor on human body gets affected by different 

environment. We thoroughly studied about path loss and its exponents in indoor and outdoor 

environments, after path loss analysis we focused on the delay analysis for overall atmosphere and 

each sensor location. In this Chapter we followed the same pattern; first, we picked the best 

common postures, with each pose we picked two sensor locations, forehead, and abdomen.  We 

analyzed path loss for the combination of sensor locations and poses, and figured out the best 

combination based on the tabulated results. After examining path loss, we tried understanding the 

delay profile for each combination, which further helped in making a stringent decision regarding 

the best sensor location. Also, improved in understanding the cause of each posture-sensor 

combination. We also realized how signals show suspicious behavior in LOS and NLOS in both 

indoor and outdoor environments.



54 
 

CHAPTER IV 
 

 

FINAL CONCLUSION 

 

 

4.1 INTRODUCTION 

 

This work presents results obtained from an Off-body UWB communication measurements at 

Richmond Hill lab, Oklahoma State University. In this work, we started with discussing the UWB 

concepts and its importance. One of the significant applications of UWB is body-centric 

communication; we covered one type of body-centric communication in our work. So far, many 

researchers have worked on the On-body communication system. On-body is a system in which 

both transmitter and receiver are on the human subject. In our study, we worked on the 

characterization of Off-body communication in which transmitter was attached to the UAV and 

receiver to the human subject. 

We started with deciding upon the UWB sensor locations on the human body, then the distance 

range for which we wanted to take measurements. The primary objective of the Off-body 

characterization was to analyze the path loss pattern with increasing distances. Additionally, we 

were interested in understanding how the path loss was varying based on the sensor location on the 

human subject. During path loss characterization, we explored a wide range of path loss exponent 

(γ) value and observed for some cases it was well below 2 and in most cases below 1. The main 

reason behind the behavior for such wide range of path loss exponent is the multipath indoor and 

outdoor environment. We studied the path loss and delay variations related to them. 
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We observed with increasing distances between transmitter and receiver the path loss increases as 

well, as UWB signals were covering more distances and due to multipath in the propagation 

medium, the signal strength reduced giving rise to the path loss. The importance of multipath in 

both LOS and NLOS scenarios were observed. 

While analyzing the delay we defined the threshold value as 5 dB, the threshold value applied at 

the PDP limited the maximum excess delay, which helped in finding out the maximum excess delay 

value for each body position.  While analyzing the RMS delay values we observed it followed the 

pattern of path loss, a signal with high path loss encountered more delay. 

In this work, we have also shown the statistical analysis for picking one best distribution, we used 

AIC method for comparing all eight different distributions, i.e., Normal, Weibull, Lognormal, 

Rayleigh, Nakagami, Rician, Gamma, and Exponential. We found out AIC value for all the 

distributions for each measured body position, i.e., forehead, chest, ear, wrist, arm, thigh, shin, 

abdomen. On comparing the AIC value, we found out Lognormal fits as the best distribution for 

our UWB system. Later, the path loss calculations; time dispersion parameters were evaluated 

considering lognormal distribution.  

After the analysis, we found out the forehead came out to be the best position for attaching the 

sensor. The path loss value for forehead was less compared to other locations. Moreover, all the 

delay parameters came out be very low for forehead and chest. In Chapter 3, we picked four 

postures sitting, standing, bending, sleeping and found out sitting and standing were comparably 

better ones, with low path loss and delay values. The best posture-sensor location combination we 

found out was human sitting or standing with the sensor on his forehead. We could conclude about 

it by observing the path loss value and comparing it with other posture-sensor combinations, the 

path loss value for the standing-forehead combination was 59 dB. Also, the delay analysis provided 

30 ns of RMS delay, 21 ns of max excess delay and 29 ns of mean excess delay. 
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4.2 FUTURE WORK 

 

UWB is a growing area of research, the reason is it is not limited to one application, instead it has 

application in wide area from data transfer to positioning, it is more like a sea of possibilities. As 

we know that UWB could be used for high data transfer, one future work for this application is 

possibility to process and transmit a large amount of data and transfer vital information using UWB 

wireless body area networks would enable tele-medicine to be the solution for future medical 

treatment of certain conditions [36]. UWB is definitely going to contribute in future evolving 

technologies like, being integral part of 4G communication, 3D imaging technologies, super 

complex embedded wireless sensor networks [36] which is shown in Figure 4.1.  

 

Figure 4.1 Role of UWB in future systems [2]. 

 

The work presented in thesis could also be taken on another level by using the UWB measurement 

on different body types of human. With different body type basically means different fat and protein 

content in the body and understand how the UWB sensor reacts to such condition [53]. Finally, we 

plan to conduct research by keeping human subjects in different scenarios like, underground, 

anechoic, reverberation, office to study the path loss and delay characteristics.
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